WorldWideScience

Sample records for sites groundwater monitoring

  1. Pickering Nuclear site wide groundwater monitoring system

    International Nuclear Information System (INIS)

    DeWilde, J.; Chin-Cheong, D.; Lledo, C.; Wootton, R.; Belanger, D.; Hansen, K.

    2001-01-01

    Ontario Power Generation Inc. (OPG) is continuing its efforts to understand the chemical and physical characteristics of the groundwater flow systems beneath the Pickering Nuclear Generating Station (PNGS). To this end, OPG constructed a site-wide Groundwater Monitoring System (GMS) at the PNGS to provide support to other ongoing environmental investigations and to provide a means to monitor current and future groundwater environmental issues. This paper will present the results of this work, including the development of a state-of-the-art data management system for storage and retrieval of environmental data for the site, which has applications for other power generation facilities. (author)

  2. The Savannah River Site's groundwater monitoring program

    International Nuclear Information System (INIS)

    1991-01-01

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted by EPD/EMS in the first quarter of 1991. In includes the analytical data, field data, data review, quality control, and other documentation for this program, provides a record of the program's activities and rationale, and serves as an official document of the analytical results

  3. The Savannah River Site's Groundwater Monitoring Program

    International Nuclear Information System (INIS)

    1992-01-01

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted during the first quarter of 1992. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program's activities; and serves as an official document of the analytical results

  4. The Savannah River Site's groundwater monitoring program

    International Nuclear Information System (INIS)

    1991-01-01

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site's (SRS) Groundwater Monitoring Program. During third quarter 1990 (July through September) EPD/EMS conducted routine sampling of monitoring wells and drinking water locations. EPD/EMS established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead they aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. All analytical results from third quarter 1990 are listed in this report, which is distributed to all site custodians. One or more analytes exceeded Flag 2 in 87 monitoring well series. Analytes exceeded Flat 2 for the first since 1984 in 14 monitoring well series. In addition to groundwater monitoring, EPD/EMS collected drinking water samples from SRS drinking water systems supplied by wells. The drinking water samples were analyzed for radioactive constituents

  5. Hanford Site Groundwater Monitoring for Fiscal Year 2006

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2007-03-01

    This report presents the results of groundwater monitoring for FY 2006 on DOE's Hanford Site. Results of groundwater remediation, vadose zone monitoring, and characterization are summarized. DOE monitors groundwater at the Hanford Site to fulfill a variety of state and federal regulations, including the Atomic Energy Act (AEA), the Resource Conservation and Recovery Act (RCRA), the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), and Washington Administrative Code (WAC).

  6. Ground-water monitoring and modeling at the Hanford Site

    International Nuclear Information System (INIS)

    Mitchell, P.J.; Freshley, M.D.

    1987-01-01

    The ground-water monitoring program at the Hanford Site in southeastern Washington State is continually evolving in response to changing operations at the site, changes in the ground-water flow system, movement of the constituents in the aquifers, and regulatory requirements. Sampling and analysis of ground water, along with ground-water flow and solute transport modeling are used to evaluate the movement and resulting distributions of radionuclides and hazardous chemical constituents in the unconfined aquifer. Evaluation of monitoring results, modeling, and information on waste management practices are being combined to continually improve the network of ground-water monitoring wells at the site

  7. Ground-water monitoring and modeling at the Hanford Site

    International Nuclear Information System (INIS)

    Mitchell, P.J.; Freshley, M.D.

    1987-01-01

    The ground-water monitoring program at the Hanford Site in southeastern Washington State is continually evolving in response to changing operations at the site, changes in the ground-water flow system, movement of the constituents in the aquifers, and regulatory requirements. Sampling and analysis of ground water, along with ground-water flow and solute transport modeling are used ito evaluate the movement and resulting distributions of radionuclides and hazardous chemical constituents in the unconfined aquifer. Evaluation of monitoring results, modeling, and information on waste management practices are being combined to continually improve the network of ground-water monitoring wells at the site

  8. Hanford Site groundwater monitoring: Setting, sources and methods

    International Nuclear Information System (INIS)

    Hartman, M.J.

    2000-01-01

    Groundwater monitoring is conducted on the Hanford Site to meet the requirements of the Resource Conservation and Recovery Act of 1976 (RCRA); Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA); U.S. Department of Energy (DOE) orders; and the Washington Administrative Code. Results of monitoring are published annually (e.g., PNNL-11989). To reduce the redundancy of these annual reports, background information that does not change significantly from year to year has been extracted from the annual report and published in this companion volume. This report includes a description of groundwater monitoring requirements, site hydrogeology, and waste sites that have affected groundwater quality or that require groundwater monitoring. Monitoring networks and methods for sampling, analysis, and interpretation are summarized. Vadose zone monitoring methods and statistical methods also are described. Whenever necessary, updates to information contained in this document will be published in future groundwater annual reports

  9. Hanford Site groundwater monitoring: Setting, sources and methods

    Energy Technology Data Exchange (ETDEWEB)

    M.J. Hartman

    2000-04-11

    Groundwater monitoring is conducted on the Hanford Site to meet the requirements of the Resource Conservation and Recovery Act of 1976 (RCRA); Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA); U.S. Department of Energy (DOE) orders; and the Washington Administrative Code. Results of monitoring are published annually (e.g., PNNL-11989). To reduce the redundancy of these annual reports, background information that does not change significantly from year to year has been extracted from the annual report and published in this companion volume. This report includes a description of groundwater monitoring requirements, site hydrogeology, and waste sites that have affected groundwater quality or that require groundwater monitoring. Monitoring networks and methods for sampling, analysis, and interpretation are summarized. Vadose zone monitoring methods and statistical methods also are described. Whenever necessary, updates to information contained in this document will be published in future groundwater annual reports.

  10. Hanford Site ground-water monitoring for 1994

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P.E.; Thorne, P.D.; Luttrell, S.P. [and others

    1995-08-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1994 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiologic and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1994 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1993 and June 1994. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal.

  11. Hanford Site ground-water monitoring for 1995

    International Nuclear Information System (INIS)

    Dresel, P.E.; Rieger, J.T.; Webber, W.D.; Thorne, P.D.; Gillespie, B.M.; Luttrell, S.P.; Wurstner, S.K.; Liikala, T.L.

    1996-08-01

    This report presents the results of the Groundwater Surveillance Project monitoring for calendar year 1995 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that impacted groundwater quality on the site. Monitoring of water levels and groundwater chemistry is performed to track the extent of contamination, to note trends in contaminant concentrations,a nd to identify emerging groundwater quality problems. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of onsite groundwater quality. A three- dimensional, numerical, groundwater model is being developed to improve predictions of contaminant transport. The existing two- dimensional model was applied to predict contaminant flow paths and the impact of changes on site conditions. These activities were supported by limited hydrogeologic characterization. Water level monitoring was performed to evaluate groundwater flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Radiological monitoring results indicated that many radioactive contaminants were above US Environmental Protection Agency or State of Washington drinking water standards at the Hanford Site. Nitrate, fluoride, chromium, cyanide, carbon tetrachloride, chloroform, trichloroethylene, and cis-1,2-dichloroethylene were present in groundwater samples at levels above their US EPA or State of Washington maximum contaminant levels

  12. Hanford Site ground-water monitoring for 1994

    International Nuclear Information System (INIS)

    Dresel, P.E.; Thorne, P.D.; Luttrell, S.P.

    1995-08-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1994 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiologic and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1994 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site's geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1993 and June 1994. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal

  13. Regulatory requirements for groundwater monitoring networks at hazardous waste sites

    International Nuclear Information System (INIS)

    Keller, J.F.

    1989-10-01

    In the absence of an explicit national mandate to protect groundwater quality, operators of active and inactive hazardous waste sites must use a number of statutes and regulations as guidance for detecting, correcting, and preventing groundwater contamination. The objective of this paper is to provide a framework of the technical and regulatory considerations that are important to the development of groundwater monitoring programs at hazardous waste sites. The technical site-specific needs and regulatory considerations, including existing groundwater standards and classifications, will be presented. 14 refs., 2 tabs

  14. Hanford Site Groundwater Monitoring for Fiscal Year 2004

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2005-03-01

    This document presents the results of groundwater and vadose zone monitoring for fiscal year 2004 (October 2003 through September 2004)on the U.S. Department of Energy's Hanford Site in southeast Washington State.

  15. The Savannah River Site's Groundwater Monitoring Program: Third quarter 1992

    International Nuclear Information System (INIS)

    Rogers, C.D.

    1993-01-01

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site's (SRS) Groundwater Monitoring Program. During third quarter 1992, EPD/EMS conducted extensive sampling of monitoring wells. Table 1 lists those well series with constituents in the groundwater above Flag 2 during third quarter 1992, organized by location. Results from all laboratory analyses are used to generate this table. Specific conductance and pH data from the field also are included in this table

  16. Hanford Site ground-water monitoring for 1990

    International Nuclear Information System (INIS)

    Evans, J.C.; Bryce, R.W.; Bates, D.J.

    1992-06-01

    The Pacific Northwest Laboratory monitors ground-water quality across the Hanford Site for the US Department of Energy (DOE) to assess the impact of Site operations on the environment. Monitoring activities were conducted to determine the distribution of mobile radionuclides and identify chemicals present in ground water as a result of Site operations and whenever possible, relate the distribution of these constituents to Site operations. To comply with the Resource Conservation and Recovery Act, additional monitoring was conducted at individual waste sites by the Site Operating Contractor, Westinghouse Hanford Company (WHC), to assess the impact that specific facilities have had on ground-water quality. Six hundred and twenty-nine wells were sampled during 1990 by all Hanford ground-water monitoring activities

  17. The Savannah River Site's Groundwater Monitoring Program

    Energy Technology Data Exchange (ETDEWEB)

    1991-06-18

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted in the fourth quarter of 1990. It includes the analytical data, field data, well activity data, and other documentation for this program, provides a record of the program's activities and rationale, and serves as an official document of the analytical results. The groundwater monitoring program includes the following activities: installation, maintenance, and abandonment of monitoring wells, environmental soil borings, development of the sampling and analytical schedule, collection and analyses of groundwater samples, review of analytical and other data, maintenance of the databases containing groundwater monitoring data, quality assurance (QA) evaluations of laboratory performance, and reports of results to waste-site facility custodians and to the Environmental Protection Section (EPS) of EPD.

  18. Hanford Site groundwater monitoring for fiscal year 1996

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, M.J.; Dresel, P.E.; Borghese, J.V. [eds.] [and others

    1997-02-01

    This report presents the results of groundwater and vadose-zone monitoring for fiscal year (FY) 1996 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that affected groundwater quality on the site. Characterization and monitoring of the vadose zone during FY 1996 comprised primarily spectral gamma logging, soil-gas monitoring, and electrical resistivity tomography. Water-level monitoring was performed to evaluate groundwater-flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Water levels over most of the Hanford Site continued to decline between June 1995 and June 1996. Groundwater chemistry was monitored to track the extent of contamination, to note trends, and to identify emerging groundwater-quality problems. The most widespread radiological contaminant plumes were tritium and iodine-129. Smaller plumes of strontium-90, technetium-99, and plutonium also were present at levels above the U.S. Environmental Protection Agency or State of Washington interim drinking water standards. Uranium concentrations greater than the proposed drinking water standard were also observed. Nitrate, fluoride, chromium, carbon tetrachloride, chloroform, trichloroethylene, and cis-1,2-dichlomethylene were present in groundwater samples at levels above their U.S. Environmental Protection Agency or State of Washington maximum contaminant levels. The nitrate plume is the most extensive. Three-dimensional, numerical, groundwater models were applied to the Hanford Site to predict contaminant-flow paths and the impact of operational changes on site groundwater conditions. Other models were applied to assess the performance of three separate pump-and-treat systems.

  19. Hanford Site groundwater monitoring for fiscal year 1996

    International Nuclear Information System (INIS)

    Hartman, M.J.; Dresel, P.E.; Borghese, J.V.

    1997-02-01

    This report presents the results of groundwater and vadose-zone monitoring for fiscal year (FY) 1996 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that affected groundwater quality on the site. Characterization and monitoring of the vadose zone during FY 1996 comprised primarily spectral gamma logging, soil-gas monitoring, and electrical resistivity tomography. Water-level monitoring was performed to evaluate groundwater-flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Water levels over most of the Hanford Site continued to decline between June 1995 and June 1996. Groundwater chemistry was monitored to track the extent of contamination, to note trends, and to identify emerging groundwater-quality problems. The most widespread radiological contaminant plumes were tritium and iodine-129. Smaller plumes of strontium-90, technetium-99, and plutonium also were present at levels above the U.S. Environmental Protection Agency or State of Washington interim drinking water standards. Uranium concentrations greater than the proposed drinking water standard were also observed. Nitrate, fluoride, chromium, carbon tetrachloride, chloroform, trichloroethylene, and cis-1,2-dichlomethylene were present in groundwater samples at levels above their U.S. Environmental Protection Agency or State of Washington maximum contaminant levels. The nitrate plume is the most extensive. Three-dimensional, numerical, groundwater models were applied to the Hanford Site to predict contaminant-flow paths and the impact of operational changes on site groundwater conditions. Other models were applied to assess the performance of three separate pump-and-treat systems

  20. Hanford Site Groundwater Monitoring for Fiscal Year 2000

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2001-03-01

    This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2000 on the U.S. Department of Energy's Hanford Site, Washington. The most extensive contaminant plumes are tritium, iodine-129, and nitrate, which all had multiple sources and are very mobile in groundwater. Carbon tetrachloride and associated organic constituents form a relatively large plume beneath the central part of the Site. Hexavalent chromium is present in smaller plumes beneath the reactor areas along the river and beneath the central part of the site. Strontium-90 exceeds standards beneath each of the reactor areas, and technetium-99 and uranium are present in the 200 Areas. RCRA groundwater monitoring continued during fiscal year 2000. Vadose zone monitoring, characterization, remediation, and several technical demonstrations were conducted in fiscal year 2000. Soil gas monitoring at the 618-11 burial ground provided a preliminary indication of the location of tritium in the vadose zone and in groundwater. Groundwater modeling efforts focused on 1) identifying and characterizing major uncertainties in the current conceptual model and 2) performing a transient inverse calibration of the existing site-wide model. Specific model applications were conducted in support of the Hanford Site carbon tetrachloride Innovative Treatment Remediation Technology; to support the performance assessment of the Immobilized Low-Activity Waste Disposal Facility; and in development of the System Assessment Capability, which is intended to predict cumulative site-wide effects from all significant Hanford Site contaminants.

  1. Hanford Site ground-water monitoring for 1993

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P.E.; Luttrell, S.P.; Evans, J.C. [and others

    1994-09-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1993 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1993 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1992 and June 1993. The greatest declines occurred in the 200-West Area. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal. Water levels remained nearly constant in the vicinity of B Pond, as a result of continued disposal to the pond. Water levels measured from wells in the unconfined aquifer north and east of the Columbia River indicate that the primary source of recharge is irrigation practices.

  2. Hanford Site ground-water monitoring for 1993

    International Nuclear Information System (INIS)

    Dresel, P.E.; Luttrell, S.P.; Evans, J.C.

    1994-09-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1993 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1993 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site's geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1992 and June 1993. The greatest declines occurred in the 200-West Area. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal. Water levels remained nearly constant in the vicinity of B Pond, as a result of continued disposal to the pond. Water levels measured from wells in the unconfined aquifer north and east of the Columbia River indicate that the primary source of recharge is irrigation practices

  3. Hanford Site Groundwater Monitoring for Fiscal Year 2005

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2006-02-28

    This report is one of the major products and deliverables of the Groundwater Remediation and Closure Assessment Projects detailed work plan for FY 2006, and reflects the requirements of The Groundwater Performance Assessment Project Quality Assurance Plan (PNNL-15014). This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2005 on the U.S. Department of Energy's Hanford Site, Washington. The most extensive contaminant plumes in groundwater are tritium, iodine-129, and nitrate, which all had multiple sources and are very mobile in groundwater. The largest portions of these plumes are migrating from the central Hanford Site to the southeast, toward the Columbia River. Carbon tetrachloride and associated organic constituents form a relatively large plume beneath the west-central part of the Hanford Site. Hexavalent chromium is present in plumes beneath the reactor areas along the river and beneath the central part of the site. Strontium-90 exceeds standards beneath all but one of the reactor areas. Technetium-99 and uranium plumes exceeding standards are present in the 200 Areas. A uranium plume underlies the 300 Area. Minor contaminant plumes with concentrations greater than standards include carbon-14, cesium-137, cis-1,2-dichloroethene, cyanide, fluoride, plutonium, and trichloroethene. Monitoring for the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 is conducted in 11 groundwater operable units. The purpose of this monitoring is to define and track plumes and to monitor the effectiveness of interim remedial actions. Interim groundwater remediation in the 100 Areas continued with the goal of reducing the amount of chromium (100-K, 100-D, and 100-H) and strontium-90 (100-N) reaching the Columbia River. The objective of two interim remediation systems in the 200 West Area is to prevent the spread of carbon tetrachloride and technetium-99/uranium plumes. Resource Conservation and

  4. Statistical application of groundwater monitoring data at the Hanford Site

    International Nuclear Information System (INIS)

    Chou, C.J.; Johnson, V.G.; Hodges, F.N.

    1993-09-01

    Effective use of groundwater monitoring data requires both statistical and geohydrologic interpretations. At the Hanford Site in south-central Washington state such interpretations are used for (1) detection monitoring, assessment monitoring, and/or corrective action at Resource Conservation and Recovery Act sites; (2) compliance testing for operational groundwater surveillance; (3) impact assessments at active liquid-waste disposal sites; and (4) cleanup decisions at Comprehensive Environmental Response Compensation and Liability Act sites. Statistical tests such as the Kolmogorov-Smirnov two-sample test are used to test the hypothesis that chemical concentrations from spatially distinct subsets or populations are identical within the uppermost unconfined aquifer. Experience at the Hanford Site in applying groundwater background data indicates that background must be considered as a statistical distribution of concentrations, rather than a single value or threshold. The use of a single numerical value as a background-based standard ignores important information and may result in excessive or unnecessary remediation. Appropriate statistical evaluation techniques include Wilcoxon rank sum test, Quantile test, ''hot spot'' comparisons, and Kolmogorov-Smirnov types of tests. Application of such tests is illustrated with several case studies derived from Hanford groundwater monitoring programs. To avoid possible misuse of such data, an understanding of the limitations is needed. In addition to statistical test procedures, geochemical, and hydrologic considerations are integral parts of the decision process. For this purpose a phased approach is recommended that proceeds from simple to the more complex, and from an overview to detailed analysis

  5. Hanford Site Groundwater Monitoring for Fiscal Year 2003

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2004-04-12

    This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2003 (October 2002 through September 2003) on the U.S. Department of Energy's Hanford Site, Washington. The most extensive contaminant plumes in groundwater are tritium, iodine-129, and nitrate, which all had multiple sources and are very mobile in groundwater. The largest portions of these plumes are migrating from the central Hanford Site to the southeast, toward the Columbia River. Concentrations of tritium, nitrate, and some other contaminants continued to exceed drinking water standards in groundwater discharging to the river in some locations. However, contaminant concentrations in river water remained low and were far below standards. Carbon tetrachloride and associated organic constituents form a relatively large plume beneath the central part of the Hanford Site. Hexavalent chromium is present in smaller plumes beneath the reactor areas along the river and beneath the central part of the site. Strontium-90 exceeds standards beneath all but one of the reactor areas, and technetium-99 and uranium are present in the 200 Areas. Uranium exceeds standards in the 300 Area in the south part of the Hanford Site. Minor contaminant plumes with concentrations greater than standards include carbon-14, cesium-137, cis-1,2-dichloroethene, cyanide, fluoride, plutonium, and trichloroethene. Monitoring for the ''Comprehensive Environmental Response, Compensation, and Liability Act'' is conducted in 11 groundwater operable units. The purpose of this monitoring is to define and track plumes and to monitor the effectiveness of interim remedial actions. Interim groundwater remediation in the 100 Areas continued with the goal of reducing the amount of chromium (100-K, 100-D, and 100-H) and strontium-90 (100-N) reaching the Columbia River. The objective of two interim remediation systems in the 200 West Area is to prevent the spread of carbon

  6. The Savannah River Site's Groundwater Monitoring Program

    Energy Technology Data Exchange (ETDEWEB)

    1992-08-03

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted during the first quarter of 1992. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program's activities; and serves as an official document of the analytical results.

  7. The Savannah River Site's groundwater monitoring program

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-18

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted by EPD/EMS in the first quarter of 1991. In includes the analytical data, field data, data review, quality control, and other documentation for this program, provides a record of the program's activities and rationale, and serves as an official document of the analytical results.

  8. Hanford Site Groundwater Monitoring for Fiscal Year 2002

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2003-02-28

    This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2002 on the U.S. Department of Energy's Hanford Site in Washington State. This report is written to meet the requirements in CERCLA, RCRA, the Atomic Energy Act of 1954, and Washington State Administrative Code.

  9. Rulison Site groundwater monitoring report. Fourth quarter, 1997

    International Nuclear Information System (INIS)

    1998-02-01

    This report summarizes the results of the fourth quarter 1997 groundwater sampling event for the Rulison Site, which is located approximately 65 kilometers (km) (40 miles [mi]) northeast of Grand Junction, Colorado. This is the eighth and final sampling event of a quarterly groundwater monitoring program implemented by the U.S. Department of Energy (DOE). This program monitored the effectiveness of remediation of a drilling effluent pond that had been used to store drilling mud during drilling of the emplacement hole for a 1969 gas stimulation test conducted by the U.S. Atomic Energy Commission (AEC) (the predecessor agency to the DOE) and Austral Oil Company (Austral)

  10. Hanford Site groundwater monitoring for Fiscal Year 1997

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, M.J.; Dresel, P.E. [eds.] [and others

    1998-02-01

    This report presents the results of groundwater and vadose-zone monitoring for fiscal year (FY) 1997 on the Hanford Site, Washington. Soil-vapor extraction continued in the 200-West Area to remove carbon tetrachloride from the vadose zone. Characterization and monitoring of the vadose zone comprised primarily spectral gamma logging, soil-vapor monitoring, and analysis and characterization of sediments sampled below a vadose-zone monitoring well. Source-term analyses for strontium-90 in 100-N Area vadose-zone sediments were performed using recent groundwater-monitoring data and knowledge of strontium`s ion-exchange properties. Water-level monitoring was performed to evaluate groundwater-flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Water levels over most of the Hanford Site continued to decline between June 1996 and June 1997. Water levels near the Columbia River increased during this period because the river stage was unusually high. Groundwater chemistry was monitored to track the extent of contamination, to note trends, and to identify emerging groundwater-quality problems. The most widespread radiological contaminant plumes were tritium and iodine-129. Concentrations of technetium-99, uranium, strontium-90, and carbon-14 also exceeded drinking water standards in smaller plumes. Plutonium and cesium-137 exceeded standards only near the 216-B-5 injection well. Derived concentration guide levels specified in U.S. Department of Energy Order 5400.5 were exceeded for tritium, uranium, strontium-90, and plutonium in small plumes or single wells. Nitrate is the most extensive chemical contaminant. Carbon tetrachloride, chloroform, chromium, cis-1,2-dichloroethylene, fluoride, and trichloroethylene also were present in smaller areas at levels above their maximum contaminant levels. Cyanide concentrations were elevated in one area but were below the maximum contaminant level.

  11. Hanford Site groundwater monitoring for Fiscal Year 1997

    International Nuclear Information System (INIS)

    Hartman, M.J.; Dresel, P.E.

    1998-02-01

    This report presents the results of groundwater and vadose-zone monitoring for fiscal year (FY) 1997 on the Hanford Site, Washington. Soil-vapor extraction continued in the 200-West Area to remove carbon tetrachloride from the vadose zone. Characterization and monitoring of the vadose zone comprised primarily spectral gamma logging, soil-vapor monitoring, and analysis and characterization of sediments sampled below a vadose-zone monitoring well. Source-term analyses for strontium-90 in 100-N Area vadose-zone sediments were performed using recent groundwater-monitoring data and knowledge of strontium's ion-exchange properties. Water-level monitoring was performed to evaluate groundwater-flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Water levels over most of the Hanford Site continued to decline between June 1996 and June 1997. Water levels near the Columbia River increased during this period because the river stage was unusually high. Groundwater chemistry was monitored to track the extent of contamination, to note trends, and to identify emerging groundwater-quality problems. The most widespread radiological contaminant plumes were tritium and iodine-129. Concentrations of technetium-99, uranium, strontium-90, and carbon-14 also exceeded drinking water standards in smaller plumes. Plutonium and cesium-137 exceeded standards only near the 216-B-5 injection well. Derived concentration guide levels specified in U.S. Department of Energy Order 5400.5 were exceeded for tritium, uranium, strontium-90, and plutonium in small plumes or single wells. Nitrate is the most extensive chemical contaminant. Carbon tetrachloride, chloroform, chromium, cis-1,2-dichloroethylene, fluoride, and trichloroethylene also were present in smaller areas at levels above their maximum contaminant levels. Cyanide concentrations were elevated in one area but were below the maximum contaminant level

  12. Hanford Site ground-water monitoring for 1991

    International Nuclear Information System (INIS)

    Evans, J.C.; Bryce, R.W.; Bates, D.J.

    1992-10-01

    The Pacific Northwest Laboratory (PNL) monitors the distribution of radionuclides and other hazardous materials in ground water at the Hanford Site for the US Department of Energy (DOE). This work is performed through the Ground-Water Surveillance Project and is designed to meet the requirements of DOE Order 5400.1 that apply to environmental surveillance and ground-water monitoring (DOE 1988). This annual report discusses results of ground-water monitoring at the Hanford Site during 1991. In addition to the general discussion, the following topics are discussed in detail: (1) carbon tetrachloride in the 200-West Area; (2) cyanide in and north of the 200-East and the 200-West areas; (3) hexavalent chromium contamination in the 100, 200, and 600 areas; (4) trichloroethylene in the vicinity of the Solid Waste Landfill, 100-F Area, and 300 Area; (5) nitrate across the Site; (6) tritium across the Site; and (7) other radionuclide contamination throughout the Site, including gross alpha, gross beta, cobalt-60, strontium-90, technetium-99, iodine-129, cesium-137, uranium, and plutonium

  13. The Savannah River Site's groundwater monitoring program

    Energy Technology Data Exchange (ETDEWEB)

    1991-05-06

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site's (SRS) Groundwater Monitoring Program. During third quarter 1990 (July through September) EPD/EMS conducted routine sampling of monitoring wells and drinking water locations. EPD/EMS established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead they aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. All analytical results from third quarter 1990 are listed in this report, which is distributed to all site custodians. One or more analytes exceeded Flag 2 in 87 monitoring well series. Analytes exceeded Flat 2 for the first since 1984 in 14 monitoring well series. In addition to groundwater monitoring, EPD/EMS collected drinking water samples from SRS drinking water systems supplied by wells. The drinking water samples were analyzed for radioactive constituents.

  14. Hanford Site Groundwater Monitoring for Fiscal Year 1999

    Energy Technology Data Exchange (ETDEWEB)

    MJ Hartman; LF Morasch; WD Webber

    2000-05-10

    This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 1999 on the US. Department of Energy's Hanford Site, Washington. Water-level monitoring was performed to evaluate groundwater flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Measurements for site-wide maps were conducted in June in past years and are now measured in March to reflect conditions that are closer to average. Water levels over most of the Hanford Site continued to decline between June 1998 and March 1999. The most widespread radiological contaminant plumes in groundwater were tritium and iodine-129. Concentrations of carbon-14, strontium-90, technetium-99, and uranium also exceeded drinking water standards in smaller plumes. Cesium-137 and plutonium exceeded standards only near the 216-B-5 injection well. Derived concentration guide levels specified in US Department of Energy Order 5400.5 were exceeded for plutonium, strontium-90, tritium, and uranium in small plumes or single wells. Nitrate and carbon tetrachloride are the most extensive chemical contaminants. Chloroform, chromium, cis-1,2dichloroethylene, cyanide, fluoride, and trichloroethylene also were present in smaller areas at levels above their maximum contaminant levels. Metals such as aluminum, cadmium, iron, manganese, and nickel exceeded their maximum contaminant levels in filtered samples from numerous wells; however, in most cases, they are believed to represent natural components of groundwater. ''Resource Conservation and Recovery Act of 1976'' groundwater monitoring continued at 25 waste management areas during fiscal year 1999: 16 under detection programs and data indicate that they are not adversely affecting groundwater; 6 under interim status groundwater quality assessment programs to assess contamination; and 2 under final status corrective-action programs. Another site, the 120-D-1 ponds

  15. The Savannah River Site`s Groundwater Monitoring Program: Third quarter 1992

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, C.D. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1993-02-04

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site`s (SRS) Groundwater Monitoring Program. During third quarter 1992, EPD/EMS conducted extensive sampling of monitoring wells. Table 1 lists those well series with constituents in the groundwater above Flag 2 during third quarter 1992, organized by location. Results from all laboratory analyses are used to generate this table. Specific conductance and pH data from the field also are included in this table.

  16. Workshop on methods for siting groundwater monitoring wells: Proceedings

    International Nuclear Information System (INIS)

    Jacobson, E.

    1992-02-01

    The primary purpose of this workshop was to identify methods for the optimum siting of groundwater monitoring wells to minimize the number required that will provide statistically and physically representative samples. In addition, the workshop served to identify information and data gaps, stimulated discussion and provided an opportunity for exchange of ideas between regulators and scientists interested in siting groundwater monitoring wells. These proceedings should serve these objectives and provide a source of relevant information which may be used to evaluate the current state of development of methods for siting groundwater monitoring wells and the additional research needs. The proceedings contain the agenda and list of attendees in the first section. The abstract and viewgraphs for each presentation are given in the second section. For several presentations, abstracts and viewgraphs were not received. After the presentations, four working groups were organized and met for approximately a day. The working group leaders then gave a verbal summary of their sessions. This material was transcribed and is included in the next section of these proceedings. The appendices contain forms describing various methods discussed in the working groups

  17. Nevada Test Site 2000 Annual Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site

    Energy Technology Data Exchange (ETDEWEB)

    Y. E.Townsend

    2001-02-01

    This report is a compilation of the calendar year 2000 groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS). Contamination indicator data are presented in control chart and tabular form with investigation levels (IL) indicated. Gross water chemistry data are presented in graphical and tabular form. Other information in the report includes, the Cumulative Chronology for Area 5 RWMS Groundwater Monitoring Program, a brief description of the site hydrogeology, and the groundwater sampling procedure.

  18. Nevada Test Site 2000 Annual Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site

    International Nuclear Information System (INIS)

    Y. E.Townsend

    2001-01-01

    This report is a compilation of the calendar year 2000 groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS). Contamination indicator data are presented in control chart and tabular form with investigation levels (IL) indicated. Gross water chemistry data are presented in graphical and tabular form. Other information in the report includes, the Cumulative Chronology for Area 5 RWMS Groundwater Monitoring Program, a brief description of the site hydrogeology, and the groundwater sampling procedure

  19. Hanford Site Groundwater Monitoring for Fiscal Year 1998

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, M.J. [and others

    1999-03-24

    This report presents the results of groundwater and vadose-zone monitoring and remediation for fiscal year (FY) 1998 on the Word Site, Washington. Soil-vapor extraction in the 200-West Area removed 777 kg of carbon tetrachloride in FY 1998, for a total of 75,490 kg removed since remediation began in 1992. Spectral gamma logging and evaluation of historical gross gamma logs near tank farms and liquid-disposal sites in the 200 Areas provided information on movement of contaminants in the vadose zone. Water-level monitoring was performed to evaluate groundwater-flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Water levels over most of the Hanford Site continued to decline between June 1997 and June 1998. The most widespread radiological contaminant plumes in groundwater were tritium and iodine-129. Concentrations of technetium-99, uranium, strontium-90, and carbon-14 also exceeded drinking water standards in smaller plumes. Plutonium and cesium-137 exceeded standards only near the 216-B-5 injection well. Derived concentration guide levels specified in U.S. Department of Energy Order 5400.5 were exceeded for tritium, uranium, strontium-90, and plutonium in small plumes or single wells. One well completed in the basalt-confined aquifer beneath the 200-East Area exceeded the drinking water standard for technetium-99. Nitrate is the most extensive chemical contaminant. Carbon tetrachloride, chloroform, chromium, cis-l, Z-dichloroethylene, fluoride, and trichloroethylene also were present in smaller areas at levels above their maximum contaminant levels. Cyanide concentrations were elevated in one area but were below the maximum contaminant level. Tetrachloroethylene exceeded its maximum contaminant level in several wells in the 300 Area for the first time since the 1980s. Metals such as aluminum, cadmium, iron, manganese, and nickel exceeded their maximum contaminant levels in filtered samples from numerous

  20. The Savannah River site`s groundwater monitoring program: second quarter 1997

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, C.D. [Westinghouse Savannah River Company, AIKEN, SC (United States)

    1997-11-01

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site`s (SRS) Groundwater Monitoring Program. During second quarter 1997, EPD/EMS conducted extensive sampling of monitoring wells. A detailed explanation of the flagging criteria is presented in the Flagging Criteria section of this document. Analytical results from second quarter 1997 are included in this report.

  1. The Savannah River Site`s Groundwater Monitoring Program, third quarter 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-17

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site`s (SRS) Groundwater Monitoring Program. During third quarter 1991, EPD/EMS conducted extensive sampling of monitoring wells. Analytical results from third quarter 1991 are listed in this report.

  2. The Savannah River Site's Groundwater Monitoring Program

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site's Groundwater Monitoring Program. During fourth quarter 1989 (October--December), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. An explanation of flagging criteria for the fourth quarter is presented in the Flagging Criteria section of this document. All analytical results from fourth quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  3. Integrated site investigation and groundwater monitoring in an urban environment

    Science.gov (United States)

    Weatherl, R. K.

    2017-12-01

    Understanding groundwater dynamics around cities and other areas of human influence is of crucial importance for water resource management and protection, especially in a time of environmental and societal change. The human environment presents a unique challenge in terms of hydrological characterization, as the water cycle is generally artificialized and emissions of treated waste and chemical products into the surface- and groundwater system tend to disrupt the natural aqueous signature in significant ways. This project presents an integrated approach for robust characterization and monitoring of an urban aquifer which is actively exploited for municipal water supply. The study is carried out in the town of Fehraltorf, in the canton of Zürich, Switzerland. This particular town encompasses industrial and agricultural zones in addition to its standard urban setting. A minimal amount of data exist at this site, and the data that do exist are spatially and temporally sparse. Making use of traditional hydrogeological methods alongside evolving and emerging technologies, we aim to identify sources of contamination and to define groundwater flow and solute transport through space and time. Chemical and physical indicator parameters are identified for tracing contaminations including micropollutants and plant nutrients. Wireless sensors are installed for continuous on-line monitoring of essential parameters (electrical conductivity, temperature, water level). A wireless sensor network has previously been installed in the sewer system of the study site, facilitating investigation into interactions between sewer water and groundwater. Our approach illustrates the relations between land use, climate, rainfall dynamics, and the groundwater signature through time. At its conclusion, insights gained from this study will be used by municipal authorities to refine protective zones around pumping wells and to direct resources towards updating practices and replacing

  4. The Savannah River Site's Groundwater Monitoring Program

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-10

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site's (SRS) Groundwater Monitoring Program. During second quarter 1991 EPD/EMS conducted extensive sampling of monitoring wells. EPD/EMS established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead, they aid personnel in sample scheduling, interpretation of data, and trend identification. Beginning in 1991, the flagging criteria are based on EPA drinking water standards and method detection limits. A detailed explanation of the current flagging criteria is presented in the Flagging Criteria section of this document. Analytical results from second quarter 1991 are listed in this report.

  5. The Savannah River Site`s Groundwater Monitoring Program. Fourth quarter, 1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-06-18

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted in the fourth quarter of 1990. It includes the analytical data, field data, well activity data, and other documentation for this program, provides a record of the program`s activities and rationale, and serves as an official document of the analytical results. The groundwater monitoring program includes the following activities: installation, maintenance, and abandonment of monitoring wells, environmental soil borings, development of the sampling and analytical schedule, collection and analyses of groundwater samples, review of analytical and other data, maintenance of the databases containing groundwater monitoring data, quality assurance (QA) evaluations of laboratory performance, and reports of results to waste-site facility custodians and to the Environmental Protection Section (EPS) of EPD.

  6. Rulison Site groundwater monitoring report fourth quarter, 1996. Revision 4

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    Project Rulison, a joint US Atomic Energy Commission (AEC) and Austral Oil Company (Austral) experiment, was conducted under the AEC`s Plowshare Program to evaluate the feasibility of using a nuclear device to stimulate natural gas production in low-permeability, gas-producing geologic formations. The experiment was conducted on September 10, 1969, and consisted of detonating a 40-kiloton nuclear device at a depth of 2,568 m below ground surface. This report summarizes the results of the fourth quarter 1996 groundwater sampling event for the Rulison Site, which is located approximately 65 kilometers (km) (40 miles [mi]) northeast of Grand Junction, Colorado. The sampling was performed as part of a quarterly groundwater monitoring program implemented by the US Department of Energy (DOE) to monitor the effectiveness of remediation of a drilling effluent pond located at the site. The effluent pond was used for the storage of drilling mud during drilling of the emplacement hole for a 1969 gas stimulation test.

  7. The Savannah River Site`s Groundwater Monitoring Program, third quarter 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-31

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site`s Groundwater Monitoring Program. During third quarter 1989 (July--September), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead they aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the third quarter is presented in the Flagging Criteria section of this document. All analytical results from third quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  8. The Savannah River Site`s Groundwater Monitoring Program, second quarter 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-31

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site`s Groundwater Monitoring Program. During second quarter 1989 (April--June), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the second quarter is presented in the Flagging Criteria section of this document. All analytical results from second quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  9. The Savannah River Site`s Groundwater Monitoring Program. First quarter 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-08-03

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted during the first quarter of 1992. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program`s activities; and serves as an official document of the analytical results.

  10. The Savannah River Site`s groundwater monitoring program. First quarter 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-18

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted by EPD/EMS in the first quarter of 1991. In includes the analytical data, field data, data review, quality control, and other documentation for this program, provides a record of the program`s activities and rationale, and serves as an official document of the analytical results.

  11. The Savannah River Site`s Groundwater Monitoring Program: First quarter 1993, Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, C.D. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1993-08-01

    This report summarizes the Savannah River Site (SRS) Groundwater Monitoring Program conducted by the Environmental Protection Department`s Environmental Monitoring Section (EPD/EMS) during the first quarter of 1993. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program`s activities; and serves as an official document of the analytical results.

  12. The Savannah River Site`s Groundwater Monitoring Program. Fourth quarter 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-17

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted by the Environmental Protection Department`s Environmental Monitoring Section (EPD/EMS) during the fourth quarter of 1992. It includes the analytical data, field data, data review, quality control, and other documentation for this program, provides a record of the program`s activities; and serves as an official document of the analytical results.

  13. The Savannah River Site`s groundwater monitoring program. Third quarter 1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-05-06

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site`s (SRS) Groundwater Monitoring Program. During third quarter 1990 (July through September) EPD/EMS conducted routine sampling of monitoring wells and drinking water locations. EPD/EMS established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead they aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. All analytical results from third quarter 1990 are listed in this report, which is distributed to all site custodians. One or more analytes exceeded Flag 2 in 87 monitoring well series. Analytes exceeded Flat 2 for the first since 1984 in 14 monitoring well series. In addition to groundwater monitoring, EPD/EMS collected drinking water samples from SRS drinking water systems supplied by wells. The drinking water samples were analyzed for radioactive constituents.

  14. The Savannah River Site`s Groundwater Monitoring Program, second quarter 1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-02-07

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site`s (SRS) Groundwater Monitoring Program. During second quarter 1990 (April through June) EPD/EMS conducted routine sampling of monitoring wells and drinking water locations. EPD/EMS established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the second quarter is presented in the Flagging Criteria section of this document. All analytical results from second quarter 1990 are listed in this report.

  15. Groundwater monitoring strategies at the Weldon Spring site, Weldon Spring, Missouri

    International Nuclear Information System (INIS)

    Meyer, K.A. Jr.

    1988-01-01

    This paper presents groundwater monitoring strategies at the Weldon Spring Site in east-central Missouri. The Weldon Spring Site is former ordnance works and uranium processing facility. In 1987, elevated levels of inorganic anions and nitroaromatics were detected in groundwater beneath the site. Studies are currently underway to characterize the hydrogeologic regime and to define groundwater contamination. The complex hydrogeology at the Weldon Spring Site requires innovative monitoring strategies. Combinations of fracture and conduit flow exist in the limestone bedrock. Perched zones are also present near surface impoundments. Losing streams and springs surround the site. Confronting this complex combination of hydrogeologic conditions is especially challenging

  16. The Savannah River Site`s Groundwater Monitoring Program. Fourth quarter, 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-31

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site`s Groundwater Monitoring Program. During fourth quarter 1989 (October--December), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. An explanation of flagging criteria for the fourth quarter is presented in the Flagging Criteria section of this document. All analytical results from fourth quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  17. Oskarshamn site investigation. Monitoring of shallow groundwater chemistry 2009

    Energy Technology Data Exchange (ETDEWEB)

    Ericsson, Ulf (Medins Biologi AB, Moelnlycke (Sweden))

    2010-06-15

    In 2009 sampling of shallow ground water in water wells in soil has been performed in a regular programme at eight sites within the site investigation area at Oskarshamn. The purpose of the activity is to monitor (long term observation) and characterise the shallow ground water in the site investigation area. Some physical and chemical parameters were measured directly in the field but most parameters were analysed at different laboratories. The ground water sampling activity consisted of one programme, chemical programme class 5 (reduced). The large number of sites and parameters analysed have generated a large amount of data, which will later be used for advanced analysis and modelling. In this report the evaluation aims to give a simple overview of the results and to describe the quality of the data sampled 2009. As an addition radon activity was measured at fourteen sites in the area. Seven of these sites were the same as in the regular programme. The results showed a large variation between the wells. The concentrations of major ions and conductivity ranged from low to high or very high values. The concentration of HCO{sub 3} also varied extensively throughout the investigation area, but since the concentrations were above 60 mg/l in most wells the results indicate a good ground water quality with respect to acidification. The concentration of heavy metals and trace elements also varied. High concentration of Pb in some of the wells indicated pollution. Since Pb had a similar relation to Al as most other elements it was argued that high concentrations of lead probably can be explained by the natural composition of minerals within the site investigation area. The ratio of delta18O showed a good relationship with the conductivity. The activity of tritium (3H) was markedly lower in two of the wells. This might be an indication of older groundwater in these wells. The average hydrogen isotope ratio of deuterium (delta2H) varied with similar values in most wells

  18. Oskarshamn site investigation. Monitoring of shallow groundwater chemistry 2009

    International Nuclear Information System (INIS)

    Ericsson, Ulf

    2010-06-01

    In 2009 sampling of shallow ground water in water wells in soil has been performed in a regular programme at eight sites within the site investigation area at Oskarshamn. The purpose of the activity is to monitor (long term observation) and characterise the shallow ground water in the site investigation area. Some physical and chemical parameters were measured directly in the field but most parameters were analysed at different laboratories. The ground water sampling activity consisted of one programme, chemical programme class 5 (reduced). The large number of sites and parameters analysed have generated a large amount of data, which will later be used for advanced analysis and modelling. In this report the evaluation aims to give a simple overview of the results and to describe the quality of the data sampled 2009. As an addition radon activity was measured at fourteen sites in the area. Seven of these sites were the same as in the regular programme. The results showed a large variation between the wells. The concentrations of major ions and conductivity ranged from low to high or very high values. The concentration of HCO 3 also varied extensively throughout the investigation area, but since the concentrations were above 60 mg/l in most wells the results indicate a good ground water quality with respect to acidification. The concentration of heavy metals and trace elements also varied. High concentration of Pb in some of the wells indicated pollution. Since Pb had a similar relation to Al as most other elements it was argued that high concentrations of lead probably can be explained by the natural composition of minerals within the site investigation area. The ratio of δ 18 O showed a good relationship with the conductivity. The activity of tritium ( 3 H) was markedly lower in two of the wells. This might be an indication of older groundwater in these wells. The average hydrogen isotope ratio of deuterium (δ 2 H) varied with similar values in most wells. The

  19. 2010 Groundwater Monitoring and Inspection Report Gnome-Coach Site, New Mexico

    International Nuclear Information System (INIS)

    2011-02-01

    This report presents the 2010 groundwater monitoring results collected by the U.S. Department of Energy (DOE) Office of Legacy Management (LM) at the Gnome-Coach (Gnome) Site in New Mexico (Figure 1). Groundwater monitoring consisted of collecting hydraulic head data and groundwater samples from the wells on site. Historically, the U.S. Environmental Protection Agency (EPA) had conducted these annual activities under the Long-Term Hydrologic Monitoring Program (LTHMP). LM took over the sampling and data collection activities in 2008 but continues to use the EPA Radiation and Indoor Environments National Laboratory in Las Vegas, Nevada, to analyze the water samples. This report summarizes groundwater monitoring and site investigation activities that were conducted at the site during calendar year 2010.

  20. The Savannah River Site`s Groundwater Monitoring Program: Fourth quarter 1991

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, C.D. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1992-06-02

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site`s (SRS) Groundwater Monitoring Program. During fourth quarter 1991, EPD/EMS conducted extensive sampling of monitoring wells. EPD/EMS established two sets of criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead, they aid personnel in sample scheduling, interpretation of data, and trend identification. Beginning in 1991, the flagging criteria are based on EPA drinking water standards and method detection limits. A detailed explanation of the current flagging criteria is presented in the Flagging Criteria section of this document. Analytical results from fourth quarter 1991 are listed in this report.

  1. The Savannah River Site`s Groundwater Monitoring Program: Second quarter 1992

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, C.D. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1992-10-07

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site`s (SRS) Groundwater Monitoring Program. During second quarter 1992, EPD/EMS conducted extensive sampling of monitoring wells. EPD/EMS established two sets of criteria to assist in the management of sample results. The flagging criteria do not define contamination levels; instead, they aid personnel in sample scheduling, interpretation of data, and trend identification. Since 1991, the flagging criteria have been based on the federal Environmental Protection Agency (EPA) drinking water standards and on method detection limits. A detailed explanation of the current flagging criteria is presented in the Flagging Criteria section of this document. Analytical results from second quarter 1992 are listed in this report.

  2. The Savannah River Site`s Groundwater Monitoring Program. Second quarter, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-10

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site`s (SRS) Groundwater Monitoring Program. During second quarter 1991 EPD/EMS conducted extensive sampling of monitoring wells. EPD/EMS established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead, they aid personnel in sample scheduling, interpretation of data, and trend identification. Beginning in 1991, the flagging criteria are based on EPA drinking water standards and method detection limits. A detailed explanation of the current flagging criteria is presented in the Flagging Criteria section of this document. Analytical results from second quarter 1991 are listed in this report.

  3. Review of present groundwater monitoring programs at the Nevada Test Site

    International Nuclear Information System (INIS)

    Hershey, R.L.; Gillespie, D.

    1993-09-01

    Groundwater monitoring at the Nevada Test Site (NTS) is conducted to detect the presence of radionuclides produced by underground nuclear testing and to verify the quality and safety of groundwater supplies as required by the State of Nevada and federal regulations, and by U.S. Department of Energy (DOE) Orders. Groundwater is monitored at water-supply wells and at other boreholes and wells not specifically designed or located for traditional groundwater monitoring objectives. Different groundwater monitoring programs at the NTS are conducted by several DOE Nevada Operations Office (DOE/NV) contractors. Presently, these individual groundwater monitoring programs have not been assessed or administered under a comprehensive planning approach. Redundancy exists among the programs in both the sampling locations and the constituents analyzed. Also, sampling for certain radionuclides is conducted more frequently than required. The purpose of this report is to review the existing NTS groundwater monitoring programs and make recommendations for modifying the programs so a coordinated, streamlined, and comprehensive monitoring effort may be achieved by DOE/NV. This review will be accomplished in several steps. These include: summarizing the present knowledge of the hydrogeology of the NTS and the potential radionuclide source areas for groundwater contamination; reviewing the existing groundwater monitoring programs at the NTS; examining the rationale for monitoring and the constituents analyzed; reviewing the analytical methods used to quantify tritium activity; discussing monitoring network design criteria; and synthesizing the information presented and making recommendations based on the synthesis. This scope of work was requested by the DOE/NV Hydrologic Resources Management Program (HRMP) and satisfies the 1993 (fiscal year) HRMP Groundwater Monitoring Program Review task

  4. Nevada National Security Site 2014 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, David [National Security Technologies, LLC. (NSTec), Las Vegas, NV (United States)

    2015-02-01

    analyzed for toxicity characteristic contaminants and polychlorinated biphenyls (PCB). Beginning with the sample from July 31, 2013, pH and specific conductance were also measured. Leachate analysis results show no evidence of contamination. Results for toxicity characteristic contaminants are all below regulatory levels and analysis quantification limits. No quantifiable PCB levels were detected in any sample. Results for pH and specific conductance are also within expected ranges. After analysis, leachate was pumped from the collection tank and used in Cell 18 for dust control. The report contains an updated cumulative chronology for the Area 5 RWMS Groundwater Monitoring Program and a brief description of the site hydrogeology.

  5. The Savannah River Site's Groundwater Monitoring Program, third quarter 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-17

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site's (SRS) Groundwater Monitoring Program. During third quarter 1991, EPD/EMS conducted extensive sampling of monitoring wells. Analytical results from third quarter 1991 are listed in this report.

  6. Using Geoscience and Geostatistics to Optimize Groundwater Monitoring Networks at the Savannah River Site

    International Nuclear Information System (INIS)

    Tuckfield, R.C.

    2001-01-01

    A team of scientists, engineers, and statisticians was assembled to review the operation efficiency of groundwater monitoring networks at US Department of Energy Savannah River Site (SRS). Subsequent to a feasibility study, this team selected and conducted an analysis of the A/M area groundwater monitoring well network. The purpose was to optimize the number of groundwater wells requisite for monitoring the plumes of the principal constituent of concern, viz., trichloroethylene (TCE). The project gathered technical expertise from the Savannah River Technology Center (SRTC), the Environmental Restoration Division (ERD), and the Environmental Protection Department (EPD) of SRS

  7. Groundwater monitoring plan for the Hanford Site 200 Area Treated Effluent Disposal Facility

    International Nuclear Information System (INIS)

    DB Barnett

    2000-01-01

    Seven years of groundwater monitoring at the 200 Area Treated Effluent Disposal Facility (TEDF) have shown that the uppermost aquifer beneath the facility is unaffected by TEDF effluent. Effluent discharges have been well below permitted and expected volumes. Groundwater mounding from TEDF operations predicted by various models has not been observed, and waterlevels in TEDF wells have continued declining with the dissipation of the nearby B Pond System groundwater mound. Analytical results for constituents with enforcement limits indicate that concentrations of all these are below Practical Quantitation Limits, and some have produced no detections. Likewise, other constituents on the permit-required list have produced results that are mostly below sitewide background. Comprehensive geochemical analyses of groundwater from TEDF wells has shown that most constituents are below background levels as calculated by two Hanford Site-wide studies. Additionally, major ion proportions and anomalously low tritium activities suggest that groundwater in the aquifer beneath the TEDF has been sequestered from influences of adjoining portions of the aquifer and any discharge activities. This inference is supported by recent hydrogeologic investigations which indicate an extremely slow rate of groundwater movement beneath the TEDF. Detailed evaluation of TEDF-area hydrogeology and groundwater geochemistry indicate that additional points of compliance for groundwater monitoring would be ineffective for this facility, and would produce ambiguous results. Therefore, the current groundwater monitoring well network is retained for continued monitoring. A quarterly frequency of sampling and analysis is continued for all three TEDF wells. The constituents list is refined to include only those parameters key to discerning subtle changes in groundwater chemistry, those useful in detecting general groundwater quality changes from upgradient sources, or those retained for comparison with end

  8. The Savannah River Site's Groundwater Monitoring Program 1991 well installation report

    International Nuclear Information System (INIS)

    1992-06-01

    This report is a summary of the well and environmental soil boring information compiled for the groundwater monitoring program of the Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) at the Savannah River Site (SRS) during 1991. It includes discussion of environmental soil borings, surveying, well installations, abandonments, maintenance, and stabilization

  9. A case study of optimization in the decision process: Siting groundwater monitoring wells

    International Nuclear Information System (INIS)

    Cardwell, H.; Huff, D.; Douthitt, J.; Sale, M.

    1993-12-01

    Optimization is one of the tools available to assist decision makers in balancing multiple objectives and concerns. In a case study of the siting decision for groundwater monitoring wells, we look at the influence of the optimization models on the decisions made by the responsible groundwater specialist. This paper presents a multi-objective integer programming model for determining the location of monitoring wells associated with a groundwater pump-and-treat remediation. After presenting the initial optimization results, we analyze the actual decision and revise the model to incorporate elements of the problem that were later identified as important in the decision-making process. The results of a revised model are compared to the actual siting plans, the recommendations from the initial optimization runs, and the initial monitoring network proposed by the decision maker

  10. Interim site characterization report and ground-water monitoring program for the Hanford site solid waste landfill

    International Nuclear Information System (INIS)

    Fruland, R.M.; Hagan, R.A.; Cline, C.S.; Bates, D.J.; Evans, J.C.; Aaberg, R.L.

    1989-07-01

    Federal and state regulations governing the operation of landfills require utilization of ground-water monitoring systems to determine whether or not landfill operations impact ground water at the point of compliance (ground water beneath the perimeter of the facility). A detection-level ground-water monitoring system was designed, installed, and initiated at the Hanford Site Solid Waste Landfill (SWL). Chlorinated hydrocarbons were detected at the beginning of the ground-water monitoring program and continue to be detected more than 1 year later. The most probable source of the chlorinated hydrocarbons is washwater discharged to the SWL between 1985 and 1987. This is an interim report and includes data from the characterization work that was performed during well installation in 1987, such as field observations, sediment studies, and geophysical logging results, and data from analyses of ground-water samples collected in 1987 and 1988, such as field parameter measurements and chemical analyses. 38 refs., 27 figs., 8 tabs

  11. A quantitative method for groundwater surveillance monitoring network design at the Hanford Site

    International Nuclear Information System (INIS)

    Meyer, P.D.

    1993-12-01

    As part of the Environmental Surveillance Program at the Hanford Site, mandated by the US Department of Energy, hundreds of groundwater wells are sampled each year, with each sample typically analyzed for a variety of constituents. The groundwater sampling program must satisfy several broad objectives. These objectives include an integrated assessment of the condition of groundwater and the identification and quantification of existing, emerging, or potential groundwater problems. Several quantitative network desip objectives are proposed and a mathematical optimization model is developed from these objectives. The model attempts to find minimum cost network alternatives that maximize the amount of information generated by the network. Information is measured both by the rats of change with respect to time of the contaminant concentration and the uncertainty in contaminant concentration. In an application to tritium monitoring at the Hanford Site, both information measures were derived from historical data using time series analysis

  12. The Savannah River Site's Groundwater Monitoring Program second quarter 1999 (April through June 1999)

    International Nuclear Information System (INIS)

    Hutchison, J.B.

    1999-01-01

    This report summarizes the Groundwater Monitoring Program conducted by Savannah River Site during first quarter 1999. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program's activities; and serves as an official record of the analytical results

  13. Integrated ground-water monitoring strategy for NRC-licensed facilities and sites: Case study applications

    Science.gov (United States)

    Price, V.; Temples, T.; Hodges, R.; Dai, Z.; Watkins, D.; Imrich, J.

    2007-01-01

    This document discusses results of applying the Integrated Ground-Water Monitoring Strategy (the Strategy) to actual waste sites using existing field characterization and monitoring data. The Strategy is a systematic approach to dealing with complex sites. Application of such a systematic approach will reduce uncertainty associated with site analysis, and therefore uncertainty associated with management decisions about a site. The Strategy can be used to guide the development of a ground-water monitoring program or to review an existing one. The sites selected for study fall within a wide range of geologic and climatic settings, waste compositions, and site design characteristics and represent realistic cases that might be encountered by the NRC. No one case study illustrates a comprehensive application of the Strategy using all available site data. Rather, within each case study we focus on certain aspects of the Strategy, to illustrate concepts that can be applied generically to all sites. The test sites selected include:Charleston, South Carolina, Naval Weapons Station,Brookhaven National Laboratory on Long Island, New York,The USGS Amargosa Desert Research Site in Nevada,Rocky Flats in Colorado,C-Area at the Savannah River Site in South Carolina, andThe Hanford 300 Area.A Data Analysis section provides examples of detailed data analysis of monitoring data.

  14. Annual report for RCRA groundwater monitoring projects at Hanford Site facilities for 1995

    International Nuclear Information System (INIS)

    Hartman, M.J.

    1996-02-01

    This report presents the annual hydrogeologic evaluation of 19 Resource Conservation and Recovery Act of 1976 facilities and 1 nonhazardous waste facility at the US Department of Energy's Hanford Site. Although most of the facilities no longer receive dangerous waste, a few facilities continue to receive dangerous waste constituents for treatment, storage, or disposal. The 19 Resource Conservation and Recovery Act facilities comprise 29 waste management units. Nine of the units are monitored under groundwater quality assessment status because of elevated levels of contamination indicator parameters. The impact of those units on groundwater quality, if any, is being investigated. If dangerous waste or waste constituents have entered groundwater, their concentration profiles, rate, and extent of migration are evaluated. Groundwater is monitored at the other 20 units to detect leakage, should it occur. This report provides an interpretation of groundwater data collected at the waste management units between October 1994 and September 1995. Groundwater quality is described for the entire Hanford Site. Widespread contaminants include nitrate, chromium, carbon tetrachloride, tritium, and other radionuclides

  15. Annual report for RCRA groundwater monitoring projects at Hanford site facilities for 1994

    International Nuclear Information System (INIS)

    1995-02-01

    This report presents the annual hydrogeologic evaluation of 19 Resource Conservation and Recovery Act of 1976 facilities and 1 nonhazardous waste facility at the U.S. Department of Energy's Hanford Site. Although most of the facilities no longer receive dangerous waste, a few facilities continue to receive dangerous waste constituents for treatment, storage, or disposal. The 19 Resource Conservation and Recovery Act facilities comprise 29 waste management units. Nine of the units are monitored under groundwater quality assessment status because of elevated levels of contamination indicator parameters. The impact of those units on groundwater quality, if any, is being investigated. If dangerous waste or waste constituents have entered groundwater, their concentration profiles, rate, and extent of migration are evaluated. Groundwater is monitored at the other 20 units to detect leakage, should it occur. This report provides an interpretation of groundwater data collected at the waste management units between October 1993 and September 1994. Groundwater quality is described for the entire Hanford Site. Widespread contaminants include nitrate, chromium, carbon tetrachloride, tritium, and other radionuclides

  16. The Savannah River Site's Groundwater Monitoring Program, third quarter 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site's Groundwater Monitoring Program. During third quarter 1989 (July--September), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead they aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the third quarter is presented in the Flagging Criteria section of this document. All analytical results from third quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  17. The Savannah River Site's Groundwater Monitoring Program, second quarter 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site's Groundwater Monitoring Program. During second quarter 1989 (April--June), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the second quarter is presented in the Flagging Criteria section of this document. All analytical results from second quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  18. 2015 Groundwater Monitoring and Inspection Report Gnome-Coach, New Mexico, Site

    International Nuclear Information System (INIS)

    Findlay, Rick

    2016-01-01

    The Gnome-Coach, New Mexico, Site was the location of a 3-kiloton-yield underground nuclear test in 1961 and a groundwater tracer test in 1963. The U.S. Geological Survey conducted the groundwater tracer test using four dissolved radionuclides--tritium, iodine-131, strontium-90, and cesium-137--as tracers. Site reclamation and remediation began after the underground testing, and was conducted in several phases at the site. The New Mexico Environment Department (NMED) issued a Conditional Certificate of Completion in September 2014, which documents that surface remediation activities have been successfully completed in accordance with the Voluntary Remediation Program. Subsurface activities have included annual sampling and monitoring of wells at and near the site since 1972. These annual monitoring activities were enhanced in 2008 to include monitoring hydraulic head and collecting samples from the onsite wells USGS-4, USGS-8, and LRL-7 using the low-flow sampling method. In 2010, the annual monitoring was focused to the monitoring wells within the site boundary. A site inspection and annual sampling were conducted on January 27-28, 2015. A second site visit was conducted on April 21, 2015, to install warning/notification signs to fulfill a requirement of the Conditional Certificate of Completion that was issued by the NMED for the surface.

  19. 2016 Groundwater Monitoring and Inspection Report Gnome-Coach, New Mexico, Site January 2017

    Energy Technology Data Exchange (ETDEWEB)

    Kreie, Ken [USDOE Office of Legacy Management, Washington, DC (United States); Findlay, Rick [Navarro Research and Engineering, Inc., Oak Ridge, TN (United States)

    2017-01-01

    The Gnome-Coach, New Mexico, Site was the location of an underground nuclear test in 1961 and a groundwater tracer test in 1963. Residual contamination remaining in the subsurface from these events requires long-term oversight. The Long-Term Surveillance and Maintenance Plan for the site describes the U.S. Department of Energy Office of Legacy Management’s (LM’s) plan for monitoring groundwater (radiochemical sampling and hydraulic head measurements), inspecting the site, maintaining the site’s institutional controls, evaluating and reporting data, and documenting the site’s records and data management processes. Groundwater monitoring and site inspection activities are conducted annually. This report summarizes the results of these activities conducted during the October 2015 through September 2016 reporting period. The site inspection and annual sampling were conducted on January 27, 2016. At the time of the site inspection, the signs installed near the emplacement shaft, near well USGS-1, and around the perimeter of the site were observed as being in good condition, as were the roads, wellheads, and Project Gnome monument. No new groundwater extraction wells or oil and gas wells were installed during this reporting period on the site or in the sections that surround the site. One new application was received by the New Mexico Oil Conservation Division to install a salt water disposal well approximately 0.8 miles northeast of the Project Gnome monument. The proposed well has a planned completion depth of 15,500 feet below ground surface, but as of November 2016 a drill date has not been established.

  20. Shale gas impacts on groundwater resources: insights from monitoring a fracking site in Poland

    Science.gov (United States)

    Montcoudiol, Nelly; Isherwood, Catherine; Gunning, Andrew; Kelly, Thomas; Younger, Paul

    2017-04-01

    Exploitation of shale gas by hydraulic fracturing (fracking) is highly controversial and concerns have been raised regarding induced risks from this technique. The SHEER project, an EU Horizon 2020-funded project, is looking into developing best practice to understand, prevent and mitigate the potential short- and long-term environmental impacts and risks from shale gas exploration and exploitation. Three major potential impacts were identified: groundwater contamination, air pollution and induced seismicity. This presentation will deal with the hydrogeological aspect. As part of the SHEER project, four monitoring wells were installed at a shale gas exploration site in Northern Poland. They intercept the main drinking water aquifer located in Quaternary sediments. Baseline monitoring was carried out from mid-December 2015 to beginning of June 2016. Fracking operations occurred in two horizontal wells, in two stages, in June and July 2016. The monitoring has continued after fracking was completed, with site visits every 4-6 weeks. Collected data include measurements of groundwater level, conductivity and temperature at 15-minute intervals, frequent sampling for laboratory analyses and field measurements of groundwater physico-chemical parameters. Groundwater samples are analysed for a range of constituents including dissolved gases and isotopes. The presentation will focus on the interpretation of baseline monitoring data. The insights gained into the behaviour of the Quaternary aquifer will allow a greater perspective to be place on the initial project understanding draw from previous studies. Short-term impacts will also be discussed in comparison with the baseline monitoring results. The presentation will conclude with discussion of challenges regarding monitoring of shale gas fracking sites.

  1. 2011 Groundwater Monitoring and Inspection Report Gnome-Coach Site, New Mexico

    International Nuclear Information System (INIS)

    2012-01-01

    Gnome-Coach was the site of a 3-kiloton underground nuclear test in 1961. Surface and subsurface contamination resulted from the underground nuclear testing, post-test drilling, and groundwater tracer test performed at the site. The State of New Mexico is currently proceeding with a conditional certificate of completion for the surface. As for the subsurface, monitoring activities that include hydraulic head monitoring and groundwater sampling of the wells onsite are conducted as part of the annual site inspection. These activities were conducted on January 19, 2011. The site roads, monitoring well heads, and the monument at surface ground zero were observed as being in good condition at the time of the site inspection. An evaluation of the hydraulic head data obtained from the site indicates that water levels in wells USGS-4 and USGS-8 appear to respond to the on/off cycling of the dedicated pump in well USGS-1 and that water levels in wells LRL-7 and DD-1 increased during this annual monitoring period. Analytical results obtained from the sampling indicate that concentrations of tritium, strontium-90, and cesium-137 were consistent with concentrations from historical sampling events.

  2. 2011 Groundwater Monitoring and Inspection Report Gnome-Coach Site, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-02-01

    Gnome-Coach was the site of a 3-kiloton underground nuclear test in 1961. Surface and subsurface contamination resulted from the underground nuclear testing, post-test drilling, and groundwater tracer test performed at the site. The State of New Mexico is currently proceeding with a conditional certificate of completion for the surface. As for the subsurface, monitoring activities that include hydraulic head monitoring and groundwater sampling of the wells onsite are conducted as part of the annual site inspection. These activities were conducted on January 19, 2011. The site roads, monitoring well heads, and the monument at surface ground zero were observed as being in good condition at the time of the site inspection. An evaluation of the hydraulic head data obtained from the site indicates that water levels in wells USGS-4 and USGS-8 appear to respond to the on/off cycling of the dedicated pump in well USGS-1 and that water levels in wells LRL-7 and DD-1 increased during this annual monitoring period. Analytical results obtained from the sampling indicate that concentrations of tritium, strontium-90, and cesium-137 were consistent with concentrations from historical sampling events.

  3. Evaluation of groundwater monitoring results at the Hanford Site 200 Area Treated Effluent Disposal Facility

    International Nuclear Information System (INIS)

    Barnett, D.B.

    1998-09-01

    The Hanford Site 200 Area Treated Effluent Disposal Facility (TEDF) has operated since June 1995. Groundwater monitoring has been conducted quarterly in the three wells surrounding the facility since 1992, with contributing data from nearby B Pond System wells. Cumulative hydrologic and geochemical information from the TEDF well network and other surrounding wells indicate no discernable effects of TEDF operations on the uppermost aquifer in the vicinity of the TEDF. The lateral consistency and impermeable nature of the Ringold Formation lower mud unit, and the contrasts in hydraulic conductivity between this unit and the vadose zone sediments of the Hanford formation suggest that TEDF effluent is spreading laterally with negligible mounding or downward movement into the uppermost aquifer. Hydrographs of TEDF wells show that TEDF operations have had no detectable effects on hydraulic heads in the uppermost aquifer, but show a continuing decay of the hydraulic mound generated by past operations at the B Pond System. Comparison of groundwater geochemistry from TEDF wells and other, nearby RCRA wells suggests that groundwater beneath TEDF is unique; different from both effluent entering TEDF and groundwater in the B Pond area. Tritium concentrations, major ionic proportions, and lower-than-background concentrations of other species suggest that groundwater in the uppermost aquifer beneath the TEDF bears characteristics of water in the upper basalt confined aquifer system. This report recommends retaining the current groundwater well network at the TEDF, but with a reduction of sampling/analysis frequency and some modifications to the list of constituents sought

  4. The Savannah River Site's Groundwater Monitoring Program, second quarter 1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-02-07

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site's (SRS) Groundwater Monitoring Program. During second quarter 1990 (April through June) EPD/EMS conducted routine sampling of monitoring wells and drinking water locations. EPD/EMS established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the second quarter is presented in the Flagging Criteria section of this document. All analytical results from second quarter 1990 are listed in this report.

  5. Groundwater monitoring in the archaeological site of Ostia Antica (Rome, Italy: first results

    Directory of Open Access Journals (Sweden)

    Lucia Mastrorillo

    2016-06-01

    Full Text Available The archaeological site of Ostia Antica hosts the ruins of the ancient roman city called Ostia founded in the VII century B.C. near the mouth of Tiber River. The area was strategically important for Rome, not only for the control of the river, but also for some salt marshes (Ostia Pound. During the XIX century, the whole area was reclaimed and the salt production stopped. Nowadays drainage canals and pumps avoid the flood of zones placed below sea level, keeping dewatering below the ground surface. In February 2014, the site was largely flooded after an exceptional rainfall event and the Superintendence for Archaeological Heritage of Rome ordered the closure for 15 days. Few months later (July 2014 a groundwater monitoring project started with the aim of studying the aquifer response to local rainfall and prevent future damage and groundwater flooding. The activity consisted in water-table monitoring, groundwater electrical conductivity (EC and temperature continuous measurements, coupled with chemical analysis of major ions. Preliminary results shows the link between water table fluctuations and rainfall distributions. The average elevation of the archaeological area is about 2,5 m a.s.l. and the local water-table depth is of about 0,5 m a.s.l.; groundwater flows from the Tiber River to the reclaimed area according to regional flowpath. Groundwater sampled from three wells is Ca-HCO3 freshwater (600 - 1000 μS/cm, while the sample collected from a well located close to ancient salt storage warehouse (now Ostia Antica museum, is Na-Cl brackish water (about 4000 μS/cm. The chemical evolution of groundwater from summer to winter suggested a possible lateral inflow from the Tiber River, affected by salt-wedge intrusion. The inflow of Ca-Cl, SO4 Tiber’s water with an intermediate salinity could determine salinization of Ca-HCO3 freshwaters and refreshing of Na-Cl brackish water.

  6. Long-Term Groundwater Monitoring Optimization, Clare Water Supply Superfund Site, Permeable Reactive Barrier and Soil Remedy Areas, Clare, Michigan

    Science.gov (United States)

    This report contains a review of the long-term groundwater monitoring network for the Permeable Reactive Barrier (PRB) and Soil Remedy Areas at the Clare Water Supply Superfund Site in Clare, Michigan.

  7. Selection of Sampling Pumps Used for Groundwater Monitoring at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Schalla, Ronald; Webber, William D.; Smith, Ronald M.

    2001-11-05

    The variable frequency drive centrifugal submersible pump, Redi-Flo2a made by Grundfosa, was selected for universal application for Hanford Site groundwater monitoring. Specifications for the selected pump and five other pumps were evaluated against current and future Hanford groundwater monitoring performance requirements, and the Redi-Flo2 was selected as the most versatile and applicable for the range of monitoring conditions. The Redi-Flo2 pump distinguished itself from the other pumps considered because of its wide range in output flow rate and its comparatively moderate maintenance and low capital costs. The Redi-Flo2 pump is able to purge a well at a high flow rate and then supply water for sampling at a low flow rate. Groundwater sampling using a low-volume-purging technique (e.g., low flow, minimal purge, no purge, or micropurgea) is planned in the future, eliminating the need for the pump to supply a high-output flow rate. Under those conditions, the Well Wizard bladder pump, manufactured by QED Environmental Systems, Inc., may be the preferred pump because of the lower capital cost.

  8. The Savannah River Site's Groundwater Monitoring Program: Fourth quarter 1991

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, C.D. (Westinghouse Savannah River Co., Aiken, SC (United States))

    1992-06-02

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site's (SRS) Groundwater Monitoring Program. During fourth quarter 1991, EPD/EMS conducted extensive sampling of monitoring wells. EPD/EMS established two sets of criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead, they aid personnel in sample scheduling, interpretation of data, and trend identification. Beginning in 1991, the flagging criteria are based on EPA drinking water standards and method detection limits. A detailed explanation of the current flagging criteria is presented in the Flagging Criteria section of this document. Analytical results from fourth quarter 1991 are listed in this report.

  9. The Savannah River Site's Groundwater Monitoring Program: Second quarter 1992

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, C.D. (Westinghouse Savannah River Co., Aiken, SC (United States))

    1992-10-07

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site's (SRS) Groundwater Monitoring Program. During second quarter 1992, EPD/EMS conducted extensive sampling of monitoring wells. EPD/EMS established two sets of criteria to assist in the management of sample results. The flagging criteria do not define contamination levels; instead, they aid personnel in sample scheduling, interpretation of data, and trend identification. Since 1991, the flagging criteria have been based on the federal Environmental Protection Agency (EPA) drinking water standards and on method detection limits. A detailed explanation of the current flagging criteria is presented in the Flagging Criteria section of this document. Analytical results from second quarter 1992 are listed in this report.

  10. 2012 Groundwater Monitoring and Inspection Report Gnome-Coach, New Mexico, Site

    International Nuclear Information System (INIS)

    2013-01-01

    Gnome-Coach was the site of a 3-kiloton underground nuclear test conducted in 1961. Surface and subsurface contamination resulted from the underground nuclear testing, post-test drilling, and a groundwater tracer test performed at the site. Surface reclamation and remediation began after the underground testing. A Completion Report was prepared, and the State of New Mexico is currently proceeding with a conditional certificate of completion for the surface. Subsurface corrective action activities began in 1972 and have generally consisted of annual sampling and monitoring of wells near the site. In 2008, the annual site inspections were refined to include hydraulic head monitoring and collection of samples from groundwater monitoring wells onsite using the low-flow sampling method. These activities were conducted during this monitoring period on January 18, 2012. Analytical results from this sampling event indicate that concentrations of tritium, strontium-90, and cesium-137 were generally consistent with concentrations from historical sampling events. The exceptions are the decreases in concentrations of strontium-90 in samples from wells USGS-4 and USGS-8, which were more than 2.5 times lower than last year's results. Well USGS-1 provides water for livestock belonging to area ranchers, and a dedicated submersible pump cycles on and off to maintain a constant volume in a nearby water tank. Water levels in wells USGS-4 and USGS-8 respond to the on/off cycling of the water supply pumping from well USGS-1. Well LRL-7 was not sampled in January, and water levels were still increasing when the transducer data were downloaded in September. A seismic reflection survey was also conducted this year. The survey acquired approximately 13.9 miles of seismic reflection data along 7 profiles on and near the site. These activities were conducted from February 23 through March 10, 2012. The site roads, monitoring well heads, and the monument at surface ground zero were in good

  11. 2012 Groundwater Monitoring and Inspection Report Gnome-Coach, New Mexico, Site

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-03-01

    Gnome-Coach was the site of a 3-kiloton underground nuclear test conducted in 1961. Surface and subsurface contamination resulted from the underground nuclear testing, post-test drilling, and a groundwater tracer test performed at the site. Surface reclamation and remediation began after the underground testing. A Completion Report was prepared, and the State of New Mexico is currently proceeding with a conditional certificate of completion for the surface. Subsurface corrective action activities began in 1972 and have generally consisted of annual sampling and monitoring of wells near the site. In 2008, the annual site inspections were refined to include hydraulic head monitoring and collection of samples from groundwater monitoring wells onsite using the low-flow sampling method. These activities were conducted during this monitoring period on January 18, 2012. Analytical results from this sampling event indicate that concentrations of tritium, strontium-90, and cesium-137 were generally consistent with concentrations from historical sampling events. The exceptions are the decreases in concentrations of strontium-90 in samples from wells USGS-4 and USGS-8, which were more than 2.5 times lower than last year's results. Well USGS-1 provides water for livestock belonging to area ranchers, and a dedicated submersible pump cycles on and off to maintain a constant volume in a nearby water tank. Water levels in wells USGS-4 and USGS-8 respond to the on/off cycling of the water supply pumping from well USGS-1. Well LRL-7 was not sampled in January, and water levels were still increasing when the transducer data were downloaded in September. A seismic reflection survey was also conducted this year. The survey acquired approximately 13.9 miles of seismic reflection data along 7 profiles on and near the site. These activities were conducted from February 23 through March 10, 2012. The site roads, monitoring well heads, and the monument at surface ground zero were in

  12. Tritium monitoring in groundwater and evaluation of model predictions for the Hanford Site 200 Area Effluent Treatment Facility

    International Nuclear Information System (INIS)

    Barnett, D.B.; Bergeron, M.P.; Cole, C.R.; Freshley, M.D.; Wurstner, S.K.

    1997-08-01

    The Effluent Treatment Facility (ETF) disposal site, also known as the State-Approved Land Disposal Site (SALDS), receives treated effluent containing tritium, which is allowed to infiltrate through the soil column to the water table. Tritium was first detected in groundwater monitoring wells around the facility in July 1996. The SALDS groundwater monitoring plan requires revision of a predictive groundwater model and reevaluation of the monitoring well network one year from the first detection of tritium in groundwater. This document is written primarily to satisfy these requirements and to report on analytical results for tritium in the SALDS groundwater monitoring network through April 1997. The document also recommends an approach to continued groundwater monitoring for tritium at the SALDS. Comparison of numerical groundwater models applied over the last several years indicate that earlier predictions, which show tritium from the SALDS approaching the Columbia River, were too simplified or overly robust in source assumptions. The most recent modeling indicates that concentrations of tritium above 500 pCi/L will extend, at most, no further than ∼1.5 km from the facility, using the most reasonable projections of ETF operation. This extent encompasses only the wells in the current SALDS tritium-tracking network

  13. Automated Groundwater Monitoring of Uranium at the Hanford Site, Washington - 13116

    Energy Technology Data Exchange (ETDEWEB)

    Burge, Scott R. [Burge Environmental, Inc., 6100 South Maple Avenue, no. 114, Tempe, AZ, 85283 (United States); O' Hara, Matthew J. [Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, WA, 99352 (United States)

    2013-07-01

    An automated groundwater monitoring system for the detection of uranyl ion in groundwater was deployed at the 300 Area Industrial Complex, Hanford Site, Washington. The research was conducted to determine if at-site, automated monitoring of contaminant movement in the subsurface is a viable alternative to the baseline manual sampling and analytical laboratory assay methods currently employed. The monitoring system used Arsenazo III, a colorimetric chelating compound, for the detection of the uranyl ion. The analytical system had a limit of quantification of approximately 10 parts per billion (ppb, μg/L). The EPA's drinking water maximum contaminant level (MCL) is 30 ppb [1]. In addition to the uranyl ion assay, the system was capable of acquiring temperature, conductivity, and river level data. The system was fully automated and could be operated remotely. The system was capable of collecting water samples from four sampling sources, quantifying the uranyl ion, and periodically performing a calibration of the analytical cell. The system communications were accomplished by way of cellular data link with the information transmitted through the internet. Four water sample sources were selected for the investigation: one location provided samples of Columbia River water, and the remaining three sources provided groundwater from aquifer sampling tubes positioned in a vertical array at the Columbia River shoreline. The typical sampling schedule was to sample the four locations twice per day with one calibration check per day. This paper outlines the instrumentation employed, the operation of the instrumentation, and analytical results for a period of time between July and August, 2012. The presentation includes the uranyl ion concentration and conductivity results from the automated sampling/analysis system, along with a comparison between the automated monitor's analytical performance and an independent laboratory analysis. Benefits of using the automated

  14. Automated Groundwater Monitoring of Uranium at the Hanford Site, Washington - 13116

    International Nuclear Information System (INIS)

    Burge, Scott R.; O'Hara, Matthew J.

    2013-01-01

    An automated groundwater monitoring system for the detection of uranyl ion in groundwater was deployed at the 300 Area Industrial Complex, Hanford Site, Washington. The research was conducted to determine if at-site, automated monitoring of contaminant movement in the subsurface is a viable alternative to the baseline manual sampling and analytical laboratory assay methods currently employed. The monitoring system used Arsenazo III, a colorimetric chelating compound, for the detection of the uranyl ion. The analytical system had a limit of quantification of approximately 10 parts per billion (ppb, μg/L). The EPA's drinking water maximum contaminant level (MCL) is 30 ppb [1]. In addition to the uranyl ion assay, the system was capable of acquiring temperature, conductivity, and river level data. The system was fully automated and could be operated remotely. The system was capable of collecting water samples from four sampling sources, quantifying the uranyl ion, and periodically performing a calibration of the analytical cell. The system communications were accomplished by way of cellular data link with the information transmitted through the internet. Four water sample sources were selected for the investigation: one location provided samples of Columbia River water, and the remaining three sources provided groundwater from aquifer sampling tubes positioned in a vertical array at the Columbia River shoreline. The typical sampling schedule was to sample the four locations twice per day with one calibration check per day. This paper outlines the instrumentation employed, the operation of the instrumentation, and analytical results for a period of time between July and August, 2012. The presentation includes the uranyl ion concentration and conductivity results from the automated sampling/analysis system, along with a comparison between the automated monitor's analytical performance and an independent laboratory analysis. Benefits of using the automated system as an

  15. Groundwater monitoring program plan and conceptual site model for the Al-Tuwaitha Nuclear Research Center in Iraq.

    Energy Technology Data Exchange (ETDEWEB)

    Copland, John Robin; Cochran, John Russell

    2013-07-01

    The Radiation Protection Center of the Iraqi Ministry of Environment is developing a groundwater monitoring program (GMP) for the Al-Tuwaitha Nuclear Research Center located near Baghdad, Iraq. The Al-Tuwaitha Nuclear Research Center was established in about 1960 and is currently being cleaned-up and decommissioned by Iraqs Ministry of Science and Technology. This Groundwater Monitoring Program Plan (GMPP) and Conceptual Site Model (CSM) support the Radiation Protection Center by providing: A CSM describing the hydrogeologic regime and contaminant issues, recommendations for future groundwater characterization activities, and descriptions of the organizational elements of a groundwater monitoring program. The Conceptual Site Model identifies a number of potential sources of groundwater contamination at Al-Tuwaitha. The model also identifies two water-bearing zones (a shallow groundwater zone and a regional aquifer). The depth to the shallow groundwater zone varies from approximately 7 to 10 meters (m) across the facility. The shallow groundwater zone is composed of a layer of silty sand and fine sand that does not extend laterally across the entire facility. An approximately 4-m thick layer of clay underlies the shallow groundwater zone. The depth to the regional aquifer varies from approximately 14 to 17 m across the facility. The regional aquifer is composed of interfingering layers of silty sand, fine-grained sand, and medium-grained sand. Based on the limited analyses described in this report, there is no severe contamination of the groundwater at Al-Tuwaitha with radioactive constituents. However, significant data gaps exist and this plan recommends the installation of additional groundwater monitoring wells and conducting additional types of radiological and chemical analyses.

  16. Ground-water monitoring at the Hanford Site, January-December 1984

    Energy Technology Data Exchange (ETDEWEB)

    Cline, C.S.; Rieger, J.T.; Raymond, J.R.

    1985-09-01

    This program is designed to evaluate existing and potential pathways of exposure to radioactivity and hazardous chemicals from site operations. This document contains an evaluation of data collected during CY 1984. During 1984, 339 monitoring wells were sampled at various times for radioactive and nonradioactive constituents. Two of these constituents, specifically, tritium and nitrate, have been selected for detailed discussion in this report. Tritium and nitrate in the primary plumes originating from the 200 Areas continue to move generally eastward toward the Columbia River in the direction of ground-water flow. The movement within these plumes is indicated by changes in trends within the analytical data from the monitoring wells. No discernible impact on ground water has yet been observed from the start-up of the PUREX plant in December 1983. The shape of the present tritium plume is similar to those described in previous ground-water monitoring reports, although slight changes on the outer edges have been noted. Radiological impacts from two potential pathways for radionuclide transport in ground water to the environment are discussed in this report. The pathways are: (1) human consumption of ground water from onsite wells, and (2) seepage of ground water into the Columbia River. Concentrations of tritium in spring samples that were collected and analyzed in 1983, and in wells sampled adjacent to the Columbia River in 1984 confirmed that constituents in the ground water are entering the river via springs and subsurface flow. The primary areas where radionuclides enter the Columbia River via ground-water flow are the 100-N and 300 Areas and the shoreline adjacent to the Hanford Townsite. 44 refs., 25 figs., 11 tabs.

  17. Evaluation of chemical sensors for in situ ground-water monitoring at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, E.M.; Hostetler, D.D.

    1989-03-01

    This report documents a preliminary review and evaluation of instrument systems and sensors that may be used to detect ground-water contaminants in situ at the Hanford Site. Three topics are covered in this report: (1) identification of a group of priority contaminants at Hanford that could be monitored in situ, (2) a review of current instrument systems and sensors for environmental monitoring, and (3) an evaluation of instrument systems that could be used to monitor Hanford contaminants. Thirteen priority contaminants were identified in Hanford ground water, including carbon tetrachloride and six related chlorinated hydrocarbons, cyanide, methyl ethyl ketone, chromium (VI), fluoride, nitrate, and uranium. Based on transduction principles, chemical sensors were divided into four classes, ten specific types of instrument systems were considered: fluorescence spectroscopy, surface-enhanced Raman spectroscopy (SERS), spark excitation-fiber optic spectrochemical emission sensor (FOSES), chemical optrodes, stripping voltammetry, catalytic surface-modified ion electrode immunoassay sensors, resistance/capacitance, quartz piezobalance and surface acoustic wave devices. Because the flow of heat is difficult to control, there are currently no environmental chemical sensors based on thermal transduction. The ability of these ten instrument systems to detect the thirteen priority contaminants at the Hanford Site at the required sensitivity was evaluated. In addition, all ten instrument systems were qualitatively evaluated for general selectivity, response time, reliability, and field operability. 45 refs., 23 figs., 7 tabs.

  18. Evaluation of chemical sensors for in situ ground-water monitoring at the Hanford Site

    International Nuclear Information System (INIS)

    Murphy, E.M.; Hostetler, D.D.

    1989-03-01

    This report documents a preliminary review and evaluation of instrument systems and sensors that may be used to detect ground-water contaminants in situ at the Hanford Site. Three topics are covered in this report: (1) identification of a group of priority contaminants at Hanford that could be monitored in situ, (2) a review of current instrument systems and sensors for environmental monitoring, and (3) an evaluation of instrument systems that could be used to monitor Hanford contaminants. Thirteen priority contaminants were identified in Hanford ground water, including carbon tetrachloride and six related chlorinated hydrocarbons, cyanide, methyl ethyl ketone, chromium (VI), fluoride, nitrate, and uranium. Based on transduction principles, chemical sensors were divided into four classes, ten specific types of instrument systems were considered: fluorescence spectroscopy, surface-enhanced Raman spectroscopy (SERS), spark excitation-fiber optic spectrochemical emission sensor (FOSES), chemical optrodes, stripping voltammetry, catalytic surface-modified ion electrode immunoassay sensors, resistance/capacitance, quartz piezobalance and surface acoustic wave devices. Because the flow of heat is difficult to control, there are currently no environmental chemical sensors based on thermal transduction. The ability of these ten instrument systems to detect the thirteen priority contaminants at the Hanford Site at the required sensitivity was evaluated. In addition, all ten instrument systems were qualitatively evaluated for general selectivity, response time, reliability, and field operability. 45 refs., 23 figs., 7 tabs

  19. Long Term Remote Monitoring of TCE Contaminated Groundwater at Savannah River Site

    International Nuclear Information System (INIS)

    Duran, C.; Gudavalli, R.; Lagos, L.; Tansel, B.; Varona, J.; Allen, M.

    2004-01-01

    The purpose of this study was to develop a mobile self powered remote monitoring system enhanced for field deployment at Savannah River Site (SRS). The system used a localized power source with solar recharging and has wireless data collection, analysis, transmission, and data management capabilities. The prototype was equipped with a Hydrolab's DataSonde 4a multi-sensor array package managed by a Supervisory Control and Data Acquisition (SCADA) system, with an adequate pumping capacity of water samples for sampling and analysis of Trichloroethylene (TCE) in contaminated groundwater wells at SRS. This paper focuses on a study and technology development efforts conducted at the Hemispheric Center for Environmental Technology (HCET) at Florida International University (FIU) to automate the sampling of contaminated wells with a multi-sensor array package developed using COTS (Commercial Off The shelf) parts. Bladder pumps will pump water from different wells to the sensors array, water quality TCE indicator parameters are measured (i.e. pH, redox, ORP, DO, NO3 -, Cl-). In order to increase user access and data management, the system was designed to be accessible over the Internet. Remote users can take sample readings and collect data remotely over a web. Results obtained at Florida International University in-house testing and at a field deployment at the Savannah River Site indicate that this long term monitoring technique can be a feasible solution for the sampling of TCE indicator parameters at remote contaminated sites

  20. The Savannah River Site's Groundwater Monitoring Program second quarter 1999 (April through June 1999)

    Energy Technology Data Exchange (ETDEWEB)

    Hutchison, J.B.

    1999-12-16

    This report summarizes the Groundwater Monitoring Program conducted by Savannah River Site during first quarter 1999. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program's activities; and serves as an official record of the analytical results.

  1. Groundwater monitoring plan for the Hanford Site 216-B-3 pond RCRA facility

    International Nuclear Information System (INIS)

    Barnett, D.B.; Chou, C.J.

    1998-06-01

    The 216-B-3 pond system was a series of ponds for disposal of liquid effluent from past Hanford production facilities. In operation since 1945, the B Pond system has been a RCRA facility since 1986, with Resource Conservation and Recovery Act (RCRA) interim-status groundwater monitoring in place since 1988. In 1994, discharges were diverted from the main pond, where the greatest potential for contamination was thought to reside, to the 3C expansion pond. In 1997, all discharges to the pond system were discontinued. In 1990, the B Pond system was elevated from detection groundwater monitoring to an assessment-level status because total organic halogens and total organic carbon were found to exceed critical means in two wells. Subsequent groundwater quality assessment failed to find any specific hazardous waste contaminant that could have accounted for the exceedances, which were largely isolated in occurrence. Thus, it was recommended that the facility be returned to detection-level monitoring

  2. The Savannah River Site's Groundwater Monitoring Program - Second Quarter 1998 (April through June 1998)

    Energy Technology Data Exchange (ETDEWEB)

    Hutchison, J B

    1999-02-10

    This report summarizes the Groundwater Monitoring Program conducted by SRS during second quarter 1998. It includes the analytical data, field data, data review, quality control, and other documentation for the program; provides a record of the program's activities; and serves as an official record of the analytical results.

  3. Groundwater Monitoring and Tritium-Tracking Plan for the 200 Area State-Approved Land Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    DB Barnett

    2000-08-31

    The 200 Area State-Approved Land Disposal Site (SALDS) is a drainfield which receives treated wastewater, occasionally containing tritium from treatment of Hanford Site liquid wastes at the 200 Area Effluent Treatment Facility (ETF). Since operation of the SALDS began in December 1995, discharges of tritium have totaled {approx}304 Ci, only half of what was originally predicted for tritium quantity through 1999. Total discharge volumes ({approx}2.7E+8 L) have been commensurate with predicted volumes to date. This document reports the results of all tritium analyses in groundwater as determined from the SALDS tritium-tracking network since the first SALDS wells were installed in 1992 through July 1999, and provides interpretation of these results as they relate to SALDS operation and its effect on groundwater. Hydrologic and geochemical information are synthesized to derive a conceptual model, which is in turn used to arrive at an appropriate approach to continued groundwater monitoring at the facility.

  4. Groundwater monitoring program evaluation For A/M Area, Savannah River Site

    International Nuclear Information System (INIS)

    Hiergesell, R.A.; Bollinger, J.S.

    1996-01-01

    This investigation was undertaken with the primary purpose of assessing the groundwater monitoring program within the A/M Area to identify ways in which the monitoring program could be improved. The task was difficult due to the large number of wells located within the A/M Area and the huge database of analytical data. It was recognized early in this investigation that one of the key tasks was to develop a way to gain access to the groundwater databases so that recommendations could be made. To achieve this, geographic information systems (GIS) technology was used to extract pertinent groundwater quality information from the Geochemical Information Management System (GIMS) groundwater database and display the extracted information spatially. GIS technology was also used to determine the location of well screen and annular material zones within the A/M Area hydrostratigraphy and to identify wells that may breach confining units. Recommendations developed from this study address: (1) wells that may not be providing reliable data but continue to be routinely sampled (2) wells that may be inappropriately located but continue to be routinely sampled and (3) further work that should be undertaken, including well development, evaluation of wells that may be breaching confining units, and development of an automated link to GIMS using GIS so that GIMS data can easily be accessed and displayed geographically

  5. Predicted impacts of future water level decline on monitoring wells using a ground-water model of the Hanford Site

    International Nuclear Information System (INIS)

    Wurstner, S.K.; Freshley, M.D.

    1994-12-01

    A ground-water flow model was used to predict water level decline in selected wells in the operating areas (100, 200, 300, and 400 Areas) and the 600 Area. To predict future water levels, the unconfined aquifer system was stimulated with the two-dimensional version of a ground-water model of the Hanford Site, which is based on the Coupled Fluid, Energy, and Solute Transport (CFEST) Code in conjunction with the Geographic Information Systems (GIS) software package. The model was developed using the assumption that artificial recharge to the unconfined aquifer system from Site operations was much greater than any natural recharge from precipitation or from the basalt aquifers below. However, artificial recharge is presently decreasing and projected to decrease even more in the future. Wells currently used for monitoring at the Hanford Site are beginning to go dry or are difficult to sample, and as the water table declines over the next 5 to 10 years, a larger number of wells is expected to be impacted. The water levels predicted by the ground-water model were compared with monitoring well completion intervals to determine which wells will become dry in the future. Predictions of wells that will go dry within the next 5 years have less uncertainty than predictions for wells that will become dry within 5 to 10 years. Each prediction is an estimate based on assumed future Hanford Site operating conditions and model assumptions

  6. Evaluation of natural attenuation processes in the groundwater of a tar oil contaminated site: development of a monitoring network

    International Nuclear Information System (INIS)

    Borke, P.; Husers, N.; Werner, P.; Leibenath, C.

    2005-01-01

    Tar oil is a complex mixture of mainly aromatic hydrocarbons. It is found in the subsurface of manufactured gas plants (MGP), coking plants or wood preserving facilities. The transportation into the soil and groundwater stands for a severe contamination. This is due to the physico-chemical properties of the DNAPL (dense non aqueous phase liquid) and its mobility in the soil and aquifer system. Additionally most of the contaminants show a low biological degradability and solubility under in situ conditions. Therefore it is known as a long term source of contamination. Nevertheless, natural attenuation (NA) processes are detectable at tar oil contaminated sites. In the thematic network two of the German funding priority KORA (http://www.natural-attenuation.de) these processes are matter of investigation. Four typical contaminated sites were chosen to evaluate under which circumstances monitored natural attenuation (MNA) is applicable. Furthermore enhanced natural attenuation questions are examined. The design of monitoring networks at tar oil contaminated sites plays a significant role in gaining field evidence for natural attenuation as well as documenting the efficiency of the attenuation processes and evaluating the matching of performance goals. Well designed monitoring networks include the placement of monitoring wells in 3D so that 3D flow path, mass balances and an estimation of mass flux can be monitored. As an example the history of the monitoring network of a wood preserving facility is shown. Starting from a risk assessment network to a network for MNA is presented. In this case for example especially the determination of the groundwater flow direction in time and space is connected to the number of observation wells and their location. Moreover in the beginning the observation wells were located according to the assumed centerline of the plume. Because of the variability of the groundwater flow direction and the need to determine mass flux a control plane

  7. Groundwater Monitoring and Tritium-Tracking Plan for the 200 Area State-Approved Land Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, D. Brent

    2000-08-31

    The 200 Area State-Approved Land Disposal Site (SALDS) is a drainfield which receives treated wastewater, occasionally containing high levels of tritium from treatment of Hanford Site liquid wastes. Only the SALDS proximal wells (699-48-77A, 699-48-77C, and 699-48-77D) have been affected by tritium from the facility thus far; the highest activity observed (2.1E+6 pCi/L) occurred in well 699-48-77D in February 1998. Analytical results of groundwater geochemistry since groundwater monitoring began at the SALDS indicate that all constituents with permit enforcement limits have been below those limits with the exception of one measurement of total dissolved solids (TDS) in 1996. The revised groundwater monitoring sampling and analysis plan eliminates chloroform, acetone, tetrahydrofuran, benzene, and ammonia as constituents. Replicate field measurements will replace laboratory measurements of pH for compliance purposes. A deep companion well to well 699-51-75 will be monitored for tritium deeper in the uppermost aquifer.

  8. Calendar Year 2016 Annual Groundwater Monitoring Report.

    Energy Technology Data Exchange (ETDEWEB)

    Copland, John R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jackson, Timmie Okchumpulla [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Li, Jun [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mitchell, Michael Marquand [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Skelly, Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-06-01

    Sandia National Laboratories, New Mexico (SNL/NM) is a government-owned/contractoroperated laboratory. National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., manages and operates SNL/NM for the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA). The DOE/NNSA Sandia Field Office administers the contract and oversees contractor operations at the site. Two types of groundwater surveillance monitoring are conducted at SNL/NM: (1) on a site-wide basis as part of the SNL/NM Long-Term Stewardship (LTS) Program’s Groundwater Monitoring Program (GMP) Groundwater Surveillance Task and (2) on a site-specific groundwater monitoring at LTS/Environmental Restoration (ER) Operations sites with ongoing groundwater investigations. This Annual Groundwater Monitoring Report summarizes data collected during groundwater monitoring events conducted at GMP locations and at the following SNL/NM sites through December 31, 2016: Burn Site Groundwater Area of Concern (AOC); Chemical Waste Landfill; Mixed Waste Landfill; Technical Area-V Groundwater AOC; and the Tijeras Arroyo Groundwater AOC. Environmental monitoring and surveillance programs are required by the New Mexico Environment Department (NMED) and DOE Order 436.1, Departmental Sustainability, and DOE Order 231.1B, Environment, Safety, and Health Reporting.

  9. Results of Tritium Tracking and Groundwater Monitoring at the Hanford Site 200 Area State-Approved Land Disposal Site-FY 1999

    International Nuclear Information System (INIS)

    Barnett, D.B.

    1999-01-01

    The Hanford Site 200 Area Effluent Treatment Facility (ETF) processes contaminated liquids derived from Hanford Site facilities. The clean water generated by these processes is occasionally enriched in tritium and is discharged to the 200 Area State Approved Land Disposal Site (SALDS). Groundwater monitoring for tritium and other constituents is required by the state-issued permit at 21 wells surrounding the facility. During FY 1999, average tritium activities in most wells declined from average activities in 1998. The exception was deep well 69948-77C, where tritium results were at an all-time high (77,000 pCi/L) as a result of the delayed penetration of effluent deeper into the aquifer. Of the 12 constituents with permit enforcement limits, which are monitored in SALDS proximal wells, all were within limits during FY 1999. Water level measurements in nearby wells indicate that a small hydraulic mound exists around the SALDS facility as a result of discharges. This feature is directing groundwater flow radially outward a short distance before the regional northeasterly flow predominates. Evaluation of this condition indicates that the network is currently adequate for tracking potential effects of the SALDS on the groundwater. Recommendations include the discontinuation of ammonia, benzene, tetrahydrofuran, and acetone from the regular groundwater constituent list; designating background well 299-W8-1 as a tritium-tracking well only, and the use of quadruplicate averages of field pH, instead of a single laboratory measurement, as a permit compliance parameter

  10. Comparison of CO2 Detection Methods Tested in Shallow Groundwater Monitoring Wells at a Geological Sequestration Site

    Energy Technology Data Exchange (ETDEWEB)

    Edenborn, Harry M.; Jain, Jinesh N.

    2016-05-17

    The geological storage of anthropogenic carbon dioxide (CO2) is one method of reducing the amount of CO2 released into the atmosphere. Monitoring programs typically determine baseline conditions in surface and near-surface environments before, during, and after CO2 injection to evaluate if impacts related to injection have occurred. Because CO2 concentrations in groundwater fluctuate naturally due to complex geochemical and geomicrobiologicalinteractions, a clear understanding of the baseline behavior of CO2 in groundwater near injection sites is important. Numerous ways of measuring aqueous CO2 in the field and lab are currently used, but most methods have significant shortcomings (e.g., are tedious, lengthy, have interferences, or have significant lag time before a result is determined). In this study, we examined the effectiveness of two novel CO2 detection methods and their ability to rapidly detect CO2in shallow groundwater monitoring wells associated with the Illinois Basin –Decatur Project geological sequestration site. The CarboQC beverage carbonation meter was used to measure the concentration of CO2 in water by monitoring temperature and pressure changes and calculating the PCO2 from the ideal gas law. Additionally, a non-dispersive infrared (NDIR) CO< sub>2sensor enclosed in a gas-permeable, water-impermeable membrane measured CO2by determining an equilibrium concentration. Results showed that the CarboQC method provided rapid (< 3 min) and repeatable results under field conditions within a measured concentration range of 15 –125 mg/L CO2. The NDIR sensor results correlated well (r2= 0.93) with the CarboQC data, but CO2 equilibration required at least 15 minutes, making the method somewhat less desirable under field conditions. In contrast, NDIR-based sensors have a greater potential for long-term deployment. Both

  11. Ground-water monitoring compliance projects for Hanford Site facilities: Annual progress report for 1987

    International Nuclear Information System (INIS)

    Hall, S.H.

    1988-09-01

    This report describes progress during 1987 of five Hanford Site ground water monitoring projects. Four of these projects are being conducted according to regulations based on the federal Resource Conservation and Recovery Act of 1976 and the state Hazardous Waste Management Act. The fifth project is being conducted according to regulations based on the state Solid Waste Management Act. The five projects discussed herein are: 300 Area Process Trenches; 183-H Solar Evaporation Basins; 200 Areas Low-Level Burial Grounds; Nonradioactive Dangerous Waste Landfill; Solid Waste Landfill. For each of the projects, there are included, as applicable, discussions of monitoring well installations, water-table measurements, background and/or downgradient water quality and results of chemical analysis, and extent and rate of movement of contaminant plumes. 14 refs., 30 figs., 13 tabs

  12. RESULTS OF TRITIUM TRACKING AND GROUNDWATER MONITORING AT THE HANFORD SITE 200 AREA STATE APPROVED LAND DISPOSAL SITE. FISCAL YEAR 2008

    International Nuclear Information System (INIS)

    Erb, D.B.

    2008-01-01

    The Hanford Site's 200 Area Effluent Treatment Facility (ETF) processes contaminated aqueous wastes derived from Hanford Site facilities. The treated wastewater occasionally contains tritium, which cannot be removed by the ETF prior to the wastewater being discharged to the 200 Area State-Approved Land Disposal Site (SALDS). During the first 11 months of fiscal year 2008 (FY08) (September 1, 2007, to July 31, 2008), approximately 75.15 million L (19.85 million gal) of water were discharged to the SALDS. Groundwater monitoring for tritium and other constituents, as well as water-level measurements, is required for the SALDS by State Waste Discharge Permit Number ST-4500 (Ecology 2000). The current monitoring network consists of three proximal (compliance) monitoring wells and nine tritium-tracking wells. Quarterly sampling of the proximal wells occurred in October 2007 and in January/February 2008, April 2008, and August 2008. The nine tritium-tracking wells, including groundwater monitoring wells located upgradient and downgradient of the SALDS, were sampled in January through April 2008. Water-level measurements taken in the three proximal SALDS wells indicate that a small groundwater mound is present beneath the facility, which is a result of operational discharges. The mound increased in FY08 due to increased ETF discharges from treating groundwater from extraction wells at the 200-UP-l Operable Unit and the 241-T Tank Farm. Maximum tritium activities increased by an order of magnitude at well 699-48-77A (to 820,000 pCi/L in April 2008) but remained unchanged in the other two proximal wells. The increase was due to higher quantities of tritium in wastewaters that were treated and discharged in FY07 beginning to appear at the proximal wells. The FY08 tritium activities for the other two proximal wells were 68,000 pCi/L at well 699-48-77C (October 2007) and 120,000 pCi/L at well 699-48-77D (October 2007). To date, no indications of a tritium incursion from the

  13. Monitored natural attenuation (MNA) and risk management applied to an active industrial site affected by fuel spill in groundwater

    International Nuclear Information System (INIS)

    De Pablo, J.; Marti, V.; Rovira, M.; Vinolas, C.; Navarro, O.

    2005-01-01

    Monitored Natural Attenuation (MNA) applied to sites were groundwater have been affected by a fuel spill from an Industrial Underground Storage Tank (UST) is economically viable and a reliable methodology to achieve remediation goals. MNA process consists in the control of naturally occurring physical, chemical , and biological processes and is based in the knowledge of the processes that take place and reduce the charge of compounds derived from fuel in the site of study. Because the risk for Human Health and Ecosystem define the concept of contaminant, during MNA special attention has to be taken on concentration diminution of that are or could become contaminants and in this way is possible to perform Risk-Based Land Management (RBLM) by measuring both, the primary lines of evidence (shrinking or stable plume of contaminants) and secondary lines of evidence (given by geochemical indicators in the plume). Once, evidences have been gathered, is possible to calculate the rate of attenuation of contaminants and evaluate if admissible risk is reached an in a reasonable time framework, in order to propose MNA as a unique remediation or combined with other procedures to apply to an affected site. The objective of the present study is to evaluate the application of MNA to an active industrial site in order to develop a RBLM able to assess that the risk for Human Health and ecosystem are acceptable. The added attractive of this methodology is the non-intrusiveness that allows not to stop the industrial activity. The site considered in our study is in an active company located about 15 Km to NW from Barcelona, Spain.The company has a buried UST containing heavy fuel oil for energetic use. During 2002 a general soil impact study revealed that subsoil and groundwater close to the UST were affected by hydrocarbon losses from the tank and in January 2003 the fuel of the tank was emptied by pumping. The free phase of fuel floating on groundwater remained on the aquifer. As a

  14. Groundwater monitoring and modelling of the “Vector” site for near-surface radioactive waste disposal in the Chornobyl exclusion zone

    Directory of Open Access Journals (Sweden)

    D. Bugai

    2017-12-01

    Full Text Available Results of purposeful groundwater monitoring and modelling studies are presented, which were carried out in order to better understand groundwater flow patterns from the “Vector” site for near-surface radioactive waste disposal and storage in the Chornobyl exclusion zone towards river network. Both data of observations at local-scale monitoring well network at “Vector” site carried out in 2015 - 2016 and modelling analyses using the regional groundwater flow model of Chornobyl exclusion zone suggest that the groundwater discharge contour for water originating from “Vector” site is Sakhan River, which is the tributary to Pripyat River. The respective groundwater travel time is estimated at 210 - 340 years. The travel times in subsurface for 90Sr, 137Cs, and transuranium radionuclides (Pu isotopes, 241Am are estimated respectively at thousands, tenths of thousands, hundreds of thousands – million of years. These results, as well as presented data of analyses of lithological properties of the geological deposits of the unsaturated zone at “Vector” site, provide evidence for good protection of surface water resources from radioactivity sources (e.g., radioactive wastes to be disposed in the near-sursface facilities at “Vector” site.

  15. Cost Effective, Ultra Sensitive Groundwater Monitoring for Site Remediation and Management

    Science.gov (United States)

    2015-05-01

    evaporites, sandstone, gravel, conglomerate, and andesitic basalt . Closed basin; playa, alluvial fan, fluvial 600 to 10,000+ Unconfined, leaky...confined Lower unit Breccia, conglomerate, sandstone, siltstone, and local basaltic to rhyolitic flows and pyroclastic rocks. Alluvial fan, fluvial...with large volumes of groundwater. Three of the cartridges additionally protected by glass fiber filters (Acrodisc AP-4523; Pall GmbH, Dreieich, GE

  16. Integrated Framework for Assessing Impacts of CO₂ Leakage on Groundwater Quality and Monitoring-Network Efficiency: Case Study at a CO₂ Enhanced Oil Recovery Site.

    Science.gov (United States)

    Yang, Changbing; Hovorka, Susan D; Treviño, Ramón H; Delgado-Alonso, Jesus

    2015-07-21

    This study presents a combined use of site characterization, laboratory experiments, single-well push-pull tests (PPTs), and reactive transport modeling to assess potential impacts of CO2 leakage on groundwater quality and leakage-detection ability of a groundwater monitoring network (GMN) in a potable aquifer at a CO2 enhanced oil recovery (CO2 EOR) site. Site characterization indicates that failures of plugged and abandoned wells are possible CO2 leakage pathways. Groundwater chemistry in the shallow aquifer is dominated mainly by silicate mineral weathering, and no CO2 leakage signals have been detected in the shallow aquifer. Results of the laboratory experiments and the field test show no obvious damage to groundwater chemistry should CO2 leakage occur and further were confirmed with a regional-scale reactive transport model (RSRTM) that was built upon the batch experiments and validated with the single-well PPT. Results of the RSRTM indicate that dissolved CO2 as an indicator for CO2 leakage detection works better than dissolved inorganic carbon, pH, and alkalinity at the CO2 EOR site. The detection ability of a GMN was assessed with monitoring efficiency, depending on various factors, including the natural hydraulic gradient, the leakage rate, the number of monitoring wells, the aquifer heterogeneity, and the time for a CO2 plume traveling to the monitoring well.

  17. Ground-Water Protection and Monitoring Program

    International Nuclear Information System (INIS)

    Dresel, P.E.

    1995-01-01

    This section of the 1994 Hanford Site Environmental Report summarizes the ground-water protection and monitoring program strategy for the Hanford Site in 1994. Two of the key elements of this strategy are to (1) protect the unconfined aquifer from further contamination, and (2) conduct a monitoring program to provide early warning when contamination of ground water does occur. The monitoring program at Hanford is designed to document the distribution and movement of existing ground-water contamination and provides a historical baseline for evaluating current and future risk from exposure to the contamination and for deciding on remedial action options

  18. Ground-Water Protection and Monitoring Program

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P.E.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the ground-water protection and monitoring program strategy for the Hanford Site in 1994. Two of the key elements of this strategy are to (1) protect the unconfined aquifer from further contamination, and (2) conduct a monitoring program to provide early warning when contamination of ground water does occur. The monitoring program at Hanford is designed to document the distribution and movement of existing ground-water contamination and provides a historical baseline for evaluating current and future risk from exposure to the contamination and for deciding on remedial action options.

  19. The Savannah River Site's Groundwater Monitoring Program First Quarter 2000 (January through March 2000)

    Energy Technology Data Exchange (ETDEWEB)

    Dukes, M.

    2000-11-16

    This report summarizes the Groundwater Monitoring Program conducted by SRS during first quarter 2000. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program's activities; and serves as an official record of the analytical results.

  20. The Savannah River Site's Groundwater Monitoring Program Third Quarter 2000 (July through September 2000)

    Energy Technology Data Exchange (ETDEWEB)

    Dukes, M.D.

    2001-05-02

    This report summarizes the Groundwater Monitoring Program conducted by SRS during third quarter 2000. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program's activities; and serves as an official record of the analytical results.

  1. The Savannah River Site's Groundwater Monitoring Program Second Quarter 2000 (April through June 2000)

    Energy Technology Data Exchange (ETDEWEB)

    Dukes, M.D.

    2001-04-17

    This report summarizes the Groundwater Monitoring Program conducted by SRS during second quarter 2000. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program's activities; and serves as an official record of the analytical results.

  2. Monitoring probe for groundwater flow

    Science.gov (United States)

    Looney, B.B.; Ballard, S.

    1994-08-23

    A monitoring probe for detecting groundwater migration is disclosed. The monitor features a cylinder made of a permeable membrane carrying an array of electrical conductivity sensors on its outer surface. The cylinder is filled with a fluid that has a conductivity different than the groundwater. The probe is placed in the ground at an area of interest to be monitored. The fluid, typically saltwater, diffuses through the permeable membrane into the groundwater. The flow of groundwater passing around the permeable membrane walls of the cylinder carries the conductive fluid in the same general direction and distorts the conductivity field measured by the sensors. The degree of distortion from top to bottom and around the probe is precisely related to the vertical and horizontal flow rates, respectively. The electrical conductivities measured by the sensors about the outer surface of the probe are analyzed to determine the rate and direction of the groundwater flow. 4 figs.

  3. 100-N pilot project: Proposed consolidated groundwater monitoring program

    International Nuclear Information System (INIS)

    Borghese, J.V.; Hartman, M.J.; Lutrell, S.P.; Perkins, C.J.; Zoric, J.P.; Tindall, S.C.

    1996-11-01

    This report presents a proposed consolidated groundwater monitoring program for the 100-N Pilot Project. This program is the result of a cooperative effort between the Hanford Site contractors who monitor the groundwater beneath the 100-N Area. The consolidation of the groundwater monitoring programs is being proposed to minimize the cost, time, and effort necessary for groundwater monitoring in the 100-N Area, and to coordinate regulatory compliance activities. The integrity of the subprograms requirements remained intact during the consolidation effort. The purpose of this report is to present the proposed consolidated groundwater monitoring program and to summarize the process by which it was determined

  4. Ground-water monitoring compliance projects for Hanford Site Facilities: Progress report for the period April 1--June 30, 1988: Volume 1, Text

    International Nuclear Information System (INIS)

    1988-09-01

    This is Volume 1 of a two-volume set of documents that describes the progress of 10 Hanford Site ground-water monitoring projects for the period April 1 to June 30, 1988. This volume discusses the projects; Volume 2 provides as-built diagrams, drilling logs, and geophysical logs for wells drilled during this period in the 100-N Area and near the 216-A-36B Crib

  5. Current Status of Groundwater Monitoring Networks in Korea

    OpenAIRE

    Jin-Yong Lee; Kideok D. Kwon

    2016-01-01

    Korea has been operating groundwater monitoring systems since 1996 as the Groundwater Act enacted in 1994 enforces nationwide monitoring. Currently, there are six main groundwater monitoring networks operated by different government ministries with different purposes: National Groundwater Monitoring Network (NGMN), Groundwater Quality Monitoring Network (GQMN), Seawater Intrusion Monitoring Network (SIMN), Rural Groundwater Monitoring Network (RGMN), Subsidiary Groundwater Monitoring Network ...

  6. Innovative Methods for Integrating Knowledge for Long-Term Monitoring of Contaminated Groundwater Sites: Understanding Microorganism Communities and their Associated Hydrochemical Environment

    Science.gov (United States)

    Mouser, P. J.; Rizzo, D. M.; Druschel, G.; O'Grady, P.; Stevens, L.

    2005-12-01

    This interdisciplinary study integrates hydrochemical and genome-based data to estimate the redox processes occurring at long-term monitoring sites. Groundwater samples have been collected from a well-characterized landfill-leachate contaminated aquifer in northeastern New York. Primers from the 16S rDNA gene were used to amplify Bacteria and Archaea in groundwater taken from monitoring wells located in clean, fringe, and contaminated locations within the aquifer. PCR-amplified rDNA were digested with restriction enzymes to evaluate terminal restriction fragment length polymorphism (T-RFLP) community profiles. The rDNA was cloned, sequenced, and partial sequences were matched against known organisms using the NCBI Blast database. Phylogenetic trees and bootstrapping were used to identify classifications of organisms and compare the communities from clean, fringe, and contaminated locations. We used Artificial Neural Network (ANN) models to incorporate microbial data with hydrochemical information for improving our understanding of subsurface processes.

  7. Relations between precipitation, groundwater withdrawals, and changes in hydrologic conditions at selected monitoring sites in Volusia County, Florida, 1995--2010

    Science.gov (United States)

    Murray, Louis C.

    2012-01-01

    A study to examine the influences of climatic and anthropogenic stressors on groundwater levels, lake stages, and surface-water discharge at selected sites in northern Volusia County, Florida, was conducted in 2009 by the U.S. Geological Survey. Water-level data collected at 20 monitoring sites (17 groundwater and 3 lake sites) in the vicinity of a wetland area were analyzed with multiple linear regression to examine the relative influences of precipitation and groundwater withdrawals on changes in groundwater levels and lake stage. Analyses were conducted across varying periods of record between 1995 and 2010 and included the effects of groundwater withdrawals aggregated from municipal water-supply wells located within 12 miles of the project sites. Surface-water discharge data at the U.S. Geological Survey Tiger Bay canal site were analyzed for changes in flow between 1978 and 2001. As expected, water-level changes in monitoring wells located closer to areas of concentrated groundwater withdrawals were more highly correlated with withdrawals than were water-level changes measured in wells further removed from municipal well fields. Similarly, water-level changes in wells tapping the Upper Floridan aquifer, the source of municipal supply, were more highly correlated with groundwater withdrawals than were water-level changes in wells tapping the shallower surficial aquifer system. Water-level changes predicted by the regression models over precipitation-averaged periods of record were underestimated for observations having large positive monthly changes (generally greater than 1.0 foot). Such observations are associated with high precipitation and were identified as points in the regression analyses that produced large standardized residuals and/or observations of high influence. Thus, regression models produced by multiple linear regression analyses may have better predictive capability in wetland environments when applied to periods of average or below average

  8. Hanford Site ground-water surveillance for 1989

    International Nuclear Information System (INIS)

    Evans, J.C.; Bryce, R.W.; Bates, D.J.; Kemner, M.L.

    1990-06-01

    This annual report of ground-water surveillance activities provides discussions and listings of results for ground-water monitoring at the Hanford Site during 1989. The Pacific Northwest Laboratory (PNL) assesses the impacts of Hanford operations on the environment for the US Department of Energy (DOE). The impact Hanford operations has on ground water is evaluated through the Hanford Site Ground-Water Surveillance program. Five hundred and sixty-seven wells were sampled during 1989 for Hanford ground-water monitoring activities. This report contains a listing of analytical results for calendar year (CY) 1989 for species of importance as potential contaminants. 30 refs., 29 figs,. 4 tabs

  9. Groundwater pollution: Are we monitoring appropriate parameters ...

    African Journals Online (AJOL)

    Groundwater pollution is a worldwide phenomenon with potentially disastrous consequences. Prevention of pollution is the ideal approach. However, in practice groundwater quality monitoring is the main tool for timely detection of pollutants and protection of groundwater resources. Monitoring groundwater quality is a ...

  10. Continuous Groundwater Monitoring Collocated at USGS Streamgages

    Science.gov (United States)

    Constantz, J. E.; Eddy-Miller, C.; Caldwell, R.; Wheeer, J.; Barlow, J.

    2012-12-01

    USGS Office of Groundwater funded a 2-year pilot study collocating groundwater wells for monitoring water level and temperature at several existing continuous streamgages in Montana and Wyoming, while U.S. Army Corps of Engineers funded enhancement to streamgages in Mississippi. To increase spatial relevance with in a given watershed, study sites were selected where near-stream groundwater was in connection with an appreciable aquifer, and where logistics and cost of well installations were considered representative. After each well installation and surveying, groundwater level and temperature were easily either radio-transmitted or hardwired to existing data acquisition system located in streamgaging shelter. Since USGS field personnel regularly visit streamgages during routine streamflow measurements and streamgage maintenance, the close proximity of observation wells resulted in minimum extra time to verify electronically transmitted measurements. After field protocol was tuned, stream and nearby groundwater information were concurrently acquired at streamgages and transmitted to satellite from seven pilot-study sites extending over nearly 2,000 miles (3,200 km) of the central US from October 2009 until October 2011, for evaluating the scientific and engineering add-on value of the enhanced streamgage design. Examination of the four-parameter transmission from the seven pilot study groundwater gaging stations reveals an internally consistent, dynamic data suite of continuous groundwater elevation and temperature in tandem with ongoing stream stage and temperature data. Qualitatively, the graphical information provides appreciation of seasonal trends in stream exchanges with shallow groundwater, as well as thermal issues of concern for topics ranging from ice hazards to suitability of fish refusia, while quantitatively this information provides a means for estimating flux exchanges through the streambed via heat-based inverse-type groundwater modeling. In June

  11. RCRA groundwater data analysis protocol for the Hanford Site, Washington

    International Nuclear Information System (INIS)

    Chou, C.J.; Jackson, R.L.

    1992-04-01

    The Resource Conservation and Recovery Act of 1976 (RCRA) groundwater monitoring program currently involves site-specific monitoring of 20 facilities on the Hanford Site in southeastern Washington. The RCRA groundwater monitoring program has collected abundant data on groundwater quality. These data are used to assess the impact of a facility on groundwater quality or whether remediation efforts under RCRA corrective action programs are effective. Both evaluations rely on statistical analysis of groundwater monitoring data. The need for information on groundwater quality by regulators and environmental managers makes statistical analysis of monitoring data an important part of RCRA groundwater monitoring programs. The complexity of groundwater monitoring programs and variabilities (spatial, temporal, and analytical) exhibited in groundwater quality variables indicate the need for a data analysis protocol to guide statistical analysis. A data analysis protocol was developed from the perspective of addressing regulatory requirements, data quality, and management information needs. This data analysis protocol contains four elements: data handling methods; graphical evaluation techniques; statistical tests for trend, central tendency, and excursion analysis; and reporting procedures for presenting results to users

  12. Quarterly RCRA Groundwater Monitoring Data for the Period April Through June 2006

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Mary J.

    2006-11-01

    This report provides information about RCRA groundwater monitoring for the period April through June 2006. Seventeen RCRA sites were sampled during the reporting quarter. Sampled sites include seven monitored under groundwater indicator evaluation (''detection'') programs, eight monitored under groundwater quality assessment programs, and two monitored under final-status programs.

  13. Groundwater monitoring for deep-well injection

    International Nuclear Information System (INIS)

    Chia, Y.; Chiu, J.

    1994-01-01

    A groundwater monitoring system for detecting waste migration would not only enhance confidence in the long-term containment of injected waste, but would also provide early warnings of contamination for prompt responses to protect underground sources of drinking water (USDWs). Field experiences in Florida have demonstrated monitoring water quality and fluid pressure changes in overlying formations is useful in detecting the upward migration of injected waste. Analytical and numerical solutions indicate changes in these two monitoring parameters can vary on the basis of hydrogeologic characteristics, operation conditions, and the distances from the injection well to the monitoring wells and to the preferential hydrologic conduits. To detect waste migration through defects around the wellbore or the leaky containment interval, groundwater monitoring wells should be placed as close as possible to an injection well. In the vertical direction, a monitoring well completed in a permeable interbed within the containment interval is expected to have the highest potential for detecting upward migration. Another acceptable horizon for groundwater monitoring is the lower portion of the buffer brine aquifer immediately above the containment interval. Monitoring wells in USDWs may be needed when waste has been detected in deeper formations or when leakage out of well casings poses a concern. A monitoring well open to the injection interval is of little value in alleviating the concerns of long-term upward migration. Moreover, the installation of the well could create additional preferential pathways. Complications in groundwater monitoring may arise at existing injection sites, especially with prior releases. It is also important to recognize that monitoring in the vicinity of the wellbore may not be effective for detecting waste migration through unidentified unplugged wells or undetected transmissive fractures

  14. Integrated Monitoring Plan for the Hanford Groundwater Monitoring Project

    International Nuclear Information System (INIS)

    Hartman, Mary J.; Dresel, P. Evan; Lindberg, Jon W.; Newcomer, Darrell R.; Thornton, Edward C.

    2000-01-01

    Groundwater is monitored at the Hanford Site to fulfill a variety of state and federal regulations, including the Atomic Energy Act of 1954; the Resource Conservation and Recovery Act of 1976; the Comprehensive Environmental Response, Compensation, and Liability Act of 1980; and Washington Administrative Code. Separate monitoring plans are prepared for various requirements, but sampling is coordinated and data are shared among users to avoid duplication of effort. The U.S. Department of Energy manages these activities through the Hanford Groundwater Monitoring Project. This document is an integrated monitoring plan for the groundwater project. It documents well and constituent lists for monitoring required by the Atomic Energy Act of 1954 and its implementing orders; includes other, established monitoring plans by reference; and appends a master well/constituent/ frequency matrix for the entire site. The objectives of monitoring fall into three general categories: plume and trend tracking, treatment/ storage/disposal unit monitoring, and remediation performance monitoring. Criteria for selecting Atomic Energy Act of 1954 monitoring networks include locations of wells in relation to known plumes or contaminant sources, well depth and construction, historical data, proximity to the Columbia River, water supplies, or other areas of special interest, and well use for other programs. Constituent lists were chosen based on known plumes and waste histories, historical groundwater data, and, in some cases, statistical modeling. Sampling frequencies were based on regulatory requirements, variability of historical data, and proximity to key areas. For sitewide plumes, most wells are sampled every 3 years. Wells monitoring specific waste sites or in areas of high variability will be sampled more frequently

  15. Integrated Monitoring Plan for the Hanford Groundwater Monitoring Project

    International Nuclear Information System (INIS)

    Newcomer, D.R.; Thornton, E.C.; Hartman, M.J.; Dresel, P.E.

    1999-01-01

    Groundwater is monitored at the Hanford Site to fulfill a variety of state and federal regulations, including the Atomic Energy Act of 1954 the Resource Conservation and Recovery Act of 1976 the Comprehensive Environmental Response, Compensation, and Liability Act of 1980; and Washington Administrative Code. Separate monitoring plans are prepared for various requirements, but sampling is coordinated and data are shared among users to avoid duplication of effort. The US Department of Energy manages these activities through the Hanford Groundwater Monitoring Project. This document is an integrated monitoring plan for the groundwater project. It documents well and constituent lists for monitoring required by the Atomic Energy Act of 1954 and its implementing orders; includes other, established monitoring plans by reference; and appends a master well/constituent/frequency matrix for the entire site. The objectives of monitoring fall into three general categories plume and trend tracking, treatment/storage/disposal unit monitoring, and remediation performance monitoring. Criteria for selecting Atomic Energy Act of 1954 monitoring networks include locations of wells in relation to known plumes or contaminant sources, well depth and construction, historical data, proximity to the Columbia River, water supplies, or other areas of special interest, and well use for other programs. Constituent lists were chosen based on known plumes and waste histories, historical groundwater data, and, in some cases, statistical modeling. Sampling frequencies were based on regulatory requirements, variability of historical data, and proximity to key areas. For sitewide plumes, most wells are sampled every 3 years. Wells monitoring specific waste sites or in areas of high variability will be sampled more frequently

  16. Developing A National Groundwater-Monitoring Network In Korea

    Science.gov (United States)

    Kim, N. J.; Cho, M. J.; Woo, N. C.

    1995-04-01

    Since the 1960's, the groundwater resources of Korea have been developed without a proper regulatory system for monitoring and preservation, resulting in significant source depletion, land subsidence, water contamination, and sea-water intrusion. With the activation of the "Groundwater Law" in June 1994, the government initiated a project to develop a groundwater-monitoring network to describe general groundwater quality, to define its long-term changes, and to identify major factors affecting changes in groundwater quality and yield. In selecting monitoring locations nationwide, criteria considered are 1) spatial distribution, 2) aquifer characteristics of hydrogeologic units, 3) local groundwater flow regime, 4) linkage with surface hydrology observations, 5) site accessibility, and 6) financial situations. A total of 310 sites in 78 small hydrologic basins were selected to compose the monitoring network. Installation of monitoring wells is scheduled to start in 1995 for 15 sites; the remainder are scheduled to be completed by 2001. At each site, a nest of monitoring wells was designed; shallow and deep groundwater will be monitored for water temperature, pH, EC, DO and TDS every month. Water-level fluctuations will also be measured by automatic recorders equipped with pressure transducers. As a next step, the government plans to develop a groundwater-database management system, which could be linked with surface hydrologic data.

  17. Technology Transfer Opportunities: Automated Ground-Water Monitoring

    Science.gov (United States)

    Smith, Kirk P.; Granato, Gregory E.

    1997-01-01

    Introduction A new automated ground-water monitoring system developed by the U.S. Geological Survey (USGS) measures and records values of selected water-quality properties and constituents using protocols approved for manual sampling. Prototypes using the automated process have demonstrated the ability to increase the quantity and quality of data collected and have shown the potential for reducing labor and material costs for ground-water quality data collection. Automation of water-quality monitoring systems in the field, in laboratories, and in industry have increased data density and utility while reducing operating costs. Uses for an automated ground-water monitoring system include, (but are not limited to) monitoring ground-water quality for research, monitoring known or potential contaminant sites, such as near landfills, underground storage tanks, or other facilities where potential contaminants are stored, and as an early warning system monitoring groundwater quality near public water-supply wells.

  18. LLNL Livermore site Groundwater Surveillance Plan

    International Nuclear Information System (INIS)

    1992-04-01

    Department of Energy (DOE) Order 5400.1 establishes environ-mental protection program requirements, authorities, and responsibilities for DOE operations to assume compliance with federal, state, and local environmental protection laws and regulations; Federal Executive Orders; and internal DOE policies. ne DOE Order contains requirements and guidance for environmental monitoring programs, the objectives of which are to demonstrate compliance with legal and regulatory requirements imposed by federal, state, and local agencies; confirm adherence to DOE environmental protection polices; and support environmental management decisions. The environmental monitoring programs consist of two major activities: (1) measurement and monitoring of effluents from DOE operations, and (2) surveillance through measurement, monitoring, and calculation of the effects of those operations on the environment and public health. The latter concern, that of assessing the effects, if any, of Lawrence Livermore National Laboratory (LLNL) operations and activities on on-site and off-site surface waters and groundwaters is addressed by an Environmental Surveillance Program being developed by LLNL. The Groundwater Surveillance Plan presented here has been developed on a sitespecific basis, taking into consideration facility characteristics, applicable regulations, hazard potential, quantities and concentrations of materials released, the extent and use of local water resources, and specific local public interest and concerns

  19. Groundwater pollution: are we monitoring appropriate parameters?

    CSIR Research Space (South Africa)

    Tredoux, G

    2004-01-01

    Full Text Available Groundwater pollution is a worldwide phenomenon with potentially disastrous consequences. Prevention of pollution is the ideal approach. However, in practice groundwater quality monitoring is the main tool for timely detection of pollutants...

  20. Groundwater detection monitoring system design under conditions of uncertainty

    NARCIS (Netherlands)

    Yenigül, N.B.

    2006-01-01

    Landfills represent a wide-spread and significant threat to groundwater quality. In this thesis a methodology was developed for the design of optimal groundwater moni-toring system design at landfill sites under conditions of uncertainty. First a decision analysis approach was presented for optimal

  1. Evaluation of a multiport groundwater monitoring system

    International Nuclear Information System (INIS)

    Gilmore, T.J.; Hall, S.H.; Olsen, K.B.; Spane, F.A. Jr.

    1991-03-01

    In 1988 and 1989, Pacific Northwest Laboratory installed a multiport groundwater monitoring system in two wells on the Hanford Site: one near the 216-B-3 Pond in the center of the Hanford Site and one just north of the 300 Area near the Columbia River. The system was installed to provide the US Department of Energy with needed three-dimensional data on the vertical distribution of contaminants and hydraulic heads on the Hanford Site. This study evaluates the ability of the multiport system to obtain hydrogeologic data at multiple points vertically in a single borehole, and addresses the representativeness of the data. Data collected from the two wells indicate that the multiport system is well suited for groundwater monitoring networks requiring three-dimensional characterization of the hydrogeologic system. A network of these systems could provide valuable information on the hydrogeologic environment. However, the advantages of the multiport system diminish when the system is applied to long-term monitoring networks (30+ years) and to deeper wells (<300 ft). For shallow wells, the multiport system provides data in a cost-effective manner that would not be reasonably obtainable with the conventional methods currently in use at the Hanford Site. 17 refs., 28 figs., 6 tabs

  2. 1998 Comprehensive TNX Area Annual Groundwater and Effectiveness Monitoring Report

    Energy Technology Data Exchange (ETDEWEB)

    Chase, J.

    1999-06-02

    Shallow groundwater beneath the TNX Area at the Savannah River Site has been contaminated with chlorinated volatile organic compounds such as trichloroethylene and carbon tetrachloride. The Interim Action T-1 Air Stripper System began operation on September 16, 1996. A comprehensive groundwater monitoring program was initiated to measure the effectiveness of the system. The Interim Action is meeting its objectives and is capable of continuing to do so until the final groundwater remedial action is in place.

  3. Ocean Disposal Site Monitoring

    Science.gov (United States)

    EPA is responsible for managing all designated ocean disposal sites. Surveys are conducted to identify appropriate locations for ocean disposal sites and to monitor the impacts of regulated dumping at the disposal sites.

  4. Interim Sanitary Landfill Groundwater Monitoring Report. 1997 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    Eight wells of the LFW series monitor groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Interim Sanitary Landfill at the Savannah River Site (SRS). These wells are sampled semiannually to comply with the South Carolina Department of Health and Environmental Control Modified Municipal Solid Waste Permit 025500-1120 (formerly dWP-087A) and as part of the SRS Groundwater Monitoring Program.

  5. H-Area Seepage Basins groundwater monitoring report

    International Nuclear Information System (INIS)

    Thompson, C.Y.

    1992-06-01

    During first quarter 1992, tritium, nitrate, nonvolatile beta, total alpha-emitting radium (radium-224 and radium-226), gross alpha, antimony, mercury, lead, tetrachloroethylene, arsenic, and cadmium exceeded the US Environmental Protection Agency Primary Drinking Water Standards (PDWS) in groundwater samples from monitoring wells at the H-Area Seepage Basins (HASB) at the Savannah River Site. This report presents and discusses the groundwater monitoring results in the H-Area for first quarter 1992

  6. Burn site groundwater interim measures work plan.

    Energy Technology Data Exchange (ETDEWEB)

    Witt, Jonathan L. (North Wind, Inc., Idaho Falls, ID); Hall, Kevin A. (North Wind, Inc., Idaho Falls, ID)

    2005-05-01

    This Work Plan identifies and outlines interim measures to address nitrate contamination in groundwater at the Burn Site, Sandia National Laboratories/New Mexico. The New Mexico Environment Department has required implementation of interim measures for nitrate-contaminated groundwater at the Burn Site. The purpose of interim measures is to prevent human or environmental exposure to nitrate-contaminated groundwater originating from the Burn Site. This Work Plan details a summary of current information about the Burn Site, interim measures activities for stabilization, and project management responsibilities to accomplish this purpose.

  7. Groundwater monitoring plan for the 300 Area process trenches

    Energy Technology Data Exchange (ETDEWEB)

    Lindberg, J.W.; Chou, C.J.; Johnson, V.G.

    1995-05-23

    This document describes the groundwater monitoring program for the Hanford Site 300 Area Process Trenches (300 APT). The 300 APT are a Resource Conservation and Recovery Act of 1976 (RCRA) regulated unit. The 300 APT are included in the Dangerous Waste Portion of the Resource Conservation and Recovery Act Permit for the Treatment, Storage, and Disposal of Dangerous Waste, Permit No. WA890008967, and are subject to final-status requirements for groundwater monitoring. This document describes a compliance monitoring program for groundwater in the uppermost aquifer system at the 300 APT. This plan describes the 300 APT monitoring network, constituent list, sampling schedule, statistical methods, and sampling and analysis protocols that will be employed for the 300 APT. This plan will be used to meet groundwater monitoring requirements from the time the 300 APT becomes part of the Permit and through the postclosure care period until certification of final closure.

  8. Hanford Site Groundwater Protection Management Program: Revision 1

    International Nuclear Information System (INIS)

    1993-11-01

    Groundwater protection is a national priority that is promulgated in a variety of environmental regulations at local, state, and federal levels. To effectively coordinate and ensure compliance with applicable regulations, the US Department of Energy has issued DOE Order 5400.1 (now under revision) that requires all US Department of Energy facilities to prepare separate groundwater protection program descriptions and plans. This document describes the Groundwater Protection Management Program for the Hanford Site located in the state of Washington. DOE Order 5400.1 specifies that the Groundwater Protection Management Program cover the following general topical areas: (1) documentation of the groundwater regime, (2) design and implementation of a groundwater monitoring program to support resource management and comply with applicable laws and regulations, (3) a management program for groundwater protection and remediation, (4) a summary and identification of areas that may be contaminated with hazardous waste, (5) strategies for controlling these sources, (6) a remedial action program, and (7) decontamination and decommissioning and related remedial action requirements. Many of the above elements are covered by existing programs at the Hanford Site; thus, one of the primary purposes of this document is to provide a framework for coordination of existing groundwater protection activities. Additionally, it describes how information needs are identified and can be incorporated into existing or proposed new programs. The Groundwater Protection Management Program provides the general scope, philosophy, and strategies for groundwater protection/management at the Hanford Site. Subtier documents provide the detailed plans for implementing groundwater-related activities and programs. Related schedule and budget information are provided in the 5-year plan for environmental restoration and waste management at the Hanford Site

  9. Evaluation of Using Caged Clams to Monitor Contaminated Groundwater Exposure in the Near-Shore Environment of the Hanford Site 300 Area

    Energy Technology Data Exchange (ETDEWEB)

    Larson, Kyle B.; Poston, Ted M.; Tiller, Brett L.

    2008-01-31

    The Asiatic clam (Corbicula fluminea) has been identified as an indicator species for locating and monitoring contaminated groundwater in the Columbia River. Pacific Northwest National Laboratory conducted a field study to explore the use of caged Asiatic clams to monitor contaminated groundwater upwelling in the 300 Area near-shore environment and assess seasonal differences in uranium uptake in relation to seasonal flow regimes of the Columbia River. Additional objectives included examining the potential effects of uranium accumulation on growth, survival, and tissue condition of the clams. This report documents the field conditions and procedures, laboratory procedures, and statistical analyses used in collecting samples and processing the data. Detailed results are presented and illustrated, followed by a discussion comparing uranium concentrations in Asiatic clams collected at the 300 Area and describing the relationship between river discharge, groundwater indicators, and uranium in clams. Growth and survival, histology, and other sources of environmental variation also are discussed.

  10. Work plan for monitor well/groundwater elevation data recorder installation at the Cheney Disposal site, Grand Junction, Colorado

    International Nuclear Information System (INIS)

    1994-09-01

    In May 1990, during the excavation for the Grand Junction, Colorado, Cheney Reservoir disposal cell (Cheney), a water bearing paleochannel was encountered along the northern boundary of the excavation (designated the Northwest Paleochannel). To ensure the long-term integrity of the disposal embankment, remedial actions were taken including the excavation of the paleochannel and underlying material to bedrock, backfilling of the trapezoidal trench with granular material, and placement of a geotextile liner above the granular material. Compacted clay backfill was placed above the reconstructed paleochannel trench, and the northwest corner was restored to the designated grade. Investigation of other paleochannels determined that ground water flow terminated before it migrated as far west as the disposal cell. Therefore, flow in these paleochannels would have no impact on the disposal cell. Although characterization efforts did not indicate the presence of a ground water-bearing paleochannel south of the disposal cell, the potential could not be ruled out. As a best management practice for long-term monitoring at Cheney, two monitor wells will be installed within the paleochannels. One well will be installed within 50 feet (ft) west of the reconstructed Northwest Paleochannel. The second well will be installed near the southwestern (downgradient) corner of the disposal cell. The purposes of these wells are to characterize ground water flow (if any) within the paleochannels and to monitor the potential for water movement (seepage) into or out of the disposal cell. Initial monitoring of the paleochannels will consist of water level elevation measurement collection and trend analysis to evaluate fluctuations in storage. The purpose of this document is to describe the work that will be performed and the procedures that will be followed during installation of two ground water monitor wells and two ground water elevation data recorders (data loggers) at Cheney

  11. Long-term ground-water monitoring program and performance-evaluation plan for the extraction system at the former Nike Missile Battery Site, Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Senus, Michael P.; Tenbus, Frederick J.

    2000-01-01

    This report presents lithologic and ground-water-quality data collected during April and May 2000 in the remote areas of the tidal wetland of West Branch Canal Creek, Aberdeen Proving Ground, Maryland. Contamination of the Canal Creek aquifer with volatile organic compounds has been documented in previous investigations of the area. This study was conducted to investigate areas that were previously inaccessible because of deep mud and shallow water, and to support ongoing investigations of the fate and transport of volatile organic compounds in the Canal Creek aquifer. A unique vibracore drill rig mounted on a hovercraft was used for drilling and ground-water sampling. Continuous cores of the wetland sediment and of the Canal Creek aquifer were collected at five sites. Attempts to sample ground water were made by use of a continuous profiler at 12 sites, without well installation, at a total of 81 depths within the aquifer. Of those 81 attempts, only 34 sampling depths produced enough water to collect samples. Ground-water samples from two sites had the highest concentrations of volatile organic compounds?with total volatile organic compound concentrations in the upper part of the aquifer ranging from about 15,000 to 50,000 micrograms per liter. Ground-water samples from five sites had much lower total volatile organic compound concentrations (95 to 2,100 micrograms per liter), whereas two sites were essentially not contaminated, with total volatile organic compound concentrations less than or equal to 5 micrograms per liter.

  12. 1997 Comprehensive TNX Area Annual Groundwater and Effectiveness Monitoring Report

    International Nuclear Information System (INIS)

    Chase, J.

    1998-04-01

    Shallow groundwater beneath the TNX Area at the Savannah River Site (SRS) has been contaminated with chlorinated volatile organic compounds (CVOCs) such as trichloroethylene (TCE) and carbon tetrachloride. In November 1994, an Interim Record of Decision (IROD) was agreed to and signed by the U. S. Department of Energy (DOE), the Environmental Protection Agency (EPA), and the South Carolina Department of Health ampersand Environmental Control (SCDHEC). The Interim Record of Decision requires the installation of a hybrid groundwater corrective action (HGCA) to stabilize the plume of groundwater contamination and remove CVOCs dissolved in the groundwater. The hybrid groundwater corrective action included a recovery well network, purge water management facility, air stripper, and an airlift recirculation well. The recirculation well was dropped pursuant to a test that indicated it to be ineffective at the TNX Area. Consequently, the groundwater corrective action was changed from a hybrid to a single action, pump-and-treat approach. The Interim Action (IA) T-1 air stripper system began operation on September 16, 1996. a comprehensive groundwater monitoring program was initiated to measure the effectiveness of the system. As of December 31, 1997, the system has treated 32 million gallons of contaminated groundwater removed 32 pounds of TCE. The recovery well network created a 'capture zone' that stabilized the plume of contaminated groundwater

  13. 1997 Comprehensive TNX Area Annual Groundwater and Effectiveness Monitoring Report

    Energy Technology Data Exchange (ETDEWEB)

    Chase, J.

    1998-04-01

    Shallow groundwater beneath the TNX Area at the Savannah River Site (SRS) has been contaminated with chlorinated volatile organic compounds (CVOCs) such as trichloroethylene (TCE) and carbon tetrachloride. In November 1994, an Interim Record of Decision (IROD) was agreed to and signed by the U. S. Department of Energy (DOE), the Environmental Protection Agency (EPA), and the South Carolina Department of Health {ampersand} Environmental Control (SCDHEC). The Interim Record of Decision requires the installation of a hybrid groundwater corrective action (HGCA) to stabilize the plume of groundwater contamination and remove CVOCs dissolved in the groundwater. The hybrid groundwater corrective action included a recovery well network, purge water management facility, air stripper, and an airlift recirculation well. The recirculation well was dropped pursuant to a test that indicated it to be ineffective at the TNX Area. Consequently, the groundwater corrective action was changed from a hybrid to a single action, pump-and-treat approach. The Interim Action (IA) T-1 air stripper system began operation on September 16, 1996. a comprehensive groundwater monitoring program was initiated to measure the effectiveness of the system. As of December 31, 1997, the system has treated 32 million gallons of contaminated groundwater removed 32 pounds of TCE. The recovery well network created a `capture zone` that stabilized the plume of contaminated groundwater.

  14. Fiscal Year 2005 Integrated Monitoring Plan for the Hanford Groundwater Performance Assessment Project

    International Nuclear Information System (INIS)

    Rieger, JoAnne T.; Hartman, Mary J.

    2005-01-01

    Groundwater is monitored in hundreds of wells at the Hanford Site to fulfill a variety of requirements. Separate monitoring plans are prepared for various purposes, but sampling is coordinated and data are shared among users. DOE manages these activities through the Hanford Groundwater Performance Assessment Project, which is the responsibility of Pacific Northwest National Laboratory. The groundwater project integrates monitoring for various objectives into a single sampling schedule to avoid redundancy of effort and to improve efficiency of sample collection.This report documents the purposes and objectives of groundwater monitoring at the DOE Hanford Site in southeastern Washington State

  15. Groundwater Monitoring and Engineered Geothermal Systems: The Newberry EGS Demonstration

    Science.gov (United States)

    Grasso, K.; Cladouhos, T. T.; Garrison, G.

    2013-12-01

    Engineered Geothermal Systems (EGS) represent the next generation of geothermal energy development. Stimulation of multiple zones within a single geothermal reservoir could significantly reduce the cost of geothermal energy production. Newberry Volcano in central Oregon represents an ideal location for EGS research and development. As such, the goals of the Newberry EGS Demonstration, operated by AltaRock Energy, Inc., include stimulation of a multiple-zone EGS reservoir, testing of single-well tracers and a demonstration of EGS reservoir viability through flow-back and circulation tests. A shallow, local aquifer supplied the approximately 41,630 m3 (11 million gals) of water used during stimulation of NWG 55-29, a deep geothermal well on the western flank of Newberry Volcano. Protection of the local aquifer is of primary importance to both the Newberry EGS Demonstration and the public. As part of the Demonstration, AltaRock Energy, Inc. has developed and implemented a groundwater monitoring plan to characterize the geochemistry of the local aquifer before, during and after stimulation. Background geochemical conditions were established prior to stimulation of NWG 55-29, which was completed in 2012. Nine sites were chosen for groundwater monitoring. These include the water supply well used during stimulation of NWG 55-29, three monitoring wells, three domestic water wells and two hot seeps located in the Newberry Caldera. Together, these nine monitoring sites represent up-, down- and cross-gradient locations. Groundwater samples are analyzed for 25 chemical constituents, stable isotopes, and geothermal tracers used during stimulation. In addition, water level data is collected at three monitoring sites in order to better characterize the effects of stimulation on the shallow aquifer. To date, no significant geochemical changes and no geothermal tracers have been detected in groundwater samples from these monitoring sites. The Newberry EGS Demonstration groundwater

  16. Quarterly report of RCRA groundwater monitoring data for period April 1, 1993 through June 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Jungers, D.K.

    1993-10-01

    Hanford Site interim-status groundwater monitoring projects are conducted as either background, indicator parameter evaluation, or groundwater quality assessment monitoring programs. This report contains data from Hanford Site groundwater monitoring projects. Westinghouse Hanford Company (WHC) manages the RCRA groundwater monitoring projects for federal facilities on the Hanford Site. Project management, specifying data needs, performing quality control (QC) oversight, managing data, and preparing project sampling schedules are all parts of this responsibility. Pacific Northwest Laboratory (PNL) administers the contract for analytical services and provides groundwater sampling services to WHC for the RCRA groundwater monitoring program. This quarterly report contains data received between May 24 and August 20, 1993, which are the cutoff dates for this reporting period. This report may contain not only data from samples collected during the April through June quarter but also data from earlier sampling events that were not previously reported.

  17. Groundwater Monitoring Plan for the Solid Waste Landfill

    International Nuclear Information System (INIS)

    Lindberg, J.W.; Chou, C.J.

    2000-01-01

    The Solid Waste Landfill (SWL) is regulated by the Washington State Department of Ecology under WAC 173-304. Between 1973 and 1976, the landfill received primarily paper waste and construction debris, but it also received asbestos, sewage, and catch tank liquid waste. Groundwater monitoring results indicate the SWL has contaminated groundwater with volatile organic compounds and possibly metals at levels that exceed regulatory limits. DynCorp, Tri-Cities, Inc. operates the facility under an interim closure plan (final closure plan will be released shortly). Pacific Northwest National Laboratory (PNNL) monitors groundwater at the site. This monitoring plan includes well and constituent lists, and summarizes sampling, analytical, and quality control requirements. Changes from the previous monitoring plan include elimination of two radionuclides from the analyte list and some minor changes in the statistical analysis. Existing wells in the current monitoring network only monitor the uppermost portion of the upper-most aquifer. Therefore, two new downgradient wells and one existing upgradient well are proposed to determine whether groundwater waste constituents have reached the lower portion of the uppermost aquifer. The proposed well network includes three upgradient wells and ten downgradient wells. The wells will be sampled quarterly for 14 analytes required by WAC 173-304-490 plus volatile organic compounds and filtered arsenic as site-specific analytes

  18. Groundwater Monitoring Plan for the Solid Waste Landfill

    Energy Technology Data Exchange (ETDEWEB)

    JW Lindberg; CJ Chou

    2000-12-14

    The Solid Waste Landfill (SWL) is regulated by the Washington State Department of Ecology under WAC 173-304. Between 1973 and 1976, the landfill received primarily paper waste and construction debris, but it also received asbestos, sewage, and catch tank liquid waste. Groundwater monitoring results indicate the SWL has contaminated groundwater with volatile organic compounds and possibly metals at levels that exceed regulatory limits. DynCorp, Tri-Cities, Inc. operates the facility under an interim closure plan (final closure plan will be released shortly). Pacific Northwest National Laboratory (PNNL) monitors groundwater at the site. This monitoring plan includes well and constituent lists, and summarizes sampling, analytical, and quality control requirements. Changes from the previous monitoring plan include elimination of two radionuclides from the analyte list and some minor changes in the statistical analysis. Existing wells in the current monitoring network only monitor the uppermost portion of the upper-most aquifer. Therefore, two new downgradient wells and one existing upgradient well are proposed to determine whether groundwater waste constituents have reached the lower portion of the uppermost aquifer. The proposed well network includes three upgradient wells and ten downgradient wells. The wells will be sampled quarterly for 14 analytes required by WAC 173-304-490 plus volatile organic compounds and filtered arsenic as site-specific analytes.

  19. Compliance Groundwater Monitoring of Nonpoint Sources - Emerging Approaches

    Science.gov (United States)

    Harter, T.

    2008-12-01

    Groundwater monitoring networks are typically designed for regulatory compliance of discharges from industrial sites. There, the quality of first encountered (shallow-most) groundwater is of key importance. Network design criteria have been developed for purposes of determining whether an actual or potential, permitted or incidental waste discharge has had or will have a degrading effect on groundwater quality. The fundamental underlying paradigm is that such discharge (if it occurs) will form a distinct contamination plume. Networks that guide (post-contamination) mitigation efforts are designed to capture the shape and dynamics of existing, finite-scale plumes. In general, these networks extend over areas less than one to ten hectare. In recent years, regulatory programs such as the EU Nitrate Directive and the U.S. Clean Water Act have forced regulatory agencies to also control groundwater contamination from non-incidental, recharging, non-point sources, particularly agricultural sources (fertilizer, pesticides, animal waste application, biosolids application). Sources and contamination from these sources can stretch over several tens, hundreds, or even thousands of square kilometers with no distinct plumes. A key question in implementing monitoring programs at the local, regional, and national level is, whether groundwater monitoring can be effectively used as a landowner compliance tool, as is currently done at point-source sites. We compare the efficiency of such traditional site-specific compliance networks in nonpoint source regulation with various designs of regional nonpoint source monitoring networks that could be used for compliance monitoring. We discuss advantages and disadvantages of the site vs. regional monitoring approaches with respect to effectively protecting groundwater resources impacted by nonpoint sources: Site-networks provide a tool to enforce compliance by an individual landowner. But the nonpoint source character of the contamination

  20. Forsmark site investigation. Hydrochemical monitoring of groundwaters and surface waters. Results from water sampling in the Forsmark area, January-December 2009

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Ann-Chatrin (ed.); Berg, Cecilia; Harrstroem, Johan; Joensson, Stig; Thur, Pernilla (Geosigma AB (Sweden)); Borgiel, Micke; Qvarfordt, Susanne (Sveriges Vattenekologer AB (Sweden))

    2010-09-15

    The fifth year (2009) of hydrochemical monitoring of groundwaters, surface waters and precipitation in Forsmark is documented in the report. The hydrochemical monitoring programme 2009 included water sampling from: - percussion- and core boreholes equipped with installations for long-term pressure monitoring, tracer tests and water sampling in packed off borehole sections, sampling and analysis performed twice (spring and autumn), - near surface groundwaters (sampling four times a year), - private wells (once per year in October), - surface waters (eleven sampling occasions per year). Due to the somewhat different performance of the hydrogeochemical monitoring of the deep groundwaters during the autumn 2009 compared to previous years, some new findings and knowledge were obtained: 1) Removal of water volumes corresponding to three to five times the volume of the borehole section (the routine procedure) is seldom enough to obtain a complete exchange of the water present in the borehole section when the pumping starts. 2) It is likely that the elevated sulphide concentrations observed in the monitoring programme /1/ is due to contamination from initial water present in the borehole sections when the pumping starts. This water may have a very high sulphide concentration. Dirty water in tubes and in stand pipes may also contribute to the enhanced sulphide concentration. 3) Plug flow calculations will be introduced in the future as a new routine procedure to estimate the water volumes to be removed, in order to exchange the section water volume, prior to groundwater sampling in delimited borehole sections. During the autumn sampling, sample series of five samples per sampling location were collected during continuous pumping in thirteen selected borehole sections. Furthermore, special efforts were put on cleaning of stand pipes and exchange of water prior to sampling. The analytical protocol was rather extensive and included sulphide and uranium analyses for each sample

  1. Forsmark site investigation. Hydrochemical monitoring of groundwaters and surface waters. Results from water sampling in the Forsmark area, January-December 2009

    International Nuclear Information System (INIS)

    Nilsson, Ann-Chatrin; Borgiel, Micke; Qvarfordt, Susanne

    2010-09-01

    The fifth year (2009) of hydrochemical monitoring of groundwaters, surface waters and precipitation in Forsmark is documented in the report. The hydrochemical monitoring programme 2009 included water sampling from: - percussion- and core boreholes equipped with installations for long-term pressure monitoring, tracer tests and water sampling in packed off borehole sections, sampling and analysis performed twice (spring and autumn), - near surface groundwaters (sampling four times a year), - private wells (once per year in October), - surface waters (eleven sampling occasions per year). Due to the somewhat different performance of the hydrogeochemical monitoring of the deep groundwaters during the autumn 2009 compared to previous years, some new findings and knowledge were obtained: 1) Removal of water volumes corresponding to three to five times the volume of the borehole section (the routine procedure) is seldom enough to obtain a complete exchange of the water present in the borehole section when the pumping starts. 2) It is likely that the elevated sulphide concentrations observed in the monitoring programme /1/ is due to contamination from initial water present in the borehole sections when the pumping starts. This water may have a very high sulphide concentration. Dirty water in tubes and in stand pipes may also contribute to the enhanced sulphide concentration. 3) Plug flow calculations will be introduced in the future as a new routine procedure to estimate the water volumes to be removed, in order to exchange the section water volume, prior to groundwater sampling in delimited borehole sections. During the autumn sampling, sample series of five samples per sampling location were collected during continuous pumping in thirteen selected borehole sections. Furthermore, special efforts were put on cleaning of stand pipes and exchange of water prior to sampling. The analytical protocol was rather extensive and included sulphide and uranium analyses for each sample

  2. Groundwater monitoring of hydraulic fracturing in California: Recommendations for permit-required monitoring

    Science.gov (United States)

    Esser, B. K.; Beller, H. R.; Carroll, S.; Cherry, J. A.; Jackson, R. B.; Jordan, P. D.; Madrid, V.; Morris, J.; Parker, B. L.; Stringfellow, W. T.; Varadharajan, C.; Vengosh, A.

    2015-12-01

    California recently passed legislation mandating dedicated groundwater quality monitoring for new well stimulation operations. The authors provided the State with expert advice on the design of such monitoring networks. Factors that must be considered in designing a new and unique groundwater monitoring program include: Program design: The design of a monitoring program is contingent on its purpose, which can range from detection of individual well leakage to demonstration of regional impact. The regulatory goals for permit-required monitoring conducted by operators on a well-by-well basis will differ from the scientific goals of a regional monitoring program conducted by the State. Vulnerability assessment: Identifying factors that increase the probability of transport of fluids from the hydrocarbon target zone to a protected groundwater zone enables the intensity of permit-required monitoring to be tiered by risk and also enables prioritization of regional monitoring of groundwater basins based on vulnerability. Risk factors include well integrity; proximity to existing wellbores and geologic features; wastewater disposal; vertical separation between the hydrocarbon and groundwater zones; and site-specific hydrogeology. Analyte choice: The choice of chemical analytes in a regulatory monitoring program is guided by the goals of detecting impact, assuring public safety, preventing resource degradation, and minimizing cost. Balancing these goals may be best served by tiered approach in which targeted analysis of specific chemical additives is triggered by significant changes in relevant but more easily analyzed constituents. Such an approach requires characterization of baseline conditions, especially in areas with long histories of oil and gas development. Monitoring technology: Monitoring a deep subsurface process or a long wellbore is more challenging than monitoring a surface industrial source. The requirement for monitoring multiple groundwater aquifers across

  3. Groundwater remediation at the Hanford site

    International Nuclear Information System (INIS)

    Fries, W.

    1993-01-01

    Ion exchange resin and adsorption technology has been used successfully to treat diversified types of toxic waste water for many years. Even though the Hanford Site presents many unique problems, the author believes these technologies can remediate the groundwater at this site. However, treatment of the sludge in tanks generally is beyond the pale of these technologies except for the possibility of experimental studies being performed at the University of Idaho (Troescher)

  4. Groundwater monitoring plan: 200 Areas treated effluent disposal facility (Project W-049H)

    International Nuclear Information System (INIS)

    Barnett, D.B.; Davis, J.D.; Collard, L.B.; Freeman, P.B.; Chou, C.J.

    1995-04-01

    This groundwater monitoring plan provides information that supports the US Department of Energy's application (DOE-RL 1994) for waste water discharge permit No. WA-ST-4502 from the State of Washington, under the auspices of Washington Administrative Code 173-216. The monitoring plan has two functions: (1) to summarize the results of a 3-yr characterization of the current hydrogeology and groundwater quality of the discharge site and (2) to provide plans for evaluating the effects of the facility's operation on groundwater quality and document compliance with applicable groundwater quality standards. Three wells were drilled to define the stratigraphy, evaluate sediment characteristics, and establish a groundwater monitoring net work for the discharge facility. These wells monitor groundwater quality upgradient and downgradient in the uppermost aquifer. This report proposes plans for continuing the monitoring of groundwater quality and aquifer characteristics after waste water discharges begin

  5. SR-Site - sulphide content in the groundwater at Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Tullborg, E-L (Terralogica (Sweden)); Smellie, J (Conterra (Sweden)); Nilsson, A-Ch (Geosigma (Sweden)); Gimeno, M J; Auque, LF (Univ. of Zaragoza (Spain)); Bruchert, V (Stockholms Universitet (Sweden)); Molinero, J (Amphos21 (Spain))

    2010-12-15

    Sulphide concentrations in groundwater play a key role in the long-term reliability of the metal canisters containing the radioactive waste within a disposal facility for nuclear waste. This is because sulphide in the groundwaters circulating in the vicinity of the deposition tunnels can react with copper in the canisters causing corrosion and therefore reducing their expected lifetime; in a worst case scenario erosion of the bentonite buffer material will expose the canister more rapidly to the fracture groundwater.Sulphide in the groundwater is predominantly microbially produced and thereby controlled by the content of oxidised sulphur sources, organics (carbon sources), reductants (mainly Fe(II), DOC, H{sub 2} and CH{sub 4}), and also flow and mixing of different groundwater types. In addition, achieved saturation in respect to amorphous Fe-monosulphide will control the possible maximum values and will also limit the Fe2+ and S2- values in the groundwater. The aim of this report is to assess realistic, representative and reliable sulphide groundwater concentrations at present conditions in Forsmark and also to evaluate possible changes during different climatic conditions covering the repository operation period (some tens to hundreds of years), post closure conditions (some thousand of years) and the proceeding temperate period (some tens of thousands of years) which may be extended due to enhanced greenhouse effects etc. It is expected that this period will be followed by the onset of the next glaciation during which periglacial (permafrost), glacial and postglacial conditions may succeed each other. To achieve these aims, an evaluation is performed of all the sulphide-related data reported from the Forsmark site investigations /Laaksoharju et al. 2008/ and later monitoring campaigns, all of which are stored in the Sicada database. This evaluation shows that values from the Complete Chemical Characterisation (CCC) sampling are usually lower than those measured

  6. SR-Site - sulphide content in the groundwater at Forsmark

    International Nuclear Information System (INIS)

    Tullborg, E-L; Smellie, J; Nilsson, A-Ch; Gimeno, M J; Auque, LF; Bruchert, V; Molinero, J

    2010-12-01

    Sulphide concentrations in groundwater play a key role in the long-term reliability of the metal canisters containing the radioactive waste within a disposal facility for nuclear waste. This is because sulphide in the groundwaters circulating in the vicinity of the deposition tunnels can react with copper in the canisters causing corrosion and therefore reducing their expected lifetime; in a worst case scenario erosion of the bentonite buffer material will expose the canister more rapidly to the fracture groundwater.Sulphide in the groundwater is predominantly microbially produced and thereby controlled by the content of oxidised sulphur sources, organics (carbon sources), reductants (mainly Fe(II), DOC, H 2 and CH 4 ), and also flow and mixing of different groundwater types. In addition, achieved saturation in respect to amorphous Fe-monosulphide will control the possible maximum values and will also limit the Fe 2+ and S 2- values in the groundwater. The aim of this report is to assess realistic, representative and reliable sulphide groundwater concentrations at present conditions in Forsmark and also to evaluate possible changes during different climatic conditions covering the repository operation period (some tens to hundreds of years), post closure conditions (some thousand of years) and the proceeding temperate period (some tens of thousands of years) which may be extended due to enhanced greenhouse effects etc. It is expected that this period will be followed by the onset of the next glaciation during which periglacial (permafrost), glacial and postglacial conditions may succeed each other. To achieve these aims, an evaluation is performed of all the sulphide-related data reported from the Forsmark site investigations /Laaksoharju et al. 2008/ and later monitoring campaigns, all of which are stored in the Sicada database. This evaluation shows that values from the Complete Chemical Characterisation (CCC) sampling are usually lower than those measured during

  7. Data Validation Package May 2016 Groundwater Sampling at the Bluewater, New Mexico, Disposal Site, September 2016

    International Nuclear Information System (INIS)

    Johnson, Dick; Tsosie, Bernadette

    2016-01-01

    Groundwater samples were collected from monitoring wells at the Bluewater, New Mexico, Disposal Site to monitor groundwater contaminants as specified in the 1997 Long-Term Surveillance Plan for the DOE Bluewater (UMTRCA Title II) Disposal Site Near Grants, New Mexico (LTSP). Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). A duplicate sample was collected from location 16(SG).

  8. Data Validation Package May 2016 Groundwater Sampling at the Bluewater, New Mexico, Disposal Site, September 2016

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Dick [Navarro Nevada Environmental Services (NNES), Las Vegas, NV (United States); Tsosie, Bernadette [US Department of Energy, Washington, DC (United States)

    2016-09-01

    Groundwater samples were collected from monitoring wells at the Bluewater, New Mexico, Disposal Site to monitor groundwater contaminants as specified in the 1997 Long-Term Surveillance Plan for the DOE Bluewater (UMTRCA Title II) Disposal Site Near Grants, New Mexico (LTSP). Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). A duplicate sample was collected from location 16(SG).

  9. Ground-water monitoring under RCRA

    International Nuclear Information System (INIS)

    Coalgate, J.

    1993-11-01

    In developing a regulatory strategy for the disposal of hazardous waste under the Resource Conservation and Recovery Act (RCRA), protection of ground-water resources was the primary goal of the Environmental Protection Agency (EPA). EPA's ground-water protection strategy seeks to minimize the potential for hazardous wastes and hazardous constituents in waste placed in land disposel units to migrate into the environment. This is achieved through liquids management (limiting the placement of liquid wastes in or on the land, requiring the use of liners beneath waste, installing leachate collection systems and run-on and run-off controls, and covering wastes at closure). Ground-water monitoring serves to detect any failure in EPA's liquids management strategy so that ground-water contamination can be detected and addressed as soon as possible

  10. Site scale groundwater flow in Haestholmen

    Energy Technology Data Exchange (ETDEWEB)

    Loefman, J. [VTT Energy, Espoo (Finland)

    1999-05-01

    Groundwater flow modelling on the site scale has been an essential part of site investigation work carried out at different locations since 1986. The objective of the modelling has been to provide results that characterise the groundwater flow conditions deep in the bedrock. The main result quantities can be used for evaluation of the investigation sites and of the preconditions for safe final disposal - of spent nuclear fuel. This study represents the groundwater flow modelling at Haestholmen, and it comprises the transient flow analysis taking into account the effects of density variations and the repository as well as the post-glacial land uplift. The analysis is performed by means of numerical finite element simulation of coupled and transient groundwater flow and solute transport carried out up to 10000 years into the future. This work provides also the results for the site-specific data needs for the block scale groundwater flow modelling at Haestholmen. Conceptually the fractured bedrock is divided into hydraulic units: the planar fracture zones and the remaining part of the bedrock. The equivalent-continuum (EC) model is applied so that each hydraulic unit is treated as a homogeneous and isotropic continuum with representative average characteristics. All the fracture zones are modelled explicitly and represented by two-dimensional finite elements. A site-specific simulation model for groundwater flow and solute transport is developed on the basis of the latest hydrogeological and hydrogeochemical field investigations at Haestholmen. The present topography together with a mathematical model describing the land uplift at the Haestholmen area are employed as a boundary condition at the surface of the model. The overall flow pattern is mostly controlled by the local variations in the topography and by the highly transmissive fracture zones. Near the surface the flow spreads out to offshore and to the lower areas of topography in all directions away from

  11. Site scale groundwater flow in Haestholmen

    International Nuclear Information System (INIS)

    Loefman, J.

    1999-05-01

    Groundwater flow modelling on the site scale has been an essential part of site investigation work carried out at different locations since 1986. The objective of the modelling has been to provide results that characterise the groundwater flow conditions deep in the bedrock. The main result quantities can be used for evaluation of the investigation sites and of the preconditions for safe final disposal - of spent nuclear fuel. This study represents the groundwater flow modelling at Haestholmen, and it comprises the transient flow analysis taking into account the effects of density variations and the repository as well as the post-glacial land uplift. The analysis is performed by means of numerical finite element simulation of coupled and transient groundwater flow and solute transport carried out up to 10000 years into the future. This work provides also the results for the site-specific data needs for the block scale groundwater flow modelling at Haestholmen. Conceptually the fractured bedrock is divided into hydraulic units: the planar fracture zones and the remaining part of the bedrock. The equivalent-continuum (EC) model is applied so that each hydraulic unit is treated as a homogeneous and isotropic continuum with representative average characteristics. All the fracture zones are modelled explicitly and represented by two-dimensional finite elements. A site-specific simulation model for groundwater flow and solute transport is developed on the basis of the latest hydrogeological and hydrogeochemical field investigations at Haestholmen. The present topography together with a mathematical model describing the land uplift at the Haestholmen area are employed as a boundary condition at the surface of the model. The overall flow pattern is mostly controlled by the local variations in the topography and by the highly transmissive fracture zones. Near the surface the flow spreads out to offshore and to the lower areas of topography in all directions away from

  12. Investigation of tritium in groundwater at Site 300

    International Nuclear Information System (INIS)

    Buddemeier, R.W.

    1985-01-01

    In 1984, landfill monitoring wells at Site 300, a Lawrence Livermore National Laboratory (LLNL) explosive test site, revealed the presence of groundwater contaminated with tritium. These tritium levels were in excess of the State of California drinking water standard. A major investigation was initiated that included a search of records concerning tritium use, disposal, and previous analyses, and a survey of tritium levels in soil, vegetation, and water in contaminated and potentially contaminated areas. Over 50 boreholes were drilled for this investigation to characterize the local hydrogeology and tritium distributions, and a network of soil moisture and groundwater monitoring points was installed. This report presents the work completed through the end of September 1985: the records search; records for drilling completed as part of this study; characterization of the geology, hydrology, and tritium distributions in the contaminated area; and an initial assessment of the probable tritium sources, pathways, and migration rates. 19 refs

  13. Investigation of tritium in groundwater at Site 300

    Energy Technology Data Exchange (ETDEWEB)

    Buddemeier, R.W.

    1985-12-30

    In 1984, landfill monitoring wells at Site 300, a Lawrence Livermore National Laboratory (LLNL) explosive test site, revealed the presence of groundwater contaminated with tritium. These tritium levels were in excess of the State of California drinking water standard. A major investigation was initiated that included a search of records concerning tritium use, disposal, and previous analyses, and a survey of tritium levels in soil, vegetation, and water in contaminated and potentially contaminated areas. Over 50 boreholes were drilled for this investigation to characterize the local hydrogeology and tritium distributions, and a network of soil moisture and groundwater monitoring points was installed. This report presents the work completed through the end of September 1985: the records search; records for drilling completed as part of this study; characterization of the geology, hydrology, and tritium distributions in the contaminated area; and an initial assessment of the probable tritium sources, pathways, and migration rates. 19 refs.

  14. Current Status of Groundwater Monitoring Networks in Korea

    Directory of Open Access Journals (Sweden)

    Jin-Yong Lee

    2016-04-01

    Full Text Available Korea has been operating groundwater monitoring systems since 1996 as the Groundwater Act enacted in 1994 enforces nationwide monitoring. Currently, there are six main groundwater monitoring networks operated by different government ministries with different purposes: National Groundwater Monitoring Network (NGMN, Groundwater Quality Monitoring Network (GQMN, Seawater Intrusion Monitoring Network (SIMN, Rural Groundwater Monitoring Network (RGMN, Subsidiary Groundwater Monitoring Network (SGMN, and Drinking Water Monitoring Network (DWMN. The Networks have a total of over 3500 monitoring wells and the majority of them are now equipped with automatic data loggers and remote terminal units. Most of the monitoring data are available to the public through internet websites. These Networks have provided scientific data for designing groundwater management plans and contributed to securing the groundwater resource particularly for recent prolonged drought seasons. Each Network, however, utilizes its own well-specifications, probes, and telecommunication protocols with minimal communication with other Networks, and thus duplicate installations of monitoring wells are not uncommon among different Networks. This mini-review introduces the current regulations and the Groundwater Monitoring Networks operated in Korea and provides some suggestions to improve the sustainability of the current groundwater monitoring system in Korea.

  15. Speciation, Mobility and Fate of Actinides in the Groundwater at the Hanford Site

    International Nuclear Information System (INIS)

    Buesseler, K.O.; Dai, M.; Repeta, D.; Wacker, J.F.; Kelley, J.M.

    2003-01-01

    Plutonium and other actinides represent important contaminants in the groundwater and vadose zone at Hanford and other DOE sites. The distribution and migration of these actinides in groundwater must be understood so that these sites can be carefully monitored and effectively cleaned up, thereby minimizing risks to the public. The objective of this project was to obtain field data on the chemical and physical forms of plutonium in groundwater at the Hanford site. We focused on the 100-k and 100-n areas near the Columbia River, where prior reactor operations and waste storage was in close proximity to the river. In particular, a unique set of technical approaches were combined to look at the details of Pu speciation in groundwater, as thus its chemical affinity for soil surfaces and solubility in groundwater, as these impact directly the migration rates off site and possible mitigation possibilities one might undertake to control, or at least better monitor these releases

  16. Protecting groundwater resources at biosolids recycling sites.

    Science.gov (United States)

    McFarland, Michael J; Kumarasamy, Karthik; Brobst, Robert B; Hais, Alan; Schmitz, Mark D

    2013-01-01

    In developing the national biosolids recycling rule (Title 40 of the Code of Federal Regulation Part 503 or Part 503), the USEPA conducted deterministic risk assessments whose results indicated that the probability of groundwater impairment associated with biosolids recycling was insignificant. Unfortunately, the computational capabilities available for performing risk assessments of pollutant fate and transport at that time were limited. Using recent advances in USEPA risk assessment methodology, the present study evaluates whether the current national biosolids pollutant limits remain protective of groundwater quality. To take advantage of new risk assessment approaches, a computer-based groundwater risk characterization screening tool (RCST) was developed using USEPA's Multimedia, Multi-pathway, Multi-receptor Exposure and Risk Assessment program. The RCST, which generates a noncarcinogenic human health risk estimate (i.e., hazard quotient [HQ] value), has the ability to conduct screening-level risk characterizations. The regulated heavy metals modeled in this study were As, Cd, Ni, Se, and Zn. Results from RCST application to biosolids recycling sites located in Yakima County, Washington, indicated that biosolids could be recycled at rates as high as 90 Mg ha, with no negative human health effects associated with groundwater consumption. Only under unrealistically high biosolids land application rates were public health risks characterized as significant (HQ ≥ 1.0). For example, by increasing the biosolids application rate and pollutant concentrations to 900 Mg ha and 10 times the regulatory limit, respectively, the HQ values varied from 1.4 (Zn) to 324.0 (Se). Since promulgation of Part 503, no verifiable cases of groundwater contamination by regulated biosolids pollutants have been reported. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  17. Site scale groundwater flow in Olkiluoto

    Energy Technology Data Exchange (ETDEWEB)

    Loefman, J. [VTT Energy, Espoo (Finland)

    1999-03-01

    Groundwater flow modelling on the site scale has been an essential part of site investigation work carried out at different locations since 1986. The objective of the modelling has been to provide results that characterise the groundwater flow conditions deep in the bedrock. The main result quantities can be used for evaluation of the investigation sites and of the preconditions for safe final disposal of spent nuclear fuel. This study represents the latest modelling effort at Olkiluoto (Finland), and it comprises the transient flow analysis taking into account the effects of density variations and the repository as well as the post-glacial land uplift. The analysis is performed by means of numerical finite element simulation of coupled and transient groundwater flow and solute transport carried out up to 10000 years into the future. This work provides also the results for the site-specific data needs for the block scale groundwater flow modelling at Olkiluoto. Conceptually the fractured bedrock is divided into hydraulic units: the planar fracture zones and the remaining part of the bedrock. The equivalent-continuum (EC) model is applied so that each hydraulic unit is treated as a homogeneous and isotropic continuum with representative average characteristics. All the fracture zones are modelled explicitly and represented by two-dimensional finite elements. A site-specific simulation model for groundwater flow and solute transport is developed on the basis of the latest hydrogeological and hydrogeochemical field investigations at Olkiluoto. The present groundwater table and topography together with a mathematical model describing the land uplift at the Olkiluoto area are employed as a boundary condition at the surface of the model. The overall flow pattern is mostly controlled by the local variations in the topography. Below the island of Olkiluoto the flow direction is mostly downwards, while near the shoreline and below the sea water flows horizontally and

  18. Site scale groundwater flow in Olkiluoto

    International Nuclear Information System (INIS)

    Loefman, J.

    1999-03-01

    Groundwater flow modelling on the site scale has been an essential part of site investigation work carried out at different locations since 1986. The objective of the modelling has been to provide results that characterise the groundwater flow conditions deep in the bedrock. The main result quantities can be used for evaluation of the investigation sites and of the preconditions for safe final disposal of spent nuclear fuel. This study represents the latest modelling effort at Olkiluoto (Finland), and it comprises the transient flow analysis taking into account the effects of density variations and the repository as well as the post-glacial land uplift. The analysis is performed by means of numerical finite element simulation of coupled and transient groundwater flow and solute transport carried out up to 10000 years into the future. This work provides also the results for the site-specific data needs for the block scale groundwater flow modelling at Olkiluoto. Conceptually the fractured bedrock is divided into hydraulic units: the planar fracture zones and the remaining part of the bedrock. The equivalent-continuum (EC) model is applied so that each hydraulic unit is treated as a homogeneous and isotropic continuum with representative average characteristics. All the fracture zones are modelled explicitly and represented by two-dimensional finite elements. A site-specific simulation model for groundwater flow and solute transport is developed on the basis of the latest hydrogeological and hydrogeochemical field investigations at Olkiluoto. The present groundwater table and topography together with a mathematical model describing the land uplift at the Olkiluoto area are employed as a boundary condition at the surface of the model. The overall flow pattern is mostly controlled by the local variations in the topography. Below the island of Olkiluoto the flow direction is mostly downwards, while near the shoreline and below the sea water flows horizontally and

  19. Groundwater hydrology study of the Ames Chemical Disposal Site

    International Nuclear Information System (INIS)

    Stickel, T.

    1996-01-01

    The Ames Laboratory Chemical Disposal Site is located in northwestern Ames, Iowa west of Squaw Creek. From 1957 to 1966, Ames Laboratory conducted research to develop processes to separate uranium and thorium from nuclear power fuel and to separate yttrium from neutron shielding sources. The wastes from these processes, which contained both hazardous and radiological components, were placed into nine burial pits. Metal drums, plywood boxes, and steel pails were used to store the wastes. Uranium was also burned on the ground surface of the site. Monitoring wells were placed around the waste burial pits. Groundwater testing in 1993 revealed elevated levels of Uranium 234, Uranium 238, beta and alpha radiation. The north side of the burial pit had elevated levels of volatile organic compounds. Samples in the East Ravine showed no volatile organics; however, they did contain elevated levels of radionuclides. These analytical results seem to indicate that the groundwater from the burial pit is flowing down hill and causing contamination in the East Ravine. Although there are many avenues for the contamination to spread, the focus of this project is to understand the hydrogeology of the East Ravine and to determine the path of groundwater flow down the East Ravine. The groundwater flow data along with other existing information will be used to assess the threat of chemical migration down the East Ravine and eventually off-site. The primary objectives of the project were as follows: define the geology of the East Ravine; conduct slug tests to determine the hydraulic conductivity of both oxidized and unoxidized till; develop a three-dimensional mathematical model using ModIME and MODFLOW to simulate groundwater flow in the East Ravine

  20. Quarterly RCRA Groundwater Monitoring Data for the Period July through September 2006

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Mary J.

    2007-02-01

    This report provides information about RCRA groundwater monitoring for the period July through September 2006. Eighteen Resource Conservation and Recovery Act (RCRA) sites were sampled during the reporting quarter.

  1. Groundwater monitoring at the waste isolation pilot plant

    International Nuclear Information System (INIS)

    Kehrman, R.; Broberg, K.; Tatro, G.; Richardson, R.; Dasczcyszak, W.

    1990-01-01

    This paper discusses the Groundwater Monitoring Program (GMP) being conducted at the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. The Regulatory and Environmental Programs (REP) section of the Environment, Safety and Health department (ES ampersand H) is responsible for conducting environmental monitoring at the WIPP. Groundwater monitoring is one of the ongoing environmental activities currently taking place. The REP section includes water-quality sampling and water-level monitoring. The WIPP Project is a research and development facility designed to demonstrate the safe disposal of defense-generated TRU and mixed waste in a geologic repository. The Salado Formation of Permian age serves as the repository medium. The Salado Formation consists of bedded salt and associated evaporites. The formation is 602 meters thick at the site area; the top surface is located at a subsurface depth of 262 meters (10). The repository lies at a subsurface depth of 655 meters. Water-quality sampling for physical, chemical, and radiological parameters has been an ongoing activity at the WIPP site for the past six years, and will continue through the life of the project. Data collected from this program to date, has been used by Sandia National Laboratories for site characterization and performance assessment work. The data has also been used to establish a baseline of preoperational radiological and nonradiological groundwater quality. Once the facility begins receiving waste, this baseline will be used to determine if the WIPP facility influences or alters groundwater quality over time. The water quality of a well is determined while the well is continuously pumped. Serial samples of the pumped water are collected and tested for pH, Eh, temperature, specific gravity, specific conductivity, alkalinity, chlorides, divalent cations, ferrous iron, and total iron. 13 refs., 4 figs., 1 tab

  2. SR-Site - sulphide content in the groundwater at Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Tullborg, E-L (Terralogica, Graabo (Sweden)); Smellie, J. (Conterra, Uppsala (Sweden)); Nilsson, A-Ch (Geosigma, Uppsala (Sweden)); Gimeno, M.J.; Auque, L.F. (Univ. of Zaragoza (Spain)); Wallin, B. (Geokema, Lidingoe (Sweden)); Bruechert, V. (Stockholm Univ. (Sweden)); Molinero, J. (Amphos21, Barcelona (Spain))

    2010-12-15

    Sulphide concentrations in groundwater play a key role in the long term reliability of the metal canisters containing the radioactive waste within a disposal facility for nuclear waste. This is because sulphide in the groundwaters circulating in the vicinity of the deposition tunnels can react with copper in the canisters causing corrosion and therefore reducing their expected lifetime; in a worst case scenario erosion of the bentonite buffer material will expose the canister more rapidly to the fracture groundwater. Sulphide in the groundwater is predominantly microbially produced and thereby controlled by the content of oxidised sulphur sources, organics (carbon sources), reductants (mainly Fe(II), DOC, H{sub 2} and CH{sub 4}), and also flow. In addition, achieved saturation in respect to amorphous Fe-monosulphide will control the possible maximum values and thus limit the Fe2+ and S2- values in the groundwater. The aim of this report is to assess realistic, representative and reliable sulphide groundwater concentrations at present conditions in Laxemar to be considered for use in (future) safety assessments. To achieve this, an evaluation is performed of all the sulphide related data reported from the Laxemar site investigations /Laaksoharju et al. 2009/ and later monitoring campaigns, all of which are stored in the Sicada database. This evaluation shows that values from the Complete Chemical Characterisation (CCC) (i.e. in situ sampling from one or more borehole sections using mobile equipment) are usually lower than those measured during the monitoring phase (i.e. in situ sampling from one borehole section using permanently installed equipment). An exception is borehole KLX01, where values generally lie within the same range as the monitoring samples. For most of the CCC and monitoring sections the last sample in the time series is suggested as representing the 'best possible' sulphide value. When both initial values from CCC (or samples taken with

  3. SR-Site - sulphide content in the groundwater at Laxemar

    International Nuclear Information System (INIS)

    Tullborg, E-L; Smellie, J.; Nilsson, A-Ch; Gimeno, M.J.; Auque, L.F.; Wallin, B.; Bruechert, V.; Molinero, J.

    2010-12-01

    Sulphide concentrations in groundwater play a key role in the long term reliability of the metal canisters containing the radioactive waste within a disposal facility for nuclear waste. This is because sulphide in the groundwaters circulating in the vicinity of the deposition tunnels can react with copper in the canisters causing corrosion and therefore reducing their expected lifetime; in a worst case scenario erosion of the bentonite buffer material will expose the canister more rapidly to the fracture groundwater. Sulphide in the groundwater is predominantly microbially produced and thereby controlled by the content of oxidised sulphur sources, organics (carbon sources), reductants (mainly Fe(II), DOC, H 2 and CH 4 ), and also flow. In addition, achieved saturation in respect to amorphous Fe-monosulphide will control the possible maximum values and thus limit the Fe 2+ and S 2- values in the groundwater. The aim of this report is to assess realistic, representative and reliable sulphide groundwater concentrations at present conditions in Laxemar to be considered for use in (future) safety assessments. To achieve this, an evaluation is performed of all the sulphide related data reported from the Laxemar site investigations /Laaksoharju et al. 2009/ and later monitoring campaigns, all of which are stored in the Sicada database. This evaluation shows that values from the Complete Chemical Characterisation (CCC) (i.e. in situ sampling from one or more borehole sections using mobile equipment) are usually lower than those measured during the monitoring phase (i.e. in situ sampling from one borehole section using permanently installed equipment). An exception is borehole KLX01, where values generally lie within the same range as the monitoring samples. For most of the CCC and monitoring sections the last sample in the time series is suggested as representing the 'best possible' sulphide value. When both initial values from CCC (or samples taken with the hydrotest

  4. Quarterly report of RCRA groundwater monitoring data for period October 1 through December 31, 1994

    International Nuclear Information System (INIS)

    1995-04-01

    Hanford Site interim-status groundwater monitoring projects are conducted as either background, indicator parameter evaluation, or groundwater quality assessment monitoring programs as defined in the Resource Conservation and Recovery Act of 1976 (RCRA); and open-quotes Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilitiesclose quotes (Title 40 Code of Federal Regulations [CFR] Part 265), as amended. Compliance with the 40 CFR 265 regulations is required by the Washington Administrative Code (WAC) 173-303. This report contains data from Hanford Site groundwater monitoring projects. The location of each facility is shown. Westinghouse Hanford Company (WHC) manages the RCRA groundwater monitoring projects for federal facilities on the Hanford Site. Performing project management, preparing groundwater monitoring plans, well network design and installation, specifying groundwater data needs, performing quality control (QC) oversight, data management, and preparing project sampling schedules are all parts of this responsibility. Pacific Northwest Laboratory (PNL) administers the contract for analytical services and provides groundwater sampling services to WHC for the RCRA groundwater monitoring program. This quarterly report contains data received between October and December 1994, which are the cutoff dates for this reporting period. This report may contain not only data from the October through December quarter, but also data from earlier sampling events that were not previously reported

  5. Baseline risk assessment of groundwater contamination at the Uranium Mill Tailings Site near Gunnison, Colorado

    International Nuclear Information System (INIS)

    1993-12-01

    This Baseline Risk Assessment of Groundwater Contamination at the Uranium Mill Tailings Site Near Gunnison, Colorado evaluates potential impacts to public health or the environment resulting from groundwater contamination at the former uranium mill processing site. The tailings and other contaminated material at this site are being placed in an off-site disposal cell by the US Department of Energy's (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating groundwater contamination. This is the second risk assessment of groundwater contamination at this site. The first risk assessment was performed primarily to evaluate existing domestic wells. This risk assessment evaluates the most contaminated monitor wells at the processing site. It will be used to assist in determining what remedial action is needed for contaminated groundwater at the site after the tailings are relocated. This risk assessment follows an approach outlined by the US Environmental Protection Agency (EPA). The first step is to evaluate groundwater data collected from monitor wells at the site. Evaluation of these data showed that the main contaminants in the groundwater are cadmium, cobalt, iron, manganese, sulfate, uranium, and some of the products of radioactive decay of uranium

  6. Baseline risk assessment of groundwater contamination at the Uranium Mill Tailings Site near Gunnison, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    This Baseline Risk Assessment of Groundwater Contamination at the Uranium Mill Tailings Site Near Gunnison, Colorado evaluates potential impacts to public health or the environment resulting from groundwater contamination at the former uranium mill processing site. The tailings and other contaminated material at this site are being placed in an off-site disposal cell by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating groundwater contamination. This is the second risk assessment of groundwater contamination at this site. The first risk assessment was performed primarily to evaluate existing domestic wells. This risk assessment evaluates the most contaminated monitor wells at the processing site. It will be used to assist in determining what remedial action is needed for contaminated groundwater at the site after the tailings are relocated. This risk assessment follows an approach outlined by the US Environmental Protection Agency (EPA). The first step is to evaluate groundwater data collected from monitor wells at the site. Evaluation of these data showed that the main contaminants in the groundwater are cadmium, cobalt, iron, manganese, sulfate, uranium, and some of the products of radioactive decay of uranium.

  7. Baseline risk assessment of groundwater contamination at the Uranium Mill Tailings Site near Gunnison, Colorado

    International Nuclear Information System (INIS)

    1994-04-01

    This report evaluates potential impacts to public health or the environment resulting from groundwater contamination at the former uranium mill processing site. The tailings and other contaminated material at this site are being placed in an off-site disposal cell by the US Department of Energy's (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating groundwater contamination. This is the second risk assessment of groundwater contamination at this site. The first risk assessment was performed primarily to evaluate existing domestic wells to determine the potential for immediate human health and environmental impacts. This risk assessment evaluates the most contaminated groundwater that flows beneath the processing site towards the Gunnison River. The monitor wells that have consistently shown the highest concentration of most contaminants are used in this risk assessment. This risk assessment will be used in conjunction with additional activities and documents to assist in determining what remedial action is needed for contaminated groundwater at the site after the tailings are relocated. This risk assessment follows an approach outlined by the US Environmental Protection Agency (EPA). The first step is to evaluate groundwater data collected from monitor wells at the site. Evaluation of these data showed that the main contaminants in the groundwater are cadmium, cobalt, iron, manganese, sulfate, uranium, and some of the products of radioactive decay of uranium

  8. Interpretation of stable isotope, denitrification, and groundwater age data for samples collected from Sandia National Laboratories /New Mexico (SNL/NM) Burn Site Groundwater Area of Concern

    Energy Technology Data Exchange (ETDEWEB)

    Madrid, V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Singleton, M. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Visser, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Esser, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-06-02

    This report combines and summarizes results for two groundwater-sampling events (October 2012 and October/November 2015) from the Sandia National Laboratories/New Mexico (SNL/NM) Burn Site Groundwater (BSG) Area of Concern (AOC) located in the Lurance Canyon Arroyo southeast of Albuquerque, NM in the Manzanita Mountains. The first phase of groundwater sampling occurred in October 2012 including samples from 19 wells at three separate sites that were analyzed by the Environmental Radiochemistry Laboratory at Lawrence Livermore National Laboratory as part of a nitrate Monitored Natural Attenuation (MNA) evaluation. The three sites (BSG, Technical Area-V, and Tijeras Arroyo) are shown on the regional hydrogeologic map and described in the Sandia Annual Groundwater Monitoring Report. The first phase of groundwater sampling included six monitoring wells at the Burn Site, eight monitoring wells at Technical Area-V, and five monitoring wells at Tijeras Arroyo. Each groundwater sample was analyzed using the two specialized analytical methods, age-dating and denitrification suites. In September 2015, a second phase of groundwater sampling took place at the Burn Site including 10 wells sampled and analyzed by the same two analytical suites. Five of the six wells sampled in 2012 were resampled in 2015. This report summarizes results from two sampling events in order to evaluate evidence for in situ denitrification, the average age of the groundwater, and the extent of recent recharge of the bedrock fracture system beneath the BSG AOC.

  9. Interpretation of stable isotope, denitrification, and groundwater age data for samples collected from Sandia National Laboratories /New Mexico (SNL/NM) Burn Site Groundwater Area of Concern

    International Nuclear Information System (INIS)

    Madrid, V.; Singleton, M. J.; Visser, A.; Esser, B.

    2016-01-01

    This report combines and summarizes results for two groundwater-sampling events (October 2012 and October/November 2015) from the Sandia National Laboratories/New Mexico (SNL/NM) Burn Site Groundwater (BSG) Area of Concern (AOC) located in the Lurance Canyon Arroyo southeast of Albuquerque, NM in the Manzanita Mountains. The first phase of groundwater sampling occurred in October 2012 including samples from 19 wells at three separate sites that were analyzed by the Environmental Radiochemistry Laboratory at Lawrence Livermore National Laboratory as part of a nitrate Monitored Natural Attenuation (MNA) evaluation. The three sites (BSG, Technical Area-V, and Tijeras Arroyo) are shown on the regional hydrogeologic map and described in the Sandia Annual Groundwater Monitoring Report. The first phase of groundwater sampling included six monitoring wells at the Burn Site, eight monitoring wells at Technical Area-V, and five monitoring wells at Tijeras Arroyo. Each groundwater sample was analyzed using the two specialized analytical methods, age-dating and denitrification suites. In September 2015, a second phase of groundwater sampling took place at the Burn Site including 10 wells sampled and analyzed by the same two analytical suites. Five of the six wells sampled in 2012 were resampled in 2015. This report summarizes results from two sampling events in order to evaluate evidence for in situ denitrification, the average age of the groundwater, and the extent of recent recharge of the bedrock fracture system beneath the BSG AOC.

  10. Groundwater well services site safety and health plan

    International Nuclear Information System (INIS)

    Tuttle, B.G.

    1996-08-01

    This Site Specific Health and Safety Plan covers well servicing in support of the Environmental Restoration Contractor Groundwater Project. Well servicing is an important part of environmental restoration activities supporting several pump and treat facilities and assisting in evaluation and servicing of various groundwater wells throughout the Hanford Site. Remediation of contaminated groundwater is a major part of the ERC project. Well services tasks help enhance groundwater extraction/injection as well as maintain groundwater wells for sampling and other hydrologic testing and information gathering

  11. Groundwater Monitoring Plan for the Nonradioactive Dangerous Waste Landfill

    International Nuclear Information System (INIS)

    Lindberg, J.S.; Hartman, M.J.

    1999-01-01

    The Nonradioactive Dangerous Waste Landfill (NRDWL), which received nonradioactive hazardous waste between 1975 and 1985, is located in the central Hanford Site (Figure 1.1) in southeastern Washington State. The Solid Waste Landfill, which is regulated and monitored separately, is adjacent to the NRDWL. The NRDWL is regulated under the Resource Conservation and Recovery Act of 1976 (RCRA) and monitored by Pacific Northwest National Laboratory. Monitoring is done under interim-status, indicator-evaluation requirements (WAC 173-303 and by reference, 40 CFR 265.92). The well network includes three upgradient wells (one shared with the Solid Waste Landfill) and six downgradient wells. The wells are sampled semiannually for contaminant indicator parameters and site-specific parameters and annually for groundwater quality parameters

  12. Simple chloride sensors for continuous groundwater monitoring

    DEFF Research Database (Denmark)

    Thorn, Paul; Mortensen, John

    2012-01-01

    The development of chloride sensors which can be used for continuous, on-line monitoring of groundwater could be very valuable in the management of our coastal water resources. However, sensor stability, drift, and durability all need to be addressed in order for the sensors to be used in continu......The development of chloride sensors which can be used for continuous, on-line monitoring of groundwater could be very valuable in the management of our coastal water resources. However, sensor stability, drift, and durability all need to be addressed in order for the sensors to be used...... in continuous application. This study looks at the development of a simple, inexpensive chloride electrode, and evaluates its performance under continuous use, both in the laboratory and in a field test in a monitoring well. The results from the study showed a consistent response to changing chloride...... concentrations over longer periods. The signal was seen to be stable, with regular drift in both laboratory and field test. In the field application, the sensor signal was corrected for drift, and errors were observed to be under 7% of that of conductivity measurements. The study also found that the chloride...

  13. Transfer of European Approach to Groundwater Monitoring in China

    Science.gov (United States)

    Zhou, Y.

    2007-12-01

    Major groundwater development in North China has been a key factor in the huge economic growth and the achievement of self sufficiency in food production. Groundwater accounts for more than 70 percent of urban water supply and provides important source of irrigation water during dry period. This has however caused continuous groundwater level decline and many associated problems: hundreds of thousands of dry wells, dry river beds, land subsidence, seawater intrusion and groundwater quality deterioration. Groundwater levels in the shallow unconfined aquifers have fallen 10m up to 50m, at an average rate of 1m/year. In the deep confined aquifers groundwater levels have commonly fallen 30m up to 90m, at an average rate of 3 to 5m/year. Furthermore, elevated nitrate concentrations have been found in shallow groundwater in large scale. Pesticides have been detected in vulnerable aquifers. Urgent actions are necessary for aquifer recovery and mitigating groundwater pollution. Groundwater quantity and quality monitoring plays a very important role in formulating cost-effective groundwater protection strategies. In 2000 European Union initiated a Water Framework Directive (2000/60/EC) to protect all waters in Europe. The objective is to achieve good water and ecological status by 2015 cross all member states. The Directive requires monitoring surface and groundwater in all river basins. A guidance document for monitoring was developed and published in 2003. Groundwater monitoring programs are distinguished into groundwater level monitoring and groundwater quality monitoring. Groundwater quality monitoring is further divided into surveillance monitoring and operational monitoring. The monitoring guidance specifies key principles for the design and operation of monitoring networks. A Sino-Dutch cooperation project was developed to transfer European approach to groundwater monitoring in China. The project aims at building a China Groundwater Information Centre. Case studies

  14. F-Area Seepage Basins groundwater monitoring report

    International Nuclear Information System (INIS)

    1992-06-01

    This progress report from the Savannah River Plant for first quarter 1992 includes discussion on the following topics: description of facilities; hydrostratigraphic units; monitoring well nomenclature; integrity of the monitoring well network; groundwater monitoring data; analytical results exceeding standards; tritium, nitrate, and pH time-trend data; water levels; groundwater flow rates and directions; upgradient versus downgradient results

  15. F-Area Seepage Basins groundwater monitoring report

    International Nuclear Information System (INIS)

    1992-09-01

    This progress report from the Savannah River Plant for second quarter 1992 includes discussion on the following topics: description of facilities; hydrostratigraphic units; monitoring well nomenclature; integrity of the monitoring well network; groundwater monitoring data; analytical results exceeding standards; tritium, nitrate, and pH time-trend data; water levels; groundwater flow rates and directions; upgradient versus downgradient results

  16. Groundwater monitoring systems and groundwater quality in the administrative district of Detmold (North Rhine-Westphalia)

    International Nuclear Information System (INIS)

    Grabau, J.

    1994-01-01

    Two groundwater monitoring systems for areas of different dimensions in the administrative district of Detmold are introduced. Firstly, the monitoring of groundwater and untreated water by the Water Conservation and Waste Disposal Authority (Amt fuer Wasser- und Abfallwirtschaft) in Minden and secondly, the monitoring of groundwater and drinking water by the Water Resources Board (Wasserschutzamt) in Bielefeld. Different approaches and methods are required for the description of groundwater quality on a regional and a local basis, respectively, i.e. for the monitoring of a whole region and the monitoring of parts of such a region. The properties of groundwater in areas of different dimensions are analysed and described by means of an extensive database and with the help of (geo)statistical methods of analysis. Existing hydrochemical data have only limited value as evidence of groundwater properties in the dimensional units ''region'' and ''small investigation area''. They often do not meet the requirements of correct mathematical statistical methods. (orig.)

  17. Calendar Year 1999 Groundwater Monitoring Report for the Groundwater Protection Program, U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    2000-01-01

    This report contains the calendar year (CY) 1999 groundwater and surface water quality monitoring data that were obtained at the US Department of Energy (DOE) Y-12 Plant in Oak Ridge, Tennessee, in accordance with the applicable requirements of DOE Order 5400.1. Groundwater and surface water quality monitoring for the purposes of DOE Order 5400.1, as defined in the Environmental Monitoring Plan for the Oak Ridge Reservation (DOE 1996), includes site surveillance monitoring and exit pathway/perimeter monitoring. Site surveillance monitoring is intended to provide data regarding groundwater/surface water quality in areas that are, or could be, affected by operations at the Y-12 Plant. Exit pathway/perimeter monitoring is intended to provide data regarding groundwater and surface water quality where contaminants from the Y-12 Plant are most likely to migrate beyond the boundaries of the DOE Oak Ridge Reservation (ORR)

  18. Experiences of Mass Pig Carcass Disposal Related to Groundwater Quality Monitoring in Taiwan

    Directory of Open Access Journals (Sweden)

    Zeng-Yei Hseu

    2016-12-01

    Full Text Available The pig industry is the most crucial animal industry in Taiwan; 10.7 million pigs were reared for consumption in 1996. A foot and mouth disease (FMD epidemic broke out on 19 March 1997, and 3,850,536 pigs were culled before July in the same year. The major disposal method of pig carcasses from the FMD outbreak was burial, followed by burning and incineration. To investigate groundwater quality, environmental monitoring of burial sites was performed from October 1997 to June 1999; groundwater monitoring of 90–777 wells in 20 prefectures was performed wo to six times in 1998. Taiwanese governmental agencies analyzed 3723 groundwater samples using a budget of US $1.5 million. The total bacterial count, fecal coliform, Salmonella spp., nitrite-N, nitrate-N, ammonium-N, sulfate, non-purgeable organic carbon, total oil, and total dissolved solid were recognized as indicators of groundwater contamination resulting from pig carcass burial. Groundwater at the burial sites was considered to be contaminated on the basis of the aforementioned indicators, particularly groundwater at burial sites without an impermeable cloth and those located at a relatively short distance from the monitoring well. The burial sites selected during outbreaks in Taiwan should have a low surrounding population, be away from water preservation areas, and undergo regular monitoring of groundwater quality.

  19. ALTERNATIVE REMEDIATION TECHNOLOGY STUDY FOR GROUNDWATER TREATMENT AT 200-PO-1 OPERABLE UNIT AT HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    DADO MA

    2008-07-31

    This study focuses on the remediation methods and technologies applicable for use at 200-PO-I Groundwater Operable Unit (OU) at the Hanford Site. The 200-PO-I Groundwater au requires groundwater remediation because of the existence of contaminants of potential concern (COPC). A screening was conducted on alternative technologies and methods of remediation to determine which show the most potential for remediation of groundwater contaminants. The possible technologies were screened to determine which would be suggested for further study and which were not applicable for groundwater remediation. COPCs determined by the Hanford Site groundwater monitoring were grouped into categories based on properties linking them by remediation methods applicable to each COPC group. The screening considered the following criteria. (1) Determine if the suggested method or technology can be used for the specific contaminants found in groundwater and if the technology can be applied at the 200-PO-I Groundwater au, based on physical characteristics such as geology and depth to groundwater. (2) Evaluate screened technologies based on testing and development stages, effectiveness, implementability, cost, and time. This report documents the results of an intern research project conducted by Mathew Dado for Central Plateau Remediation in the Soil and Groundwater Remediation Project. The study was conducted under the technical supervision of Gloria Cummins and management supervision of Theresa Bergman and Becky Austin.

  20. Monitoring and modelling terbuthylazine and desethyl-terbuthylazine in groundwater.

    Science.gov (United States)

    Fait, G.; Balderacchi, M.; Ferrari, F.; Capri, E.; Trevisan, M.

    2009-04-01

    Protection of ground and surface water quality is critical to human health and environmental quality, as well as economic viability. The presence of contaminants in groundwater is a common phenomenon and derives from many anthropogenic activities. Among these activities most likely to pollute water resources are the use of fertilizers, pesticides, application of livestock, poultry manure, and urban sludge. Therefore, agriculture results to be a significant contributor to diffuse and point sources of groundwater contamination. A study was carried out from April 2005 until December 2007 in order to monitor the concentrations of the herbicide terbuthylazine and one of its metabolite, desethyl-terbuthylazine in shallow groundwater. Terbuthylazine is a widely used herbicide for pre-emergence and post-emergence weed control in several crops. The monitoring study was performed in different Italian areas representative of maize crop. These areas resulted to be in the north of Italy, in the Po Valley area. Inside these representative areas a total of eleven farms were identified; each farm had a plot extended for about 10 hectares, cultivated with maize according to normal agricultural practices, with slope not exceeding 5%, uniform direction of groundwater flow, absence of superficial water bodies. In order to sample groundwater, each plot was equipped with four couples of piezometers. Groundwater samplings were carried out every two months. The results showed that the concentrations of both compounds were in general low, except in a couple of sites, and especially in June and August, the months which follow the treatment, and in October and December, usually rainy months. In general metabolite concentrations were higher than the parent compound. On one hand a monitoring approach is helpful in order to understand the behaviour of a compound in real conditions; however, on the other hand it gives only an instant picture of the present situation without any prevision about

  1. Numerical simulation of groundwater flow in LILW Repository site:I. Groundwater flow modeling

    Energy Technology Data Exchange (ETDEWEB)

    Park, Koung Woo; Ji, Sung Hoon; Kim, Chun Soo; Kim, Kyoung Su [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Ji Yeon [Korea Hydro and Nuclear Power Co. Ltd., Seoul (Korea, Republic of)

    2008-12-15

    Based on the site characterization works in a low and intermediate level waste (LILW) repository site, the numerical simulations for groundwater flow were carried out in order to understand the groundwater flow system of repository site. To accomplish the groundwater flow modeling in the repository site, the discrete fracture network (DFN) model was constructed using the characteristics of fracture zones and background fractures. At result, the total 10 different hydraulic conductivity(K) fields were obtained from DFN model stochastically and K distributions of constructed mesh were inputted into the 10 cases of groundwater flow simulations in FEFLOW. From the total 10 numerical simulation results, the simulated groundwater levels were strongly governed by topography and the groundwater fluxes were governed by locally existed high permeable fracture zones in repository depth. Especially, the groundwater table was predicted to have several tens meters below the groundwater table compared with the undisturbed condition around disposal silo after construction of underground facilities. After closure of disposal facilities, the groundwater level would be almost recovered within 1 year and have a tendency to keep a steady state of groundwater level in 2 year.

  2. Interim sanitary landfill groundwater monitoring report. 1996 Annual report

    International Nuclear Information System (INIS)

    Bagwell, L.A.

    1997-01-01

    Eight wells of the LFW series monitor groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Interim Sanitary Landfill at the Savannah River Site. These wells are sampled semiannually to comply with the South Carolina Department of Health and Environmental Control Modified Municipal Solid Waste Permit 025500-1120 and as part of the SRS Groundwater Monitoring Program. Trichlorofluoromethane and 1,1,1-trichloroethane were elevated in one sidegradient well and one downgradient well during 1996. Zinc was elevated in three downgradient wells and also was detected in the associated laboratory blanks for two of those wells. Specific conductance was elevated in one background well and one sidegradient well. Barium and copper exceeded standards in one sidegradient well, and dichloromethane (a common laboratory contaminant) was elevated in another sidegradient well. Barium, copper, and dichloromethane were detected in the associated blanks for these wells, also. The groundwater flow direction in the Steed Pond Acquifer (Water Table) beneath the Interim Sanitary Landfill was to the southeast (universal transverse Mercator coordinates). The flow rate in this unit was approximately 210 ft/year during first quarter 1996 and 180 ft/yr during third quarter 1996

  3. Technical summary of groundwater quality protection program at the Savannah River Site, 1952--1986

    International Nuclear Information System (INIS)

    Heffner, J.D.

    1991-01-01

    This report provides information regarding the status of and groundwater quality at the waste sites at the Department of Energy's (DOE) Savannah River Site (SRS). Specific information provided for each waste site at SRS includes its location, size, inventory (when known), and history. Many waste sites at SRS are considered to be of little environmental concern because they contain nontoxic or inert material such as construction rubble and debris. Other waste sites, however, either are known to have had an effect on groundwater quality or are suspected of having the potential to affect groundwater. Monitoring wells have been installed at most of these sites; monitoring wells are scheduled for installation at the remaining sites. Results of the groundwater analyses from these monitoring wells, presented in the appendices, are used in the report to help identify potential contaminants of concern, if any, at each waste site. The list of actions proposed for each waste site in Christensen and Gordon's 1983 report are summarized, and an update is provided for each site. Planned actions for the future are also outlined

  4. Understanding socio-groundwater systems: framework, toolbox, and stakeholders’ efforts for analysis and monitoring groundwater resources

    OpenAIRE

    López Maldonado, Yolanda Cristina

    2018-01-01

    Groundwater, the predominant accessible reservoir of freshwater storage on Earth, plays an important role as a human-natural life sustaining resource. In recent decades there has been an increasing concern that human activities are placing too much pressure on the resource, affecting the health of the ecosystem. However, because groundwater it is out of sight, its monitoring on both global and local scales is challenging. In the field of groundwater monitoring, modelling tools have been devel...

  5. Information for consideration in reviewing groundwater protection plans for uranium mill tailings sites

    International Nuclear Information System (INIS)

    Thorne, P.D.

    1992-05-01

    Guidelines and acceptance criteria were developed for reviewing certain aspects of groundwater protection plans for uranium mill tailing sites. The aspects covered include: (1) leaching and long-term releases of hazardous and radioactive constituents from tailings and other contaminated materials, (2) attenuation of hazardous and radioactive constituents in groundwater under saturated and unsaturated conditions, (3) design and implementation of groundwater monitoring programs, (4) design and construction of groundwater protection barriers, and (5) efficiency and effectiveness of groundwater cleanup programs. The objective of these guidelines is to assist the US Nuclear Regulatory Commission staff in reviewing Remedial Action Plans for inactive waste sites and licensing application documents for active commercial uranium and thorium mills

  6. Groundwater monitoring at the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Kehrman, R.; Broberg, K.; Tatro, G.; Richardson, R.; Dasczcyszak, W.

    1990-01-01

    This paper discusses the Groundwater Monitoring Program (GPM) being conducted at the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. The Regulatory and Environmental Programs (REP) section of the Environment, Safety and Health department (ES ampersand H) is responsible for conducting environmental monitoring at the WIPP. Groundwater monitoring is one of the ongoing environmental activities currently taking place. The REP section includes water quality sampling and water level monitoring. The WIPP Project is a research and develop facility designed to demonstrate the safe disposal of defense-generated waste in a geologic repository. Water quality sampling for physical, chemical, and radiological parameters has been an ongoing activity at the WIPP site for the past six years, and will continue through the life of the project. The water quality of a well is sampled while the well is continuously pumped. Serial samples of the pumped water are collected and tested for pH, Eh, temperature, specific gravity, specific conductivity, alkalinity, chlorides, divalent cations, ferrous iron, and total iron. Stabilization of serial sampling parameters determined if a representative sample is being obtained, Representative samples are sent to contract laboratories and analyzed for general chemistry, major cations and anions, and radionuclides. 13 refs., 4 figs., 1 tab

  7. Crude oil metabolites in groundwater at two spill sites

    Science.gov (United States)

    Bekins, Barbara A.; Cozzarelli, Isabelle M.; Erickson, Melinda L.; Steenson, Ross; Thorn, Kevin A.

    2016-01-01

    Two groundwater plumes in north central Minnesota with residual crude oil sources have 20 to 50 mg/L of nonvolatile dissolved organic carbon (NVDOC). These values are over 10 times higher than benzene and two to three times higher than Diesel Range Organics in the same wells. On the basis of previous work, most of the NVDOC consists of partial transformation products from the crude oil. Monitoring data from 1988 to 2015 at one of the sites located near Bemidji, MN show that the plume of metabolites is expanding toward a lakeshore located 335 m from the source zone. Other mass balance studies of the site have demonstrated that the plume expansion is driven by the combined effect of continued presence of the residual crude oil source and depletion of the electron accepting capacity of solid phase iron oxide and hydroxides on the aquifer sediments. These plumes of metabolites are not covered by regulatory monitoring and reporting requirements in Minnesota and other states. Yet, a review of toxicology studies indicates that polar metabolites of crude oil may pose a risk to aquatic and mammalian species. Together the results suggest that at sites where residual sources are present, monitoring of NVDOC may be warranted to evaluate the fates of plumes of hydrocarbon transformation products.

  8. Groundwater Monitoring Plan for the Z-Area Saltstone Facility

    International Nuclear Information System (INIS)

    Wells, D.

    2002-01-01

    Groundwater monitoring has been conducted at the Z-Area Saltstone Disposal Facility since 1987. At that time, groundwater monitoring was not required by the industrial landfill regulations, but a modest monitoring program was required by the operating permit. In 1996 SRS proposed a program based on direct push sampling. This program called for biennial direct push sampling within 25 feet of each waste-containing cell with additional samples being taken in areas where excessive cracking had been observed. The direct push proposal was accepted by The South Carolina Department of Health and Environmental Control (SCDHEC). The Industrial Solid Waste Landfill Regulations were revised in 1998 and now include requirements for groundwater monitoring. The major elements of those regulations and their application at Z-Area are discussed. These are a point of compliance, groundwater protection standards, the groundwater monitoring system, sampling and analysis, and data evaluation and reporting

  9. Anisotropic analysis for seismic sensitivity of groundwater monitoring wells

    Science.gov (United States)

    Pan, Y.; Hsu, K.

    2011-12-01

    Taiwan is located at the boundaries of Eurasian Plate and the Philippine Sea Plate. The movement of plate causes crustal uplift and lateral deformation to lead frequent earthquakes in the vicinity of Taiwan. The change of groundwater level trigged by earthquake has been observed and studied in Taiwan for many years. The change of groundwater may appear in oscillation and step changes. The former is caused by seismic waves. The latter is caused by the volumetric strain and reflects the strain status. Since the setting of groundwater monitoring well is easier and cheaper than the setting of strain gauge, the groundwater measurement may be used as a indication of stress. This research proposes the concept of seismic sensitivity of groundwater monitoring well and apply to DonHer station in Taiwan. Geostatistical method is used to analysis the anisotropy of seismic sensitivity. GIS is used to map the sensitive area of the existing groundwater monitoring well.

  10. Technical summary of groundwater quality protection program at the Savannah River Site, 1952--1986. Volume 1, Site geohydrology and waste sites

    Energy Technology Data Exchange (ETDEWEB)

    Heffner, J.D. [ed.] [Exploration Resources, Inc., Athens, GA (United States)

    1991-11-01

    This report provides information regarding the status of and groundwater quality at the waste sites at the Department of Energy`s (DOE) Savannah River Site (SRS). Specific information provided for each waste site at SRS includes its location, size, inventory (when known), and history. Many waste sites at SRS are considered to be of little environmental concern because they contain nontoxic or inert material such as construction rubble and debris. Other waste sites, however, either are known to have had an effect on groundwater quality or are suspected of having the potential to affect groundwater. Monitoring wells have been installed at most of these sites; monitoring wells are scheduled for installation at the remaining sites. Results of the groundwater analyses from these monitoring wells, presented in the appendices, are used in the report to help identify potential contaminants of concern, if any, at each waste site. The list of actions proposed for each waste site in Christensen and Gordon`s 1983 report are summarized, and an update is provided for each site. Planned actions for the future are also outlined.

  11. Annual report of groundwater monitoring at Everest, Kansas, in 2010.

    Energy Technology Data Exchange (ETDEWEB)

    LaFreniere, L. M. (Environmental Science Division)

    2011-03-21

    The Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) began its environmental investigations at Everest, Kansas, in 2000. The work at Everest is implemented on behalf of the CCC/USDA by Argonne National Laboratory, under the oversight of the Kansas Department of Health and Environment (KDHE). The results of the environmental investigations have been reported in detail (Argonne 2001, 2003, 2006a,b). The lateral extent of the carbon tetrachloride in groundwater over the years of investigation has been interpreted as shown in Figure 1.1 (2001-2002 data), Figure 1.2 (2006 data), Figure 1.3 (2008 data), and Figure 1.4 (2009 data). The pattern of groundwater flow and inferred contaminant migration has consistently been to the north-northwest from the former CCC/USDA facility toward the Nigh property, and then west-southwest from the Nigh property (e.g., Figure 1.5 [2008 data] and Figure 1.6 [2009 data]). Both the monitoring data for carbon tetrachloride and the low groundwater flow rates estimated for the Everest aquifer unit (Argonne 2003, 2006a,b, 2008) indicate slow contaminant migration. On the basis of the accumulated findings, in March 2009 the CCC/USDA developed a plan for annual monitoring of the groundwater and surface water. This current monitoring plan (Appendix A in the report of monitoring in 2009 [Argonne 2010]) was approved by the KDHE (2009a). Under this plan, the monitoring wells are sampled by the low-flow procedure, and sample preservation, shipping, and analysis activities are consistent with previous work at Everest. The annual sampling will continue until identified conditions at the site indicate a technical justification for a change. The first annual sampling event under the new monitoring plan took place in April 2009. The results of analyses for volatile organic compounds (VOCs) and water level measurements were consistent with previous observations (Figures 1.1-1.4). No carbon tetrachloride was detected in surface

  12. January 2011 Groundwater Sampling at the Gnome-Coach, New Mexico, Site (Data Validation Package)

    International Nuclear Information System (INIS)

    2011-01-01

    Annual sampling was conducted January 19, 2011, to monitor groundwater for potential radionuclide contamination at the Gnome-Coach site in New Mexico. The sampling was performed as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PLN/S04351, continually updated). Well LRL-7 was not sampled per instruction from the lead. A duplicate sample was collected from well USGS-1.Water levels were measured in the monitoring wells onsite.

  13. Monitoring well design and sampling techniques at NAPL sites

    International Nuclear Information System (INIS)

    Collins, M.; Rohrman, W.R.; Drake, K.D.

    1992-01-01

    The existence of Non-Aqueous Phase Liquids (NAPLs) at many Superfund and RCRA hazardous waste sites has become a recognized problem in recent years. The large number of sites exhibiting this problem results from the fact that many of the most frequently used industrial solvents and petroleum products can exist as NAPLs. Hazardous waste constituents occurring as NAPLs possess a common characteristic that causes great concern during groundwater contamination evaluation: while solubility in water is generally very low, it is sufficient to cause groundwater to exceed Maximum Contamination Levels (MCLs). Thus, even a small quantity of NAPL within a groundwater regime can act as a point source with the ability to contaminate vast quantities of groundwater over time. This property makes it imperative that groundwater investigations focus heavily on characterizing the nature, extent, and migration pathways of NAPLs at sites where it exists. Two types of NAPLs may exist in a groundwater system. Water-immiscible liquid constituents having a specific gravity greater than one are termed Dense Non-Aqueous Phase Liquids, while those with a specific gravity less than one are considered Light Non-Aqueous Phase Liquids. For a groundwater investigation to properly characterize the two types of NAPLs, careful consideration must be given to the placement and sampling of groundwater monitoring wells. Unfortunately, technical reviewers at EPA Region VII and the Corps of Engineers find that many groundwater investigations fall short in characterizing NAPLs because several basic considerations were overlooked. Included among these are monitoring well location and screen placement with respect to the water table and significant confining units, and the ability of the well sampling method to obtain samples of NAPL. Depending on the specific gravity of the NAPL that occurs at a site, various considerations can substantially enhance adequate characterization of NAPL contaminants

  14. Groundwater Monitoring Plan for the 1301-N, 1324-N/NA, and 1325-N RCRA Facilities

    International Nuclear Information System (INIS)

    Hartman, Mary J.

    2001-01-01

    The 1301-N and 1325-N Liquid Waste Disposal Facilities, the 1324-N Surface Impoundment, and the 1324-NA Percolation Pond, located in the 100 N Area of the Hanford Site, are regulated under the Resource Conservation and Recovery Act of 1976 (RCRA). The closure plans for these facilities stipulate that groundwater is monitored according to the 100-N Pilot Project: Proposed Consolidated Groundwater Monitoring Program (BHI-00725). This document supplements the consolidated plan by providing information on sampling and analysis protocols, quality assurance, data management, and a conceptual model for the RCRA sites. Monitoring well networks, constituents, and sampling frequency remain the same as in the consolidated plan or the previous groundwater monitoring plan (Hartman 1996)

  15. CY2003 RCRA GROUNDWATER MONITORING WELL SUMMARY REPORT

    International Nuclear Information System (INIS)

    MARTINEZ, C.R.

    2003-01-01

    This report describes the calendar year (CY) 2003 field activities associated with the installation of two new groundwater monitoring wells in the A-AX Waste Management Area (WMA) and four groundwater monitoring wells in WMA C in the 200 East Area of the Hanford Nuclear Reservation. All six wells were installed by Fluor Hanford Inc. (FH) for CH2M Hill Hanford Group, Inc. (CHG) in support of Draft Hanford Facility Agreement and Consent Order (Tri-Party Agreement) M-24-00 milestones and ''Resource Conservation and Recovery Act of 1976'' (RCRA) groundwater monitoring requirements. Drilling data for the six wells are summarized in Table 1

  16. Groundwater resources monitoring and population displacement in northern Uganda

    Science.gov (United States)

    Chalikakis, K.; Hammache, Y.; Nawa, A.; Slinski, K.; Petropoulos, G.; Muteesasira, A.

    2009-04-01

    Northern Uganda has been devastated by more than 20 years of open conflict by the LRA (Lord's Resistance Army) and the Government of Uganda. This war has been marked by extreme violence against civilians, who had been gathered in protected IDP (Internally Displaced Persons) camps. At the height of the displacement in 2007, the UN office for coordination of humanitarian affairs, estimated that nearly 2.5 million people were interned into approximately 220 camps throughout Northern Uganda. With the improved security since mid-2006, the people displaced by the conflict in Northern Uganda started to move out of the overcrowded camps and return either to their villages/parishes of origin or to resettlement/transit sites. However, basic water, sanitation and hygiene infrastructure in the return areas or any new settlements sites are minimal. People returning to their villages of origin encounter a situation where in many cases there is no access to safe water. Since 1998 ACF (Action Against Hunger, part of the Action Contre la Faim International Network) activities have been concentrated in the Acholi and Lango regions of Northern Uganda. ACF's WASH (Water, sanitation and hygiene) department interventions concern sanitation infrastructure, hygiene education and promotion as well as water points implementation. To ensure safe water access, actions are focused in borehole construction and traditional spring rehabilitation, also called "protected" springs. These activities follow the guidelines as set forth by the international WASH cluster, led by UNICEF. A three year project (2008-2010) is being implemented by ACF, to monitor the available groundwater resources in Northern Uganda. The main objectives are: 1. to monitor the groundwater quality from existing water points during different hydrological seasons, 2. to identify, if any, potential risks of contamination from population concentrations and displacement, lack of basic infrastructure and land use, and finally 3. to

  17. Regional monitoring of temporal changes in groundwater quality

    NARCIS (Netherlands)

    Broers, H.P.; Grift, B. van der

    2004-01-01

    Changes in agricultural practices are expected to affect groundwater quality by changing the loads of nutrients and salts in recharging groundwater, but regional monitoring networks installed to register the changes often fail to detect them and interpretation of trend analysis results is difficult.

  18. 40 CFR 258.51 - Ground-water monitoring systems.

    Science.gov (United States)

    2010-07-01

    ... water that has not been affected by leakage from a unit. A determination of background quality may... that ensures detection of ground-water contamination in the uppermost aquifer. When physical obstacles... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Ground-water monitoring systems. 258...

  19. Baseline risk assessment of groundwater contamination at the uranium mill tailings site near Shiprock, New Mexico

    International Nuclear Information System (INIS)

    1993-09-01

    This report evaluates potential impact to public health or the environment resulting from groundwater contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in a disposal cell on the site in 1986 by the US Department of Energy's (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating groundwater contamination. This risk assessment is the first document specific to this site for the Groundwater Project. This risk assessment follows the approach outlined by the US Environmental Protection Agency (EPA). The first step is to evaluate groundwater data collected from monitor wells at the site. Evaluation of these data showed that the main contaminants in the floodplain groundwater are arsenic, magnesium, manganese, nitrate, sodium, sulfate, and uranium. The complete list of contaminants associated with the terrace groundwater could not be determined due to the lack of the background groundwater quality data. However, uranium, nitrate, and sulfate are evaluated since these chemicals are clearly associated with uranium processing and are highly elevated compared to regional waters. It also could not be determined if the groundwater occurring in the terrace is a usable water resource, since it appears to have originated largely from past milling operations. The next step in the risk assessment is to estimate how much of these contaminants people would be exposed to if a drinking well were installed in the contaminated groundwater or if there were exposure to surface expressions of contaminated water. Potential exposures to surface water include incidental contact with contaminated water or sediments by children playing on the floodplain and consumption of meat and milk from domestic animals grazed and watered on the floodplain

  20. May 2012 Groundwater and Surface Water Sampling at the Rio Blanco, Colorado, Site (Data Validation Package)

    International Nuclear Information System (INIS)

    2012-01-01

    Annual sampling was conducted at the Rio Blanco, Colorado, site for the Long-Term Hydrologic Monitoring Program May 9-10, 2012, to monitor groundwater and surface water for potential radionuclide contamination. Sampling and analyses were conducted as specified in Sampling and Analysis Plan for the U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). A duplicate sample was collected from location Johnson Artesian WL. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectrometry and for tritium using the conventional and enrichment methods. Results of this monitoring at the Rio Blanco site demonstrate that groundwater and surface water outside the site boundaries have not been affected by project-related contaminants.

  1. Revised ground-water monitoring compliance plan for the 183-H Solar Evaporation Basins

    International Nuclear Information System (INIS)

    1986-09-01

    This document contains ground-water monitoring plans for a mixed waste storage facility located on the Hanford Site in southeastern Washington State. This facility has been used since 1973 for storage of mixed wastes, which contain both chemicals and radionuclides. The ground-water monitoring plans presented here represent revision and expansion of an effort in June 1985. At that time, a facility-specific monitoring program was implemented at the 183-H Basins as part of the regulatory compliance effort being conducted on the Hanford Site. This monitoring program was based on the ground-water monitoring requirements for interimstatus facilities, which are those facilities that do not yet have final permits, but are authorized to continue interim operations while engaged in the permitting process. The program initially implemented for the 183-H Basins was designed to be an alternate program, which is required instead of the standard detection program when a facility is known or suspected to have contaminated the ground water in the uppermost aquifer. This effort, named the RCRA Compliance Ground-Water Monitoring Project for the 183-H Basins, was implemented. A supporting project involving ground-water flow modeling for the area surrounding the 183-H Basins was also initiated during 1985. Those efforts and the results obtained are described in subsequent chapters of this document. 26 refs., 55 figs., 14 tabs

  2. Quarterly report of RCRA groundwater monitoring data for period January 1, 1993 through March 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    Hanford Site interim-status groundwater monitoring projects are conducted as either background, indicator parameter evaluation, or groundwater quality assessment monitoring programs as defined in the Resource Conservation and Recovery Act of 1976 (RCRA); and Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities, as amended (40 Code of Federal Regulations [CFR] 265). Compliance with the 40 CFR 265 regulations is required by the Washington Administrative Code (WAC) 173-303. This report contains data from Hanford Site groundwater monitoring projects. This quarterly report contains data received between March 8 and May 24, 1993, which are the cutoff dates for this reporting period. This report may contain not only data from the January through March quarter but also data from earlier sampling events that were not previously reported.

  3. The local groundwater regime at the Harwell research site

    International Nuclear Information System (INIS)

    Alexander, J.; Holmes, D.C.

    1983-01-01

    Three deep and two shallow boreholes have been drilled at the Harwell Research Site as part of a national research programme into the feasibility of disposal of low and intermediate level radioactive wastes to geologic formations. Various hydrogeological and geochemical techniques have been employed in these boreholes, each of which samples a separate formation of interest, to determine the pattern of groundwater movement under the research site. Significant vertical hydraulic gradients have been identified which produce vertically downwards groundwater movement from the surface to a depth of 200 m (Corallian aquifer). Groundwater moves vertically upwards, from greater depths, through the Oxford Clay to the Corallian aquifer. However,the apparently very low hydraulic conductivity of the Oxford Clay results in extremely low flow velocities and long transit times. Groundwaters from the Corallian formation possess higher salinities than those of the characteristic regional groundwaters, and preliminary isotopic data suggest that some groundwater mixing with connate waters has occurred. The chemical nature of groundwaters from the Great Oolite Group, suggest that contamination due to the drilling and completion procedure has taken place. Due to the low hydraulic conductivity in this formation clearance of contaminants will require the implementation of a long-term abstraction programme. (author)

  4. Use of the landfill water pollution index (LWPI) for groundwater quality assessment near the landfill sites.

    Science.gov (United States)

    Talalaj, Izabela A; Biedka, Pawel

    2016-12-01

    The purpose of the paper is to assess the groundwater quality near the landfill sites using landfill water pollution index (LWPI). In order to investigate the scale of groundwater contamination, three landfills (E, H and S) in different stages of their operation were taken into analysis. Samples of groundwater in the vicinity of studied landfills were collected four times each year in the period from 2004 to 2014. A total of over 300 groundwater samples were analysed for pH, EC, PAH, TOC, Cr, Hg, Zn, Pb, Cd, Cu, as required by the UE legal acts for landfill monitoring system. The calculated values of the LWPI allowed the quantification of the overall water quality near the landfill sites. The obtained results indicated that the most negative impact on groundwater quality is observed near the old Landfill H. Improper location of piezometer at the Landfill S favoured infiltration of run-off from road pavement into the soil-water environment. Deep deposition of the groundwater level at Landfill S area reduced the landfill impact on the water quality. Conducted analyses revealed that the LWPI can be used for evaluation of water pollution near a landfill, for assessment of the variability of water pollution with time and for comparison of water quality from different piezometers, landfills or time periods. The applied WQI (Water Quality Index) can also be an important information tool for landfill policy makers and the public about the groundwater pollution threat from landfill.

  5. May 2011 Groundwater and Surface Water Sampling at the Rio Blanco, Colorado, Site (Data Validation Package)

    International Nuclear Information System (INIS)

    2011-01-01

    Annual sampling was conducted at the Rio Blanco, Colorado, site for the Long-Term Hydrologic Monitoring Program May 16-17, 2011, to monitor groundwater and surface water for potential radionuclide contamination. Sampling and analyses were conducted as specified in Sampling and Analysis Plan for the U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). A duplicate sample was collected from location Johnson Artesian WL. Samples were analyzed by the U.S. Environmental Protection Agency (EPA) Radiation&Indoor Environments National Laboratory in Las Vegas, Nevada. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectrometry, and for tritium using the conventional method. Tritium was not measured using the enrichment method because the EPA laboratory no longer offers that service. Results of this monitoring at the Rio Blanco site demonstrate that groundwater and surface water outside the boundaries have not been affected by project-related contaminants.

  6. Quarterly report of RCRA groundwater monitoring data for period January 1--March 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This quarterly report contains data received between January and March 1995, which are the cutoff dates for this reporting period. This report may contain not only data from the January through March quarter, but also data from earlier sampling events that were not previously reported. Nineteen Resource Conservation and Recovery Act of 1976 (RCRA) groundwater monitoring projects are conducted at the Hanford Site. These projects include treatment, storage, and disposal facilities for both solid and liquid waste. The groundwater monitoring programs described in this report comply with the interim-status federal (Title 40 Code of Federal Regulation [CFR] Part 265) and state (Washington Administrative Code [WAC] 173-303-400) regulations. The RCRA projects are monitored under one of three programs: background monitoring, indicator parameter evaluation, or groundwater quality assessment.

  7. Ground-water monitoring compliance projects for Hanford site facilities: Progress report for the period January 1 to March 31, 1988: Volume 4, Appendix A (contd)

    Energy Technology Data Exchange (ETDEWEB)

    1988-05-01

    This appendix is one of nine volumes, and presents data describing wells completed at the Hanford Site during the fourth quarter of calendar year 1987 (October through December). The data in this volume of Appendix A cover the following wells: 299-E33-30; 299-E34-2; 299-E34-3; 299-E34-4; 299-E34-5; 299-E34-6. The data are presented in the following order: Well Completion Report/Title III Inspection List, Inspection Plan, As-Built Diagram, Logging Charts, and Drill Logs.

  8. Ground-water monitoring compliance projects for Hanford site facilities: Progress report for the period January 1 to March 31, 1988: Volume 7, Appendix B (contd)

    Energy Technology Data Exchange (ETDEWEB)

    1988-05-01

    This appendix is one of nine volumes, and presents data describing wwlls completed at the Hanford Site during the fourth quarter of calendar year 1987 (October through December). The data in this volume of Appendix B cover the following wells: 299-W10-14; 299-W15-15; 299-W15-16; 299-W15-17; 299-W15-18. The data are presented in the following order: Well Completion Report/Title III Inspection List, Inspection Plan, As-Built Diagram, Logging Charts, and Drill Logs.

  9. Ground-water monitoring compliance projects for Hanford site facilities: Progress report for the period January 1 to March 31, 1988: Volume 5, Appendix B

    Energy Technology Data Exchange (ETDEWEB)

    None

    1988-05-01

    This appendix is one of nine volumes, and presents data describing wells completed at the Hanford Site during the fourth quarter of calendar year 1987 (October through December). The data in this volume of Appendix B cover the following wells: 299-W6-2; 299-W7-1; 299-W7-2; 299-W7-3; 299-W7-4. The data are presented in the following order: Well Completion Report/Title III Inspection List, Inspection Plan, As-Built Diagram, Logging Charts, and Drill Logs.

  10. Ground-water monitoring compliance projects for Hanford site facilities: Progress report for the period, January 1-March 31, 1988: Volume 6, Appendix (contd)

    International Nuclear Information System (INIS)

    1988-05-01

    This appendix is one of nine volumes, and presents data describing wells completed at the Hanford Site during the fourth quarter of calendar year 1987 (October through December). The data in this volume of Appendix B cover the following wells: 299-W7-5; 299-W7-6; 299-W8-1; 299-W9-1; 299-W10-13. The data are presented in the following order: Well Completion Report/Title III Inspection List, Inspection Plan, As-Built Diagram, Logging Charts, and Drill Logs

  11. Ground-water monitoring compliance projects for Hanford Site facilities: Progress report, January 1-March 31, 1988: Volume 3, Appendix A

    International Nuclear Information System (INIS)

    1988-05-01

    This appendix is one of nine volumes, and presents data describing wells completed at the Hanford Site during the fourth quarter of calendar year 1987 (October through December). The data in this volume of Appendix A cover the following wells: 299-E32-2; 299-E32-3; 299-E32-4; 299-E33-28; 299-E33-29. The data are presented in the following order: Well Completion Report/Title III Inspection List, Inspection Plan, As-Built Diagram, Logging Charts, and Drill Logs

  12. Ground-water monitoring compliance projects for Hanford site facilities: Progress report for the period, January 1-March 31, 1988: Volume 6, Appendix B (contd)

    Energy Technology Data Exchange (ETDEWEB)

    1988-05-01

    This appendix is one of nine volumes, and presents data describing wells completed at the Hanford Site during the fourth quarter of calendar year 1987 (October through December). The data in this volume of Appendix B cover the following wells: 299-W7-5; 299-W7-6; 299-W8-1; 299-W9-1; 299-W10-13. The data are presented in the following order: Well Completion Report/Title III Inspection List, Inspection Plan, As-Built Diagram, Logging Charts, and Drill Logs.

  13. Assessment and Monitoring of Nutrient Management in Irrigated Agriculture for Groundwater Quality Protection

    Science.gov (United States)

    Harter, T.; Davis, R.; Smart, D. R.; Brown, P. H.; Dzurella, K.; Bell, A.; Kourakos, G.

    2017-12-01

    Nutrient fluxes to groundwater have been subject to regulatory assessment and control only in a limited number of countries, including those in the European Union, where the Water Framework Directive requires member countries to manage groundwater basis toward achieving "good status", and California, where irrigated lands will be subject to permitting, stringent nutrient monitoring requirements, and development of practices that are protective of groundwater. However, research activities to rigorously assess agricultural practices for their impact on groundwater have been limited and instead focused on surface water protection. For groundwater-related assessment of agricultural practices, a wide range of modeling tools has been employed: vulnerability studies, nitrogen mass balance assessments, crop-soil-system models, and various statistical tools. These tools are predominantly used to identify high risk regions, practices, or crops. Here we present the development of a field site for rigorous in-situ evaluation of water and nutrient management practices in an irrigated agricultural setting. Integrating groundwater monitoring into agricultural practice assessment requires large research plots (on the order of 10s to 100s of hectares) and multi-year research time-frames - much larger than typical agricultural field research plots. Almonds are among the most common crops in California with intensive use of nitrogen fertilizer and were selected for their high water quality improvement potential. Availability of an orchard site with relatively vulnerable groundwater conditions (sandy soils, water table depth less than 10 m) was also important in site selection. Initial results show that shallow groundwater concentrations are commensurate with nitrogen leaching estimates obtained by considering historical, long-term field nitrogen mass balance and groundwater dynamics.

  14. 2008 Groundwater Monitoring Report Central Nevada Test Area, Corrective Action Unit 443

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-03-01

    This report presents the 2008 groundwater monitoring results collected by the U.S. Department of Energy (DOE) Office of Legacy Management (LM) for the Central Nevada Test Area (CNTA) Subsurface Corrective Action Unit (CAU) 443. Responsibility for the environmental site restoration of the CNTA was transferred from the DOE Office of Environmental Management (DOE-EM) to DOE-LM on October 1, 2006. The environmental restoration process and corrective action strategy for CAU 443 are conducted in accordance with the Federal Facility Agreement and Consent Order (FFACO 2005) entered into by DOE, the U.S. Department of Defense, and the State of Nevada. The corrective action strategy for the site includes proof-of-concept monitoring in support of site closure. This report summarizes investigation activities associated with CAU 443 that were conducted at the site during fiscal year 2008. This is the second groundwater monitoring report prepared by DOE-LM for the CNTA.

  15. 2008 Groundwater Monitoring Report Central Nevada Test Area, Corrective Action Unit 443

    International Nuclear Information System (INIS)

    2009-01-01

    This report presents the 2008 groundwater monitoring results collected by the U.S. Department of Energy (DOE) Office of Legacy Management (LM) for the Central Nevada Test Area (CNTA) Subsurface Corrective Action Unit (CAU) 443. Responsibility for the environmental site restoration of the CNTA was transferred from the DOE Office of Environmental Management (DOE-EM) to DOE-LM on October 1, 2006. The environmental restoration process and corrective action strategy for CAU 443 are conducted in accordance with the Federal Facility Agreement and Consent Order (FFACO 2005) entered into by DOE, the U.S. Department of Defense, and the State of Nevada. The corrective action strategy for the site includes proof-of-concept monitoring in support of site closure. This report summarizes investigation activities associated with CAU 443 that were conducted at the site during fiscal year 2008. This is the second groundwater monitoring report prepared by DOE-LM for the CNTA

  16. Baseline risk assessment of groundwater contamination at the Uranium Mill Tailings Site near Gunnison, Colorado. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    This report evaluates potential impacts to public health or the environment resulting from groundwater contamination at the former uranium mill processing site. The tailings and other contaminated material at this site are being placed in an off-site disposal cell by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating groundwater contamination. This is the second risk assessment of groundwater contamination at this site. The first risk assessment was performed primarily to evaluate existing domestic wells to determine the potential for immediate human health and environmental impacts. This risk assessment evaluates the most contaminated groundwater that flows beneath the processing site towards the Gunnison River. The monitor wells that have consistently shown the highest concentration of most contaminants are used in this risk assessment. This risk assessment will be used in conjunction with additional activities and documents to assist in determining what remedial action is needed for contaminated groundwater at the site after the tailings are relocated. This risk assessment follows an approach outlined by the US Environmental Protection Agency (EPA). The first step is to evaluate groundwater data collected from monitor wells at the site. Evaluation of these data showed that the main contaminants in the groundwater are cadmium, cobalt, iron, manganese, sulfate, uranium, and some of the products of radioactive decay of uranium.

  17. Optimizing Groundwater Monitoring Networks Using Integrated Statistical and Geostatistical Approaches

    Directory of Open Access Journals (Sweden)

    Jay Krishna Thakur

    2015-08-01

    Full Text Available The aim of this work is to investigate new approaches using methods based on statistics and geo-statistics for spatio-temporal optimization of groundwater monitoring networks. The formulated and integrated methods were tested with the groundwater quality data set of Bitterfeld/Wolfen, Germany. Spatially, the monitoring network was optimized using geo-statistical methods. Temporal optimization of the monitoring network was carried out using Sen’s method (1968. For geostatistical network optimization, a geostatistical spatio-temporal algorithm was used to identify redundant wells in 2- and 2.5-D Quaternary and Tertiary aquifers. Influences of interpolation block width, dimension, contaminant association, groundwater flow direction and aquifer homogeneity on statistical and geostatistical methods for monitoring network optimization were analysed. The integrated approach shows 37% and 28% redundancies in the monitoring network in Quaternary aquifer and Tertiary aquifer respectively. The geostatistical method also recommends 41 and 22 new monitoring wells in the Quaternary and Tertiary aquifers respectively. In temporal optimization, an overall optimized sampling interval was recommended in terms of lower quartile (238 days, median quartile (317 days and upper quartile (401 days in the research area of Bitterfeld/Wolfen. Demonstrated methods for improving groundwater monitoring network can be used in real monitoring network optimization with due consideration given to influencing factors.

  18. Recovery of soil water, groundwater, and streamwater from acidification at the Swedish integrated monitoring catchments.

    Science.gov (United States)

    Löfgren, Stefan; Aastrup, Mats; Bringmark, Lage; Hultberg, Hans; Lewin-Pihlblad, Lotta; Lundin, Lars; Karlsson, Gunilla Pihl; Thunholm, Bo

    2011-12-01

    Recovery from anthropogenic acidification in streams and lakes is well documented across the northern hemisphere. In this study, we use 1996-2009 data from the four Swedish Integrated Monitoring catchments to evaluate how the declining sulfur deposition has affected sulfate, pH, acid neutralizing capacity, ionic strength, aluminum, and dissolved organic carbon in soil water, groundwater and runoff. Differences in recovery rates between catchments, between recharge and discharge areas and between soil water and groundwater are assessed. At the IM sites, atmospheric deposition is the main human impact. The chemical trends were weakly correlated to the sulfur deposition decline. Other factors, such as marine influence and catchment features, seem to be as important. Except for pH and DOC, soil water and groundwater showed similar trends. Discharge areas acted as buffers, dampening the trends in streamwater. Further monitoring and modeling of these hydraulically active sites should be encouraged.

  19. Analysis of the Monitoring Network at the Salmon, Mississippi, Site

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-08-01

    The Salmon site in southern Mississippi was the location of two underground nuclear tests and two methane-oxygen gas explosion tests conducted in the Tatum Salt Dome at a depth of 2,715 feet below ground surface. The U.S. Atomic Energy Commission (a predecessor agency of the U.S. Department of Energy [DOE]) and the U.S. Department of Defense jointly conducted the tests between 1964 and 1970. The testing operations resulted in surface contamination at multiple locations on the site and contamination of shallow aquifers. No radionuclides from the nuclear tests were released to the surface or to groundwater, although radionuclide-contaminated drill cuttings were brought to the surface during re-entry drilling. Drilling operations generated the largest single volume of waste materials, including radionuclide-contaminated drill cuttings and drilling fluids. Nonradioactive wastes were also generated as part of the testing operations. Site cleanup and decommissioning began in 1971 and officially ended in 1972. DOE conducted additional site characterization between 1992 and 1999. The historical investigations have provided a reasonable understanding of current surface and shallow subsurface conditions at the site, although some additional investigation is desirable. For example, additional hydrologic data would improve confidence in assigning groundwater gradients and flow directions in the aquifers. The U.S. Environmental Protection Agency monitored groundwater at the site as part of its Long-Term Hydrologic Monitoring Program from 1972 through 2007, when DOE's Office of Legacy Management (LM) assumed responsibility for site monitoring. The current monitoring network consists of 28 monitoring wells and 11 surface water locations. Multiple aquifers which underlie the site are monitored. The current analyte list includes metals, radionuclides, and volatile organic compounds (VOCs).

  20. Groundwater monitoring at three Oak Ridge National Laboratory inactive waste impoundments: results after one year

    Energy Technology Data Exchange (ETDEWEB)

    Francis, C. W.; Stansfield, R. G.

    1986-10-01

    To determine if the migration of potential contaminants from three inactive waste impoundments at Oak Ridge National Laboratory poses a threat to groundwater quality, at least one upgradient groundwater monitoring well and threee downgradient monitoring wells were installed at each impoundment in early 1985. These three unlined impoundments, formerly used to collect and, in some instances, treat wastewater are: the 3513 impoundment; the Old Hydrofracture Facility (OHF) impoundment; and the Homogeneous Reactor Experimnt No. 2 impoundment. Groundwater samples were collected quarterly for one year. Analyses were conducted for the groundwater protection parameters promulgated by the Resource Conservation and Recovery Act. The groundwater samples were also analyzed for polychlorinated biphenyls, copper, nickel, zinc, /sup 90/Sr, /sup 137/Cs, and tritium. The contaminants found most often to affect groundwater quality at all three waste impoundments were radionuclides. For example, mean concentrations of gross beta and gross alpha activity exceeded drinking water limits at all three sites. The gross beta limit was exceeded at the 3513 and OHF impoundments by either /sup 90/Sr or tritium levels. At the 3513 impoundment, there was substantial evidence that the downgradient groundwater has been contaminated by chromium and lead and possibly by halogenated organic compounds. At the OHF impoundment, the mean level of tritium measured in the upgradient well (about 91,000 Bq/L as compared with 80,000 Bq/L in the downgradient wells) indicated that the groundwater quality has been affected by the radioactive wastes buried in the low-level radioactive waste burial ground solid waste storage area-5 upgradient of the impoundment. Testing for groundwater contamination, disclosed statistically significant contamination at all three sites.

  1. Groundwater monitoring at three Oak Ridge National Laboratory inactive waste impoundments: results after one year

    International Nuclear Information System (INIS)

    Francis, C.W.; Stansfield, R.G.

    1986-10-01

    To determine if the migration of potential contaminants from three inactive waste impoundments at Oak Ridge National Laboratory poses a threat to groundwater quality, at least one upgradient groundwater monitoring well and threee downgradient monitoring wells were installed at each impoundment in early 1985. These three unlined impoundments, formerly used to collect and, in some instances, treat wastewater are: the 3513 impoundment; the Old Hydrofracture Facility (OHF) impoundment; and the Homogeneous Reactor Experimnt No. 2 impoundment. Groundwater samples were collected quarterly for one year. Analyses were conducted for the groundwater protection parameters promulgated by the Resource Conservation and Recovery Act. The groundwater samples were also analyzed for polychlorinated biphenyls, copper, nickel, zinc, 90 Sr, 137 Cs, and tritium. The contaminants found most often to affect groundwater quality at all three waste impoundments were radionuclides. For example, mean concentrations of gross beta and gross alpha activity exceeded drinking water limits at all three sites. The gross beta limit was exceeded at the 3513 and OHF impoundments by either 90 Sr or tritium levels. At the 3513 impoundment, there was substantial evidence that the downgradient groundwater has been contaminated by chromium and lead and possibly by halogenated organic compounds. At the OHF impoundment, the mean level of tritium measured in the upgradient well (about 91,000 Bq/L as compared with 80,000 Bq/L in the downgradient wells) indicated that the groundwater quality has been affected by the radioactive wastes buried in the low-level radioactive waste burial ground solid waste storage area-5 upgradient of the impoundment. Testing for groundwater contamination, disclosed statistically significant contamination at all three sites

  2. H-Area Seepage Basins groundwater monitoring report

    International Nuclear Information System (INIS)

    1992-09-01

    During second quarter 1992, tritium, nitrate, nonvolatile beta, total alpha-emitting radium (radium-224 and radium-226), gross alpha, mercury, lead, tetrachloroethylene, arsenic, and cadmium exceeded the US Environmental Protection Agency Primary Drinking Water Standards (PDWS) in groundwater samples from monitoring wells at the H-Area Seepage Basins (HASB) at the Savannah River Plant. This report gives the results of the analyses of groundwater from the H-Area Seepage Basin

  3. Compliance monitoring for remediated sites

    International Nuclear Information System (INIS)

    1999-10-01

    Throughout the world, many countries have experienced problems associated with pollution of the environment. Poorly managed practices in nuclear fuel cycle, medicine, industry, weapons production and testing, research and development activities, as well as accidents, and poor disposal practices have produced a large array of radioactively contaminated facilities and sites. Structures, biota, soils, rocks, and both surface and groundwaters have become contaminated with radionuclides and other associated contaminants, a condition that raises serious concern due to potential health effects to the exposed human populations and the environment. In response to the needs of its Member States in dealing with the problems of radioactive contamination in the environment, the IAEA has established an Environmental Restoration Project. The principal aspects of current IAEA efforts in this area include (1) gathering information and data, performing analyses, and publishing technical summaries, and other documents on key technical aspects of environmental restoration; (2) conducting a Co-ordinated Research Project on Environmental Restoration; and (3) providing direct technical assistance to Member States through technical co-operation programmes. The transfer of technologies to Member States in need of applicable methodologies and techniques for the remediation of contaminated sites is a principal objective of this project

  4. Liquid effluent retention facility final-status groundwater monitoring plan

    International Nuclear Information System (INIS)

    Sweeney, M.D.; Chou, C.J.; Bjornstad, B.N.

    1997-09-01

    The following sections describe the groundwater-monitoring program for the Liquid Effluent Retention Facility (LERF). The LERF is regulated under the Resource Conservation and Recovery Act of 1976 (RCRA). The LERF is included in the open-quotes Dangerous Waste Portion of the Resource Conservation and Recovery Act Permit for the Treatment, Storage, and Disposal of Dangerous Waste, Permit WA890008967close quotes, (referred to herein as the Permit) (Ecology 1994) and is subject to final-status requirements for groundwater monitoring (WAC 173-303-645). This document describes a RCRA/WAC groundwater detection-monitoring program for groundwater in the uppermost aquifer system at the LERF. This plan describes the LERF monitoring network, constituent list, sampling schedule, statistical methods, and sampling and analysis protocols that will be employed for the LERF. This plan will be used to meet the groundwater monitoring requirements from the time the LERF becomes part of the Permit and through the post-closure care period, until certification of final closure

  5. 40 CFR 265 interim-status ground-water monitoring plan for the 2101-M pond

    International Nuclear Information System (INIS)

    Chamness, M.A.; Luttrell, S.P.; Dudziak, S.

    1989-03-01

    This report outlines a ground-water monitoring plan for the 2101-M pond, located in the southwestern part of the 200-East Area on the Hanford Site in south-central Washington State. It has been determined that hazardous materials may have been discharged to the pond. Installation of an interim-status ground-water monitoring system is required under the Resource Conservation and Recovery Act to determine if hazardous chemicals are moving out of the pond. This plan describes the location of new wells for the monitoring system, how the wells are to be completed, the data to be collected, and how those data can be used to determine the source and extent of any ground-water contamination from the 2101-M pond. Four new wells are planned, one upgradient and three downgradient. 35 refs., 12 figs., 9 tabs

  6. Groundwater management based on monitoring of land subsidence and groundwater levels in the Kanto Groundwater Basin, Central Japan

    Science.gov (United States)

    Furuno, K.; Kagawa, A.; Kazaoka, O.; Kusuda, T.; Nirei, H.

    2015-11-01

    Over 40 million people live on and exploit the groundwater resources of the Kanto Plain. The Plain encompasses metropolitan Tokyo and much of Chiba Prefecture. Useable groundwater extends to the base of the Kanto Plain, some 2500 to 3000 m below sea level. Much of the Kanto Plain surface is at sea level. By the early 1970s, with increasing urbanization and industrial expansion, local overdraft of groundwater resources caused major ground subsidence and damage to commercial and residential structures as well as to local and regional infrastructure. Parts of the lowlands around Tokyo subsided to 4.0 m below sea level; particularly affected were the suburbs of Funabashi and Gyotoku in western Chiba. In the southern Kanto Plain, regulations, mainly by local government and later by regional agencies, led to installation of about 500 monitoring wells and almost 5000 bench marks by the 1990's. Many of them are still working with new monitoring system. Long-term monitoring is important. The monitoring systems are costly, but the resulting data provide continuous measurement of the "health" of the Kanto Groundwater Basin, and thus permit sustainable use of the groundwater resource.

  7. Classification of groundwater at the Nevada Test Site

    International Nuclear Information System (INIS)

    Chapman, J.B.

    1994-08-01

    Groundwater occurring at the Nevada Test Site (NTS) has been classified according to the ''Guidelines for Ground-Water Classification Under the US Environmental Protection Agency (EPA) Ground-Water Protection Strategy'' (June 1988). All of the groundwater units at the NTS are Class II, groundwater currently (IIA) or potentially (IIB) a source of drinking water. The Classification Review Area (CRA) for the NTS is defined as the standard two-mile distance from the facility boundary recommended by EPA. The possibility of expanding the CRA was evaluated, but the two-mile distance encompasses the area expected to be impacted by contaminant transport during a 10-year period (EPA,s suggested limit), should a release occur. The CRA is very large as a consequence of the large size of the NTS and the decision to classify the entire site, not individual areas of activity. Because most activities are located many miles hydraulically upgradient of the NTS boundary, the CRA generally provides much more than the usual two-mile buffer required by EPA. The CRA is considered sufficiently large to allow confident determination of the use and value of groundwater and identification of potentially affected users. The size and complex hydrogeology of the NTS are inconsistent with the EPA guideline assumption of a high degree of hydrologic interconnection throughout the review area. To more realistically depict the site hydrogeology, the CRA is subdivided into eight groundwater units. Two main aquifer systems are recognized: the lower carbonate aquifer system and the Cenozoic aquifer system (consisting of aquifers in Quaternary valley fill and Tertiary volcanics). These aquifer systems are further divided geographically based on the location of low permeability boundaries

  8. Data Validation Package May 2016 Groundwater Sampling at the Lakeview, Oregon, Processing Site August 2016

    Energy Technology Data Exchange (ETDEWEB)

    Linard, Joshua [USDOE Office of Legacy Management, Washington, DC (United States); Hall, Steve [Navarro Research and Engineering, Inc., Oak Ridge, TN (United States)

    2016-08-01

    This biennial event includes sampling five groundwater locations (four monitoring wells and one domestic well) at the Lakeview, Oregon, Processing Site. For this event, the domestic well (location 0543) could not be sampled because no one was in residence during the sampling event (Note: notification was provided to the resident prior to the event). Per Appendix A of the Groundwater Compliance Action Plan, sampling is conducted to monitor groundwater quality on a voluntary basis. Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). One duplicate sample was collected from location 0505. Water levels were measured at each sampled monitoring well. The constituents monitored at the Lakeview site are manganese and sulfate. Monitoring locations that exceeded the U.S. Environmental Protection Agency (EPA) Secondary Maximum Contaminant Levels for these constituents are listed in Table 1. Review of time-concentration graphs included in this report indicate that manganese and sulfate concentrations are consistent with historical measurements.

  9. Data Validation Package, December 2015, Groundwater Sampling at the Bluewater, New Mexico, Disposal Site, September 2016

    Energy Technology Data Exchange (ETDEWEB)

    Tsosie, Bernadette [U. S. Department of Energy, Washington, DC (United States). Office of Legacy Management; Johnson, Richard [Navarro Research and Engineering, Oak Ridge, TN (United States)

    2016-09-01

    Groundwater samples were collected from monitoring wells at the Bluewater, New Mexico, Disposal Site to monitor groundwater contaminants as specified in the 1997 Long-Term Surveillance Plan for the DOE Bluewater (UMTRCA Title II) Disposal Site Near Grants, New Mexico (LTSP). Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). A duplicate sample was collected from location HMC-951. Alluvium wells are completed in the alluvial sediments in the former channel of the Rio San Jose, which was covered by basalt lava flows known as the El Malpais, and are identified by the suffix (M). Bedrock wells are completed in the San Andres Limestone/Glorieta Sandstone hydrologic unit (San Andres aquifer) and are identified by the suffix (SG). Wells HMC-951 and OBS-3 are also completed in the San Andres aquifer. The LTSP requires monitoring for molybdenum, selenium, uranium, and polychlorinated biphenyls (PCBs); PCB monitoring occurs only during November sampling events. This event included sampling for an expanded list of analytes to characterize the site aquifers and to support a regional groundwater investigation being conducted by the New Mexico Environment Department.

  10. Denitrification in groundwater at uranium mill tailings sites

    International Nuclear Information System (INIS)

    Goering, Timothy J.; Groffman, Armando; Thomson, Bruce

    1992-01-01

    Nitrates are a major contaminant in groundwater at many Uranium Mill Tailings Remedial Action (UMTRA) sites. Microbial denitrification, the transformation of nitrate to nitrogen gas, may be occurring in groundwater at several UMTRA sites. Denitrification is a biologically mediated process whereby facultative anaerobes use nitrate for respiration under anaerobic conditions. Denitrifying bacteria are ubiquitous in soils, sediments, and water. Denitrification requires nitrate, organic carbon, oxygen-limiting conditions, and trace nutrients, especially phosphorus. The lack of organic carbon is the most common limiting factor for denitrification. Denitrification occurs under a limited range of temperature and pH. The uranium milling processes used at UMTRA sites provided a readily available source of carbon and nitrates for denitrifying bacteria. At the Maybell, Colorado, site, the denitrifying organisms Pseudomonas, Flavobacterium and Acinetobacter were identified in core samples of materials from beneath the tailings. In addition, microcosm experiments simulating aquifer conditions beneath the tailings pile showed an average 40 percent decrease in nitrate concentrations over 13 days. At the New Rifle, Colorado, site, aquifer conditions appear favorable for denitrification. Nitrate and organic carbon are readily available in the groundwater, and redox conditions beneath and downgradient of the tailings pile are relatively anoxic. Downgradient from the tailings, total nitrogen is being removed from the groundwater system at a greater rate than the geochemically conservative anion, chloride. This removal may be due to denitrification and adsorption of ammonium onto clay and silt particles. (author)

  11. Denitrification in groundwater at uranium mill tailings sites

    Energy Technology Data Exchange (ETDEWEB)

    Goering, Timothy J [Jacobs Engineering Group, Inc., Albuquerque, NM (United States); Groffman, Armando [Roy F. Weston, Inc., Albuquerque, NM (United States); Thomson, Bruce [University of New Mexico, Albuquerque, NM (United States)

    1992-07-01

    Nitrates are a major contaminant in groundwater at many Uranium Mill Tailings Remedial Action (UMTRA) sites. Microbial denitrification, the transformation of nitrate to nitrogen gas, may be occurring in groundwater at several UMTRA sites. Denitrification is a biologically mediated process whereby facultative anaerobes use nitrate for respiration under anaerobic conditions. Denitrifying bacteria are ubiquitous in soils, sediments, and water. Denitrification requires nitrate, organic carbon, oxygen-limiting conditions, and trace nutrients, especially phosphorus. The lack of organic carbon is the most common limiting factor for denitrification. Denitrification occurs under a limited range of temperature and pH. The uranium milling processes used at UMTRA sites provided a readily available source of carbon and nitrates for denitrifying bacteria. At the Maybell, Colorado, site, the denitrifying organisms Pseudomonas, Flavobacterium and Acinetobacter were identified in core samples of materials from beneath the tailings. In addition, microcosm experiments simulating aquifer conditions beneath the tailings pile showed an average 40 percent decrease in nitrate concentrations over 13 days. At the New Rifle, Colorado, site, aquifer conditions appear favorable for denitrification. Nitrate and organic carbon are readily available in the groundwater, and redox conditions beneath and downgradient of the tailings pile are relatively anoxic. Downgradient from the tailings, total nitrogen is being removed from the groundwater system at a greater rate than the geochemically conservative anion, chloride. This removal may be due to denitrification and adsorption of ammonium onto clay and silt particles. (author)

  12. Quarterly report of RCRA groundwater monitoring data for period April 1 through June 30, 1994

    International Nuclear Information System (INIS)

    1994-10-01

    Hanford Site interim-status groundwater monitoring projects are conducted as either background, indicator parameter evaluation, or groundwater quality assessment monitoring programs as defined in the Resource Conservation and Recovery Act of 1976 (RCRA); and ''Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities,'' as amended (40 Code of Federal Regulations [CFR] 265). Compliance with the 40 CFR 265 regulations is required by the Washington Administrative Code (WAC) 173-303. This report contains data from Hanford Site groundwater monitoring projects. Westinghouse Hanford Company manages RCRA groundwater monitoring projects for federal facilities on the Hanford Site. Project management, specifying data needs, performing quality control oversight, managing data, and preparing project sampling schedules are all parts of this responsibility. This quarterly report contains data received between May 20 and August 19, 1994, which are the cutoff dates for this reporting period. This report may contain not only data from the April through June quarter but also data from earlier sampling events that were not previously reported

  13. 2015 Groundwater Monitoring Report Project Shoal Area: Subsurface Correction Unit 447

    Energy Technology Data Exchange (ETDEWEB)

    Findlay, Rick [Navarro Research and Engineering, Oak Ridge, TN (United States)

    2016-04-01

    The Project Shoal Area in Nevada was the site of a 12-kiloton-yield underground nuclear test in 1963. Although the surface of the site has been remediated, investigation of groundwater contamination resulting from the test is still in the corrective action process. Annual sampling and hydraulic head monitoring are conducted at the site as part of the subsurface corrective action strategy. The corrective action strategy is currently focused on revising the site conceptual model (SCM) and evaluating the adequacy of the monitoring well network. Some aspects of the SCM are known; however, two major concerns are the uncertainty in the groundwater flow direction and the cause of rising water levels in site wells west of the shear zone. Water levels have been rising in the site wells west of the shear zone since the first hydrologic characterization wells were installed in 1996. Although water levels in wells west of the shear zone continue to rise, the rate of increase is less than in previous years. The SCM will be revised, and an evaluation of the groundwater monitoring network will be conducted when water levels at the site have stabilized to the agreement of both the U.S. Department of Energy Office of Legacy Management and the Nevada Division of Environmental Protection.

  14. An overview of geophysical technologies appropriate for characterization and monitoring at fractured-rock sites

    Science.gov (United States)

    Geophysical methods are used increasingly for characterization and monitoring at remediation sites in fractured-rock aquifers. The complex heterogeneity of fractured rock poses enormous challenges to groundwater remediation professionals, and new methods are needed to cost-effect...

  15. Field site investigation: Effect of mine seismicity on groundwater hydrology

    International Nuclear Information System (INIS)

    Ofoegbu, G.I.; Hsiung, S.; Chowdhury, A.H.

    1995-04-01

    The results of a field investigation on the groundwater-hydrologic effect of mining-induced earthquakes are presented in this report. The investigation was conducted at the Lucky Friday Mine, a silver-lead-zinc mine in the Coeur d'Alene Mining District of Idaho. The groundwater pressure in sections of three fracture zones beneath the water table was monitored over a 24-mo period. The fracture zones were accessed through a 360-m-long inclined borehole, drilled from the 5,700 level station of the mine. The magnitude, source location, and associated ground motions of mining-induced seismic events were also monitored during the same period, using an existing seismic instrumentation network for the mine, augmented with additional instruments installed specifically for the project by the center for Nuclear Waste Regulatory Analyses (CNWRA). More than 50 seismic events of Richter magnitude 1.0 or larger occurred during the monitoring period. Several of these events caused the groundwater pressure to increase, whereas a few caused it to decrease. Generally, the groundwater pressure increased as the magnitude of seismic event increased; for an event of a given magnitude, the groundwater pressure increased by a smaller amount as the distance of the observation point from the source of the event increased. The data was examined using regression analysis. Based on these results, it is suggested that the effect of earthquakes on groundwater flow may be better understood through mechanistic modeling. The mechanical processes and material behavior that would need to be incorporated in such a model are examined. They include a description of the effect of stress change on the permeability and water storage capacity of a fracture rock mass; transient fluid flow; and the generation and transmission of seismic waves through the rock mass

  16. Prioritization and accelerated remediation of groundwater contamination in the 200 Areas of the Hanford Site, Washington

    International Nuclear Information System (INIS)

    Wittreich, C.D.; Ford, B.H.

    1993-04-01

    The Hanford Site, operated by the US Department of Energy (DOE), occupies about 1,450 km 2 (560 mi 2 ) of the southeastern part of Washington State north of the confluence of the Yakima and Columbia Rivers. The Hanford Site is organized into numerically designated operational areas. The 200 Areas, located near the center of the Hanford Site, encompasses the 200 West, East and North Areas and cover an area of over 40 km 2 . The Hanford Site was originally designed, built, and operated to produce plutonium for nuclear weapons using production reactors and chemical reprocessing plants. Operations in the 200 Areas were mainly related to separation of special nuclear materials from spent nuclear fuel and contain related chemical and fuel processing and waste management facilities. Large quantities of chemical and radioactive waste associated with these processes were often disposed to the environment via infiltration structures such as cribs, ponds, ditches. This has resulted in over 25 chemical and radionuclide groundwater plumes, some of which have reached the Columbia River. An Aggregate Area Management Study program was implemented under the Hanford Federal Facility Agreement and Consent Order to assess source and groundwater contamination and develop a prioritized approach for managing groundwater remediation in the 200 Areas. This included a comprehensive evaluation of existing waste disposal and environmental monitoring data and the conduct of limited field investigations (DOE-RL 1992, 1993). This paper summarizes the results of groundwater portion of AAMS program focusing on high priority contaminant plume distributions and the groundwater plume prioritization process. The objectives of the study were to identify groundwater contaminants of concern, develop a conceptual model, refine groundwater contaminant plume maps, and develop a strategy to expedite the remediation of high priority contaminants through the implementation of interim actions

  17. Mixed Waste Management Facility groundwater monitoring report: Third quarter 1994

    International Nuclear Information System (INIS)

    1994-12-01

    Currently, 125 wells monitor groundwater quality in the uppermost aquifer beneath the Mixed Waste Management Facility (MWMF) at the Savannah River Site. Samples from the wells are analyzed for selected heavy metals, herbicides/pesticides, indicator parameters, radionuclides, volatile organic compounds, and other constituents. As in previous quarters, tritium and trichloroethylene were the most widespread elevated constituents during third quarter 1994. Sixty-four (51%) of the 125 monitoring wells contained elevated tritium activities. Trichloroethylene concentrations exceeded the final PDWS in 22 (18%) wells. Chloroethene, 1,1-dichloroethylene, and tetrachloroethylene, elevated in one or more wells during third quarter 1994, also occurred in elevated levels during second quarter 1994. These constituents generally were elevated in the same wells during both quarters. Gross alpha, which was elevated in only one well during second quarter 1994, was elevated again during third quarter. Mercury, which was elevated during first quarter 1994, was elevated again in one well. Dichloromethane was elevated in two wells for the first time in several quarters

  18. Field Tests of Real-time In-situ Dissolved CO2 Monitoring for CO2 Leakage Detection in Groundwater

    Science.gov (United States)

    Yang, C.; Zou, Y.; Delgado, J.; Guzman, N.; Pinedo, J.

    2016-12-01

    Groundwater monitoring for detecting CO2 leakage relies on groundwater sampling from water wells drilled into aquifers. Usually groundwater samples are required be collected periodically in field and analyzed in the laboratory. Obviously groundwater sampling is labor and cost-intensive for long-term monitoring of large areas. Potential damage and contamination of water samples during the sampling process can degrade accuracy, and intermittent monitoring may miss changes in the geochemical parameters of groundwater, and therefore signs of CO2 leakage. Real-time in-situ monitoring of geochemical parameters with chemical sensors may play an important role for CO2 leakage detection in groundwater at a geological carbon sequestration site. This study presents field demonstration of a real-time in situ monitoring system capable of covering large areas for detection of low levels of dissolved CO2 in groundwater and reliably differentiating natural variations of dissolved CO2 concentration from small changes resulting from leakage. The sand-alone system includes fully distributed fiber optic sensors for carbon dioxide detection with a unique sensor technology developed by Intelligent Optical Systems. The systems were deployed to the two research sites: the Brackenridge Field Laboratory where the aquifer is shallow at depths of 10-20 ft below surface and the Devine site where the aquifer is much deeper at depths of 140 to 150 ft. Groundwater samples were periodically collected from the water wells which were installed with the chemical sensors and further compared to the measurements of the chemical sensors. Our study shows that geochemical monitoring of dissolved CO2 with fiber optic sensors could provide reliable CO2 leakage signal detection in groundwater as long as CO2 leakage signals are stronger than background noises at the monitoring locations.

  19. Groundwater Level Monitoring using Levelogger and the Importance of Long-Term Groundwater Level Data

    International Nuclear Information System (INIS)

    Nazran Harun; Ahmad Hasnulhadi Che Kamaruddin

    2016-01-01

    This review paper is focused on groundwater level monitoring using levelogger and the importance of long-term groundwater level data. The levelogger provides an inexpensive and convenient method to measure level, temperature and conductivity all in one probe. It can provide real time view as data is being recorded by the connected data logger. Water-level measurements from observation wells are the principal source of information about the hydrologic stresses acting on aquifers and how these stresses affect ground-water recharge, storage, and discharge. Long-term and systematic measurements of water levels provide essential data needed to evaluate changes in the resource over time to develop ground-water models, forecast trends and monitor the effectiveness of groundwater management. A significant advantage of this method of data collection and reporting are the groundwater level data can be updated real time. The accessibility of water level data is greatly enhanced by the Geographic Information System (GIS) to visually illustrate the locations of observation wells relative to relevant topographic, geologic, or hydrologic features. GIS and internet greatly enhance the capability for retrieval and transmittal of water-level data to potential users. (author)

  20. January 2012 Groundwater Sampling at the Gnome-Coach, New Mexico, Site (Data Validation Package)

    International Nuclear Information System (INIS)

    2012-01-01

    Annual sampling was conducted January 18, 2012, to monitor groundwater for potential radionuclide contamination at the Gnome-Coach site in New Mexico. The sampling was performed as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PLN/S04351, continually updated). Well LRL-7 was not sampled per instruction from the lead. A duplicate sample was collected from well USGS-1 and water levels were measured in the monitoring wells onsite.

  1. January 2012 Groundwater Sampling at the Gnome-Coach, New Mexico, Site (Data Validation Package)

    Energy Technology Data Exchange (ETDEWEB)

    Findlay, Richard C. [S.M. Stoller Corporation, Broomfield, CO (United States)

    2012-12-01

    Annual sampling was conducted January 18, 2012, to monitor groundwater for potential radionuclide contamination at the Gnome-Coach site in New Mexico. The sampling was performed as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PLN/S04351, continually updated). Well LRL-7 was not sampled per instruction from the lead. A duplicate sample was collected from well USGS-1 and water levels were measured in the monitoring wells onsite.

  2. May 2013 Groundwater and Surface Water Sampling at the Rio Blanco, Colorado, Site (Data Validation Package)

    Energy Technology Data Exchange (ETDEWEB)

    Hutton, Rick [S.M. Stoller Corporation, Broomfield, CO (United States)

    2013-10-01

    Annual sampling was conducted at the Rio Blanco, Colorado, site for the Long-Term Hydrologic Monitoring Program May 14-16, 2013, to monitor groundwater and surface water for potential radionuclide contamination. Sampling and analyses were conducted as specified in Sampling and Analysis Plan for the U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). A duplicate sample was collected from location CER #1 Black Sulphur. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectrometry and for tritium using the conventional and enrichment methods.

  3. Sanitary Landfill groundwater monitoring report. Fourth quarterly report and summary 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    Fifty-seven wells of the LFW series monitor groundwater quality in Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill at the Savannah River Site (SRS). These wells are sampled quarterly to comply with the South Carolina Department of Health and Environmental Control Domestic Waste Permit DWP-087A and as part of the SRS Groundwater Monitoring Program. Dichloromethane a common laboratory contaminant, and trichloroethylene were the most widespread constituents exceeding standards during 1993. Benzene, chlorobenzene, chloroethene 1,2 dichloroethane, 1,1-dichloroethylene, 1,2-dichloropropane, gross alpha, lindane, mercury, tetrachloroethylene, and tritium also exceeded standards in one or more wells. No groundwater contaminants were observed in wells screened in the lower section of Steed Pond Aquifer.

  4. Sanitary landfill groundwater monitoring report. Fourth quarter 1994 and 1994 summary

    International Nuclear Information System (INIS)

    1995-02-01

    Eighty-nine wells of the LFW series monitor groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill at the Savannah River Site (SRS). These wells are sampled quarterly to comply with the South Carolina Department of Health and Environmental Control Domestic Waste Permit DWP-087A and as part of the SRS Groundwater Monitoring Program. Dichloromethane, a common laboratory contaminant, and trichloroethylene were the most widespread constituents exceeding standards during 1994. Benzene, chloroethene (vinyl chloride), 1,2-dichloroethane, 1,1-dichloroethylene, 1,2-dichloropropane, gross alpha, mercury, nonvolatile beta, tetrachloroethylene, and tritium also exceeded standards in one or more wells. The groundwater flow direction in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill was to the southeast (universal transverse Mercator coordinates). The flow rate in this unit was approximately 140 ft/year during first and fourth quarters 1994

  5. Open Source Platform Application to Groundwater Characterization and Monitoring

    Science.gov (United States)

    Ntarlagiannis, D.; Day-Lewis, F. D.; Falzone, S.; Lane, J. W., Jr.; Slater, L. D.; Robinson, J.; Hammett, S.

    2017-12-01

    Groundwater characterization and monitoring commonly rely on the use of multiple point sensors and human labor. Due to the number of sensors, labor, and other resources needed, establishing and maintaining an adequate groundwater monitoring network can be both labor intensive and expensive. To improve and optimize the monitoring network design, open source software and hardware components could potentially provide the platform to control robust and efficient sensors thereby reducing costs and labor. This work presents early attempts to create a groundwater monitoring system incorporating open-source software and hardware that will control the remote operation of multiple sensors along with data management and file transfer functions. The system is built around a Raspberry PI 3, that controls multiple sensors in order to perform on-demand, continuous or `smart decision' measurements while providing flexibility to incorporate additional sensors to meet the demands of different projects. The current objective of our technology is to monitor exchange of ionic tracers between mobile and immobile porosity using a combination of fluid and bulk electrical-conductivity measurements. To meet this objective, our configuration uses four sensors (pH, specific conductance, pressure, temperature) that can monitor the fluid electrical properties of interest and guide the bulk electrical measurement. This system highlights the potential of using open source software and hardware components for earth sciences applications. The versatility of the system makes it ideal for use in a large number of applications, and the low cost allows for high resolution (spatially and temporally) monitoring.

  6. Metallurgical Laboratory Hazardous Waste Management Facility groundwater monitoring report: Third quarter 1993

    International Nuclear Information System (INIS)

    1993-12-01

    During third quarter 1993, samples from AMB groundwater monitoring wells at the Metallurgical Laboratory Hazardous Waste Management Facility were analyzed for certain heavy metals, indicator parameters, radionuclides, volatile organic compounds, and other constituents. Eight parameters exceeded standards during the quarter. As in previous quarters, tetrachloroethylene and trichloroethylene exceeded final Primary Drinking Water Standards; and aluminum, iron, lead, manganese, pH, and total organic halogens exceeded the Savannah River Site Flag 2 criteria in one or more of the wells. Groundwater flow direction and rate in the water-table unit were similar to previous quarters

  7. Y-12 Groundwater Protection Program Groundwater Monitoring Data Compendium, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    2006-12-01

    This document is a compendium of water quality and hydrologic characterization data obtained through December 2005 from the network of groundwater monitoring wells and surface water sampling stations (including springs and building sumps) at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee that have been sampled since January 2003. The primary objectives of this document, hereafter referenced as the Y-12 Groundwater Protection Program (GWPP) Compendium, are to: (1) Serve as a single-source reference for monitoring data that meet the requirements of the Y-12 GWPP, as defined in the Y-12 GWPP Management Plan (BWXT Y-12 L.L.C. [BWXT] 2004); (2) Maintain a detailed analysis and evaluation of the monitoring data for each applicable well, spring, and surface water sampling station, with a focus on results for the primary inorganic, organic, and radiological contaminants in groundwater and surface water at Y-12; and (3) Ensure retention of ''institutional knowledge'' obtained over the long-term (>20-year) history of groundwater and surface water monitoring at Y-12 and the related sources of groundwater and surface water contamination. To achieve these goals, the Y-12 GWPP Compendium brings together salient hydrologic, geologic, geochemical, water-quality, and environmental compliance information that is otherwise disseminated throughout numerous technical documents and reports prepared in support of completed and ongoing environmental contamination assessment, remediation, and monitoring activities performed at Y-12. The following subsections provide background information regarding the overall scope and format of the Y-12 GWPP Compendium and the planned approach for distribution and revision (i.e., administration) of this ''living'' document.

  8. Preliminary report on coal pile, coal pile runoff basins, and ash basins at the Savannah River Site: effects on groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, E. [Westinghouse Savannah River Company, AIKEN, SC (United States)

    1997-04-28

    Coal storage piles, their associated coal pile runoff basins and ash basins could potentially have adverse environmental impacts, especially on groundwater. This report presents and summarizes SRS groundwater and soil data that have been compiled. Also, a result of research conducted on the subject topics, discussions from noted experts in the field are cited. Recommendations are made for additional monitor wells to be installed and site assessments to be conducted.

  9. Alternative Endpoints and Approaches for the Remediation of Contaminated Groundwater at Complex Sites - 13426

    Energy Technology Data Exchange (ETDEWEB)

    Deeb, Rula A.; Hawley, Elisabeth L. [ARCADIS, U.S., 2000 Powell St., 7th Floor, Emeryville, California 94608 (United States)

    2013-07-01

    The goal of United States (U.S.) Department of Energy's (DOE)'s environmental remediation programs is to restore groundwater to beneficial use, similar to many other Federal and state environmental cleanup programs. Based on past experience, groundwater remediation to pre-contamination conditions (i.e., drinking water standards or non-detectable concentrations) can be successfully achieved at many sites. At a subset of the most complex sites, however, complete restoration is not likely achievable within the next 50 to 100 years using today's technology. This presentation describes several approaches used at complex sites in the face of these technical challenges. Many complex sites adopted a long-term management approach, whereby contamination was contained within a specified area using active or passive remediation techniques. Consistent with the requirements of their respective environmental cleanup programs, several complex sites selected land use restrictions and used risk management approaches to accordingly adopt alternative cleanup goals (alternative endpoints). Several sites used long-term management designations and approaches in conjunction with the alternative endpoints. Examples include various state designations for groundwater management zones, technical impracticability (TI) waivers or greater risk waivers at Superfund sites, and the use of Monitored Natural Attenuation (MNA) or other passive long-term management approaches over long time frames. This presentation will focus on findings, statistics, and case studies from a recently-completed report for the Department of Defense's Environmental Security Technology Certification Program (ESTCP) (Project ER-0832) on alternative endpoints and approaches for groundwater remediation at complex sites under a variety of Federal and state cleanup programs. The primary objective of the project was to provide environmental managers and regulators with tools, metrics, and information needed

  10. Alternative Endpoints and Approaches for the Remediation of Contaminated Groundwater at Complex Sites - 13426

    International Nuclear Information System (INIS)

    Deeb, Rula A.; Hawley, Elisabeth L.

    2013-01-01

    The goal of United States (U.S.) Department of Energy's (DOE)'s environmental remediation programs is to restore groundwater to beneficial use, similar to many other Federal and state environmental cleanup programs. Based on past experience, groundwater remediation to pre-contamination conditions (i.e., drinking water standards or non-detectable concentrations) can be successfully achieved at many sites. At a subset of the most complex sites, however, complete restoration is not likely achievable within the next 50 to 100 years using today's technology. This presentation describes several approaches used at complex sites in the face of these technical challenges. Many complex sites adopted a long-term management approach, whereby contamination was contained within a specified area using active or passive remediation techniques. Consistent with the requirements of their respective environmental cleanup programs, several complex sites selected land use restrictions and used risk management approaches to accordingly adopt alternative cleanup goals (alternative endpoints). Several sites used long-term management designations and approaches in conjunction with the alternative endpoints. Examples include various state designations for groundwater management zones, technical impracticability (TI) waivers or greater risk waivers at Superfund sites, and the use of Monitored Natural Attenuation (MNA) or other passive long-term management approaches over long time frames. This presentation will focus on findings, statistics, and case studies from a recently-completed report for the Department of Defense's Environmental Security Technology Certification Program (ESTCP) (Project ER-0832) on alternative endpoints and approaches for groundwater remediation at complex sites under a variety of Federal and state cleanup programs. The primary objective of the project was to provide environmental managers and regulators with tools, metrics, and information needed to evaluate

  11. Integrated environmental monitoring program at the Hanford Site

    International Nuclear Information System (INIS)

    Jaquish, R.E.

    1990-08-01

    The US Department of Energy's Hanford Site, north of Richland, Washington, has a mission of defense production, waste management, environmental restoration, advanced reactor design, and research development. Environmental programs at Hanford are conducted by Pacific Northwest Laboratory (PNL) and the Westinghouse Hanford Company (WHC). The WHC environmental programs include the compliance and surveillance activities associated with site operations and waste management. The PNL environmental programs address the site-wide and the of-site areas. They include the environmental surveillance and the associated support activities, such as dose calculations, and also the monitoring of environmental conditions to comply with federal and state environmental regulations on wildlife and cultural resources. These are called ''independent environmental programs'' in that they are conducted completely separate from site operations. The Environmental Surveillance and Oversight Program consists of the following projects: surface environmental surveillance; ground-water surveillance; wildlife resources monitoring; cultural resources; dose overview; radiation standards and calibrations; meteorological and climatological services; emergency preparedness

  12. In Situ Monitoring of Groundwater Contamination Using the Kalman Filter For Sustainable Remediation

    Science.gov (United States)

    Schmidt, F.; Wainwright, H. M.; Faybishenko, B.; Denham, M. E.; Eddy-Dilek, C. A.

    2017-12-01

    Sustainable remediation - based on less intensive passive remediation and natural attenuation - has become a desirable remediation alternative at contaminated sites. Although it has a number of benefits, such as reduced waste and water/energy usage, it carries a significant burden of proof to verify plume stability and to ensure insignificant increase of risk to public health. Modeling of contaminant transport is still challenging despite recent advances in numerical methods. Long-term monitoring has, therefore, become a critical component in sustainable remediation. However, the current approach, which relies on sparse groundwater sampling, is problematic, since it could miss sudden significant changes in plume behavior. A new method is needed to combine existing knowledge about contaminant behavior and latest advances in in situ groundwater sensors. This study presents an example of the effective use of the Kalman filter approach to estimate contaminant concentrations, based on in situ measured water quality parameters (e.g. electrical conductivity and pH) along with the results of sparse groundwater sampling. The Kalman filter can effectively couple physical models and data correlations between the contaminant concentrations and in situ measured variables. We aim (1) to develop a framework capable of integrating different data types to provide accurate contaminant concentration estimates, (2) to demonstrate that these results remain reliable, even when the groundwater sampling frequency is reduced, and (3) to evaluate the future efficacy of this strategy using reactive transport simulations. This framework can also serve as an early warning system for detecting unexpected plume migration. We demonstrate our approach using historical and current groundwater data from the Savannah River Site (SRS) F-Area Seepage Basins to estimate uranium and tritium concentrations. The results show that the developed method can provide reliable estimates of contaminant

  13. Metallurgical Laboratory Hazardous Waste Management Facility groundwater monitoring report

    International Nuclear Information System (INIS)

    Thompson, C.Y.

    1993-03-01

    During fourth quarter 1992, samples from 18 groundwater monitoring wells of the AMB series at the Metallurgical Laboratory Hazardous Waste Management Facility were analyzed for certain heavy metals, indicator parameters, radionuclides, volatile organic compounds, and other constituents. Six parameters exceeded final Primary Drinking Water Standards (PDWS) and the Savannah River Site Flag 2 criteria during the quarter. The results for fourth quarter 1992 are fairly consistent with the rest of the year's data. Tetrachloroethylene exceeded the final PDWS in well AMB 4D only two of the four quarters; in the other three wells in which it was elevated, it was present at similar levels throughout the year. Trichloroethylene consistently exceeded its PDWS in wells AMB 4A, 4B, 4D, 5, and 7A during the year. Trichloroethylene was elevated in well AMB 6 only during third and fourth quarters and in well AMB 7 only during fourth quarter. Total alpha-emitting radium was above the final PDWS for total radium in well AMB 5 at similar levels throughout the year and exceeded the PDWS during one of the three quarters it was analyzed for (third quarter 1992) in well AMB 10B

  14. Understanding large scale groundwater flow to aid in repository siting

    International Nuclear Information System (INIS)

    Davison, C.C.; Brown, A.; Gascoyne, M.; Stevenson, D.R.; Ophori, D.U.

    1996-01-01

    Atomic Energy of Canada Limited (AECL) with support from Ontario Hydro has developed a concept for the safe disposal of Canada's nuclear fuel waste in a deep (500 to 1000 m) mined repository in plutonic rocks of the Canadian Shield. The disposal concept involves the use of multiple engineered and natural barriers to ensure long-term safety. The geosphere, comprised of the enclosing rock mass and the groundwater which occurs in cracks and pores in the rock, is expected to serve as an important natural barrier to the release and migration of wastes from the engineered repository. Although knowledge of the physical and chemical characteristics of the groundwater in the rock at potential repository sites is needed to help design the engineered barriers of the repository it can also be used to aid in repository siting, to take greater advantage of natural conditions in the geosphere to enhance its role as a barrier in the overall disposal system

  15. Conception to set up a new groundwater monitoring network in Serbia

    Directory of Open Access Journals (Sweden)

    Stevanović Zoran

    2015-01-01

    Full Text Available The Water Framework Directive of the European Union (WFD adopted in year 2000. outlines number of water policy and management actions, where monitoring is of primary importance. Following WFD principles Serbia adopted new legislation in water sector aiming to conserve or achieve good ecological, chemical and quantitative status of water resources. Serbia, as most of the countries of former Yugoslavia mostly uses groundwater for drinking water supply (over 75%. However, the current situation in monitoring of groundwater quality and quantity is far from satisfactory. Several hundred piezometers for observation of groundwater level under auspices of the Hydrometeorological Service of Serbia are located mostly in alluviums of major rivers, while some 70 piezometers are used by the Serbian Environmental Protection Agency for controlling groundwater quality. Currently only 20% of delineated groundwater bodies are under observation. This paper evaluates current conditions and proposes to expand national monitoring network to cover most of groundwater bodies or their groups, to raise number of observation points to a density of ca. 1 object /200 km2 and to include as much as possible actual waterworks in this network. Priority in selecting sites for new observation piezometers or springs has to be given to groundwater bodies under threats, either to their water reserves or their water chemical quality. For the former, an assessment of available renewable reserves versus exploitation capacity is needed, while to estimate pressures on water quality, the best way is to compare aquifers’ vulnerability against anthropogenic (diffuse and punctual hazards. [Projekat Ministarstva nauke Republike Srbije, br. 176022

  16. Study of a waste disposal site and it's groundwater contamination ...

    African Journals Online (AJOL)

    The choice of an old borrow pit at Avu village in the outskirts of Owerri Urban as the permanent dump for wastes from Owerri Urban is evaluated in terms of the hydrogeology of the site. The depth to the groundwater table or the vadose zone is 9 – 9.5m; the texture of the soils shows fine attenuative materials that can inhibit ...

  17. Groundwater flow modelling at the Olkiluoto site, Finland

    International Nuclear Information System (INIS)

    Loefman, J.

    1996-01-01

    Preliminary site investigations for spent fuel disposal has been carried out at the Olkiluoto site, Finland. During the investigations high salt concentrations were measured in the groundwater samples deep in the bedrock. In this study, the groundwater flow is analyzed at Olkiluoto taking into account the effects of salinity. The transient simulations are performed by solving coupled and non-linear partial differential equations describing the flow and solute transport. A site-specific simulation model for flow and transport is developed on the basis of the field investigations. The simulations are carried out for a period that started when the highest hills at Olkiluoto rose above sea level. The simulation period continues until the present day. The results of the coupled simulations were strongly dependent on the poorly known initial salinity distribution in the solution domain. The DP approximation together with the EC approximation proved to be a useful complementary approach when simulating solute transport in a fractured rock mass. The simulations also confirm the assumption that the realistic simulation of groundwater flow at Olkiluoto requires taking into account the effects of salinity

  18. Nevada Test Site 2008 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites

    International Nuclear Information System (INIS)

    2009-01-01

    Environmental monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site. These data are associated with radiation exposure, air, groundwater, meteorology, vadose zone, subsidence, and biota. This report summarizes the 2008 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment (PA) activities

  19. Tritium/Helium-3 dating of groundwaters around Chernobyl site

    Energy Technology Data Exchange (ETDEWEB)

    Fourre, E.; Jean-Baptiste, P.; Dapoigny, A.; Baumier, D. [CEA, CNRS, LSCE, UVSQ, IPSL, F-91191 Gif Sur Yvette (France); Aquilina, L.; Labasque, T. [Geosciences Rennes - GR, CNRS UMR 6118, F-35000 Rennes (France); La Salle, C. Le Gal; Lancelot, J. [Nimes Univ, GIS/CEREGE, Nimes (France)

    2010-07-01

    Complete text of publication follows: Estimates of groundwater age allow geo-hydrologists to calculate recharge rates, assess aquifers contamination risks, and calibrate complex flow models. The {sup 3}H/{sup 3}He dating method offers a direct measure for the time since groundwater had its last gas exchange with the atmosphere. The aim of this study is to bring temporal constraints to the radionuclide transport model in the Chernobyl test site. Samples have been collected in the exclusion zone, close to a trench filled with low-level wastes, both in the upper eolian sand layer and deeper in the alluvial deposit. CFCs and SF6 have been measured as well in order to compare dating methods. The {sup 3}H/{sup 3}He results presented in Figure 1 clearly show increasing ages with depth (below groundwater table). This fully supports the groundwater stratification developed in the hydrogeological model of the area. The infiltration recharge rate is a sensitive key parameter of the model, and our data are consistent with a rate about 200 mm/yr (maximum estimate)

  20. Interim-status groundwater monitoring plan for the 216-B-63 trench. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Sweeney, M.D.

    1995-06-13

    This document outlines the groundwater monitoring plan for interim-status detection-level monitoring of the 216-B-63 Trench. This is a revision of the initial groundwater monitoring plan prepared for Westinghouse Hanford Company (WHC) by Bjornstad and Dudziak (1989). The 216-B-63 Trench, located at the Hanford Site in south-central Washington State, is an open, unlined, earthern trench approximately 1.2 m (4 ft) wide at the bottom, 427 m (1400 ft) long, and 3 m (10 ft) deep that received wastewater containing hazardous waste and radioactive materials from B Plant, located in the 200 East Area. Liquid effluent discharge to the 216-B-63 Trench began in March 1970 and ceased in February 1992. The trench is now managed by Waste Tank Operations.

  1. Interim-status groundwater monitoring plan for the 216-B-63 trench. Revision 1

    International Nuclear Information System (INIS)

    Sweeney, M.D.

    1995-01-01

    This document outlines the groundwater monitoring plan for interim-status detection-level monitoring of the 216-B-63 Trench. This is a revision of the initial groundwater monitoring plan prepared for Westinghouse Hanford Company (WHC) by Bjornstad and Dudziak (1989). The 216-B-63 Trench, located at the Hanford Site in south-central Washington State, is an open, unlined, earthern trench approximately 1.2 m (4 ft) wide at the bottom, 427 m (1400 ft) long, and 3 m (10 ft) deep that received wastewater containing hazardous waste and radioactive materials from B Plant, located in the 200 East Area. Liquid effluent discharge to the 216-B-63 Trench began in March 1970 and ceased in February 1992. The trench is now managed by Waste Tank Operations

  2. Optimal Design of Multitype Groundwater Monitoring Networks Using Easily Accessible Tools.

    Science.gov (United States)

    Wöhling, Thomas; Geiges, Andreas; Nowak, Wolfgang

    2016-11-01

    Monitoring networks are expensive to establish and to maintain. In this paper, we extend an existing data-worth estimation method from the suite of PEST utilities with a global optimization method for optimal sensor placement (called optimal design) in groundwater monitoring networks. Design optimization can include multiple simultaneous sensor locations and multiple sensor types. Both location and sensor type are treated simultaneously as decision variables. Our method combines linear uncertainty quantification and a modified genetic algorithm for discrete multilocation, multitype search. The efficiency of the global optimization is enhanced by an archive of past samples and parallel computing. We demonstrate our methodology for a groundwater monitoring network at the Steinlach experimental site, south-western Germany, which has been established to monitor river-groundwater exchange processes. The target of optimization is the best possible exploration for minimum variance in predicting the mean travel time of the hyporheic exchange. Our results demonstrate that the information gain of monitoring network designs can be explored efficiently and with easily accessible tools prior to taking new field measurements or installing additional measurement points. The proposed methods proved to be efficient and can be applied for model-based optimal design of any type of monitoring network in approximately linear systems. Our key contributions are (1) the use of easy-to-implement tools for an otherwise complex task and (2) yet to consider data-worth interdependencies in simultaneous optimization of multiple sensor locations and sensor types. © 2016, National Ground Water Association.

  3. M-Area hazardous waste management facility groundwater monitoring report -- first quarter 1994. Volume 1

    International Nuclear Information System (INIS)

    Evans, C.S.; Washburn, F.; Jordan, J.; Van Pelt, R.

    1994-05-01

    This report describes the groundwater monitoring and corrective action program at the M-Area Hazardous Waste Management Facility (HWMF) at the Savannah River Site (SRS) during first quarter 1994 as required by South Carolina Hazardous Waste Permit SC1-890-008-989 and section 264.100(g) of the South Carolina Hazardous Waste Management Regulations. During first quarter 1994, 42 point-of-compliance (POC) wells at the M-Area HWMF were sampled for drinking water parameters

  4. Metallurgical Laboratory Hazardous Waste Management Facility groundwater monitoring report. First quarter 1995

    International Nuclear Information System (INIS)

    1995-06-01

    During first quarter 1995, samples from AMB groundwater monitoring wells at the Metallurgical Laboratory Hazardous Waste Management Facility (Met Lab HWMF) were analyzed for selected heavy metals, field measurements, radionuclides, volatile organic compounds, and other constituents. Six parameters exceeded standards during the quarter. As in previous quarters, tetrachloroethylene and trichloroethylene exceeded final Primary Drinking Water Standards (PDWS). Total organic halogens exceeded its Savannah River Site (SRS) Flag 2 criterion during first quarter 1995 as in fourth quarter 1994. Aluminum, iron, and manganese, which were not analyzed for during fourth quarter 1994, exceeded the Flag 2 criteria in at least two wells each during first quarter 1995. Groundwater flow direction and rate in the M-Area Aquifer Zone were similar to previous quarters. Conditions affecting the determination of groundwater flow directions and rates in the Upper Lost Lake Aquifer Zone, Lower Lost Lake Aquifer Zone, and the Middle Sand Aquifer Zone of the Crouch Branch Confining Unit were also similar to previous quarters

  5. Groundwater Monitoring Report Central Nevada Test Area, Corrective Action Unit 443

    Energy Technology Data Exchange (ETDEWEB)

    None

    2008-04-01

    This report presents the 2007 groundwater monitoring results collected by the U.S. Department of Energy (DOE) Office of Legacy Management (LM) for the Central Nevada Test Area (CNTA) Corrective Action Unit (CAU) 443. Responsibility for the environmental site restoration of the CNTA was transferred from the DOE Office of Environmental Management (DOE-EM) to DOE-LM on October 1, 2006. Requirements for CAU 443 are specified in the Federal Facility Agreement and Consent Order (FFACO 2005) entered into by DOE, the U.S. Department of Defense, and the State of Nevada and includes groundwater monitoring in support of site closure. This is the first groundwater monitoring report prepared by DOE-LM for the CNTA The CNTA is located north of U.S. Highway 6, approximately 30 miles north of Warm Springs in Nye County, Nevada (Figure 1). Three emplacement boreholes, UC-1, UC-3, and UC-4, were drilled at the CNTA for underground nuclear weapons testing. The initial underground nuclear test, Project Faultless, was conducted in borehole UC-1 at a depth of 3,199 feet (ft) (975 meters) below ground surface on January 19, 1968. The yield of the Project Faultless test was estimated to be 0.2 to 1 megaton (DOE 2004). The test resulted in a down-dropped fault block visible at land surface (Figure 2). No further testing was conducted at the CNTA, and the site was decommissioned as a testing facility in 1973.

  6. Geochemical modelling of the groundwater at the Olkiluoto site

    International Nuclear Information System (INIS)

    Pitkaenen, P.; Snellman, M.; Leino-Forsman, H.; Vuorinen, U.

    1994-04-01

    A preliminary model for probable processes responsible for the evolution of the groundwater at the nuclear waste investigation site Olkiluoto (in Finland) is presented. The hydrological data was collected from boreholes drilled down to 1000-m depth into crystalline bedrock. Based on chemical, isotopic, petrographic and hydrological data as well as ion plots and speciation calculations with PHREEQE the thermodynamic controls on the water composition and trends constraining these processes are evaluated. In order to determine the reactions which can explain the changes along the flow path during the evolution of groundwater system and to determine to which extent these reactions take place, mass-balance calculations with the NETPATH program were used. Mass transfer calculations with the EQ6 program were used to test the feasibility of the model derived, to predict reaction paths and composition of equilibrium solutions for the redox reactions. (57 refs., 43 figs., 10 tabs.)

  7. Groundwater screening evaluation/monitoring plan: 200 Area Treated Effluent Disposal Facility (Project W-049H). Revision 1

    International Nuclear Information System (INIS)

    Barnett, D.B.; Davis, J.D.; Collard, L.B.; Freeman, P.B.; Chou, C.J.

    1995-05-01

    This report consists of the groundwater screening evaluation required by Section S.8 of the State Waste Discharge Permit for the 200 Area TEDF. Chapter 1.0 describes the purpose of the groundwater monitoring plan. The information in Chapter 2.0 establishes a water quality baseline for the facility and is the groundwater screening evaluation. The following information is included in Chapter 2.0: Facility description;Well locations, construction, and development data; Geologic and hydrologic description of the site and affected area; Ambient groundwater quality and current use; Water balance information; Hydrologic parameters; Potentiometric map, hydraulic gradients, and flow velocities; Results of infiltration and hydraulic tests; Groundwater and soils chemistry sampling and analysis data; Statistical evaluation of groundwater background data; and Projected effects of facility operation on groundwater flow and water quality. Chapter 3.0 defines, based on the information in Chapter 2.0, how effects of the TEDF on the environment will be evaluated and how compliance with groundwater quality standards will be documented in accordance with the terms and conditions of the permit. Chapter 3.0 contains the following information: Media to be monitored; Wells proposed as the point of compliance in the uppermost aquifer; Basis for monitoring well network and evidence of monitoring adequacy; Contingency planning approach for vadose zone monitoring wells; Which field parameters will be measured and how measurements will be made; Specification of constituents to be sampled and analyzed; and Specification of the sampling and analysis procedures that will be used. Chapter 4.0 provides information on how the monitoring results will be reported and the proposed frequency of monitoring and reporting. Chapter 5.0 lists all the references cited in this monitoring plan. These references should be consulted for additional or more detailed information

  8. Baseline risk assessment of groundwater contamination at the uranium mill tailings site near Shiprock, New Mexico. Draft

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    This report evaluates potential impact to public health or the environment resulting from groundwater contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in a disposal cell on the site in 1986 by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating groundwater contamination. This risk assessment is the first document specific to this site for the Groundwater Project. This risk assessment follows the approach outlined by the US Environmental Protection Agency (EPA). The first step is to evaluate groundwater data collected from monitor wells at the site. Evaluation of these data showed that the main contaminants in the floodplain groundwater are arsenic, magnesium, manganese, nitrate, sodium, sulfate, and uranium. The complete list of contaminants associated with the terrace groundwater could not be determined due to the lack of the background groundwater quality data. However, uranium, nitrate, and sulfate are evaluated since these chemicals are clearly associated with uranium processing and are highly elevated compared to regional waters. It also could not be determined if the groundwater occurring in the terrace is a usable water resource, since it appears to have originated largely from past milling operations. The next step in the risk assessment is to estimate how much of these contaminants people would be exposed to if a drinking well were installed in the contaminated groundwater or if there were exposure to surface expressions of contaminated water. Potential exposures to surface water include incidental contact with contaminated water or sediments by children playing on the floodplain and consumption of meat and milk from domestic animals grazed and watered on the floodplain.

  9. Measures of Groundwater Drought from the Long-term Monitoring Data in Korea

    Science.gov (United States)

    Chung, E.; Park, J.; Woo, N. C.

    2017-12-01

    Recently, drought has been increased in its severity and frequency along the climate change in Korea. There are several criteria for alarming drought, for instance, based on the no-rainfall days, the amount of stream discharge, and the water levels of reservoirs. However, farmers depending on groundwater still have been suffered in preparing drought especially in the Spring. No-rainfall days continue, groundwater exploitation increases, water table declines, stream discharge decreases, and then the effects of drought become serious. Thus, the drought index based on the groundwater level is needed for the preparedness of drought disaster. Palmer et al.(1965, USGS) has proposed a method to set the threshold for the decline of the groundwater level in 5 stages based on the daily water-level data over the last 30 years. In this study, according to Peters et al.(2003), the threshold of groundwater level was estimated using the daily water-level data at five sites with significant drought experiences in Korea. Water levels and precipitations data were obtained from the national groundwater monitoring wells and the automatic weather stations, respectively, for 10 years from 2005 to 2014. From the water-level changes, the threshold was calculated when the value of the drought criterion (c), the ratio of the deficit below the threshold to the deficit below the average, is 0.3. As a result, the monthly drought days were high in 2009 and 2011 in Uiryeong, and from 2005 to 2008 in Boeun. The validity of the approach and the threshold can be evaluated by comparing calculated monthly drought days with recorded drought in the past. Through groundwater drought research, it is expected that not only surface water also groundwater resource management should be implemented more efficiently to overcome drought disaster.

  10. Site scale groundwater flow in Olkiluoto - complementary simulations

    International Nuclear Information System (INIS)

    Loefman, J.

    2000-06-01

    This work comprises of the complementary simulations to the previous groundwater flow analysis at the Olkiluoto site. The objective is to study the effects of flow porosity, conceptual model for solute transport, fracture zones, land uplift and initial conditions on the results. The numerical simulations are carried out up to 10000 years into the future employing the same modelling approach and site-specific flow and transport model as in the previous work except for the differences in the case descriptions. The result quantities considered are the salinity and the driving force in the vicinity of the repository. The salinity field and the driving force are sensitive to the flow porosity and the conceptual model for solute transport. Ten-fold flow porosity and the dual-porosity approach retard the transport of solutes in the bedrock resulting in brackish groundwater conditions at the repository at 10000 years A.P. (in the previous work the groundwater in the repository turned into fresh). The higher driving forces can be attributed to the higher concentration gradients resulting from the opposite effects of the land uplift, which pushes fresh water deeper and deeper into the bedrock, and the higher flow porosity and the dual-porosity model, which retard the transport of solutes. The cases computed (unrealistically) without fracture zones and postglacial land uplift show that they both have effect on the results and can not be ignored in the coupled and transient groundwater flow analyses. The salinity field and the driving force are also sensitive to the initial salinity field especially at the beginning during the first 500 years A.P. The sensitivity will, however, diminish as soon as fresh water dilutes brackish and saline water and decreases the concentration gradients. Fresh water conditions result in also a steady state for the driving force in the repository area. (orig.)

  11. Monticello Mill Tailings Site, Operable Unit lll, Annual Groundwater Report, May 2015 Through April 2016

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Jason [USDOE Office of Legacy Management (LM), Washington, DC (United States); Smith, Fred [Navarro Research and Engineering, Oak Ridge, TN (United States)

    2016-10-01

    This report provides the annual analysis of water quality restoration progress, cumulative through April 2016, for Operable Unit (OU) III, surface water and groundwater, of the U.S. Department of Energy (DOE) Office of Legacy Management (LM) Monticello Mill Tailings Site (MMTS). The MMTS is a Comprehensive Environmental Response, Compensation, and Liability Act National Priorities List site located in and near the city of Monticello, San Juan County, Utah. MMTS comprises the 110-acre site of a former uranium- and vanadium-ore-processing mill (mill site) and 1700 acres of surrounding private and municipal property. Milling operations generated 2.5 million cubic yards of waste (tailings) from 1942 to 1960. The tailings were impounded at four locations on the mill site. Inorganic constituents in the tailings drained from the impoundments to contaminate local surface water (Montezuma Creek) and groundwater in the underlying alluvial aquifer. Mill tailings dispersed by wind and water also contaminated properties surrounding and downstream of the mill site. Remedial actions to remove and isolate radiologically contaminated soil, sediment, and debris from the former mill site, Operable Unit I (OU I), and surrounding properties (OU II) were completed in 1999 with the encapsulation of the wastes in an engineered repository located on DOE property 1 mile south of the former mill site. This effectively removed the primary source of groundwater contamination; however, contamination of groundwater and surface water remains within OU III at levels that exceed water quality protection standards. Uranium is the primary contaminant of concern (COC). LM implemented monitored natural attenuation with institutional controls as the OU III remedy in 2004. Because groundwater restoration proceeded more slowly than expected and did not meet performance criteria established in the OU III Record of Decision (June 2004), LM implemented a contingency action in 2009 by an Explanation of

  12. Results of groundwater monitoring and vegetation sampling at Everest, Kansas, in 2009 .

    Energy Technology Data Exchange (ETDEWEB)

    LaFreniere, L. M.; Environmental Science Division

    2010-05-13

    In April 2008, the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) conducted groundwater sampling for the analysis of volatile organic compounds (VOCs) in the existing network of monitoring points at Everest, Kansas (Argonne 2008). The objective of the 2008 investigation was to monitor the distribution of carbon tetrachloride contamination in groundwater previously identified in CCC/USDA site characterization and groundwater sampling studies at Everest in 2000-2006 (Argonne 2001, 2003, 2006a,b). The work at Everest is being undertaken on behalf of the CCC/USDA by Argonne National Laboratory, under the oversight of the Kansas Department of Health and Environment (KDHE). The findings of the 2008 investigation were as follows: (1) Measurements of groundwater levels obtained manually and through the use of automatic recorders demonstrated a consistent pattern of groundwater flow - and inferred contaminant migration - to the north-northwest from the former CCC/USDA facility toward the Nigh property, and then west-southwest from the Nigh property toward the intermittent creek that lies west of the former CCC/USDA facility and the Nigh property. (2) The range of concentrations and the areal distribution of carbon tetrachloride identified in the groundwater at Everest in April 2008 were generally consistent with previous results. The results of the 2008 sampling (reflecting the period from 2006 to 2008) and the earlier investigations at Everest (representing the period from 2000 to 2006) show that no significant downgradient extension of the carbon tetrachloride plume occurred from 2000 to 2008. (3) The slow contaminant migration indicated by the monitoring data is qualitatively consistent with the low groundwater flow rates in the Everest aquifer unit estimated previously on the basis of site-specific hydraulic testing (Argonne 2006a,b). (4) The April 2008 and earlier sampling results demonstrate that the limits of the plume have been

  13. Nevada Test 1999 Waste Management Monitoring Report, Area 3 and Area 5 radioactive waste management sites

    International Nuclear Information System (INIS)

    Yvonne Townsend

    2000-01-01

    Environmental monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site (NTS). These monitoring data include radiation exposure, air, groundwater, meteorology, vadose zone, and biota data. Although some of these media (radiation exposure, air, and groundwater) are reported in detail in other Bechtel Nevada reports (Annual Site Environmental Report [ASER], the National Emissions Standard for Hazardous Air Pollutants [NESHAP] report, and the Annual Groundwater Monitoring Report), they are also summarized in this report to provide an overall evaluation of RWMS performance and environmental compliance. Direct radiation monitoring data indicate that exposure at and around the RWMSs is not above background levels. Air monitoring data indicate that tritium concentrations are slightly above background levels, whereas radon concentrations are not above background levels. Groundwater monitoring data indicate that the groundwater in the alluvial aquifer beneath the Area 5 RWMS has not been affected by the facility. Meteorology data indicate that 1999 was a dry year: rainfall totaled 3.9 inches at the Area 3 RWMS (61 percent of average) and 3.8 inches at the Area 5 RWMS (75 percent of average). Vadose zone monitoring data indicate that 1999 rainfall infiltrated less than one foot before being returned to the atmosphere by evaporation. Soil-gas tritium data indicate very slow migration, and tritium concentrations in biota were insignificant. All 1999 monitoring data indicate that the Area 3 and Area 5 RWMSs are performing as expected at isolating buried waste

  14. Iowater Water Quality Monitoring Sites

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — This coverage contains points representing monitoring locations on streams, lakes and ponds that have been registered by IOWATER monitors. IOWATER, Iowa's volunteer...

  15. 3Q/4Q98 Annual M-Area and Metallurgical Laboratory Hazardous Waste Management Facility Groundwater Monitoring and Correction-Action Report, Volumes I, II, and III

    International Nuclear Information System (INIS)

    Chase, J.

    1999-01-01

    This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah River Site (SRS) during 1998

  16. Nevada Test Site 2000 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites

    International Nuclear Information System (INIS)

    Yvonne Townsend

    2001-01-01

    Environmental monitoring data, subsidence monitoring data, and meteorology monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site (NTS) (refer to Figure 1). These monitoring data include radiation exposure, air, groundwater, meteorology, vadose zone, subsidence, and biota data. Although some of these media (radiation exposure, air, and groundwater) are reported in detail in other Bechtel Nevada reports (Annual Site Environmental Report [ASER], the National Emissions Standard for Hazardous Air Pollutants [NESHAP] report, and the Annual Groundwater Monitoring Report), they are also summarized in this report to provide an overall evaluation of RWMS performance and environmental compliance. Direct radiation monitoring data indicate that exposure at and around the RWMSs is not above background levels. Air monitoring data indicate that tritium concentrations are slightly above background levels, whereas radon concentrations are not above background levels. Groundwater monitoring data indicate that the groundwater in the uppermost aquifer beneath the Area 5 RWMS has not been affected by the facility. Meteorology data indicate that 2000 was an average rainfall year: rainfall totaled 167 mm (6.6 in) at the Area 3 RWMS (annual average is 156 mm [6.5 in]) and 123 mm (4.8 in) at the Area 5 RWMS (annual average is 127 mm [5.0 in]). Vadose zone monitoring data indicate that 2000 rainfall infiltrated less than one meter (3 ft) before being returned to the atmosphere by evaporation. Soil-gas tritium monitoring data indicate slow subsurface migration, and tritium concentrations in biota were lower than in previous years. All 2000 monitoring data indicate that the Area 3 and Area 5 RWMSs are performing well at isolating buried waste

  17. Nevada Test Site 2001 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites

    International Nuclear Information System (INIS)

    Y. E. Townsend

    2002-06-01

    Environmental monitoring data, subsidence monitoring data, and meteorology monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site (NTS) (refer to Figure 1). These monitoring data include radiation exposure, air, groundwater, meteorology, vadose zone, subsidence, and biota data. Although some of these media (radiation exposure, air, and groundwater) are reported in detail in other Bechtel Nevada (BN) reports (Annual Site Environmental Report [ASER], the National Emissions Standard for Hazardous Air Pollutants [NESHAP] report, and the Annual Groundwater Monitoring Report), they are also summarized in this report to provide an overall evaluation of RWMS performance and environmental compliance. Direct radiation monitoring data indicate that exposure at and around the RWMSs is not above background levels. Air monitoring data indicate that tritium concentrations are slightly above background levels. Groundwater monitoring data indicate that the groundwater in the uppermost aquifer beneath the Area 5 RWMS has not been affected by the facility. Meteorology data indicate that 2001 was an average rainfall year: rainfall totaled 150 mm (5.9 in) at the Area 3 RWMS and 120 mm (4.7 in) at the Area 5 RWMS. Vadose zone monitoring data indicate that 2001 rainfall infiltrated less than one meter (3 ft) before being returned to the atmosphere by evaporation. Soil-gas tritium monitoring data indicate slow subsurface migration, and tritium concentrations in biota were lower than in previous years. All 2001 monitoring data indicate that the Area 3 and Area 5 RWMSs are performing within expectations of the model and parameter assumptions for the facility performance assessments

  18. Nevada Test Site 2001 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites; TOPICAL

    International Nuclear Information System (INIS)

    Y. E. Townsend

    2002-01-01

    Environmental monitoring data, subsidence monitoring data, and meteorology monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site (NTS) (refer to Figure 1). These monitoring data include radiation exposure, air, groundwater, meteorology, vadose zone, subsidence, and biota data. Although some of these media (radiation exposure, air, and groundwater) are reported in detail in other Bechtel Nevada (BN) reports (Annual Site Environmental Report[ASER], the National Emissions Standard for Hazardous Air Pollutants[NESHAP] report, and the Annual Groundwater Monitoring Report), they are also summarized in this report to provide an overall evaluation of RWMS performance and environmental compliance. Direct radiation monitoring data indicate that exposure at and around the RWMSs is not above background levels. Air monitoring data indicate that tritium concentrations are slightly above background levels. Groundwater monitoring data indicate that the groundwater in the uppermost aquifer beneath the Area 5 RWMS has not been affected by the facility. Meteorology data indicate that 2001 was an average rainfall year: rainfall totaled 150 mm (5.9 in) at the Area 3 RWMS and 120 mm (4.7 in) at the Area 5 RWMS. Vadose zone monitoring data indicate that 2001 rainfall infiltrated less than one meter (3 ft) before being returned to the atmosphere by evaporation. Soil-gas tritium monitoring data indicate slow subsurface migration, and tritium concentrations in biota were lower than in previous years. All 2001 monitoring data indicate that the Area 3 and Area 5 RWMSs are performing within expectations of the model and parameter assumptions for the facility performance assessments

  19. Turbidity monitoring at select MDOT construction sites.

    Science.gov (United States)

    2012-06-01

    The objective of this project was to establish baseline turbidity conditions at select construction : sites by establishing a water quality monitoring program and documenting MDOT approved : BMPs on site. In 2009 the United States Environmental Prote...

  20. Groundwater monitoring of an open-pit limestone quarry: groundwater characteristics, evolution and their connections to rock slopes.

    Science.gov (United States)

    Eang, Khy Eam; Igarashi, Toshifumi; Fujinaga, Ryota; Kondo, Megumi; Tabelin, Carlito Baltazar

    2018-03-06

    Groundwater flow and its geochemical evolution in mines are important not only in the study of contaminant migration but also in the effective planning of excavation. The effects of groundwater on the stability of rock slopes and other mine constructions especially in limestone quarries are crucial because calcite, the major mineral component of limestone, is moderately soluble in water. In this study, evolution of groundwater in a limestone quarry located in Chichibu city was monitored to understand the geochemical processes occurring within the rock strata of the quarry and changes in the chemistry of groundwater, which suggests zones of deformations that may affect the stability of rock slopes. There are three distinct geological formations in the quarry: limestone layer, interbedded layer of limestone and slaty greenstone, and slaty greenstone layer as basement rock. Although the hydrochemical facies of all groundwater samples were Ca-HCO 3 type water, changes in the geochemical properties of groundwater from the three geological formations were observed. In particular, significant changes in the chemical properties of several groundwater samples along the interbedded layer were observed, which could be attributed to the mixing of groundwater from the limestone and slaty greenstone layers. On the rainy day, the concentrations of Ca 2+ and HCO 3 - in the groundwater fluctuated notably, and the groundwater flowing along the interbedded layer was dominated by groundwater from the limestone layer. These suggest that groundwater along the interbedded layer may affect the stability of rock slopes.

  1. Nevada National Security Site Integrated Groundwater Sampling Plan, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Marutzky, Sam; Farnham, Irene

    2014-10-01

    The purpose of the Nevada National Security Site (NNSS) Integrated Sampling Plan (referred to herein as the Plan) is to provide a comprehensive, integrated approach for collecting and analyzing groundwater samples to meet the needs and objectives of the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) Underground Test Area (UGTA) Activity. Implementation of this Plan will provide high-quality data required by the UGTA Activity for ensuring public protection in an efficient and cost-effective manner. The Plan is designed to ensure compliance with the UGTA Quality Assurance Plan (QAP). The Plan’s scope comprises sample collection and analysis requirements relevant to assessing the extent of groundwater contamination from underground nuclear testing. This Plan identifies locations to be sampled by corrective action unit (CAU) and location type, sampling frequencies, sample collection methodologies, and the constituents to be analyzed. In addition, the Plan defines data collection criteria such as well-purging requirements, detection levels, and accuracy requirements; identifies reporting and data management requirements; and provides a process to ensure coordination between NNSS groundwater sampling programs for sampling of interest to UGTA. This Plan does not address compliance with requirements for wells that supply the NNSS public water system or wells involved in a permitted activity.

  2. Hydrogeochemical interpretation of the groundwater at the Haestholmen site, Finland

    International Nuclear Information System (INIS)

    Nordstrom, D.K.

    1986-11-01

    This investigation forms a part of the research aimed at marking an assessment of the suitability of rapakivi granite at Haestholmen, an island off the southeastern coast of Finland, for the storage of reactor waste from the Loviisa nuclear power plant. The purpose of this study is to provide preliminary interpretations of the groundwater chemistry based on analyses of groundwater samples taken from several drillholes down to depths of 200 m, as well as other hydrogeological studies made on the site. Chemical analyses of grounfwaters at Haestholmen have demonstrated a fresh-water/saline-water interface at 60-150 m depth, depending on the distance from the coast. The main conclusions from this study are that (1) the saline water has a seawater origin, (2) the saline water is most likely old Baltic seawater from the early to middle Holocene, (3) this seawater has been chemically modified by at least four processes: calcite precipitation, fluorite dissolution and precipitation, Na-K-Mg-Ca cation exchange and sulfate reduction, (4) the saline groundwaters are not chemically uniform with depth and (5) the saline water chemistry reflects a structural control by the bedrock

  3. SR-Site groundwater flow modelling methodology, setup and results

    International Nuclear Information System (INIS)

    Selroos, Jan-Olof; Follin, Sven

    2010-12-01

    As a part of the license application for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken three groundwater flow modelling studies. These are performed within the SR-Site project and represent time periods with different climate conditions. The simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. Three time periods are addressed; the Excavation and operational phases, the Initial period of temperate climate after closure, and the Remaining part of the reference glacial cycle. The present report is a synthesis of the background reports describing the modelling methodology, setup, and results. It is the primary reference for the conclusions drawn in a SR-Site specific context concerning groundwater flow during the three climate periods. These conclusions are not necessarily provided explicitly in the background reports, but are based on the results provided in these reports. The main results and comparisons presented in the present report are summarised in the SR-Site Main report

  4. PROTECTING GROUNDWATER & THE COLUMBIA RIVER AT THE HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    GERBER, M.S.

    2006-06-29

    Along the remote shores of the Columbia River in southeast Washington state, a race is on. Fluor Hanford, a prime cleanup contractor to the U.S. Department of Energy (DOE) at the Hanford Site, is managing a massive, multi-faceted project to remove contaminants from the groundwater before they can reach the Columbia. Despite the daunting nature and size of the problem--about 80 square miles of aquifer under the site contains long-lived radionuclides and hazardous chemicals--significant progress is being made. Many groups are watching, speaking out, and helping. A large. passionate, diverse, and geographically dispersed community is united in its desire to protect the Columbia River--the eighth largest in the world--and have a voice in Hanford's future. Fluor Hanford and the DOE, along with the US. Environmental Protection Agency (EPA) and the Washington Department of Ecology (Ecology) interact with all the stakeholders to make the best decisions. Together, they have made some remarkable strides in the battle against groundwater contamination under the site.

  5. SR-Site groundwater flow modelling methodology, setup and results

    Energy Technology Data Exchange (ETDEWEB)

    Selroos, Jan-Olof (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)); Follin, Sven (SF GeoLogic AB, Taeby (Sweden))

    2010-12-15

    As a part of the license application for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken three groundwater flow modelling studies. These are performed within the SR-Site project and represent time periods with different climate conditions. The simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. Three time periods are addressed; the Excavation and operational phases, the Initial period of temperate climate after closure, and the Remaining part of the reference glacial cycle. The present report is a synthesis of the background reports describing the modelling methodology, setup, and results. It is the primary reference for the conclusions drawn in a SR-Site specific context concerning groundwater flow during the three climate periods. These conclusions are not necessarily provided explicitly in the background reports, but are based on the results provided in these reports. The main results and comparisons presented in the present report are summarised in the SR-Site Main report.

  6. Combination RCRA groundwater monitoring plan for the 216-A-10, 216-A-36B, and 216-A-37-1 PUREX cribs

    International Nuclear Information System (INIS)

    Lindberg, J.W.

    1997-06-01

    This document presents a groundwater quality assessment monitoring plan, under Resource Conservation and Recovery Act of 1976 (RCRA) regulatory requirements for three RCRA sites in the Hanford Site's 200 East Area: 216-A-10, 216-A-36B, and 216-A-37-1 cribs (PUREX cribs). The objectives of this monitoring plan are to combine the three facilities into one groundwater quality assessment program and to assess the nature, extent, and rate of contaminant migration from these facilities. A groundwater quality assessment plan is proposed because at least one downgradient well in the existing monitoring well networks has concentrations of groundwater constituents indicating that the facilities have contributed to groundwater contamination. The proposed combined groundwater monitoring well network includes 11 existing near-field wells to monitor contamination in the aquifer in the immediate vicinity of the PUREX cribs. Because groundwater contamination from these cribs is known to have migrated as far away as the 300 Area (more than 25 km from the PUREX cribs), the plan proposes to use results of groundwater analyses from 57 additional wells monitored to meet environmental monitoring requirements of US Department of Energy Order 5400.1 to supplement the near-field data. Assessments of data collected from these wells will help with a future decision of whether additional wells are needed

  7. A new site for 85Kr measurements on groundwater samples

    International Nuclear Information System (INIS)

    Lange, T.; Hebert, D.

    2000-01-01

    Analysis of stable and radioactive isotopes is essential as a complement to geochemistry and geohydraulic investigations on groundwater regimes and their genesis. This is widely acknowledged also for the determination of the specific activity of 85 Kr in groundwater. The geochemical inertness and well-defined input function of 85 Kr allow estimates of groundwater age and enhance characterization of groundwater flow and components in many aquifer systems. A new site for measurement of the 85 Kr specific activity has been established at the Institute of Applied Physics at the Freiberg University, Saxony. Under normal conditions ca. 80 μl krypton are dissolved in 1 m 3 of water in contact with air. Therefore gas extraction has to be most effectively. A modified CO 2 extractor of 45 cm x 10 cm was chosen. The water is continuously pumped under pressure (3 - 4 bar) passing a Venturi-type nozzle, which simultaneously operates as a water-jet pump. The extracted gas flows through a CO 2 trap (NaOH 10 %), a H 2 O cold trap, through molecular sieves (5, 3 A) and a charcoal column, cooled by liquid nitrogen, where krypton, nitrogene and other components are adsorbed. Remaining gases re-enter the extractor at the Venturi-type nozzle. A small membrane pump supports the circulation. Due to the special design of the water outlet, contamination of the sample is avoided. Optional a compact stove heats the water to improve the extraction efficiency. If pressure supply is high enough, additional extractors can be run simultaneously. In a test run the recovery for radon was around 65 to 70 %. Further preparation steps of the raw krypton sample is performed in the laboratory. To obtain a good first enrichment a tube furnace filled with chrome powder is used to separate nitrogen and oxygen from the sample at 900 deg C. The following enrichment steps are performed by a preparation setup developed at GSF-Institute for Hydrology, Neuherberg. (author)

  8. Data Validation Package, June 2016 Groundwater Sampling at the Hallam, Nebraska, Decommissioned Reactor Site, August 2016

    Energy Technology Data Exchange (ETDEWEB)

    Surovchak, Scott [USDOE Office of Legacy Management, Washington, DC (United States); Miller, Michele [Navarro Research and Engineering, Oak Ridge, TN (United States)

    2016-08-01

    The 2008 Long-Term Surveillance Plan [LTSP] for the Decommissioned Hallam Nuclear Power Facility, Hallam, Nebraska (http://www.lm.doe.gov/Hallam/Documents.aspx) requires groundwater monitoring once every 2 years. Seventeen monitoring wells at the Hallam site were sampled during this event as specified in the plan. Planned monitoring locations are shown in Attachment 1, Sampling and Analysis Work Order. Water levels were measured at all sampled wells and at two additional wells (6A and 6B) prior to the start of sampling. Additionally, water levels of each sampled well were measured at the beginning of sampling. See Attachment 2, Trip Report, for additional details. Sampling and analysis were conducted as specified in Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated, http://energy.gov/lm/downloads/sampling-and-analysis-plan-us-department- energy-office-legacy-management-sites). Gross alpha and gross beta are the only parameters that were detected at statistically significant concentrations. Time/concentration graphs of the gross alpha and gross beta data are included in Attachment 3, Data Presentation. The gross alpha and gross beta activity concentrations observed are consistent with values previously observed and are attributed to naturally occurring radionuclides (e.g., uranium and uranium decay chain products) in the groundwater.

  9. Data Validation Package: April 2016 Groundwater Sampling at the Falls City, Texas, Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    Jasso, Tashina [USDOE Office of Legacy Management, Washington, DC (United States); Widdop, Michael [Navarro Research and Engineering, Inc., Las Vegas, NV (United States)

    2016-09-29

    Nine groundwater samples were collected at the Falls City, Texas, Disposal Site as specified in the March 2008 Long-Term Surveillance Plan for the US Department of Energy Falls City Uranium Mill Tailings Disposal Site, Falls City, Texas (DOE-LM/1602-2008). Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for US Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). The wells sampled included the cell performance monitoring wells (0709, 0858, 0880, 0906, and 0921) and the groundwater monitoring wells (0862, 0886, 0891, 0924, and 0963). A duplicate sample was collected from location 0891. Water levels were measured at each sampled well. Historically, cell performance monitoring wells 0908 and 0916 have not produced water and were confirmed as dry during this sampling event. These wells are completed above the saturated interval in the formation. Notable observations for time-concentration graphs in this report include: (1) uranium concentrations in well 0891 continue to increase; (2) the uranium concentration in well 0880 is higher than the 2015 value and lower than the 2014 value, and it remains within the range of historical values; and (3) uranium concentrations in the other sampled wells are below 2 mg/L and consistent with previous results.

  10. An analysis of potential impacts to the groundwater monitoring networks in the Central Plateau. Revision 0

    International Nuclear Information System (INIS)

    1996-01-01

    This report presents the results of an evaluation of potential impacts to the four groundwater monitoring projects operating in the Central Plateau of the Hanford Site. It specifically fulfills Milestone M-15-81A of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement). Milestone M-15-81A specifies the evaluation of the potential impacts to the groundwater monitoring well systems in the Central Plateau caused by the following activities: reduction of liquids discharged to soil, proposed and operational liquid treatment facilities, and proposed pump-and-treat systems. For this report, an open-quotes impactclose quotes is defined as a restriction of the ability to draw samples from a well and/or a reduction of the ability of a monitoring well to meet its intended purpose (such as the detection of contaminant seepage from a facility). Approximately 20% (74 wells) of the groundwater monitoring wells potentially will experience sampling problems by the year 2005 due to the declining water table in the Central Plateau. Reduction of discharges to the B Pond complex and operation of the Treated Effluent Disposal System will directly cause four additional wells to potentially experience sampling problems. Approximately 90 monitoring wells (35 of which are Resource Conservation and Recovery Act of 1976 [RCRA] wells) will be potentially affected by the operation of pump-and-treat systems in the 200 West Area. Most of the impacts will be caused by local changes to groundwater flow directions that will potentially reduce the ability of the RCRA well network to monitor a limited number of RCRA facilities

  11. Revised ground-water monitoring compliance plan for the 300 area process trenches

    Energy Technology Data Exchange (ETDEWEB)

    Schalla, R.; Aaberg, R.L.; Bates, D.J.; Carlile, J.V.M.; Freshley, M.D.; Liikala, T.L.; Mitchell, P.J.; Olsen, K.B.; Rieger, J.T.

    1988-09-01

    This document contains ground-water monitoring plans for process-water disposal trenches located on the Hanford Site. These trenches, designated the 300 Area Process Trenches, have been used since 1973 for disposal of water that contains small quantities of both chemicals and radionuclides. The ground-water monitoring plans contained herein represent revision and expansion of an effort initiated in June 1985. At that time, a facility-specific monitoring program was implemented at the 300 Area Process Trenches as part of a regulatory compliance effort for hazardous chemicals being conducted on the Hanford Site. This monitoring program was based on the ground-water monitoring requirements for interim-status facilities, which are those facilities that do not yet have final permits, but are authorized to continue interim operations while engaged in the permitting process. The applicable monitoring requirements are described in the Resource Conservation and Recovery Act (RCRA), 40 CFR 265.90 of the federal regulations, and in WAC 173-303-400 of Washington State's regulations (Washington State Department of Ecology 1986). The program implemented for the process trenches was designed to be an alternate program, which is required instead of the standard detection program when a facility is known or suspected to have contaminated the ground water in the uppermost aquifer. The plans for the program, contained in a document prepared by the US Department of Energy (USDOE) in 1985, called for monthly sampling of 14 of the 37 existing monitoring wells at the 300 Area plus the installation and sampling of 2 new wells. 27 refs., 25 figs., 15 tabs.

  12. P-Area Acid/Caustic Basin groundwater monitoring report. First quarter 1995

    International Nuclear Information System (INIS)

    Chase, J.A.

    1995-06-01

    During first quarter 1995, groundwater from the six PAC monitoring wells at the P-Area Acid/Caustic Basin was analyzed for herbicides/pesticides, indicator parameters, metals, nitrate, adionuclide indicators, and other constituents. Monitoring results that exceeded the final Primary Drinking Water Standards (PDWS) or the Savannah River Site (SRS) flagging criteria or turbidity standard during the quarter are discussed in this report. During first quarter 1995, no constituents exceeded the final PDWS. Aluminum exceeded its SRS Flag 2 criterion in all six PAC wells. Iron and manganese exceeded Flag 2 criteria in three wells, while turbidity was elevated in one well. Groundwater flow direction and rate in the water table beneath the P-Area Acid/Caustic Basin were similar to past quarters

  13. Functional design criteria for FY 1993-2000 groundwater monitoring wells

    International Nuclear Information System (INIS)

    Williams, B.A.

    1996-01-01

    The purpose of this revision is to update the Line Item Project, 93-L-GFW-152 Functional Design Criteria (FDC) to reflect changes approved in change control M-24-91-6, Engineering Change Notices (ECNs), and expand the scope to include subsurface investigations along with the borehole drilling. This revision improves the ability and effectiveness of maintaining RCRA and Operational groundwater compliance by combining borehole and well drilling with subsurface data gathering objectives. The total projected number of wells to be installed under this project has decreased from 200 and the scope has been broadened to include additional subsurface investigation activities that usually occur simultaneously with most traditional borehole drilling and monitoring well installations. This includes borehole hydrogeologic characterization activities, and vadose monitoring. These activities are required under RCRA 40 CFR 264 and 265 and WAC 173-303 for site characterization, groundwater and vadose assessment and well placement

  14. Natural analogue study of CO2 storage monitoring using probability statistics of CO2-rich groundwater chemistry

    Science.gov (United States)

    Kim, K. K.; Hamm, S. Y.; Kim, S. O.; Yun, S. T.

    2016-12-01

    For confronting global climate change, carbon capture and storage (CCS) is one of several very useful strategies as using capture of greenhouse gases like CO2 spewed from stacks and then isolation of the gases in underground geologic storage. CO2-rich groundwater could be produced by CO2 dissolution into fresh groundwater around a CO2 storage site. As consequence, natural analogue studies related to geologic storage provide insights into future geologic CO2 storage sites as well as can provide crucial information on the safety and security of geologic sequestration, the long-term impact of CO2 storage on the environment, and field operation and monitoring that could be implemented for geologic sequestration. In this study, we developed CO2 leakage monitoring method using probability density function (PDF) by characterizing naturally occurring CO2-rich groundwater. For the study, we used existing data of CO2-rich groundwaters in different geological regions (Gangwondo, Gyeongsangdo, and Choongchungdo provinces) in South Korea. Using PDF method and QI (quantitative index), we executed qualitative and quantitative comparisons among local areas and chemical constituents. Geochemical properties of groundwater with/without CO2 as the PDF forms proved that pH, EC, TDS, HCO3-, Ca2+, Mg2+, and SiO2 were effective monitoring parameters for carbonated groundwater in the case of CO2leakage from an underground storage site. KEY WORDS: CO2-rich groundwater, CO2 storage site, monitoring parameter, natural analogue, probability density function (PDF), QI_quantitative index Acknowledgement This study was supported by the "Basic Science Research Program through the National Research Foundation of Korea (NRF), which is funded by the Ministry of Education (NRF-2013R1A1A2058186)" and the "R&D Project on Environmental Management of Geologic CO2 Storage" from KEITI (Project number: 2014001810003).

  15. Investigation of Hexavalent Chromium Flux to Groundwater at the 100-C-7:1 Excavation Site

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J.; Vermeul, Vincent R.; Fritz, Brad G.; Mackley, Rob D.; Horner, Jacob A.; Johnson, Christian D.; Newcomer, Darrell R.

    2012-11-16

    Deep excavation of soil has been conducted at the 100-C-7 and 100-C-7:1 waste sites within the 100-BC Operable Unit at the Department of Energy (DOE) Hanford Site to remove hexavalent chromium (Cr(VI)) contamination with the excavations reaching to near the water table. Soil sampling showed that Cr(VI) contamination was still present at the bottom of the 100-C-7:1 excavation. In addition, Cr(VI) concentrations in a downgradient monitoring well have shown a transient spike of increased Cr(VI) concentration following initiation of excavation. Potentially, the increased Cr(VI) concentrations in the downgradient monitoring well are due to Cr(VI) from the excavation site. However, data were needed to evaluate this possibility and to quantify the overall impact of the 100-C-7:1 excavation site on groundwater. Data collected from a network of aquifer tubes installed across the floor of the 100-C-7:1 excavation and from temporary wells installed at the bottom of the entrance ramp to the excavation were used to evaluate Cr(VI) releases into the aquifer and to estimate local-scale hydraulic properties and groundwater flow velocity.

  16. Regional-to-site scale groundwater flow in Romuvaara

    Energy Technology Data Exchange (ETDEWEB)

    Kattilakoski, E.; Koskinen, L. [VTT Energy, Espoo (Finland)

    1999-04-01

    The work describing numerical groundwater flow modelling at the Romuvaara site serves as a background report for the safety assessment TILA-99. The site scale can roughly be taken as the scale of detailed borehole investigations, which have probed the bedrock of Romuvaara over about 2 km{sup 2} large and 1 km deep volume. The site model in this work covers an area of about 12 km{sup 2}. The depth of the model is 2200 m. The site scale flow modelling produced characteristics of the deep groundwater flow and evaluated the impact of a spent fuel repository on the natural groundwater flow conditions. It treated the hydraulic gradient in the intact rock between the repository and the fracture zone nearest to it (about 50 m off) for the block scale model, which describes the groundwater flow on the repository scale. The result quantities were the hydraulic head h (as the base quantity) and its gradient in selected cross sections and fracture zones, the flow rates around the repository, flow paths and discharge areas of the water from the repository. Two repository layouts were discussed. The numerical simulations were performed with the FEFTRA code based on the porous medium concept and the finite element method. The regional model with a no-flow boundary condition at the bottom and on the lateral edges was firstly used to confirm the hydraulic head boundary condition on the lateral edges of an interior site model (having a no-flow boundary condition at the bottom). The groundwater table was used as the hydraulic head boundary condition at the surface of each model. Both the conductivity of the bedrock (modeled with three-dimensional elements) and the transmissivities of the fracture zones (described with two-dimensional elements in the three-dimensional mesh) decreased as a function of the depth. All the results were derived from the site model. The range of variation of the hydraulic gradient immediately outside the repository was studied in the direction of the flow

  17. Combining non-invasive techniques for delimitation and monitoring of chlorinated solvents in groundwater

    Science.gov (United States)

    Sparrenbom, Charlotte; Åkesson, Sofia; Hagerberg, David; Dahlin, Torleif; Holmstrand, Henry; Johansson, Sara

    2016-04-01

    Large numbers of polluted areas cause leakage of hazardous pollutants into our groundwater. Remediated actions are needed in a vast number of areas to prevent degradation of the quality of our water resources. As excavation of polluted masses is problematic as it often moves the pollutants from one site to another (in best case off site treatment is carried out), in-situ remediation and monitoring thereof needs further development. In general, we need to further develop and improve how we retrieve information on the status of the underground system. This is needed to avoid costly and hazardous shipments associated with excavations and to avoid unnecessary exposure when handling polluted masses. Easier, cheaper, more comprehensive and nondestructive monitoring techniques are needed for evaluation of remediation degree, degradation status of the contaminants and the remaining groundwater contaminant plume. We investigate the possibility to combine two investigation techniques, which are invasive to a very low degree and can give a very good visualization and evaluation of pollutant status underground and changes therein in time. The two methods we have combined are Direct Current resistivity and time-domain Induced Polarization tomography (DCIP) and Compound Specific Isotope Analysis (CSIA) and their use within the context of DNAPL contaminated sites. DCIP is a non-invasive and non-destructive geoelectrical measurement method with emerging new techniques for 4D mapping for promising visualization of underground hydrogeochemical structures and spatial distribution of contaminants. The strength of CSIA is that inherent degradation-relatable isotopic information of contaminant molecules remains unaffected as opposed to the commonly used concentration-based studies. Our aim is to evaluate the possibilities of gas sampling on the ground surface for this technique to become non-invasive and usable without interfering ground conditions.Drillings together with soil and

  18. Data verification and evaluation techniques for groundwater monitoring programs

    International Nuclear Information System (INIS)

    Mercier, T.M.; Turner, R.R.

    1990-12-01

    To ensure that data resulting from groundwater monitoring programs are of the quality required to fulfill program objectives, it is suggested that a program of data verification and evaluation be implemented. These procedures are meant to supplement and support the existing laboratory quality control/quality assurance programs by identifying aberrant data resulting from a variety of unforeseen circumstances: sampling problems, data transformations in the lab, data input at the lab, data transfer, end-user data input. Using common-sense principles, pattern recognition techniques, and hydrogeological principles, a computer program was written which scans the data for suspected abnormalities and produces a text file stating sample identifiers, the suspect data, and a statement of how the data has departed from the expected. The techniques described in this paper have been developed to support the Y-12 Plant Groundwater Protection Program Management Plan

  19. Mixed Waste Management Facility (MWMF) groundwater monitoring report

    International Nuclear Information System (INIS)

    1993-06-01

    During first quarter 1993, eight constituents exceeded final Primary Drinking Water Standards in groundwater samples from downgradient monitoring wells at the Mixed Waste anagement Facility, the Old Burial Ground, the E-Area Vaults, and the proposed Hazardous Waste/Mixed Waste Disposal Vaults (HWMWDV). As in previous quarters, tritium and trichloroethylene were the most widespread constituents. Tetrachloroethylene, chloroethene, 1,1-dichloroethylene, gross alpha, lead, or nonvolatile beta levels also exceeded standards in one or more wells. The elevated constituents were found primarily in Aquifer Zone IIB 2 (Water Table) and Aquifer Zone IIB 1 , (Barnwell/McBean) wells. However, several Aquifer Unit IIA (Congaree) wells also contained elevated constituent levels. The groundwater flow directions and rates in the three hydrostratigraphic units were similar to previous quarters

  20. 2012 Groundwater Monitoring Report Central Nevada Test Area, Subsurface Corrective Action Unit 443

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-04-01

    The Central Nevada Test Area was the site of a 0.2- to 1-megaton underground nuclear test in 1968. The surface of the site has been closed, but the subsurface is still in the corrective action process. The corrective action alternative selected for the site was monitoring with institutional controls. Annual sampling and hydraulic head monitoring are conducted as part of the subsurface corrective action strategy. The site is currently in the fourth year of the 5-year proof-of-concept period that is intended to validate the compliance boundary. Analytical results from the 2012 monitoring are consistent with those of previous years. Tritium remains at levels below the laboratory minimum detectable concentration in all wells in the monitoring network. Samples collected from reentry well UC-1-P-2SR, which is not in the monitoring network but was sampled as part of supplemental activities conducted during the 2012 monitoring, indicate concentrations of tritium that are consistent with previous sampling results. This well was drilled into the chimney shortly after the detonation, and water levels continue to rise, demonstrating the very low permeability of the volcanic rocks. Water level data from new wells MV-4 and MV-5 and recompleted well HTH-1RC indicate that hydraulic heads are still recovering from installation and testing. Data from wells MV-4 and MV-5 also indicate that head levels have not yet recovered from the 2011 sampling event during which several thousand gallons of water were purged. It has been recommended that a low-flow sampling method be adopted for these wells to allow head levels to recover to steady-state conditions. Despite the lack of steady-state groundwater conditions, hydraulic head data collected from alluvial wells installed in 2009 continue to support the conceptual model that the southeast-bounding graben fault acts as a barrier to groundwater flow at the site.

  1. Application of hydrogeology and groundwater-age estimates to assess the travel time of groundwater at the site of a landfill to the Mahomet Aquifer, near Clinton, Illinois

    Science.gov (United States)

    Kay, Robert T.; Buszka, Paul M.

    2016-03-02

    The U.S. Geological Survey used interpretations of hydrogeologic conditions and tritium-based groundwater age estimates to assess the travel time of groundwater at a landfill site near Clinton, Illinois (the “Clinton site”) where a chemical waste unit (CWU) was proposed to be within the Clinton landfill unit #3 (CLU#3). Glacial deposits beneath the CWU consist predominantly of low-permeability silt- and clay-rich till interspersed with thin (typically less than 2 feet in thickness) layers of more permeable deposits, including the Upper and Lower Radnor Till Sands and the Organic Soil unit. These glacial deposits are about 170 feet thick and overlie the Mahomet Sand Member of the Banner Formation. The Mahomet aquifer is composed of the Mahomet Sand Member and is used for water supply in much of east-central Illinois.Eight tritium analyses of water from seven wells were used to evaluate the overall age of recharge to aquifers beneath the Clinton site. Groundwater samples were collected from six monitoring wells on or adjacent to the CLU#3 that were open to glacial deposits above the Mahomet aquifer (the upper and lower parts of the Radnor Till Member and the Organic Soil unit) and one proximal production well (approximately 0.5 miles from the CLU#3) that is screened in the Mahomet aquifer. The tritium-based age estimates were computed with a simplifying, piston-flow assumption: that groundwater moves in discrete packets to the sampled interval by advection, without hydrodynamic dispersion or mixing.Tritium concentrations indicate a recharge age of at least 59 years (pre-1953 recharge) for water sampled from deposits below the upper part of the Radnor Till Member at the CLU#3, with older water expected at progressively greater depth in the tills. The largest tritium concentration from a well sampled by this study (well G53S; 0.32 ± 0.10 tritium units) was in groundwater from a sand deposit in the upper part of the Radnor Till Member; the shallowest permeable unit

  2. Investigations of groundwater system and simulation of regional groundwater flow for North Penn Area 7 Superfund site, Montgomery County, Pennsylvania

    Science.gov (United States)

    Senior, Lisa A.; Goode, Daniel J.

    2013-01-01

    Groundwater in the vicinity of several industrial facilities in Upper Gwynedd Township and vicinity, Montgomery County, in southeast Pennsylvania has been shown to be contaminated with volatile organic compounds (VOCs), the most common of which is the solvent trichloroethylene (TCE). The 2-square-mile area was placed on the National Priorities List as the North Penn Area 7 Superfund site by the U.S. Environmental Protection Agency (USEPA) in 1989. The U.S. Geological Survey (USGS) conducted geophysical logging, aquifer testing, and water-level monitoring, and measured streamflows in and near North Penn Area 7 from fall 2000 through fall 2006 in a technical assistance study for the USEPA to develop an understanding of the hydrogeologic framework in the area as part of the USEPA Remedial Investigation. In addition, the USGS developed a groundwater-flow computer model based on the hydrogeologic framework to simulate regional groundwater flow and to estimate directions of groundwater flow and pathways of groundwater contaminants. The study area is underlain by Triassic- and Jurassic-age sandstones and shales of the Lockatong Formation and Brunswick Group in the Mesozoic Newark Basin. Regionally, these rocks strike northeast and dip to the northwest. The sequence of rocks form a fractured-sedimentary-rock aquifer that acts as a set of confined to partially confined layers of differing permeabilities. Depth to competent bedrock typically is less than 20 ft below land surface. The aquifer layers are recharged locally by precipitation and discharge locally to streams. The general configuration of the potentiometric surface in the aquifer is similar to topography, except in areas affected by pumping. The headwaters of Wissahickon Creek are nearby, and the stream flows southwest, parallel to strike, to bisect North Penn Area 7. Groundwater is pumped in the vicinity of North Penn Area 7 for industrial use, public supply, and residential supply. Results of field investigations

  3. Management of Ground and Groundwater Contamination on a Compact Site Constrained by Ongoing Activities

    International Nuclear Information System (INIS)

    Eilbeck, K.E.; Reeve, P.

    2009-01-01

    Sellafield Site is a compact and complex site which since the 1940's has been home to a range of facilities associated with the production and reprocessing of fissile material. The site contains the UK equivalent of the Chicago Pile-1 reactor, Hanford B Reactor, Rocky Flats Buildings 771 and 774, West Valley Main Process Plant Building, Savannah River Vitrification Plant, Savannah River MOX Plant, Savannah River F Canyon, Hanford 222 Analytical Laboratory, Savannah River K-, L-, and P-Basins, and the Fort St. Vrain Reactor all in an area of approximately 1000 acres. Spent fuel reprocessing is still undertaken on site; however waste management and decommissioning activities are of increasing importance. These include the emptying and removal of fragile ponds and silos containing significant radioactive inventories, the decommissioning of reactors (including the world's first commercial reactor for power generation and the Windscale Piles, the site of a reactor fire in the late 1950's) and the construction of a new generation of vitrification and encapsulation plants. Leaks, spills and on-site disposals during the site's industrial lifetime have resulted in a legacy of fission products and other radionuclides in the ground and groundwater. Volumes of contaminated ground have been estimated as being as much as 18 million m 3 and an estimated below ground inventory of approximately 1.8 E16 Bq. These have all occurred within close proximity to a range of receptors including farm land and the sea. The cramped nature of the facilities on site, overlapping source terms and ongoing decommissioning, waste management and operating activities all raise significant challenges in the management and remediation of contaminated land and groundwater. The strategy to address these challenges includes: 1. Data collection, management and interpretation. The congested nature of the site and the age of some of the monitoring facilities has resulted in particular difficulties. For

  4. Mixed Waste Management Facility (MWMF) groundwater monitoring report

    International Nuclear Information System (INIS)

    1993-03-01

    During fourth quarter 1992, nine constituents exceeded final Primary Drinking Water Standards (PDWS) in one or more groundwater samples from monitoring wells at the Mixed Waste Management Facility (MWMF) and adjacent facilities. As in previous quarters, tritium and trichloroethylene were the most widespread constituents. Fifty-seven (48%) of the 120 monitoring wells, contained elevated tritium activities, and 23 (19%) contained elevated trichloroethylene concentrations. Total alpha-emitting radium, tetrachloroethylene, chloroethene, cadmium, 1,1-dichloroethylene, lead, or nonvolatile beta levels exceeded standards in one or more wells. During 1992, elevated levels of 13 constituents were found in one or more of 80 of the 120 groundwater monitoring wells (67%) at the MWMF and adjacent facilities. Tritium and trichloroethylene exceeded their final PDWS more frequently and more consistently than did other constituents. Tritium activity exceeded its final PDWS m 67 wells and trichloroethylene was. elevated in 28 wells. Lead, tetrachloroethylene, total alpha-emitting radium, gross alpha, cadmium, chloroethene, 1,1-dichloroethylene 1,2-dichloroethane, mercury, or nitrate exceeded standards in one or more wells during the year. Nonvolatile beta exceeded its drinking water screening level in 3 wells during the year

  5. Regional-to-site scale groundwater flow in Kivetty

    Energy Technology Data Exchange (ETDEWEB)

    Kattilakoski, E. [VTT Energy, Espoo (Finland); Meszaros, F. [The Relief Laboratory, Harskut (Hungary)

    1999-04-01

    The work describing numerical groundwater flow modelling at the Kivetty site serves as a background report for the safety assessment TILA-99. The site scale can roughly be taken as the scale of detailed borehole investigations, which have probed the bedrock of Kivetty over about 3 km{sup 2} large and 1 km deep volume. The site model in this work covers an area of about 16 km{sup 2}. The depth of the model is 2000 m. The site scale flow modelling produced characteristics of the deep groundwater flow both under the natural conditions and in the case of a spent fuel repository. The hydraulic gradient in the intact rock between the repository and the fracture zone nearest to it (about 50 m off) was assessed for the block scale model. The result quantities were the hydraulic head h (as the base quantity) and its gradient in selected cross sections and fracture zones, the flow rates around the repository, flow paths and discharge areas of the water from the repository. Two repository layouts were discussed. The numerical simulations were performed with the FEFTRA code based on the porous medium concept and the finite element method. The regional model with a no-flow boundary condition at the bottom and on the lateral edges was firstly used to confirm the hydraulic head boundary condition on the lateral edges of an interior site model (having a no-flow boundary condition at the bottom). The groundwater table was used as the hydraulic head boundary condition at the surface of each model. Both the conductivity of the bedrock (modeled with three-dimensional elements) and the transmissivities of the fracture zones (described with two-dimensional elements in the three-dimensional mesh) decreased as a function of the depth. All the results were derived from the site model. With the exception of the western part of Repository A the outlined repositories are located underneath Kumpuvuori, where the flow has a significant subvertical component. The horizontal component of the deep

  6. Regional-to-site scale groundwater flow in Kivetty

    International Nuclear Information System (INIS)

    Kattilakoski, E.; Meszaros, F.

    1999-04-01

    The work describing numerical groundwater flow modelling at the Kivetty site serves as a background report for the safety assessment TILA-99. The site scale can roughly be taken as the scale of detailed borehole investigations, which have probed the bedrock of Kivetty over about 3 km 2 large and 1 km deep volume. The site model in this work covers an area of about 16 km 2 . The depth of the model is 2000 m. The site scale flow modelling produced characteristics of the deep groundwater flow both under the natural conditions and in the case of a spent fuel repository. The hydraulic gradient in the intact rock between the repository and the fracture zone nearest to it (about 50 m off) was assessed for the block scale model. The result quantities were the hydraulic head h (as the base quantity) and its gradient in selected cross sections and fracture zones, the flow rates around the repository, flow paths and discharge areas of the water from the repository. Two repository layouts were discussed. The numerical simulations were performed with the FEFTRA code based on the porous medium concept and the finite element method. The regional model with a no-flow boundary condition at the bottom and on the lateral edges was firstly used to confirm the hydraulic head boundary condition on the lateral edges of an interior site model (having a no-flow boundary condition at the bottom). The groundwater table was used as the hydraulic head boundary condition at the surface of each model. Both the conductivity of the bedrock (modeled with three-dimensional elements) and the transmissivities of the fracture zones (described with two-dimensional elements in the three-dimensional mesh) decreased as a function of the depth. All the results were derived from the site model. With the exception of the western part of Repository A the outlined repositories are located underneath Kumpuvuori, where the flow has a significant subvertical component. The horizontal component of the deep

  7. Groundwater geochemical studies at the Altnabreac research site

    International Nuclear Information System (INIS)

    Kay, R.L.F.; Bath, A.H.

    1982-12-01

    Results of chemical and isotopic analyses of Altnabreac groundwaters are presented. They are used to define the origin and maturation scheme of groundwaters to depths approaching 300 m in crystalline rocks (granites and metasediments). Samples are derived from packer-isolated zones in 3 deep (approx. 300 m) boreholes, temporal monitoring of 17 shallow boreholes (less than 41 m deep) and about 60 springs and other surface waters as well as from 1981-82 aggregated monthly rainfall. Stable oxygen and hydrogen isotope ratios show all waters to be wholly meteoric in origin and the precipitation input to be well mixed. 3 H (tritium) contents suggest that recharge occurs on discrete upland areas where there tends to be downward movement with essentially horizontal flow, resulting in slight discharge, under the remaining ground. Samples abstracted from boreholes frequently contain significant levels of 3 H indicating a component of post-1953 recharge. This results from hydraulic connection to the borehole water column in deep boreholes or directly to the surface storage in the case of shallow boreholes. On the basis of 14 C and 4 He contents, details of which are being reported separately, the oldest analysed water (from 259 to 281 m in borehole A1B) has an age of about 10 4 years. The results are discussed. (author)

  8. Groundwater monitoring procedures and evaluation at Nabarlek, N.T

    International Nuclear Information System (INIS)

    Grounds, J.A.

    1983-01-01

    Queensland Mines Limited operates a uranium extraction plant at Nabarlek in the Northern Territory. All water used for the ore processing, sewage waters, or waters generated from runoff in the restricted release zone are contained within water storage structures. Water can only be removed from these structures by evaporation and seepage. The monitoring of the groundwater flow systems adjacent to the plant water management structures is carried out on a regular basis to determine what effects seepage will have both within the operational life of the mine and after mining and rehabilitation have ceased

  9. Cost Effective Instrumentation for Developing Autonomous Groundwater Monitoring Networks

    Science.gov (United States)

    Viti, T. M.; Garmire, D. G.

    2017-12-01

    Despite a relatively poor understanding of Hawaiian groundwater systems, the State of Hawaii depends almost exclusively on groundwater for its public water supply. Ike Wai, an NSF funded project (EPSCoR Program Award OIA #1557349) at the University of Hawaii, aims to develop new groundwater models for Hawaii's aquifers, including water quality and transport processes. To better understand aquifer properties such as capacity and hydraulic conductivity, we are developing well-monitoring instruments that can autonomously record water parameters such as conductivity, temperature, and hydraulic head level, with sampling frequencies on the order of minutes. We are currently exploring novel methods and materials for solving classical design problems, such as applying dielectric spectroscopy techniques for measuring salinity, and using recycled materials for producing custom cable assemblies. System components are fabricated in house using rapid prototyping (e.g. 3D printing, circuit board milling, and laser cutting), and traditional manufacturing techniques. This approach allows us to produce custom components while minimizing development cost, and maximizing flexibility in the overall system's design.

  10. F-Area Seepage Basins groundwater monitoring report, fourth quarter 1991 and 1991 summary

    International Nuclear Information System (INIS)

    1992-03-01

    This progress report for fourth quarter 1991 and 1991 summary fro the Savannah River Plant includes discussion on the following topics: description of facilities; hydrostratigraphic units; monitoring well nomenclature; integrity of the monitoring well network; groundwater monitoring data; analytical results exceeding standards; tritium, nitrate, and pH time-trend data; water levels; groundwater flow rates and directions; upgradient versus downgradient results

  11. Design, placement, and sampling of groundwater monitoring wells for the management of hazardous waste disposal facilities

    International Nuclear Information System (INIS)

    Tsai, S.Y.

    1988-01-01

    Groundwater monitoring is an important technical requirement in managing hazardous waste disposal facilities. The purpose of monitoring is to assess whether and how a disposal facility is affecting the underlying groundwater system. This paper focuses on the regulatory and technical aspects of the design, placement, and sampling of groundwater monitoring wells for hazardous waste disposal facilities. Such facilities include surface impoundments, landfills, waste piles, and land treatment facilities. 8 refs., 4 figs

  12. Sanitary landfill groundwater quality assessment plan Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Wells, D.G.; Cook, J.W.

    1990-06-01

    This assessment monitoring plan has been prepared in accordance with the guidance provided by the SCDHEC in a letter dated December 7, 1989 from Pearson to Wright and a letter dated October 9, 1989 from Keisler to Lindler. The letters are included a Appendix A, for informational purposes. Included in the plan are all of the monitoring data from the landfill monitoring wells for 1989, and a description of the present monitoring well network. The plan proposes thirty-two new wells and an extensive coring project that includes eleven soil borings. Locations of the proposed wells attempt to follow the SCDHEC guidelines and are downgradient, sidegradient and in the heart of suspected contaminant plumes. Also included in the plan is the current Savannah River Site Sampling and Analysis Plan and the well construction records for all of the existing monitoring wells around the sanitary landfill.

  13. Baseline risk assessment for groundwater contamination at the uranium mill tailings site, Gunnison, Colorado

    International Nuclear Information System (INIS)

    1990-11-01

    The Gunnison Baseline Risk Assessment for Groundwater Contamination at the Uranium Mill Tailings Site was performed to determine if long-term use of groundwater from domestic wells near the site has a potential for adverse health effects. The risk assessment was based on the results of sampling domestic wells during 1989--1990. A risk assessment evaluates health risks by comparing the amount of a contaminant taken in by a person with the amount of the contaminant that may be toxic. The Gunnison Risk Assessment used high intake values to estimate the maximum levels a person might be exposed to. The results of the risk assessment are divided into cancer (carcinogenic) risks and non-carcinogenic risks. Five key contaminants were evaluated for adverse health risks: uranium, manganese, lead antimony, and cadmium. Due to the potential health risks and the unavoidable uncertainties associated with limited groundwater and toxicity data, it is prudent public health policy to provide a permanent alternate water supply. Additionally, providing a permanent alternate water supply is cost-effective compared to long-term routine monitoring

  14. Data Validation Package - July 2016 Groundwater Sampling at the Gunnison, Colorado, Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    Linard, Joshua [USDOE Office of Legacy Management, Washington, DC (United States); Campbell, Sam [Navarro Research and Engineering, Inc., Las Vegas, NV (United States)

    2016-10-25

    Groundwater sampling at the Gunnison, Colorado, Disposal Site is conducted every 5 years to monitor disposal cell performance. During this event, samples were collected from eight monitoring wells as specified in the 1997 Long-Term Surveillance Plan for the Gunnison, Colorado, Disposal Site. Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for US Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated, http://energy.gov/lm/downloads/sampling-and­ analysis-plan-us-department-energy-office-legacy-management-sites). Planned monitoring locations are shown in Attachment 1, Sampling and Analysis Work Order. A duplicate sample was collected from location 0723. Water levels were measured at all monitoring wells that were sampled and seven additional wells. The analytical data and associated qualifiers can be viewed in environmental database reports and are also available for viewing with dynamic mapping via the GEMS (Geospatial Environmental Mapping System) website at http://gems.lm.doe.gov/#. No issues were identified during the data validation process that require additional action or follow-up.

  15. Site Screening and Technical Guidance for Monitored Natural Attenuation at DOE Sites

    Energy Technology Data Exchange (ETDEWEB)

    Borns, D.J.; Brady, P.V.; Brady, W.D.; Krupka, K.M.; Spalding, B.P.; Waters, R.D.; Zhang, P.

    1999-03-01

    Site Screening and Technical Guidance for Monitored Natural Attenuation at DOE Sites briefly outlines the biological and geochemical origins of natural attenuation, the tendency for natural processes in soils to mitigate contaminant transport and availability, and the means for relying on monitored natural attenuation (MNA) for remediation of contaminated soils and groundwaters. This report contains a step-by-step guide for (1) screening contaminated soils and groundwaters on the basis of their potential for remediation by natural attenuation and (2) implementing MNA consistent with EPA OSWER Directive 9200.4-17. The screening and implementation procedures are set up as a web-based tool (http://www.sandia.gov/eesector/gs/gc/na/mnahome.html) to assist US Department of Energy (DOE) site environmental managers and their staff and contractors to adhere to EPA guidelines for implementing MNA. This document is intended to support the Decision Maker's Framework Guide and Monitoring Guide both to be issued from DOE EM-40. Further technical advances may cause some of the approach outlined in this document to change over time.

  16. Monitoring for Pesticides in Groundwater and Surface Water in Nevada, 2008

    Science.gov (United States)

    Thodal, Carl E.; Carpenter, Jon; Moses, Charles W.

    2009-01-01

    Johnson, 1997). Groundwater contamination also may come indirectly by the percolation of agricultural and urban irrigation water through soil layers and into groundwater and from pesticide residue in surface water, such as drainage ditches, streams, and municipal wastewater. To protect surface water and groundwater from pesticide contamination, the USEPA requires that all states establish a pesticide management plan. The Nevada Department of Agriculture (NDOA), with assistance from the USEPA, developed a management program of education (Hefner and Donaldson, 2006), regulation (Johnson and others, 2006), and monitoring (Pennington and others, 2001) to protect Nevada's water resources from pesticide contaminants. Sampling sites are located in areas where urban or agricultural pesticide use may affect groundwater, water bodies, endangered species, and other aquatic life. Information gathered from these sites is used by NDOA to help make regulatory decisions that will protect human and environmental health by reducing and eliminating the occurrence of pesticide contamination. This fact sheet describes current (2008) pesticide monitoring of groundwater and streams by the NDOA in Nevada and supersedes Pennington and others (2001).

  17. Groundwater quality assessment plan for the 1324-N/NA Site: Phase 1 (first determination)

    International Nuclear Information System (INIS)

    Hartman, M.J.

    1998-05-01

    The 1324-N Surface Impoundment and 1324-NA Percolation Pond (1324-N/NA Site) are treatment/storage/disposal sites regulated under the Resource Conservation and Recovery Act of 1976 (RCRA). They are located in the 100-N Area of the Hanford Site, and were used to treat and dispose of corrosive waste from a water treatment plant. Groundwater monitoring under an interim-status detection program compared indicator parameters from downgradient wells to background values established from an upgradient well. One of the indicator parameters, total organic carbon (TOC), exceeded its background value in one downgradient well, triggering an upgrade from a detection program to an assessment program. This plan presents the first phase of the assessment program

  18. Data Validation Package, December 2015, Groundwater and Surface Water Sampling at the Monument Valley, Arizona, Processing Site March 2016

    Energy Technology Data Exchange (ETDEWEB)

    Tyrrell, Evan [Navarro Research and Engineering, Inc., Oak Ridge, NV (United States); Denny, Angelita [USDOE Office of Legacy Management, Washington, DC (United States)

    2016-03-23

    Fifty-two groundwater samples and one surface water sample were collected at the Monument Valley, Arizona, Processing Site to monitor groundwater contaminants for evaluating the effectiveness of the proposed compliance strategy as specified in the 1999 Final Site Observational Work Plan for the UMTRA Project Site at Monument Valley, Arizona. Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated, http://energy.gov/lm/downloads/sampling-and-analysis-plan-us-department- energy-office-legacy-management-sites). Samples were collected for metals, anions, nitrate + nitrite as N, and ammonia as N analyses at all locations.

  19. Remote sensing to monitor uranium tailing sites

    International Nuclear Information System (INIS)

    1992-02-01

    This report concerns the feasibility of using remotely-sensed data for long-term monitoring of uranium tailings. Decommissioning of uranium mine tailings sites may require long-term monitoring to confirm that no unanticipated release of contaminants occurs. Traditional ground-based monitoring of specific criteria of concern would be a significant expense depending on the nature and frequency of the monitoring. The objective of this study was to evaluate whether available remote-sensing data and techniques were applicable to the long-term monitoring of tailings sites. This objective was met by evaluating to what extent the data and techniques could be used to identify and discriminate information useful for monitoring tailings sites. The cost associated with obtaining and interpreting this information was also evaluated. Satellite and aircraft remote-sensing-based activities were evaluated. A monitoring programme based on annual coverage of Landsat Thematic Mapper data is recommended. Immediately prior to and for several years after decommissioning of the tailings sites, airborne multispectral and thermal infrared surveys combined with field verification data are required in order to establish a baseline for the long-term satellite-based monitoring programme. More frequent airborne surveys may be required if rapidly changing phenomena require monitoring. The use of a geographic information system is recommended for the effective storage and manipulation of data accumulated over a number of years

  20. Environmental assessment for the Groundwater Characterization Project, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    1992-08-01

    The US Department of Energy (DOE) proposes to conduct a program to characterize groundwater at the Nevada Test Site (NTS), Nye County, Nevada, in accordance with a 1987 DOE memorandum stating that all past, present, and future nuclear test sites would be treated as Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) sites (Memorandum from Bruce Green, Weapons Design and Testing Division, June 6, 1987). DOE has prepared an environmental assessment (DOE/EA-0532) to evaluate the environmental consequences associated with the proposed action, referred to as the Groundwater Characterization Project (GCP). This proposed action includes constructing access roads and drill pads, drilling and testing wells, and monitoring these wells for the purpose of characterizing groundwater at the NTS. Long-term monitoring and possible use of these wells in support of CERCLA, as amended by the Superfund Amendments and Reauthorization Act, is also proposed. The GCP includes measures to mitigate potential impacts on sensitive biological, cultural and historical resources, and to protect workers and the environment from exposure to any radioactive or mixed waste materials that may be encountered. DOE considers those mitigation measures related to sensitive biological, cultural and historic resources as essential to render the impacts of the proposed action not significant, and DOE has prepared a Mitigation Action Plan (MAP) that explains how such mitigations will be planned and implemented. Based on the analyses presented in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, preparation of an environmental impact statement is not required and the Department is issuing this FONSI

  1. Environmental assessment for the Groundwater Characterization Project, Nevada Test Site, Nye County, Nevada; Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-08-01

    The US Department of Energy (DOE) proposes to conduct a program to characterize groundwater at the Nevada Test Site (NTS), Nye County, Nevada, in accordance with a 1987 DOE memorandum stating that all past, present, and future nuclear test sites would be treated as Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) sites (Memorandum from Bruce Green, Weapons Design and Testing Division, June 6, 1987). DOE has prepared an environmental assessment (DOE/EA-0532) to evaluate the environmental consequences associated with the proposed action, referred to as the Groundwater Characterization Project (GCP). This proposed action includes constructing access roads and drill pads, drilling and testing wells, and monitoring these wells for the purpose of characterizing groundwater at the NTS. Long-term monitoring and possible use of these wells in support of CERCLA, as amended by the Superfund Amendments and Reauthorization Act, is also proposed. The GCP includes measures to mitigate potential impacts on sensitive biological, cultural and historical resources, and to protect workers and the environment from exposure to any radioactive or mixed waste materials that may be encountered. DOE considers those mitigation measures related to sensitive biological, cultural and historic resources as essential to render the impacts of the proposed action not significant, and DOE has prepared a Mitigation Action Plan (MAP) that explains how such mitigations will be planned and implemented. Based on the analyses presented in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, preparation of an environmental impact statement is not required and the Department is issuing this FONSI.

  2. Annual Report of Groundwater Monitoring at Everest, Kansas, in 2012

    Energy Technology Data Exchange (ETDEWEB)

    LaFreniere, Lorraine M. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2013-07-01

    In March 2009, the CCC/USDA developed a plan for annual monitoring of the groundwater and surface water (Argonne 2009). Under this plan, approved by the KDHE (2009), monitoring wells are sampled by using the low-flow procedure, and surface water samples are collected at five locations along the intermittent creek. Vegetation sampling is conducted as a secondary indicator of plume migration. Results of annual sampling in 2009-2011 for volatile organic compounds (VOCs) and water level measurements (Argonne 2010a, 2011a,b) were consistent with previous observations (Argonne 2003, 2006a,d, 2008). No carbon tetrachloride was detected in surface water of the intermittent creek or in tree branch samples collected at locations along the creek banks. This report presents the results of the fourth annual sampling event, conducted in 2012.

  3. Pesticide monitoring in surface water and groundwater using passive samplers

    Science.gov (United States)

    Kodes, V.; Grabic, R.

    2009-04-01

    Passive samplers as screening devices have been used within a czech national water quality monitoring network since 2002 (SPMD and DGT samplers for non polar substances and metals). The passive sampler monitoring of surface water was extended to polar substances, in 2005. Pesticide and pharmaceutical POCIS samplers have been exposed in surface water at 21 locations and analysed for polar pesticides, perfluorinated compounds, personal care products and pharmaceuticals. Pesticide POCIS samplers in groundwater were exposed at 5 locations and analysed for polar pesticides. The following active substances of plant protection products were analyzed in surface water and groundwater using LC/MS/MS: 2,4,5-T, 2,4-D, Acetochlor, Alachlor, Atrazine, Atrazine_desethyl, Azoxystrobin, Bentazone, Bromacil, Bromoxynil, Carbofuran, Clopyralid, Cyanazin, Desmetryn, Diazinon, Dicamba, Dichlobenil, Dichlorprop, Dimethoat, Diuron, Ethofumesate, Fenarimol, Fenhexamid, Fipronil, Fluazifop-p-butyl, Hexazinone, Chlorbromuron, Chlorotoluron, Imazethapyr, Isoproturon, Kresoxim-methyl, Linuron, MCPA, MCPP, Metalaxyl, Metamitron, Methabenzthiazuron, Methamidophos, Methidathion, Metobromuron, Metolachlor, Metoxuron, Metribuzin, Monolinuron, Nicosulfuron, Phorate, Phosalone, Phosphamidon, Prometryn, Propiconazole, Propyzamide, Pyridate, Rimsulfuron, Simazine, Tebuconazole, Terbuthylazine, Terbutryn, Thifensulfuron-methyl, Thiophanate-methyl and Tri-allate. The POCIS samplers performed very well being able to provide better picture than grab samples. The results show that polar pesticides and also perfluorinated compounds, personal care products and pharmaceuticals as well occur in hydrosphere of the Czech republic. Acknowledgment: Authors acknowledge the financial support of grant No. 2B06095 by the Ministry of Education, Youth and Sports.

  4. Site 300 Bat Monitoring Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Drennan, Joe [Garcia and Associates, San Francisco, CA (United States); Tortosa, Justin [Garcia and Associates, San Francisco, CA (United States)

    2016-07-18

    From June 15 to 18, 2015, GANDA biologist Graham Neale assisted in programming and fieldtesting of the bat monitoring equipment. The equipment was deployed in the field on a meteorological (MET) tower within Site 300 on June 18, 2015.

  5. Cerenkov Counter for In-Situ Groundwater Monitoring of 90Sr

    Directory of Open Access Journals (Sweden)

    Lindsay C. Todd

    2005-02-01

    Full Text Available Groundwater contamination from 90Sr is an environmental challenge posed topresent and former nuclear weapons related sites. Traditional methods of extractinggroundwater samples and performing laboratory analyses are expensive, time-consumingand induce significant disposal challenges. The authors present here a prototype countercapable of measuring 90Sr groundwater concentrations in-situ at or below the drinking waterlimit of 8 pCi/liter. The 90Y daughter of 90Sr produces high-energy electrons, which cancreate Cerenkov light. Photomultiplier tubes convert the Cerenkov light into an electronicpulse, which then undergoes signal processing with standard electronics. Strontium-90concentrations near the drinking water limit can be measured in a matter of hours if it is insecular equilibrium with the 90Y daughter. The prototype counter is compact, can bedeployed in an American Standard 6-inch, well while operated by a single person, andtransmits the results to a central monitoring location.

  6. Siting and constructing very deep monitoring wells on the US Department of Energy's Nevada Test Site

    International Nuclear Information System (INIS)

    Cullen, J.J.; Jacobson, R.L.; Russell, C.E.

    1991-01-01

    Many aspects of the Nevada Test Site's (NTS) hydrogeologic setting restrict the use of traditional methods for the siting and construction of ground-water characterization and monitoring wells. The size of the NTS precludes establishing high-density networks of characterization wells, as are typically used at smaller sites. The geologic complexity and variability of the NTS requires that the wells be criticality situated. The hydrogeologic complexity requires that each well provide access to many aquifers. Depths to ground water on the NTS require the construction of wells averaging approximately 1000 meters in depth. Wells meeting these criteria are uncommon in the ground-water industry, therefore techniques used by petroleum engineers are being employed to solve certain siting-, design- and installation-related problems. To date, one focus has been on developing completion strings that facilitate routine and efficient ground-water sampling from multiple intervals in a single well. The method currently advocated employs a new design of sliding side door sleeve that is actuated by an electrically operated hydraulic shifting tool. Stemming of the wells is being accomplished with standard materials (cement based grouts and sands); however, new stemming methods are being developed, to accommodate the greater depths, to minimize pH-related problems caused by the use of cements, to enhance the integrity of the inter-zone seals, and to improve the representativeness of radionuclide analyses performed on ground-water samples. Bench-scale experiments have been used to investigate the properties of more than a dozen epoxy-aggregate grout mixtures -- materials that are commonly used in underwater sealing applications

  7. Groundwater quality assessment plan for single-shell tank waste management Area U at the Hanford Site

    International Nuclear Information System (INIS)

    FN Hodges; CJ Chou

    2000-01-01

    Waste Management Area U (WMA U) includes the U Tank Farm, is currently regulated under RCRA interim-status regulations, and is scheduled for closure probably post-2030. Groundwater monitoring has been under an evaluation program that compared general contaminant indicator parameters from downgradient wells to background values established from upgradient wells. One of the indicator parameters, specific conductance, exceeded its background value in one downgradient well triggering a change from detection monitoring to a groundwater quality assessment program. The objective of the first phase of this assessment program is to determine whether the increased concentrations of nitrate and chromium in groundwater are from WMA U or from an upgradient source. Based on the results of the first determination, if WMA U is not the source of contamination, then the site will revert to detection monitoring. If WMA U is the source, then a second part of the groundwater quality assessment plan will be prepared to define the rate and extent of migration of contaminants in the groundwater and their concentrations

  8. Evaluation of Pre- and Post- Redevelopment Groundwater Chemical Analyses from LM Monitoring Wells

    International Nuclear Information System (INIS)

    Kamp, Susan; Dayvault, Jalena

    2016-01-01

    This report documents the efforts and analyses conducted for the Applied Studies and Technology (AS&T) Ancillary Work Plan (AWP) project titled Evaluation of Pre- and Post- Redevelopment Groundwater Sample Laboratory Analyses from Selected LM Groundwater Monitoring Wells. This effort entailed compiling an inventory of nearly 500 previous well redevelopment events at 16 U.S. Department of Energy Office of Legacy Management (LM) sites, searching the literature for impacts of well redevelopment on groundwater sample quality, and-the focus of this report-evaluating the impacts of well redevelopment on field measurements and sample analytical results. Study Catalyst Monitoring well redevelopment, the surging or high-volume pumping of a well to loosen and remove accumulated sediment and biological build-up from a well, is considered an element of monitoring well maintenance that is implemented periodically during the lifetime of the well to mitigate its gradual deterioration. Well redevelopment has been conducted fairly routinely at a few LM sites in the western United States (e.g., the Grand Junction office site and the Gunnison processing site in Colorado), but at most other sites in this region it is not a routine practice. Also, until recently (2014-2015), there had been no specific criteria for implementing well redevelopment, and documentation of redevelopment events has been inconsistent. A catalyst for this evaluation was the self-identification of these inconsistencies by the Legacy Management Support contractor. As a result, in early 2015 Environmental Monitoring Operations (EMO) staff began collecting and documenting additional field measurements during well redevelopment events. In late 2015, AS&T staff undertook an independent internal evaluation of EMO's well redevelopment records and corresponding pre- and post-well-redevelopment groundwater analytical results. Study Findings Although literature discussions parallel the prevailing industry

  9. Evaluation of Pre- and Post- Redevelopment Groundwater Chemical Analyses from LM Monitoring Wells

    Energy Technology Data Exchange (ETDEWEB)

    Kamp, Susan [Navarro Reserch and Engineering, Oak Ridge, TN (United States); Dayvault, Jalena [US Department of Energy, Washington, DC (United States). Office of Legacy Management

    2016-05-01

    This report documents the efforts and analyses conducted for the Applied Studies and Technology (AS&T) Ancillary Work Plan (AWP) project titled Evaluation of Pre- and Post- Redevelopment Groundwater Sample Laboratory Analyses from Selected LM Groundwater Monitoring Wells. This effort entailed compiling an inventory of nearly 500 previous well redevelopment events at 16 U.S. Department of Energy Office of Legacy Management (LM) sites, searching the literature for impacts of well redevelopment on groundwater sample quality, and—the focus of this report—evaluating the impacts of well redevelopment on field measurements and sample analytical results. Study Catalyst Monitoring well redevelopment, the surging or high-volume pumping of a well to loosen and remove accumulated sediment and biological build-up from a well, is considered an element of monitoring well maintenance that is implemented periodically during the lifetime of the well to mitigate its gradual deterioration. Well redevelopment has been conducted fairly routinely at a few LM sites in the western United States (e.g., the Grand Junction office site and the Gunnison processing site in Colorado), but at most other sites in this region it is not a routine practice. Also, until recently (2014–2015), there had been no specific criteria for implementing well redevelopment, and documentation of redevelopment events has been inconsistent. A catalyst for this evaluation was the self-identification of these inconsistencies by the Legacy Management Support contractor. As a result, in early 2015 Environmental Monitoring Operations (EMO) staff began collecting and documenting additional field measurements during well redevelopment events. In late 2015, AS&T staff undertook an independent internal evaluation of EMO's well redevelopment records and corresponding pre- and post-well-redevelopment groundwater analytical results. Study Findings Although literature discussions parallel the prevailing industry

  10. Data Validation Package May 2016 Groundwater Sampling at the Sherwood, Washington, Disposal Site August 2016

    Energy Technology Data Exchange (ETDEWEB)

    Kreie, Ken [USDOE Office of Legacy Management, Washington, DC (United States); Traub, David [Navarro Research and Engineering, Inc., Oak Ridge, TN (United States)

    2016-08-04

    The 2001 Long-Term Surveillance Plan (LTSP) for the US. Department of Energy Sherwood Project (UMI'RCA Title II) Reclamation Cell, Wellpinit, Washington, does not require groundwater compliance monitoring at the Sherwood site. However, the LTSP stipulates limited groundwater monitoring for chloride and sulfate (designated indicator parameters) and total dissolved solids (TDS) as a best management practice. Samples were collected from the background well, MW-2B, and the two downgradient wells, MW-4 and MW-10, in accordance with the LTSP. Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for US. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). Water levels were measured in all wells prior to sampling and in four piezometers completed in the tailings dam. Time-concentration graphs included in this report indicate that the chloride, sulfate, and TDS concentrations are consistent with historical measurements. The concentrations of chloride and sulfate are well below the State of Washington water quality criteria value of 250 milligrams per liter (mg/L) for both parameters.

  11. Idaho National Laboratory Site Environmental Monitoring Plan

    Energy Technology Data Exchange (ETDEWEB)

    Nordstrom, Jenifer [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-02-01

    This plan provides a high-level summary of environmental monitoring performed by various organizations within and around the Idaho National Laboratory (INL) Site as required by U.S. Department of Energy (DOE) Order 435.1, Radioactive Waste Management, and DOE Order 458.1, Radiation Protection of the Public and the Environment, Guide DOE/EH-0173T, Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance, and in accordance with 40 Code of Federal Regulations (CFR) 61, National Emission Standards for Hazardous Air Pollutants. The purpose of these orders is to 1) implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations, and 2) to establish standards and requirements for the operations of DOE and DOE contractors with respect to protection of the environment and members of the public against undue risk from radiation. This plan describes the organizations responsible for conducting environmental monitoring across the INL Site, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. Detailed monitoring procedures, program plans, or other governing documents used by contractors or agencies to implement requirements are referenced in this plan. This plan covers all planned monitoring and environmental surveillance. Non-routine activities such as special research studies and characterization of individual sites for environmental restoration are outside the scope of this plan.

  12. A study of groundwater monitoring data analysis using Artificial Neural Network model

    International Nuclear Information System (INIS)

    Watanabe, Kunio; Gautam, M.R.; Saegusa, Hiromitsu

    2003-05-01

    The results of groundwater flow modeling are to be justified using groundwater monitoring data in the hydrogeological characterization. On the other hand, hydraulic continuities of the geological structures, all of which are considered to have great effect on groundwater flow and/or groundwater quality, are to be estimated using the groundwater flow monitoring data with hydraulic response to some impacts such as borehole drilling, pumping test and so on. Therefore, the groundwater monitoring is important for characterizing the geological and hydrogeological environments. In order to characterize of hydrogeological environment using the monitoring data, it is important to evaluate the influence of artificial and natural impact on the monitoring data. In this study, the following three research works are carried out based on the groundwater monitoring data collected at the Tono area. Artificial Neural Network (ANN) was adopted as the tool for monitoring data analysis. Runoff analysis for assessment of importance of soil moisture on runoff estimation in a catchment. Analysis of water level fluctuation for determination influence factors in the water level fluctuation and for filtering out the influence factors from the water level data . Analysis of hydraulic pressure fluctuation in deep geological formations for hydrogeological characterization and assessment of human influence on the pore pressure in deep formation. Through this study, applicability of ANN for analysis and interpretation of the groundwater monitoring data could be confirmed and methodology for utilization the monitoring data for understanding and characterization of hydrogeological environment could be developed. (author)

  13. Groundwater Monitoring Plan for the Reactor Technology Complex Operable Unit 2-13

    International Nuclear Information System (INIS)

    Richard P. Wells

    2007-01-01

    This Groundwater Monitoring Plan describes the objectives, activities, and assessments that will be performed to support the on-going groundwater monitoring requirements at the Reactor Technology Complex, formerly the Test Reactor Area (TRA). The requirements for groundwater monitoring were stipulated in the Final Record of Decision for Test Reactor Area, Operable Unit 2-13, signed in December 1997. The monitoring requirements were modified by the First Five-Year Review Report for the Test Reactor Area, Operable Unit 2-13, at the Idaho National Engineering and Environmental Laboratory to focus on those contaminants of concern that warrant continued surveillance, including chromium, tritium, strontium-90, and cobalt-60. Based upon recommendations provided in the Annual Groundwater Monitoring Status Report for 2006, the groundwater monitoring frequency was reduced to annually from twice a year

  14. Data Validation Package May and June 2015 Groundwater and Surface Water Sampling at the Bluewater, New Mexico, Disposal Site, August 2015

    International Nuclear Information System (INIS)

    Johnson, Dick; Tsosie, Bernadette

    2015-01-01

    Groundwater samples were collected from monitoring wells at the Bluewater, New Mexico, Disposal Site to monitor groundwater contaminants as specified in the 1997 Long-Term Surveillance Plan for the DOE Bluewater (UMTRCA Title II) Disposal Site Near Grants, New Mexico (LTSP). Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). Duplicate samples were collected from locations 14(SG) and 21(M). Sampling originally scheduled for the week of May 11, 2015 was interrupted by heavy rainfall and later completed in June.

  15. Data Validation Package May and June 2015 Groundwater and Surface Water Sampling at the Bluewater, New Mexico, Disposal Site, August 2015

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Dick [Navarro Research and Engineering, Inc., Oak Ridge, TN (United States); Tsosie, Bernadette [US Department of Energy, Washington, DC (United States)

    2015-08-01

    Groundwater samples were collected from monitoring wells at the Bluewater, New Mexico, Disposal Site to monitor groundwater contaminants as specified in the 1997 Long-Term Surveillance Plan for the DOE Bluewater (UMTRCA Title II) Disposal Site Near Grants, New Mexico (LTSP). Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). Duplicate samples were collected from locations 14(SG) and 21(M). Sampling originally scheduled for the week of May 11, 2015 was interrupted by heavy rainfall and later completed in June.

  16. Groundwater level monitoring sampling and analysis plan for environmental monitoring in Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    This Sampling and Analysis Plan addresses groundwater level monitoring activities that will be conducted in support of the Environmental Monitoring Plan for Waste Area Grouping (WAG) 6. WAG 6 is a shallow-burial land disposal facility for low-level radioactive waste at the Oak Ridge National Laboratory, a research facility owned by the US Department of Energy and managed by Martin Marietta Energy Systems, Inc. Groundwater level monitoring will be conducted at 129 sites within the WAG. All of the sites will be manually monitored on a semiannual basis. Forty-five of the 128 wells, plus one site in White Oak Lake, will also be equipped with automatic water level monitoring equipment. The 46 sites are divided into three groups. One group will be equipped for continuous monitoring of water level, conductivity, and temperature. The other two groups will be equipped for continuous monitoring of water level only. The equipment will be rotated between the two groups. The data collected from the water level monitoring will be used to support determination of the contaminant flux at WAG 6.

  17. Groundwater level monitoring sampling and analysis plan for environmental monitoring in Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1994-04-01

    This Sampling and Analysis Plan addresses groundwater level monitoring activities that will be conducted in support of the Environmental Monitoring Plan for Waste Area Grouping (WAG) 6. WAG 6 is a shallow-burial land disposal facility for low-level radioactive waste at the Oak Ridge National Laboratory, a research facility owned by the US Department of Energy and managed by Martin Marietta Energy Systems, Inc. Groundwater level monitoring will be conducted at 129 sites within the WAG. All of the sites will be manually monitored on a semiannual basis. Forty-five of the 128 wells, plus one site in White Oak Lake, will also be equipped with automatic water level monitoring equipment. The 46 sites are divided into three groups. One group will be equipped for continuous monitoring of water level, conductivity, and temperature. The other two groups will be equipped for continuous monitoring of water level only. The equipment will be rotated between the two groups. The data collected from the water level monitoring will be used to support determination of the contaminant flux at WAG 6

  18. Risk assessment of groundwater environmental contamination: a case study of a karst site for the construction of a fossil power plant.

    Science.gov (United States)

    Liu, Fuming; Yi, Shuping; Ma, Haiyi; Huang, Junyi; Tang, Yukun; Qin, Jianbo; Zhou, Wan-Huan

    2017-12-20

    This paper presents a demonstration of an integrated risk assessment and site investigation for groundwater contamination through a case study, in which the geologic and hydrogeological feature of the site and the blueprint of the fossil power plant (FPP) were closely analyzed. Predictions for groundwater contamination in case of accidents were performed by groundwater modeling system (GMS) and modular three-dimensional multispecies transport model (MT3DMS). Results indicate that the studied site area presents a semi-isolated hydrogeological unit with multiplicity in stratum lithology, the main aquifers at the site are consisted of the filled karst development layer with a thickness between 6.0 and 40.0 m. The poor permeability of the vadose zone at the FPP significantly restricted the infiltration of contaminants through the vadose zone to the subsurface. The limited influence of rarely isotropic porous karstified carbonate rocks on the groundwater flow system premised the simulate scenarios of plume migration. Analysis of the present groundwater chemistry manifested that that the groundwater at the site and the local area are of the HCO 3 -Ca, HCO 3 , and SO 4 -Ca types. A few of the water samples were contaminated by coliform bacteria and ammonia nitrogen as a result of the local cultivation. Prediction results indicate that the impact of normal construction and operation processes on the groundwater environment is negligible. However, groundwater may be partly contaminated within a certain period in the area of leakage from the diesel tanks, the industrial wastewater pool, and the cooling tower water tank in case of accidents. On a positive note, none of the plumes would reach the local sensitive areas for groundwater using. Finally, an anti-seepage scheme and a monitoring program are proposed to safeguard the groundwater protection. The integrated method of the site investigation and risk assessment used in this case study can facilitate the protection of

  19. Sanitary Landfill Groundwater Monitoring Report, Fourth Quarter 1999 and 1999 Summary

    International Nuclear Information System (INIS)

    Chase, J.

    2000-01-01

    A maximum of thirty eight-wells of the LFW series monitor groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill Area at the Savannah River Site (SRS). These wells are sampled quarterly to comply with the South Carolina Department of Health and Environmental Control Domestic Water Permit DWP-087A and as part of the SRS Groundwater Monitoring Program. Iron (Total Recoverable), Chloroethene (Vinyl Chloride) and 1,1-Dichloroethane were the most widespread constituents exceeding the Final Primary Drinking Water Standards during 1999. Trichloroethylene, 1,1-Dichloroethylene, 1,2-Dichloroethane, 1,4-Dichlorobenzene, Aluminum (Total Recoverable), Benzene, cis-1,2-Dichloroethylene, Dichlorodifluoromethane, Dichloromethane (Methylene Chloride), Gross Alpha, Mercury (Total Recoverable), Nonvolatile Beta, Tetrachloroethylene, Total Organic Halogens, Trichlorofluoromethane, Tritium also exceeded standards in one or more wells. The groundwater flow direction in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill is to the southeast (universal transverse Mercator coordinates). The flow rate in this unit was approximately 144.175 ft/year during first quarter 1999 and 145.27 ft/year during fourth quarter 1999

  20. Initial site characterisation of a dissolved hydrocarbon groundwater plume discharging to a surface water environment

    International Nuclear Information System (INIS)

    Westbrook, S.J.; Commonwealth Scientific and Industrial Research Organisation Land and Water, Wembley, WA; Davis, G.B.; Rayner, J.L.; Fisher, S.J.; Clement, T.P.

    2000-01-01

    Preliminary characterisation of a dissolved hydrocarbon groundwater plume flowing towards a tidally- and seasonally-forced estuarine system has been completed at a site in Perth, Western Australia. Installation and sampling of multiport boreholes enabled fine scale (0.5-m) vertical definition of hydrocarbon concentrations. Vertical electrical conductivity profiles from multiport and spear probe sampling into the river sediments indicated that two groundwater/river water interfaces or dispersion zones are present: (a) an upper dispersion zone between brackish river water and groundwater, and (b) a lower interface between groundwater and deeper saline water. On-line water level loggers show that near-shore groundwater levels are also strongly influence by tidal oscillation. Results from the initial site characterisation will be used to plan further investigations of contaminated groundwater/surface water interactions and the biodegradation processes occurring at the site

  1. Nevada National Security Site Integrated Groundwater Sampling Plan, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Farnham, Irene

    2018-03-01

    The purpose is to provide a comprehensive, integrated approach for collecting and analyzing groundwater samples to meet the needs and objectives of the DOE/EM Nevada Program’s UGTA Activity. Implementation of this Plan will provide high-quality data required by the UGTA Activity for ensuring public protection in an efficient and cost-effective manner. The Plan is designed to ensure compliance with the UGTA Quality Assurance Plan (QAP) (NNSA/NFO, 2015); Federal Facility Agreement and Consent Order (FFACO) (1996, as amended); and DOE Order 458.1, Radiation Protection of the Public and the Environment (DOE, 2013). The Plan’s scope comprises sample collection and analysis requirements relevant to assessing both the extent of groundwater contamination from underground nuclear testing and impact of testing on water quality in downgradient communities. This Plan identifies locations to be sampled by CAU and location type, sampling frequencies, sample collection methodologies, and the constituents to be analyzed. In addition, the Plan defines data collection criteria such as well purging, detection levels, and accuracy requirements/recommendations; identifies reporting and data management requirements; and provides a process to ensure coordination between NNSS groundwater sampling programs for sampling analytes of interest to UGTA. Information used in the Plan development—including the rationale for selection of wells, sampling frequency, and the analytical suite—is discussed under separate cover (N-I, 2014) and is not reproduced herein. This Plan does not address compliance for those wells involved in a permitted activity. Sampling and analysis requirements associated with these wells are described in their respective permits and are discussed in NNSS environmental reports (see Section 5.2). In addition, sampling for UGTA CAUs that are in the Closure Report (CR) stage are not included in this Plan. Sampling requirements for these CAUs are described in the CR

  2. Numerical groundwater flow calculations at the Finnsjoen site

    International Nuclear Information System (INIS)

    Lindbom, B.; Boghammar, A.; Lindberg, H.; Bjelkaas, J.

    1991-02-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) has initiated a research project called SKB 91, which is related to performance assessment of repositories for high level waste from nuclear power plants. Specifically the Finnsjoen site is of concern. As part of this research project, the report describes groundwater flow calculations at the Finnsjoen site, located in northern Uppland, approximately 150 km north of Stockholm. The calculations have been performed with the finite element method applying the porous media approach. The project comprises three steps, the first of which is concerned with the presence of salt below a hydraulically significant structure. This step was modelled in two dimensions in a semi-generic fashion, while the two following steps comprised three-dimensional modelling of the site at a semi-regional and a local scale. The semi-regional model covered approximately 43 square km while the area of the local model was roughly 6.6 square km. The semi-regional model included well expressed regional fracture zones that were explicitly modelled in deterministic manner. The modelling was performed with the finite element code NAMMU, used together with the program-package HYPAC. The latter was used for pre- and postprocessing purposes. The modelling was performed with 8-noded brick elements for the three-dimensional calculations, and the two-dimensional model involved the use of 8-noded rectangular elements. The present report is a revised version of a report previously published as a working report. The difference between the present report and the previous one, is that the present report describes the conclusions more site-specifically, the presentation of a number of the cases tackled has been pruned down, some editorial effort has been put into having the volume of the report reduced, and finally the summary has been edited and cut down. (authors)

  3. 2011 Mound Site Groundwater Plume Rebound Exercise and Follow-Up - 13440

    Energy Technology Data Exchange (ETDEWEB)

    Hooten, Gwendolyn [Mound Site Manager, U.S. Department of Energy Office of Legacy Management, Harrison, Ohio (United States); Cato, Rebecca; Lupton, Greg [S.M. Stoller Company, contractor to the U.S. Department of Energy Office of Legacy Management (United States)

    2013-07-01

    completed and the site was declared to be protective of human health and the environment, as long as the institutional controls are observed. The institutional controls that apply to the OU-1 area include provisions that no soil be allowed to leave the site, no wells be installed for drinking water, and the site may be approved only for industrial use. The onsite landfill with the operating CERCLA remedy remained. However, the Mound Development Corporation lobbied Congress for funds to remediate the remaining onsite landfill to allow for property reuse. In 2007 DOE received funding from Congress to perform non-CERCLA removal actions at OU-1 to excavate the site sanitary landfill. In 2009, DOE received American Recovery and Reinvestment Act funding to complete the project. Excavation of the landfill occurred intermittently from 2006 through 2010 and the majority of the VOC source was removed; however, VOC levels near the P and T system remained greater than the EPA maximum contaminant levels (MCLs). Presently, groundwater is contained using two extraction wells to create a hydraulic barrier to prevent down-gradient migration of VOC-impacted groundwater. Since the primary contamination source has been removed, the feasibility of moving away from containment to a more passive remedy, namely monitored natural attenuation (MNA), is being considered. A second rebound study was started in June 2011. If contaminant and groundwater behavior met specific conditions during the study, MNA would be evaluated and considered as a viable alternative for the groundwater in the OU-1 area. From June through December 2011, the second rebound study evaluated the changes in VOC concentrations in groundwater when the P and T system was not in operation. As the study progressed, elevated concentrations of VOCs that exceeded predetermined trigger values were measured along the down-gradient boundary of the study area, and so the P and T system was restarted. It was determined that a discrete area

  4. Groundwater flow simulation of the Savannah River Site general separations area

    Energy Technology Data Exchange (ETDEWEB)

    Flach, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Bagwell, L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Bennett, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-07

    The most recent groundwater flow model of the General Separations Area, Savannah River Site, is referred to as the “GSA/PORFLOW” model. GSA/PORFLOW was developed in 2004 by porting an existing General Separations Area groundwater flow model from the FACT code to the PORFLOW code. The preceding “GSA/FACT” model was developed in 1997 using characterization and monitoring data through the mid-1990’s. Both models were manually calibrated to field data. Significantly more field data have been acquired since the 1990’s and model calibration using mathematical optimization software has become routine and recommended practice. The current task involved updating the GSA/PORFLOW model using selected field data current through at least 2015, and use of the PEST code to calibrate the model and quantify parameter uncertainty. This new GSA groundwater flow model is named “GSA2016” in reference to the year in which most development occurred. The GSA2016 model update is intended to address issues raised by the DOE Low-Level Waste (LLW) Disposal Facility Federal Review Group (LFRG) in a 2008 review of the E-Area Performance Assessment, and by the Nuclear Regulatory Commission in reviews of tank closure and Saltstone Disposal Facility Performance Assessments.

  5. Investigation of the groundwater composition at potential radioactive waste disposal sites in Sweden

    International Nuclear Information System (INIS)

    Wikberg, P.T.

    1984-02-01

    Within an investigation program of sites suitable for an underground repository for spent nuclear fuel the groundwater has been characterized. Until now seven areas have been investigated. The groundwater has been pumped up from several isolated sections at depth of 100 m to 600 m in boreholes in each area. Each test section has been pumped continuously for at least two weeks. During the pumping period the water was characterized in the field and sampled for later analysis. Most of the characterized waters are non saline and the concentration of the different constituents varies within a rather narrow interval. Saline waters with much higher concentrations of chloride, sulphate, sodium and calcium have been encountered. The groundwater characterization includes field monitoring of the physico-chemical parameters pH, redox potential, free sulphide concentration, dissolved oxygen concentration and conductivity. These parameters are measured in a flow through cell where the water passes before coming in contact with the air. The redox potential measurements have been successful. A new equipment for measurements in the sampling section has been constructed. Preliminary tests have given very promising results

  6. One-year measurements of chloroethenes in tree cores and groundwater at the SAP Mimoň Site, Northern Bohemia.

    Science.gov (United States)

    Wittlingerova, Z; Machackova, J; Petruzelkova, A; Trapp, S; Vlk, K; Zima, J

    2013-02-01

    Chlorinated ethenes (CE) are among the most frequent contaminants of soil and groundwater in the Czech Republic. Because conventional methods of subsurface contamination investigation are costly and technically complicated, attention is directed on alternative and innovative field sampling methods. One promising method is sampling of tree cores (plugs of woody tissue extracted from a host tree). Volatile organic compounds can enter into the trunks and other tissues of trees through their root systems. An analysis of the tree core can thus serve as an indicator of the subsurface contamination. Four areas of interest were chosen at the experimental site with CE groundwater contamination and observed fluctuations in groundwater concentrations. CE concentrations in groundwater and tree cores were observed for a 1-year period. The aim was to determine how the CE concentrations in obtained tree core samples correlate with the level of contamination of groundwater. Other factors which can affect the transfer of contaminants from groundwater to wood were also monitored and evaluated (e.g., tree species and age, level of groundwater table, river flow in the nearby Ploučnice River, seasonal effects, and the effect of the remediation technology operation). Factors that may affect the concentration of CE in wood were identified. The groundwater table level, tree species, and the intensity of transpiration appeared to be the main factors within the framework of the experiment. Obtained values documented that the results of tree core analyses can be used to indicate the presence of CE in the subsurface. The results may also be helpful to identify the best sampling period for tree coring and to learn about the time it takes until tree core concentrations react to changes in groundwater conditions. Interval sampling of tree cores revealed possible preservation of the contaminant in the wood of trees.

  7. Monitoring of the Gasoline Oxygenate MTBE and BTEX Compounds in Groundwater in Catalonia (Northeast Spain

    Directory of Open Access Journals (Sweden)

    J. Fraile

    2002-01-01

    Full Text Available Headspace (HS gas chromatography with flame ionisation detection (HS-GC-FID and purge and trap (P gas chromatography-mass spectrometry (P were used for the determination of methyl-tert-butyl ether (MTBE and benzene, toluene, and xylenes (BTEX in groundwater. In this work, we present the first data on the levels of MTBE and BTEX in different groundwater wells in the area of Catalonia (northeast Spain. This monitoring campaign corresponded to 28 groundwater wells that were located near petrol service stations, oil refinery storage tanks, and/or chemical industry at different locations of Catalonia during the period of 1998/1999. The levels of MTBE detected varied between 4—300 μg/l, but two sites had MTBE levels up to 3 and 13 mg/l. In many cases, the BTEX levels were below 1 μg/l, whereas 7 sites had levels varying from 19 μg/l up to 3 mg/l. Most of them were related to leakage from underground tanks in petrol service stations, while the remaining three corresponded respectively to chemical industrial pollution of undetermined origin and to a leak from high-ground petrol tanks in petrochemical refinery factories. The aquifers involved were constituted by detritus coarse materials, sands, and conglomerates. Piezometric levels were roughly comprised between 3 and 40 m, and permeability (K and transmissivity (T values were estimated from field measurements.

  8. Mixed Waste Management Facility Groundwater Monitoring Report, Fourth Quarter 1998 and 1998 Summary

    International Nuclear Information System (INIS)

    Chase, J.

    1999-01-01

    During fourth quarter 1998, ten constituents exceeded final Primary Drinking Water Standards (PDWS) in groundwater samples from downgradient monitoring wells at the Mixed Waste Management Facility. No constituents exceeded final PDWS in samples from the upgradient monitoring wells

  9. Groundwater Monitoring Plan for the 216-S-10 Pond and Ditch, Interim Change Notice 1

    International Nuclear Information System (INIS)

    Williams, Bruce A.

    2003-01-01

    During 2003, the upgradient well 299-W26-7 went dry and one new groundwater monitoring well was installed downgradient (well 299-W26-14) of the 216-S-10 pond and ditch. This ICN updates the groundwater monitoring wells for the 216-S-10 pond and ditch and adds a revised well location map to the plan

  10. Installation of the multi-packer system for the long-term monitoring of deep groundwater system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Su; Bae, Dae Seok; Kim, Chun Soo; Park, Byung Yoon; Koh, Yong Kweon; Kim, Geon Young [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-05-01

    The groundwater system in the deep geological environment is very important to evaluate the behavior of the radionuclide migration and near-field barrier system. The multi-packer system was installed to derive the long-term change of the groundwater pressure and its quality in the several isolated monitoring zones with depth in the study sites. The monitoring zones were basically determined by the spatial distribution characteristics of the conductive fracture and their hydraulic properties. To recover the natural groundwater condition, the borehole water was purged after completing the installation. From this equipment, the in-situ data will be provided to the radionuclide migration and system development study. 2 refs., 9 figs., 3 tabs. (Author)

  11. Data Validation Package, July 2016 Groundwater Sampling at the Shirley Basin South, Wyoming, Disposal Site November 2016

    Energy Technology Data Exchange (ETDEWEB)

    Frazier, William [USDOE Office of Legacy Management, Washington, DC (United States); Price, Jeffrey [Navarro Research and Engineering, Inc., Oak Ridge, TN (United States)

    2016-11-01

    Sampling Period: July 14-15, 2016 The 2004 Long-Term Surveillance Plan for the Shirley Basin South (UMTRCA Title II) Disposal Site, Carbon County, Wyoming, requires annual monitoring to verify continued compliance with the pertinent alternate concentration limits (ACLs) and Wyoming Class III (livestock use) groundwater protection standards. Planned monitoring locations are shown in Attachment 1, Sampling and Analysis Work Order. Point-of-compliance (POC) wells 19-DC, 5-DC, and 5-SC, and monitoring wells 10-DC, 110-DC, 112-DC, 113-DC, 40-SC, 54-SC, 100-SC, 102-SC, and K.G.S.#3 were sampled. POC well 51-SC and downgradient well 101-SC were dry at the time of sampling. The water level was measured at each sampled well. See Attachment 2, Trip Report for additional details. Sampling and analyses were conducted in accordance with the Sampling and Analysis Plan for the U S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated, http://energy.gov/lm/downloads/sampling-and­ analysis-plan-us-department-energy-office-legacy-management-sites). ACLs are approved for cadmium, chromium, lead, nickel, radium-226, radium-228, selenium, thorium-230, and uranium in site groundwater. Time-concentration graphs of the contaminants of concern in POC wells are included in Attachment 3, Data Presentation. The only ACL exceedance in a POC well was radium-228 in well 5-DC where the concentration was 30.7 picocuries per liter (pCi/L), exceeding the ACL of 25.7 pCi/L. Concentrations of sulfate and total dissolved solids continue to exceed their respective Wyoming Class III groundwater protection standards for livestock use in wells 5-DC, 5-SC, and 54-SC as they have done throughout the sampling history; however, there is no livestock use of the water from these aquifers at the site, and no constituent concentrations exceed groundwater protection standards at the wells near the site boundary.

  12. Composite use of numerical groundwater flow modeling and geoinformatics techniques for monitoring Indus Basin aquifer, Pakistan.

    Science.gov (United States)

    Ahmad, Zulfiqar; Ashraf, Arshad; Fryar, Alan; Akhter, Gulraiz

    2011-02-01

    The integration of the Geographic Information System (GIS) with groundwater modeling and satellite remote sensing capabilities has provided an efficient way of analyzing and monitoring groundwater behavior and its associated land conditions. A 3-dimensional finite element model (Feflow) has been used for regional groundwater flow modeling of Upper Chaj Doab in Indus Basin, Pakistan. The approach of using GIS techniques that partially fulfill the data requirements and define the parameters of existing hydrologic models was adopted. The numerical groundwater flow model is developed to configure the groundwater equipotential surface, hydraulic head gradient, and estimation of the groundwater budget of the aquifer. GIS is used for spatial database development, integration with a remote sensing, and numerical groundwater flow modeling capabilities. The thematic layers of soils, land use, hydrology, infrastructure, and climate were developed using GIS. The Arcview GIS software is used as additive tool to develop supportive data for numerical groundwater flow modeling and integration and presentation of image processing and modeling results. The groundwater flow model was calibrated to simulate future changes in piezometric heads from the period 2006 to 2020. Different scenarios were developed to study the impact of extreme climatic conditions (drought/flood) and variable groundwater abstraction on the regional groundwater system. The model results indicated a significant response in watertable due to external influential factors. The developed model provides an effective tool for evaluating better management options for monitoring future groundwater development in the study area.

  13. Site-scale groundwater flow modelling of Beberg

    Energy Technology Data Exchange (ETDEWEB)

    Gylling, B. [Kemakta Konsult AB, Stockholm (Sweden); Walker, D. [Duke Engineering and Services (United States); Hartley, L. [AEA Technology, Harwell (United Kingdom)

    1999-08-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) Safety Report for 1997 (SR 97) study is a comprehensive performance assessment illustrating the results for three hypothetical repositories in Sweden. In support of SR 97, this study examines the hydrogeologic modelling of the hypothetical site called Beberg, which adopts input parameters from the SKB study site near Finnsjoen, in central Sweden. This study uses a nested modelling approach, with a deterministic regional model providing boundary conditions to a site-scale stochastic continuum model. The model is run in Monte Carlo fashion to propagate the variability of the hydraulic conductivity to the advective travel paths from representative canister positions. A series of variant cases addresses uncertainties in the inference of parameters and the boundary conditions. The study uses HYDRASTAR, the SKB stochastic continuum (SC) groundwater modelling program, to compute the heads, Darcy velocities at each representative canister position, and the advective travel times and paths through the geosphere. The Base Case simulation takes its constant head boundary conditions from a modified version of the deterministic regional scale model of Hartley et al. The flow balance between the regional and site-scale models suggests that the nested modelling conserves mass only in a general sense, and that the upscaling is only approximately valid. The results for 100 realisation of 120 starting positions, a flow porosity of {epsilon}{sub f} 10{sup -4}, and a flow-wetted surface of a{sub r} = 1.0 m{sup 2}/(m{sup 3} rock) suggest the following statistics for the Base Case: The median travel time is 56 years. The median canister flux is 1.2 x 10{sup -3} m/year. The median F-ratio is 5.6 x 10{sup 5} year/m. The travel times, flow paths and exit locations were compatible with the observations on site, approximate scoping calculations and the results of related modelling studies. Variability within realisations indicates

  14. Site-scale groundwater flow modelling of Beberg

    International Nuclear Information System (INIS)

    Gylling, B.; Walker, D.; Hartley, L.

    1999-08-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) Safety Report for 1997 (SR 97) study is a comprehensive performance assessment illustrating the results for three hypothetical repositories in Sweden. In support of SR 97, this study examines the hydrogeologic modelling of the hypothetical site called Beberg, which adopts input parameters from the SKB study site near Finnsjoen, in central Sweden. This study uses a nested modelling approach, with a deterministic regional model providing boundary conditions to a site-scale stochastic continuum model. The model is run in Monte Carlo fashion to propagate the variability of the hydraulic conductivity to the advective travel paths from representative canister positions. A series of variant cases addresses uncertainties in the inference of parameters and the boundary conditions. The study uses HYDRASTAR, the SKB stochastic continuum (SC) groundwater modelling program, to compute the heads, Darcy velocities at each representative canister position, and the advective travel times and paths through the geosphere. The Base Case simulation takes its constant head boundary conditions from a modified version of the deterministic regional scale model of Hartley et al. The flow balance between the regional and site-scale models suggests that the nested modelling conserves mass only in a general sense, and that the upscaling is only approximately valid. The results for 100 realisation of 120 starting positions, a flow porosity of ε f 10 -4 , and a flow-wetted surface of a r = 1.0 m 2 /(m 3 rock) suggest the following statistics for the Base Case: The median travel time is 56 years. The median canister flux is 1.2 x 10 -3 m/year. The median F-ratio is 5.6 x 10 5 year/m. The travel times, flow paths and exit locations were compatible with the observations on site, approximate scoping calculations and the results of related modelling studies. Variability within realisations indicates that the change in hydraulic gradient

  15. Development of a three-dimensional ground-water model of the Hanford Site unconfined aquifer system: FY 1995 status report

    International Nuclear Information System (INIS)

    Wurstner, S.K.; Thorne, P.D.; Chamness, M.A.; Freshley, M.D.; Williams, M.D.

    1995-12-01

    A three-dimensional numerical model of ground-water flow was developed for the uppermost unconfined aquifer at the Hanford Site in south-central Washington. Development of the model is supported by the Hanford Site Ground-Water Surveillance Project, managed by the Pacific Northwest National Laboratory, which is responsible for monitoring the sitewide movement of contaminants in ground water beneath the Hanford Site. Two objectives of the Ground-Water Surveillance Project are to (1) identify and quantify existing, emerging, or potential ground-water quality problems, and (2) assess the potential for contaminants to migrate from the Hanford Site through the ground-water pathway. Numerical models of the ground-water flow system are important tools for estimating future aquifer conditions and predicting the movement of contaminants through ground water. The Ground-Water Surveillance Project has supported development and maintenance of a two-dimensional model of the unconfined aquifer. This report describes upgrade of the two-dimensional model to a three-dimensional model. The numerical model is based on a three-dimensional conceptual model that will be continually refined and updated as additional information becomes available. This report presents a description of the three-dimensional conceptual model of ground-water flow in the unconfined aquifer system and then discusses the cur-rent state of the three-dimensional numerical model

  16. Site-Wide Integrated Water Monitoring - Defining and Implementing Sampling Objectives to Support Site Closure - 13060

    International Nuclear Information System (INIS)

    Wilborn, Bill; Knapp, Kathryn; Farnham, Irene; Marutzky, Sam

    2013-01-01

    The Underground Test Area (UGTA) activity is responsible for assessing and evaluating the effects of the underground nuclear weapons tests on groundwater at the Nevada National Security Site (NNSS), formerly the Nevada Test Site (NTS), and implementing a corrective action closure strategy. The UGTA strategy is based on a combination of characterization, modeling studies, monitoring, and institutional controls (i.e., monitored natural attenuation). The closure strategy verifies through appropriate monitoring activities that contaminants of concern do not exceed the SDWA at the regulatory boundary and that adequate institutional controls are established and administered to ensure protection of the public. Other programs conducted at the NNSS supporting the environmental mission include the Routine Radiological Environmental Monitoring Program (RREMP), Waste Management, and the Infrastructure Program. Given the current programmatic and operational demands for various water-monitoring activities at the same locations, and the ever-increasing resource challenges, cooperative and collaborative approaches to conducting the work are necessary. For this reason, an integrated sampling plan is being developed by the UGTA activity to define sampling and analysis objectives, reduce duplication, eliminate unnecessary activities, and minimize costs. The sampling plan will ensure the right data sets are developed to support closure and efficient transition to long-term monitoring. The plan will include an integrated reporting mechanism for communicating results and integrating process improvements within the UGTA activity as well as between other U.S. Department of Energy (DOE) Programs. (authors)

  17. A Low-Level Real-Time In Situ Monitoring System for Tritium in Groundwater and Vadose Zone

    Science.gov (United States)

    Santo, J. T.; Levitt, D. G.

    2002-12-01

    Tritium is a radioactive isotope of hydrogen produced as a by-product of the nuclear fuel cycle. It is also an integral part of the nuclear weapons industry and has been released into the environment through both the production and testing of nuclear weapons. There are many sites across the DOE complex where tritium has been released into the subsurface through the disposal of radioactive waste and at the Nevada Test Site, through the underground testing of nuclear weapons. Numerous DOE facilities have an on-going regulatory need to be able to monitor tritium concentrations in groundwater within deep hydrologic zones and in the shallower non-saturated vadose zone beneath waste disposal pits and shafts and other release sites. Typical access to groundwater is through deep monitoring wells and situated in remote locations. In response to this need, Science and Engineering Associates, Inc. (SEA) and its subcontractor, the University of Nevada Las Vegas (UNLV) Harry Reid Center (HRC) for Environmental Studies has conducted the applied research and engineering and produced a real time, in situ monitoring system for the detection and measurement of low levels of tritium in the groundwater and in the shallower vadose zone. The monitoring system has been deployed to measure tritium in both the vadose zone near a subsurface radioactive waste package and the groundwater in a deep hydrologic reservoir at the Nevada Test Site. The monitoring system has been designed to detect tritium in the subsurface below federal and/or state regulatory limits for safe drinking water and has been successfully demonstrated. The development effort is being funded through the U.S. Department of Energy, National Energy Technology Laboratory and the DOE Nevada Operations Office Advanced Monitoring Systems Initiative (AMSI).

  18. Groundwater monitoring for remedial investigation in the Oriskany-Whitestown Sand Plain, Oneida County, New York

    International Nuclear Information System (INIS)

    Kewer, R.P.; Birckhead, E.F.

    1992-01-01

    The 50-acre Whitestown Landfill is listed by NYSDEC as a Class 2 inactive hazardous waste disposal site. During Remedial Investigations, a 23-well groundwater monitoring system was installed, exploring Wisconsin age glaciofluvial deposits of the Oriskany-Whitestown sand plain. These were described in the late 19th century as deltaic sediments deposited in a proglacial lake. However, no recent studies and only limited subsurface data were available, prompting a two-phase installation program. The landfill is located above steep bluffs 70 feet above the Mohawk River and Oriskany Creek valleys. Beneath the landfill, Phase I identified a gradational sequence of coarse to fine deltaic sediments with glacial till. This sequence was partly eroded and overlain by alluvium and colluvium in the valleys. The landfill was constructed on surficial deposits of coarse fluviodeltaic gravel. These were underlain by deltaic deposits grading from sand to silt with depth, the lower silts comprising the uppermost aquifer. The silts made identification of the water table difficult during drilling and caused problems in meeting a stringent development criterion for turbidity. Phase I found that the saturated zone, up to 50 feet thick, is perched on glaciolacustrine clays and, locally, tills, which were the lower boundary of the system investigated. Partly influenced by the clays, groundwater and contaminant movement was to the adjoining valley, causing off-site impacts in the shallow alluvial/colluvial aquifer. Therefore, Phase 11 focused on characterizing flow and groundwater quality in the discharge area, particularly with respect to an adjacent residence and wetlands. Contamination was found to extend northward only as far as the Old Erie Canal, which parallels the base of the bluff. Only limited off-site involvement was documented which will be monitored in the post-closure period using the installed well system

  19. Deer monitoring at the Savannah River Site

    International Nuclear Information System (INIS)

    Fledderman, P.D.

    1992-01-01

    To protect public health, all deer and feral hogs harvested at the Savannah River Site (SRS) during controlled hunts are monitored for Cs-137. A new monitoring program has been developed by the Environmental Monitoring Section (EMS). To provide increased confidence in dose data and compliance with regulations, many changes have been made to the deer and hog monitoring program. Using field count information, a computerized database determines Cs-137 concentration and calculates the committed effective dose equivalent (CEDE) resulting from consumption of the animal. The database then updates each hunter's cumulative CEDE in real time. Also, enhancements to the instrument calibration and quality control portions of the monitoring program were implemented. These include improved monitor calibration, intercomparison of field results from the same animal using different detectors, and regular use of check sources to verify equipment performance. With these program changes, EMS can produce more accurate and verifiable dose data

  20. 40 CFR 265 interim status indicator-evaluation ground-water monitoring plan for the 216-B-63 trench

    International Nuclear Information System (INIS)

    Bjornstad, B.N.; Dudziak, S.

    1989-03-01

    This document outlines a ground-water monitoring plan for the 216-B-63 trench located in the northeast corner of the 200-East Area on the Hanford Site in southeastern Washington State. It has been determined that hazardous materials (corrosives) were disposed of to the trench during past operations. Installation of an interim-status ground-water monitoring system is required to determine whether hazardous chemicals are leaching to the ground water from beneath the trench. This document summarizes the existing data that are available from near the 216-B-63 trench and presents a plan to determine the extent of ground-water contamination, if any, derived from the trench. The plan calls for the installation of four new monitoring wells located near the west end of the trench. These wells will be used to monitor ground-water levels and water quality immediately adjacent to the trench. Two existing RCRA monitoring wells, which are located near the trench and hydraulically upgradient of it, will be used as background wells. 46 refs., 15 figs., 12 tabs

  1. Groundwater conservation and monitoring activities in the middle Brenta River plain (Veneto Region, Northern Italy: preliminary results about aquifer recharge

    Directory of Open Access Journals (Sweden)

    Andrea Sottani

    2014-09-01

    Full Text Available In the middle Brenta River plain there is a unconfined aquifer that represents an important groundwater resource in Veneto region. In this area the main groundwater recharge factor is related to the stream seepage: the water dispersion from the Brenta river is active with variable intensity from the foothill to the alignment Nove di Bassano - Cartigliano (Province of Vicenza. In order to mitigate the expected groundwater effects, due to future important waterworks withdrawals provided by the regional water resources management plans, an experimental project of Managed Aquifer Recharge has started, by means of the realization of some river transversal ramps. The construction of pilot works, partially completed, were preceded by a specific hydrogeological monitoring program, aimed to the evaluation of the effectiveness of the MAR actions in terms of comparison between pre-and post-operam conditions. Thanks to the development of a site-specific methodology, aimed to the quantification of the artificial infiltration rate, and after some years of monitoring controls of the hydrological and hydrogeological regimes, it is now possible to evaluate the extent and the rate of the recharge effects in groundwater due to ramps realization. The monitoring plan will be continued in the medium-long term. Some innovative approaches, based for example on the use of groundwater temperature measurements as recharge tracer, will help to validate the preliminary results.

  2. 2015 Advanced Site Investigation and Monitoring Report Riverton, Wyoming, Processing Site September 2016

    Energy Technology Data Exchange (ETDEWEB)

    Frazier, William [U.S. Dept. of Energy, Washington, DC (United States). Office of Legacy Management (LM); Campbell, Sam [Navarro Research and Engineering, Inc., Oak Ridge, TN (United States)

    2016-09-01

    The U.S. Department of Energy conducted initial groundwater characterization of the Riverton, Wyoming, Processing Site in the 1990s. The characterization culminated in a Site Observational Work Plan in 1998 that recommended a natural flushing compliance strategy. Results of verification monitoring indicated that natural flushing was generally progressing as expected until June 2010, when significant increases in contaminant concentrations were measured in several monitoring wells downgradient of the site after the area flooded. In response to the unexpected results following the flood, an enhanced characterization of the surficial aquifer was conducted in 2012, which included installation of 103 boreholes along nine transects with a Geoprobe, collection of 103 water samples and 65 soil samples, laboratory tests on the soil samples, and additional groundwater modeling. This advanced site investigation report summarizes additional investigation in 2015 through the use of backhoe trenching, sonic drilling, multilevel monitoring wells, direct-push drilling, and temporary well points to collect soil and groundwater samples. Additional surface water measurements were made included the installation of a stilling well and the measurement of stream elevation along the Wind River to approximate upgradient groundwater heads. Groundwater sampling included the addition of geochemical constituents and isotopes that have not been sampled in the past to better understand post-flood conditions and the possibility of additional or ongoing contaminant sources. This sampling was performed to (1) better define the contaminant plumes, (2) verify the occurrence of persistent secondary contaminant sources, (3) better understand the reason for the contaminant spikes after a 2010 flood, and (4) assess contaminant plume stagnation near the Little Wind River. This report provides data analyses and interpretations for the 2015 site investigation that addresses these issues and provides

  3. Evaluation of an integrated treatment system for MGP site groundwaters

    International Nuclear Information System (INIS)

    Scheible, O.K.; Grey, G.M.; Maiello, J.A.

    1995-01-01

    Initially studied at bench scale, process sequences comprising dissolved air flotation (DAF), aerobic biological oxidation, air stripping, filtration, and carbon adsorption were demonstrated at pilot scale at a manufactured gas plant (MGP) site in New Jersey. Benzene, toluene, ethylbenzene, and xylenes (BTEX), and polycyclic aromatic hydrocarbons (PAHs) were the primary organics in the groundwater, ranging from levels of 2 to 8 mg/L and 0.3 to 27 mg/L, respectively; chemical oxygen demand (COD) levels were from 60 to 4,500 mg/L. Significant levels of dense, emulsified, and nonaqueous tars and oils were present in the more highly contaminated waters and were effectively removed by DAF. Carbon-based fluidized-bed biological treatment of the DAF subnatant at COD loadings between 2 and 4 g/L-d yielded effluent-soluble COD levels between 40 and 60 mg/L, with both residual BTEX and PAH concentrations ranging from nondetect levels to 0.1 mg/L. Subsequent polishing by filtration and carbon adsorption resulted in additional COD removal and nondetect levels of volatiles and semivolatiles. Air stripping was effective in lieu of the biological process for both volatile organic compound (VOC) and PAH removal

  4. Application of Biostimulation for Remediation of Sulfate-Contaminated Groundwater at a Mining Site

    Science.gov (United States)

    Miao, Z.; Carroll, K. C.; Carreon, C.; Brusseau, M. L.

    2011-12-01

    There is growing concern regarding sulfate contamination of groundwater. One innovative in-situ remediation option under investigation is biostimulation through addition of electron-donor amendments to enhance sulfate reduction. Two pilot-scale ethanol-injection tests were conducted at a former uranium mining site that is contaminated with sulfate and nitrate (with a lack of heavy metals), and for which there appears to be minimal natural attenuation of sulfate. The first test was a push-pull test that had a limited zone of influence, while the second test was a single-well injection test in which additional downgradient wells were monitored. For both tests, sulfate concentrations began to decline within a few weeks of injection, after nitrate concentrations were significantly reduced. Concomitantly, aqueous concentrations of manganese, iron, and hydrogen sulfide increased from background. Monitoring over many months revealed that the declines in sulfate concentration conformed to exponential decay, with first-order decay rates of approximately 0.01 /d. Analysis of sulfur stable isotope data indicated that the decrease in sulfate concentrations was microbially mediated. The results also indicated that sulfides formed during sulfate reduction may have undergone partial re-oxidation. This study illustrates the feasibility of using ethanol injection for remediation of sulfate-contaminated groundwater. However, re-oxidation of sulfides (both metal sulfide precipitates and hydrogen sulfide gas) is a potential issue of significance that would need to be addressed.

  5. Groundwater flow analysis on local scale. Setting boundary conditions for groundwater flow analysis on site scale model in step 1

    International Nuclear Information System (INIS)

    Ohyama, Takuya; Saegusa, Hiromitsu; Onoe, Hironori

    2005-05-01

    Japan Nuclear Cycle Development Institute has been conducting a wide range of geoscientific research in order to build a foundation for multidisciplinary studies of the deep geological environment as a basis of research and development for geological disposal of nuclear wastes. Ongoing geoscientific research programs include the Regional Hydrogeological Study (RHS) project and Mizunami Underground Research Laboratory (MIU) project in the Tono region, Gifu Prefecture. The main goal of these projects is to establish comprehensive techniques for investigation, analysis, and assessment of the deep geological environment at several spatial scales. The RHS project is a local scale study for understanding the groundwater flow system from the recharge area to the discharge area. The surface-based Investigation Phase of the MIU project is a site scale study for understanding the groundwater flow system immediately surrounding the MIU construction site. The MIU project is being conducted using a multiphase, iterative approach. In this study, the hydrogeological modeling and groundwater flow analysis of the local scale were carried out in order to set boundary conditions of the site scale model based on the data obtained from surface-based investigations in Step 1 in site scale of the MIU project. As a result of the study, head distribution to set boundary conditions for groundwater flow analysis on the site scale model could be obtained. (author)

  6. Quarterly report of RCRA groundwater monitoring data for period October 1, 1992--December 31, 1992

    International Nuclear Information System (INIS)

    1993-04-01

    Hanford Site interim-status groundwater monitoring projects are conducted as either background, indicator parameter evaluation, or groundwater quality assessment monitoring programs as defined in the Resource Conservation and Recovery Act of 1976 (RCRA); and Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities, as amended (40 CFR 265). Compliance with the 40 CFR 265 regulations is required by the Washington Administrative Code (WAC) 173-303. Long-term laboratory contracts were approved on October 22, 1991. DataChem Laboratories of Salt Lake City, Utah, performs the hazardous chemicals analyses for the Hanford Site. Analyses for coliform bacteria are performed by Columbia/Biomedical Laboratories and for dioxin by TMS Analytical Services, Inc. International Technology Analytical Services Richland, Washington performs the radiochemical analyses. This quarterly report contains data that were received prior to March 8, 1993. This report may contain not only data from the October through December quarter but also data from earlier sampling events that were not previously reported

  7. Assessing the Impact of Chlorinated-Solvent Sites on Metropolitan Groundwater Resources

    OpenAIRE

    Brusseau, Mark L.; Narter, Matthew

    2013-01-01

    Chlorinated-solvent compounds are among the most common groundwater contaminants in the U.S.A. The majority of the many sites contaminated by chlorinated-solvent compounds are located in metropolitan areas, and most such areas have one or more chlorinated-solvent contaminated sites. Thus, contamination of groundwater by chlorinated-solvent compounds may pose a potential risk to the sustainability of potable water supplies for many metropolitan areas. The impact of chlorinated-solvent sites on...

  8. Data Validation Package December 2015 Groundwater Sampling at the Ambrosia Lake, New Mexico, Disposal Site March 2016

    Energy Technology Data Exchange (ETDEWEB)

    Tsosie, Bernadette [USDOE Office of Legacy Management, Washington, DC (United States); Johnson, Dick [Navarro Research and Engineering, Inc., Oak Ridge, TN (United States)

    2016-03-01

    The Long-Term Surveillance Plan for the Ambrosia Lake, New Mexico, Disposal Site does not require groundwater monitoring because groundwater in the uppermost aquifer is of limited use, and supplemental standards have been applied to the aquifer. However, at the request of the New Mexico Environment Department, the U.S. Department of Energy conducts annual monitoring at three locations: monitoring wells 0409, 0675, and 0678. Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for US. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). Monitoring Well 0409 was not sampled during this event because it was dry. Water levels were measured at each sampled well. One duplicate sample was collected from location 0675. Groundwater samples from the two sampled wells were analyzed for the constituents listed in Table 1. Time-concentration graphs for selected analytes are included in this report. At well 0675, the duplicate results for total dissolved solids and for most metals (magnesium, molybdenum, potassium, selenium, sodium, and uranium) were outside acceptance criteria, which may indicate non-homogeneous conditions at this location. November 2014 results for molybdenum and uranium at well 0675 also were outside acceptance criteria. The well condition will be evaluated prior to the next sampling event.

  9. Sampling and Analysis Plan Update for Groundwater Monitoring 1100-EM-1 Operable Unit

    International Nuclear Information System (INIS)

    DR Newcomer

    1999-01-01

    This document updates the sampling and analysis plan (Department of Energy/Richland Operations--95-50) to reflect current groundwater monitoring at the 1100-EM-1Operable Unit. Items requiring updating included sampling and analysis protocol, quality assurance and quality control, groundwater level measurement procedure, and data management. The plan covers groundwater monitoring, as specified in the 1993 Record of Decision, during the 5-year review period from 1995 through 1999. Following the 5-year review period, groundwater-monitoring data will be reviewed by Environmental Protection Agency to evaluate the progress of natural attenuation of trichloroethylene. Monitored natural attenuation and institutional controls for groundwater use at the inactive Horn Rapids Landfill was the selected remedy specified in the Record of Decision

  10. Plan for a groundwater monitoring network in Taiwan

    Science.gov (United States)

    Hsu, Shiang-Kueen

    In Taiwan, rapid economic growth, rising standards of living, and an altered societal structure have in recent years put severe demands on water supplies. Because of its stable quantity and quality, groundwater has long been a reliable source of water for domestic, agricultural, and industrial users, but the establishment of a management program that integrates groundwater and surface-water use has been hampered by the lack of groundwater data. In 1992, the Department of Water Resources (DWR) initiated a program entitled "Groundwater Monitoring Network Plan in Taiwan." Under this program, basic groundwater data, including water-level and water-quality data, are being collected, and a reliable database is being established for the purpose of managing total water resources. This paper introduces the goals, implementation stages, and scope of that plan. The plan calls for constructing 517 hydrogeologic survey stations and 990 groundwater monitoring wells within 17 years. Under this program, water-level fluctuations are continuously monitored, whereas water-quality samples are taken for analysis only at the initial drilling stage and, subsequently, at the time when a monitoring well is being serviced. In 1996, the DWR and the Water Resources Planning Commission were merged to form today's Water Resources Bureau. Résumé A Taïwan, l'expansion économique rapide, l'amélioration des conditions de vie et la transformation de la structure sociale ont provoqué, ces dernières années, une très forte demande en eau. Du fait de sa constance en qualité et en quantité, l'eau souterraine a longtemps été considérée comme une ressource en eau sûre pour les usages domestiques, agricoles et industriels. Mais la mise en place d'un programme de gestion intégrant les utilisations d'eaux souterraines et de surface a été gênée par l'absence de données sur les eaux souterraines. En 1992, le Département des Ressources en Eau a lancé le programme "Plan pour un réseau de

  11. Monitoring and Assessing Groundwater Impacts on Vegetation Health in Groundwater Dependent Ecosystems

    Science.gov (United States)

    Rohde, M. M.; Ulrich, C.; Howard, J.; Sweet, S.

    2017-12-01

    Sustainable groundwater management is important for preserving our economy, society, and environment. Groundwater supports important habitat throughout California, by providing a reliable source of water for these Groundwater Dependent Ecosystems (GDEs). Groundwater is particularly important in California since it supplies an additional source of water during the dry summer months and periods of drought. The drought and unsustainable pumping practices have, in some areas, lowered groundwater levels causing undesirable results to ecosystems. The Sustainable Groundwater Management Act requires local agencies to avoid undesirable results in the future, but the location and vulnerabilities of the ecosystems that depend on groundwater and interconnected surface water is often poorly understood. This presentation will feature results from a research study conducted by The Nature Conservancy and Lawrence Berkeley National Laboratory that investigated how changes in groundwater availability along an interconnected surface water body can impact the overall health of GDEs. This study was conducted in California's Central Valley along the Cosumnes River, and situated at the boundary of a high and a medium groundwater basin: South American Basin (Sacramento Hydrologic Region) and Cosumnes Basin (San Joaquin Hydrologic Region). By employing geophysical methodology (electrical resistivity tomography) in this study, spatial changes in groundwater availability were determined under groundwater-dependent vegetation. Vegetation survey data were also applied to this study to develop ecosystem health indicators for groundwater-dependent vegetation. Health indicators for groundwater-dependent vegetation were found to directly correlate with groundwater availability, such that greater availability to groundwater resulted in healthier vegetation. This study provides a case study example on how to use hydrological and biological data for setting appropriate minimum thresholds and

  12. Cone penetrometer testing and discrete-depth groundwater sampling techniques: A cost-effective method of site characterization in a multiple-aquifer setting

    International Nuclear Information System (INIS)

    Zemo, D.A.; Pierce, Y.G.; Gallinatti, J.D.

    1992-01-01

    Cone penetrometer testing (CPT), combined with discrete-depth groundwater sampling methods, can reduce significantly the time and expense required to characterize large sites that have multiple aquifers. Results from the screening site characterization can be used to design and install a cost-effective monitoring well network. At a site in northern California, it was necessary to characterize the stratigraphy and the distribution of volatile organic compounds (VOCs) to a depth of 80 feet within a 1/2 mile-by-1/4-mile residential and commercial area in a complex alluvial fan setting. To expedite site characterization, a five-week field screening program was implemented that consisted of a shallow groundwater survey, CPT soundings, and discrete-depth groundwater sampling. Based on continuous lithologic information provided by the CPT soundings, four coarse-grained water-yielding sedimentary packages were identified. Eighty-three discrete-depth groundwater samples were collected using shallow groundwater survey techniques, the BAT Enviroprobe, or the QED HydroPunch 1, depending on subsurface conditions. A 20-well monitoring network was designed and installed to monitor critical points within each sedimentary package. Understanding the vertical VOC distribution and concentrations produced substantial cost savings by minimizing the number of permanent monitoring wells and reducing the number of costly conductor casings to be installed. Significant long-term cost savings will result from reduced sampling costs. Where total VOC concentrations exceeded 20 φg/l in the screening samples, a good correlation was found between the discrete-depth screening data and data from monitoring wells. Using a screening program to characterize the site before installing monitoring wells resulted in an estimated 50-percent reduction in costs for site characterization, 65-percent reduction in time for site characterization, and 50-percent reduction in long-term monitoring costs

  13. Temporal trend analysis of RCRA groundwater monitoring data

    International Nuclear Information System (INIS)

    Need, E.A.

    1994-01-01

    Statistical analysis of RCRA groundwater monitoring data at a uranium hexafluoride processing facility showed a statistically significant increase in the concentration of gross beta activity in monitor wells downgradient of surface impounds storing calcium fluoride sludge and high pH water. Because evidence of leakage had not been detected in lysimeters installed beneath the impounds, the operator sought an evaluation of other potential causes of the result, including natural variability. This study determined that all five data sets showed either long-term excursionary (spike-like), or seasonal forms of temporal variation. Gross beta had an upward long-term trend with multiple excursions that almost appeared to be seasonal. Gross alpha had an upward long-term trend with multiple excursions that were clearly not seasonal. Specific conductance had both upward and downward long-term trends but no other variations. pH had a downward long-term trend with multiple excursions that were clearly not seasonal. Fluoride had a downward long-term trend without excursions but with clear seasonal variations. The gross beta result that appeared to be a significant change was a spike event on the upward long-term trend

  14. Metallurgical Laboratory Hazardous Waste Management Facility groundwater monitoring report. Third quarter, 1994

    International Nuclear Information System (INIS)

    1994-12-01

    During third quarter 1994, samples from AMB groundwater monitoring wells at the Metallurgical Laboratory Hazardous Waste Management Facility (Met Lab HWMF) were analyzed for selected heavy metals, indicator parameters, radionuclides, volatile organic compounds, and other constituents. Eight parameters exceeded standards during the quarter. As in previous quarters, tetrachloroethylene and trichloroethylene exceeded final Primary Drinking Water Standards (PDWS). Bis(2-ethylhexyl) phthalate exceeded final PDWS in one well. Aluminum, iron, manganese, tin, and total organic halogens exceeded the Savannah River Site (SRS) Flag 2 criteria. Groundwater flow direction and rate in the M-Area Aquifer Zone were similar to previous quarters. Conditions affecting determination of groundwater flow directions and rates in the Upper Lost Lake Aquifer Zone, Lower Lost Lake Aquifer Zone, and the Middle Sand Aquifer Zone of the Crouch Branch Confining Unit were also similar to previous quarters. During second quarter 1994, SRS received South Carolina Department of Health and Environmental Control approval for constructing five point-of-compliance wells and two plume definition wells near the Met Lab HWMF. This project began in July 1994 and is complete; however, analytical data from these wells is not available yet

  15. Baseline risk assessment for groundwater contamination at the uranium mill tailings site near Monument Valley, Arizona

    International Nuclear Information System (INIS)

    1993-09-01

    This baseline risk assessment evaluates potential impact to public health or the environment resulting from groundwater contamination at the former uranium mill processing site near Monument Valley, Arizona. The tailings and other contaminated material at this site are being relocated and stabilized in a disposal cell at Mexican Hat, Utah, through the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The tailings removal is planned for completion by spring 1994. After the tailings are removed, groundwater contamination at the site will continue to be evaluated. This risk assessment is the first document specific to this site for the Groundwater Project. It will be used to assist in determining what remedial action is needed for contaminated groundwater at the site

  16. Site-scale groundwater flow modelling of Aberg

    Energy Technology Data Exchange (ETDEWEB)

    Walker, D. [Duke Engineering and Services (United States); Gylling, B. [Kemakta Konsult AB, Stockholm (Sweden)

    1998-12-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) SR 97 study is a comprehensive performance assessment illustrating the results for three hypothetical repositories in Sweden. In support of SR 97, this study examines the hydrogeologic modelling of the hypothetical site called Aberg, which adopts input parameters from the Aespoe Hard Rock Laboratory in southern Sweden. This study uses a nested modelling approach, with a deterministic regional model providing boundary conditions to a site-scale stochastic continuum model. The model is run in Monte Carlo fashion to propagate the variability of the hydraulic conductivity to the advective travel paths from representative canister locations. A series of variant cases addresses uncertainties in the inference of parameters and the boundary conditions. The study uses HYDRASTAR, the SKB stochastic continuum groundwater modelling program, to compute the heads, Darcy velocities at each representative canister position and the advective travel times and paths through the geosphere. The nested modelling approach and the scale dependency of hydraulic conductivity raise a number of questions regarding the regional to site-scale mass balance and the method`s self-consistency. The transfer of regional heads via constant head boundaries preserves the regional pattern recharge and discharge in the site-scale model, and the regional to site-scale mass balance is thought to be adequate. The upscaling method appears to be approximately self-consistent with respect to the median performance measures at various grid scales. A series of variant cases indicates that the study results are insensitive to alternative methods on transferring boundary conditions from the regional model to the site-scale model. The flow paths, travel times and simulated heads appear to be consistent with on-site observations and simple scoping calculations. The variabilities of the performance measures are quite high for the Base Case, but the

  17. Site-scale groundwater flow modelling of Aberg

    International Nuclear Information System (INIS)

    Walker, D.; Gylling, B.

    1998-12-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) SR 97 study is a comprehensive performance assessment illustrating the results for three hypothetical repositories in Sweden. In support of SR 97, this study examines the hydrogeologic modelling of the hypothetical site called Aberg, which adopts input parameters from the Aespoe Hard Rock Laboratory in southern Sweden. This study uses a nested modelling approach, with a deterministic regional model providing boundary conditions to a site-scale stochastic continuum model. The model is run in Monte Carlo fashion to propagate the variability of the hydraulic conductivity to the advective travel paths from representative canister locations. A series of variant cases addresses uncertainties in the inference of parameters and the boundary conditions. The study uses HYDRASTAR, the SKB stochastic continuum groundwater modelling program, to compute the heads, Darcy velocities at each representative canister position and the advective travel times and paths through the geosphere. The nested modelling approach and the scale dependency of hydraulic conductivity raise a number of questions regarding the regional to site-scale mass balance and the method's self-consistency. The transfer of regional heads via constant head boundaries preserves the regional pattern recharge and discharge in the site-scale model, and the regional to site-scale mass balance is thought to be adequate. The upscaling method appears to be approximately self-consistent with respect to the median performance measures at various grid scales. A series of variant cases indicates that the study results are insensitive to alternative methods on transferring boundary conditions from the regional model to the site-scale model. The flow paths, travel times and simulated heads appear to be consistent with on-site observations and simple scoping calculations. The variabilities of the performance measures are quite high for the Base Case, but the

  18. F-Area Acid/Caustic Basin groundwater monitoring report. Second quarter 1994

    International Nuclear Information System (INIS)

    1994-09-01

    During second quarter 1994, samples from the FAC monitoring wells at the F-Area Acid/Caustic Basin were collected and analyzed for herbicides/pesticides, indicator parameters, metals, nitrate, radionuclide indicators, volatile organic compounds, and other constituents. Piezometer FAC 5P and monitoring well FAC 6 were dry and could not be sampled. Analytical results that exceeded final Primary Drinking Water Standards (PDWS), other Savannah River Site (SRS) Flag 2 criteria, or the SRS turbidity standard of 50 NTU during the quarter were as follows: gross alpha exceeded the final PDWS and aluminum, iron, manganese, and total organic halogens exceeded the SRS Flag 2 criteria in one or more of the FAC wells. Turbidity exceeded the SRS standard in well FAC 3. Groundwater flow direction and rate in the water table beneath the F-Area Acid/Caustic Basin were similar to past quarters

  19. K-Area Acid/Caustic Basin groundwater monitoring report

    International Nuclear Information System (INIS)

    Thompson, C.Y.

    1992-09-01

    During second quarter 1992, samples from the seven older KAC monitoring wells at the K-Area Acid/Caustic Basin were analyzed for herbicides, indicator parameters, major ions, pesticides, radionuclides, turbidity, and other constituents. New wells FAC 8 and 9 received the first of four quarters of comprehensive analyses and GC/MS VOA (gas chromatograph/ mass spectrometer volatile organic analyses). Monitoring results that exceeded the US Environmental Protection Agency's Primary Drinking Water Standards (PDWS) or the Savannah River Site (SRS) flagging criteria or turbidity standards during the quarter are discussed in this report

  20. Investigation of radionuclides and anthropic tracer migration in groundwater at the Chernobyl site

    Science.gov (United States)

    Le Gal La Salle, Corinnne; Simonucci, Caroline; Roux, Céline; Bugai, Dmitry; Aquilina, Luc; Fourré, Elise; Jean-Baptiste, Philippe; Labasque, Thierry; Michelot, Jean-Luc; Fifield, Keith; Team Aster Team; Van Meir, Nathalie; Kashparov, Valeriy; Diez, Olivier; Bassot, Sylvain; Lancelot, Joel

    2013-04-01

    Following the reactor 4 explosion of the Chernobyl Nuclear Power Plant (ChNPP), at least 1019 Bq of radionuclides (RN) were released in the environment. In order to protect workers and prevent further atmospheric RN dispersion in the area adjacent to the ChNPP, contaminated wastes including fuel particles, topsoil layer and forest remains were buried in approximately 800 shallow trenches in the sand formation in the Red Forest waste dump site [1]. No containment measures were taken, and since then RN have leaked to the unsaturated zone and to the groundwater. Since 1999, migration of RN in the vicinity of the trench 22 at Red Forest site has been investigated within the frame of the EPIC program carried out by IRSN in collaboration with UIAR and IGS [2, 3]. A plume of 90Sr was shown downgradient from the trench 22 with activites reaching 3750 Bq/L [2]. In 2008, further studies were initiated through the TRASSE research group, based on a collaboration between IRSN and CNRS. These programs aim at combining groundwater dating with RN migration monitoring studies in order to constrain RN transport models [3]. Groundwater residence time was investigated based on 3H/He and CFC. Both tracers led to ages ranging from modern (1-3 y) at 2 m depth below the groundwater table to significantly higher apparent ages of 50-60 y at 27 m below the groundwater table [3]. 36Cl/Cl ratios 2 to 4 orders of magnitude higher than the theoretical natural ratio are measured in groundwater. Similarly, SF6 shows concentrations as high as 1200 pptv while natural concentrations are in the order of 6-7 pptv. Based on apparent groundwater ages, both contaminations are linked to the Chernobyl explosion. Hence those tracers show excellent potential to constrain conservative and reactive transport, respectively. In contrast, 238U/235U ratio down gradient from trench 22 remains similar to the natural ratio. This suggests that either most of the U contained in the trench is in a non soluble form

  1. Imaging groundwater infiltration dynamics in the karst vadose zone with long-term ERT monitoring

    Science.gov (United States)

    Watlet, Arnaud; Kaufmann, Olivier; Triantafyllou, Antoine; Poulain, Amaël; Chambers, Jonathan E.; Meldrum, Philip I.; Wilkinson, Paul B.; Hallet, Vincent; Quinif, Yves; Van Ruymbeke, Michel; Van Camp, Michel

    2018-03-01

    Water infiltration and recharge processes in karst systems are complex and difficult to measure with conventional hydrological methods. In particular, temporarily saturated groundwater reservoirs hosted in the vadose zone can play a buffering role in water infiltration. This results from the pronounced porosity and permeability contrasts created by local karstification processes of carbonate rocks. Analyses of time-lapse 2-D geoelectrical imaging over a period of 3 years at the Rochefort Cave Laboratory (RCL) site in south Belgium highlight variable hydrodynamics in a karst vadose zone. This represents the first long-term and permanently installed electrical resistivity tomography (ERT) monitoring in a karst landscape. The collected data were compared to conventional hydrological measurements (drip discharge monitoring, soil moisture and water conductivity data sets) and a detailed structural analysis of the local geological structures providing a thorough understanding of the groundwater infiltration. Seasonal changes affect all the imaged areas leading to increases in resistivity in spring and summer attributed to enhanced evapotranspiration, whereas winter is characterised by a general decrease in resistivity associated with a groundwater recharge of the vadose zone. Three types of hydrological dynamics, corresponding to areas with distinct lithological and structural features, could be identified via changes in resistivity: (D1) upper conductive layers, associated with clay-rich soil and epikarst, showing the highest variability related to weather conditions; (D2) deeper and more resistive limestone areas, characterised by variable degrees of porosity and clay contents, hence showing more diffuse seasonal variations; and (D3) a conductive fractured zone associated with damped seasonal dynamics, while showing a great variability similar to that of the upper layers in response to rainfall events. This study provides detailed images of the sources of drip

  2. Imaging groundwater infiltration dynamics in the karst vadose zone with long-term ERT monitoring

    Directory of Open Access Journals (Sweden)

    A. Watlet

    2018-03-01

    Full Text Available Water infiltration and recharge processes in karst systems are complex and difficult to measure with conventional hydrological methods. In particular, temporarily saturated groundwater reservoirs hosted in the vadose zone can play a buffering role in water infiltration. This results from the pronounced porosity and permeability contrasts created by local karstification processes of carbonate rocks. Analyses of time-lapse 2-D geoelectrical imaging over a period of 3 years at the Rochefort Cave Laboratory (RCL site in south Belgium highlight variable hydrodynamics in a karst vadose zone. This represents the first long-term and permanently installed electrical resistivity tomography (ERT monitoring in a karst landscape. The collected data were compared to conventional hydrological measurements (drip discharge monitoring, soil moisture and water conductivity data sets and a detailed structural analysis of the local geological structures providing a thorough understanding of the groundwater infiltration. Seasonal changes affect all the imaged areas leading to increases in resistivity in spring and summer attributed to enhanced evapotranspiration, whereas winter is characterised by a general decrease in resistivity associated with a groundwater recharge of the vadose zone. Three types of hydrological dynamics, corresponding to areas with distinct lithological and structural features, could be identified via changes in resistivity: (D1 upper conductive layers, associated with clay-rich soil and epikarst, showing the highest variability related to weather conditions; (D2 deeper and more resistive limestone areas, characterised by variable degrees of porosity and clay contents, hence showing more diffuse seasonal variations; and (D3 a conductive fractured zone associated with damped seasonal dynamics, while showing a great variability similar to that of the upper layers in response to rainfall events. This study provides detailed images of

  3. Site characterisation and monitoring for environmental remediation

    International Nuclear Information System (INIS)

    Adsley, Ian; Davies, Michael; Murley, Robert; Pearman, Ian; Harman, Nicholas; Proctor, Lorna; Armitage, Jack; Beddow, Helen

    2007-01-01

    Available in abstract form only. Full text of publication follows: Radioactive contamination of nuclear and mineral processing sites can be very varied. Early work in the extraction of uranium and thorium led to the disposal of large amounts of waste containing a variety of daughter radioisotopes. Later, the development of nuclear weapon programs led to large scale processing of uranium and thorium ores, physical separation of isotopes, and the initiation of nuclear fission with the resulting production of fission product radionuclides and activated metals. Weapons testing and reprocessing of reactor fuel again led to the release of fission and activation products, together with radioelements from the chemistry of fuel extraction. Finally the recovery of oil and gas reserves have once again led to renewed interest in NORM (naturally occurring radioactive materials) in the form of Pb-210/Po-210 scales in gas pipelines and Ra-226/Ra-228 in oil pipelines. Methods of monitoring for the contamination generated from all of these processes are considered together with recommended monitoring options for contamination products using gamma, beta and alpha measuring techniques. Specific examples of several site characterisation and monitoring projects are given - covering site investigation through to in-situ and on-site monitoring during the actual remediation. Many of the projects described are of a large scale, typically involving many thousands of tons of waste material. The rapid identification and sentencing into the relevant waste categories is essential in support of on-site civil engineering processes. Consideration of tailoring the monitoring process to achieve such high throughput rates is given. (authors)

  4. Monitoring of Water and Contaminant Migration at the Groundwater-Surface Water Interface

    Science.gov (United States)

    2008-08-01

    seepage is occurring in a freshwater lake environment and to map the lateral extent of any subsurface contamination at the groundwater –surface water ...and Contaminant Migration at the Groundwater -Surface Water Interface August 2008 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public...4. TITLE AND SUBTITLE Monitoring of Water and Contaminant Migration at the Groundwater -Surface Water Interface 5a. CONTRACT NUMBER 5b. GRANT NUMBER

  5. RCRA [Resource Conservation and Recovery Act] ground-water monitoring projects for Hanford facilities: Annual progress report for 1988

    International Nuclear Information System (INIS)

    Fruland, R.M.; Lundgren, R.E.

    1989-04-01

    This report describes the progress during 1988 of 14 Hanford Site ground-water monitoring projects covering 16 hazardous waste facilities and 1 nonhazardous waste facility (the Solid Waste Landfill). Each of the projects is being conducted according to federal regulations based on the Resource Conservation and Recovery Act (RCRA) of 1976 and the State of Washington Administrative Code. 21 refs., 23 figs., 8 tabs

  6. Hydrosphere monitoring at nuclear power plant sites

    International Nuclear Information System (INIS)

    Belousova, A.P.; Zakharova, T.V.; Shvets, V.M.

    1993-01-01

    The paper deals with problems related to protection of the environment in areas occupied by nuclear power plants (NPP). NPP construction and operation result in destruction of ecological, geochemical and geological equilibria in and around NPP sites. This process requires monitoring. Recommendations of the International Agency for Atomic Energy (IAAE) suggest monitoring to commence 2-3 years prior to the start of NPP construction. The paper describes the extent of hydrosphere monitoring and guidelines along which monitoring is to be organized. The authors recommend a certain approach toward the planning observation networks and provide description of forecasting subsystem that consist of a data bank, a continuously operating model (COM) and a forecast unit

  7. First and second quarters 1999 - TNX Area groundwater and effectiveness monitoring strategy data only report

    International Nuclear Information System (INIS)

    Chase, J.

    1999-01-01

    This report presents data of groundwater monitoring conducted during the first and second quarters of 1999 in support of the Interim Remedial Action. The data is from groundwater monitoring wells described in this report as the primary, secondary, and recovery wells of the initial operation of the Effectiveness Monitoring Strategy (EMS) as stipulated in Revision 1.3 (WSRC, 1996), the proposed wells for the full operation of the EMS as described in Revision 1.5 (WSRC, 1999), and general wells pertinent to the report. Also included are data from SRTC projects in the TNX Area that are deemed useful for groundwater characterization

  8. Site-scale groundwater flow modelling of Ceberg

    Energy Technology Data Exchange (ETDEWEB)

    Walker, D. [Duke Engineering and Services (United States); Gylling, B. [Kemakta Konsult AB, Stockholm (Sweden)

    1999-06-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) SR 97 study is a comprehensive performance assessment illustrating the results for three hypothetical repositories in Sweden. In support of SR 97, this study examines the hydrogeologic modelling of the hypothetical site called Ceberg, which adopts input parameters from the SKB study site near Gideaa, in northern Sweden. This study uses a nested modelling approach, with a deterministic regional model providing boundary conditions to a site-scale stochastic continuum model. The model is run in Monte Carlo fashion to propagate the variability of the hydraulic conductivity to the advective travel paths from representative canister locations. A series of variant cases addresses uncertainties in the inference of parameters and the model of conductive fracturezones. The study uses HYDRASTAR, the SKB stochastic continuum (SC) groundwater modelling program, to compute the heads, Darcy velocities at each representative canister position, and the advective travel times and paths through the geosphere. The volumetric flow balance between the regional and site-scale models suggests that the nested modelling and associated upscaling of hydraulic conductivities preserve mass balance only in a general sense. In contrast, a comparison of the base and deterministic (Variant 4) cases indicates that the upscaling is self-consistent with respect to median travel time and median canister flux. These suggest that the upscaling of hydraulic conductivity is approximately self-consistent but the nested modelling could be improved. The Base Case yields the following results for a flow porosity of {epsilon}{sub f} 10{sup -4} and a flow-wetted surface area of a{sub r} = 0.1 m{sup 2}/(m{sup 3} rock): The median travel time is 1720 years. The median canister flux is 3.27x10{sup -5} m/year. The median F-ratio is 1.72x10{sup 6} years/m. The base case and the deterministic variant suggest that the variability of the travel times within

  9. Site-scale groundwater flow modelling of Ceberg

    International Nuclear Information System (INIS)

    Walker, D.; Gylling, B.

    1999-06-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) SR 97 study is a comprehensive performance assessment illustrating the results for three hypothetical repositories in Sweden. In support of SR 97, this study examines the hydrogeologic modelling of the hypothetical site called Ceberg, which adopts input parameters from the SKB study site near Gideaa, in northern Sweden. This study uses a nested modelling approach, with a deterministic regional model providing boundary conditions to a site-scale stochastic continuum model. The model is run in Monte Carlo fashion to propagate the variability of the hydraulic conductivity to the advective travel paths from representative canister locations. A series of variant cases addresses uncertainties in the inference of parameters and the model of conductive fracture zones. The study uses HYDRASTAR, the SKB stochastic continuum (SC) groundwater modelling program, to compute the heads, Darcy velocities at each representative canister position, and the advective travel times and paths through the geosphere. The volumetric flow balance between the regional and site-scale models suggests that the nested modelling and associated upscaling of hydraulic conductivities preserve mass balance only in a general sense. In contrast, a comparison of the base and deterministic (Variant 4) cases indicates that the upscaling is self-consistent with respect to median travel time and median canister flux. These suggest that the upscaling of hydraulic conductivity is approximately self-consistent but the nested modelling could be improved. The Base Case yields the following results for a flow porosity of ε f 10 -4 and a flow-wetted surface area of a r = 0.1 m 2 /(m 3 rock): The median travel time is 1720 years. The median canister flux is 3.27x10 -5 m/year. The median F-ratio is 1.72x10 6 years/m. The base case and the deterministic variant suggest that the variability of the travel times within individual realisations is due to the

  10. Groundwater quality assessment of one former industrial site in Belgium using a TRIAD-like approach

    International Nuclear Information System (INIS)

    Crevecoeur, Sophie; Debacker, Virginie; Joaquim-Justo, Celia; Gobert, Sylvie; Scippo, Marie-Louise; Dejonghe, Winnie; Martin, Patrick; Thome, Jean-Pierre

    2011-01-01

    Contaminated industrial sites are important sources of pollution and may result in ecotoxicological effects on terrestrial, aquatic and groundwater ecosystems. An effect-based approach to evaluate and assess pollution-induced degradation due to contaminated groundwater was carried out in this study. The new concept, referred to as 'Groundwater Quality TRIAD-like' (GwQT) approach, is adapted from classical TRIAD approaches. GwQT is based on measurements of chemical concentrations, laboratory toxicity tests and physico-chemical analyses. These components are combined in the GwQT using qualitative and quantitative (using zero to one subindices) integration approaches. The TRIAD approach is applied for the first time on groundwater from one former industrial site located in Belgium. This approach will allow the classification of sites into categories according to the degree of contaminant-induced degradation. This new concept is a starting point for groundwater characterization and is open for improvement and adjustment. - Highlights: → This study presents the first application of the TRIAD approach on groundwater system. → Groundwater Quality TRIAD-like approach is based on measurements of chemical concentrations, laboratory toxicity tests and physico-chemical analyses. → None of the three TRIAD components could reliably predict the other one. - This study presents the first application of the TRIAD approach on groundwater system. None of the TRIAD components (chemistry, physico-chemistry and ecotoxicity) could reliably predict the other one.

  11. A review of groundwater contamination near municipal solid waste landfill sites in China.

    Science.gov (United States)

    Han, Zhiyong; Ma, Haining; Shi, Guozhong; He, Li; Wei, Luoyu; Shi, Qingqing

    2016-11-01

    Landfills are the most widely used method for municipal solid waste (MSW) disposal method in China. However, these facilities have caused serious groundwater contamination due to the leakage of leachate. This study, analyzed 32 scientific papers, a field survey and an environmental assessment report related to groundwater contamination caused by landfills in China. The groundwater quality in the vicinity of landfills was assessed as "very bad" by a comprehensive score (FI) of 7.85 by the Grading Method in China. Variety of pollutants consisting of 96 groundwater pollutants, 3 organic matter indicators, 2 visual pollutants and 6 aggregative pollutants had been detected in the various studies. Twenty-two kinds of pollutants were considered to be dominant. According to the Kruskal-Wallis test and the median test, groundwater contamination differed significantly between regions in China, but there were no significant differences between dry season and wet season measurements, except for some pollutants in a few landfill sites. Generally, the groundwater contamination appeared in the initial landfill stage after five years and peaked some years afterward. In this stage, the Nemerow Index (PI) of groundwater increased exponentially as landfill age increased at some sites, but afterwards decreased exponentially with increasing age at others. After 25years, the groundwater contamination was very low at selected landfills. The PI values of landfills decreased exponentially as the pollutant migration distance increased. Therefore, the groundwater contamination mainly appeared within 1000m of a landfill and most of serious groundwater contamination occurred within 200m. The results not only indicate that the groundwater contamination near MSW landfills should be a concern, but also are valuable to remediate the groundwater contamination near MSW landfills and to prevent the MSW landfill from secondary pollutions, especially for developing countries considering the similar

  12. Data Validation Package February 2016 Groundwater and Surface Water Sampling at the Tuba City, Arizona, Disposal Site April 2016

    Energy Technology Data Exchange (ETDEWEB)

    Bush, Richard [USDOE Office of Legacy Management, Washington, DC (United States); Lemke, Peter [Navarro Research and Engineering, Inc., Oak Ridge, TN (United States)

    2016-04-01

    The groundwater compliance strategy for the Tuba City, Arizona, Disposal Site is defined in the 1999 Phase I Ground Water Compliance Action Plan for the Tuba City, Arizona, UMTRA Site. Samples are collected and analyzed on a semiannual basis to evaluate the performance of the Phase I remediation system. Sampling and analyses were conducted as specified in Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). U.S. Environmental Protection Agency (EPA) groundwater standards were exceeded in samples collected from monitoring wells as listed in Table 1. The data from this sampling event are generally consistent with previously obtained values and are acceptable for general use as qualified. Data anomalies are not significant with respect to the known nature and extent of contamination and progress of remedial action at the site. The data from this sampling event will be incorporated into the annual performance evaluation report that will present a comprehensive hydrologic summary and evaluation of groundwater remedial action performance at the Tuba City site through March 2016.

  13. Data Validation Package August 2015 Groundwater and Surface Water Sampling at the Tuba City, Arizona, Disposal Site November 2015

    Energy Technology Data Exchange (ETDEWEB)

    Bush, Richard [USDOE Office of Legacy Management, Washington, DC (United States); Lemke, Peter [Navarro Research and Engineering, Inc., Oak Ridge, TN (United States)

    2015-11-01

    The groundwater compliance strategy for the Tuba City, Arizona, Disposal Site is defined in the 1999 Phase I Ground Water Compliance Action Plan for the Tuba City, Arizona, UMTRA Site. Samples are collected and analyzed on a semiannual basis to evaluate the performance of the Phase I remediation system. Sampling and analyses were conducted as specified in Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). U.S. Environmental Protection Agency (EPA) groundwater standards were exceeded in samples collected from monitoring wells and extraction wells as listed in Table 1. The data from this sampling event are generally consistent with previously obtained values and are acceptable for general use as qualified. Data anomalies are not significant with respect to the known nature and extent of contamination and progress of remedial action at the site. The data from this sampling event will be incorporated into the annual performance evaluation report that will present a comprehensive hydrologic summary and evaluation of groundwater remedial action performance at the Tuba City site through March 2016.

  14. Data Validation Package - April and July 2015 Groundwater and Surface Water Sampling at the Gunnison, Colorado, Processing Site

    Energy Technology Data Exchange (ETDEWEB)

    Linard, Joshua [Dept. of Energy (DOE), Washington, DC (United States). Office of Legacy Management; Campbell, Sam [Navarro Research and Engineering, Inc., Oak Ridge, TN (United States)

    2016-02-01

    This event included annual sampling of groundwater and surface water locations at the Gunnison, Colorado, Processing Site. Sampling and analyses were conducted as specified in Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites. Samples were collected from 28 monitoring wells, three domestic wells, and six surface locations in April at the processing site as specified in the 2010 Ground Water Compliance Action Plan for the Gunnison, Colorado, Processing Site. Domestic wells 0476 and 0477 were sampled in July because the homes were unoccupied in April, and the wells were not in use. Duplicate samples were collected from locations 0113, 0248, and 0477. One equipment blank was collected during this sampling event. Water levels were measured at all monitoring wells that were sampled. No issues were identified during the data validation process that requires additional action or follow-up.

  15. Evapotranspiration Within the Groundwater Model Domain of the Tuba City, Arizona, Disposal Site Interim Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-03-01

    The revised groundwater model includes estimates of evapotranspiration (ET). The types of vegetation and the influences of ET on groundwater hydrology vary within the model domain. Some plant species within the model domain, classified as phreatophytes, survive by extracting groundwater. ET within these plant communities can result in a net discharge of groundwater if ET exceeds precipitation. Other upland desert plants within the model domain survive on meteoric water, potentially limiting groundwater recharge if ET is equivalent to precipitation. For all plant communities within the model domain, excessive livestock grazing or other disturbances can tip the balance to a net groundwater recharge. This task characterized and mapped vegetation within the groundwater model domain at the Tuba City, Arizona, Site, and then applied a remote sensing algorithm to estimate ET for each vegetation type. The task was designed to address five objectives: 1. Characterize and delineate different vegetation or ET zones within the groundwater model domain, focusing on the separation of plant communities with phreatophytes that survive by tapping groundwater and upland plant communities that are dependent on precipitation. 2. Refine a remote sensing method, developed to estimate ET at the Monument Valley site, for application at the Tuba City site. 3. Estimate recent seasonal and annual ET for all vegetation zones, separating phreatophytic and upland plant communities within the Tuba City groundwater model domain. 4. For selected vegetation zones, estimate ET that might be achieved given a scenario of limited livestock grazing. 5. Analyze uncertainty of ET estimates for each vegetation zone and for the entire groundwater model domain.

  16. Policy and procedures for classification of Class III groundwater at UMTRA Project sites

    International Nuclear Information System (INIS)

    1989-03-01

    The US Environmental Protection Agency (EPA) has recently proposed groundwater regulations for the US Department of Energy's )DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. These regulations allow the application of supplemental standards at UMTRA Project sites in specific situations. The designation of groundwater as Class III permits the application of supplemental standards. This document discusses a final UMTRA Project policy and procedures for identifying Class III groundwater, including identification of a review area, definition of water quality, quantification of aquifer yield, and identification of methods reasonably employed for public water supply systems. These items, either individually or collectively, need to be investigated in order to determine if groundwaters at UMTRA Project sites are Class III. This document provides a framework for the DOE to determine Class III groundwaters

  17. Monitoring groundwater quality in South-Africa: Development of a national strategy

    CSIR Research Space (South Africa)

    Parsons, R

    1995-04-01

    Full Text Available Little is known about the temporal distribution of groundwater quality on a national scale in South Africa. The effective management of the country's groundwater resources is thus difficult and a need exists for a national network for monitoring...

  18. A stream-based methane monitoring approach for evaluating groundwater impacts associated with unconventional gas development.

    Science.gov (United States)

    Heilweil, Victor M; Stolp, Bert J; Kimball, Briant A; Susong, David D; Marston, Thomas M; Gardner, Philip M

    2013-01-01

    Gaining streams can provide an integrated signal of relatively large groundwater capture areas. In contrast to the point-specific nature of monitoring wells, gaining streams coalesce multiple flow paths. Impacts on groundwater quality from unconventional gas development may be evaluated at the watershed scale by the sampling of dissolved methane (CH4 ) along such streams. This paper describes a method for using stream CH4 concentrations, along with measurements of groundwater inflow and gas transfer velocity interpreted by 1-D stream transport modeling, to determine groundwater methane fluxes. While dissolved ionic tracers remain in the stream for long distances, the persistence of methane is not well documented. To test this method and evaluate CH4 persistence in a stream, a combined bromide (Br) and CH4 tracer injection was conducted on Nine-Mile Creek, a gaining stream in a gas development area in central Utah. A 35% gain in streamflow was determined from dilution of the Br tracer. The injected CH4 resulted in a fivefold increase in stream CH4 immediately below the injection site. CH4 and δ(13) CCH4 sampling showed it was not immediately lost to the atmosphere, but remained in the stream for more than 2000 m. A 1-D stream transport model simulating the decline in CH4 yielded an apparent gas transfer velocity of 4.5 m/d, describing the rate of loss to the atmosphere (possibly including some microbial consumption). The transport model was then calibrated to background stream CH4 in Nine-Mile Creek (prior to CH4 injection) in order to evaluate groundwater CH4 contributions. The total estimated CH4 load discharging to the stream along the study reach was 190 g/d, although using geochemical fingerprinting to determine its source was beyond the scope of the current study. This demonstrates the utility of stream-gas sampling as a reconnaissance tool for evaluating both natural and anthropogenic CH4 leakage from gas reservoirs into groundwater and surface water

  19. H-Area Acid/Caustic Basin groundwater monitoring report. Second quarter 1994

    International Nuclear Information System (INIS)

    1994-09-01

    During second quarter 1994, samples collected from the four HAC monitoring wells at the H-Area Acid/Caustic Basin received comprehensive analyses (exclusive of boron and lithium) and turbidity measurements. Monitoring results that exceeded the final Primary Drinking Water Standards (PDWS) or the Savannah River Site (SRS) flagging criteria or turbidity standard during the quarter are the focus of this report. Tritium exceeded the final PDWS in all four HAC wells during second quarter 1994. Carbon tetrachloride exceeded the final PDWS in well HAC 4. Aluminum exceeded its Flag 2 criterion in wells HAC 2, 3, and 4. Iron was elevated in wells HAC 1, 2, and 3. Manganese exceeded its Flag 2 criterion in well HAC 3. Specific conductance and total organic halogens were elevated in well HAC 2. No well samples exceeded the SRS turbidity standard. Groundwater flow direction in the water stable beneath the H-Area Acid/Caustic Basin was to the west during second quarter 1994. During previous quarters, the groundwater flow direction has been consistently to the northwest or the north-northwest. This apparent change in flow direction may be attributed to the lack of water elevations for wells HTF 16 and 17 and the anomalous water elevations for well HAC 2 during second quarter

  20. Understanding large scale groundwater flow in fractured crystalline rocks to aid in repository siting

    International Nuclear Information System (INIS)

    Davison, C.; Brown, A.; Gascoyne, M.; Stevenson, D.; Ophori, D.

    2000-01-01

    Atomic Energy of Canada Limited (AECL) conducted a ten-year long groundwater flow study of a 1050 km 2 region of fractured crystalline rock in southeastern Manitoba to illustrate how an understanding of large scale groundwater flow can be used to assist in selecting a hydraulically favourable location for the deep geological disposal of nuclear fuel waste. The study involved extensive field investigations that included the drilling testing, sampling and monitoring of twenty deep boreholes distributed at detailed study areas across the region. The surface and borehole geotechnical investigations were used to construct a conceptual model of the main litho-structural features that controlled groundwater flow through the crystalline rocks of the region. Eighty-three large fracture zones and other spatial domains of moderately fractured and sparsely fractured rocks were represented in a finite element model of the area to simulate regional groundwater flow. The groundwater flow model was calibrated to match the observed groundwater recharge rate and the hydraulic heads measured in the network of deep boreholes. Particle tracking was used to determine the pathways and travel times from different depths in the velocity field of the calibrated groundwater flow model. The results were used to identify locations in the regional flow field that maximize the time it takes for groundwater to travel to surface discharge areas through long, slow groundwater pathways. One of these locations was chosen as a good hypothetical location for situating a nuclear fuel waste disposal vault at 750 m depth. (authors)

  1. Nonradiological groundwater quality at low-level radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Goode, D.J.

    1986-04-01

    The NRC is investigating appropriate regulatory options for disposal of low-level radioactive waste containing nonradiological hazardous constituents, as defined by EPA regulations. Standard EPA/RCRA procedures to determine hazardous organics, metals, indicator parameters, and general water quality are applied to samples from groundwater monitoring wells at two commercial low-level radioactive waste disposal sites. At the Sheffield, IL site (nonoperating), several typical organic solvents are identified in elevated concentrations in onsite wells and in an offsite area exhibiting elevated tritium concentrations. At the Barnwell, SC site (operating), only very low concentrations of three organics are found in wells adjacent to disposal units. Hydrocarbons associated with petroleum products are detected at both sites. Hazardous constituents associated with previosuly identified major LLW mixed waste streams, toluene, xylene, chromium, and lead, are at or below detection limits or at background levels in all samples. Review of previously collected data also supports the conclusion that organic solvents are the primary nonradiological contaminants associated with LLW disposal

  2. 1985 Environmental Monitoring Program report for the Idaho National Engineering Laboratory site

    International Nuclear Information System (INIS)

    Hoff, D.L.; Chew, E.W.; Rope, S.K.

    1986-05-01

    The results of the various monitoring programs for 1985 indicated that radioactivity from the Idaho National Engineering Laboratory (INEL) Site operations could not be distinguished from worldwide fallout and natural radioactivity in the region surrounding the Site. Although some radioactive materials were discharged during Site operations, concentrations and doses to the surrounding population were of no health consequence and were far less than State of Idaho and Federal health protection guidelines. This report describes the air, water, and foodstuff samples routinely collected at the INEL boundary locations and at locations distant from the INEL Site. It compares and evaluates the sample results, discussing implications, if any. Included for the first time this year are data from air and water samples routinely collected from onsite locations. The report also summarizes significant environmental activities at the INEL Site during 1985, nonradioactive and radioactive effluent monitoring at the Site, and the US Geological Survey (USGS) groundwater monitoring program

  3. 1984 Environmental monitoring program report for Idaho National Engineering Laboratory Site

    International Nuclear Information System (INIS)

    Hoff, D.L.; Chew, E.W.; Dickson, R.L.

    1985-05-01

    The results of the various monitoring programs for 1984 indicated that radioactivity from INEL Site operations could not be distinguished from worldwide fallout and natural radioactivity in the region surrounding the Site. Although some radioactive materials were discharged during Site operations, concentrations and doses to the surrounding population were of no health consequence and were far less than State of Idaho and federal health protection guidelines. This report describes the air, water, and foodstuff samples routinely collected at the INEL boundary locations and at locations distant from the INEL Site; and it compares and evaluates the sample results, discussing implications, if any. The report also summarizes significant environmental activities at the INEL Site during 1984, nonradioactive and radioactive effluent monitoring at the Site, and the US Geological Survey (USGS) groundwater monitoring program. 28 refs., 13 figs., 22 tabs

  4. Calendar year 1996 annual groundwater monitoring report for the Chestnut Ridge Hydrogeologic Regime at the U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-02-01

    This annual monitoring report contains groundwater and surface water monitoring data obtained in the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) during calendar year (CY) 1996. The Chestnut Ridge Regime encompasses a section of Chestnut Ridge west of Scarboro Road and east of an unnamed drainage feature southwest of the US Department of Energy (DOE) Oak Ridge Y-12 Plant (unless otherwise noted, directions are in reference to the Y-12 Plant administrative grid). The Chestnut Ridge Regime contains several sites used for management of hazardous and nonhazardous wastes associated with plant operations. Groundwater and surface water quality monitoring associated with these waste management sites is performed under the auspices of the Y-12 Plant Groundwater Protection Program (GWPP). Included in this annual monitoring report are the groundwater monitoring data obtained in compliance with the Resource Conservation and Recovery Act (RCRA) Post-Closure Permit for the Chestnut Ridge Regime (post-closure permit) issued by the Tennessee Department of Environment and Conservation (TDEC) in June 1996. Besides the signed certification statement and the RCRA facility information summarized below, condition II.C.6 of the post-closure permit requires annual reporting of groundwater monitoring activities, inclusive of the analytical data and results of applicable data evaluations, performed at three RCRA hazardous waste treatment, storage, or disposal (TSD) units: the Chestnut Ridge Sediment Disposal Basin (Sediment Disposal Basin), the Chestnut Ridge Security Pits (Security Pits), and Kerr Hollow Quarry

  5. A new site characterization and monitoring technology

    International Nuclear Information System (INIS)

    Nielsen, B.J.; Bohne, D.A.; Lindstrom, D.R.

    1995-01-01

    New sensor technologies are being developed to meet the nation's environmental remediation and compliance programs. In 1993, the US Air Force Armstrong Laboratory and Loral Defense System, Eagan (formerly a division of Unisys Corporation) signed a Cooperative Research and Development Agreement (CRDA) to commercialize fiber optic laser-induced fluorescence technology that had been developed with US Air Force funding at North Dakota State University (NDSU). A consortium consisting of the CRDA partners (USAF and Loral), Dakota Technologies, Inc., and NDSU submitted a proposal to the Advanced Research Projects Agency, Technology Reinvestment Project and won an award to fund the commercialization. The result, the Rapid Optical Screening Tool or ROST is a state-of-the-art laser spectroscopy system for analysis of aromatic hydrocarbon-contaminated soil and groundwater. With ROST, environmental investigators are able to find, classify, and map the distribution of many hazardous chemicals in the field instead of waiting for reports to come back from analytical laboratory. The research and development program leading to prototype laser spectrometers is summarized along with results from laboratory and field demonstrations illustrating system performance and benefits for site characterization. The technology has recently been demonstrated in Europe in Germany, the Netherlands, France and several sites in the United Kingdom having light, medium, and heavy aromatic hydrocarbon contamination from fuel spills and refinery or chemical plant operations

  6. Shifting the Paradigm for Long Term Monitoring at Legacy Sites to Improve Performance while Reducing Cost

    International Nuclear Information System (INIS)

    Eddy-Dilek, Carol A.; Looney, Brian B.; Seaman, John; Kmetz, Thomas

    2013-01-01

    A major issue facing many government and private industry sites that were previously contaminated with radioactive and chemical wastes is that often the sites cannot be cleaned up enough to permit unrestricted human access. These sites will require long-term management, in some cases indefinitely, leaving site owners with the challenge of protecting human health and environmental quality in a cost effective manner. Long-term monitoring of groundwater contamination is one of the largest projected costs in the life cycle of environmental management at the Savannah River Site (SRS), the larger DOE complex, and many large federal and private sites. Currently, most monitoring strategies are focused on laboratory measurements of contaminants measured in groundwater samples collected from wells. This approach is expensive, and provides limited and lagging information about the effectiveness of cleanup activities and the behavior of the residual contamination. Over the last twenty years, DOE and other federal agencies have made significant investments in the development of various types of sensors and strategies that would allow for remote analysis of contaminants in groundwater, but these approaches do not promise significant reductions in risk or cost. Scientists at SRS have developed a new paradigm to simultaneously improve the performance of long term monitoring systems while lowering the overall cost of monitoring. This alternative approach incorporates traditional point measurements of contaminant concentration with measurements of controlling variables including boundary conditions, master variables, and traditional plume/contaminant variables. Boundary conditions are the overall driving forces that control plume movement and therefore provide leading indication to changes in plume stability. These variables include metrics associated with meteorology, hydrology, hydrogeology, and land use. Master variables are the key variables that control the chemistry of the

  7. Technical note: Guide to groundwater monitoring for the coal industry

    African Journals Online (AJOL)

    It is well established in literature that the environmental impacts associated with the coal industry are numerous. In respect of South Africa's groundwater resources the major impact of the coal industry is a reduction in groundwater quantity and quality. There is therefore a need to proactively prevent or minimise these ...

  8. Data management implementation plan for the site characterization of the Waste Area Grouping 1 Groundwater Operable Unit at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Ball, T.S.; Nickle, E.B.

    1994-10-01

    The Waste Area Grouping (WAG) 1 Groundwater Operable Unit (OU) at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, is undergoing a site characterization. This project is not mandated by the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA); therefore, no formalized meetings for data quality objective (DQO) development were held. Internally, DQOs were generated by the project team based on the end uses of the data to be collected. The 150-acre WAG 1 is contained within the ORNL security area. It includes all of the former ORNL radioisotope research, production, and maintenance facilities; former waste management areas; and some former administrative facilities. The goal of the WAG 1 Groundwater Site Characterization is to provide the necessary data on the nature and extent of groundwater contamination with an acceptable level of uncertainty to support the selection of remedial alternatives and to identify additional data needs for future actions. Primary objectives for the site characterization are: (1) To identify and characterize contaminant migration pathways based on the collection of groundwater data; (2) to identify sources of groundwater contamination and evaluate remedial actions which could be implemented to control or eliminate these sources; and (3) To conduct groundwater monitoring in support of other OUs in WAG 1 and the ORNL Groundwater OU

  9. 3Q/4Q99 Annual M-Area and Metallurgical Laboratory Hazardous Waste Management Facilities Groundwater Monitoring and Corrective-Action Report - Third and Fourth Quarters 1999 - Volumes I and II

    International Nuclear Information System (INIS)

    Chase, J.

    2000-01-01

    This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah River Site (SRS) during 1999

  10. Incorporation of GRACE Data into a Bayesian Model for Groundwater Drought Monitoring

    Science.gov (United States)

    Slinski, K.; Hogue, T. S.; McCray, J. E.; Porter, A.

    2015-12-01

    Groundwater drought, defined as the sustained occurrence of below average availability of groundwater, is marked by below average water levels in aquifers and reduced flows to groundwater-fed rivers and wetlands. The impact of groundwater drought on ecosystems, agriculture, municipal water supply, and the energy sector is an increasingly important global issue. However, current drought monitors heavily rely on precipitation and vegetative stress indices to characterize the timing, duration, and severity of drought events. The paucity of in situ observations of aquifer levels is a substantial obstacle to the development of systems to monitor groundwater drought in drought-prone areas, particularly in developing countries. Observations from the NASA/German Space Agency's Gravity Recovery and Climate Experiment (GRACE) have been used to estimate changes in groundwater storage over areas with sparse point measurements. This study incorporates GRACE total water storage observations into a Bayesian framework to assess the performance of a probabilistic model for monitoring groundwater drought based on remote sensing data. Overall, it is hoped that these methods will improve global drought preparedness and risk reduction by providing information on groundwater drought necessary to manage its impacts on ecosystems, as well as on the agricultural, municipal, and energy sectors.

  11. H-Area Acid/Caustic Basin Groundwater Monitoring Report

    International Nuclear Information System (INIS)

    Thompson, C.Y.

    1993-03-01

    During fourth quarter 1992, samples from the four HAC monitoring wells at the H-Area Acid/Caustic Basin received comprehensive analyses. Monitoring results that exceeded the final Primary Drinking Water Standards (PDWS) or the Savannah River Site (SRS) flagging criteria or turbidity standard during the quarter are the focus of this report. Tritium exceeded the final PDWS in wells HAC 1, 2, 3, and 4 during fourth quarter 1992. Tritium activities in upgradient well HAC 4 were similar to tritium levels in wells HAC 1, 2, and 3. Iron was elevated in well HAC 1, 2, and 3. Specific conductance and manganese were elevated in one downgradient well each. No well samples exceeded the SRS turbidity standard. During 1992, tritium was the only constituent that exceeded the final PDWS. It did so consistently in all four wells during all four quarters, with little variability in activity

  12. Environmental and effluent monitoring at ANSTO sites, 2005-2006

    International Nuclear Information System (INIS)

    Hoffmann, Emmy L.; Loosz, Tom; Ferris, John M.; Harrison, Jennifer J.

    2006-01-01

    This report presents the results of ANSTO's environmental and effluent monitoring at the Lucas Heights Science and Technology Centre (LHSTC) and the National Medical Cyclotron (NMC) sites, from July 2005 to June 2006. Estimated effective doses to the critical group of members of the public potentially affected by routine airborne emissions from the LHSTC were less than 0.005 mSv/year. The maximum potential dose was 23% of the ANSTO ALARA objective of 0.02 mSv/year, much lower than the public dose limit of 1 mSv/year that is recommended by the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA). The effective doses to the critical group of members of the public potentially exposed to routine liquid effluent releases from the LHSTC have been realistically estimated as a quarter (or less) of the estimated doses to the critical group for airborne releases. The median tritium concentrations detected in groundwater and surface waters at the LHSTC were typically less than 2% of those set out in the Australian Drinking Water Guidelines. The airborne emissions from the NMC were below the ARPANSA-approved notification levels. Results of environmental monitoring at both ANSTO sites confirm that the facilities continue to be operated well within regulatory limits. ANSTO's routine operations at the LHSTC and NMC make only a very small addition to the natural background radiation dose of -1.5 mSv/year experienced by members of the Australian public

  13. Modeling groundwater flow at the chemical plant area of the Weldon Spring Site

    International Nuclear Information System (INIS)

    Durham, L.A.

    1992-10-01

    Groundwater flow in the shallow unconfined aquifer at the chemical plant area of the Weldon Spring site, St. Charles County, Missouri, was modeled with the Coupled Fluid, Energy, and Solute Transport (CFEST) groundwater flow and contaminant transport computer code. The modeling was performed in support of a hydrogeological characterization effort that is part of the remedial investigation/feasibility study-environmental impact statement process being carried out by the US Department of Energy at the site. This report presents the results of model development and calibration. In the calibration procedure, the range of field-measured hydrogeological parameters was tested to obtain the best match between model-predicted and measured groundwater elevations. After calibration, the model was used to evaluate whether the presence of an on-site disposal cell would impact the ability to remediate contaminated groundwater beneath the cell. The results of the numerical modeling, which were based on an evaluation of steady-state groundwater flow velocity plots, indicated that groundwater would flow beneath the disposal cell along natural gradients. The presence of a disposal cell would not significantly affect remediation capability for groundwater contamination

  14. Ground-water surveillance at the Hanford Site for CY 1982

    International Nuclear Information System (INIS)

    Eddy, P.A.; Prater, L.S.; Rieger, J.T.

    1983-06-01

    Operations at the Hanford Site since 1944 have resulted in the discharge of large volumes of process cooling water and other waste waters to the ground. These effluents, which have reached the unconfined ground water, contain low levels of radioactive and chemical substances. The movement of these constituents in the unconfined ground water is monitored as part of the Ground-Water Surveillance Program. During 1982, 324 monitoring wells were sampled at various times for radioactive and chemical constituents. Tritium are the primary ones used to monitor the movement of the ground water. This report describes recent changes in the configuration of the tritium and nitrate plumes. The tritium plume continues to show increasing concentrations near the Columbia River. While it is mapped as having reached the Columbia River, its contribution to the river has not been distinguished from other sources at this time. The general plume configuration is much the same as in 1978, 1979, 1980, and 1981. The size of the nitrate plume appears stable. Concentrations of nitrate in the vicinity of the 100-H Area continue to be high as a result of past leaks from an evaporation facility

  15. Sanitary Landfill Groundwater Monitoring Report, Second Quarter 1999

    Energy Technology Data Exchange (ETDEWEB)

    Chase, J.

    1999-07-29

    This report contains analytical data for samples taken during Second Quarter 1999 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site. The data are submitted in reference to the Sanitary Landfill Operating Permit. The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards or screening levels, established by the US Environmental Protection Agency, the South Carolina final Primary Drinking Water Standard for lead, or the SRS flagging criteria.

  16. Sanitary landfill groundwater monitoring report, Third Quarter 1999

    Energy Technology Data Exchange (ETDEWEB)

    Chase, J.

    1999-12-08

    This report contains analytical data for samples taken during Third Quarter 1999 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site. The data are submitted in reference to the Sanitary Landfill Operating Permit. The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards or screening levels, established by the U.S. Environmental Protection Agency, the South Carolina final Primary Drinking Water Standard for lead, or the SRS flagging criteria.

  17. Sanitary landfill groundwater monitoring report. Third quarter 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    This report contains analytical data for samples taken during third quarter 1995 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site (SRS). The data are submitted in reference to the Sanitary Landfill Operating Permit (DWP-087A). The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards (PDWS) or screening levels, established by the U.S. Environmental Protection Agency, the South Carolina final Primary Drinking Water Standard for lead, or the SRS flagging criteria.

  18. Sanitary landfill groundwater monitoring report, Third Quarter 1999

    International Nuclear Information System (INIS)

    Chase, J.

    1999-01-01

    This report contains analytical data for samples taken during Third Quarter 1999 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site. The data are submitted in reference to the Sanitary Landfill Operating Permit. The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards or screening levels, established by the U.S. Environmental Protection Agency, the South Carolina final Primary Drinking Water Standard for lead, or the SRS flagging criteria

  19. Sanitary landfill groundwater monitoring report. Third quarter 1995

    International Nuclear Information System (INIS)

    1995-11-01

    This report contains analytical data for samples taken during third quarter 1995 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site (SRS). The data are submitted in reference to the Sanitary Landfill Operating Permit (DWP-087A). The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards (PDWS) or screening levels, established by the U.S. Environmental Protection Agency, the South Carolina final Primary Drinking Water Standard for lead, or the SRS flagging criteria

  20. Potential contamination of groundwater in the World Heritage Site of ...

    African Journals Online (AJOL)

    The rapid population growth, high levels of tourism and poor sewage waste disposal (at least for the foreseeable future) in St. Katherine have resulted in potential contamination of groundwater and subsequent high risk to human health. To evaluate the safety of well water for human use in St. Katherine, water samples were ...

  1. Monitoring effects of river restoration on groundwater with radon

    International Nuclear Information System (INIS)

    Hoehn, Eduard

    2007-01-01

    The restoration of the perialpine river Toess in a floodplain of northern Switzerland (Linsental) included the removal of bank reinforcements and tracer studies in the river and in oberservation wells of the adjacent alluvial groundwater. The river water is continuously recharging the aquifer system and the groundwater is used extensively as drinking water. Radon activity concentrations of freshly infiltrated groundwater are interpreted as radon groundwater age between the river and a well. A first flood after the restoration operations resulted in a widening of the river bed and in a reduction of the flow distance to the wells. Sixteen days after a second flood, the results of radon measurements were compared with those from before the restoration. The radon age of the groundwater between the river and the wells decreased, probably as a result of the reduction of the flow distances. Concentrations of autochthonous and coliform bacteria increased after the restoration operation and even more one day after the first flood. Thus the findings on the bacteria corroborate the interpretation of the radon concentrations. The restoration has not yet reduced the quality of the groundwater, which is pumped for drinking water. The study is contributing to the solution of land-use conflicts between river restoration and the supply of drinking water from the alluvial groundwater. (orig.) [de

  2. R-Area Reactor 1993 annual groundwater monitoring report

    International Nuclear Information System (INIS)

    1994-09-01

    Groundwater was sampled and analyzed during 1993 from wells monitoring the following locations in R Area: Well cluster P20 east of R Area (one well each in the water table and the McBean formation), the R-Area Acid/Caustic Basin (the four water-table wells of the RAC series), the R-Area Ash Basin/Coal Pile (one well of the RCP series in the Congaree formation and one in the water table), the R-Area Disassembly Basin (the three water-table wells of the RDB series), the R-Area Burning/Rubble Pits (the four water-table wells of the RRP series), and the R-Area Seepage Basins (numerous water-table wells in the RSA, RSB, RSC, RSD, RSE, and RSF series). Lead was the only constituent detected above its 50μg/L standard in any but the seepage basin wells; it exceeded that level in one B well and in 23 of the seepage basin wells. Cadmium exceeded its drinking water standard (DWS) in 30 of the seepage basin wells, as did mercury in 10. Nitrate-nitrite was above DWS once each in two seepage basin wells. Tritium was above DWS in six seepage basin wells, as was gross alpha activity in 22. Nonvolatile beta exceeded its screening standard in 29 wells. Extensive radionuclide analyses were requested during 1993 for the RCP series and most of the seepage basin wells. Strontium-90 in eight wells was the only specific radionuclide other than tritium detected above DWS; it appeared about one-half of the nonvolatile beta activity in those wells

  3. Low-cost sensors to monitor groundwater drought in Somalia

    Science.gov (United States)

    Buytaert, W.; Ochoa-Tocachi, B. F.; Caniglia, D.; Haibe, K.; Butler, A. P.

    2017-12-01

    Somalia is one of the poorest countries in the world, devastated by conflict and suffering from the most severe droughts in living memory. Over 6 million people are in need of assistance, and about 3 million are threatened with famine. In April 2017, the WHO estimated that more than 25,000 people have been struck by cholera or acute watery diarrhoea and this number is rising quickly. About half a million Somalis have been displaced internally, many of which in search of water. Some 3 million pastoralists have lost 70% of livestock as a result of the drought. Humanitarian organisations and government agencies invest large amounts of resources to alleviate these conditions. It is paramount to inform the design, focus, and optimisation of these interventions by monitoring and quantifying water resources. Yet, regions such as Somalia are extremely sparsely gauged as a result of a combination of lack of resources and technical expertise, as well as the harsh geographical and geopolitical conditions. Low-cost, robust, and reliable sensors may provide a potential solution to this problem. We present the results of a research project that aimed to leverage new developments in sensor, logger, and data transmission technologies to develop low-cost water level sensors to monitor hand-dug groundwater wells in real time. We tested 3 types of sensor types, i.e. pressure transducers, ultrasound-based distance sensors, and lidar, which were coupled to low-cost logging systems. The different designs were tested both in laboratory conditions, and in-situ in hand-dug wells in Somaliland. Our results show that it is technically possible to build sensors with a total cost of around US$250 each, which are fit-for-purpose for the required application. In-situ deployment over a period of 2 months highlights their robustness despite severe logistical and practical challenges, though further tests are required to understand their long-term reliability. Operating the sensors at one

  4. Hydrochemistry in surface water and shallow groundwater. Site descriptive modelling SDM-Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Troejbom, Mats (Mopelikan, Norrtaelje (SE)); Soederbaeck, Bjoern (Swedish Nuclear Fuel and Waste Management Co., Stockholm (SE)); Johansson, Per-Olof (Artesia Grundvattenkonsult AB, Taeby (SE))

    2007-10-15

    With a mathematical/statistical approach, a large number of visualisations and models reflect the hydrochemistry in the Forsmark area, with the intention to give an understanding of important processes and factors that affect the hydrochemistry in the surface systems. In order to widen the perspective, all data from the Forsmark 2.2 stage including observations from different levels of the bedrock, as well as hydrological measurements and characterisations of the Quaternary deposits, have been included in the analyses. The purpose of this report is to give a general understanding of the site and to explain observed overall patterns as well as anomalies, and, ultimately, to present a conceptual model that explains the present hydrochemistry in the surface system in the light of the past. The report may also function as a basis for further evaluation and testing of scenarios, and may be regarded as an intermediate step between raw data compilations from the vast SICADA database and specialised expert models. The flat topography and the recent withdrawal of the Baltic Sea due to the isostatic land-uplift are two important factors determining the hydrochemistry in the Forsmark area. Marine remnants in the Quaternary deposits, as well as modern sea water intrusions, are therefore strongly influencing the hydrochemistry, especially in areas at low altitude close to the coast. Large-scale marine gradients in the surface system are consistent with the conceptual model that describes the hydrochemical evolution in a paleo-hydrologic perspective. The Forsmark area is covered by glacial remnants, mostly in the form of a till layer, which was deposited during the Weichselian glaciation and deglaciation. When the ice cover retreated about 11,000 years ago, these deposits were exposed on the sea floor. This till layer is characterized by a rich content of calcite, originating from the sedimentary bedrock of Gaevlebukten about 100 km north of Forsmark. The dissolution of this

  5. Hydrochemistry in surface water and shallow groundwater. Site descriptive modelling SDM-Site Forsmark

    International Nuclear Information System (INIS)

    Troejbom, Mats; Soederbaeck, Bjoern; Johansson, Per-Olof

    2007-10-01

    With a mathematical/statistical approach, a large number of visualisations and models reflect the hydrochemistry in the Forsmark area, with the intention to give an understanding of important processes and factors that affect the hydrochemistry in the surface systems. In order to widen the perspective, all data from the Forsmark 2.2 stage including observations from different levels of the bedrock, as well as hydrological measurements and characterisations of the Quaternary deposits, have been included in the analyses. The purpose of this report is to give a general understanding of the site and to explain observed overall patterns as well as anomalies, and, ultimately, to present a conceptual model that explains the present hydrochemistry in the surface system in the light of the past. The report may also function as a basis for further evaluation and testing of scenarios, and may be regarded as an intermediate step between raw data compilations from the vast SICADA database and specialised expert models. The flat topography and the recent withdrawal of the Baltic Sea due to the isostatic land-uplift are two important factors determining the hydrochemistry in the Forsmark area. Marine remnants in the Quaternary deposits, as well as modern sea water intrusions, are therefore strongly influencing the hydrochemistry, especially in areas at low altitude close to the coast. Large-scale marine gradients in the surface system are consistent with the conceptual model that describes the hydrochemical evolution in a paleo-hydrologic perspective. The Forsmark area is covered by glacial remnants, mostly in the form of a till layer, which was deposited during the Weichselian glaciation and deglaciation. When the ice cover retreated about 11,000 years ago, these deposits were exposed on the sea floor. This till layer is characterized by a rich content of calcite, originating from the sedimentary bedrock of Gaevlebukten about 100 km north of Forsmark. The dissolution of this

  6. Persistence of uranium groundwater plumes: Contrasting mechanisms at two DOE sites in the groundwater-river interaction zone

    Science.gov (United States)

    Zachara, John M.; Long, Philip E.; Bargar, John; Davis, James A.; Fox, Patricia; Fredrickson, Jim K.; Freshley, Mark D.; Konopka, Allan E.; Liu, Chongxuan; McKinley, James P.; Rockhold, Mark L.; Williams, Kenneth H.; Yabusaki, Steve B.

    2013-04-01

    We examine subsurface uranium (U) plumes at two U.S. Department of Energy sites that are located near large river systems and are influenced by groundwater-river hydrologic interaction. Following surface excavation of contaminated materials, both sites were projected to naturally flush remnant uranium contamination to levels below regulatory limits (e.g., 30 μg/L or 0.126 μmol/L; U.S. EPA drinking water standard), with 10 years projected for the Hanford 300 Area (Columbia River) and 12 years for the Rifle site (Colorado River). The rate of observed uranium decrease was much lower than expected at both sites. While uncertainty remains, a comparison of current understanding suggests that the two sites have common, but also different mechanisms controlling plume persistence. At the Hanford 300 A, the persistent source is adsorbed U(VI) in the vadose zone that is released to the aquifer during spring water table excursions. The release of U(VI) from the vadose zone and its transport within the oxic, coarse-textured aquifer sediments is dominated by kinetically-limited surface complexation. Modeling implies that annual plume discharge volumes to the Columbia River are small (oxidation of naturally reduced, contaminant U(IV) in the saturated zone and a continuous influx of U(VI) from natural, up-gradient sources influence plume persistence. Rate-limited mass transfer and surface complexation also control U(VI) migration velocity in the sub-oxic Rifle groundwater. Flux of U(VI) from the vadose zone at the Rifle site may be locally important, but it is not the dominant process that sustains the plume. A wide range in microbiologic functional diversity exists at both sites. Strains of Geobacter and other metal reducing bacteria are present at low natural abundance that are capable of enzymatic U(VI) reduction in localized zones of accumulated detrital organic carbon or after organic carbon amendment. Major differences between the sites include the geochemical nature of

  7. Persistence of uranium groundwater plumes: contrasting mechanisms at two DOE sites in the groundwater-river interaction zone.

    Science.gov (United States)

    Zachara, John M; Long, Philip E; Bargar, John; Davis, James A; Fox, Patricia; Fredrickson, Jim K; Freshley, Mark D; Konopka, Allan E; Liu, Chongxuan; McKinley, James P; Rockhold, Mark L; Williams, Kenneth H; Yabusaki, Steve B

    2013-04-01

    We examine subsurface uranium (U) plumes at two U.S. Department of Energy sites that are located near large river systems and are influenced by groundwater-river hydrologic interaction. Following surface excavation of contaminated materials, both sites were projected to naturally flush remnant uranium contamination to levels below regulatory limits (e.g., 30 μg/L or 0.126 μmol/L; U.S. EPA drinking water standard), with 10 years projected for the Hanford 300 Area (Columbia River) and 12 years for the Rifle site (Colorado River). The rate of observed uranium decrease was much lower than expected at both sites. While uncertainty remains, a comparison of current understanding suggests that the two sites have common, but also different mechanisms controlling plume persistence. At the Hanford 300 A, the persistent source is adsorbed U(VI) in the vadose zone that is released to the aquifer during spring water table excursions. The release of U(VI) from the vadose zone and its transport within the oxic, coarse-textured aquifer sediments is dominated by kinetically-limited surface complexation. Modeling implies that annual plume discharge volumes to the Columbia River are small (oxidation of naturally reduced, contaminant U(IV) in the saturated zone and a continuous influx of U(VI) from natural, up-gradient sources influence plume persistence. Rate-limited mass transfer and surface complexation also control U(VI) migration velocity in the sub-oxic Rifle groundwater. Flux of U(VI) from the vadose zone at the Rifle site may be locally important, but it is not the dominant process that sustains the plume. A wide range in microbiologic functional diversity exists at both sites. Strains of Geobacter and other metal reducing bacteria are present at low natural abundance that are capable of enzymatic U(VI) reduction in localized zones of accumulated detrital organic carbon or after organic carbon amendment. Major differences between the sites include the geochemical nature of

  8. Ecosystem monitoring two Department of Energy sites

    International Nuclear Information System (INIS)

    Gray, R.

    1995-01-01

    The US Department of Energy's Hanford Site was established in southeastern Washington to produce plutonium during World War II. The Pantex Plant in the Texas Panhandle, originally used for loading conventional ammunition shells and bombs, was rehabilitated and enhanced in the 1950s to assemble nuclear weapons. Environmental monitoring has been ongoing at both locations for several decades. Monitoring objectives are to detect and assess potential impacts of facility operations on air, surface and ground waters, foodstuffs, fish, wildlife, soils, and vegetation. Currently, measured concentrations of airborne radionuclides around the perimeters of both sites are below applicable guidelines. Concentrations of radionuclides and nonradiological water quality in the Columbia River at Hanford, and radiological and nonradiological water quality in the Ogallala Aquifer beneath the Pantex Plant are in compliance with applicable standards. Foodstuffs irrigated with river water downstream from the Hanford Site show levels of radionuclides that are similar to those found in foodstuffs from control areas. The low levels of 137 Cs and 9O Sr in some onsite Hanford wildlife samples and concentrations of radionuclides in soils and vegetation from onsite and offsite at both locations are typical of those attributable to naturally occurring radioactivity and to worldwide fallout. The calculated dose potentially received by a maximally exposed individual (i.e., based on hypothetical, worst-case assumptions for all routes of exposure) at both sites in 1993 was ≤ 0.03 mrem. Ironically, by virtue of its size (1450 km 2 [560 mi 2 ]), restricted public access, and conservative use of undeveloped land, the Hanford Site has provided a sanctuary for plant and animal populations that have been eliminated from, or greatly reduced on, surrounding agricultural and range lands. Ongoing studies will determine if this is also true at Pantex Plant

  9. Groundwater flow modeling focused on the Fukushima Daiichi Nuclear Power Plant Site

    International Nuclear Information System (INIS)

    Saegusa, Hiromitsu; Onoe, Hironori; Kohashi, Akio; Watanabe, Masahisa

    2015-01-01

    Fukushima Daiichi nuclear power plant of Tokyo Electric Power Company is facing contaminated water issues in the aftermath of the Great East Japan Earthquake on March 11, 2011. The amount of contaminated water is continuously increasing due to groundwater leakage into the underground part of reactor and turbine buildings. Therefore, it is important to understand the groundwater flow conditions at the site and to predict the impact of countermeasures taken for isolating groundwater from the source of the contamination, i.e. the reactor buildings. Installations, such as of land-side and sea-side impermeable walls have been planned as countermeasures. In this study, groundwater flow modeling has been performed to estimate the response of groundwater flow conditions to the countermeasures. From the modeling, groundwater recharge and discharge areas, major groundwater flow direction, inflow rate into underground part of the buildings, and changes in response to implementation of the countermeasures could be reasonably estimated. The results indicate that the countermeasures will decrease the volume of inflow into the underground part of the buildings. This means that the countermeasures will be effective in reducing the discharge volume of contaminated groundwater to ocean. (author)

  10. Hanford Site Composite Analysis Technical Approach Description: Groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Budge, T. J. [CH2M HILL Plateau Remediation Company, Richland, WA (United States)

    2017-10-02

    The groundwater facet of the revised CA is responsible for generating predicted contaminant concentration values over the entire analysis spatial and temporal domain. These estimates will be used as part of the groundwater pathway dose calculation facet to estimate dose for exposure scenarios. Based on the analysis of existing models and available information, the P2R Model was selected as the numerical simulator to provide these estimates over the 10,000-year temporal domain of the CA. The P2R Model will use inputs from initial plume distributions, updated for a start date of 1/1/2017, and inputs from the vadose zone facet, created by a tool under development as part of the ICF, to produce estimates of hydraulic head, transmissivity, and contaminant concentration over time. A recommendation of acquiring 12 computer processors and 2 TB of hard drive space is made to ensure that the work can be completed within the anticipated schedule of the revised CA.

  11. Status of remedial investigation activities in the Hanford Site 300 Area groundwater operable unit

    International Nuclear Information System (INIS)

    Hulstrom, L.C.; Innis, B.E.; Frank, M.A.

    1993-09-01

    The Phase 1 remedial investigation (RI) and Phase 1 and 2 feasibility studies (FS) for the 300-FF-5 groundwater operable unit underlying the 300 Area on the Hanford Site have been completed. Analysis and evaluation of soil, sediment, and surface water, and biotic sampling data, groundwater chemistry, and radiological data gathered over the past 3 years has been completed. Risk assessment calculations have been performed. Use of the data gathered, coupled with information from an automated water level data collection system, has enabled engineers to track three plumes that represent the most significant contamination of the groundwater

  12. Numerical Simulation of Groundwater Flow at Kori Nuclear Power Plant Site

    International Nuclear Information System (INIS)

    Sohn, Wook; Sohn, Soon Whan; Chon, Chul Min; Kim, Kue Youn

    2010-01-01

    Recently, the understanding of hydrogeological characteristics of nuclear power sites is getting more importance with increasing public concerns over the environment since such understanding is essential for an environmentally friendly operation of plants. For such understanding, the prediction of groundwater flow pattern onsite plays the most critical role since it is the most dynamic of the factors to be considered. In this study, the groundwater flow at the Kori Plant 1 site has been simulated numerically with aim of providing fundamental information needed for improving the understanding of the hydrogeological characteristics of the site

  13. Hexavalent Chromium: Analysis of the Mechanism of Groundwater Contamination in a Former Industrial Site in the Province of Vicenza (Northern Italy

    Directory of Open Access Journals (Sweden)

    Valentina Accoto

    2017-01-01

    Full Text Available The study consisted in the analysis of the mobilization mechanisms of hexavalent chromium (Cr(VI into groundwater from a decommissioned contaminated factory. The site is located in the Province of Vicenza and formerly was a chrome-plating plant. The subsoil consists predominantly of gravelly deposits with a thickness of at least one hundred meters. An unconfined aquifer is present with water table at about 23 m depth bgl. During the seven years of monitoring (2008-2014, the fluctuation of groundwater level was more than 6 m; hydraulic conductivity is about 1.0E-03 m/s and groundwater seepage velocity about 12 m/day. At the area of the source of contamination, the unsaturated soil is contaminated by hexavalent chromium throughout the thickness: concentrations range from 200 to 500 mg/kg. At the bottom of zone of groundwater level fluctuation, the hexavalent chromium concentration decreases to below the detection limit. The available data (e.g. hexavalent chromium concentrations in groundwater, groundwater level, local rainfall give the opportunity to assess the effects, on the magnitude of groundwater contamination, of the effective infiltration versus the fluctuation of groundwater level. The main analysis was performed on a statistical basis, in order to find out which of the two factors was most likely related to the periodic peaks of hexavalent chromium concentration in groundwater. Statistical analysis results were verified by a mass balance. Data show that at the site both the effective infiltration through the unsaturated zone and the leaching of soil contaminated by groundwater, when it exceeds a certain piezometric level, lead to peak concentrations of hexavalent chromium, even if with characteristics and effects different.

  14. A combined geostatistical-optimization model for the optimal design of a groundwater quality monitoring network

    Science.gov (United States)

    Kolosionis, Konstantinos; Papadopoulou, Maria P.

    2017-04-01

    Monitoring networks provide essential information for water resources management especially in areas with significant groundwater exploitation due to extensive agricultural activities. In this work, a simulation-optimization framework is developed based on heuristic optimization methodologies and geostatistical modeling approaches to obtain an optimal design for a groundwater quality monitoring network. Groundwater quantity and quality data obtained from 43 existing observation locations at 3 different hydrological periods in Mires basin in Crete, Greece will be used in the proposed framework in terms of Regression Kriging to develop the spatial distribution of nitrates concentration in the aquifer of interest. Based on the existing groundwater quality mapping, the proposed optimization tool will determine a cost-effective observation wells network that contributes significant information to water managers and authorities. The elimination of observation wells that add little or no beneficial information to groundwater level and quality mapping of the area can be obtain using estimations uncertainty and statistical error metrics without effecting the assessment of the groundwater quality. Given the high maintenance cost of groundwater monitoring networks, the proposed tool could used by water regulators in the decision-making process to obtain a efficient network design that is essential.

  15. Groundwater monitoring programme. A guide for groundwater sampling and analysis. 2. ed.; Grundwasserueberwachungsprogramm. Leitfaden fuer Probenahme und Analytik von Grundwasser

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    Quality assurance guidelines have been developed and introduced in Baden-Wuerttemberg for groundwater monitoring. The contribution contains the fundamentals and technical guides for sampling and measurement of the Baden-Wuerttemberg groundwater monitoring programme, as well as parameter groups and a preliminary assessment of the methods. [German] Bei der Gewinnung von Umweltdaten sind hohe Anforderungen an die Qualitaet der erhobenen Daten zu stellen. Dies trifft in besonderem Masse gerade auch fuer Grundwasseruntersuchungen zu, da hier haeufig Konzentrationen im Bereich der Nachweisgrenze auftreten. Fuer das Grundwassermessnetz Baden-Wuerttemberg sind qualitaetssichernde Regelungen entwickelt und eingefuehrt worden. In der vorliegenden Zusammenstellung sind die Grundsatzpapiere, bzw. Technischen Anleitungen aus dem Grundwasserueberwachungsprogramm Baden-Wuerttemberg fuer die Grundwasserprobennahme sowie zu Messverfahren, Parametergruppen und zur ersten Beurteilung der Messergebnisse enthalten. (orig.)

  16. Analyzing tree cores to detect petroleum hydrocarbon-contaminated groundwater at a former landfill site in the community of Happy Valley-Goose Bay, eastern Canadian subarctic

    DEFF Research Database (Denmark)

    Fonkwe, Merline L D; Trapp, Stefan

    2016-01-01

    -gas chromatography-mass spectrometry. BTEX compounds were detected in tree cores, corroborating known groundwater contamination. A zone of anomalously high concentrations of total BTEX constituents was identified and recommended for monitoring by groundwater wells. Tree cores collected outside the landfill site......This research examines the feasibility of analyzing tree cores to detect benzene, toluene, ethylbenzene, and m, p, o-xylene (BTEX) compounds and methyl tertiary-butyl ether (MTBE) in groundwater in eastern Canada subarctic environments, using a former landfill site in the remote community of Happy...... Valley-Goose Bay, Labrador. Petroleum hydrocarbon contamination at the landfill site is the result of environmentally unsound pre-1990s disposal of households and industrial solid wastes. Tree cores were taken from trembling aspen, black spruce, and white birch and analyzed by headspace...

  17. Scoping assessment of groundwater doses to biota at the Sellafield site, UK

    International Nuclear Information System (INIS)

    McDonald, P.; Gleizon, P.; Coleman, I.A.; Watts, S.J.; Batlle, L.V.; Smith, A.D.

    2008-01-01

    In the current climate of investigating the impact of discharges from the nuclear industry on non-human biota, much attention has been given to biota in marine and terrestrial environments in receipt of authorised discharges of liquid and gaseous effluent. Relatively little attention to date has been given to the exposure of biota to groundwater containing man-made radio-nuclides. This area of interest is growing especially in the field of nuclear waste repositories. A scoping assessment has been performed here to determine the impacts due to radiological contamination on organisms living within or coming into contact with groundwater at the Sellafield site, UK. The following potential exposure routes to biota were identified: 1) Organisms living within groundwater; 2) Groundwater discharges to the surface at beach springs (i.e. emerging above the low water line; 3) Groundwater discharges to nearby surface water bodies (e.g. rivers); 4) Groundwater discharges directly to the Irish Sea.. In order to evaluate impacts on organisms living within, contacting or ingesting groundwater, it was necessary to determine the activity concentration of radio-nuclides in the groundwater. For time periods up to 2120, modeling of contaminant release f