WorldWideScience

Sample records for site-specific protein labeling

  1. Site-Specific Bioorthogonal Labeling for Fluorescence Imaging of Intracellular Proteins in Living Cells.

    Science.gov (United States)

    Peng, Tao; Hang, Howard C

    2016-11-02

    Over the past years, fluorescent proteins (e.g., green fluorescent proteins) have been widely utilized to visualize recombinant protein expression and localization in live cells. Although powerful, fluorescent protein tags are limited by their relatively large sizes and potential perturbation to protein function. Alternatively, site-specific labeling of proteins with small-molecule organic fluorophores using bioorthogonal chemistry may provide a more precise and less perturbing method. This approach involves site-specific incorporation of unnatural amino acids (UAAs) into proteins via genetic code expansion, followed by bioorthogonal chemical labeling with small organic fluorophores in living cells. While this approach has been used to label extracellular proteins for live cell imaging studies, site-specific bioorthogonal labeling and fluorescence imaging of intracellular proteins in live cells is still challenging. Herein, we systematically evaluate site-specific incorporation of diastereomerically pure bioorthogonal UAAs bearing stained alkynes or alkenes into intracellular proteins for inverse-electron-demand Diels-Alder cycloaddition reactions with tetrazine-functionalized fluorophores for live cell labeling and imaging in mammalian cells. Our studies show that site-specific incorporation of axial diastereomer of trans-cyclooct-2-ene-lysine robustly affords highly efficient and specific bioorthogonal labeling with monosubstituted tetrazine fluorophores in live mammalian cells, which enabled us to image the intracellular localization and real-time dynamic trafficking of IFITM3, a small membrane-associated protein with only 137 amino acids, for the first time. Our optimized UAA incorporation and bioorthogonal labeling conditions also enabled efficient site-specific fluorescence labeling of other intracellular proteins for live cell imaging studies in mammalian cells.

  2. Site-specific labeling of proteins with NMR-active unnatural amino acids

    International Nuclear Information System (INIS)

    Jones, David H.; Cellitti, Susan E.; Hao Xueshi; Zhang Qiong; Jahnz, Michael; Summerer, Daniel; Schultz, Peter G.; Uno, Tetsuo; Geierstanger, Bernhard H.

    2010-01-01

    A large number of amino acids other than the canonical amino acids can now be easily incorporated in vivo into proteins at genetically encoded positions. The technology requires an orthogonal tRNA/aminoacyl-tRNA synthetase pair specific for the unnatural amino acid that is added to the media while a TAG amber or frame shift codon specifies the incorporation site in the protein to be studied. These unnatural amino acids can be isotopically labeled and provide unique opportunities for site-specific labeling of proteins for NMR studies. In this perspective, we discuss these opportunities including new photocaged unnatural amino acids, outline usage of metal chelating and spin-labeled unnatural amino acids and expand the approach to in-cell NMR experiments.

  3. Site-specific fluorescent labeling of nascent proteins on the translating ribosome.

    Science.gov (United States)

    Saraogi, Ishu; Zhang, Dawei; Chandrasekaran, Sandhya; Shan, Shu-ou

    2011-09-28

    As newly synthesized proteins emerge from the ribosome, they interact with a variety of cotranslational cellular machineries that facilitate their proper folding, maturation, and localization. These interactions are essential for proper function of the cell, and the ability to study these events is crucial to understanding cellular protein biogenesis. To this end, we have developed a highly efficient method to generate ribosome-nascent chain complexes (RNCs) site-specifically labeled with a fluorescent dye on the nascent polypeptide. The fluorescent RNC provides real-time, quantitative information on its cotranslational interaction with the signal recognition particle and will be a valuable tool in elucidating the role of the translating ribosome in numerous biochemical pathways.

  4. Completion of proteomic data sets by Kd measurement using cell-free synthesis of site-specifically labeled proteins.

    Directory of Open Access Journals (Sweden)

    Paul Majkut

    Full Text Available The characterization of phosphotyrosine mediated protein-protein interactions is vital for the interpretation of downstream pathways of transmembrane signaling processes. Currently however, there is a gap between the initial identification and characterization of cellular binding events by proteomic methods and the in vitro generation of quantitative binding information in the form of equilibrium rate constants (Kd values. In this work we present a systematic, accelerated and simplified approach to fill this gap: using cell-free protein synthesis with site-specific labeling for pull-down and microscale thermophoresis (MST we were able to validate interactions and to establish a binding hierarchy based on Kd values as a completion of existing proteomic data sets. As a model system we analyzed SH2-mediated interactions of the human T-cell phosphoprotein ADAP. Putative SH2 domain-containing binding partners were synthesized from a cDNA library using Expression-PCR with site-specific biotinylation in order to analyze their interaction with fluorescently labeled and in vitro phosphorylated ADAP by pull-down. On the basis of the pull-down results, selected SH2's were subjected to MST to determine Kd values. In particular, we could identify an unexpectedly strong binding of ADAP to the previously found binding partner Rasa1 of about 100 nM, while no evidence of interaction was found for the also predicted SH2D1A. Moreover, Kd values between ADAP and its known binding partners SLP-76 and Fyn were determined. Next to expanding data on ADAP suggesting promising candidates for further analysis in vivo, this work marks the first Kd values for phosphotyrosine/SH2 interactions on a phosphoprotein level.

  5. Nanobodies: site-specific labeling for super-resolution imaging, rapid epitope-mapping and native protein complex isolation

    Science.gov (United States)

    Pleiner, Tino; Bates, Mark; Trakhanov, Sergei; Lee, Chung-Tien; Schliep, Jan Erik; Chug, Hema; Böhning, Marc; Stark, Holger; Urlaub, Henning; Görlich, Dirk

    2015-01-01

    Nanobodies are single-domain antibodies of camelid origin. We generated nanobodies against the vertebrate nuclear pore complex (NPC) and used them in STORM imaging to locate individual NPC proteins with nanobody sequence and labeled the resulting proteins with fluorophore-maleimides. As nanobodies are normally stabilized by disulfide-bonded cysteines, this appears counterintuitive. Yet, our analysis showed that this caused no folding problems. Compared to traditional NHS ester-labeling of lysines, the cysteine-maleimide strategy resulted in far less background in fluorescence imaging, it better preserved epitope recognition and it is site-specific. We also devised a rapid epitope-mapping strategy, which relies on crosslinking mass spectrometry and the introduced ectopic cysteines. Finally, we used different anti-nucleoporin nanobodies to purify the major NPC building blocks – each in a single step, with native elution and, as demonstrated, in excellent quality for structural analysis by electron microscopy. The presented strategies are applicable to any nanobody and nanobody-target. DOI: http://dx.doi.org/10.7554/eLife.11349.001 PMID:26633879

  6. Bacterial production of site specific {sup 13}C labeled phenylalanine and methodology for high level incorporation into bacterially expressed recombinant proteins

    Energy Technology Data Exchange (ETDEWEB)

    Ramaraju, Bhargavi; McFeeters, Hana; Vogler, Bernhard; McFeeters, Robert L., E-mail: robert.mcfeeters@uah.edu [University of Alabama in Huntsville, Department of Chemistry (United States)

    2017-01-15

    Nuclear magnetic resonance spectroscopy studies of ever larger systems have benefited from many different forms of isotope labeling, in particular, site specific isotopic labeling. Site specific {sup 13}C labeling of methyl groups has become an established means of probing systems not amenable to traditional methodology. However useful, methyl reporter sites can be limited in number and/or location. Therefore, new complementary site specific isotope labeling strategies are valuable. Aromatic amino acids make excellent probes since they are often found at important interaction interfaces and play significant structural roles. Aromatic side chains have many of the same advantages as methyl containing amino acids including distinct {sup 13}C chemical shifts and multiple magnetically equivalent {sup 1}H positions. Herein we report economical bacterial production and one-step purification of phenylalanine with {sup 13}C incorporation at the Cα, Cγ and Cε positions, resulting in two isolated {sup 1}H-{sup 13}C spin systems. We also present methodology to maximize incorporation of phenylalanine into recombinantly overexpressed proteins in bacteria and demonstrate compatibility with ILV-methyl labeling. Inexpensive, site specific isotope labeled phenylalanine adds another dimension to biomolecular NMR, opening new avenues of study.

  7. Site-Specific Protein Labeling Utilizing Lipoic Acid Ligase (LplA) and Bioorthogonal Inverse Electron Demand Diels-Alder Reaction.

    Science.gov (United States)

    Baalmann, Mathis; Best, Marcel; Wombacher, Richard

    2018-01-01

    Here, we describe a two-step protocol for selective protein labeling based on enzyme-mediated peptide labeling utilizing lipoic acid ligase (LplA) and bioorthogonal chemistry. The method can be applied to purified proteins, protein in cell lysates, as well as living cells. In a first step a W37V mutant of the lipoic acid ligase (LplA W37V ) from Escherichia coli is utilized to ligate a synthetic chemical handle site-specifically to a lysine residue in a 13 amino acid peptide motif-a short sequence that can be genetically expressed as a fusion with any protein of interest. In a second step, a molecular probe can be attached to the chemical handle in a bioorthogonal Diels-Alder reaction with inverse electron demand (DA inv ). This method is a complementary approach to protein labeling using genetic code expansion and circumvents larger protein tags while maintaining label specificity, providing experimental flexibility and straightforwardness.

  8. Site-Specific PEGylation of Therapeutic Proteins

    Directory of Open Access Journals (Sweden)

    Jonathan K. Dozier

    2015-10-01

    Full Text Available The use of proteins as therapeutics has a long history and is becoming ever more common in modern medicine. While the number of protein-based drugs is growing every year, significant problems still remain with their use. Among these problems are rapid degradation and excretion from patients, thus requiring frequent dosing, which in turn increases the chances for an immunological response as well as increasing the cost of therapy. One of the main strategies to alleviate these problems is to link a polyethylene glycol (PEG group to the protein of interest. This process, called PEGylation, has grown dramatically in recent years resulting in several approved drugs. Installing a single PEG chain at a defined site in a protein is challenging. Recently, there is has been considerable research into various methods for the site-specific PEGylation of proteins. This review seeks to summarize that work and provide background and context for how site-specific PEGylation is performed. After introducing the topic of site-specific PEGylation, recent developments using chemical methods are described. That is followed by a more extensive discussion of bioorthogonal reactions and enzymatic labeling.

  9. Dual Mode Fluorophore-Doped Nickel Nitrilotriacetic Acid-Modified Silica Nanoparticles Combine Histidine-Tagged Protein Purification with Site-Specific Fluorophore Labeling

    OpenAIRE

    Kim, Sung Hoon; Jeyakumar, M.; Katzenellenbogen, John A.

    2007-01-01

    We present the first example of a fluorophore-doped nickel chelate surface- modified silica nanoparticle that functions in a dual mode, combining histidine-tagged protein purification with site-specific fluorophore labeling. Tetramethylrhodamine (TMR)-doped silica nanoparticles, estimated to contain 700–900 TMRs per ca. 23-nm particle, were surface modified with nitrilotriacetic acid (NTA), producing TMR-SiO2-NTA-Ni+2. Silica-embedded TMR retains very high quantum yield, is resistant to quenc...

  10. Dual-mode fluorophore-doped nickel nitrilotriacetic acid-modified silica nanoparticles combine histidine-tagged protein purification with site-specific fluorophore labeling.

    Science.gov (United States)

    Kim, Sung Hoon; Jeyakumar, M; Katzenellenbogen, John A

    2007-10-31

    We present the first example of a fluorophore-doped nickel chelate surface-modified silica nanoparticle that functions in a dual mode, combining histidine-tagged protein purification with site-specific fluorophore labeling. Tetramethylrhodamine (TMR)-doped silica nanoparticles, estimated to contain 700-900 TMRs per ca. 23 nm particle, were surface modified with nitrilotriacetic acid (NTA), producing TMR-SiO2-NTA-Ni2+. Silica-embedded TMR retains very high quantum yield, is resistant to quenching by buffer components, and is modestly quenched and only to a certain depth (ca. 2 nm) by surface-attached Ni2+. When exposed to a bacterial lysate containing estrogen receptor alpha ligand binding domain (ERalpha) as a minor component, these beads showed very high specificity binding, enabling protein purification in one step. The capacity and specificity of these beads for binding a his-tagged protein were characterized by electrophoresis, radiometric counting, and MALDI-TOF MS. ERalpha, bound to TMR-SiO2-NTA-Ni++ beads in a site-specific manner, exhibited good activity for ligand binding and for ligand-induced binding to coactivators in solution FRET experiments and protein microarray fluorometric and FRET assays. This dual-mode type TMR-SiO2-NTA-Ni2+ system represents a powerful combination of one-step histidine-tagged protein purification and site-specific labeling with multiple fluorophore species.

  11. Broad substrate tolerance of tubulin tyrosine ligase enables one-step site-specific enzymatic protein labeling.

    Science.gov (United States)

    Schumacher, Dominik; Lemke, Oliver; Helma, Jonas; Gerszonowicz, Lena; Waller, Verena; Stoschek, Tina; Durkin, Patrick M; Budisa, Nediljko; Leonhardt, Heinrich; Keller, Bettina G; Hackenberger, Christian P R

    2017-05-01

    The broad substrate tolerance of tubulin tyrosine ligase is the basic rationale behind its wide applicability for chemoenzymatic protein functionalization. In this context, we report that the wild-type enzyme enables ligation of various unnatural amino acids that are substantially bigger than and structurally unrelated to the natural substrate, tyrosine, without the need for extensive protein engineering. This unusual substrate flexibility is due to the fact that the enzyme's catalytic pocket forms an extended cavity during ligation, as confirmed by docking experiments and all-atom molecular dynamics simulations. This feature enabled one-step C-terminal biotinylation and fluorescent coumarin labeling of various functional proteins as demonstrated with ubiquitin, an antigen binding nanobody, and the apoptosis marker Annexin V. Its broad substrate tolerance establishes tubulin tyrosine ligase as a powerful tool for in vitro enzyme-mediated protein modification with single functional amino acids in a specific structural context.

  12. Site-Specific Biomolecule Labeling with Gold Clusters

    Science.gov (United States)

    Ackerson, Christopher J.; Powell, Richard D.; Hainfeld, James F.

    2013-01-01

    Site-specific labeling of biomolecules in vitro with gold clusters can enhance the information content of electron cryomicroscopy experiments. This chapter provides a practical overview of well-established techniques for forming biomolecule/gold cluster conjugates. Three bioconjugation chemistries are covered: Linker-mediated bioconjugation, direct gold–biomolecule bonding, and coordination-mediated bonding of nickel(II) nitrilotriacetic acid (NTA)-derivatized gold clusters to polyhistidine (His)-tagged proteins. PMID:20887859

  13. Development of an efficient signal amplification strategy for label-free enzyme immunoassay using two site-specific biotinylated recombinant proteins

    International Nuclear Information System (INIS)

    Tang, Jin-Bao; Tang, Ying; Yang, Hong-Ming

    2015-01-01

    Highlights: • An efficient signal amplification strategy for label-free EIA is proposed. • Divalent biotinylated AP and monovalent biotinylated ZZ were prepared via Avitag–BirA system. • The above site-specific biotinylated fusion proteins form complex via SA–biotin interaction. • The mechanism relies on the ZZ–Avi-B/SA/AP–(Avi-B) 2 complex. • The analytical signals are enhanced (32-fold) by the proposed strategy. - Abstract: Constructing a recombinant protein between a reporter enzyme and a detector protein to produce a homogeneous immunological reagent is advantageous over random chemical conjugation. However, the approach hardly recombines multiple enzymes in a difunctional fusion protein, which results in insufficient amplification of the enzymatic signal, thereby limiting its application in further enhancement of analytical signal. In this study, two site-specific biotinylated recombinant proteins, namely, divalent biotinylated alkaline phosphatase (AP) and monovalent biotinylated ZZ domain, were produced by employing the Avitag–BirA system. Through the high streptavidin (SA)–biotin interaction, the divalent biotinylated APs were clustered in the SA–biotin complex and then incorporated with the biotinylated ZZ. This incorporation results in the formation of a functional macromolecule that involves numerous APs, thereby enhancing the enzymatic signal, and in the production of several ZZ molecules for the interaction with immunoglobulin G (IgG) antibody. The advantage of this signal amplification strategy is demonstrated through ELISA, in which the analytical signal was substantially enhanced, with a 32-fold increase in the detection sensitivity compared with the ZZ–AP fusion protein approach. The proposed immunoassay without chemical modification can be an alternative strategy to enhance the analytical signals in various applications involving immunosensors and diagnostic chips, given that the label-free IgG antibody is suitable for

  14. Development of an efficient signal amplification strategy for label-free enzyme immunoassay using two site-specific biotinylated recombinant proteins

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jin-Bao [School of Pharmacy, Weifang Medical University, Weifang 261053 (China); Tang, Ying [Affiliated Hospital of Weifang Medical University, Weifang 261041 (China); Yang, Hong-Ming, E-mail: yanghongming2006@sohu.com [School of Pharmacy, Weifang Medical University, Weifang 261053 (China)

    2015-02-15

    Highlights: • An efficient signal amplification strategy for label-free EIA is proposed. • Divalent biotinylated AP and monovalent biotinylated ZZ were prepared via Avitag–BirA system. • The above site-specific biotinylated fusion proteins form complex via SA–biotin interaction. • The mechanism relies on the ZZ–Avi-B/SA/AP–(Avi-B){sub 2} complex. • The analytical signals are enhanced (32-fold) by the proposed strategy. - Abstract: Constructing a recombinant protein between a reporter enzyme and a detector protein to produce a homogeneous immunological reagent is advantageous over random chemical conjugation. However, the approach hardly recombines multiple enzymes in a difunctional fusion protein, which results in insufficient amplification of the enzymatic signal, thereby limiting its application in further enhancement of analytical signal. In this study, two site-specific biotinylated recombinant proteins, namely, divalent biotinylated alkaline phosphatase (AP) and monovalent biotinylated ZZ domain, were produced by employing the Avitag–BirA system. Through the high streptavidin (SA)–biotin interaction, the divalent biotinylated APs were clustered in the SA–biotin complex and then incorporated with the biotinylated ZZ. This incorporation results in the formation of a functional macromolecule that involves numerous APs, thereby enhancing the enzymatic signal, and in the production of several ZZ molecules for the interaction with immunoglobulin G (IgG) antibody. The advantage of this signal amplification strategy is demonstrated through ELISA, in which the analytical signal was substantially enhanced, with a 32-fold increase in the detection sensitivity compared with the ZZ–AP fusion protein approach. The proposed immunoassay without chemical modification can be an alternative strategy to enhance the analytical signals in various applications involving immunosensors and diagnostic chips, given that the label-free IgG antibody is suitable

  15. Site-Specific Infrared Probes of Proteins

    Science.gov (United States)

    Ma, Jianqiang; Pazos, Ileana M.; Zhang, Wenkai; Culik, Robert M.; Gai, Feng

    2015-01-01

    Infrared spectroscopy has played an instrumental role in studying a wide variety of biological questions. However, in many cases it is impossible or difficult to rely on the intrinsic vibrational modes of biological molecules of interest, such as proteins, to reveal structural and/or environmental information in a site-specific manner. To overcome this limitation, many recent efforts have been dedicated to the development and application of various extrinsic vibrational probes that can be incorporated into biological molecules and used to site-specifically interrogate their structural and/or environmental properties. In this Review, we highlight some recent advancements of this rapidly growing research area. PMID:25580624

  16. Site-Specific Biomolecule Labeling with Gold Clusters

    OpenAIRE

    Ackerson, Christopher J.; Powell, Richard D.; Hainfeld, James F.

    2010-01-01

    Site-specific labeling of biomolecules in vitro with gold clusters can enhance the information content of electron cryomicroscopy experiments. This chapter provides a practical overview of well-established techniques for forming biomolecule/gold cluster conjugates. Three bioconjugation chemistries are covered: Linker-mediated bioconjugation, direct gold–biomolecule bonding, and coordination-mediated bonding of nickel(II) nitrilotriacetic acid (NTA)-derivatized gold clusters to polyhistidine (...

  17. Versatile and Efficient Site-Specific Protein Functionalization by Tubulin Tyrosine Ligase.

    Science.gov (United States)

    Schumacher, Dominik; Helma, Jonas; Mann, Florian A; Pichler, Garwin; Natale, Francesco; Krause, Eberhard; Cardoso, M Cristina; Hackenberger, Christian P R; Leonhardt, Heinrich

    2015-11-09

    A novel chemoenzymatic approach for simple and fast site-specific protein labeling is reported. Recombinant tubulin tyrosine ligase (TTL) was repurposed to attach various unnatural tyrosine derivatives as small bioorthogonal handles to proteins containing a short tubulin-derived recognition sequence (Tub-tag). This novel strategy enables a broad range of high-yielding and fast chemoselective C-terminal protein modifications on isolated proteins or in cell lysates for applications in biochemistry, cell biology, and beyond, as demonstrated by the site-specific labeling of nanobodies, GFP, and ubiquitin. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Detection of site specific glycosylation in proteins using flow cytometry†

    Science.gov (United States)

    Jayakumar, Deepak; Marathe, Dhananjay D.; Neelamegham, Sriram

    2009-01-01

    We tested the possibility that it is possible to express unique peptide probes on cell surfaces and detect site-specific glycosylation on these peptides using flow cytometry. Such development can enhance the application of flow cytometry to detect and quantify post-translational modifications in proteins. To this end, the N-terminal section of the human leukocyte glycoprotein PSGL-1 (P-selectin glycoprotein ligand-1) was modified to contain a poly-histidine tag followed by a proteolytic cleavage site. Amino acids preceding the cleavage site have a single O-linked glycosylation site. The recombinant protein called PSGL-1 (HT) was expressed on the surface of two mammalian cell lines, CHO and HL-60, using a lentiviral delivery approach. Results demonstrate that the N-terminal portion of PSGL-1 (HT) can be released from these cells by protease, and the resulting peptide can be readily captured and detected using cytometry-bead assays. Using this strategy, the peptide was immunoprecipitated onto beads bearing mAbs against either the poly-histidine sequence or the human PSGL-1. The carbohydrate epitope associated with the released peptide was detected using HECA-452 and CSLEX-1, monoclonal antibodies that recognize the sialyl Lewis-X epitope. Finally, the peptide released from cells could be separated and enriched using nickel chelate beads. Overall, such an approach that combines recombinant protein expression with flow cytometry, may be useful to quantify changes in site-specific glycosylation for basic science and clinical applications. PMID:19735085

  19. In vivo tumor angiogenesis imaging with site-specific labeled 99mTc-HYNIC-VEGF

    International Nuclear Information System (INIS)

    Blankenberg, Francis G.; Backer, Marina V.; Patel, Vimalkumar; Backer, Joseph M.; Levashova, Zoia

    2006-01-01

    We recently developed a cysteine-containing peptide tag (C-tag) that allows for site-specific modification of C-tag-containing fusion proteins with a bifunctional chelator, HYNIC (hydrazine nicotinamide)-maleimide. We then constructed and expressed C-tagged vascular endothelial growth factor (VEGF) and labeled it with HYNIC. We wished to test 99m Tc-HYNIC-C-tagged VEGF ( 99m Tc-HYNIC-VEGF) for the imaging of tumor vasculature before and after antiangiogenic (low continuous dosing, metronomic) and tumoricidal (high-dose) cyclophosphamide treatment. HYNIC-maleimide was reacted with the two thiol groups of C-tagged VEGF without any effect on biologic activity in vitro. 99m Tc-HYNIC-VEGF was prepared using tin/tricine as an exchange reagent, and injected via the tail vein (200-300 μCi, 1-2 μg protein) followed by microSPECT imaging 1 h later. Sequencing analysis of HYNIC-containing peptides obtained after digestion confirmed the site-specific labeling of the two accessible thiol groups of C-tagged VEGF. Tumor vascularity was easily visualized with 99m Tc/VEGF in Balb/c mice with 4T1 murine mammary carcinoma 10 days after implantation into the left axillary fat pad in controls (12.3±5.0 tumor/bkg, n=27) along with its decrease following treatment with high (150 mg/kg q.o.d. x 4; 1.14±0.48 tumor/bkg, n=9) or low (25 mg/kg q.d. x 7; 1.03±0.18 tumor/bkg, n=9) dose cyclophosphamide. Binding specificity was confirmed by observing a 75% decrease in tumor uptake of 99m Tc/biotin-inactivated VEGF, as compared with 99m Tc-HYNIC-VEGF. 99m Tc can be loaded onto C-tagged VEGF in a site-specific fashion without reducing its bioactivity. 99m Tc-HYNIC-VEGF can be rapidly prepared for the imaging of tumor vasculature and its response to different types of chemotherapy. (orig.)

  20. 40 CFR 170.232 - Knowledge of labeling and site-specific information.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Knowledge of labeling and site-specific information. 170.232 Section 170.232 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS WORKER PROTECTION STANDARD Standard for Pesticide Handlers § 170.232 Knowledge...

  1. Site-Specific Antibody Labeling by Covalent Photoconjugation of Z Domains Functionalized for Alkyne-Azide Cycloaddition Reactions.

    Science.gov (United States)

    Perols, Anna; Arcos Famme, Melina; Eriksson Karlström, Amelie

    2015-11-01

    Antibodies are extensively used in research, diagnostics, and therapy, and for many applications the antibodies need to be labeled. Labeling is typically performed by using amine-reactive probes that target surface-exposed lysine residues, resulting in heterogeneously labeled antibodies. An alternative labeling strategy is based on the immunoglobulin G (IgG)-binding protein domain Z, which binds to the Fc region of IgG. Introducing the photoactivable amino acid benzoylphenylalanine (BPA) into the Z domain makes it possible for a covalent bond to be be formed between the Z domain and the antibody on UV irradiation, to produce a site-specifically labeled product. Z32 BPA was synthesized by solid-phase peptide synthesis and further functionalized to give alkyne-Z32 BPA and azide-Z32 BPA for Cu(I) -catalyzed cycloaddition, as well as DBCO-Z32 BPA for Cu-free strain-promoted cycloaddition. The Z32 BPA variants were conjugated to the human IgG1 antibody trastuzumab and site-specifically labeled with biotin or fluorescein. The fluorescently labeled trastuzumab showed specific staining of the membranes of HER2-expressing cells in immunofluorescence microscopy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Structure-guided approach to site-specific fluorophore labeling of the lac repressor LacI.

    Directory of Open Access Journals (Sweden)

    Kalle Kipper

    Full Text Available The lactose operon repressor protein LacI has long served as a paradigm of the bacterial transcription factors. However, the mechanisms whereby LacI rapidly locates its cognate binding site on the bacterial chromosome are still elusive. Single-molecule fluorescence imaging approaches are well suited for the study of these mechanisms but rely on a functionally compatible fluorescence labeling of LacI. Particularly attractive for protein fluorescence labeling are synthetic fluorophores due to their small size and favorable photophysical characteristics. Synthetic fluorophores are often conjugated to natively occurring cysteine residues using maleimide chemistry. For a site-specific and functionally compatible labeling with maleimide fluorophores, the target protein often needs to be redesigned to remove unwanted native cysteines and to introduce cysteines at locations better suited for fluorophore attachment. Biochemical screens can then be employed to probe for the functional activity of the redesigned protein both before and after dye labeling. Here, we report a mutagenesis-based redesign of LacI to enable a functionally compatible labeling with maleimide fluorophores. To provide an easily accessible labeling site in LacI, we introduced a single cysteine residue at position 28 in the DNA-binding headpiece of LacI and replaced two native cysteines with alanines where derivatization with bulky substituents is known to compromise the protein's activity. We find that the redesigned LacI retains a robust activity in vitro and in vivo, provided that the third native cysteine at position 281 is retained in LacI. In a total internal reflection microscopy assay, we observed individual Cy3-labeled LacI molecules bound to immobilized DNA harboring the cognate O1 operator sequence, indicating that the dye-labeled LacI is functionally active. We have thus been able to generate a functional fluorescently labeled LacI that can be used to unravel mechanistic

  3. Site specific incorporation of keto amino acids into proteins

    Science.gov (United States)

    Schultz, Peter G [La Jolla, CA; Wang, Lei [San Diego, CA

    2008-10-07

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  4. Recent advances in covalent, site-specific protein immobilization [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Morten Meldal

    2016-09-01

    Full Text Available The properties of biosensors, biomedical implants, and other materials based on immobilized proteins greatly depend on the method employed to couple the protein molecules to their solid support. Covalent, site-specific immobilization strategies are robust and can provide the level of control that is desired in this kind of application. Recent advances include the use of enzymes, such as sortase A, to couple proteins in a site-specific manner to materials such as microbeads, glass, and hydrogels. Also, self-labeling tags such as the SNAP-tag can be employed. Last but not least, chemical approaches based on bioorthogonal reactions, like the azide–alkyne cycloaddition, have proven to be powerful tools. The lack of comparative studies and quantitative analysis of these immobilization methods hampers the selection process of the optimal strategy for a given application. However, besides immobilization efficiency, the freedom in selecting the site of conjugation and the size of the conjugation tag and the researcher’s expertise regarding molecular biology and/or chemical techniques will be determining factors in this regard.

  5. Sensing site-specific structural characteristics and chirality using vibrational circular dichroism of isotope labeled peptides.

    Science.gov (United States)

    Keiderling, Timothy A

    2017-12-01

    Isotope labeling has a long history in chemistry as a tool for probing structure, offering enhanced sensitivity, or enabling site selection with a wide range of spectroscopic tools. Chirality sensitive methods such as electronic circular dichroism are global structural tools and have intrinsically low resolution. Consequently, they are generally insensitive to modifications to enhance site selectivity. The use of isotope labeling to modify vibrational spectra with unique resolvable frequency shifts can provide useful site-specific sensitivity, and these methods have been recently more widely expanded in biopolymer studies. While the spectral shifts resulting from changes in isotopic mass can provide resolution of modes from specific parts of the molecule and can allow detection of local change in structure with perturbation, these shifts alone do not directly indicate structure or chirality. With vibrational circular dichroism (VCD), the shifted bands and their resultant sign patterns can be used to indicate local conformations in labeled biopolymers, particularly if multiple labels are used and if their coupling is theoretically modeled. This mini-review discusses selected examples of the use of labeling specific amides in peptides to develop local structural insight with VCD spectra. © 2017 Wiley Periodicals, Inc.

  6. Differential Isotope Labeling of Glycopeptides for Accurate Determination of Differences in Site-Specific Glycosylation.

    Science.gov (United States)

    Pabst, Martin; Benešová, Iva; Fagerer, Stephan R; Jacobsen, Mathias; Eyer, Klaus; Schmidt, Gregor; Steinhoff, Robert; Krismer, Jasmin; Wahl, Fabian; Preisler, Jan; Zenobi, Renato

    2016-01-04

    We introduce a stable isotope labeling approach for glycopeptides that allows a specific glycosylation site in a protein to be quantitatively evaluated using mass spectrometry. Succinic anhydride is used to specifically label primary amino groups of the peptide portion of the glycopeptides. The heavy form (D4(13)C4) provides an 8 Da mass increment over the light natural form (H4(12)C4), allowing simultaneous analysis and direct comparison of two glycopeptide profiles in a single MS scan. We have optimized a protocol for an in-solution trypsin digestion, a one-pot labeling procedure, and a post-labeling solid-phase extraction to obtain purified and labeled glycopeptides. We provide the first demonstration of this approach by comparing IgG1 Fc glycopeptides from polyclonal IgG samples with respect to their galactosylation and sialylation patterns using MALDI MS and LC-ESI-MS.

  7. Site-specifically {sup 89}Zr-labeled monoclonal antibodies for ImmunoPET

    Energy Technology Data Exchange (ETDEWEB)

    Tinianow, Jeff N.; Gill, Herman S.; Ogasawara, Annie; Flores, Judith E.; Vanderbilt, Alexander N.; Luis, Elizabeth; Vandlen, Richard; Darwish, Martine; Junutula, Jagath R.; Williams, Simon-P. [Genentech Research and Early Development, Genentech Inc., South San Francisco, CA 94080 (United States); Marik, Jan [Genentech Research and Early Development, Genentech Inc., South San Francisco, CA 94080 (United States)], E-mail: marik.jan@gene.com

    2010-04-15

    Three thiol reactive reagents were developed for the chemoselective conjugation of desferrioxamine (Df) to a monoclonal antibody via engineered cysteine residues (thio-trastuzumab). The in vitro stability and in vivo imaging properties of site-specifically radiolabeled {sup 89}Zr-Df-thio-trastuzumab conjugates were investigated. Methods: The amino group of desferrioxamine B was acylated by bromoacetyl bromide, N-hydroxysuccinimidyl iodoacetate, or N-hydroxysuccinimidyl 4-[N-maleimidomethyl]cyclohexane-1-carboxylate to obtain thiol reactive reagents bromoacetyl-desferrioxamine (Df-Bac), iodoacetyl-desferrioxamine (Df-Iac) and maleimidocyclohexyl-desferrioxamine (Df-Chx-Mal), respectively. Df-Bac and Df-Iac alkylated the free thiol groups of thio-trastuzumab by nucleophilic substitution forming Df-Ac-thio-trastuzumab, while the maleimide reagent Df-Chx-Mal reacted via Michael addition to provide Df-Chx-Mal-thio-trastuzumab. The conjugates were radiolabeled with {sup 89}Zr and evaluated for serum stability, and their positron emission tomography (PET) imaging properties were investigated in a BT474M1 (HER2-positive) breast tumor mouse model. Results: The chemoselective reagents were obtained in 14% (Df-Bac), 53% (Df-Iac) and 45% (Df-Chx-Mal) yields. Site-specific conjugation of Df-Chx-Mal to thio-trastuzumab was complete within 1 h at pH 7.5, while Df-Iac and Df-Bac respectively required 2 and 5 h at pH 9. Each Df modified thio-trastuzumab was chelated with {sup 89}Zr in yields exceeding 75%. {sup 89}Zr-Df-Ac-thio-trastuzumab and {sup 89}Zr-Df-Chx-Mal-thio-trastuzumab were stable in mouse serum and exhibited comparable PET imaging capabilities in a BT474M1 (HER2-positive) breast cancer model reaching 20-25 %ID/g of tumor uptake and a tumor to blood ratio of 6.1-7.1. Conclusions: The new reagents demonstrated good reactivity with engineered thiol groups of trastuzumab and very good chelation properties with {sup 89}Zr. The site-specifically {sup 89}Zr-labeled thio

  8. Recent advances in covalent, site-specific protein immobilization [version 1; referees

    DEFF Research Database (Denmark)

    Meldal, Morten Peter; Schoffelen, Sanne

    2016-01-01

    The properties of biosensors, biomedical implants, and other materials based on immobilized proteins greatly depend on the method employed to couple the protein molecules to their solid support. Covalent, site-specific immobilization strategies are robust and can provide the level of control...

  9. Recent Developments in the Site-Specific Immobilization of Proteins onto Solid Supports

    Energy Technology Data Exchange (ETDEWEB)

    Camarero, J A

    2007-02-21

    Immobilization of proteins onto surfaces is of great importance in numerous applications, including protein analysis, drug screening, and medical diagnostics, among others. The success of all these technologies relies on the immobilization technique employed to attach a protein to the corresponding surface. Non-specific physical adsorption or chemical cross-linking with appropriate surfaces results in the immobilization of the protein in random orientations. Site-specific covalent attachment, on the other hand, leads to molecules being arranged in a definite, orderly fashion and allows the use of spacers and linkers to help minimize steric hindrances between the protein and the surface. The present work reviews the latest chemical and biochemical developments for the site-specific covalent attachment of proteins onto solid supports.

  10. Applications of site-specific labeling to study HAMLET, a tumoricidal complex of α-lactalbumin and oleic acid.

    Science.gov (United States)

    Mercer, Natalia; Ramakrishnan, Boopathy; Boeggeman, Elizabeth; Qasba, Pradman K

    2011-01-01

    Alpha-lactalbumin (α-LA) is a calcium-bound mammary gland-specific protein that is found in milk. This protein is a modulator of β1,4-galactosyltransferase enzyme, changing its acceptor specificity from N-acetyl-glucosamine to glucose, to produce lactose, milk's main carbohydrate. When calcium is removed from α-LA, it adopts a molten globule form, and this form, interestingly, when complexed with oleic acid (OA) acquires tumoricidal activity. Such a complex made from human α-LA (hLA) is known as HAMLET (Human A-lactalbumin Made Lethal to Tumor cells), and its tumoricidal activity has been well established. In the present work, we have used site-specific labeling, a technique previously developed in our laboratory, to label HAMLET with biotin, or a fluoroprobe for confocal microscopy studies. In addition to full length hLA, the α-domain of hLA (αD-hLA) alone is also included in the present study. We have engineered these proteins with a 17-amino acid C-terminal extension (hLA-ext and αD-hLA-ext). A single Thr residue in this extension is glycosylated with 2-acetonyl-galactose (C2-keto-galactose) using polypeptide-α-N-acetylgalactosaminyltransferase II (ppGalNAc-T2) and further conjugated with aminooxy-derivatives of fluoroprobe or biotin molecules. We found that the molten globule form of hLA and αD-hLA proteins, with or without C-terminal extension, and with and without the conjugated fluoroprobe or biotin molecule, readily form a complex with OA and exhibits tumoricidal activity similar to HAMLET made with full-length hLA protein. The confocal microscopy studies with fluoroprobe-labeled samples show that these proteins are internalized into the cells and found even in the nucleus only when they are complexed with OA. The HAMLET conjugated with a single biotin molecule will be a useful tool to identify the cellular components that are involved with it in the tumoricidal activity.

  11. Site-Specific Three-Color Labeling of α-Synuclein via Conjugation to Uniquely Reactive Cysteines during Assembly by Native Chemical Ligation.

    Science.gov (United States)

    Lee, Taehyung C; Moran, Crystal R; Cistrone, Philip A; Dawson, Philip E; Deniz, Ashok A

    2018-04-12

    Single-molecule fluorescence is widely used to study conformational complexity in proteins, and has proven especially valuable with intrinsically disordered proteins (IDPs). Protein studies using dual-color single-molecule Förster resonance energy transfer (smFRET) are now quite common, but many could benefit from simultaneous measurement of multiple distances through multi-color labeling. Such studies, however, have suffered from limitations in site-specific incorporation of more than two dyes per polypeptide. Here we present a fully site-specific three-color labeling scheme for α-synuclein, an IDP with important putative functions and links to Parkinson disease. The convergent synthesis combines native chemical ligation with regiospecific cysteine protection of expressed protein fragments to permit highly controlled labeling via standard cysteine-maleimide chemistry, enabling more global smFRET studies. Furthermore, this modular approach is generally compatible with recombinant proteins and expandable to accommodate even more complex experiments, such as by labeling with additional colors. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Enhanced tumor retention of a radiohalogen label for site-specific modification of antibodies.

    Science.gov (United States)

    Boswell, C Andrew; Marik, Jan; Elowson, Michael J; Reyes, Noe A; Ulufatu, Sheila; Bumbaca, Daniela; Yip, Victor; Mundo, Eduardo E; Majidy, Nicholas; Van Hoy, Marjie; Goriparthi, Saritha N; Trias, Anthony; Gill, Herman S; Williams, Simon P; Junutula, Jagath R; Fielder, Paul J; Khawli, Leslie A

    2013-12-12

    A known limitation of iodine radionuclides for labeling and biological tracking of receptor targeted proteins is the tendency of iodotyrosine to rapidly diffuse from cells following endocytosis and lysosomal degradation. In contrast, radiometal-chelate complexes such as indium-111-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (In-111-DOTA) accumulate within target cells due to the residualizing properties of the polar, charged metal-chelate-amino acid adduct. Iodine radionuclides boast a diversity of nuclear properties and chemical means for incorporation, prompting efforts to covalently link radioiodine with residualizing molecules. Herein, we describe the Ugi-assisted synthesis of [I-125]HIP-DOTA, a 4-hydroxy-3-iodophenyl (HIP) derivative of DOTA, and demonstration of its residualizing properties in a murine xenograft model. Overall, this study displays the power of multicomponent synthesis to yield a versatile radioactive probe for antibodies across multiple therapeutic areas with potential applications in both preclinical biodistribution studies and clinical radioimmunotherapies.

  13. Site-specific tagging proteins with a rigid, small and stable transition metal chelator, 8-hydroxyquinoline, for paramagnetic NMR analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yin; Huang, Feng [Nankai University, State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) (China); Huber, Thomas [Australian National University, Research School of Chemistry (Australia); Su, Xun-Cheng, E-mail: xunchengsu@nankai.edu.cn [Nankai University, State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) (China)

    2016-02-15

    Design of a paramagnetic metal binding motif in a protein is a valuable way for understanding the function, dynamics and interactions of a protein by paramagnetic NMR spectroscopy. Several strategies have been proposed to site-specifically tag proteins with paramagnetic lanthanide ions. Here we report a simple approach of engineering a transition metal binding motif via site-specific labelling of a protein with 2-vinyl-8-hydroxyquinoline (2V-8HQ). The protein-2V-8HQ adduct forms a stable complex with transition metal ions, Mn(II), Co(II), Ni(II), Cu(II) and Zn(II). The paramagnetic effects generated by these transition metal ions were evaluated by NMR spectroscopy. We show that 2V-8HQ is a rigid and stable transition metal binding tag. The coordination of the metal ion can be assisted by protein sidechains. More importantly, tunable paramagnetic tensors are simply obtained in an α-helix that possesses solvent exposed residues in positions i and i + 3, where i is the residue to be mutated to cysteine, i + 3 is Gln or Glu or i − 4 is His. The coordination of a sidechain carboxylate/amide or imidazole to cobalt(II) results in different structural geometries, leading to different paramagnetic tensors as shown by experimental data.

  14. Site specific incorporation of heavy atom-containing unnatural amino acids into proteins for structure determination

    Science.gov (United States)

    Xie, Jianming [San Diego, CA; Wang, Lei [San Diego, CA; Wu, Ning [Boston, MA; Schultz, Peter G [La Jolla, CA

    2008-07-15

    Translation systems and other compositions including orthogonal aminoacyl tRNA-synthetases that preferentially charge an orthogonal tRNA with an iodinated or brominated amino acid are provided. Nucleic acids encoding such synthetases are also described, as are methods and kits for producing proteins including heavy atom-containing amino acids, e.g., brominated or iodinated amino acids. Methods of determining the structure of a protein, e.g., a protein into which a heavy atom has been site-specifically incorporated through use of an orthogonal tRNA/aminoacyl tRNA-synthetase pair, are also described.

  15. New developments for the site-specific attachment of protein to surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Camarero, J A

    2005-05-12

    Protein immobilization on surfaces is of great importance in numerous applications in biology and biophysics. The key for the success of all these applications relies on the immobilization technique employed to attach the protein to the corresponding surface. Protein immobilization can be based on covalent or noncovalent interaction of the molecule with the surface. Noncovalent interactions include hydrophobic interactions, hydrogen bonding, van der Waals forces, electrostatic forces, or physical adsorption. However, since these interactions are weak, the molecules can get denatured or dislodged, thus causing loss of signal. They also result in random attachment of the protein to the surface. Site-specific covalent attachment of proteins onto surfaces, on the other hand, leads to molecules being arranged in a definite, orderly fashion and uses spacers and linkers to help minimize steric hindrances between the protein surface. This work reviews in detail some of the methods most commonly used as well as the latest developments for the site-specific covalent attachment of protein to solid surfaces.

  16. Quantitative chemoproteomics for site-specific analysis of protein alkylation by 4-hydroxy-2-nonenal in cells.

    Science.gov (United States)

    Yang, Jing; Tallman, Keri A; Porter, Ned A; Liebler, Daniel C

    2015-03-03

    Protein alkylation by 4-hydroxy-2-nonenal (HNE), an endogenous lipid derived electrophile, contributes to stress signaling and cellular toxicity. Although previous work has identified protein targets for HNE alkylation, the sequence specificity of alkylation and dynamics in a cellular context remain largely unexplored. We developed a new quantitative chemoproteomic platform, which uses isotopically tagged, photocleavable azido-biotin reagents to selectively capture and quantify the cellular targets labeled by the alkynyl analogue of HNE (aHNE). Our analyses site-specifically identified and quantified 398 aHNE protein alkylation events (386 cysteine sites and 12 histidine sites) in intact cells. This data set expands by at least an order of magnitude the number of such modification sites previously reported. Although adducts formed by Michael addition are thought to be largely irreversible, we found that most aHNE modifications are lost rapidly in situ. Moreover, aHNE adduct turnover occurs only in intact cells and loss rates are site-selective. This quantitative chemoproteomics platform provides a versatile general approach to map bioorthogonal-chemically engineered post-translational modifications and their cellular dynamics in a site-specific and unbiased manner.

  17. Development of a novel DDS for site-specific PEGylated proteins

    Directory of Open Access Journals (Sweden)

    Yoshioka Yasuo

    2011-05-01

    Full Text Available Abstract Because of the shifted focus in life science research from genome analyses to genetic and protein function analyses, we now know functions of numerous proteins. These analyses, including those of newly identified proteins, are expected to contribute to the identification of proteins of therapeutic value in various diseases. Consequently, pharmacoproteomic-based drug discovery and development of protein therapies attracted a great deal of attention in recent years. Clinical applications of most of these proteins are, however, limited because of their unexpectedly low therapeutic effects, resulting from the proteolytic degradation in vivo followed by rapid removal from the circulatory system. Therefore, frequent administration of excessively high dose of a protein is required to observe its therapeutic effect in vivo. This often results in impaired homeostasis in vivo and leads to severe adverse effects. To overcome these problems, we have devised a method for chemical modification of proteins with polyethylene glycol (PEGylation and other water-soluble polymers. In addition, we have established a method for creating functional mutant proteins (muteins with desired properties, and developed a site-specific polymer-conjugation method to further improve their therapeutic potency. In this review, we are introducing our original protein-drug innovation system mentioned above.

  18. Electron paramagnetic resonance spin label titration: a novel method to investigate random and site-specific immobilization of enzymes onto polymeric membranes with different properties

    International Nuclear Information System (INIS)

    Butterfield, D. Allan; Colvin, Joshua; Liu Jiangling; Wang Jianquan; Bachas, Leonidas; Bhattacharrya, Dibakar

    2002-01-01

    The immobilization of biological molecules onto polymeric membranes to produce biofunctional membranes is used for selective catalysis, separation, analysis, and artificial organs. Normally, random immobilization of enzymes onto polymeric membranes leads to dramatic reduction in activity due to chemical reactions involved in enzyme immobilization, multiple-point binding, etc., and the extent of activity reduction is a function of membrane hydrophilicity (e.g. activity in cellulosic membrane >> polysulfone membrane). We have used molecular biology to effect site-specific immobilization of enzymes in a manner that orients the active site away from the polymeric membrane surface, thus resulting in higher enzyme activity that approaches that in solution and in increased stability of the enzyme relative to the enzyme in solution. A prediction of this site-specific method of enzyme immobilization, which in this study with subtilisin and organophosphorus hydrolase consists of a fusion tag genetically added to these enzymes and subsequent immobilization via the anti-tag antibody and membrane-bound protein A, is that the active site conformation will more closely resemble that of the enzyme in solution than is the case for random immobilization. This hypothesis was confirmed using a new electron paramagnetic resonance (EPR) spin label active site titration method that determines the amount of spin label bound to the active site of the immobilized enzyme. This value nearly perfectly matched the enzyme activity, and the results suggested: (a) a spectroscopic method for measuring activity and thus the extent of active enzyme immobilization in membrane, which may have advantages in cases where optical methods can not be used due to light scattering interference; (b) higher spin label incorporation (and hence activity) in enzymes that had been site-specifically immobilized versus random immobilization; (c) higher spin label incorporation in enzymes immobilized onto hydrophilic

  19. Carbohydrates on Proteins: Site-Specific Glycosylation Analysis by Mass Spectrometry

    Science.gov (United States)

    Zhu, Zhikai; Desaire, Heather

    2015-07-01

    Glycosylation on proteins adds complexity and versatility to these biologically vital macromolecules. To unveil the structure-function relationship of glycoproteins, glycopeptide-centric analysis using mass spectrometry (MS) has become a method of choice because the glycan is preserved on the glycosylation site and site-specific glycosylation profiles of proteins can be readily determined. However, glycopeptide analysis is still challenging given that glycopeptides are usually low in abundance and relatively difficult to detect and the resulting data require expertise to analyze. Viewing the urgent need to address these challenges, emerging methods and techniques are being developed with the goal of analyzing glycopeptides in a sensitive, comprehensive, and high-throughput manner. In this review, we discuss recent advances in glycoprotein and glycopeptide analysis, with topics covering sample preparation, analytical separation, MS and tandem MS techniques, as well as data interpretation and automation.

  20. Polymerase synthesis of oligonucleotides containing a single chemically modified nucleobase for site-specific redox labelling

    Czech Academy of Sciences Publication Activity Database

    Ménová, Petra; Cahová, Hana; Plucnara, Medard; Havran, Luděk; Fojta, Miroslav; Hocek, Michal

    2013-01-01

    Roč. 49, č. 41 (2013), s. 4652-4654 ISSN 1359-7345 R&D Projects: GA ČR GBP206/12/G151 Institutional support: RVO:61388963 ; RVO:68081707 Keywords : cross - coupling reactions * DNA-protein interactions * nucleoside triphosphates * enzymatic incorporation Subject RIV: CC - Organic Chemistry Impact factor: 6.718, year: 2013

  1. Generalized theory on the mechanism of site-specific DNA-protein interactions

    Science.gov (United States)

    Niranjani, G.; Murugan, R.

    2016-05-01

    We develop a generalized theoretical framework on the binding of transcription factor proteins (TFs) with specific sites on DNA that takes into account the interplay of various factors regarding overall electrostatic potential at the DNA-protein interface, occurrence of kinetic traps along the DNA sequence, presence of other roadblock protein molecules along DNA and crowded environment, conformational fluctuations in the DNA binding domains (DBDs) of TFs, and the conformational state of the DNA. Starting from a Smolochowski type theoretical framework on site-specific binding of TFs we logically build our model by adding the effects of these factors one by one. Our generalized two-step model suggests that the electrostatic attractive forces present inbetween the positively charged DBDs of TFs and the negatively charged phosphate backbone of DNA, along with the counteracting shielding effects of solvent ions, is the core factor that creates a fluidic type environment at the DNA-protein interface. This in turn facilitates various one-dimensional diffusion (1Dd) processes such as sliding, hopping and intersegmental transfers. These facilitating processes as well as flipping dynamics of conformational states of DBDs of TFs between stationary and mobile states can enhance the 1Dd coefficient on a par with three-dimensional diffusion (3Dd). The random coil conformation of DNA also plays critical roles in enhancing the site-specific association rate. The extent of enhancement over the 3Dd controlled rate seems to be directly proportional to the maximum possible 1Dd length. We show that the overall site-specific binding rate scales with the length of DNA in an asymptotic way. For relaxed DNA, the specific binding rate will be independent of the length of DNA as length increases towards infinity. For condensed DNA as in in vivo conditions, the specific binding rate depends on the length of DNA in a turnover way with a maximum. This maximum rate seems to scale with the

  2. Local Delivery Is Critical for Monocyte Chemotactic Protein-1 Mediated Site-Specific Murine Aneurysm Healing.

    Science.gov (United States)

    Hourani, Siham; Motwani, Kartik; Wajima, Daisuke; Fazal, Hanain; Jones, Chad H; Doré, Sylvain; Hosaka, Koji; Hoh, Brian L

    2018-01-01

    Local delivery of monocyte chemotactic protein-1 (MCP-1/CCL2) via our drug-eluting coil has been shown to promote intrasaccular aneurysm healing via an inflammatory pathway. In this study, we validate the importance of local MCP-1 in murine aneurysm healing. Whether systemic, rather than local, delivery of MCP-1 can direct site-specific aneurysm healing has significant translational implications. If systemic MCP-1 is effective, then MCP-1 could be administered as a pill rather than by endovascular procedure. Furthermore, we confirm that MCP-1 is the primary effector in our MCP-1 eluting coil-mediated murine aneurysm healing model. We compare aneurysm healing with repeated intraperitoneal MCP-1 versus vehicle injection, in animals with control poly(lactic-co-glycolic) acid (PLGA)-coated coils. We demonstrate elimination of the MCP-1-associated tissue-healing response by knockout of MCP-1 or CCR2 (MCP-1 receptor) and by selectively inhibiting MCP-1 or CCR2. Using immunofluorescent probing, we explore the cell populations found in healed aneurysm tissue following each intervention. Systemically administered MCP-1 with PLGA coil control does not produce comparable aneurysm healing, as seen with MCP-1 eluting coils. MCP-1-directed aneurysm healing is eliminated by selective inhibition of MCP-1 or CCR2 and in MCP-1-deficient or CCR2-deficient mice. No difference was detected in M2 macrophage and myofibroblast/smooth muscle cell staining with systemic MCP-1 versus vehicle in aneurysm wall, but a significant increase in these cell types was observed with MCP-1 eluting coil implant and attenuated by MCP-1/CCR2 blockade or deficiency. We show that systemic MCP-1 concurrent with PLGA-coated platinum coil implant is not sufficient to produce site-specific aneurysm healing. MCP-1 is a critical, not merely complementary, actor in the aneurysm healing pathway.

  3. Autoantibodies to myelin basic protein catalyze site-specific degradation of their antigen.

    Science.gov (United States)

    Ponomarenko, Natalia A; Durova, Oxana M; Vorobiev, Ivan I; Belogurov, Alexey A; Kurkova, Inna N; Petrenko, Alexander G; Telegin, Georgy B; Suchkov, Sergey V; Kiselev, Sergey L; Lagarkova, Maria A; Govorun, Vadim M; Serebryakova, Marina V; Avalle, Bérangère; Tornatore, Pete; Karavanov, Alexander; Morse, Herbert C; Thomas, Daniel; Friboulet, Alain; Gabibov, Alexander G

    2006-01-10

    Autoantibody-mediated tissue destruction is among the main features of organ-specific autoimmunity. This report describes "an antibody enzyme" (abzyme) contribution to the site-specific degradation of a neural antigen. We detected proteolytic activity toward myelin basic protein (MBP) in the fraction of antibodies purified from the sera of humans with multiple sclerosis (MS) and mice with induced experimental allergic encephalomyelitis. Chromatography and zymography data demonstrated that the proteolytic activity of this preparation was exclusively associated with the antibodies. No activity was found in the IgG fraction of healthy donors. The human and murine abzymes efficiently cleaved MBP but not other protein substrates tested. The sites of MBP cleavage determined by mass spectrometry were localized within immunodominant regions of MBP. The abzymes could also cleave recombinant substrates containing encephalytogenic MBP(85-101) peptide. An established MS therapeutic Copaxone appeared to be a specific abzyme inhibitor. Thus, the discovered epitope-specific antibody-mediated degradation of MBP suggests a mechanistic explanation of the slow development of neurodegeneration associated with MS.

  4. Structural basis for the site-specific incorporation of lysine derivatives into proteins.

    Directory of Open Access Journals (Sweden)

    Veronika Flügel

    Full Text Available Posttranslational modifications (PTMs of proteins determine their structure-function relationships, interaction partners, as well as their fate in the cell and are crucial for many cellular key processes. For instance chromatin structure and hence gene expression is epigenetically regulated by acetylation or methylation of lysine residues in histones, a phenomenon known as the 'histone code'. Recently it was shown that these lysine residues can furthermore be malonylated, succinylated, butyrylated, propionylated and crotonylated, resulting in significant alteration of gene expression patterns. However the functional implications of these PTMs, which only differ marginally in their chemical structure, is not yet understood. Therefore generation of proteins containing these modified amino acids site specifically is an important tool. In the last decade methods for the translational incorporation of non-natural amino acids using orthogonal aminoacyl-tRNA synthetase (aaRS:tRNAaaCUA pairs were developed. A number of studies show that aaRS can be evolved to use non-natural amino acids and expand the genetic code. Nevertheless the wild type pyrrolysyl-tRNA synthetase (PylRS from Methanosarcina mazei readily accepts a number of lysine derivatives as substrates. This enzyme can further be engineered by mutagenesis to utilize a range of non-natural amino acids. Here we present structural data on the wild type enzyme in complex with adenylated ε-N-alkynyl-, ε-N-butyryl-, ε-N-crotonyl- and ε-N-propionyl-lysine providing insights into the plasticity of the PylRS active site. This shows that given certain key features in the non-natural amino acid to be incorporated, directed evolution of this enzyme is not necessary for substrate tolerance.

  5. Introducing site-specific cysteines into nanobodies for mercury labelling allows de novo phasing of their crystal structures

    DEFF Research Database (Denmark)

    Hansen, Simon Boje; Laursen, Nick Stub; Andersen, Gregers Rom

    2017-01-01

    of the presence of free cysteines in the target protein could considerably facilitate the process of obtaining unbiased experimental phases. Nanobodies (single-domain antibodies) have recently been shown to promote the crystallization and structure determination of flexible proteins and complexes. To extend...... phased using single-wavelength anomalous dispersion (SAD) and single isomorphous replacement with anomalous signal (SIRAS), taking advantage of radiation-induced changes in Cys-Hg bonding. Importantly, Hg labelling influenced neither the interaction of Nb36 with its antigen complement C5 nor its...

  6. Chemoenzymatic site-specific labeling of influenza glycoproteins as a tool to observe virus budding in real time.

    Directory of Open Access Journals (Sweden)

    Maximilian Wei-Lin Popp

    Full Text Available The influenza virus uses the hemagglutinin (HA and neuraminidase (NA glycoproteins to interact with and infect host cells. While biochemical and microscopic methods allow examination of the early steps in flu infection, the genesis of progeny virions has been more difficult to follow, mainly because of difficulties inherent in fluorescent labeling of flu proteins in a manner compatible with live cell imaging. We here apply sortagging as a chemoenzymatic approach to label genetically modified but infectious flu and track the flu glycoproteins during the course of infection. This method cleanly distinguishes influenza glycoproteins from host glycoproteins and so can be used to assess the behavior of HA or NA biochemically and to observe the flu glycoproteins directly by live cell imaging.

  7. Protein and Site Specificity of Fucosylation in Liver-Secreted Glycoproteins

    Czech Academy of Sciences Publication Activity Database

    Pompach, Petr; Ashline, David J.; Brnáková, Z.; Benicky, J.; Sanda, M.; Goldman, R.

    2014-01-01

    Roč. 13, č. 12 (2014), s. 5561-5569 ISSN 1535-3893 R&D Projects: GA MŠk LH13051; GA ČR GAP206/12/0503 Grant - others:Charles Univ.(CZ) UNCE_204025/2012 Institutional support: RVO:61388971 Keywords : fucose * glycoproteins * liver * site specificity Subject RIV: CE - Biochemistry Impact factor: 4.245, year: 2014

  8. Optimization of photoactive protein Z for fast and efficient site-specific conjugation of native IgG.

    Science.gov (United States)

    Hui, James Z; Tsourkas, Andrew

    2014-09-17

    Antibody conjugates have been used in a variety of applications from immunoassays to drug conjugates. However, it is becoming increasingly clear that in order to maximize an antibody's antigen binding ability and to produce homogeneous antibody-conjugates, the conjugated molecule should be attached onto IgG site-specifically. We previously developed a facile method for the site-specific modification of full length, native IgGs by engineering a recombinant Protein Z that forms a covalent link to the Fc domain of IgG upon exposure to long wavelength UV light. To further improve the efficiency of Protein Z production and IgG conjugation, we constructed a panel of 13 different Protein Z variants with the UV-active amino acid benzoylphenylalanine (BPA) in different locations. By using this panel of Protein Z to cross-link a range of IgGs from different hosts, including human, mouse, and rat, we discovered two previously unknown Protein Z variants, L17BPA and K35BPA, that are capable of cross-linking many commonly used IgG isotypes with efficiencies ranging from 60% to 95% after only 1 h of UV exposure. When compared to existing site-specific methods, which often require cloning or enzymatic reactions, the Protein Z-based method described here, utilizing the L17BPA, K35BPA, and the previously described Q32BPA variants, represents a vastly more accessible and efficient approach that is compatible with nearly all native IgGs, thus making site-specific conjugation more accessible to the general research community.

  9. A class frequency mixture model that adjusts for site-specific amino acid frequencies and improves inference of protein phylogeny

    Directory of Open Access Journals (Sweden)

    Li Karen

    2008-12-01

    Full Text Available Abstract Background Widely used substitution models for proteins, such as the Jones-Taylor-Thornton (JTT or Whelan and Goldman (WAG models, are based on empirical amino acid interchange matrices estimated from databases of protein alignments that incorporate the average amino acid frequencies of the data set under examination (e.g JTT + F. Variation in the evolutionary process between sites is typically modelled by a rates-across-sites distribution such as the gamma (Γ distribution. However, sites in proteins also vary in the kinds of amino acid interchanges that are favoured, a feature that is ignored by standard empirical substitution matrices. Here we examine the degree to which the pattern of evolution at sites differs from that expected based on empirical amino acid substitution models and evaluate the impact of these deviations on phylogenetic estimation. Results We analyzed 21 large protein alignments with two statistical tests designed to detect deviation of site-specific amino acid distributions from data simulated under the standard empirical substitution model: JTT+ F + Γ. We found that the number of states at a given site is, on average, smaller and the frequencies of these states are less uniform than expected based on a JTT + F + Γ substitution model. With a four-taxon example, we show that phylogenetic estimation under the JTT + F + Γ model is seriously biased by a long-branch attraction artefact if the data are simulated under a model utilizing the observed site-specific amino acid frequencies from an alignment. Principal components analyses indicate the existence of at least four major site-specific frequency classes in these 21 protein alignments. Using a mixture model with these four separate classes of site-specific state frequencies plus a fifth class of global frequencies (the JTT + cF + Γ model, significant improvements in model fit for real data sets can be achieved. This simple mixture model also reduces the long

  10. Site-specific covalent attachment of DNA to proteins using a photoactivatable Tus-Ter complex.

    Science.gov (United States)

    Dahdah, Dahdah B; Morin, Isabelle; Moreau, Morgane J J; Dixon, Nicholas E; Schaeffer, Patrick M

    2009-06-07

    Investigations into the photocrosslinking kinetics of the protein Tus with various bromodeoxyuridine-substituted Ter DNA variants highlight the potential use of this complex as a photoactivatable connector between proteins of interest and specific DNA sequences.

  11. Site-specific incorporation of redox active amino acids into proteins

    Science.gov (United States)

    Alfonta, Lital [San Diego, CA; Schultz, Peter G [La Jolla, CA; Zhang, Zhiwen [San Diego, CA

    2009-02-24

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  12. Site-specific incorporation of redox active amino acids into proteins

    Energy Technology Data Exchange (ETDEWEB)

    Alfonta, Lital; Schultz, Peter G.; Zhang, Zhiwen

    2017-10-10

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  13. An overview of site-specific delivery of orally administered proteins ...

    African Journals Online (AJOL)

    Oral delivery of proteins and peptides poses one of the greatest challenges in controlled drug delivery due to degradation by proteolytic enzymes, poor membrane permeability and large molecular size. Therapeutic proteins/peptides are useful in correcting metabolic disorders (e.g., insulin in diabetes mellitus), ...

  14. Site-specific quantification of lysine acetylation in the N-terminal tail of histone H4 using a double-labelling, targeted UHPLC MS/MS approach

    NARCIS (Netherlands)

    D'Urzo, Annalisa; Boichenko, Alexander P.; van den Bosch, Thea; Hermans, Jos; Dekker, Frank; Andrisano, Vincenza; Bischoff, Rainer

    We developed a targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the site-specific quantification of lysine acetylation in the N-terminal region of histone H4 by combining chemical derivatization at the protein and peptide levels with digestion using chymotrypsin and

  15. Site-SpecificCu Labeling of the Serine Protease, Active Site Inhibited Factor Seven Azide (FVIIai-N), Using Copper Free Click Chemistry

    DEFF Research Database (Denmark)

    Jeppesen, Troels E; Kristensen, Lotte K; Nielsen, Carsten H

    2018-01-01

    A method for site-specific radiolabeling of the serine protease active site inhibited factor seven (FVIIai) with64Cu has been applied using a biorthogonal click reaction. FVIIai binds to tissue factor (TF), a trans-membrane protein involved in hemostasis, angiogenesis, proliferation, cell migrati...

  16. Zaccai neutron resilience and site-specific hydration dynamics in a globular protein

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Yinglong [Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hong, Liang [Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yi, Zheng [Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Smith, Jeremy C. [Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2013-07-16

    A discussion is presented of contributions of the Zaccai group to the understanding of flexibility in biological macromolecules using dynamic neutron scattering. The concept of resilience as introduced by Zaccai is discussed and investigated using molecular dynamics simulation on camphor-bound cytochrome P450. The resilience of hydrophilic residues is found to be more strongly affected by hydration than that of hydrophobic counterparts. The hydration-induced softening of protein propagates from the surface into the dry core. Furthermore, buried hydrophilic residues behave more like those exposed on the protein surface, and are different from their hydrophobic counterparts.

  17. Bioorthogonal fluorescent labeling of functional G-protein-coupled receptors

    DEFF Research Database (Denmark)

    Tian, He; Naganathan, Saranga; Kazmi, Manija A

    2014-01-01

    Novel methods are required for site-specific, quantitative fluorescent labeling of G-protein-coupled receptors (GPCRs) and other difficult-to-express membrane proteins. Ideally, fluorescent probes should perturb the native structure and function as little as possible. We evaluated bioorthogonal...

  18. Caracemide, a site-specific irreversible inhibitor of protein R1 of Escherichia coli ribonucleotide reductase

    DEFF Research Database (Denmark)

    Larsen, I. K.; Cornett, Claus; Karlsson, M.

    1992-01-01

    The anticancer drug caracemide, N-acetyl-N,O-di(methylcarbamoyl)hydroxylamine, and one of its degradation products, N-acetyl-O-methylcarbamoyl-hydroxylamine, were found to inhibit the enzyme ribonucleotide reductase of Escherichia coli by specific interaction with its larger component protein R1....

  19. Site-Specific Analysis of Protein Hydration Based on Unnatural Amino Acid Fluorescence

    Czech Academy of Sciences Publication Activity Database

    Amaro, Mariana; Brezovský, J.; Kováčová, S.; Sýkora, Jan; Bednář, D.; Němec, V.; Lišková, V.; Kurumbang, N. P.; Beerens, K.; Chaloupková, R.; Paruch, K.; Hof, Martin; Damborský, J.

    2015-01-01

    Roč. 137, č. 15 (2015), s. 4988-4992 ISSN 0002-7863 R&D Projects: GA ČR GBP208/12/G016 Institutional support: RVO:61388955 Keywords : analysis * fluorescence * hydration of proteins Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 13.038, year: 2015

  20. Direct Detection of Protein Biomarkers in Human Fluids Using Site-Specific Antibody Immobilization Strategies

    Directory of Open Access Journals (Sweden)

    Maria Soler

    2014-01-01

    Full Text Available Design of an optimal surface biofunctionalization still remains an important challenge for the application of biosensors in clinical practice and therapeutic follow-up. Optical biosensors offer real-time monitoring and highly sensitive label-free analysis, along with great potential to be transferred to portable devices. When applied in direct immunoassays, their analytical features depend strongly on the antibody immobilization strategy. A strategy for correct immobilization of antibodies based on the use of ProLinker™ has been evaluated and optimized in terms of sensitivity, selectivity, stability and reproducibility. Special effort has been focused on avoiding antibody manipulation, preventing nonspecific adsorption and obtaining a robust biosurface with regeneration capabilities. ProLinker™-based approach has demonstrated to fulfill those crucial requirements and, in combination with PEG-derivative compounds, has shown encouraging results for direct detection in biological fluids, such as pure urine or diluted serum. Furthermore, we have implemented the ProLinker™ strategy to a novel nanoplasmonic-based biosensor resulting in promising advantages for its application in clinical and biomedical diagnosis.

  1. Direct detection of protein biomarkers in human fluids using site-specific antibody immobilization strategies.

    Science.gov (United States)

    Soler, Maria; Estevez, M-Carmen; Alvarez, Mar; Otte, Marinus A; Sepulveda, Borja; Lechuga, Laura M

    2014-01-29

    Design of an optimal surface biofunctionalization still remains an important challenge for the application of biosensors in clinical practice and therapeutic follow-up. Optical biosensors offer real-time monitoring and highly sensitive label-free analysis, along with great potential to be transferred to portable devices. When applied in direct immunoassays, their analytical features depend strongly on the antibody immobilization strategy. A strategy for correct immobilization of antibodies based on the use of ProLinker™ has been evaluated and optimized in terms of sensitivity, selectivity, stability and reproducibility. Special effort has been focused on avoiding antibody manipulation, preventing nonspecific adsorption and obtaining a robust biosurface with regeneration capabilities. ProLinker™-based approach has demonstrated to fulfill those crucial requirements and, in combination with PEG-derivative compounds, has shown encouraging results for direct detection in biological fluids, such as pure urine or diluted serum. Furthermore, we have implemented the ProLinker™ strategy to a novel nanoplasmonic-based biosensor resulting in promising advantages for its application in clinical and biomedical diagnosis.

  2. Site-specific antibody-drug conjugates: the nexus of bioorthogonal chemistry, protein engineering, and drug development.

    Science.gov (United States)

    Agarwal, Paresh; Bertozzi, Carolyn R

    2015-02-18

    Antibody-drug conjugates (ADCs) combine the specificity of antibodies with the potency of small molecules to create targeted drugs. Despite the simplicity of this concept, generation of clinically successful ADCs has been very difficult. Over the past several decades, scientists have learned a great deal about the constraints on antibodies, linkers, and drugs as they relate to successful construction of ADCs. Once these components are in hand, most ADCs are prepared by nonspecific modification of antibody lysine or cysteine residues with drug-linker reagents, which results in heterogeneous product mixtures that cannot be further purified. With advances in the fields of bioorthogonal chemistry and protein engineering, there is growing interest in producing ADCs by site-specific conjugation to the antibody, yielding more homogeneous products that have demonstrated benefits over their heterogeneous counterparts in vivo. Here, we chronicle the development of a multitude of site-specific conjugation strategies for assembly of ADCs and provide a comprehensive account of key advances and their roots in the fields of bioorthogonal chemistry and protein engineering.

  3. Site-specific Orientation of an α-helical Peptide Ovispirin-1 from Isotope Labeled SFG Spectroscopy

    Science.gov (United States)

    Ding, Bei; Laaser, Jennifer E.; Liu, Yuwei; Wang, Pengrui; Zanni, Martin T.; Chen, Zhan

    2013-01-01

    Sum-frequency generation (SFG) vibrational spectroscopy is often used to probe the backbone structures and orientations of polypeptides at surfaces. Using the ovispirin-1 polypeptide at the solid/liquid interface of polystyrene, we demonstrate for the first time that SFG can probe the polarization response of a single isotope labeled residue. To interpret the spectral intensities, we simulated the spectra using an excitonic Hamiltonian approach. We show that the polarization dependence of either the label or the unlabeled amide I band alone does not provide sufficient structural constraints to obtain both the tilt and the twist of the ovispirin helix at a solid/liquid interface, but that both can be determined from the polarization dependence of the complete spectrum. For ovispirin, the detailed analysis of the polarized SFG experimental data shows that the helix axis is tilted at roughly 138 degrees from the surface normal, and the transition dipole of the isotope labeled C=O group is tilted at 23 degrees from the surface normal, with the hydrophobic region facing the polystyrene surface. We further demonstrated that the Hamiltonian approach is able to address the coupling effect and the structural disorder. For comparison, we also collected the FTIR spectrum of ovispirin under similar conditions, which reveals the enhanced sensitivity of SFG for structural studies of single monolayer peptide surfaces. Our study provides insight into how structural and environmental effects appear in SFG spectra of the amide I band and establishes that SFG of isotope labeled peptides will be a powerful technique for elucidating secondary structures with residue-by-residue resolution. PMID:24228619

  4. Site-specific orientation of an α-helical peptide ovispirin-1 from isotope-labeled SFG spectroscopy.

    Science.gov (United States)

    Ding, Bei; Laaser, Jennifer E; Liu, Yuwei; Wang, Pengrui; Zanni, Martin T; Chen, Zhan

    2013-11-27

    Sum-frequency generation (SFG) vibrational spectroscopy is often used to probe the backbone structures and orientations of polypeptides at surfaces. Using the ovispirin-1 polypeptide at the solid/liquid interface of polystyrene, we demonstrate for the first time that SFG can probe the polarization response of a single-isotope-labeled residue. To interpret the spectral intensities, we simulated the spectra using an excitonic Hamiltonian approach. We show that the polarization dependence of either the label or the unlabeled amide I band alone does not provide sufficient structural constraints to obtain both the tilt and the twist of the ovispirin helix at a solid/liquid interface, but that both can be determined from the polarization dependence of the complete spectrum. For ovispirin, the detailed analysis of the polarized SFG experimental data shows that the helix axis is tilted at roughly 138° from the surface normal, and the transition dipole of the isotope-labeled C═O group is tilted at 23° from the surface normal, with the hydrophobic region facing the polystyrene surface. We further demonstrate that the Hamiltonian approach is able to address the coupling effect and the structural disorder. For comparison, we also collected the FTIR spectrum of ovispirin under similar conditions, which reveals the enhanced sensitivity of SFG for structural studies of single monolayer peptide surfaces. Our study provides insight into how structural and environmental effects appear in SFG spectra of the amide I band and establishes that SFG of isotope-labeled peptides will be a powerful technique for elucidating secondary structures with residue-by-residue resolution.

  5. Site-specific modification of genome with cell-permeable Cre fusion protein in preimplantation mouse embryo

    International Nuclear Information System (INIS)

    Kim, Kyoungmi; Kim, Hwain; Lee, Daekee

    2009-01-01

    Site-specific recombination (SSR) by Cre recombinase and its target sequence, loxP, is a valuable tool in genetic analysis of gene function. Recently, several studies reported successful application of Cre fusion protein containing protein transduction peptide for inducing gene modification in various mammalian cells including ES cell as well as in the whole animal. In this study, we show that a short incubation of preimplantation mouse embryos with purified cell-permeable Cre fusion protein results in efficient SSR. X-Gal staining of preimplantation embryos, heterozygous for Gtrosa26 tm1Sor , revealed that treatment of 1-cell or 2-cell embryos with 3 μM of Cre fusion protein for 2 h leads to Cre-mediated excision in 70-85% of embryos. We have examined the effect of the concentration of the Cre fusion protein and the duration of the treatment on embryonic development, established a condition for full term development and survival to adulthood, and demonstrated the germ line transmission of excised Gtrosa26 allele. Potential applications and advantages of the highly efficient technique described here are discussed.

  6. Neuroleptic binding sites: specific labeling in mice with [18F]haloperidol, a potential tracer for positron emission tomography

    International Nuclear Information System (INIS)

    Zanzonico, P.B.; Bigler, R.E.; Schmall, B.

    1983-01-01

    Haloperidol labeled with fluorine- 18 (T 1/2 . 110 min, positron emission 97%), prepared yielding .04 Ci/millimole by the Balz-Schiemann reaction, was evaluated in a murine model as a potential radiotracer for noninvasive determination, by positron-emission tomography, of regional concentrations of brain dopamine receptors in patients. As the haloperidol dose in mice was increased from 0.01 to 1000 micrograms/kg, the relative concentration of [ 18 F]haloperidol (microCi per g specimen/microCi per g of body mass), at one hour after injection decreased from 30 to 1.0 in the striatum and from 8.0 to 1.0 in the cerebellum. The striatal radioactivity, plotted as relative concentration against log of dose, decreased sigmoidally, presumably reflecting competition between labeled and unlabeled haloperidol for a single class of accessible binding sites. Because the cerebellum is relatively deficient in dopamine receptors, the observed decrease in cerebellar radioactivity may reflect a saturable component of haloperidol transport into brain. The high brain concentrations and the unexpectedly high striatum-to-cerebellum concentration ratios (greater than 4 at haloperidol doses less than or equal to 1 microgram/kg) suggest that [ 18 F]haloperidol warrants further investigation as a potential radiotracer for dopamine receptors

  7. Direct analysis of site-specific N-glycopeptides of serological proteins in dried blood spot samples.

    Science.gov (United States)

    Choi, Na Young; Hwang, Heeyoun; Ji, Eun Sun; Park, Gun Wook; Lee, Ju Yeon; Lee, Hyun Kyoung; Kim, Jin Young; Yoo, Jong Shin

    2017-08-01

    Dried blood spot (DBS) samples have a number of advantages, especially with respect to ease of collection, transportation, and storage and to reduce biohazard risk. N-glycosylation is a major post-translational modification of proteins in human blood that is related to a variety of biological functions, including metastasis, cell-cell interactions, inflammation, and immunization. Here, we directly analyzed tryptic N-glycopeptides from glycoproteins in DBS samples using liquid chromatography-tandem mass spectrometry (LC-MS/MS) without centrifugation of blood samples, depletion of major proteins, desalting of tryptic peptides, and enrichment of N-glycopeptides. Using this simple method, we identified a total of 41 site-specific N-glycopeptides from 16 glycoproteins in the DBS samples, from immunoglobulin gamma 1 (IgG-1, 10 mg/mL) down to complement component C7 (50 μg/mL). Of these, 32 N-glycopeptides from 14 glycoproteins were consistently quantified over 180 days stored at room temperature. The major abundant glycoproteins in the DBS samples were IgG-1 and IgG-2, which contain nine asialo-fucosylated complex types of 16 different N-glycopeptide isoforms. Sialo-non-fucosylated complex types were primarily detected in the other glycoproteins such as alpha-1-acid glycoprotein 1, 2, alpha-1-antitypsin, alpha-2-macroglobulin, haptoglobin, hemopexin, Ig alpha 1, 2 chain C region, kininogen-1, prothrombin, and serotransferrin. We first report the characterization of site-specific N-glycoproteins in DBS samples by LC-MS/MS with minimal sample preparation.

  8. Monitoring Replication Protein A (RPA) dynamics in homologous recombination through site-specific incorporation of non-canonical amino acids.

    Science.gov (United States)

    Pokhrel, Nilisha; Origanti, Sofia; Davenport, Eric Parker; Gandhi, Disha; Kaniecki, Kyle; Mehl, Ryan A; Greene, Eric C; Dockendorff, Chris; Antony, Edwin

    2017-09-19

    An essential coordinator of all DNA metabolic processes is Replication Protein A (RPA). RPA orchestrates these processes by binding to single-stranded DNA (ssDNA) and interacting with several other DNA binding proteins. Determining the real-time kinetics of single players such as RPA in the presence of multiple DNA processors to better understand the associated mechanistic events is technically challenging. To overcome this hurdle, we utilized non-canonical amino acids and bio-orthogonal chemistry to site-specifically incorporate a chemical fluorophore onto a single subunit of heterotrimeric RPA. Upon binding to ssDNA, this fluorescent RPA (RPAf) generates a quantifiable change in fluorescence, thus serving as a reporter of its dynamics on DNA in the presence of multiple other DNA binding proteins. Using RPAf, we describe the kinetics of facilitated self-exchange and exchange by Rad51 and mediator proteins during various stages in homologous recombination. RPAf is widely applicable to investigate its mechanism of action in processes such as DNA replication, repair and telomere maintenance. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Site-Specific Phosphorylation of PSD-95 PDZ Domains Reveals Fine-Tuned Regulation of Protein-Protein Interactions

    DEFF Research Database (Denmark)

    Pedersen, Søren W; Albertsen, Louise; Moran, Griffin E

    2017-01-01

    The postsynaptic density protein of 95 kDa (PSD-95) is a key scaffolding protein that controls signaling at synapses in the brain through interactions of its PDZ domains with the C-termini of receptors, ion channels, and enzymes. PSD-95 is highly regulated by phosphorylation. To explore the effec...

  10. Evaluation of the site specific protein glycation and antioxidant capacity of rare sugar-protein/peptide conjugates.

    Science.gov (United States)

    Sun, Yuanxia; Hayakawa, Shigeru; Ogawa, Masahiro; Izumori, Ken

    2005-12-28

    Protein-sugar conjugates generated in nonenzymatic glycation of alpha-lactalbumin (LA) with rare sugars [D-allose (All) and D-psicose (Psi)] and alimentary sugars as controls [D-glucose (Glc) and D-fructose (Fru)] were qualitatively determined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Mass spectra revealed that the extent of glycation at lysine residues on LA with D-aldose molecules was very much higher than that of glycation with d-ketose molecules. To identify the specific site of glycation, the peptide mapping was established from protease V8 digestion, using a combination of computational cutting of proteins and MALDI-TOF-MS. As compared to peptide mapping, three and seven glycation sites were located in the primary structure of LA-ketose and LA-aldose conjugates, respectively. On the other hand, the antioxidant activities of protein-sugar conjugates and their peptic hydrolysates were investigated by 1,1-diphenyl-2-picrylhydrazyl radical scavenging method. The antioxidant activities of proteins/peptides glycated with rare sugars were significantly higher than those modified with the control sugars. The results indicated that the glycation degree and position were not markedly different between rare sugar and corresponding control sugar, but the antioxidant properties of protein and its hydrolysate were significantly enhanced by modifying with rare sugar.

  11. Fluorine-18 labeling of proteins

    International Nuclear Information System (INIS)

    Kilbourn, M.R.; Dence, C.S.; Welch, M.J.; Mathias, C.J.

    1987-01-01

    Two fluorine-18-labeled reagents, methyl 3-[ 18 F]fluoro-5-nitrobenzimidate and 4-[ 18 F]fluorophenacyl bromide, have been prepared for covalent attachment of fluorine-18 to proteins. Both reagents can be prepared in moderate yields (30-50%, EOB) in synthesis times of 50-70 min. Reaction of these reagents with proteins (human serum albumin, human fibrinogen, and human immunoglobulin A) is pH independent, protein concentration dependent, and takes 5-60 min at mild pH (8.0) and temperature (25-37 degrees C), in yields up to 95% (corrected). The 18 F-labeled proteins are purified by size exclusion chromatography

  12. Cardiac myosin binding protein C phosphorylation affects cross-bridge cycle's elementary steps in a site-specific manner.

    Directory of Open Access Journals (Sweden)

    Li Wang

    Full Text Available Based on our recent finding that cardiac myosin binding protein C (cMyBP-C phosphorylation affects muscle contractility in a site-specific manner, we further studied the force per cross-bridge and the kinetic constants of the elementary steps in the six-state cross-bridge model in cMyBP-C mutated transgenic mice for better understanding of the influence of cMyBP-C phosphorylation on contractile functions. Papillary muscle fibres were dissected from cMyBP-C mutated mice of ADA (Ala273-Asp282-Ala302, DAD (Asp273-Ala282-Asp302, SAS (Ser273-Ala282-Ser302, and t/t (cMyBP-C null genotypes, and the results were compared to transgenic mice expressing wide-type (WT cMyBP-C. Sinusoidal analyses were performed with serial concentrations of ATP, phosphate (Pi, and ADP. Both t/t and DAD mutants significantly reduced active tension, force per cross-bridge, apparent rate constant (2πc, and the rate constant of cross-bridge detachment. In contrast to the weakened ATP binding and enhanced Pi and ADP release steps in t/t mice, DAD mice showed a decreased ADP release without affecting the ATP binding and the Pi release. ADA showed decreased ADP release, and slightly increased ATP binding and cross-bridge detachment steps, whereas SAS diminished the ATP binding step and accelerated the ADP release step. t/t has the broadest effects with changes in most elementary steps of the cross-bridge cycle, DAD mimics t/t to a large extent, and ADA and SAS predominantly affect the nucleotide binding steps. We conclude that the reduced tension production in DAD and t/t is the result of reduced force per cross-bridge, instead of the less number of strongly attached cross-bridges. We further conclude that cMyBP-C is an allosteric activator of myosin to increase cross-bridge force, and its phosphorylation status modulates the force, which is regulated by variety of protein kinases.

  13. A resolvase-like protein is requered for the site-specific integration of the temperate lactococcal bacteriophage TP901-1

    DEFF Research Database (Denmark)

    Christiansen, Bettina; Brøndsted, Lone; Vogensen, Finn K.

    1996-01-01

    upstream of attP. The N-terminal 150 to 1180 amino acids of Orf1 showed 38 to 44% similarity to the resolvase group of site-specific integrases, while no similarity to know proteins was found in the C-terminal end. Bacteriophage 'TP901-1 therefore contains a unique integration system that does not resemble...... the Int class of site-specific integrases usually found in temperate bacteriophages. The constructed integration vector, pBC170, integrates into the chromosomal attachment site very efficiently and forms stable transformants with a frequency corresponding to 20% of the transformation efficiency....

  14. Site Specific Vendor's License

    Data.gov (United States)

    Montgomery County of Maryland — This dataset contains information of a site-specific vendor's license which is required if an individual sells or offers to sell goods or services from a stationary...

  15. Structure of human Rad51 protein filament from molecular modeling and site-specific linear dichroism spectroscopy

    KAUST Repository

    Reymer, A.; Frykholm, K.; Morimatsu, K.; Takahashi, M.; Norden, B.

    2009-01-01

    for central and N-terminal parts of pure (uncomplexed) Rad51 protein by aid of linear dichroism spectroscopy, providing angular orientations of substituted tyrosine residues of Rad51-dsDNA filaments in solution. The structure, validated by comparison

  16. Site-Specific Innovation

    DEFF Research Database (Denmark)

    Reeh, Henrik; Hemmersam, Peter

    2015-01-01

    Currently, cities across the Northern European region are actively redeveloping their former industrial harbours. Indeed, harbours areas are essential in the long-term transition from industrial to information and experience societies; harbours are becoming sites for new businesses and residences...... question is how innovation may contribute to urban life and site-specific qualities....

  17. Gravity-driven pH adjustment for site-specific protein pKa measurement by solution-state NMR

    Science.gov (United States)

    Li, Wei

    2017-12-01

    To automate pH adjustment in site-specific protein pKa measurement by solution-state NMR, I present a funnel with two caps for the standard 5 mm NMR tube. The novelty of this simple-to-build and inexpensive apparatus is that it allows automatic gravity-driven pH adjustment within the magnet, and consequently results in a fully automated NMR-monitored pH titration without any hardware modification on the NMR spectrometer.

  18. Structure of human Rad51 protein filament from molecular modeling and site-specific linear dichroism spectroscopy

    KAUST Repository

    Reymer, A.

    2009-07-08

    To get mechanistic insight into the DNA strand-exchange reaction of homologous recombination, we solved a filament structure of a human Rad51 protein, combining molecular modeling with experimental data. We build our structure on reported structures for central and N-terminal parts of pure (uncomplexed) Rad51 protein by aid of linear dichroism spectroscopy, providing angular orientations of substituted tyrosine residues of Rad51-dsDNA filaments in solution. The structure, validated by comparison with an electron microscopy density map and results from mutation analysis, is proposed to represent an active solution structure of the nucleo-protein complex. An inhomogeneously stretched double-stranded DNA fitted into the filament emphasizes the strategic positioning of 2 putative DNA-binding loops in a way that allows us speculate about their possibly distinct roles in nucleo-protein filament assembly and DNA strand-exchange reaction. The model suggests that the extension of a single-stranded DNA molecule upon binding of Rad51 is ensured by intercalation of Tyr-232 of the L1 loop, which might act as a docking tool, aligning protein monomers along the DNA strand upon filament assembly. Arg-235, also sitting on L1, is in the right position to make electrostatic contact with the phosphate backbone of the other DNA strand. The L2 loop position and its more ordered compact conformation makes us propose that this loop has another role, as a binding site for an incoming double-stranded DNA. Our filament structure and spectroscopic approach open the possibility of analyzing details along the multistep path of the strand-exchange reaction.

  19. Label and Label-Free Detection Techniques for Protein Microarrays

    Directory of Open Access Journals (Sweden)

    Amir Syahir

    2015-04-01

    Full Text Available Protein microarray technology has gone through numerous innovative developments in recent decades. In this review, we focus on the development of protein detection methods embedded in the technology. Early microarrays utilized useful chromophores and versatile biochemical techniques dominated by high-throughput illumination. Recently, the realization of label-free techniques has been greatly advanced by the combination of knowledge in material sciences, computational design and nanofabrication. These rapidly advancing techniques aim to provide data without the intervention of label molecules. Here, we present a brief overview of this remarkable innovation from the perspectives of label and label-free techniques in transducing nano‑biological events.

  20. PROCOV: maximum likelihood estimation of protein phylogeny under covarion models and site-specific covarion pattern analysis

    Directory of Open Access Journals (Sweden)

    Wang Huai-Chun

    2009-09-01

    Full Text Available Abstract Background The covarion hypothesis of molecular evolution holds that selective pressures on a given amino acid or nucleotide site are dependent on the identity of other sites in the molecule that change throughout time, resulting in changes of evolutionary rates of sites along the branches of a phylogenetic tree. At the sequence level, covarion-like evolution at a site manifests as conservation of nucleotide or amino acid states among some homologs where the states are not conserved in other homologs (or groups of homologs. Covarion-like evolution has been shown to relate to changes in functions at sites in different clades, and, if ignored, can adversely affect the accuracy of phylogenetic inference. Results PROCOV (protein covarion analysis is a software tool that implements a number of previously proposed covarion models of protein evolution for phylogenetic inference in a maximum likelihood framework. Several algorithmic and implementation improvements in this tool over previous versions make computationally expensive tree searches with covarion models more efficient and analyses of large phylogenomic data sets tractable. PROCOV can be used to identify covarion sites by comparing the site likelihoods under the covarion process to the corresponding site likelihoods under a rates-across-sites (RAS process. Those sites with the greatest log-likelihood difference between a 'covarion' and an RAS process were found to be of functional or structural significance in a dataset of bacterial and eukaryotic elongation factors. Conclusion Covarion models implemented in PROCOV may be especially useful for phylogenetic estimation when ancient divergences between sequences have occurred and rates of evolution at sites are likely to have changed over the tree. It can also be used to study lineage-specific functional shifts in protein families that result in changes in the patterns of site variability among subtrees.

  1. Photoactivation of the BLUF protein PixD Probed by the Site-Specific Incorporation of Fluorotyrosine Residues

    KAUST Repository

    Gil, Agnieszka A.

    2017-09-06

    The flavin chromophore in blue light using FAD (BLUF) photoreceptors is surrounded by a hydrogen bond network that senses and responds to changes in the electronic structure of the flavin on the ultrafast time scale. The hydrogen bond network includes a strictly conserved Tyr residue, and previously we explored the role of this residue, Y21, in the photoactivation mechanism of the BLUF protein AppA by the introduction of fluorotyrosine (F-Tyr) analogs that modulated the pKa and reduction potential of Y21 by 3.5 pH units and 200 mV, respectively. Although little impact on the forward (dark to light adapted form) photoreaction was observed, the change in Y21 pKa led to a 4,000-fold increase in the rate of dark state recovery. In the present work we have extended these studies to the BLUF protein PixD, where, in contrast to AppA, modulation in the Tyr (Y8) pKa has a profound impact on the forward photoreaction. In particular, a decrease in Y8 pKa by 2 or more pH units prevents formation of a stable light state, consistent with a photoactivation mechanism that involves proton transfer or proton coupled electron transfer from Y8 to the electronically excited FAD. Conversely, the effect of pKa on the rate of dark recovery is markedly reduced in PixD. These observations highlight very significant differences between the photocycles of PixD and AppA, despite their sharing highly conserved FAD binding architectures.

  2. Photoactivation of the BLUF protein PixD Probed by the Site-Specific Incorporation of Fluorotyrosine Residues

    KAUST Repository

    Gil, Agnieszka A.; Laptenok, Sergey P.; Iuliano, James N.; Lukacs, Andras; Verma, Anil; Hall, Christopher R.; Yoon, EunBin; Brust, Richard; Greetham, Gregory M.; Towrie, Michael; French, Jarrod B.; Meech, Stephen R.; Tonge, Peter J

    2017-01-01

    The flavin chromophore in blue light using FAD (BLUF) photoreceptors is surrounded by a hydrogen bond network that senses and responds to changes in the electronic structure of the flavin on the ultrafast time scale. The hydrogen bond network includes a strictly conserved Tyr residue, and previously we explored the role of this residue, Y21, in the photoactivation mechanism of the BLUF protein AppA by the introduction of fluorotyrosine (F-Tyr) analogs that modulated the pKa and reduction potential of Y21 by 3.5 pH units and 200 mV, respectively. Although little impact on the forward (dark to light adapted form) photoreaction was observed, the change in Y21 pKa led to a 4,000-fold increase in the rate of dark state recovery. In the present work we have extended these studies to the BLUF protein PixD, where, in contrast to AppA, modulation in the Tyr (Y8) pKa has a profound impact on the forward photoreaction. In particular, a decrease in Y8 pKa by 2 or more pH units prevents formation of a stable light state, consistent with a photoactivation mechanism that involves proton transfer or proton coupled electron transfer from Y8 to the electronically excited FAD. Conversely, the effect of pKa on the rate of dark recovery is markedly reduced in PixD. These observations highlight very significant differences between the photocycles of PixD and AppA, despite their sharing highly conserved FAD binding architectures.

  3. Tailor-making a protein a-derived domain for efficient site-specific photocoupling to Fc of mouse IgG₁.

    Directory of Open Access Journals (Sweden)

    Feifan Yu

    Full Text Available Affinity proteins binding to antibody constant regions have proved to be invaluable tools in biotechnology. Here, protein engineering was used to expand the repertoire of available immunoglobulin binding proteins via improvement of the binding strength between the widely used staphylococcal protein A-derived Z domain and the important immunoglobulin isotype mouse IgG₁ (mIgG₁. Addressing seven positions in the 58-residue three-helix bundle Z domain by single or double amino acid substitutions, a total of 170 variants were individually constructed, produced in E. coli and tested for binding to a set of mouse IgG₁ monoclonal antibodies (mAbs. The best variant, denoted Z(F5I corresponding to a Phe to Ile substitution at position 5, showed a typical ten-fold higher affinity than the wild-type as determined by biosensor technology. Eight amino acid positions in the Z(F5I variant were separately mutated to cysteine for incorporation of a photoactivable maleimide-benzophenone (MBP group as a probe for site-specific photoconjugation to Fc of mIgG₁, The best photocoupling efficiency to mIgG₁ Fc was seen when the MBP group was coupled to Cys at position 32, resulting in adduct formation to more than 60% of all heavy chains, with no observable non-selective conjugation to the light chains. A similar coupling yield was obtained for a panel of 19 different mIgG₁ mAbs, indicating a general characteristic. To exemplify functionalization of a mIgG₁ antibody via site-specific biotinylation, the Z(F5I-Q32C-MBP protein was first biotinylated using an amine reactive reagent and subsequently photoconjugated to an anti-human interferon-gamma mIgG₁ mAb. When comparing the specific antigen binding ability of the probe-biotinylated mAb to that of the directly biotinylated mAb, a significantly higher bioactivity was observed for the sample biotinylated using the Z(F5I-Q32C-MBP probe. This result indicates that the use of a site-specific and affinity probe

  4. Site-specific conjugation and labelling of prostate antibody 7E11C5.3 (CYT-351) with technetium-99m

    International Nuclear Information System (INIS)

    Stalteri, M.A.; Mather, S.J.; Belinka, B.A.; Coughlin, D.J.; Chengazi, V.U.; Britton, K.E.

    1997-01-01

    Attachment of chelating agents to the sugar residues of antibodies for subsequent radiolabelling is an attractive approach since it may have less effect on the immunoreactivity than attachment through lysine residues, which are distributed throughout the antibody and may be present near the antigen binding site. We have attached a new hydrazide-linked chelator CYT-395 (Cytogen Corp., Princeton, N.J.) to the sugar residues of the anti-prostate monoclonal antibody 7E11C5.3 and optimised the conditions for labelling the conjugate with technetium-99m in order to compare the conjugate to 7E11C5.3 antibody labelled directly with technetium using a mercaptoethanol reduction technique. Labelling yields of 70%-90% were obtained at specific activities up to 2000 MBq/mg antibody. The stability of the technetium-labelled conjugate in plasma or to a challenge with 0.1 or 1.0 mM cysteine was similar to that of direct-labelled antibody. In nine patients with prostate cancer, the plasma clearance of the labelled conjugate followed a two-compartment model, with an average β-phase half-life of 31.4±3.9 h. The average urinary clearance at 24 h was 15.3±5.0% of the injected dose. In this group of patients there was no significant difference between the blood and urine clearance of the labelled conjugate, and the clearances of the direct-labelled antibody. (orig.). With 5 figs

  5. DbPTM 3.0: an informative resource for investigating substrate site specificity and functional association of protein post-translational modifications.

    Science.gov (United States)

    Lu, Cheng-Tsung; Huang, Kai-Yao; Su, Min-Gang; Lee, Tzong-Yi; Bretaña, Neil Arvin; Chang, Wen-Chi; Chen, Yi-Ju; Chen, Yu-Ju; Huang, Hsien-Da

    2013-01-01

    Protein modification is an extremely important post-translational regulation that adjusts the physical and chemical properties, conformation, stability and activity of a protein; thus altering protein function. Due to the high throughput of mass spectrometry (MS)-based methods in identifying site-specific post-translational modifications (PTMs), dbPTM (http://dbPTM.mbc.nctu.edu.tw/) is updated to integrate experimental PTMs obtained from public resources as well as manually curated MS/MS peptides associated with PTMs from research articles. Version 3.0 of dbPTM aims to be an informative resource for investigating the substrate specificity of PTM sites and functional association of PTMs between substrates and their interacting proteins. In order to investigate the substrate specificity for modification sites, a newly developed statistical method has been applied to identify the significant substrate motifs for each type of PTMs containing sufficient experimental data. According to the data statistics in dbPTM, >60% of PTM sites are located in the functional domains of proteins. It is known that most PTMs can create binding sites for specific protein-interaction domains that work together for cellular function. Thus, this update integrates protein-protein interaction and domain-domain interaction to determine the functional association of PTM sites located in protein-interacting domains. Additionally, the information of structural topologies on transmembrane (TM) proteins is integrated in dbPTM in order to delineate the structural correlation between the reported PTM sites and TM topologies. To facilitate the investigation of PTMs on TM proteins, the PTM substrate sites and the structural topology are graphically represented. Also, literature information related to PTMs, orthologous conservations and substrate motifs of PTMs are also provided in the resource. Finally, this version features an improved web interface to facilitate convenient access to the resource.

  6. Efficient sortase-mediated N-terminal labeling of TEV protease cleaved recombinant proteins.

    Science.gov (United States)

    Sarpong, Kwabena; Bose, Ron

    2017-03-15

    A major challenge in attaching fluorophores or other handles to proteins is the availability of a site-specific labeling strategy that provides stoichiometric modification without compromising protein integrity. We developed a simple approach that combines TEV protease cleavage, sortase modification and affinity purification to N-terminally label proteins. To achieve stoichiometrically-labeled protein, we included a short affinity tag in the fluorophore-containing peptide for post-labeling purification of the modified protein. This strategy can be easily applied to any recombinant protein with a TEV site and we demonstrate this on Epidermal Growth Factor Receptor (EGFR) and Membrane Scaffold Protein (MSP) constructs. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Targeted Quantitation of Site-Specific Cysteine Oxidation in Endogenous Proteins Using a Differential Alkylation and Multiple Reaction Monitoring Mass Spectrometry Approach

    Science.gov (United States)

    Held, Jason M.; Danielson, Steven R.; Behring, Jessica B.; Atsriku, Christian; Britton, David J.; Puckett, Rachel L.; Schilling, Birgit; Campisi, Judith; Benz, Christopher C.; Gibson, Bradford W.

    2010-01-01

    Reactive oxygen species (ROS) are both physiological intermediates in cellular signaling and mediators of oxidative stress. The cysteine-specific redox-sensitivity of proteins can shed light on how ROS are regulated and function, but low sensitivity has limited quantification of the redox state of many fundamental cellular regulators in a cellular context. Here we describe a highly sensitive and reproducible oxidation analysis approach (OxMRM) that combines protein purification, differential alkylation with stable isotopes, and multiple reaction monitoring mass spectrometry that can be applied in a targeted manner to virtually any cysteine or protein. Using this approach, we quantified the site-specific cysteine oxidation status of endogenous p53 for the first time and found that Cys182 at the dimerization interface of the DNA binding domain is particularly susceptible to diamide oxidation intracellularly. OxMRM enables analysis of sulfinic and sulfonic acid oxidation levels, which we validate by assessing the oxidation of the catalytic Cys215 of protein tyrosine phosphatase-1B under numerous oxidant conditions. OxMRM also complements unbiased redox proteomics discovery studies as a verification tool through its high sensitivity, accuracy, precision, and throughput. PMID:20233844

  8. Escherichia coli cell-free protein synthesis and isotope labeling of mammalian proteins.

    Science.gov (United States)

    Terada, Takaho; Yokoyama, Shigeyuki

    2015-01-01

    This chapter describes the cell-free protein synthesis method, using an Escherichia coli cell extract. This is a cost-effective method for milligram-scale protein production and is particularly useful for the production of mammalian proteins, protein complexes, and membrane proteins that are difficult to synthesize by recombinant expression methods, using E. coli and eukaryotic cells. By adjusting the conditions of the cell-free method, zinc-binding proteins, disulfide-bonded proteins, ligand-bound proteins, etc., may also be produced. Stable isotope labeling of proteins can be accomplished by the cell-free method, simply by using stable isotope-labeled amino acid(s) in the cell-free reaction. Moreover, the cell-free protein synthesis method facilitates the avoidance of stable isotope scrambling and dilution over the recombinant expression methods and is therefore advantageous for amino acid-selective stable isotope labeling. Site-specific stable isotope labeling is also possible with a tRNA molecule specific to the UAG codon. By the cell-free protein synthesis method, coupled transcription-translation is performed from a plasmid vector or a PCR-amplified DNA fragment encoding the protein. A milligram quantity of protein can be produced with a milliliter-scale reaction solution in the dialysis mode. More than a thousand solution structures have been determined by NMR spectroscopy for uniformly labeled samples of human and mouse functional domain proteins, produced by the cell-free method. Here, we describe the practical aspects of mammalian protein production by the cell-free method for NMR spectroscopy. © 2015 Elsevier Inc. All rights reserved.

  9. Site specific plan

    International Nuclear Information System (INIS)

    Hutchison, J.; Jernigan, G.

    1989-12-01

    The Environmental Restoration and Waste Management Five-Year Plan (FYP) covers the period for FY 1989 through FY 1995. The plan establishes a Department of Energy -- Headquarters (DOE-HQ) agenda for cleanup and compliance against which overall progress can be measured. The FYP covers three areas: Corrective Activities, Environmental Restoration, and Waste Management Operations. Corrective Activities are those activities necessary to bring active or standby facilities into compliance with local, state, and federal environmental regulations. Environmental restoration activities include the assessment and cleanup of surplus facilities and inactive waste sites. Waste management operations includes the treatment, storage, and disposal of wastes which are generated as a result of ongoing operations. This Site Specific Plan (SSP) has been prepared by the Savannah River Site (SRS) in order to show how environmental restoration and waste management activities that were identified during the preparation of the FYP will be implemented, tracked, and reported. The SSP describes DOE Savannah River (DOE-SR) and operating contractor, Westinghouse Savannah River Company (WSRC), organizations that are responsible, for undertaking the activities identified in this plan. The SSP has been prepared in accordance with guidance received from DOE-HQ. DOE-SR is accountable to DOE-HQ for the implementation of this plan. 8 refs., 46 figs., 23 tabs

  10. CTCF Binding Sites in the Herpes Simplex Virus 1 Genome Display Site-Specific CTCF Occupation, Protein Recruitment, and Insulator Function.

    Science.gov (United States)

    Washington, Shannan D; Musarrat, Farhana; Ertel, Monica K; Backes, Gregory L; Neumann, Donna M

    2018-04-15

    There are seven conserved CTCF binding domains in the herpes simplex virus 1 (HSV-1) genome. These binding sites individually flank the latency-associated transcript (LAT) and the immediate early (IE) gene regions, suggesting that CTCF insulators differentially control transcriptional domains in HSV-1 latency. In this work, we show that two CTCF binding motifs in HSV-1 display enhancer blocking in a cell-type-specific manner. We found that CTCF binding to the latent HSV-1 genome was LAT dependent and that the quantity of bound CTCF was site specific. Following reactivation, CTCF eviction was dynamic, suggesting that each CTCF site was independently regulated. We explored whether CTCF sites recruit the polycomb-repressive complex 2 (PRC2) to establish repressive domains through a CTCF-Suz12 interaction and found that Suz12 colocalized to the CTCF insulators flanking the ICP0 and ICP4 regions and, conversely, was removed at early times postreactivation. Collectively, these data support the idea that CTCF sites in HSV-1 are independently regulated and may contribute to lytic-latent HSV-1 control in a site-specific manner. IMPORTANCE The role of chromatin insulators in DNA viruses is an area of interest. It has been shown in several beta- and gammaherpesviruses that insulators likely control the lytic transcriptional profile through protein recruitment and through the formation of three-dimensional (3D) chromatin loops. The ability of insulators to regulate alphaherpesviruses has been understudied to date. The alphaherpesvirus HSV-1 has seven conserved insulator binding motifs that flank regions of the genome known to contribute to the establishment of latency. Our work presented here contributes to the understanding of how insulators control transcription of HSV-1. Copyright © 2018 American Society for Microbiology.

  11. Protein labelling with stable isotopes: strategies

    International Nuclear Information System (INIS)

    Lirsac, P.N.; Gilles, N.; Jamin, N.; Toma, F.; Gabrielsen, O.; Boulain, J.C.; Menez, A.

    1994-01-01

    A protein labelling technique with stable isotopes has been developed at the CEA: a labelled complete medium has been developed, performing as well as the Luria medium, but differing from it because it contains not only free aminated acids and peptides, but also sugars (96% of D-glucopyrannose) and labelled nucleosides. These precursors are produced from a labelled photosynthetic micro-organisms biomass, obtained with micro-algae having incorporated carbon 13, nitrogen 15 and deuterium during their culture. Labelling costs are reduced. 1 fig., 1 tab., 3 refs

  12. Site Specific Discrete PEGylation of 124I-Labeled mCC49 Fab′ Fragments Improves Tumor MicroPET/CT Imaging in Mice

    Science.gov (United States)

    Ding, Haiming; Carlton, Michelle M.; Povoski, Stephen P.; Milum, Keisha; Kumar, Krishan; Kothandaraman, Shankaran; Hinkle, George H.; Colcher, David; Brody, Rich; Davis, Paul D.; Pokora, Alex; Phelps, Mitchell; Martin, Edward W.; Tweedle, Michael F.

    2014-01-01

    The tumor-associated glycoprotein-72 (TAG-72) antigen is highly overexpressed in various human adenocarcinomas and anti-TAG-72 monoclonal antibodies, and fragments are therefore useful as pharmaceutical targeting vectors. In this study, we investigated the effects of site-specific PEGylation with MW 2–4 kDa discrete, branched PEGylation reagents on mCC49 Fab′ (MW 50 kDa) via in vitro TAG72 binding, and in vivo blood clearance kinetics, biodistribution, and mouse tumor microPET/CT imaging. mCC49Fab′ (Fab′-NEM) was conjugated at a hinge region cysteine with maleimide-dPEG12-(dPEG24COOH)3 acid (Mal-dPEG-A), maleimide-dPEG12-(dPEG12COOH)3 acid (Mal-dPEG-B), or maleimide-dPEG12-(m-dPEG24)3 (Mal-dPEG-C), and then radiolabeled with iodine-124 (124I) in vitro radioligand binding assays and in vivo studies used TAG-72 expressing LS174T human colon carcinoma cells and xenograft mouse tumors. Conjugation of mCC49Fab′ with Mal-dPEG-A (Fab′-A) reduced the binding affinity of the non PEGylated Fab′ by 30%; however, in vivo, Fab′-A significantly lengthened the blood retention vs Fab′-NEM (47.5 vs 28.1%/ID at 1 h, 25.1 vs 8.4%/ID at 5 h, p Fab′-NEM by 70%, blood retention, microPET/CT imaging tumor signal intensity, and residual 72 h tumor concentration by 49% (3.83 ± 1.50 vs 1.97 ± 0.29%ID/g, p < 0.05) and 63% (3.83 ± 1.50 vs 1.42 ± 0.35%ID/g, p < 0.05), respectively. We conclude that remarkably subtle changes in the structure of the PEGylation reagent can create significantly altered biologic behavior. Further study is warranted of conjugates of the triple branched, negatively charged Mal-dPEG-A. PMID:24175669

  13. Labeling proteins on live mammalian cells using click chemistry.

    Science.gov (United States)

    Nikić, Ivana; Kang, Jun Hee; Girona, Gemma Estrada; Aramburu, Iker Valle; Lemke, Edward A

    2015-05-01

    We describe a protocol for the rapid labeling of cell-surface proteins in living mammalian cells using click chemistry. The labeling method is based on strain-promoted alkyne-azide cycloaddition (SPAAC) and strain-promoted inverse-electron-demand Diels-Alder cycloaddition (SPIEDAC) reactions, in which noncanonical amino acids (ncAAs) bearing ring-strained alkynes or alkenes react, respectively, with dyes containing azide or tetrazine groups. To introduce ncAAs site specifically into a protein of interest (POI), we use genetic code expansion technology. The protocol can be described as comprising two steps. In the first step, an Amber stop codon is introduced--by site-directed mutagenesis--at the desired site on the gene encoding the POI. This plasmid is then transfected into mammalian cells, along with another plasmid that encodes an aminoacyl-tRNA synthetase/tRNA (RS/tRNA) pair that is orthogonal to the host's translational machinery. In the presence of the ncAA, the orthogonal RS/tRNA pair specifically suppresses the Amber codon by incorporating the ncAA into the polypeptide chain of the POI. In the second step, the expressed POI is labeled with a suitably reactive dye derivative that is directly supplied to the growth medium. We provide a detailed protocol for using commercially available ncAAs and dyes for labeling the insulin receptor, and we discuss the optimal surface-labeling conditions and the limitations of labeling living mammalian cells. The protocol involves an initial cloning step that can take 4-7 d, followed by the described transfections and labeling reaction steps, which can take 3-4 d.

  14. Indirect labeling of proteins with radioiodine

    International Nuclear Information System (INIS)

    Araujo, Elaine Bortoleti de; Lavinas, Tatiana; Muramoto, Emiko; Pereira, Nilda P.S. de; Silva, Constancia P.G.; Tavares, Leoberto C.

    2000-01-01

    A procedure is described for the radioiodination of proteins using an iodinated derivative of N succinimidyl 3-(tri-n-butylstannyl)benzoate (ATE), previously described by Zalutsky. ATE was obtained in a high pure form and the iodination has been performed with 131-Iodine in 70-80% yield. Protein labeling studies performed with human IgG indicate that the ATE intermediate is an important alternative to conventional labeling methods. (author)

  15. Labeling proteins inside living cells using external fluorophores for microscopy.

    Science.gov (United States)

    Teng, Kai Wen; Ishitsuka, Yuji; Ren, Pin; Youn, Yeoan; Deng, Xiang; Ge, Pinghua; Lee, Sang Hak; Belmont, Andrew S; Selvin, Paul R

    2016-12-09

    Site-specific fluorescent labeling of proteins inside live mammalian cells has been achieved by employing Streptolysin O, a bacterial enzyme which forms temporary pores in the membrane and allows delivery of virtually any fluorescent probes, ranging from labeled IgG's to small ligands, with high efficiency (>85% of cells). The whole process, including recovery, takes 30 min, and the cell is ready to be imaged immediately. A variety of cell viability tests were performed after treatment with SLO to ensure that the cells have intact membranes, are able to divide, respond normally to signaling molecules, and maintains healthy organelle morphology. When combined with Oxyrase, a cell-friendly photostabilizer, a ~20x improvement in fluorescence photostability is achieved. By adding in glutathione, fluorophores are made to blink, enabling super-resolution fluorescence with 20-30 nm resolution over a long time (~30 min) under continuous illumination. Example applications in conventional and super-resolution imaging of native and transfected cells include p65 signal transduction activation, single molecule tracking of kinesin, and specific labeling of a series of nuclear and cytoplasmic protein complexes.

  16. Selective Labeling of Proteins on Living Cell Membranes Using Fluorescent Nanodiamond Probes

    Directory of Open Access Journals (Sweden)

    Shingo Sotoma

    2016-03-01

    Full Text Available The impeccable photostability of fluorescent nanodiamonds (FNDs is an ideal property for use in fluorescence imaging of proteins in living cells. However, such an application requires highly specific labeling of the target proteins with FNDs. Furthermore, the surface of unmodified FNDs tends to adsorb biomolecules nonspecifically, which hinders the reliable targeting of proteins with FNDs. Here, we combined hyperbranched polyglycerol modification of FNDs with the β-lactamase-tag system to develop a strategy for selective imaging of the protein of interest in cells. The combination of these techniques enabled site-specific labeling of Interleukin-18 receptor alpha chain, a membrane receptor, with FNDs, which eventually enabled tracking of the diffusion trajectory of FND-labeled proteins on the membrane surface.

  17. RFP tags for labeling secretory pathway proteins

    Energy Technology Data Exchange (ETDEWEB)

    Han, Liyang; Zhao, Yanhua [State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Zhang, Xi; Peng, Jianxin [College of Life Sciences, Central China Normal University, Wuhan 430079, Hubei (China); Xu, Pingyong, E-mail: pyxu@ibp.ac.cn [Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China); Huan, Shuangyan, E-mail: shuangyanhuan@163.com [State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Zhang, Mingshu, E-mail: mingshu1984@gmail.com [Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China)

    2014-05-09

    Highlights: • Membrane protein Orai1 can be used to report the fusion properties of RFPs. • Artificial puncta are affected by dissociation constant as well as pKa of RFPs. • Among tested RFPs mOrange2 is the best choice for secretory protein labeling. - Abstract: Red fluorescent proteins (RFPs) are useful tools for live cell and multi-color imaging in biological studies. However, when labeling proteins in secretory pathway, many RFPs are prone to form artificial puncta, which may severely impede their further uses. Here we report a fast and easy method to evaluate RFPs fusion properties by attaching RFPs to an environment sensitive membrane protein Orai1. In addition, we revealed that intracellular artificial puncta are actually colocalized with lysosome, thus besides monomeric properties, pKa value of RFPs is also a key factor for forming intracellular artificial puncta. In summary, our current study provides a useful guide for choosing appropriate RFP for labeling secretory membrane proteins. Among RFPs tested, mOrange2 is highly recommended based on excellent monomeric property, appropriate pKa and high brightness.

  18. Photoaffinity labeling of the oxysterol binding protein

    International Nuclear Information System (INIS)

    Taylor, F.R.; Kandutsch, A.A.; Anzalone, L.; Spencer, T.A.

    1986-01-01

    A cytosolic receptor protein for oxygenated sterols, that is thought to be involved in the regulation of HMG-CoA reductase and cholesterol biosynthesis, can be labeled covalently by the photoactivated affinity compound [5,6- 3 H]-7,7'-azocholestane-3β,25-diol (I). Several other compounds were tested including 25-hydroxycholesta-4,6-dien-3-one, 25-azido-27-norcholest-5-en-3β-ol,3β,25-dihydroxycholest-5-en-7-one and 3β-hydroxycholesta-8(14),9(11)-dien-15-one. However, these sterols either did not bind to the receptor with adequate affinity or did not react covalently with the receptor during photolysis. Compound I binds to the receptor with very high affinity (K/sub d/ = 30 nM). After activation with long wavelength UV, two tritium labeled proteins, M/sub r/ approximately 95K and 65K daltons, are found upon SDS gel electrophoresis. No labeling occurs when the binding reaction is carried out in the presence of a large excess of 25-hydroxycholesterol. It is possible that the smaller polypeptide is a degradation product. Under the reaction conditions investigated so far labeling is relatively inefficient (< 1% of bound sterol). These results are generally consistent with previous information suggesting that the M/sub r/ of the receptor subunit is 97,000. Covalent labeling of the receptor should greatly facilitate its further purification and characterization

  19. A comparative study on the radioactive labelling of proteins

    International Nuclear Information System (INIS)

    Koch, G.K.; Heertje, I.; Stijn, F. van

    1977-01-01

    The main methods in protein labelling are exchange labelling, iodination, acylation and alkylation. The universal application of the techniques is evaluated by a number of criteria, derived from the demand that labelled proteins should be as identical to the native ones as possible. From our experiences on labelling methods it is concluded that reductive methylation meets most requirements. (orig.) [de

  20. Semantic role labeling for protein transport predicates

    Directory of Open Access Journals (Sweden)

    Martin James H

    2008-06-01

    Full Text Available Abstract Background Automatic semantic role labeling (SRL is a natural language processing (NLP technique that maps sentences to semantic representations. This technique has been widely studied in the recent years, but mostly with data in newswire domains. Here, we report on a SRL model for identifying the semantic roles of biomedical predicates describing protein transport in GeneRIFs – manually curated sentences focusing on gene functions. To avoid the computational cost of syntactic parsing, and because the boundaries of our protein transport roles often did not match up with syntactic phrase boundaries, we approached this problem with a word-chunking paradigm and trained support vector machine classifiers to classify words as being at the beginning, inside or outside of a protein transport role. Results We collected a set of 837 GeneRIFs describing movements of proteins between cellular components, whose predicates were annotated for the semantic roles AGENT, PATIENT, ORIGIN and DESTINATION. We trained these models with the features of previous word-chunking models, features adapted from phrase-chunking models, and features derived from an analysis of our data. Our models were able to label protein transport semantic roles with 87.6% precision and 79.0% recall when using manually annotated protein boundaries, and 87.0% precision and 74.5% recall when using automatically identified ones. Conclusion We successfully adapted the word-chunking classification paradigm to semantic role labeling, applying it to a new domain with predicates completely absent from any previous studies. By combining the traditional word and phrasal role labeling features with biomedical features like protein boundaries and MEDPOST part of speech tags, we were able to address the challenges posed by the new domain data and subsequently build robust models that achieved F-measures as high as 83.1. This system for extracting protein transport information from Gene

  1. Position for Site-Specific Attachment of a DOTA Chelator to Synthetic Affibody Molecules Has a Different Influence on the Targeting Properties of 68Ga-Compared to 111In-Labeled Conjugates

    Directory of Open Access Journals (Sweden)

    Hadis Honarvar

    2014-12-01

    Full Text Available Affibody molecules, small (7 kDa scaffold proteins, are a promising class of probes for radionuclide molecular imaging. Radiolabeling of Affibody molecules with the positron-emitting nuclide 68Ga would permit the use of positron emission tomography (PET, providing better resolution, sensitivity, and quantification accuracy than single-photon emission computed tomography (SPECT. The synthetic anti-HER2 ZHER2:S1 Affibody molecule was conjugated with DOTA at the N-terminus, in the middle of helix 3, or at the C-terminus. The biodistribution of 68Ga- and 111In-labeled Affibody molecules was directly compared in NMRI nu/nu mice bearing SKOV3 xenografts. The position of the chelator strongly influenced the biodistribution of the tracers, and the influence was more pronounced for 68Ga-labeled Affibody molecules than for the 111In-labeled counterparts. The best 68Ga-labeled variant was 68Ga-[DOTA-A1]-ZHER2:S1 which provided a tumor uptake of 13 ± 1 %ID/g and a tumor to blood ratio of 39 ± 12 at 2 hours after injection. 111In-[DOTA-A1]-ZHER2:S1 and 111In-[DOTA-K58]-ZHER2:S1 were equally good at this time point, providing a tumor uptake of 15 to 16 %ID/g and a tumor to blood ratio in the range of 60 to 80. In conclusion, the selection of the best position for a chelator in Affibody molecules can be used for optimization of their imaging properties. This may be important for the development of Affibody-based and other protein-based imaging probes.

  2. Site-specific protein O-glycosylation modulates proprotein processing - Deciphering specific functions of the large polypeptide GalNAc-transferase gene family

    DEFF Research Database (Denmark)

    Schjoldager, Katrine Ter-Borch Gram; Clausen, Henrik

    2012-01-01

    Posttranslational modifications (PTMs) greatly expand the function and regulation of proteins, and glycosylation is the most abundant and diverse PTM. Of the many different types of protein glycosylation, one is quite unique; GalNAc-type (or mucin-type) O-glycosylation, where biosynthesis...... and considerable redundancy. Recently we have begun to uncover human diseases associated with deficiencies in GalNAc-T genes (GALNTs). Thus deficiencies in individual GALNTs produce cell and protein specific effects and subtle distinct phenotypes such as hyperphosphatemia with hyperostosis (GALNT3...

  3. Sparse "1"3C labelling for solid-state NMR studies of P. pastoris expressed eukaryotic seven-transmembrane proteins

    International Nuclear Information System (INIS)

    Liu, Jing; Liu, Chang; Fan, Ying; Munro, Rachel A.; Ladizhansky, Vladimir; Brown, Leonid S.; Wang, Shenlin

    2016-01-01

    We demonstrate a novel sparse "1"3C labelling approach for methylotrophic yeast P. pastoris expression system, towards solid-state NMR studies of eukaryotic membrane proteins. The labelling scheme was achieved by co-utilizing natural abundance methanol and specifically "1"3C labelled glycerol as carbon sources in the expression medium. This strategy improves the spectral resolution by 1.5 fold, displays site-specific labelling patterns, and has advantages for collecting long-range distance restraints for structure determination of large eukaryotic membrane proteins by solid-state NMR.

  4. Engineered, highly reactive substrates of microbial transglutaminase enable protein labeling within various secondary structure elements.

    Science.gov (United States)

    Rachel, Natalie M; Quaglia, Daniela; Lévesque, Éric; Charette, André B; Pelletier, Joelle N

    2017-11-01

    Microbial transglutaminase (MTG) is a practical tool to enzymatically form isopeptide bonds between peptide or protein substrates. This natural approach to crosslinking the side-chains of reactive glutamine and lysine residues is solidly rooted in food and textile processing. More recently, MTG's tolerance for various primary amines in lieu of lysine have revealed its potential for site-specific protein labeling with aminated compounds, including fluorophores. Importantly, MTG can label glutamines at accessible positions in the body of a target protein, setting it apart from most labeling enzymes that react exclusively at protein termini. To expand its applicability as a labeling tool, we engineered the B1 domain of Protein G (GB1) to probe the selectivity and enhance the reactivity of MTG toward its glutamine substrate. We built a GB1 library where each variant contained a single glutamine at positions covering all secondary structure elements. The most reactive and selective variants displayed a >100-fold increase in incorporation of a recently developed aminated benzo[a]imidazo[2,1,5-cd]indolizine-type fluorophore, relative to native GB1. None of the variants were destabilized. Our results demonstrate that MTG can react readily with glutamines in α-helical, β-sheet, and unstructured loop elements and does not favor one type of secondary structure. Introducing point mutations within MTG's active site further increased reactivity toward the most reactive substrate variant, I6Q-GB1, enhancing MTG's capacity to fluorescently label an engineered, highly reactive glutamine substrate. This work demonstrates that MTG-reactive glutamines can be readily introduced into a protein domain for fluorescent labeling. © 2017 The Protein Society.

  5. A chemical approach for site-specific identification of NMR signals from protein side-chain NH{sub 3}{sup +} groups forming intermolecular ion pairs in protein–nucleic acid complexes

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Kurtis M. [University of Texas Health Science Center at Houston, Department of NanoMedicine and Biomedical Engineering and Institute of Molecular Medicine (United States); Nguyen, Dan; Esadze, Alexandre; Zandrashvili, Levani [University of Texas Medical Branch, Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics (United States); Gorenstein, David G. [University of Texas Health Science Center at Houston, Department of NanoMedicine and Biomedical Engineering and Institute of Molecular Medicine (United States); Iwahara, Junji, E-mail: juiwahar@utmb.edu, E-mail: j.iwahara@utmb.edu [University of Texas Medical Branch, Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics (United States)

    2015-05-15

    Protein–nucleic acid interactions involve intermolecular ion pairs of protein side-chain and DNA or RNA phosphate groups. Using three protein–DNA complexes, we demonstrate that site-specific oxygen-to-sulfur substitution in phosphate groups allows for identification of NMR signals from the protein side-chain NH{sub 3}{sup +} groups forming the intermolecular ion pairs. A characteristic change in their {sup 1}H and {sup 15}N resonances upon this modification (i.e., substitution of phosphate to phosphorodithioate) can represent a signature of an intermolecular ion pair. Hydrogen-bond scalar coupling between protein side-chain {sup 15}N and DNA phosphorodithiaote {sup 31}P nuclei provides direct confirmation of the intermolecular ion pair. The same approach is likely applicable to protein–RNA complexes as well.

  6. A chemical approach for site-specific identification of NMR signals from protein side-chain NH3+ groups forming intermolecular ion pairs in protein–nucleic acid complexes

    International Nuclear Information System (INIS)

    Anderson, Kurtis M.; Nguyen, Dan; Esadze, Alexandre; Zandrashvili, Levani; Gorenstein, David G.; Iwahara, Junji

    2015-01-01

    Protein–nucleic acid interactions involve intermolecular ion pairs of protein side-chain and DNA or RNA phosphate groups. Using three protein–DNA complexes, we demonstrate that site-specific oxygen-to-sulfur substitution in phosphate groups allows for identification of NMR signals from the protein side-chain NH 3 + groups forming the intermolecular ion pairs. A characteristic change in their 1 H and 15 N resonances upon this modification (i.e., substitution of phosphate to phosphorodithioate) can represent a signature of an intermolecular ion pair. Hydrogen-bond scalar coupling between protein side-chain 15 N and DNA phosphorodithiaote 31 P nuclei provides direct confirmation of the intermolecular ion pair. The same approach is likely applicable to protein–RNA complexes as well

  7. Selective backbone labelling of ILV methyl labelled proteins

    International Nuclear Information System (INIS)

    Sibille, Nathalie; Hanoulle, Xavier; Bonachera, Fanny; Verdegem, Dries; Landrieu, Isabelle; Wieruszeski, Jean-Michel; Lippens, Guy

    2009-01-01

    Adding the 13 C labelled 2-keto-isovalerate and 2-oxobutanoate precursors to a minimal medium composed of 12 C labelled glucose instead of the commonly used ( 2 D, 13 C) glucose leads not only to the 13 C labelling of (I, L, V) methyls but also to the selective 13 C labelling of the backbone C α and CO carbons of the Ile and Val residues. As a result, the backbone ( 1 H, 15 N) correlations of the Ile and Val residues and their next neighbours in the (i + 1) position can be selectively identified in HN(CA) and HN(CO) planes. The availability of a selective HSQC spectrum corresponding to the sole amide resonances of the Ile and Val residues allows connecting them to their corresponding methyls by the intra-residue NOE effect, and should therefore be applicable to larger systems

  8. Comparative evaluation of synthetic anti-HER2 Affibody molecules site-specifically labelled with {sup 111}In using N-terminal DOTA, NOTA and NODAGA chelators in mice bearing prostate cancer xenografts

    Energy Technology Data Exchange (ETDEWEB)

    Malmberg, Jennie; Varasteh, Zohreh; Orlova, Anna [Uppsala University, Preclinical PET Platform, Department of Medicinal Chemistry, Uppsala (Sweden); Perols, Anna; Braun, Alexis; Eriksson Karlstroem, Amelie [AlbaNova University Centre, Division of Molecular Biotechnology, School of Biotechnology, KTH Royal Institute of Technology, Stockholm (Sweden); Altai, Mohamed; Tolmachev, Vladimir [Uppsala University, Unit of Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala (Sweden); Sandstroem, Mattias [Uppsala University Hospital, Section of Medical Physics, Department of Oncology, Uppsala (Sweden); Garske, Ulrike [Uppsala University Hospital, Department of Medical Sciences, Section of Nuclear Medicine, Uppsala (Sweden)

    2012-03-15

    In disseminated prostate cancer, expression of human epidermal growth factor receptor type 2 (HER2) is one of the pathways to androgen independence. Radionuclide molecular imaging of HER2 expression in disseminated prostate cancer might identify patients for HER2-targeted therapy. Affibody molecules are small (7 kDa) targeting proteins with high potential as tracers for radionuclide imaging. The goal of this study was to develop an optimal Affibody-based tracer for visualization of HER2 expression in prostate cancer. A synthetic variant of the anti-HER2 Z{sub HER2:342} Affibody molecule, Z{sub HER2:S1}, was N-terminally conjugated with the chelators DOTA, NOTA and NODAGA. The conjugated proteins were biophysically characterized by electrospray ionization mass spectroscopy (ESI-MS), circular dichroism (CD) spectroscopy and surface plasmon resonance (SPR)-based biosensor analysis. After labelling with {sup 111}In, the biodistribution was assessed in normal mice and the two most promising conjugates were further evaluated for tumour targeting in mice bearing DU-145 prostate cancer xenografts. The HER2-binding equilibrium dissociation constants were 130, 140 and 90 pM for DOTA-Z{sub HER2:S1}, NOTA-Z{sub HER2:S1} and NODAGA-Z{sub HER2:S1}, respectively. A comparative study of {sup 111}In-labelled DOTA-Z{sub HER2:S1}, NOTA-Z{sub HER2:S1} and NODAGA-Z{sub HER2:S1} in normal mice demonstrated a substantial influence of the chelators on the biodistribution properties of the conjugates. {sup 111}In-NODAGA-Z{sub HER2:S1} had the most rapid clearance from blood and healthy tissues. {sup 111}In-NOTA-Z{sub HER2:S1} showed high hepatic uptake and was excluded from further evaluation. {sup 111}In-DOTA-Z{sub HER2:S1} and {sup 111}In-NODAGA-Z{sub HER2:S1} demonstrated specific uptake in DU-145 prostate cancer xenografts in nude mice. The tumour uptake of {sup 111}In-NODAGA-Z{sub HER2:S1}, 5.6 {+-} 0.4%ID/g, was significantly lower than the uptake of {sup 111}In-DOTA-Z{sub HER2:S1

  9. Selectively dispersed isotope labeling for protein structure determination by magic angle spinning NMR

    Energy Technology Data Exchange (ETDEWEB)

    Eddy, Matthew T. [Massachusetts Institute of Technology, Department of Chemistry (United States); Belenky, Marina [Brandeis University, Department of Chemistry (United States); Sivertsen, Astrid C. [Massachusetts Institute of Technology, Francis Bitter Magnet Laboratory (United States); Griffin, Robert G. [Massachusetts Institute of Technology, Department of Chemistry (United States); Herzfeld, Judith, E-mail: herzfeld@brandeis.edu [Brandeis University, Department of Chemistry (United States)

    2013-10-15

    The power of nuclear magnetic resonance spectroscopy derives from its site-specific access to chemical, structural and dynamic information. However, the corresponding multiplicity of interactions can be difficult to tease apart. Complimentary approaches involve spectral editing on the one hand and selective isotope substitution on the other. Here we present a new 'redox' approach to the latter: acetate is chosen as the sole carbon source for the extreme oxidation numbers of its two carbons. Consistent with conventional anabolic pathways for the amino acids, [1-{sup 13}C] acetate does not label {alpha} carbons, labels other aliphatic carbons and the aromatic carbons very selectively, and labels the carboxyl carbons heavily. The benefits of this labeling scheme are exemplified by magic angle spinning spectra of microcrystalline immunoglobulin binding protein G (GB1): the elimination of most J-couplings and one- and two-bond dipolar couplings provides narrow signals and long-range, intra- and inter-residue, recoupling essential for distance constraints. Inverse redox labeling, from [2-{sup 13}C] acetate, is also expected to be useful: although it retains one-bond couplings in the sidechains, the removal of CA-CO coupling in the backbone should improve the resolution of NCACX spectra.

  10. Obtention of a prosthetic group for labelling of radioiodinated proteins

    International Nuclear Information System (INIS)

    Santos, Josefina da S.; Colturato, Maria Tereza; Araujo, Elaine B. de

    2000-01-01

    Antibodies and peptides labeled with radionuclides has been extensively used in radioimmunotherapy and radioimmunodetection. The principal problem with the use of radioiodinated proteins is the in vivo dehalogenation. The use of prosthetic groups for indirect labeling of proteins with radioiodine has showed to be useful on labeling proteins with greater in vivo stability. A procedure is described for the preparation of an radioiodinated prosthetic group (N-succinimidyl 4-radioiodine-benzoate-SIB), using procedure described by Stocklin et al, with the iodination of p-bromo-benzoic acid and subsequent reaction with TSTU. Preliminary labeling results showed that the prosthetic group can be obtained in a good yield. The coupling of the SIB to the protein will be studied using human IgG as protein model. (author)

  11. Myelin-associated proteins labelled by slow axonal transport

    International Nuclear Information System (INIS)

    Giorgi, P.P.; DuBois, H.

    1981-01-01

    This paper deals with the problem of protein metabolism and provides evidence that the neuronal contribution to myelin metabolism may be restricted to lipids only. On the other hand this line of research led to the partial characterization of a group of neuronal proteins probably involved in axo-glial interactions subserving the onset of myelination and the structural maintenance of the mature myelin sheath. Intraocular injection of radioactive amino acids allows the study of the anterograde transport of labelled proteins along retinofugal fibres which are well myelinated. Myelin extracted from the optic nerve and tract under these conditions also contains labelled proteins. Three hypotheses are available to explain this phenomenon. To offer an explanation for this phenomenon the work was planned as follows. a) Characterization of the spatio-temporal pattern of labelling of myelin, in order to define the experimental conditions (survival time and region of the optic pathway to be studied) necessary to obtain maximal labelling. b) Characterization (by gel electrophoresis) of the myelin-associated proteins which become labelled by axonal transport, in order to work on a consistent pattern of labelling. c) Investigation of the possible mechanism responsible for the labelling of myelin-associated proteins. (Auth.)

  12. Specific labeling and assignment strategies of valine methyl groups for NMR studies of high molecular weight proteins

    Energy Technology Data Exchange (ETDEWEB)

    Mas, Guillaume; Crublet, Elodie [Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS) (France); Hamelin, Olivier [CNRS (France); Gans, Pierre; Boisbouvier, Jérôme, E-mail: jerome.boisbouvier@ibs.fr [Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS) (France)

    2013-09-28

    The specific protonation of valine and leucine methyl groups in proteins is typically achieved by overexpressing proteins in M9/D{sub 2}O medium supplemented with either labeled α-ketoisovalerate for the labeling of the four prochiral methyl groups or with 2-acetolactate for the stereospecific labeling of the valine and leucine side chains. However, when these labeling schemes are applied to large protein assemblies, significant overlap between the correlations of the valine and leucine methyl groups occurs, hampering the analysis of 2D methyl-TROSY spectra. Analysis of the leucine and valine biosynthesis pathways revealed that the incorporation of labeled precursors in the leucine pathway can be inhibited by the addition of exogenous l-leucine-d{sub 10}. We exploited this property to label stereospecifically the pro-R and pro-S methyl groups of valine with minimal scrambling to the leucine residues. This new labeling protocol was applied to the 468 kDa homododecameric peptidase TET2 to decrease the complexity of its NMR spectra. All of the pro-S valine methyl resonances of TET2 were assigned by combining mutagenesis with this innovative labeling approach. The assignments were transferred to the pro-R groups using an optimally labeled sample and a set of triple resonance experiments. This improved labeling scheme enables us to overcome the main limitation of overcrowding in the NMR spectra of prochiral methyl groups, which is a prerequisite for the site-specific measurement of the structural and dynamic parameters or for the study of interactions in very large protein assemblies.

  13. Astatine-211 labelled proteins and their stability in vivo

    International Nuclear Information System (INIS)

    Yi Changhou; Jin Jannan; Zhang Shuyuan; Wang Ketai; Zhang Dayuan; Zhou Maolun

    1989-01-01

    211 At or 131 I labelled proteins, e.g. 211 At-IgG or 211 At-BSA (bovine serum albumin) were prepared by 211 At reaction with the diazo-compound of para-aminobenzoic acid, which is then conjugated with IgG or BSA via an acylation reaction. The 211 At-carbon bond was found metabolically stable under in vivo conditions. For the labelling of proteins with 211 At or 131 I, other methods of direct oxidation are also described. The results show that for the labelling of proteins with 211 At, high rate of incorporation can be obtained with hydrogen peroxide as oxidant, but the labelling of proteins with 131 I is more favourable with the strong oxidant Chloramine-T. (author) 12 refs.; 6 figs

  14. Labelling strategies for enhanced application of ICPMS in protein analysis

    International Nuclear Information System (INIS)

    Bettmer, J.; Kutscher, D.J.

    2009-01-01

    Full text: Quantitative protein analysis is one of today's challenges in analytical chemistry. Herein, mass spectrometric techniques play an important role with the use of both label-free and labelling approaches. In the field of ICPMS, the latter approach is attractive as it can provide highly sensitive detection of proteins after labelling with metal-containing compounds. Following a brief introduction to the different strategies described in the literature, this presentation will be focussed on protein labelling using a mercury compound (p-hydroxymercuribenzoic acid, pHMB). Besides fundamental studies on the derivatization process itself, a strategy will be presented in which absolute protein quantification can be achieved. Finally, the potential, but also limitations of the technique will be highlighted. (author)

  15. Labelling of proteins with radioiodine and their application

    International Nuclear Information System (INIS)

    Franek, M.; Hampl, J.; Rodak, L.; Hruska, K.; Prochazka, Z.

    1975-01-01

    Various techniques of labelling proteins and peptides with radioactive iodine are reviewed. Particular attention is focused on the mechanism of iodination of tyrosine used as a model substance for radioiodination of proteins. Particular consideration is given to recent techniques attaining high specific radioactivity without side effects on the protein molecule and to factors affecting the rate of iodination and its character (buffers, polarity of the reaction environment, molecule type, etc.). The suitability is shown of radioiodinated proteins in the studies of protein metabolism and in the radioimmunoanalytical determination of substances of both the protein and non-protein nature. The possibility of further application of radioiodinated protein is discussed. (author)

  16. Multi-Label Learning via Random Label Selection for Protein Subcellular Multi-Locations Prediction.

    Science.gov (United States)

    Wang, Xiao; Li, Guo-Zheng

    2013-03-12

    Prediction of protein subcellular localization is an important but challenging problem, particularly when proteins may simultaneously exist at, or move between, two or more different subcellular location sites. Most of the existing protein subcellular localization methods are only used to deal with the single-location proteins. In the past few years, only a few methods have been proposed to tackle proteins with multiple locations. However, they only adopt a simple strategy, that is, transforming the multi-location proteins to multiple proteins with single location, which doesn't take correlations among different subcellular locations into account. In this paper, a novel method named RALS (multi-label learning via RAndom Label Selection), is proposed to learn from multi-location proteins in an effective and efficient way. Through five-fold cross validation test on a benchmark dataset, we demonstrate our proposed method with consideration of label correlations obviously outperforms the baseline BR method without consideration of label correlations, indicating correlations among different subcellular locations really exist and contribute to improvement of prediction performance. Experimental results on two benchmark datasets also show that our proposed methods achieve significantly higher performance than some other state-of-the-art methods in predicting subcellular multi-locations of proteins. The prediction web server is available at http://levis.tongji.edu.cn:8080/bioinfo/MLPred-Euk/ for the public usage.

  17. Site-selective 13C labeling of proteins using erythrose

    International Nuclear Information System (INIS)

    Weininger, Ulrich

    2017-01-01

    NMR-spectroscopy enables unique experimental studies on protein dynamics at atomic resolution. In order to obtain a full atom view on protein dynamics, and to study specific local processes like ring-flips, proton-transfer, or tautomerization, one has to perform studies on amino-acid side chains. A key requirement for these studies is site-selective labeling with 13 C and/or 1 H, which is achieved in the most general way by using site-selectively 13 C-enriched glucose (1- and 2- 13 C) as the carbon source in bacterial expression systems. Using this strategy, multiple sites in side chains, including aromatics, become site-selectively labeled and suitable for relaxation studies. Here we systematically investigate the use of site-selectively 13 C-enriched erythrose (1-, 2-, 3- and 4- 13 C) as a suitable precursor for 13 C labeled aromatic side chains. We quantify 13 C incorporation in nearly all sites in all 20 amino acids and compare the results to glucose based labeling. In general the erythrose approach results in more selective labeling. While there is only a minor gain for phenylalanine and tyrosine side-chains, the 13 C incorporation level for tryptophan is at least doubled. Additionally, the Phe ζ and Trp η2 positions become labeled. In the aliphatic side chains, labeling using erythrose yields isolated 13 C labels for certain positions, like Ile β and His β, making these sites suitable for dynamics studies. Using erythrose instead of glucose as a source for site-selective 13 C labeling enables unique or superior labeling for certain positions and is thereby expanding the toolbox for customized isotope labeling of amino-acid side-chains.

  18. Aqueous Oxidative Heck Reaction as a Protein-Labeling Strategy

    NARCIS (Netherlands)

    Ourailidou, Marilena; van der Meer, Jan-Ytzen; Baas, Bert-Jan; Jeronimus-Stratingh, Catherine; Gottumukkala, Aditya L.; Poelarends, Gerrit J.; Minnaard, Adriaan J.; Dekker, Frans

    2014-01-01

    An increasing number of chemical reactions are being employed for bio-orthogonal ligation of detection labels to protein-bound functional groups. Several of these strategies, however, are limited in their application to pure proteins and are ineffective in complex biological samples such as cell

  19. Foot-printing of Protein Interactions by Tritium Labeling

    International Nuclear Information System (INIS)

    Mousseau, Guillaume; Thomas, Olivier P.; Agez, Morgane; Thai, Robert; Cintrat, Jean-Christophe; Rousseau, Bernard; Raffy, Quentin; Renault, Jean Philippe; Pin, Serge; Ochsenbein, Francoise

    2010-01-01

    A new foot-printing method for mapping protein interactions has been developed, using tritium as a radioactive label. As residues involved in an interaction are less labeled when the complex is formed, they can be identified via comparison of the tritium incorporation of each residue of the bound protein with that of the unbound one. Application of this foot-printing method to the complex formed by the histone H3 fragment H3 122-135 and the protein hAsflA 1-156 afforded data in good agreement with NMR results. (authors)

  20. {sup 125}I Labelling of Protein Using Immobilized Enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Rok; Park, Kyung Bae; Awh, Ok Doo [Korea Advanced Energy Research Institute, Daejeon (Korea, Republic of)

    1984-03-15

    For an effective solid-phase labelling of protein with {sup 125}I, studies on the immobilization of lactoperoxidase (LPO) on the inner wall of polystyrene tubes were carried out. Labelling of bovine serum albumin (BSA) and insulin was also practiced using the LPO immobilized tubes. The immobilized enzyme of about 2.5 mu g/tube was sufficient for small scale labelling since the results of radio-paper chromatography of the labelling mixture of insulin indicated that the yields were sufficiently high (80%) even in the reactions conducted at room temperature for 60 sec. The results of the Sephadex column chromatography indicated that the labelled products were not contaminated with LPO-{sup 125}I, and the radiochemical purity of the products was more than 90%. In considering the general trend that the {sup 125}I labelled protein obtained by using LPO maintains its intactness better than those obtained by using chloramine-T, together with the tendency of yield enhancing with increase of reactants-concentration, the LPO immobilized tube method is estimated to be one of the simple methods of labelling. The product might be applicable without further purification.

  1. Site-specific weed control technologies

    DEFF Research Database (Denmark)

    Christensen, Svend; Søgaard, Henning Tangen; Kudsk, Per

    2009-01-01

    Site-specific weed control technologies are defined as machinery or equipment embedded with technologies that detect weeds growing in a crop and, taking into account predefined factors such as economics, takes action to maximise the chances of successfully controlling them. In the article, we...... describe the basic parts of site specific weed control technologies, comprising of weed sensing systems, weed management models and precision weed control implements. A review of state-of-the-art technologies shows that several weed sensing systems and precision implements have been developed over the last...... of knowledge about the economic and environmental potential for increasing the resolution of weed control. The integration of site-specific information on weed distribution, weed species composition and density, and the effect on crop yield, is decisive for successful site-specific weed management.   Keywords...

  2. A SIMPLE FLUORESCENT LABELING METHOD FOR STUDIES OF PROTEIN OXIDATION, PROTEIN MODIFICATION, AND PROTEOLYSIS

    Science.gov (United States)

    Pickering, Andrew. M.; Davies, Kelvin. J. A.

    2014-01-01

    Proteins are sensitive to oxidation, and oxidized proteins are excellent substrates for degradation by proteolytic enzymes such as the Proteasome and the mitochondrial Lon protease. Protein labeling is required for studies of protein turnover. Unfortunately, most labeling techniques involve 3H or 14C methylation which is expensive, exposes researchers to radioactivity, generates large amounts of radioactive waste, and allows only single-point assays because samples require acid-precipitation. Alternative labeling methods, have largely proven unsuitable, either because the probe itself is modified by the oxidant(s) being studied, or because the alternative labeling techniques are too complex or too costly for routine use. What is needed is a simple, quick, and cheap labeling technique that uses a non-radioactive marker, that binds strongly to proteins, is resistant to oxidative modification, and emits a strong signal. We have devised a new reductive method for labeling free carboxyl groups of proteins with the small fluorophore 7-amino-4-methycoumarin (AMC). When bound to target proteins, AMC fluoresces very weakly but when AMC is released by proteinases, proteases, or peptidases, it fluoresces strongly. Thus, without acid-precipitation, the proteolysis of any target protein can be studied continuously, in multiwell plates. In direct comparisons, 3H-labeled proteins and AMC-labeled proteins exhibited essentially identical degradation patterns during incubation with trypsin, cell extracts, and purified proteasome. AMC-labeled proteins are well-suited to study increased proteolytic susceptibility following protein modification, since the AMC-protein bond is resistant to oxidizing agents such as hydrogen peroxide and peroxynitrite, and is stable over time and to extremes of pH, temperature (even boiling), freeze-thawing, mercaptoethanol, and methanol. PMID:21988844

  3. High-energy intermediates in protein unfolding characterized by thiol labeling under nativelike conditions.

    Science.gov (United States)

    Malhotra, Pooja; Udgaonkar, Jayant B

    2014-06-10

    A protein unfolding reaction usually appears to be so dominated by a large free energy barrier that identifying and characterizing high-energy intermediates and, hence, dissecting the unfolding reaction into multiple structural transitions have proven to be a challenge. In particular, it has been difficult to identify any detected high-energy intermediate with the dry (DMG) and wet (WMG) molten globules that have been implicated in the unfolding reactions of at least some proteins. In this study, a native-state thiol labeling methodology was used to identify high-energy intermediates, as well as to delineate the barriers to the disruption of side chain packing interactions and to site-specific solvent exposure in different regions of the small protein, single-chain monellin (MNEI). Labeling studies of four single-cysteine-containing variants of MNEI have identified three high-energy intermediates, populated to very low extents under nativelike conditions. A significant dispersion in the opening rates of the cysteine side chains has allowed multiple steps, leading to the loss of side chain packing, to be resolved temporally. A detailed structural analysis of the positions of the four cysteine residue positions, which are buried to different depths within the protein, has suggested a direct correlation with the structure of a DMG, detected in previous studies. It is observed that side chain packing within the core of the protein is maintained, while that at the surface is disrupted, in the DMG. The core of the protein becomes solvent-exposed only in a WMG populated after the rate-limiting step of unfolding at high denaturant concentrations.

  4. Two-step protein labeling by using lipoic acid ligase with norbornene substrates and subsequent inverse-electron demand Diels-Alder reaction.

    Science.gov (United States)

    Best, Marcel; Degen, Anna; Baalmann, Mathis; Schmidt, Tobias T; Wombacher, Richard

    2015-05-26

    Inverse-electron-demand Diels-Alder cycloaddition (DAinv ) between strained alkenes and tetrazines is a highly bio-orthogonal reaction that has been applied in the specific labeling of biomolecules. In this work we present a two-step labeling protocol for the site-specific labeling of proteins based on attachment of a highly stable norbornene derivative to a specific peptide sequence by using a mutant of the enzyme lipoic acid ligase A (LplA(W37V) ), followed by the covalent attachment of tetrazine-modified fluorophores to the norbornene moiety through the bio-orthogonal DAinv  . We investigated 15 different norbornene derivatives for their selective enzymatic attachment to a 13-residue lipoic acid acceptor peptide (LAP) by using a standardized HPLC protocol. Finally, we used this two-step labeling strategy to label proteins in cell lysates in a site-specific manner and performed cell-surface labeling on living cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Protein labelling with avidin-biotin systems

    International Nuclear Information System (INIS)

    Hernandez B, B.E.

    1998-01-01

    The stability of connection in avidin-biotin system is very important due to the quadruple connections with avidin established with the same number of biotin molecules, which can amplify damage on cancer cells and increase specific activity of radio immuno conjugate in white cell. If between the first and second step (Ac Mo-biotin + avidin) enough time is left so that the monoclonal antibody accumulates in a therapeutic concentration required for the tumor or cancerous cells, then upon application of the third step (biotin-DTPA- 153 Sm) it is hoped that in the first 30 minutes after application, only radioactivity remains with tumor. However, so that the amount radioactivity is enough to destroy a tumor, it would be necessary to use 153 Sm with an activity of approximately 370 GBq (10 Ci)/ (mg). Since 99m Tc has similar chemistry to that of the 188 Re, it is possible to propose their conjugates with biotin-avidin-Ac Mo- 188 Re as a powerful option for therapeutic applications, this is, recommending the use of biotinylated labelled monoclonal antibody and the further injection of avidin to decrease of desirable effects on several other organs and bone marrow and high specific and selective action on tumor. On the other hand, we postulate the hypothesis in the sense that 188 Re complexes tend to be more stable than those of 99m Tc, probably due to their metabolism, in which radioactivity of 188 Re, not captured by tumor, is cleared easily from blood stream which results in a decrease of total and liver total dose in patient. (Author)

  6. EPR and NMR spectroscopy on spin-labeled proteins

    NARCIS (Netherlands)

    Finiguerra, Michelina Giuseppina

    2011-01-01

    Spin labeling and electron paramagnetic resonance (EPR) have been employed to study structure and dynamics of proteins. The surface polarity of four single cysteine mutants of the Zn-azurin in frozen solution were studied using 275 GHz EPR (J-band), with the advantage compared to 9 GHz (X-band) and

  7. DOE site-specific threat assessment

    International Nuclear Information System (INIS)

    West, D.J.; Al-Ayat, R.A.; Judd, B.R.

    1985-01-01

    A facility manager faced with the challenges of protecting a nuclear facility against potential threats must consider the likelihood and consequences of such threats, know the capabilities of the facility safeguards and security systems, and make informed decisions about the cost-effectivness of safeguards and security upgrades. To help meet these challenges, the San Francisco Operations Office of the Department of Energy, in conjunction with the Lawrence Livermore Laboratory, has developed a site-specific threat assessment approach and a quantitative model to improve the quality and consistency of site-specific threat assessment and resultant security upgrade decisions at sensitive Department of Energy facilities. 5 figs

  8. Comparative study of label and label-free techniques using shotgun proteomics for relative protein quantification.

    Science.gov (United States)

    Sjödin, Marcus O D; Wetterhall, Magnus; Kultima, Kim; Artemenko, Konstantin

    2013-06-01

    The analytical performance of three different strategies, iTRAQ (isobaric tag for relative and absolute quantification), dimethyl labeling (DML) and label free (LF) for relative protein quantification using shotgun proteomics have been evaluated. The methods have been explored using samples containing (i) Bovine proteins in known ratios and (ii) Bovine proteins in known ratios spiked into Escherichia coli. The latter case mimics the actual conditions in a typical biological sample with a few differentially expressed proteins and a bulk of proteins with unchanged ratios. Additionally, the evaluation was performed on both QStar and LTQ-FTICR mass spectrometers. LF LTQ-FTICR was found to have the highest proteome coverage while the highest accuracy based on the artificially regulated proteins was found for DML LTQ-FTICR (54%). A varying linearity (k: 0.55-1.16, r(2): 0.61-0.96) was shown for all methods within selected dynamic ranges. All methods were found to consistently underestimate Bovine protein ratios when matrix proteins were added. However, LF LTQ-FTICR was more tolerant toward a compression effect. A single peptide was demonstrated to be sufficient for a reliable quantification using iTRAQ. A ranking system utilizing several parameters important for quantitative proteomics demonstrated that the overall performance of the five different methods was; DML LTQ-FTICR>iTRAQ QStar>LF LTQ-FTICR>DML QStar>LF QStar. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Impact of transamination reactions and protein turnover on labeling dynamics in C-13-labeling experiments

    DEFF Research Database (Denmark)

    Grotkjær, Thomas; Åkesson, M.; Christensen, Bjarke

    2004-01-01

    A dynamic model describing carbon atom transitions in the central metabolism of Saccharomyces cerevisiae is used to investigate the influence of transamination reactions and protein turnover on the transient behavior of C-13-labeling chemostat experiments. The simulations performed suggest...... that carbon exchange due to transamination and protein turnover can significantly increase the required time needed for metabolites in the TCA cycle to reach isotopic steady state, which is in agreement with published experimental observations. On the other hand, transamination and protein turnover will speed...... behavior until after three residence times. These observations suggest that greater caution should be used while also pointing to new opportunities in the design and interpretation of C-13-labeling experiments....

  10. Prospects for site specific weed management

    DEFF Research Database (Denmark)

    Christensen, Svend; Rasmussen, Jesper; Pedersen, Søren Marcus

    2014-01-01

    Research on Site Specific Weed Management (SSWM) started in the late 80's. Since that moment, considerable research has been conducted on different aspects of SSWM, from fundamental studies on the spatial ecology of weeds to the applied development and testing of new technologies for weed detection...

  11. Technological advances in site-directed spin labeling of proteins.

    Science.gov (United States)

    Hubbell, Wayne L; López, Carlos J; Altenbach, Christian; Yang, Zhongyu

    2013-10-01

    Molecular flexibility over a wide time range is of central importance to the function of many proteins, both soluble and membrane. Revealing the modes of flexibility, their amplitudes, and time scales under physiological conditions is the challenge for spectroscopic methods, one of which is site-directed spin labeling EPR (SDSL-EPR). Here we provide an overview of some recent technological advances in SDSL-EPR related to investigation of structure, structural heterogeneity, and dynamics of proteins. These include new classes of spin labels, advances in measurement of long range distances and distance distributions, methods for identifying backbone and conformational fluctuations, and new strategies for determining the kinetics of protein motion. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Association of protein C23 with rapidly labeled nucleolar RNA

    International Nuclear Information System (INIS)

    Herrera, A.H.; Olson, M.O.

    1986-01-01

    The association of nucleolar phosphoprotein C23 with preribosomal ribonucleoprotein (RNP) particles was examined in Novikoff hepatoma nucleoli. RNA was labeled with [ 3 H]uridine for various times in cell suspensions, and RNP particles were extracted from isolated nucleoli and fractionated by sucrose gradient ultracentrifugation. The majority of protein C23 cosedimented with fractions containing rapidly labeled RNA (RL fraction). To determine whether there was a direct association of RNA with protein C23, the RL fraction was exposed to ultraviolet (UV) light (254 nm) for short periods of time. After 2 min of exposure there was a 50% decrease in C23 as measured by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analyses, with no significant further decrease at longer times. When UV-treated fractions were subjected to phenol/chloroform extractions, as much as 30% of the labeled RNA was found in the phenol (protein) layer, indicating that RNA became cross-linked to protein. Similarly, there was an increase in protein C23 extracted into the water layer after irradiation. By SDS-PAGE analyses the cross-linked species migrated more slowly than protein C23, appearing as a smear detected either by [ 3 H]uridine radioactivity or by anti-C23 antibody. With anti-C23 antibodies, up to 25% of the labeled RNA was precipitated from the RL fraction. Dot-blot hybridizations, using cloned rDNA fragments as probes, indicated that the RNA in the RL fraction and the immunoprecipitated RNA contained sequences from 18S and 28S ribosomal RNA

  13. Indirect Radiohalogenation of Targeting Proteins: Labelling Chemistry and Biological Characterisation

    Energy Technology Data Exchange (ETDEWEB)

    Orlova, Anna

    2003-03-01

    In about half of all newly diagnosed cancer cases, conventional treatment is not adequately curative, mainly due to the failure of conventional techniques to find and kill residual cells and metastases, which might consist of only a few malignant cells, without causing unacceptable complications to healthy tissue. To solve the problem a more selective delivery of cytotoxic substances to tumour cells is needed. The approach applied here is called 'tumour targeting' and implies the use of biomolecules that recognise specific molecular structures on the malignant cell surface. Such molecules are then used for a selective transport of toxic agents to the cancer cells. The use of radionuclides as cytotoxic substances has a number of advantages: 1) radiation does not cause severe resistance; 2) there is a cross-fire effect and 3) smaller amounts of nuclides are required than other cytotoxic substances to cause the same damage. Such an approach is called radionuclide tumour therapy. Several factors are important for the success of radionuclide therapy, such as the pharmacokinetics of the radiolabelled substance and its radiocatabolites, as well as the physical and chemical properties of the radiolabel used. Nuclear properties of the label should be consistent with the problem to be solved: primary diagnostics; quantification of pharmacokinetics and dose planning; or therapy. From this point of view, radiohalogens are an attractive group of radiolabels. Halogens have nuclides with a variety of physical properties while the chemical and biological properties of halogens are very similar. The same labelling procedures can be used for all heavy halogens, i.e. bromine, iodine and astatine. It has been demonstrated that the biodistribution of proteins labelled with different heavy halogens is quite similar. The main goal of the study was to develop protein radiohalogenation methods that provide a stable halogen-protein bond, convenient labelling chemistry that

  14. Nanoparticles for Site Specific Genome Editing

    Science.gov (United States)

    McNeer, Nicole Ali

    Triplex-forming peptide nucleic acids (PNAs) can be used to coordinate the recombination of short 50-60 by "donor DNA" fragments into genomic DNA, resulting in site-specific correction of genetic mutations or the introduction of advantageous genetic modifications. Site-specific gene editing in hematopoietic stem and progenitor cells (HSPCs) could result in treatment or cure of inherited disorders of the blood such as beta-thalassemia. Gene editing in HSPCs and differentiated T cells could help combat HIV/AIDs by modifying receptors, such as CCR5, necessary for R5-tropic HIV entry. However, translation of genome modification technologies to clinical practice is limited by challenges in intracellular delivery, especially in difficult-to-transfect hematolymphoid cells. In vivo gene editing could also provide novel treatment for systemic monogenic disorders such as cystic fibrosis, an autosomal recessive disorder caused by mutations in the cystic fibrosis transmembrane receptor. Here, we have engineered biodegradable nanoparticles to deliver oligonucleotides for site-specific genome editing of disease-relevant genes in human cells, with high efficiency, low toxicity, and editing of clinically relevant cell types. We designed nanoparticles to edit the human beta-globin and CCR5 genes in hematopoietic cells. We show that poly(lactic-co-glycolic acid) (PLGA) nanoparticles can delivery PNA and donor DNA for site-specific gene modification in human hematopoietic cells in vitro and in vivo in NOD-scid IL2rgammanull mice. Nanoparticles delivered by tail vein localized to hematopoietic compartments in the spleen and bone marrow of humanized mice, resulting in modification of the beta-globin and CCR5 genes. Modification frequencies ranged from 0.005 to 20% of cells depending on the organ and cell type, without detectable toxicity. This project developed highly versatile methods for delivery of therapeutics to hematolymphoid cells and hematopoietic stem cells, and will help to

  15. Improved segmental isotope labeling of proteins and application to a larger protein

    International Nuclear Information System (INIS)

    Otomo, Takanori; Teruya, Kenta; Uegaki, Koichi; Yamazaki, Toshio; Kyogoku, Yoshimasa

    1999-01-01

    A new isotope labeling technique for peptide segments in a protein sample was recently established using the protein splicing element intein [Yamazaki et al. (1998) J. Am. Chem. Soc., 120, 5591-5592]. This method makes it possible to observe signals of a selected amino (N-) or carboxyl (C-) terminal region along a peptide chain. However, there is a problem with the yield of the segmentally labeled protein. In this paper, we report an increase in the yield of the protein that enables the production of sufficient amounts of segmentally 13 C/ 15 N-labeled protein samples. This was achieved by improvement of the expression level of the N-terminal fragment in cells and the efficiency of refolding into the active splicing conformation. The N-terminal fragment was expressed as a fused protein with the cellulose binding domain at its N-terminus, which was expressed as an insoluble peptide in cells and the expression level was increased. Incubation with 2.5 M urea and 50% glycerol increased the efficiency of the refolding greatly, thereby raising the final yields of the ligated proteins. The feasibility of application of the method to a high-molecular-weight protein was demonstrated by the results for a maltose binding protein consisting of 370 amino acids. All four examined joints in the maltose binding protein were successfully ligated to produce segmentally labeled protein samples

  16. Production of radioiodinated prosthetic group for indirect protein labeling

    International Nuclear Information System (INIS)

    Santos, Josefina da Silva

    2001-01-01

    Monoclonal antibodies and their fragments and, more recently, radiolabeled peptides have been extensively studied in order to develop radiopharmaceuticals for diagnostic and therapy in Nuclear Medicine. The radioiodination of proteins can be done by a direct method, with radioiodine being incorporated in to a tyrosine residue of the protein by electrophilic substitution. The main problem in the use of radioiodinated proteins, is that they are often dehalogenated in vivo by the action of specific enzymes, probably because of the structural similarity between iodophenyl groups and thyroid hormones. Several protein radioiodination methods have been developed in order to minimize this in vivo dehalogenation using prosthetic groups for indirect labeling. In this case, the radioiodine is first incorporated in to the prosthetic group that is subsequently attached to a terminal amino group or to a ε-amino group of lysine residue. The aim of this work is to obtain a radioiodinated prosthetic group for indirect labeling of proteins. The prosthetic group selected was the N-succinimidyl-4-radioiodine benzoate (SIB), obtained by the iodination of the p-bromobenzoic acid followed by the reaction with TSTU (0-(N-succinimidyl)-N,N,N',N'-tetramethyl uronium tetrafluoroborate) The results of these studies showed that the p-radio iodobenzoic acid was obtained with a radiochemical purity greater than 92% and a labeling yield of about 65%. Some reaction parameters were studied like temperature, time and Cu Cl mass (cataliser). The SIB was quantitatively obtained from p-radio iodobenzoic acid, using basic medium and after removing the water from the reaction using an nitrogen stream. The kinetic of this reaction is very fast with complete consumption of the p-radioiodebenzoic acid after 5 minutes. The coupling of the SIB prosthetic group to the protein was studied using Human Immunoglobulin (IgG) as a protein model. In a comparative way, the same protein was used on direct labeling

  17. Facile method for the site-specific, covalent attachment of full-length IgG onto nanoparticles.

    Science.gov (United States)

    Hui, James Zhe; Al Zaki, Ajlan; Cheng, Zhiliang; Popik, Vladimir; Zhang, Hongtao; Luning Prak, Eline T; Tsourkas, Andrew

    2014-08-27

    Antibodies, most commonly IgGs, have been widely used as targeting ligands in research and therapeutic applications due to their wide array of targets, high specificity and proven efficacy. Many of these applications require antibodies to be conjugated onto surfaces (e.g. nanoparticles and microplates); however, most conventional bioconjugation techniques exhibit low crosslinking efficiencies, reduced functionality due to non-site-specific labeling and random surface orientation, and/or require protein engineering (e.g. cysteine handles), which can be technically challenging. To overcome these limitations, we have recombinantly expressed Protein Z, which binds the Fc region of IgG, with an UV active non-natural amino acid benzoylphenyalanine (BPA) within its binding domain. Upon exposure to long wavelength UV light, the BPA is activated and forms a covalent link between the Protein Z and the bound Fc region of IgG. This technology was combined with expressed protein ligation (EPL), which allowed for the introduction of a fluorophore and click chemistry-compatible azide group onto the C-terminus of Protein Z during the recombinant protein purification step. This enabled the crosslinked-Protein Z-IgG complexes to be efficiently and site-specifically attached to aza-dibenzocyclooctyne-modified nanoparticles, via copper-free click chemistry. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Protein aggregation and degradation during iodine labeling and its consequences for protein adsorption to biomaterials

    DEFF Research Database (Denmark)

    Holmberg, Maria; Jensen, Karin Bagger Stibius; Ndoni, Sokol

    2007-01-01

    Protein adsorption on modified and unmodified polymer surfaces investigated through radiolabeling experiments showed a tendency for higher than expected albumin and immunoglobulin G (IgG) adsorption. Possible enhanced protein aggregation and degradation caused by the iodine labeling method used w...

  19. Dansyl labeling and bidimensional mass spectrometry to investigate protein carbonylation.

    Science.gov (United States)

    Palmese, Angelo; De Rosa, Chiara; Marino, Gennaro; Amoresano, Angela

    2011-01-15

    Carbonylation is a non-enzymatic irreversible post-translational modification. The adduction of carbonyl groups to proteins is due to the presence of excess of ROS in cells. Carbonylation of specific amino acid side chains is one of the most abundant consequences of oxidative stress; therefore, the determination of carbonyl groups content in proteins is regarded as a reliable way to estimate the cellular damage caused by oxidative stress. This paper reports a novel RIGhT (Reporter Ion Generating Tag) (A. Amoresano, G. Monti, C. Cirulli, G. Marino. Rapid Commun. Mass Spectrom. 2006, 20, 1400) approach for selective labeling of carbonyl groups in proteins using dansylhydrazide, coupled with selective analysis by bidimensional mass spectrometry. We first applied this approach to ribonuclease A and lysozyme as model proteins. According to the so-called 'gel-free procedures', the analysis is carried out at the level of peptides following tryptic digest of the whole protein mixture. Modified RNaseA was analyzed in combined MS(2) and MS(3) scan mode, to specifically select the dansylated species taking advantage of the dansyl-specific fragmentation pathways. This combination allowed us to obtain a significant increase in signal/noise ratio and a significant increase in sensitivity of analysis, due to the reduction of duty cycle of the mass spectrometer. The unique signal obtained was correlated to peptide 1-10 of RNaseA carbonylated and labeled by dansylhydrazide. This strategy represents the first method leading to the direct identification of the carbonylation sites in proteins, thus indicating the feasibility of this strategy to investigate protein carbonylation in a proteomic approach. Copyright © 2010 John Wiley & Sons, Ltd.

  20. Localized conformational interrogation of antibody and antibody-drug conjugates by site-specific carboxyl group footprinting.

    Science.gov (United States)

    Pan, Lucy Yan; Salas-Solano, Oscar; Valliere-Douglass, John F

    Establishing and maintaining conformational integrity of monoclonal antibodies (mAbs) and antibody-drug conjugates (ADCs) during development and manufacturing is critical for ensuring their clinical efficacy. As presented here, we applied site-specific carboxyl group footprinting (CGF) for localized conformational interrogation of mAbs. The approach relies on covalent labeling that introduces glycine ethyl ester tags onto solvent-accessible side chains of protein carboxylates. Peptide mapping is used to monitor the labeling kinetics of carboxyl residues and the labeling kinetics reflects the conformation or solvent-accessibility of side chains. Our results for two case studies are shown here. The first study was aimed at defining the conformational changes of mAbs induced by deglycosylation. We found that two residues in C H 2 domain (D268 and E297) show significantly enhanced side chain accessibility upon deglycosylation. This site-specific result highlighted the advantage of monitoring the labeling kinetics at the amino acid level as opposed to the peptide level, which would result in averaging out of highly localized conformational differences. The second study was designed to assess conformational effects brought on by conjugation of mAbs with drug-linkers. All 59 monitored carboxyl residues displayed similar solvent-accessibility between the ADC and mAb under native conditions, which suggests the ADC and mAb share similar side chain conformation. The findings are well correlated and complementary with results from other assays. This work illustrated that site-specific CGF is capable of pinpointing local conformational changes in mAbs or ADCs that might arise during development and manufacturing. The methodology can be readily implemented within the industry to provide comprehensive conformational assessment of these molecules.

  1. Aptamer-mediated indirect quantum dot labeling and fluorescent imaging of target proteins in living cells

    International Nuclear Information System (INIS)

    Liu, Jianbo; Zhang, Pengfei; Yang, Xiaohai; Wang, Kemin; Guo, Qiuping; Huang, Jin; Li, Wei

    2014-01-01

    Protein labeling for dynamic living cell imaging plays a significant role in basic biological research, as well as in clinical diagnostics and therapeutics. We have developed a novel strategy in which the dynamic visualization of proteins within living cells is achieved by using aptamers as mediators for indirect protein labeling of quantum dots (QDs). With this strategy, the target protein angiogenin was successfully labeled with fluorescent QDs in a minor intactness model, which was mediated by the aptamer AL6-B. Subsequent living cell imaging analyses indicated that the QDs nanoprobes were selectively bound to human umbilical vein endothelial cells, gradually internalized into the cytoplasm, and mostly localized in the lysosome organelle, indicating that the labeled protein retained high activity. Compared with traditional direct protein labeling methods, the proposed aptamer-mediated strategy is simple, inexpensive, and provides a highly selective, stable, and intact labeling platform that has shown great promise for future biomedical labeling and intracellular protein dynamic analyses. (paper)

  2. Single-molecule mechanics of protein-labelled DNA handles

    Directory of Open Access Journals (Sweden)

    Vivek S. Jadhav

    2016-01-01

    Full Text Available DNA handles are often used as spacers and linkers in single-molecule experiments to isolate and tether RNAs, proteins, enzymes and ribozymes, amongst other biomolecules, between surface-modified beads for nanomechanical investigations. Custom DNA handles with varying lengths and chemical end-modifications are readily and reliably synthesized en masse, enabling force spectroscopic measurements with well-defined and long-lasting mechanical characteristics under physiological conditions over a large range of applied forces. Although these chemically tagged DNA handles are widely used, their further individual modification with protein receptors is less common and would allow for additional flexibility in grabbing biomolecules for mechanical measurements. In-depth information on reliable protocols for the synthesis of these DNA–protein hybrids and on their mechanical characteristics under varying physiological conditions are lacking in literature. Here, optical tweezers are used to investigate different protein-labelled DNA handles in a microfluidic environment under different physiological conditions. Digoxigenin (DIG-dsDNA-biotin handles of varying sizes (1000, 3034 and 4056 bp were conjugated with streptavidin or neutravidin proteins. The DIG-modified ends of these hybrids were bound to surface-modified polystyrene (anti-DIG beads. Using different physiological buffers, optical force measurements showed consistent mechanical characteristics with long dissociation times. These protein-modified DNA hybrids were also interconnected in situ with other tethered biotinylated DNA molecules. Electron-multiplying CCD (EMCCD imaging control experiments revealed that quantum dot–streptavidin conjugates at the end of DNA handles remain freely accessible. The experiments presented here demonstrate that handles produced with our protein–DNA labelling procedure are excellent candidates for grasping single molecules exposing tags suitable for molecular

  3. Savannah River Site's Site Specific Plan

    International Nuclear Information System (INIS)

    1991-01-01

    This Site Specific Plan (SSP) has been prepared by the Savannah River Site (SRS) in order to show the Environmental Restoration and Waste Management activities that were identified during the preparation of the Department of Energy-Headquarters (DOE-HQ) Environmental Restoration and Waste Management Five-Year Plan (FYP) for FY 1992--1996. The SSP has been prepared in accordance with guidance received from DOE-HQ. DOE-SR is accountable to DOE-HQ for the implementation of this plan. The purpose of the SSP is to develop a baseline for policy, budget, and schedules for the DOE Environmental Restoration and Waste Management activities. The plan explains accomplishments since the Fiscal Year (FY) 1990 plan, demonstrates how present and future activities are prioritized, identifies currently funded activities and activities that are planned to be funded in the upcoming fiscal year, and describes future activities that SRS is considering

  4. Site specific modification of the human plasma proteome by methylglyoxal

    International Nuclear Information System (INIS)

    Kimzey, Michael J.; Kinsky, Owen R.; Yassine, Hussein N.; Tsaprailis, George; Stump, Craig S.; Monks, Terrence J.; Lau, Serrine S.

    2015-01-01

    Increasing evidence identifies dicarbonyl stress from reactive glucose metabolites, such as methylglyoxal (MG), as a major pathogenic link between hyperglycemia and complications of diabetes. MG covalently modifies arginine residues, yet the site specificity of this modification has not been thoroughly investigated. Sites of MG adduction in the plasma proteome were identified using LC–MS/MS analysis in vitro following incubation of plasma proteins with MG. Treatment of plasma proteins with MG yielded 14 putative MG hotspots from five plasma proteins (albumin [nine hotspots], serotransferrin, haptoglobin [2 hotspots], hemopexin, and Ig lambda-2 chain C regions). The search results revealed two versions of MG-arginine modification, dihydroxyimidazolidine (R + 72) and hydroimidazolone (R + 54) adducts. One of the sites identified was R257 in human serum albumin, which is a critical residue located in drug binding site I. This site was validated as a target for MG modification by a fluorescent probe displacement assay, which revealed significant drug dissociation at 300 μM MG from a prodan–HSA complex (75 μM). Moreover, twelve human plasma samples (six male, six female, with two type 2 diabetic subjects from both genders) were analyzed using multiple reaction monitoring (MRM) tandem mass spectrometry and revealed the presence of the MG-modified albumin R257 peptide. These data provide insights into the nature of the site-specificity of MG modification of arginine, which may be useful for therapeutic treatments that aim to prevent MG-mediated adverse responses in patients. - Highlights: • Methylglyoxal (MG) selectively modifies arginine sites in human plasma proteome. • Dihydroxyimidazolidine and hydroimidazolone adducts on serum albumin identified • MG modification on albumin R257 associated with loss of drug site I binding capacity • MRM-tandem mass spectrometry enables sensitive detection of albumin MG-R257. • Site-specific MG modification may

  5. Site specific modification of the human plasma proteome by methylglyoxal

    Energy Technology Data Exchange (ETDEWEB)

    Kimzey, Michael J.; Kinsky, Owen R. [Southwest Environmental Health Sciences Center, Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721 (United States); Yassine, Hussein N. [Department of Medicine, The University of Arizona, Tucson, AZ 85721 (United States); Tsaprailis, George [Southwest Environmental Health Sciences Center, Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721 (United States); Stump, Craig S. [Department of Medicine, The University of Arizona, Tucson, AZ 85721 (United States); Southern Arizona VA Health Care System, Tucson, AZ 85723 (United States); Monks, Terrence J. [Southwest Environmental Health Sciences Center, Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721 (United States); Lau, Serrine S., E-mail: lau@pharmacy.arizona.edu [Southwest Environmental Health Sciences Center, Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721 (United States)

    2015-12-01

    Increasing evidence identifies dicarbonyl stress from reactive glucose metabolites, such as methylglyoxal (MG), as a major pathogenic link between hyperglycemia and complications of diabetes. MG covalently modifies arginine residues, yet the site specificity of this modification has not been thoroughly investigated. Sites of MG adduction in the plasma proteome were identified using LC–MS/MS analysis in vitro following incubation of plasma proteins with MG. Treatment of plasma proteins with MG yielded 14 putative MG hotspots from five plasma proteins (albumin [nine hotspots], serotransferrin, haptoglobin [2 hotspots], hemopexin, and Ig lambda-2 chain C regions). The search results revealed two versions of MG-arginine modification, dihydroxyimidazolidine (R + 72) and hydroimidazolone (R + 54) adducts. One of the sites identified was R257 in human serum albumin, which is a critical residue located in drug binding site I. This site was validated as a target for MG modification by a fluorescent probe displacement assay, which revealed significant drug dissociation at 300 μM MG from a prodan–HSA complex (75 μM). Moreover, twelve human plasma samples (six male, six female, with two type 2 diabetic subjects from both genders) were analyzed using multiple reaction monitoring (MRM) tandem mass spectrometry and revealed the presence of the MG-modified albumin R257 peptide. These data provide insights into the nature of the site-specificity of MG modification of arginine, which may be useful for therapeutic treatments that aim to prevent MG-mediated adverse responses in patients. - Highlights: • Methylglyoxal (MG) selectively modifies arginine sites in human plasma proteome. • Dihydroxyimidazolidine and hydroimidazolone adducts on serum albumin identified • MG modification on albumin R257 associated with loss of drug site I binding capacity • MRM-tandem mass spectrometry enables sensitive detection of albumin MG-R257. • Site-specific MG modification may

  6. Temporally-controlled site-specific recombination in zebrafish.

    Directory of Open Access Journals (Sweden)

    Stefan Hans

    Full Text Available Conventional use of the site-specific recombinase Cre is a powerful technology in mouse, but almost absent in other vertebrate model organisms. In zebrafish, Cre-mediated recombination efficiency was previously very low. Here we show that using transposon-mediated transgenesis, Cre is in fact highly efficient in this organism. Furthermore, temporal control of recombination can be achieved by using the ligand-inducible CreER(T2. Site-specific recombination only occurs upon administration of the drug tamoxifen (TAM or its active metabolite, 4-hydroxy-tamoxifen (4-OHT. Cre-mediated recombination is detectable already 4 or 2 hours after administration of TAM or 4-OHT, demonstrating fast recombination kinetics. In addition, low doses of TAM allow mosaic labeling of single cells. Combined, our results show that conditional Cre/lox will be a valuable tool for both, embryonic and adult zebrafish studies. Furthermore, single copy insertion transgenesis of Cre/lox constructs suggest a strategy suitable also for other organisms.

  7. Biological characterization of a new radioactive labeling reagent for bacterial penicillin-binding proteins

    International Nuclear Information System (INIS)

    Preston, D.A.; Wu, C.Y.; Blaszczak, L.C.; Seitz, D.E.; Halligan, N.G.

    1990-01-01

    Radiolabeled penicillin G is widely used as the imaging agent in penicillin-binding protein (PBP) assays. The disadvantages of most forms of labeled penicillin G are instability on storage and the long exposure times usually required for autoradiography or fluorography of electrophoretic gels. We investigated the utility of radioiodinated penicillin V as an alternative reagent. Radioiodination of p-(trimethylstannyl)penicillin V with [ 125 I]Na, using a modification of the chloramine-T method, is simple, high yielding, and site specific. We demonstrated the general equivalence of commercially obtained [ 3 H]penicillin G and locally synthesized [ 125 I]penicillin V (IPV) in their recognition of bacterial PBPs. Profiles of PBPs in membranes from Bacteroides fragilis, Escherichia coli, Providencia rettgeri, Staphylococcus aureus, Streptococcus pyogenes, Enterococcus faecalis, and Enterococcus faecium labeled with IPV or [3H]penicillin G were virtually identical. Use of IPV as the imaging agent in competition experiments for determination of the affinities of various beta-lactam antibiotics for the PBPs of E. coli yielded results similar to those obtained in experiments with [ 3 H]penicillin G. Dried electrophoretic gels from typical PBP experiments, using IPV at 37.3 Ci/mmol and 30 micrograms/ml, exposed X-ray film in 8 to 24 h. The stability of IPV on storage at 4 degrees C was inversely proportional to specific activity. At 37.3 Ci/mmol and 60 micrograms/ml, IPV retained useful activity for at least 60 days at 4 degrees C. IPV represents a practical and stable reagent for rapid PBP assays

  8. Additional phase information from UV damage of selenomethionine labelled proteins

    Energy Technology Data Exchange (ETDEWEB)

    Sanctis, Daniele de [ESRF, Structural Biology Group, 6 rue Jules Horowitz, 38043 Grenoble Cedex (France); Tucker, Paul A.; Panjikar, Santosh, E-mail: panjikar@embl-hamburg.de [EMBL Hamburg Outstation, c/o DESY, Notkestrasse 85, D-22603 Hamburg (Germany)

    2011-05-01

    Successful examples of ultraviolet radiation-damage-induced phasing with anomalous scattering from selenomethionine protein crystals have been demonstrated. Currently, selenium is the most widely used phasing vehicle for experimental phasing, either by single anomalous scattering or multiple-wavelength anomalous dispersion (MAD) procedures. The use of the single isomorphous replacement anomalous scattering (SIRAS) phasing procedure with selenomethionine containing proteins is not so commonly used, as it requires isomorphous native data. Here it is demonstrated that isomorphous differences can be measured from intensity changes measured from a selenium labelled protein crystal before and after UV exposure. These can be coupled with the anomalous signal from the dataset collected at the selenium absorption edge to obtain SIRAS phases in a UV-RIPAS phasing experiment. The phasing procedure for two selenomethionine proteins, the feruloyl esterase module of xylanase 10B from Clostridium thermocellum and the Mycobacterium tuberculosis chorismate synthase, have been investigated using datasets collected near the absorption edge of selenium before and after UV radiation. The utility of UV radiation in measuring radiation damage data for isomorphous differences is highlighted and it is shown that, after such measurements, the UV-RIPAS procedure yields comparable phase sets with those obtained from the conventional MAD procedure. The results presented are encouraging for the development of alternative phasing approaches for selenomethionine proteins in difficult cases.

  9. Site-directed fluorescence labeling of a membrane protein with BADAN: probing protein topology and local environment

    NARCIS (Netherlands)

    Koehorst, R.B.M.; Spruijt, R.B.; Hemminga, M.A.

    2008-01-01

    We present a new and simple method based on site-directed fluorescence labeling using the BADAN label that allows to examine protein-lipid interactions in great detail. We apply this approach to a membrane-embedded mainly -helical reference protein, the M13 major coat protein, of which in a

  10. Dynamic nuclear polarization of membrane proteins: covalently bound spin-labels at protein–protein interfaces

    International Nuclear Information System (INIS)

    Wylie, Benjamin J.; Dzikovski, Boris G.; Pawsey, Shane; Caporini, Marc; Rosay, Melanie; Freed, Jack H.; McDermott, Ann E.

    2015-01-01

    We demonstrate that dynamic nuclear polarization of membrane proteins in lipid bilayers may be achieved using a novel polarizing agent: pairs of spin labels covalently bound to a protein of interest interacting at an intermolecular interaction surface. For gramicidin A, nitroxide tags attached to the N-terminal intermolecular interface region become proximal only when bimolecular channels forms in the membrane. We obtained signal enhancements of sixfold for the dimeric protein. The enhancement effect was comparable to that of a doubly tagged sample of gramicidin C, with intramolecular spin pairs. This approach could be a powerful and selective means for signal enhancement in membrane proteins, and for recognizing intermolecular interfaces

  11. Site specific information in site selection

    International Nuclear Information System (INIS)

    Aeikaes, T.; Hautojaervi, A.

    1998-01-01

    The programme for the siting of a deep repository for final disposal of spent nuclear fuel was started already in 1983 and is carried out today by Posiva Oy which continues the work started by Teollisuuden Voima Oy. The programme aims at site selection by the end of the year 2000. The programme has progressed in successive interim stages with defined goals. After an early phase for site identification, five sites were selected in 1987 for preliminary site characterisation. Three of these were selected and judged to be best suited for the more detailed characterisation in 1992. An additional new site was included into the programme based on a separate feasibility study in the beginning of 1997. Since the year 1983 several safety assessments together with technical plans of the facility have been completed. When approaching the site selection the needs for more detailed consideration of the site specific properties in the safety assessment have been increased. The Finnish regulator STUK has published a proposal for general safety requirements for the final disposal of spent nuclear fuel in Finland. This set of requirements has been projected to be used in conjunction of the decision making by the end 2000. Based on the site evaluation all sites can provide a stable environment and there is evidence that the requirements for the longevity of the canister can be fulfilled at each site. In this manner the four candidate sites do not differ too much from each other. The main difference between the sites is in the salinity of the deep groundwater. The significance of differences in the salinity for the long-term safety cannot be defined yet. The differences may contribute to the discussion of the longevity of the bentonite buffer and also to the modelling of the groundwater flow and transport. The use of the geosphere as a transport barrier is basically culminated on the questions about sparse but fast flow routes and 'how bad channeling can be'. To answer these questions

  12. Effect of reagent charge on the labeling of erythrocyte membrane proteins by photoactivated reagents

    International Nuclear Information System (INIS)

    Schaeffer, J.C.; Hakimian, R.; Shimer, M.L.

    1986-01-01

    Leaky erythrocyte ghosts were labeled with 3 H-[2-(4-azido-2-nitroanilino)ethyl]trimethylammonium iodide (cationic label) or 3 H-N-(4-azido-2-nitrophenyl)-β-alanine (anionic label). After the membranes were thoroughly washed, seven times as much cationic label was associated with the membranes as anionic label at 5 μM, whereas at 50 μM the cationic label was favored 15-fold. The distribution of label in the membrane proteins was ascertain by SDS-gel electrophoresis followed by autoradiography. At 50 μM cationic label, erythrocyte membrane protein bands 1,2,3,4.2, and 5 were intensely labeled, while band 6 was labeled weakly. At 5 μM cationic label, bands 1 and 4.2 were heavily labeled, while 2,3 and 5 were labeled less well. At both 50 μM and 5 μM anionic label, bands 1 and 6 were most prominently labeled. Bands 2,3,4.2 and 5 were labeled also at 50 μM, but they were labeled only very weakly at 5 μM. Band 4.1 was labeled very poorly if at all by either reagent. A mixture of the reagents gave an additive pattern. Thus, the charge and concentration of these reagents appear to play a major role in their ability to label membrane proteins indiscriminately. Because these reagents contain the same chromophore, 4-azido-2-nitroaniline, and differ mainly only in their charge, they may prove useful in assessing the location of charged sites on proteins in supramolecular complexes

  13. Taxon- and Site-Specific Melatonin Catabolism

    Directory of Open Access Journals (Sweden)

    Rüdiger Hardeland

    2017-11-01

    Full Text Available Melatonin is catabolized both enzymatically and nonenzymatically. Nonenzymatic processes mediated by free radicals, singlet oxygen, other reactive intermediates such as HOCl and peroxynitrite, or pseudoenzymatic mechanisms are not species- or tissue-specific, but vary considerably in their extent. Higher rates of nonenzymatic melatonin metabolism can be expected upon UV exposure, e.g., in plants and in the human skin. Additionally, melatonin is more strongly nonenzymatically degraded at sites of inflammation. Typical products are several hydroxylated derivatives of melatonin and N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK. Most of these products are also formed by enzymatic catalysis. Considerable taxon- and site-specific differences are observed in the main enzymatic routes of catabolism. Formation of 6-hydroxymelatonin by cytochrome P450 subforms are prevailing in vertebrates, predominantly in the liver, but also in the brain. In pineal gland and non-mammalian retina, deacetylation to 5-methoxytryptamine (5-MT plays a certain role. This pathway is quantitatively prevalent in dinoflagellates, in which 5-MT induces cyst formation and is further converted to 5-methoxyindole-3-acetic acid, an end product released to the water. In plants, the major route is catalyzed by melatonin 2-hydroxylase, whose product is tautomerized to 3-acetamidoethyl-3-hydroxy-5-methoxyindolin-2-one (AMIO, which exceeds the levels of melatonin. Formation and properties of various secondary products are discussed.

  14. Statistical and Economic Techniques for Site-specific Nematode Management.

    Science.gov (United States)

    Liu, Zheng; Griffin, Terry; Kirkpatrick, Terrence L

    2014-03-01

    Recent advances in precision agriculture technologies and spatial statistics allow realistic, site-specific estimation of nematode damage to field crops and provide a platform for the site-specific delivery of nematicides within individual fields. This paper reviews the spatial statistical techniques that model correlations among neighboring observations and develop a spatial economic analysis to determine the potential of site-specific nematicide application. The spatial econometric methodology applied in the context of site-specific crop yield response contributes to closing the gap between data analysis and realistic site-specific nematicide recommendations and helps to provide a practical method of site-specifically controlling nematodes.

  15. Photoaffinity labelling of a small protein component of a purified (Na+-K+)ATPase

    International Nuclear Information System (INIS)

    Rogers, T.B.; Lazdunski, M.

    1979-01-01

    Studies have been carried out on the photoaffinity labelling of the (Na + -K + )ATPase from the electric organ of Electrophorus electricus. The aims were to see if different photoaffinity labels of the ouabain binding site, are capable of labelling a small protein component and to know if there is a small protein component, in addition to the major protein chains with molecular weights in the regions of 100 000 and 50 000, which is present in other purified (Na + -K + )ATPase preparations. (Auth.)

  16. Photoaffinity labelling of high affinity dopamine binding proteins

    International Nuclear Information System (INIS)

    Ross, G.M.; McCarry, B.E.; Mishra, R.K.

    1986-01-01

    A photoactive analogue of the dopamine agonist 2-amino-6,7-dihydroxy-1,2,3,4-tetrahydronapthalene (ADTN) has been synthesized and used to photoaffinity label dopamine binding proteins prepared from bovine caudate nucleus. N-(3-]N'-4-azidobenzamidol]-aminopropyl)-aminopropyl)-ADTN (AzB-AP-ADTN) was incubated with caudate membranes and irradiated with UV light. Membranes were then repeatedly washed by centrifugation to remove excess photolabel. A binding assay, using ( 3 H)-SCH 23390 (a D 1 specific antagonist), was then performed to evaluate the loss of receptor density in the photolyzed preparation. AzB-AP-ADTN irreversibly blocked ( 3 H)-SCH 23390 binding in a dose-dependent manner. Scatchard analysis revealed a decrease in the B/sub max/, with no significant change in the K/sub d/, of ( 3 H)-SCH 23390 binding. Compounds which compete for D 1 receptor binding (such as dopamine, SKF 38393 or apomorphine), proteted the SCH 23390 binding site from inactivation. This data would suggest that the novel photoaffinity ligand, AzB-AP-ADTN, can covalently label the D 1 (adenylate cyclase linked) dopamine receptor

  17. Development of site specific response spectra

    International Nuclear Information System (INIS)

    Bernreuter, D.L.; Chen, J.C.; Savy, J.B.

    1987-03-01

    For a number of years the US Nuclear Regulatory Commission (NRC) has employed site specific spectra (SSSP) in their evaluation of the adequacy of the Safe Shutdown Earthquake (SSE). These spectra were developed only from the spectra of the horizontal components of the ground motion and from a very limited data set. As the data set has considerably increased for Eastern North America (ENA) and as more relevant data has become available from earthquakes occurring in other parts of the world (e.g., Italy), together with the fact that recent data indicated the importance of the vertical component, it became clear that an update of the SSSP's for ENA was desirable. The methodology used in this study is similar to the previous ones in that it used actual earthquake ground motion data with magnitudes within a certain range and recorded at distances and at sites similar to those that would be chosen for the definition of an SSE. An extensive analysis of the origin and size of the uncertainty is an important part of this study. The results of this analysis of the uncertainties is used to develop criteria for selecting the earthquake records to be used in the derivation of the SSSP's. We concluded that the SSSPs were not very sensitive to the distribution of the source to site distance of the earthquake records used in the analysis. That is, the variability (uncertainty) introduced by the range of distances was relatively small compared to the variability introduced by other factors. We also concluded that the SSSP are somewhat sensitive to the distribution of the magnitudes of these earthquakes, particularly at rock sites and, by inference, at shallow soil sites. We found that one important criterion in selecting records to generate SSSP is the depth of soil at the site

  18. Site-Specific, Climate-Friendly Farming

    Science.gov (United States)

    Brown, D. J.; Brooks, E. S.; Eitel, J.; Huggins, D. R.; Painter, K.; Rupp, R.; Smith, J. L.; Stockle, C.; Vierling, L. A.

    2011-12-01

    Of the four most important atmospheric greenhouse gasses (GHG) enriched through human activities, only nitrous oxide (N2O) emissions are due primarily to agriculture. However, reductions in the application of synthetic N fertilizers could have significant negative consequences for a growing world population given the crucial role that these fertilizers have played in cereal yield increases since WWII. Increasing N use efficiency (NUE) through precision management of agricultural N in space and time will therefore play a central role in the reduction of agricultural N2O emissions. Precision N management requires a greater understanding of the spatio-temporal variability of factors supporting N management decisions such as crop yield, water and N availability, utilization and losses. We present an overview of a large, collaborative, multi-disciplinary project designed to improve our basic understanding of nitrogen (N), carbon (C) and water (H2O) spatio-temporal dynamics for wheat-based cropping systems on complex landscapes, and develop management tools to optimize water- and nitrogen-use efficiency for these systems and landscapes. Major components of this project include: (a) cropping systems experiments addressing nitrogen application rate and seeding density for different landscape positions; (b) GHG flux experiments and monitoring; (c) soil microbial genetics and stable isotope analyses to elucidate biochemical pathways for N2O production; (d) proximal soil sensing for construction of detailed soil maps; (e) LiDAR and optical remote sensing for crop growth monitoring; (f) hydrologic experiments, monitoring, and modeling; (g) refining the CropSyst simulation model to estimate biophysical processes and GHG emissions under a variety of management and climatic scenarios; and (h) linking farm-scale enterprise budgets to simulation modeling in order to provide growers with economically viable site-specific climate-friendly farming guidance.

  19. Label-free electrochemical detection of singlet oxygen protein damage

    International Nuclear Information System (INIS)

    Vargová, Veronika; Giménez, Rodrigo E.; Černocká, Hana; Trujillo, Diana Chito; Tulli, Fiorella; Zanini, Verónica I. Paz; Paleček, Emil; Borsarelli, Claudio D.; Ostatná, Veronika

    2016-01-01

    Oxidative damage of proteins results in changes of their structures and functions. In this work, the singlet oxygen ( 1 O 2 )-mediated oxidation of bovine serum albumin (BSA) and urease by blue-light photosensitization of the tris(2,2′-bipyridine)ruthenium(II) cation [Ru(bpy) 3 ] 2+ was studied by square wave voltammetry at glassy carbon electrode and by constant current chronopotentiometry at mercury electrode. Small changes in voltammetric oxidation Tyr and Trp peaks did not indicate significant changes in the BSA structure after photo-oxidation at carbon electrode. On the other hand chronopotentiometric peak H of BSA at HMDE increased during blue-light photosensitization, indicating that photo-oxidized BSA was more susceptible to the electric field-induced denaturation than non-oxidized native BSA. Similar results were obtained for urease, where enzymatic activity was also evaluated. The present results show the capability of label- and reagent-free electrochemical methods to detect oxidative changes in proteins. We believe that these methods will become important tools for detection of various protein damages.

  20. Traceless affinity labeling of endogenous proteins for functional analysis in living cells.

    Science.gov (United States)

    Hayashi, Takahiro; Hamachi, Itaru

    2012-09-18

    Protein labeling and imaging techniques have provided tremendous opportunities to study the structure, function, dynamics, and localization of individual proteins in the complex environment of living cells. Molecular biology-based approaches, such as GFP-fusion tags and monoclonal antibodies, have served as important tools for the visualization of individual proteins in cells. Although these techniques continue to be valuable for live cell imaging, they have a number of limitations that have only been addressed by recent progress in chemistry-based approaches. These chemical approaches benefit greatly from the smaller probe sizes that should result in fewer perturbations to proteins and to biological systems as a whole. Despite the research in this area, so far none of these labeling techniques permit labeling and imaging of selected endogenous proteins in living cells. Researchers have widely used affinity labeling, in which the protein of interest is labeled by a reactive group attached to a ligand, to identify and characterize proteins. Since the first report of affinity labeling in the early 1960s, efforts to fine-tune the chemical structures of both the reactive group and ligand have led to protein labeling with excellent target selectivity in the whole proteome of living cells. Although the chemical probes used for affinity labeling generally inactivate target proteins, this strategy holds promise as a valuable tool for the labeling and imaging of endogenous proteins in living cells and by extension in living animals. In this Account, we summarize traceless affinity labeling, a technique explored mainly in our laboratory. In our overview of the different labeling techniques, we emphasize the challenge of designing chemical probes that allow for dissociation of the affinity module (often a ligand) after the labeling reaction so that the labeled protein retains its native function. This feature distinguishes the traceless labeling approach from the traditional

  1. Efficient cellular solid-state NMR of membrane proteins by targeted protein labeling

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Lindsay A. [University of Oxford, Oxford Particle Imaging Centre, The Wellcome Trust Centre for Human Genetics, Division of Structural Biology, Nuffield Department of Medicine (United Kingdom); Daniëls, Mark; Cruijsen, Elwin A. W. van der; Folkers, Gert E.; Baldus, Marc, E-mail: m.baldus@uu.nl [Utrecht University, NMR Spectroscopy, Department of Chemistry, Faculty of Science, Bijvoet Center for Biomolecular Research (Netherlands)

    2015-06-15

    Solid-state NMR spectroscopy (ssNMR) has made significant progress towards the study of membrane proteins in their native cellular membranes. However, reduced spectroscopic sensitivity and high background signal levels can complicate these experiments. Here, we describe a method for ssNMR to specifically label a single protein by repressing endogenous protein expression with rifampicin. Our results demonstrate that treatment of E. coli with rifampicin during induction of recombinant membrane protein expression reduces background signals for different expression levels and improves sensitivity in cellular membrane samples. Further, the method reduces the amount of time and resources needed to produce membrane protein samples, enabling new strategies for studying challenging membrane proteins by ssNMR.

  2. Efficient cellular solid-state NMR of membrane proteins by targeted protein labeling

    International Nuclear Information System (INIS)

    Baker, Lindsay A.; Daniëls, Mark; Cruijsen, Elwin A. W. van der; Folkers, Gert E.; Baldus, Marc

    2015-01-01

    Solid-state NMR spectroscopy (ssNMR) has made significant progress towards the study of membrane proteins in their native cellular membranes. However, reduced spectroscopic sensitivity and high background signal levels can complicate these experiments. Here, we describe a method for ssNMR to specifically label a single protein by repressing endogenous protein expression with rifampicin. Our results demonstrate that treatment of E. coli with rifampicin during induction of recombinant membrane protein expression reduces background signals for different expression levels and improves sensitivity in cellular membrane samples. Further, the method reduces the amount of time and resources needed to produce membrane protein samples, enabling new strategies for studying challenging membrane proteins by ssNMR

  3. Site-Specific, Covalent Immobilization of Dehalogenase ST2570 Catalyzed by Formylglycine-Generating Enzymes and Its Application in Batch and Semi-Continuous Flow Reactors

    Directory of Open Access Journals (Sweden)

    Hui Jian

    2016-07-01

    Full Text Available Formylglycine-generating enzymes can selectively recognize and oxidize cysteine residues within the sulfatase sub motif at the terminus of proteins to form aldehyde-bearing formylglycine (FGly residues, and are normally used in protein labeling. In this study, an aldehyde tag was introduced to proteins using formylglycine-generating enzymes encoded by a reconstructed set of the pET28a plasmid system for enzyme immobilization. The haloacid dehalogenase ST2570 from Sulfolobus tokodaii was used as a model enzyme. The C-terminal aldehyde-tagged ST2570 (ST2570CQ exhibited significant enzymological properties, such as new free aldehyde groups, a high level of protein expression and improved enzyme activity. SBA-15 has widely been used as an immobilization support for its large surface and excellent thermal and chemical stability. It was functionalized with amino groups by aminopropyltriethoxysilane. The C-terminal aldehyde-tagged ST2570 was immobilized to SBA-15 by covalent binding. The site-specific immobilization of ST2570 avoided the chemical denaturation that occurs in general covalent immobilization and resulted in better fastening compared to physical adsorption. The site-specific immobilized ST2570 showed 3-fold higher thermal stability, 1.2-fold higher catalytic ability and improved operational stability than free ST2570. The site-specific immobilized ST2570 retained 60% of its original activity after seven cycles of batch operation, and it was superior to the ST2570 immobilized to SBA-15 by physical adsorption, which loses 40% of its original activity when used for the second time. It is remarkable that the site-specific immobilized ST2570 still retained 100% of its original activity after 10 cycles of reuse in the semi-continuous flow reactor. Overall, these results provide support for the industrial-scale production and application of site-specific, covalently immobilized ST2570.

  4. Identification of an intracellular protein that specifically interacts with photoaffinity-labeled oncogenic p21 protein

    International Nuclear Information System (INIS)

    Lee, G.; Ronai, Z.A.; Pincus, M.R.; Brandt-Rauf, P.W.; Weinstein, I.B.; Murphy, R.B.; Delohery, T.M.; Nishimura, S.; Yamaizumi, Z.

    1989-01-01

    An oncogenic 21-kDa (p21) protein (Harvey RAS protein with Val-12) has been covalently modified with a functional reagent that contains a photoactivatable aromatic azide group. This modified p21 protein has been introduced quantitatively into NIH 3T3 cells using an erythrocyte-mediated fusion technique. The introduced p21 protein was capable of inducing enhanced pinocytosis and DNA synthesis in the recipient cells. To identify the putative intracellular protein(s) that specifically interact with modified p21 protein, the cells were pulsed with [ 35 S]methionine at selected times after fusion and then UV-irradiated to activate the azide group. The resulting nitrene covalently binds to amino acid residues in adjacent proteins, thus linking the p21 protein to these proteins. The cells were then lysed, and the lysate was immunoprecipitated with the anti-p21 monoclonal antibody Y13-259. The immunoprecipitate was analyzed by SDS/PAGE to identify p21 - protein complexes. By using this technique, the authors found that three protein complexes of 51, 64, and 82 kDa were labeled specifically and reproducibly. The most prominent band is the 64-kDa protein complex that shows a time-dependent rise and fall, peaking within a 5-hr period after introduction of the p21 protein the cells. These studies provide evidence that in vitro the p21 protein becomes associated with a protein whose mass is about 43 kDa. They suggest that the formation of this complex may play a role in mediating early events involved with cell transformation induced by RAS oncogenes

  5. Identification of an intracellular protein that specifically interacts with photoaffinity-labeled oncogenic p21 protein.

    Science.gov (United States)

    Lee, G; Ronai, Z A; Pincus, M R; Brandt-Rauf, P W; Murphy, R B; Delohery, T M; Nishimura, S; Yamaizumi, Z; Weinstein, I B

    1989-11-01

    An oncogenic 21-kDa (p21) protein (Harvey RAS protein with Val-12) has been covalently modified with a functional reagent that contains a photoactivatable aromatic azide group. This modified p21 protein has been introduced quantitatively into NIH 3T3 cells using an erythrocyte-mediated fusion technique. The introduced p21 protein was capable of inducing enhanced pinocytosis and DNA synthesis in the recipient cells. To identify the putative intracellular protein(s) that specifically interact with the modified p21 protein, the cells were pulsed with [35S]methionine at selected times after fusion and then UV-irradiated to activate the azide group. The resulting nitrene covalently binds to amino acid residues in adjacent proteins, thus linking the p21 protein to these proteins. The cells were then lysed, and the lysate was immunoprecipitated with the anti-p21 monoclonal antibody Y13-259. The immunoprecipitate was analyzed by SDS/PAGE to identify p21-protein complexes. By using this technique, we found that three protein complexes of 51, 64, and 82 kDa were labeled specifically and reproducibly. The most prominent band is the 64-kDa protein complex that shows a time-dependent rise and fall, peaking within a 5-hr period after introduction of the p21 protein into the cells. These studies provide evidence that in vitro the p21 protein becomes associated with a protein whose mass is about 43 kDa. We suggest that the formation of this complex may play a role in mediating early events involved with cell transformation induced by RAS oncogenes.

  6. Production of isotopically labeled heterologous proteins in non-E. coli prokaryotic and eukaryotic cells

    International Nuclear Information System (INIS)

    Takahashi, Hideo; Shimada, Ichio

    2010-01-01

    The preparation of stable isotope-labeled proteins is necessary for the application of a wide variety of NMR methods, to study the structures and dynamics of proteins and protein complexes. The E. coli expression system is generally used for the production of isotope-labeled proteins, because of the advantages of ease of handling, rapid growth, high-level protein production, and low cost for isotope-labeling. However, many eukaryotic proteins are not functionally expressed in E. coli, due to problems related to disulfide bond formation, post-translational modifications, and folding. In such cases, other expression systems are required for producing proteins for biomolecular NMR analyses. In this paper, we review the recent advances in expression systems for isotopically labeled heterologous proteins, utilizing non-E. coli prokaryotic and eukaryotic cells.

  7. In vivo stability and inertness of various direct labelled and chelate-tagged protein

    International Nuclear Information System (INIS)

    Janoki, A.; Korosi, L.; Klivenyi, G.; Spett, B.

    1987-01-01

    There were looking for methods giving precise information about composition and activity distribution of protein components, both in the initial samples and serum samples after intravenous administration. It was tested the applicability of electroimmunoassay, polyacrilamide gel electrophoresis and high performance liquid chromatography for the assessment of in vivo stability and labelled proteins. The model compound was human serum albumin (HSA) labelled with 99m Tc and 125 I, respectively. Bifunctional chelate labelling was done with desferrioxamine, in this case protein was labelled with 67 Ga. Biodistribution of the labelled compounds and their elimination from the blood were studied in rabbits. Experience with various labelling proteins, especially with Tc-Sn-HSA system indicate that in vivo stability of this compounds are generally low. Following intravenous injection of proteins labelled with metal isotopes, due to dilution and to the presence of considerable amount of compatitive protein in the serum, part of the label is being detached from the carrier protein. Distribution of the detached metal is different from the original distribution of the protein. This problem arises also with radiopharmaceuticals based on monoclonal antibodies. (M.E.L.) [es

  8. Site-specific photoconjugation of antibodies using chemically synthesized IgG-binding domains.

    Science.gov (United States)

    Perols, Anna; Karlström, Amelie Eriksson

    2014-03-19

    Site-specific labeling of antibodies can be performed using the immunoglobulin-binding Z domain, derived from staphylococcal protein A (SpA), which has a well-characterized binding site in the Fc region of antibodies. By introducing a photoactivable probe in the Z domain, a covalent bond can be formed between the Z domain and the antibody by irradiation with UV light. The aim of this study was to improve the conjugation yield for labeling of different subclasses of IgG having different sequence composition, using a photoactivated Z domain variant. Four different variants of the Z domain (Z5BPA, Z5BBA, Z32BPA, and Z32BBA) were synthesized to investigate the influence of the position of the photoactivable probe and the presence of a flexible linker between the probe and the protein. For two of the variants, the photoreactive benzophenone group was introduced as part of an amino acid side chain by incorporation of the unnatural amino acid benzoylphenylalanine (BPA) during peptide synthesis. For the other two variants, the photoreactive benzophenone group was attached via a flexible linker by coupling of benzoylbenzoic acid (BBA) to the ε-amino group of a selectively deprotected lysine residue. Photoconjugation experiments using human IgG1, mouse IgG1, and mouse IgG2A demonstrated efficient conjugation for all antibodies. It was shown that differences in linker length had a large impact on the conjugation efficiency for labeling of mouse IgG1, whereas the positioning of the photoactivable probe in the sequence of the protein had a larger effect for mouse IgG2A. Conjugation to human IgG1 was only to a minor extent affected by position or linker length. For each subclass of antibody, the best variant tested using a standard conjugation protocol resulted in conjugation efficiencies of 41-66%, which corresponds to on average approximately one Z domain attached to each antibody. As a combination of the two best performing variants, Z5BBA and Z32BPA, a Z domain variant with

  9. Label-Free Electrochemical Immunoassay for C-Reactive Protein

    Directory of Open Access Journals (Sweden)

    Madasamy Thangamuthu

    2018-03-01

    Full Text Available C-reactive protein (CRP is one of the most expressed proteins in blood during acute phase inflammation, and its minute level increase has also been recognized for the clinical diagnosis of cardio vascular diseases. Unfortunately, the available commercial immunoassays are labour intensive, require large sample volumes, and have practical limitations, such as low stability and high production costs. Hence, we have developed a simple, cost effective, and label-free electrochemical immunoassay for the measurement of CRP in a drop of serum sample using an immunosensor strip made up of a screen printed carbon electrode (SPE modified with anti-CRP functionalized gold nanoparticles (AuNPs. The measurement relies on the decrease of the oxidation current of the redox indicator Fe3+/Fe2+, resulting from the immunoreaction between CRP and anti-CRP. Under optimal conditions, the present immunoassay measures CRP in a linear range from 0.4–200 nM (0.047–23.6 µg mL−1, with a detection limit of 0.15 nM (17 ng mL−1, S/N = 3 and sensitivity of 90.7 nA nM−1, in addition to a good reproducibility and storage stability. The analytical applicability of the presented immunoassay is verified by CRP measurements in human blood serum samples. This work provides the basis for a low-priced, safe, and easy-to-use point-of-care immunosensor assay to measure CRP at clinically relevant concentrations.

  10. Methyl labeling and TROSY NMR spectroscopy of proteins expressed in the eukaryote Pichia pastoris

    International Nuclear Information System (INIS)

    Clark, Lindsay; Zahm, Jacob A.; Ali, Rustam; Kukula, Maciej; Bian, Liangqiao; Patrie, Steven M.; Gardner, Kevin H.; Rosen, Michael K.; Rosenbaum, Daniel M.

    2015-01-01

    13 C Methyl TROSY NMR spectroscopy has emerged as a powerful method for studying the dynamics of large systems such as macromolecular assemblies and membrane proteins. Specific 13 C labeling of aliphatic methyl groups and perdeuteration has been limited primarily to proteins expressed in E. coli, preventing studies of many eukaryotic proteins of physiological and biomedical significance. We demonstrate the feasibility of efficient 13 C isoleucine δ1-methyl labeling in a deuterated background in an established eukaryotic expression host, Pichia pastoris, and show that this method can be used to label the eukaryotic protein actin, which cannot be expressed in bacteria. This approach will enable NMR studies of previously intractable targets

  11. m-Acetylanilido-GTP, a novel photoaffinity label for GTP-binding proteins: synthesis and application.

    OpenAIRE

    Zor, T; Halifa, I; Kleinhaus, S; Chorev, M; Selinger, Z

    1995-01-01

    A novel photoaffinity label, m-acetylanilido-GTP (m-AcAGTP), was synthesized and used to identify GTP-binding proteins (G-proteins). This GTP analogue is easily prepared and can be used for photoaffinity labelling of G-proteins without chromatographic purification. In the presence of the beta-adrenergic agonist isoprenaline, it activates turkey erythrocyte adenylate cyclase. This activation persists even when the beta-adrenergic receptor is subsequently blocked by antagonist, indicating that ...

  12. Site-specific DNA Inversion by Serine Recombinases

    Science.gov (United States)

    2015-01-01

    Reversible site-specific DNA inversion reactions are widely distributed in bacteria and their viruses. They control a range of biological reactions that most often involve alterations of molecules on the surface of cells or phage. These programmed DNA rearrangements usually occur at a low frequency, thereby preadapting a small subset of the population to a change in environmental conditions, or in the case of phages, an expanded host range. A dedicated recombinase, sometimes with the aid of additional regulatory or DNA architectural proteins, catalyzes the inversion of DNA. RecA or other components of the general recombination-repair machinery are not involved. This chapter discusses site-specific DNA inversion reactions mediated by the serine recombinase family of enzymes and focuses on the extensively studied serine DNA invertases that are stringently controlled by the Fis-bound enhancer regulatory system. The first section summarizes biological features and general properties of inversion reactions by the Fis/enhancer-dependent serine invertases and the recently described serine DNA invertases in Bacteroides. Mechanistic studies of reactions catalyzed by the Hin and Gin invertases are then discussed in more depth, particularly with regards to recent advances in our understanding of the function of the Fis/enhancer regulatory system, the assembly of the active recombination complex (invertasome) containing the Fis/enhancer, and the process of DNA strand exchange by rotation of synapsed subunit pairs within the invertasome. The role of DNA topological forces that function in concert with the Fis/enhancer controlling element in specifying the overwhelming bias for DNA inversion over deletion and intermolecular recombination is emphasized. PMID:25844275

  13. Bifunctional chelating agent for the design and development of site specific radiopharmaceuticals and biomolecule conjugation strategy

    Science.gov (United States)

    Katti, Kattesh V.; Prabhu, Kandikere R.; Gali, Hariprasad; Pillarsetty, Nagavara Kishore; Volkert, Wynn A.

    2003-10-21

    There is provided a method of labeling a biomolecule with a transition metal or radiometal in a site specific manner to produce a diagnostic or therapeutic pharmaceutical compound by synthesizing a P.sub.2 N.sub.2 -bifunctional chelating agent intermediate, complexing the intermediate with a radio metal or a transition metal, and covalently linking the resulting metal-complexed bifunctional chelating agent with a biomolecule in a site specific manner. Also provided is a method of synthesizing the --PR.sub.2 containing biomolecules by synthesizing a P.sub.2 N.sub.2 -bifunctional chelating agent intermediate, complexing the intermediate with a radiometal or a transition metal, and covalently linking the resulting radio metal-complexed bifunctional chelating agent with a biomolecule in a site specific manner. There is provided a therapeutic or diagnostic agent comprising a --PR.sub.2 containing biomolecule.

  14. The choice of label and measurement technique in tracer studies of body protein metabolism in man

    International Nuclear Information System (INIS)

    James, W.P.T.; Sender, P.M.; Garlick, P.J.; Waterlow, J.C.

    1975-01-01

    The turnover of non-serum proteins in man has had limited study despite the physiological importance of maintaining the balance between synthesis and breakdown of body proteins. Body protein is usually considered as a single pool and breakdown rates are often measured by monitoring excreted label at intervals after pulse labelling with radioactive or 15 N amino acids. No label has yet been used for measuring tissue protein breakdown in man which is free from the major problem of label re-utilization. All measurements of breakdown rates, eg. with 75 Se-selenomethionine, 15 N- or 14 C-glycine, give rate constants which are too low. The heterogeneity of body proteins also means that an estimate of the weighted average breakdown rate can only be obtained after following the excretion of isotope for a long period, perhaps of the order of 3-4 half-lives which, for man, would be 100 days after labelling. We therefore use infusions with either 14 C- or 15 N-labelled amino acids to measure breakdown and synthesis rates: these values are less affected by problems of protein heterogeneity. Single injection techniques are subject to more error than constant infusions of label because of the difficulty of defining the precursor activity. 15 N labelling need not be confined to essential amino acids if total protein rather than amino acid turnover is studied: the latter involves measurements of the labelled amino acid itself which is difficult with 15 N because of the small amounts of free amino acid nitrogen available. Carbon labelling of non-essential amino acids is unsuitable for studies of protein turnover and the choice of the position of the label on the molecule is important when labelled essential amino acids are employed. Short-term changes in protein metabolism are evaluated better with amino acids with a small pool size; the equilibration time in the excretory bicarbonate pool is also shorter than in the urea pool so that 15 N is less useful than carbon labelling. We

  15. Tub-Tag Labeling; Chemoenzymatic Incorporation of Unnatural Amino Acids.

    Science.gov (United States)

    Helma, Jonas; Leonhardt, Heinrich; Hackenberger, Christian P R; Schumacher, Dominik

    2018-01-01

    Tub-tag labeling is a chemoenzymatic method that enables the site-specific labeling of proteins. Here, the natural enzyme tubulin tyrosine ligase incorporates noncanonical tyrosine derivatives to the terminal carboxylic acid of proteins containing a 14-amino acid recognition sequence called Tub-tag. The tyrosine derivative carries a unique chemical reporter allowing for a subsequent bioorthogonal modification of proteins with a great variety of probes. Here, we describe the Tub-tag protein modification protocol in detail and explain its utilization to generate labeled proteins for advanced applications in cell biology, imaging, and diagnostics.

  16. HaloTag protein-mediated specific labeling of living cells with quantum dots

    International Nuclear Information System (INIS)

    So, Min-kyung; Yao Hequan; Rao Jianghong

    2008-01-01

    Quantum dots emerge as an attractive alternative to small molecule fluorophores as fluorescent tags for in vivo cell labeling and imaging. This communication presents a method for specific labeling of live cells using quantum dots. The labeling is mediated by HaloTag protein expressed at the cell surface which forms a stable covalent adduct with its ligand (HaloTag ligand). The labeling can be performed in one single step with quantum dot conjugates that are functionalized with HaloTag ligand, or in two steps with biotinylated HaloTag ligand first and followed by streptavidin coated quantum dots. Live cell fluorescence imaging indicates that the labeling is specific and takes place at the cell surface. This HaloTag protein-mediated cell labeling method should facilitate the application of quantum dots for live cell imaging

  17. Innovation and Diffusion of Site-specific Crop Management

    DEFF Research Database (Denmark)

    Pedersen, Søren Marcus; Pedersen, Jørgen Lindgaard

    2006-01-01

    Site-specific crop management or precision farming is a highly complex managementsystem for site-specific input application of lime, fertilizers and pesticides in arable farming. The Global Positioning System (GPS)is the backbone of the system. To conduct precision farming several technical systems...

  18. Innovation and diffusion of site-specific crop management

    DEFF Research Database (Denmark)

    Pedersen, Søren Marcus; Pedersen, Jørgen Lindgaard

    2004-01-01

    Site-specific crop management or precision farming (PF) is a highly complex management system for site-specific input application of lime, fertilizers and pesticides in arable farming. The Global Positioning System (GPS) is the backbone of the system. To conduct PF several technical systems...

  19. The Escherichia coli Tus-Ter replication fork barrier causes site-specific DNA replication perturbation in yeast

    DEFF Research Database (Denmark)

    Larsen, Nicolai B; Sass, Ehud; Suski, Catherine

    2014-01-01

    Replication fork (RF) pausing occurs at both 'programmed' sites and non-physiological barriers (for example, DNA adducts). Programmed RF pausing is required for site-specific DNA replication termination in Escherichia coli, and this process requires the binding of the polar terminator protein, Tus...... as a versatile, site-specific, heterologous DNA replication-perturbing system, with a variety of potential applications....

  20. Galactose oxidase labeling of membrane proteins from human brain white matter

    International Nuclear Information System (INIS)

    Hukkanen, V.; Frey, H.; Salmi, A.

    1981-01-01

    Membrane proteins of human autopsy brain white matter were subjected to a galactose oxidase/NaB 3 H 4 labeling procedure and the membranes labeled by this method or by [ 3 H]acetic anhydride techniques were studied by lectin affinity chromatography using Lens culinaris phytohemagglutinin (lentil lectin) attached to Sepharose 4B beads. (Auth.)

  1. Noninvasive imaging of protein metabolic labeling in single human cells using stable isotopes and Raman microscopy

    NARCIS (Netherlands)

    van Manen, H.J.; Lenferink, Aufrid T.M.; Otto, Cornelis

    2008-01-01

    We have combined nonresonant Raman microspectroscopy and spectral imaging with stable isotope labeling by amino acids in cell culture (SILAC) to selectively detect the incorporation of deuterium-labeled phenylalanine, tyrosine, and methionine into proteins in intact, single HeLa cells. The C−D

  2. Chemical method of labelling proteins with the radionuclides of technetium at physiological condition

    International Nuclear Information System (INIS)

    Wong, D.W.

    1983-01-01

    A novel rapid chemical method of labeling plasma proteins, other compounds and/or substances containing protein with radionuclides of technetium such as sup(95m)Tc, sup(99m)Tc or sup(99)Tc at physiologic pH 7.4 condition, producing a sterile non-pyrogenic radioactive tracer material suitable for biological and medical uses. These radiolabeled protein substances are not denatured by the labeling process but retain their natural physiological and immunological properties. This novel labeling technique provides a simple and rapid means of labeling plasma proteins such as human serum albumin, fibrinogen, antibodies, hormones and enzymes with sup(95m)Tc or sup(99m)Tc for scintigraphic imaging which may allow visualization of thrombi, emboli, myocardial infarcts, infectious lesions or tumors

  3. Isotope coded protein labeling coupled immunoprecipitation (ICPL-IP): a novel approach for quantitative protein complex analysis from native tissue.

    Science.gov (United States)

    Vogt, Andreas; Fuerholzner, Bettina; Kinkl, Norbert; Boldt, Karsten; Ueffing, Marius

    2013-05-01

    High confidence definition of protein interactions is an important objective toward the understanding of biological systems. Isotope labeling in combination with affinity-based isolation of protein complexes has increased in accuracy and reproducibility, yet, larger organisms--including humans--are hardly accessible to metabolic labeling and thus, a major limitation has been its restriction to small animals, cell lines, and yeast. As composition as well as the stoichiometry of protein complexes can significantly differ in primary tissues, there is a great demand for methods capable to combine the selectivity of affinity-based isolation as well as the accuracy and reproducibility of isotope-based labeling with its application toward analysis of protein interactions from intact tissue. Toward this goal, we combined isotope coded protein labeling (ICPL)(1) with immunoprecipitation (IP) and quantitative mass spectrometry (MS). ICPL-IP allows sensitive and accurate analysis of protein interactions from primary tissue. We applied ICPL-IP to immuno-isolate protein complexes from bovine retinal tissue. Protein complexes of immunoprecipitated β-tubulin, a highly abundant protein with known interactors as well as the lowly expressed small GTPase RhoA were analyzed. The results of both analyses demonstrate sensitive and selective identification of known as well as new protein interactions by our method.

  4. Isotope Coded Protein Labeling Coupled Immunoprecipitation (ICPL-IP): A Novel Approach for Quantitative Protein Complex Analysis From Native Tissue*

    Science.gov (United States)

    Vogt, Andreas; Fuerholzner, Bettina; Kinkl, Norbert; Boldt, Karsten; Ueffing, Marius

    2013-01-01

    High confidence definition of protein interactions is an important objective toward the understanding of biological systems. Isotope labeling in combination with affinity-based isolation of protein complexes has increased in accuracy and reproducibility, yet, larger organisms—including humans—are hardly accessible to metabolic labeling and thus, a major limitation has been its restriction to small animals, cell lines, and yeast. As composition as well as the stoichiometry of protein complexes can significantly differ in primary tissues, there is a great demand for methods capable to combine the selectivity of affinity-based isolation as well as the accuracy and reproducibility of isotope-based labeling with its application toward analysis of protein interactions from intact tissue. Toward this goal, we combined isotope coded protein labeling (ICPL)1 with immunoprecipitation (IP) and quantitative mass spectrometry (MS). ICPL-IP allows sensitive and accurate analysis of protein interactions from primary tissue. We applied ICPL-IP to immuno-isolate protein complexes from bovine retinal tissue. Protein complexes of immunoprecipitated β-tubulin, a highly abundant protein with known interactors as well as the lowly expressed small GTPase RhoA were analyzed. The results of both analyses demonstrate sensitive and selective identification of known as well as new protein interactions by our method. PMID:23268931

  5. Small Molecule-Photoactive Yellow Protein Labeling Technology in Live Cell Imaging

    Directory of Open Access Journals (Sweden)

    Feng Gao

    2016-08-01

    Full Text Available Characterization of the chemical environment, movement, trafficking and interactions of proteins in live cells is essential to understanding their functions. Labeling protein with functional molecules is a widely used approach in protein research to elucidate the protein location and functions both in vitro and in live cells or in vivo. A peptide or a protein tag fused to the protein of interest and provides the opportunities for an attachment of small molecule probes or other fluorophore to image the dynamics of protein localization. Here we reviewed the recent development of no-wash small molecular probes for photoactive yellow protein (PYP-tag, by the means of utilizing a quenching mechanism based on the intramolecular interactions, or an environmental-sensitive fluorophore. Several fluorogenic probes have been developed, with fast labeling kinetics and cell permeability. This technology allows quick live-cell imaging of cell-surface and intracellular proteins without a wash-out procedure.

  6. Plasma Protein Turnover Rates in Rats Using Stable Isotope Labeling, Global Proteomics, and Activity-Based Protein Profiling

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Jordan N.; Tyrrell, Kimberly J.; Hansen, Joshua R.; Thomas, Dennis G.; Murphree, Taylor A.; Shukla, Anil K.; Luders, Teresa; Madden, James M.; Li, Yunying; Wright, Aaron T.; Piehowski, Paul D.

    2017-12-06

    Protein turnover is important for general health on cellular and organism scales providing a strategy to replace old, damaged, or dysfunctional proteins. Protein turnover also informs of biomarker kinetics, as a better understanding of synthesis and degradation of proteins increases the clinical utility of biomarkers. Here, turnover rates of plasma proteins in rats were measured in vivo using a pulse-chase stable isotope labeling experiment. During the pulse, rats (n=5) were fed 13C6-labeled lysine (“heavy”) feed for 23 days to label proteins. During the chase, feed was changed to an unlabeled equivalent feed (“light”), and blood was repeatedly sampled from rats over 10 time points for 28 days. Plasma samples were digested with trypsin, and analyzed with liquid chromatography-tandem mass spectrometry (LC-MS/MS). MaxQuant was used to identify peptides and proteins, and quantify heavy:light lysine ratios. A system of ordinary differential equations was used to calculate protein turnover rates. Using this approach, 273 proteins were identified, and turnover rates were quantified for 157 plasma proteins with half-lives ranging 0.3-103 days. For the ~70 most abundant proteins, variability in turnover rates among rats was low (median coefficient of variation: 0.09). Activity-based protein profiling was applied to pooled plasma samples to enrich serine hydrolases using a fluorophosphonate (FP2) activity-based probe. This enrichment resulted in turnover rates for an additional 17 proteins. This study is the first to measure global plasma protein turnover rates in rats in vivo, measure variability of protein turnover rates in any animal model, and utilize activity-based protein profiling for enhancing measurements of targeted, low-abundant proteins, such as those commonly used as biomarkers. Measured protein turnover rates will be important for understanding of the role of protein turnover in cellular and organism health as well as increasing the utility of protein

  7. Multi-label learning with fuzzy hypergraph regularization for protein subcellular location prediction.

    Science.gov (United States)

    Chen, Jing; Tang, Yuan Yan; Chen, C L Philip; Fang, Bin; Lin, Yuewei; Shang, Zhaowei

    2014-12-01

    Protein subcellular location prediction aims to predict the location where a protein resides within a cell using computational methods. Considering the main limitations of the existing methods, we propose a hierarchical multi-label learning model FHML for both single-location proteins and multi-location proteins. The latent concepts are extracted through feature space decomposition and label space decomposition under the nonnegative data factorization framework. The extracted latent concepts are used as the codebook to indirectly connect the protein features to their annotations. We construct dual fuzzy hypergraphs to capture the intrinsic high-order relations embedded in not only feature space, but also label space. Finally, the subcellular location annotation information is propagated from the labeled proteins to the unlabeled proteins by performing dual fuzzy hypergraph Laplacian regularization. The experimental results on the six protein benchmark datasets demonstrate the superiority of our proposed method by comparing it with the state-of-the-art methods, and illustrate the benefit of exploiting both feature correlations and label correlations.

  8. Synthesis and evaluation of radioactive and fluorescent residualizing labels for identifying sites of plasma protein catabolism

    International Nuclear Information System (INIS)

    Maxwell, J.L.; Baynes, J.W.; Thorpe, S.R.

    1986-01-01

    Inulin and lactose were each coupled to tyramine by reductive amination with NaBH 3 CN and the tyramine then labeled with 125 I. Dilactitol- 125 I-tyramine (DLT) and inulin- 125 I-tyramine (InTn) were coupled by reductive amination and cyanuric chloride, respectively, to asialofetuin (ASF), fetuin and rat serum albumin (RSA). Attachment of either label had no effect on the circulating half-lives of the proteins. Radioactivity from labeled ASF was recovered in rat liver (> 90%) by 1 h post-injection and remained in liver with half-lives of 2 and 6 days, respectively, for the DLT and InTn labels. Whole body recoveries of radioactivity from DLT- and InTn labels. Whole body recoveries of radioactivity from DLT- and InTn-labeled RSA were 5 and 6.5 days, respectively, again indicating that the larger glycoconjugate label residualized more efficiently in cells following protein degradation. (Lactitol) 2 -N-CH 2 -CH 2 -NH-fluroescein (DLF) was also coupled to ASF by reductive amination and recovered quantitatively in liver at 1 h post-injection. Native ASF was an effective competitor for clearance of DLF-ASF from the circulation. Fluorescent degradation products were retained in liver with a half-life of 1.2 days. Residualizing fluorescent labels should be useful for identification and sorting of cells active in the degradation of plasma proteins

  9. Site-Specific Antibody Functionalization Using Tetrazine-Styrene Cycloaddition.

    Science.gov (United States)

    Umlauf, Benjamin J; Mix, Kalie A; Grosskopf, Vanessa A; Raines, Ronald T; Shusta, Eric V

    2018-05-03

    Biologics, such as antibody-drug conjugates, are becoming mainstream therapeutics. Consequently, methods to functionalize biologics without disrupting their native properties are essential for identifying, characterizing, and translating candidate biologics from the bench to clinical practice. Here, we present a method for site-specific, carboxy-terminal modification of single-chain antibody fragments (scFvs). ScFvs displayed on the surface of yeast were isolated and functionalized by combining intein-mediated expressed protein ligation (EPL) with inverse electron-demand Diels-Alder (IEDDA) cycloaddition using a styrene-tetrazine pair. The high thiol concentration required to trigger EPL can hinder the subsequent chemoselective ligation reactions; therefore, the EPL reaction was used to append styrene to the scFv, limiting tetrazine exposure to damaging thiols. Subsequently, the styrene-functionalized scFv was reacted with tetrazine-conjugated compounds in an IEDDA cycloaddition to generate functionalized scFvs that retain their native binding activity. Rapid functionalization of yeast surface-derived scFv in a site-directed manner could find utility in many downstream laboratory and preclinical applications.

  10. Improved labeling strategy for 13C relaxation measurements of methyl groups in proteins

    International Nuclear Information System (INIS)

    Lee, Andrew L.; Urbauer, Jeffrey L.; Wand, A. Joshua

    1997-01-01

    Selective incorporation of 13 C into the methyl groups of protein side chains is described as a means for simplifying the measurement and interpretation of 13 C relaxation parameters.High incorporation (>90%) is accomplished by using pyruvate(3- 13 C, 99%) as the sole carbon source in the growth media for protein overexpression in E. coli. This improved labeling scheme increases the sensitivity of the relaxation experiments by approximately fivefold when compared to randomly fractionally 13 C-labeled protein, allowing high-quality measurements on relatively dilute (<1 mM)protein samples at a relatively low cost

  11. Introduction to Spin Label Electron Paramagnetic Resonance Spectroscopy of Proteins

    Science.gov (United States)

    Melanson, Michelle; Sood, Abha; Torok, Fanni; Torok, Marianna

    2013-01-01

    An undergraduate laboratory exercise is described to demonstrate the biochemical applications of electron paramagnetic resonance (EPR) spectroscopy. The beta93 cysteine residue of hemoglobin is labeled by the covalent binding of 3-maleimido-proxyl (5-MSL) and 2,2,5,5-tetramethyl-1-oxyl-3-methyl methanethiosulfonate (MTSL), respectively. The excess…

  12. Labeling of multiple HIV-1 proteins with the biarsenical-tetracysteine system.

    Directory of Open Access Journals (Sweden)

    Cândida F Pereira

    Full Text Available Due to its small size and versatility, the biarsenical-tetracysteine system is an attractive way to label viral proteins for live cell imaging. This study describes the genetic labeling of the human immunodeficiency virus type 1 (HIV-1 structural proteins (matrix, capsid and nucleocapsid, enzymes (protease, reverse transcriptase, RNAse H and integrase and envelope glycoprotein 120 with a tetracysteine tag in the context of a full-length virus. We measure the impact of these modifications on the natural virus infection and, most importantly, present the first infectious HIV-1 construct containing a fluorescently-labeled nucleocapsid protein. Furthermore, due to the high background levels normally associated with the labeling of tetracysteine-tagged proteins we have also optimized a metabolic labeling system that produces infectious virus containing the natural envelope glycoproteins and specifically labeled tetracysteine-tagged proteins that can easily be detected after virus infection of T-lymphocytes. This approach can be adapted to other viral systems for the visualization of the interplay between virus and host cell during infection.

  13. A simple method for labelling proteins with 211At via diazotized aromatic diamine

    International Nuclear Information System (INIS)

    Wunderlich, G.; Franke, W.-G.; Fischer, S.; Dreyer, R.

    1987-01-01

    A simple and rapid method for labelling proteins with 211 At by means of a 1,4-diaminobenzene link is described. This link is transformed into the diazonium salt and subsequently reactions of both 211 At and proteins with the diazonium salt take place simultaneously. For possibly high yields of astatized protein an appropriate temperature of 273 K was found. The results demonstrate the difference between the reaction mechanisms of iodine and astatine with proteins. (author)

  14. Deconstructing thermodynamic parameters of a coupled system from site-specific observables.

    Science.gov (United States)

    Chowdhury, Sandipan; Chanda, Baron

    2010-11-02

    Cooperative interactions mediate information transfer between structural domains of a protein molecule and are major determinants of protein function and modulation. The prevalent theories to understand the thermodynamic origins of cooperativity have been developed to reproduce the complex behavior of a global thermodynamic observable such as ligand binding or enzyme activity. However, in most cases the measurement of a single global observable cannot uniquely define all the terms that fully describe the energetics of the system. Here we establish a theoretical groundwork for analyzing protein thermodynamics using site-specific information. Our treatment involves extracting a site-specific parameter (defined as χ value) associated with a structural unit. We demonstrate that, under limiting conditions, the χ value is related to the direct interaction terms associated with the structural unit under observation and its intrinsic activation energy. We also introduce a site-specific interaction energy term (χ(diff)) that is a function of the direct interaction energy of that site with every other site in the system. When combined with site-directed mutagenesis and other molecular level perturbations, analyses of χ values of site-specific observables may provide valuable insights into protein thermodynamics and structure.

  15. Plasma membrane of a marine T cell lymphoma: surface labelling, membrane isolation, separation of membrane proteins and distribution of surface label amongst these proteins

    International Nuclear Information System (INIS)

    Crumpton, M.J.; Marchalonis, J.J.; Haustein, D.; Atwell, J.L.; Harris, A.W.

    1976-01-01

    Two established techniques for analysis of plasma membranes, namely, lactoperoxidase catalyzed surface radioiodination of intact cells and bulk membrane isolation following disruption of cells by shear forces, were applied in studies of membrane proteins of continuously cultured cells of the monoclonal T lymphoma line WEHI-22. It was found that macromolecular 125 I-iodide incorporated into plasma membrane proteins of intact cells was at least as good a marker for the plasma as was the commonly used enzyme 5'-nucleotidase, T lymphoma plasma membrane proteins were complex when analysed by polyacrylamide gel electrophoresis in sodium dodecylsulphate-containing buffers and more than thirty distinct components were resolved. More than fifteen of the components observed on a mass basis were also labelled with 125 I-iodide. Certain bands, however, exhibited a degree of label disproportionate to their staining properties with Coomassie Blue. This was interpreted in terms of their accessibility to the solvent in the intact cells. (author)

  16. A new method for the labelling of proteins with radioactive arsenic isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Jennewein, M. [Institute of Nuclear Chemistry, Johannes Gutenberg University of Mainz, Fritz-Strassmann-Weg 2, 55128 Mainz (Germany); Hermanne, A. [VUB Cyclotron, University of Brussels, Laarbeeklaan 103, 1090 Brussels (Belgium); Mason, R.P. [Department of Radiology, Advanced Radiological Sciences, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas (United States); Thorpe, P.E. [Department of Pharmacology and Simmons and Hamon Cancer Centers, University of Texas Southwestern Medical Center at Dallas, Dallas, TX (United States); Roesch, F. [Institute of Nuclear Chemistry, Johannes Gutenberg University of Mainz, Fritz-Strassmann-Weg 2, 55128 Mainz (Germany)]. E-mail: frank.roesch@uni-mainz.de

    2006-12-20

    Radioarsenic labelled radiopharmaceuticals could be a valuable asset to positron emission tomography. In particular, the long half-lives of {sup 72}As (T{sub 1/2}=26h) and {sup 74}As (T{sub 1/2}=17.8d) allow to investigate slow physiological or metabolical processes, like the enrichment and distribution of monoclonal antibodies (mab) in tumour tissue. In this work, a new method for the labelling of proteins with various radioactive arsenic isotopes was developed. For this purpose, two proteins, namely a chimeric IgG{sub 3} monoclonal antibody, ch3G4, directed against anionic phospholipids, and Rituxan (Rituximab), were labelled as a proof of principle with no-carrier-added radioarsenic isotopes ({sup 74}As and {sup 77}As). The developed labelling chemistry gives high yields (>99.9%), is reliable and could easily be transferred to automated labelling systems in a clinical environment. At least for the mab used in this work, this route of radioarsenic labelling does not affect the immunoreactivity of the product. The arsenic label stays stable for up to 72h at the molecular mass of the monoclonal antibody, which is in particular relevant to follow the pharmacology and pharmacokinetics of the labelled mab for several days.

  17. Partial sequence determination of metabolically labeled radioactive proteins and peptides

    International Nuclear Information System (INIS)

    Anderson, C.W.

    1982-01-01

    The author has used the sequence analysis of radioactive proteins and peptides to approach several problems during the past few years. They, in collaboration with others, have mapped precisely several adenovirus proteins with respect to the nucleotide sequence of the adenovirus genome; identified hitherto missed proteins encoded by bacteriophage MS2 and by simian virus 40; analyzed the aminoterminal maturation of several virus proteins; determined the cleavage sites for processing of the poliovirus polyprotein; and analyzed the mechanism of frameshifting by excess normal tRNAs during cell-free protein synthesis. This chapter is designed to aid those without prior experience at protein sequence determinations. It is based primarily on the experience gained in the studies cited above, which made use of the Beckman 890 series automated protein sequencers

  18. Increased Protein Structural Resolution from Diethylpyrocarbonate-based Covalent Labeling and Mass Spectrometric Detection

    Science.gov (United States)

    Zhou, Yuping; Vachet, Richard W.

    2012-04-01

    Covalent labeling and mass spectrometry are seeing increased use together as a way to obtain insight into the 3-dimensional structure of proteins and protein complexes. Several amino acid specific (e.g., diethylpyrocarbonate) and non-specific (e.g., hydroxyl radicals) labeling reagents are available for this purpose. Diethylpyrocarbonate (DEPC) is a promising labeling reagent because it can potentially probe up to 30% of the residues in the average protein and gives only one reaction product, thereby facilitating mass spectrometric analysis. It was recently reported, though, that DEPC modifications are labile for some amino acids. Here, we show that label loss is more significant and widespread than previously thought, especially for Ser, Thr, Tyr, and His residues, when relatively long protein digestion times are used. Such label loss ultimately decreases the amount of protein structural information that is obtainable with this reagent. We find, however, that the number of DEPC modified residues and, thus, protein structural information, can be significantly increased by decreasing the time between the covalent labeling reaction and the mass spectrometric analysis. This is most effectively accomplished using short (e.g., 2 h) proteolytic digestions with enzymes such as immobilized chymotrypsin or Glu-C rather than using methods (e.g., microwave or ultrasonic irradiation) that accelerate proteolysis in other ways. Using short digestion times, we show that the percentage of solvent accessible residues that can be modified by DEPC increases from 44% to 67% for cytochrome c, 35% to 81% for myoglobin, and 76% to 95% for β-2-microglobulin. In effect, these increased numbers of modified residues improve the protein structural resolution available from this covalent labeling method. Compared with typical overnight digestion conditions, the short digestion times decrease the average distance between modified residues from 11 to 7 Å for myoglobin, 13 to 10 Å for

  19. Surface-Enhanced Raman Scattering Nanoparticles as Optical Labels for Imaging Cell Surface Proteins

    Science.gov (United States)

    MacLaughlin, Christina M.

    Assaying the expression of cell surface proteins has widespread application for characterizing cell type, developmental stage, and monitoring disease transformation. Immunophenotyping is conducted by treating cells with labelled targeting moieties that have high affinity for relevant surface protein(s). The sensitivity and specificity of immunophenotyping is defined by the choice of contrast agent and therefore, the number of resolvable signals that can be used to simultaneously label cells. Narrow band width surface-enhanced Raman scattering (SERS) nanoparticles are proposed as optical labels for multiplexed immunophenotying. Two types of surface coatings were investigated to passivate the gold nanoparticles, incorporate SERS functionality, and to facilitate attachment of targeting antibodies. Thiolated poly(ethylene glycol) forms dative bonds with the gold surface and is compatible with multiple physisorbed Raman-active reporter molecules. Ternary lipid bilayers are used to encapsulate the gold nanoparticles particles, and incorporate three different classes of Raman reporters. TEM, UV-Visible absorbance spectroscopy, DLS, and electrophoretic light scattering were used characterize the particle coating. Colourimetric protein assay, and secondary antibody labelling were used to quantify the antibody conjugation. Three different in vitromodels were used to investigate the binding efficacy and specificity of SERS labels for their biomarker targets. Primary human CLL cells, LY10 B lymphoma, and A549 adenocarcinoma lines were targeted. Dark field imaging was used to visualize the colocalization of SERS labels with cells, and evidence of receptor clustering was obtained based on colour shifts of the particles' Rayleigh scattering. Widefield, and spatially-resolved Raman spectra were used to detect labels singly, and in combination from labelled cells. Fluorescence flow cytometry was used to test the particles' binding specificity, and SERS from labelled cells was also

  20. Site-selective {sup 13}C labeling of proteins using erythrose

    Energy Technology Data Exchange (ETDEWEB)

    Weininger, Ulrich, E-mail: ulrich.weininger@physik.uni-halle.de [Lund University, Department of Biophysical Chemistry, Center for Molecular Protein Science (Sweden)

    2017-03-15

    NMR-spectroscopy enables unique experimental studies on protein dynamics at atomic resolution. In order to obtain a full atom view on protein dynamics, and to study specific local processes like ring-flips, proton-transfer, or tautomerization, one has to perform studies on amino-acid side chains. A key requirement for these studies is site-selective labeling with {sup 13}C and/or {sup 1}H, which is achieved in the most general way by using site-selectively {sup 13}C-enriched glucose (1- and 2-{sup 13}C) as the carbon source in bacterial expression systems. Using this strategy, multiple sites in side chains, including aromatics, become site-selectively labeled and suitable for relaxation studies. Here we systematically investigate the use of site-selectively {sup 13}C-enriched erythrose (1-, 2-, 3- and 4-{sup 13}C) as a suitable precursor for {sup 13}C labeled aromatic side chains. We quantify {sup 13}C incorporation in nearly all sites in all 20 amino acids and compare the results to glucose based labeling. In general the erythrose approach results in more selective labeling. While there is only a minor gain for phenylalanine and tyrosine side-chains, the {sup 13}C incorporation level for tryptophan is at least doubled. Additionally, the Phe ζ and Trp η2 positions become labeled. In the aliphatic side chains, labeling using erythrose yields isolated {sup 13}C labels for certain positions, like Ile β and His β, making these sites suitable for dynamics studies. Using erythrose instead of glucose as a source for site-selective {sup 13}C labeling enables unique or superior labeling for certain positions and is thereby expanding the toolbox for customized isotope labeling of amino-acid side-chains.

  1. Chemical Ligation of Folded Recombinant Proteins: Segmental Isotopic Labeling of Domains for NMR Studies

    Science.gov (United States)

    Xu, Rong; Ayers, Brenda; Cowburn, David; Muir, Tom W.

    1999-01-01

    A convenient in vitro chemical ligation strategy has been developed that allows folded recombinant proteins to be joined together. This strategy permits segmental, selective isotopic labeling of the product. The src homology type 3 and 2 domains (SH3 and SH2) of Abelson protein tyrosine kinase, which constitute the regulatory apparatus of the protein, were individually prepared in reactive forms that can be ligated together under normal protein-folding conditions to form a normal peptide bond at the ligation junction. This strategy was used to prepare NMR sample quantities of the Abelson protein tyrosine kinase-SH(32) domain pair, in which only one of the domains was labeled with 15N Mass spectrometry and NMR analyses were used to confirm the structure of the ligated protein, which was also shown to have appropriate ligand-binding properties. The ability to prepare recombinant proteins with selectively labeled segments having a single-site mutation, by using a combination of expression of fusion proteins and chemical ligation in vitro, will increase the size limits for protein structural determination in solution with NMR methods. In vitro chemical ligation of expressed protein domains will also provide a combinatorial approach to the synthesis of linked protein domains.

  2. Chemical synthesis of dual labeled proteins via differently protected alkynes enables intramolecular FRET analysis.

    Science.gov (United States)

    Hayashi, Gosuke; Kamo, Naoki; Okamoto, Akimitsu

    2017-05-30

    We report a novel method for multisite protein conjugation by setting differently silyl-protected alkynes as conjugation handles, which can remain intact through the whole synthetic procedure and provide sequential and orthogonal conjugation. This strategy enables efficient preparation of a dual dye-labeled protein and structural analysis via an intramolecular FRET mechanism.

  3. Algal autolysate medium to label proteins for NMR in mammalian cells.

    Science.gov (United States)

    Fuccio, Carmelo; Luchinat, Enrico; Barbieri, Letizia; Neri, Sara; Fragai, Marco

    2016-04-01

    In-cell NMR provides structural and functional information on proteins directly inside living cells. At present, the high costs of the labeled media for mammalian cells represent a limiting factor for the development of this methodology. Here we report a protocol to prepare a homemade growth medium from Spirulina platensis autolysate, suitable to express uniformly labeled proteins inside mammalian cells at a reduced cost-per-sample. The human proteins SOD1 and Mia40 were overexpressed in human cells grown in (15)N-enriched S. platensis algal-derived medium, and high quality in-cell NMR spectra were obtained.

  4. Algal autolysate medium to label proteins for NMR in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Fuccio, Carmelo; Luchinat, Enrico; Barbieri, Letizia [University of Florence, Magnetic Resonance Center (CERM) (Italy); Neri, Sara [Giotto Biotech S.R.L. (Italy); Fragai, Marco, E-mail: fragai@cerm.unifi.it [University of Florence, Magnetic Resonance Center (CERM) (Italy)

    2016-04-15

    In-cell NMR provides structural and functional information on proteins directly inside living cells. At present, the high costs of the labeled media for mammalian cells represent a limiting factor for the development of this methodology. Here we report a protocol to prepare a homemade growth medium from Spirulina platensis autolysate, suitable to express uniformly labeled proteins inside mammalian cells at a reduced cost-per-sample. The human proteins SOD1 and Mia40 were overexpressed in human cells grown in {sup 15}N-enriched S. platensis algal-derived medium, and high quality in-cell NMR spectra were obtained.

  5. Tuning a Protein-Labeling Reaction to Achieve Highly Site Selective Lysine Conjugation.

    Science.gov (United States)

    Pham, Grace H; Ou, Weijia; Bursulaya, Badry; DiDonato, Michael; Herath, Ananda; Jin, Yunho; Hao, Xueshi; Loren, Jon; Spraggon, Glen; Brock, Ansgar; Uno, Tetsuo; Geierstanger, Bernhard H; Cellitti, Susan E

    2018-04-16

    Activated esters are widely used to label proteins at lysine side chains and N termini. These reagents are useful for labeling virtually any protein, but robust reactivity toward primary amines generally precludes site-selective modification. In a unique case, fluorophenyl esters are shown to preferentially label human kappa antibodies at a single lysine (Lys188) within the light-chain constant domain. Neighboring residues His189 and Asp151 contribute to the accelerated rate of labeling at Lys188 relative to the ≈40 other lysine sites. Enriched Lys188 labeling can be enhanced from 50-70 % to >95 % by any of these approaches: lowering reaction temperature, applying flow chemistry, or mutagenesis of specific residues in the surrounding protein environment. Our results demonstrated that activated esters with fluoro-substituted aromatic leaving groups, including a fluoronaphthyl ester, can be generally useful reagents for site-selective lysine labeling of antibodies and other immunoglobulin-type proteins. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Efficient segmental isotope labeling of multi-domain proteins using Sortase A

    Energy Technology Data Exchange (ETDEWEB)

    Freiburger, Lee, E-mail: lee.freiburger@tum.de; Sonntag, Miriam, E-mail: miriam.sonntag@mytum.de; Hennig, Janosch, E-mail: janosch.hennig@helmholtz-muenchen.de [Helmholtz Zentrum München, Institute of Structural Biology (Germany); Li, Jian, E-mail: lijianzhongbei@163.com [Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology (China); Zou, Peijian, E-mail: peijian.zou@helmholtz-muenchen.de; Sattler, Michael, E-mail: sattler@helmholtz-muenchen.de [Helmholtz Zentrum München, Institute of Structural Biology (Germany)

    2015-09-15

    NMR studies of multi-domain protein complexes provide unique insight into their molecular interactions and dynamics in solution. For large proteins domain-selective isotope labeling is desired to reduce signal overlap, but available methods require extensive optimization and often give poor ligation yields. We present an optimized strategy for segmental labeling of multi-domain proteins using the S. aureus transpeptidase Sortase A. Critical improvements compared to existing protocols are (1) the efficient removal of cleaved peptide fragments by centrifugal filtration and (2) a strategic design of cleavable and non-cleavable affinity tags for purification. Our approach enables routine production of milligram amounts of purified segmentally labeled protein for NMR and other biophysical studies.

  7. Label-free electrochemical detection of singlet oxygen protein damage

    Czech Academy of Sciences Publication Activity Database

    Vargová, Veronika; Gimenez, R.E.; Černocká, Hana; Trujillo, D.C.; Tulli, F.; Zanini, V.I.P.; Paleček, Emil; Borsarelli, C.D.; Ostatná, Veronika

    2016-01-01

    Roč. 187, JAN 2016 (2016), s. 662-669 ISSN 0013-4686 R&D Projects: GA ČR GA13-00956S Institutional support: RVO:68081707 Keywords : singlet oxygen protein damage * surface-attached protein stability * mercury and carbon electrodes Subject RIV: BO - Biophysics Impact factor: 4.798, year: 2016

  8. A comparative study on the iodine-labeled methods of protein and polypeptide

    International Nuclear Information System (INIS)

    Li Huaifen; Niu Huisheng; Yuan Mingyue; Yu Jinghua

    1994-01-01

    There are three methods: chloramine-T, Iodogen and lactoperoxidase(LPO). 125 I-ACTH, 125 I-insulin and 125 I-HSA are prepared by these techniques. The results show that lactoperoxidase is isolated and purified from fresh milk, meanwhile, the enzyme is used in experiments of 125 I-labeled protein, peptide hormone and mono-clone antibody, etc. LPO is a very successful method for it's mild, complete reaction, controllable, high labelling yield, higher purity of iodine-labeled compound and so on. It remains biological activation and stable character more than other two techniques

  9. A comparative study on the iodine-labeled methods of protein and polypeptide

    Energy Technology Data Exchange (ETDEWEB)

    Huaifen, Li; Huisheng, Niu; Mingyue, Yuan; Jinghua, Yu [Chinese Academy of Medical Sciences, Tianjin (China). Inst. of Radiation Medicine

    1994-02-01

    There are three methods: chloramine-T, Iodogen and lactoperoxidase(LPO). [sup 125]I-ACTH, [sup 125]I-insulin and [sup 125]I-HSA are prepared by these techniques. The results show that lactoperoxidase is isolated and purified from fresh milk, meanwhile, the enzyme is used in experiments of [sup 125]I-labeled protein, peptide hormone and mono-clone antibody, etc. LPO is a very successful method for it's mild, complete reaction, controllable, high labelling yield, higher purity of iodine-labeled compound and so on. It remains biological activation and stable character more than other two techniques.

  10. An Asymmetric Deuterium Labeling Strategy to Identify Interprotomer and Intraprotomer NOEs in Oligomeric Proteins

    International Nuclear Information System (INIS)

    Jasanoff, Alan

    1998-01-01

    A major difficulty in determining the structure of an oligomeric protein by NMR is the problem of distinguishing inter- from intraprotomer NOEs. In order to address this issue in studies of the 27 kD compact trimeric domain of the MHC class II-associated invariant chain, we compared the 13C NOESY-HSQC spectrum of a uniformly 13C-labeled trimer with the spectrum of the same trimer labeled with 13C in only one protomer, and with deuterium in the other two protomers. The spectrum of the unmixed trimer included both inter- and intraprotomer NOEs while the spectrum of the mixed trimer included only intraprotomer peaks. NOEs clearly absent from the spectrum of the mixed trimer could be confidently assigned to interprotomer interactions. Asymmetrically labeled trimers were isolated by refolding a 13C-labeled shorter form of the protein with a 2H-labeled longer form, chromatographically purifying trimers with only one short chain, and then processing with trypsin to yield only protomers with the desired N- and C-termini. In contrast to earlier studies, in which statistical mixtures of differently labeled protomers were analyzed, our procedure generated only a well-defined 1:2 oligomer, and no other mixed oligomers were present. This increased the maximum possible concentration of NMR-active protomers and thus the sensitivity of the experiments. Related methods should be applicable to many oligomeric proteins, particularly those with slow protomer exchange rates

  11. Label-Free Quantitation of Ribosomal Proteins from Bacillus subtilis for Antibiotic Research.

    Science.gov (United States)

    Schäkermann, Sina; Prochnow, Pascal; Bandow, Julia E

    2017-01-01

    Current research is focusing on ribosome heterogeneity as a response to changing environmental conditions and stresses, such as antibiotic stress. Altered stoichiometry and composition of ribosomal proteins as well as association of additional protein factors are mechanisms for shaping the protein expression profile or hibernating ribosomes. Here, we present a method for the isolation of ribosomes to analyze antibiotic-induced changes in the composition of ribosomes in Bacillus subtilis or other bacteria. Ribosomes and associated proteins are isolated by ultracentrifugation and proteins are identified and quantified using label-free mass spectrometry.

  12. HPSLPred: An Ensemble Multi-Label Classifier for Human Protein Subcellular Location Prediction with Imbalanced Source.

    Science.gov (United States)

    Wan, Shixiang; Duan, Yucong; Zou, Quan

    2017-09-01

    Predicting the subcellular localization of proteins is an important and challenging problem. Traditional experimental approaches are often expensive and time-consuming. Consequently, a growing number of research efforts employ a series of machine learning approaches to predict the subcellular location of proteins. There are two main challenges among the state-of-the-art prediction methods. First, most of the existing techniques are designed to deal with multi-class rather than multi-label classification, which ignores connections between multiple labels. In reality, multiple locations of particular proteins imply that there are vital and unique biological significances that deserve special focus and cannot be ignored. Second, techniques for handling imbalanced data in multi-label classification problems are necessary, but never employed. For solving these two issues, we have developed an ensemble multi-label classifier called HPSLPred, which can be applied for multi-label classification with an imbalanced protein source. For convenience, a user-friendly webserver has been established at http://server.malab.cn/HPSLPred. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Biosynthetically directed fractional 13C labeling facilitates identification of Phe and Tyr aromatic signals in proteins

    International Nuclear Information System (INIS)

    Jacob, Jaison; Louis, John M.; Nesheiwat, Issa; Torchia, Dennis A.

    2002-01-01

    Analysis of 2D [ 13 C, 1 H]-HSQC spectra of biosynthetic fractionally 13 C labeled proteins is a reliable, straightforward means to obtain stereospecific assignments of Val and Leu methyl sites in proteins. Herein we show that the same fractionally labeled protein sample facilitates observation and identification of Phe and Tyr aromatic signals. This is the case, in part, because the fractional 13 C labeling yields aromatic rings in which some of the 13 C- 13 C J-couplings, present in uniformly labeled samples, are absent. Also, the number of homonuclear J-coupling partners differs for the δ-, ε- and ζ-carbons. This enabled us to vary their signal intensities in distinctly different ways by appropriately setting the 13 C constant-time period in 2D [ 13 C, 1 H]-HSQC spectra. We illustrate the application of this approach to an 18 kDa protein, c-VIAF, a modulator of apoptosis. In addition, we show that cancellation of the aromatic 13 C CSA and 13 C- 1 H dipolar interactions can be fruitfully utilized in the case of the fractionally labeled sample to obtain high resolution 13 C constant-time spectra with good sensitivity

  14. REDOR NMR of stable-isotope-labeled protein binding sites

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, J. [Washington Univ., St. Louis, MO (United States)

    1994-12-01

    Rotational-echo, double resonance (REDOR) NMR, a new analytical spectroscopic technique for solids spinning at the magic angle, has been developed over the last 5 years. REDOR provides a direct measure of heteronuclear dipolar coupling between isolated pairs of labeled nuclei. In a solid with a {sup 13}C-{sup 15}N labeled pair, for example, the {sup 13}C rotational echoes that form each rotor period following a{sup 1}H-{sup 13}C cross-polarization transfer can be prevented from reaching full intensity by insertion of a {sup 15}N {pi} pulse each half rotor period. The REDOR difference (the difference between a {sup 13}C NMR spectrum obtained under these conditions and one obtained with no {sup 15}N {pi} pulses) has a strong dependence on the {sup 13}C-{sup 15}N dipolar coupling, and hence, the {sup 13}C-{sup 15}N internuclear distance. REDOR is described as double-resonance even though three radio frequencies (typically {sup 1}H, {sup 13}C, and {sup 15}N) are used because the protons are removed from the important evolution part of the experiment by resonant decoupling. The dephasing of magnetization in REDOR arises from a local dipolar {sup 13}C-{sup 15}N field gradient and involves no polarization transfer. REDOR has no dependence on {sup 13}C or {sup 15}N chemical-shift tensors and does not require resolution of a {sup 13}C-{sup 15}N coupling in the chemical-shift dimension.

  15. Monitoring Ras Interactions with the Nucleotide Exchange Factor Son of Sevenless (Sos) Using Site-specific NMR Reporter Signals and Intrinsic Fluorescence*

    Science.gov (United States)

    Vo, Uybach; Vajpai, Navratna; Flavell, Liz; Bobby, Romel; Breeze, Alexander L.; Embrey, Kevin J.; Golovanov, Alexander P.

    2016-01-01

    The activity of Ras is controlled by the interconversion between GTP- and GDP-bound forms partly regulated by the binding of the guanine nucleotide exchange factor Son of Sevenless (Sos). The details of Sos binding, leading to nucleotide exchange and subsequent dissociation of the complex, are not completely understood. Here, we used uniformly 15N-labeled Ras as well as [13C]methyl-Met,Ile-labeled Sos for observing site-specific details of Ras-Sos interactions in solution. Binding of various forms of Ras (loaded with GDP and mimics of GTP or nucleotide-free) at the allosteric and catalytic sites of Sos was comprehensively characterized by monitoring signal perturbations in the NMR spectra. The overall affinity of binding between these protein variants as well as their selected functional mutants was also investigated using intrinsic fluorescence. The data support a positive feedback activation of Sos by Ras·GTP with Ras·GTP binding as a substrate for the catalytic site of activated Sos more weakly than Ras·GDP, suggesting that Sos should actively promote unidirectional GDP → GTP exchange on Ras in preference of passive homonucleotide exchange. Ras·GDP weakly binds to the catalytic but not to the allosteric site of Sos. This confirms that Ras·GDP cannot properly activate Sos at the allosteric site. The novel site-specific assay described may be useful for design of drugs aimed at perturbing Ras-Sos interactions. PMID:26565026

  16. Quantitation of some amino-terminal residues in proteins using 3H-labelled dansyl chloride and 14C labelled amino acids

    International Nuclear Information System (INIS)

    Flengsrud, R.

    1979-01-01

    A method for quantitation of amino-terminal residues in proteins is presented. The method is a modification of a double isotope-labelling technique, using 3 H-labelled dansyl chloride and 14 C-labelled amino acids as internal standards. The method is demonstrated on human fibrinogen, horse myoglobin and on mouse myoloma IgA. A linear relationship between the ratio 3 H/ 14 C in the separated amino-terminal amino acid of the protein and the amount of protein added in the labelling mixture was obtained with standard deviations of +- 7.4%, +-3.4% and +-10.3%, respectively. An application of the method is demonstrated by measuring the increase in amino-terminal glycine in fibrinogen following the proteolytic action of thrombin. The method seems to be useful when 0.1 nmol or more of protein is used. (author)

  17. In vivo labelling of proteins associated with folded chromosomes of yeast

    International Nuclear Information System (INIS)

    Litske Petersen, J.G.; Pinon, R.

    1980-01-01

    Proteins associated with the pre-replicative (g 1 ) and post-replicative (g 2 ) folded chromosomes of Saccharomyces cerevisiae can be labelled in vivo by growing cells in acetate vegetative medium containing [ 35 S]methionine. In both sporulating (MATa/MATα) and non-sporulating (MATa/MATa, MATα/MATα) diploids proteins associated with the resting stage genome (g 0 ) can be labelled with [ 35 S]methionine during nitrogen starvation and in sporulation medium. In addition, in MATa/MATα diploids proteins associated with the meiotic replication form (r) can also be labelled. SDS-polyacrylamide gel electrophoresis and autoradiography of the labelled proteins from the various folded genome forms showed that the g 1 and g 2 patterns are, with the exception of one polypeptide band, essentially identical. Several differences distinguished the r and g 0 patterns from those of the g 1 and g 2 structures. At least four polypeptide bands distinguish the r and g 0 patterns. No significant differences were observed between the g 0 proteins of sporulating and non-sporulating diploids. (author)

  18. Selective and extensive 13C labeling of a membrane protein for solid-state NMR investigations

    International Nuclear Information System (INIS)

    Hong, M.; Jakes, K.

    1999-01-01

    The selective and extensive 13C labeling of mostly hydrophobic amino acid residues in a 25 kDa membrane protein, the colicin Ia channel domain, is reported. The novel 13C labeling approach takes advantage of the amino acid biosynthetic pathways in bacteria and suppresses the synthesis of the amino acid products of the citric acid cycle. The selectivity and extensiveness of labeling significantly simplify the solid-state NMR spectra, reduce line broadening, and should permit the simultaneous measurement of multiple structural constraints. We show the assignment of most 13C resonances to specific amino acid types based on the characteristic chemical shifts, the 13C labeling pattern, and the amino acid composition of the protein. The assignment is partly confirmed by a 2D homonuclear double-quantum-filter experiment under magic-angle spinning. The high sensitivity and spectral resolution attained with this 13C-labeling protocol, which is termed TEASE for ten-amino acid selective and extensive labeling, are demonstrated

  19. Evaluation of potential water conservation using site-specific irrigation

    Science.gov (United States)

    With the advent of site-specific variable-rate irrigation (VRI) systems, irrigation can be spatially managed within sub-field-sized zones. Spatial irrigation management can optimize spatial water use efficiency and may conserve water. Spatial VRI systems are currently being managed by consultants ...

  20. 77 FR 22772 - Environmental Management Site-Specific Advisory Board

    Science.gov (United States)

    2012-04-17

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board AGENCY: Office of Environmental Management, Department of Energy. ACTION: Notice of renewal. SUMMARY: Pursuant to Section 14(a)(2... Secretariat, General Services Administration, notice is hereby given that the Environmental Management Site...

  1. Determination of site-specific glycan heterogeneity on glycoproteins

    DEFF Research Database (Denmark)

    Kolarich, Daniel; Jensen, Pia Hønnerup; Altmann, Friedrich

    2012-01-01

    and the determination of site-specific glycan heterogeneity. The described workflow takes approximately 3-5 d, including sample preparation and data analysis. The data obtained from analyzing released glycans of rHuEPO and IgG, described in the second protocol of this series (10.1038/nprot.2012.063), provide...

  2. Precision agriculture - from mapping to site-specific application

    DEFF Research Database (Denmark)

    Pedersen, Søren Marcus; Lind, Kim Martin Hjorth

    2017-01-01

    of each chapter in the book. Each chapter address a different topic starting with an overview of technologies that are currently available, followed by specific Variable-Rate Technologies such as VRT fertilizer application, VRT pesticide application, site-specific irrigation management, Auto...

  3. ETAC reagents: A new class of sulfhydryl site-specific radiolabelling probes for antibodies

    International Nuclear Information System (INIS)

    del Rosario, R.B.; Brocchini, S.J.; Baron, L.A.; Smith, R.H.; Lawton, R.G.; Wahl, R.L.

    1990-01-01

    A new class of bis-alkylating Michael reagents, equilibrium transfer crosslink reagents, 'ETAC', which combine the techniques of crosslinking with tethering have been synthesized. Following a succession of Michael and retro-Michael additions and elimination of the arylsulfone groups, reduced heavy-heavy and heavy-light disulfide links of an anti-ovarian IgG2a monoclonal antibody, 5G6.4, were site-specifically re-annealed via a 3-carbon bridge having a tether branch containing a designated label

  4. Nifedipine effect on the labelling of blood cells and plasma proteins with Tc-99m

    International Nuclear Information System (INIS)

    Gutfilen, B.; Boasquevisque, E.M.; Bernardo Filho, M.

    1988-01-01

    The labeling of red blood cells (RBC) with Tc-99m depends on the presence of stannous ion (Sn) that helps this radionuclide's fixation on the hemoglobin molecule. Nifedipine is an agent capable to block a specific way where calcius (Ca) ion acrosses the cellular membrane and to bind itself on plasma proteins. The effect of nifedipine in the labeling of RBC and plasma proteins with Tc-99m was studied because of similarities between Ca and Sn ions. Blood with anticoagulant was treated with nifedipine concentration of 10 -6 M for 15 min at 37 0 C. The labeling of RBC with Tc-99m was done incubating with Sn ion solution (3 uM) for different times. The % of radioactivity in RBC was determined. Samples of plasma were precipited with trichloroacetic acid and the % of radiocctivity in insoluble fraction was calculated. The same procedure was done using different nifedipine concentrations and the blood was incubated for 60 min with Sn ion. The determination of the % of Tc-99m labeled in RBC and plasma proteins showed that this drug does not have the capability to alter this incorporation because the results are similar to control. It is suggested that the Sn ions passage across RBC is not altered by nifedipine although this drug could bind to plasma protein, it does not modify the Tc-99m fixation on it. (author) [pt

  5. Differential Labeling of Free and Disulfide-Bound Thiol Functions in Proteins

    NARCIS (Netherlands)

    Seiwert, B.; Hayen, H.; Karst, U.

    2008-01-01

    A method for the simultaneous determination of the number of free cysteine groups and disulfide-bound cysteine groups in proteins has been developed based on the sequential labeling of free and bound thiol functionalities with two ferrocene-based maleimide reagents. Liquid

  6. Exploring the local conformational space of a membrane protein by site-directed spin labeling

    NARCIS (Netherlands)

    Stopar, D.; Strancar, J.; Spruijt, R.B.; Hemminga, M.A.

    2005-01-01

    Molecular modeling based on a hybrid evolutionary optimization and an information condensation algorithm, called GHOST, of spin label ESR spectra was applied to study the structure and dynamics of membrane proteins. The new method is capable of providing detailed molecular information about the

  7. Production of large quantities of isotopically labeled protein in Pichia pastoris by fermentation

    International Nuclear Information System (INIS)

    Wood, Matthew J.; Komives, Elizabeth A.

    1999-01-01

    Heterologous expression in Pichia pastoris has many of the advantages of eukaryotic expression, proper folding and disulfide bond formation, glycosylation, and secretion. Contrary to other eukaryotic systems, protein production from P.pastoris occurs in simple minimal defined media making this system attractive for production of labeled proteins for NMR analysis. P.pastoris is therefore the expression system of choice for NMR of proteins that cannot be refolded from inclusion bodies or that require post-translational modifications for proper folding or function. The yield of expressed proteins from P.pastoris depends critically on growth conditions, and attainment of high cell densities by fermentation has been shown to improve protein yields by 10-100-fold. Unfortunately, the cost of the isotopically enriched fermentation media components, particularly 15NH4OH, is prohibitively high. We report fermentation methods that allow for both 15N- labeling from (15NH4)2SO4 and 13C-labeling from 13C-glucose or 13C-glycerol of proteins produced in Pichia pastoris. Expression of an 83 amino acid fragment of thrombomodulin with two N-linked glycosylation sites shows that fermentation is more cost effective than shake flask growth for isotopic enrichment

  8. Efficient production of isotopically labeled proteins by cell-free synthesis: A practical protocol

    Energy Technology Data Exchange (ETDEWEB)

    Torizawa, Takuya; Shimizu, Masato [Crest, Jst (Japan); Taoka, Masato [Tokyo Metropolitan University, Graduate School of Science (Japan); Miyano, Hiroshi [Ajinomoto Co., Inc. Institute of Life Sciences (Japan); Kainosho, Masatsune [Crest, Jst (Japan)], E-mail: kainosho@nmr.chem.metro-u.ac.jp

    2004-11-15

    We provide detailed descriptions of our refined protocols for the cell-free production of labeled protein samples for NMR spectroscopy. These methods are efficient and overcome two critical problems associated with the use of conventional Escherichia coli extract systems. Endogenous amino acids normally present in E. coli S30 extracts dilute the added labeled amino acids and degrade the quality of NMR spectra of the target protein. This problem was solved by altering the protocol used in preparing the S30 extract so as to minimize the content of endogenous amino acids. The second problem encountered in conventional E. coli cell-free protein production is non-uniformity in the N-terminus of the target protein, which can complicate the NMR spectra. This problem was solved by adding a DNA sequence to the construct that codes for a cleavable N-terminal peptide tag. Addition of the tag serves to increase the yield of the protein as well as to ensure a homogeneous protein product following tag cleavage. We illustrate the method by describing its stepwise application to the production of calmodulin samples with different stable isotope labeling patterns for NMR analysis.

  9. Secretion of 35SO4-labeled proteins from isolated rat hepatocytes

    International Nuclear Information System (INIS)

    von Wuertemberg, M.M.F.; Fries, E.

    1989-01-01

    Sulfation is a Golgi-specific modification of secretory proteins. We have characterized the proteins that are labeled with 35 SO 4 in cultures of rat hepatocytes and studied their transport to the medium. Analysis by polyacrylamide gel electrophoresis showed that of the five most heavily labeled proteins, four had well-defined mobilities--apparent molecular masses of 188, 142, 125, and 82 kDa--whereas one was electrophoretically heterogeneous--apparent molecular mass of 35-45 kDa. Judging by their relatively high resistance to acid treatment, the sulfate residues in the 125- and 35-45-kDa proteins were linked to carbohydrate. Some of the secreted proteins were sialylated. In samples of pulse-labeled cells, there appeared to be no unsialylated forms, indicating that sulfation occurred after sialylation, presumably in the trans Golgi. Kinetic experiments showed that the cellular half-life was the same for all the sulfated proteins--about 8 min--consistent with the idea that transport from the Golgi complex to the cell surface occurs by liquid bulk flow

  10. Efficient production of isotopically labeled proteins by cell-free synthesis: A practical protocol

    International Nuclear Information System (INIS)

    Torizawa, Takuya; Shimizu, Masato; Taoka, Masato; Miyano, Hiroshi; Kainosho, Masatsune

    2004-01-01

    We provide detailed descriptions of our refined protocols for the cell-free production of labeled protein samples for NMR spectroscopy. These methods are efficient and overcome two critical problems associated with the use of conventional Escherichia coli extract systems. Endogenous amino acids normally present in E. coli S30 extracts dilute the added labeled amino acids and degrade the quality of NMR spectra of the target protein. This problem was solved by altering the protocol used in preparing the S30 extract so as to minimize the content of endogenous amino acids. The second problem encountered in conventional E. coli cell-free protein production is non-uniformity in the N-terminus of the target protein, which can complicate the NMR spectra. This problem was solved by adding a DNA sequence to the construct that codes for a cleavable N-terminal peptide tag. Addition of the tag serves to increase the yield of the protein as well as to ensure a homogeneous protein product following tag cleavage. We illustrate the method by describing its stepwise application to the production of calmodulin samples with different stable isotope labeling patterns for NMR analysis

  11. Tritium labelling of a cholesterol amphiphile designed for cell membrane anchoring of proteins.

    Science.gov (United States)

    Schäfer, Balázs; Orbán, Erika; Kele, Zoltán; Tömböly, Csaba

    2015-01-01

    Cell membrane association of proteins can be achieved by the addition of lipid moieties to the polypeptide chain, and such lipid-modified proteins have important biological functions. A class of cell surface proteins contains a complex glycosylphosphatidylinositol (GPI) glycolipid at the C-terminus, and they are accumulated in cholesterol-rich membrane microdomains, that is, lipid rafts. Semisynthetic lipoproteins prepared from recombinant proteins and designed lipids are valuable probes and model systems of the membrane-associated proteins. Because GPI-anchored proteins can be reinserted into the cell membrane with the retention of the biological function, they are appropriate candidates for preparing models via reduction of the structural complexity. A synthetic headgroup was added to the 3β-hydroxyl group of cholesterol, an essential lipid component of rafts, and the resulting cholesterol derivative was used as a simplified GPI mimetic. In order to quantitate the membrane integrated GPI mimetic after the exogenous addition to live cells, a tritium labelled cholesterol anchor was prepared. The radioactive label was introduced into the headgroup, and the radiolabelled GPI mimetic anchor was obtained with a specific activity of 1.37 TBq/mmol. The headgroup labelled cholesterol derivative was applied to demonstrate the sensitive detection of the cell membrane association of the anchor under in vivo conditions. Copyright © 2015 John Wiley & Sons, Ltd.

  12. SITE-94. Site specific base data for the performance assessment

    International Nuclear Information System (INIS)

    Geier, J.; Tiren, S.; Dverstorp, B.; Glynn, P.

    1996-06-01

    This report documents the site specific base data that were available, and the utilization of these data within SITE-94. A brief summary is given of SKB's preliminary site investigations for the Aespoe Hard Rock Laboratory (HRL), which were the main source of site-specific data for SITE-94, and an overview is given of the field methods and instrumentation for the preliminary investigations. A compilation is given of comments concerning the availability and quality of the data for Aespoe, and specific recommendations are given for future site investigations. It was found that the HRL pre-investigations produced a large quantity of data which were, for the most part, of sufficient quality to be valuable for a performance assessment. However, some problems were encountered regarding documentation, procedural consistency, positional information, and storage of the data from the measurements. 77 refs, 4 tabs

  13. Site specific study for possible ongoing salt dome movement

    International Nuclear Information System (INIS)

    Thoms, R.L.; Manning, T.A.; Paille, L.K.; Gehle, R.M.

    1977-01-01

    U.S. Gulf Coast salt domes, among other geologic structures, currently are being considered for storage of commercial radioactive wastes. A major concern with dome storage of long lived radioactive wastes lies with the possible tectonic movement of the host dome. Any ongoing movement of a salt dome can be monitored with a site specific complementary system of field instrumentation and finite element modelling. Field instrumentation and accompanying finite element analyses for a study dome in northwest Louisiana are described. Site specific data and early experience associated with tiltmeters over the dome are presented. Also, recommendations are made for modifications and extensions of the field instrumentation and finite element modelling appropriate to the specific site under study

  14. Pinellas Plant FY1990 site specific implementation plan

    International Nuclear Information System (INIS)

    Klein, R.D.

    1990-02-01

    This Site Specific Implementation Plan describes the Corrective Action, Environmental Restoration, and Waste Management activities to be performed at the Pinellas Plant in FY1990 (October 1, 1989 to September 30, 1989). These FY1990 activities are described in the Pinellas Plant FY1991--95 Five-Year Plan. The information used to prepare this plan reflects the best estimate of the project scope, schedules, regulatory, and funding requirements at the time of plan preparation. The Environmental Restoration/Waste Management Five-Year Plan is a dynamic document and will be modified each year; the Site Specific Implementation Plan will, in turn, be modified each year to reflect new findings, information, and knowledge of the various projects. 4 figs., 11 tabs

  15. Site-specific design optimization of wind turbines

    DEFF Research Database (Denmark)

    Fuglsang, P.; Bak, C.; Schepers, J.G.

    2002-01-01

    This article reports results from a European project, where site characteristics were incorporated into the design process of wind turbines, to enable site-specific design. Two wind turbines of different concept were investigated at six different sites comprising normal flat terrain, offshore...... and complex terrain wind farms. Design tools based on numerical optimization and aeroelastic calculations were combined with a cost model to allow optimization for minimum cost of energy. Different scenarios were optimized ranging from modifications of selected individual components to the complete design...... of a new wind turbine. Both annual energy yield and design-determining loads depended on site characteristics, and this represented a potential for site-specific design. The maximum variation in annual energy yield was 37% and the maximum variation in blade root fatigue loads was 62%. Optimized site...

  16. Intruder scenarios for site-specific waste classification

    International Nuclear Information System (INIS)

    Kennedy, W.E. Jr.

    1988-01-01

    The US Department of Energy (DOE) is currently revising its low-level radioactive waste (LLW) management requirements and guidelines for waste generated at its facilities that support defense missions. Specifically, draft DOE 5820.2A, Chapter 3, describes the purpose, policy, and requirements necessary for the management of defense LLW. The draft DOE policy calls for DOE LLW operations to be managed to protect the health and safety of the public, preserve the environment, and ensure that no remedial action will be necessary after termination of operations. The requirements and guidelines apply to radioactive wastes but are also intended to apply to mixed hazardous and radioactive wastes as defined in draft DOE 5400.5, Hazardous and Radioactive Mixed Waste. The basic approach used by DOE is to establish overall performance objectives in terms of ground-water protection and public radiation dose limits and to require site-specific performance assessments to determine compliance. As a result of these performance assessments, each site shall develop waste acceptance criteria that define the allowable quantities and concentrations of specific radioisotopes. Additional limitations on waste disposal design, waste form, and waste treatment shall also be developed on a site-specific basis. As a key step in the site-specific performance assessments, an evaluation must be conducted of potential radiation doses to intruders who may inadvertently move onto a closed DOE LLW disposal site after loss of institutional controls must be conducted. This paper describes the types of intruder scenarios that should be considered when performing this step of the site-specific performance assessment

  17. Site-specific Probabilistic Analysis of DCGLs Using RESRAD Code

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeongju; Yoon, Suk Bon; Sohn, Wook [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    In general, DCGLs can be conservative (screening DCGL) if they do not take into account site specific factors. Use of such conservative DCGLs can lead to additional remediation that would not be required if the effort was made to develop site-specific DCGLs. Therefore, the objective of this work is to provide an example on the use of the RESRAD 6.0 probabilistic (site-specific) dose analysis to compare with the screening DCGL. Site release regulations state that a site will be considered acceptable for unrestricted use if the residual radioactivity that is distinguishable from background radiation results in a Total Effective Dose Equivalent (TEDE) to an average member of the critical group of less than the site release criteria, for example 0.25 mSv per year in U.S. Utilities use computer dose modeling codes to establish an acceptable level of contamination, the derived concentration guideline level (DCGL) that will meet this regulatory limit. Since the DCGL value is the principal measure of residual radioactivity, it is critical to understand the technical basis of these dose modeling codes. The objective this work was to provide example on nuclear power plant decommissioning dose analysis in a probabilistic analysis framework. The focus was on the demonstration of regulatory compliance for surface soil contamination using the RESRAD 6.0 code. Both the screening and site-specific probabilistic dose analysis methodologies were examined. Example analyses performed with the screening probabilistic dose analysis confirmed the conservatism of the NRC screening values and indicated the effectiveness of probabilistic dose analysis in reducing the conservatism in DCGL derivation.

  18. Site specific atomic polarizabilities in endohedral fullerenes and carbon onions

    Energy Technology Data Exchange (ETDEWEB)

    Zope, Rajendra R., E-mail: rzope@utep.edu; Baruah, Tunna [Department of Physics, The University of Texas at El Paso, El Paso, Texas 79958 (United States); Computational Science Program, The University of Texas at El Paso, El Paso, Texas 79958 (United States); Bhusal, Shusil; Basurto, Luis [Department of Physics, The University of Texas at El Paso, El Paso, Texas 79958 (United States); Jackson, Koblar [Physics Department and Science of Advanced Materials Ph.D. Program, Central Michigan University, Mt. Pleasant, Michigan 48859 (United States)

    2015-08-28

    We investigate the polarizability of trimetallic nitride endohedral fullerenes by partitioning the total polarizability into site specific components. This analysis indicates that the polarizability of the endohedral fullerene is essentially due to the outer fullerene cage and has insignificant contribution from the encapsulated unit. Thus, the outer fullerene cages effectively shield the encapsulated clusters and behave like Faraday cages. The polarizability of endohedral fullerenes is slightly smaller than the polarizability of the corresponding bare carbon fullerenes. The application of the site specific polarizabilities to C{sub 60}@C{sub 240} and C{sub 60}@C{sub 180} onions shows that, compared to the polarizability of isolated C{sub 60} fullerene, the encapsulation of the C{sub 60} in C{sub 240} and C{sub 180} fullerenes reduces its polarizability by 75% and 83%, respectively. The differences in the polarizability of C{sub 60} in the two onions is a result of differences in the bonding (intershell electron transfer), fullerene shell relaxations, and intershell separations. The site specific analysis further shows that the outer atoms in a fullerene shell contribute most to the fullerene polarizability.

  19. Site specific atomic polarizabilities in endohedral fullerenes and carbon onions

    International Nuclear Information System (INIS)

    Zope, Rajendra R.; Baruah, Tunna; Bhusal, Shusil; Basurto, Luis; Jackson, Koblar

    2015-01-01

    We investigate the polarizability of trimetallic nitride endohedral fullerenes by partitioning the total polarizability into site specific components. This analysis indicates that the polarizability of the endohedral fullerene is essentially due to the outer fullerene cage and has insignificant contribution from the encapsulated unit. Thus, the outer fullerene cages effectively shield the encapsulated clusters and behave like Faraday cages. The polarizability of endohedral fullerenes is slightly smaller than the polarizability of the corresponding bare carbon fullerenes. The application of the site specific polarizabilities to C 60 @C 240 and C 60 @C 180 onions shows that, compared to the polarizability of isolated C 60 fullerene, the encapsulation of the C 60 in C 240 and C 180 fullerenes reduces its polarizability by 75% and 83%, respectively. The differences in the polarizability of C 60 in the two onions is a result of differences in the bonding (intershell electron transfer), fullerene shell relaxations, and intershell separations. The site specific analysis further shows that the outer atoms in a fullerene shell contribute most to the fullerene polarizability

  20. Site specific atomic polarizabilities in endohedral fullerenes and carbon onions

    Science.gov (United States)

    Zope, Rajendra R.; Bhusal, Shusil; Basurto, Luis; Baruah, Tunna; Jackson, Koblar

    2015-08-01

    We investigate the polarizability of trimetallic nitride endohedral fullerenes by partitioning the total polarizability into site specific components. This analysis indicates that the polarizability of the endohedral fullerene is essentially due to the outer fullerene cage and has insignificant contribution from the encapsulated unit. Thus, the outer fullerene cages effectively shield the encapsulated clusters and behave like Faraday cages. The polarizability of endohedral fullerenes is slightly smaller than the polarizability of the corresponding bare carbon fullerenes. The application of the site specific polarizabilities to C60@C240 and C60@C180 onions shows that, compared to the polarizability of isolated C60 fullerene, the encapsulation of the C60 in C240 and C180 fullerenes reduces its polarizability by 75% and 83%, respectively. The differences in the polarizability of C60 in the two onions is a result of differences in the bonding (intershell electron transfer), fullerene shell relaxations, and intershell separations. The site specific analysis further shows that the outer atoms in a fullerene shell contribute most to the fullerene polarizability.

  1. C-Terminal Fluorescent Labeling Impairs Functionality of DNA Mismatch Repair Proteins

    Science.gov (United States)

    Brieger, Angela; Plotz, Guido; Hinrichsen, Inga; Passmann, Sandra; Adam, Ronja; Zeuzem, Stefan

    2012-01-01

    The human DNA mismatch repair (MMR) process is crucial to maintain the integrity of the genome and requires many different proteins which interact perfectly and coordinated. Germline mutations in MMR genes are responsible for the development of the hereditary form of colorectal cancer called Lynch syndrome. Various mutations mainly in two MMR proteins, MLH1 and MSH2, have been identified so far, whereas 55% are detected within MLH1, the essential component of the heterodimer MutLα (MLH1 and PMS2). Most of those MLH1 variants are pathogenic but the relevance of missense mutations often remains unclear. Many different recombinant systems are applied to filter out disease-associated proteins whereby fluorescent tagged proteins are frequently used. However, dye labeling might have deleterious effects on MutLα's functionality. Therefore, we analyzed the consequences of N- and C-terminal fluorescent labeling on expression level, cellular localization and MMR activity of MutLα. Besides significant influence of GFP- or Red-fusion on protein expression we detected incorrect shuttling of single expressed C-terminal GFP-tagged PMS2 into the nucleus and found that C-terminal dye labeling impaired MMR function of MutLα. In contrast, N-terminal tagged MutLαs retained correct functionality and can be recommended both for the analysis of cellular localization and MMR efficiency. PMID:22348133

  2. C-terminal fluorescent labeling impairs functionality of DNA mismatch repair proteins.

    Directory of Open Access Journals (Sweden)

    Angela Brieger

    Full Text Available The human DNA mismatch repair (MMR process is crucial to maintain the integrity of the genome and requires many different proteins which interact perfectly and coordinated. Germline mutations in MMR genes are responsible for the development of the hereditary form of colorectal cancer called Lynch syndrome. Various mutations mainly in two MMR proteins, MLH1 and MSH2, have been identified so far, whereas 55% are detected within MLH1, the essential component of the heterodimer MutLα (MLH1 and PMS2. Most of those MLH1 variants are pathogenic but the relevance of missense mutations often remains unclear. Many different recombinant systems are applied to filter out disease-associated proteins whereby fluorescent tagged proteins are frequently used. However, dye labeling might have deleterious effects on MutLα's functionality. Therefore, we analyzed the consequences of N- and C-terminal fluorescent labeling on expression level, cellular localization and MMR activity of MutLα. Besides significant influence of GFP- or Red-fusion on protein expression we detected incorrect shuttling of single expressed C-terminal GFP-tagged PMS2 into the nucleus and found that C-terminal dye labeling impaired MMR function of MutLα. In contrast, N-terminal tagged MutLαs retained correct functionality and can be recommended both for the analysis of cellular localization and MMR efficiency.

  3. Autodegradation of 125I-labeled human epidermal cell surface proteins

    International Nuclear Information System (INIS)

    Hashimoto, K.; Singer, K.H.; Lazarus, G.S.

    1982-01-01

    Triton X-100 extracts of cultured human epidermal cells exhibited proteolytic activity as measured by the hydrolysis of [ 3 H]-casein at neutral pH. The majority of endogenous proteolytic activity was inhibited by parahydroxy mercuribenzoate and by mersalyl acid, indicating the enzyme(s) was a thiol class proteinase(s). Crude Triton X-100 extracts were prepared from epidermal cells following labeling of proteins with 125 I. Autodegradation of labeled proteins at 37 degrees C was detected as early as 1 hr and reached a plateau level by 4 hr. Degradation was inhibited by thiol class proteinase inhibitors. Among the detergent-solubilized radiolabeled proteins a polypeptide chain of Mr 155,000 was particularly sensitive to degradation by endogenous thiol proteinase(s)

  4. Preparation and use of recombinant protein G-gold complexes as markers in double labelling immunocytochemistry

    DEFF Research Database (Denmark)

    Balslev, Y; Hansen, Gert Helge

    1989-01-01

    Recombinant protein G (RPG) was conjugated to colloidal gold particles and used for immunocytochemistry. In this report, the preparation of RPG-gold conjugates (RPGG) and the application of these conjugates in spot blot tests and in double immunolabelling are described. The immunolabelling...... was performed on ultracryosections of pig small intestine using antibodies directed against aminopeptidase N and sucrase-isomaltase. The labelling efficiency of RPGG was compared to that of protein A-gold conjugates (PAG) in different compartments of the enterocyte. Quantification showed that the labelling...... intensity was dependent on the size of the marker as well as on the kind of protein used for complex formation. The distributions for RPGG and PAG were respectively: for the 12 nm particles, 10.3 and 6.2 particles/micron of length of microvillar membrane, 3.5 and 1.0 particles/micron2 of Golgi profile and 5...

  5. Mass spectrometry–based relative quantification of proteins in precatalytic and catalytically active spliceosomes by metabolic labeling (SILAC), chemical labeling (iTRAQ), and label-free spectral count

    Science.gov (United States)

    Schmidt, Carla; Grønborg, Mads; Deckert, Jochen; Bessonov, Sergey; Conrad, Thomas; Lührmann, Reinhard; Urlaub, Henning

    2014-01-01

    The spliceosome undergoes major changes in protein and RNA composition during pre-mRNA splicing. Knowing the proteins—and their respective quantities—at each spliceosomal assembly stage is critical for understanding the molecular mechanisms and regulation of splicing. Here, we applied three independent mass spectrometry (MS)–based approaches for quantification of these proteins: (1) metabolic labeling by SILAC, (2) chemical labeling by iTRAQ, and (3) label-free spectral count for quantification of the protein composition of the human spliceosomal precatalytic B and catalytic C complexes. In total we were able to quantify 157 proteins by at least two of the three approaches. Our quantification shows that only a very small subset of spliceosomal proteins (the U5 and U2 Sm proteins, a subset of U5 snRNP-specific proteins, and the U2 snRNP-specific proteins U2A′ and U2B′′) remains unaltered upon transition from the B to the C complex. The MS-based quantification approaches classify the majority of proteins as dynamically associated specifically with the B or the C complex. In terms of experimental procedure and the methodical aspect of this work, we show that metabolically labeled spliceosomes are functionally active in terms of their assembly and splicing kinetics and can be utilized for quantitative studies. Moreover, we obtain consistent quantification results from all three methods, including the relatively straightforward and inexpensive label-free spectral count technique. PMID:24448447

  6. Non-site-specific allosteric effect of oxygen on human hemoglobin under high oxygen partial pressure.

    Science.gov (United States)

    Takayanagi, Masayoshi; Kurisaki, Ikuo; Nagaoka, Masataka

    2014-04-08

    Protein allostery is essential for vital activities. Allosteric regulation of human hemoglobin (HbA) with two quaternary states T and R has been a paradigm of allosteric structural regulation of proteins. It is widely accepted that oxygen molecules (O2) act as a "site-specific" homotropic effector, or the successive O2 binding to the heme brings about the quaternary regulation. However, here we show that the site-specific allosteric effect is not necessarily only a unique mechanism of O2 allostery. Our simulation results revealed that the solution environment of high O2 partial pressure enhances the quaternary change from T to R without binding to the heme, suggesting an additional "non-site-specific" allosteric effect of O2. The latter effect should play a complementary role in the quaternary change by affecting the intersubunit contacts. This analysis must become a milestone in comprehensive understanding of the allosteric regulation of HbA from the molecular point of view.

  7. Why do total-body decay curves of iodine-labeled proteins begin with a delay

    International Nuclear Information System (INIS)

    Regoeczi, E.

    1987-01-01

    The initial delay that occurs in total-body radiation curves reaching their single-exponential slopes was analyzed from 106 experiments involving several mammalian species (guinea pig, mouse, rabbit, and rat) and plasma proteins (alpha 1-acid glycoprotein, antithrombin III, fibrinogen, immunoglobulin G, and transferrin) in 14 different combinations. The time interval (Td) between injection and the intercept of the slope with the full-dose value was adopted as a measure of curve nonideality. The overall mean Td was 6.6 h, but individual values showed a significant correlation to protein half-lives, whereby proteins of unequal metabolic properties exhibited different mean Td values. Targeting protein to the liver abolished delay. Choice of the isotope ( 125 I or 131 I) and size of the labeled protein had no influence on the magnitude of delay. Whole-body radiation curves of animals that received [ 125 I]iodotyrosines, Na 131 I, or 131 I-polyvinylpyrrolidone exhibited no initial delays. These results do not support the earlier notion that delay is caused by a redistribution of the labeled protein in the body to radiometrically more favorable sites. However, they are compatible with the assumption that delayed passage of a protein dose through the extracellular matrix and/or retarded transfer of proteolytic products from extravascular catabolic sites to plasma may be responsible for the phenomenon

  8. How to awaken your nanomachines: Site-specific activation of focal adhesion kinases through ligand interactions

    KAUST Repository

    Walkiewicz, Katarzyna Wiktoria

    2015-06-17

    The focal adhesion kinase (FAK) and the related protein-tyrosine kinase 2-beta (Pyk2) are highly versatile multidomain scaffolds central to cell adhesion, migration, and survival. Due to their key role in cancer metastasis, understanding and inhibiting their functions are important for the development of targeted therapy. Because FAK and Pyk2 are involved in many different cellular functions, designing drugs with partial and function-specific inhibitory effects would be desirable. Here, we summarise recent progress in understanding the structural mechanism of how the tug-of-war between intramolecular and intermolecular interactions allows these protein ‘nanomachines’ to become activated in a site-specific manner.

  9. Tus-Ter as a tool to study site-specific DNA replication perturbation in eukaryotes

    DEFF Research Database (Denmark)

    Larsen, Nicolai B; Hickson, Ian D; Mankouri, Hocine W

    2014-01-01

    The high-affinity binding of the Tus protein to specific 21-bp sequences, called Ter, causes site-specific, and polar, DNA replication fork arrest in E coli. The Tus-Ter complex serves to coordinate DNA replication with chromosome segregation in this organism. A number of recent and ongoing studies...... have demonstrated that Tus-Ter can be used as a heterologous tool to generate site-specific perturbation of DNA replication when reconstituted in eukaryotes. Here, we review these recent findings and explore the molecular mechanism by which Tus-Ter mediates replication fork (RF) arrest in the budding...... yeast, S. cerevisiae. We propose that Tus-Ter is a versatile, genetically tractable, and regulatable RF blocking system that can be utilized for disrupting DNA replication in a diverse range of host cells....

  10. Tus-Ter as a tool to study site-specific DNA replication perturbation in eukaryotes.

    Science.gov (United States)

    Larsen, Nicolai B; Hickson, Ian D; Mankouri, Hocine W

    2014-01-01

    The high-affinity binding of the Tus protein to specific 21-bp sequences, called Ter, causes site-specific, and polar, DNA replication fork arrest in E coli. The Tus-Ter complex serves to coordinate DNA replication with chromosome segregation in this organism. A number of recent and ongoing studies have demonstrated that Tus-Ter can be used as a heterologous tool to generate site-specific perturbation of DNA replication when reconstituted in eukaryotes. Here, we review these recent findings and explore the molecular mechanism by which Tus-Ter mediates replication fork (RF) arrest in the budding yeast, S. cerevisiae. We propose that Tus-Ter is a versatile, genetically tractable, and regulatable RF blocking system that can be utilized for disrupting DNA replication in a diverse range of host cells.

  11. Site-Specific Integration of Exogenous Genes Using Genome Editing Technologies in Zebrafish

    Directory of Open Access Journals (Sweden)

    Atsuo Kawahara

    2016-05-01

    Full Text Available The zebrafish (Danio rerio is an ideal vertebrate model to investigate the developmental molecular mechanism of organogenesis and regeneration. Recent innovation in genome editing technologies, such as zinc finger nucleases (ZFNs, transcription activator-like effector nucleases (TALENs and the clustered regularly interspaced short palindromic repeats (CRISPR/CRISPR associated protein 9 (Cas9 system, have allowed researchers to generate diverse genomic modifications in whole animals and in cultured cells. The CRISPR/Cas9 and TALEN techniques frequently induce DNA double-strand breaks (DSBs at the targeted gene, resulting in frameshift-mediated gene disruption. As a useful application of genome editing technology, several groups have recently reported efficient site-specific integration of exogenous genes into targeted genomic loci. In this review, we provide an overview of TALEN- and CRISPR/Cas9-mediated site-specific integration of exogenous genes in zebrafish.

  12. Segmental isotope labeling of proteins for NMR structural study using a protein S tag for higher expression and solubility

    International Nuclear Information System (INIS)

    Kobayashi, Hiroshi; Swapna, G. V. T.; Wu, Kuen-Phon; Afinogenova, Yuliya; Conover, Kenith; Mao, Binchen; Montelione, Gaetano T.; Inouye, Masayori

    2012-01-01

    A common obstacle to NMR studies of proteins is sample preparation. In many cases, proteins targeted for NMR studies are poorly expressed and/or expressed in insoluble forms. Here, we describe a novel approach to overcome these problems. In the protein S tag-intein (PSTI) technology, two tandem 92-residue N-terminal domains of protein S (PrS 2 ) from Myxococcus xanthus is fused at the N-terminal end of a protein to enhance its expression and solubility. Using intein technology, the isotope-labeled PrS 2 -tag is replaced with non-isotope labeled PrS 2 -tag, silencing the NMR signals from PrS 2 -tag in isotope-filtered 1 H-detected NMR experiments. This method was applied to the E. coli ribosome binding factor A (RbfA), which aggregates and precipitates in the absence of a solubilization tag unless the C-terminal 25-residue segment is deleted (RbfAΔ25). Using the PrS 2 -tag, full-length well-behaved RbfA samples could be successfully prepared for NMR studies. PrS 2 (non-labeled)-tagged RbfA (isotope-labeled) was produced with the use of the intein approach. The well-resolved TROSY-HSQC spectrum of full-length PrS 2 -tagged RbfA superimposes with the TROSY-HSQC spectrum of RbfAΔ25, indicating that PrS 2 -tag does not affect the structure of the protein to which it is fused. Using a smaller PrS-tag, consisting of a single N-terminal domain of protein S, triple resonance experiments were performed, and most of the backbone 1 H, 15 N and 13 C resonance assignments for full-length E. coli RbfA were determined. Analysis of these chemical shift data with the Chemical Shift Index and heteronuclear 1 H– 15 N NOE measurements reveal the dynamic nature of the C-terminal segment of the full-length RbfA protein, which could not be inferred using the truncated RbfAΔ25 construct. CS-Rosetta calculations also demonstrate that the core structure of full-length RbfA is similar to that of the RbfAΔ25 construct.

  13. Dual-Quantum-Dots-Labeled Lateral Flow Strip Rapidly Quantifies Procalcitonin and C-reactive Protein

    Science.gov (United States)

    Qi, XiaoPing; Huang, YunYe; Lin, ZhongShi; Xu, Liang; Yu, Hao

    2016-03-01

    In the article, a dual-quantum-dots-labeled (dual-QDs-labeled) lateral flow strip (LFS) method was developed for the simultaneous and rapid quantitative detection of procalcitonin (PCT) and C-reactive protein (CRP) in the blood. Two QD-antibody conjugates with different fluorescence emission spectra were produced and sprayed on the LFS to capture PCT and CRP in the blood. Furthermore, a double antibody sandwich method for PCT and, meanwhile, a competitive inhibition method for CRP were employed in the LFS. For PCT and CRP in serum assayed by the dual-QDs-labeled LFS, their detection sensitivities reached 0.1 and 1 ng/mL, respectively, and their linear quantitative detection ranges were from 0.3 to 200 ng/mL and from 50 to 250 μg/mL, respectively. There was little evidence that the PCT and CRP assays would be interfered with each other. The correlations for testing CRP and PCT in clinical samples were 99.75 and 97.02 %, respectively, between the dual-QDs-labeled LFS we developed and commercial methods. The rapid quantification of PCT and CRP on dual-QDs-labeled LFS is of great clinical value to distinguish inflammation, bacterial infection, or viral infection and to provide guidance for the use of antibiotics or other medicines.

  14. Site-Specific Covalent Conjugation of Modified mRNA by tRNA Guanine Transglycosylase.

    Science.gov (United States)

    Ehret, Fabian; Zhou, Cun Yu; Alexander, Seth C; Zhang, Dongyang; Devaraj, Neal K

    2018-03-05

    Modified mRNA (mod-mRNA) has recently been widely studied as the form of RNA useful for therapeutic applications due to its high stability and lowered immune response. Herein, we extend the scope of the recently established RNA-TAG (transglycosylation at guanosine) methodology, a novel approach for genetically encoded site-specific labeling of large mRNA transcripts, by employing mod-mRNA as substrate. As a proof of concept, we covalently attached a fluorescent probe to mCherry encoding mod-mRNA transcripts bearing 5-methylcytidine and/or pseudouridine substitutions with high labeling efficiencies. To provide a versatile labeling methodology with a wide range of possible applications, we employed a two-step strategy for functionalization of the mod-mRNA to highlight the therapeutic potential of this new methodology. We envision that this novel and facile labeling methodology of mod-RNA will have great potential in decorating both coding and noncoding therapeutic RNAs with a variety of diagnostic and functional moieties.

  15. Metabolism in rats of selenium from intrinsically and extrinsically labeled isolated soy protein

    International Nuclear Information System (INIS)

    Mason, A.C.; Weaver, C.M.

    1986-01-01

    Absorption, retention and tissue accumulation by rats of 75 Se from intrinsically labeled isolated soy protein were compared with utilization of 75 Se from the extrinsic sources of [ 75 Se]selenite, [ 75 Se]selenate or [ 75 Se]selenomethionine. Extrinsic sources of selenium were given by gavage or mixed with isolated soy protein. There were no differences in absorption and retention of 75 Se from intrinsically labeled soy diet compared to the three extrinsically labeled soy diets. Of the three extrinsic sources tested, 75 Se from selenate was better absorbed than from selenite or selenomethionine when incorporated into a soy diet. Absorption of 75 Se was significantly lower when given to animals in gavage solution than when mixed with soy diets. After a 14-d test period, retention of 75 Se was the same for all four soy diet groups. In gavaged groups, 75 Se from selenomethionine was retained to a greater extent than 75 Se from selenite. The liver, testes and kidney accumulated more 75 Se from the test meal than did the blood and lungs. In the testes more 75 Se from selenite and selenate was accumulated than from selenomethionine-labeled diets. Selenium absorption from the soy isolate source was very high (86-96%), indicating that, although soy does not normally contain high levels of selenium, the selenium present is well absorbed from this plant source

  16. Imaging diagnosis of protein-losing enteropathy by 99mTc-labeled serum albumin

    International Nuclear Information System (INIS)

    Kashiwagi, Toru; Fukui, Hiroyuki; Jyokou, Takeshi

    1990-01-01

    Abdominal scintigraphy with intravenous injection of 99m Tc-labeled serum albumin was performed in 6 patients with protein-losing enteropathy (PLE) and 3 patients with nongastrointestinal tract disorders. In 3 out of 6 patients with PLE, abnormal radioactivity was observed in the ileum region 3 hours after injection, and thereafter clear colon image was obtained. In the remaining 3 patients, the colon was visualized 24 hours after injection. On the other hand, in all patients with nongastrointestinal tract disorders, no abnormal radioactivity was observed in the abdomen until 24 hours after injection. These results indicate that gastrointestinal protein loss could be demonstrated by scintigraphy with intravenously administered 99m Tc-labeled serum albumin. In one healthy subject, 99m Tc-labeled serum albumin was administered orally and abdominal scintigraphy was performed. Gastrointestinal tract image was only observed and no other image was demonstrated until 24 hours after oral administration. This result suggests that 99m Tc excreted into the gastrointestinal tract is not reabsorbed. Therefore, abdominal scintigraphy with 99m Tc-labeled serum albumin appears to be a simple and useful method for diagnosis of PLE. (author)

  17. Optimization under Uncertainty of Site-Specific Turbine Configurations: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Quick, Julian; Dykes, Katherine; Graf, Peter; Zahle, Frederik

    2016-11-01

    Uncertainty affects many aspects of wind energy plant performance and cost. In this study, we explore opportunities for site-specific turbine configuration optimization that accounts for uncertainty in the wind resource. As a demonstration, a simple empirical model for wind plant cost of energy is used in an optimization under uncertainty to examine how different risk appetites affect the optimal selection of a turbine configuration for sites of different wind resource profiles. If there is unusually high uncertainty in the site wind resource, the optimal turbine configuration diverges from the deterministic case and a generally more conservative design is obtained with increasing risk aversion on the part of the designer.

  18. Site Specific Probable Maximum Precipitation Estimates and Professional Judgement

    Science.gov (United States)

    Hayes, B. D.; Kao, S. C.; Kanney, J. F.; Quinlan, K. R.; DeNeale, S. T.

    2015-12-01

    State and federal regulatory authorities currently rely upon the US National Weather Service Hydrometeorological Reports (HMRs) to determine probable maximum precipitation (PMP) estimates (i.e., rainfall depths and durations) for estimating flooding hazards for relatively broad regions in the US. PMP estimates for the contributing watersheds upstream of vulnerable facilities are used to estimate riverine flooding hazards while site-specific estimates for small water sheds are appropriate for individual facilities such as nuclear power plants. The HMRs are often criticized due to their limitations on basin size, questionable applicability in regions affected by orographic effects, their lack of consist methods, and generally by their age. HMR-51 for generalized PMP estimates for the United States east of the 105th meridian, was published in 1978 and is sometimes perceived as overly conservative. The US Nuclear Regulatory Commission (NRC), is currently reviewing several flood hazard evaluation reports that rely on site specific PMP estimates that have been commercially developed. As such, NRC has recently investigated key areas of expert judgement via a generic audit and one in-depth site specific review as they relate to identifying and quantifying actual and potential storm moisture sources, determining storm transposition limits, and adjusting available moisture during storm transposition. Though much of the approach reviewed was considered a logical extension of HMRs, two key points of expert judgement stood out for further in-depth review. The first relates primarily to small storms and the use of a heuristic for storm representative dew point adjustment developed for the Electric Power Research Institute by North American Weather Consultants in 1993 in order to harmonize historic storms for which only 12 hour dew point data was available with more recent storms in a single database. The second issue relates to the use of climatological averages for spatially

  19. Optimization Under Uncertainty of Site-Specific Turbine Configurations

    Science.gov (United States)

    Quick, J.; Dykes, K.; Graf, P.; Zahle, F.

    2016-09-01

    Uncertainty affects many aspects of wind energy plant performance and cost. In this study, we explore opportunities for site-specific turbine configuration optimization that accounts for uncertainty in the wind resource. As a demonstration, a simple empirical model for wind plant cost of energy is used in an optimization under uncertainty to examine how different risk appetites affect the optimal selection of a turbine configuration for sites of different wind resource profiles. If there is unusually high uncertainty in the site wind resource, the optimal turbine configuration diverges from the deterministic case and a generally more conservative design is obtained with increasing risk aversion on the part of the designer.

  20. Site-Specific ecological risk assessment. Case-study 2

    DEFF Research Database (Denmark)

    Jensen, John

    “Development of a decision support system for sustainable management of contaminated land by linking bioavailability, ecological risk and ground water pollution of organic pollutants”or in short “LIBERATION”. The presentation includes examples on how to scale and integrate the results from various scientific......The decision supporting and integrating assessment tool, TRIAD, is used site-specific on PAH- and heavy metal contaminated sites in Denmark. The various aspects of the TRIAD approach are used on a set of chemistry-, ecotoxicology- and ecology related data collected among others in the EU project...

  1. Appreciating Site-Specific Qualities in Urban Harbours

    DEFF Research Database (Denmark)

    Reeh, Henrik

    2015-01-01

    of observa-tions from Marseille in southern France. After modernization and dislocation of its harbor territories in the early 20th century already, this city is currently taking important steps from industrial urbanism into cultural planning. This transformation allows for new and unprogrammed experiences......When “site-specificity” becomes a central value in city and harbor transformation, it soon proves necessary to address the ways in which scholars and professionals actually determine site-specific qualities in urban fabrics and social life. This paper delves into the above questions by means...

  2. Cell-free expression and stable isotope labelling strategies for membrane proteins

    International Nuclear Information System (INIS)

    Sobhanifar, Solmaz; Reckel, Sina; Junge, Friederike; Schwarz, Daniel; Kai, Lei; Karbyshev, Mikhail; Loehr, Frank; Bernhard, Frank; Doetsch, Volker

    2010-01-01

    Membrane proteins are highly underrepresented in the structural data-base and remain one of the most challenging targets for functional and structural elucidation. Their roles in transport and cellular communication, furthermore, often make over-expression toxic to their host, and their hydrophobicity and structural complexity make isolation and reconstitution a complicated task, especially in cases where proteins are targeted to inclusion bodies. The development of cell-free expression systems provides a very interesting alternative to cell-based systems, since it circumvents many problems such as toxicity or necessity for the transportation of the synthesized protein to the membrane, and constitutes the only system that allows for direct production of membrane proteins in membrane-mimetic environments which may be suitable for liquid state NMR measurements. The unique advantages of the cell-free expression system, including strong expression yields as well as the direct incorporation of almost any combination of amino acids with very little metabolic scrambling, has allowed for the development of a wide-array of isotope labelling techniques which facilitate structural investigations of proteins whose spectral congestion and broad line-widths may have earlier rendered them beyond the scope of NMR. Here we explore various labelling strategies in conjunction with cell-free developments, with a particular focus on α-helical transmembrane proteins which benefit most from such methods.

  3. The use of radioactive precursors for the labeling of ribosomal proteins in Euglena

    International Nuclear Information System (INIS)

    Freyssinet, Georges

    1977-01-01

    The metabolism of three radioactive compounds has been studied in Euglena gracilis, either in the dark during the non-growing phase, or during light-induced greening, in the presence or absence of inhibitors of protein synthesis. The results can be summarized as follows: the fixation of 14 CO 2 and its incorporation into proteins occurs rapidly. Their intensities depend on the time of incubation and the physiological state of cells. Radioactive amino acids penetrate the cells within 2-4 hours and incorporation into proteins follows the uptake. In a few cases, amino acid uptake is low or even nonexistent. The rates of uptake and incorporation of radioactive sodium sulfate depend on the sulfur deficiency induced during growth in the dark, and on the time of incubation. Protein synthesis inhibitors act either on uptake or on incorporation or on both. The rate of inhibition depends on the inhibitor and precursor used. The radioactive precursors can be used for the labeling of cytoplasmic and chloroplast ribosomal proteins. The most favourable conditions for this labeling are mostly related to the uptake and incorporation measured on whole cells. All these results allow criteria to be determined which facilitate the choice of inhibitors, precursors and conditions of incubation depending on the protein studied

  4. Fast axonal transport of labeled proteins in motoneurons of exercise-trained rats

    International Nuclear Information System (INIS)

    Jasmin, B.J.; Lavoie, P.A.; Gardiner, P.F.

    1988-01-01

    In this study, the fast orthograde axonal transport of radiolabeled proteins was measured to determine the effects of endurance-running training on transport velocity and amounts of transported proteins in rat sciatic motoneurons. Female rats were subjected to a progressive running-training program for 10-12 wk. Twenty-four hours after the last training session, rats underwent right L4-L5 dorsal root ganglionectomy. The next day, 20 microCi of [3H]leucine was injected bilaterally in the vicinity of the motoneuronal cell bodies supplying the sciatic nerve, to study axonal transport parameters. Results showed that peak and average transport velocities of labeled proteins were significantly (P less than 0.05) increased by 22 and 29%, respectively, in the deafferented nerves of the runners as compared with controls. Moreover, the amount of total transported protein-bound radioactivity was increased in both left (40%) and right (37%) sciatic nerves of the runners. An exhaustive exercise session reduced (P less than 0.05) peak displacement (8%) and total transported protein-bound radioactivity (36%) in the sciatic nerves of control rats, whereas no changes were noticed in trained animals. The data suggest that chronic endurance running induces significant adaptations in the fast axonal transport of labeled proteins

  5. Modification of liposomes with proteins by dansyl-labeled heterobifunctional crosslinker.

    Science.gov (United States)

    Chen, Tao; Wang, Rutao; Lu, Tingting; Liang, Guozheng; Lu, Tingli

    2011-07-01

    The introduction of a fluorescent chromaphore into bifunctional crosslinkers results in a molecule with normal crosslinker properties and a fluorescent group for straightforward quantification. This work describes the synthesis of the dansyl-labeled heterobifunctional crosslinker N-succinimidyl ε-N-dansyl α-N-(acetylthio)acetyllysine (dansyl-ATA-lysine-NHS) containing reactive N-hydroxysuccinimidyl (NHS) ester and sulfhydryl groups. The application of this crosslinker to conjugation of bovine serum albumin (BSA) protein to the surface of a liposome containing maleimide functions is also demonstrated. BSA was modified with the dansyl-labeled crosslinker and subsequently conjugated to liposomes containing reactive phospholipid derivative N-[4-(p-maleimidophenyl)butyryl]phosphatidylethanolamine and the degree of modification and conjugation were quantitatively determined by measuring the fluorescence emission of the dansyl group. The reliability of the fluorescence quantification was confirmed by a micro bio-barcode assay protein assay.

  6. Sensitive rapid analysis of iodine-labelled protein mixture on flat substrates with high spatial resolution

    International Nuclear Information System (INIS)

    Zanevskij, Yu.V.; Ivanov, A.B.; Movchan, S.A.; Peshekhonov, V.D.; Chan Dyk Tkhan'; Chernenko, S.P.; Kaminir, L.B.; Krejndlin, Eh.Ya.; Chernyj, A.A.

    1983-01-01

    Usability of rapid analysis by electrophoresis of the admixture of I 125 -labelled proteins on flat samples by means of URAN type installation developed using a multiwire proportional chamber is studied. The sensitivity of the method is better than 200 cpm/cm 2 and the spatial resolution is approximately 1 mm. The procedure of the rapid analysis is no longer than several tens of minutes

  7. Site-specific calibration of the Hanford personnel neutron dosimeter

    International Nuclear Information System (INIS)

    Endres, A.W.; Brackenbush, L.W.; Baumgartner, W.V.; Rathbone, B.A.

    1994-10-01

    A new personnel dosimetry system, employing a standard Hanford thermoluminescent dosimeter (TLD) and a combination dosimeter with both CR-39 nuclear track and TLD-albedo elements, is being implemented at Hanford. Measurements were made in workplace environments in order to verify the accuracy of the system and establish site-specific factors to account for the differences in dosimeter response between the workplace and calibration laboratory. Neutron measurements were performed using sources at Hanford's Plutonium Finishing Plant under high-scatter conditions to calibrate the new neutron dosimeter design to site-specific neutron spectra. The dosimeter was also calibrated using bare and moderated 252 Cf sources under low-scatter conditions available in the Hanford Calibration Laboratory. Dose equivalent rates in the workplace were calculated from spectrometer measurements using tissue equivalent proportional counter (TEPC) and multisphere spectrometers. The accuracy of the spectrometers was verified by measurements on neutron sources with calibrations directly traceable to the National Institute of Standards and Technology (NIST)

  8. Towards soft robotic devices for site-specific drug delivery.

    Science.gov (United States)

    Alici, Gursel

    2015-01-01

    Considerable research efforts have recently been dedicated to the establishment of various drug delivery systems (DDS) that are mechanical/physical, chemical and biological/molecular DDS. In this paper, we report on the recent advances in site-specific drug delivery (site-specific, controlled, targeted or smart drug delivery are terms used interchangeably in the literature, to mean to transport a drug or a therapeutic agent to a desired location within the body and release it as desired with negligibly small toxicity and side effect compared to classical drug administration means such as peroral, parenteral, transmucosal, topical and inhalation) based on mechanical/physical systems consisting of implantable and robotic drug delivery systems. While we specifically focus on the robotic or autonomous DDS, which can be reprogrammable and provide multiple doses of a drug at a required time and rate, we briefly cover the implanted DDS, which are well-developed relative to the robotic DDS, to highlight the design and performance requirements, and investigate issues associated with the robotic DDS. Critical research issues associated with both DDSs are presented to describe the research challenges ahead of us in order to establish soft robotic devices for clinical and biomedical applications.

  9. Optimized localization of bacterial infections with technetium-99m labelled human immunoglobulin after protein charge selection

    International Nuclear Information System (INIS)

    Welling, M.; Feitsma, H.I.J.; Calame, W.; Ensing, G.J.; Goedemans, W.; Pauwels, E.K.J.

    1994-01-01

    To improve the scintigraphic detection of bacterial infections a protein charge-purified fraction of polyclonal human immunoglobulin was applied as a radiopharmaceutical. This purification was achieved by attaching the immunoglobulin to an anion-exchanger column and by obtaining the column-bound fraction with buffer. The binding to bacteria in vitro and the target to non-target ratios of an experimental thigh infection with Staphylococcus aureus or Klebsiella pneumoniae in mice were evaluated to compare the purified and the unpurified immunoglobulin. The percentage of binding to all gram-positive and gram-negative bacteria used in this study was significantly (P 99m Tc-labelled protein charge-purified polyclonal human immunoglobulin was administered intravenously. At all time intervals the target (infected thighs) to non-target (non-infected thighs) ratios for both infections were significantly higher (P 99m Tc-labelled protein charge-purified immunoglobulin localizes both a gram-positive and a gram-negative thigh infection more intensely and faster than 99m Tc-labelled unpurified immunoglobulin. (orig.)

  10. Firefly Luciferin-Inspired Biocompatible Chemistry for Protein Labeling and In Vivo Imaging.

    Science.gov (United States)

    Wang, Yuqi; An, Ruibing; Luo, Zhiliang; Ye, Deju

    2018-04-17

    Biocompatible reactions have emerged as versatile tools to build various molecular imaging probes that hold great promise for the detection of biological processes in vitro and/or in vivo. In this Minireview, we describe the recent advances in the development of a firefly luciferin-inspired biocompatible reaction between cyanobenzothiazole (CBT) and cysteine (Cys), and highlight its versatility to label proteins and build multimodality molecular imaging probes. The review starts from the general introduction of biocompatible reactions, which is followed by briefly describing the development of the firefly luciferin-inspired biocompatible chemistry. We then discuss its applications for the specific protein labeling and for the development of multimodality imaging probes (fluorescence, bioluminescence, MRI, PET, photoacoustic, etc.) that enable high sensitivity and spatial resolution imaging of redox environment, furin and caspase-3/7 activity in living cells and mice. Finally, we offer the conclusions and our perspective on the various and potential applications of this reaction. We hope that this review will contribute to the research of biocompatible reactions for their versatile applications in protein labeling and molecular imaging. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Site Specific Waste Management Instructions for loading and shipment of category 3 investigation derived waste to ERDF

    International Nuclear Information System (INIS)

    Corriveau, C.E.; Wolf, D.M.

    1996-08-01

    This Site Specific Waste Management Instruction (SSWMI) provides guidance for management of containerized investigation-derived waste being loaded and transported to the Environmental Restoration Disposal Facility. The SSWMI outlines the waste management practices that will be performed in the field to implement federal, state, and US Department of Energy requirements. Additional guidance for waste packaging, marking, labeling and shipping is provided (US DOT rules in 49 CFR have precedence)

  12. Juvenile hormone-binding proteins of Melanoplus bivittatus identified by EFDA photoaffinity labeling

    International Nuclear Information System (INIS)

    Winder, B.S.

    1988-01-01

    Proteins that bind juvenile hormone in the hemolymph and fat body of the grasshopper, Melanoplus bivittatus were identified by photoaffinity labeling with radiolabeled epoxyfarnesyl diazoacetate ( 3 H-EFDA), and were characterized by electrophoretic analysis. A protocol was developed which allowed detection of 3 H-EFDA that was covalently linked to proteins upon exposure to ultraviolet light at 254 nm. Quantification of protein-linked 3 H-EFDA by liquid scintillation spectrometry took advantage of the differential solubility of unlinked 3 H-EFDA in toluene alone, and of the protein-linked 3 H-EFDA in toluene plus the detergent, Triton X-100. Competition between EFDA and juvenile hormone (JH) for binding to JH-specific binding sites was measured by hydroxyapatite protein binding assays in the presence of radiolabeled JH or EFDA and competing non-radiolabeled hormone. The protein-linked EFDA was detected on fluorograms of SDS or nondenaturing polyacrylamide gels (PAGE), and by liquid scintillation spectrometry of membranes to which the proteins had been electrophoretically transferred. Proteins which specifically bound JH were identified by photolabeling proteins in the presence and absence of nonlabeled JH-III

  13. Stereospecific assignments of glycine in proteins by stereospecific deuteration and {sup 15}N labeling

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, A.P.; Curley, R.W. Jr.; Panigot, M.J.; Fesik, S.W. [Ohio State Univ., Columbus, OH (United States)

    1994-12-01

    Stereospecific assignments are important for accurately determining the three-dimensional structures of proteins through the use of multidimensional NMR techniques. It is especially important to stereospecifically assign the glycine {alpha}-protons in proteins because of the potential for different backbone conformations of this residue. These stereospecific assignments are critical for interpreting the {sup 3}J{sub NH,{alpha}H} coupling constants and NOEs involving the glycine {alpha}-protons that determine the conformation of this part of the protein. However, it is often difficult to unambiguously obtain the stereospecific assignments for glycine residues by using only NOE data. In this poster, we present a method for unambiguous, stereospecific assignment of the {alpha}-protons of glycine residues. This method involves synthesis of stereo-specifically deuterated and {sup 15}N-labeled Gly using a slightly modified procedure originally described by Woodard and coworkers for the stereoselective deuteration of glycine. The stereospecifically deuterated and {sup 15}N-labeled Gy has been incorporated into recombinant proteins expressed in both bacterial systems (FKBP) and mammalian cells (u-PA). Two- and three-dimensional isotope-filtered and isotope-edited NMR experiments were used to obtain the stereospecific assignments of the glycine {alpha}-protons for these proteins.

  14. Proteins labelling with 125I and experimental determination of their specific activity

    International Nuclear Information System (INIS)

    Caro, R.A.; Ciscato, V.A.; Giacomini, S.M.V. de; Quiroga, S.; Radicella, R.

    1975-11-01

    A standardization of the labelling technique of proteins with 125 I and the control of the obtained products, principally their specific activities was performed, in order to utilize them correctly in radioimmunoassays. The quantities of chloramine-T and sodium metabisulphite were lowered, with regard to the original method, to 3.6 and 9.6 μg respectively. Under these conditions, optimal yields and radioiodinated proteins with good immunological activities were obtained. It was found that the specific activity calculated, as usual, from the yield obtained by electrophoresis, is higher than the real value. For these reasons the yields and the corresponding specific activities were determined from ascending chromatographies performed with 70 per cent methanol as solvent, during two hours in darkness. The radioimmunoassay displacement curves obtained with proteins labelled which the proposed method and the specific activities of which were calculated from their radiochromatographic patterns, were reproducible and gave a percentage of bound radioiodinated protein in the absence of cold protein of 50 +- 4. (author) [es

  15. Direct and indirect radioiodination of protein: comparative study of chemotactic peptide labeling

    International Nuclear Information System (INIS)

    Lavinas, Tatiana

    2004-01-01

    The development of simple methods for protein radioiodination have stimulated the use of radioiodinated peptides in vivo. There are two basic methods for labeling proteins with radioiodine: direct labeling, reaction of an electrophilic radioiodine with functional activated groups on protein, like the phenol ring in the tyrosine residue, and the conjugation of a previously radioiodinated molecule to the protein, referred as indirect method. The great problem related to the direct radioiodination of proteins is the in vivo dehalogenation. This problem can be minimized if a non-phenolic prosthetic group is used in the indirect radioiodination of the peptide. The ATE prosthetic group, N-succinimidyl 3-(tri-n-butylstannyl) benzoate, when radioiodinated by electrophilic iododestannilation produces N-succinimidyl 3-[ 123 l/ 131 l] iodine benzoate (SIB) that is subsequently conjugated to the protein by the acylation of the lysine group. There are many radiopharmaceuticals employed in scintigraphic images of infection and inflammation used with some limitations. These limitations stimulated the improvement of a new class of radiopharmaceuticals, the receptor-specific related labeled peptides, as the mediators of the inflammatory response, that presents high affinity by receptors expressed in the inflammation process, and fast clearance from blood and non-target tissues. One of these molecules is the synthetic chemotactic peptide fNleLFNIeYK that presents potent chemotaxis for leukocytes, with high affinity by the receptors presented in polymorphonuclear leukocytes and mononuclear phagocytes. The objective of this work included the synthesis of ATE prosthetic group and comparative radioiodination of the chemotactic peptide fNleLFNIeYK by direct and indirect methods, with radiochemical purity determination and evaluation of in vivo and in vitro stability of the compounds. This work presented an original contribution in the comparative biological distribution studies of the

  16. Dye-Doped Silica Nanoparticle Labels/Protein Microarray for Detection of Protein Biomarkers

    OpenAIRE

    Wu, Hong; Huo, Qisheng; Varnum, Susan; Wang, Jun; Liu, Guodong; Nie, Zimin; Liu, Jun; Lin, Yuehe

    2008-01-01

    We report a dye-encapsulated silica nanoparticle as a label, with the advantages of high fluorescence intensity, photostability, and biocompatibility, in conjunction with microarray technology for sensitive immunoassay of a biomarker, Interleukin-6 (IL-6), on a microarray format. The tris (2,2’-bipyridyl)ruthenium (II)chloride hexahydrate (Rubpy) dye was incorporated into silica nanoparticles using a simple one-step microemulsion synthesis. In this synthesis process, Igepal CA520 was used as ...

  17. Characterization of reference and site specific humic acids

    International Nuclear Information System (INIS)

    Kim, J.I.; Buckau, G.

    1988-11-01

    As a contribution to the interlaboratory exercise for the complexation of humic acid and colloid generation (COCO-Club activities) in the CEC project MIRAGE-II, the characterization of selected humic acids have been carried out at TU Muenchen, regarding their elemental compositions, inorganic impurities, spectroscopic properties, size distributions and proton exchange capacities. The commercial humic acid (Na salt) from Aldrich Co. is purified to a protonated form and used as reference material. Furthermore two humic acids extracted from groundwaters from Gorleben (FRG) and Boom Clay (B) are purified to protonated forms and taken as site specific materials. These three humic acids, together with the original Na salt from Aldrich Co., are included in the present characterization exercise. The results of characterization provide basic knowledge supporting the forthcoming study of complexation of actinides and fission products with humic acid and their migration processes in the geosphere. (orig.)

  18. Site-Specific Genome Engineering in Human Pluripotent Stem Cells.

    Science.gov (United States)

    Merkert, Sylvia; Martin, Ulrich

    2016-06-24

    The possibility to generate patient-specific induced pluripotent stem cells (iPSCs) offers an unprecedented potential of applications in clinical therapy and medical research. Human iPSCs and their differentiated derivatives are tools for diseases modelling, drug discovery, safety pharmacology, and toxicology. Moreover, they allow for the engineering of bioartificial tissue and are promising candidates for cellular therapies. For many of these applications, the ability to genetically modify pluripotent stem cells (PSCs) is indispensable, but efficient site-specific and safe technologies for genetic engineering of PSCs were developed only recently. By now, customized engineered nucleases provide excellent tools for targeted genome editing, opening new perspectives for biomedical research and cellular therapies.

  19. Savannah River Site's Site Specific Plan

    Energy Technology Data Exchange (ETDEWEB)

    1991-08-01

    This Site Specific Plan (SSP) has been prepared by the Savannah River Site (SRS) in order to show the Environmental Restoration and Waste Management activities that were identified during the preparation of the Department of Energy-Headquarters (DOE-HQ) Environmental Restoration and Waste Management Five-Year Plan (FYP) for FY 1992--1996. The SSP has been prepared in accordance with guidance received from DOE-HQ. DOE-SR is accountable to DOE-HQ for the implementation of this plan. The purpose of the SSP is to develop a baseline for policy, budget, and schedules for the DOE Environmental Restoration and Waste Management activities. The plan explains accomplishments since the Fiscal Year (FY) 1990 plan, demonstrates how present and future activities are prioritized, identifies currently funded activities and activities that are planned to be funded in the upcoming fiscal year, and describes future activities that SRS is considering.

  20. Drainage filter technologies to mitigate site-specific phosphorus losses

    DEFF Research Database (Denmark)

    Kjærgaard, Charlotte; Heckrath, Goswin Johann; Iversen, Bo Vangsø

    2014-01-01

    -specific nutrient losses in drainage. The “SUPREME-TECH” project (2010-2015), funded by the Danish Strategic Research Council, aims at providing the scientific basis for developing cost-effective drainage filter technologies to retain P in agricultural drainage waters. The project studies different approaches...... high risks areas of P loss and applying site-specific measures therefore seems a more cost-efficient approach. The Danish Commission for Nature and Agriculture has now called for a shift of paradigm towards targeted mitigation and development of new, cost-efficient technologies to mitigate site......-scale surface-flow constructed wetland. In the former, various natural and industrial P filter substrates have been tested for their ability to reduce inlet P concentrations to below environmental threshold values (

  1. Characterization of reference and site specific human acids

    International Nuclear Information System (INIS)

    Kim, J.I.; Buckau, G.

    1988-01-01

    As a part of the interlaboratory exercise for the complexation of humic acid and colloid generation (COCO-Club activities) in the CEC project MIRAGE-II, the characterization of humic acids have been carried out, as for their elemental compositions, inorganic impurities, spectroscopic properties, size distributions and proton exchange capacities. The commercial humic acid (Na salt) from Aldrich Co. is purified to a protonated form and used as a reference material, and the humic acid extracted from one of Gorleben groundwaters is also purified to a protonated form and taken as a site specific material. These two humic acids, together with the original Na salt from Aldrich Co., are included for the characterization exercise. The results of characterization provide a basic knowledge that supports the forthcoming study of complexation of humic acids with actinides and fission products in their migration processes in the geosphere. (orig.)

  2. Automated selected reaction monitoring software for accurate label-free protein quantification.

    Science.gov (United States)

    Teleman, Johan; Karlsson, Christofer; Waldemarson, Sofia; Hansson, Karin; James, Peter; Malmström, Johan; Levander, Fredrik

    2012-07-06

    Selected reaction monitoring (SRM) is a mass spectrometry method with documented ability to quantify proteins accurately and reproducibly using labeled reference peptides. However, the use of labeled reference peptides becomes impractical if large numbers of peptides are targeted and when high flexibility is desired when selecting peptides. We have developed a label-free quantitative SRM workflow that relies on a new automated algorithm, Anubis, for accurate peak detection. Anubis efficiently removes interfering signals from contaminating peptides to estimate the true signal of the targeted peptides. We evaluated the algorithm on a published multisite data set and achieved results in line with manual data analysis. In complex peptide mixtures from whole proteome digests of Streptococcus pyogenes we achieved a technical variability across the entire proteome abundance range of 6.5-19.2%, which was considerably below the total variation across biological samples. Our results show that the label-free SRM workflow with automated data analysis is feasible for large-scale biological studies, opening up new possibilities for quantitative proteomics and systems biology.

  3. Site Specific Analyses of a Spent Nuclear Fuel Transportation Accident

    International Nuclear Information System (INIS)

    Biwer, B. M.; Chen, S. Y.

    2003-01-01

    The number of spent nuclear fuel (SNF) shipments is expected to increase significantly during the time period that the United States' inventory of SNF is sent to a final disposal site. Prior work estimated that the highest accident risks of a SNF shipping campaign to the proposed geologic repository at Yucca Mountain were in the corridor states, such as Illinois. The largest potential human health impacts would be expected to occur in areas with high population densities such as urban settings. Thus, our current study examined the human health impacts from the most plausible severe SNF transportation accidents in the Chicago metropolitan area. The RISKIND 2.0 program was used to model site-specific data for an area where the largest impacts might occur. The results have shown that the radiological human health consequences of a severe SNF rail transportation accident on average might be similar to one year of exposure to natural background radiation for those persons living a nd working in the most affected areas downwind of the actual accident location. For maximally exposed individuals, an exposure similar to about two years of exposure to natural background radiation was estimated. In addition to the accident probabilities being very low (approximately 1 chance in 10,000 or less during the entire shipping campaign), the actual human health impacts are expected to be lower if any of the accidents considered did occur, because the results are dependent on the specific location and weather conditions, such as wind speed and direction, that were selected to maximize the results. Also, comparison of the results of longer duration accident scenarios against U.S. Environmental Protection Agency guidelines was made to demonstrate the usefulness of this site-specific analysis for emergency planning purposes

  4. Exploiting E. coli auxotrophs for leucine, valine, and threonine specific methyl labeling of large proteins for NMR applications

    Energy Technology Data Exchange (ETDEWEB)

    Monneau, Yoan R. [Rutgers University, Center for Integrative Proteomics Research and Department of Chemistry and Chemical Biology (United States); Ishida, Yojiro [Rutgers University, Center for Advanced Biotechnology and Medicine (United States); Rossi, Paolo; Saio, Tomohide; Tzeng, Shiou-Ru [Rutgers University, Center for Integrative Proteomics Research and Department of Chemistry and Chemical Biology (United States); Inouye, Masayori, E-mail: inouye@cabm.rutgers.edu [Rutgers University, Center for Advanced Biotechnology and Medicine (United States); Kalodimos, Charalampos G., E-mail: ckalodim@umn.edu [Rutgers University, Center for Integrative Proteomics Research and Department of Chemistry and Chemical Biology (United States)

    2016-06-15

    A simple and cost effective method to independently and stereo-specifically incorporate [{sup 1}H,{sup 13}C]-methyls in Leu and Val in proteins is presented. Recombinant proteins for NMR studies are produced using a tailored set of auxotrophic E. coli strains. NMR active isotopes are routed to either Leu or Val methyl groups from the commercially available and scrambling-free precursors α-ketoisovalerate and acetolactate. The engineered strains produce deuterated proteins with stereospecific [{sup 1}H,{sup 13}C]-methyl labeling separately at Leu or Val amino acids. This is the first method that achieves Leu-specific stereospecific [{sup 1}H,{sup 13}C]-methyl labeling of proteins and scramble-free Val-specific labeling. Use of auxotrophs drastically decreases the amount of labeled precursor required for expression without impacting the yield. The concept is extended to Thr methyl labeling by means of a Thr-specific auxotroph that provides enhanced efficiency for use with the costly L-[4-{sup 13}C,2,3-{sup 2}H{sub 2},{sup 15}N]-Thr reagent. The Thr-specific strain allows for the production of Thr-[{sup 13}CH{sub 3}]{sup γ2} labeled protein with an optimal isotope incorporation using up to 50 % less labeled Thr than the traditional E. coli strain without the need for {sup 2}H-glycine to prevent scrambling.

  5. Fluorescence quenching of graphene oxide combined with the site-specific cleavage of restriction endonuclease for deoxyribonucleic acid demethylase activity assay

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Lijuan; Qian, Yingdan; Wu, Ping; Zhang, Hui; Cai, Chenxin, E-mail: cxcai@njnu.edu.cn

    2015-04-15

    Highlights: • An approach for sensitive and selective DNA demethylase activity assay is reported. • This assay is based on the fluorescence quenching of GO and site-specific cleavage of endonuclease. • It can determine as low as 0.05 ng mL{sup −1} of MBD2 with a linear range of 0.2–300 ng mL{sup −1}. • It has an ability to recognize MBD2 from other possibly coexisting proteins and cancer cell extracts. • It can avoid false signals, requiring no bisulfite conversion, PCR amplification, radioisotope-labeling. - Abstract: We report on the development of a sensitive and selective deoxyribonucleic acid (DNA) demethylase (using MBD2 as an example) activity assay by coupling the fluorescence quenching of graphene oxide (GO) with the site-specific cleavage of HpaII endonuclease to improve the selectivity. This approach was developed by designing a single-stranded probe (P1) that carries a binding region to facilitate the interaction with GO, which induces fluorescence quenching of the labeled fluorophore (FAM, 6-carboxyfluorescein), and a sensing region, which contains a hemi-methylated site of 5′-CmCGG-3′, to specifically recognize the target (T1, a 32-mer DNA from the promoter region of p53 gene) and hybridize with it to form a P1/T1 duplex. After demethylation with MBD2, the duplex can be specifically cleaved using HpaII, which releases the labeled FAM from the GO surface and results in the recovery of fluorescence. However, this cleavage is blocked by the hemi-methylation of this site. Thus, the magnitude of the recovered fluorescence signal is related to the MBD2 activity, which establishes the basis of the DNA demethylase activity assay. This assay can determine as low as ∼(0.05 ± 0.01) ng mL{sup −1} (at a signal/noise of 3) of MBD2 with a linear range of 0.2–300 ng mL{sup −1} and recognize MBD2 from other possibly coexisting proteins and cancer cell extracts. The advantage of this assay is its ability to avoid false signals and no

  6. Conformational detection of prion protein with biarsenical labeling and FlAsH fluorescence

    International Nuclear Information System (INIS)

    Coleman, Bradley M.; Nisbet, Rebecca M.; Han, Sen; Cappai, Roberto; Hatters, Danny M.; Hill, Andrew F.

    2009-01-01

    Prion diseases are associated with the misfolding of the host-encoded cellular prion protein (PrP C ) into a disease associated form (PrP Sc ). Recombinant PrP can be refolded into either an α-helical rich conformation (α-PrP) resembling PrP C or a β-sheet rich, protease resistant form similar to PrP Sc . Here, we generated tetracysteine tagged recombinant PrP, folded this into α- or β-PrP and determined the levels of FlAsH fluorescence. Insertion of the tetracysteine tag at three different sites within the 91-111 epitope readily distinguished β-PrP from α-PrP upon FlAsH labeling. Labelling of tetracysteine tagged PrP in the α-helical form showed minimal fluorescence, whereas labeling of tagged PrP in the β-sheet form showed high fluorescence indicating that this region is exposed upon conversion. This highlights a region of PrP that can be implicated in the development of diagnostics and is a novel, protease free mechanism for distinguishing PrP Sc from PrP C . This technique may also be applied to any protein that undergoes conformational change and/or misfolding such as those involved in other neurodegenerative disorders including Alzheimer's, Huntington's and Parkinson's diseases.

  7. Ner protein of phage Mu: Assignments using {sup 13}C/{sup 15}N-labeled protein

    Energy Technology Data Exchange (ETDEWEB)

    Strzelecka, T.; Gronenborn, A.M.; Clore, G.M. [National Institutes of Health, Bethesda, MD (United States)

    1994-12-01

    The Ner protein is a small (74-amino acid) DNA-binding protein that regulates a switch between the lysogenic and lytic stages of phage Mu. It inhibits expression of the C repressor gene and down-regulates its own expression. Two-dimensional NMR experiments on uniformly {sup 15}N-labeled protein provided most of the backbone and some of the sidechain proton assignments. The secondary structure determination using two-dimensional NOESY experiments showed that Ner consists of five {alpha}-helices. However, because most of the sidechain protons could not be assigned, the full structure was not determined. Using uniformly {sup 13}C/{sup 15}N-labeled Ner and a set of three-dimensional experiments, we were able to assign all of the backbone and 98% of the sidechain protons. In particular, the CBCANH and CBCA(CO)NH experiments were used to sequentially assign the C{alpha} and C{beta} resonances; the HCCH-CTOCSY and HCCH-COSY were used to assign sidechain carbon and proton resonances.

  8. Selective labeling of a single organelle by using two-photon conversion of a photoconvertible fluorescent protein

    Science.gov (United States)

    Watanabe, Wataru; Shimada, Tomoko; Matsunaga, Sachihiro; Kurihara, Daisuke; Arimura, Shin-ichi; Tsutsumi, Nobuhiro; Fukui, Kiichi; Itoh, Kazuyoshi

    2008-02-01

    We present space-selective labeling of organelles by using two-photon conversion of a photoconvertible fluorescent protein with near-infrared femtosecond laser pulses. Two-photon excitation of photoconvertible fluorescent-protein, Kaede, enables space-selective labeling of organelles. We alter the fluorescence of target mitochondria in a tobacco BY-2 cell from green to red by focusing femtosecond laser pulses with a wavelength of 750 nm.

  9. 125I-labeled cortisol radioimmunoassay in which serum binding protein are enzymatically denatured

    International Nuclear Information System (INIS)

    Hasler, M.J.; Painter, K.; Niswender, G.D.

    1976-01-01

    We report an iodine-125 radioimmunoassay for cortisol in biological fluids, in which interfering binding proteins are enzymatically denatured. An antiserum to cortisol-3-carboxymethyloxime-bovine serum albumin, extremely low cross-reacting with other corticosteroids, was raised in rabbits. A cortisol-3-carboxymethyloxime tyrosine methyl ester derivative was synthesized and labeled with iodine-125 by standard radioiodination techniques. To eliminate the need for extraction and recovery procedures, we digested interfering binding with a proteolytic enzyme, which then was heat-inactivated before adding the labeled derivative and the premixed, preincubated antiserum complex. There was quantitative analytical recovery of esogenous cortisol added to sera from a normal man, a normal woman, and a pregnant woman. Values for the same samples agreed after extraction and chromatographic purification and agreed well with values obtained by other techniques by independent reference laboratories. The five-step assay can be done in 6 h or less

  10. Monitoring Ras Interactions with the Nucleotide Exchange Factor Son of Sevenless (Sos) Using Site-specific NMR Reporter Signals and Intrinsic Fluorescence.

    Science.gov (United States)

    Vo, Uybach; Vajpai, Navratna; Flavell, Liz; Bobby, Romel; Breeze, Alexander L; Embrey, Kevin J; Golovanov, Alexander P

    2016-01-22

    The activity of Ras is controlled by the interconversion between GTP- and GDP-bound forms partly regulated by the binding of the guanine nucleotide exchange factor Son of Sevenless (Sos). The details of Sos binding, leading to nucleotide exchange and subsequent dissociation of the complex, are not completely understood. Here, we used uniformly (15)N-labeled Ras as well as [(13)C]methyl-Met,Ile-labeled Sos for observing site-specific details of Ras-Sos interactions in solution. Binding of various forms of Ras (loaded with GDP and mimics of GTP or nucleotide-free) at the allosteric and catalytic sites of Sos was comprehensively characterized by monitoring signal perturbations in the NMR spectra. The overall affinity of binding between these protein variants as well as their selected functional mutants was also investigated using intrinsic fluorescence. The data support a positive feedback activation of Sos by Ras·GTP with Ras·GTP binding as a substrate for the catalytic site of activated Sos more weakly than Ras·GDP, suggesting that Sos should actively promote unidirectional GDP → GTP exchange on Ras in preference of passive homonucleotide exchange. Ras·GDP weakly binds to the catalytic but not to the allosteric site of Sos. This confirms that Ras·GDP cannot properly activate Sos at the allosteric site. The novel site-specific assay described may be useful for design of drugs aimed at perturbing Ras-Sos interactions. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Selective solubilization of membrane proteins differentially labeled by p-chloromercuribenzenesulfonic acid in the presence of sucrose

    International Nuclear Information System (INIS)

    M'Batchi, B.; Pichelin, D.; Delrot, S.

    1987-01-01

    Broadbean (Vicia faba L.) leaf discs have been incubated with the slowly permeant thiol reagent [ 203 Hg]-para-chloromercuribenzenesulfonic acid (PCMBS) in the presence or in the absence of sucrose, and the release of PCMBS-labeled proteins has been monitored in media containing various concentrations of urea, ethylene glycol-bis-(β-aminoethyl ether)-N, N, N', N'-tetraacetic acid (EGTA), sodium cholate, sodium dodecyl sulfate, Triton X-100, octylglucoside or (3-[3-cholamidopropyl)-dimethylammonio] 1-propane-sulfonate)(CHAPS). The proteins differentially labeled by PCMBS in the presence of sucrose which, on the basis of previous results, are assumed to included the sucrose carrier, were preferentially solubilized by 1% CHAPS, 1% octylglucoside, or 1% Triton X-100. Other PCMBS-labeled proteins (background proteins) could be partially removed by EGTA, urea, or 0.1% cholate. Sequential treatment by 10 mM EGTA and 1% CHAPS was found to give a fraction highly enriched in the differentially labeled proteins. Analysis of the specific activity of microsomal pellets suggests that the results obtained with leaf discs give a good account of what is occurring at the plasma membrane level. These data, which suggest that the proteins differentially labeled, by PCMBS in the presence of sucrose are intrinsic membrane proteins, can be used to solubilize these proteins from microsomal fractions

  12. Quantitative profiling of serum samples using TMT protein labelling, fractionation and LC-MS/MS.

    Science.gov (United States)

    Sinclair, John; Timms, John F

    2011-08-01

    Blood-borne biomarkers are urgently required for the early detection, accurate diagnosis and prognosis of disease. Additionally, improved methods of profiling serum and plasma proteins for biomarker discovery efforts are needed. Herein, we report a quantitative method based on amino-group labelling of serum proteins (rather than peptides) with isobaric tandem mass tags (TMT) and incorporating immune-based depletion, gel-based and strong anion exchange separation of proteins prior to differential endoproteinase treatment and liquid chromatography tandem mass spectrometry. We report a generally higher level of quantitative coverage of the serum proteome compared to other peptide-based isobaric tagging approaches and show the potential of the method by applying it to a set of unique samples that pre-date the diagnosis of pancreatic cancer. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Molecular organization in bacterial cell membranes. Specific labelling and topological distribution of glycoproteins and proteins in Streptomyces albus membranes

    Energy Technology Data Exchange (ETDEWEB)

    Larraga, V; Munoz, E [Consejo Superior de Investigaciones Cientificas, Madrid (Spain). Instituto de Biologia Celular

    1975-05-01

    The paper reports about an investigation into the question of the specific labelling and topological distribution of glycoproteins and proteins in Streptomyces albus membranes. The method of sample preparation is described: Tritium labelling of glycoproteins in protoplasts and membranes, iodination of proteins, trypsin treatment and polyacrylamide gel electrophoresis. The findings suggest an asymmetrical distribution of the glycoproteins in membranes and a weak accessibility to iodine label. A structural model of the plasma membranes of Streptomyces albus is proposed similar to the general 'fluid mosaic' model of Singer and Nicholson.

  14. iLoc-Animal: a multi-label learning classifier for predicting subcellular localization of animal proteins.

    Science.gov (United States)

    Lin, Wei-Zhong; Fang, Jian-An; Xiao, Xuan; Chou, Kuo-Chen

    2013-04-05

    Predicting protein subcellular localization is a challenging problem, particularly when query proteins have multi-label features meaning that they may simultaneously exist at, or move between, two or more different subcellular location sites. Most of the existing methods can only be used to deal with the single-label proteins. Actually, multi-label proteins should not be ignored because they usually bear some special function worthy of in-depth studies. By introducing the "multi-label learning" approach, a new predictor, called iLoc-Animal, has been developed that can be used to deal with the systems containing both single- and multi-label animal (metazoan except human) proteins. Meanwhile, to measure the prediction quality of a multi-label system in a rigorous way, five indices were introduced; they are "Absolute-True", "Absolute-False" (or Hamming-Loss"), "Accuracy", "Precision", and "Recall". As a demonstration, the jackknife cross-validation was performed with iLoc-Animal on a benchmark dataset of animal proteins classified into the following 20 location sites: (1) acrosome, (2) cell membrane, (3) centriole, (4) centrosome, (5) cell cortex, (6) cytoplasm, (7) cytoskeleton, (8) endoplasmic reticulum, (9) endosome, (10) extracellular, (11) Golgi apparatus, (12) lysosome, (13) mitochondrion, (14) melanosome, (15) microsome, (16) nucleus, (17) peroxisome, (18) plasma membrane, (19) spindle, and (20) synapse, where many proteins belong to two or more locations. For such a complicated system, the outcomes achieved by iLoc-Animal for all the aforementioned five indices were quite encouraging, indicating that the predictor may become a useful tool in this area. It has not escaped our notice that the multi-label approach and the rigorous measurement metrics can also be used to investigate many other multi-label problems in molecular biology. As a user-friendly web-server, iLoc-Animal is freely accessible to the public at the web-site .

  15. Ligand-protein conjugated quantification assay by UV spectrophotometry in 99mTc indirect labeling

    International Nuclear Information System (INIS)

    Basualdo, Daniel A.; Rabiller, Graciela; Poch, Carolina; El Tamer, Elias A.

    2009-01-01

    Objective: Quantify IgG-HYNIC conjugated for obtaining substitution ratio and as a chemical quality control for 99m Tc labeling of this immunoglobulin. Introduction: The Operational Guidance on Hospital Radiopharmacy by IAEA states that the procedures performed in a Radiopharmacy Laboratory fall into three operational levels. At present, Nuclear Medicine Centre of 'Hospital de Clinicas' has an operational level 2b which requires the preparation of radiopharmaceuticals from approved reagent kits and radionuclide generators, and labeling of autologous blood cells. Centre's goal is to reach an operational level 3a, which allows us to compounding radiopharmaceuticals from drugs and radionuclides for diagnosis; modification to existing commercial kits; related research and development. In approach of that goal, we addressed the optimization of conjugation of proteins and peptides with S-HYNIC so as to bring about the procedures involved. In this work, was conjugated nonspecific polyclonal immunoglobulin G (IgG) with S-HYNIC. Our interest was focused in calculate how many HYNIC groups were incorporated per IgG molecule so that in later stages can be obtained a correlate with labeling efficiency. Materials and methods: A sample of IgG-HYNIC conjugate of 0.2 ml was diluted in 4 ml of benzaldehyde o-sulfonic acid (1 mg / ml, 0.1 M NaAc, pH 4.7). The reaction was incubated at room temperature overnight in darkness. As a negative control took 0.2 ml of IgG-HYNIC conjugate in 4 ml of NaAc buffer 0.1 M. 3 ml of benzaldehyde o-sulfonic acid (1 mg / ml 0.1 M NaAc, pH 4.7) was used as blank. The absorption of the hydrazone was read at 343 nm. The hydrazine concentration was calculated using a molar extinction coefficient ε (343 nm) 17000 M-1cm-1. Results: Molar substitution ratio (MSR) was calculated. The MSR indicates the number of HYNIC groups incorporated in the IgG-HYNIC conjugate determined by the spectrophotometric assay. Conclusions: In labeling with a bifunctional

  16. F-18 Labeled Diabody-Luciferase Fusion Proteins for Optical-ImmunoPET

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Anna M. [Univ. of California, Los Angeles, CA (United States)

    2013-01-18

    The goal of the proposed work is to develop novel dual-labeled molecular imaging probes for multimodality imaging. Based on small, engineered antibodies called diabodies, these probes will be radioactively tagged with Fluorine-18 for PET imaging, and fused to luciferases for optical (bioluminescence) detection. Performance will be evaluated and validated using a prototype integrated optical-PET imaging system, OPET. Multimodality probes for optical-PET imaging will be based on diabodies that are dually labeled with 18F for PET detection and fused to luciferases for optical imaging. 1) Two sets of fusion proteins will be built, targeting the cell surface markers CEA or HER2. Coelenterazine-based luciferases and variant forms will be evaluated in combination with native substrate and analogs, in order to obtain two distinct probes recognizing different targets with different spectral signatures. 2) Diabody-luciferase fusion proteins will be labeled with 18F using amine reactive [18F]-SFB produced using a novel microwave-assisted, one-pot method. 3) Sitespecific, chemoselective radiolabeling methods will be devised, to reduce the chance that radiolabeling will inactivate either the target-binding properties or the bioluminescence properties of the diabody-luciferase fusion proteins. 4) Combined optical and PET imaging of these dual modality probes will be evaluated and validated in vitro and in vivo using a prototype integrated optical-PET imaging system, OPET. Each imaging modality has its strengths and weaknesses. Development and use of dual modality probes allows optical imaging to benefit from the localization and quantitation offered by the PET mode, and enhances the PET imaging by enabling simultaneous detection of more than one probe.

  17. Metabolic labeling of cellular glycoproteins with glucosamine: potential for erroneous interpretations due to nonenzymatic radiolabeling of proteins

    International Nuclear Information System (INIS)

    Briles, E.I.B.; Updyke, T.V.

    1986-01-01

    Proteins, including serum proteins of culture media, become nonenzymatically radiolabeled under conditions used for metabolic labeling of cultured cells with glucosamine. This occurs even under sterile conditions in the absence of cells. Various commercial lots of 3 H or 14 C glcN gave similar results: ∼ 0.7% of total label was incorporated into 20% serum (14 mg/ml protein) in 48 h at 37 0 C. By SDS-PAGE fluorography, labeled serum bands correspond to Coomassie stained bands. Incorporation is linear with protein concentration and label input, shows biphasic kinetics (initial rapid rate within first 3 hr, followed by slower linear rate with no sign of saturation through 120 hr), and is temperature-dependent (no reaction at 0 0 C; incorporation at 20 0 C is ∼ 45% of that at 37 0 C). Poly-D-lysine is a better acceptor than protein: 0.5 mg/ml PL accepts as much label as 7 mg/ml protein. Incorporation is inhibited by excess unlabeled glcN and ethanolamine, but not by man, gal or glucose. However, when proteins were incubated with 160 mM glcN, SDS-PAGE bands were yellow-brown, suggesting the occurrence of Maillard-type reactions. Although the chemical mechanism(s) responsible for nonmetabolic radiolabeling by glcN are not clear at this point, the fact that it occurs represents a serious artifact which may lead to erroneous interpretation of data

  18. New sensitive and specific assay for human immunodeficiency virus antibodies using labeled recombinant fusion protein and time-resolved fluoroimmunoassay.

    OpenAIRE

    Siitari, H; Turunen, P; Schrimsher, J; Nunn, M

    1990-01-01

    A new, rapid method for the detection of human immunodeficiency virus type 1 (HIV-1) antibody by time-resolved fluoroimmunoassay (TR-FIA) was developed. In this assay format, microtitration strips were coated with a recombinant fusion protein, and the same protein was labeled with europium and added into the wells simultaneously with the test specimens. The recombinant fusion protein contained the HIV-1 p24 gag protein sequence that carried an insertion, near the carboxyl terminus, of a 23-am...

  19. Synthesis of Salt Soluble Proteins in Barley. Pulse-Labeling Study of Grain Filling in Liquid-Cultured Detached Spikes

    DEFF Research Database (Denmark)

    Giese, Nanna Henriette; Hejgaard, Jørn

    1984-01-01

    The accumulation of salt-soluble proteins in the endosperm of developing barley (Hordeum vulgare L.) grains was examined. Detached spikes of barley were cultured at different levels of nitrogen nutrition and pulse-labeled with [14C] sucrose at specific times after anthesis. Proteins were extracted...... to increased nitrogen nutrition. Two major components, β-amylase and protein Z in particular, had a synthesis profile almost identical to that of the endosperm storage protein, hordein....

  20. Micro-tattoo guided OCT imaging of site specific inflammation

    Science.gov (United States)

    Phillips, Kevin G.; Choudhury, Niloy; Samatham, Ravikant V.; Singh, Harvinder; Jacques, Steven L.

    2010-02-01

    Epithelial biologists studying human skin diseases such as cancer formation and psoriasis commonly utilize mouse models to characterize the interplay among cells and intracellular signal transduction pathways that result in programmed changes in gene expression and cellular behaviors. The information obtained from animal models is useful only when phenotypic presentations of disease recapitulate those observed in humans. Excision of tissues followed by histochemical analysis is currently the primary means of establishing the morphological presentation. Non invasive imaging of animal models provides an alternate means to characterize tissue morphology associated with the disease of interest in vivo. While useful, the ability to perform in vivo imaging at different time points in the same tissue location has been a challenge. This information is key to understanding site specific changes as the imaged tissue can now be extracted and analyzed for mRNA expression. We present a method employing a micro-tattoo to guide optical coherence tomography (OCT) imaging of ultraviolet induced inflammation over time in the same tissue locations.

  1. The Application of TAPM for Site Specific Wind Energy Forecasting

    Directory of Open Access Journals (Sweden)

    Merlinde Kay

    2016-02-01

    Full Text Available The energy industry uses weather forecasts for determining future electricity demand variations due to the impact of weather, e.g., temperature and precipitation. However, as a greater component of electricity generation comes from intermittent renewable sources such as wind and solar, weather forecasting techniques need to now also focus on predicting renewable energy supply, which means adapting our prediction models to these site specific resources. This work assesses the performance of The Air Pollution Model (TAPM, and demonstrates that significant improvements can be made to only wind speed forecasts from a mesoscale Numerical Weather Prediction (NWP model. For this study, a wind farm site situated in North-west Tasmania, Australia was investigated. I present an analysis of the accuracy of hourly NWP and bias corrected wind speed forecasts over 12 months spanning 2005. This extensive time frame allows an in-depth analysis of various wind speed regimes of importance for wind-farm operation, as well as extreme weather risk scenarios. A further correction is made to the basic bias correction to improve the forecast accuracy further, that makes use of real-time wind-turbine data and a smoothing function to correct for timing-related issues. With full correction applied, a reduction in the error in the magnitude of the wind speed by as much as 50% for “hour ahead” forecasts specific to the wind-farm site has been obtained.

  2. Site-specific meteorology identification for DOE facility accident analysis

    International Nuclear Information System (INIS)

    Rabin, S.B.

    1995-01-01

    Currently, chemical dispersion calculations performed for safety analysis of DOE facilities assume a Pasquill D-Stability Class with a 4.5 m/s windspeed. These meteorological conditions are assumed to conservatively address the source term generation mechanism as well as the dispersion mechanism thereby resulting in a net conservative downwind consequence. While choosing this Stability Class / Windspeed combination may result in an overall conservative consequence, the level of conservative can not be quantified. The intent of this paper is to document a methodology which incorporates site-specific meteorology to determine a quantifiable consequence of a chemical release. A five-year meteorological database, appropriate for the facility location, is utilized for these chemical consequence calculations, and is consistent with the approach used for radiological releases. The hourly averages of meteorological conditions have been binned into 21 groups for the chemical consequence calculations. These 21 cases each have a probability of occurrence based on the number of times each case has occurred over the five year sampling period. A code has been developed which automates the running of all the cases with a commercially available air modeling code. The 21 cases are sorted by concentration. A concentration may be selected by the user for a quantified level of conservatism. The methodology presented is intended to improve the technical accuracy and defensability of Chemical Source Term / Dispersion Safety Analysis work. The result improves the quality of safety analyses products without significantly increasing the cost

  3. Correlating labeling chemistry and in-vitro test results with the biological behavior of radiolabeled proteins

    International Nuclear Information System (INIS)

    Srivastava, S.C.; Meinken, G.E.

    1985-01-01

    Monoclonal antibodies possess enormous potential for delivery of therapeutic amounts of radionuclides to target antigens in vivo, in particular for tumor imaging and therapy. Translation of this concept into practice has encountered numerous problems. Specifically whereas general protein radiolabeling methods are applicable to antibodies, immunological properties of the antibodies are often compromised resulting in reduced in-vivo specificity for the target antigens. The bifunctional chelating agent approach shows the most promise, however, development of other agents will be necessary for widespread usefulness of this technique. The effects of labeling chemistry on the in-vivo behavior of several monoclonal antibodies are described. 30 refs., 4 figs., 10 tabs

  4. Application of SAIL phenylalanine and tyrosine with alternative isotope-labeling patterns for protein structure determination

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Mitsuhiro [Nagoya University, Structural Biology Research Center, Graduate School of Science (Japan); Ono, Akira M.; Terauchi, Tsutomu [SAIL Technologies Co., Inc. (Japan); Kainosho, Masatsune, E-mail: kainosho@nmr.chem.metro-u.ac.j [Nagoya University, Structural Biology Research Center, Graduate School of Science (Japan)

    2010-01-15

    The extensive collection of NOE constraint data involving the aromatic ring signals is essential for accurate protein structure determination, although it is often hampered in practice by the pervasive signal overlapping and tight spin couplings for aromatic rings. We have prepared various types of stereo-array isotope labeled phenylalanines ({epsilon}- and {zeta}-SAIL Phe) and tyrosine ({epsilon}-SAIL Tyr) to overcome these problems (Torizawa et al. 2005), and proven that these SAIL amino acids provide dramatic spectral simplification and sensitivity enhancement for the aromatic ring NMR signals. In addition to these SAIL aromatic amino acids, we recently synthesized {delta}-SAIL Phe and {delta}-SAIL Tyr, which allow us to observe and assign {delta}-{sup 13}C/{sup 1}H signals very efficiently. Each of the various types of SAIL Phe and SAIL Tyr yields well-resolved resonances for the {delta}-, {epsilon}- or {zeta}-{sup 13}C/{sup 1}H signals, respectively, which can readily be assigned by simple and robust pulse sequences. Since the {delta}-, {epsilon}-, and {zeta}-proton signals of Phe/Tyr residues give rise to complementary NOE constraints, the concomitant use of various types of SAIL-Phe and SAIL-Tyr would generate more accurate protein structures, as compared to those obtained by using conventional uniformly {sup 13}C, {sup 15}N-double labeled proteins. We illustrated this with the case of an 18.2 kDa protein, Escherichia coli peptidyl-prolyl cis-trans isomerase b (EPPIb), and concluded that the combined use of {zeta}-SAIL Phe and {epsilon}-SAIL Tyr would be practically the best choice for protein structural determinations.

  5. Application of SAIL phenylalanine and tyrosine with alternative isotope-labeling patterns for protein structure determination.

    Science.gov (United States)

    Takeda, Mitsuhiro; Ono, Akira M; Terauchi, Tsutomu; Kainosho, Masatsune

    2010-01-01

    The extensive collection of NOE constraint data involving the aromatic ring signals is essential for accurate protein structure determination, although it is often hampered in practice by the pervasive signal overlapping and tight spin couplings for aromatic rings. We have prepared various types of stereo-array isotope labeled phenylalanines (epsilon- and zeta-SAIL Phe) and tyrosine (epsilon-SAIL Tyr) to overcome these problems (Torizawa et al. 2005), and proven that these SAIL amino acids provide dramatic spectral simplification and sensitivity enhancement for the aromatic ring NMR signals. In addition to these SAIL aromatic amino acids, we recently synthesized delta-SAIL Phe and delta-SAIL Tyr, which allow us to observe and assign delta-(13)C/(1)H signals very efficiently. Each of the various types of SAIL Phe and SAIL Tyr yields well-resolved resonances for the delta-, epsilon- or zeta-(13)C/(1)H signals, respectively, which can readily be assigned by simple and robust pulse sequences. Since the delta-, epsilon-, and zeta-proton signals of Phe/Tyr residues give rise to complementary NOE constraints, the concomitant use of various types of SAIL-Phe and SAIL-Tyr would generate more accurate protein structures, as compared to those obtained by using conventional uniformly (13)C, (15)N-double labeled proteins. We illustrated this with the case of an 18.2 kDa protein, Escherichia coli peptidyl-prolyl cis-trans isomerase b (EPPIb), and concluded that the combined use of zeta-SAIL Phe and epsilon-SAIL Tyr would be practically the best choice for protein structural determinations.

  6. Application of SAIL phenylalanine and tyrosine with alternative isotope-labeling patterns for protein structure determination

    International Nuclear Information System (INIS)

    Takeda, Mitsuhiro; Ono, Akira M.; Terauchi, Tsutomu; Kainosho, Masatsune

    2010-01-01

    The extensive collection of NOE constraint data involving the aromatic ring signals is essential for accurate protein structure determination, although it is often hampered in practice by the pervasive signal overlapping and tight spin couplings for aromatic rings. We have prepared various types of stereo-array isotope labeled phenylalanines (ε- and ζ-SAIL Phe) and tyrosine (ε-SAIL Tyr) to overcome these problems (Torizawa et al. 2005), and proven that these SAIL amino acids provide dramatic spectral simplification and sensitivity enhancement for the aromatic ring NMR signals. In addition to these SAIL aromatic amino acids, we recently synthesized δ-SAIL Phe and δ-SAIL Tyr, which allow us to observe and assign δ- 13 C/ 1 H signals very efficiently. Each of the various types of SAIL Phe and SAIL Tyr yields well-resolved resonances for the δ-, ε- or ζ- 13 C/ 1 H signals, respectively, which can readily be assigned by simple and robust pulse sequences. Since the δ-, ε-, and ζ-proton signals of Phe/Tyr residues give rise to complementary NOE constraints, the concomitant use of various types of SAIL-Phe and SAIL-Tyr would generate more accurate protein structures, as compared to those obtained by using conventional uniformly 13 C, 15 N-double labeled proteins. We illustrated this with the case of an 18.2 kDa protein, Escherichia coli peptidyl-prolyl cis-trans isomerase b (EPPIb), and concluded that the combined use of ζ-SAIL Phe and ε-SAIL Tyr would be practically the best choice for protein structural determinations.

  7. Inulin-125I-tyramine, an improved residualizing label for studies on sites of catabolism of circulating proteins

    International Nuclear Information System (INIS)

    Maxwell, J.L.; Baynes, J.W.; Thorpe, S.R.

    1988-01-01

    Residualizing labels for protein, such as dilactitol-125I-tyramine (125I-DLT) and cellobiitol-125I-tyramine, have been used to identify the tissue and cellular sites of catabolism of long-lived plasma proteins, such as albumin, immunoglobulins, and lipoproteins. The radioactive degradation products formed from labeled proteins are relatively large, hydrophilic, resistant to lysosomal hydrolases, and accumulate in lysosomes in the cells involved in degradation of the carrier protein. However, the gradual loss of the catabolites from cells (t1/2 approximately 2 days) has limited the usefulness of residualizing labels in studies on longer lived proteins. We describe here a higher molecular weight (Mr approximately 5000), more efficient residualizing glycoconjugate label, inulin-125I-tyramine (125I-InTn). Attachment of 125I-InTn had no effect on the plasma half-life or tissue sites of catabolism of asialofetuin, fetuin, or rat serum albumin in the rat. The half-life for hepatic retention of degradation products from 125I-InTn-labeled asialofetuin was 5 days, compared to 2.3 days for 125I-DLT-labeled asialofetuin. The whole body half-lives for radioactivity from 125I-InTn-, 125I-DLT-, and 125I-labeled rat serum albumin were 7.5, 4.3, and 2.2 days, respectively. The tissue distribution of degradation products from 125I-InTn-labeled proteins agreed with results of previous studies using 125I-DLT, except that a greater fraction of total degradation products was recovered in tissues. Kinetic analyses indicated that the average half-life for retention of 125I-InTn degradation products in tissues is approximately 5 days and suggested that in vivo there are both slow and rapid routes for release of degradation products from cells

  8. Differential isotope dansylation labeling combined with liquid chromatography mass spectrometry for quantification of intact and N-terminal truncated proteins

    International Nuclear Information System (INIS)

    Tang, Yanan; Li, Liang

    2013-01-01

    Graphical abstract: -- Highlights: •LC–MS was developed for quantifying protein mixtures containing both intact and N-terminal truncated proteins. • 12 C 2 -Dansylation of the N-terminal amino acid of proteins was done first, followed by microwave-assisted acid hydrolysis. •The released 12 C 2 -dansyl labeled N-terminal amino acid was quantified using 13 C 2 -dansyl labeled amino acid standards. •The method provided accurate and precise results for quantifying intact and N-terminal truncated proteins within 8 h. -- Abstract: The N-terminal amino acids of proteins are important structure units for maintaining the biological function, localization, and interaction networks of proteins. Under different biological conditions, one or several N-terminal amino acids could be cleaved from an intact protein due to processes, such as proteolysis, resulting in the change of protein properties. Thus, the ability to quantify the N-terminal truncated forms of proteins is of great importance, particularly in the area of development and production of protein-based drugs where the relative quantity of the intact protein and its truncated form needs to be monitored. In this work, we describe a rapid method for absolute quantification of protein mixtures containing intact and N-terminal truncated proteins. This method is based on dansylation labeling of the N-terminal amino acids of proteins, followed by microwave-assisted acid hydrolysis of the proteins into amino acids. It is shown that dansyl labeled amino acids are stable in acidic conditions and can be quantified by liquid chromatography mass spectrometry (LC–MS) with the use of isotope analog standards

  9. Differential isotope dansylation labeling combined with liquid chromatography mass spectrometry for quantification of intact and N-terminal truncated proteins

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yanan; Li, Liang, E-mail: Liang.Li@ualberta.ca

    2013-08-20

    Graphical abstract: -- Highlights: •LC–MS was developed for quantifying protein mixtures containing both intact and N-terminal truncated proteins. •{sup 12}C{sub 2}-Dansylation of the N-terminal amino acid of proteins was done first, followed by microwave-assisted acid hydrolysis. •The released {sup 12}C{sub 2}-dansyl labeled N-terminal amino acid was quantified using {sup 13}C{sub 2}-dansyl labeled amino acid standards. •The method provided accurate and precise results for quantifying intact and N-terminal truncated proteins within 8 h. -- Abstract: The N-terminal amino acids of proteins are important structure units for maintaining the biological function, localization, and interaction networks of proteins. Under different biological conditions, one or several N-terminal amino acids could be cleaved from an intact protein due to processes, such as proteolysis, resulting in the change of protein properties. Thus, the ability to quantify the N-terminal truncated forms of proteins is of great importance, particularly in the area of development and production of protein-based drugs where the relative quantity of the intact protein and its truncated form needs to be monitored. In this work, we describe a rapid method for absolute quantification of protein mixtures containing intact and N-terminal truncated proteins. This method is based on dansylation labeling of the N-terminal amino acids of proteins, followed by microwave-assisted acid hydrolysis of the proteins into amino acids. It is shown that dansyl labeled amino acids are stable in acidic conditions and can be quantified by liquid chromatography mass spectrometry (LC–MS) with the use of isotope analog standards.

  10. Exploration of the omics evidence landscape: adding qualitative labels to predicted protein-protein interactions

    NARCIS (Netherlands)

    Noort, V. van; Snel, B.; Huynen, M.A.

    2007-01-01

    ABSTRACT: BACKGROUND: In the post-genomic era various functional genomics, proteomics and computational techniques have been developed to elucidate the protein interaction network. While some of these techniques are specific for a certain type of interaction, most predict a mixture of interactions.

  11. Exploration of the omics evidence landscape: adding qualitative labels to predicted protein-protein interactions.

    NARCIS (Netherlands)

    Noort, V. van; Snel, B.; Huynen, M.A.

    2007-01-01

    BACKGROUND: In the post-genomic era various functional genomics, proteomics and computational techniques have been developed to elucidate the protein interaction network. While some of these techniques are specific for a certain type of interaction, most predict a mixture of interactions.

  12. Rapid labeling of intracellular His-tagged proteins in living cells.

    Science.gov (United States)

    Lai, Yau-Tsz; Chang, Yuen-Yan; Hu, Ligang; Yang, Ya; Chao, Ailun; Du, Zhi-Yan; Tanner, Julian A; Chye, Mee-Len; Qian, Chengmin; Ng, Kwan-Ming; Li, Hongyan; Sun, Hongzhe

    2015-03-10

    Small molecule-based fluorescent probes have been used for real-time visualization of live cells and tracking of various cellular events with minimal perturbation on the cells being investigated. Given the wide utility of the (histidine)6-Ni(2+)-nitrilotriacetate (Ni-NTA) system in protein purification, there is significant interest in fluorescent Ni(2+)-NTA-based probes. Unfortunately, previous Ni-NTA-based probes suffer from poor membrane permeability and cannot label intracellular proteins. Here, we report the design and synthesis of, to our knowledge, the first membrane-permeable fluorescent probe Ni-NTA-AC via conjugation of NTA with fluorophore and arylazide followed by coordination with Ni(2+) ions. The probe, driven by Ni(2+)-NTA, binds specifically to His-tags genetically fused to proteins and subsequently forms a covalent bond upon photoactivation of the arylazide, leading to a 13-fold fluorescence enhancement. The arylazide is indispensable not only for fluorescence enhancement, but also for strengthening the binding between the probe and proteins. Significantly, the Ni-NTA-AC probe can rapidly enter different types of cells, even plant tissues, to target His-tagged proteins. Using this probe, we visualized the subcellular localization of a DNA repair protein, Xeroderma pigmentosum group A (XPA122), which is known to be mainly enriched in the nucleus. We also demonstrated that the probe can image a genetically engineered His-tagged protein in plant tissues. This study thus offers a new opportunity for in situ visualization of large libraries of His-tagged proteins in various prokaryotic and eukaryotic cells.

  13. Rapid and label-free detection of protein a by aptamer-tethered porous silicon nanostructures.

    Science.gov (United States)

    Urmann, Katharina; Reich, Peggy; Walter, Johanna-Gabriela; Beckmann, Dieter; Segal, Ester; Scheper, Thomas

    2017-09-10

    Protein A, which is secreted by and displayed on the cell membrane of Staphylococcus aureus is an important biomarker for S. aureus. Thus, its rapid and specific detection may facilitate the pathogen identification and initiation of proper treatment. Herein, we present a simple, label-free and rapid optical biosensor enabling specific detection of protein A. Protein A-binding aptamer serves as the capture probe and is immobilized onto a nanostructured porous silicon thin film, which serves as the optical transducer element. We demonstrate high sensitivity of the biosensor with a linear detection range between 8 and 23μM. The apparent dissociation constant was determined as 13.98μM and the LoD is 3.17μM. Harnessing the affinity between protein A and antibodies, a sandwich assay format was developed to amplify the optical signal associated with protein A capture by the aptamer. Using this approach, we increase the sensitivity of the biosensor, resulting in a three times lower LoD. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Site Specific Nutrient Management for Maize on Ultisols Lampung

    Directory of Open Access Journals (Sweden)

    Andarias Makka Murni

    2010-01-01

    Full Text Available Lampung is the third major maize producing province in Indonesia after East Java and Central Java. In Lampungmaize is cultivated mainly in upland areas with ultisols and only some cultivated on paddy field as a secondary cropin the dry season. The average maize yield in Lampung is still 3.4 Mg ha-1 bellow yield potential of 7 - 10 Mg ha-1. Toincrease the productivity of maize through site-specific nutrient management (SSNM, on-farm trials were conductedin five locations in Lampung i.e. four locations in Central Lampung District (Sidowaras, Binjai Ngagung, Watu Agungand Balai Rejo and one location in South Lampung District (Trimulyo, Tegineneng Sub District during the 2004/2005,2005/2006 and 2006/2007 rainy seasons. The experimental setup followed a standard protocol at all sites and includednutrient omission plots (PK, NK, NP to estimate indigenous nutrient supplies, an NPK plot to measure yield responseto fertilizer application, and a farmers’ fertilizer practice (FFP plot in each farmer’s field. An SSNM treatment plot wasincluded in the second and third seasons. Each of the above treatments was paralleled by a plot with improved cropmanagement practice (ICM, i.e. higher planting density, addition of lime, and addition of magnesium. Results showedthat yield response to fertilizer N, P and K application in these sites were: N = 2.3 - 4.1 Mg ha-1; P = 0.6 - 2.0 Mg ha-1;K = 0.3-2.4 Mg ha-1. Attainable yield in the three seasons on average ranged from 7.6 Mg ha-1 to 10.6 Mg ha-1. Yield inthe SSNM treatment (with or without ICM was significantly higher than the FFP indicating great opportunities forfarmers to increase productivity and profitability with improved nutrient and crop management

  15. Prediction of site specific ground motion for large earthquake

    International Nuclear Information System (INIS)

    Kamae, Katsuhiro; Irikura, Kojiro; Fukuchi, Yasunaga.

    1990-01-01

    In this paper, we apply the semi-empirical synthesis method by IRIKURA (1983, 1986) to the estimation of site specific ground motion using accelerograms observed at Kumatori in Osaka prefecture. Target earthquakes used here are a comparatively distant earthquake (Δ=95 km, M=5.6) caused by the YAMASAKI fault and a near earthquake (Δ=27 km, M=5.6). The results obtained are as follows. 1) The accelerograms from the distant earthquake (M=5.6) are synthesized using the aftershock records (M=4.3) for 1983 YAMASAKI fault earthquake whose source parameters have been obtained by other authors from the hypocentral distribution of the aftershocks. The resultant synthetic motions show a good agreement with the observed ones. 2) The synthesis for a near earthquake (M=5.6, we call this target earthquake) are made using a small earthquake which occurred in the neighborhood of the target earthquake. Here, we apply two methods for giving the parameters for synthesis. One method is to use the parameters of YAMASAKI fault earthquake which has the same magnitude as the target earthquake, and the other is to use the parameters obtained from several existing empirical formulas. The resultant synthetic motion with the former parameters shows a good agreement with the observed one, but that with the latter does not. 3) We estimate the source parameters from the source spectra of several earthquakes which have been observed in this site. Consequently we find that the small earthquakes (M<4) as Green's functions should be carefully used because the stress drops are not constant. 4) We propose that we should designate not only the magnitudes but also seismic moments of the target earthquake and the small earthquake. (J.P.N.)

  16. Determining synthesis rates of individual proteins in zebrafish (Danio rerio) with low levels of a stable isotope labelled amino acid.

    Science.gov (United States)

    Geary, Bethany; Magee, Kieran; Cash, Phillip; Young, Iain S; Whitfield, Phillip D; Doherty, Mary K

    2016-05-01

    The zebrafish is a powerful model organism for the analysis of human cardiovascular development and disease. Understanding these processes at the protein level not only requires changes in protein concentration to be determined but also the rate at which these changes occur on a protein-by-protein basis. The ability to measure protein synthesis and degradation rates on a proteome-wide scale, using stable isotope labelling in conjunction with mass spectrometry is now a well-established experimental approach. With the advent of more selective and sensitive mass spectrometers, it is possible to accurately measure lower levels of stable isotope incorporation, even when sample is limited. In order to challenge the sensitivity of this approach, we successfully determined the synthesis rates of over 600 proteins from the cardiac muscle of the zebrafish using a diet where either 30% or 50% of the L-leucine was replaced with a stable isotope labelled analogue ([(2) H7 ]L-leucine]. It was possible to extract sufficient protein from individual zebrafish hearts to determine the incorporation rate of the label into hundreds of proteins simultaneously, with the two labelling regimens showing a good correlation of synthesis rates. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Improving Site-Specific Radiological Performance Assessments - 13431

    International Nuclear Information System (INIS)

    Tauxe, John; Black, Paul; Catlett, Kate; Lee, Robert; Perona, Ralph; Stockton, Tom; Sully, Mike

    2013-01-01

    An improved approach is presented for conducting complete and defensible radiological site-specific performance assessments (PAs) to support radioactive waste disposal decisions. The basic tenets of PA were initiated some thirty years ago, focusing on geologic disposals and evaluating compliance with regulations. Some of these regulations were inherently probabilistic (i.e., addressing uncertainty in a quantitative fashion), such as the containment requirements of the U.S. Environmental Protection Agency's (EPA's) 40 CFR 191, Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes, Chap. 191.13 [1]. Methods of analysis were developed to meet those requirements, but at their core early PAs used 'conservative' parameter values and modeling approaches. This limited the utility of such PAs to compliance evaluation, and did little to inform decisions about optimizing disposal, closure and long-term monitoring and maintenance, or, in general, maintaining doses 'as low as reasonably achievable' (ALARA). This basic approach to PA development in the United States was employed essentially unchanged through the end of the 20. century, principally by the U.S. Department of Energy (DOE). Performance assessments developed in support of private radioactive waste disposal operations, regulated by the U.S. Nuclear Regulatory Commission (NRC) and its agreement states, were typically not as sophisticated. Discussion of new approaches to PA is timely, since at the time of this writing, the DOE is in the midst of revising its Order 435.1, Radioactive Waste Management [2], and the NRC is revising 10 CFR 61, Licensing Requirements for Land Disposal of Radioactive Waste [3]. Over the previous decade, theoretical developments and improved computational technology have provided the foundation for integrating decision analysis (DA) concepts and objective-focused thinking, plus a Bayesian approach to

  18. Improving Site-Specific Radiological Performance Assessments - 13431

    Energy Technology Data Exchange (ETDEWEB)

    Tauxe, John; Black, Paul; Catlett, Kate; Lee, Robert; Perona, Ralph; Stockton, Tom; Sully, Mike [Neptune and Company, Inc., Los Alamos, New Mexico 87544 (United States)

    2013-07-01

    An improved approach is presented for conducting complete and defensible radiological site-specific performance assessments (PAs) to support radioactive waste disposal decisions. The basic tenets of PA were initiated some thirty years ago, focusing on geologic disposals and evaluating compliance with regulations. Some of these regulations were inherently probabilistic (i.e., addressing uncertainty in a quantitative fashion), such as the containment requirements of the U.S. Environmental Protection Agency's (EPA's) 40 CFR 191, Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes, Chap. 191.13 [1]. Methods of analysis were developed to meet those requirements, but at their core early PAs used 'conservative' parameter values and modeling approaches. This limited the utility of such PAs to compliance evaluation, and did little to inform decisions about optimizing disposal, closure and long-term monitoring and maintenance, or, in general, maintaining doses 'as low as reasonably achievable' (ALARA). This basic approach to PA development in the United States was employed essentially unchanged through the end of the 20. century, principally by the U.S. Department of Energy (DOE). Performance assessments developed in support of private radioactive waste disposal operations, regulated by the U.S. Nuclear Regulatory Commission (NRC) and its agreement states, were typically not as sophisticated. Discussion of new approaches to PA is timely, since at the time of this writing, the DOE is in the midst of revising its Order 435.1, Radioactive Waste Management [2], and the NRC is revising 10 CFR 61, Licensing Requirements for Land Disposal of Radioactive Waste [3]. Over the previous decade, theoretical developments and improved computational technology have provided the foundation for integrating decision analysis (DA) concepts and objective-focused thinking, plus

  19. Study of factors that interfere in the labelling process of erythrocytes and plasma proteins with Technetium-99m

    International Nuclear Information System (INIS)

    Gutfilen, Bianca

    1989-01-01

    The labelling of red blood cells (RBC) with technetium-99m (Tc-99m) depends on several factors, as the stannous ion (Sn++) concentration, time, temperature, the presence of plasma proteins (PP) and others. However the Sn++ concentration seems to be the most important factor; probably because the uptake of this reducing agent by RBC is limited. The excess of Sn++ in extracellular medium can determine the labelling of PP. the modifications of RBC at 50 deg C described in the literature, the possibility of labelling RBC with Tc-99m at this temperature and experimental results obtained made it possible to perform spleen selective scintigraphy through a simple technique with few manipulations. The effect of gentamicin, nifedipine and verapamil in the labelling of RBC and plasma proteins with Tc-99m was studied because of similarities between Ca++ and Sn++. The results show that, under some conditions, these drugs are capable to alter this Tc-99m incorporation. The modification of the ionic distribution determined by these drugs or the blockage of Sn++ and/or Tc-99m or the fact that they bind theirselves to plasma proteins, or the possibility of the labelling of these drugs, are factors that can interfere in the labelling process of red blood cells and plasma proteins with Tc-99m. (author)

  20. Optimized labeling of membrane proteins for applications to super-resolution imaging in confined cellular environments using monomeric streptavidin.

    Science.gov (United States)

    Chamma, Ingrid; Rossier, Olivier; Giannone, Grégory; Thoumine, Olivier; Sainlos, Matthieu

    2017-04-01

    Recent progress in super-resolution imaging (SRI) has created a strong need to improve protein labeling with probes of small size that minimize the target-to-label distance, increase labeling density, and efficiently penetrate thick biological tissues. This protocol describes a method for labeling genetically modified proteins incorporating a small biotin acceptor peptide with a 3-nm fluorescent probe, monomeric streptavidin. We show how to express, purify, and conjugate the probe to organic dyes with different fluorescent properties, and how to label selectively biotinylated membrane proteins for SRI techniques (point accumulation in nanoscale topography (PAINT), stimulated emission depletion (STED), stochastic optical reconstruction microscopy (STORM)). This method is complementary to the previously described anti-GFP-nanobody/SNAP-tag strategies, with the main advantage being that it requires only a short 15-amino-acid tag, and can thus be used with proteins resistant to fusion with large tags and for multicolor imaging. The protocol requires standard molecular biology/biochemistry equipment, making it easily accessible for laboratories with only basic skills in cell biology and biochemistry. The production/purification/conjugation steps take ∼5 d, and labeling takes a few minutes to an hour.

  1. How to awaken your nanomachines: Site-specific activation of focal adhesion kinases through ligand interactions.

    Science.gov (United States)

    Walkiewicz, Katarzyna W; Girault, Jean-Antoine; Arold, Stefan T

    2015-10-01

    The focal adhesion kinase (FAK) and the related protein-tyrosine kinase 2-beta (Pyk2) are highly versatile multidomain scaffolds central to cell adhesion, migration, and survival. Due to their key role in cancer metastasis, understanding and inhibiting their functions are important for the development of targeted therapy. Because FAK and Pyk2 are involved in many different cellular functions, designing drugs with partial and function-specific inhibitory effects would be desirable. Here, we summarise recent progress in understanding the structural mechanism of how the tug-of-war between intramolecular and intermolecular interactions allows these protein 'nanomachines' to become activated in a site-specific manner. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Selective cell-surface labeling of the molecular motor protein prestin

    International Nuclear Information System (INIS)

    McGuire, Ryan M.; Silberg, Jonathan J.; Pereira, Fred A.; Raphael, Robert M.

    2011-01-01

    Highlights: → Trafficking to the plasma membrane is required for prestin function. → Biotin acceptor peptide (BAP) was fused to prestin through a transmembrane domain. → BAP-prestin can be metabolically labeled with biotin in HEK293 cells. → Biotin-BAP-prestin allows for selective imaging of fully trafficked prestin. → The biotin-BAP-prestin displays voltage-sensitive activity. -- Abstract: Prestin, a multipass transmembrane protein whose N- and C-termini are localized to the cytoplasm, must be trafficked to the plasma membrane to fulfill its cellular function as a molecular motor. One challenge in studying prestin sequence-function relationships within living cells is separating the effects of amino acid substitutions on prestin trafficking, plasma membrane localization and function. To develop an approach for directly assessing prestin levels at the plasma membrane, we have investigated whether fusion of prestin to a single pass transmembrane protein results in a functional fusion protein with a surface-exposed N-terminal tag that can be detected in living cells. We find that fusion of the biotin-acceptor peptide (BAP) and transmembrane domain of the platelet-derived growth factor receptor (PDGFR) to the N-terminus of prestin-GFP yields a membrane protein that can be metabolically-labeled with biotin, trafficked to the plasma membrane, and selectively detected at the plasma membrane using fluorescently-tagged streptavidin. Furthermore, we show that the addition of a surface detectable tag and a single-pass transmembrane domain to prestin does not disrupt its voltage-sensitive activity.

  3. Label-free SnO2 nanowire FET biosensor for protein detection

    Science.gov (United States)

    Jakob, Markus H.; Dong, Bo; Gutsch, Sebastian; Chatelle, Claire; Krishnaraja, Abinaya; Weber, Wilfried; Zacharias, Margit

    2017-06-01

    Novel tin oxide field-effect-transistors (SnO2 NW-FET) for pH and protein detection applicable in the healthcare sector are reported. With a SnO2 NW-FET the proof-of-concept of a bio-sensing device is demonstrated using the carrier transport control of the FET channel by a (bio-) liquid modulated gate. Ultra-thin Al2O3 fabricated by a low temperature atomic layer deposition (ALD) process represents a sensitive layer to H+ ions safeguarding the nanowire at the same time. Successful pH sensitivity is demonstrated for pH ranging from 3 to 10. For protein detection, the SnO2 NW-FET is functionalized with a receptor molecule which specifically interacts with the protein of interest to be detected. The feasibility of this approach is demonstrated via the detection of a biotinylated protein using a NW-FET functionalized with streptavidin. An immediate label-free electronic read-out of the signal is shown. The well-established Enzyme-Linked Immunosorbent Assay (ELISA) method is used to determine the optimal experimental procedure which would enable molecular binding events to occur while being compatible with a final label-free electronic read-out on a NW-FET. Integration of the bottom-up fabricated SnO2 NW-FET pH- and biosensor into a microfluidic system (lab-on-a-chip) allows the automated analysis of small volumes in the 400 μl range as would be desired in portable on-site point-of-care (POC) devices for medical diagnosis.

  4. 75 FR 7577 - Environmental Management Site-Specific Advisory Board, Portsmouth

    Science.gov (United States)

    2010-02-22

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Portsmouth AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Portsmouth. The Federal Advisory Committee Act... areas of environmental restoration, waste management and related activities. Tentative Agenda: Call to...

  5. 75 FR 65615 - Environmental Management Site-Specific Advisory Board, Portsmouth

    Science.gov (United States)

    2010-10-26

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Portsmouth AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Portsmouth. The Federal Advisory Committee Act... areas of environmental restoration, waste management and related activities. Tentative Agenda Call to...

  6. 76 FR 57981 - Environmental Management Site-Specific Advisory Board, Portsmouth

    Science.gov (United States)

    2011-09-19

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Portsmouth AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Portsmouth. The Federal Advisory Committee Act... environmental restoration, waste management and related activities. Tentative Agenda Call to Order...

  7. 77 FR 2283 - Environmental Management Site-Specific Advisory Board, Portsmouth

    Science.gov (United States)

    2012-01-17

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Portsmouth AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Portsmouth. The Federal Advisory Committee Act... environmental restoration, waste management and related activities. Tentative Agenda Call to Order...

  8. 76 FR 36100 - Environmental Management Site-Specific Advisory Board, Portsmouth

    Science.gov (United States)

    2011-06-21

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Portsmouth AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Portsmouth. The Federal Advisory Committee Act... environmental restoration, waste management and related activities. Tentative Agenda Call to Order...

  9. 76 FR 17118 - Environmental Management Site-Specific Advisory Board Chairs

    Science.gov (United States)

    2011-03-28

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board Chairs AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB) Chairs. The Federal Advisory Committee Act (Pub... areas of environmental restoration, waste management, and related activities. Tentative Agenda Topics...

  10. 76 FR 62054 - Environmental Management Site-Specific Advisory Board Chairs

    Science.gov (United States)

    2011-10-06

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board Chairs AGENCY... of the Environmental Management Site-Specific Advisory Board (EM SSAB) Chairs. The Federal Advisory... environmental restoration, waste management, and related activities. Tentative Agenda Topics [cir] EM Program...

  11. 77 FR 29997 - Environmental Management Site-Specific Advisory Board, Portsmouth

    Science.gov (United States)

    2012-05-21

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Portsmouth AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Portsmouth. The Federal Advisory Committee Act... environmental restoration, waste management and related activities. Tentative Agenda Call to Order...

  12. 77 FR 37390 - Environmental Management Site-Specific Advisory Board, Portsmouth

    Science.gov (United States)

    2012-06-21

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Portsmouth AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Portsmouth. The Federal Advisory Committee Act... environmental restoration, waste management and related activities. Tentative Agenda: Call to Order...

  13. 75 FR 82003 - Environmental Management Site-Specific Advisory Board, Portsmouth

    Science.gov (United States)

    2010-12-29

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Portsmouth AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Portsmouth. The Federal Advisory Committee Act... areas of environmental restoration, waste management and related activities. Tentative Agenda: Call to...

  14. 75 FR 19379 - Environmental Management Site-Specific Advisory Board, Portsmouth

    Science.gov (United States)

    2010-04-14

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Portsmouth AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Portsmouth. The Federal Advisory Committee Act... areas of environmental restoration, waste management and related activities. Tentative Agenda Call to...

  15. 76 FR 78909 - Environmental Management Site-Specific Advisory Board, Portsmouth

    Science.gov (United States)

    2011-12-20

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Portsmouth AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Portsmouth. The Federal Advisory Committee Act... the areas of environmental restoration, waste management, and related activities. Tentative Agenda...

  16. 76 FR 50204 - Environmental Management Site-Specific Advisory Board, Nevada

    Science.gov (United States)

    2011-08-12

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Nevada AGENCY...-Wide Environmental Impact Statement (EIS) Committee of the Environmental Management Site- Specific... management in the areas of environmental restoration, waste management, and related activities. Purpose of...

  17. 77 FR 6790 - Environmental Management Site-Specific Advisory Board, Portsmouth

    Science.gov (United States)

    2012-02-09

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Portsmouth AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Portsmouth. The Federal Advisory Committee Act... environmental restoration, waste management and related activities. Tentative Agenda Call to Order...

  18. 76 FR 55370 - Environmental Management Site-Specific Advisory Board, Nevada

    Science.gov (United States)

    2011-09-07

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Nevada AGENCY...-Wide Environmental Impact Statement (EIS) Committee of the Environmental Management Site- Specific... the areas of environmental restoration, waste management, and related activities. Purpose of the...

  19. 75 FR 51026 - Environmental Management Site-Specific Advisory Board, Portsmouth

    Science.gov (United States)

    2010-08-18

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Portsmouth AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Portsmouth. The Federal Advisory Committee Act... the areas of environmental restoration, waste management and related activities. Tentative Agenda...

  20. 77 FR 51789 - Environmental Management Site-Specific Advisory Board, Paducah

    Science.gov (United States)

    2012-08-27

    ... management and related activities. Tentative Agenda Call to Order, Introductions, Review of Agenda... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Paducah AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Paducah. The Federal Advisory Committee Act...

  1. Site-Specific Seismic Site Response Model for the Waste Treatment Plant, Hanford, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Reidel, Steve P.

    2005-02-24

    This interim report documents the collection of site-specific geologic and geophysical data characterizing the Waste Treatment Plant site and the modeling of the site-specific structure response to earthquake ground motions.

  2. Dual fluorescence labeling of surface-exposed and internal proteins in erythrocytes infected with the malaria parasite Plasmodium falciparum

    DEFF Research Database (Denmark)

    Bengtsson, Dominique C; Sowa, Kordai M P; Arnot, David E

    2008-01-01

    There is a need for improved methods for in situ localization of surface proteins on Plasmodium falciparum-infected erythrocytes to help understand how these antigens are trafficked to, and positioned within, the host cell membrane. This protocol for confocal immunofluorescence microscopy combines...... and permeabilization; indirect labeling of the internal antigen using a secondary antibody tagged with a spectrally distinct fluorescent dye; and detection of the differentially labeled antigens using a laser scanning confocal microscope. The protocol can be completed in approximately 7 h. Although the protocol...... surface antigen labeling on live cells with subsequent fixation and permeabilization, which enables antibodies to penetrate the cell and label internal antigens. The key steps of the protocol are as follows: indirect labeling of the surface antigen using a fluorescently tagged secondary antibody; fixation...

  3. A Systematic Study of Site-specific GalNAc-type O-Glycosylation Modulating Proprotein Convertase Processing

    DEFF Research Database (Denmark)

    Schjoldager, Katrine Ter-Borch Gram; Vester-Christensen, Malene B.; Goth, Christoffer K.

    2011-01-01

    Site-specific GalNAc-type O-glycosylation is emerging as an important co-regulator of proprotein convertase (PC) processing of proteins. PC processing is crucial in regulating many fundamental biological pathways and O-glycans in or immediately adjacent to processing sites may affect recognition...... and function of PCs. Thus, we previously demonstrated that deficiency in site-specific O-glycosylation in a PC site of the fibroblast growth factor, FGF23, resulted in marked reduction in secretion of active unprocessed FGF23, which cause familial tumoral calcinosis and hyperostosis hyperphosphatemia. GalNAc......-type O-glycosylation is found on serine and threonine amino acids and up to 20 distinct polypeptide GalNAc transferases catalyze the first addition of GalNAc to proteins making this step the most complex and differentially regulated steps in protein glycosylation. There is no reliable prediction model...

  4. Measuring protein synthesis using metabolic ²H labeling, high-resolution mass spectrometry, and an algorithm.

    Science.gov (United States)

    Kasumov, Takhar; Ilchenko, Serguey; Li, Ling; Rachdaoui, Nadia; Sadygov, Rovshan G; Willard, Belinda; McCullough, Arthur J; Previs, Stephen

    2011-05-01

    We recently developed a method for estimating protein dynamics in vivo with heavy water ((2)H(2)O) using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) [16], and we confirmed that (2)H labeling of many hepatic free amino acids rapidly equilibrated with body water. Although this is a reliable method, it required modest sample purification and necessitated the determination of tissue-specific amino acid labeling. Another approach for quantifying protein kinetics is to measure the (2)H enrichments of body water (precursor) and protein-bound amino acid or proteolytic peptide (product) and to estimate how many copies of deuterium are incorporated into a product. In the current study, we used nanospray linear trap Fourier transform ion cyclotron resonance mass spectrometry (LTQ FT-ICR MS) to simultaneously measure the isotopic enrichment of peptides and protein-bound amino acids. A mathematical algorithm was developed to aid the data processing. The most notable improvement centers on the fact that the precursor/product labeling ratio can be obtained by measuring the labeling of water and a protein (or peptide) of interest, thereby minimizing the need to measure the amino acid labeling. As a proof of principle, we demonstrate that this approach can detect the effect of nutritional status on albumin synthesis in rats given (2)H(2)O. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Programming Post-Translational Control over the Metabolic Labeling of Cellular Proteins with a Noncanonical Amino Acid.

    Science.gov (United States)

    Thomas, Emily E; Pandey, Naresh; Knudsen, Sarah; Ball, Zachary T; Silberg, Jonathan J

    2017-08-18

    Transcriptional control can be used to program cells to label proteins with noncanonical amino acids by regulating the expression of orthogonal aminoacyl tRNA synthetases (aaRSs). However, we cannot yet program cells to control labeling in response to aaRS and ligand binding. To identify aaRSs whose activities can be regulated by interactions with ligands, we used a combinatorial approach to discover fragmented variants of Escherichia coli methionyl tRNA synthetase (MetRS) that require fusion to associating proteins for maximal activity. We found that these split proteins could be leveraged to create ligand-dependent MetRS using two approaches. When a pair of MetRS fragments was fused to FKBP12 and the FKBP-rapamycin binding domain (FRB) of mTOR and mutations were introduced that direct substrate specificity toward azidonorleucine (Anl), Anl metabolic labeling was significantly enhanced in growth medium containing rapamycin, which stabilizes the FKBP12-FRB complex. In addition, fusion of MetRS fragments to the termini of the ligand-binding domain of the estrogen receptor yielded proteins whose Anl metabolic labeling was significantly enhanced when 4-hydroxytamoxifen (4-HT) was added to the growth medium. These findings suggest that split MetRS can be fused to a range of ligand-binding proteins to create aaRSs whose metabolic labeling activities depend upon post-translational interactions with ligands.

  6. Nanostructured interfaces with site-specific bioreceptors for immunosensing

    Energy Technology Data Exchange (ETDEWEB)

    Paiva, Telmo O.; Almeida, Inês; Marquês, Joaquim T. [Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Edifício C8, 1749-016 Lisboa (Portugal); Liu, Wei [NML, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190 (China); Institute of Microelectronics, Tsinghua University, Beijing 100084 (China); Niu, Yu [NML, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190 (China); Jin, Gang, E-mail: gajin@imech.ac.cn [NML, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190 (China); School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049 (China); Viana, Ana S., E-mail: anaviana@fc.ul.pt [Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Edifício C8, 1749-016 Lisboa (Portugal)

    2017-08-01

    Highlights: • Innovative and simple strategy to create sensitive immunosensing platforms. • Gold surface modification with dithiocarbamate nanoconjugates of protein A. • CS{sub 2} strongly adsorbed on gold able to block protein nonspecific adsorption. • High performance for antigen detection by properly oriented antibodies. - Abstract: In this work, we propose a simple and effective approach to build nanostructured immunosensor platforms. The one-step strategy relies on i) the in situ formation of dithiocarbamates from the reaction between carbon disulfide and amine groups, present on protein A, ii) their attachment to gold nanoparticles (AuNPs), and iii) the linkage of the modified AuNPs to the electrode surface, which depends on the strong interaction between gold substrates and sulfur moieties. AuNPs and protein A are used to increase the surface coverage of Immunoglobulin G (IgG) and promote the oriented immobilization of the antibodies on the immunosensing interface. The modified gold surfaces with biomolecules were thoroughly characterized by a combination of techniques: UV–vis spectrophotometry, conventional ellipsometry and atomic force microscopy. The immunosensor performance was assessed in real-time, by surface plasmon resonance and by the highly sensitive total internal reflection imaging ellipsometry, through the specific biorecognition between anti-IgG and the immobilized IgG molecules. We demonstrate that the presence of AuNPs improves the sensitivity of the anti-IgG specific detection, whereas the presence of co-adsorbed CS{sub 2} is responsible for blocking the undesired protein nonspecific adsorption to the gold substrate. Overall, we report a simple and innovative one-step method, to chemically modify gold surfaces with protein A and AuNPs, able to specifically detect antigen/antibody interactions with capability of preventing protein nonspecific adsorption.

  7. Specific Labeling of Zinc Finger Proteins using Non-canonical Amino Acids and Copper-free Click Chemistry

    Science.gov (United States)

    Kim, Younghoon; Kim, Sung Hoon; Ferracane, Dean; Katzenellenbogen, John A.

    2012-01-01

    Zinc finger proteins (ZFPs) play a key role in transcriptional regulation and serve as invaluable tools for gene modification and genetic engineering. Development of efficient strategies for labeling metalloproteins such as ZFPs is essential for understanding and controlling biological processes. In this work, we engineered ZFPs containing cysteine-histidine (Cys2-His2) motifs by metabolic incorporation of the unnatural amino acid azidohomoalanine (AHA), followed by specific protein labeling via click chemistry. We show that cyclooctyne promoted [3 + 2] dipolar cycloaddition with azides, known as copper-free click chemistry, provides rapid and specific labeling of ZFPs at high yields as determined by mass spectrometry analysis. We observe that the DNA-binding activity of ZFPs labeled by conventional copper-mediated click chemistry was completely abolished, whereas ZFPs labeled by copper-free click chemistry retain their sequence-specific DNA-binding activity under native conditions, as determined by electrophoretic mobility shift assays, protein microarrays and kinetic binding assays based on Förster resonance energy transfer (FRET). Our work provides a general framework to label metalloproteins such as ZFPs by metabolic incorporation of unnatural amino acids followed by copper-free click chemistry. PMID:22871171

  8. A rapid chemical method of labelling human plasma proteins with sup(99m)Tc-pertechnetate at pH 7.4

    International Nuclear Information System (INIS)

    Wong, D.W.; Mishkin, F.; Lee, T.

    1978-01-01

    A successful method for labelling human plasma proteins with sup(99m)Tc-pertechnetate by chemical means is described. The labelling methodology involves the production of Sup(99m)Tc-(Sn)citrate complex species with high protein binding capacity at pH 7.4 condition following initial chemical reduction of sodium sup(99m)Tc-pertechnetate by stannous chloride. A combined labelling efficiency range of 95-99% for sup(99m)Tc-labelled fibrinogen, immune gamma globulin and serum albumin is achieved. The actual amount of labelled protein content in the product is found to be 85-95% when assayed by ITLC and 74-85% by TCAA protein precipitation. In vitro experimental data indicate that sup(99m)Tc-fibrinogen contains an average of 85% clottable protein with an average clottability of 95%. This strongly suggests that the radioactive proteins retain much of their biological and physiological activities after the labelling process. (author)

  9. Subcellular localization of proteins in the anaerobic sulfate reducer Desulfovibrio vulgaris via SNAP-tag labeling and photoconversion

    Energy Technology Data Exchange (ETDEWEB)

    Gorur, A.; Leung, C. M.; Jorgens, D.; Tauscher, A.; Remis, J. P.; Ball, D. A.; Chhabra, S.; Fok, V.; Geller, J. T.; Singer, M.; Hazen, T. C.; Juba, T.; Elias, D.; Wall, J.; Biggin, M.; Downing, K. H.; Auer, M.

    2010-06-01

    Systems Biology studies the temporal and spatial 3D distribution of macromolecular complexes with the aim that such knowledge will allow more accurate modeling of biological function and will allow mathematical prediction of cellular behavior. However, in order to accomplish accurate modeling precise knowledge of spatial 3D organization and distribution inside cells is necessary. And while a number of macromolecular complexes may be identified by its 3D structure and molecular characteristics alone, the overwhelming number of proteins will need to be localized using a reporter tag. GFP and its derivatives (XFPs) have been traditionally employed for subcelllar localization using photoconversion approaches, but this approach cannot be taken for obligate anaerobic bacteria, where the intolerance towards oxygen prevents XFP approaches. As part of the GTL-funded PCAP project (now ENIGMA) genetic tools have been developed for the anaerobe sulfate reducer Desulfovibrio vulgaris that allow the high-throughput generation of tagged-protein mutant strains, with a focus on the commercially available SNAP-tag cell system (New England Biolabs, Ipswich, MA), which is based on a modified O6-alkylguanine-DNA alkyltransferase (AGT) tag, that has a dead-end reaction with a modified O6-benzylguanine (BG) derivative and has been shown to function under anaerobic conditions. After initial challenges with respect to variability, robustness and specificity of the labeling signal we have optimized the labeling. Over the last year, as a result of the optimized labeling protocol, we now obtain robust labeling of 20 out of 31 SNAP strains. Labeling for 13 strains were confirmed at least five times. We have also successfully performed photoconversion on 5 of these 13 strains, with distinct labeling patterns for different strains. For example, DsrC robustly localizes to the periplasmic portion of the inner membrane, where as a DNA-binding protein localizes to the center of the cell, where the

  10. Green fluorescent protein labeling of Listeria, Salmonella, and Escherichia coli O157:H7 for safety-related studies.

    Directory of Open Access Journals (Sweden)

    Li Ma

    Full Text Available Many food safety-related studies require tracking of introduced foodborne pathogens to monitor their fate in complex environments. The green fluorescent protein (GFP gene (gfp provides an easily detectable phenotype so has been used to label many microorganisms for ecological studies. The objectives of this study were to label major foodborne pathogens and related bacteria, including Listeria monocytogenes, Listeria innocua, Salmonella, and Escherichia coli O157:H7 strains, with GFP and characterize the labeled strains for stability of the GFP plasmid and the plasmid's effect on bacterial growth. GFP plasmids were introduced into these strains by a CaCl(2 procedure, conjugation or electroporation. Stability of the label was determined through sequential propagation of labeled strains in the absence of selective pressure, and rates of plasmid-loss were calculated. Stability of the GFP plasmid varied among the labeled species and strains, with the most stable GFP label observed in E. coli O157:H7. When grown in nonselective media for two consecutive subcultures (ca. 20 generations, the rates of plasmid loss among labeled E. coli O157:H7, Salmonella and Listeria strains ranged from 0%-30%, 15.8%-99.9% and 8.1%-93.4%, respectively. Complete loss (>99.99% of the plasmid occurred in some labeled strains after five consecutive subcultures in the absence of selective pressure, whereas it remained stable in others. The GFP plasmid had an insignificant effect on growth of most labeled strains. E. coli O157:H7, Salmonella and Listeria strains can be effectively labeled with the GFP plasmid which can be stable in some isolates for many generations without adversely affecting growth rates.

  11. Differential regulation of the transcriptional activity of the glucocorticoid receptor through site-specific phosphorylation

    Directory of Open Access Journals (Sweden)

    Raj Kumar

    2008-08-01

    Full Text Available Raj Kumar1, William J Calhoun21Division of Gastroenterology; 2Division of Allergy, Pulmonary, Immunology, Critical Care, and Sleep (APICS, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USAAbstract: Post-translational modifications such as phosphorylation are known to play an important role in the gene regulation by the transcription factors including the nuclear hormone receptor superfamily of which the glucocorticoid receptor (GR is a member. Protein phosphorylation often switches cellular activity from one state to another. Like many other transcription factors, the GR is a phosphoprotein, and phosphorylation plays an important role in the regulation of GR activity. Cell signaling pathways that regulate phosphorylation of the GR and its associated proteins are important determinants of GR function under various physiological conditions. While the role of many phosphorylation sites in the GR is still not fully understood, the role of others is clearer. Several aspects of transcription factor function, including DNA binding affinity, interaction of transactivation domains with the transcription initiation complex, and shuttling between the cytoplasmic compartments, have all been linked to site-specific phosphorylation. All major phosphorylation sites in the human GR are located in the N-terminal domain including the major transactivation domain, AF1. Available literature clearly indicates that many of these potential phosphorylation sites are substrates for multiple kinases, suggesting the potential for a very complex regulatory network. Phosphorylated GR interacts favorably with critical coregulatory proteins and subsequently enhances transcriptional activity. In addition, the activities and specificities of coregulators may be subject to similar regulation by phosphorylation. Regulation of the GR activity due to phosphorylation appears to be site-specific and dependent upon specific cell signaling cascade

  12. In Vitro Osteogenic Potential of Green Fluorescent Protein Labelled Human Embryonic Stem Cell-Derived Osteoprogenitors

    Directory of Open Access Journals (Sweden)

    Intekhab Islam

    2016-01-01

    Full Text Available Cellular therapy using stem cells in bone regeneration has gained increasing interest. Various studies suggest the clinical utility of osteoprogenitors-like mesenchymal stem cells in bone regeneration. However, limited availability of mesenchymal stem cells and conflicting evidence on their therapeutic efficacy limit their clinical application. Human embryonic stem cells (hESCs are potentially an unlimited source of healthy and functional osteoprogenitors (OPs that could be utilized for bone regenerative applications. However, limited ability to track hESC-derived progenies in vivo greatly hinders translational studies. Hence, in this study, we aimed to establish hESC-derived OPs (hESC-OPs expressing green fluorescent protein (GFP and to investigate their osteogenic differentiation potential in vitro. We fluorescently labelled H9-hESCs using a plasmid vector encoding GFP. The GFP-expressing hESCs were differentiated into hESC-OPs. The hESC-OPsGFP+ stably expressed high levels of GFP, CD73, CD90, and CD105. They possessed osteogenic differentiation potential in vitro as demonstrated by increased expression of COL1A1, RUNX2, OSTERIX, and OPG transcripts and mineralized nodules positive for Alizarin Red and immunocytochemical expression of osteocalcin, alkaline phosphatase, and collagen-I. In conclusion, we have demonstrated that fluorescently labelled hESC-OPs can maintain their GFP expression for the long term and their potential for osteogenic differentiation in vitro. In future, these fluorescently labelled hESC-OPs could be used for noninvasive assessment of bone regeneration, safety, and therapeutic efficacy.

  13. Auto-inducing media for uniform isotope labeling of proteins with 15N, 13C and 2H

    International Nuclear Information System (INIS)

    Guthertz, Nicolas; Klopp, Julia; Winterhalter, Aurélie; Fernández, César; Gossert, Alvar D.

    2015-01-01

    Auto-inducing media for protein expression offer many advantages like robust reproducibility, high yields of soluble protein and much reduced workload. Here, an auto-inducing medium for uniform isotope labelling of proteins with 15 N, 13 C and/or 2 H in E. coli is presented. So far, auto-inducing media have not found widespread application in the NMR field, because of the prohibitively high cost of labeled lactose, which is an essential ingredient of such media. Here, we propose using lactose that is only selectively labeled on the glucose moiety. It can be synthesized from inexpensive and readily available substrates: labeled glucose and unlabeled activated galactose. With this approach, uniformly isotope labeled proteins were expressed in unattended auto-inducing cultures with incorporation of 13 C, 15 N of 96.6 % and 2 H, 15 N of 98.8 %. With the present protocol, the NMR community could profit from the many advantages that auto-inducing media offer

  14. Stereoselective synthesis of stable-isotope-labeled amino acids

    Energy Technology Data Exchange (ETDEWEB)

    Unkefer, C.J.; Martinez, R.A.; Silks, L.A. III [Los Alamos National Laboratory, NM (United States); Lodwig, S.N. [Centralia College, WA (United States)

    1994-12-01

    For magnetic resonance and vibrational spectroscopies to reach their full potential, they must be used in combination with sophisticated site-specific stable isotope labeling of biological macromolecules. Labeled amino acids are required for the study of the structure and function of enzymes and proteins. Because there are 20 common amino acids, each with its own distinguishing chemistry, they remain a synthetic challenge. The Oppolzer chiral auxiliary provides a general tool with which to approach the synthesis of labeled amino acids. By using the Oppolzer auxiliary, amino acids can be constructed from several small molecules, which is ideal for stable isotope labeling. In addition to directing the stereochemistry at the {alpha}-carbon, the camphorsultam can be used for stereo-specific isotope labeling at prochiral centers in amino acids. By using the camphorsultam auxiliary we have the potential to synthesize virtually any isotopomer of all of the common amino acids.

  15. Stereoselective synthesis of stable-isotope-labeled amino acids

    International Nuclear Information System (INIS)

    Unkefer, C.J.; Martinez, R.A.; Silks, L.A. III; Lodwig, S.N.

    1994-01-01

    For magnetic resonance and vibrational spectroscopies to reach their full potential, they must be used in combination with sophisticated site-specific stable isotope labeling of biological macromolecules. Labeled amino acids are required for the study of the structure and function of enzymes and proteins. Because there are 20 common amino acids, each with its own distinguishing chemistry, they remain a synthetic challenge. The Oppolzer chiral auxiliary provides a general tool with which to approach the synthesis of labeled amino acids. By using the Oppolzer auxiliary, amino acids can be constructed from several small molecules, which is ideal for stable isotope labeling. In addition to directing the stereochemistry at the α-carbon, the camphorsultam can be used for stereo-specific isotope labeling at prochiral centers in amino acids. By using the camphorsultam auxiliary we have the potential to synthesize virtually any isotopomer of all of the common amino acids

  16. Absolute quantitative autoradiography of low concentrations of [125I]-labeled proteins in arterial tissue

    International Nuclear Information System (INIS)

    Schnitzer, J.J.; Morrel, E.M.; Colton, C.K.; Smith, K.A.; Stemerman, M.B.

    1987-01-01

    We developed a method for absolute quantitative autoradiographic measurement of very low concentrations of [ 125 I]-labeled proteins in arterial tissue using Kodak NTB-2 nuclear emulsion. A precise linear relationship between measured silver grain density and isotope concentration was obtained with uniformly labeled standard sources composed of epoxy-embedded gelatin containing glutaraldehyde-fixed [ 125 I]-albumin. For up to 308-day exposures of 1 micron-thick tissue sections, background grain densities ranged from about two to eight grains/1000 micron 2, and the technique was sensitive to as little as about one grain/1000 micron 2 above background, which correspond to a radioactivity concentration of about 2 x 10(4) cpm/ml. A detailed statistical analysis of variability was performed and the sum of all sources of variation quantified. The half distance for spatial resolution was 1.7 micron. Both visual and automated techniques were employed for quantitative grain density analysis. The method was illustrated by measurement of in vivo transmural [ 125 I]-low-density lipoprotein [( 125 I]-LDL) concentration profiles in de-endothelialized rabbit thoracic aortic wall

  17. Rapid label-free profiling of oral cancer biomarker proteins using nano-UPLC-Q-TOF ion mobility mass spectrometry.

    Science.gov (United States)

    Nassar, Ala F; Williams, Brad J; Yaworksy, Dustin C; Patel, Vyomesh; Rusling, James F

    2016-03-01

    It has become quite clear that single cancer biomarkers cannot in general provide high sensitivity and specificity for reliable clinical cancer diagnostics. This paper explores the feasibility of rapid detection of multiple biomarker proteins in model oral cancer samples using label-free protein relative quantitation. MS-based label-free quantitative proteomics offer a rapid alternative that bypasses the need for stable isotope containing compounds to chemically bind and label proteins. Total protein content in oral cancer cell culture conditioned media was precipitated, subjected to proteolytic digestion, and then analyzed using a nano-UPLC (where UPLC is ultra-performance liquid chromatography) coupled to a hybrid Q-Tof ion-mobility mass spectrometry (MS). Rapid, simultaneous identification and quantification of multiple possible cancer biomarker proteins was achieved. In a comparative study between cancer and noncancer samples, approximately 952 proteins were identified using a high-throughput 1D ion mobility assisted data independent acquisition (IM-DIA) approach. As we previously demonstrated that interleukin-8 (IL-8) and vascular endothelial growth factor A (VEGF-A) were readily detected in oral cancer cell conditioned media(1), we targeted these biomarker proteins to validate our approach. Target biomarker protein IL-8 was found between 3.5 and 8.8 fmol, while VEGF-A was found at 1.45 fmol in the cancer cell media. Overall, our data suggest that the nano-UPLC-IM-DIA bioassay is a feasible approach to identify and quantify proteins in complex samples without the need for stable isotope labeling. These results have significant implications for rapid tumor diagnostics and prognostics by monitoring proteins such as IL-8 and VEGF-A implicated in cancer development and progression. The analysis in tissue or plasma is not possible at this time, but the subsequent work would be needed for validation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Precision farming - Technology assessment of site-specific input application in cereals

    DEFF Research Database (Denmark)

    Pedersen, Søren Marcus

    economic and socio-economic analysis. The current status of precision farming in Denmark is as follows: • The technology is primarily applicable for large farm holdings • Economic viability depends on site-specific yield variation • So far, the business economic benefits from most PF-practices are modest...... but it seems possible to obtain a socio-economic benefits from lime, variable rate herbicide and possibly nitrogen application • The technology may improve farm logistics, planning and crop quality (e.g. protein content) - but • The costs of implementing PF-practices are high and • Technical functionality...... several years before the next generation of precision farming systems will be available in practice. Meanwhile, those farmers who already have invested in yield monitors and soil analysis for precision farming should be able to use the current technology in the best possible way....

  19. Characterization and validation of new tools for measuring site-specific cardiac troponin I phosphorylation.

    Science.gov (United States)

    Thoemmes, Stephen F; Stutzke, Crystal A; Du, Yanmei; Browning, Michael D; Buttrick, Peter M; Walker, Lori A

    2014-01-31

    Phosphorylation of cardiac troponin I is a well established mechanism by which cardiac contractility is modulated. However, there are a number of phosphorylation sites on TnI which contribute singly or in combination to influence cardiac function. Accordingly, methods for accurately measuring site-specific TnI phosphorylation are needed. Currently, two strategies are employed: mass spectrometry, which is costly, difficult and has a low throughput; and Western blotting using phospho-specific antibodies, which is limited by the availability of reagents. In this report, we describe a cohort of new site-specific TnI phosphoantibodies, generated against physiologically relevant phosphorylation sites, that are superior to the current commercially available antibodies: to phospho-serine 22/23 which shows a >5-fold phospho-specificity for phosphorylated TnI; to phospho-serine 43, which has >3-fold phospho-specificity for phosphorylated TnI; and phospho-serine 150 which has >2-fold phospho-specificity for phosphorylated TnI. These new antibodies demonstrated greater sensitivity and specificity for the phosphorylated TnI than the most widely used commercially available reagents. For example, at a protein load of 20 μg of total cardiac extract, a commercially available antibody recognized both phosphorylated and dephosphorylated TnI to the same degree. At the same protein load our phospho-serine 22/23 antibody exhibited no cross-reactivity with dephosphorylated TnI. These new tools should allow a more accurate assessment and a better understanding of the role of TnI phosphorylation in the response of the heart to pathologic stress. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Single-Molecule Tethered Particle Motion: Stepwise Analyses of Site-Specific DNA Recombination

    Directory of Open Access Journals (Sweden)

    Hsiu-Fang Fan

    2018-05-01

    Full Text Available Tethered particle motion/microscopy (TPM is a biophysical tool used to analyze changes in the effective length of a polymer, tethered at one end, under changing conditions. The tether length is measured indirectly by recording the Brownian motion amplitude of a bead attached to the other end. In the biological realm, DNA, whose interactions with proteins are often accompanied by apparent or real changes in length, has almost exclusively been the subject of TPM studies. TPM has been employed to study DNA bending, looping and wrapping, DNA compaction, high-order DNA–protein assembly, and protein translocation along DNA. Our TPM analyses have focused on tyrosine and serine site-specific recombinases. Their pre-chemical interactions with DNA cause reversible changes in DNA length, detectable by TPM. The chemical steps of recombination, depending on the substrate and the type of recombinase, may result in a permanent length change. Single molecule TPM time traces provide thermodynamic and kinetic information on each step of the recombination pathway. They reveal how mechanistically related recombinases may differ in their early commitment to recombination, reversibility of individual steps, and in the rate-limiting step of the reaction. They shed light on the pre-chemical roles of catalytic residues, and on the mechanisms by which accessory proteins regulate recombination directionality.

  1. Photoaffinity labeling of human serum vitamin D binding protein and chemical cleavage of the labeled protein: Identification of an 11.5-kDa peptide containing the putative 25-hydroxyvitamin D3 binding site

    International Nuclear Information System (INIS)

    Ray, R.; Holick, M.F.; Bouillon, R.; Baelen, H.V.

    1991-01-01

    In this paper, the authors describe photoaffinity labeling and related studies of human serum vitamin D binding protein (hDBP) with 25-hydroxyvitamin D 3 3β-3'-[N-(4-azido-2-nitrophenyl)amino]propyl ether (25-ANE) and its radiolabeled counterpart, i.e., 25-hydroxyvitamin D 3 3β-3'-[N-(4-azido-2-nitro-[3,5- 3 H]phenyl)amino]propyl ether ( 3 H-25-ANE). They have carried out studies to demonstrate that (1) 25-ANE competes with 25-OH-D 3 for the binding site of the latter in hDBP and (2) 3 H-25-ANE is capable of covalently labeling the hDBP molecule when exposed ot UV light. Treatment of a sample of purified hDBP, labeled with 3 H-25-ANE, with BNPS-skatole produced two Coomassie Blue stained peptide fragments, and the majority of the radioactivity was assoicated with the smaller of the two peptide fragments (16.5 kDa). On the other hand, cleavage of the labeled protein with cyanogen bromide produced a peptide (11.5 kDa) containing most of the covalently attached radioactivity. Considering the primary amino acid structure of hDBP, this peptide fragment (11.5 kDa) represents the N-terminus through residue 108 of the intact protein. Thus, the results tentatively identify this segment of the protein containing the binding pocket for 25-OH-D 3

  2. Temporal Profiling and Pulsed SILAC Labeling Identify Novel Secreted Proteins During Ex Vivo Osteoblast Differentiation of Human Stromal Stem Cells*

    Science.gov (United States)

    Kristensen, Lars P.; Chen, Li; Nielsen, Maria Overbeck; Qanie, Diyako W.; Kratchmarova, Irina; Kassem, Moustapha; Andersen, Jens S.

    2012-01-01

    It is well established that bone forming cells (osteoblasts) secrete proteins with autocrine, paracrine, and endocrine function. However, the identity and functional role for the majority of these secreted and differentially expressed proteins during the osteoblast (OB) differentiation process, is not fully established. To address these questions, we quantified the temporal dynamics of the human stromal (mesenchymal, skeletal) stem cell (hMSC) secretome during ex vivo OB differentiation using stable isotope labeling by amino acids in cell culture (SILAC). In addition, we employed pulsed SILAC labeling to distinguish genuine secreted proteins from intracellular contaminants. We identified 466 potentially secreted proteins that were quantified at 5 time-points during 14-days ex vivo OB differentiation including 41 proteins known to be involved in OB functions. Among these, 315 proteins exhibited more than 2-fold up or down-regulation. The pulsed SILAC method revealed a strong correlation between the fraction of isotope labeling and the subset of proteins known to be secreted and involved in OB differentiation. We verified SILAC data using qRT-PCR analysis of 9 identified potential novel regulators of OB differentiation. Furthermore, we studied the biological effects of one of these proteins, the hormone stanniocalcin 2 (STC2) and demonstrated its autocrine effects in enhancing osteoblastic differentiation of hMSC. In conclusion, combining complete and pulsed SILAC labeling facilitated the identification of novel factors produced by hMSC with potential role in OB differentiation. Our study demonstrates that the secretome of osteoblastic cells is more complex than previously reported and supports the emerging evidence that osteoblastic cells secrete proteins with endocrine functions and regulate cellular processes beyond bone formation. PMID:22801418

  3. Toward the fourth dimension of membrane protein structure: insight into dynamics from spin-labeling EPR spectroscopy.

    Science.gov (United States)

    McHaourab, Hassane S; Steed, P Ryan; Kazmier, Kelli

    2011-11-09

    Trapping membrane proteins in the confines of a crystal lattice obscures dynamic modes essential for interconversion between multiple conformations in the functional cycle. Moreover, lattice forces could conspire with detergent solubilization to stabilize a minor conformer in an ensemble thus confounding mechanistic interpretation. Spin labeling in conjunction with electron paramagnetic resonance (EPR) spectroscopy offers an exquisite window into membrane protein dynamics in the native-like environment of a lipid bilayer. Systematic application of spin labeling and EPR identifies sequence-specific secondary structures, defines their topology and their packing in the tertiary fold. Long range distance measurements (60 Å-80 Å) between pairs of spin labels enable quantitative analysis of equilibrium dynamics and triggered conformational changes. This review highlights the contribution of spin labeling to bridging structure and mechanism. Efforts to develop methods for determining structures from EPR restraints and to increase sensitivity and throughput promise to expand spin labeling applications in membrane protein structural biology. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. 15N incorporation into organ proteins of newborn rats following single pulse-labelling with different tracers

    International Nuclear Information System (INIS)

    Wutzke, K.D.; Plath, C.; Richter, I.; Heine, W.; Zhukova, T.P.; Sorokina, E.G.; Friedrich, M.

    1987-01-01

    A short-chain 15 N-peptide mixture characterized by an average chain length of 2.3 was obtained when 15 N-labelled yeast protein was hydrolyzed enzymatically by thermitase from Thermoactinomyces vulgaris. Fifteen newborn Wistar rats were given a single pulse of [ 15 N]glycine. [ 15 N]H 4 Cl and [ 15 N]yeast protein thermitasehydrolysate (YPTH) in a dosage of 50 mg 15 N excess kg -1 by gastric tube. In comparison with [ 15 N]glycine the 15 N incorporation rates of brain, muscle and liver were approximately 150% higher after [ 15 N]YPTH application. Uniform labelling, high 15 N enrichment, almost complete absorption, avoidance of imbalances and the low price make this tracer substance superior to other tracers conventionally used for organ labelling. (author)

  5. Exposure of outer membrane proteins on the surface of Pseudomonas aeruginosa PA01 revealed by labelling with [125I]lactoperoxidase

    International Nuclear Information System (INIS)

    Lambert, P.A.; Booth, B.R.

    1982-01-01

    The authors have investigated the exposure of the major outer membrane proteins on the cell surface by treating whole cells of P. aeruginosa with [ 125 I]lactoperoxidase. This reagent catalyses the iodination of tyrosine and histidine residues of proteins in the presence of hydrogen peroxide. It is too large to penetrate the outer membrane (Msub(r) 77500), therefore it is assumed to label only those proteins which have such residues exposed on the cell surface and has been applied to a number of Gram-negative organisms. It is found that F was the major labelled protein, D1 and/or D2 were less heavily labelled, and G was very faintly labelled. In addition, two proteins (Msub(r) 72500 and 38000) which did not appear to be major outer membrane proteins were labelled. (Auth.)

  6. Site-specific confocal fluorescence imaging of biological microstructures in a turbid medium

    International Nuclear Information System (INIS)

    Saloma, Caesar; Palmes-Saloma, Cynthia; Kondoh, Hisato

    1998-01-01

    Normally transparent biological structures in a turbid medium are imaged using a laser confocal microscope and multiwavelength site-specific fluorescence labelling. The spatial filtering capability of the detector pinhole in the confocal microscope limits the number of scattered fluorescent photons that reach the photodetector. Simultaneous application of different fluorescent markers on the same sample site minimizes photobleaching by reducing the excitation time for each marker. A high-contrast grey-level image is also produced by summing confocal images of the same site taken at different fluorescence wavelengths. Monte Carlo simulations are performed to obtain the quantitative behaviour of confocal fluorescence imaging in turbid media. Confocal images of the following samples were also obtained: (i) 15 μm diameter fluorescent spheres placed 1.16 mm deep beneath an aqueous suspension of 0.0823 μm diameter polystyrene latex spheres, and (ii) hindbrain of a whole-mount mouse embryo (age 10 days) that was stained to fluoresce at 515 nm and 580 nm peak wavelengths. Expression of RNA transcripts of a gene within the embryo hindbrain was detected by a fluorescence-based whole-mount in situ hybridization procedure that we recently tested. (author)

  7. Syntheses of carbon-13 labeled protoporphyrin-IX for spectroscopic studies of heme proteins

    International Nuclear Information System (INIS)

    Fujinari, E.M.

    1985-01-01

    The development of various methodologies for synthesis of selectively tailored protoporphyrin-IX dimethyl ester are presented. The iron(II) complex of protoporphyrin-IX is the heme, the prosthetic group for Hb, Mb, cytochromes and peroxidases. The significance of this research is to provide direct means to establish definitive carbon-13 NMR assignments of heme proteins in order to study not only the structure-function relationships, but also protein dynamics of these vital systems. Carbon-13 labeling at the beta-vinyl position was first achieved by ozonolysis of protoporphyrin-IX dimethyl ester. Column LC method were used to first isolate 2,4-diformyldeuteroporphyrin-IX dimethyl ester. Concomitantly, monofomyl-monovinyl porphyrins were obtained as a mixture of two isomers. This mixture was separated by MPLC or prep HPLC to afford the isomerically pure products, Spirographis porphyrin dimethyl ester and Iso-Spirographis porphyrin dimethyl ester. A Wittig reaction to each of these porphyrins with 13 C-methyltriphenylphosphonium iodide gave 2,4-bis[ 13 C 2 ]-vinyl protoporphyrin-IX dimethyl ester, 2-[ 13 C 2 ]-vinyl protoporphyrin-IX dimethyl ester, and the 4-[ 13 C 2 ]-vinyl protoporphyrin-IX dimethyl ester, respectively

  8. Photoaffinity labeling of cAMP-dependent protein kinase by 4-azido-2-nitrophenyladenylyl pyrophosphate

    International Nuclear Information System (INIS)

    Johnson, D.R.; Ho, H.T.; Wong, S.S.

    1986-01-01

    A photoaffinity analogue of ATP, 4-azido-2-nitrophenyl-adenylyl pyrophosphate (ANAP) has been synthesized to investigate the topographical interaction between the catalytic and the regulatory subunits of the bovine heart type II cAMP-dependent protein kinase. The synthesis involves coupling of 4-azido-2-nitrophenyl phosphate with adenosine 5'-monophosphomorpholidate. ANAP has an absorption maximum at 260 nm (molar absorptivity = 35.4 x 10 3 M -1 cm -1 ) and a shoulder at 320 nm. Kinetically, ANAP inhibits the enzyme competitively against ATP with a Ki of 0.37 mM. The catalytic subunit is inactivated by ANAP upon photolysis in the presence of magnesium ion. ATP protects the enzyme from photoinactivation but the regulatory subunit does not. Gel electrophoretic analysis of the enzyme labeled by [ 14 C]ANAP shows that the photoincorporated ANAP is associated mainly with the catalytic subunit, even when the regulator dimer is in twelve fold excess. Little or no ANAP is found incorporated into the regulator subunit. The data suggest that the photoreactive portion of ANAP does not lie within reach of the regulatory protein when the analogue is bound to the catalytic subunit

  9. Photoaffinity labeling of serum vitamin D binding protein by 3-deoxy-3-azido-25-hydroxyvitamin D3

    International Nuclear Information System (INIS)

    Link, R.P.; Kutner, A.; Schnoes, H.K.; DeLuca, H.F.

    1987-01-01

    3-Deoxy-3-azido-25-hydroxyvitamin D3 was covalently incorporated in the 25-hydroxyvitamin D3 binding site of purified human plasma vitamin D binding protein. Competition experiments showed that 3-deoxy-3-azido-25-hydroxyvitamin D3 and 25-hydroxyvitamin D3 bind at the same site on the protein. Tritiated 3-deoxy-3-azido-25-hydroxyvitamin D3 was synthesized from tritiated 25-hydroxyvitamin D3, retaining the high specific activity of the parent compound. The tritiated azido label bound reversibly to human vitamin D binding protein in the dark and covalently to human vitamin D binding protein after exposure to ultraviolet light. Reversible binding of tritiated 3-deoxy-3-azido-25-hydroxyvitamin D3 was compared to tritiated 25-hydroxyvitamin D3 binding to human vitamin D binding protein. Scatchard analysis of the data indicated equivalent maximum density binding sites with a KD,app of 0.21 nM for 25-hydroxyvitamin D3 and a KD,app of 1.3 nM for the azido derivative. Covalent binding was observed only after exposure to ultraviolet irradiation, with an average of 3% of the reversibly bound label becoming covalently bound to vitamin D binding protein. The covalent binding was reduced 70-80% when 25-hydroxyvitamin D3 was present, indicating strong covalent binding at the vitamin D binding site of the protein. When tritiated 3-deoxy-3-azido-25-hydroxyvitamin D3 was incubated with human plasma in the absence and presence of 25-hydroxyvitamin D3, 12% of the azido derivative was reversibly bound to vitamin D binding protein. After ultraviolet irradiation, four plasma proteins covalently bound the azido label, but vitamin D binding protein was the only protein of the four that was unlabeled in the presence of 25-hydroxyvitamin D3

  10. Assigning Significance in Label-Free Quantitative Proteomics to Include Single-Peptide-Hit Proteins with Low Replicates

    OpenAIRE

    Li, Qingbo

    2010-01-01

    When sample replicates are limited in a label-free proteomics experiment, selecting differentially regulated proteins with an assignment of statistical significance remains difficult for proteins with a single-peptide hit or a small fold-change. This paper aims to address this issue. An important component of the approach employed here is to utilize the rule of Minimum number of Permuted Significant Pairings (MPSP) to reduce false positives. The MPSP rule generates permuted sample pairings fr...

  11. Label-Free Detection of Glycan-Protein Interactions for Array Development by Surface-Enhanced Raman Spectroscopy (SERS)

    NARCIS (Netherlands)

    Li, Xiuru; Martin, Sharon J H; Chinoy, Zoeisha S; Liu, Lin; Rittgers, Brandon; Dluhy, Richard A; Boons, Geert-Jan

    2016-01-01

    A glyco-array platform has been developed, in which glycans are attached to plasmonic nanoparticles through strain-promoted azide-alkyne cycloaddition. Glycan-protein binding events can then be detected in a label-free manner employing surface-enhanced Raman spectroscopy (SERS). As proof of concept,

  12. Custom-Designed Molecular Scissors for Site-Specific Manipulation of the Plant and Mammalian Genomes

    Science.gov (United States)

    Kandavelou, Karthikeyan; Chandrasegaran, Srinivasan

    Zinc finger nucleases (ZFNs) are custom-designed molecular scissors, engineered to cut at specific DNA sequences. ZFNs combine the zinc finger proteins (ZFPs) with the nonspecific cleavage domain of the FokI restriction enzyme. The DNA-binding specificity of ZFNs can be easily altered experimentally. This easy manipulation of the ZFN recognition specificity enables one to deliver a targeted double-strand break (DSB) to a genome. The targeted DSB stimulates local gene targeting by several orders of magnitude at that specific cut site via homologous recombination (HR). Thus, ZFNs have become an important experimental tool to make site-specific and permanent alterations to genomes of not only plants and mammals but also of many other organisms. Engineering of custom ZFNs involves many steps. The first step is to identify a ZFN site at or near the chosen chromosomal target within the genome to which ZFNs will bind and cut. The second step is to design and/or select various ZFP combinations that will bind to the chosen target site with high specificity and affinity. The DNA coding sequence for the designed ZFPs are then assembled by polymerase chain reaction (PCR) using oligonucleotides. The third step is to fuse the ZFP constructs to the FokI cleavage domain. The ZFNs are then expressed as proteins by using the rabbit reticulocyte in vitro transcription/translation system and the protein products assayed for their DNA cleavage specificity.

  13. Characterization of Bifunctional Spin Labels for Investigating the Structural and Dynamic Properties of Membrane Proteins Using EPR Spectroscopy.

    Science.gov (United States)

    Sahu, Indra D; Craig, Andrew F; Dunagum, Megan M; McCarrick, Robert M; Lorigan, Gary A

    2017-10-05

    Site-directed spin labeling (SDSL) coupled with electron paramagnetic resonance (EPR) spectroscopy is a very powerful technique to study structural and dynamic properties of membrane proteins. The most widely used spin label is methanthiosulfonate (MTSL). However, the flexibility of this spin label introduces greater uncertainties in EPR measurements obtained for determining structures, side-chain dynamics, and backbone motion of membrane protein systems. Recently, a newer bifunctional spin label (BSL), 3,4-bis(methanethiosulfonylmethyl)-2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrol-1-yloxy, has been introduced to overcome the dynamic limitations associated with the MTSL spin label and has been invaluable in determining protein backbone dynamics and inter-residue distances due to its restricted internal motion and fewer size restrictions. While BSL has been successful in providing more accurate information about the structure and dynamics of several proteins, a detailed characterization of the spin label is still lacking. In this study, we characterized BSLs by performing CW-EPR spectral line shape analysis as a function of temperature on spin-labeled sites inside and outside of the membrane for the integral membrane protein KCNE1 in POPC/POPG lipid bilayers and POPC/POPG lipodisq nanoparticles. The experimental data revealed a powder pattern spectral line shape for all of the KCNE1-BSL samples at 296 K, suggesting the motion of BSLs approaches the rigid limit regime for these series of samples. BSLs were further utilized to report for the first time the distance measurement between two BSLs attached on an integral membrane protein KCNE1 in POPC/POPG lipid bilayers at room temperature using dipolar line broadening CW-EPR spectroscopy. The CW dipolar line broadening EPR data revealed a 15 ± 2 Å distance between doubly attached BSLs on KCNE1 (53/57-63/67) which is consistent with molecular dynamics modeling and the solution NMR structure of KCNE1 which yielded a

  14. Relative Abundance of Integral Plasma Membrane Proteins in Arabidopsis Leaf and Root Tissue Determined by Metabolic Labeling and Mass Spectrometry

    Science.gov (United States)

    Bernfur, Katja; Larsson, Olaf; Larsson, Christer; Gustavsson, Niklas

    2013-01-01

    Metabolic labeling of proteins with a stable isotope (15N) in intact Arabidopsis plants was used for accurate determination by mass spectrometry of differences in protein abundance between plasma membranes isolated from leaves and roots. In total, 703 proteins were identified, of which 188 were predicted to be integral membrane proteins. Major classes were transporters, receptors, proteins involved in membrane trafficking and cell wall-related proteins. Forty-one of the integral proteins, including nine of the 13 isoforms of the PIP (plasma membrane intrinsic protein) aquaporin subfamily, could be identified by peptides unique to these proteins, which made it possible to determine their relative abundance in leaf and root tissue. In addition, peptides shared between isoforms gave information on the proportions of these isoforms. A comparison between our data for protein levels and corresponding data for mRNA levels in the widely used database Genevestigator showed an agreement for only about two thirds of the proteins. By contrast, localization data available in the literature for 21 of the 41 proteins show a much better agreement with our data, in particular data based on immunostaining of proteins and GUS-staining of promoter activity. Thus, although mRNA levels may provide a useful approximation for protein levels, detection and quantification of isoform-specific peptides by proteomics should generate the most reliable data for the proteome. PMID:23990937

  15. Identification of indicator proteins associated with flooding injury in soybean seedlings using label-free quantitative proteomics.

    Science.gov (United States)

    Nanjo, Yohei; Nakamura, Takuji; Komatsu, Setsuko

    2013-11-01

    Flooding injury is one of the abiotic constraints on soybean growth. An experimental system established for evaluating flooding injury in soybean seedlings indicated that the degree of injury is dependent on seedling density in floodwater. Dissolved oxygen levels in the floodwater were decreased by the seedlings and correlated with the degree of injury. To understand the molecular mechanism responsible for the injury, proteomic alterations in soybean seedlings that correlated with severity of stress were analyzed using label-free quantitative proteomics. The analysis showed that the abundance of proteins involved in cell wall modification, such as polygalacturonase inhibitor-like and expansin-like B1-like proteins, which may be associated with the defense system, increased dependence on stress at both the protein and mRNA levels in all organs during flooding. The manner of alteration in abundance of these proteins was distinct from those of other responsive proteins. Furthermore, proteins also showing specific changes in abundance in the root tip included protein phosphatase 2A subunit-like proteins, which are possibly involved in flooding-induced root tip cell death. Additionally, decreases in abundance of cell wall synthesis-related proteins, such as cinnamyl-alcohol dehydrogenase and cellulose synthase-interactive protein-like proteins, were identified in hypocotyls of seedlings grown for 3 days after flooding, and these proteins may be associated with suppression of growth after flooding. These flooding injury-associated proteins can be defined as indicator proteins for severity of flooding stress in soybean.

  16. Site-specific semisynthetic variant of human hemoglobin

    International Nuclear Information System (INIS)

    Hefta, S.A.; Lyle, S.B.; Busch, M.R.; Harris, D.E.; Matthew, J.B.; Gurd, F.R.N.

    1988-01-01

    A single round of Edman degradation was employed to remove the NH 2 -terminal valine from isolated α chains of human hemoglobin. Reconstitution of normal β chains with truncated or substituted α chains was used to form truncated (des-Val 1 -α1) and substituted ([[1- 13 C]Gly 1 ]α1) tetrameric hemoglobin analogs. Structural homology of the analogs with untreated native hemoglobin was established by using several spectroscopic and physical methods. Functional studies indicate that the reconstituted tetrameric protein containing des-Val 1 -α chains has a higher affinity for oxygen, is less influenced by chloride ions or 2,3-biphosphoglycerate, and shows lower cooperativity than native hemoglobin. These results confirm the key functional role of the α-chain NH 2 terminus in mediating cooperative oxygen binding across the dimer interface. The NH 2 -terminal pK/sub 1/2/ value was determined for the [ 13 C]glycine-substituted analog to be 7.46 +/- 0.09 at 15 0 C in the carbon monoxide-liganded form. This value, measured directly by 13 C NMR, agrees with the determination made by the less-direct 13 CO 2 method and confirms the role of this residue as a contributor to the alkaline Bohr effect; however, it is consistent with the presence of an NH 2 -terminal salt bridge to the carboxylate of Arg-141 of the α chain in the liganded form

  17. Site-specific PEGylation of human thyroid stimulating hormone to prolong duration of action.

    Science.gov (United States)

    Qiu, Huawei; Boudanova, Ekaterina; Park, Anna; Bird, Julie J; Honey, Denise M; Zarazinski, Christine; Greene, Ben; Kingsbury, Jonathan S; Boucher, Susan; Pollock, Julie; McPherson, John M; Pan, Clark Q

    2013-03-20

    Recombinant human thyroid stimulating hormone (rhTSH or Thyrogen) has been approved for thyroid cancer diagnostics and treatment under a multidose regimen due to its short circulating half-life. To reduce dosing frequency, PEGylation strategies were explored to increase the duration of action of rhTSH. Lysine and N-terminal PEGylation resulted in heterogeneous product profiles with 40% or lower reaction yields of monoPEGylated products. Eleven cysteine mutants were designed based on a structure model of the TSH-TSH receptor (TSHR) complex to create unique conjugation sites on both α and β subunits for site-specific conjugation. Sequential screening of mutant expression level, oligomerization tendency, and conjugation efficiency resulted in the identification of the αG22C rhTSH mutant for stable expression and scale-up PEGylation. The introduced cysteine in the αG22C rhTSH mutant was partially blocked when isolated from conditioned media and could only be effectively PEGylated after mild reduction with cysteine. This produced a higher reaction yield, ~85%, for the monoPEGylated product. Although the mutation had no effect on receptor binding, PEGylation of αG22C rhTSH led to a PEG size-dependent decrease in receptor binding. Nevertheless, the 40 kDa PEG αG22C rhTSH showed a prolonged duration of action compared to rhTSH in a rat pharmacodynamics model. Reverse-phase HPLC and N-terminal sequencing experiments confirmed site-specific modification at the engineered Cys 22 position on the α-subunit. This work is another demonstration of successful PEGylation of a cysteine-knot protein by an engineered cysteine mutation.

  18. Recent progress in fluorine-18 labelled peptide radiopharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    Okarvi, S.M. [Cyclotron and Radiopharmaceuticals Department, King Faisal Specialist Hospital and Research Centre, Riyadh (Saudi Arabia)

    2001-07-01

    The application of biologically active peptides labelled with positron-emitting nuclides has emerged as a useful and interesting field in nuclear medicine. Small synthetic receptor-binding peptides are currently the preferred agents over proteins and antibodies for diagnostic imaging of various tumours. Due to the smaller size of peptides, both higher target-to-background ratios and rapid blood clearance can often be achieved with radiolabelled peptides. Hence, short-lived positron emission tomography (PET) isotopes are potential candidates for labelling peptides. Among a number of positron-emitting nuclides, fluorine-18 appears to be the best candidate for labelling bioactive peptides by virtue of its favourable physical and nuclear characteristics. The major disadvantage of labelling peptides with {sup 18}F is the laborious and time-consuming preparation of the {sup 18}F labelling agents. In recent years, various techniques have been developed which allow efficient labelling of peptides with {sup 18}F without affecting their receptor-binding properties. Moreover, the development of a variety of prosthetic groups has facilitated the efficient and site-specific labelling of peptides with {sup 18}F. The {sup 18}F-labelled peptides hold enormous clinical potential owing to their ability to quantitatively detect and characterise a wide variety of human diseases when using PET. Recently, a number of {sup 18}F-labelled bioactive peptides have shown great promise as diagnostic imaging agents. This review presents the recent developments in {sup 18}F-labelled biologically active peptides used in PET. (orig.)

  19. Recent progress in fluorine-18 labelled peptide radiopharmaceuticals

    International Nuclear Information System (INIS)

    Okarvi, S.M.

    2001-01-01

    The application of biologically active peptides labelled with positron-emitting nuclides has emerged as a useful and interesting field in nuclear medicine. Small synthetic receptor-binding peptides are currently the preferred agents over proteins and antibodies for diagnostic imaging of various tumours. Due to the smaller size of peptides, both higher target-to-background ratios and rapid blood clearance can often be achieved with radiolabelled peptides. Hence, short-lived positron emission tomography (PET) isotopes are potential candidates for labelling peptides. Among a number of positron-emitting nuclides, fluorine-18 appears to be the best candidate for labelling bioactive peptides by virtue of its favourable physical and nuclear characteristics. The major disadvantage of labelling peptides with 18 F is the laborious and time-consuming preparation of the 18 F labelling agents. In recent years, various techniques have been developed which allow efficient labelling of peptides with 18 F without affecting their receptor-binding properties. Moreover, the development of a variety of prosthetic groups has facilitated the efficient and site-specific labelling of peptides with 18 F. The 18 F-labelled peptides hold enormous clinical potential owing to their ability to quantitatively detect and characterise a wide variety of human diseases when using PET. Recently, a number of 18 F-labelled bioactive peptides have shown great promise as diagnostic imaging agents. This review presents the recent developments in 18 F-labelled biologically active peptides used in PET. (orig.)

  20. The Escherichia coli Tus-Ter replication fork barrier causes site-specific DNA replication perturbation in yeast.

    Science.gov (United States)

    Larsen, Nicolai B; Sass, Ehud; Suski, Catherine; Mankouri, Hocine W; Hickson, Ian D

    2014-04-07

    Replication fork (RF) pausing occurs at both 'programmed' sites and non-physiological barriers (for example, DNA adducts). Programmed RF pausing is required for site-specific DNA replication termination in Escherichia coli, and this process requires the binding of the polar terminator protein, Tus, to specific DNA sequences called Ter. Here, we demonstrate that Tus-Ter modules also induce polar RF pausing when engineered into the Saccharomyces cerevisiae genome. This heterologous RF barrier is distinct from a number of previously characterized, protein-mediated, RF pause sites in yeast, as it is neither Tof1-dependent nor counteracted by the Rrm3 helicase. Although the yeast replisome can overcome RF pausing at Tus-Ter modules, this event triggers site-specific homologous recombination that requires the RecQ helicase, Sgs1, for its timely resolution. We propose that Tus-Ter can be utilized as a versatile, site-specific, heterologous DNA replication-perturbing system, with a variety of potential applications.

  1. Molecular characterization of a complex site-specific radiation-induced DNA double-strand break

    International Nuclear Information System (INIS)

    Datta, K.; Dizdaroglu, M.; Jaruga, P.; Neumann, R.D.; Winters, T.A.

    2003-01-01

    Radiation lethality is a function of radiation-induced DNA double-strand breaks (DSB). Current models propose the lethality of a DSB to be a function of its structural complexity. We present here for the first time a map of damage associated with a site-specific double-strand break produced by decay of 125 I in a plasmid bound by a 125 I-labeled triplex forming oligonucleotide ( 125 I-TFO). The E. coli DNA repair enzymes, endonuclease IV (endo IV), endonuclease III (endo III), and formamidopyrimidine-DNA glycosylase (Fpg), which recognize AP sites, and pyrimidine and purine base damage respectively, were used as probes in this study. 125 I-TFO bound plasmid was incubated with and without DMSO at -80 deg C for 1 month. No significant difference in DSB yield was observed under these conditions. A 32 base pair fragment from the upstream side of the decay site was isolated by restriction digestion and enzymatically probed to identify damage sites. Endo IV treatment of the 5'-end labeled upper strand indicated clustering of AP sites within 3 bases downstream and 7 bases upstream of the targeted base. Also, repeated experiments consistently detected an AP site 4 bases upstream of the 125 Itarget base. This was further supported by complementary results with the 3'-end labeled upper strand. Endo IV analysis of the lower strand also shows clustering of AP sites near the DSB end. Endo III and Fpg probing demonstrated that base damage is also clustered near the targeted break site. DSBs produced in the absence of DMSO displayed a different pattern of enzyme sensitive damage than those produced in the presence of DMSO. Identification of specific base damage types within the restriction fragment containing the DSB end was achieved with GC/MS. Base damage consisted of 8-hydroguanine, 8-hydroxyadenine, and 5-hydroxycytosine. These lesions were observed at relative yields of 8-hydroguanine and 5-hydroxycytosine to 8-hydroxyadenine of 7.4:1 and 4.7:1, respectively, in the absence

  2. Pharmacophore searching: A potential solution for correcting unknown ligands (UNK) labelling errors in Protein Data Bank (PDB'S).

    Science.gov (United States)

    Ibrahim, Musadiq; Lapthorn, Adrian Jonathan; Ibrahim, Mohammad

    2017-08-01

    The Protein Data Bank (PDB) is the single most important repository of structural data for proteins and other biologically relevant molecules. Therefore, it is critically important to keep the PDB data, error-free as much as possible. In this study, we have critically examined PDB structures of 292 protein molecules which have been deposited in the repository along with potentially incorrect ligands labelled as Unknown ligands (UNK). Pharmacophores were generated for all the protein structures by using Discovery Studio Visualizer (DSV) and Accelrys, Catalyst ® . The generated pharmacophores were subjected to the database search containing the reported ligand. Ligands obtained through Pharmacophore searching were then checked for fitting the observed electron density map by using Coot ® . The predicted ligands obtained via Pharmacophore searching fitted well with the observed electron density map, in comparison to the ligands reported in the PDB's. Based on our study we have learned that till may 2016, among 292 submitted structures in the PDB, at least 20 structures have ligands with a clear electron density but have been incorrectly labelled as unknown ligands (UNK). We have demonstrated that Pharmacophore searching and Coot ® can provide potential help to find suitable known ligands for these protein structures, the former for ligand search and the latter for electron density analysis. The use of these two techniques can facilitate the quick and reliable labelling of ligands where the electron density map serves as a reference. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Deciphering systemic wound responses of the pumpkin extrafascicular phloem by metabolomics and stable isotope-coded protein labeling.

    Science.gov (United States)

    Gaupels, Frank; Sarioglu, Hakan; Beckmann, Manfred; Hause, Bettina; Spannagl, Manuel; Draper, John; Lindermayr, Christian; Durner, Jörg

    2012-12-01

    In cucurbits, phloem latex exudes from cut sieve tubes of the extrafascicular phloem (EFP), serving in defense against herbivores. We analyzed inducible defense mechanisms in the EFP of pumpkin (Cucurbita maxima) after leaf damage. As an early systemic response, wounding elicited transient accumulation of jasmonates and a decrease in exudation probably due to partial sieve tube occlusion by callose. The energy status of the EFP was enhanced as indicated by increased levels of ATP, phosphate, and intermediates of the citric acid cycle. Gas chromatography coupled to mass spectrometry also revealed that sucrose transport, gluconeogenesis/glycolysis, and amino acid metabolism were up-regulated after wounding. Combining ProteoMiner technology for the enrichment of low-abundance proteins with stable isotope-coded protein labeling, we identified 51 wound-regulated phloem proteins. Two Sucrose-Nonfermenting1-related protein kinases and a 32-kD 14-3-3 protein are candidate central regulators of stress metabolism in the EFP. Other proteins, such as the Silverleaf Whitefly-Induced Protein1, Mitogen Activated Protein Kinase6, and Heat Shock Protein81, have known defensive functions. Isotope-coded protein labeling and western-blot analyses indicated that Cyclophilin18 is a reliable marker for stress responses of the EFP. As a hint toward the induction of redox signaling, we have observed delayed oxidation-triggered polymerization of the major Phloem Protein1 (PP1) and PP2, which correlated with a decline in carbonylation of PP2. In sum, wounding triggered transient sieve tube occlusion, enhanced energy metabolism, and accumulation of defense-related proteins in the pumpkin EFP. The systemic wound response was mediated by jasmonate and redox signaling.

  4. Evaluation of protein acylation agents for the radioiodination of peptides: Application to labelling octreotide

    International Nuclear Information System (INIS)

    Zalutsky, M.; Vaidyanathan, G.

    2002-01-01

    The purpose of this study was to investigate the utility of two acylation agents originally developed for protein labelling - N-succinimidyl 3-[ 131 I]iodobenzoate and N-succinimidyl 5-[ 131 I]iodopyridine-3- carboxylate - for the radioiodination of peptides. Because of the widespread interest in imaging and treating malignancies that overexpress somatostatin receptors, octreotide was selected as the model peptide. Using these reagents, octreotide was coupled to 3-iodobenzoyl and 3-iodonicotinoyl templates, yielding [N-(3-iodobenzoyl)- D-Phe 1 ]octreotide (IBO) and [N-(3-iodonicotinoyl)-D-Phe 1 ]octreotide (INO), respectively. The IC 50 values for the binding of IBO and INO to somatostatin receptor expressing CA20948 rat pancreatic tumour membranes were 0.90 nM and 0.13 nM, respectively, compared with 0.35 nM for octreotide itself. Yields for the preparation of [ 131 I]IBO and [ 131 I]INO from N-succinimidyl 3-[ 131 I]iodobenzoate and N-succinimidyl 5-[ 131 I]iodopyridine-3- carboxylate, were 35-50%. In vitro assays with AR42J rat pancreatic tumour cells demonstrated considerably higher receptor-specific retention of cell-internalized radioiodine activity for [ 131 I]INO compared with [ 125 I]IBO. A tissue distribution study with both conjugates revealed low levels of activity in the thyroid, consistent with a low degree of deiodination of these radioiodinated peptide conjugates. (author)

  5. 29 CFR 1926.752 - Site layout, site-specific erection plan and construction sequence.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Site layout, site-specific erection plan and construction... Steel Erection § 1926.752 Site layout, site-specific erection plan and construction sequence. (a... strength or sufficient strength to support the loads imposed during steel erection. (c) Site layout. The...

  6. 76 FR 5147 - Environmental Management Site-Specific Advisory Board, Paducah

    Science.gov (United States)

    2011-01-28

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Paducah AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Paducah. The Federal Advisory Committee Act... recommendations to DOE-EM and site management in the areas of environmental restoration, waste management and...

  7. 77 FR 59598 - Environmental Management Site-Specific Advisory Board, Paducah

    Science.gov (United States)

    2012-09-28

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Paducah AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Paducah. The Federal Advisory Committee Act... recommendations to DOE-EM and site management in the areas of environmental restoration, waste management and...

  8. 75 FR 13269 - Environmental Management Site-Specific Advisory Board, Hanford

    Science.gov (United States)

    2010-03-19

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Hanford AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Hanford. The Federal Advisory Committee Act... is to make recommendations to DOE-EM and site management in the areas of environmental restoration...

  9. 75 FR 65310 - Environmental Management Site-Specific Advisory Board, Nevada

    Science.gov (United States)

    2010-10-22

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Nevada AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Nevada Test Site. The Federal Advisory... Board is to make recommendations to DOE-EM and site management in the areas of environmental restoration...

  10. 75 FR 54600 - Environmental Management Site-Specific Advisory Board, Paducah

    Science.gov (United States)

    2010-09-08

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Paducah AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Paducah. The Federal Advisory Committee Act... recommendations to DOE-EM and site management in the areas of environmental restoration, waste management and...

  11. 75 FR 66074 - Environmental Management Site-Specific Advisory Board, Paducah

    Science.gov (United States)

    2010-10-27

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Paducah AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Paducah. The Federal Advisory Committee Act... recommendations to DOE-EM and site management in the areas of environmental restoration, waste management and...

  12. 75 FR 8050 - Environmental Management Site-Specific Advisory Board, Hanford

    Science.gov (United States)

    2010-02-23

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Hanford AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Hanford. The Federal Advisory Committee Act... is to make recommendations to DOE-EM and site management in the areas of environmental restoration...

  13. 75 FR 24686 - Environmental Management Site-Specific Advisory Board, Paducah

    Science.gov (United States)

    2010-05-05

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Paducah AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Paducah. The Federal Advisory Committee Act... recommendations to DOE-EM and site management in the areas of environmental restoration, waste management and...

  14. 76 FR 80355 - Environmental Management Site-Specific Advisory Board, Paducah

    Science.gov (United States)

    2011-12-23

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Paducah AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Paducah. The Federal Advisory Committee Act... make recommendations to DOE-EM and site management in the areas of environmental restoration, waste...

  15. 75 FR 9404 - Environmental Management Site-Specific Advisory Board, Paducah

    Science.gov (United States)

    2010-03-02

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Paducah AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Paducah. The Federal Advisory Committee Act... recommendations to DOE-EM and site management in the areas of environmental restoration, waste management and...

  16. 75 FR 56526 - Environmental Management Site-Specific Advisory Board, Portsmouth

    Science.gov (United States)

    2010-09-16

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Portsmouth AGENCY... Initiative Workshop of the Environmental Management Site-Specific Advisory Board (EM SSAB), Portsmouth. The... recommendations to DOE-EM and site management in the areas of environmental restoration, waste management and...

  17. 75 FR 82004 - Environmental Management Site-Specific Advisory Board, Nevada

    Science.gov (United States)

    2010-12-29

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Nevada AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Nevada. The Federal Advisory Committee Act (Pub... recommendations to DOE-EM and site management in the areas of environmental restoration, waste management, and...

  18. 77 FR 4027 - Environmental Management Site-Specific Advisory Board, Nevada

    Science.gov (United States)

    2012-01-26

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Nevada AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Nevada. The Federal Advisory Committee Act (Pub... recommendations to DOE-EM and site management in the areas of environmental restoration, waste management, and...

  19. 77 FR 43583 - Environmental Management Site-Specific Advisory Board, Paducah

    Science.gov (United States)

    2012-07-25

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Paducah AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Paducah. The Federal Advisory Committee Act... recommendations to DOE-EM and site management in the areas of environmental restoration, waste management and...

  20. 75 FR 61711 - Environmental Management Site-Specific Advisory Board, Paducah

    Science.gov (United States)

    2010-10-06

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Paducah AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Paducah. The Federal Advisory Committee Act... recommendations to DOE-EM and site management in the areas of environmental restoration, waste management and...

  1. 76 FR 80354 - Environmental Management Site-Specific Advisory Board, Nevada

    Science.gov (United States)

    2011-12-23

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Nevada AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Nevada. The Federal Advisory Committee Act (Pub... recommendations to DOE-EM and site management in the areas of environmental restoration, waste management, and...

  2. 75 FR 82002 - Environmental Management Site-Specific Advisory Board, Paducah

    Science.gov (United States)

    2010-12-29

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Paducah AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Paducah. The Federal Advisory Committee Act... recommendations to DOE-EM and site management in the areas of environmental restoration, waste management and...

  3. 76 FR 61350 - Environmental Management Site-Specific Advisory Board, Paducah

    Science.gov (United States)

    2011-10-04

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Paducah AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Paducah. The Federal Advisory Committee Act... make recommendations to DOE-EM and site management in the areas of environmental restoration, waste...

  4. 76 FR 4645 - Environmental Management Site-Specific Advisory Board, Hanford

    Science.gov (United States)

    2011-01-26

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Hanford AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Hanford. The Federal Advisory Committee Act... recommendations to DOE-EM and site management in the areas of environmental restoration, waste management, and...

  5. 77 FR 2282 - Environmental Management Site-Specific Advisory Board, Paducah

    Science.gov (United States)

    2012-01-17

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Paducah AGENCY... the Environmental Management Site-Specific Advisory Board, Paducah. This notice announces the... Management Officer. [FR Doc. 2012-831 Filed 1-12-12; 4:15 pm] BILLING CODE 6405-01-P ...

  6. 76 FR 20651 - Environmental Management Site-Specific Advisory Board Chairs

    Science.gov (United States)

    2011-04-13

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board Chairs AGENCY... a meeting on April 13-14, 2011 of the Environmental Management Site-Specific Advisory Board Chairs... R. Butler, Acting Deputy Committee Management Officer. [FR Doc. 2011-8970 Filed 4-8-11; 4:15 pm...

  7. 75 FR 6018 - Environmental Management Site-Specific Advisory Board, Hanford

    Science.gov (United States)

    2010-02-05

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Hanford AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Hanford (known locally as the Hanford Advisory... and site management in the areas of environmental restoration, waste management, and related...

  8. 77 FR 12044 - Environmental Management Site-Specific Advisory Board, Nevada

    Science.gov (United States)

    2012-02-28

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Nevada AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Nevada. The Federal Advisory Committee Act (Pub... Board is to make recommendations to DOE-EM and site management in the areas of environmental restoration...

  9. 76 FR 48148 - Environmental Management Site-Specific Advisory Board, Paducah

    Science.gov (United States)

    2011-08-08

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Paducah AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Paducah. The Federal Advisory Committee Act... recommendations to DOE-EM and site management in the areas of environmental restoration, waste management and...

  10. FLP recombinase-mediated site-specific recombination in silkworm, Bombyx mori

    Science.gov (United States)

    A comprehensive understanding of gene function and the production of site-specific genetically modified mutants are two major goals of genetic engineering in the post-genomic era. Although site-specific recombination systems have been powerful tools for genome manipulation of many organisms, they h...

  11. Survey of surface proteins from the pathogenic Mycoplasma hyopneumoniae strain 7448 using a biotin cell surface labeling approach.

    Science.gov (United States)

    Reolon, Luciano Antonio; Martello, Carolina Lumertz; Schrank, Irene Silveira; Ferreira, Henrique Bunselmeyer

    2014-01-01

    The characterization of the repertoire of proteins exposed on the cell surface by Mycoplasma hyopneumoniae (M. hyopneumoniae), the etiological agent of enzootic pneumonia in pigs, is critical to understand physiological processes associated with bacterial infection capacity, survival and pathogenesis. Previous in silico studies predicted that about a third of the genes in the M. hyopneumoniae genome code for surface proteins, but so far, just a few of them have experimental confirmation of their expression and surface localization. In this work, M. hyopneumoniae surface proteins were labeled in intact cells with biotin, and affinity-captured biotin-labeled proteins were identified by a gel-based liquid chromatography-tandem mass spectrometry approach. A total of 20 gel slices were separately analyzed by mass spectrometry, resulting in 165 protein identifications corresponding to 59 different protein species. The identified surface exposed proteins better defined the set of M. hyopneumoniae proteins exposed to the host and added confidence to in silico predictions. Several proteins potentially related to pathogenesis, were identified, including known adhesins and also hypothetical proteins with adhesin-like topologies, consisting of a transmembrane helix and a large tail exposed at the cell surface. The results provided a better picture of the M. hyopneumoniae cell surface that will help in the understanding of processes important for bacterial pathogenesis. Considering the experimental demonstration of surface exposure, adhesion-like topology predictions and absence of orthologs in the closely related, non-pathogenic species Mycoplasma flocculare, several proteins could be proposed as potential targets for the development of drugs, vaccines and/or immunodiagnostic tests for enzootic pneumonia.

  12. Survey of surface proteins from the pathogenic Mycoplasma hyopneumoniae strain 7448 using a biotin cell surface labeling approach.

    Directory of Open Access Journals (Sweden)

    Luciano Antonio Reolon

    Full Text Available The characterization of the repertoire of proteins exposed on the cell surface by Mycoplasma hyopneumoniae (M. hyopneumoniae, the etiological agent of enzootic pneumonia in pigs, is critical to understand physiological processes associated with bacterial infection capacity, survival and pathogenesis. Previous in silico studies predicted that about a third of the genes in the M. hyopneumoniae genome code for surface proteins, but so far, just a few of them have experimental confirmation of their expression and surface localization. In this work, M. hyopneumoniae surface proteins were labeled in intact cells with biotin, and affinity-captured biotin-labeled proteins were identified by a gel-based liquid chromatography-tandem mass spectrometry approach. A total of 20 gel slices were separately analyzed by mass spectrometry, resulting in 165 protein identifications corresponding to 59 different protein species. The identified surface exposed proteins better defined the set of M. hyopneumoniae proteins exposed to the host and added confidence to in silico predictions. Several proteins potentially related to pathogenesis, were identified, including known adhesins and also hypothetical proteins with adhesin-like topologies, consisting of a transmembrane helix and a large tail exposed at the cell surface. The results provided a better picture of the M. hyopneumoniae cell surface that will help in the understanding of processes important for bacterial pathogenesis. Considering the experimental demonstration of surface exposure, adhesion-like topology predictions and absence of orthologs in the closely related, non-pathogenic species Mycoplasma flocculare, several proteins could be proposed as potential targets for the development of drugs, vaccines and/or immunodiagnostic tests for enzootic pneumonia.

  13. Optimizing FRET-FLIM Labeling Conditions to Detect Nuclear Protein Interactions at Native Expression Levels in Living Arabidopsis Roots

    KAUST Repository

    Long, Yuchen

    2018-05-15

    Protein complex formation has been extensively studied using Förster resonance energy transfer (FRET) measured by Fluorescence Lifetime Imaging Microscopy (FLIM). However, implementing this technology to detect protein interactions in living multicellular organism at single-cell resolution and under native condition is still difficult to achieve. Here we describe the optimization of the labeling conditions to detect FRET-FLIM in living plants. This study exemplifies optimization procedure involving the identification of the optimal position for the labels either at the N or C terminal region and the selection of the bright and suitable, fluorescent proteins as donor and acceptor labels for the FRET study. With an effective optimization strategy, we were able to detect the interaction between the stem cell regulators SHORT-ROOT and SCARECROW at endogenous expression levels in the root pole of living Arabidopsis embryos and developing lateral roots by FRET-FLIM. Using this approach we show that the spatial profile of interaction between two transcription factors can be highly modulated in reoccurring and structurally resembling organs, thus providing new information on the dynamic redistribution of nuclear protein complex configurations in different developmental stages. In principle, our optimization procedure for transcription factor complexes is applicable to any biological system.

  14. Quantifying protein synthesis and degradation in Arabidopsis by dynamic 13CO2 labeling and analysis of enrichment in individual amino acids in their free pools and in protein.

    Science.gov (United States)

    Ishihara, Hirofumi; Obata, Toshihiro; Sulpice, Ronan; Fernie, Alisdair R; Stitt, Mark

    2015-05-01

    Protein synthesis and degradation represent substantial costs during plant growth. To obtain a quantitative measure of the rate of protein synthesis and degradation, we supplied (13)CO2 to intact Arabidopsis (Arabidopsis thaliana) Columbia-0 plants and analyzed enrichment in free amino acids and in amino acid residues in protein during a 24-h pulse and 4-d chase. While many free amino acids labeled slowly and incompletely, alanine showed a rapid rise in enrichment in the pulse and a decrease in the chase. Enrichment in free alanine was used to correct enrichment in alanine residues in protein and calculate the rate of protein synthesis. The latter was compared with the relative growth rate to estimate the rate of protein degradation. The relative growth rate was estimated from sequential determination of fresh weight, sequential images of rosette area, and labeling of glucose in the cell wall. In an 8-h photoperiod, protein synthesis and cell wall synthesis were 3-fold faster in the day than at night, protein degradation was slow (3%-4% d(-1)), and flux to growth and degradation resulted in a protein half-life of 3.5 d. In the starchless phosphoglucomutase mutant at night, protein synthesis was further decreased and protein degradation increased, while cell wall synthesis was totally inhibited, quantitatively accounting for the inhibition of growth in this mutant. We also investigated the rates of protein synthesis and degradation during leaf development, during growth at high temperature, and compared synthesis rates of Rubisco large and small subunits of in the light and dark. © 2015 American Society of Plant Biologists. All Rights Reserved.

  15. Regional differences in endothelial cell cytoskeleton, junctional proteins and phosphorylated tyrosine labeling in the porcine vortex vein system.

    Science.gov (United States)

    Tan, Priscilla Ern Zhi; Yu, Paula K; Yang, Hongfang; Cringle, Stephen J; Yu, Dao-Yi

    2018-07-01

    We previously demonstrated endothelial phenotype heterogeneity in the vortex vein system. This study is to further determine whether regional differences are present in the cytoskeleton, junctional proteins and phosphorylated tyrosine labeling within the system. The vortex vein system of twenty porcine eyes was perfused with labels for f-actin, claudin-5, VE-Cadherin, phosphorylated tyrosine and nucleic acid. The endothelial cells of eight different regions (choroidal veins, pre-ampulla, anterior ampulla, mid-ampulla, posterior ampulla, post-ampulla, intra-scleral canal and the extra-ocular vortex vein) were studied using confocal microscopy. There were regional differences in the endothelial cell structures. Cytoskeleton labeling was relatively even in intensity throughout Regions 1 to 6. Overall VE-Cadherin had a non-uniform distribution and thicker width endothelial cell border staining than claudin-5. Progressing downstream there was an increased variation in thickness of VE-cadherin labeling. There was an overlap in phosphorylated tyrosine and VE-Cadherin labeling in the post-ampulla, intra-scleral canal and extra-ocular vortex vein. Intramural cells were observed that were immune-positive for VE-Cadherin and phosphorylated tyrosine. There were significant differences in the number of intramural cells in different regions. Significant regional differences with endothelial cell labeling of cytoskeleton, junction proteins, and phosphorylated tyrosine were found within the vortex vein system. These findings support existing data on endothelial cell phenotype heterogeneity, and may aid in the knowledge of venous pathologies by understanding regions of vulnerability to endothelial damage within the vortex vein system. It could be valuable to further investigate and characterize the VE-cadherin and phosphotyrosine immune-positive intramural cells. Copyright © 2018. Published by Elsevier Ltd.

  16. Development of Cy5.5-Labeled Hydrophobically Modified Glycol Chitosan Nanoparticles for Protein Delivery

    Science.gov (United States)

    Chin, Amanda

    , Cy5.5, was used to label the glycol chitosan nanoparticles to enable the noninvasive imaging of living cells. A model protein (bovine serum albumin, BSA) was encapsulated within the glycol chitosan nanoparticles, and its loading efficiency was calculated to be 88%. Release profile of the BSA showed that only 4% (cumulative mass) was achieved by day 7. Minimal cytotoxicity was observed after delivery of the chitosan vehicle alone. To test degradation kinetics, the BSA-loaded nanoparticles were incubated with lysozyme for up to 3 hours and were applied in SDS-PAGE to determine if enzyme-catalyzed degradation triggered premature release of the encapsulated protein. Confocal laser scanning microscopy was used to visualize the spatiotemporal distribution of FITC-BSA-loaded glycol chitosan nanoparticles after delivery to the rat osteosarcoma (ROS17/2.8) and mouse calvaria-derived (MC3T3-E1) cells.

  17. Acute phase and transport protein synthesis in simulated infection in undernourished men using uniformly labelled Spirulina Platensis

    International Nuclear Information System (INIS)

    Reeds, P.J.; Opekun, A.; Jahoor, F.; Wong, W.W.; Klein, P.D.

    1994-01-01

    Although it has been known for many years that injury and infection lead to body nitrogen loss, the reason has remained obscure. In this paper, we develop the argument that the processes that are activated during infection demand the provision of specific amino acids which have to be supplied from body protein. In particular, we show that the positive acute phase proteins are very rich in the aromatic amino acids and the exaggerated use of these amino acids (phenylalanine, tryptophan and tyrosine) in acute phase protein synthesis lead to an endogenous ''amino acid imbalance'' which restricts the use of other amino acids for tissue protein synthesis. Minimally invasive protocols, involving the administration of 15 N and 13 C-labelled amino acids for studying whole body nitrogen turnover, amino acid oxidation and plasma protein synthesis are described. (author). 22 refs, 3 tabs

  18. Fish proteins as targets of ferrous-catalyzed oxidation: identification of protein carbonyls by fluorescent labeling on two-dimensional gels and MALDI-TOF/TOF mass spectrometry.

    Science.gov (United States)

    Pazos, Manuel; da Rocha, Angela Pereira; Roepstorff, Peter; Rogowska-Wrzesinska, Adelina

    2011-07-27

    Protein oxidation in fish meat is considered to affect negatively the muscle texture. An important source of free radicals taking part in this process is Fenton's reaction dependent on ferrous ions present in the tissue. The aim of this study was to investigate the susceptibility of cod muscle proteins in sarcoplasmic and myofibril fractions to in vitro metal-catalyzed oxidation and to point out protein candidates that might play a major role in the deterioration of fish quality. Extracted control proteins and proteins subjected to free radicals generated by Fe(II)/ascorbate mixture were labeled with fluorescein-5-thiosemicarbazide (FTSC) to tag carbonyl groups and separated by two-dimensional gel electrophoresis. Consecutive visualization of protein carbonyl levels by capturing the FTSC signal and total protein levels by capturing the SyproRuby staining signal allowed us to quantify the relative change in protein carbonyl levels corrected for changes in protein content. Proteins were identified using MALDI-TOF/TOF mass spectrometry and homology-based searches. The results show that freshly extracted cod muscle proteins exhibit a detectable carbonylation background and that the incubation with Fe(II)/ascorbate triggers a further oxidation of both sarcoplasmic and myofibril proteins. Different proteins exhibited various degrees of sensitivity to oxidation processes. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH), nucleoside diphosphate kinase B (NDK), triosephosphate isomerase, phosphoglycerate mutase, lactate dehydrogenase, creatine kinase, and enolase were the sarcoplasmic proteins most vulnerable to ferrous-catalyzed oxidation. Moreover, NDK, phosphoglycerate mutase, and GAPDH were identified in several spots differing by their pI, and those forms showed different susceptibilities to metal-catalyzed oxidation, indicating that post-translational modifications may change the resistance of proteins to oxidative damage. The Fe(II)/ascorbate treatment significantly

  19. Quantitative proteomics by amino acid labeling identifies novel NHR-49 regulated proteins in C. elegans

    DEFF Research Database (Denmark)

    Fredens, Julius; Færgeman, Nils J.

    2012-01-01

    in the nematode Caenorhabditis elegans. We have recently shown that C. elegans can be completely labeled with heavy-labeled lysine by feeding worms on prelabeled lysine auxotroph Escherichia coli for just one generation. We applied this methodology to examine the organismal response to functional loss or RNAi...... gene knockdown by RNAi provides a powerful tool with broad implications for C. elegans biology....

  20. A novel medium for expression of proteins selectively labeled with {sup 15}N-amino acids in Spodoptera frugiperda (Sf9) insect cells

    Energy Technology Data Exchange (ETDEWEB)

    Brueggert, Michael; Rehm, Till; Shanker, Sreejesh; Georgescu, Julia; Holak, Tad A. [Max Planck Institute for Biochemistry (Germany)], E-mail: holak.biochem@mpg.de

    2003-04-15

    Whereas bacterial expression systems are widely used for production of uniformly or selectively {sup 15}N-labeled proteins the usage of the baculovirus expression system for labeling is limited to very few examples in the literature. Here we present the complete formulations of the two insect media, IML406 and 455, for the high-yield production of selectively {sup 15}N-labeled proteins in insect cells. The quantities of {sup 15}N-amino acids utilized in the production of labeled GST were similar in the case of bacterial and viral expression. For the most studied amino acids essential for insect cells the {sup 15}N-HSQC spectra, recorded with GST labeled in insect cells, showed no cross labeling and provided therefore spectra of better quality compared to NMR spectra of GST expressed in E. coli. Also in the case of amino acids not essential for Sf9 cells we were able to label a defined number of amino acid species. Therefore the selective labeling using the baculovirus expression vector system represents a complement or even an alternative to the bacterial expression system. Based on these findings we can provide a first simple overview of the network of the amino acid metabolism in E. coli and insect cells focused on nitrogen. For some amino acids the expression of labeled proteins in insect cells can replace the cell-free protein expression.

  1. A novel medium for expression of proteins selectively labeled with 15N-amino acids in Spodoptera frugiperda (Sf9) insect cells

    International Nuclear Information System (INIS)

    Brueggert, Michael; Rehm, Till; Shanker, Sreejesh; Georgescu, Julia; Holak, Tad A.

    2003-01-01

    Whereas bacterial expression systems are widely used for production of uniformly or selectively 15 N-labeled proteins the usage of the baculovirus expression system for labeling is limited to very few examples in the literature. Here we present the complete formulations of the two insect media, IML406 and 455, for the high-yield production of selectively 15 N-labeled proteins in insect cells. The quantities of 15 N-amino acids utilized in the production of labeled GST were similar in the case of bacterial and viral expression. For the most studied amino acids essential for insect cells the 15 N-HSQC spectra, recorded with GST labeled in insect cells, showed no cross labeling and provided therefore spectra of better quality compared to NMR spectra of GST expressed in E. coli. Also in the case of amino acids not essential for Sf9 cells we were able to label a defined number of amino acid species. Therefore the selective labeling using the baculovirus expression vector system represents a complement or even an alternative to the bacterial expression system. Based on these findings we can provide a first simple overview of the network of the amino acid metabolism in E. coli and insect cells focused on nitrogen. For some amino acids the expression of labeled proteins in insect cells can replace the cell-free protein expression

  2. Temporal Profiling and Pulsed SILAC Labeling Identify Novel Secreted Proteins during ex vivo Osteoblast Differentiation of Human Stromal Stem Cells

    DEFF Research Database (Denmark)

    Kristensen, Lars P; Chen, Li; Nielsen, Maria Overbeck

    2012-01-01

    , is not fully established. To address these questions, we quantified the temporal dynamics of the human stromal (mesenchymal, skeletal) stem cell (hMSC) secretome during ex vivo OB differentiation using stable isotope labeling by amino acids in cell culture (SILAC). In addition, we employed pulsed SILAC...... the identification of novel factors produced by hMSC with potential role in OB differentiation. Our study demonstrates that the secretome of osteoblastic cells is more complex than previously reported and supports the emerging evidence that osteoblastic cells secrete proteins with endocrine functions and regulate...... regulators of OB differentiation. Furthermore, we studied the biological effects of one of these proteins, the hormone stanniocalcin 2 (STC2) and demonstrated its autocrine effects in enhancing osteoblastic differentiation of hMSC. In conclusion, combining complete and pulsed SILAC labeling facilitated...

  3. FLP recombinase-mediated site-specific recombination in silkworm, Bombyx mori.

    Directory of Open Access Journals (Sweden)

    Ding-Pei Long

    Full Text Available A comprehensive understanding of gene function and the production of site-specific genetically modified mutants are two major goals of genetic engineering in the post-genomic era. Although site-specific recombination systems have been powerful tools for genome manipulation of many organisms, they have not yet been established for use in the manipulation of the silkworm Bombyx mori genome. In this study, we achieved site-specific excision of a target gene at predefined chromosomal sites in the silkworm using a FLP/FRT site-specific recombination system. We first constructed two stable transgenic target silkworm strains that both contain a single copy of the transgene construct comprising a target gene expression cassette flanked by FRT sites. Using pre-blastoderm microinjection of a FLP recombinase helper expression vector, 32 G3 site-specific recombinant transgenic individuals were isolated from five of 143 broods. The average frequency of FLP recombinase-mediated site-specific excision in the two target strains genome was approximately 3.5%. This study shows that it is feasible to achieve site-specific recombination in silkworms using the FLP/FRT system. We conclude that the FLP/FRT system is a useful tool for genome manipulation in the silkworm. Furthermore, this is the first reported use of the FLP/FRT system for the genetic manipulation of a lepidopteran genome and thus provides a useful reference for the establishment of genome manipulation technologies in other lepidopteran species.

  4. Detection of adrenocortical autoantibodies in Addison's disease with a peroxidase-labelled protein A technique

    Directory of Open Access Journals (Sweden)

    R.C. Silva

    1998-09-01

    Full Text Available Adrenocortical autoantibodies (ACA, present in 60-80% of patients with idiopathic Addison's disease, are conventionally detected by indirect immunofluorescence (IIF on frozen sections of adrenal glands. The large-scale use of IIF is limited in part by the need for a fluorescence microscope and the fact that histological sections cannot be stored for long periods of time. To circumvent these restrictions we developed a novel peroxidase-labelled protein A (PLPA technique for the detection of ACA in patients with Addison's disease and compared the results with those obtained with the classical IIF assay. We studied serum samples from 90 healthy control subjects and 22 patients with Addison's disease, who had been clinically classified into two groups: idiopathic (N = 13 and granulomatous (N = 9. ACA-PLPA were detected in 10/22 (45% patients: 9/13 (69% with the idiopathic form and 1/9 (11% with the granulomatous form, whereas ACA-IIF were detected in 11/22 patients (50%: 10/13 (77% with the idiopathic form and 1/9 (11% with the granulomatous form. Twelve of the 13 idiopathic addisonians (92% were positive for either ACA-PLPA or ACA-IIF, but only 7 were positive by both methods. In contrast, none of 90 healthy subjects was found to be positive for ACA. Thus, our study shows that the PLPA-based technique is useful, has technical advantages over the IIF method (by not requiring the use of a fluorescence microscope and by permitting section storage for long periods of time. However, since it is only 60% concordant with the ACA-IIF method, it should be considered complementary instead of an alternative method to IIF for the detection of ACA in human sera.

  5. Preparation and in vivo evaluation of a novel stabilized linker for 211At labeling of protein

    International Nuclear Information System (INIS)

    Talanov, Vladimir S.; Garmestani, Kayhan; Regino, Celeste A.S.; Milenic, Diane E.; Plascjak, Paul S.; Waldmann, Thomas A.; Brechbiel, Martin W.

    2006-01-01

    Significant improvement of in vivo stability of 211 At-labeled radioimmunoconjugates achieved upon employment of a recently reported new linker, succinimidyl N-2-(4-[ 211 At]astatophenethyl)succinamate (SAPS), prompted additional studies of its chemistry. The 211 At radiolabeling of succinimidyl N-2-(4-tributylstannylphenethyl)succinamate (1) was noted to decline after storage at -15 o C for greater than 6 months. Compound 1 was found to degrade via a ring closure reaction with the formation of N-2-(4-tributylstannylphenethyl)succinimide (3), and a modified procedure for the preparation of 1 was developed. The N-methyl structural analog of 1, succinimidyl N-2-(4-tributylstannylphenethyl)-N-methyl succinamate (SPEMS), was synthesized to investigate the possibility of improving the stability of reagent-protein linkage chemistry. Radiolabeling of SPEMS with 211 At generates succinimidyl N-2-(4-[ 211 At]astatophenethyl)-N-methyl succinamate (Methyl-SAPS), with yields being consistent for greater than 1 year. Radiolabelings of 1 and SPEMS with 125 I generated succinimidyl N-2-(4-[ 125 I]iodophenethyl)succinamate (SIPS) and succinimidyl N-2-(4-[ 125 I]iodophenethyl)-N-methyl succinamate (Methyl-SIPS), respectively, and showed no decline in yields. Methyl-SAPS, SAPS, Methyl-SIPS and SIPS were conjugated to Herceptin for a comparative assessment in LS-174T xenograft-bearing mice. The conjugates of Herceptin with Methyl-SAPS or Methyl-SIPS demonstrated immunoreactivity equivalent to if not superior to the SAPS and SIPS paired analogs. The in vivo studies also revealed that the N-methyl modification resulted in a superior statinated product

  6. Dynamics of amino acid and protein metabolism of laying hens after the application of 15N-labelled wheat protein. 1

    International Nuclear Information System (INIS)

    Hennig, A.; Gruhn, K.; Kirchner, E.

    1987-01-01

    In a 6-day preliminary period with a pelleted ration 12 colostomized laying hybrids received 15 N-labelled wheat protein over 4 days. The labelling of the wheat was 14.37 atom-% 15 N excess ( 15 N'). During the 4-day application of 15 N-labelled wheat protein each hen consumed 12.08 g N, 3.52 g lysine, 2.12 g histidine, 4.41 g arginine, of which were 540 mg 15 N', 18.1 mg lysine 15 N', 21.5 mg histidine 15 N' and 47.9 mg arginine 15 N'. Heavy nitrogen was determined in urine and its uric acid N in the daily urine samples of the individual animals. The average daily urine N excretion was 54% of the total nitrogen consumed with the ration. The labelling of the urine N reached a plateau on the fourth day of the experiment with 3.2 atom-% 15 N'. On an average of the total experiment the quota of heavy nitrogen of the uric acid in the total 15 N' of the urine was 83.4% and that of uric acid nitrogen in the total urine nitrogen 80.8%. (author)

  7. A new method for 99mTc-labelling of proteins, leucocytes and platelets for nuclear medicine application

    International Nuclear Information System (INIS)

    Sundrehagen, E.

    1984-01-01

    A reduced state of 99mTc was obtained by concentrated hydrocloric acid treatment of the 99mTc(VII)/0.15 M NaCl eluate from 99Mo/99mTc generators. Non-acidic reduced state of 99mTc in dry NaCl deposit was obtained by vacuum evaporation of concentrated HCl and water. A monitored vacuum evaporator built for this purpose is presented, as well as methods of formation of various 99mTc-protein and 99mTc-polypeptide complexes. After careful protein precipation or anionic adsorption of pertechnetate and 99mTc-gentisic acid complexes, high radiochemical purities of labelled proteins were demonstrated by gel chromatography studies, radioimmunological methods, radioaffinity testing studies and ampholyte displacement radiochromatography. Preparative methods for 99mTc-plasmin (at pH=2), 99mTc-secretin (at pH=3) and 99mTc-IgG (at pH=4) are presented. The role and the limitations of 99mTc-plasmin for diagnosis of deep vein thrombosis were investigated in experimentally induced jugular vein thrombosis in rabbits. The in vivo distribution of intravenously injected 99mTc-secretin was found to be in correspondance with that of unlabelled secretin. Labelling of platelets and leucoytes from human blood with 99mTc was carried out at pH=7.2. Data for a remarkable high stability of the labelled cells are presented

  8. Label-free detection of protein biomolecules secreted from a heart-on-a-chip model for drug cardiotoxicity evaluation

    Science.gov (United States)

    DeLuna, Frank; Zhang, Yu Shrike; Bustamante, Gilbert; Li, Le; Lauderdale, Matthew; Dokmeci, Mehmet R.; Khademhosseini, Ali; Ye, Jing Yong

    2018-02-01

    Efficient methods for the accurate analysis of drug toxicities are in urgent demand as failures of newly discovered drug candidates due to toxic side effects have resulted in about 30% of clinical attrition. The high failure rate is partly due to current inadequate models to study drug side effects, i.e., common animal models may fail due to its misrepresentation of human physiology. Therefore, much effort has been allocated in the development of organ-on-a-chip models which offer a variety of human organ models mimicking a multitude of human physiological conditions. However, it is extremely challenging to analyze the transient and long-term response of the organ models to drug treatments during drug toxicity tests, as the proteins secreted from the organ-on-a-chip model are minute due to its volumetric size, and current methods for detecting said biomolecules are not suitable for real-time monitoring. As protein biomolecules are being continuously secreted from the human organ model, fluorescence techniques are practically impossible to achieve real-time fluorescence labeling in the dynamically changing environment, thus making a label-free approach highly desirable for the organ-on-achip applications. In this paper, we report the use of a photonic-crystal biosensor integrated with a microfluidic system for sensitive label-free bioassays of secreted protein biomolecules from a heart-on-the-chip model created with cardiomyocytes derived from human induced pluripotent stem cells.

  9. Atomic force microscopy recognition of protein A on Staphylococcus aureus cell surfaces by labelling with IgG-Au conjugates.

    Science.gov (United States)

    Tatlybaeva, Elena B; Nikiyan, Hike N; Vasilchenko, Alexey S; Deryabin, Dmitri G

    2013-01-01

    The labelling of functional molecules on the surface of bacterial cells is one way to recognize the bacteria. In this work, we have developed a method for the selective labelling of protein A on the cell surfaces of Staphylococcus aureus by using nanosized immunogold conjugates as cell-surface markers for atomic force microscopy (AFM). The use of 30-nm size Au nanoparticles conjugated with immunoglobulin G (IgG) allowed the visualization, localization and distribution of protein A-IgG complexes on the surface of S. aureus. The selectivity of the labelling method was confirmed in mixtures of S. aureus with Bacillus licheniformis cells, which differed by size and shape and had no IgG receptors on the surface. A preferential binding of the IgG-Au conjugates to S. aureus was obtained. Thus, this novel approach allows the identification of protein A and other IgG receptor-bearing bacteria, which is useful for AFM indication of pathogenic microorganisms in poly-component associations.

  10. Atomic force microscopy recognition of protein A on Staphylococcus aureus cell surfaces by labelling with IgG–Au conjugates

    Directory of Open Access Journals (Sweden)

    Elena B. Tatlybaeva

    2013-11-01

    Full Text Available The labelling of functional molecules on the surface of bacterial cells is one way to recognize the bacteria. In this work, we have developed a method for the selective labelling of protein A on the cell surfaces of Staphylococcus aureus by using nanosized immunogold conjugates as cell-surface markers for atomic force microscopy (AFM. The use of 30-nm size Au nanoparticles conjugated with immunoglobulin G (IgG allowed the visualization, localization and distribution of protein A–IgG complexes on the surface of S. aureus. The selectivity of the labelling method was confirmed in mixtures of S. aureus with Bacillus licheniformis cells, which differed by size and shape and had no IgG receptors on the surface. A preferential binding of the IgG–Au conjugates to S. aureus was obtained. Thus, this novel approach allows the identification of protein A and other IgG receptor-bearing bacteria, which is useful for AFM indication of pathogenic microorganisms in poly-component associations.

  11. Atomic force microscopy recognition of protein A on Staphylococcus aureus cell surfaces by labelling with IgG–Au conjugates

    Science.gov (United States)

    Tatlybaeva, Elena B; Vasilchenko, Alexey S; Deryabin, Dmitri G

    2013-01-01

    Summary The labelling of functional molecules on the surface of bacterial cells is one way to recognize the bacteria. In this work, we have developed a method for the selective labelling of protein A on the cell surfaces of Staphylococcus aureus by using nanosized immunogold conjugates as cell-surface markers for atomic force microscopy (AFM). The use of 30-nm size Au nanoparticles conjugated with immunoglobulin G (IgG) allowed the visualization, localization and distribution of protein A–IgG complexes on the surface of S. aureus. The selectivity of the labelling method was confirmed in mixtures of S. aureus with Bacillus licheniformis cells, which differed by size and shape and had no IgG receptors on the surface. A preferential binding of the IgG–Au conjugates to S. aureus was obtained. Thus, this novel approach allows the identification of protein A and other IgG receptor-bearing bacteria, which is useful for AFM indication of pathogenic microorganisms in poly-component associations. PMID:24367742

  12. Site-specific recombination in the chicken genome using Flipase recombinase-mediated cassette exchange.

    Science.gov (United States)

    Lee, Hong Jo; Lee, Hyung Chul; Kim, Young Min; Hwang, Young Sun; Park, Young Hyun; Park, Tae Sub; Han, Jae Yong

    2016-02-01

    Targeted genome recombination has been applied in diverse research fields and has a wide range of possible applications. In particular, the discovery of specific loci in the genome that support robust and ubiquitous expression of integrated genes and the development of genome-editing technology have facilitated rapid advances in various scientific areas. In this study, we produced transgenic (TG) chickens that can induce recombinase-mediated gene cassette exchange (RMCE), one of the site-specific recombination technologies, and confirmed RMCE in TG chicken-derived cells. As a result, we established TG chicken lines that have, Flipase (Flp) recognition target (FRT) pairs in the chicken genome, mediated by piggyBac transposition. The transgene integration patterns were diverse in each TG chicken line, and the integration diversity resulted in diverse levels of expression of exogenous genes in each tissue of the TG chickens. In addition, the replaced gene cassette was expressed successfully and maintained by RMCE in the FRT predominant loci of TG chicken-derived cells. These results indicate that targeted genome recombination technology with RMCE could be adaptable to TG chicken models and that the technology would be applicable to specific gene regulation by cis-element insertion and customized expression of functional proteins at predicted levels without epigenetic influence. © FASEB.

  13. Efficient site-specific integration in Plasmodium falciparum chromosomes mediated by mycobacteriophage Bxb1 integrase.

    Science.gov (United States)

    Nkrumah, Louis J; Muhle, Rebecca A; Moura, Pedro A; Ghosh, Pallavi; Hatfull, Graham F; Jacobs, William R; Fidock, David A

    2006-08-01

    Here we report an efficient, site-specific system of genetic integration into Plasmodium falciparum malaria parasite chromosomes. This is mediated by mycobacteriophage Bxb1 integrase, which catalyzes recombination between an incoming attP and a chromosomal attB site. We developed P. falciparum lines with the attB site integrated into the glutaredoxin-like cg6 gene. Transfection of these attB(+) lines with a dual-plasmid system, expressing a transgene on an attP-containing plasmid together with a drug resistance gene and the integrase on a separate plasmid, produced recombinant parasites within 2 to 4 weeks that were genetically uniform for single-copy plasmid integration. Integrase-mediated recombination resulted in proper targeting of parasite proteins to intra-erythrocytic compartments, including the apicoplast, a plastid-like organelle. Recombinant attB x attP parasites were genetically stable in the absence of drug and were phenotypically homogeneous. This system can be exploited for rapid genetic integration and complementation analyses at any stage of the P. falciparum life cycle, and it illustrates the utility of Bxb1-based integrative recombination for genetic studies of intracellular eukaryotic organisms.

  14. Purification and characterization of VDE, a site-specific endonuclease from the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Gimble, F S; Thorner, J

    1993-10-15

    The 119-kDa primary translation product of the VMA1 gene of Saccharomyces cerevisiae undergoes a self-catalyzed rearrangement ("protein splicing") that excises an internal 50-kDa segment of the polypeptide and joins the amino-terminal and carboxyl-terminal segments to generate the 69-kDa subunit of the vacuolar membrane-associated H(+)-ATPase. We have shown previously that the internal segment is a site-specific endonuclease (Gimble, F. S., and Thorner, J. (1992) Nature 357, 301-306). Here we describe methods for the high level expression and purification to near homogeneity of both the authentic VMA1-derived endonuclease (or VDE) from yeast (yield 18%) and a recombinant form of VDE made in bacteria (yield 29%). Detailed characterization of these preparations demonstrated that the yeast-derived and bacterially produced enzymes were indistinguishable, as judged by: (a) behavior during purification; (b) apparent native molecular mass (50 kDa); (c) immunological reactivity; and (d) catalytic properties (specific activity; cleavage site recognition; and optima for pH, temperature, divalent cation and ionic strength). The minimal site required for VDE cleavage was delimited to a 30-base pair sequence within its specific substrate (the VMA1 delta vde allele).

  15. Site-specific identification of heparan and chondroitin sulfate glycosaminoglycans in hybrid proteoglycans.

    Science.gov (United States)

    Noborn, Fredrik; Gomez Toledo, Alejandro; Green, Anders; Nasir, Waqas; Sihlbom, Carina; Nilsson, Jonas; Larson, Göran

    2016-10-03

    Heparan sulfate (HS) and chondroitin sulfate (CS) are complex polysaccharides that regulate important biological pathways in virtually all metazoan organisms. The polysaccharides often display opposite effects on cell functions with HS and CS structural motifs presenting unique binding sites for specific ligands. Still, the mechanisms by which glycan biosynthesis generates complex HS and CS polysaccharides required for the regulation of mammalian physiology remain elusive. Here we present a glycoproteomic approach that identifies and differentiates between HS and CS attachment sites and provides identity to the core proteins. Glycopeptides were prepared from perlecan, a complex proteoglycan known to be substituted with both HS and CS chains, further digested with heparinase or chondroitinase ABC to reduce the HS and CS chain lengths respectively, and thereafter analyzed by nLC-MS/MS. This protocol enabled the identification of three consensus HS sites and one hybrid site, carrying either a HS or a CS chain. Inspection of the amino acid sequence at the hybrid attachment locus indicates that certain peptide motifs may encode for the chain type selection process. This analytical approach will become useful when addressing fundamental questions in basic biology specifically in elucidating the functional roles of site-specific glycosylations of proteoglycans.

  16. Site-specific proteolytic degradation of IgG monoclonal antibodies expressed in tobacco plants.

    Science.gov (United States)

    Hehle, Verena K; Lombardi, Raffaele; van Dolleweerd, Craig J; Paul, Mathew J; Di Micco, Patrizio; Morea, Veronica; Benvenuto, Eugenio; Donini, Marcello; Ma, Julian K-C

    2015-02-01

    Plants are promising hosts for the production of monoclonal antibodies (mAbs). However, proteolytic degradation of antibodies produced both in stable transgenic plants and using transient expression systems is still a major issue for efficient high-yield recombinant protein accumulation. In this work, we have performed a detailed study of the degradation profiles of two human IgG1 mAbs produced in plants: an anti-HIV mAb 2G12 and a tumour-targeting mAb H10. Even though they use different light chains (κ and λ, respectively), the fragmentation pattern of both antibodies was similar. The majority of Ig fragments result from proteolytic degradation, but there are only a limited number of plant proteolytic cleavage events in the immunoglobulin light and heavy chains. All of the cleavage sites identified were in the proximity of interdomain regions and occurred at each interdomain site, with the exception of the VL /CL interface in mAb H10 λ light chain. Cleavage site sequences were analysed, and residue patterns characteristic of proteolytic enzymes substrates were identified. The results of this work help to define common degradation events in plant-produced mAbs and raise the possibility of predicting antibody degradation patterns 'a priori' and designing novel stabilization strategies by site-specific mutagenesis. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  17. Can infrared spectroscopy provide information on protein-protein interactions?

    Science.gov (United States)

    Haris, Parvez I

    2010-08-01

    For most biophysical techniques, characterization of protein-protein interactions is challenging; this is especially true with methods that rely on a physical phenomenon that is common to both of the interacting proteins. Thus, for example, in IR spectroscopy, the carbonyl vibration (1600-1700 cm(-1)) associated with the amide bonds from both of the interacting proteins will overlap extensively, making the interpretation of spectral changes very complicated. Isotope-edited infrared spectroscopy, where one of the interacting proteins is uniformly labelled with (13)C or (13)C,(15)N has been introduced as a solution to this problem, enabling the study of protein-protein interactions using IR spectroscopy. The large shift of the amide I band (approx. 45 cm(-1) towards lower frequency) upon (13)C labelling of one of the proteins reveals the amide I band of the unlabelled protein, enabling it to be used as a probe for monitoring conformational changes. With site-specific isotopic labelling, structural resolution at the level of individual amino acid residues can be achieved. Furthermore, the ability to record IR spectra of proteins in diverse environments means that isotope-edited IR spectroscopy can be used to structurally characterize difficult systems such as protein-protein complexes bound to membranes or large insoluble peptide/protein aggregates. In the present article, examples of application of isotope-edited IR spectroscopy for studying protein-protein interactions are provided.

  18. Monoclonal antibodies and coupling reagents to cell membrane proteins for leukocyte labeling

    International Nuclear Information System (INIS)

    McAfee, J.G.; Gagne, G.; Subramanian, G.; Schneider, R.F.

    1984-01-01

    Current gamma-emitting agents for tagging leukocytes, In-111 oxine or tropolone, label all cell types indiscriminantly, and nuclear localization in lymphocytes results in radiation damage. Coupling reagents and murine monoclonal antibodies (Mab) specific for cell surface antigens of human leukocytes were tried as cell labeling agents to avoid nuclear localization. 10/sup 8/ mixed human leukocytes in Hepes buffer were added to tubes coated with 5 mg of dry cyclic dianhydride of DTPA for 15 minutes at room temperature. After washing, 0.1 ml of In-111 Cl in ACD (pH 6.8) was added. After 30 minutes, a cell labeling yield of 23% was obtained. Washing the cells in an elutriation centrifuge showed that this label was irreversible. Mab for cell surface antigens of human granulocytes were labeled with 300 μCi of I-125 using the Iodobead technic and unbound activity was removed by gel column chromatography. 1-10 μg were added to 10/sup 8/ mixed leukocytes in 0.5 ml plasma or saline for 1 hr. With Mab anti-leu M4 (clone G7 E11), an IgM, the cell labeling yield was 21%, irreversible, and specific for granulocytes. With anti-human leukocyte Mab NEI-042 (clone 9.4), and IgG2a, and anti-granulocyte Mab MAS-065 (clone FMCl1) an IgG1, the cell labeling was relatively unstable. Labeling of leukocyte subpopulations with Mab is feasible, and the binding of multivalent IgM is stronger than that of other immunoglobulins. DTPA cyclic anhydride is firmly bound to cell membranes, but the labeling is non-specific

  19. Towards fully automated structure-based NMR resonance assignment of 15N-labeled proteins from automatically picked peaks

    KAUST Repository

    Jang, Richard; Gao, Xin; Li, Ming

    2011-01-01

    In NMR resonance assignment, an indispensable step in NMR protein studies, manually processed peaks from both N-labeled and C-labeled spectra are typically used as inputs. However, the use of homologous structures can allow one to use only N-labeled NMR data and avoid the added expense of using C-labeled data. We propose a novel integer programming framework for structure-based backbone resonance assignment using N-labeled data. The core consists of a pair of integer programming models: one for spin system forming and amino acid typing, and the other for backbone resonance assignment. The goal is to perform the assignment directly from spectra without any manual intervention via automatically picked peaks, which are much noisier than manually picked peaks, so methods must be error-tolerant. In the case of semi-automated/manually processed peak data, we compare our system with the Xiong-Pandurangan-Bailey- Kellogg's contact replacement (CR) method, which is the most error-tolerant method for structure-based resonance assignment. Our system, on average, reduces the error rate of the CR method by five folds on their data set. In addition, by using an iterative algorithm, our system has the added capability of using the NOESY data to correct assignment errors due to errors in predicting the amino acid and secondary structure type of each spin system. On a publicly available data set for human ubiquitin, where the typing accuracy is 83%, we achieve 91% accuracy, compared to the 59% accuracy obtained without correcting for such errors. In the case of automatically picked peaks, using assignment information from yeast ubiquitin, we achieve a fully automatic assignment with 97% accuracy. To our knowledge, this is the first system that can achieve fully automatic structure-based assignment directly from spectra. This has implications in NMR protein mutant studies, where the assignment step is repeated for each mutant. © Copyright 2011, Mary Ann Liebert, Inc.

  20. Towards fully automated structure-based NMR resonance assignment of 15N-labeled proteins from automatically picked peaks

    KAUST Repository

    Jang, Richard

    2011-03-01

    In NMR resonance assignment, an indispensable step in NMR protein studies, manually processed peaks from both N-labeled and C-labeled spectra are typically used as inputs. However, the use of homologous structures can allow one to use only N-labeled NMR data and avoid the added expense of using C-labeled data. We propose a novel integer programming framework for structure-based backbone resonance assignment using N-labeled data. The core consists of a pair of integer programming models: one for spin system forming and amino acid typing, and the other for backbone resonance assignment. The goal is to perform the assignment directly from spectra without any manual intervention via automatically picked peaks, which are much noisier than manually picked peaks, so methods must be error-tolerant. In the case of semi-automated/manually processed peak data, we compare our system with the Xiong-Pandurangan-Bailey- Kellogg\\'s contact replacement (CR) method, which is the most error-tolerant method for structure-based resonance assignment. Our system, on average, reduces the error rate of the CR method by five folds on their data set. In addition, by using an iterative algorithm, our system has the added capability of using the NOESY data to correct assignment errors due to errors in predicting the amino acid and secondary structure type of each spin system. On a publicly available data set for human ubiquitin, where the typing accuracy is 83%, we achieve 91% accuracy, compared to the 59% accuracy obtained without correcting for such errors. In the case of automatically picked peaks, using assignment information from yeast ubiquitin, we achieve a fully automatic assignment with 97% accuracy. To our knowledge, this is the first system that can achieve fully automatic structure-based assignment directly from spectra. This has implications in NMR protein mutant studies, where the assignment step is repeated for each mutant. © Copyright 2011, Mary Ann Liebert, Inc.

  1. Elucidating the design principles of photosynthetic electron-transfer proteins by site-directed spin labeling EPR spectroscopy.

    Science.gov (United States)

    Ishara Silva, K; Jagannathan, Bharat; Golbeck, John H; Lakshmi, K V

    2016-05-01

    Site-directed spin labeling electron paramagnetic resonance (SDSL EPR) spectroscopy is a powerful tool to determine solvent accessibility, side-chain dynamics, and inter-spin distances at specific sites in biological macromolecules. This information provides important insights into the structure and dynamics of both natural and designed proteins and protein complexes. Here, we discuss the application of SDSL EPR spectroscopy in probing the charge-transfer cofactors in photosynthetic reaction centers (RC) such as photosystem I (PSI) and the bacterial reaction center (bRC). Photosynthetic RCs are large multi-subunit proteins (molecular weight≥300 kDa) that perform light-driven charge transfer reactions in photosynthesis. These reactions are carried out by cofactors that are paramagnetic in one of their oxidation states. This renders the RCs unsuitable for conventional nuclear magnetic resonance spectroscopy investigations. However, the presence of native paramagnetic centers and the ability to covalently attach site-directed spin labels in RCs makes them ideally suited for the application of SDSL EPR spectroscopy. The paramagnetic centers serve as probes of conformational changes, dynamics of subunit assembly, and the relative motion of cofactors and peptide subunits. In this review, we describe novel applications of SDSL EPR spectroscopy for elucidating the effects of local structure and dynamics on the electron-transfer cofactors of photosynthetic RCs. Because SDSL EPR Spectroscopy is uniquely suited to provide dynamic information on protein motion, it is a particularly useful method in the engineering and analysis of designed electron transfer proteins and protein networks. This article is part of a Special Issue entitled Biodesign for Bioenergetics--the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson. Copyright © 2016. Published by Elsevier B.V.

  2. Contraction regulates site-specific phosphorylation of TBC1D1 in skeletal muscle.

    Science.gov (United States)

    Vichaiwong, Kanokwan; Purohit, Suneet; An, Ding; Toyoda, Taro; Jessen, Niels; Hirshman, Michael F; Goodyear, Laurie J

    2010-10-15

    TBC1D1 (tre-2/USP6, BUB2, cdc16 domain family member 1) is a Rab-GAP (GTPase-activating protein) that is highly expressed in skeletal muscle, but little is known about TBC1D1 regulation and function. We studied TBC1D1 phosphorylation on three predicted AMPK (AMP-activated protein kinase) phosphorylation sites (Ser231, Ser660 and Ser700) and one predicted Akt phosphorylation site (Thr590) in control mice, AMPKα2 inactive transgenic mice (AMPKα2i TG) and Akt2-knockout mice (Akt2 KO). Muscle contraction significantly increased TBC1D1 phosphorylation on Ser231 and Ser660, tended to increase Ser700 phosphorylation, but had no effect on Thr590. AICAR (5-aminoimidazole-4-carboxyamide ribonucleoside) also increased phosphorylation on Ser231, Ser660 and Ser700, but not Thr590, whereas insulin only increased Thr590 phosphorylation. Basal and contraction-stimulated TBC1D1 Ser231, Ser660 and Ser700 phosphorylation were greatly reduced in AMPKα2i TG mice, although contraction still elicited a small increase in phosphorylation. Akt2 KO mice had blunted insulin-stimulated TBC1D1 Thr590 phosphorylation. Contraction-stimulated TBC1D1 Ser231 and Ser660 phosphorylation were normal in high-fat-fed mice. Glucose uptake in vivo was significantly decreased in tibialis anterior muscles overexpressing TBC1D1 mutated on four predicted AMPK phosphorylation sites. In conclusion, contraction causes site-specific phosphorylation of TBC1D1 in skeletal muscle, and TBC1D1 phosphorylation on AMPK sites regulates contraction-stimulated glucose uptake. AMPK and Akt regulate TBC1D1 phosphorylation, but there must be additional upstream kinases that mediate TBC1D1 phosphorylation in skeletal muscle.

  3. Global site-specific analysis of glycoprotein N-glycan processing.

    Science.gov (United States)

    Cao, Liwei; Diedrich, Jolene K; Ma, Yuanhui; Wang, Nianshuang; Pauthner, Matthias; Park, Sung-Kyu Robin; Delahunty, Claire M; McLellan, Jason S; Burton, Dennis R; Yates, John R; Paulson, James C

    2018-06-01

    N-glycans contribute to the folding, stability and functions of the proteins they decorate. They are produced by transfer of the glycan precursor to the sequon Asn-X-Thr/Ser, followed by enzymatic trimming to a high-mannose-type core and sequential addition of monosaccharides to generate complex-type and hybrid glycans. This process, mediated by the concerted action of multiple enzymes, produces a mixture of related glycoforms at each glycosite, making analysis of glycosylation difficult. To address this analytical challenge, we developed a robust semiquantitative mass spectrometry (MS)-based method that determines the degree of glycan occupancy at each glycosite and the proportion of N-glycans processed from high-mannose type to complex type. It is applicable to virtually any glycoprotein, and a complete analysis can be conducted with 30 μg of protein. Here, we provide a detailed description of the method that includes procedures for (i) proteolytic digestion of glycoprotein(s) with specific and nonspecific proteases; (ii) denaturation of proteases by heating; (iii) sequential treatment of the glycopeptide mixture with two endoglycosidases, Endo H and PNGase F, to create unique mass signatures for the three glycosylation states; (iv) LC-MS/MS analysis; and (v) data analysis for identification and quantitation of peptides for the three glycosylation states. Full coverage of site-specific glycosylation of glycoproteins is achieved, with up to thousands of high-confidence spectra hits for each glycosite. The protocol can be performed by an experienced technician or student/postdoc with basic skills for proteomics experiments and takes ∼7 d to complete.

  4. 76 FR 59392 - Environmental Management Site-Specific Advisory Board, Northern New Mexico

    Science.gov (United States)

    2011-09-26

    ... Welcome and Introductions, Committee Business Items: [cir] Approve October 12, 2011, Meeting Agenda, [cir... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Northern New Mexico... meeting of the Environmental Monitoring, Surveillance and Remediation Committee and Waste Management...

  5. Design and integration of components for site specific control of fertilizer application

    NARCIS (Netherlands)

    Bergeijk, van J.

    2001-01-01

    Keywords: Precision Agriculture, Site Specific Agriculture, Global Positioning System, GPS, Fertilizer Application, Information System.

    Spatial and temporal variability in soil, crop and climate characteristics results in non optimal use of fertilizers when the application

  6. 78 FR 14088 - Environmental Management Site-Specific Advisory Board, Savannah River Site

    Science.gov (United States)

    2013-03-04

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Savannah River Site. The Federal Advisory Committee Act requires that public notice of this meeting be announced in the Federal Register.

  7. METHOD FOR THE MEASUREMENT OF SITE-SPECIFIC TAUTOMERIC AND ZWITTERIONIC MICROSPECIES EQUILIBRIUM CONSTANTS

    Science.gov (United States)

    We describe a method for the individual measurement of simultaneously occurring, unimolecular, site-specific “microequilibrium” constants as in, for example, prototropic tautomerism and zwitterionic equilibria. Our method represents an elaboration of that of Nygren et al. (Anal. ...

  8. Risks of all-cause and site-specific fractures among hospitalized patients with COPD

    OpenAIRE

    Liao, Kuang-Ming; Liang, Fu-Wen; Li, Chung-Yi

    2016-01-01

    Abstract Patients with chronic obstructive pulmonary disease (COPD) have a high prevalence of osteoporosis. The clinical sequel of osteoporosis is fracture. Patients with COPD who experience a fracture also have increased morbidity and mortality. Currently, the types of all-cause and site-specific fracture among patients with COPD are unknown. Thus, we elucidated the all-cause and site-specific fractures among patients with COPD. A retrospective, population-based, cohort study was conducted u...

  9. Site-specific data confirm arsenic exposure predicted by the U.S. Environmental Protection Agency.

    OpenAIRE

    Walker, S; Griffin, S

    1998-01-01

    The EPA uses an exposure assessment model to estimate daily intake to chemicals of potential concern. At the Anaconda Superfund site in Montana, the EPA exposure assessment model was used to predict total and speciated urinary arsenic concentrations. Predicted concentrations were then compared to concentrations measured in children living near the site. When site-specific information on concentrations of arsenic in soil, interior dust, and diet, site-specific ingestion rates, and arsenic abso...

  10. Whey and casein labelled with L-[1-13C]-leucine and muscle protein synthesis: effect of resistance exercise and protein ingestion

    DEFF Research Database (Denmark)

    Reitelseder, Søren; Agergaard, Jakob; Doessing, Simon

    2011-01-01

    to a single bolus intake of whey or casein after performance of heavy resistance exercise. Young male individuals were randomly assigned to participate in two protein trials (n = 9) or one control trial (n = 8). Infusion of l-[1-(13)C]leucine was carried out, and either whey, casein (0.3 g/kg lean body mass......), or a noncaloric control drink was ingested immediately after exercise. l-[1-(13)C]leucine-labeled whey and casein were used while muscle protein synthesis (MPS) was assessed. Blood and muscle tissue samples were collected to measure systemic hormone and amino acid concentrations, tracer enrichments......, and myofibrillar protein synthesis. Western blots were used to investigate the Akt signaling pathway. Plasma insulin and branched-chain amino acid concentrations increased to a greater extent after ingestion of whey compared with casein. Myofibrillar protein synthesis was equally increased 1-6 h postexercise after...

  11. Plasma-treated polystyrene film that enhances binding efficiency for sensitive and label-free protein biosensing

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Bihong [National Center for NanoScience and Technology, No. 11 Beiyitiao, Zhongguancun, Beijing 100190 (China); Li, Shaopeng [National Center for NanoScience and Technology, No. 11 Beiyitiao, Zhongguancun, Beijing 100190 (China); Department of Chemistry, Tsinghua University, Beijing 100084 (China); Song, Lusheng [National Center for NanoScience and Technology, No. 11 Beiyitiao, Zhongguancun, Beijing 100190 (China); Yang, Mo; Zhou, Wenfei; Tyagi, Deependra [National Center for NanoScience and Technology, No. 11 Beiyitiao, Zhongguancun, Beijing 100190 (China); University of Chinese Academy of Sciences, Yuquan Rd., 19(A), Beijing 100049 (China); Zhu, Jinsong, E-mail: jizhu88@gmail.com [National Center for NanoScience and Technology, No. 11 Beiyitiao, Zhongguancun, Beijing 100190 (China)

    2015-08-01

    Highlights: • A simple and robust plasma-treated ultrathin polystyrene film surface was developed for protein biosensing. • The surface was optimized by evaluating up to 120 types of fabrication parameters with high-throughput analytical methods. • The optimized surface showed a 620% improvement of the protein detection signal and 210% protein binding per immobilized protein ligand compared with a self-assembled monolayer surface. - Abstract: A plasma-treated ultrathin polystyrene (PS) film surface was explored as a simple, robust, and low-cost surface chemistry solution for protein biosensing applications. This surface could dramatically improve the binding efficiency of the protein–protein interactions, which is defined as the binding signal per immobilized ligand. The PS-modified protein biosensor was readily fabricated by spin coating and plasma treatment. Various parameters for fabrication, including the concentration of the PS solution, rate of spin coating, and duration of plasma treatment, were systematically optimized based on the improvement of fluorescence signal yielded by the microfluidic network-aided fluorescence immunoassay. The performance of the label-free protein detection on the optimized surfaces was further evaluated by surface plasmon resonance imaging (SPRi). PS surfaces with optimal fabrication parameters exhibited up to an 620% enhancement of the protein binding response and approximately 210% of the protein binding per immobilized protein ligand compared with a self-assembled monolayer (SAM) surface of 11-mercapto undecanoic acid (MUA). The relationship between the fabrication parameters used and changes to the surface chemistry and the morphological properties were characterized with atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FTIR). It was revealed that the morphological changes observed in the plasma-treated PS film were the dominant factor for the

  12. Microbial profile comparisons of saliva, pooled and site-specific subgingival samples in periodontitis patients.

    Directory of Open Access Journals (Sweden)

    Daniel Belstrøm

    Full Text Available The purpose of this study was to compare microbial profiles of saliva, pooled and site-specific subgingival samples in patients with periodontitis. We tested the hypotheses that saliva can be an alternative to pooled subgingival samples, when screening for presence of periopathogens.Site specific subgingival plaque samples (n = 54, pooled subgingival plaque samples (n = 18 and stimulated saliva samples (n = 18 were collected from 18 patients with generalized chronic periodontitis. Subgingival and salivary microbiotas were characterized by means of HOMINGS (Human Oral Microbe Identification using Next Generation Sequencing and microbial community profiles were compared using Spearman rank correlation coefficient.Pronounced intraindividual differences were recorded in site-specific microbial profiles, and site-specific information was in general not reflected by pooled subgingival samples. Presence of Porphyromonas gingivalis, Treponema denticola, Prevotella intermedia, Filifactor alocis, Tannerella forsythia and Parvimona micra in site-specific subgingival samples were detected in saliva with an AUC of 0.79 (sensitivity: 0.61, specificity: 0.94, compared to an AUC of 0.76 (sensitivity: 0.56, specificity: 0.94 in pooled subgingival samples.Site-specific presence of periodontal pathogens was detected with comparable accuracy in stimulated saliva samples and pooled subgingival plaque samples. Consequently, saliva may be a reasonable surrogate for pooled subgingival samples when screening for presence of periopathogens. Future large-scale studies are needed to confirm findings from this study.

  13. Application of amino acid type-specific 1H- and 14N-labeling in a 2H-, 15N-labeled background to a 47 kDa homodimer: Potential for NMR structure determination of large proteins

    International Nuclear Information System (INIS)

    Kelly, Mark J.S.; Krieger, Cornelia; Ball, Linda J.; Yu Yihua; Richter, Gerald; Schmieder, Peter; Bacher, Adelbert; Oschkinat, Hartmut

    1999-01-01

    NMR investigations of larger macromolecules (>20 kDa) are severely hindered by rapid 1H and 13C transverse relaxation. Replacement of non-exchangeable protons with deuterium removes many efficient 1H-1H and 1H-13C relaxation pathways. The main disadvantage of deuteration is that many of the protons which would normally be the source of NOE-based distance restraints are removed. We report the development of a novel labeling strategy which is based on specific protonation and 14N-labeling of the residues phenylalanine, tyrosine, threonine, isoleucine and valine in a fully deuterated, 15N-labeled background. This allows the application of heteronuclear half-filters, 15N-editing and 1H-TOCSY experiments to select for particular magnetization transfer pathways. Results from investigations of a 47 kDa dimeric protein labeled in this way demonstrated that the method provides useful information for the structure determination of large proteins

  14. Identification of a 23 kDa protein from maize photoaffinity-labelled with 5-azido-[7-3H]indol-3-ylacetic acid.

    OpenAIRE

    Feldwisch, J; Zettl, R; Campos, N; Palme, K

    1995-01-01

    A 23 kDa protein (p23) was identified in microsomal extracts from maize coleoptiles by photoaffinity labelling with 5-azido-[7-3H]indol-3-ylacetic acid ([3H]N3IAA). Labelling of p23 was blocked by unlabelled IAA, N3IAA, indol-3-ylbutyric acid and indol-3-yl-lactate. In addition, labelling was efficiently decreased by tryptophan, as well as by the scavenger p-aminobenzoic acid. Labelling was, however, not affected by synthetic auxins such as 1-naphthylacetic acid or 2,4-dichlorophenoxyacetic a...

  15. Labelling of penicillin-binding proteins from Escherichia coli with photoreactive derivatives of #betta#-lactam antibiotics

    International Nuclear Information System (INIS)

    Aran, V.; Rodriguez-Tebar, A.; Vazquez, D.

    1983-01-01

    The authors have synthesized a number of photoreactive radiolabelled #betta#-lactams that react and form permanent covalent bonds with the penicillin-binding proteins (PBPs), since photoreactive ligand derivatives have been used to some extent for structural studies on membranes and other biological structures. Chemical and photochemical labelling of a receptor by its ligand are important techniques to elucidate the nature of the ligand-receptor interaction, and for identification and characterization of receptors. They have synthesized two #betta#-lactam derivatives each containing two different photoreactive moieties. One of them is an aryl azido compound, widely known as a photoreactive reagent for labelling studies, whereas the other one contains a nitroguaiacol derived group used in photochemical studies with other biological materials. (Auth.)

  16. mPLR-Loc: an adaptive decision multi-label classifier based on penalized logistic regression for protein subcellular localization prediction.

    Science.gov (United States)

    Wan, Shibiao; Mak, Man-Wai; Kung, Sun-Yuan

    2015-03-15

    Proteins located in appropriate cellular compartments are of paramount importance to exert their biological functions. Prediction of protein subcellular localization by computational methods is required in the post-genomic era. Recent studies have been focusing on predicting not only single-location proteins but also multi-location proteins. However, most of the existing predictors are far from effective for tackling the challenges of multi-label proteins. This article proposes an efficient multi-label predictor, namely mPLR-Loc, based on penalized logistic regression and adaptive decisions for predicting both single- and multi-location proteins. Specifically, for each query protein, mPLR-Loc exploits the information from the Gene Ontology (GO) database by using its accession number (AC) or the ACs of its homologs obtained via BLAST. The frequencies of GO occurrences are used to construct feature vectors, which are then classified by an adaptive decision-based multi-label penalized logistic regression classifier. Experimental results based on two recent stringent benchmark datasets (virus and plant) show that mPLR-Loc remarkably outperforms existing state-of-the-art multi-label predictors. In addition to being able to rapidly and accurately predict subcellular localization of single- and multi-label proteins, mPLR-Loc can also provide probabilistic confidence scores for the prediction decisions. For readers' convenience, the mPLR-Loc server is available online (http://bioinfo.eie.polyu.edu.hk/mPLRLocServer). Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Formation of poly(butyl 2-cyanoacrylate) microcapsules and the microencapsulation of aqueous solutions of [125I]-labelled proteins

    International Nuclear Information System (INIS)

    Wood, D.A.; Whateley, T.L.; Florence, A.T.

    1981-01-01

    Some featrues of the polymerization reaction of butyl 2-cyanoacrylate at different aqueous/organic solvent interfaces have been investigated. In particular, the effects of pH and the presence of protein on the formation of microcapsules by in situ interfacial polymerization of butyl 2-cyanoacrylate in w/o emulsions have been studied. [ 125 I]-labelled proteins have been used to study the procedure as a method of microencapsulating enzymes or other proteins within potentially biodegradable membranes. Preliminary in vitro degradation studies suggest that degradation of the microcapsules is inhibited by low levels of their breakdown products, thus allowing the storage of the microcapsules as aqueous suspensions for prolonged periods in sealed containers. (Auth.)

  18. Maternal Supply of Cas9 to Zygotes Facilitates the Efficient Generation of Site-Specific Mutant Mouse Models

    Science.gov (United States)

    Cebrian-Serrano, Alberto; Zha, Shijun; Hanssen, Lars; Biggs, Daniel; Preece, Christopher

    2017-01-01

    Genome manipulation in the mouse via microinjection of CRISPR/Cas9 site-specific nucleases has allowed the production time for genetically modified mouse models to be significantly reduced. Successful genome manipulation in the mouse has already been reported using Cas9 supplied by microinjection of a DNA construct, in vitro transcribed mRNA and recombinant protein. Recently the use of transgenic strains of mice overexpressing Cas9 has been shown to facilitate site-specific mutagenesis via maternal supply to zygotes and this route may provide an alternative to exogenous supply. We have investigated the feasibility of supplying Cas9 genetically in more detail and for this purpose we report the generation of a transgenic mice which overexpress Cas9 ubiquitously, via a CAG-Cas9 transgene targeted to the Gt(ROSA26)Sor locus. We show that zygotes prepared from female mice harbouring this transgene are sufficiently loaded with maternally contributed Cas9 for efficient production of embryos and mice harbouring indel, genomic deletion and knock-in alleles by microinjection of guide RNAs and templates alone. We compare the mutagenesis rates and efficacy of mutagenesis using this genetic supply with exogenous Cas9 supply by either mRNA or protein microinjection. In general, we report increased generation rates of knock-in alleles and show that the levels of mutagenesis at certain genome target sites are significantly higher and more consistent when Cas9 is supplied genetically relative to exogenous supply. PMID:28081254

  19. Site-specific distribution of claudin-based paracellular channels with roles in biological fluid flow and metabolism.

    Science.gov (United States)

    Tanaka, Hiroo; Tamura, Atsushi; Suzuki, Koya; Tsukita, Sachiko

    2017-10-01

    The claudins are a family of membrane proteins with at least 27 members in humans and mice. The extracellular regions of claudin proteins play essential roles in cell-cell adhesion and the paracellular barrier functions of tight junctions (TJs) in epithelial cell sheets. Furthermore, the extracellular regions of some claudins function as paracellular channels in the paracellular barrier that allow the selective passage of water, ions, and/or small organic solutes across the TJ in the extracellular space. Structural analyses have revealed a common framework of transmembrane, cytoplasmic, and extracellular regions among the claudin-based paracellular barriers and paracellular channels; however, differences in the claudins' extracellular regions, such as their charges and conformations, determine their properties. Among the biological systems that involve fluid flow and metabolism, it is noted that hepatic bile flow, renal Na + reabsorption, and intestinal nutrient absorption are dynamically regulated via site-specific distributions of paracellular channel-forming claudins in tissue. Here, we focus on how site-specific distributions of claudin-2- and claudin-15-based paracellular channels drive their organ-specific functions in the liver, kidney, and intestine. © 2017 New York Academy of Sciences.

  20. Long-range chromosome organization in E. coli: a site-specific system isolates the Ter macrodomain.

    Science.gov (United States)

    Thiel, Axel; Valens, Michèle; Vallet-Gely, Isabelle; Espéli, Olivier; Boccard, Frédéric

    2012-01-01

    The organization of the Escherichia coli chromosome into a ring composed of four macrodomains and two less-structured regions influences the segregation of sister chromatids and the mobility of chromosomal DNA. The structuring of the terminus region (Ter) into a macrodomain relies on the interaction of the protein MatP with a 13-bp target called matS repeated 23 times in the 800-kb-long domain. Here, by using a new method that allows the transposition of any chromosomal segment at a defined position on the genetic map, we reveal a site-specific system that restricts to the Ter region a constraining process that reduces DNA mobility and delays loci segregation. Remarkably, the constraining process is regulated during the cell cycle and occurs only when the Ter MD is associated with the division machinery at mid-cell. The change of DNA properties does not rely on the presence of a trans-acting mechanism but rather involves a cis-effect acting at a long distance from the Ter region. Two specific 12-bp sequences located in the flanking Left and Right macrodomains and a newly identified protein designated YfbV conserved with MatP through evolution are required to impede the spreading of the constraining process to the rest of the chromosome. Our results unravel a site-specific system required to restrict to the Ter region the consequences of anchoring the Ter MD to the division machinery.

  1. The interaction of the protein lysozyme with bacteria E. coli observed using nanodiamond labelling

    International Nuclear Information System (INIS)

    Perevedentseva, Elena; Cheng, C-Y; Chung, P-H; Tu, J-S; Hsieh, Y-H; Cheng, C-L

    2007-01-01

    The application of a nanometre-sized diamond in Raman-detectable biolabelling is demonstrated in this study. The interaction of a lysozyme-nanodiamond complex with bacteria E. coli was observed via Raman mapping using the diamond Raman signal as the labelling marker. The results are compared with scanning electron microscope observations, and the adsorbed lysozyme's functionality is analysed. High antibacterial activity of lysozyme-nanodiamond complex was observed, equivalent to active lysozyme in solution. The results suggest that nanodiamond labelling can be effective and that it can be applied in ambient conditions without complicated sample pre-treatments

  2. The interaction of the protein lysozyme with bacteria E. coli observed using nanodiamond labelling

    Energy Technology Data Exchange (ETDEWEB)

    Perevedentseva, Elena; Cheng, C-Y; Chung, P-H; Tu, J-S; Hsieh, Y-H; Cheng, C-L [Department of Physics, National Dong Hwa University, Hualien 97401, Taiwan (China)

    2007-08-08

    The application of a nanometre-sized diamond in Raman-detectable biolabelling is demonstrated in this study. The interaction of a lysozyme-nanodiamond complex with bacteria E. coli was observed via Raman mapping using the diamond Raman signal as the labelling marker. The results are compared with scanning electron microscope observations, and the adsorbed lysozyme's functionality is analysed. High antibacterial activity of lysozyme-nanodiamond complex was observed, equivalent to active lysozyme in solution. The results suggest that nanodiamond labelling can be effective and that it can be applied in ambient conditions without complicated sample pre-treatments.

  3. Immune labeling and purification of a 71-kDa glutamate-binding protein from brain synaptic membranes

    International Nuclear Information System (INIS)

    Chen, J.W.; Cunningham, M.D.; Galton, N.; Michaelis, E.K.

    1988-01-01

    Immunoblot studies of synaptic membranes isolated from rat brain using antibodies raised against a previously purified glutamate-binding protein (GBP) indicated labeling of an ∼ 70-kDa protein band. Since the antibodies used were raised against a 14-kDa GBP, the present studies were undertaken to explore the possibility that the 14-kDa protein may have been a proteolytic fragment of a larger M/sub r/ protein in synaptic membranes. The major protein enriched in the most highly purified fractions was a 71-kDa glycoprotein, but a 63-kDa protein was co-purified during most steps of the isolation procedure. The glutamate-binding characteristics of these isolated protein fractions were very similar to those previously described for the 14-kDa GBP, including estimated dissociation constants for L-glutamate binding of 0.25 and 1 + M, inhibition of glutamate binding by azide and cyanide, and a selectivity of the ligand binding site for L-glutamate and L-aspartate. The neuroexcitatory analogs of L-glutamate and L-aspartate, ibotenate, quisqualate, and D-glutamate, inhibited L[ 3 H]glutamate binding to the isolated proteins, as did the antagonist of L-glutamate-induced neuronal excitation, L-glutamate diethylester. On the basis of the lack of any detectable glutamate-related enzyme activity associated with the isolated proteins and the presence of distinguishing sensitivities to analogs that inhibit glutamate transport carriers in synaptic membranes, it is proposed that the 71-kDa protein may be a component of a physiologic glutamate receptor complex in neuronal membranes

  4. Label-free proteomic analysis of intestinal mucosa proteins in common carp (Cyprinus carpio) infected with Aeromonas hydrophila.

    Science.gov (United States)

    Di, Guilan; Li, Hui; Zhang, Chao; Zhao, Yanjing; Zhou, Chuanjiang; Naeem, Sajid; Li, Li; Kong, Xianghui

    2017-07-01

    Outbreaks of infectious diseases in common carp Cyprinus carpio, a major cultured fish in northern regions of China, constantly result in significant economic losses. Until now, information proteomic on immune defence remains limited. In the present study, a profile of intestinal mucosa immune response in Cyprinus carpio was investigated after 0, 12, 36 and 84 h after challenging tissues with Aeromonas hydrophila at a concentration of 1.4 × 10 8  CFU/mL. Proteomic profiles in different samples were compared using label-free quantitative proteomic approach. Based on MASCOT database search, 1149 proteins were identified in samples after normalisation of proteins. Treated groups 1 (T1) and 2 (T2) were first clustered together and then clustered with control (C group). The distance between C and treated group 3 (T3) represented the maxima according to hierarchical cluster analysis. Therefore, comparative analysis between C and T3 was selected in the following analysis. A total of 115 proteins with differential abundance were detected to show conspicuous expressing variances. A total of 52 up-regulated proteins and 63 down-regulated proteins were detected in T3. Gene ontology analysis showed that identified up-regulated differentially expressed proteins in T3 were mainly localised in the hemoglobin complex, and down-regulated proteins in T3 were mainly localised in the major histocompatibility complex II protein complex. Forty-six proteins of differential abundance (40% of 115) were involved in immune response, with 17 up-regulated and 29 down-regulated proteins detected in T3. This study is the first to report proteome response of carp intestinal mucosa against A. hydrophila infection; information obtained contribute to understanding defence mechanisms of carp intestinal mucosa. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. NHS-based Tandem Mass Tagging of Proteins at the Level of Whole Cells: A Critical Evaluation in Comparison to Conventional TMT-Labeling Approaches for Quantitative Proteome Analysis.

    Science.gov (United States)

    Megger, Dominik A; Pott, Leona L; Rosowski, Kristin; Zülch, Birgit; Tautges, Stephanie; Bracht, Thilo; Sitek, Barbara

    2017-01-01

    Tandem mass tags (TMT) are usually introduced at the levels of isolated proteins or peptides. Here, for the first time, we report the labeling of whole cells and a critical evaluation of its performance in comparison to conventional labeling approaches. The obtained results indicated that TMT protein labeling using intact cells is generally possible, if it is coupled to a subsequent enrichment using anti-TMT antibody. The quantitative results were similar to those obtained after labeling of isolated proteins and both were found to be slightly complementary to peptide labeling. Furthermore, when using NHS-based TMT, no specificity towards cell surface proteins was observed in the case of cell labeling. In summary, the conducted study revealed first evidence for the general possibility of TMT cell labeling and highlighted limitations of NHS-based labeling reagents. Future studies should therefore focus on the synthesis and investigation of membrane impermeable TMTs to increase specificity towards cell surface proteins.

  6. Versatile microsphere attachment of GFP-labeled motors and other tagged proteins with preserved functionality

    Directory of Open Access Journals (Sweden)

    Michael Bugiel

    2015-11-01

    Full Text Available Microspheres are often used as handles for protein purification or force spectroscopy. For example, optical tweezers apply forces on trapped particles to which motor proteins are attached. However, even though many attachment strategies exist, procedures are often limited to a particular biomolecule and prone to non-specific protein or surface attachment. Such interactions may lead to loss of protein functionality or microsphere clustering. Here, we describe a versatile coupling procedure for GFP-tagged proteins via a polyethylene glycol linker preserving the functionality of the coupled proteins. The procedure combines well-established protocols, is highly reproducible, reliable, and can be used for a large variety of proteins. The coupling is efficient and can be tuned to the desired microsphere-to-protein ratio. Moreover, microspheres hardly cluster or adhere to surfaces. Furthermore, the procedure can be adapted to different tags providing flexibility and a promising attachment strategy for any tagged protein.

  7. AUC-Maximized Deep Convolutional Neural Fields for Protein Sequence Labeling.

    Science.gov (United States)

    Wang, Sheng; Sun, Siqi; Xu, Jinbo

    2016-09-01

    Deep Convolutional Neural Networks (DCNN) has shown excellent performance in a variety of machine learning tasks. This paper presents Deep Convolutional Neural Fields (DeepCNF), an integration of DCNN with Conditional Random Field (CRF), for sequence labeling with an imbalanced label distribution. The widely-used training methods, such as maximum-likelihood and maximum labelwise accuracy, do not work well on imbalanced data. To handle this, we present a new training algorithm called maximum-AUC for DeepCNF. That is, we train DeepCNF by directly maximizing the empirical Area Under the ROC Curve (AUC), which is an unbiased measurement for imbalanced data. To fulfill this, we formulate AUC in a pairwise ranking framework, approximate it by a polynomial function and then apply a gradient-based procedure to optimize it. Our experimental results confirm that maximum-AUC greatly outperforms the other two training methods on 8-state secondary structure prediction and disorder prediction since their label distributions are highly imbalanced and also has similar performance as the other two training methods on solvent accessibility prediction, which has three equally-distributed labels. Furthermore, our experimental results show that our AUC-trained DeepCNF models greatly outperform existing popular predictors of these three tasks. The data and software related to this paper are available at https://github.com/realbigws/DeepCNF_AUC.

  8. Labelling of nucleosides and oligonucleotides by solvatochromic 4-aminophthalimide fluorophore for studying DNA–protein interactions

    Czech Academy of Sciences Publication Activity Database

    Riedl, Jan; Pohl, Radek; Ernsting, N. P.; Orság, Petr; Fojta, Miroslav; Hocek, Michal

    2012-01-01

    Roč. 3, č. 9 (2012), s. 2797-2806 ISSN 2041-6520 R&D Projects: GA ČR GA203/09/0317; GA ČR GBP206/12/G151 Institutional support: RVO:61388963 ; RVO:68081707 Keywords : DNA * oligonucleotides * polymerase * phthalimide * nucleotides * fluorescent labeling Subject RIV: CC - Organic Chemistry Impact factor: 8.314, year: 2012

  9. Multi-location gram-positive and gram-negative bacterial protein subcellular localization using gene ontology and multi-label classifier ensemble.

    Science.gov (United States)

    Wang, Xiao; Zhang, Jun; Li, Guo-Zheng

    2015-01-01

    It has become a very important and full of challenge task to predict bacterial protein subcellular locations using computational methods. Although there exist a lot of prediction methods for bacterial proteins, the majority of these methods can only deal with single-location proteins. But unfortunately many multi-location proteins are located in the bacterial cells. Moreover, multi-location proteins have special biological functions capable of helping the development of new drugs. So it is necessary to develop new computational methods for accurately predicting subcellular locations of multi-location bacterial proteins. In this article, two efficient multi-label predictors, Gpos-ECC-mPLoc and Gneg-ECC-mPLoc, are developed to predict the subcellular locations of multi-label gram-positive and gram-negative bacterial proteins respectively. The two multi-label predictors construct the GO vectors by using the GO terms of homologous proteins of query proteins and then adopt a powerful multi-label ensemble classifier to make the final multi-label prediction. The two multi-label predictors have the following advantages: (1) they improve the prediction performance of multi-label proteins by taking the correlations among different labels into account; (2) they ensemble multiple CC classifiers and further generate better prediction results by ensemble learning; and (3) they construct the GO vectors by using the frequency of occurrences of GO terms in the typical homologous set instead of using 0/1 values. Experimental results show that Gpos-ECC-mPLoc and Gneg-ECC-mPLoc can efficiently predict the subcellular locations of multi-label gram-positive and gram-negative bacterial proteins respectively. Gpos-ECC-mPLoc and Gneg-ECC-mPLoc can efficiently improve prediction accuracy of subcellular localization of multi-location gram-positive and gram-negative bacterial proteins respectively. The online web servers for Gpos-ECC-mPLoc and Gneg-ECC-mPLoc predictors are freely accessible

  10. Optimization of iTRAQ labelling coupled to OFFGEL fractionation as a proteomic workflow to the analysis of microsomal proteins of Medicago truncatula roots

    Directory of Open Access Journals (Sweden)

    Abdallah Cosette

    2012-06-01

    Full Text Available Abstract Background Shotgun proteomics represents an attractive technical framework for the study of membrane proteins that are generally difficult to resolve using two-dimensional gel electrophoresis. The use of iTRAQ, a set of amine-specific isobaric tags, is currently the labelling method of choice allowing multiplexing of up to eight samples and the relative quantification of multiple peptides for each protein. Recently the hyphenation of different separation techniques with mass spectrometry was used in the analysis of iTRAQ labelled samples. OFFGEL electrophoresis has proved its effectiveness in isoelectric point-based peptide and protein separation in solution. Here we describe the first application of iTRAQ-OFFGEL-LC-MS/MS on microsomal proteins from plant material. The investigation of the iTRAQ labelling effect on peptide electrofocusing in OFFGEL fractionator was carried out on Medicago truncatula membrane protein digests. Results In-filter protein digestion, with easy recovery of a peptide fraction compatible with iTRAQ labelling, was successfully used in this study. The focusing quality in OFFGEL electrophoresis was maintained for iTRAQ labelled peptides with a higher than expected number of identified peptides in basic OFFGEL-fractions. We furthermore observed, by comparing the isoelectric point (pI fractionation of unlabelled versus labelled samples, a non-negligible pI shifts mainly to higher values. Conclusions The present work describes a feasible and novel protocol for in-solution protein digestion in which the filter unit permits protein retention and buffer removal. The data demonstrates an impact of iTRAQ labelling on peptide electrofocusing behaviour in OFFGEL fractionation compared to their native counterpart by the induction of a substantial, generally basic pI shift. Explanations for the occasionally observed acidic shifts are likewise presented.

  11. A Cost-effective Amino-acid-type Selective Isotope Labeling of Proteins Expressed in Leishmania tarentolae

    Czech Academy of Sciences Publication Activity Database

    Foldynová-Trantírková, Silvie; Matulová, J.; Dötsch, V.; Löhr, F.; Cirstea, I.; Alexandov, K.; Breitling, R.; Lukeš, Julius; Trantírek, Lukáš

    2009-01-01

    Roč. 26, č. 6 (2009), s. 755-761 ISSN 0739-1102 R&D Projects: GA ČR GP204/08/P585; GA AV ČR 1QS600220554; GA AV ČR KAN200100801; GA MŠk 2B06129 Institutional research plan: CEZ:AV0Z60220518 Keywords : NMR * isotope labeling * protein expression * Leishmania * low-level enrichment Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.124, year: 2009

  12. Quinone-Based Polymers for Label-Free and Reagentless Electrochemical Immunosensors: Application to Proteins, Antibodies and Pesticides Detection

    Directory of Open Access Journals (Sweden)

    Minh-Chau Pham

    2013-01-01

    Full Text Available Polyquinone derivatives are widely recognized in the literature for their remarkable properties, their biocompatibility, simple synthesis, and easy bio-functionalization. We have shown that polyquinones present very stable electroactivity in neutral aqueous medium within the cathodic potential domain avoiding side oxidation of interfering species. Besides, they can act as immobilized redox transducers for probing biomolecular interactions in sensors. Our group has been working on devices based on such modified electrodes with a view to applications for proteins, antibodies and organic pollutants using a reagentless label-free electrochemical immunosensor format. Herein, these developments are briefly reviewed and put into perspective.

  13. Bacterial expression and one-step purification of an isotope-labeled heterotrimeric G-protein {alpha}-subunit

    Energy Technology Data Exchange (ETDEWEB)

    Abdulaev, Najmoutin G. [University of Maryland Biotechnology Institute, Center for Advanced Research in Biotechnology (United States); Zhang Cheng; Dinh, Andy [University of Texas Health Science Center, Center for Membrane Biology, Department of Biochemistry and Molecular Biology (United States); Ngo, Tony; Bryan, Philip N. [University of Maryland Biotechnology Institute, Center for Advanced Research in Biotechnology (United States); Brabazon, Danielle M. [Loyola College in Maryland, Department of Chemistry (United States); Marino, John P. [University of Maryland Biotechnology Institute, Center for Advanced Research in Biotechnology (United States)], E-mail: marino@carb.nist.gov; Ridge, Kevin D. [University of Texas Health Science Center, Center for Membrane Biology, Department of Biochemistry and Molecular Biology (United States)

    2005-05-15

    Heterologous expression systems are often employed to generate sufficient quantities of isotope-labeled proteins for high-resolution NMR studies. Recently, the interaction between the prodomain region of subtilisin and an active, mutant form of the mature enzyme has been exploited to develop a cleavable affinity tag fusion system for one-step generation and purification of full-length soluble proteins obtained by inducible prokaryotic expression. As a first step towards applying high-resolution NMR methods to study heterotrimeric G-protein {alpha}-subunit (G{sub {alpha}}) conformation and dynamics, the utility of this subtilisin prodomain fusion system for expressing and purifying an isotope-labeled G{sub {alpha}} chimera ({approx}40 kDa polypeptide) has been tested. The results show that a prodomain fused G{sub {alpha}} chimera can be expressed to levels approaching 6-8 mg/l in minimal media and that the processed, mature protein exhibits properties similar to those of G{sub {alpha}} isolated from natural sources. To assay for the functional integrity of the purified G{sub {alpha}} chimera at NMR concentrations and probe for changes in the structure and dynamics of G{sub {alpha}} that result from activation, {sup 15}N-HSQC spectra of the GDP/Mg{sup 2+} bound form of G{sub {alpha}} obtained in the absence and presence of aluminum fluoride, a well known activator of the GDP bound state, have been acquired. Comparisons of the {sup 15}N-HSQC spectra reveals a number of changes in chemical shifts of the {sup 1}HN, {sup 15}N crosspeaks that are discussed with respect to expected changes in the protein conformation associated with G{sub {alpha}} activation.

  14. Bacterial expression and one-step purification of an isotope-labeled heterotrimeric G-protein α-subunit

    International Nuclear Information System (INIS)

    Abdulaev, Najmoutin G.; Zhang Cheng; Dinh, Andy; Ngo, Tony; Bryan, Philip N.; Brabazon, Danielle M.; Marino, John P.; Ridge, Kevin D.

    2005-01-01

    Heterologous expression systems are often employed to generate sufficient quantities of isotope-labeled proteins for high-resolution NMR studies. Recently, the interaction between the prodomain region of subtilisin and an active, mutant form of the mature enzyme has been exploited to develop a cleavable affinity tag fusion system for one-step generation and purification of full-length soluble proteins obtained by inducible prokaryotic expression. As a first step towards applying high-resolution NMR methods to study heterotrimeric G-protein α-subunit (G α ) conformation and dynamics, the utility of this subtilisin prodomain fusion system for expressing and purifying an isotope-labeled G α chimera (∼40 kDa polypeptide) has been tested. The results show that a prodomain fused G α chimera can be expressed to levels approaching 6-8 mg/l in minimal media and that the processed, mature protein exhibits properties similar to those of G α isolated from natural sources. To assay for the functional integrity of the purified G α chimera at NMR concentrations and probe for changes in the structure and dynamics of G α that result from activation, 15 N-HSQC spectra of the GDP/Mg 2+ bound form of G α obtained in the absence and presence of aluminum fluoride, a well known activator of the GDP bound state, have been acquired. Comparisons of the 15 N-HSQC spectra reveals a number of changes in chemical shifts of the 1 HN, 15 N crosspeaks that are discussed with respect to expected changes in the protein conformation associated with G α activation

  15. Spectral-domain optical coherence phase microscopy for label-free multiplexed protein microarray assay

    NARCIS (Netherlands)

    Joo, C.; Ozkumur, E.; Unlu, B.; de Boer, J.F.

    2009-01-01

    Quantitative measurement of affinities and kinetics of various biomolecular interactions such as protein-protein, protein-DNA and receptor-ligand is central to our understanding of basic molecular and cellular functions and is useful for therapeutic evaluation. Here, we describe a laser-scanning

  16. Metabolism of labelled proteins of bombicid moth hemolymph at the final stage of its larval development

    Energy Technology Data Exchange (ETDEWEB)

    Klunova, S M; Altsybeeva, T I; Filippovich, Yu B [Moskovskij Gosudarstvennyj Pedagogicheskij Inst. (USSR)

    1980-01-01

    Studied was the distribution of radioactivity among hemolymph total proteins, fat body, carcass, intestinal wall, febroin and sericin sections of the silk gland after a single injection of hemolymph radioactive preparation into a bombyx. The fat body was the place of the synthesis of proteins used for silk protein formation at the end of 5-larval age.

  17. A method to determine site-specific, anisotropic fracture toughness in biological materials

    International Nuclear Information System (INIS)

    Bechtle, Sabine; Özcoban, Hüseyin; Yilmaz, Ezgi D.; Fett, Theo; Rizzi, Gabriele; Lilleodden, Erica T.; Huber, Norbert; Schreyer, Andreas; Swain, Michael V.; Schneider, Gerold A.

    2012-01-01

    Many biological materials are hierarchically structured, with highly anisotropic structures and properties on several length scales. To characterize the mechanical properties of such materials, detailed testing methods are required that allow precise and site-specific measurements on several length scales. We propose a fracture toughness measurement technique based on notched focused ion beam prepared cantilevers of lower and medium micron size scales. Using this approach, site-specific fracture toughness values in dental enamel were determined. The usefulness and challenges of the method are discussed.

  18. Site-Specific Atmospheric Dispersion Characteristics of Korean Nuclear Power Plant Sites

    International Nuclear Information System (INIS)

    Han, M. H.; Kim, E. H.; Suh, K. S.; Hwang, W. T.; Choi, Y. G.

    2001-01-01

    Site-specific atmospheric dispersion characteristics have been analyzed. The northwest and the southwest wind prevail on nuclear sites of Korea. The annual isobaric surface averaged for twenty years around Korean peninsula shows that west wind prevails. The prevailing west wind is profitable in the viewpoint of radiation protection because three of four nuclear sites are located in the east side. Large scale field tracer experiments over nuclear sites have been conducted for the purpose of analyzing the atmospheric dispersion characteristics and validating a real-time atmospheric dispersion and dose assessment system FADAS. To analyze the site-specific atmospheric dispersion characteristics is essential for making effective countermeasures against a nuclear emergency

  19. Drainage filter technologies to mitigate site-specific phosphorus losses in agricultural drainage discharge

    DEFF Research Database (Denmark)

    Kjærgaard, Charlotte; Heckrath, Goswin Johann; Canga, Eriona

    in drainage. The Danish “SUPREME-TECH” project (2010-2016) (www.supreme-tech.dk) aims at providing the scientific basis for developing cost-effective filter technologies for P in agricultural drainage waters. The project studies different approaches of implementing filter technologies including drainage well....... Targeting high risk areas of P loss and applying site-specific measures promises to be a cost-efficient approach. The Danish Commission for Nature and Agriculture has, therefore, now called for a paradigm shift towards targeted, cost-efficient technologies to mitigate site-specific nutrient losses...... environmental threshold values (

  20. Studies on the protein and amino acid metabolism of laying hens using 15N-labelled casein. 8

    International Nuclear Information System (INIS)

    Richter, G.

    1977-01-01

    Four colostomized Leghorn hens were fed, during 6 days, 15 N-labelled casein as sole protein source. Two animals were slaughtered 48 hours, the other two 144 hours after the last 15 N-application. The share of TCE-soluble N in total N averaged 16% for the body parts analysed, i.e. meat, bone, liver, kidneys, oviducts, residual viscera and other. The variation of the lysine, histidine and arginine levels in the body parts ranged from 3.6 to 7.9 g, 1.1 to 3.7 g and 6.4 to 7.4 g in 16.7 g hydrolysate N, respectively. Except for feathers, the analysed body parts contained an excess amount of heavy nitrogen. The degree of labelling was found to depend on the time of slaughtering after the tracer application. In the liver and in the oviduct being metabolically active organs, the 15 N-excess in the total N fraction decreased by 45% between the 2nd and the 6th days after 15 N-feeding, whilst in the meat it went down by 20%. The decline of the 15 N-concentration in the TCE-soluble N compounds was faster than in the total N-fraction. Out of the body samples analysed, the lysine of the liver having 0.26 atom% 15 N-excess was found to be more strongly labelled in hens 1 and 2. The amino acid arginine reached about the same level of labelling, the 15 N-frequency of histidine being the lowest. (author)

  1. Detection of NT-pro BNP using fluorescent protein modified by streptavidin as a label in immunochromatographic assay

    Directory of Open Access Journals (Sweden)

    Haixia Li

    2016-12-01

    Full Text Available A novel fluorescent immunochromatographic assay for the detection of NT-proBNP in human serum has been developed. Based on a sandwich-type immunoassay format, analytes in samples were captured by one monoclonal antibody labeled with fluorescent protein and “sandwiched” by another monoclonal antibody immobilized on the nitrocellulose membrane, the fluorescence and concentration of analytes were measured and then calculated by fluoroanalyzer. The fluorescent protein is a fusion protein and was prepared through the application of Streptavidin gene SA, β subunit cpcB of Phycocyanin, lyase alr0617, and phycoerythrobilin synthetase gene ho1, pebA, pebB for covalent binding. It is characterized with higher stability, good solubility in water and it is not easy to quench fluorescence. Take the advantages of fluorescent protein, the immunochromatographic assay exhibited a wide linear range for NT-proBNP from 200 pg ml−1 to 26,000 pg ml−1, with a detection limit of 47 pg ml−1 under optimal conditions. Compared with chemiluminescence immunoassay (CLIA, 131 human serum samples were analyzed and the correlation coefficient of the developed immunoassay was 0.978. These results demonstrated that fluorescent immunochromatographic assay is a more rapid, sensitive, specific method and could be developed into a platform for more biomarkers determination in clinical practice. Keywords: NT-pro BNP, Fluorescent protein, Immunochromatographic assay

  2. Label-free quantitative mass spectrometry for analysis of protein antigens in a meningococcal group B outer membrane vesicle vaccine.

    Science.gov (United States)

    Dick, Lawrence W; Mehl, John T; Loughney, John W; Mach, Anna; Rustandi, Richard R; Ha, Sha; Zhang, Lan; Przysiecki, Craig T; Dieter, Lance; Hoang, Van M

    2015-01-01

    The development of a multivalent outer membrane vesicle (OMV) vaccine where each strain contributes multiple key protein antigens presents numerous analytical challenges. One major difficulty is the ability to accurately and specifically quantitate each antigen, especially during early development and process optimization when immunoreagents are limited or unavailable. To overcome this problem, quantitative mass spectrometry methods can be used. In place of traditional mass assays such as enzyme-linked immunosorbent assays (ELISAs), quantitative LC-MS/MS using multiple reaction monitoring (MRM) can be used during early-phase process development to measure key protein components in complex vaccines in the absence of specific immunoreagents. Multiplexed, label-free quantitative mass spectrometry methods using protein extraction by either detergent or 2-phase solvent were developed to quantitate levels of several meningococcal serogroup B protein antigens in an OMV vaccine candidate. Precision was demonstrated to be less than 15% RSD for the 2-phase extraction and less than 10% RSD for the detergent extraction method. Accuracy was 70 to 130% for the method using a 2-phase extraction and 90-110% for detergent extraction. The viability of MS-based protein quantification as a vaccine characterization method was demonstrated and advantages over traditional quantitative methods were evaluated. Implementation of these MS-based quantification methods can help to decrease the development time for complex vaccines and can provide orthogonal confirmation of results from existing antigen quantification techniques.

  3. Selective {sup 2}H and {sup 13}C labeling in NMR analysis of solution protein structure and dynamics

    Energy Technology Data Exchange (ETDEWEB)

    LeMaster, D.M. [Northwestern Univ., Evanston, IL (United States)

    1994-12-01

    Preparation of samples bearing combined isotope enrichment patterns has played a central role in the recent advances in NMR analysis of proteins in solution. In particular, uniform {sup 13}C, {sup 15}N enrichment has made it possible to apply heteronuclear multidimensional correlation experiments for the mainchain assignments of proteins larger than 30 KDa. In contrast, selective labeling approaches can offer advantages in terms of the directedness of the information provided, such as chirality and residue type assignments, as well as through enhancements in resolution and sensitivity that result from editing the spectral complexity, the relaxation pathways and the scalar coupling networks. In addition, the combination of selective {sup 13}C and {sup 2}H enrichment can greatly facilitate the determination of heteronuclear relaxation behavior.

  4. Heteronuclear 2D NMR studies on an engineered insulin monomer: Assignments and characterization of the receptor-binding surface by selective 2H and 13C labeling with application to protein design

    International Nuclear Information System (INIS)

    Weiss, M.A.; Hua, Qingxin; Lynch, C.S.; Shoelson, S.E.; Frank, B.H.

    1991-01-01

    Insulin provides an important model for the application of genetic engineering to rational protein design and has been well characterized in the crystal state. However, self-association of insulin in solution has precluded complementary 2D NMR study under physiological conditions. The authors demonstrate here that such limitations may be circumvented by the use of a monomeric analogue that contains three amino acid substitutions on the protein surface (HisB10 → Asp, ProB28 → Lys, and LysB29 → Pro); this analogue (designated DKP-insulin) retains native receptor-binding potency. Comparative 1 H NMR studies of native human insulin and a series of three related analogues-(i) the singly substituted analogue [HisB10→Asp], (ii) the doubly substituted analogue [ProB28→Lys; LysB29→Pro], and (iii) DKP-insulin-demonstrate progressive reduction in concentration-dependent line-broadening in accord with the results of analytical ultracentrifugation. Extensive nonlocal interactions are observed in the NOESY spectrum of DKP-insulin, indicating that this analogue adopts a compact and stably folded structure as a monomer in overall accord with crystal models. Site-specific 2 H and 13 C isotopic labels are introduced by semisynthesis as probes for the structure and dynamics of the receptor-binding surface. These studies confirm and extend under physiological conditions the results of a previous 2D NMR analysis of native insulin in 20% acetic acid. Implications for the role of protein flexibility in receptor recognition are discussed with application to the design of novel insulin analogues

  5. Fast axonal transport of 3H-leucin-labelled proteins in the unhurt and isolated optical nerve of rats

    International Nuclear Information System (INIS)

    Wagner, H.E.

    1981-01-01

    The distribution of radioactivity of amino acid molecules incorporated in protein after injection of 3 H-Leucin into the right bulb was investigated and determined along optical nerve after 1, 2, and 4 h. A slightly increased radioactivity at the point of entrance of the optical nerves into the optical duct was found. A slightly reduced axon diameter was discussed as a possible cause. The radioactivity brought into the optical nerve via the vascular system was determined by measuring the contralateral optical nerve. In relation to the axonally transported activity, it was low. The speed of the fast axonal transport is 168 mm/d. If the processes ruling the amino acids in the perikaryon are taken into consideration, the transport speed is 240 mm/d. The application of the protein synthesis prohibitor, Cycloheximide, 5 minutes after the injection of Leucinin completely prevented the appearance of axonally transported labelled proteins. When cycloheximide was administered 2 h after Leucin, a significantly loner radioactivity than in the nerve could be determined after another 2 h; i.e. the incorporation of Leucin was not completed yet after 2 h. The profile of active compounds was the same as in the control group. In other experiments, the axonal transport of labelled proteins in isolated optical nerve fibres was tested. If the separation was carried out 2 h after the injection of Leucin an extreme reduction in activity could be determined after 1 or 2 h. The continued distribution of activity after cycloheximide treatment and removal of perikarya in comparison with the control indicate the continuation of the transport, also after separation of the axon from the perikaryon. This means that, during the time of the experiment, the mechanism of the fast axonal transport functions independently of the perikaryon. (orig./MG) [de

  6. Epsilon-Q: An Automated Analyzer Interface for Mass Spectral Library Search and Label-Free Protein Quantification.

    Science.gov (United States)

    Cho, Jin-Young; Lee, Hyoung-Joo; Jeong, Seul-Ki; Paik, Young-Ki

    2017-12-01

    Mass spectrometry (MS) is a widely used proteome analysis tool for biomedical science. In an MS-based bottom-up proteomic approach to protein identification, sequence database (DB) searching has been routinely used because of its simplicity and convenience. However, searching a sequence DB with multiple variable modification options can increase processing time, false-positive errors in large and complicated MS data sets. Spectral library searching is an alternative solution, avoiding the limitations of sequence DB searching and allowing the detection of more peptides with high sensitivity. Unfortunately, this technique has less proteome coverage, resulting in limitations in the detection of novel and whole peptide sequences in biological samples. To solve these problems, we previously developed the "Combo-Spec Search" method, which uses manually multiple references and simulated spectral library searching to analyze whole proteomes in a biological sample. In this study, we have developed a new analytical interface tool called "Epsilon-Q" to enhance the functions of both the Combo-Spec Search method and label-free protein quantification. Epsilon-Q performs automatically multiple spectral library searching, class-specific false-discovery rate control, and result integration. It has a user-friendly graphical interface and demonstrates good performance in identifying and quantifying proteins by supporting standard MS data formats and spectrum-to-spectrum matching powered by SpectraST. Furthermore, when the Epsilon-Q interface is combined with the Combo-Spec search method, called the Epsilon-Q system, it shows a synergistic function by outperforming other sequence DB search engines for identifying and quantifying low-abundance proteins in biological samples. The Epsilon-Q system can be a versatile tool for comparative proteome analysis based on multiple spectral libraries and label-free quantification.

  7. Site-specific genome editing for correction of induced pluripotent stem cells derived from dominant dystrophic epidermolysis bullosa.

    Science.gov (United States)

    Shinkuma, Satoru; Guo, Zongyou; Christiano, Angela M

    2016-05-17

    Genome editing with engineered site-specific endonucleases involves nonhomologous end-joining, leading to reading frame disruption. The approach is applicable to dominant negative disorders, which can be treated simply by knocking out the mutant allele, while leaving the normal allele intact. We applied this strategy to dominant dystrophic epidermolysis bullosa (DDEB), which is caused by a dominant negative mutation in the COL7A1 gene encoding type VII collagen (COL7). We performed genome editing with TALENs and CRISPR/Cas9 targeting the mutation, c.8068_8084delinsGA. We then cotransfected Cas9 and guide RNA expression vectors expressed with GFP and DsRed, respectively, into induced pluripotent stem cells (iPSCs) generated from DDEB fibroblasts. After sorting, 90% of the iPSCs were edited, and we selected four gene-edited iPSC lines for further study. These iPSCs were differentiated into keratinocytes and fibroblasts secreting COL7. RT-PCR and Western blot analyses revealed gene-edited COL7 with frameshift mutations degraded at the protein level. In addition, we confirmed that the gene-edited truncated COL7 could neither associate with normal COL7 nor undergo triple helix formation. Our data establish the feasibility of mutation site-specific genome editing in dominant negative disorders.

  8. Expression and isotopic labelling of the potassium channel blocker ShK toxin as a thioredoxin fusion protein in bacteria.

    Science.gov (United States)

    Chang, Shih Chieh; Galea, Charles A; Leung, Eleanor W W; Tajhya, Rajeev B; Beeton, Christine; Pennington, Michael W; Norton, Raymond S

    2012-10-01

    The polypeptide toxin ShK is a potent blocker of Kv1.3 potassium channels, which play a crucial role in the activation of human effector memory T-cells (T(EM)). Selective blockers constitute valuable therapeutic leads for the treatment of autoimmune diseases mediated by T(EM) cells, such as multiple sclerosis, rheumatoid arthritis, and type-1 diabetes. We have established a recombinant peptide expression system in order to generate isotopically-labelled ShK and various ShK analogues for in-depth biophysical and pharmacological studies. ShK was expressed as a thioredoxin fusion protein in Escherichia coli BL21 (DE3) cells and purified initially by Ni²⁺ iminodiacetic acid affinity chromatography. The fusion protein was cleaved with enterokinase and purified to homogeneity by reverse-phase HPLC. NMR spectra of ¹⁵N-labelled ShK were similar to those reported previously for the unlabelled synthetic peptide, confirming that recombinant ShK was correctly folded. Recombinant ShK blocked Kv1.3 channels with a K(d) of 25 pM and inhibited the proliferation of human and rat T lymphocytes with a preference for T(EM) cells, with similar potency to synthetic ShK in all assays. This expression system also enables the efficient production of ¹⁵N-labelled ShK for NMR studies of peptide dynamics and of the interaction of ShK with Kv1.3 channels. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Site-Specific Hydrogen Isotope Composition of Propane: Mass spectrometric methods, equilibrium temperature dependence, and kinetics of exchange

    Science.gov (United States)

    Xie, H.; Ponton, C.; Kitchen, N.; Lloyd, M. K.; Lawson, M.; Formolo, M. J.; Eiler, J. M.

    2016-12-01

    Intramolecular isotope ordering can constrain temperatures of synthesis, mechanisms of formation, and/or source substrates of organic compounds. Here we explore site-specific hydrogen isotope variations of propane. Statistical thermodynamic models predict that at equilibrium methylene hydrogen (-CH2-) in propane will be 10's of per mil higher in D/H ratio than methyl hydrogen (-CH3) at geologically relevant temperatures, and that this difference is highly temperature dependent ( 0.5-1 ‰/°C). Chemical-kinetic controls on site-specific D/H in propane could constrain the mechanisms, conditions and extents of propane synthesis or destruction. We have developed a method for measuring the difference in D/H ratio between methylene and methyl hydrogen in propane by gas source mass spectrometry. The data were measured using the Thermo Fisher Double Focusing Sector high resolution mass spectrometer (DFS), and involve comparison of the D/H ratios of molecular ion (C3H8+) and the ethyl fragmental ion (C2H5+). We demonstrate the accuracy and precision of this method through analysis of D-labeled and independently analyzed propanes. In the exchange experiments, propane was heated (100-200 oC) either alone or in the presence of D-enriched water (δD=1,1419 ‰ SMOW), with or without one of several potentially catalytic substrates for hours to weeks. Propane was found to exchange hydrogen with water vigorously at 200 °C in the presence of metal catalysts. In the presence of Ni catalyst, methylene hydrogen exchanges 2.5 times faster than methyl hydrogen. Hydrogen exchange in the presence of Pd catalyst is more effective and can equilibrate hydrogen isotope distribution on propane on the order of 7 days. Isotopic exchange in the presence of natural materials have also been tested, but is only measurable in the methylene group at 200 °C. High catalytic activity of Pd permits attainment of a bracketed, time-invariant equilibrium state that we use to calibrate the site-specific

  10. Specific labeling of the thyroxine binding site in thyroxine-binding globulin: determination of the amino acid composition of a labeled peptide fragment isolated from a proteolytic digest of the derivatized protein.

    Science.gov (United States)

    Tabachnick, M; Perret, V

    1987-08-01

    [125I] Thyroxine has been covalently bound to the thyroxine binding site in thyroxine-binding globulin by reaction with the bifunctional reagent, 1,5-difluoro-2,4-dinitrobenzene. An average of 0.47 mol of [125I] thyroxine was incorporated per mol protein; nonspecific binding amounted to 8%. A labeled peptide fragment was isolated from a proteolytic digest of the derivatized protein by HPLC and its amino acid composition was determined. Comparison with the amino acid sequence of thyroxine-binding globulin indicated partial correspondence of the labeled peptide with two possible regions in the protein. These regions also coincide with part of the barrel structure present in the closely homologous protein, alpha 1-antitrypsin.

  11. Magnetic resonance studies of isotopically labeled paramagnetic proteins: (2FE-2S) ferredoxins

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, H.; Xia, B.; Chae, Y.K.; Westler, W.M.; Markley, J.L. [Univ. of Wisconsin, Madison, WI (United States)

    1994-12-01

    Recent developments in NMR spectroscopy, especially multidimensional, multinuclear NMR techniques, have made NMR the most versatile tool available for studying protein structure and function in solution. Unlike diamagnetic proteins, paramagnetic proteins contain centers with unpaired electrons. These unpaired electrons interact with magnetic nuclei either through chemical bonds by a contact mechanism or through space by a pseudocontact mechanism. Such interactions make the acquisition and analysis of NMR spectra of paramagnetic proteins more challenging than those of diamagnetic proteins. Some NMR signals from paramagnetic proteins are shifted outside the chemical shift region characteristic of diamagnetic proteins; these {open_quotes}hyperfine-shifted{close_quotes} resonances originate from nuclei that interact with unpaired electrons from the paramagnetic center. The large chemical shift dispersion in spectra of paramagnetic proteins makes it difficult to excite the entire spectral window and leads to distortions in the baseline. Interactions with paramagnetic centers shorten T{sub 1} and T{sub 2} relaxation times of nuclei; the consequences are line broadening and lower spectral sensitivity. Scalar (through bond) and dipolar (through space) interactions between pairs of nuclei are what give rise to crosspeak signals in multi-dimensional NMR spectra of small diamagnetic proteins. When such interactions involve a nucleus that is strongly relaxed by interaction with a paramagnetic center, specialized methods may be needed for its detection or it may be completely undetectable by present nD NMR methods.

  12. Label-free detection of C-reactive protein using reflectometric interference spectroscopy-based sensing system

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hyung Woo; Sakata, Yasuhiko [Graduate School of Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501 (Japan); Kurihara, Yoshikazu [Graduate School of Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501 (Japan); KONICA MINOLTA OPTO, Inc., 1 Sakura-machi, Hino-shi, Tokyo 191-8511 (Japan); Ooya, Tooru [Graduate School of Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501 (Japan); Takeuchi, Toshifumi, E-mail: takeuchi@gold.kobe-u.ac.jp [Graduate School of Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501 (Japan)

    2012-05-30

    Highlights: Black-Right-Pointing-Pointer A new RIfS-based label-free biosensing system for C-reactive protein was developed. Black-Right-Pointing-Pointer Silicon-based inexpensive chips and the simple optical setup were employed. Black-Right-Pointing-Pointer Owing to the TMS treatment and the use of protein A, the sensitivity was enhanced. Black-Right-Pointing-Pointer It can be applied to other target as a substitute of SPR-based expensive sensors. - Abstract: Reflectometric interference spectroscopy (RIfS) is a label-free, time-resolved technique, and suitable for detecting antibody-antigen interaction. This work describes a continuous flow biosensor for C-reactive protein (CRP), involving an effective immobilization method of a monoclonal antibody against CRP (anti-CRP) to achieve highly sensitive RIfS-based detection of CRP. The silicon nitride-coated silicon chip (SiN chip) for the RIfS sensing was first treated with trimethylsilylchloride (TMS), followed by UV-light irradiation to in situ generation of homogeneous silanols on the surface. Following amination by 3-aminopropyltriethoxysilane, carboxymethyldextran (CMD) was grafted, and subsequently, protein A was immobilized to create the oriented anti-CRP surface. The immobilization process of protein A and anti-CRP was monitored with the RIfS system by consecutive injections of an amine coupling reagent, protein A and anti-CRP, respectively, to confirm the progress of each step in real time. The sensitivity was enhanced when all of the processes were adopted, suggesting that the oriented immobilization of anti-CRP via protein A that was coupled with the grafted CMD on the aminated surface of TMS-treated SiN chip. The feasibility of the present sensing system was demonstrated on the detection of CRP, where the silicon-based inexpensive chips and the simple optical setup were employed. It can be applied to other target molecules in various fields of life science as a substitute of surface plasmon resonance

  13. 76 FR 24831 - Site-Specific Analyses for Demonstrating Compliance With Subpart C Performance Objectives

    Science.gov (United States)

    2011-05-03

    ...-level radioactive waste disposal facilities to conduct site-specific analyses to demonstrate compliance... public health and safety, these amendments would enhance the safe disposal of low-level radioactive waste... would be to enhance the safe disposal of low-level radioactive waste. The NRC is also proposing...

  14. Hellsgate Big Game Winter Range Wildlife Mitigation Site Specific Management Plan for the Hellsgate Project.

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Matthew T.; Judd, Steven L.

    1999-01-01

    This report contains a detailed site-specific management plan for the Hellsgate Winter Range Wildlife Mitigation Project. The report provides background information about the mitigation process, the review process, mitigation acquisitions, Habitat Evaluation Procedures (HEP) and mitigation crediting, current habitat conditions, desired future habitat conditions, restoration/enhancements efforts and maps.

  15. 30 CFR 46.11 - Site-specific hazard awareness training.

    Science.gov (United States)

    2010-07-01

    ... Section 46.11 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR EDUCATION AND... workers; (4) Customers, including commercial over-the-road truck drivers; (5) Construction workers or... procedures. The training must address site-specific health and safety risks, such as unique geologic or...

  16. Environmental Restoration Site-Specific Plan for the Portsmouth Gaseous Diffusion Plant, FY 93

    International Nuclear Information System (INIS)

    1993-01-01

    The purpose of this Site-Specific Plan (SSP) is to describe past, present, and future activities undertaken to implement Environmental Restoration and Waste Management goals at the Portsmouth Gaseous Diffusion Plant (PORTS). The SSP is presented in sections emphasizing Environmental Restoration description of activities, resources, and milestones

  17. 75 FR 64718 - Environmental Management Site-Specific Advisory Board, Nevada

    Science.gov (United States)

    2010-10-20

    ... Test Site including decontamination, closure, re-use and/or demolition. Purpose of the Soils Committee: The purpose of the Committee is to focus on issues related to soil contamination at the Nevada Test... Industrial Sites and Soils Committees of the Environmental Management Site-Specific Advisory Board (EM SSAB...

  18. 76 FR 5365 - Environmental Management Site-Specific Advisory Board, Nevada

    Science.gov (United States)

    2011-01-31

    ... Industrial Sites and Soils Committees of the Environmental Management Site-Specific Advisory Board (EM SSAB... sites at the Nevada National Security Site including decontamination, closure, re-use and/or demolition. Purpose of the Soils Committee: The purpose of the Committee is to focus on issues related to soil...

  19. 75 FR 71677 - Environmental Management Site-Specific Advisory Board, Nevada

    Science.gov (United States)

    2010-11-24

    ... Industrial Sites and Soils Committees of the Environmental Management Site-Specific Advisory Board (EM SSAB... sites at the Nevada Test Site including decontamination, closure, re-use and/or demolition. Purpose of the Soils Committee: The purpose of the Committee is to focus on issues related to soil contamination...

  20. Integration of aerial imaging and variable-rate technology for site-specific aerial herbicide application

    Science.gov (United States)

    As remote sensing and variable rate technology are becoming more available for aerial applicators, practical methodologies on effective integration of these technologies are needed for site-specific aerial applications of crop production and protection materials. The objectives of this study were to...