WorldWideScience

Sample records for site-directed mutagenesis mutant

  1. A mutant screening method by critical annealing temperature-PCR for site-directed mutagenesis.

    Science.gov (United States)

    Liu, Ying; Wu, Ting; Song, Jian; Chen, Xuelian; Zhang, Yu; Wan, Yu

    2013-03-11

    Distinguishing desired mutants from parental templates and undesired mutants is a problem not well solved in Quikchange™ mutagenesis. Although Dpn I digestion can eliminate methylated parental (WT) DNA, the efficiency is not satisfying due to the existence of hemi-methylated DNA in the PCR products, which is resistant to Dpn I. The present study designed a novel critical annealing temperature (T(c))-PCR to replace Dpn I digestion for more perfect mutant distinguishing, in which part-overlapping primers containing mutation(s) were used to reduce initial concentration of template DNA in mutagenic PCR. A T(c)-PCR with the same mutagenic primers was performed without Dpn I digestion. The T(c) for each pair of the primers was identified by gradient PCR. The relationship between PCR-identified T(c) and T(m) of the primers was analyzed and modeled with correlation and regression. Gradient PCR identified a T(c) for each of 14 tested mutagenic primers, which could discriminate mismatched parental molecules and undesired mutants from desired mutants. The PCR-identified T(c) was correlated to the primer's T(m) (r = 0.804, P<0.0001). Thus, in practical applications, the T(c) can be easily calculated with a regression equation, T(c)= 48.81 + 0.253*T(m). The new protocol introduced a novel T(c)-PCR method for mutant screening which can more efficiently and accurately select against parental molecules and undesired mutations in mutagenic sequence segments.

  2. Preparation by site-directed mutagenesis and characterization of the E211Q mutant of yeast enolase 1.

    Science.gov (United States)

    Sangadala, V S; Glover, C V; Robson, R L; Holland, M J; Lebioda, L; Brewer, J M

    1995-08-16

    The published 'charge shuttle' mechanism of enolase (Lebioda, L. and Stec, B. (1991) Biochemistry 30, 2817-2822) assigns Glu-211 the task of orienting a water molecule that serves as the catalytic base which removes the proton from carbon-2 of the substrate. We prepared the E211Q mutant of yeast enolase 1 by site-directed mutagenesis. It appears to be folded correctly and to respond similarly to many of the normal ligands of enolase: it is stabilized against thermal denaturation by conformational Mg2+ and by Mg2+ and substrate and binds the chromophoric substrate analogue D-tartronate semialdehyde-2-phosphate (TSP) with affinity comparable to that of the native enzyme. However, it has only 0.01% (10(-4)) of the activity of native enolase under standard assay conditions and does not exhibit significantly more activity at various pH values or higher concentrations of substrate and Mg2+. Its ability to produce the form of enzyme-bound and reacted TSP that absorbs at shorter wavelengths is greatly slowed, while the longer wavelength absorbing form is produced rapidly. Overall, these observations are consistent with the hypothetical mechanism.

  3. Improved thermostability and enzyme activity of a recombinant phyA mutant phytase from Aspergillus niger N25 by directed evolution and site-directed mutagenesis.

    Science.gov (United States)

    Tang, Zizhong; Jin, Weiqiong; Sun, Rong; Liao, Yan; Zhen, Tianrun; Chen, Hui; Wu, Qi; Gou, Lin; Li, Chenlei

    2018-01-01

    We previously constructed three recombinant phyA mutant strains (PP-NP m -8, PP-NP ep -6A and I44E/T252R-PhyA), showing improved catalytic efficiency or thermostability of Aspergillus niger N25 phytase, by error-prone PCR or site-directed mutagenesis. In this study, directed evolution and site-directed mutagenesis were further applied to improve the modified phytase properties. After one-round error-prone PCR for phytase gene of PP-NP ep -6A, a single transformant, T195L/Q368E/F376Y, was obtained with the significant improvements in catalytic efficiency and thermostability. The phytase gene of T195L/Q368E/F376Y, combined with the previous mutant phytase genes of PP-NP ep -6A, PP-NP m -8 and I44E/T252R-PhyA, was then sequentially modified by DNA shuffling. Three genetically engineered strains with desirable properties were then obtained, namedQ172R, Q172R/K432R andQ368E/K432R. Among them, Q172R/K432R showed the highest thermostability with the longest half-life and the greatest remaining phytase activity after heat treatment, while Q368E/K432R showed the highest catalytic activity. Five substitutions (Q172R, T195L, Q368E, F376Y, K432R) identified from random mutagenesis were added sequentially to the phytase gene of PP-NP ep -6A to investigate how the mutant sites influence the properties of phytase. Characterization and structural analysis demonstrated that these mutations could produce cumulative or synergistic improvements in thermostability or catalytic efficiency of phytase. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Improving the activity of the subtilisin nattokinase by site-directed mutagenesis and molecular dynamics simulation.

    Science.gov (United States)

    Weng, Meizhi; Deng, Xiongwei; Bao, Wei; Zhu, Li; Wu, Jieyuan; Cai, Yongjun; Jia, Yan; Zheng, Zhongliang; Zou, Guolin

    2015-09-25

    Nattokinase (NK), a bacterial serine protease from Bacillus subtilis var. natto, is a potential cardiovascular drug exhibiting strong fibrinolytic activity. To broaden its commercial and medical applications, we constructed a single-mutant (I31L) and two double-mutants (M222A/I31L and T220S/I31L) by site-directed mutagenesis. Active enzymes were expressed in Escherichia coli with periplasmic secretion and were purified to homogeneity. The kinetic parameters of enzymes were examined by spectroscopy assay and isothermal titration calorimetry (ITC), and their fibrinolytic activities were determined by fibrin plate method. The substitution of Leu(31) for Ile(31) resulted in about 2-fold enhancement of catalytic efficiency (Kcat/KM) compared with wild-type NK. The specific activities of both double-mutants (M222A/I31L and T220S/I31L) were significantly increased when compared with the single-mutants (M222A and T220S) and the oxidative stability of M222A/I31L mutant was enhanced with respect to wild-type NK. This study demonstrates the feasibility of improving activity of NK by site-directed mutagenesis and shows successful protein engineering cases to improve the activity of NK as a potent therapeutic agent. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Expression and site-directed mutagenesis of human dihydrofolate reductase

    Energy Technology Data Exchange (ETDEWEB)

    Prendergast, N.J.; Delcamp, T.J.; Smith, P.L.; Freisheim, J.H.

    1988-05-17

    A procaryotic high-level expression vector for human dihydrofolate reductase has been constructed and the protein characterized as a first step toward structure-function studies of this enzyme. A vector bearing the tac promoter, four synthetic oligodeoxynucleotides, and a restriction fragment from the dihydrofolate reductase cDNA were ligated in a manner which optimized the transcriptional and translational frequency of the enzyme mRNA. The reductase, comprising ca. 17% of the total soluble protein in the host bacteria, was purified to apparent homogeneity as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and characterized by amino acid composition, partial amino acid sequence, and steady-sate kinetic analysis. This expression vector has been used as a template for double-stranded plasmid DNA site-specific mutagenesis. Functional studies on a Cys-6 ..-->.. Ser-6 mutant enzyme support the contention that Cys-6 is obligatory for organomercurial activation of human dihydrofolate reductase. The Ser-6 mutant enzyme was not activated to any extent following a 24-h incubation with p-(hydroxymercuri)benzoate and nicotinamide adenine dinucleotide phosphate (reduced) (NADPH), whereas the k/sub cat/ for Cys-6 reductase increased 2-fold under identical conditions. The specific activities of the Cys-6 and Ser-6 enzymes were virtually identical as determined by methotrexate titration as were the K/sub m/ values for both dihydrofolate and NADPH. The Ser-6 mutant showed a decreased temperature stability and was more sensitive to inactivation by ..cap alpha..-chymotrypsin when compared to the wild-type enzyme. These results suggest that the Ser-6 mutant reductase is conformationally altered relative to the Cys-6 native enzyme.

  6. Expression and site-directed mutagenesis of human dihydrofolate reductase

    International Nuclear Information System (INIS)

    Prendergast, N.J.; Delcamp, T.J.; Smith, P.L.; Freisheim, J.H.

    1988-01-01

    A procaryotic high-level expression vector for human dihydrofolate reductase has been constructed and the protein characterized as a first step toward structure-function studies of this enzyme. A vector bearing the tac promoter, four synthetic oligodeoxynucleotides, and a restriction fragment from the dihydrofolate reductase cDNA were ligated in a manner which optimized the transcriptional and translational frequency of the enzyme mRNA. The reductase, comprising ca. 17% of the total soluble protein in the host bacteria, was purified to apparent homogeneity as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and characterized by amino acid composition, partial amino acid sequence, and steady-sate kinetic analysis. This expression vector has been used as a template for double-stranded plasmid DNA site-specific mutagenesis. Functional studies on a Cys-6 → Ser-6 mutant enzyme support the contention that Cys-6 is obligatory for organomercurial activation of human dihydrofolate reductase. The Ser-6 mutant enzyme was not activated to any extent following a 24-h incubation with p-(hydroxymercuri)benzoate and nicotinamide adenine dinucleotide phosphate (reduced) (NADPH), whereas the k/sub cat/ for Cys-6 reductase increased 2-fold under identical conditions. The specific activities of the Cys-6 and Ser-6 enzymes were virtually identical as determined by methotrexate titration as were the K/sub m/ values for both dihydrofolate and NADPH. The Ser-6 mutant showed a decreased temperature stability and was more sensitive to inactivation by α-chymotrypsin when compared to the wild-type enzyme. These results suggest that the Ser-6 mutant reductase is conformationally altered relative to the Cys-6 native enzyme

  7. Tetragonal Lysozyme Interactions Studied by Site Directed Mutagenesis

    Science.gov (United States)

    Crawford, Lisa; Karr, Laurel J.; Nadarajah, Arunan; Pusey, Marc

    1999-01-01

    A number of recent experimental and theoretical studies have indicated that tetragonal lysozyme crystal growth proceeds by the addition of aggregates, formed by reversible self association of the solute molecules in the bulk solution. Periodic bond chain and atomic force microscopy studies have indicated that the probable growth unit is at minimum a 43 tetramer, and most likely an octamer composed of two complete turns about the 43 axis. If these results are correct, then there are intermolecular interactions which are only formed in the solution and others only formed at the joining of the growth unit to the crystal surface. We have set out to study these interactions, and the correctness of this hypothesis, using site directed mutagenesis of specific amino acid residues involved in the different bonds. We had initially expressed wild type lysozyme in S. cervasiae with yields of approximately 5 mg/L, which were eventually raised to approximately 40 mg/L. We are now moving the expression to the Pichia system, with anticipated yields of 300 to (3)500 mg/L, comparable to what can be obtained from egg whites. An additional advantage of using recombinant protein is the greater genetic homogeneity of the material obtained and the absence of any other contaminating egg proteins. The first mutation experiments are TYR 23 (Registered) PHE or ALA and ASN 113 (Registered) ALA or ASP. Both TYR 23 and ASN 113 form part of the postulated dimerization intermolecular binding site which lead to the formation of the 43 helix. Tyrosine also participates in an intermolecular hydrogen bond with ARG 114. The results of these and subsequent experiments will be discussed.

  8. Revised Mechanism and Improved Efficiency of the QuikChange Site-Directed Mutagenesis Method.

    Science.gov (United States)

    Xia, Yongzhen; Xun, Luying

    2017-01-01

    Site-directed mutagenesis has been widely used for the substitution, addition or deletion of nucleotide residues in a defined DNA sequence. QuikChange™ site-directed mutagenesis and its related protocols have been widely used for this purpose because of convenience and efficiency. We have recently demonstrated that the mechanism of the QuikChange™ site-directed mutagenesis process is different from that being proposed. The new mechanism promotes the use of partially overlapping primers and commercial PCR enzymes for efficient PCR and mutagenesis.

  9. Facile Site-Directed Mutagenesis of Large Constructs Using Gibson Isothermal DNA Assembly.

    Science.gov (United States)

    Yonemoto, Isaac T; Weyman, Philip D

    2017-01-01

    Site-directed mutagenesis is a commonly used molecular biology technique to manipulate biological sequences, and is especially useful for studying sequence determinants of enzyme function or designing proteins with improved activity. We describe a strategy using Gibson Isothermal DNA Assembly to perform site-directed mutagenesis on large (>~20 kbp) constructs that are outside the effective range of standard techniques such as QuikChange II (Agilent Technologies), but more reliable than traditional cloning using restriction enzymes and ligation.

  10. Thermostability enhancement of an endo-1,4-β-galactanase from Talaromyces stipitatus by site-directed mutagenesis

    DEFF Research Database (Denmark)

    Larsen, Dorte Møller; Nyffenegger, Christian; Swiniarska, Malgorzata Maria

    2015-01-01

    -life of TSGAL, nine single amino acid residues were selected for site-directed mutagenesis on the basis of semi-rational design. Of these nine mutants, G305A showed half-lives of 114 min at 55 °C and 15 min at 60 °C, respectively. This is 8.6-fold higher than that of the TSGAL at 55 °C, whereas the other...

  11. Improving the neutral phytase activity from Bacillus amyloliquefaciens DSM 1061 by site-directed mutagenesis.

    Science.gov (United States)

    Xu, Wei; Shao, Rong; Wang, Zupeng; Yan, Xiuhua

    2015-03-01

    Neutral phytase is used as a feed additive for degradation of anti-nutritional phytate in aquatic feed industry. Site-directed mutagenesis of Bacillus amyloliquefaciens DSM 1061 phytase was performed with an aim to increase its activity. Mutation residues were chosen based on multiple sequence alignments and structure analysis of neutral phytsaes from different microorganisms. The mutation sites on surface (D148E, S197E and N156E) and around the active site (D52E) of phytase were selected. Analysis of the phytase variants showed that the specific activities of mutants D148E and S197E remarkably increased by about 35 and 13% over a temperature range of 40-75 °C at pH 7.0, respectively. The k cat of mutants D148E and S197E were 1.50 and 1.25 times than that of the wild-type phytase, respectively. Both D148E and S197E showed much higher thermostability than that of the wild-type phytase. However, mutants N156E and D52E led to significant loss of specific activity of the enzyme. Structural analysis revealed that these mutations may affect conformation of the active site of phytase. The present mutant phytases D148E and S197E with increased activities and thermostabilities have application potential as additives in aquaculture feed.

  12. Increase in D-tagatose production rate by site-directed mutagenesis of L-arabinose isomerase from Geobacillus thermodenitrificans.

    Science.gov (United States)

    Oh, Hyo-Jung; Kim, Hye-Jung; Oh, Deok-Kun

    2006-02-01

    Among single-site mutations of L-arabinose isomerase derived from Geobacillus thermodenitrificans, two mutants were produced having the lowest and highest activities of D-tagatose production. Site-directed mutagenesis at these sites showed that the aromatic ring at amino acid 164 and the size of amino acid 475 were important for D-tagatose production. Among double-site mutations, one mutant converted D-galactose into D-tagatose with a yield of 58% whereas the wild type gave 46% D-tagatose conversion after 300 min at 65 degrees C.

  13. One-Tube-Only Standardized Site-Directed Mutagenesis: An Alternative Approach to Generate Amino Acid Substitution Collections.

    Directory of Open Access Journals (Sweden)

    Janire Mingo

    Full Text Available Site-directed mutagenesis (SDM is a powerful tool to create defined collections of protein variants for experimental and clinical purposes, but effectiveness is compromised when a large number of mutations is required. We present here a one-tube-only standardized SDM approach that generates comprehensive collections of amino acid substitution variants, including scanning- and single site-multiple mutations. The approach combines unified mutagenic primer design with the mixing of multiple distinct primer pairs and/or plasmid templates to increase the yield of a single inverse-PCR mutagenesis reaction. Also, a user-friendly program for automatic design of standardized primers for Ala-scanning mutagenesis is made available. Experimental results were compared with a modeling approach together with stochastic simulation data. For single site-multiple mutagenesis purposes and for simultaneous mutagenesis in different plasmid backgrounds, combination of primer sets and/or plasmid templates in a single reaction tube yielded the distinct mutations in a stochastic fashion. For scanning mutagenesis, we found that a combination of overlapping primer sets in a single PCR reaction allowed the yield of different individual mutations, although this yield did not necessarily follow a stochastic trend. Double mutants were generated when the overlap of primer pairs was below 60%. Our results illustrate that one-tube-only SDM effectively reduces the number of reactions required in large-scale mutagenesis strategies, facilitating the generation of comprehensive collections of protein variants suitable for functional analysis.

  14. Cloning, Site-Directed Mutagenesis, and Functional Analysis of Active Residues in Lymantria dispar Chitinase.

    Science.gov (United States)

    Fan, Xiao-Jun; Yang, Chun; Zhang, Chang; Ren, Hui; Zhang, Jian-Dong

    2018-01-01

    Chitinases are glycosyl hydrolases that catalyze the hydrolysis of β-(1,4)-glycosidic bonds in chitin, the major structural polysaccharide presented in the cuticle and gut peritrophic matrix of insects. Two aspartate residues (D143, D145) and one tryptophan (W146) in the Lymantria dispar chitinase are highly conserved residues observed within the second conserved motif of the family 18 chitinase catalytic region. In this study, a chitinase cDNA, LdCht5, was cloned from L. dispar, and the roles of the three residues were investigated using site-directed mutagenesis and substituting them with three other amino acids. Seven mutant proteins, D143E, D145E, W146G, D143E/D145E, D143E/W146G, D145E/W146G, and D143E/D145E/W146G, as well as the wild-type enzyme, were produced using the baculovirus-insect cell line expression system. The enzymatic and kinetic properties of these mutant enzymes were measured using the oligosaccharide substrate MU-(GlcNAc) 3 . Among the seven mutants, the D145E, D143E/D145E, and D145E/W146G mutations kept some extant catalytic activity toward MU-(GlcNAc) 3 , while the D143E, W146G, D143E/W146G, and D143E/D145E/W146G mutant enzymes were inactivated. Compared with the mutant enzymes, the wild-type enzyme had higher values of k cat and k cat / K m . A study of the multiple point mutations in the second conserved catalytic region would help to elucidate the role of the critical residues and their relationships.

  15. R-prime site-directed transposon Tn7 mutagenesis of the photosynthetic apparatus in Rhodopseudomonas capsulata

    Energy Technology Data Exchange (ETDEWEB)

    Youvan, D C [Univ. of California, Berkeley; Elder, J T; Sandlin, D E; Zsebo, K; Alder, D P; Panopoulos, N J; Marrs, B L; Hearst, J E

    1982-01-01

    Site-directed mutagenesis of the photosynthetic apparatus (PSA) genes in Rhodopseudomonas capsulata is presented utilizing a transposon Tn7 mutagenized R-prime. The R-prime, pRPS404, bears most of the genes necessary for the differentiation of the photosynthetic apparatus. Mutagenesis of the R-prime with Tn7 in Escherichia coli, conjugation into R. capsulata, and homologous recombination with the wild-type alleles efficiently generates photosynthetic apparatus lesions. Wild-type alleles are lost spontaneously and the Tn7-induced lesions are revealed by subsequent intramolecular recombination between IS21 insertion elements that bracket the prime sequences in direct repeat. The molecular nature of the intermediates involved in the transposition, recombination and deletion have been investigated by Southern hybridization analysis. The spontaneous loss of wild-type alleles after homologous recombination with the chromosome may be of general use to other prokaryotic site-directed transposon mutagenesis schemes. The IS21-mediated deletion of the prime DNA is dependent on the RecA protein in E. coli, generating the parental R-factor bearing one IS21 element. A genetic-physical map exists for a portion of the prime photosynthetic apparatus DNA. When Tn7 is inserted into a bacteriochlorophyll gene in the R-prime and then crossed into R. capsulata, mutants are produced that accumulate a bacteriochlorophyll precursor, which is in excellent agreement with the existing genetic-physical map. This corroborates the mutagenesis scheme.

  16. Site-directed mutagenesis of HIV-1 vpu gene demonstrates two clusters of replication-defective mutants with distinct ability to down-modulate cell surface CD4 and tetherin

    Directory of Open Access Journals (Sweden)

    Masako Nomaguchi

    2010-11-01

    Full Text Available HIV-1 Vpu acts positively on viral infectivity by mediating CD4 degradation in endoplasmic reticulum and enhances virion release by counteracting a virion release restriction factor, tetherin. In order to define the impact of Vpu activity on HIV-1 replication, we have generated a series of site-specific proviral vpu mutants. Of fifteen mutants examined, seven exhibited a replication-defect similar to that of a vpu-deletion mutant in a lymphocyte cell line H9. These mutations clustered in narrow regions within transmembrane domain (TMD and cytoplasmic domain (CTD. Replication-defective mutants displayed the reduced ability to enhance virion release from a monolayer cell line HEp2 without exception. Upon transfection with Vpu expression vectors, neither TMD mutants nor CTD mutants blocked CD4 expression at the cell surface in another monolayer cell line MAGI. While TMD mutants were unable to down-modulate cell surface tetherin in HEp2 cells, CTD mutants did quite efficiently. Confocal microscopy analysis revealed the difference of intracellular localization between TMD and CTD mutants. In total, replication capability of HIV-1 carrying vpu mutations correlates well with the ability of Vpu to enhance virion release and to impede the cell surface expression of CD4 but not with the ability to down-modulate cell surface tetherin. Our results here suggest that efficient viral replication requires not only down-regulation of cell surface tetherin but also its degradation.

  17. Enhancing activity and thermostability of lipase A from Serratia marcescens by site-directed mutagenesis.

    Science.gov (United States)

    Mohammadi, Mohsen; Sepehrizadeh, Zargham; Ebrahim-Habibi, Azadeh; Shahverdi, Ahmad Reza; Faramarzi, Mohammad Ali; Setayesh, Neda

    2016-11-01

    Lipases as significant biocatalysts had been widely employed to catalyze various chemical reactions such as ester hydrolysis, ester synthesis, and transesterification. Improving the activity and thermostability of enzymes is desirable for industrial applications. The lipase of Serratia marcescens belonging to family I.3 lipase has a very important pharmaceutical application in production of chiral precursors. In the present study, to achieve improved lipase activity and thermostability, using computational predictions of protein, four mutant lipases of SML (MutG2P, MutG59P, Mut H279K and MutL613WA614P) were constructed by site-directed mutagenesis. The recombinant mutant proteins were over-expressed in E. coli and purified by affinity chromatography on the Ni-NTA system. Circular dichroism spectroscopy, differential scanning calorimetry and kinetic parameters (Km and kcat) were determined. Our results have shown that the secondary structure of all lipases was approximately similar to one another. The MutG2P and MutG59P were more stable than wild type by approximately 2.3 and 2.9 in T 1/2 , respectively. The catalytic efficiency (kcat/Km) of MutH279K was enhanced by 2-fold as compared with the wild type (p<0.05). These results indicate that using protein modeling program and creating mutation, can enhance lipase activity and/or thermostability of SML and it also could be used for improving other properties of enzyme to the desired requirements as well as further mutations. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Multiple Site-Directed and Saturation Mutagenesis by the Patch Cloning Method.

    Science.gov (United States)

    Taniguchi, Naohiro; Murakami, Hiroshi

    2017-01-01

    Constructing protein-coding genes with desired mutations is a basic step for protein engineering. Herein, we describe a multiple site-directed and saturation mutagenesis method, termed MUPAC. This method has been used to introduce multiple site-directed mutations in the green fluorescent protein gene and in the moloney murine leukemia virus reverse transcriptase gene. Moreover, this method was also successfully used to introduce randomized codons at five desired positions in the green fluorescent protein gene, and for simple DNA assembly for cloning.

  19. Software-Supported USER Cloning Strategies for Site-Directed Mutagenesis and DNA Assembly

    DEFF Research Database (Denmark)

    Genee, Hans Jasper; Bonde, Mads Tvillinggaard; Bagger, Frederik Otzen

    2015-01-01

    USER cloning is a fast and versatile method for engineering of plasmid DNA. We have developed a user friendly Web server tool that automates the design of optimal PCR primers for several distinct USER cloning-based applications. Our Web server, named AMUSER (Automated DNA Modifications with USER...... cloning), facilitates DNA assembly and introduction of virtually any type of site-directed mutagenesis by designing optimal PCR primers for the desired genetic changes. To demonstrate the utility, we designed primers for a simultaneous two-position site-directed mutagenesis of green fluorescent protein...... (GFP) to yellow fluorescent protein (YFP), which in a single step reaction resulted in a 94% cloning efficiency. AMUSER also supports degenerate nucleotide primers, single insert combinatorial assembly, and flexible parameters for PCR amplification. AMUSER is freely available online at ....

  20. Enhancement of thermostability and kinetic efficiency of Aspergillus niger PhyA phytase by site-directed mutagenesis.

    Science.gov (United States)

    Hesampour, Ardeshir; Siadat, Seyed Ehsan Ranaei; Malboobi, Mohammad Ali; Mohandesi, Nooshin; Arab, Seyed Shahriar; Ghahremanpour, Mohammad Mehdi

    2015-03-01

    Phytase efficiently catalyzes the hydrolysis of phytate to phosphate; it can be utilized as an animal supplement to provide animals their nutrient requirements for phosphate and to mitigate environmental pollution caused by unutilized feed phosphate. Owing to animal feed being commonly pelleted at 70 to 90 °C, phytase with a sufficiently high thermal stability is desirable. Based on the crystal structure of PhyA and bioinformatics analysis at variant heat treatments, 12 single and multiple mutants were introduced by site-directed mutagenesis in order to improve phytase thermostability. Mutated constructs were expressed in Pichia pastoris. The manipulated phytases were purified; their biochemical and kinetic investigation revealed that while the thermostability of six mutants was improved, P9 (T314S Q315R V62N) and P12 (S205N S206A T151A T314S Q315R) showed the highest heat stability (P phytase to be used as an animal feed supplement.

  1. Enhancement of oxidative stability of the subtilisin nattokinase by site-directed mutagenesis expressed in Escherichia coli.

    Science.gov (United States)

    Weng, MeiZhi; Zheng, ZhongLiang; Bao, Wei; Cai, YongJun; Yin, Yan; Zou, GuoLin; Zou, GouLin

    2009-11-01

    Nattokinase (subtilisin NAT, NK) is a bacterial serine protease with strong fibrinolytic activity and it is a potent cardiovascular drug. In medical and commercial applications, however, it is susceptible to chemical oxidation, and subsequent inactivation or denaturation. Here we show that the oxidative stability of NK was substantially increased by optimizing the amino acid residues Thr(220) and Met(222), which were in the vicinity of the catalytic residue Ser(221) of the enzyme. Two nonoxidative amino acids (Ser and Ala) were introduced at these sites using site-directed mutagenesis. Active enzymes were successfully expressed in Escherichia coli with periplasmic secretion and enzymes were purified to homogeneity. The purified enzymes were analyzed with respect to oxidative stability, kinetic parameters, fibrinolytic activity and thermal stability. M222A mutant was found to have a greatly increased oxidative stability compared with wild-type enzyme and it was resistant to inactivation by more than 1 M H(2)O(2), whereas the wild-type enzyme was inactivated by 0.1 M H(2)O(2) (t(1/2) approximately 11.6 min). The other mutant (T220S) also showed an obvious increase in antioxidative ability. Molecular dynamic simulations on wild-type and T220S mutant proteins suggested that a hydrogen bond was formed between Ser(220) and Asn(155), and the spatial structure of Met(222) was changed compared with the wild-type. The present study demonstrates the feasibility of improving oxidative stability of NK by site-directed mutagenesis and shows successful protein engineering cases to improve stability of NK as a potent therapeutic agent.

  2. Site-directed mutagenesis of the foot-and-mouth disease virus RNA-polymerase gene

    International Nuclear Information System (INIS)

    Brindeiro, R.M.; Soares, M.A.; Vianna, A.L.M.; Pontes, O.H.A. de; Pacheco, A.B.F.; Almeida, D.F. de; Tanuri, A.

    1991-01-01

    The foot-and-mouth disease virus RNA-polymerase gene was mutagenised in its active site. Pst I digestion of the polymerase gene (cDNA) generated a 790 bp fragment containing the critical sequence. This fragment was subcloned in M13mp8 for mutagenesis method. The polymerase gene was then reconstructed and subcloned in pUC19. These mutants will be used to study the enzyme structure and activity and to develop intracellular immunization assays in eukaryotic cells. (author)

  3. Construction and expression of hepatitis B surface antigen escape variants within the "a" determinant by site directed mutagenesis.

    Science.gov (United States)

    Golsaz Shirazi, Forough; Amiri, Mohammad Mehdi; Mohammadi, Hamed; Bayat, Ali Ahmad; Roohi, Azam; Khoshnoodi, Jalal; Zarnani, Amir Hassan; Jeddi-Tehrani, Mahmood; Kardar, Gholam Ali; Shokri, Fazel

    2013-09-01

    The antibody response to hepatitis B surface antigen (HBsAg) controls hepatitis B virus infection. The "a" determinant of HBsAg is the most important target for protective antibody response, diagnosis and immunoprophylaxis. Mutations in this area may induce immune escape mutants and affect the performance of HBsAg assays. To construct clinically relevant recombinant mutant forms of HBsAg and assessment of their reactivity with anti-HBs monoclonal antibodies (MAbs). Wild type (wt) and mutant (mt) HBsAg genes were constructed by site directed mutagenesis and SEOing PCR. The amplified genes were inserted into pCMV6-neo plasmid and transfected in CHO cell line. The expression of wt- and mtHBsAg was assessed by commercial ELISA assays and stable cells were established and cloned by limiting dilution. The recombinant mutants were further characterized using a panel of anti-HBs monoclonal antibodies (MAbs) and the pattern of their reactivity was assessed by ELISA. Ten HBsAg mutants having single mutation within the "a" determinant including P120E, T123N, Q129H, M133L, K141E, P142S, D144A, G145R, N146S and C147S together with a wt form were successfully constructed and expressed in CHO cells. Reactivity of anti-HBs MAbs with mtHBsAgs displayed different patterns. The effect of mutations on antibody binding differed depending on the amino acid involved and its location within the ''a'' determinant. Mutation at amino acids 123 and 145 resulted in either complete loss or significant reduction of binding to all anti-HBs MAbs. Our panel of mtHBsAgs is a valuable tool for assessment of the antibody response to HBV escape mutants and may have substantial implications in HBV immunological diagnostics.

  4. Site-directed Mutagenesis of Cysteine Residues in Phi-class Glutathione S-transferase F3 from Oryza sativa

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Hyunjoo; Lee, Juwon; Noh, Jinseok; Kong, Kwanghoon [Chung-Ang Univ., Seoul (Korea, Republic of)

    2012-12-15

    To elucidate the roles of cysteine residues in rice Phi-class GST F3, in this study, all three cysteine residues were replaced with alanine by site-directed mutagenesis in order to obtain mutants C22A, C73A and C77A. Three mutant enzymes were expressed in Escherichia coli and purified to electrophoretic homogeneity by affinity chromatography on immobilized GSH. The substitutions of Cys73 and Cys77 residues in OsGSTF3 with alanine did not affect the glutathione conjugation activities, showing non-essentiality of these residues. On the other hand, the substitution of Cys22 residue with alanine resulted in approximately a 60% loss of specific activity toward ethacrynic acid. Moreover, the K{sub m}{sup CDNB} value of the mutant C22A was approximately 2.2 fold larger than that of the wild type. From these results, the evolutionally conserved cysteine 22 residue seems to participate rather in the structural stability of the active site in OsGSTF3 by stabilizing the electrophilic substrates-binding site's conformation than in the substrate binding directly.

  5. Site-directed Mutagenesis Switching a Dimethylallyl Tryptophan Synthase to a Specific Tyrosine C3-Prenylating Enzyme*

    Science.gov (United States)

    Fan, Aili; Zocher, Georg; Stec, Edyta; Stehle, Thilo; Li, Shu-Ming

    2015-01-01

    The tryptophan prenyltransferases FgaPT2 and 7-DMATS (7-dimethylallyl tryptophan synthase) from Aspergillus fumigatus catalyze C4- and C7-prenylation of the indole ring, respectively. 7-DMATS was found to accept l-tyrosine as substrate as well and converted it to an O-prenylated derivative. An acceptance of l-tyrosine by FgaPT2 was also observed in this study. Interestingly, isolation and structure elucidation revealed the identification of a C3-prenylated l-tyrosine as enzyme product. Molecular modeling and site-directed mutagenesis led to creation of a mutant FgaPT2_K174F, which showed much higher specificity toward l-tyrosine than l-tryptophan. Its catalytic efficiency toward l-tyrosine was found to be 4.9-fold in comparison with that of non-mutated FgaPT2, whereas the activity toward l-tryptophan was less than 0.4% of that of the wild-type. To the best of our knowledge, this is the first report on an enzymatic C-prenylation of l-tyrosine as free amino acid and altering the substrate preference of a prenyltransferase by mutagenesis. PMID:25477507

  6. Degeneration and domestication of a selfish gene in yeast: molecular evolution versus site-directed mutagenesis.

    Science.gov (United States)

    Koufopanou, Vassiliki; Burt, Austin

    2005-07-01

    VDE is a homing endonuclease gene in yeasts with an unusual evolutionary history including horizontal transmission, degeneration, and domestication into the mating-type switching locus HO. We investigate here the effects of these features on its molecular evolution. In addition, we correlate rates of evolution with results from site-directed mutagenesis studies. Functional elements have lower rates of evolution than degenerate ones and higher conservation at functionally important sites. However, functionally important and unimportant sites are equally likely to have been involved in the evolution of new function during the domestication of VDE into HO. The domestication event also indicates that VDE has been lost in some species and that VDE has been present in yeasts for more than 50 Myr.

  7. Site directed mutagenesis of amino acid residues at the active site of mouse aldehyde oxidase AOX1.

    Directory of Open Access Journals (Sweden)

    Silvia Schumann

    Full Text Available Mouse aldehyde oxidase (mAOX1 forms a homodimer and belongs to the xanthine oxidase family of molybdoenzymes which are characterized by an essential equatorial sulfur ligand coordinated to the molybdenum atom. In general, mammalian AOs are characterized by broad substrate specificity and an yet obscure physiological function. To define the physiological substrates and the enzymatic characteristics of mAOX1, we established a system for the heterologous expression of the enzyme in Escherichia coli. The recombinant protein showed spectral features and a range of substrate specificity similar to the native protein purified from mouse liver. The EPR data of recombinant mAOX1 were similar to those of AO from rabbit liver, but differed from the homologous xanthine oxidoreductase enzymes. Site-directed mutagenesis of amino acids Val806, Met884 and Glu1265 at the active site resulted in a drastic decrease in the oxidation of aldehydes with no increase in the oxidation of purine substrates. The double mutant V806E/M884R and the single mutant E1265Q were catalytically inactive enzymes regardless of the aldehyde or purine substrates tested. Our results show that only Glu1265 is essential for the catalytic activity by initiating the base-catalyzed mechanism of substrate oxidation. In addition, it is concluded that the substrate specificity of molybdo-flavoenzymes is more complex and not only defined by the three characterized amino acids in the active site.

  8. Site-directed mutagenesis of serine 158 demonstrates its role in spinach leaf sucrose-phosphate synthase modulation

    Science.gov (United States)

    Toroser, D.; McMichael, R. Jr; Krause, K. P.; Kurreck, J.; Sonnewald, U.; Stitt, M.; Huber, S. C.; Davies, E. (Principal Investigator)

    1999-01-01

    Site-directed mutagenesis of spinach sucrose-phosphate synthase (SPS) was performed to investigate the role of Ser158 in the modulation of spinach leaf SPS. Tobacco plants expressing the spinach wild-type (WT), S158A, S158T and S157F/S158E SPS transgenes were produced. Expression of transgenes appeared not to reduce expression of the tobacco host SPS. SPS activity in the WT and the S158T SPS transgenics showed light/dark modulation, whereas the S158A and S157F/S158E mutants were not similarly light/dark modulated: the S158A mutant enzyme was not inactivated in the dark, and the S157F/S158E was not activated in the light. The inability to modulate the activity of the S158A mutant enzyme by protein phosphorylation was demonstrated in vitro. The WT spinach enzyme immunopurified from dark transgenic tobacco leaves had a low initial activation state, and could be activated by PP2A and subsequently inactivated by SPS-kinase plus ATP. Rapid purification of the S158A mutant enzyme from dark leaves of transgenic plants using spinach-specific monoclonal antibodies yielded enzyme that had a high initial activation state, and pre-incubation with leaf PP2A or ATP plus SPS-kinase (the PKIII enzyme) caused little modulation of activity. The results demonstrate the regulatory significance of Ser158 as the major site responsible for dark inactivation of spinach SPS in vivo, and indicate that the significance of phosphorylation is the introduction of a negative charge at the Ser158 position.

  9. Specificity of N-terminal methionyl peptidase: analysis by site-directed mutagenesis

    International Nuclear Information System (INIS)

    Kasper, T.J.; Boissel, J.P.; Bunn, H.F.

    1987-01-01

    The start site of eukaryotic translation is normally an AUG codon. The corresponding N-terminal methionine is most often removed when the nascent chain reaches about 30 residues. Data from a survey of 1764 eukaryotic protein sequences suggest that the residue adjacent to the initiator Met determines Met cleavage. In order to investigate the mechanism of this reaction, the authors have prepared oligonucleotide-directed mutants of human β-globin from gapped heteroduplexes of a T3/T7 plasmid containing a globin cDNA clone. To date, the authors have produced mutants encoding for 15 of 19 possible amino acid replacements at position 1 in the β-globin chain. These mutants have been confirmed by dideoxy sequencing, transcribed in vitro, and translated in a rabbit reticulocyte lysate in the presence of 35 S-methionine. Labeled translation products were then isolated by cation exchange HPLC, and tryptic peptides were analyzed by RP-HPLC. Thus far, this structural analysis has shown that for β-1 Val, Ala, and Ser, the initiator Met is cleaved, whereas for β-1 Lys, Met, Glu, Trp, Asn, Tyr, and Glu, initiator Met is retained. For β-1 Leu initiator Met is cleaved with a frequency of about 50%. These results are consistent with the data obtained from the previous survey. The expression of site-directed mutants in a cell-free system can also be used to investigate other N-terminal processing events, such as acetylation and myristylation

  10. Tailor-Made Protein Tyrosine Phosphatases: In Vitro Site-Directed Mutagenesis of PTEN and PTPRZ-B

    NARCIS (Netherlands)

    Luna, S.; Mingo, J.; Aurtenetxe, O.; Blanco, L.; Amo, L.; Schepens, J.; Hendriks, W.J.A.J.; Pulido, R.

    2016-01-01

    In vitro site-directed mutagenesis (SDM) of protein tyrosine phosphatases (PTPs) is a commonly used approach to experimentally analyze PTP functions at the molecular and cellular level and to establish functional correlations with PTP alterations found in human disease. Here, using the

  11. One-Tube-Only Standardized Site-Directed Mutagenesis: An Alternative Approach to Generate Amino Acid Substitution Collections

    NARCIS (Netherlands)

    Mingo, J.; Erramuzpe, A.; Luna, S.; Aurtenetxe, O.; Amo, L.; Diez, I.; Schepens, J.T.G.; Hendriks, W.J.A.J.; Cortes, J.M.; Pulido, R.

    2016-01-01

    Site-directed mutagenesis (SDM) is a powerful tool to create defined collections of protein variants for experimental and clinical purposes, but effectiveness is compromised when a large number of mutations is required. We present here a one-tube-only standardized SDM approach that generates

  12. Mechanism of adenylate kinase: Site-directed mutagenesis versus x-ray and NMR

    International Nuclear Information System (INIS)

    Tsai, Mingdaw; Yan, Honggao

    1991-01-01

    Controversy is an integral part of scientific research and is often a precursor to the truth. However, this lesson has been learned in a very hard way in the case of the structure-function relationship of adenylate kinase (AK), which catalyzes the interconversion between MgATP+AMP and MgADP+ADP. While this small kinase has been considered a model kinase and the enzyme-substrate interaction of AK was among the first investigated by X-ray crystallography and NMR the substrate binding sites deduced from the early studies by these two powerful techniques (termed the X-ray model and the NMR model, respectively) were dramatically different. Ironically, both models have had substantial impact on researchers in related fields. The problems have finally been dealt with since 1987 by the interplay between site-directed mutagenesis, X-ray, and NMR. The purpose of this review is not only to summarize the current knowledge in the structure-function relationship of adenylate kinase but also to accurately document and critically analyze historical developments in the hope that history will not be repeated

  13. Site-Directed Mutagenesis of a Hyperthermophilic Endoglucanase Cel12B from Thermotoga maritima Based on Rational Design.

    Directory of Open Access Journals (Sweden)

    Jinfeng Zhang

    Full Text Available To meet the demand for the application of high activity and thermostable cellulases in the production of new-generation bioethanol from nongrain-cellulose sources, a hyperthermostable β-1,4-endoglucase Cel12B from Thermotoga maritima was selected for further modification by gene site-directed mutagenesis method in the present study, based on homology modeling and rational design. As a result, two recombinant enzymes showed significant improvement in enzyme activity by 77% and 87%, respectively, higher than the parental enzyme TmCel12B. Furthermore, the two mutants could retain 80% and 90.5% of their initial activity after incubation at 80°C for 8 h, while only 45% for 5 h to TmCel12B. The Km and Vmax of the two recombinant enzymes were 1.97±0.05 mM, 4.23±0.15 μmol·mg(-1·min(-1 of TmCel12B-E225H-K207G-D37V, and 2.97±0.12 mM, 3.15±0.21 μmol·mg(-1·min(-1 of TmCel12B-E225H-K207G, respectively, when using CMC-Na as the substrate. The roles of the mutation sites were also analyzed and evaluated in terms of electron density, hydrophobicity of the modeled protein structures. The recombinant enzymes may be used in the hydrolysis of cellulose at higher temperature in the future. It was concluded that the gene mutagenesis approach of a certain active residues may effectively improve the performance of cellulases for the industrial applications and contribute to the study the thermostable mechanism of thermophilic enzymes.

  14. Combinatorial multispectral, thermodynamics, docking and site-directed mutagenesis reveal the cognitive characteristics of honey bee chemosensory protein to plant semiochemical.

    Science.gov (United States)

    Tan, Jing; Song, Xinmi; Fu, Xiaobin; Wu, Fan; Hu, Fuliang; Li, Hongliang

    2018-05-09

    In the chemoreceptive system of insects, there are always some soluble binding proteins, such as some antennal-specific chemosensory proteins (CSPs), which are abundantly distributed in the chemosensory sensillar lymph. The antennal-specific CSPs usually have strong capability to bind diverse semiochemicals, while the detailed interaction between CSPs and the semiochemicals remain unclear. Here, by means of the combinatorial multispectral, thermodynamics, docking and site-directed mutagenesis, we detailedly interpreted a binding interaction between a plant semiochemical β-ionone and antennal-specific CSP1 from the worker honey bee. Thermodynamic parameters (ΔH  0) indicate that the interaction is mainly driven by hydrophobic forces and electrostatic interactions. Docking prediction results showed that there are two key amino acids, Phe44 and Gln63, may be involved in the interacting process of CSP1 to β-ionone. In order to confirm the two key amino acids, site-directed mutagenesis were performed and the binding constant (K A ) for two CSP1 mutant proteins was reduced by 60.82% and 46.80% compared to wild-type CSP1. The thermodynamic analysis of mutant proteins furtherly verified that Phe44 maintained an electrostatic interaction and Gln63 contributes hydrophobic and electrostatic forces. Our investigation initially elucidates the physicochemical mechanism of the interaction between antennal-special CSPs in insects including bees to plant semiochemicals, as well as the development of twice thermodynamic analysis (wild type and mutant proteins) combined with multispectral and site-directed mutagenesis methods. Copyright © 2018. Published by Elsevier B.V.

  15. Transcarboxylase (TC): demonstration by site-directed mutagenesis that methionines at the biotin site are essential for catalysis

    International Nuclear Information System (INIS)

    Wood, H.G.; Shenoy, B.C.; Kumar, G.K.; Paranjape, S.; Murtif, V.; Samols, D.

    1987-01-01

    All biotin enzymes that have thus far been sequenced contain a conserved region ALA MET BCT MET. Two possible roles of the conserved region are (i) for recognition of the specific lysine of the enzyme that is to be biotinated posttranslationally by the synthetase or (ii) for activation of the biotin to function as a carboxyl carrier. The BCT of TC is at residue 89 of the 1.3S subunit. By site-directed mutagenesis, single amino acid substitutions have been made giving LEU 88, THR 88 and LEU 90 and these mutant subunits have been expressed in E. coli and isolated. Catalysis by TC involves Partial Reactions: (1) - 00 14 CCH 2 COCOO - + 1.3S biotin pyruvate + 1.3S biotin-COO - catalyzed by the 5S subunit (2) 14 CH 3 CH( 14 COO - )COSCoA + 1.3S biotin CH 3 CH 2 COSCoA + 1.3S biotin- 14 COO - , catalyzed by the 12S subunit. The mutant subunits LEU 88 and THR 88 are inactive in Reaction 1. In Reaction 2, they are 8% as active as the 1.3S wild type. At 10 times the concentration of the wild type, they are 40% as active. The LEU 90 subunit is about 40% as active as wild type in both Reactions 1 and 2. Thus, the two METS are functionally not equivalent. What their catalytic roles are remains to be determined. Shenoy et al. have shown these modifications do not effect the synthetase reaction

  16. Site-Directed Mutagenesis Study Revealed Three Important Residues in Hc-DAF-22, a Key Enzyme Regulating Diapause of Haemonchus contortus

    Directory of Open Access Journals (Sweden)

    Yan Huang

    2017-11-01

    Full Text Available Haemonchus contortus (H. contortus is one of the most important parasites of small ruminants, especially goats and sheep. The complex life cycle of this nematode is a main obstacle for the control and prevention of haemonchosis. So far, a special form of arrested development called diapause different from the dauer stage in Caenorhabditis elegans (C. elegans has been found in many parasitic nematodes. In our previous study, we have characterized a novel gene Hc-daf-22 from H. contortus sharing high homology with Ce-daf-22 and functional analysis showed this gene has similar biological function with Ce-daf-22. In this study, Hc-daf-22 mutants were constructed using site-directed mutagenesis, and carried out rescue experiments, RNA interference (RNAi experiments and in vitro enzyme activity analysis with the mutants to further explore the precise function site of Hc-DAF-22. The results showed that Hc-daf-22 mutants could be expressed in the rescued ok693 worms and the expression positions were mainly in the intestine which was identical with that of Hc-daf-22 rescued worms. Through lipid staining we found that Hc-daf-22 could rescue daf-22 mutant (ok693 from the fatty acid metabolism deficiency while Hc-daf-22 mutants failed. Brood size and body length analyses in rescue experiment along with body length and life span analyses in RNAi experiment elucidated that Hc-daf-22 resembled Ce-daf-22 in effecting the development and capacity of C. elegans and mutants impaired the function of Hc-daf-22. Together with the protease activity assay, this research revealed three important active resides 84C/299H/349H in Hc-DAF-22 by site-directed mutagenesis.

  17. Site-Directed Mutagenesis Study Revealed Three Important Residues in Hc-DAF-22, a Key Enzyme Regulating Diapause of Haemonchus contortus.

    Science.gov (United States)

    Huang, Yan; Zheng, Xiuping; Zhang, Hongli; Ding, Haojie; Guo, Xiaolu; Yang, Yi; Chen, Xueqiu; Zhou, Qianjin; Du, Aifang

    2017-01-01

    Haemonchus contortus ( H. contortus ) is one of the most important parasites of small ruminants, especially goats and sheep. The complex life cycle of this nematode is a main obstacle for the control and prevention of haemonchosis. So far, a special form of arrested development called diapause different from the dauer stage in Caenorhabditis elegans ( C. elegans ) has been found in many parasitic nematodes. In our previous study, we have characterized a novel gene Hc-daf-22 from H. contortus sharing high homology with Ce-daf-22 and functional analysis showed this gene has similar biological function with Ce-daf-22 . In this study, Hc-daf-22 mutants were constructed using site-directed mutagenesis, and carried out rescue experiments, RNA interference (RNAi) experiments and in vitro enzyme activity analysis with the mutants to further explore the precise function site of Hc-DAF-22. The results showed that Hc-daf-22 mutants could be expressed in the rescued ok693 worms and the expression positions were mainly in the intestine which was identical with that of Hc-daf-22 rescued worms. Through lipid staining we found that Hc-daf-22 could rescue daf-22 mutant ( ok693 ) from the fatty acid metabolism deficiency while Hc-daf-22 mutants failed. Brood size and body length analyses in rescue experiment along with body length and life span analyses in RNAi experiment elucidated that Hc-daf-22 resembled Ce-daf-22 in effecting the development and capacity of C. elegans and mutants impaired the function of Hc-daf-22 . Together with the protease activity assay, this research revealed three important active resides 84C/299H/349H in Hc-DAF-22 by site-directed mutagenesis.

  18. Role of arginine-292 in the substrate specificity of aspartate aminotransferase as examined by site-directed mutagenesis

    International Nuclear Information System (INIS)

    Cronin, C.N.; Kirsch, J.F.

    1988-01-01

    X-ray crystallographic data have implicated Arg-292 as the residue responsible for the preferred side-chain substrate specificity of asparate aminotransferase. It forms a salt bridge with the β or γ carboxylate group of the substrate. In order to test this proposal and, in addition, to attempt to reverse the substrate charge specificity of this enzyme, Arg-292 has been converted to Asp-292 by site-directed mutagenesis. The activity k/sub cat//K/sub M/) of the mutant enzyme, R292D, toward the natural anionic substrates L-aspartate, L-glutamate, and α-ketoglutarate is depressed by over 5 orders of magnitude, whereas the activity toward the keto acid pyruvate and a number of aromatic and other neutral amino acids is reduced by only 2-9-fold. These results confirm the proposal that Arg-292 is critical for the rapid turnover of substrates bearing anionic side chains and show further that, apart from the desired alteration no major perturbations of the remainder of the molecule have been made. The activity of R292D toward the cationic amino acids L-arginine, L-lysine, and L-ornithine is increased by 9-16-fold over that of wild type and the ratio (k/sub cat//K/sub M/)/sub cationic//(k/sub cat//K/sub M/)/sub anionic/ is in the range 2-40-fold for R292D, whereas this ratio has a range of [(0.3-6) x 10 -6 ]-fold for wild type. Thus, the mutation has produced an inversion of the substrate charge specificity. Possible explanations for the less-than-expected reactivity of R292D with arginine are discussed

  19. Evolution of flavone synthase I from parsley flavanone 3beta-hydroxylase by site-directed mutagenesis.

    Science.gov (United States)

    Gebhardt, Yvonne Helen; Witte, Simone; Steuber, Holger; Matern, Ulrich; Martens, Stefan

    2007-07-01

    Flavanone 3beta-hydroxylase (FHT) and flavone synthase I (FNS I) are 2-oxoglutarate-dependent dioxygenases with 80% sequence identity, which catalyze distinct reactions in flavonoid biosynthesis. However, FNS I has been reported exclusively from a few Apiaceae species, whereas FHTs are more abundant. Domain-swapping experiments joining the N terminus of parsley (Petroselinum crispum) FHT with the C terminus of parsley FNS I and vice versa revealed that the C-terminal portion is not essential for FNS I activity. Sequence alignments identified 26 amino acid substitutions conserved in FHT versus FNS I genes. Homology modeling, based on the related anthocyanidin synthase structure, assigned seven of these amino acids (FHT/FNS I, M106T, I115T, V116I, I131F, D195E, V200I, L215V, and K216R) to the active site. Accordingly, FHT was modified by site-directed mutagenesis, creating mutants encoding from one to seven substitutions, which were expressed in yeast (Saccharomyces cerevisiae) for FNS I and FHT assays. The exchange I131F in combination with either M106T and D195E or L215V and K216R replacements was sufficient to confer some FNS I side activity. Introduction of all seven FNS I substitutions into the FHT sequence, however, caused a nearly complete change in enzyme activity from FHT to FNS I. Both FHT and FNS I were proposed to initially withdraw the beta-face-configured hydrogen from carbon-3 of the naringenin substrate. Our results suggest that the 7-fold substitution affects the orientation of the substrate in the active-site pocket such that this is followed by syn-elimination of hydrogen from carbon-2 (FNS I reaction) rather than the rebound hydroxylation of carbon-3 (FHT reaction).

  20. HTP-OligoDesigner: An Online Primer Design Tool for High-Throughput Gene Cloning and Site-Directed Mutagenesis.

    Science.gov (United States)

    Camilo, Cesar M; Lima, Gustavo M A; Maluf, Fernando V; Guido, Rafael V C; Polikarpov, Igor

    2016-01-01

    Following burgeoning genomic and transcriptomic sequencing data, biochemical and molecular biology groups worldwide are implementing high-throughput cloning and mutagenesis facilities in order to obtain a large number of soluble proteins for structural and functional characterization. Since manual primer design can be a time-consuming and error-generating step, particularly when working with hundreds of targets, the automation of primer design process becomes highly desirable. HTP-OligoDesigner was created to provide the scientific community with a simple and intuitive online primer design tool for both laboratory-scale and high-throughput projects of sequence-independent gene cloning and site-directed mutagenesis and a Tm calculator for quick queries.

  1. Protein crystallography and site-direct mutagenesis analysis of the poly(ethylene terephthalate) hydrolase PETase from Ideonella sakaiensis.

    Science.gov (United States)

    Liu, Bing; He, Lihui; Wang, Liping; Li, Tao; Li, Changcheng; Liu, Huayi; Luo, Yunzi; Bao, Rui

    2018-03-30

    Compared with traditional recycle strategies, biodegradation provides a sustainable solution for poly (ethylene terephthalate) (PET) wastes disposal. PETase, a newly identified enzyme from Ideonella sakaiensis, has high efficiency and specificity towards PET, which provides a prominent prospect on PET degradation. Based on the biochemical analysis, we propose that the wide substrate-binding pocket is critical for its excellent property on crystallized PET hydrolysis. Structure-guided site-directed mutagenesis exhibited improvement in PETase catalytic efficiency, providing valuable insight on how the molecular engineering of PETase can optimize its application in biocatalysis. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. SiteFind: A software tool for introducing a restriction site as a marker for successful site-directed mutagenesis

    Directory of Open Access Journals (Sweden)

    Evans Paul M

    2005-12-01

    Full Text Available Abstract Background Site-directed mutagenesis is a widely-used technique for introducing mutations into a particular DNA sequence, often with the goal of creating a point mutation in the corresponding amino acid sequence but otherwise leaving the overall sequence undisturbed. However, this method provides no means for verifying its success other than sequencing the putative mutant construct: This can quickly become an expensive method for screening for successful mutations. An alternative to sequencing is to simultaneously introduce a restriction site near the point mutation in manner such that the restriction site has no effect on the translated amino acid sequence. Thus, the novel restriction site can be used as a marker for successful mutation which can be quickly and easily assessed. However, finding a restriction site that does not disturb the corresponding amino acid sequence is a time-consuming task even for experienced researchers. A fast and easy to use computer program is needed for this task. Results We wrote a computer program, called SiteFind, to help us design a restriction site within the mutation primers without changing the peptide sequence. Because of the redundancy of genetic code, a given peptide can be encoded by many different DNA sequences. Since the list of possible restriction sites for a given DNA sequence is not always obvious, SiteFind automates this task. The number of possible sequences a computer program must search through increases exponentially as the sequence length increases. SiteFind uses a novel "moving window" algorithm to reduce the number of possible sequences to be searched to a manageable level. The user enters a nucleotide sequence, specifies what amino acid residues should be changed in the mutation, and SiteFind generates a list of possible restriction sites and what nucleotides must be changed to introduce that site. As a demonstration of its use, we successfully generated a single point mutation

  3. Mass spectrometry and site-directed mutagenesis identify several autophosphorylated residues required for the activity of PrkC, a Ser/Thr kinase from Bacillus subtilis

    DEFF Research Database (Denmark)

    Madec, Edwige; Stensballe, Allan; Kjellström, Sven

    2003-01-01

    We have shown recently that PrkC, which is involved in developmental processes in Bacillus subtilis, is a Ser/Thr kinase with features of the receptor kinase family of eukaryotic Hanks kinases. In this study, we expressed and purified from Escherichia coli the cytoplasmic domain of PrkC containing...... the kinase and a short juxtamembrane region. This fragment, which we designate PrkCc, undergoes autophosphorylation in E.coli. PrkCc is further autophosphorylated in vitro, apparently through a trans-kinase, intermolecular reaction. PrkC also displays kinase activity with myelin basic protein. Using high...... mass accuracy electrospray tandem mass spectrometry (LC-MS/MS) and nanoelectrospray tandem mass spectrometry, we identified seven phosphorylated threonine and one serine residue in PrkCc. All the corresponding residues were replaced by systematic site-directed mutagenesis and the purified mutant...

  4. Purification and site-directed mutagenesis of linoleate 9S-dioxygenase-allene oxide synthase of Fusarium oxysporum confirms the oxygenation mechanism.

    Science.gov (United States)

    Chen, Yang; Jernerén, Fredrik; Oliw, Ernst H

    2017-07-01

    Plants and fungi form jasmonic acid from α-linolenic acid. The first two steps of biosynthesis in plants occur by sequential transformation by 13S-lipoxygenase and allene oxide synthase (AOS). The biosynthesis in fungi may follow this classical scheme, but the only fungal AOS discovered so far are cytochromes P450 (CYP) fused to 8- and 9-dioxygenases (DOX). In the present report, we purified recombinant 9S-DOX-AOS of Fusarium oxysporum from cell lysate by cobalt affinity chromatography to near homogeneity and studied key residues by site-directed mutagenesis. Sequence homology with 8R-DOX-linoleate diol synthases (8R-DOX-LDS) suggested that Tyr414 catalyzes hydrogen abstraction and that Cys1051 forms the heme thiolate ligand. Site-directed mutagenesis (Tyr414Phe; Cys1051Ser) led to loss of 9S-DOX and 9S-AOS activities, respectively, but other important residues in the CYP parts of 5,8- and 7,8-LDS or 9R-AOS were not conserved. The UV-visible spectrum of 9S-DOX-AOS showed a Soret band at 409 nm, which shifted to 413 nm in the Cys1051Ser mutant. The 9S-AOS of the Tyr414Phe mutant transformed 9S-hydroperoxides of α-linolenic and linoleic acids to allene oxides/α-ketols, but it did not transform 13-hydroperoxides. We conclude that 9S- and 8R-DOX catalyze hydrogen abstraction at C-11 and C-8, respectively, by homologous Tyr residues. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Biochemical and structural analysis of a site directed mutant of manganese dependent aminopeptidase P from Streptomyces lavendulae

    Directory of Open Access Journals (Sweden)

    ARYA NANDAN

    2015-08-01

    Full Text Available Aminopeptidase P (APP removes N-terminal amino acids from peptides and proteins when the penultimate residue is proline. To understand the structure-function relationships of aminopeptidase P of Streptomyces lavendulae, a conserved arginine residue was replaced with lysine (R453K by site-directed mutagenesis. The overexpressed wild and mutant enzymes were of nearly 60 kDa and purified by nickel affinity chromatography. Kinetic analysis of R453K variant using Gly-Pro-pNA as the substrate revealed an increase in Km with a decrease in Vmax, leading to overall decrease in the catalytic efficiency, indicating that the guanidinium group of arginine plays an important role in substrate binding in APP. We constructed three dimensional models for the catalytic domains of wild and mutant enzyme and it revealed an interaction in R453 of native enzyme through hydrogen bonding with the adjacent residues making a substrate binding cavity whereas K453 did not participate in any hydrogen bonding. Hence, R453 in APP of S. lavenduale must be playing a critical role in the hydrolysis of the substrate.

  6. In vivo elimination of parental clones in general and site-directed mutagenesis.

    Science.gov (United States)

    Holland, Erika G; Acca, Felicity E; Belanger, Kristina M; Bylo, Mary E; Kay, Brian K; Weiner, Michael P; Kiss, Margaret M

    2015-02-01

    The Eco29k I restriction endonuclease is a Sac II isoschizomer that recognizes the sequence 5'-CCGCGG-3' and is encoded, along with the Eco29k I methylase, in the Escherichia coli strain 29k. We have expressed the Eco29k I restriction-methylation system (RM2) in E. coli strain TG1 to produce the strain AXE688. We have developed a directed molecular evolution (DME) mutagenesis method that uses Eco29k I to restrict incoming parental DNA in transformed cells. Using our DME method, we have demonstrated that our AXE688 strain results in mutated directed molecular evolution libraries with diversity greater than 10(7) from a single transformation and with greater than 90% recombinant clones. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Use of Random and Site-Directed Mutagenesis to Probe Protein Structure-Function Relationships: Applied Techniques in the Study of Helicobacter pylori.

    Science.gov (United States)

    Whitmire, Jeannette M; Merrell, D Scott

    2017-01-01

    Mutagenesis is a valuable tool to examine the structure-function relationships of bacterial proteins. As such, a wide variety of mutagenesis techniques and strategies have been developed. This chapter details a selection of random mutagenesis methods and site-directed mutagenesis procedures that can be applied to an array of bacterial species. Additionally, the direct application of the techniques to study the Helicobacter pylori Ferric Uptake Regulator (Fur) protein is described. The varied approaches illustrated herein allow the robust investigation of the structural-functional relationships within a protein of interest.

  8. Functional analysis of truncated and site-directed mutagenesis dextransucrases to produce different type dextrans.

    Science.gov (United States)

    Wang, Chao; Zhang, Hong-Bin; Li, Meng-Qi; Hu, Xue-Qin; Li, Yao

    2017-07-01

    Dextrans with distinct molecular size and structure are increasingly being used in the food and pharmaceutical industries. Dextran is produced by dextransucrase (DSR, EC2.4.5.1), which is produced by Leuconostoc mesenteroides. DSR belongs to glycosyl hydrolase family (GH70) and synthesizes branched α-glucan (dextran) with both 5% α(1-3) and 95% α(1-6) glycosidic linkages. The DSR gene dex-YG (Genebank, Accession No. DQ345760) was cloned from the wild strain Leuconostoc mesenteroides 0326. This study generated a series of C-terminally truncated variants of dextransucrase and substituting the amino-acid residues in the active site of DSR. With shorter length of DSR, its polysaccharide-synthesizing capability was impaired heavily, whereas oligosaccharide (acting as prebiotics)-synthesizing capability increased significantly, efficiently producing special sizes of dextran. All truncated mutant enzymes were active. Results demonstrated that the catalytic domain dextransucrase was likely in 800 aa or less. Based on the three-dimensional structure model of dextransucrase built through homology modeling methods, the DSR and its mutants with the acceptor substrate of maltose and donor substrate of sucrose were studied by molecular-docking method. Substituting these amino-acid residues significantly affected enzyme activities. Compared with the wild-type dextran, mutant enzymes catalyzed the synthesis of a-glucan with 1-9% α(1-3) and 90-98% α(1-6) branching linkages. Some mutants introduced a small amount of α(1-4) linkages and α(1-2) linkages. This strategy can be effectively used for the rational protein design of dextransucrase. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Changing the inhibitory specificity and function of Cucurbita maxima trypsin inhibitor-V by site-directed mutagenesis.

    Science.gov (United States)

    Wen, L; Lee, I; Chen, G; Huang, J K; Gong, Y; Krishnamoorthi, R

    1995-02-27

    Cucurbita maxima trypsin inhibitor-V (CMTI-V) is also a specific inhibitor of human blood coagulation factor beta-factor XIIa. A recombinant version of CMTI-V has allowed probing of roles of individual amino acid residues including the reactive site residue, lysine (P1), by site-directed mutagenesis. The K44R showed at least a 5-fold increase in inhibitory activity toward human beta-factor XIIa, while there was no change toward bovine trypsin. This result demonstrates that beta-factor-XIIa prefers an arginine residue over lysine residue, while trypsin is non-specific to lysine or arginine in its binding pocket. On the other hand, the specificity of CMTI-V could be changed from trypsin to chymotrypsin inhibition by mutation of the P1 residue to either leucine or methionine (K44L or K44M).

  10. Enhancement in catalytic activity of Aspergillus niger XynB by selective site-directed mutagenesis of active site amino acids.

    Science.gov (United States)

    Wu, Xiuyun; Tian, Zhennan; Jiang, Xukai; Zhang, Qun; Wang, Lushan

    2018-01-01

    XynB from Aspergillus niger ATCC1015 (AnXynB) is a mesophilic glycoside hydrolase (GH) family 11 xylanase which holds great potentials in a wide variety of industrial applications. In the present study, the catalytic activity and stability of AnXynB were improved by a combination of computational and experimental approaches. Virtual mutation and molecular dynamics simulations indicated that the introduction of Glu and Asn altered the interaction network at the - 3 subsite. Interestingly, the double mutant S41N/T43E displayed 72% increase in catalytic activity when compared to the wild type (WT). In addition, it also showed a better thermostability than the WT enzyme. Kinetic determination of the T43E and S41N/T43E mutants suggested that the higher xylanase activity is probably due to the increasing binding affinity of enzyme and substrate. Consequently, the enzyme activity and thermostability of AnXynB was both increased by selective site-directed mutagenesis at the - 3 subsite of its active site architecture which provides a good example for a successfully engineered enzyme for potential industrial application. Moreover, the molecular evolution approach adopted in this study led to the design of a library of sequences that captures a meaningful functional diversity in a limited number of protein variants.

  11. p21-ras effector domain mutants constructed by "cassette" mutagenesis

    DEFF Research Database (Denmark)

    Stone, J C; Vass, W C; Willumsen, B M

    1988-01-01

    A series of mutations encoding single-amino-acid substitutions within the v-rasH effector domain were constructed, and the ability of the mutants to induce focal transformation of NIH 3T3 cells was studied. The mutations, which spanned codons 32 to 40, were made by a "cassette" mutagenesis...

  12. Site-Directed Mutagenesis of the Fibronectin Domains in Insulin Receptor-Related Receptor

    Directory of Open Access Journals (Sweden)

    Igor E. Deyev

    2017-11-01

    Full Text Available The orphan insulin receptor-related receptor (IRR, in contrast to its close homologs, the insulin receptor (IR and insulin-like growth factor receptor (IGF-IR can be activated by mildly alkaline extracellular medium. We have previously demonstrated that IRR activation is defined by its extracellular region, involves multiple domains, and shows positive cooperativity with two synergistic sites. By the analyses of point mutants and chimeras of IRR with IR in, we now address the role of the fibronectin type III (FnIII repeats in the IRR pH-sensing. The first activation site includes the intrinsically disordered subdomain ID (646–716 within the FnIII-2 domain at the C-terminus of IRR alpha subunit together with closely located residues L135, G188, R244, H318, and K319 of L1 and C domains of the second subunit. The second site involves residue T582 of FnIII-1 domain at the top of IRR lambda-shape pyramid together with M406, V407, and D408 from L2 domain within the second subunit. A possible importance of the IRR carbohydrate moiety for its activation was also assessed. IRR is normally less glycosylated than IR and IGF-IR. Swapping both FnIII-2 and FnIII-3 IRR domains with those of IR shifted beta-subunit mass from 68 kDa for IRR to about 100 kDa due to increased glycosylation and abolished the IRR pH response. However, mutations of four asparagine residues, potential glycosylation sites in chimera IRR with swapped FnIII-2/3 domains of IR, decreased the chimera glycosylation and resulted in a partial restoration of IRR pH-sensing activity, suggesting that the extensive glycosylation of FnIII-2/3 provides steric hindrance for the alkali-induced rearrangement of the IRR ectodomain.

  13. Substitutions in PBP3 confer resistance to both ampicillin and extended-spectrum cephalosporins in Haemophilus parainfluenzae as revealed by site-directed mutagenesis and gene recombinants

    DEFF Research Database (Denmark)

    Wienholtz, Nanna H; Ciechanowski, Aynur Barut; Nørskov-Lauritsen, Niels

    2017-01-01

    using site-directed mutagenesis. Recombinants were also generated using PCR-amplified ftsI from clinical strains encoding multiple amino acid substitutions. MICs of ampicillin, cefuroxime, cefotaxime and ceftriaxone were determined using Etest ® . Results: Transformation of a susceptible strain with fts...... for recombinants were lower than those for the donor strains. Using site-directed mutagenesis, no single substitution conferred resistance to the tested β-lactams, although V511A increased the MIC of cefuroxime to the intermediate category for intravenous administration. Recombinants encoding N526K...

  14. Site-directed mutagenesis of α-L-rhamnosidase from Alternaria sp. L1 to enhance synthesis yield of reverse hydrolysis based on rational design.

    Science.gov (United States)

    Xu, Li; Liu, Xiaohong; Yin, Zhenhao; Liu, Qian; Lu, Lili; Xiao, Min

    2016-12-01

    The α-L-rhamnosidase catalyzes the hydrolytic release of rhamnose from polysaccharides and glycosides and is widely used due to its applications in a variety of industrial processes. Our previous work reported that a wild-type α-L-rhamnosidase (RhaL1) from Alternaria sp. L1 could synthesize rhamnose-containing chemicals (RCCs) though reverse hydrolysis reaction with inexpensive rhamnose as glycosyl donor. To enhance the yield of reverse hydrolysis reaction and to determine the amino acid residues essential for the catalytic activity of RhaL1, site-directed mutagenesis of 11 residues was performed in this study. Through rationally designed mutations, the critical amino acid residues which may form direct or solvent-mediated hydrogen bonds with donor rhamnose (Asp 252 , Asp 257 , Asp 264 , Glu 530 , Arg 548 , His 553 , and Trp 555 ) and may form the hydrophobic pocket in stabilizing donor (Trp 261 , Tyr 302 , Tyr 316 , and Trp 369 ) in active-site of RhaL1 were analyzed, and three positive mutants (W261Y, Y302F, and Y316F) with improved product yield stood out. From the three positive variants, mutant W261Y accelerated the reverse hydrolysis with a prominent increase (43.7 %) in relative yield compared to the wild-type enzyme. Based on the 3D structural modeling, we supposed that the improved yield of mutant W261Y is due to the adjustment of the spatial position of the putative catalytic acid residue Asp 257 . Mutant W261Y also exhibited a shift in the pH-activity profile in hydrolysis reaction, indicating that introducing of a polar residue in the active site cavity may affect the catalysis behavior of the enzyme.

  15. Site-directed mutagenesis of the Arabidopsis heterotrimeric G protein β subunit suggests divergent mechanisms of effector activation between plant and animal G proteins.

    Science.gov (United States)

    Chakravorty, David; Trusov, Yuri; Botella, José Ramón

    2012-03-01

    Heterotrimeric G proteins are integral components of signal transduction in humans and other mammals and have been therefore extensively studied. However, while they are known to mediate many processes, much less is currently known about the effector pathways and molecular mechanisms used by these proteins to regulate effectors in plants. We designed a complementation strategy to study G protein signaling in Arabidopsis thaliana, particularly the mechanism of action of AGB1, the sole identified β subunit. We used biochemical and effector regulation data from human G protein studies to identify four potentially important residues for site-directed mutagenesis (T65, M111, D250 and W361 of AGB1). Each residue was individually mutated and the resulting mutated protein introduced in the agb1-2 mutant background under the control of the native AGB1 promoter. Interestingly, even though these mutations have been shown to have profound effects on effector signaling in humans, all the mutated subunits were able to restore thirteen of the fifteen Gβ-deficient phenotypes characterized in this study. Only one mutated protein, T65A was unable to complement the hypersensitivity to mannitol during germination observed in agb1 mutants; while only D250A failed to restore lateral root numbers in the agb1 mutant to wild-type levels. Our results suggest that the mechanisms used in mammalian G protein signaling are not well conserved in plant G protein signaling, and that either the effectors used by plant G proteins, or the mechanisms used to activate them, are at least partially divergent from the well-studied mammalian G proteins.

  16. Identification of residues involved in nucleotidyltransferase activity of JHP933 from helicobacter pyloriby site-directed mutagenesis

    Directory of Open Access Journals (Sweden)

    Ye Xianren

    2016-01-01

    Full Text Available Helicobacter pylori is a well-known bacterial pathogen involved in the development of peptic ulcer, gastric adenocarcinoma and other forms of gastric cancer. Evidence has suggested that certain strain-specific genes in the plasticity region may play key roles in the pathogenesis of H. pylori-associated gastroduodenal diseases. Therefore there is considerable interest in the strain-specific genes located in the plasticity regions of H. pylori. JHP933 is encoded by the gene in the plasticity region of H. pylori strain J99. Recently, the crystal structure of JHP933 has confirmed it as a nucleotidyltransferase (NTase superfamily protein and a putative active site has been proposed. However, no evidence from direct functional assay has been presented to confirm the active site and little is known about the functional mechanism of JHP933. Here, through superimposition with Cid1/NTP complex structures, we modelled the complex structures of JHP933 with different NTPs. Based on the models and using rational site-directed mutagenesis combined with enzymatic activity assays, we confirm the active site and identify several residues important for the nucleotidyl transferring function of JHP933. Furthermore, mutations of these active site residues result in the abolishment of the nucleotidyltransferase activity of JHP933. This work provides preliminary insight into the molecular mechanism underlying the pathophysiological role in H. pylori infection of JHP933 as a novel NTase superfamily protein.

  17. Assignment of histidine resonances in the 1H NMR (500 MHz) spectrum of subtilisin BPN' using site-directed mutagenesis

    International Nuclear Information System (INIS)

    Bycroft, M.; Fersht, A.R.

    1988-01-01

    A spin-echo pulse sequence has been used to resolve the six histidine C-2H protons in the 500-MHz NMR spectrum of subtilisin BPN'. Five of these residues have been substituted by site-directed mutagenesis, and this has enabled a complete assignment of these protons to be obtained. Analysis of the pH titration curves of these signals has provided microscopic pK a 's for the six histidines in this enzyme. The pK a 's of the histidine residues in subtilisin BPN' have been compared with the values obtained for the histidines in the homologous enzyme from Bacillus licheniformis (subtilisin Carlsberg). Four of the five conserved histidines titrate with essentially identical pK a 's in the two enzymes. It therefore appears that the assignments made for these residues in subtilisin BPN' can be transferred to subtilisin Carlsberg. On the basis of these assignments, the one histidine that titrates with a substantially different pK a in the two enzymes can be assigned to histidine-238. This difference in pK a has been attributed to a Trp to Lys substitution at position 241 in subtilisin Carlsberg

  18. Site-directed mutagenesis of Azotobacter vinelandii ferredoxin I: [Fe-S] cluster-driven protein rearrangement

    International Nuclear Information System (INIS)

    Martin, A.E.; Burgess, B.K.; Stout, C.D.; Cash, V.L.; Dean, D.R.; Jensen, G.M.; Stephens, P.J.

    1990-01-01

    Azotobacter vinelandii ferredoxin I is a small protein that contains one [4Fe-4S] cluster and one [3Fe-4S] cluster. Recently the x-ray crystal structure has been redetermined and the fdxA gene, which encodes the protein, has been cloned and sequenced. Here the authors report the site-directed mutation of Cys-20, which is a ligand of the [4Fe-4S] cluster in the native protein, to alanine and the characterization of the protein product by x-ray crystallographic and spectroscopic methods. The data show that the mutant protein again contains one [4Fe-4S] cluster and one [3Fe-4S] cluster. The new [4Fe-4S] cluster obtains its fourth ligand from Cys-24, a free cysteine in the native structure. The formation of this [4Fe-4S] cluster drives rearrangement of the protein structure

  19. Enhancement of the catalytic activity of ferulic acid decarboxylase from Enterobacter sp. Px6-4 through random and site-directed mutagenesis.

    Science.gov (United States)

    Lee, Hyunji; Park, Jiyoung; Jung, Chaewon; Han, Dongfei; Seo, Jiyoung; Ahn, Joong-Hoon; Chong, Youhoon; Hur, Hor-Gil

    2015-11-01

    The enzyme ferulic acid decarboxylase (FADase) from Enterobacter sp. Px6-4 catalyzes the decarboxylation reaction of lignin monomers and phenolic compounds such as p-coumaric acid, caffeic acid, and ferulic acid into their corresponding 4-vinyl derivatives, that is, 4-vinylphenol, 4-vinylcatechol, and 4-vinylguaiacol, respectively. Among various ferulic acid decarboxylase enzymes, we chose the FADase from Enterobacter sp. Px6-4, whose crystal structure is known, and produced mutants to enhance its catalytic activity by random and site-directed mutagenesis. After three rounds of sequential mutations, FADase(F95L/D112N/V151I) showed approximately 34-fold higher catalytic activity than wild-type for the production of 4-vinylguaiacol from ferulic acid. Docking analyses suggested that the increased activity of FADase(F95L/D112N/V151I) could be due to formation of compact active site compared with that of the wild-type FADase. Considering the amount of phenolic compounds such as lignin monomers in the biomass components, successfully bioengineered FADase(F95L/D112N/V151I) from Enterobacter sp. Px6-4 could provide an ecofriendly biocatalytic tool for producing diverse styrene derivatives from biomass.

  20. Site-directed mutagenesis under the direction of in silico protein docking modeling reveals the active site residues of 3-ketosteroid-Δ1-dehydrogenase from Mycobacterium neoaurum.

    Science.gov (United States)

    Qin, Ning; Shen, Yanbing; Yang, Xu; Su, Liqiu; Tang, Rui; Li, Wei; Wang, Min

    2017-07-01

    3-Ketosteroid-Δ 1 -dehydrogenases (KsdD) from Mycobacterium neoaurum could transform androst-4-ene-3,17-dione (AD) to androst-1,4-diene-3,17-dione. This reaction has a significant effect on the product of pharmaceutical steroid. The crystal structure and active site residues information of KsdD from Mycobacterium is not yet available, which result in the engineering of KsdD is tedious. In this study, by the way of protein modeling and site-directed mutagenesis, we find that, Y122, Y125, S138, E140 and Y541 from the FAD-binding domain and Y365 from the catalytic domain play a key role in this transformation. Compared with the wild type, the decline in AD conversion for mutants illustrated that Y125, Y365, and Y541 were essential to the function of KsdD. Y122, S138 and E140 contributed to the catalysis of KsdD. The following analysis revealed the catalysis mechanism of these mutations in KsdD of Mycobacterium. These information presented here facilitate the manipulation of the catalytic properties of the enzyme to improve its application in the pharmaceutical steroid industry.

  1. Prediction and characterization of novel epitopes of serotype A foot-and-mouth disease viruses circulating in East Africa using site-directed mutagenesis

    Science.gov (United States)

    Bari, Fufa Dawo; Parida, Satya; Asfor, Amin S.; Haydon, Daniel T.; Reeve, Richard; Paton, David J.

    2015-01-01

    Epitopes on the surface of the foot-and-mouth disease virus (FMDV) capsid have been identified by monoclonal antibody (mAb) escape mutant studies leading to the designation of four antigenic sites in serotype A FMDV. Previous work focused on viruses isolated mainly from Asia, Europe and Latin America. In this study we report on the prediction of epitopes in African serotype A FMDVs and testing of selected epitopes using reverse genetics. Twenty-four capsid amino acid residues were predicted to be of antigenic significance by analysing the capsid sequences (n = 56) using in silico methods, and six residues by correlating capsid sequence with serum–virus neutralization data. The predicted residues were distributed on the surface-exposed capsid regions, VP1–VP3. The significance of residue changes at eight of the predicted epitopes was tested by site-directed mutagenesis using a cDNA clone resulting in the generation of 12 mutant viruses involving seven sites. The effect of the amino acid substitutions on the antigenic nature of the virus was assessed by virus neutralization (VN) test. Mutations at four different positions, namely VP1-43, VP1-45, VP2-191 and VP3-132, led to significant reduction in VN titre (P value = 0.05, 0.05, 0.001 and 0.05, respectively). This is the first time, to our knowledge, that the antigenic regions encompassing amino acids VP1-43 to -45 (equivalent to antigenic site 3 in serotype O), VP2-191 and VP3-132 have been predicted as epitopes and evaluated serologically for serotype A FMDVs. This identifies novel capsid epitopes of recently circulating serotype A FMDVs in East Africa. PMID:25614587

  2. Probing the importance of hydrogen bonds in the active site of the subtilisin nattokinase by site-directed mutagenesis and molecular dynamics simulation.

    Science.gov (United States)

    Zheng, Zhong-liang; Ye, Mao-qing; Zuo, Zhen-yu; Liu, Zhi-gang; Tai, Keng-chang; Zou, Guo-lin

    2006-05-01

    Hydrogen bonds occurring in the catalytic triad (Asp32, His64 and Ser221) and the oxyanion hole (Asn155) are very important to the catalysis of peptide bond hydrolysis by serine proteases. For the subtilisin NK (nattokinase), a bacterial serine protease, construction and analysis of a three-dimensional structural model suggested that several hydrogen bonds formed by four residues function to stabilize the transition state of the hydrolysis reaction. These four residues are Ser33, Asp60, Ser62 and Thr220. In order to remove the effect of these hydrogen bonds, four mutants (Ser33-->Ala33, Asp60-->Ala60, Ser62-->Ala62, and Thr220-->Ala220) were constructed by site-directed mutagenesis. The results of enzyme kinetics indicated that removal of these hydrogen bonds increases the free-energy of the transition state (DeltaDeltaG(T)). We concluded that these hydrogen bonds are more important for catalysis than for binding the substrate, because removal of these bonds mainly affects the kcat but not the K(m) values. A substrate, SUB1 (succinyl-Ala-Ala-Pro-Phe-p-nitroanilide), was used during enzyme kinetics experiments. In the present study we have also shown the results of FEP (free-energy perturbation) calculations with regard to the binding and catalysis reactions for these mutant subtilisins. The calculated difference in FEP also suggested that these four residues are more important for catalysis than binding of the substrate, and the simulated values compared well with the experimental values from enzyme kinetics. The results of MD (molecular dynamics) simulations further demonstrated that removal of these hydrogen bonds partially releases Asp32, His64 and Asn155 so that the stability of the transition state decreases. Another substrate, SUB2 (H-D-Val-Leu-Lys-p-nitroanilide), was used for FEP calculations and MD simulations.

  3. Dissecting the Catalytic Mechanism of Betaine-Homocysteine S-Methyltransferase Using Intrinsic Tryptophan Fluorescence and Site-Directed Mutagenesis

    Energy Technology Data Exchange (ETDEWEB)

    Castro, C.; Gratson, A.A.; Evans, J.C.; Jiracek, J.; Collinsova, M.; Ludwig, M.L.; Garrow, T.A. (ASCR); (UIUC); (Michigan)

    2010-03-05

    Betaine-homocysteine S-methyltransferase (BHMT) is a zinc-dependent enzyme that catalyzes the transfer of a methyl group from glycine betaine (Bet) to homocysteine (Hcy) to form dimethylglycine (DMG) and methionine (Met). Previous studies in other laboratories have indicated that catalysis proceeds through the formation of a ternary complex, with a transition state mimicked by the inhibitor S-({delta}-carboxybutyl)-l-homocysteine (CBHcy). Using changes in intrinsic tryptophan fluorescence to determine the affinity of human BHMT for substrates, products, or CBHcy, we now demonstrate that the enzyme-substrate complex reaches its transition state through an ordered bi-bi mechanism in which Hcy is the first substrate to bind and Met is the last product released. Hcy, Met, and CBHcy bind to the enzyme to form binary complexes with K{sub d} values of 7.9, 6.9, and 0.28 {micro}M, respectively. Binary complexes with Bet and DMG cannot be detected with fluorescence as a probe, but Bet and DMG bind tightly to BHMT-Hcy to form ternary complexes with K{sub d} values of 1.1 and 0.73 {micro}M, respectively. Mutation of each of the seven tryptophan residues in human BHMT provides evidence that the enzyme undergoes two distinct conformational changes that are reflected in the fluorescence of the enzyme. The first is induced when Hcy binds, and the second, when Bet binds. As predicted by the crystal structure of BHMT, the amino acids Trp44 and Tyr160 are involved in binding Bet, and Glu159 in binding Hcy. Replacing these residues by site-directed mutagenesis significantly reduces the catalytic efficiency (V{sub max}/K{sub m}) of the enzyme. Replacing Tyr77 with Phe abolishes enzyme activity.

  4. Endoglucanase enzyme protein engineering by site-directed mutagenesis to improve the enzymatic properties and its expression in yeast

    Directory of Open Access Journals (Sweden)

    Farnaz Nikzad Jamnani

    2013-11-01

    Full Text Available Introduction: Fossil fuel is an expensive and finite energy source. Therefore, the use of renewable energy and biofuels production has been taken into consideration. One of the most suitable raw materials for biofuels is cellulosic compounds. Only microorganisms that contain cellulose enzymes can decompose cellulose and fungus of Trichodermareesei is the most important producer of this enzyme. Methods: In this study the nucleotide sequence of endoglucanase II, which is the starter of attack to cellulose chains, synthesized from amino acid sequence of this enzyme in fungus T.reesei and based on codon usage in the host; yeast Pichiapastoris. To produce optimized enzyme and to decrease the production time and enzyme price, protein engineering will be used. There are some methods to improve the enzymatic properties like site-directed mutagenesis in which amino-acid replacement occur. In this study two mutations were induced in endoglucanase enzyme gene by PCR in which free syctein positions 169 and 393 were switched to valine and histidine respectively. Then this gene was inserted into the pPinka expression vector and cloned in Escherichia coli. The recombinant plasmids were transferred into P.pastoris competent cells with electroporation, recombinant yeasts were cultured in BMMY medium and induced with methanol. Results: The sequencing of gene proved the induction of the two mutations and the presence of recombinant enzyme was confirmed by dinitrosalicilic acid method and SDS-PAGE. Conclusion: Examination of biochemical properties revealed that the two mutations simultaneously decreased catalytic power, thermal stability and increased the affinity of enzyme and substrate.

  5. Proton transfers in a channelrhodopsin-1 studied by Fourier transform infrared (FTIR) difference spectroscopy and site-directed mutagenesis.

    Science.gov (United States)

    Ogren, John I; Yi, Adrian; Mamaev, Sergey; Li, Hai; Spudich, John L; Rothschild, Kenneth J

    2015-05-15

    Channelrhodopsin-1 from the alga Chlamydomonas augustae (CaChR1) is a low-efficiency light-activated cation channel that exhibits properties useful for optogenetic applications such as a slow light inactivation and a red-shifted visible absorption maximum as compared with the more extensively studied channelrhodopsin-2 from Chlamydomonas reinhardtii (CrChR2). Previously, both resonance Raman and low-temperature FTIR difference spectroscopy revealed that unlike CrChR2, CaChR1 under our conditions exhibits an almost pure all-trans retinal composition in the unphotolyzed ground state and undergoes an all-trans to 13-cis isomerization during the primary phototransition typical of other microbial rhodopsins such as bacteriorhodopsin (BR). Here, we apply static and rapid-scan FTIR difference spectroscopy along with site-directed mutagenesis to characterize the proton transfer events occurring upon the formation of the long-lived conducting P2 (380) state of CaChR1. Assignment of carboxylic C=O stretch bands indicates that Asp-299 (homolog to Asp-212 in BR) becomes protonated and Asp-169 (homolog to Asp-85 in BR) undergoes a net change in hydrogen bonding relative to the unphotolyzed ground state of CaChR1. These data along with earlier FTIR measurements on the CaChR1 → P1 transition are consistent with a two-step proton relay mechanism that transfers a proton from Glu-169 to Asp-299 during the primary phototransition and from the Schiff base to Glu-169 during P2 (380) formation. The unusual charge neutrality of both Schiff base counterions in the P2 (380) conducting state suggests that these residues may function as part of a cation selective filter in the open channel state of CaChR1 as well as other low-efficiency ChRs. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Site-directed mutagenesis in Petunia × hybrida protoplast system using direct delivery of purified recombinant Cas9 ribonucleoproteins.

    Science.gov (United States)

    Subburaj, Saminathan; Chung, Sung Jin; Lee, Choongil; Ryu, Seuk-Min; Kim, Duk Hyoung; Kim, Jin-Soo; Bae, Sangsu; Lee, Geung-Joo

    2016-07-01

    Site-directed mutagenesis of nitrate reductase genes using direct delivery of purified Cas9 protein preassembled with guide RNA produces mutations efficiently in Petunia × hybrida protoplast system. The clustered, regularly interspaced, short palindromic repeat (CRISPR)-CRISPR associated endonuclease 9 (CRISPR/Cas9) system has been recently announced as a powerful molecular breeding tool for site-directed mutagenesis in higher plants. Here, we report a site-directed mutagenesis method targeting Petunia nitrate reductase (NR) gene locus. This method could create mutations efficiently using direct delivery of purified Cas9 protein and single guide RNA (sgRNA) into protoplast cells. After transient introduction of RNA-guided endonuclease (RGEN) ribonucleoproteins (RNPs) with different sgRNAs targeting NR genes, mutagenesis at the targeted loci was detected by T7E1 assay and confirmed by targeted deep sequencing. T7E1 assay showed that RGEN RNPs induced site-specific mutations at frequencies ranging from 2.4 to 21 % at four different sites (NR1, 2, 4 and 6) in the PhNR gene locus with average mutation efficiency of 14.9 ± 2.2 %. Targeted deep DNA sequencing revealed mutation rates of 5.3-17.8 % with average mutation rate of 11.5 ± 2 % at the same NR gene target sites in DNA fragments of analyzed protoplast transfectants. Further analysis from targeted deep sequencing showed that the average ratio of deletion to insertion produced collectively by the four NR-RGEN target sites (NR1, 2, 4, and 6) was about 63:37. Our results demonstrated that direct delivery of RGEN RNPs into protoplast cells of Petunia can be exploited as an efficient tool for site-directed mutagenesis of genes or genome editing in plant systems.

  7. Mutant fatty acid desaturase and methods for directed mutagenesis

    Science.gov (United States)

    Shanklin, John [Shoreham, NY; Whittle, Edward J [Greenport, NY

    2008-01-29

    The present invention relates to methods for producing fatty acid desaturase mutants having a substantially increased activity towards substrates with fewer than 18 carbon atom chains relative to an unmutagenized precursor desaturase having an 18 carbon chain length specificity, the sequences encoding the desaturases and to the desaturases that are produced by the methods. The present invention further relates to a method for altering a function of a protein, including a fatty acid desaturase, through directed mutagenesis involving identifying candidate amino acid residues, producing a library of mutants of the protein by simultaneously randomizing all amino acid candidates, and selecting for mutants which exhibit the desired alteration of function. Candidate amino acids are identified by a combination of methods. Enzymatic, binding, structural and other functions of proteins can be altered by the method.

  8. A wheat cold resistance mutant derived from space mutagenesis

    International Nuclear Information System (INIS)

    Li Peng; Sun Mingzhu; Zhang Fengyun; Gao Guoqiang; Qiu Denglin; Li Xinhua

    2012-01-01

    A cold resistance mutant, obtained by spaceflight mutagenesis on the seeds of wheat variety Han6172, and the DNA of cold resistance mutant and contrast Han6172 were compared by SRAP technique. 380 pairs of primers were screened, 6 pairs of them had polymorphisms between mutant and contrast, the rate was 1.58%, and this data indicated that there are no obvious DNA differences between mutant and contrast Six specific fragments were obtained, 3 fragments of them were amplified in mutant. Homology analysis in GenBank showed that Me3-Em7-Mt, Me4-Em11-CK, Me7-Em19-CK and Me6-Em9-Mt all had homologous sequences with wheat chromosome 3B-specific BAC library, and this result indicated that the gene and regulator sequences associated with mutant cold resistance might locate on 3B chromosome. It was speculated that space mutation induced the mutation of 3B chromosome primary structure, and influenced the expressions of cold resistance genes, which resulted in the mutation of cold resistance ability. (authors)

  9. A wheat cold resistance mutant derived from space mutagenesis

    International Nuclear Information System (INIS)

    Li Peng; Sun Mingzhu; Zhang Fengyun; Gao Guoqiang; Qiu Denglin; Li Xinhua

    2011-01-01

    A cold resistance mutant, obtained by spaceflight mutagenesis on the seeds of wheat variety Han6172, and the DNA of cold resistance mutant and contrast Han6172 were compared by SRAP technique. 380 pairs of primers were screened, 6 pairs of them had polymorphisms between mutant and contrast, the rate was 1.58%, and this data indicated that there are no obvious DNA differences between mutant and contrast. Six specific fragments were obtained, 3 fragments of them were amplified in mutant. Homology analysis in GenBank showed that Me3-Em7-Mt, Me4-Em11-CK, Me7-Em19-CK and Me6-Em9-Mt all had homologous sequences with wheat chromosome 3B-specific BAC library, and this result indicated that the gene and regulator sequences associated with mutant cold resistance might locate on 3B chromosome. It was speculated that space mutation induced the mutation of 3B chromosome primary structure, and influenced the expressions of cold resistance genes, which resulted in the mutation of cold resistance ability. (authors)

  10. Evolution of Flavone Synthase I from Parsley Flavanone 3β-Hydroxylase by Site-Directed Mutagenesis1[W][OA

    Science.gov (United States)

    Gebhardt, Yvonne Helen; Witte, Simone; Steuber, Holger; Matern, Ulrich; Martens, Stefan

    2007-01-01

    Flavanone 3β-hydroxylase (FHT) and flavone synthase I (FNS I) are 2-oxoglutarate-dependent dioxygenases with 80% sequence identity, which catalyze distinct reactions in flavonoid biosynthesis. However, FNS I has been reported exclusively from a few Apiaceae species, whereas FHTs are more abundant. Domain-swapping experiments joining the N terminus of parsley (Petroselinum crispum) FHT with the C terminus of parsley FNS I and vice versa revealed that the C-terminal portion is not essential for FNS I activity. Sequence alignments identified 26 amino acid substitutions conserved in FHT versus FNS I genes. Homology modeling, based on the related anthocyanidin synthase structure, assigned seven of these amino acids (FHT/FNS I, M106T, I115T, V116I, I131F, D195E, V200I, L215V, and K216R) to the active site. Accordingly, FHT was modified by site-directed mutagenesis, creating mutants encoding from one to seven substitutions, which were expressed in yeast (Saccharomyces cerevisiae) for FNS I and FHT assays. The exchange I131F in combination with either M106T and D195E or L215V and K216R replacements was sufficient to confer some FNS I side activity. Introduction of all seven FNS I substitutions into the FHT sequence, however, caused a nearly complete change in enzyme activity from FHT to FNS I. Both FHT and FNS I were proposed to initially withdraw the β-face-configured hydrogen from carbon-3 of the naringenin substrate. Our results suggest that the 7-fold substitution affects the orientation of the substrate in the active-site pocket such that this is followed by syn-elimination of hydrogen from carbon-2 (FNS I reaction) rather than the rebound hydroxylation of carbon-3 (FHT reaction). PMID:17535823

  11. Functional role of proteolytic cleavage at arginine-275 of human tissue plasminogen activator as assessed by site-directed mutagenesis

    International Nuclear Information System (INIS)

    Tate, K.M.; Higgins, D.L.; Holmes, W.E.; Winkler, M.E.; Heyneker, H.L.; Vehar, G.A.

    1987-01-01

    Activation of the zymogen form of a serine protease is associated with a conformational change that follows proteolysis at a specific site. Tissue-type plasminogen activator (t-PA) is homologous to mammalian serine proteases and contains an apparent activation cleavage site at arginine-275. To clarify the functional consequences of cleavage at arginine-275 of t-PA, site-specific mutagenesis was performed to convert arginine-275 to a glutamic acid. The mutant enzyme (designated Arg-275 → Glu t-PA) could be converted to the two-chain form by Staphylococcus aureus V8 protease but not by plasmin. The one-chain form was 8 times less active against the tripeptide substrate H-D-isoleucyl-L-prolyl-L-arginine-rho-nitroanilide (S-2288), and the ability of the enzyme to activate plasminogen in the absence of fibrinogen was reduced 20-50 times compared to the two-chain form. In contrast, one-chain Arg-275 → Glu t-PA has equal activity to the two-chain form when assayed in the presence of physiological levels of fibrinogen and plasminogen. Fibrin bound significantly more of the one-chain form of t-PA than the two-chain form for both the wild-type and mutated enzymes. One- and two-chain forms of the wild-type and mutated plasminogen activators slowly formed complexes with plasma protease inhibitors, although the one-chain forms showed decreased complex formation with → 2 -macroglobulin. The one-chain form of t-PA therefore is fully functional under physiologic conditions and has a increased fibrin binding compared to the two-chain form

  12. Creating Sunflower Mutant Lines (Helianthus Annuus L.) Using Induced Mutagenesis

    International Nuclear Information System (INIS)

    Encheva, J.

    2009-01-01

    Immature sunflower zygotic embryos of sunflower fertility restorer line 374 R were treated with ultrasound and gamma radiation before plating embryos to culture medium. All plants were isolated and self-pollinated for several generations. New sunflower forms with inherited morphological and biochemical changes were obtained. The genetic changes occurring during the mutation procedure included fourteen morphological and biochemical characters. In comparison to the check line 374 R, decreasing of the mean value of the indexes was registered for 33 % of the total number of characters and vise verse, significant increasing was observed for 60 %. Mutation for resistance to the local population of Orobanche cumana race A-E was obtained from the susceptible Bulgarian control line 374 R. Two investigated mutant lines possessed 100 % resistance to Orobanche and stable inheritance in the next generations. Our results showed that induced mutagenesis in sunflower can be successfully used to develop new lines useful for heterosis breeding

  13. From Green to Blue: Site-Directed Mutagenesis of the Green Fluorescent Protein to Teach Protein Structure-Function Relationships

    Science.gov (United States)

    Giron, Maria D.; Salto, Rafael

    2011-01-01

    Structure-function relationship studies in proteins are essential in modern Cell Biology. Laboratory exercises that allow students to familiarize themselves with basic mutagenesis techniques are essential in all Genetic Engineering courses to teach the relevance of protein structure. We have implemented a laboratory course based on the…

  14. Molecular Determinants of Mutant Phenotypes, Inferred from Saturation Mutagenesis Data.

    Science.gov (United States)

    Tripathi, Arti; Gupta, Kritika; Khare, Shruti; Jain, Pankaj C; Patel, Siddharth; Kumar, Prasanth; Pulianmackal, Ajai J; Aghera, Nilesh; Varadarajan, Raghavan

    2016-11-01

    Understanding how mutations affect protein activity and organismal fitness is a major challenge. We used saturation mutagenesis combined with deep sequencing to determine mutational sensitivity scores for 1,664 single-site mutants of the 101 residue Escherichia coli cytotoxin, CcdB at seven different expression levels. Active-site residues could be distinguished from buried ones, based on their differential tolerance to aliphatic and charged amino acid substitutions. At nonactive-site positions, the average mutational tolerance correlated better with depth from the protein surface than with accessibility. Remarkably, similar results were observed for two other small proteins, PDZ domain (PSD95 pdz3 ) and IgG-binding domain of protein G (GB1). Mutational sensitivity data obtained with CcdB were used to derive a procedure for predicting functional effects of mutations. Results compared favorably with those of two widely used computational predictors. In vitro characterization of 80 single, nonactive-site mutants of CcdB showed that activity in vivo correlates moderately with thermal stability and solubility. The inability to refold reversibly, as well as a decreased folding rate in vitro, is associated with decreased activity in vivo. Upon probing the effect of modulating expression of various proteases and chaperones on mutant phenotypes, most deleterious mutants showed an increased in vivo activity and solubility only upon over-expression of either Trigger factor or SecB ATP-independent chaperones. Collectively, these data suggest that folding kinetics rather than protein stability is the primary determinant of activity in vivo This study enhances our understanding of how mutations affect phenotype, as well as the ability to predict fitness effects of point mutations. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  15. Site-directed mutagenesis and molecular modelling studies show the role of Asp82 and cysteines in rat acylase 1, a member of the M20 family

    International Nuclear Information System (INIS)

    Herga, Sameh; Brutus, Alexandre; Vitale, Rosa Maria; Miche, Helene; Perrier, Josette; Puigserver, Antoine; Scaloni, Andrea; Giardina, Thierry

    2005-01-01

    Acylase 1 from rat kidney catalyzes the hydrolysis of acyl-amino acids. Sequence alignment has shown that this enzyme belongs to the metalloprotein family M20. Site-directed mutagenesis experiments led to the identification of one functionally important amino acid residue located near one of the zinc coordinating residues, which play a critical role in the enzymatic activity. The D82N- and D82E-substituted forms showed no significant activity and very low activity, respectively, along with a loss of zinc coordination. Molecular modelling investigations indicated a putative role of D82 in ensuring a proper protonation of catalytic histidine. In addition, none of the five cysteine residues present in the rat kidney acylase 1 sequence seemed involved in the catalytic process: the loss of activity induced by the C294A substitution was probably due to a conformational change in the 3D structure

  16. Structure-guided approach identifies a novel class of HIV-1 ribonuclease H inhibitors: binding mode insights through magnesium complexation and site-directed mutagenesis studies

    DEFF Research Database (Denmark)

    Poongavanam, Vasanthanathan; Corona, Angela; Steinmann, Casper

    2018-01-01

    is a long and expensive process that can be speeded up by in silico methods. In the present study, a structure-guided screening is coupled with a similarity-based search on the Specs database to identify a new class of HIV-1 RNase H inhibitors. Out of the 45 compounds selected for experimental testing, 15...... inhibited the RNase H function below 100 μM with three hits exhibiting IC50 values active compound, AA, inhibits HIV-1 RNase H with an IC50 of 5.1 μM and exhibits a Mg-independent mode of inhibition. Site-directed mutagenesis studies provide valuable insight into the binding mode of newly...

  17. A saxitoxin-binding aptamer with higher affinity and inhibitory activity optimized by rational site-directed mutagenesis and truncation.

    Science.gov (United States)

    Zheng, X; Hu, B; Gao, S X; Liu, D J; Sun, M J; Jiao, B H; Wang, L H

    2015-07-01

    Saxitoxin (STX), a member of the family of paralytic shellfish poisoning toxins, poses toxicological and ecotoxicological risks. To develop an analytical recognition element for STX, a DNA aptamer (APT(STX1)) was previously discovered via an iterative process known as Systematic Evolution of Ligands by Exponential Enrichment (SELEX) by Handy et al. Our study focused on generating an improved aptamer based on APT(STX1) through rational site-directed mutation and truncation. In this study, we generated the aptamer, M-30f, with a 30-fold higher affinity for STX compared with APT(STX1). The Kd value for M-30f was 133 nM, which was calculated by Bio-Layer Interferometry. After optimization, we detected and compared the interaction of STX with aptamers (APT(STX1) or M-30f) through several techniques (ELISA, cell bioassay, and mouse bioassay). Both aptamers' STX-binding ability was demonstrated in all three methods. Moreover, M-30f performs better than its parent sequence with higher suppressive activity against STX. As a molecular recognition element, M-30f has good prospects for practical application. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Improved efficacy of soluble human receptor activator of nuclear factor kappa B (RANK) fusion protein by site-directed mutagenesis.

    Science.gov (United States)

    Son, Young Jun; Han, Jihye; Lee, Jae Yeon; Kim, HaHyung; Chun, Taehoon

    2015-06-01

    Soluble human receptor activator of nuclear factor kappa B fusion immunoglobulin (hRANK-Ig) has been considered as one of the therapeutic agents to treat osteoporosis or diseases associated with bone destruction by blocking the interaction between RANK and the receptor activator of nuclear factor kappa B ligand (RANKL). However, no scientific record showing critical amino acid residues within the structural interface between the human RANKL and RANK complex is yet available. In this study, we produced several mutants of hRANK-Ig by replacement of amino acid residue(s) and tested whether the mutants had increased binding affinity to human RANKL. Based on the results from flow cytometry and surface plasmon resonance analyses, the replacement of E(125) with D(125), or E(125) and C(127) with D(125) and F(127) within loop 3 of cysteine-rich domain 3 of hRANK-Ig increases binding affinity to human RANKL over the wild-type hRANK-Ig. This result may provide the first example of improvement in the efficacy of hRANK-Ig by protein engineering and may give additional information to understand a more defined structural interface between hRANK and RANKL.

  19. Mapping the heparin-binding site of the BMP antagonist gremlin by site-directed mutagenesis based on predictive modelling.

    Science.gov (United States)

    Tatsinkam, Arnold Junior; Mulloy, Barbara; Rider, Christopher C

    2015-08-15

    Gremlin is a member of the CAN (cerberus and DAN) family of secreted BMP (bone morphogenetic protein) antagonists and also an agonist of VEGF (vascular endothelial growth factor) receptor-2. It is critical in limb skeleton and kidney development and is re-expressed during tissue fibrosis. Gremlin binds strongly to heparin and heparan sulfate and, in the present study, we sought to investigate its heparin-binding site. In order to explore a putative non-contiguous binding site predicted by computational molecular modelling, we substituted a total of 11 key arginines and lysines located in three basic residue sequence clusters with homologous sequences from cerberus and DAN (differential screening selected gene abberative in neuroblastoma), CAN proteins which lack basic residues in these positions. A panel of six Myc-tagged gremlin mutants, MGR-1-MGR-6 (MGR, mutant gremlin), each containing different combinations of targeted substitutions, all showed markedly reduced affinity for heparin as demonstrated by their NaCl elution on heparin affinity chromatography, thus verifying our predictions. Both MGR-5 and MGR-6 retained BMP-4-binding activity comparable to that of wild-type gremlin. Low-molecular-mass heparin neither promoted nor inhibited BMP-4 binding. Finally, glutaraldehyde cross-linking demonstrated that gremlin forms non-covalent dimers, similar behaviour to that of DAN and also PRDC (protein related to cerberus and DAN), another CAN protein. The resulting dimer would possess two heparin-binding sites, each running along an exposed surface on the second β-strand finger loop of one of the monomers. © 2015 Authors; published by Portland Press Limited.

  20. Effect of site-directed mutagenesis of His373 of yeast enolase on some of its physical and enzymatic properties.

    Science.gov (United States)

    Brewer, J M; Glover, C V; Holland, M J; Lebioda, L

    1997-06-20

    The X-ray structure of yeast enolase shows His373 interacting with a water molecule also held by residues Glu168 and Glu211. The water molecule is suggested to participate in the catalytic mechanism (Lebioda, L. and Stec, B. (1991) Biochemistry 30, 2817-2822). Replacement of His373 with asparagine (H373N enolase) or phenylalanine (H373F enolase) reduces enzymatic activity to ca. 10% and 0.0003% of the native enzyme activity, respectively. H373N enolase exhibits a reduced Km for the substrate, 2-phosphoglycerate, and produces the same absorbance changes in the chromophoric substrate analogues TSP1 and AEP1, relative to native enolase. H373F enolase binds AEP less strongly, producing a smaller absorbance change than native enolase, and reacts very little with TSP. H373F enolase dissociates to monomers in the absence of substrate; H373N enolase subunit dissociation is less than H373F enolase but more than native enolase. Substrate and Mg2+ increase subunit association in both mutants. Differential scanning calorimetric experiments indicate that the interaction with substrate that stabilizes enolase to thermal denaturation involves His373. We suggest that the function of His373 in the enolase reaction may involve hydrogen bonding rather than acid/base catalysis, through interaction with the Glu168/Glu211/H2O system, which produces removal or addition of hydroxyl at carbon-3 of the substrate.

  1. Use of molecular modeling and site-directed mutagenesis to define the structural basis for the immune response to carbohydrate xenoantigens

    Directory of Open Access Journals (Sweden)

    Yew Margaret

    2007-03-01

    Full Text Available Abstract Background Natural antibodies directed at carbohydrates reject porcine xenografts. They are initially expressed in germline configuration and are encoded by a small number of structurally-related germline progenitors. The transplantation of genetically-modified pig organs prevents hyperacute rejection, but delayed graft rejection still occurs, partly due to humoral responses. IgVH genes encoding induced xenoantibodies are predominantly, not exclusively, derived from germline progenitors in the VH3 family. We have previously identified the immunoglobulin heavy chain genes encoding VH3 xenoantibodies in patients and primates. In this manuscript, we complete the structural analysis of induced xenoantibodies by identifying the IgVH genes encoding the small proportion of VH4 xenoantibodies and the germline progenitors encoding xenoantibody light chains. This information has been used to define the xenoantibody/carbohydrate binding site using computer-simulated modeling. Results The VH4-59 gene encodes antibodies in the VH4 family that are induced in human patients mounting active xenoantibody responses. The light chain of xenoantibodies is encoded by DPK5 and HSIGKV134. The structural information obtained by sequencing analysis was used to create computer-simulated models. Key contact sites for xenoantibody/carbohydrate interaction for VH3 family xenoantibodies include amino acids in sites 31, 33, 50, 57, 58 and the CDR3 region of the IgVH gene. Site-directed mutagenesis indicates that mutations in predicted contact sites alter binding to carbohydrate xenoantigens. Computer-simulated modeling suggests that the CDR3 region directly influences binding. Conclusion Xenoantibodies induced during early and delayed xenograft responses are predominantly encoded by genes in the VH3 family, with a small proportion encoded by VH4 germline progenitors. This restricted group can be identified by the unique canonical structure of the light chain, heavy

  2. A simple, flexible and efficient PCR-fusion/Gateway cloning procedure for gene fusion, site-directed mutagenesis, short sequence insertion and domain deletions and swaps

    Directory of Open Access Journals (Sweden)

    Etchells J Peter

    2009-10-01

    Full Text Available Abstract Background The progress and completion of various plant genome sequencing projects has paved the way for diverse functional genomic studies that involve cloning, modification and subsequent expression of target genes. This requires flexible and efficient procedures for generating binary vectors containing: gene fusions, variants from site-directed mutagenesis, addition of protein tags together with domain swaps and deletions. Furthermore, efficient cloning procedures, ideally high throughput, are essential for pyramiding of multiple gene constructs. Results Here, we present a simple, flexible and efficient PCR-fusion/Gateway cloning procedure for construction of binary vectors for a range of gene fusions or variants with single or multiple nucleotide substitutions, short sequence insertions, domain deletions and swaps. Results from selected applications of the procedure which include ORF fusion, introduction of Cys>Ser mutations, insertion of StrepII tag sequence and domain swaps for Arabidopsis secondary cell wall AtCesA genes are demonstrated. Conclusion The PCR-fusion/Gateway cloning procedure described provides an elegant, simple and efficient solution for a wide range of diverse and complicated cloning tasks. Through streamlined cloning of sets of gene fusions and modification variants into binary vectors for systematic functional studies of gene families, our method allows for efficient utilization of the growing sequence and expression data.

  3. Characterization of CYP154F1 from Thermobifida fusca YX and Extension of Its Substrate Spectrum by Site-Directed Mutagenesis.

    Science.gov (United States)

    Rühlmann, Ansgar; Groth, Georg; Urlacher, Vlada B

    2018-03-02

    Previous studies on cytochrome P450 monooxygenases (CYP) from family 154 reported their substrate promiscuity and high activity. Hence, herein, the uncharacterized family member CYP154F1 is described. Screening of more than 100 organic compounds revealed that CYP154F1 preferably accepts small linear molecules with a carbon chain length of 8-10 atoms. In contrast to thoroughly characterized CYP154E1, CYP154F1 has a much narrower substrate spectrum and lower activity. A structural alignment of homology models of CYP154F1 and CYP154E1 revealed few differences in the active sites of both family members. By gradual mutagenesis of the CYP154F1 active site towards those of CYP154E1, a key residue accounting for the different activities of both enzymes was identified at position 234. Substitution of T234 for large hydrophobic amino acids led to up to tenfold higher conversion rates of small substrates, such as geraniol. Replacement of T234 by small hydrophobic amino acids, valine or alanine, resulted in mutants with extended substrate spectra. These mutants are able to convert some of the larger substrates of CYP154E1, such as (E)-stilbene and (+)-nootkatone. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Novel Escherichia coli umuD′ Mutants: Structure-Function Insights into SOS Mutagenesis

    Science.gov (United States)

    McLenigan, Mary; Peat, Thomas S.; Frank, Ekaterina G.; McDonald, John P.; Gonzalez, Martín; Levine, Arthur S.; Hendrickson, Wayne A.; Woodgate, Roger

    1998-01-01

    Although it has been 10 years since the discovery that the Escherichia coli UmuD protein undergoes a RecA-mediated cleavage reaction to generate mutagenically active UmuD′, the function of UmuD′ has yet to be determined. In an attempt to elucidate the role of UmuD′ in SOS mutagenesis, we have utilized a colorimetric papillation assay to screen for mutants of a hydroxylamine-treated, low-copy-number umuD′ plasmid that are unable to promote SOS-dependent spontaneous mutagenesis. Using such an approach, we have identified 14 independent umuD′ mutants. Analysis of these mutants revealed that two resulted from promoter changes which reduced the expression of wild-type UmuD′, three were nonsense mutations that resulted in a truncated UmuD′ protein, and the remaining nine were missense alterations. In addition to the hydroxylamine-generated mutants, we have subcloned the mutations found in three chromosomal umuD1, umuD44, and umuD77 alleles into umuD′. All 17 umuD′ mutants resulted in lower levels of SOS-dependent spontaneous mutagenesis but varied in the extent to which they promoted methyl methanesulfonate-induced mutagenesis. We have attempted to correlate these phenotypes with the potential effect of each mutation on the recently described structure of UmuD′. PMID:9721309

  5. Uvm mutants of Escherichia coli K 12 deficient in UV mutagenesis. Pt. 1

    International Nuclear Information System (INIS)

    Steinborn, G.

    1978-01-01

    Selection for defective reversion induction, after UV treatment of E. coli K 12, yielded uvm mutants. These mutants exhibited highly reduced or no UV mutability for all loci tested although they were moderately and normally mutable by X-rays and EMS, respectively. Uvm mutations confer only a slight sensitivity to killing by UV and X-rays and no clear sensitivity to the lethal effect of HN2, EMS or MMS. Growth and viability of untreated uvm cells were normal. The properties of uvm mutants are discussed in relation to those of other relevant mutant types and to some actual problems of induced mutagenesis. (orig.) 891 AJ [de

  6. Sodium azide mutagenesis in wheat: Mutants with golden glumes

    International Nuclear Information System (INIS)

    Siddiqui, K.A.; Jafri, K.A.; Arain, M.A.

    1989-01-01

    In bread wheat, Triticum aestivum L. (2n=6x=42, AABBDD), detection of induced mutations is hampered by the presence of duplicate and triplicate genes. Induced changes in spike characteristics are known, but mutants with changed glume colour do not seem to have been reported. Physical mutagens such as gamma rays, thermal neutrons and fast neutrons, and chemical mutagens like EMS, El, dES and NEH have been extensively used for induction of mutations in bread wheat but it seems as if these mutagens did not induce mutants with changed glume colour. We used sodium azide for inducing mutations in the widely adapted cultivar 'Sonalika', which is characterized by brown glume colour. Presoaked seeds were treated with 0.2M sodium azide for 3 hours. Three spikes were harvested from each M 1 plant. M 2 generation was space-planted as spike progeny. We were successful in identifying 3 mutants with golden glumes. The mutants resemble 'Sonalika' in other spike characteristics. The mutants glume colour was confirmed in M 3 . The mutants were also evaluated for agronomically important characteristics. Some characters were significantly different from the parent. Glume colours may be useful as genetic markers since such characters are less influenced by the environment. Our investigation confirms that also agronomically useful genetic variation may be readily induced in bread wheat through sodium azide

  7. Conformational heterogeneity of the bacteriopheophytin electron acceptor HA in reaction centers from Rhodopseudomonas viridis revealed by Fourier transform infrared spectroscopy and site-directed mutagenesis.

    Science.gov (United States)

    Breton, J; Bibikova, M; Oesterhelt, D; Nabedryk, E

    1999-08-31

    The light-induced Fourier transform infrared (FTIR) difference spectra corresponding to the photoreduction of either the HA bacteriopheophytin electron acceptor (HA-/HA spectrum) or the QA primary quinone (QA-/QA spectrum) in photosynthetic reaction centers (RCs) of Rhodopseudomonas viridis are reported. These spectra have been compared for wild-type (WT) RCs and for two site-directed mutants in which the proposed interactions between the carbonyls on ring V of HA and the RC protein have been altered. In the mutant EQ(L104), the putative hydrogen bond between the protein and the 9-keto C=O of HA should be affected by changing Glu L104 to a Gln. In the mutant WF(M250), the van der Waals interactions between Trp M250 and the 10a-ester C=O of HA should be modified. The characteristic effects of both mutations on the FTIR spectra support the proposed interactions and allow the IR modes of the 9-keto and 10a-ester C=O of HA and HA- to be assigned. Comparison of the HA-/HA and QA-/QA spectra leads us to conclude that the QA-/QA IR signals in the spectral range above 1700 cm-1 are largely dominated by contributions from the electrostatic response of the 10a-ester C=O mode of HA upon QA photoreduction. A heterogeneity in the conformation of the 10a-ester C=O mode of HA in WT RCs, leading to three distinct populations of HA, appears to be related to differences in the hydrogen-bonding interactions between the carbonyls of ring V of HA and the RC protein. The possibility that this structural heterogeneity is related to the observed multiexponential kinetics of electron transfer and the implications for primary processes are discussed. The effect of 1H/2H exchange on the QA-/QA spectra of the WT and mutant RCs shows that neither Glu L104 nor any other exchangeable carboxylic residue changes appreciably its protonation state upon QA reduction.

  8. Selection of gamma-ray induced salt tolerant rice mutants by in vitro mutagenesis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Sub; Chun, Jae Beom; Lee, Kyung Jun; Kim, Jin Baek; Kim, Sang Hoon; Yun, Song Jong; Kang, Si Yong [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2010-06-15

    The present study had been performed to select the salt tolerant rice mutant lines through an in vivo and in vitro mutagenesis with a gamma-ray. The physiological responses such as MDA and chlorophyll of the selected salt mutant lines were investigated under salt stress. For the selection of the salt tolerant rice mutants by in vitro mutagenesis with gamma-ray, we conducted a second selection procedure with 1,500 mutant lines induced from the original cv. Dongan (wild-type, WT): Ist, selection under a nutrient solution with 171 mM NaCI: 2nd, selection under in vitro conditions. Based on a growth comparison of the entries, out of mutant lines, the putative 2 salt tolerant rice mutant lines, ST-495 and ST-532, were selected. The 2 ST-lines had a lower malonaldehyde (MDA) contents than wild-type (WT) during salt stress. The survival rate of the WT, ST-495 and ST-532 were 36.6%, 70% and 50% in 171 mM NaCI, respectively. The chlorophyll and carotenoid contents were decreased more in a WT plant than the two selected mutant lines. These rice mutant lines will be released for cultivation at the reclaimed land and used as a control plot for genetic research about salt tolerance.

  9. Selection of gamma-ray induced salt tolerant rice mutants by in vitro mutagenesis

    International Nuclear Information System (INIS)

    Kim, Dong Sub; Chun, Jae Beom; Lee, Kyung Jun; Kim, Jin Baek; Kim, Sang Hoon; Yun, Song Jong; Kang, Si Yong

    2010-01-01

    The present study had been performed to select the salt tolerant rice mutant lines through an in vivo and in vitro mutagenesis with a gamma-ray. The physiological responses such as MDA and chlorophyll of the selected salt mutant lines were investigated under salt stress. For the selection of the salt tolerant rice mutants by in vitro mutagenesis with gamma-ray, we conducted a second selection procedure with 1,500 mutant lines induced from the original cv. Dongan (wild-type, WT): Ist, selection under a nutrient solution with 171 mM NaCI: 2nd, selection under in vitro conditions. Based on a growth comparison of the entries, out of mutant lines, the putative 2 salt tolerant rice mutant lines, ST-495 and ST-532, were selected. The 2 ST-lines had a lower malonaldehyde (MDA) contents than wild-type (WT) during salt stress. The survival rate of the WT, ST-495 and ST-532 were 36.6%, 70% and 50% in 171 mM NaCI, respectively. The chlorophyll and carotenoid contents were decreased more in a WT plant than the two selected mutant lines. These rice mutant lines will be released for cultivation at the reclaimed land and used as a control plot for genetic research about salt tolerance

  10. Probing the ubiquinol-binding site of recombinant Sauromatum guttatum alternative oxidase expressed in E. coli membranes through site-directed mutagenesis.

    Science.gov (United States)

    Young, Luke; May, Benjamin; Pendlebury-Watt, Alice; Shearman, Julia; Elliott, Catherine; Albury, Mary S; Shiba, Tomoo; Inaoka, Daniel Ken; Harada, Shigeharu; Kita, Kiyoshi; Moore, Anthony L

    2014-07-01

    In the present paper we have investigated the effect of mutagenesis of a number of highly conserved residues (R159, D163, L177 and L267) which we have recently shown to line the hydrophobic inhibitor/substrate cavity in the alternative oxidases (AOXs). Measurements of respiratory activity in rSgAOX expressed in Escherichia coli FN102 membranes indicate that all mutants result in a decrease in maximum activity of AOX and in some cases (D163 and L177) a decrease in the apparent Km (O2). Of particular importance was the finding that when the L177 and L267 residues, which appear to cause a bottleneck in the hydrophobic cavity, are mutated to alanine the sensitivity to AOX antagonists is reduced. When non-AOX anti-malarial inhibitors were also tested against these mutants widening the bottleneck through removal of isobutyl side chain allowed access of these bulkier inhibitors to the active-site and resulted in inhibition. Results are discussed in terms of how these mutations have altered the way in which the AOX's catalytic cycle is controlled and since maximum activity is decreased we predict that such mutations result in an increase in the steady state level of at least one O2-derived AOX intermediate. Such mutations should therefore prove to be useful in future stopped-flow and electron paramagnetic resonance experiments in attempts to understand the catalytic cycle of the alternative oxidase which may prove to be important in future rational drug design to treat diseases such as trypanosomiasis. Furthermore since single amino acid mutations in inhibitor/substrate pockets have been found to be the cause of multi-drug resistant strains of malaria, the decrease in sensitivity to main AOX antagonists observed in the L-mutants studied in this report suggests that an emergence of drug resistance to trypanosomiasis may also be possible. Therefore we suggest that the design of future AOX inhibitors should have structures that are less reliant on the orientation by the two

  11. Pilot study of large-scale production of mutant pigs by ENU mutagenesis.

    Science.gov (United States)

    Hai, Tang; Cao, Chunwei; Shang, Haitao; Guo, Weiwei; Mu, Yanshuang; Yang, Shulin; Zhang, Ying; Zheng, Qiantao; Zhang, Tao; Wang, Xianlong; Liu, Yu; Kong, Qingran; Li, Kui; Wang, Dayu; Qi, Meng; Hong, Qianlong; Zhang, Rui; Wang, Xiupeng; Jia, Qitao; Wang, Xiao; Qin, Guosong; Li, Yongshun; Luo, Ailing; Jin, Weiwu; Yao, Jing; Huang, Jiaojiao; Zhang, Hongyong; Li, Menghua; Xie, Xiangmo; Zheng, Xuejuan; Guo, Kenan; Wang, Qinghua; Zhang, Shibin; Li, Liang; Xie, Fei; Zhang, Yu; Weng, Xiaogang; Yin, Zhi; Hu, Kui; Cong, Yimei; Zheng, Peng; Zou, Hailong; Xin, Leilei; Xia, Jihan; Ruan, Jinxue; Li, Hegang; Zhao, Weiming; Yuan, Jing; Liu, Zizhan; Gu, Weiwang; Li, Ming; Wang, Yong; Wang, Hongmei; Yang, Shiming; Liu, Zhonghua; Wei, Hong; Zhao, Jianguo; Zhou, Qi; Meng, Anming

    2017-06-22

    N-ethyl-N-nitrosourea (ENU) mutagenesis is a powerful tool to generate mutants on a large scale efficiently, and to discover genes with novel functions at the whole-genome level in Caenorhabditis elegans, flies, zebrafish and mice, but it has never been tried in large model animals. We describe a successful systematic three-generation ENU mutagenesis screening in pigs with the establishment of the Chinese Swine Mutagenesis Consortium. A total of 6,770 G1 and 6,800 G3 pigs were screened, 36 dominant and 91 recessive novel pig families with various phenotypes were established. The causative mutations in 10 mutant families were further mapped. As examples, the mutation of SOX10 (R109W) in pig causes inner ear malfunctions and mimics human Mondini dysplasia, and upregulated expression of FBXO32 is associated with congenital splay legs. This study demonstrates the feasibility of artificial random mutagenesis in pigs and opens an avenue for generating a reservoir of mutants for agricultural production and biomedical research.

  12. Functional mapping of the fission yeast DNA polymerase δ B-subunit Cdc1 by site-directed and random pentapeptide insertion mutagenesis

    Directory of Open Access Journals (Sweden)

    Gray Fiona C

    2009-08-01

    Full Text Available Abstract Background DNA polymerase δ plays an essential role in chromosomal DNA replication in eukaryotic cells, being responsible for synthesising the bulk of the lagging strand. In fission yeast, Pol δ is a heterotetrameric enzyme comprising four evolutionarily well-conserved proteins: the catalytic subunit Pol3 and three smaller subunits Cdc1, Cdc27 and Cdm1. Pol3 binds directly to the B-subunit, Cdc1, which in turn binds the C-subunit, Cdc27. Human Pol δ comprises the same four subunits, and the crystal structure was recently reported of a complex of human p50 and the N-terminal domain of p66, the human orthologues of Cdc1 and Cdc27, respectively. Results To gain insights into the structure and function of Cdc1, random and directed mutagenesis techniques were used to create a collection of thirty alleles encoding mutant Cdc1 proteins. Each allele was tested for function in fission yeast and for binding of the altered protein to Pol3 and Cdc27 using the two-hybrid system. Additionally, the locations of the amino acid changes in each protein were mapped onto the three-dimensional structure of human p50. The results obtained from these studies identify amino acid residues and regions within the Cdc1 protein that are essential for interaction with Pol3 and Cdc27 and for in vivo function. Mutations specifically defective in Pol3-Cdc1 interactions allow the identification of a possible Pol3 binding surface on Cdc1. Conclusion In the absence of a three-dimensional structure of the entire Pol δ complex, the results of this study highlight regions in Cdc1 that are vital for protein function in vivo and provide valuable clues to possible protein-protein interaction surfaces on the Cdc1 protein that will be important targets for further study.

  13. Jeast (Saccharomyces cerevisial) mutants with enhanced induced mutagenesis

    International Nuclear Information System (INIS)

    Ivanov, E.L.; Koval'tsova, S.V.; Korolev, V.G.

    1987-01-01

    The influence of him1-1, him2-1, him3-1 and himX mutations on induction frequency and specificity of UV-induced adenine-dependent mutations in the yeast Saccharomyces cerevisiae has been. Him mutations do not render haploid cells more sensitive to the lethal action of UV-light; however, in him strains adeine-dependent mutations (ade, ade2) were induced more frequently (1.5-2-fold), as compared to the HIM strain. An analysis of the molecular nature of ade2 mutants revealed than him1-1, him2-1, and himX mutations increase specifically the yield of transitions (AT-GC and GC→AT), whereas in the him3-1, strain the yield of transversions was enhanced as well. We suggest him mutations analysed to affect specific repair pathway for mismatch correction

  14. Gamma-radiation Mutagenesis in Genetically Unstable Barley Mutants. Pt. 2. Comparison of Various Mutants

    International Nuclear Information System (INIS)

    Balchiuniene, L.

    1995-01-01

    Spontaneous and gamma-induced mutability was compared in two groups of genetically unstable barley ear structure mutants - tweaky spike (tw) and branched ear (be). Instability in different loci causes different levels of spontaneous and gamma-induced mutability. A high spontaneous level of chlorophyll mutations is peculiar to be-ust mutants. It is suggested that the high level of induced chlorophyll mutations in allelic tw mutants is a result of better surviving of chlorophyll mutation carriers in the genotypical-physiological environment created by mutant tw alleles. (author). 6 refs., 2 tabs

  15. Mutagenesis

    International Nuclear Information System (INIS)

    Dubinin, N.P.

    1986-01-01

    Problems on radiation mutagenesis, in particular, data on general factors of genetic radiation effects, dependences of mutation frequencies on radiation dose and threshold in genetic radiation effects, problems of low doses, modification of genetic radiation effects, repauir of injuries of genetic material, photoreactivation, causing structure chromosomal mutations under radiation action, on relative genetic efficiency of different types of radiation are considered besides others

  16. Generation of a glucose de-repressed mutant of Trichoderma reesei using disparity mutagenesis.

    Science.gov (United States)

    Iwakuma, Hidekazu; Koyama, Yoshiyuki; Miyachi, Ayako; Nasukawa, Masashi; Matsumoto, Hitoshi; Yano, Shuntaro; Ogihara, Jun; Kasumi, Takafumi

    2016-01-01

    We obtained a novel glucose de-repressed mutant of Trichoderma reesei using disparity mutagenesis. A plasmid containing DNA polymerase δ lacking proofreading activity, and AMAI, an autonomously replicating sequence was introduced into T. reesei ATCC66589. The rate of mutation evaluated with 5-fluoroorotic acid resistance was approximately 30-fold higher than that obtained by UV irradiation. The transformants harboring incompetent DNA polymerase δ were then selected on 2-deoxyglucose agar plates with hygromycin B. The pNP-lactoside hydrolyzing activities of mutants were 2 to 5-fold higher than the parent in liquid medium containing glucose. Notably, the amino acid sequence of cre1, a key gene involved in glucose repression, was identical in the mutant and parent strains, and further, the cre1 expression levels was not abolished in the mutant. Taken together, these results demonstrate that the strains of T. reesei generated by disparity mutagenesis are glucose de-repressed variants that contain mutations in yet-unidentified factors other than cre1.

  17. Structure-function relationships in the Na,K-ATPase α subunit: site-directed mutagenesis of glutamine-111 to arginine and asparagine-122 to aspartic acid generates a ouabain-resistant enzyme

    International Nuclear Information System (INIS)

    Price, E.M.; Lingrel, J.B.

    1988-01-01

    Na,K-ATPases from various species differ greatly in their sensitivity to cardiac glycosides such as ouabain. The sheep and human enzymes are a thousand times more sensitive than the corresponding ones from rat and mouse. To define the region of the α1 subunit responsible for this differential sensitivity, chimeric cDNAs of sheep and rat were constructed and expressed in ouabain-sensitive HeLa cells. The construct containing the amino-terminal half of the rat α1 subunit coding region and carboxyl-terminal half of the sheep conferred the ouabain-resistant phenotype to HeLa cells while the reverse construct did not. This indicates that the determinants involved in ouabain sensitivity are located in the amino-terminal half of the Na,K-ATPase α subunit. By use of site-directed mutagenesis, the amino acid sequence of the first extracellular domain (H1-H2) of the sheep α1 subunit was changed to that of the rat. When expressed in HeLa cells, this mutated sheep α1 construct, like the rat/sheep chimera, was able to confer ouabain resistance to these cells. Furthermore, similar results were observed when HeLa cells were transfected with a sheep α1 cDNA containing only two amino acid substitutions. The resistant cells, whether transfected with the rat α1 cDNA, the rat/sheep chimera, or the mutant sheep α1 cDNAs, exhibited identical biochemical characteristics including ouabain-inhibitable cell growth, 86 Rb + uptake, and Na,K-ATPase activity. These results demonstrate that the presence of arginine and aspartic acid on the amino end and carboxyl end, respectively, of the H1-H2 extracellular domain of the Na,K-ATPase α subunit together is responsible for the ouabain-resistant character of the rat enzyme and the corresponding residues in the sheep α1 subunit (glutamine and asparagine) are somehow involved in ouabain binding

  18. Structure-function relationships in the Na,K-ATPase. cap alpha. subunit: site-directed mutagenesis of glutamine-111 to arginine and asparagine-122 to aspartic acid generates a ouabain-resistant enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Price, E.M.; Lingrel, J.B.

    1988-11-01

    Na,K-ATPases from various species differ greatly in their sensitivity to cardiac glycosides such as ouabain. The sheep and human enzymes are a thousand times more sensitive than the corresponding ones from rat and mouse. To define the region of the ..cap alpha..1 subunit responsible for this differential sensitivity, chimeric cDNAs of sheep and rat were constructed and expressed in ouabain-sensitive HeLa cells. The construct containing the amino-terminal half of the rat ..cap alpha..1 subunit coding region and carboxyl-terminal half of the sheep conferred the ouabain-resistant phenotype to HeLa cells while the reverse construct did not. This indicates that the determinants involved in ouabain sensitivity are located in the amino-terminal half of the Na,K-ATPase ..cap alpha.. subunit. By use of site-directed mutagenesis, the amino acid sequence of the first extracellular domain (H1-H2) of the sheep ..cap alpha..1 subunit was changed to that of the rat. When expressed in HeLa cells, this mutated sheep ..cap alpha..1 construct, like the rat/sheep chimera, was able to confer ouabain resistance to these cells. Furthermore, similar results were observed when HeLa cells were transfected with a sheep ..cap alpha..1 cDNA containing only two amino acid substitutions. The resistant cells, whether transfected with the rat ..cap alpha..1 cDNA, the rat/sheep chimera, or the mutant sheep ..cap alpha..1 cDNAs, exhibited identical biochemical characteristics including ouabain-inhibitable cell growth, /sup 86/Rb/sup +/ uptake, and Na,K-ATPase activity. These results demonstrate that the presence of arginine and aspartic acid on the amino end and carboxyl end, respectively, of the H1-H2 extracellular domain of the Na,K-ATPase ..cap alpha.. subunit together is responsible for the ouabain-resistant character of the rat enzyme and the corresponding residues in the sheep ..cap alpha..1 subunit (glutamine and asparagine) are somehow involved in ouabain binding.

  19. Catalytic soman scavenging by Y337A/F338A acetylcholinesterase mutant assisted with novel site-directed aldoximes

    Science.gov (United States)

    Kovarik, Zrinka; Hrvat, Nikolina Maček; Katalinić, Maja; Sit, Rakesh K.; Paradyse, Alexander; Žunec, Suzana; Musilek, Kamil; Fokin, Valery V.; Taylor, Palmer; Radić, Zoran

    2016-01-01

    Exposure to the nerve agent soman is difficult to treat due to the rapid dealkylation of soman-acetylcholinesterase (AChE) conjugate known as aging. Oxime antidotes commonly used to reactivate organophosphate inhibited AChE are ineffective against soman, while the efficacy of the recommended nerve agent bioscavenger butyrylcholinesterase is limited by strictly stoichiometric scavenging. To overcome this limitation, we tested ex vivo, in human blood, and in vivo, in soman exposed mice, the capacity of aging-resistant human AChE mutant Y337A/F338A in combination with oxime HI-6 to act as a catalytic bioscavenger of soman. HI-6 was previously shown in vitro to efficiently reactivate this mutant upon soman, as well as VX, cyclosarin, sarin and paraoxon inhibition. We here demonstrate that ex vivo, in whole human blood, 1 μM soman was detoxified within 30 minutes when supplemented with 0.5 μM Y337A/F338A AChE and 100 μM HI-6. This combination was further tested in vivo. Catalytic scavenging of soman in mice improved the therapeutic outcome and resulted in the delayed onset of toxicity symptoms. Furthermore, in a preliminary in vitro screen we identified an even more efficacious oxime than HI-6, in a series of forty-two pyridinium aldoximes, and five imidazole 2-aldoxime N-propyl pyridinium derivatives. One of the later imidazole aldoximes, RS-170B, was a 2–3 –fold more effective reactivator of Y337A/F338A AChE than HI-6 due to the smaller imidazole ring, as indicated by computational molecular models, that affords a more productive angle of nucleophilic attack. PMID:25835984

  20. Arginine kinase in Toxocara canis: Exon-intron organization, functional analysis of site-directed mutants and evaluation of putative enzyme inhibitors.

    Science.gov (United States)

    Wickramasinghe, Susiji; Yatawara, Lalani; Nagataki, Mitsuru; Agatsuma, Takeshi

    2016-10-01

    To determine exon/intron organization of the Toxocara canis (T. canis) AK (TCAK) and to test green and black tea and several other chemicals against the activity of recombinant TCAK in the guanidino-specific region by site-directed mutants. Amplification of genomic DNA fragments containing introns was carried out by PCRs. The open-reading frame (1200 bp) of TCAK (wild type) was cloned into the BamH1/SalI site of pMAL-c2X. The maltose-binding protein-TCAK fusion protein was expressed in Escherichia coli TB1 cells. The purity of the expressed enzyme was verified by SDS-PAGE. Mutations were introduced into the guanidino-specific region and other areas of pMAL/TCAK by PCR. Enzyme activity was measured with an NADH-linked assay at 25 °C for the forward reaction (phosphagen synthesis). Arginine kinase in T. canis has a seven-exon/six-intron gene structure. The lengths of the introns ranged from 542 bp to 2 500 bp. All introns begin with gt and end with ag. Furthermore, we measured the enzyme activity of site-directed mutants of the recombinant TCAK. The K m value of the mutant (Alanine to Serine) decreased indicating a higher affinity for substrate arginine than the wild-type. The K m value of the mutant (Serine to Glycine) increased to 0.19 mM. The K m value (0.19 mM) of the double mutant (Alanine-Serine to Serine-Glycine) was slightly greater than in the wild-type (0.12 mM). In addition, several other chemicals were tested; including plant extract Azadiracta indica (A. indica), an aminoglycoside antibiotic (aminosidine), a citrus flavonoid glycoside (rutin) and a commercially available catechin mixture against TCAK. Green and black tea (1:10 dilution) produced 15% and 25% inhibition of TCAK, respectively. The extract of A. indica produced 5% inhibition of TCAK. Moreover, green and black tea produced a non-competitive type of inhibition and A. indica produced a mixed-type of inhibition on TCAK. Arginine kinase in T. canis has a seven-exon/six-intron gene

  1. Selection and genetic relationship of salt tolerant rice mutants by in vitro mutagenesis

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jae Young; Kim, Dong Sub; Lee, Kyung Jun; Kim, Jin Baek; Kim, Sang Hoon; Kang, Si Yong [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of); Lee, Myung Chul [National Academy of Agriculture and Science, Suwon (Korea, Republic of); Yun, Song Joong [Chonbuk National University, Jeonju (Korea, Republic of)

    2010-12-15

    Plants have evolved physiological, biochemical and metabolic mechanisms to increase their survival under the adverse conditions. This present study has been performed to select salt tolerant rice mutant lines through in vivo and in vitro mutagenesis with gamma-rays. For the selection of the salt-tolerant rice mutants, we conducted three times of selection procedure using 1,500 gamma ray mutant lines resulted from an embryo culture of the original rice cv. Dongan (wild-type, WT): first, selection in the a nutrient solution with 171 mM NaCI: second, selection under in vitro condition with 171 mM NaCI: and third, selection in a reclaimed saline land. Based on a growth comparison of the entries, out of the mutant lines, two putative 2 salt tolerant (ST) rice mutant lines, ST-87 and ST-301, were finally selected. The survival rate of the WT, ST-87 and ST-301 were 36.6%, 60% and 66.3% after 7 days in 171 mM NaCI treatment, respectively. The WT and two salt tolerant mutant lines were used to analyze their genetic variations. A total of 21 EcoRI and Msel primer combinations were used to analyze the genetic relationship of among the two salt tolerant lines and the WT using the ABI3130 capillary electrophoresis system. In the AFLP analysis, a total of 1469 bands were produced by the 21 primer combinations, and 700 (47.6%) of them were identified as having polymorphism. The genetic similarity coefficients were ranged from 0.52 between the ST-87 and WT to 0.24 between the ST-301 and the WT. These rice mutant lines will be used as a control plot for physiological analysis and genetic research on salt tolerance.

  2. The Origin of Mutants Under Selection: How Natural Selection Mimics Mutagenesis (Adaptive Mutation)

    Science.gov (United States)

    Maisnier-Patin, Sophie; Roth, John R.

    2015-01-01

    Selection detects mutants but does not cause mutations. Contrary to this dictum, Cairns and Foster plated a leaky lac mutant of Escherichia coli on lactose medium and saw revertant (Lac+) colonies accumulate with time above a nongrowing lawn. This result suggested that bacteria might mutagenize their own genome when growth is blocked. However, this conclusion is suspect in the light of recent evidence that revertant colonies are initiated by preexisting cells with multiple copies the conjugative F′lac plasmid, which carries the lac mutation. Some plated cells have multiple copies of the simple F′lac plasmid. This provides sufficient LacZ activity to support plasmid replication but not cell division. In nongrowing cells, repeated plasmid replication increases the likelihood of a reversion event. Reversion to lac+ triggers exponential cell growth leading to a stable Lac+ revertant colony. In 10% of these plated cells, the high-copy plasmid includes an internal tandem lac duplication, which provides even more LacZ activity—sufficient to support slow growth and formation of an unstable Lac+ colony. Cells with multiple copies of the F′lac plasmid have an increased mutation rate, because the plasmid encodes the error-prone (mutagenic) DNA polymerase, DinB. Without DinB, unstable and stable Lac+ revertant types form in equal numbers and both types arise with no mutagenesis. Amplification and selection are central to behavior of the Cairns–Foster system, whereas mutagenesis is a system-specific side effect or artifact caused by coamplification of dinB with lac. Study of this system has revealed several broadly applicable principles. In all populations, gene duplications are frequent stable genetic polymorphisms, common near-neutral mutant alleles can gain a positive phenotype when amplified under selection, and natural selection can operate without cell division when variability is generated by overreplication of local genome subregions. PMID:26134316

  3. Characterization of the β-lactam binding site of penicillin acylase of Escherichia coli by structural and site-directed mutagenesis studies

    NARCIS (Netherlands)

    Alkema, Wynand B.L.; Hensgens, Charles M.H.; Kroezinga, Els H.; de Vries, Erik; Floris, René; Laan, Jan-Metske van der; Dijkstra, Bauke W.; Janssen, Dick B.

    2000-01-01

    The binding of penicillin to penicillin acylase was studied by X-ray crystallography. The structure of the enzyme–substrate complex was determined after soaking crystals of an inactive βN241A penicillin acylase mutant with penicillin G. Binding of the substrate induces a conformational change, in

  4. Characterization of the beta-lactam binding site of penicillin acylase of Escherichia coli by structural and site-directed mutagenesis studies

    NARCIS (Netherlands)

    Alkema, WBL; Hensgens, CMH; Kroezinga, EH; de Vries, E; Floris, R; van der Laan, JM; Dijkstra, BW; Janssen, DB

    2000-01-01

    The binding of penicillin to penicillin acylase was studied by X-ray crystallography, The structure of the enzyme-substrate complex was determined after soaking crystals of an inactive beta N241A penicillin acylase mutant with penicillin G, Binding of the substrate induces a conformational change,

  5. Cooperativity in the two-domain arginine kinase from the sea anemone Anthopleura japonicus. II. Evidence from site-directed mutagenesis studies.

    Science.gov (United States)

    Tada, Hiroshi; Suzuki, Tomohiko

    2010-08-01

    The arginine kinase (AK) from the sea anemone Anthopleura japonicus has an unusual two-domain structure (contiguous dimer; denoted by D1-D2). In a previous report, we suggested cooperativity in the contiguous dimer, which may be a result of domain-domain interactions, using MBP-fused enzymes. To further understand this observation, we inserted six-Lys residues into the linker region of the two-domain AK (D1-K6-D2 mutant) using His-tagged enzyme. The dissociation constants, K(a) and K(ia), of the mutant were similar to those of the wild-type enzyme but the catalytic constant, k(cat), was decreased to 28% that of the wild-type, indicating that some of the domain-domain interactions are lost due to the six-Lys insertion. Y68 plays a major role in arginine binding in the catalytic pocket in Limulus AK, and introduction of mutation at the Y68 position virtually abolishes catalytic activity. Thus, the constructed D1(Y68G)-D2 and D1-D2(Y68G) mutants mimic the D1(inactive)-D2(active) and D1(active)-D2(inactive) enzymes, respectively. The k(cat) values of both Y68 mutants were decreased to 13-18% that of the wild-type enzyme, which is much less than the 50% level of the two-domain enzyme. Thus, it is clear that substrate-binding to both domains is necessary for full expression of activity. In other words, substrate-binding appears to act as the trigger of the functional cooperativity in two-domain AK. Copyright 2010 Elsevier B.V. All rights reserved.

  6. Molecular cloning, homology modeling and site-directed mutagenesis of vanadium-dependent bromoperoxidase (GcVBPO1) from Gracilaria changii (Rhodophyta).

    Science.gov (United States)

    Baharum, H; Chu, W-C; Teo, S-S; Ng, K-Y; Rahim, R Abdul; Ho, C-L

    2013-08-01

    Vanadium-dependent haloperoxidases belong to a class of vanadium enzymes that may have potential industrial and pharmaceutical applications due to their high stability. In this study, the 5'-flanking genomic sequence and complete reading frame encoding vanadium-dependent bromoperoxidase (GcVBPO1) was cloned from the red seaweed, Fracilaria changii, and the recombinant protein was biochemically characterized. The deduced amino acid sequence of GcVBPO1 is 1818 nucleotides in length, sharing 49% identity with the vanadium-dependent bromoperoxidases from Corralina officinalis and Cor. pilulifera, respectively. The amino acid residues associated with the binding site of vanadate cofactor were found to be conserved. The Km value of recombinant GcVBPO1 for Br(-) was 4.69 mM, while its Vmax was 10.61 μkat mg(-1) at pH 7. Substitution of Arg(379) with His(379) in the recombinant protein caused a lower affinity for Br(-), while substitution of Arg(379) with Phe(379) not only increased its affinity for Br(-) but also enabled the mutant enzyme to oxidize Cl(-). The mutant Arg(379)Phe was also found to have a lower affinity for I(-), as compared to the wild-type GcVBPO1 and mutant Arg(379)His. In addition, the Arg(379)Phe mutant has a slightly higher affinity for H2O2 compared to the wild-type GcVBPO1. Multiple cis-acting regulatory elements associated with light response, hormone signaling, and meristem expression were detected at the 5'-flanking genomic sequence of GcVBPO1. The transcript abundance of GcVBPO1 was relatively higher in seaweed samples treated with 50 parts per thousand (ppt) artificial seawater (ASW) compared to those treated in 10 and 30 ppt ASW, in support of its role in the abiotic stress response of seaweed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Using heavy-ion mutagenesis technology to select cellulose enzyme vitality of mutants of Aspergillium niger

    International Nuclear Information System (INIS)

    Tang Jiahui; Yang Fumin; Wang Shuyang

    2012-01-01

    In order to improve the cellulose ion beam at 20, 40, 60, 80, 100, 120Gy and 140 enzyme vitality of Aspergillus niger (=AS3.316), heavy Gy doses was used for inducing mutation. Higher cellulose enzyme vitality strains were screened through the primary screening and secondary screening. The result showed that 5 mutants T2-1, T3-1, T5-1, T6-3, T6-4 were selected, and T6-4 had the highest cellulose enzyme activity. The activity of filter paper cellulose enzyme, endo-glucanase, exo-glucanase and 13-glucosidase of T6-4 was 61.3, 116.2, 29.9 U/mL and 35.9 U/mL respectively. Compared with the original A. niger (=AS3.316), the cellulose enzyme activity was increased by 3.5, 3.78, 2.76 and 2.52 times in turn. The activity of cellulose enzyme of the rest mutants sorted from strong to the weak were T6-3T5-1T3-1T2-1. The dose at 120 Gy showed the best mutagenesis effect. Mutants had different degree of changes in the genetic stability, but overall, the performance showed relatively stable

  8. Enterocin A mutants identified by saturation mutagenesis enhance potency towards vancomycin-resistant Enterococci.

    Science.gov (United States)

    McClintock, Maria K; Kaznessis, Yiannis N; Hackel, Benjamin J

    2016-02-01

    Vancomycin-resistant Enterococci infections are a significant clinical problem. One proposed solution is to use probiotics, such as lactic acid bacteria, to produce antimicrobial peptides at the site of infection. Enterocin A, a class 2a bacteriocin, exhibits inhibitory activity against E. faecium and E. faecalis, which account for 86% of vancomycin-resistant Enterococci infections. In this study, we aimed to engineer enterocin A mutants with enhanced potency within a lactic acid bacterial production system. Peptide mutants resulting from saturation mutagenesis at sites A24 and T27 were efficiently screened in a 96-well plate assay for inhibition of pathogen growth. Several mutants exhibit increased potency relative to wild-type enterocin A in both liquid- and solid-medium growth assays. In particular, A24P and T27G exhibit enhanced inhibition of multiple strains of E. faecium and E. faecalis, including clinically isolated vancomycin-resistant strains. A24P and T27G enhance killing of E. faecium 8 by 13 ± 3- and 18 ± 4-fold, respectively. The engineered enterocin A/lactic acid bacteria systems offer significant potential to combat antibiotic-resistant infections. © 2015 Wiley Periodicals, Inc.

  9. Study of signal transduction mechanism of angiotensin 2 receptor by means of site-directed mutagenesis; Bui totsuzen hen'iho wo mochiita anjiotenshin 2 reseputa no joho dentatsu kiko no kaimei

    Energy Technology Data Exchange (ETDEWEB)

    Yamano, Yoshiaki [Tottori University, Tottori (Japan). Faculty of Agriculture

    1998-12-16

    The renin-angiotensin system (RAS) plays an important role in the regulation of blood pressure. In order to clarify the signaling mechanism mediated by angiotensin 2 receptor, Gq-protein binding amino acid residues of this receptor were clarified by site-directed mutagenesis study. Amino acid residues in the carboxyl tail region were changed by alanines, individually. These mutated receptors were expressed stably in CHO cells, and GTP effect and second messenger molecules were determined, and three residues (Y 312, F313 and L 314) in this region were determined to be concerned for the binding of Gq protein. The other signaling systems, Gi, MAP kinase, JAK-STAT mediated, were reported to be concerned for this receptor. Novel drags for high blood pressure therapy would be explored by clarifying these signaling mechanisms. (author)

  10. A temperature-sensitive winter wheat chlorophyll mutant derived from space mutagenesis

    International Nuclear Information System (INIS)

    Zhao Hongbin; Guo Huijun; Zhao Linshu; Gu Jiayu; Zhao Shirong; Li Junhui; Liu Luxiang

    2010-01-01

    A temperature-sensitive winter wheat (Triticum aestivum L.) chlorophyll mutant Mt18, induced by spaceflight mutagenesis, was studied on agronomic traits, ultrastructure of chloroplast and photosynthesis characteristics. The leaf color of the mutant Mt18 showed changes from green to albino and back to green during the whole growth period. Plant height, productive tillers, spike length, grains and grain weight per plant, and 1000-grain weight of the mutant were lower than those of the wild type. The ultrastructural observation showed that no significant difference was found between the mutant and the wild type during prior albino stage, however, at the albino stage the number of granum-thylakoids and grana lamellae became fewer or completely disappeared, but the strom-thylakoid was obviously visible. After turning green,the structure of most chloroplasts recovered to normal, but number of chloroplast was still lower than that of the wild type. When exposed to photosynthetic active radiation (PAR) of 110 μmol·m -2 ·s -1 , the non-photochemical quenching (NPQ) of mutant was significantly lower than that of the wild type, and the non-regulated energy dissipation (Y NO ) was significantly higher than that of the wild type, while the change of the maximum photosystem II quantum yield (F v /F m ), potential activity of photosystem II (F v /F o ), photochemical quenching (q P ), effective quantum yield (Y PSI I) and regulated non-photochemical energy dissipation (Y NPQ ) were different at various stages. In addition, the differences of the electron transport rate (ETR), photochemical quenching (q P ), and effective quantum yield (Y PSI I) between mutant and wild type varied under different PAR conditions. It was concluded that with the change of chloroplast ultrastructure, the leaf color and photosynthesis of the wheat mutant Mt18 change correspondingly. The chloroplast ultrastructure was obviously different from that of wild type, and the photosynthetic efficiency

  11. Ligand-bound Structures and Site-directed Mutagenesis Identify the Acceptor and Secondary Binding Sites of Streptomyces coelicolor Maltosyltransferase GlgE*

    Science.gov (United States)

    Syson, Karl; Stevenson, Clare E. M.; Miah, Farzana; Barclay, J. Elaine; Tang, Minhong; Gorelik, Andrii; Rashid, Abdul M.; Lawson, David M.; Bornemann, Stephen

    2016-01-01

    GlgE is a maltosyltransferase involved in α-glucan biosynthesis in bacteria that has been genetically validated as a target for tuberculosis therapies. Crystals of the Mycobacterium tuberculosis enzyme diffract at low resolution so most structural studies have been with the very similar Streptomyces coelicolor GlgE isoform 1. Although the donor binding site for α-maltose 1-phosphate had been previously structurally defined, the acceptor site had not. Using mutagenesis, kinetics, and protein crystallography of the S. coelicolor enzyme, we have now identified the +1 to +6 subsites of the acceptor/product, which overlap with the known cyclodextrin binding site. The sugar residues in the acceptor subsites +1 to +5 are oriented such that they disfavor the binding of malto-oligosaccharides that bear branches at their 6-positions, consistent with the known acceptor chain specificity of GlgE. A secondary binding site remote from the catalytic center was identified that is distinct from one reported for the M. tuberculosis enzyme. This new site is capable of binding a branched α-glucan and is most likely involved in guiding acceptors toward the donor site because its disruption kinetically compromises the ability of GlgE to extend polymeric substrates. However, disruption of this site, which is conserved in the Streptomyces venezuelae GlgE enzyme, did not affect the growth of S. venezuelae or the structure of the polymeric product. The acceptor subsites +1 to +4 in the S. coelicolor enzyme are well conserved in the M. tuberculosis enzyme so their identification could help inform the design of inhibitors with therapeutic potential. PMID:27531751

  12. An Examination by Site-Directed Mutagenesis of Putative Key Residues in the Determination of Coenzyme Specificity in Clostridial NAD+-Dependent Glutamate Dehydrogenase

    Directory of Open Access Journals (Sweden)

    Joanna Griffin

    2011-01-01

    Full Text Available Sequence and structure comparisons of various glutamate dehydrogenases (GDH and other nicotinamide nucleotide-dependent dehydrogenases have potentially implicated certain residues in coenzyme binding and discrimination. We have mutated key residues in Clostridium symbiosum NAD+-specific GDH to investigate their contribution to specificity and to enhance acceptance of NADPH. Comparisons with E. coli NADPH-dependent GDH prompted design of mutants F238S, P262S, and F238S/P262S, which were purified and assessed at pH 6.0, 7.0, and 8.0. They showed markedly increased catalytic efficiency with NADPH, especially at pH 8.0 (∼170-fold for P262S and F238S/P262S with relatively small changes for NADH. A positive charge introduced through the D263K mutation also greatly increased catalytic efficiency with NADPH (over 100-fold at pH 8 and slightly decreased activity with NADH. At position 242, “P6” of the “core fingerprint,” where NAD+- and NADP+-dependent enzymes normally have Gly or Ala, respectively, clostridial GDH already has Ala. Replacement with Gly produced negligible shift in coenzyme specificity.

  13. Molecular cloning of a Bangladeshi strain of very virulent infectious bursal disease virus of chickens and its adaptation in tissue culture by site-directed mutagenesis

    International Nuclear Information System (INIS)

    Islam, M.R.; Raue, R.; Mueller, H.

    2005-01-01

    Full-length cDNA of both genome segments of a Bangladeshi strain of very virulent infectious bursal disease virus (BD 3/99) were cloned in plasmid vectors along with the T7 promoter tagged to the 5'-ends. Mutations were introduced in the cloned cDNA to bring about two amino acid exchanges (Q253H and A284T) in the capsid protein VP2. Transfection of primary chicken embryo fibroblast cells with RNA transcribed in vitro from the full-length cDNA resulted in the formation of mutant infectious virus particles that grow in tissue culture. The pathogenicity of this molecularly-cloned, tissue-culture- adapted virus (BD-3tc) was tested in commercial chickens. The parental wild-type strain, BD 3/99, was included for comparison. The subclinical course of the disease and delayed bursal atrophy in BD-3tc-inoculated birds suggested that these amino acid substitutions made BD-3tc partially attenuated. (author)

  14. Sleeping Beauty transposon mutagenesis identifies genes that cooperate with mutant Smad4 in gastric cancer development.

    Science.gov (United States)

    Takeda, Haruna; Rust, Alistair G; Ward, Jerrold M; Yew, Christopher Chin Kuan; Jenkins, Nancy A; Copeland, Neal G

    2016-04-05

    Mutations in SMAD4 predispose to the development of gastrointestinal cancer, which is the third leading cause of cancer-related deaths. To identify genes driving gastric cancer (GC) development, we performed a Sleeping Beauty (SB) transposon mutagenesis screen in the stomach of Smad4(+/-) mutant mice. This screen identified 59 candidate GC trunk drivers and a much larger number of candidate GC progression genes. Strikingly, 22 SB-identified trunk drivers are known or candidate cancer genes, whereas four SB-identified trunk drivers, including PTEN, SMAD4, RNF43, and NF1, are known human GC trunk drivers. Similar to human GC, pathway analyses identified WNT, TGF-β, and PI3K-PTEN signaling, ubiquitin-mediated proteolysis, adherens junctions, and RNA degradation in addition to genes involved in chromatin modification and organization as highly deregulated pathways in GC. Comparative oncogenomic filtering of the complete list of SB-identified genes showed that they are highly enriched for genes mutated in human GC and identified many candidate human GC genes. Finally, by comparing our complete list of SB-identified genes against the list of mutated genes identified in five large-scale human GC sequencing studies, we identified LDL receptor-related protein 1B (LRP1B) as a previously unidentified human candidate GC tumor suppressor gene. In LRP1B, 129 mutations were found in 462 human GC samples sequenced, and LRP1B is one of the top 10 most deleted genes identified in a panel of 3,312 human cancers. SB mutagenesis has, thus, helped to catalog the cooperative molecular mechanisms driving SMAD4-induced GC growth and discover genes with potential clinical importance in human GC.

  15. Rose (Rosa hybrida L.) tissue culture mutagenesis for new mutants generation

    International Nuclear Information System (INIS)

    Salahbiah Abdul Majid; Rusli Ibrahim

    2004-01-01

    Tissue culture technique can be used to obtain complete regeneration of plant cells from shoots, rots, flowers, axillary buds and other parts of the plant. In this study, axillary buds from stem cuttings of Cutting Red, Christine Dior and Mini Rose varieties were used as the stating explants. Murashige and Skoog (1962) media supplemented with 6-Benzylaminopurine (BAP, at 4.44 - 8.88μM/l), Napthaleneacetic acid (NAA at 0.54μM/l),, nad 3% sucrose were used for plantlet initiation and regeneration. Cultured axillary buds were exposed to gamma ray (0.250 Gy/s) at 0, 15, 25, 35, 45, 55, 65 and 75 Gy for radiosensitivity test. From the dose respond curve, LD 5 0 the value for cutting red variety was 25 Gy, Christion Dior 30 Gy and Mini Rose 38 Gy, yet 22% of Mini Rose samples survived at 65 Gy and another 10% at 70 Gy. Screening of M3 plants of irradiated cultured shoots, 2 colour variations were obtained at 40 Gy for Cutting Red variety, while 3 colour variations for Mini Rose at 20 Gy. When 6 varieties of Fragrance Rose were irradiated at 40 Gy, 1 colour variation was obtained from 99 screened plants. This study suggests that the dose range of 20 to 45 can be considered for rose mutagenesis study to produce mutants. (Author)

  16. Site-directed Mutagenesis Shows the Significance of Interactions with Phospholipids and the G-protein OsYchF1 for the Physiological Functions of the Rice GTPase-activating Protein 1 (OsGAP1).

    Science.gov (United States)

    Yung, Yuk-Lin; Cheung, Ming-Yan; Miao, Rui; Fong, Yu-Hang; Li, Kwan-Pok; Yu, Mei-Hui; Chye, Mee-Len; Wong, Kam-Bo; Lam, Hon-Ming

    2015-09-25

    The C2 domain is one of the most diverse phospholipid-binding domains mediating cellular signaling. One group of C2-domain proteins are plant-specific and are characterized by their small sizes and simple structures. We have previously reported that a member of this group, OsGAP1, is able to alleviate salt stress and stimulate defense responses, and bind to both phospholipids and an unconventional G-protein, OsYchF1. Here we solved the crystal structure of OsGAP1 to a resolution of 1.63 Å. Using site-directed mutagenesis, we successfully differentiated between the clusters of surface residues that are required for binding to phospholipids versus OsYchF1, which, in turn, is critical for its role in stimulating defense responses. On the other hand, the ability to alleviate salt stress by OsGAP1 is dependent only on its ability to bind OsYchF1 and is independent of its phospholipid-binding activity. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Cloning and characterization of an acyl-CoA-dependent diacylglycerol acyltransferase 1 (DGAT1) gene from Tropaeolum majus, and a study of the functional motifs of the DGAT protein using site-directed mutagenesis to modify enzyme activity and oil content.

    Science.gov (United States)

    Xu, Jingyu; Francis, Tammy; Mietkiewska, Elzbieta; Giblin, E Michael; Barton, Dennis L; Zhang, Yan; Zhang, Meng; Taylor, David C

    2008-10-01

    A full-length cDNA encoding a putative diacylglycerol acyltransferase 1 (DGAT1, EC 2.3.1.20) was obtained from Tropaeolum majus (garden nasturtium). The 1557-bp open reading frame of this cDNA, designated TmDGAT1, encodes a protein of 518 amino acids showing high homology to other plant DGAT1s. The TmDGAT1 gene was expressed exclusively in developing seeds. Expression of recombinant TmDGAT1 in the yeast H1246MATalpha quadruple mutant (DGA1, LRO1, ARE1, ARE2) restored the capability of the mutant host to produce triacylglycerols (TAGs). The recombinant TmDGAT1 protein was capable of utilizing a range of (14)C-labelled fatty acyl-CoA donors and diacylglycerol acceptors, and could synthesize (14)C-trierucin. Collectively, these findings confirm that the TmDGAT1 gene encodes an acyl-CoA-dependent DGAT1. In plant transformation studies, seed-specific expression of TmDGAT1 was able to complement the low TAG/unusual fatty acid phenotype of the Arabidopsis AS11 (DGAT1) mutant. Over-expression of TmDGAT1 in wild-type Arabidopsis and high-erucic-acid rapeseed (HEAR) and canola Brassica napus resulted in an increase in oil content (3.5%-10% on a dry weight basis, or a net increase of 11%-30%). Site-directed mutagenesis was conducted on six putative functional regions/motifs of the TmDGAT1 enzyme. Mutagenesis of a serine residue in a putative SnRK1 target site resulted in a 38%-80% increase in DGAT1 activity, and over-expression of the mutated TmDGAT1 in Arabidopsis resulted in a 20%-50% increase in oil content on a per seed basis. Thus, alteration of this putative serine/threonine protein kinase site can be exploited to enhance DGAT1 activity, and expression of mutated DGAT1 can be used to enhance oil content.

  18. Rapid mutation of Spirulina platensis by a new mutagenesis system of atmospheric and room temperature plasmas (ARTP and generation of a mutant library with diverse phenotypes.

    Directory of Open Access Journals (Sweden)

    Mingyue Fang

    Full Text Available In this paper, we aimed to improve the carbohydrate productivity of Spirulina platensis by generating mutants with increased carbohydrate content and growth rate. ARTP was used as a new mutagenesis tool to generate a mutant library of S. platensis with diverse phenotypes. Protocol for rapid mutation of S. platensis by 60 s treatment with helium driven ARTP and high throughput screening method of the mutants using the 96-well microplate and microplate reader was established. A mutant library of 62 mutants was then constructed and ideal mutants were selected out. The characteristics of the mutants after the mutagenesis inclined to be stable after around 9(th subculture, where the total mutation frequency and positive mutation frequency in terms of specific growth rate reached 45% and 25%, respectively. The mutants in mutant library showed diverse phenotypes in terms of cell growth rate, carbohydrate content and flocculation intensity. The positive mutation frequency in terms of cellular carbohydrate content with the increase by more than 20% percent than the wild strain was 32.3%. Compared with the wild strain, the representative mutants 3-A10 and 3-B2 showed 40.3% and 78.0% increase in carbohydrate content, respectively, while the mutant 4-B3 showed 10.5% increase in specific growth rate. The carbohydrate contents of the representative mutants were stable during different subcultures, indicating high genetic stability. ARTP was demonstrated to be an effective and non-GMO mutagenesis tool to generate the mutant library for multicellular microalgae.

  19. Gamma-radiation Mutagenesis in Genetically Unstable Barley Mutants. Pt. 1. Chlorophyll Mutations in Allelic tw Mutants and Their Revertants

    International Nuclear Information System (INIS)

    Vaitkuniene, V.

    1995-01-01

    Genotypical environment is an essential factor determining the mutability of mutants of the same type. Decreased chlorophyll mutant frequency was a common characteristic of all tested tw type (tw, tw 1 , tw 2 ) mutants induced in barley c. 'Auksiniai II'. The mutability of all the tested revertants was close to that of the initial c. 'Auksiniai II'. (author). 9 refs., 2 tabs

  20. Probing the effect of the non-active-site mutation Y229W in New Delhi metallo-β-lactamase-1 by site-directed mutagenesis, kinetic studies, and molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Jiao Chen

    Full Text Available New Delhi metallo-β-lactamase-1 (NDM-1 has attracted extensive attention for its high catalytic activities of hydrolyzing almost all β-lactam antibiotics. NDM-1 shows relatively higher similarity to subclass B1 metallo-β-lactamases (MβLs, but its residue at position 229 is identical to that of B2/B3 MβLs, which is a Tyr instead of a B1-MβL-conserved Trp. To elucidate the possible role of Y229 in the bioactivity of NDM-1, we performed mutagenesis study and molecular dynamics (MD simulations. Although residue Y229 is spatially distant from the active site and not contacting directly with the substrate or zinc ions, the Y229W mutant was found to have higher kcat and Km values than those of wild-type NDM-1, resulting in 1 ∼ 7 fold increases in k(cat /K(m values against tested antibiotics. In addition, our MD simulations illustrated the enhanced flexibility of Loop 2 upon Y229W mutation, which could increase the kinetics of both substrate entrance (kon and product egress (koff. The enhanced flexibility of Loop 2 might allow the enzyme to adjust the geometry of its active site to accommodate substrates with different structures, broadening its substrate spectrum. This study indicated the possible role of the residue at position 229 in the evolution of NDM-1.

  1. Induction of mutations by chemicals and gamma rays in mutants of yeast refractory to UV-mutagenesis

    International Nuclear Information System (INIS)

    Nasim, A.; Hannan, M.A.

    1977-01-01

    Radiation-sensitive mutants of Schizosaccharomyces pombe, known to be refractory to UV-mutagenesis, were tested for mutability caused by treatments with chemicals and gamma rays. One such mutant (rad3) was studied over a wide range of UV doses to compare the kinetics of its mutational response to that of the wild type. All such comparisons were carried out using a forward mutation system. Data show that, unlike UV, the chemical mutagens as well as gamma rays produced mutations (although at reduced frequency), in the strains of S. pombe tested, indicating the existence of an additional mechanism(s) for chemical and gamma ray induced mutations. These observations are discussed as these relate to the pathways for repair of mutational damage in yeast. (author)

  2. Synthesis, purification, and characterization of an Arg152 → Glu site-directed mutant of recombinant human blood clotting factor VII

    International Nuclear Information System (INIS)

    Wildgoose, P.; Kisiel, W.; Berkner, K.L.

    1990-01-01

    Coagulation factor VII circulates in blood as a single-chain zymogen of a serine protease and is converted to its activated two-chain form, factor VIIa, by cleavage of an internal peptide bond located at Arg 152 -Ile 153 . Previous studies using serine protease active-site inhibitors suggest that zymogen factor VII may possess sufficient proteolytic activity to initiate the extrinsic pathway of blood coagulation. In order to assess the putative intrinsic proteolytic activity of single-chain factor VII, the authors have constructed a site-specific mutant of recombinant human factor VII in which arginine-152 has been replaced with a glutamic acid residue. Mutant factor VII was purified in a single step from culture supernatants of baby hamster kidney cells transfected with a plasmid containing the sequence for Arg 152 → Glu factor VII using a calcium-dependent, murine anti-factor VII monoclonal antibody column. The clotting activity of mutant factor VII was completely inhibited following incubation with dansyl-Glu-Gly-Arg chloromethyl ketone, suggesting that the apparent clotting activity of mutant factor VII was due to a contaminating serine protease. Immunoblots of mutant factor VII with human factor IXa revealed no cleavage, whereas incubation of mutant factor VII with human factor Xa resulted in cleavage of mutant factor VII and the formation of a lower molecular weight degradation product migrating at M r ∼40 000. The results are consistent with the proposal that zymogen factor VII possesses no intrinsic proteolytic activity toward factor X or factor IX

  3. Synthesis, purification, and characterization of an Arg sub 152 yields Glu site-directed mutant of recombinant human blood clotting factor VII

    Energy Technology Data Exchange (ETDEWEB)

    Wildgoose, P.; Kisiel, W. (Univ. of New Mexico, Albuquerque (USA)); Berkner, K.L. (ZymoGenetics, Inc., Seattle, WA (USA))

    1990-04-03

    Coagulation factor VII circulates in blood as a single-chain zymogen of a serine protease and is converted to its activated two-chain form, factor VIIa, by cleavage of an internal peptide bond located at Arg{sub 152}-Ile{sub 153}. Previous studies using serine protease active-site inhibitors suggest that zymogen factor VII may possess sufficient proteolytic activity to initiate the extrinsic pathway of blood coagulation. In order to assess the putative intrinsic proteolytic activity of single-chain factor VII, the authors have constructed a site-specific mutant of recombinant human factor VII in which arginine-152 has been replaced with a glutamic acid residue. Mutant factor VII was purified in a single step from culture supernatants of baby hamster kidney cells transfected with a plasmid containing the sequence for Arg{sub 152} {yields} Glu factor VII using a calcium-dependent, murine anti-factor VII monoclonal antibody column. The clotting activity of mutant factor VII was completely inhibited following incubation with dansyl-Glu-Gly-Arg chloromethyl ketone, suggesting that the apparent clotting activity of mutant factor VII was due to a contaminating serine protease. Immunoblots of mutant factor VII with human factor IXa revealed no cleavage, whereas incubation of mutant factor VII with human factor Xa resulted in cleavage of mutant factor VII and the formation of a lower molecular weight degradation product migrating at M{sup r}{approx}40 000. The results are consistent with the proposal that zymogen factor VII possesses no intrinsic proteolytic activity toward factor X or factor IX.

  4. Identification of a halotolerant mutant via in vitro mutagenesis in the cyanobacterium Fremyella diplosiphon

    Science.gov (United States)

    Energy metabolism and photosynthetic pigment accumulation are affected by salt stress in cyanobacteria leading to cessation of growth. The effect of salinity on the fresh water cyanobacteria, Fremyella diplosiphon was investigated and mutagenesis-based efforts were undertaken to enhance salt toleran...

  5. Identification and Characterization of Non-Cellulose-Producing Mutants of Gluconacetobacter hansenii Generated by Tn5 Transposon Mutagenesis

    Science.gov (United States)

    Deng, Ying; Nagachar, Nivedita; Xiao, Chaowen; Tien, Ming

    2013-01-01

    The acs operon of Gluconacetobacter is thought to encode AcsA, AcsB, AcsC, and AcsD proteins that constitute the cellulose synthase complex, required for the synthesis and secretion of crystalline cellulose microfibrils. A few other genes have been shown to be involved in this process, but their precise role is unclear. We report here the use of Tn5 transposon insertion mutagenesis to identify and characterize six non-cellulose-producing (Cel−) mutants of Gluconacetobacter hansenii ATCC 23769. The genes disrupted were acsA, acsC, ccpAx (encoding cellulose-complementing protein [the subscript “Ax” indicates genes from organisms formerly classified as Acetobacter xylinum]), dgc1 (encoding guanylate dicyclase), and crp-fnr (encoding a cyclic AMP receptor protein/fumarate nitrate reductase transcriptional regulator). Protein blot analysis revealed that (i) AcsB and AcsC were absent in the acsA mutant, (ii) the levels of AcsB and AcsC were significantly reduced in the ccpAx mutant, and (iii) the level of AcsD was not affected in any of the Cel− mutants. Promoter analysis showed that the acs operon does not include acsD, unlike the organization of the acs operon of several strains of closely related Gluconacetobacter xylinus. Complementation experiments confirmed that the gene disrupted in each Cel− mutant was responsible for the phenotype. Quantitative real-time PCR and protein blotting results suggest that the transcription of bglAx (encoding β-glucosidase and located immediately downstream from acsD) was strongly dependent on Crp/Fnr. A bglAx knockout mutant, generated via homologous recombination, produced only ∼16% of the wild-type cellulose level. Since the crp-fnr mutant did not produce any cellulose, Crp/Fnr may regulate the expression of other gene(s) involved in cellulose biosynthesis. PMID:24013627

  6. Genetic analyses of nonfluorescent root mutants induced by mutagenesis in soybean

    International Nuclear Information System (INIS)

    Sawada, S.; Palmer, R.G.

    1987-01-01

    Nonfluorescent root mutants in soybean [Glycine max (L.) Merr.] are useful as markers in genetic studies and in tissue culture research. Our objective was to obtain mutagen-induced nonfluorescent root mutants and to conduct genetic studies with them. Thirteen nonfluorescent mutants were detected among 154016 seedlings derived from soybean lines treated with six mutagens. One of these mutants, derived from Williams treated with 20 kR gamma rays, did not correspond to any of the known (standard) nonfluorescent spontaneous mutants. This is the first mutagen-induced nonfluorescent root mutant in soybean. It was assigned Genetic Type Collection no. T285 and the gene symbol fr5 fr5. The fr5 allele was not located on trisomics A, B, or C and was not linked to five chlorophyll-deficient mutants (y9, y11, y12, y13, and y20-k2) or flower color mutant w1. The remaining nonfluorescent root mutants were at the same loci as known spontaneous mutants; i.e., four had the fr1 allele, five had the fr2 allele, and three had the fr4 allele

  7. Step-By-Step In Vitro Mutagenesis: Lessons From Fucose-Binding Lectin PA-IIL.

    Science.gov (United States)

    Mrázková, Jana; Malinovská, Lenka; Wimmerová, Michaela

    2017-01-01

    Site-directed mutagenesis is a powerful technique which is used to understand the basis of interactions between proteins and their binding partners, as well as to modify these interactions. Methods of rational design that are based on detailed knowledge of the structure of a protein of interest are often used for preliminary investigations of the possible outcomes which can result from the practical application of site-directed mutagenesis. Also, random mutagenesis can be used in tandem with site-directed mutagenesis for an examination of amino acid "hotspots."Lectins are sugar-binding proteins which, among other functions, mediate the recognition of host cells by a pathogen and its adhesion to the host cell surface. Hence, lectins and their binding properties are studied and engineered using site-directed mutagenesis.In this chapter, we describe a site-directed mutagenesis method used for investigating the sugar binding pattern of the PA-IIL lectin from the pathogenic bacterium Pseudomonas aeruginosa. Moreover, procedures for the production and purification of PA-IIL mutants are described, and several basic methods for characterizing the mutants are discussed.

  8. Accurate prediction of stability changes in protein mutants by combining machine learning with structure based computational mutagenesis.

    Science.gov (United States)

    Masso, Majid; Vaisman, Iosif I

    2008-09-15

    Accurate predictive models for the impact of single amino acid substitutions on protein stability provide insight into protein structure and function. Such models are also valuable for the design and engineering of new proteins. Previously described methods have utilized properties of protein sequence or structure to predict the free energy change of mutants due to thermal (DeltaDeltaG) and denaturant (DeltaDeltaG(H2O)) denaturations, as well as mutant thermal stability (DeltaT(m)), through the application of either computational energy-based approaches or machine learning techniques. However, accuracy associated with applying these methods separately is frequently far from optimal. We detail a computational mutagenesis technique based on a four-body, knowledge-based, statistical contact potential. For any mutation due to a single amino acid replacement in a protein, the method provides an empirical normalized measure of the ensuing environmental perturbation occurring at every residue position. A feature vector is generated for the mutant by considering perturbations at the mutated position and it's ordered six nearest neighbors in the 3-dimensional (3D) protein structure. These predictors of stability change are evaluated by applying machine learning tools to large training sets of mutants derived from diverse proteins that have been experimentally studied and described. Predictive models based on our combined approach are either comparable to, or in many cases significantly outperform, previously published results. A web server with supporting documentation is available at http://proteins.gmu.edu/automute.

  9. Structural analysis of site-directed mutants of cellular retinoic acid-binding protein II addresses the relationship between structural integrity and ligand binding

    International Nuclear Information System (INIS)

    Vaezeslami, Soheila; Jia, Xiaofei; Vasileiou, Chrysoula; Borhan, Babak; Geiger, James H.

    2008-01-01

    A water network stabilizes the structure of cellular retionic acid binding protein II. The structural integrity of cellular retinoic acid-binding protein II (CRABPII) has been investigated using the crystal structures of CRABPII mutants. The overall fold was well maintained by these CRABPII mutants, each of which carried multiple different mutations. A water-mediated network is found to be present across the large binding cavity, extending from Arg111 deep inside the cavity to the α2 helix at its entrance. This chain of interactions acts as a ‘pillar’ that maintains the integrity of the protein. The disruption of the water network upon loss of Arg111 leads to decreased structural integrity of the protein. A water-mediated network can be re-established by introducing the hydrophilic Glu121 inside the cavity, which results in a rigid protein with the α2 helix adopting an altered conformation compared with wild-type CRABPII

  10. uvsI mutants defective in UV mutagenesis define a fourth epistatic group of uvs genes in Aspergillus.

    Science.gov (United States)

    Chae, S K; Kafer, E

    1993-01-01

    Three UV-sensitive mutations of A. nidulans, uvsI, uvsJ and uvsA, were tested for epistatic relationships with members of the previously established groups, here called the "UvsF", "UvsC", and "UvsB" groups. uvsI mutants are defective for spontaneous and induced reversion of certain point mutations and differ also for other properties from previously analyzed uvs types. They are very sensitive to the killing effects of UV-light and 4-NQO (4-nitro-quinoline-N-oxide) but not to MMS (methylmethane sulfonate). When double- and single-mutant uvs strains were compared for sensitivity to these three agents, synergistic or additive effects were found for uvsI with all members of the three groups. The uvsI gene may therefore represent a fourth epistatic group, possibly involved in mutagenic repair. On the other hand, uvsJ was clearly epistatic with members of the UvsF group and fitted well into this group also by phenotype. The uvsA gene was tentatively assigned to the UvsC group. uvsA showed epistatic interactions with uvsC in all tests, and like UvsC-group mutants is UV-sensitive mainly in dividing cells. However, the uvsA mutation does not cause the defects in recombination and UV mutagenesis typical for this group.

  11. Enhanced production of bacitracin by a mutant strain bacillus licheniformis UV-MN-HN-8 (enhanced bacitracin production by mutagenesis)

    International Nuclear Information System (INIS)

    Aftab, M.N.; Ikram-ul-Haq; Baig, S.

    2010-01-01

    The present study is focused on the improvement of Bacillus licheniformis through random mutagenesis to obtain mutant having enhanced production of bacitracin. Many isolates of Bacillus licheniformis were isolated and the isolate GP-40 produced maximum bacitracin production (16 +- 0.72 IU/mL). Treatment of Bacillus licheniformis GP-40 with ultraviolet (UV) radiations increased bacitracin production to 29 +- 0.69 IU/mL. Similarly, treatment of vegetative cells of GP-40 with chemicals like N-methyl N'-nitro N-nitroso guanidine (MNNG) and Nitrous acid (HNO/sub 2/) increased bacitracin production to 35 +- 1.35 IU/mL and 29 +- 0.89 IU/mL respectively. Studies regarding the combined effect of UV and chemical treatment on parental cells exhibited significantly higher titers of bacitracin with maximum bacitracin production reached to 47.6 +- 0.92 IU/mL. An increase of 2.97 fold production of bacitracin in comparison to wild type was observed. Mutant strain was highly stable and produced consistent yield of bacitracin even after 15 generations. On the basis of kinetic variables, notably mu (h-/sup 1/)max, Yp/x, qp, Qp and Qx mutant strain B. licheniformis UV-MN-HN-8 was found to be a hyper producer of bacitracin. (author)

  12. Invariant amino acids in the Mur peptide synthetases of bacterial peptidoglycan synthesis and their modification by site-directed mutagenesis in the UDP-MurNAc:L-alanine ligase from Escherichia coli.

    Science.gov (United States)

    Bouhss, A; Mengin-Lecreulx, D; Blanot, D; van Heijenoort, J; Parquet, C

    1997-09-30

    The comparison of the amino acid sequences of 20 cytoplasmic peptidoglycan synthetases (MurC, MurD, MurE, MurF, and Mpl) from various bacterial organisms has allowed us to detect common invariants: seven amino acids and the ATP-binding consensus sequence GXXGKT/S all at the same position in the alignment. The Mur synthetases thus appeared as a well-defined class of closely functionally related proteins. The conservation of a constant backbone length between certain invariants suggested common structural motifs. Among the other enzymes catalyzing a peptide bond formation driven by ATP hydrolysis to ADP and Pi, only folylpoly-gamma-l-glutamate synthetases presented the same common conserved amino acid residues, except for the most N-terminal invariant D50. Site-directed mutageneses were carried out to replace the K130, E174, H199, N293, N296, R327, and D351 residues by alanine in the MurC protein from Escherichia coli taken as model. For this purpose, plasmid pAM1005 was used as template, MurC being highly overproduced in this genetic setting. Analysis of the Vmax values of the mutated proteins suggested that residues K130, E174, and D351 are essential for the catalytic process whereas residues H199, N293, N296, and R327 were not. Mutations K130A, H199A, N293A, N296A, and R327A led to important variations of the Km values for one or more substrates, thereby indicating that these residues are involved in the structure of the active site and suggesting that the binding order of the substrates could be ATP, UDP-MurNAc, and alanine. The various mutated murC plasmids were tested for their effects on the growth, cell morphology, and peptidoglycan cell content of a murC thermosensitive strain at 42 degrees C. The observed effects (complementation, altered morphology, and reduced peptidoglycan content) paralleled more or less the decreased values of the MurC activity of each mutant.

  13. Decreased uv mutagenesis in cdc8, a DNA replication mutant of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Prakash, L.; Hinkle, D.; Prakash, S.

    1978-01-01

    A DNA replication mutant of yeast, cdc8, was found to decrease uv-induced reversion of lys2-1, arg4-17, tryl and ural. This effect was observed with all three alleles of cdc8 tested. Survival curves obtained following uv irradiation in cdc8 rad double mutants show that cdc8 is epistatic to rad6, as well as to rad1; cdc8 rad51 double mutants seem to be more sensitive than the single mutants. Since uv-induced reversion in cdc8 rad1 and cdc8 rad51 double mutants is like that of the cdc8 single mutants, we conclude that CDC8 plays a direct role in error-prone repair. To test whether CDC8 codes for a DNA polymerase, we have purified both DNA polymerase I and DNA polymerase II from cdc8 and CDC+ cells. The purified DNA polymerases from cdc8 were no more heat labile than those from CDC+, suggesting that CDC8 is not a structural gene for either enzyme

  14. Directed mutagenesis in Candida albicans: one-step gene disruption to isolate ura3 mutants

    International Nuclear Information System (INIS)

    Kelly, R.; Miller, S.M.; Kurtz, M.B.; Kirsch, D.R.

    1987-01-01

    A method for introducing specific mutations into the diploid Candida albicans by one-step gene disruption and subsequent UV-induced recombination was developed. The cloned C. albicans URA3 gene was disrupted with the C. albicans ADE2 gene, and the linearized DNA was used for transformation of two ade2 mutants, SGY-129 and A81-Pu. Both an insertional inactivation of the URA3 gene and a disruption which results in a 4.0-kilobase deletion were made. Southern hybridization analyses demonstrated that the URA3 gene was disrupted on one of the chromosomal homologs in 15 of the 18 transformants analyzed. These analyses also revealed restriction site dimorphism of EcoRI at the URA3 locus which provides a unique marker to distinguish between chromosomal homologs. This enabled us to show that either homolog could be disrupted and that disrupted transformants of SGY-129 contained more than two copies of the URA3 locus. The A81-Pu transformants heterozygous for the ura3 mutations were rendered homozygous and Ura- by UV-induced recombination. The homozygosity of a deletion mutant and an insertion mutant was confirmed by Southern hybridization. Both mutants were transformed to Ura+ with plasmids containing the URA3 gene and in addition, were resistant to 5-fluoro-orotic acid, a characteristic of Saccharomyces cerevisiae ura3 mutants as well as of orotidine-5'-phosphate decarboxylase mutants of other organisms

  15. Construction of a mutagenesis cartridge for poliovirus genome-linked viral protein: isolation and characterization of viable and nonviable mutants

    International Nuclear Information System (INIS)

    Kuhn, R.J.; Tada, H.; Ypma-Wong, M.F.; Dunn, J.J.; Semler, B.L.; Wimmer, E.

    1988-01-01

    By following a strategy of genetic analysis of poliovirus, the authors have constructed a synthetic mutagenesis cartridge spanning the genome-linked viral protein coding region and flanking cleavage sites in an infectious cDNA clone of the type I (Mahoney) genome. The insertion of new restriction sites within the infectious clone has allowed them to replace the wild-type sequences with short complementary pairs of synthetic oligonucleotides containing various mutations. A set of mutations have been made that create methionine codons within the genome-linked viral protein region. The resulting viruses have growth characteristics similar to wild type. Experiments that led to an alteration of the tyrosine residue responsible for the linkage to RNA have resulted in nonviable virus. In one mutant, proteolytic processing assayed in vitro appeared unimpaired by the mutation. They suggest that the position of the tyrosine residue is important for genome-linked viral protein function(s)

  16. Systematic mutagenesis method for enhanced production of bacitracin by Bacillus licheniformis mutant strain UV-MN-HN-6

    Directory of Open Access Journals (Sweden)

    Muhammad Nauman Aftab

    2012-03-01

    Full Text Available The purpose of the current study was intended to obtain the enhanced production of bacitracin by Bacillus licheniformis through random mutagenesis and optimization of various parameters. Several isolates of Bacillus licheniformis were isolated from local habitat and isolate designated as GP-35 produced maximum bacitracin production (14±0.72 IU ml-1. Bacitracin production of Bacillus licheniformis GP-35 was increased to 23±0.69 IU ml-1 after treatment with ultraviolet (UV radiations. Similarly, treatment of vegetative cells of GP-35 with chemicals like N-methyl N'-nitro N-nitroso guanidine (MNNG and Nitrous acid (HNO2 increased the bacitracin production to a level of 31±1.35 IU ml-1 and 27±0.89 IU ml-1 respectively. Treatment of isolate GP-35 with combined effect of UV and chemical treatment yield significantly higher titers of bacitracin with maximum bacitracin production of 41.6±0.92 IU ml-1. Production of bacitracin was further enhanced (59.1±1.35 IU ml-1 by optimization of different parameters like phosphate sources, organic acids as well as temperature and pH. An increase of 4.22 fold in the production of bacitracin after mutagenesis and optimization of various parameters was achieved in comparison to wild type. Mutant strain was highly stable and produced consistent yield of bacitracin even after 15 generations. On the basis of kinetic variables, notably Yp/s (IU/g substrate, Yp/x (IU/g cells, Yx/s (g/g, Yp/s, mutant strain B. licheniformis UV-MN-HN-6 was found to be a hyperproducer of bacitracin.

  17. A large-scale mutant panel in wheat developed using heavy-ion beam mutagenesis and its application to genetic research

    Energy Technology Data Exchange (ETDEWEB)

    Murai, Koji, E-mail: murai@fpu.ac.jp [Department of Bioscience, Fukui Prefectural University, 4-1-1 Matsuoka-Kenjojima, Eiheiji-cho, Yoshida-gun, Fukui 910-1195 (Japan); Nishiura, Aiko [Department of Bioscience, Fukui Prefectural University, 4-1-1 Matsuoka-Kenjojima, Eiheiji-cho, Yoshida-gun, Fukui 910-1195 (Japan); Kazama, Yusuke [RIKEN, Innovation Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Abe, Tomoko [RIKEN, Innovation Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); RIKEN, Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)

    2013-11-01

    Mutation analysis is a powerful tool for studying gene function. Heavy-ion beam mutagenesis is a comparatively new approach to inducing mutations in plants and is particularly efficient because of its high linear energy transfer (LET). High LET radiation induces a higher rate of DNA double-strand breaks than other mutagenic methods. Over the last 12 years, we have constructed a large-scale mutant panel in diploid einkorn wheat (Triticum monococcum) using heavy-ion beam mutagenesis. Einkorn wheat seeds were exposed to a heavy-ion beam and then sown in the field. Selfed seeds from each spike of M{sub 1} plants were used to generate M{sub 2} lines. Every year, we obtained approximately 1000 M{sub 2} lines and eventually developed a mutant panel with 10,000 M{sub 2} lines in total. This mutant panel is being systematically screened for mutations affecting reproductive growth, and especially for flowering-time mutants. To date, we have identified several flowering-time mutants of great interest: non-flowering mutants (mvp: maintained vegetative phase), late-flowering mutants, and early-flowering mutants. These novel mutations will be of value for investigations of the genetic mechanism of flowering in wheat.

  18. Crizotinib-Resistant Mutants of EML4-ALK Identified Through an Accelerated Mutagenesis Screen

    Science.gov (United States)

    Zhang, Sen; Wang, Frank; Keats, Jeffrey; Zhu, Xiaotian; Ning, Yaoyu; Wardwell, Scott D; Moran, Lauren; Mohemmad, Qurish K; Anjum, Rana; Wang, Yihan; Narasimhan, Narayana I; Dalgarno, David; Shakespeare, William C; Miret, Juan J; Clackson, Tim; Rivera, Victor M

    2011-01-01

    Activating gene rearrangements of anaplastic lymphoma kinase (ALK) have been identified as driver mutations in non-small-cell lung cancer, inflammatory myofibroblastic tumors, and other cancers. Crizotinib, a dual MET/ALK inhibitor, has demonstrated promising clinical activity in patients with non-small-cell lung cancer and inflammatory myofibroblastic tumors harboring ALK translocations. Inhibitors of driver kinases often elicit kinase domain mutations that confer resistance, and such mutations have been successfully predicted using in vitro mutagenesis screens. Here, this approach was used to discover an extensive set of ALK mutations that can confer resistance to crizotinib. Mutations at 16 residues were identified, structurally clustered into five regions around the kinase active site, which conferred varying degrees of resistance. The screen successfully predicted the L1196M, C1156Y, and F1174L mutations, recently identified in crizotinib-resistant patients. In separate studies, we demonstrated that crizotinib has relatively modest potency in ALK-positive non-small-cell lung cancer cell lines. A more potent ALK inhibitor, TAE684, maintained substantial activity against mutations that conferred resistance to crizotinib. Our study identifies multiple novel mutations in ALK that may confer clinical resistance to crizotinib, suggests that crizotinib's narrow selectivity window may underlie its susceptibility to such resistance and demonstrates that a more potent ALK inhibitor may be effective at overcoming resistance. PMID:22034911

  19. groE mutants of Escherichia coli are defective in umuDC-dependent UV mutagenesis

    International Nuclear Information System (INIS)

    Donnelly, C.E.; Walker, G.C.

    1989-01-01

    Overexpression of the SOS-inducible umuDC operon of Escherichia coli results in the inability of these cells to grow at 30 degrees C. Mutations in several heat shock genes suppress this cold sensitivity. Suppression of umuD+C+-dependent cold sensitivity appears to occur by two different mechanisms. We show that mutations in lon and dnaK heat shock genes suppress cold sensitivity in a lexA-dependent manner. In contrast, mutations in groES, groEL, and rpoH heat shock genes suppress cold sensitivity regardless of the transcriptional regulation of the umuDC genes. We have also found that mutations in groES and groEL genes are defective in umuDC-dependent UV mutagenesis. This defect can be suppressed by increased expression of the umuDC operon. The mechanism by which groE mutations affect umuDC gene product function may be related to the stability of the UmuC protein, since the half-life of this protein is shortened because of mutations at the groE locus

  20. Use of Transgenic and Mutant Animal Models in the Study of Heterocyclic Amine-induced Mutagenesis and Carcinogenesis

    Science.gov (United States)

    Dashwood, Roderick H.

    2008-01-01

    Heterocyclic amines (HCAs) are potent mutagens generated during the cooking of meat and fish, and several of these compounds produce tumors in conventional experimental animals. During the past 5 years or so, HCAs have been tested in a number of novel in vivo murine models, including the following: lacZ, lacI, cII, c-myc/lacZ, rpsL, and gptΔ transgenics, XPA−/−, XPC−/−, Msh2+/−, Msh2−/− and p53+/− knock-outs, Apc mutant mice (ApcΔ716, Apc1638N, Apcmin), and A33ΔNβ-cat knock-in mice. Several of these models have provided insights into the mutation spectra induced in vivo by HCAs in target and non-target organs for tumorigenesis, as well as demonstrating enhanced susceptibility to HCA-induced tumors and preneoplastic lesions. This review describes several of the more recent reports in which novel animal models were used to examine HCA-induced mutagenesis and carcinogenesis in vivo, including a number of studies which assessed the inhibitory activities of chemopreventive agents such as 1,2-dithiole-3-thione, conjugated linoleic acids, tea, curcumin, chlorophyllin-chitosan, and sulindac. PMID:12542973

  1. Differential expression of SOS genes in an E. coli mutant producing unstable lexA protein enhances excision repair but inhibits mutagenesis

    International Nuclear Information System (INIS)

    Peterson, K.R.; Ganesan, A.K.; Mount, D.W.; Stanford Univ., CA)

    1986-01-01

    The SOS response is displayed following treatments which damage DNA or inhibit DNA replication. Two associated activities include enhanced capacity for DNA repair resulting from derepression of the recA, uvrA, uvrB and uvrD genes and increased mutagenesis due to derepression of recA, umuC and umuD. These changes are the consequence of the derepression of at least seventeen unlinked operons negatively regulated by LexA repressor. Following treatments that induce the SOS response, a signal molecule interacts with RecA protein, converting it to an activated form. Activated RecA protein facilitates the proteolytic cleavage of LexA repressor, which results in derepression of the regulon. The cell then enters a new physiological state during which time DNA repair processes are augmented. The lexA41 mutant of E. coli is a uv-resistant derivative of another mutant, lexA3, which produces a repressor that is not cleaved following inducing treatments. The resultant protein is unstable. Lac operon fusions to most of the genes in the SOS regulon were used to show that the various damage-inducible genes were derepressed to different extents. uvrA, B, and D were almost fully derepressed. Consistent with this finding, the rate of removal of T4 endonuclease V-sensitive sites was more rapid in the uv-irradiated lexA41 mutant than in normal cells, suggesting a more active excision repair system. We propose that the instability of the LexA41 protein reduces the intracellular concentration of repressor to a level that allows a high level of excision repair. The additional observation that SOS mutagenesis was only weakly induced in a lexA41 uvrA - mutant implies that the mutant protein partially represses one or more genes whose products promote SOS mutagenesis. 17 refs., 4 figs., 1 tab

  2. Site-directed mutagenesis, in vivo electroporation and mass spectrometry in search for determinants of the subcellular targeting of Rab7b paralogue in the model eukaryote Paramecium octaurelia.

    Science.gov (United States)

    Wyroba, E; Kwaśniak, P; Miller, K; Kobyłecki, K; Osińska, M

    2016-04-11

    Protein products of the paralogous genes resulting from the whole genome duplication may acquire new function. The role of post-translational modifications (PTM) in proper targeting of Paramecium Rab7b paralogue - distinct from that of Rab7a directly involved in phagocytosis - was studied using point mutagenesis, proteomic analysis and double immunofluorescence after in vivo electroporation of the mutagenized protein. Here we show that substitution of Thr200 by Ala200 resulted in diminished incorporation of [P32] by 37.4% and of 32 [C14-]UDP-glucose by 24%, respectively, into recombinant Rab7b_200 in comparison to the non-mutagenized control. Double confocal imaging revealed that Rab7b_200 was mistargeted upon electroporation into living cells contrary to non- mutagenized recombinant Rab7b correctly incorporated in the cytostome area. We identified the peptide ion at m/z=677.63+ characteristic for the glycan group attached to Thr200 in Rab7b using nano LC-MS/MS and comparing the peptide map of this protein with that after deglycosylation with the mixture of five enzymes of different specificity. Based on the mass of this peptide ion and quantitative radioactive assays with [P32]and  [C14-]UDP- glucose, the suggested composition of the adduct attached to Thr200 might be (Hex)1(HexNAc)1(Phos)3 or (HexNAc)1 (Deoxyhexose)1 (Phos)1 (HexA)1. These data indicate that PTM of Thr200 located in the hypervariable C-region of Rab7b in Paramecium is crucial for the proper localization/function of this protein. Moreover, these proteins differ also in other PTM: the number of phosphorylated amino acids in Rab7b is much higher than in Rab7a.

  3. Functional Differentiation of Antiporter-Like Polypeptides in Complex I; a Site-Directed Mutagenesis Study of Residues Conserved in MrpA and NuoL but Not in MrpD, NuoM, and NuoN.

    Directory of Open Access Journals (Sweden)

    Eva Sperling

    Full Text Available It has long been known that the three largest subunits in the membrane domain (NuoL, NuoM and NuoN of complex I are homologous to each other, as well as to two subunits (MrpA and MrpD from a Na+/H+ antiporter, Mrp. MrpA and NuoL are more similar to each other and the same is true for MrpD and NuoN. This suggests a functional differentiation which was proven experimentally in a deletion strain model system, where NuoL could restore the loss of MrpA, but not that of MrpD and vice versa. The simplest explanation for these observations was that the MrpA and MrpD proteins are not antiporters, but rather single subunit ion channels that together form an antiporter. In this work our focus was on a set of amino acid residues in helix VIII, which are only conserved in NuoL and MrpA (but not in any of the other antiporter-like subunits. and to compare their effect on the function of these two proteins. By combining complementation studies in B. subtilis and 23Na-NMR, response of mutants to high sodium levels were tested. All of the mutants were able to cope with high salt levels; however, all but one mutation (M258I/M225I showed differences in the efficiency of cell growth and sodium efflux. Our findings showed that, although very similar in sequence, NuoL and MrpA seem to differ on the functional level. Nonetheless the studied mutations gave rise to interesting phenotypes which are of interest in complex I research.

  4. Improved Biosurfactant Production by Bacillus subtilis SPB1 Mutant Obtained by Random Mutagenesis and Its Application in Enhanced Oil Recovery in a Sand System.

    Science.gov (United States)

    Bouassida, Mouna; Ghazala, Imen; Ellouze-Chaabouni, Semia; Ghribi, Dhouha

    2018-01-28

    Biosurfactants or microbial surfactants are surface-active biomolecules that are produced by a variety of microorganisms. Biodegradability and low toxicity have led to the intensification of scientific studies on a wide range of industrial applications for biosurfactants in the field of environmental bioremediation as well as the petroleum industry and enhanced oil recovery. However, the major issues in biosurfactant production are high production cost and low yield. Improving the bioindustrial production processes relies on many strategies, such as the use of cheap raw materials, the optimization of medium-culture conditions, and selecting hyperproducing strains. The present work aims to obtain a mutant with higher biosurfactant production through applying mutagenesis on Bacillus subtilis SPB1 using a combination of UV irradiation and nitrous acid treatment. Following mutagenesis and screening on blood agar and subsequent formation of halos, the mutated strains were examined for emulsifying activity of their culture broth. A mutant designated B. subtilis M2 was selected as it produced biosurfactant at twice higher concentration than the parent strain. The potential of this biosurfactant for industrial uses was shown by studying its stability to environmental stresses such as pH and temperature and its applicability in the oil recovery process. It was practically stable at high temperature and at a wide range of pH, and it recovered above 90% of motor oil adsorbed to a sand sample.

  5. [Mutants of the yeast Saccharomyces cerevisiae characterized by enhanced induced mutagenesis. III. Effect of the him mutation on the effectiveness and specificity of UF-induced mutagenesis].

    Science.gov (United States)

    Ivanov, E L; Koval'tsova, S V; Korolev, V G

    1987-09-01

    We have studied the influence of him1-1, him2-1, him3-1 and himX mutations on induction frequency and specificity of UV-induced adenine-dependent mutations in the yeast Saccharomyces cerevisiae. Him mutations do not render haploid cells more sensitive to the lethal action of UV-light; however, in him strains adenine-dependent mutations (ade1, ade2) were induced more frequently (1.5--2-fold), as compared to the HIM strain. An analysis of the molecular nature of ade2 mutants revealed that him1-1, him2-1 and himX mutations increase specifically the yield of transitions (AT----GC and GC----AT), whereas in the him3-1 strain the yield of transversions was enhanced as well. We suggest him mutations analysed to affect specific repair pathway for mismatch correction.

  6. Management of chimera and in vitro mutagenesis for development of new flower color/shape and chlorophyll variegated mutants in chrysanthemum

    Energy Technology Data Exchange (ETDEWEB)

    Datta, S.K. [CSIR, Madhyamgram Experimental Farm, Bose Institute, Kolkata (India)], E-mail: subodhskdatta@rediffmail.com; Chakrabarty, D [Floriculture Laboratory, National Botanical Research Institute, Lucknow (India)

    2008-07-01

    Induced mutagenesis has played a major role in the development of many new flower color/shape mutant varieties in ornamentals. The main bottleneck with vegetatively propagated plants is that the mutation appears as a chimera whether developed through bud sport or through induced mutation. The size of the mutant sector varies from a narrow streak on a petal to the entire flower and from a portion of a branch to the entire branch. When a portion of a branch or entire branch is mutated, the mutant tissue can be isolated; on the other hand, a small sector of a mutated branch or flower cannot be isolated using the available conventional propagation techniques. A novel technique has been standardized in our laboratory for the management of chimeric tissues through direct shoot regeneration from chrysanthemum florets. 'Kasturba Gandhi', a large white flowered chrysanthemum, developed few chimeric yellow florets due to spontaneous mutation. Using in vitro protocol new yellow florets were established in pure form. In vitro mutagenesis experiments were conducted treating ray florets of chrysanthemum cultivars using gamma rays. Induced chimeric yellow, white, light yellow, light mauve and dark mauve floret color sectors and chlorophyll variegation in leaves of cv. 'Maghi' (with mauve floret and green leaves) have been established in pure form. Gamma ray induced sectorial yellow florets of cv. 'Lilith' (white floret) and yellow ray florets in both the cvs. 'Purnima' (with white florets) and 'Colchi Bahar' (with red florets) have been isolated in pure form through in vitro management. Induced sectorial flower color/shape mutations in cvs. 'Puja', 'Lalima', 'Flirt', 'Maghi' and 'Sunil' have been isolated in pure form through in vitro culture. Gamma radiation procedure and tissue culture techniques have been optimized to regenerate plants from stem internodes, stem node, shoot tip and ray florets. Present technique has opened a new way for isolating new flower color

  7. Gamma-radiation Mutagenesis in Genetically Unstable Barley Mutants. Pt. 3. Effects of Aging in Various Genotypes

    International Nuclear Information System (INIS)

    Balchiuniene, L.

    1995-01-01

    Gamma-irradiation effect was tested on the grain material of normal-initial barley c. 'Auksiniai II' and allelic mutants tw 1 and tw 2 . Dependence of the aging effects on genotype was obvious, especially in survival test. Differences were observed even on allelic mutants. These observations are important for the preservation strategy of plant genetical resources. (author). 11 refs., 3 tabs

  8. mRNA processing in mutant zebrafish lines generated by chemical and CRISPR-mediated mutagenesis produces unexpected transcripts that escape nonsense-mediated decay.

    Directory of Open Access Journals (Sweden)

    Jennifer L Anderson

    2017-11-01

    Full Text Available As model organism-based research shifts from forward to reverse genetics approaches, largely due to the ease of genome editing technology, a low frequency of abnormal phenotypes is being observed in lines with mutations predicted to lead to deleterious effects on the encoded protein. In zebrafish, this low frequency is in part explained by compensation by genes of redundant or similar function, often resulting from the additional round of teleost-specific whole genome duplication within vertebrates. Here we offer additional explanations for the low frequency of mutant phenotypes. We analyzed mRNA processing in seven zebrafish lines with mutations expected to disrupt gene function, generated by CRISPR/Cas9 or ENU mutagenesis methods. Five of the seven lines showed evidence of altered mRNA processing: one through a skipped exon that did not lead to a frame shift, one through nonsense-associated splicing that did not lead to a frame shift, and three through the use of cryptic splice sites. These results highlight the need for a methodical analysis of the mRNA produced in mutant lines before making conclusions or embarking on studies that assume loss of function as a result of a given genomic change. Furthermore, recognition of the types of adaptations that can occur may inform the strategies of mutant generation.

  9. Field evaluation of mutants of sugar cane variety ‘SP 70-1284’ obtained by in vitro mutagenesis

    Directory of Open Access Journals (Sweden)

    Apolonio Valdez Balero

    2005-01-01

    Full Text Available In the experimental area of the Campus Tabasco, km. 21, in the state of Tabasco, Mexico, seven mutants of sugarcane obtained from the application of Gamma radiation 60Co were studied. The yield and its components and the percentage of the area affected in the leaf by the rust of the sugarcane (Puccinia melanocephala Syd were evaluated in field conditions. The variations in qualitative characters using the variety ‘SP 70-1284’ as control were also evaluated. The mutants 3 and 6 presented agricultural performances and resistance to the rust of the sugarcane in upper values to the control. With regard to the infection by the rust all the mutants selected presented levels of affectation lower than the original variety, being emphasized the mutant 7 by its high resistance. The mutants 2 and 3 presented, besides variations in the qualitative characters with regard to the original variety. It is recommended to evaluate the mutants 2 and 3 in tests of agricultural extension by its better integral behavior with respect to the original variety. Key words: field, Gamma radiation, resistance, rust

  10. Novel mutants of Erwinia carotovora subsp. carotovora defective in the production of plant cell wall degrading enzymes generated by Mu transpososome-mediated insertion mutagenesis.

    Science.gov (United States)

    Laasik, Eve; Ojarand, Merli; Pajunen, Maria; Savilahti, Harri; Mäe, Andres

    2005-02-01

    As in Erwinia carotovora subsp. carotovora the regulation details of the main virulence factors, encoding extracellular enzymes that degrade the plant cell wall, is only rudimentally understood, we performed a genetic screen to identify novel candidate genes involved in the process. Initially, we used Mu transpososome-mediated mutagenesis approach to generate a comprehensive transposon insertion mutant library of ca. 10000 clones and screened the clones for the loss of extracellular enzyme production. Extracellular enzymes production was abolished by mutations in the chromosomal helEcc, trkAEcc yheLEcc, glsEcc, igaAEcc and cysQEcc genes. The findings reported here demonstrate that we have isolated six new representatives that belong to the pool of genes modulating the production of virulence factors in E. carotovora.

  11. Receptor mutagenesis strategies for examination of structure-function relationships

    NARCIS (Netherlands)

    Blomenröhr, Marion; Vischer, Henry F; Bogerd, Jan

    2004-01-01

    This chapter describes three different strategies of receptor mutagenesis with their advantages, disadvantages, and limitations. Oligonucleotide-directed mutagenesis using either the Altered Sites II in vitro mutagenesis system or the GeneTailor site-directed mutagenesis system can generate base

  12. Mutagenesis of the redox-active disulfide in mercuric ion reductase: Catalysis by mutant enzymes restricted to flavin redox chemistry

    International Nuclear Information System (INIS)

    Distefano, M.D.; Au, K.G.; Walsh, C.T.

    1989-01-01

    Mercuric reductase, a flavoenzyme that possesses a redox-active cystine, Cys 135 Cys 140 , catalyzes the reduction of Hg(II) to Hg(0) by NADPH. As a probe of mechanism, the authors have constructed mutants lacking a redox-active disulfide by eliminating Cys 135 (Ala 135 Cys 140 ), Cys 14 (Cys 135 Ala 140 ), or both (Ala 135 Ala 140 ). Additionally, they have made double mutants that lack Cys 135 (Ala 135 Cys 139 Cys 140 ) or Cys 140 (Cys 135 Cys 139 Ala 140 ) but introduce a new Cys in place of Gly 139 with the aim of constructing dithiol pairs in the active site that do not form a redox-active disulfide. The resulting mutant enzymes all lack redox-active disulfides and are hence restricted to FAD/FADH 2 redox chemistry. Each mutant enzyme possesses unique physical and spectroscopic properties that reflect subtle differences in the FAD microenvironment. Preliminary evidence for the Ala 135 Cys 139 Cys 14 mutant enzyme suggests that this protein forms a disulfide between the two adjacent Cys residues. Hg(II) titration experiments that correlate the extent of charge-transfer quenching with Hg(II) binding indicate that the Ala 135 Cys 140 protein binds Hg(II) with substantially less avidity than does the wild-type enzyme. All mutant mercuric reductases catalyze transhydrogenation and oxygen reduction reactions through obligatory reduced flavin intermediates at rates comparable to or greater than that of the wild-type enzyme. In multiple-turnover assays which monitored the production of Hg(0), two of the mutant enzymes were observed to proceed through at least 30 turnovers at rates ca. 1000-fold slower than that of wild-type mercuric reductase. They conclude that the Cys 135 and Cys 140 thiols serve as Hg(II) ligands that orient the Hg(II) for subsequent reduction by a reduced flavin intermediate

  13. Variations in seed protein content of cotton (Gossypium hirsutum L.) mutant lines by in vivo and in vitro mutagenesis.

    Science.gov (United States)

    Muthusamy, Annamalai; Jayabalan, Narayanasamy

    2013-01-01

    The present work describes the influence of gamma irradiation (GR), ethyl methane sulphonate (EMS) and sodium azide (SA) treatment on yield and protein content of selected mutant lines of cotton. Seeds of MCU 5 and MCU 11 were exposed to gamma rays (GR), ethyl methane sulphonate (EMS) and sodium azide (SA). Lower dose of gamma irradiation (100-500 Gy), 10-50 mM EMS and SA at lower concentration effectively influences in improving the yield and protein content. Significant increase in yield (258.9 g plant(-1)) and protein content (18.63 mg g(-1) d. wt.) as compared to parental lines was noted in M2 generations. During the subsequent field trials, number of mutant lines varied morphologically in terms of yield as well as biochemical characters such as protein. The selected mutant lines were bred true to their characters in M3 and M4 generations. The significant increase in protein content and profiles of the mutant lines with range of 10.21-18.63 mg g(-1). The SDS-PAGE analysis of mutant lines revealed 9 distinct bands of different intensities with range of 26-81 kDa. The difference in intensity of bands was more (41, 50 and 58 kDa) in the mutant lines obtained from in vitro mutation than in vivo mutation. Significance of such stimulation in protein content correlated with yielding ability of the mutant lines of cotton in terms of seed weight per plant. The results confirm that in cotton it is possible to enhance the both yield and biochemical characters by in vivo and in vitro mutagenic treatments.

  14. Non-oncogenic T-region mutants of Agrobacterium tumefaciens do transfer T-DNA into plant cells

    NARCIS (Netherlands)

    Hille, Jacques; Wullems, George; Schilperoort, Rob

    1983-01-01

    A new procedure for site-directed mutagenesis has been applied to the shooting and rooting loci of T-DNA of an octopine Ti-plasmid of Agrobacterium tumefaciens. Mutants have been obtained which induced tumours that either developed shoots or produced more roots than normally observed. Double

  15. Activities of Native and Tyrosine-69 Mutant Phospholipases A2 on Phospholipid Analogues. A Reevaluation of the Minimal Substrate Requirements

    NARCIS (Netherlands)

    Kuipers, Oscar P.; Dekker, Nicolaas; Verheij, Hubertus M.; Haas, Gerard H. de

    1990-01-01

    The role of Tyr-69 of porcine pancreatic phospholipase A2 in substrate binding was studied with the help of proteins modified by site-directed mutagenesis and phospholipid analogues with a changed head-group geometry. Two mutants were used containing Phe and Lys, respectively, at position 69.

  16. Development of improved advanced mutant lines of cereal and native grains through radiation-induced mutagenesis in Peru

    International Nuclear Information System (INIS)

    Gomez, L.; Aldaba, G.; Yarango, D.; Argumedo, K.; Ibannez, N.; Falconi, J.

    2015-01-01

    In Peru it is very important to increase the food production in amount and quality, especially in the rural areas where a high poverty and malnutrition problems are usually founded. Mutation induction method is used to improve well adapted cultivars, thru the upgraded in one or two changed characteristics, retaining all its original attributes. Quinoa (Chenopodium quinoa), accession LM 89, was treated with gamma rays at the doses 150 and 250 Gray. In M 2 and following generations mutation in morphological traits were observed and 8 mutant lines were selected among them MQLM89-149 with higher yield equal to 4258.6 Kg/ha, surpassing the witness at 205.63% and MQLM89-42 with 14.7 of grain protein, superior to the parent material with 12.3%. Kiwicha (Amaranthus caudatus) CICA- UNASAC cultivar was irradiated with gamma ray (400 and 600 Gray). Mutations of morphological and physiological characteristics were identified and nine mutant lines with 27 to 50% better yield potential than the parent material were selected. In barley (Hordeum vulgare) mutant lines were developed from the cultivar UNALM 96, through the application of gamma rays at a dose of 200 and 300 Gray. Mutant lines were selected a M 8 generation with higher agronomic performance and nutritive quality adapted to the highland with grain yield within the range of 5100 - 8731 kg/ha, over the value of the parent material with of 4246 kg/ha and had improvement in the content of P-131 mg/g DW, Zn66 mg/g DW, Mn55 mg/g DW, Fe57 mg/g DW and Cu63 ug/g DW. (Author)

  17. Sequence requirements of the HIV-1 protease flap region determined by saturation mutagenesis and kinetic analysis of flap mutants

    Science.gov (United States)

    Shao, Wei; Everitt, Lorraine; Manchester, Marianne; Loeb, Daniel D.; Hutchison, Clyde A.; Swanstrom, Ronald

    1997-01-01

    The retroviral proteases (PRs) have a structural feature called the flap, which consists of a short antiparallel β-sheet with a turn. The flap extends over the substrate binding cleft and must be flexible to allow entry and exit of the polypeptide substrates and products. We analyzed the sequence requirements of the amino acids within the flap region (positions 46–56) of the HIV-1 PR. The phenotypes of 131 substitution mutants were determined using a bacterial expression system. Four of the mutant PRs with mutations in different regions of the flap were selected for kinetic analysis. Our phenotypic analysis, considered in the context of published structures of the HIV-1 PR with a bound substrate analogs, shows that: (i) Met-46 and Phe-53 participate in hydrophobic interactions on the solvent-exposed face of the flap; (ii) Ile-47, Ile-54, and Val-56 participate in hydrophobic interactions on the inner face of the flap; (iii) Ile-50 has hydrophobic interactions at the distance of both the δ and γ carbons; (iv) the three glycine residues in the β-turn of the flap are virtually intolerant of substitutions. Among these mutant PRs, we have identified changes in both kcat and Km. These results establish the nature of the side chain requirements at each position in the flap and document a role for the flap in both substrate binding and catalysis. PMID:9122179

  18. Transposon mutagenesis in Bifidobacterium breve: construction and characterization of a Tn5 transposon mutant library for Bifidobacterium breve UCC2003.

    Science.gov (United States)

    Ruiz, Lorena; Motherway, Mary O'Connell; Lanigan, Noreen; van Sinderen, Douwe

    2013-01-01

    Bifidobacteria are claimed to contribute positively to human health through a range of beneficial or probiotic activities, including amelioration of gastrointestinal and metabolic disorders, and therefore this particular group of gastrointestinal commensals has enjoyed increasing industrial and scientific attention in recent years. However, the molecular mechanisms underlying these probiotic mechanisms are still largely unknown, mainly due to the fact that molecular tools for bifidobacteria are rather poorly developed, with many strains lacking genetic accessibility. In this work, we describe the generation of transposon insertion mutants in two bifidobacterial strains, B. breve UCC2003 and B. breve NCFB2258. We also report the creation of the first transposon mutant library in a bifidobacterial strain, employing B. breve UCC2003 and a Tn5-based transposome strategy. The library was found to be composed of clones containing single transposon insertions which appear to be randomly distributed along the genome. The usefulness of the library to perform phenotypic screenings was confirmed through identification and analysis of mutants defective in D-galactose, D-lactose or pullulan utilization abilities.

  19. Transposon mutagenesis in Bifidobacterium breve: construction and characterization of a Tn5 transposon mutant library for Bifidobacterium breve UCC2003.

    Directory of Open Access Journals (Sweden)

    Lorena Ruiz

    Full Text Available Bifidobacteria are claimed to contribute positively to human health through a range of beneficial or probiotic activities, including amelioration of gastrointestinal and metabolic disorders, and therefore this particular group of gastrointestinal commensals has enjoyed increasing industrial and scientific attention in recent years. However, the molecular mechanisms underlying these probiotic mechanisms are still largely unknown, mainly due to the fact that molecular tools for bifidobacteria are rather poorly developed, with many strains lacking genetic accessibility. In this work, we describe the generation of transposon insertion mutants in two bifidobacterial strains, B. breve UCC2003 and B. breve NCFB2258. We also report the creation of the first transposon mutant library in a bifidobacterial strain, employing B. breve UCC2003 and a Tn5-based transposome strategy. The library was found to be composed of clones containing single transposon insertions which appear to be randomly distributed along the genome. The usefulness of the library to perform phenotypic screenings was confirmed through identification and analysis of mutants defective in D-galactose, D-lactose or pullulan utilization abilities.

  20. A Mutant Mouse with a Highly Specific Contextual Fear-Conditioning Deficit Found in an N-Ethyl-N-Nitrosourea (ENU) Mutagenesis Screen

    Science.gov (United States)

    Pletcher, Mathew T.; Wiltshire, Tim; Tarantino, Lisa M.; Mayford, Mark; Reijmers, Leon G.; Coats, Jennifer K.

    2006-01-01

    Targeted mutagenesis in mice has shown that genes from a wide variety of gene families are involved in memory formation. The efficient identification of genes involved in learning and memory could be achieved by random mutagenesis combined with high-throughput phenotyping. Here, we provide the first report of a mutagenesis screen that has…

  1. Genome-wide analysis of mutations in mutant lineages selected following fast-neutron irradiation mutagenesis of Arabidopsis thaliana

    KAUST Repository

    Belfield, E.J.; Gan, X.; Mithani, A.; Brown, C.; Jiang, C.; Franklin, K.; Alvey, E.; Wibowo, A.; Jung, M.; Bailey, K.; Kalwani, S.; Ragoussis, J.; Mott, R.; Harberd, N.P.

    2012-01-01

    Ionizing radiation has long been known to induce heritable mutagenic change in DNA sequence. However, the genome-wide effect of radiation is not well understood. Here we report the molecular properties and frequency of mutations in phenotypically selected mutant lines isolated following exposure of the genetic model flowering plant Arabidopsis thaliana to fast neutrons (FNs). Previous studies suggested that FNs predominantly induce deletions longer than a kilobase in A. thaliana. However, we found a higher frequency of single base substitution than deletion mutations. While the overall frequency and molecular spectrum of fast-neutron (FN)-induced single base substitutions differed substantially from those of "background" mutations arising spontaneously in laboratory-grown plants, G:C>A:T transitions were favored in both. We found that FN-induced G:C>A:T transitions were concentrated at pyrimidine dinucleotide sites, suggesting that FNs promote the formation of mutational covalent linkages between adjacent pyrimidine residues. In addition, we found that FNs induced more single base than large deletions, and that these single base deletions were possibly caused by replication slippage. Our observations provide an initial picture of the genome-wide molecular profile of mutations induced in A. thaliana by FN irradiation and are particularly informative of the nature and extent of genome-wide mutation in lines selected on the basis of mutant phenotypes from FN-mutagenized A. thaliana populations.

  2. Genome-wide analysis of mutations in mutant lineages selected following fast-neutron irradiation mutagenesis of Arabidopsis thaliana

    KAUST Repository

    Belfield, E.J.

    2012-04-12

    Ionizing radiation has long been known to induce heritable mutagenic change in DNA sequence. However, the genome-wide effect of radiation is not well understood. Here we report the molecular properties and frequency of mutations in phenotypically selected mutant lines isolated following exposure of the genetic model flowering plant Arabidopsis thaliana to fast neutrons (FNs). Previous studies suggested that FNs predominantly induce deletions longer than a kilobase in A. thaliana. However, we found a higher frequency of single base substitution than deletion mutations. While the overall frequency and molecular spectrum of fast-neutron (FN)-induced single base substitutions differed substantially from those of "background" mutations arising spontaneously in laboratory-grown plants, G:C>A:T transitions were favored in both. We found that FN-induced G:C>A:T transitions were concentrated at pyrimidine dinucleotide sites, suggesting that FNs promote the formation of mutational covalent linkages between adjacent pyrimidine residues. In addition, we found that FNs induced more single base than large deletions, and that these single base deletions were possibly caused by replication slippage. Our observations provide an initial picture of the genome-wide molecular profile of mutations induced in A. thaliana by FN irradiation and are particularly informative of the nature and extent of genome-wide mutation in lines selected on the basis of mutant phenotypes from FN-mutagenized A. thaliana populations.

  3. Structural analysis of bioengineered alpha-D-glucan produced by a triple mutant of the glucansucrase GTF180 enzyme from Lactobacillus reuteri strain 180 : Generation of (alpha 1 -> 4) linkages in a native (1 -> 3)(1 -> 6)-alpha-D-glucan

    NARCIS (Netherlands)

    van Leeuwen, Sander S.; Kralj, Slavko; Gerwig, Gerrit J.; Dijkhuizen, Lubbert; Kamerling, Johannis P.

    Site-directed mutagenesis of the glucansucrase gtf180 gene from Lactobacillus reuteri strain 180 was used to transform the active site region. The alpha-D-glucan (mEPS-PNNS) produced by the triple mutant V1027P:S1137N: A1139S differed in structure from that of the wild-type alpha-D-glucan (EPS180).

  4. Efficient mutagenesis by Cas9 protein-mediated oligonucleotide insertion and large-scale assessment of single-guide RNAs.

    Science.gov (United States)

    Gagnon, James A; Valen, Eivind; Thyme, Summer B; Huang, Peng; Akhmetova, Laila; Ahkmetova, Laila; Pauli, Andrea; Montague, Tessa G; Zimmerman, Steven; Richter, Constance; Schier, Alexander F

    2014-01-01

    The CRISPR/Cas9 system has been implemented in a variety of model organisms to mediate site-directed mutagenesis. A wide range of mutation rates has been reported, but at a limited number of genomic target sites. To uncover the rules that govern effective Cas9-mediated mutagenesis in zebrafish, we targeted over a hundred genomic loci for mutagenesis using a streamlined and cloning-free method. We generated mutations in 85% of target genes with mutation rates varying across several orders of magnitude, and identified sequence composition rules that influence mutagenesis. We increased rates of mutagenesis by implementing several novel approaches. The activities of poor or unsuccessful single-guide RNAs (sgRNAs) initiating with a 5' adenine were improved by rescuing 5' end homogeneity of the sgRNA. In some cases, direct injection of Cas9 protein/sgRNA complex further increased mutagenic activity. We also observed that low diversity of mutant alleles led to repeated failure to obtain frame-shift mutations. This limitation was overcome by knock-in of a stop codon cassette that ensured coding frame truncation. Our improved methods and detailed protocols make Cas9-mediated mutagenesis an attractive approach for labs of all sizes.

  5. Activities of Native and Tyrosine-69 Mutant Phospholipases A2 on Phospholipid Analogues. A Reevaluation of the Minimal Substrate Requirements

    OpenAIRE

    Kuipers, Oscar P.; Dekker, Nicolaas; Verheij, Hubertus M.; Haas, Gerard H. de

    1990-01-01

    The role of Tyr-69 of porcine pancreatic phospholipase A2 in substrate binding was studied with the help of proteins modified by site-directed mutagenesis and phospholipid analogues with a changed head-group geometry. Two mutants were used containing Phe and Lys, respectively, at position 69. Modifications in the phospholipids included introduction of a sulfur at the phosphorus (thionophospholipids), removal of the negative charge at phosphorus (phosphatidic acid dimethyl ester), and reductio...

  6. Respiratory-deficient mutants of the unicellular green alga Chlamydomonas: a review.

    Science.gov (United States)

    Salinas, Thalia; Larosa, Véronique; Cardol, Pierre; Maréchal-Drouard, Laurence; Remacle, Claire

    2014-05-01

    Genetic manipulation of the unicellular green alga Chlamydomonas reinhardtii is straightforward. Nuclear genes can be interrupted by insertional mutagenesis or targeted by RNA interference whereas random or site-directed mutagenesis allows the introduction of mutations in the mitochondrial genome. This, combined with a screen that easily allows discriminating respiratory-deficient mutants, makes Chlamydomonas a model system of choice to study mitochondria biology in photosynthetic organisms. Since the first description of Chlamydomonas respiratory-deficient mutants in 1977 by random mutagenesis, many other mutants affected in mitochondrial components have been characterized. These respiratory-deficient mutants increased our knowledge on function and assembly of the respiratory enzyme complexes. More recently some of these mutants allowed the study of mitochondrial gene expression processes poorly understood in Chlamydomonas. In this review, we update the data concerning the respiratory components with a special focus on the assembly factors identified on other organisms. In addition, we make an inventory of different mitochondrial respiratory mutants that are inactivated either on mitochondrial or nuclear genes. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  7. Faux Mutagenesis: Teaching Troubleshooting through Controlled Failure

    Science.gov (United States)

    Hartberg, Yasha

    2006-01-01

    By shifting pedagogical goals from obtaining successful mutations to teaching students critical troubleshooting skills, it has been possible to introduce site-directed mutagenesis into an undergraduate teaching laboratory. Described in this study is an inexpensive laboratory exercise in which students follow a slightly modified version of…

  8. Phage transposon mutagenesis.

    Science.gov (United States)

    Siegrist, M Sloan; Rubin, Eric J

    2009-01-01

    Phage transduction is an attractive method of genetic manipulation in mycobacteria. PhiMycoMarT7 is well suited for transposon mutagenesis as it is temperature sensitive for replication and contains T7 promoters that promote transcription, a highly active transposase gene, and an Escherichia coli oriR6 K origin of replication. Mycobacterial transposon mutant libraries produced by PhiMycoMarT7 transduction are amenable to both forward and reverse genetic studies. In this protocol, we detail the preparation of PhiMycoMarT7, including a description of the phage, reconstitution of the phage, purification of plaques, preparation of phage stock, and titering of phage stock. We then describe the transduction procedure and finally outline the isolation of individual transposon mutants.

  9. Correlation of binding-loop internal dynamics with stability and function in potato I inhibitor family: relative contributions of Arg(50) and Arg(52) in Cucurbita maxima trypsin inhibitor-V as studied by site-directed mutagenesis and NMR spectroscopy.

    Science.gov (United States)

    Cai, Mengli; Gong, Yu-Xi; Wen, Lisa; Krishnamoorthi, Ramaswamy

    2002-07-30

    The side chains of Arg(50) and Arg(52) at positions P(6)' and P(8)', respectively, anchor the binding loop to the protein scaffold by means of hydrogen bonds in Cucurbita maxima trypsin inhibitor-V (CMTI-V), a potato I family member. Here, we have investigated the relative contributions of Arg(50) and Arg(52) to the binding-loop flexibility and stability by determining changes in structure, dynamics, and proteolytic stability as a consequence of individually mutating them into an alanine. We have compared chemical shift assignments of main-chain hydrogens and nitrogens, and (1)H-(1)H interresidue nuclear Overhauser effects (NOEs) for the two mutants with those of the wild-type protein. We have also measured NMR longitudinal and transverse relaxation rates and (15)N-(1)H NOE enhancements for all backbone and side-chain NH groups and calculated the model-free parameters for R50A-rCMTI-V and R52A-rCMTI-V. The three-dimensional structures and backbone dynamics of the protein scaffold region remain very similar for both mutants, relative to the wild-type protein. The flexibility of the binding loop is increased in both R50A- and R52A-rCMTI-V. In R52A-rCMTI-V, the mean generalized order parameter () of the P(6)-P(1) residues of the binding loop (39-44) decreases to 0.68 +/- 0.02 from 0.76 +/- 0.04 observed for the wild-type protein. However, in R50A-rCMTI-V, the flexibility of the whole binding loop increases, especially that of the P(1)'-P(3)' residues (45-47), whose value drops dramatically to 0.35 +/- 0.03 from 0.68 +/- 0.03 determined for rCMTI-V. More strikingly, S(2) values of side-chain N epsilon Hs reveal that, in the R50A mutant, removal of the R50 hydrogen bond results in the loss of the R52 hydrogen bond too, whereas in R52A, the R50 hydrogen bond remains unaffected. Kinetic data on trypsin-catalyzed hydrolysis of the reactive-site peptide bond (P(1)-P(1)') suggest that the activation free energy barrier of the reaction at 25 degrees C is reduced by 2.1 kcal

  10. Engineering thermostable xylanase enzyme mutant from Bacillus ...

    African Journals Online (AJOL)

    user

    2010-11-22

    Nov 22, 2010 ... waste treatment, fuel and chemical production, paper and pulp industries; but these applications ... approaches have been taken: screening organisms from various ... and site-directed mutagenesis was applied on this.

  11. Radiation mutagenesis of subtropic plants

    International Nuclear Information System (INIS)

    Kerkadze, I.G.

    1987-01-01

    Possibilities of expansion of subtropic plant changeability and development of new gene bank for future selection-genetic studies are detected. New trends of radiation mutagenesis of subtropic plants are formulated as results of studies during many years. A lot of mutants is subjected to sufficient tests, and concrete results are obtained with the help of these tests for definite species. Summing genetic and selection estimations of the results, it is possible to make the conclusion that mutant selection represents one of the powerful methods of preparation of productive and qualitative species of subtropic plants, which are successfully introduced into practice

  12. Theory of misrepair mutagenesis

    International Nuclear Information System (INIS)

    Bresler, S.E.

    1975-01-01

    On the basis of experimental data, a model of induced mutagenesis is proposed that takes into account the repair of DNA damage by the Rec system. The peculiar feature of the Rec system is the cleavage and resynthesis of long sequences near the recognized DNA damage. Up to 1000-2000 nucleotides are replaced in one act. Therefore a definite probability exists of finding a damaged point on the second strand serving as template. It is believed that at this point no requirements of complementarity exist and that a random substitution can take place. This is the origin of a point mutation (transversion or frameshift). From this model, a general formula for the dose-response curve of mutagenesis is deduced which also takes into account the possibility of simultaneously initiated repair on both complementary strands of DNA. The latter leads to a lethal event when the points are situated proximally. This formula fits the observations in different cases studied. Some fundamental observations such as the absence of mutants from predominant single-strand breaks of DNA chains are readily explained

  13. Characterization and site-directed mutagenesis of Wzb, an O-phosphatase from Lactobacillus rhamnosus

    Directory of Open Access Journals (Sweden)

    Gilbert Christophe

    2008-04-01

    Full Text Available Abstract Background Reversible phosphorylation events within a polymerisation complex have been proposed to modulate capsular polysaccharide synthesis in Streptococcus pneumoniae. Similar phosphatase and kinase genes are present in the exopolysaccharide (EPS biosynthesis loci of numerous lactic acid bacteria genomes. Results The protein sequence deduced from the wzb gene in Lactobacillus rhamnosus ATCC 9595 reveals four motifs of the polymerase and histidinol phosphatase (PHP superfamily of prokaryotic O-phosphatases. Native and modified His-tag fusion Wzb proteins were purified from Escherichia coli cultures. Extracts showed phosphatase activity towards tyrosine-containing peptides. The purified fusion protein Wzb was active on p-nitrophenyl-phosphate (pNPP, with an optimal activity in presence of bovine serum albumin (BSA 1% at pH 7.3 and a temperature of 75°C. At 50°C, residual activity decreased to 10 %. Copper ions were essential for phosphatase activity, which was significantly increased by addition of cobalt. Mutated fusion Wzb proteins exhibited reduced phosphatase activity on p-nitrophenyl-phosphate. However, one variant (C6S showed close to 20% increase in phosphatase activity. Conclusion These characteristics reveal significant differences with the manganese-dependent CpsB protein tyrosine phosphatase described for Streptococcus pneumoniae as well as with the polysaccharide-related phosphatases of Gram negative bacteria.

  14. Thermostability enhancement of cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus by site-directed mutagenesis

    Science.gov (United States)

    Cellobiose 2-epimerase from the thermophile Caldicellulosiruptor saccharolyticus (CsCE) catalyzes the isomerization of lactose into lactulose, a non-digestible disaccharide widely used in food and pharmaceutical industries. Semi-rational approaches were applied to enhance the thermostability of CsCE...

  15. Antifreeze activity enhancement by site directed mutagenesis on an antifreeze protein from the beetle Rhagium mordax

    DEFF Research Database (Denmark)

    Friis, Dennis Steven; Kristiansen, Erlend; von Solms, Nicolas

    2014-01-01

    The ice binding motifs of insect antifreeze proteins (AFPs) mainly consist of repetitive TxT motifs aligned on a flat face of the protein. However, these motifs often contain non-threonines that disrupt the TxT pattern. We substituted two such disruptive amino acids located in the ice binding fac...

  16. Functional studies of elongation factor Tu from Escherichia coli : Site-directed mutagenesis and antibiotic action

    NARCIS (Netherlands)

    Krab, Ivo Maarten

    2001-01-01

    This PhD thesis describes several studies into the structure and function of Escherichia coli Elongation Factor Tu (EF-Tu). EF-Tu plays a central role in the bacterial protein synthesis machinery as the carrier of "coded building blocks" for protein synthesis, aminoacylated tRNA (aa-tRNA). Without

  17. Site directed mutagenesis in Petunia using CRISPR/CAS9 technology

    NARCIS (Netherlands)

    Paulus den Hollander; Dr. Nelleke Kreike

    2013-01-01

    The Green Biotechnology research group focusses on the application of molecular breeding/biotechnological tools and also on the development/analysis of new tools, for the breeding of enhanced vegetable crops and ornamental plants. The research group is positioned within Inholland University of

  18. Tweaking agonist efficacy at N-methyl-D-aspartate receptors by site-directed mutagenesis

    DEFF Research Database (Denmark)

    Hansen, Kasper B; Clausen, Rasmus P; Bjerrum, Esben J

    2005-01-01

    The structural basis for partial agonism at N-methyl-D-aspartate (NMDA) receptors is currently unresolved. We have characterized several partial agonists at the NR1/NR2B receptor and investigated the mechanisms underlying their reduced efficacy by introducing mutations in the glutamate binding site...

  19. Mutational specificity of SOS mutagenesis

    International Nuclear Information System (INIS)

    Kato, Takeshi

    1986-01-01

    In an approach to the isolation of mutants of E. coli unable to produce mutations by ultraviolet light, the author has found new umuC-mutants. Their properties could be explained by ''SOS hypothesis of Radman and Witkin'', which has now been justified by many investigators. Analysis of the umuC region of E. coli chromosome cloned in pSK 100 has led to the conclusion that two genes, umuD and umuC, having the capacity of mutation induction express in the same mechanism as that of SOS genes, which is known to be inhibited by LexA protein bonding to ''SOS box'' found at promotor region. Suppressor analysis for mutational specificity has revealed: (i) umuDC-independent mutagens, such as EMS and (oh) 4 Cy, induce selected base substitution alone; and (ii) umuDC-dependent mutagens, such as X-rays and gamma-rays, induce various types of base substitution simultaneously, although they have mutational specificity. In the umuDC-dependent processes of basechange mutagenesis, the spectra of base substitution were a mixture of base substitution reflecting the specific base damages induced by individual mutagens and nonspecific base substitution. In conclusion, base substitution plays the most important role in umuDC-dependent mutagenesis, although mutagenesis of umuDC proteins remains uncertain. (Namekawa, K.)

  20. Model building of a thermolysin-like protease by mutagenesis

    NARCIS (Netherlands)

    Frigerio, F; Margarit, [No Value; Nogarotto, R; Grandi, G; Vriend, G; Hardy, F; Veltman, OR; Venema, G; Eijsink, VGH

    The present study concerns the use of site-directed mutagenesis experiments to optimize a three-dimensional model of the neutral protease of Bacillus subtilis (NP-sub), An initial model of NP-sub was constructed using the crystal structures of the homologous neutral proteases of Bacillus

  1. Recovery during radiation mutagenesis

    International Nuclear Information System (INIS)

    Deen, D.F.; Shaw, E.I.

    1976-01-01

    Many variables (e.g. cell inoculum size, mutagen dose, expression time, and concentration of the selective agent) are known to affect the induced mutation frequency obtained in cultured mammalian cells. The authors have studied the effects of several parameters on the frequency of radiation-induced resistance to 8-azaguanine in asynchronous V79-171B hamster cells. Inoculation with 10 5 cells was followed by graded doses of radiation, expression times were optimized to maximize mutation frequency, and then the treated cells were challenged with 8-azaguanine for ten days. The optimal expression times which maximized mutation frequency were dose dependent and are in the range of 14-24, 24, and 24-36 hours respectively for doses of 250, 40 and 800 rads. A time interval of 24 hours between two 250-rad fractions resulted in a mutation frequency smaller than that obtained from administration of a single 500-rad dose. With 36 hours between halves of the dose, the induced mutation frequency was an order of magnitude lower than that produced by a single dose and actually below the unirradiated (spontaneous) frequency. Maintenance of cells after irradation first at 18 0 C for 24 hours, and then allowance of expression at 37 0 C for 24 hours, increased both the spontaneous and induced mutation frequency. A one-hour postirradiation balanced salt-solution treatment did not affect the number of spontaneous mutants that arose, but reduced the number of induced mutants. Thus, the balanced salt treatment lowers the induced mutation frequency about a factor of two. The possible significance of these results are discussed with respect to the role of radiation repair mechanisms during mutagenesis, and to recovery at low dose rates. A working hypothesis is advanced to explain the possible mechanism which causes expression time to vary as a function of the dose of mutagen. (author)

  2. Experimental mutagenesis in plants

    International Nuclear Information System (INIS)

    Conger, B.V.

    1979-01-01

    Considerable progress has been made in directed or controlled mutagenesis with bacterial systems, the genetic resolving power of which is much greater than that of higher plants. The mutagen specificity in higher plants has been of great interest, and numerous results and observations have been reported. The advances in the culture of plant cells and tissues have created much interest concerning the possibility of inducing and recovering mutants at the cellular level. There are great problems including the failure to regenerate plants from cells in all but a few species. The genetic and cytogenetic instability in the culture of plant tissues is well known, and the most common nuclear change is polyploidy including aneuploidy. The degree of polyploidy increases with calluses or culture age. In rice, the frequency of aneuploidy is greater in the calluses derived from roots than those derived from stem internodes. Polyploid and/or self-incompatible plant species are not as amenable to conventional mutation breeding techniques as diploid, self-fertilizing species. Inducing mutations in somatic tissues creates the problem of chimeras. However, the new cultivars of highly heterozygous, outcrossing, self-incompatible species are produced by combining several different clones. The performance of the progeny of at least 4 generations removed from the polycross of the parent clones is the important factor, and a high amount of heterozygocity is tolerated within cultivars and even on the same plants. (Yamashita, S.)

  3. Structure-Function Analysis of Chloroplast Proteins via Random Mutagenesis Using Error-Prone PCR.

    Science.gov (United States)

    Dumas, Louis; Zito, Francesca; Auroy, Pascaline; Johnson, Xenie; Peltier, Gilles; Alric, Jean

    2018-06-01

    Site-directed mutagenesis of chloroplast genes was developed three decades ago and has greatly advanced the field of photosynthesis research. Here, we describe a new approach for generating random chloroplast gene mutants that combines error-prone polymerase chain reaction of a gene of interest with chloroplast complementation of the knockout Chlamydomonas reinhardtii mutant. As a proof of concept, we targeted a 300-bp sequence of the petD gene that encodes subunit IV of the thylakoid membrane-bound cytochrome b 6 f complex. By sequencing chloroplast transformants, we revealed 149 mutations in the 300-bp target petD sequence that resulted in 92 amino acid substitutions in the 100-residue target subunit IV sequence. Our results show that this method is suited to the study of highly hydrophobic, multisubunit, and chloroplast-encoded proteins containing cofactors such as hemes, iron-sulfur clusters, and chlorophyll pigments. Moreover, we show that mutant screening and sequencing can be used to study photosynthetic mechanisms or to probe the mutational robustness of chloroplast-encoded proteins, and we propose that this method is a valuable tool for the directed evolution of enzymes in the chloroplast. © 2018 American Society of Plant Biologists. All rights reserved.

  4. Functionality screen of streptavidin mutants by non-denaturing SDS-PAGE using biotin-4-fluorescein.

    Science.gov (United States)

    Humbert, Nicolas; Ward, Thomas R

    2008-01-01

    Site-directed mutagenesis or directed evolution of proteins often leads to the production of inactive mutants. For streptavidin and related proteins, mutations may lead to the loss of their biotin-binding properties. With high-throughput screening methodologies in mind, it is imperative to detect, prior to the high-density protein production, the bacteria that produce non-functional streptavidin isoforms. Based on the incorporation of biotin-4-fluorescein in streptavidin mutants present in Escherichia coli bacterial extracts, we detail a functional screen that allows the identification of biotin-binding streptavidin variants. Bacteria are cultivated in a small volume, followed by a rapid treatment of the cells; biotin-4-fluorescein is added to the bacterial extract and loaded on an Sodium Dodecyl Sulfate Poly-Acrylamide Gel Electrophoresis (SDS-PAGE) under non-denaturing conditions. Revealing is performed using a UV transilluminator. This screen is thus easy to implement, cheap and requires only readily available equipment.

  5. Improved hydrogen production by uptake hydrogenase deficient mutant strain of Rhodobacter sphaeroides O.U.001

    Energy Technology Data Exchange (ETDEWEB)

    Kars, Goekhan; Guenduez, Ufuk; Yuecel, Meral [Department of Biological Sciences, Middle East Technical University, 06531 Ankara (Turkey); Rakhely, Gabor; Kovacs, Kornel L. [Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged (Hungary); Eroglu, Inci [Department of Chemical Engineering, Middle East Technical University, 06531 Ankara (Turkey)

    2008-06-15

    Rhodobacter sphaeroides O.U.001 is a purple non-sulfur bacterium producing hydrogen under photoheterotrophic conditions. Hydrogen is produced by Mo-nitrogenase enzyme and substantial amount of H{sub 2} is reoxidized by a membrane-bound uptake hydrogenase in the wild type strain. To improve the hydrogen producing capacity of the cells, a suicide vector containing a gentamicin cassette in the hupSL genes was introduced into R. sphaeroiodes O.U.001 and the uptake hydrogenase genes were destroyed by site directed mutagenesis. The correct integration of the construct was confirmed by uptake hydrogenase activity measurement, PCR and subsequent sequence analysis. The wild type and the mutant cells showed similar growth patterns but the total volume of hydrogen gas evolved by the mutant was 20% higher than that of the wild type strain. This result demonstrated that the hydrogen produced by the nitrogenase was not consumed by uptake hydrogenase leading to higher hydrogen production. (author)

  6. Maximizing mutagenesis with solubilized CRISPR-Cas9 ribonucleoprotein complexes.

    Science.gov (United States)

    Burger, Alexa; Lindsay, Helen; Felker, Anastasia; Hess, Christopher; Anders, Carolin; Chiavacci, Elena; Zaugg, Jonas; Weber, Lukas M; Catena, Raul; Jinek, Martin; Robinson, Mark D; Mosimann, Christian

    2016-06-01

    CRISPR-Cas9 enables efficient sequence-specific mutagenesis for creating somatic or germline mutants of model organisms. Key constraints in vivo remain the expression and delivery of active Cas9-sgRNA ribonucleoprotein complexes (RNPs) with minimal toxicity, variable mutagenesis efficiencies depending on targeting sequence, and high mutation mosaicism. Here, we apply in vitro assembled, fluorescent Cas9-sgRNA RNPs in solubilizing salt solution to achieve maximal mutagenesis efficiency in zebrafish embryos. MiSeq-based sequence analysis of targeted loci in individual embryos using CrispRVariants, a customized software tool for mutagenesis quantification and visualization, reveals efficient bi-allelic mutagenesis that reaches saturation at several tested gene loci. Such virtually complete mutagenesis exposes loss-of-function phenotypes for candidate genes in somatic mutant embryos for subsequent generation of stable germline mutants. We further show that targeting of non-coding elements in gene regulatory regions using saturating mutagenesis uncovers functional control elements in transgenic reporters and endogenous genes in injected embryos. Our results establish that optimally solubilized, in vitro assembled fluorescent Cas9-sgRNA RNPs provide a reproducible reagent for direct and scalable loss-of-function studies and applications beyond zebrafish experiments that require maximal DNA cutting efficiency in vivo. © 2016. Published by The Company of Biologists Ltd.

  7. Modeling membrane protein structure through site-directed ESR spectroscopy

    NARCIS (Netherlands)

    Kavalenka, A.A.

    2009-01-01

    Site-directed spin labeling (SDSL) electron spin resonance (ESR) spectroscopy is a
    relatively new biophysical tool for obtaining structural information about proteins. This
    thesis presents a novel approach, based on powerful spectral analysis techniques (multicomponent
    spectral

  8. Chemical and UV Mutagenesis.

    Science.gov (United States)

    Bose, Jeffrey L

    2016-01-01

    The ability to create mutations is an important step towards understanding bacterial physiology and virulence. While targeted approaches are invaluable, the ability to produce genome-wide random mutations can lead to crucial discoveries. Transposon mutagenesis is a useful approach, but many interesting mutations can be missed by these insertions that interrupt coding and noncoding sequences due to the integration of an entire transposon. Chemical mutagenesis and UV-based random mutagenesis are alternate approaches to isolate mutations of interest with the potential of only single nucleotide changes. Once a standard method, difficulty in identifying mutation sites had decreased the popularity of this technique. However, thanks to the recent emergence of economical whole-genome sequencing, this approach to making mutations can once again become a viable option. Therefore, this chapter provides an overview protocol for random mutagenesis using UV light or DNA-damaging chemicals.

  9. Effect of umuC mutations on targeted and untargeted ultraviolet mutagenesis in bacteriophage lambda

    International Nuclear Information System (INIS)

    Maenhaut-Michel, G.; Caillet-Fauquet, P.

    1984-01-01

    Mutagenesis of phage lambda towards clear-plaque (c + → c) results in two classes of mutants that can be distinguished genetically and morphologically. Indirect mutagenesis, i.e. mutagenesis of unirradiated phage lambdac + stimulated by the ultraviolet irradiation of the Escherichia coli host, results in mixed bursts (c/c + ) of turbid wild-type and clear=plaque mutant phages. Pure bursts of lambdac mutants are induced by irradiation of the phage genome. Irradiation of both phages and host bacteria stimulates the production of the two classes of mutant clones. It is shown that three different mutant alleles of the E. coli umuC gene only prevent the appearance of pure bursts of clear-plaque mutants, while mixed bursts are produced at least as frequently in umuC mutants as in the umuC + parent. (author)

  10. Tissue culture regeneration and radiation induced mutagenesis in banana

    International Nuclear Information System (INIS)

    Kulkarni, V.M.; Ganapathi, T.R.

    2009-01-01

    Radiation induced mutagenesis is an important tool for banana genetic improvement. At BARC, protocols for shoo-tip multiplication of commercial banana varieties have been developed and transferred to user agencies for commercial production. Excellent embryogenic cell suspensions were established in banana cvs. Rasthali and Rajeli, and were maintained at low temperatures for long-term storage. Normal plantlets were successfully regenerated from these cell suspensions. The cell suspensions and shoot-tip cultures were gamma-irradiated for mutagenesis. The mutagenized populations were field screened and a few interesting mutants have been isolated. The existence of genetic variation was confirmed using DNA markers. Further evaluation of these mutants is in progress. (author)

  11. Mutagenesis of Trichoderma Viride by Ultraviolet and Plasma

    International Nuclear Information System (INIS)

    Yao Risheng; Li Manman; Deng Shengsong; Hu Huajia; Wang Huai; Li Fenghe

    2012-01-01

    Considering the importance of a microbial strain capable of increased cellulase production, a mutant strain UP4 of Trichoderma viride was developed by ultraviolet (UV) and plasma mutation. The mutant produced a 21.0 IU/mL FPase which was 98.1% higher than that of the parent strain Trichoderma viride ZY-1. In addition, the effect of ultraviolet and plasma mutagenesis was not merely simple superimposition of single ultraviolet mutation and single plasma mutation. Meanwhile, there appeared a capsule around some of the spores after the ultraviolet and plasma treatment, namely, the spore surface of the strain became fuzzy after ultraviolet or ultraviolet and plasma mutagenesis.

  12. Mutagenesis of Trichoderma Viride by Ultraviolet and Plasma

    Science.gov (United States)

    Yao, Risheng; Li, Manman; Deng, Shengsong; Hu, Huajia; Wang, Huai; Li, Fenghe

    2012-04-01

    Considering the importance of a microbial strain capable of increased cellulase production, a mutant strain UP4 of Trichoderma viride was developed by ultraviolet (UV) and plasma mutation. The mutant produced a 21.0 IU/mL FPase which was 98.1% higher than that of the parent strain Trichoderma viride ZY-1. In addition, the effect of ultraviolet and plasma mutagenesis was not merely simple superimposition of single ultraviolet mutation and single plasma mutation. Meanwhile, there appeared a capsule around some of the spores after the ultraviolet and plasma treatment, namely, the spore surface of the strain became fuzzy after ultraviolet or ultraviolet and plasma mutagenesis.

  13. Crystallization and preliminary crystallographic studies of human septin 1 with site-directed mutations

    International Nuclear Information System (INIS)

    Hu, Hao; Yu, Wen-bo; Li, Shu-xing; Ding, Xiang-ming; Yu, Long; Bi, Ru-Chang

    2006-01-01

    The homogeneity of septin 1 has been improved by site-directed mutation of serine residues and only a small alteration in the secondary structure is observed to arise from the mutations. Crystals of the septin 1 mutant were grown and diffraction data were collected to 2.5 Å resolution. Septin 1 is a member of an evolutionarily conserved family of GTP-binding and filament-forming proteins named septins, which function in diverse processes including cytokinasis, vesicle trafficking, apoptosis, remodelling of the cytoskeleton, infection, neurodegeneration and neoplasia. Human septin 1 has been expressed and purified, but suffers from severe aggregation. Studies have shown that septin 1 with site-directed mutations of five serine residues (Ser19, Ser206, Ser307, Ser312 and Ser315) has a much lower degree of aggregation and better structural homogeneity and that the mutations cause only slight perturbations in the secondary structure of septin 1. This septin 1 mutant was crystallized and diffraction data were collected to 2.5 Å resolution. The space group is P422, with unit-cell parameters a = b = 106.028, c = 137.852 Å

  14. Crystallization and preliminary crystallographic studies of human septin 1 with site-directed mutations

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Hao [Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China); Yu, Wen-bo [State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433 (China); Li, Shu-xing [Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China); Ding, Xiang-ming; Yu, Long [State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433 (China); Bi, Ru-Chang [Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China)

    2006-02-01

    The homogeneity of septin 1 has been improved by site-directed mutation of serine residues and only a small alteration in the secondary structure is observed to arise from the mutations. Crystals of the septin 1 mutant were grown and diffraction data were collected to 2.5 Å resolution. Septin 1 is a member of an evolutionarily conserved family of GTP-binding and filament-forming proteins named septins, which function in diverse processes including cytokinasis, vesicle trafficking, apoptosis, remodelling of the cytoskeleton, infection, neurodegeneration and neoplasia. Human septin 1 has been expressed and purified, but suffers from severe aggregation. Studies have shown that septin 1 with site-directed mutations of five serine residues (Ser19, Ser206, Ser307, Ser312 and Ser315) has a much lower degree of aggregation and better structural homogeneity and that the mutations cause only slight perturbations in the secondary structure of septin 1. This septin 1 mutant was crystallized and diffraction data were collected to 2.5 Å resolution. The space group is P422, with unit-cell parameters a = b = 106.028, c = 137.852 Å.

  15. Site-directed mutation of a laccase from Thermus thermophilus: Effect on the activity profile

    Directory of Open Access Journals (Sweden)

    Liu Xin

    2012-01-01

    Full Text Available A site-directed mutant R453T of a laccase from Thermus thermophilus HB27 (Tth-laccase was constructed in order to investigate the effect on laccase catalytic properties. The mutated gene was cloned and overexpressed in Escherichia coli. Nickel-affinity purification was achieved and followed by copper ion incorporation. The mature mutated enzyme was quantitatively equal to the wild type. A photometric assay based on the oxidation of the substrate 2,2-azino-bis-(3- ethylbenzthiazoline-6-sulfonate (ABTS was employed in comparison with the wild-type Tth-laccase on catalytic properties. The R453T mutant exhibited improvement in substrate affinity and specific activity at room temperature, whereas those parameters were not significantly influenced when the temperature increased up to 65°C or higher. The mutant had better catalytic activity than that of the wild type at acidic pH. Investigated by circular dichroism spectroscopy, the mutant Tth-laccase displayed similar profiles at low and high temperatures.

  16. Kinetic analysis of site-directed mutants of methionine synthase from Candida albicans

    Energy Technology Data Exchange (ETDEWEB)

    Prasannan, Priya; Suliman, Huda S. [Institute of Cellular and Molecular Biology, Department of Chemistry and Biochemistry, 1 University Station A5300, University of Texas, Austin, TX 78712 (United States); Robertus, Jon D., E-mail: jrobertus@mail.utexas.edu [Institute of Cellular and Molecular Biology, Department of Chemistry and Biochemistry, 1 University Station A5300, University of Texas, Austin, TX 78712 (United States)

    2009-05-15

    Fungal methionine synthase catalyzes the transfer of a methyl group from 5-methyl-tetrahydrofolate to homocysteine to create methionine. The enzyme, called Met6p in fungi, is required for the growth of the pathogen Candida albicans, and is consequently a reasonable target for antifungal drug design. In order to understand the mechanism of this class of enzyme, we created a three-dimensional model of the C. albicans enzyme based on the known structure of the homologous enzyme from Arabidopsis thaliana. A fusion protein was created and shown to have enzyme activity similar to the wild-type Met6p. Fusion proteins containing mutations at eight key sites were expressed and assayed in this background. The D614 carboxylate appears to ion pair with the amino group of homocysteine and is essential for activity. Similarly, D504 appears to bind to the polar edge of the folate and is also required for activity. Other groups tested have lesser roles in substrate binding and catalysis.

  17. Kinetic analysis of site-directed mutants of methionine synthase from Candida albicans

    International Nuclear Information System (INIS)

    Prasannan, Priya; Suliman, Huda S.; Robertus, Jon D.

    2009-01-01

    Fungal methionine synthase catalyzes the transfer of a methyl group from 5-methyl-tetrahydrofolate to homocysteine to create methionine. The enzyme, called Met6p in fungi, is required for the growth of the pathogen Candida albicans, and is consequently a reasonable target for antifungal drug design. In order to understand the mechanism of this class of enzyme, we created a three-dimensional model of the C. albicans enzyme based on the known structure of the homologous enzyme from Arabidopsis thaliana. A fusion protein was created and shown to have enzyme activity similar to the wild-type Met6p. Fusion proteins containing mutations at eight key sites were expressed and assayed in this background. The D614 carboxylate appears to ion pair with the amino group of homocysteine and is essential for activity. Similarly, D504 appears to bind to the polar edge of the folate and is also required for activity. Other groups tested have lesser roles in substrate binding and catalysis.

  18. Antimutation effect of an E. coli membrane fraction on UV-mutagenesis

    International Nuclear Information System (INIS)

    Harper, D.; Kristoff, S.; Bockrath, R.; Indiana Univ., Indianapolis; Indiana Univ., Indianapolis

    1980-01-01

    The depression of mutagenesis that occurs when irradiated E. coli are plated at high densities is studied. The number of mutant colonies indicated increases linearly with increasing plate density to about 10 8 bacteria per plate. At higher plate densities, suppressor mutations are very sensitive to crowding depression of mutagenesis and backmutations are somewhat sensitive. (orig./AJ)

  19. Radiation mutagenesis in selection of apple trees

    International Nuclear Information System (INIS)

    Kolontaev, V.M.; Kolontaev, Yu.V.

    1977-01-01

    After X-radiation of grafts of antonovka apple trees, three groups of morphological mutants, namely, weak-, average- and violently-growing, have been revealed. Although the mutation spectrum has some indefinite character a dose of 6 kR causes, more frequently and in a greater number, the weak-growing mutants, and a dose of 2 kR, the violently-growing ones. Mutants of each group differ in the precociousness (precocious and latefruiting), type of fruiting (nospur and spur) and yield (high- and low-yielding). Using the method of radiation mutagenesis it is possible to rise the frequency and spectrum of somatic mutability of antonovka apple trees and to induce forms having valuable features

  20. Protracted radiation mutagenesis

    International Nuclear Information System (INIS)

    Dubinina, L.G.; Shanazarova, A.S.; Chernikova, O.P.

    1976-01-01

    The aim of the work is investigation of the dynamics of structural mutations of Cr.capillaris chromosomes induced by irradiation of seeds at different stages of the cell cycle with subsequent storage. The results obtained show that irradiation is followed by mutagenesis wave kinetics under such conditions. The level and the character of this phenomenon depends on the functional state of the nucleus or on the relationship between this state and the amount of water in the seeds. Studies of this phenomenon will bring better understanding to the mechanism of radiation mutagenesis [ru

  1. Genetic improvement of soybean through induced mutagenesis

    International Nuclear Information System (INIS)

    Manjaya, J.G.; Nandanwar, R.S.; Thengane, R.J.; Muthiah, A.R.

    2009-01-01

    Soybean (Glycine max (L.) Merril) is one of the important oilseed crops of India. The country produces more than 9.00 million tonnes of soybean per annum and has acquired first place amongst oilseed crops grown in India. Narrow genetic base of cultivated varieties in soybean is of global concern. Efficient mutant production systems, through physical or chemical mutagenesis, have been well established in soybean. A vast amount of genetic variability, of both quantitative and qualitative traits, has been generated through experimental mutagenesis. Two soybean varieties TAMS-38 and TAMS 98-21 have been developed and released for commercial cultivation by Bhabha Atomic Research Centre (BARC). In this paper the role of mutation breeding in soybean improvement has been discussed. (author)

  2. Generation of a Mutant Mucor hiemalis Endoglycosidase That Acts on Core-fucosylated N-Glycans.

    Science.gov (United States)

    Katoh, Toshihiko; Katayama, Takane; Tomabechi, Yusuke; Nishikawa, Yoshihide; Kumada, Jyunichi; Matsuzaki, Yuji; Yamamoto, Kenji

    2016-10-28

    Endo-β-N-acetylglucosaminidase M (Endo-M), an endoglycosidase from the fungus Mucor hiemalis, is a useful tool for chemoenzymatic synthesis of glycoconjugates, including glycoprotein-based therapeutics having a precisely defined glycoform, by virtue of its transglycosylation activity. Although Endo-M has been known to act on various N-glycans, it does not act on core-fucosylated N-glycans, which exist widely in mammalian glycoproteins, thus limiting its application. Therefore, we performed site-directed mutagenesis on Endo-M to isolate mutant enzymes that are able to act on mammalian-type core-α1,6-fucosylated glycans. Among the Endo-M mutant enzymes generated, those in which the tryptophan at position 251 was substituted with alanine or asparagine showed altered substrate specificities. Such mutant enzymes exhibited increased hydrolysis of a synthetic α1,6-fucosylated trimannosyl core structure, whereas their activity on the afucosylated form decreased. In addition, among the Trp-251 mutants, the W251N mutant was most efficient in hydrolyzing the core-fucosylated substrate. W251N mutants could act on the immunoglobulin G-derived core-fucosylated glycopeptides and human lactoferrin glycoproteins. This mutant was also capable of transferring the sialyl glycan from an activated substrate intermediate (sialyl glyco-oxazoline) onto an α1,6-fucosyl-N-acetylglucosaminyl biotin. Furthermore, the W251N mutant gained a glycosynthase-like activity when a N175Q substitution was introduced and it caused accumulation of the transglycosylation products. These findings not only give insights into the substrate recognition mechanism of glycoside hydrolase family 85 enzymes but also widen their scope of application in preparing homogeneous glycoforms of core-fucosylated glycoproteins for the production of potent glycoprotein-based therapeutics. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Effective mutagenesis of Arabidopsis by heavy ion beam-irradiation

    International Nuclear Information System (INIS)

    Yamamoto, Y.Y.; Saito, H.; Ryuto, H.; Fukunishi, N.; Yoshida, S.; Abe, T.

    2005-01-01

    Full text: Arabidopsis researches frequently include the genetic approach, so efficient, convenient, and safe methods for mutagenesis are required. Currently, the most popular method for in house mutagenesis is application of EMS. Although this method is very effective, its base substitution-type mutations often gives leaky mutants with residual gene functions, leading some difficulty in understanding the corresponding gene functions. Heavy ion beam generated by accelerators gives highest energy transfer rates among known radiation-based mutagenesis methods including X ray, gamma ray, fast neutron, electron and proton irradiation. This feature is thought to give high frequency of the double strand break of genomic DNA and resultant short deletions, resulting frame shift-type mutations. At RIKEN Accelerator Research Facility (RARF, http://www.rarf.riken.go.jp/index-e.html), we have optimized conditions for effective mutagenesis of Arabidopsis regarding to ion species and irradiation dose, and achieved comparable mutation rates to the method with EMS. (author)

  4. Transcriptional mutagenesis: causes and involvement in tumor development

    Science.gov (United States)

    Brégeon, Damien; Doetsch, Paul W.

    2013-01-01

    The majority of normal cells in a human do not multiply continuously but are quiescent and devote most of their energy to gene transcription. When DNA damages in the transcribed strand of an active gene are bypassed by an RNA polymerase, they can miscode at the damaged site and produce mutant transcripts. This process known as transcriptional mutagenesis can lead to the production of mutant proteins that could be important in tumor development. PMID:21346784

  5. Mechanisms of uv mutagenesis in yeast

    International Nuclear Information System (INIS)

    Lawrence, C.W.; Christensen, R.; Schwartz, A.

    1982-01-01

    The uv mutagenesis in yeast depends on the function of the RAD6 locus, a gene that is also responsible for a substantial fraction of wild-type resistance, suggesting that this eukaryote may possess a misrepair mechanism analogous to that proposed for Escherichia coli. The molecular mechanism responsible for RAD6 repair or recovery is not yet known, but it is different from either excision or recombination-dependent repair, processes carried out by the other two main repair pathways in yeast. RAD6-dependent mutagenesis has been found to have the following characteristics. It is associated at best with only a small fraction of RAD6-dependent repair, the majority of the sensitivity of rad6 mutants being due to their lack of nonmutagenic repair. SRS2 metabolic suppressors restore a substantial fraction of uv resistance to rad6 mutants but do not restore their uv mutability. Strains containing mutations at loci (rev, umr) that are probably more directly involved in mutagenesis are only mildly sensitive, and there is a poor correlation between their sensitivity and mutational deficiency. The uv mutagenesis appears to require a large number of gene functions, perhaps ten or more. Where examined in detail, these genes have been found to be concerned in the production of only a specific range of mutational events, not all of them. Mating experiments have shown that a substantial fraction, probably 40% or more, of uv-induced mutations are untargeted, that is, occur in lesion-free regions of DNA. The uv irradiation, therefore, produces a general reduction in the normally high fidelity with which DNA is replicated on undamaged templates. It does not appear to be necessary for the causal lesion to be present in the same chromosome as the mutation it induces. The reduction in fidelity may be the consequence of the production of a diffusible factor in uv-irradiated cells, but definite evidence supporting this proposal has not yet been obtained

  6. Mechanisms of mutagenesis of E. coli by ultraviolet light

    International Nuclear Information System (INIS)

    Hutchinson, F.; Wood, R.D.

    1986-01-01

    This summary shows that uv mutagenesis involves several processes and several types of mutations. It is important to know, if some step or event affects, say, uv-induced reversion of a his mutant, what kinds of mutation cause the reversion. More, if reversion of the mutant is not affected, it is essential to know what kinds of mutation are involved, because statements can only be made about these mutations, and not about uv mutagenesis in general. It is also clear that the spectrum of mutations will depend on dose. Thus, extrapolation from experimental data at high dose to low dose situations involve considerations both of numbers and of kinds of mutations. Extrapolation of these results to other organisms may be particularly difficult because the SOS functions play such a large role in uv mutagenesis of E. coli. 34 refs., 1 tab

  7. Computer Simulation of Mutagenesis.

    Science.gov (United States)

    North, J. C.; Dent, M. T.

    1978-01-01

    A FORTRAN program is described which simulates point-substitution mutations in the DNA strands of typical organisms. Its objective is to help students to understand the significance and structure of the genetic code, and the mechanisms and effect of mutagenesis. (Author/BB)

  8. 2004 Mutagenesis Gordon Conference

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Sue Jinks-Robertson

    2005-09-16

    Mutations are genetic alterations that drive biological evolution and cause many, if not all, human diseases. Mutation originates via two distinct mechanisms: ''vertical'' variation is de novo change of one or few bases, whereas ''horizontal'' variation occurs by genetic recombination, which creates new mosaics of pre-existing sequences. The Mutagenesis Conference has traditionally focused on the generation of mutagenic intermediates during normal DNA synthesis or in response to environmental insults, as well as the diverse repair mechanisms that prevent the fixation of such intermediates as permanent mutations. While the 2004 Conference will continue to focus on the molecular mechanisms of mutagenesis, there will be increased emphasis on the biological consequences of mutations, both in terms of evolutionary processes and in terms of human disease. The meeting will open with two historical accounts of mutation research that recapitulate the intellectual framework of this field and thereby place the current research paradigms into perspective. The two introductory keynote lectures will be followed by sessions on: (1) mutagenic systems, (2) hypermutable sequences, (3) mechanisms of mutation, (4) mutation avoidance systems, (5) mutation in human hereditary and infectious diseases, (6) mutation rates in evolution and genotype-phenotype relationships, (7) ecology, mutagenesis and the modeling of evolution and (8) genetic diversity of the human population and models for human mutagenesis. The Conference will end with a synthesis of the meeting as the keynote closing lecture.

  9. Integrating structural and mutagenesis data to elucidate GPCR ligand binding

    DEFF Research Database (Denmark)

    Munk, Christian; Harpsøe, Kasper; Hauser, Alexander S

    2016-01-01

    is reported that exhibit activity through multiple receptors, binding in allosteric sites, and bias towards different intracellular signalling pathways. Furthermore, a wealth of single point mutants has accumulated in literature and public databases. Integrating these structural and mutagenesis data will help...

  10. [Substrate specificities of bile salt hydrolase 1 and its mutants from Lactobacillus salivarius].

    Science.gov (United States)

    Bi, Jie; Fang, Fang; Qiu, Yuying; Yang, Qingli; Chen, Jian

    2014-03-01

    In order to analyze the correlation between critical residues in the catalytic centre of BSH and the enzyme substrate specificity, seven mutants of Lactobacillus salivarius bile salt hydrolase (BSH1) were constructed by using the Escherichia coli pET-20b(+) gene expression system, rational design and site-directed mutagenesis. These BSH1 mutants exhibited different hydrolytic activities against various conjugated bile salts through substrate specificities comparison. Among the residues being tested, Cys2 and Thr264 were deduced as key sites for BSH1 to catalyze taurocholic acid and glycocholic acid, respectively. Moreover, Cys2 and Thr264 were important for keeping the catalytic activity of BSH1. The high conservative Cys2 was not the only active site, other mutant amino acid sites were possibly involved in substrate binding. These mutant residues might influence the space and shape of the substrate-binding pockets or the channel size for substrate passing through and entering active site of BSH1, thus, the hydrolytic activity of BSH1 was changed to different conjugated bile salt.

  11. Molecular mechanism of action of pharmacoperone rescue of misrouted GPCR mutants: the GnRH receptor.

    Science.gov (United States)

    Janovick, Jo Ann; Patny, Akshay; Mosley, Ralph; Goulet, Mark T; Altman, Michael D; Rush, Thomas S; Cornea, Anda; Conn, P Michael

    2009-02-01

    The human GnRH receptor (hGnRHR), a G protein-coupled receptor, is a useful model for studying pharmacological chaperones (pharmacoperones), drugs that rescue misfolded and misrouted protein mutants and restore them to function. This technique forms the basis of a therapeutic approach of rescuing mutants associated with human disease and restoring them to function. The present study relies on computational modeling, followed by site-directed mutagenesis, assessment of ligand binding, effector activation, and confocal microscopy. Our results show that two different chemical classes of pharmacoperones act to stabilize hGnRHR mutants by bridging residues D(98) and K(121). This ligand-mediated bridge serves as a surrogate for a naturally occurring and highly conserved salt bridge (E(90)-K(121)) that stabilizes the relation between transmembranes 2 and 3, which is required for passage of the receptor through the cellular quality control system and to the plasma membrane. Our model was used to reveal important pharmacophoric features, and then identify a novel chemical ligand, which was able to rescue a D(98) mutant of the hGnRHR that could not be rescued as effectively by previously known pharmacoperones.

  12. New mutations affecting induced mutagenesis in yeast.

    Science.gov (United States)

    Lawrence, C W; Krauss, B R; Christensen, R B

    1985-01-01

    Previously isolated mutations in baker's yeast, Saccharomyces cerevisiae, that impair induced mutagenesis were all identified with the aid of tests that either exclusively or predominantly detect base-pair substitutions. To avoid this bias, we have screened 11 366 potentially mutant clones for UV-induced reversion of the frameshift allele, his4-38, and have identified 10 mutants that give much reduced yields of revertants. Complementation and recombination tests show that 6 of these carry mutations at the previously known REV1, REV1 and REV3 loci, while the remaining 4 define 3 new genes, REV4 (2 mutations), REV5 and REV6. The rev4 mutations are readily suppressed in many genetic backgrounds and, like the rev5 mutation, impart only a limited deficiency for induced mutagenesis: it is likely, therefore that the REV4+ and REV5+ gene functions are only remotely concerned with this process. The rev6 mutants have a more general deficiency, however, as well as marked sensitivity to UV and an increased spontaneous mutation rate, properties that suggest the REV6 gene is directly involved in mutation induction. The REV5 gene is located about 1 cM proximal to CYC1 on chromosome X.

  13. Efficient Mutagenesis Independent of Ligation (EMILI).

    Science.gov (United States)

    Füzik, Tibor; Ulbrich, Pavel; Ruml, Tomáš

    2014-11-01

    Site-directed mutagenesis is one of the most widely used techniques in life sciences. Here we describe an improved and simplified method for introducing mutations at desired sites. It consists of an inverse PCR using a plasmid template and two partially complementary primers. The synthesis step is followed by annealing of the PCR product's sticky ends, which are generated by exonuclease digestion. This method is fast, extremely efficient and cost-effective. It can be used to introduce large insertions and deletions, but also for multiple point mutations in a single step. To show the principle and to prove the efficiency of the method, we present a series of basic mutations (insertions, deletions, point mutations) on pUC19 plasmid DNA. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. The subcutaneous inoculation of pH 6 antigen mutants of Yersinia pestis does not affect virulence and immune response in mice.

    Science.gov (United States)

    Anisimov, Andrey P; Bakhteeva, Irina V; Panfertsev, Evgeniy A; Svetoch, Tat'yana E; Kravchenko, Tat'yana B; Platonov, Mikhail E; Titareva, Galina M; Kombarova, Tat'yana I; Ivanov, Sergey A; Rakin, Alexander V; Amoako, Kingsley K; Dentovskaya, Svetlana V

    2009-01-01

    Two isogenic sets of Yersinia pestis strains were generated, composed of wild-type strains 231 and I-1996, their non-polar pH 6(-) mutants with deletions in the psaA gene that codes for its structural subunit or the whole operon, as well as strains with restored ability for temperature- and pH-dependent synthesis of adhesion pili or constitutive production of pH 6 antigen. The mutants were generated by site-directed mutagenesis of the psa operon and subsequent complementation in trans. It was shown that the loss of synthesis or constitutive production of pH 6 antigen did not influence Y. pestis virulence or the average survival time of subcutaneously inoculated BALB/c naïve mice or animals immunized with this antigen.

  15. Phenotypic heterogeneity in a bacteriophage population only appears as stress-induced mutagenesis.

    Science.gov (United States)

    Yosef, Ido; Edgar, Rotem; Qimron, Udi

    2016-11-01

    Stress-induced mutagenesis has been studied in cancer cells, yeast, bacteria, and archaea, but not in viruses. In a recent publication, we present a bacteriophage model showing an apparent stress-induced mutagenesis. We show that the stress does not drive the mutagenesis, but only selects the fittest mutants. The mechanism underlying the observed phenomenon is a phenotypic heterogeneity that resembles persistence of the viral population. The new findings, the background for the ongoing debate on stress-induced mutagenesis, and the phenotypic heterogeneity underlying a novel phage infection strategy are discussed in this short manuscript.

  16. Affinity enhancement of nanobody binding to EGFR: in silico site-directed mutagenesis and molecular dynamics simulation approaches.

    Science.gov (United States)

    Farasat, Alireza; Rahbarizadeh, Fatemeh; Hosseinzadeh, Ghader; Sajjadi, Sharareh; Kamali, Mehdi; Keihan, Amir Homayoun

    2017-06-01

    Epidermal growth factor receptor (EGFR), a transmembrane glycoprotein, is overexpressed in many cancers such as head-neck, breast, prostate, and skin cancers for this reason it is a good target in cancer therapy and diagnosis. In nanobody-based cancer diagnosis and treatment, nanobodies with high affinity toward receptor (e.g. EGFR) results in effective treatment or diagnosis of cancer. In this regard, the main aim of this study is to develop a method based on molecular dynamic (MD) simulations for designing of 7D12 based nanobody with high affinity compared with wild-type nanobody. By surveying electrostatic and desolvation interactions between different residues of 7D12 and EGFR, the critical residues of 7D12 that play the main role in the binding of 7D12 to EGFR were elucidated and based on these residues, five logical variants were designed. Following the 50 ns MD simulations, pull and umbrella sampling simulation were performed for 7D12 and all its variants in complex with EGFR. Binding free energy of 7D12 (and all its variants) with EGFR was obtained by weighted histogram analysis method. According to binding free energy results, GLY101 to GLU mutation showed the highest binding affinity but this variant is unstable after 50 ns MD simulations. ALA100 to GLU mutation shows suitable binding enhancement with acceptable structural stability. Suitable position and orientation of GLU in residue 100 of 7D12 against related amino acids of EGFR formed some extra hydrogen and electrostatic interactions which resulted in binding enhancement.

  17. Catalytic surface radical in dye-decolorizing peroxidase: a computational, spectroscopic and site-directed mutagenesis study

    Science.gov (United States)

    Linde, Dolores; Pogni, Rebecca; Cañellas, Marina; Lucas, Fátima; Guallar, Victor; Baratto, Maria Camilla; Sinicropi, Adalgisa; Sáez-Jiménez, Verónica; Coscolín, Cristina; Romero, Antonio; Medrano, Francisco Javier; Ruiz-Dueñas, Francisco J.; Martínez, Angel T.

    2014-01-01

    Dye-decolorizing peroxidase (DyP) of Auricularia auricula-judae has been expressed in Escherichia coli as a representative of a new DyP family, and subjected to mutagenic, spectroscopic, crystallographic and computational studies. The crystal structure of DyP shows a buried haem cofactor, and surface tryptophan and tyrosine residues potentially involved in long-range electron transfer from bulky dyes. Simulations using PELE (Protein Energy Landscape Exploration) software provided several binding-energy optima for the anthraquinone-type RB19 (Reactive Blue 19) near the above aromatic residues and the haem access-channel. Subsequent QM/MM (quantum mechanics/molecular mechanics) calculations showed a higher tendency of Trp-377 than other exposed haem-neighbouring residues to harbour a catalytic protein radical, and identified the electron-transfer pathway. The existence of such a radical in H2O2-activated DyP was shown by low-temperature EPR, being identified as a mixed tryptophanyl/tyrosyl radical in multifrequency experiments. The signal was dominated by the Trp-377 neutral radical contribution, which disappeared in the W377S variant, and included a tyrosyl contribution assigned to Tyr-337 after analysing the W377S spectra. Kinetics of substrate oxidation by DyP suggests the existence of high- and low-turnover sites. The high-turnover site for oxidation of RB19 (kcat> 200 s−1) and other DyP substrates was assigned to Trp-377 since it was absent from the W377S variant. The low-turnover site/s (RB19 kcat ~20 s−1) could correspond to the haem access-channel, since activity was decreased when the haem channel was occluded by the G169L mutation. If a tyrosine residue is also involved, it will be different from Tyr-337 since all activities are largely unaffected in the Y337S variant. PMID:25495127

  18. Defining a conformational consensus motif in cotransin-sensitive signal sequences: a proteomic and site-directed mutagenesis study.

    Directory of Open Access Journals (Sweden)

    Wolfgang Klein

    Full Text Available The cyclodepsipeptide cotransin was described to inhibit the biosynthesis of a small subset of proteins by a signal sequence-discriminatory mechanism at the Sec61 protein-conducting channel. However, it was not clear how selective cotransin is, i.e. how many proteins are sensitive. Moreover, a consensus motif in signal sequences mediating cotransin sensitivity has yet not been described. To address these questions, we performed a proteomic study using cotransin-treated human hepatocellular carcinoma cells and the stable isotope labelling by amino acids in cell culture technique in combination with quantitative mass spectrometry. We used a saturating concentration of cotransin (30 micromolar to identify also less-sensitive proteins and to discriminate the latter from completely resistant proteins. We found that the biosynthesis of almost all secreted proteins was cotransin-sensitive under these conditions. In contrast, biosynthesis of the majority of the integral membrane proteins was cotransin-resistant. Cotransin sensitivity of signal sequences was neither related to their length nor to their hydrophobicity. Instead, in the case of signal anchor sequences, we identified for the first time a conformational consensus motif mediating cotransin sensitivity.

  19. Defining a Conformational Consensus Motif in Cotransin-Sensitive Signal Sequences: A Proteomic and Site-Directed Mutagenesis Study

    Science.gov (United States)

    Klein, Wolfgang; Westendorf, Carolin; Schmidt, Antje; Conill-Cortés, Mercè; Rutz, Claudia; Blohs, Marcus; Beyermann, Michael; Protze, Jonas; Krause, Gerd; Krause, Eberhard; Schülein, Ralf

    2015-01-01

    The cyclodepsipeptide cotransin was described to inhibit the biosynthesis of a small subset of proteins by a signal sequence-discriminatory mechanism at the Sec61 protein-conducting channel. However, it was not clear how selective cotransin is, i.e. how many proteins are sensitive. Moreover, a consensus motif in signal sequences mediating cotransin sensitivity has yet not been described. To address these questions, we performed a proteomic study using cotransin-treated human hepatocellular carcinoma cells and the stable isotope labelling by amino acids in cell culture technique in combination with quantitative mass spectrometry. We used a saturating concentration of cotransin (30 micromolar) to identify also less-sensitive proteins and to discriminate the latter from completely resistant proteins. We found that the biosynthesis of almost all secreted proteins was cotransin-sensitive under these conditions. In contrast, biosynthesis of the majority of the integral membrane proteins was cotransin-resistant. Cotransin sensitivity of signal sequences was neither related to their length nor to their hydrophobicity. Instead, in the case of signal anchor sequences, we identified for the first time a conformational consensus motif mediating cotransin sensitivity. PMID:25806945

  20. Newly identified essential amino acid residues affecting ^8-sphingolipid desaturase activity revealed by site-directed mutagenesis

    Science.gov (United States)

    In order to identify amino acid residues crucial for the enzymatic activity of ^8-sphingolipid desaturases, a sequence comparison was performed among ^8-sphingolipid desaturases and ^6-fatty acid desaturase from various plants. In addition to the known conserved cytb5 (cytochrome b5) HPGG motif and...

  1. Catalytically important amino-acid residues of abalone alginate lyase HdAly assessed by site-directed mutagenesis

    OpenAIRE

    Yamamoto, Sayo; Sahara, Takehiko; Sato, Daisuke; Kawasaki, Kosei; Ohgiya, Satoru; Inoue, Akira; Ojima, Takao

    2008-01-01

    Alginate lyase is an enzyme that degrades alginate chains via β-elimination and has been used for the production of alginate oligosaccharides and protoplasts from brown algae. Previously, we deduced the amino-acid sequence of an abalone alginate lyase, HdAly, from its cDNA sequence and, through multiple amino-acid sequence alignment, found that several basic amino-acid residues were highly conserved among the polysaccharide-lyase family 14 (PL-14) enzymes including HdAly. In the present study...

  2. Non-targeted mutagenesis of unirradiated lambda phage in Escherichia coli

    International Nuclear Information System (INIS)

    Wood, R.D.; Hutchinson, F.

    1984-01-01

    Non-targeted mutagenesis of lambda phage by ultraviolet light is the increase over background mutagenesis when non-irradiated phage are grown in irradiated Escherichia coli host cells. Such mutagenesis is caused by different processes from targeted mutagenesis, in which mutations in irradiated phage are correlated with photoproducts in the phage DNA. Non-irradiated phage grown in heavily irradiated uvr + host cells showed non-targeted mutations, which were 3/4 frameshifts, whereas targeted mutations were 2/3 transitions. For non-targeted mutagenesis in heavily irradiated host cells, there were one or two mutant phage per mutant burst. From the results of a series of experiments with various mutant host cells, a major pathway of non-targeted mutagenesis by ultraviolet light was proposed which acts in addition to ''SOS induction''. This pathway involves binding of the enzyme DNA polymerase I to damaged genomic DNA, and low polymerase activity leads to frameshift mutations during semiconservative DNA replication. The data suggest that this process will play a much smaller role in ultraviolet mutagenesis of the bacterial genome than it does in the mutagenesis of lambda phage. (author)

  3. Non-targeted mutagenesis of unirradiated lambda phage in Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Wood, R.D.; Hutchinson, F. (Yale Univ., New Haven, CT (USA). Dept. of Molecular Biophysics and Biochemistry)

    1984-03-05

    Non-targeted mutagenesis of lambda phage by ultraviolet light is the increase over background mutagenesis when non-irradiated phage are grown in irradiated Escherichia coli host cells. Such mutagenesis is caused by different processes from targeted mutagenesis, in which mutations in irradiated phage are correlated with photoproducts in the phage DNA. Non-irradiated phage grown in heavily irradiated uvr/sup +/ host cells showed non-targeted mutations, which were 3/4 frameshifts, whereas targeted mutations were 2/3 transitions. For non-targeted mutagenesis in heavily irradiated host cells, there were one or two mutant phage per mutant burst. From the results of a series of experiments with various mutant host cells, a major pathway of non-targeted mutagenesis by ultraviolet light was proposed which acts in addition to ''SOS induction''. This pathway involves binding of the enzyme DNA polymerase I to damaged genomic DNA, and low polymerase activity leads to frameshift mutations during semiconservative DNA replication. The data suggest that this process will play a much smaller role in ultraviolet mutagenesis of the bacterial genome than it does in the mutagenesis of lambda phage.

  4. CRISPR/Cas9-mediated targeted mutagenesis of GmFT2a delays flowering time in soya bean.

    Science.gov (United States)

    Cai, Yupeng; Chen, Li; Liu, Xiujie; Guo, Chen; Sun, Shi; Wu, Cunxiang; Jiang, Bingjun; Han, Tianfu; Hou, Wensheng

    2018-01-01

    Flowering is an indication of the transition from vegetative growth to reproductive growth and has considerable effects on the life cycle of soya bean (Glycine max). In this study, we employed the CRISPR/Cas9 system to specifically induce targeted mutagenesis of GmFT2a, an integrator in the photoperiod flowering pathway in soya bean. The soya bean cultivar Jack was transformed with three sgRNA/Cas9 vectors targeting different sites of endogenous GmFT2a via Agrobacterium tumefaciens-mediated transformation. Site-directed mutations were observed at all targeted sites by DNA sequencing analysis. T1-generation soya bean plants homozygous for null alleles of GmFT2a frameshift mutated by a 1-bp insertion or short deletion exhibited late flowering under natural conditions (summer) in Beijing, China (N39°58', E116°20'). We also found that the targeted mutagenesis was stably heritable in the following T2 generation, and the homozygous GmFT2a mutants exhibited late flowering under both long-day and short-day conditions. We identified some 'transgene-clean' soya bean plants that were homozygous for null alleles of endogenous GmFT2a and without any transgenic element from the T1 and T2 generations. These 'transgene-clean' mutants of GmFT2a may provide materials for more in-depth research of GmFT2a functions and the molecular mechanism of photoperiod responses in soya bean. They will also contribute to soya bean breeding and regional introduction. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  5. Mutagenesis and Teratogenesis Section

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Progress is reported on research with mice in the areas of radioinduced and chemical mutagenesis, cytologic studies, radiation effects on DNA synthesis, radiation effects on germ cells, mutagenicity of coal-conversion products, and others. Research on Drosophila was concerned with mutagenesis and genetics of nucleases. Studies were conducted on hamster cells with regard to cytotoxicity and mutagenicity of alkylating agents, modification of the microtubule system, protein kinase activity, and others. Research on bacteria was concerned with effects of x radiation on bacteriophage of Haemophilus influenzae, x-ray induced DNA polymerase I-directed repair synthesis in Escherichia coli, transformation by DNA polymerase II in Bacillus subtilis, and others. Research on xenopus laevis was conducted in the areas of calcium-induced cleavage of oocytes, yolk degradation in explants, and others

  6. Analysis of mutagenic DNA repair in a thermoconditional mutant of Saccharomyces cerevisiae. IV. Influence of DNA replication and excision repair on REV2 dependent UV-mutagenesis and repair

    Energy Technology Data Exchange (ETDEWEB)

    Siede, W.; Eckardt, F.

    1986-01-01

    A double mutant being thermoconditionally defective in mutation induction as well as in repair of pre-lethal UV-induced DNA damage (rev2ts) and deficient in excision repair (rad3-2) was studied in temperature-shift experiments. The influence of inhibitors of DNA replication (hydroxyurea, aphidicolin) was determined. Additionally, an analysis of the dose-response pattern of mutation induction (mutation kinetics) at several ochre alleles was carried out. It was concluded that the UV-inducible REV2 dependent mutagenic repair process is not induced in excision-deficient cells. In excision-deficient cells, REV2 dependent mutation fixation is slow and mostly post-replicative though not dependent on DNA replication. The REV2 mediated mutagenic process could be separated from the repair function.

  7. Engineering Cofactor Preference of Ketone Reducing Biocatalysts: A Mutagenesis Study on a γ-Diketone Reductase from the Yeast Saccharomyces cerevisiae Serving as an Example

    Directory of Open Access Journals (Sweden)

    Michael Katzberg

    2010-04-01

    Full Text Available The synthesis of pharmaceuticals and catalysts more and more relies on enantiopure chiral building blocks. These can be produced in an environmentally benign and efficient way via bioreduction of prochiral ketones catalyzed by dehydrogenases. A productive source of these biocatalysts is the yeast Saccharomyces cerevisiae, whose genome also encodes a reductase catalyzing the sequential reduction of the γ-diketone 2,5-hexanedione furnishing the diol (2S,5S-hexanediol and the γ-hydroxyketone (5S-hydroxy-2-hexanone in high enantio- as well as diastereoselectivity (ee and de >99.5%. This enzyme prefers NADPH as the hydrogen donating cofactor. As NADH is more stable and cheaper than NADPH it would be more effective if NADH could be used in cell-free bioreduction systems. To achieve this, the cofactor binding site of the dehydrogenase was altered by site-directed mutagenesis. The results show that the rational approach based on a homology model of the enzyme allowed us to generate a mutant enzyme having a relaxed cofactor preference and thus is able to use both NADPH and NADH. Results obtained from other mutants are discussed and point towards the limits of rationally designed mutants.

  8. In vitro mutagenesis studies at the arginine residues of adenylate kinase. A revised binding site for AMP in the X-ray-deduced model

    International Nuclear Information System (INIS)

    Kim, Hyo Joon; Nishikawa, Satoshi; Tokutomi, Yuiko; Uesugi, Seiichi; Takenaka, Hitoshi; Hamada, Minoru; Kuby, S.A.

    1990-01-01

    Although X-ray crystallographic and NMR studies have been made on the adenylate kinases, the substrate-binding sites are not unequivocally established. In an attempt to shed light on the binding sites for MgATP 2- and for AMP 2- in human cytosolic adenylate kinase, the authors have investigated the enzymic effects of replacement of the arginine residues, which had been assumed by Pai et al. to interact with the phosphoryl groups of AMP 2- and MgATP 2- . With use of the site-directed mutagenesis method, point mutations were made in the artificial gene for hAK1 to replace these arginine residues with alanyl residues and yield the mutants R44A hAK1, R132A hAK1, R138A hAK1, and R149A hAK1. The resulting large increases in the K m,app values for AMP 2- of the mutant enzymes, the relatively small increases in the K m,app values for MgATP 2- , and the fact that the R132A, R138A, and R149A mutant enzymes proved to be very poor catalysts are consistent with the idea that the assigned substrate binding sites of Pai et al. have been reversed and that their ATP-binding site may be assigned as the AMP site

  9. ENU mutagenesis to generate genetically modified rat models.

    Science.gov (United States)

    van Boxtel, Ruben; Gould, Michael N; Cuppen, Edwin; Smits, Bart M G

    2010-01-01

    The rat is one of the most preferred model organisms in biomedical research and has been extremely useful for linking physiology and pathology to the genome. However, approaches to genetically modify specific genes in the rat germ line remain relatively scarce. To date, the most efficient approach for generating genetically modified rats has been the target-selected N-ethyl-N-nitrosourea (ENU) mutagenesis-based technology. Here, we describe the detailed protocols for ENU mutagenesis and mutant retrieval in the rat model organism.

  10. Improvement of soybean variety 'Bragg' through mutagenesis

    International Nuclear Information System (INIS)

    Bhatnagar, P.S.; Prabhakar; Tiwari, S.P.; Sandhu, J.S.

    1989-01-01

    Full text: Variety 'Bragg' (Jackson x D49-2491) of soybean (Glycine max. (L.) Merrill) was found to be high yielding and widely adaptable throughout India. Its yield stability, however, is unsatisfactory, probably due to low germinability necessitating use of higher seed rate. With the main objective to rectify this defect, mutagenesis involving chemical as well as physical mutagens was used. Dry seeds were treated with EMS or MMS (0.2, 0.4 and 0.6%), or gamma rays (15, 20 and 25 kR) with and without additional exposure to UV (2 hrs at 260 nm) in 1982. In M 2 , a mutation frequency ranging from 2.24 to 22.85% was observed. Screening of M 2 and of subsequent generations yielded a broad spectrum of mutations. Some of the mutants are agronomically useful. Among them, mutant 'T 2 14' resulting from 25 kR gamma rays + UV, was found to possess better germinability (+15%), earliness (5 days) and high yield during both rainy and post-rainy seasons in 1986 and 1987, when compared with the parent variety 'Bragg'. The mutant has smaller seed-size (TGW 125 g) than the parent (145 g). In soybean, large-seeded varieties were reported to have poorer seed germinability. Thus, the better germinability of the mutant might be related to its reduced seed size. Seeds of the mutant show a light brown colour of the hilum in contrast to the black hilum of 'Bragg'. In other characters the mutant is similar to 'Bragg'. The mutant should have potential for commercial cultivation in India. For confirmation of its agronomically superior performance, it is undergoing national evaluation in multilocational trials under 'All India Co-ordinated Research Project on Soybean (ICAR)'. The strain has been named 'NRC-2'. (author)

  11. Improvement of soybean variety 'Bragg' through mutagenesis

    Energy Technology Data Exchange (ETDEWEB)

    Bhatnagar, P S; Prabhakar,; Tiwari, S P; Sandhu, J S [National Research Centre for Soybean, Indore (India)

    1989-01-01

    Full text: Variety 'Bragg' (Jackson x D49-2491) of soybean (Glycine max. (L.) Merrill) was found to be high yielding and widely adaptable throughout India. Its yield stability, however, is unsatisfactory, probably due to low germinability necessitating use of higher seed rate. With the main objective to rectify this defect, mutagenesis involving chemical as well as physical mutagens was used. Dry seeds were treated with EMS or MMS (0.2, 0.4 and 0.6%), or gamma rays (15, 20 and 25 kR) with and without additional exposure to UV (2 hrs at 260 nm) in 1982. In M{sub 2}, a mutation frequency ranging from 2.24 to 22.85% was observed. Screening of M{sub 2} and of subsequent generations yielded a broad spectrum of mutations. Some of the mutants are agronomically useful. Among them, mutant 'T{sub 2}14' resulting from 25 kR gamma rays + UV, was found to possess better germinability (+15%), earliness (5 days) and high yield during both rainy and post-rainy seasons in 1986 and 1987, when compared with the parent variety 'Bragg'. The mutant has smaller seed-size (TGW 125 g) than the parent (145 g). In soybean, large-seeded varieties were reported to have poorer seed germinability. Thus, the better germinability of the mutant might be related to its reduced seed size. Seeds of the mutant show a light brown colour of the hilum in contrast to the black hilum of 'Bragg'. In other characters the mutant is similar to 'Bragg'. The mutant should have potential for commercial cultivation in India. For confirmation of its agronomically superior performance, it is undergoing national evaluation in multilocational trials under 'All India Co-ordinated Research Project on Soybean (ICAR)'. The strain has been named 'NRC-2'. (author)

  12. Technological advances in site-directed spin labeling of proteins.

    Science.gov (United States)

    Hubbell, Wayne L; López, Carlos J; Altenbach, Christian; Yang, Zhongyu

    2013-10-01

    Molecular flexibility over a wide time range is of central importance to the function of many proteins, both soluble and membrane. Revealing the modes of flexibility, their amplitudes, and time scales under physiological conditions is the challenge for spectroscopic methods, one of which is site-directed spin labeling EPR (SDSL-EPR). Here we provide an overview of some recent technological advances in SDSL-EPR related to investigation of structure, structural heterogeneity, and dynamics of proteins. These include new classes of spin labels, advances in measurement of long range distances and distance distributions, methods for identifying backbone and conformational fluctuations, and new strategies for determining the kinetics of protein motion. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Genome-Wide Mutagenesis in Borrelia burgdorferi.

    Science.gov (United States)

    Lin, Tao; Gao, Lihui

    2018-01-01

    Signature-tagged mutagenesis (STM) is a functional genomics approach to identify bacterial virulence determinants and virulence factors by simultaneously screening multiple mutants in a single host animal, and has been utilized extensively for the study of bacterial pathogenesis, host-pathogen interactions, and spirochete and tick biology. The signature-tagged transposon mutagenesis has been developed to investigate virulence determinants and pathogenesis of Borrelia burgdorferi. Mutants in genes important in virulence are identified by negative selection in which the mutants fail to colonize or disseminate in the animal host and tick vector. STM procedure combined with Luminex Flex ® Map™ technology and next-generation sequencing (e.g., Tn-seq) are the powerful high-throughput tools for the determination of Borrelia burgdorferi virulence determinants. The assessment of multiple tissue sites and two DNA resources at two different time points using Luminex Flex ® Map™ technology provides a robust data set. B. burgdorferi transposon mutant screening indicates that a high proportion of genes are the novel virulence determinants that are required for mouse and tick infection. In this protocol, an effective signature-tagged Himar1-based transposon suicide vector was developed and used to generate a sequence-defined library of nearly 4800 mutants in the infectious B. burgdorferi B31 clone. In STM, signature-tagged suicide vectors are constructed by inserting unique DNA sequences (tags) into the transposable elements. The signature-tagged transposon mutants are generated when transposon suicide vectors are transformed into an infectious B. burgdorferi clone, and the transposable element is transposed into the 5'-TA-3' sequence in the B. burgdorferi genome with the signature tag. The transposon library is created and consists of many sub-libraries, each sub-library has several hundreds of mutants with same tags. A group of mice or ticks are infected with a mixed

  14. Bacteriophage-resistant mutants in Yersinia pestis: identification of phage receptors and attenuation for mice.

    Directory of Open Access Journals (Sweden)

    Andrey A Filippov

    Full Text Available BACKGROUND: Bacteriophages specific for Yersinia pestis are routinely used for plague diagnostics and could be an alternative to antibiotics in case of drug-resistant plague. A major concern of bacteriophage therapy is the emergence of phage-resistant mutants. The use of phage cocktails can overcome this problem but only if the phages exploit different receptors. Some phage-resistant mutants lose virulence and therefore should not complicate bacteriophage therapy. METHODOLOGY/PRINCIPAL FINDINGS: The purpose of this work was to identify Y. pestis phage receptors using site-directed mutagenesis and trans-complementation and to determine potential attenuation of phage-resistant mutants for mice. Six receptors for eight phages were found in different parts of the lipopolysaccharide (LPS inner and outer core. The receptor for R phage was localized beyond the LPS core. Most spontaneous and defined phage-resistant mutants of Y. pestis were attenuated, showing increase in LD₅₀ and time to death. The loss of different LPS core biosynthesis enzymes resulted in the reduction of Y. pestis virulence and there was a correlation between the degree of core truncation and the impact on virulence. The yrbH and waaA mutants completely lost their virulence. CONCLUSIONS/SIGNIFICANCE: We identified Y. pestis receptors for eight bacteriophages. Nine phages together use at least seven different Y. pestis receptors that makes some of them promising for formulation of plague therapeutic cocktails. Most phage-resistant Y. pestis mutants become attenuated and thus should not pose a serious problem for bacteriophage therapy of plague. LPS is a critical virulence factor of Y. pestis.

  15. Structural features and activity of Brazzein and its mutants upon substitution of a surfaced exposed alanine.

    Science.gov (United States)

    Ghanavatian, Parisa; Khalifeh, Khosrow; Jafarian, Vahab

    2016-12-01

    Brazzein (Brz) is a member of sweet-tasting protein containing four disulfide bonds. It was reported as a compact and heat-resistant protein. Here, we have used site-directed mutagenesis and replaced a surface-exposed alanine with aspartic acid (A19D mutant), lysine (A19K mutant) and glycine (A19G mutant). Activity comparisons of wild-type (WT) and mutants using taste panel test procedure showed that A19G variant has the same activity as WT protein. However, introduction of a positive charge in A19K mutant led to significant increase in Brz's sweetness, while A19D has reduced sweetness compared to WT protein. Docking studies showed that mutation at position 19 results in slight chain mobility of protein at the binding surface and changing the patterns of interactions toward more effective binding of E9K variant in the concave surface of sweet taste receptor. Far-UV CD data spectra have a characteristic shape of beta structure for all variants, however different magnitudes of spectra suggest that beta-sheet structure in WT and A19G is more stable than that of A19D and A19K. Equilibrium unfolding studies with fluorescence spectroscopy and using urea and dithiothritol (DTT) as chemical denaturants indicates that A19G mutant gains more stability against urea denaturation; while conformational stability of A19D and A19K decreases when compared with WT and A19G variants. We concluded that the positive charge at the surface of protein is important factor responsible for the interaction of protein with the human sweet receptor and Ala 19 can be considered as a key region for investigating the mechanism of the interaction of Brz with corresponding receptor. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  16. Steady-state fluorescence and phosphorescence spectroscopic studies of bacterial luciferase tryptophan mutants.

    Science.gov (United States)

    Li, Z; Meighen, E A

    1994-09-01

    Bacterial luciferase, which catalyzes the bioluminescence reaction in luminous bacteria, consists of two nonidentical polypeptides, α and β. Eight mutants of luciferase with each of the tryptophans replaced by tyrosine were generated by site-directed mutagenesis and purified to homogeneity. The steady-state tryptophan fluorescence and low-temperature phosphorescence spectroscopic properties of these mutants were characterized. In some instances, mutation of only a single tryptophan residue resulted in large spectral changes. The tryptophan residues conserved in both the α and the β subunits exhibited distinct fluorescence emission properties, suggesting that these tryptophans have different local enviroments. The low-temperature phosphorescence data suggest that the tryptophans conserved in bot the α and the β subunits are not located at the subunit interface and/or involved in subunit interactions. The differences in the spectral properties of the mutants have provided useful information on the local environment of the individual tryptophan residues as well as on the quaternary structure of the protein.

  17. Comparison of the crystal structure and function to wild-type and His25Ala mutant human heme oxygenase-1.

    Science.gov (United States)

    Zhou, Wen-Pu; Zhong, Wen-Wei; Zhang, Xue-Hong; Ding, Jian-Ping; Zhang, Zi-Li; Xia, Zhen-Wei

    2009-03-01

    Human heme oxygenase-1 (hHO-1) is a rate-limiting enzyme in heme metabolism. It regulates serum bilirubin level. Site-directed mutagenesis studies indicate that the proximal residue histidine 25 (His25) plays a key role in hHO-1 activity. A highly purified hHO-1 His25Ala mutant was generated and crystallized with a new expression system. The crystal structure of the mutant was determined by X-ray diffraction technology and molecular replacement at the resolution of 2.8 A, and the model of hHO-1 His25Ala mutant was refined. The final crystallographic and free R factors were 0.245 and 0.283, respectively. The standard bond length deviation was 0.007 A, and the standard bond angle deviation was 1.3 degrees . The mutation of His25 to Ala led to an empty pocket underneath the ferric ion in the heme, leading to loss of binding iron ligand. Although this did not cause an overall structural change, the enzymatic activity of the mutant hHO-1 was reduced by 90%. By supplementing imidazole, the HO-1 activity was restored approximately 90% to its normal level. These data suggest that Ala25 remains unchanged in the structure compared to His25, but the important catalytic function of hHO-1 is lost. Thus, it appears that His25 is a crucial residue for proper hHO-1 catalysis.

  18. Mutagenesis as a breeding method in lentil

    International Nuclear Information System (INIS)

    Mihor, M.; Stoyanova, M.; Mehandjiev, A.

    2001-01-01

    Full text: Mutagenesis was used to develop cultivars with good adaptability to exogenous factors and with increased productivity. By means of this alternative breeding procedure, increases in biological and nutritive value of the seeds were studied. To increase genetic variability in lentil (Lens culinaris Medic.) breeding material, experimental mutagenesis was applied parallel to conventional breeding methods. The aim was to characterize the mutant lines as well as determine whether some of them could be directly registered as cultivars or as gene donors in breeding programme. Within the period 1993-1996, eight mutant lentil lines were studied under field conditions. They were obtained as a result of gamma rays ( 60 Co) and ethyl methanesulfonate (EMS) treatment of the small seeded cultivar 'Tadjikskaya 95'. Air-dried seeds were treated. During the vegetative stage, phenological observation was made. The structural elements of productivity were established by biometrical analysis of 25-30 plants from each of the variants. Phytopathological evaluations were made using the scoring procedure established by ICARDA. Protein content was determined by the Kiejdhal method. The technological qualities of the seeds were determined using the method of Tretyakova and Ustinova. The mutant lines differed considerably in their biological traits from the parent cultivar. The vegetative period ranged from 84 to 89 days. The mutant lines were latermaturing than parent variety Tadjikskaya 95 by 1-5 days. As a result of mutagen treatment, the range in plant height was expanded from 1 to 8.3 cm. Line 96-8, obtained after irradiation with gamma rays, was the tallest (40.3 cm). Lodging of the mutant lines was greater than that of the initial cultivar and ranged from 20.0 to 66.7%. The trait varied to a great extent depending on environmental conditions. Mutagenic treatments also caused changes in seed size and seed coat colour. Development of resistance to important diseases of lentil

  19. Nevada Test Site-Directed Research, Development, and Demonstration

    International Nuclear Information System (INIS)

    Will Lewis, Compiler

    2006-01-01

    The Nevada Test Site-Directed Research, Development, and Demonstration (SDRD) program completed a very successful year of research and development activities in FY 2005. Fifty new projects were selected for funding this year, and five FY 2004 projects were brought to conclusion. The total funds expended by the SDRD program were $5.4 million, for an average per project cost of just under $100,000. Two external audits of SDRD accounting practices were conducted in FY 2005. Both audits found the program's accounting practices consistent with the requirements of DOE Order 413.2A, and one included the observation that the NTS contractor ''did an exceptional job in planning and executing year-start activities.'' Highlights for the year included: the filing of 18 invention disclosures for intellectual property generated by FY 2005 projects; programmatic adoption of 17 FY 2004 SDRD-developed technologies; participation in the tri-lab Laboratory Directed Research and Development (LDRD) and SDRD program review that was broadly attended by NTS, NNSA, LDRD, and U.S. Department of Homeland Security representatives; peer reviews of all FY 2005 projects; and the successful completion of 55 R and D projects, as presented in this report

  20. Ethyl methanesulfonate mutagenesis in Schizosaccharomyces pombe

    DEFF Research Database (Denmark)

    Ekwall, Karl; Thon, Genevieve

    2017-01-01

    Here we provide an ethyl methanesulfonate (EMS) mutagenesis protocol for Schizosaccharomyces pombe cells.......Here we provide an ethyl methanesulfonate (EMS) mutagenesis protocol for Schizosaccharomyces pombe cells....

  1. Forsythia improvement by mutagenesis

    International Nuclear Information System (INIS)

    Cadic, A.; Martin, Denise; Renoux, A.

    1980-01-01

    Mutagenesis is a method used by selectors to modify the genetic heritage of a species. Since about twenty years ago the list of varieties obtained has lengthened steadily. For various reasons, plants which propagate vegetatively, and amongst these a large number of decorative plants, have been especially improved by this method. Of the mutagenic agents known at present a favourite choice has often been the gamma radiations emitted by radioactive cobalt ( 60 Co). Several clones of forsythia, very irregular in decorative value, were exposed to gamma radiation for the purpose of judging the breadth of the easily identifiable mutation range and creating new varieties. From the results it is hoped very soon to release compact varieties with short internodes and varieties better suited to forcing because of their earlier flowering season [fr

  2. Study of UV-induced mutagenesis in Bacillus subtilis

    International Nuclear Information System (INIS)

    Filippov, V.D.; Lotareva, O.V.

    1978-01-01

    The mechanism of UV-induced mutagenesis was studied in Bacillus subtilis departing from the assumption that a lower yield of UV-induced mutations should be found in mutants deficient in the recombination if production of mutations is coupled with the recombination process. Three recombination-deficient strains were used: two (recA and recF) with defects in different recombination pathways and the third (recB) has a block at a stage common for both of them. UV light induced reversions to prototrophy in recB cells and did not in recA and recF strains. Direct mutations, which confer to the cell additional growth requirements, were induced by UV light in recA and recF mutants. It is concluded that UV-induced mutagenesis in B subtilis is independent of the two known recombination mechanisms

  3. Radiation mutagenesis in development of genetic fundamentals of cotton selection

    International Nuclear Information System (INIS)

    Musaev, D.A.; Almatov, A.S.

    1987-01-01

    Some results of investigations on preparation and genetic analysis of mutants in inbreeding lines of genetic collections of cotton plants, as well as problems on mutant application in practical selection are covered. The results show that the scientific authenticity and efficiency of fundamental and applied investigations in the field of experimental mutagenesis of cotton plants,being a facultative self-polinator, depend on keeping necessary methodical requirements. Application of inbreeding lines of genetic collection with marker features as the initial material, isolation of plants usinng self-polination of flowers on all stages of investigation are related to these requirements. Several methodical recommendations on genetic-selective investigations are developed

  4. Role of the RecF gene product in UV mutagenesis of lambda phage

    International Nuclear Information System (INIS)

    Wood, R.D.; Stein, J.

    1986-01-01

    E. coli recF mutants have a greatly reduced capacity for Weigle mutagenesis of ultraviolet light-irradiated lambda phage. A recF 332::Tn3 mutation was introduced into an E. coli recA441 lex A51 strain which constitutively expresses SOS functions. Weigle mutagenesis of phage lambda could occur in the resulting strain in the absence of host cell irradiation, and was increased when the recA441 (tif) allele was activated of recF strains to support Weigle mutagenesis can therefore be ascribed to a defect in expression of SOS functions after irradiation. (orig.)

  5. Random mutagenesis by error-prone pol plasmid replication in Escherichia coli.

    Science.gov (United States)

    Alexander, David L; Lilly, Joshua; Hernandez, Jaime; Romsdahl, Jillian; Troll, Christopher J; Camps, Manel

    2014-01-01

    Directed evolution is an approach that mimics natural evolution in the laboratory with the goal of modifying existing enzymatic activities or of generating new ones. The identification of mutants with desired properties involves the generation of genetic diversity coupled with a functional selection or screen. Genetic diversity can be generated using PCR or using in vivo methods such as chemical mutagenesis or error-prone replication of the desired sequence in a mutator strain. In vivo mutagenesis methods facilitate iterative selection because they do not require cloning, but generally produce a low mutation density with mutations not restricted to specific genes or areas within a gene. For this reason, this approach is typically used to generate new biochemical properties when large numbers of mutants can be screened or selected. Here we describe protocols for an advanced in vivo mutagenesis method that is based on error-prone replication of a ColE1 plasmid bearing the gene of interest. Compared to other in vivo mutagenesis methods, this plasmid-targeted approach allows increased mutation loads and facilitates iterative selection approaches. We also describe the mutation spectrum for this mutagenesis methodology in detail, and, using cycle 3 GFP as a target for mutagenesis, we illustrate the phenotypic diversity that can be generated using our method. In sum, error-prone Pol I replication is a mutagenesis method that is ideally suited for the evolution of new biochemical activities when a functional selection is available.

  6. Ion Channel Conformation and Oligomerization Assessment by Site-Directed Spin Labeling and Pulsed-EPR.

    Science.gov (United States)

    Pliotas, Christos

    2017-01-01

    Mechanosensitive (MS) ion channels are multimeric integral membrane proteins that respond to increased lipid bilayer tension by opening their nonselective pores to release solutes and relieve increased cytoplasmic pressure. These systems undergo major conformational changes during gating and the elucidation of their mechanism requires a deep understanding of the interplay between lipids and proteins. Lipids are responsible for transmitting lateral tension to MS channels and therefore play a key role in obtaining a molecular-detail model for mechanosensation. Site-directed spin labeling combined with electron paramagnetic resonance (EPR) spectroscopy is a powerful spectroscopic tool in the study of proteins. The main bottleneck for its use relates to challenges associated with successful isolation of the protein of interest, introduction of paramagnetic labels on desired sites, and access to specialized instrumentation and expertise. The design of sophisticated experiments, which combine a variety of existing EPR methodologies to address a diversity of specific questions, require knowledge of the limitations and strengths, characteristic of each particular EPR method. This chapter is using the MS ion channels as paradigms and focuses on the application of different EPR techniques to ion channels, in order to investigate oligomerization, conformation, and the effect of lipids on their regulation. The methodology we followed, from the initial strategic selection of mutants and sample preparation, including protein purification, spin labeling, reconstitution into lipid mimics to the complete set-up of the pulsed-EPR experiments, is described in detail. © 2017 Elsevier Inc. All rights reserved.

  7. Optogenetic mutagenesis in Caenorhabditis elegans.

    Science.gov (United States)

    Noma, Kentaro; Jin, Yishi

    2015-12-03

    Reactive oxygen species (ROS) can modify and damage DNA. Here we report an optogenetic mutagenesis approach that is free of toxic chemicals and easy to perform by taking advantage of a genetically encoded ROS generator. This method relies on the potency of ROS generation by His-mSOG, the mini singlet oxygen generator, miniSOG, fused to a histone. Caenorhabditis elegans expressing His-mSOG in the germline behave and reproduce normally, without photoinduction. Following exposure to blue light, the His-mSOG animals produce progeny with a wide range of heritable phenotypes. We show that optogenetic mutagenesis by His-mSOG induces a broad spectrum of mutations including single-nucleotide variants (SNVs), chromosomal deletions, as well as integration of extrachromosomal transgenes, which complements those derived from traditional chemical or radiation mutagenesis. The optogenetic mutagenesis expands the toolbox for forward genetic screening and also provides direct evidence that nuclear ROS can induce heritable and specific genetic mutations.

  8. Improvement of DNA transfer frequency and transposon mutagenesis of Erwinia carotovora subsp. betavasculorum.

    Science.gov (United States)

    Rella, M; Axelrood, P E; Weinhold, A R; Schroth, M N

    1989-01-01

    The production of antibiotics and their role in microbial competition under natural conditions can be readily studied by the use of transposon mutants. Several antibiotic-producing strains of Erwinia carotovora subsp. betavasculorum were unable to accept foreign DNA. A plasmid delivery system was developed, using ethyl methanesulfonate mutagenesis, which entailed isolating E. carotovora subsp. betavasculorum mutants able to accept foreign DNA and transfer it to other strains. This enabled transposon mutagenesis of a wild-type antibiotic-producing strain of E. carotovora subsp. betavasculorum. Twelve antibiotic-negative mutants were isolated, and one of these showed a reduction in antibiotic production in vitro. Many of these mutants also showed a reduction in their ability to macerate potato tissue. The mutants were classified into four genetic groups on the basis of their genetic and phenotypic characteristics, indicating that several genes are involved in antibiotic biosynthesis by E. carotovora subsp. betavasculorum. PMID:2543291

  9. Antimicrobials, stress and mutagenesis.

    Directory of Open Access Journals (Sweden)

    Alexandro Rodríguez-Rojas

    2014-10-01

    Full Text Available Cationic antimicrobial peptides are ancient and ubiquitous immune effectors that multicellular organisms use to kill and police microbes whereas antibiotics are mostly employed by microorganisms. As antimicrobial peptides (AMPs mostly target the cell wall, a microbial 'Achilles heel', it has been proposed that bacterial resistance evolution is very unlikely and hence AMPs are ancient 'weapons' of multicellular organisms. Here we provide a new hypothesis to explain the widespread distribution of AMPs amongst multicellular organism. Studying five antimicrobial peptides from vertebrates and insects, we show, using a classic Luria-Delbrück fluctuation assay, that cationic antimicrobial peptides (AMPs do not increase bacterial mutation rates. Moreover, using rtPCR and disc diffusion assays we find that AMPs do not elicit SOS or rpoS bacterial stress pathways. This is in contrast to the main classes of antibiotics that elevate mutagenesis via eliciting the SOS and rpoS pathways. The notion of the 'Achilles heel' has been challenged by experimental selection for AMP-resistance, but our findings offer a new perspective on the evolutionary success of AMPs. Employing AMPs seems advantageous for multicellular organisms, as it does not fuel the adaptation of bacteria to their immune defenses. This has important consequences for our understanding of host-microbe interactions, the evolution of innate immune defenses, and also sheds new light on antimicrobial resistance evolution and the use of AMPs as drugs.

  10. Recent advances of microbial breeding via heavy-ion mutagenesis at IMP.

    Science.gov (United States)

    Hu, W; Li, W; Chen, J

    2017-10-01

    Nowadays, the value of heavy-ion mutagenesis has been accepted as a novel powerful mutagen technique to generate new microbial mutants due to its high linear energy transfer and high relative biological effectiveness. This paper briefly reviews recent progress in developing a more efficient mutagenesis technique for microbial breeding using heavy-ion mutagenesis, and also presents the outline of the beam line for microbial breeding in Heavy Ion Research Facility of Lanzhou. Then, new insights into microbial biotechnology via heavy-ion mutagenesis are also further explored. We hope that our concerns will give deep insight into microbial breeding biotechnology via heavy-ion mutagenesis. We also believe that heavy-ion mutagenesis breeding will greatly contribute to the progress of a comprehensive study industrial strain engineering for bioindustry in the future. There is currently a great interest in developing rapid and diverse microbial mutation tool for strain modification. Heavy-ion mutagenesis has been proved as a powerful technology for microbial breeding due to its broad spectrum of mutation phenotypes with high efficiency. In order to deeply understand heavy-ion mutagenesis technology, this paper briefly reviews recent progress in microbial breeding using heavy-ion mutagenesis at IMP, and also presents the outline of the beam line for microbial breeding in Heavy Ion Research Facility of Lanzhou (HIRFL) as well as new insights into microbial biotechnology via heavy-ion mutagenesis. Thus, this work can provide the guidelines to promote the development of novel microbial biotechnology cross-linking heavy-ion mutagenesis breeding that could make breeding process more efficiently in the future. © 2017 The Society for Applied Microbiology.

  11. Activities of native and tyrosine-69 mutant phospholipases A2 on phospholipid analogues. A reevaluation of the minimal substrate requirements.

    Science.gov (United States)

    Kuipers, O P; Dekker, N; Verheij, H M; de Haas, G H

    1990-06-26

    The role of Tyr-69 of porcine pancreatic phospholipase A2 in substrate binding was studied with the help of proteins modified by site-directed mutagenesis and phospholipid analogues with a changed head-group geometry. Two mutants were used containing Phe and Lys, respectively, at position 69. Modifications in the phospholipids included introduction of a sulfur at the phosphorus (thionophospholipids), removal of the negative charge at phosphorus (phosphatidic acid dimethyl ester), and reduction (phosphonolipids) or extension (diacylbutanetriol choline phosphate) of the distance between the phosphorus and the acyl ester bond. Replacement of Tyr-69 by Lys reduces enzymatic activity, but the mutant enzyme retains both the stereospecificity and positional specificity of native phospholipase A2. The Phe-69 mutant not only hydrolyzes the Rp isomer of thionophospholipids more efficiently than the wild-type enzyme, but the Sp thiono isomer is hydrolyzed too, although at a low (approximately 4%) rate. Phosphonolipids are hydrolyzed by native phospholipase A2 about 7 times more slowly than natural phospholipids, with retention of positional specificity and a (partial) loss of stereospecificity. The dimethyl ester of phosphatidic acid is degraded efficiently in a calcium-dependent and positional-specific way by native phospholipase A2 and by the mutants, indicating that a negative charge at phosphorus is not an absolute substrate requirement. The activities on the phosphatidic acid dimethyl ester of native enzyme and the Lys-69 mutant are lower than those on the corresponding lecithin, in contrast to the Phe-69 mutant, which has equal activities on both substrates.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Biofilm formation in Escherichia coli cra mutants is impaired due to down-regulation of curli biosynthesis.

    Science.gov (United States)

    Reshamwala, Shamlan M S; Noronha, Santosh B

    2011-10-01

    Cra is a pleiotropic regulatory protein that controls carbon and energy flux in enteric bacteria. Recent studies have shown that Cra also regulates other cell processes and influences biofilm formation. The purpose of the present study was to investigate the role of Cra in biofilm formation in Escherichia coli. Congo red-binding studies suggested that curli biosynthesis is impaired in cra mutants. Microarray analysis of wild-type and mutant E. coli cultivated in conditions promoting biofilm formation revealed that the curli biosynthesis genes, csgBAC and csgDEFG, are poorly expressed in the mutant, suggesting that transcription of genes required for curli production is regulated by Cra. Four putative Cra-binding sites were identified in the curli intergenic region, which were experimentally validated by performing electromobility shift assays. Site-directed mutagenesis of three Cra-binding sites in the promoter region of the csgDEFG operon suggests that Cra activates transcription of this operon upon binding to operator regions both downstream and upstream of the transcription start site. Based on the Cra-binding sites identified in this and other studies, the Cra consensus sequence is refined.

  13. Mutagenesis and repair of DNA

    International Nuclear Information System (INIS)

    Janion, C.; Grzesiuk, E.; Fabisiewicz, A.; Tudek, B.; Ciesla, J.; Graziewicz, M.; Wojcik, A.; Speina, E.

    1998-01-01

    Full text. The discovery that the mfd gene codes for a transcription-coupling repair factor (TRCF) prompted us to re-investigate the MFD (mutation frequency decline) phenomenon in E.coli K-12 strain when mutations were induced by ultraviolet light, halogen light or MMS-treatment. These studies revealed that: (i) the process of MFD involves the proofreading activity of DNA pol III and the mismatch repair system, as well as, TRCF and the UvrABC-excinuclease (ii) a semi-rich plate test may be replaced by a rich liquid medium, (iii) the T-T pyrimidine dimers are the lesions excised with the highest activity, and (iv) overproduction of UmuD(D'C) proteins leads to a great increase in mutant frequency in irradiated and MMS-treated cells. The role of mismatch repair (MR) in MMS-induced mutagenesis is obscured by the fact that the spectra of mutational specificity are different in bacteria proficient and deficient in MR. It has been found that transposons Tn10 (and Tn5) when inserted into chromosomal DNA of E. coli influence the phenotype lowering the survival and frequency of mutations induced by UV or halogen light irradiation. This is connected with a deficiency of UmuD(D') and UmuC proteins. Transformation of bacteria with plasmids bearing the umuD(D')C genes, suppresses the effects of the transposon insertion, a phenomenon which has not been described before. Single-stranded DNA of M13mp18 phage was oxidized in vitro by a hydroxyl radical generating system including hypoxanthine/xanthine oxidase/Fe3+/EDTA, and it was found that Fapy-Ade, Fapy-Gua, 8-oxyAde and thymine glycol were the main products formed. Replication of the oxidized template by T7 phage DNA polymerase, Klenow fragment of polymerase I, or polymerase beta from bovine thymus has revealed that oxidized pyrimidines are stronger blockers than oxidized purines for T7 phage and Klenow fragment polymerases and the blocking potency depends on the neighboring bases and on the type of polymerase. Studies of

  14. Laboratory of Mutagenesis and DNA Repair

    International Nuclear Information System (INIS)

    2000-01-01

    Full text: Two main lines of research were continued: the first one concerned the mechanisms controlling the fidelity of DNA replication in Escherichia coli; the second concerned cellular responses of Saccharomyces cerevisiae to DNA damaging agents. We have been investigating the question whether during chromosomal DNA replication in Escherichia coli the two DNA strands may be replicated with differential accuracy. To address this question we set up a new system that allows the examination of mutagenesis either of the leading strand or the lagging strand. Our results suggest that the lagging strand replication of the E. coli chromosome may be more accurate than leading strand replication. More recently, we studied mutagenesis of the two strands in recA730 strains which exhibit constitutive expression of the SOS system. Our results clearly indicate that in recA730 strains there is a significant difference in the fidelity of replication between the two replicating strands. Based on our data we propose a model describing a possible mechanism of SOS mutagenesis. To get more insight into cellular responses to DNA damage we have isolated several novel genes of S. cerevisiae, the transcription of which is induced by DNA lesions. Main effort was concentrated on the characterization of the DIN7 gene. We found that Din7p specifically affects the metabolism of mitochondrial DNA (mtDNA). The elevated level of Din7p results in an increased frequency of mitochondrial petite mutants, as well as in a higher frequency of mitochondrial point mutations. Din7p affects also the stability of microsatellite sequences present in the mitochondrial genome. As expected, Din7p was found to be located in mitochondria. In another project, we found that the DIN8 gene isolated in our laboratory is identical with the UMP1 gene encoding a chaperone-like protein involved in 20S proteasome maturation. Interestingly, induction of UMP1 expression in response to DNA damage is subject to regulation

  15. Theories of Lethal Mutagenesis: From Error Catastrophe to Lethal Defection.

    Science.gov (United States)

    Tejero, Héctor; Montero, Francisco; Nuño, Juan Carlos

    2016-01-01

    RNA viruses get extinct in a process called lethal mutagenesis when subjected to an increase in their mutation rate, for instance, by the action of mutagenic drugs. Several approaches have been proposed to understand this phenomenon. The extinction of RNA viruses by increased mutational pressure was inspired by the concept of the error threshold. The now classic quasispecies model predicts the existence of a limit to the mutation rate beyond which the genetic information of the wild type could not be efficiently transmitted to the next generation. This limit was called the error threshold, and for mutation rates larger than this threshold, the quasispecies was said to enter into error catastrophe. This transition has been assumed to foster the extinction of the whole population. Alternative explanations of lethal mutagenesis have been proposed recently. In the first place, a distinction is made between the error threshold and the extinction threshold, the mutation rate beyond which a population gets extinct. Extinction is explained from the effect the mutation rate has, throughout the mutational load, on the reproductive ability of the whole population. Secondly, lethal defection takes also into account the effect of interactions within mutant spectra, which have been shown to be determinant for the understanding the extinction of RNA virus due to an augmented mutational pressure. Nonetheless, some relevant issues concerning lethal mutagenesis are not completely understood yet, as so survival of the flattest, i.e. the development of resistance to lethal mutagenesis by evolving towards mutationally more robust regions of sequence space, or sublethal mutagenesis, i.e., the increase of the mutation rate below the extinction threshold which may boost the adaptability of RNA virus, increasing their ability to develop resistance to drugs (including mutagens). A better design of antiviral therapies will still require an improvement of our knowledge about lethal

  16. Mutagenesis and Teratogenesis Section

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Progress is reported in the following areas of research: studies on chromosome damage and indirect indicators of genetic damage; cytogenetic, embryological, and biochemical studies of mutants in mammals; studies on mammalian gonads in relation to mutagenic effects; systems for detecting mutagenic effects of chemicals; processes in repair of damage to DNA; methods for detecting mutations that result in proteins with altered amino acid sequences; recombination in Drosophila; DNA repair processes in bacteria; development of a sensitive teratological prescreen; teratogenic end points in amphibians; and development of a method for long-term culture of Xenopus oocytes

  17. Mutants of the major ryegrass pollen allergen, Lol p 5, with reduced IgE-binding capacity: candidates for grass pollen-specific immunotherapy.

    Science.gov (United States)

    Swoboda, Ines; De Weerd, Nicole; Bhalla, Prem L; Niederberger, Verena; Sperr, W R; Valent, Peter; Kahlert, Helga; Fiebig, Helmut; Verdino, Petra; Keller, Walter; Ebner, Christof; Spitzauer, Susanne; Valenta, Rudolf; Singh, Mohan B

    2002-01-01

    More than 400 million individuals are sensitized to grass pollen allergens. Group 5 allergens represent the most potent grass pollen allergens recognized by more than 80 % of grass pollen allergic patients. The aim of our study was to reduce the allergenic activity of group 5 allergens for specific immunotherapy of grass pollen allergy. Based on B- and T-cell epitope mapping studies and on sequence comparison of group 5 allergens from different grasses, point mutations were introduced by site-directed mutagenesis in highly conserved sequence domains of Lol p 5, the group 5 allergen from ryegrass. We obtained Lol p 5 mutants with low IgE-binding capacity and reduced allergenic activity as determined by basophil histamine release and by skin prick testing in allergic patients. Circular dichroism analysis showed that these mutants exhibited an overall structural fold similar to the recombinant Lol p 5 wild-type allergen. In addition, Lol p 5 mutants retained the ability to induce proliferation of group 5 allergen-specific T cell lines and clones. Our results demonstrate that a few point mutations in the Lol p 5 sequence yield mutants with reduced allergenic activity that represent potential vaccine candidates for immunotherapy of grass pollen allergy.

  18. A recombinant hypoallergenic parvalbumin mutant for immunotherapy of IgE-mediated fish allergy.

    Science.gov (United States)

    Swoboda, Ines; Bugajska-Schretter, Agnes; Linhart, Birgit; Verdino, Petra; Keller, Walter; Schulmeister, Ulrike; Sperr, Wolfgang R; Valent, Peter; Peltre, Gabriel; Quirce, Santiago; Douladiris, Nikolaos; Papadopoulos, Nikolaos G; Valenta, Rudolf; Spitzauer, Susanne

    2007-05-15

    IgE-mediated allergy to fish is a frequent cause of severe anaphylactic reactions. Parvalbumin, a small calcium-binding protein, is the major fish allergen. We have recently isolated a cDNA coding for carp parvalbumin, Cyp c 1, and expressed in Escherichia coli a recombinant Cyp c 1 molecule, which contained most IgE epitopes of saltwater and freshwater fish. In this study, we introduced mutations into the calcium-binding domains of carp parvalbumin by site-directed mutagenesis and produced in E. coli three parvalbumin mutants containing amino acid exchanges either in one (single mutants; Mut-CD and Mut-EF) or in both of the calcium-binding sites (double mutant; Mut-CD/EF). Circular dichroism analyses of the purified derivatives and the wild-type allergen showed that Mut-CD/EF exhibited the greatest reduction of overall protein fold. Dot blot assays and immunoblot inhibition experiments performed with sera from 21 fish-allergic patients showed that Mut-CD/EF had a 95% reduced IgE reactivity and represented the derivative with the least allergenic activity. The latter was confirmed by in vitro basophil histamine release assays and in vivo skin prick testing. The potential applicability for immunotherapy of Mut-CD/EF was demonstrated by the fact that mouse IgG Abs could be raised by immunization with the mutated molecule, which cross-reacted with parvalbumins from various fish species and inhibited the binding of fish-allergic patients' IgE to the wild-type allergen. Using the hypoallergenic carp parvalbumin mutant Mut-CD/EF, it may be possible to treat fish allergy by immunotherapy.

  19. Mutagenesis in sweet potato

    International Nuclear Information System (INIS)

    Zhen Hai Rou

    1997-01-01

    Stem explants of cv. 'Gao line 14' were cultured on the MS medium supplemented with 0.01 mg BA+1.0 mg NAA+2.0 mg IAA/l. The calli thus formed were irradiated with 5 Gy from a 60 Co gamma-ray. Irradiated calli were transferred to half-strength MS medium containing 2.0 mg KIN + 2.0 mg IAA/l to induce plant regeneration. An early ripening mutant with high yield and low tuber number was selected among the regenerated plants grown in a field. Embryogenic calli were obtained from stem pieces, stem-tips and leaves on MS medium supplemented with 2,4-D. (author). 1 ref

  20. Mutagenesis in sweet potato

    Energy Technology Data Exchange (ETDEWEB)

    Rou, Zhen Hai [Horticultural Research Inst., Shanghai Academy of Agricultural Sciences, Shanghai (China)

    1997-07-01

    Stem explants of cv. `Gao line 14` were cultured on the MS medium supplemented with 0.01 mg BA+1.0 mg NAA+2.0 mg IAA/l. The calli thus formed were irradiated with 5 Gy from a {sup 60}Co gamma-ray. Irradiated calli were transferred to half-strength MS medium containing 2.0 mg KIN + 2.0 mg IAA/l to induce plant regeneration. An early ripening mutant with high yield and low tuber number was selected among the regenerated plants grown in a field. Embryogenic calli were obtained from stem pieces, stem-tips and leaves on MS medium supplemented with 2,4-D. (author). 1 ref.

  1. Himar1 Transposon for Efficient Random Mutagenesis in Aggregatibacter actinomycetemcomitans

    Directory of Open Access Journals (Sweden)

    Qinfeng Ding

    2017-09-01

    Full Text Available Aggregatibacter actinomycetemcomitans is the primary etiological agent of aggressive periodontal disease. Identification of novel virulence factors at the genome-wide level is hindered by lack of efficient genetic tools to perform mutagenesis in this organism. The Himar1 mariner transposon is known to yield a random distribution of insertions in an organism’s genome with requirement for only a TA dinucleotide target and is independent of host-specific factors. However, the utility of this system in A. actinomycetemcomitans is unknown. In this study, we found that Himar1 transposon mutagenesis occurs at a high frequency (×10-4, and can be universally applied to wild-type A. actinomycetemcomitans strains of serotypes a, b, and c. The Himar1 transposon inserts were stably inherited in A. actinomycetemcomitans transconjugants in the absence of antibiotics. A library of 16,000 mutant colonies of A. actinomycetemcomitans was screened for reduced biofilm formation. Mutants with transposon inserts in genes encoding pilus, putative ion transporters, multidrug resistant proteins, transcription regulators and enzymes involved in the synthesis of extracellular polymeric substance, bacterial metabolism and stress response were discovered in this screen. Our results demonstrated the utility of the Himar1 mutagenesis system as a novel genetic tool for functional genomic analysis in A. actinomycetemcomitans.

  2. Directed mutagenesis affects recombination in Azospirillum brasilense nif genes

    Directory of Open Access Journals (Sweden)

    C.P. Nunes

    2000-12-01

    Full Text Available In order to improve the gene transfer/mutagenesis system for Azospirillum brasilense, gene-cartridge mutagenesis was used to replace the nifD gene with the Tn5 kanamycin resistance gene. The construct was transferred to A. brasilense by electrotransformation. Of the 12 colonies isolated using the suicide plasmid pSUP202 as vector, only four did not show vector integration into the chromosome. Nevertheless, all 12 colonies were deficient in acetylene reduction, indicating an Nif- phenotype. Four Nif- mutants were analyzed by Southern blot, using six different probes spanning the nif and Km r genes and the plasmid vector. Apparently, several recombination events occurred in the mutant genomes, probably caused mainly by gene disruption owing to the mutagenesis technique used: resistance gene-cartridge mutagenesis combined with electrotransformation.Com o objetivo de melhorar os sistemas de transferência gênica e mutagênese para Azospirillum brasilense, a técnica de mutagênese através do uso de um gene marcador ("gene-cartridge mutagenesis" foi utilizada para substituir a região genômica de A. brasilense correspondente ao gene nifD por um segmento de DNA do transposon Tn5 contendo o gene que confere resistência ao antibiótico canamicina. A construção foi transferida para a linhagem de A. brasilense por eletrotransformação. Doze colônias transformantes foram isoladas com o plasmídeo suicida pSUP202 servindo como vetor. Dessas, somente quatro não possuíam o vetor integrado no cromossomo da bactéria. Independentemente da integração ou não do vetor, as 12 colônias foram deficientes na redução do gás acetileno, evidenciando o fenótipo Nif -. Quatro mutantes Nif - foram analisados através da técnica de Southern blot, utilizando-se seis diferentes fragmentos contendo genes nif, de resistência à canamicina e do vetor como sondas. Os resultados sugerem a ocorrência de eventos recombinacionais variados no genoma dos mutantes. A

  3. Defective Glycinergic Synaptic Transmission in Zebrafish Motility Mutants

    OpenAIRE

    Hirata, Hiromi; Carta, Eloisa; Yamanaka, Iori; Harvey, Robert J.; Kuwada, John Y.

    2010-01-01

    Glycine is a major inhibitory neurotransmitter in the spinal cord and brainstem. Recently, in vivo analysis of glycinergic synaptic transmission has been pursued in zebrafish using molecular genetics. An ENU mutagenesis screen identified two behavioral mutants that are defective in glycinergic synaptic transmission. Zebrafish bandoneon (beo) mutants have a defect in glrbb, one of the duplicated glycine receptor (GlyR) β subunit genes. These mutants exhibit a loss of glycinergic synaptic ...

  4. Characterization of three Agrobacterium tumefaciens avirulent mutants with chromosomal mutations that affect induction of vir genes.

    OpenAIRE

    Metts, J; West, J; Doares, S H; Matthysse, A G

    1991-01-01

    Three Agrobacterium tumefaciens mutants with chromosomal mutations that affect bacterial virulence were isolated by transposon mutagenesis. Two of the mutants were avirulent on all hosts tested. The third mutant, Ivr-211, was a host range mutant which was avirulent on Bryophyllum diagremontiana, Nicotiana tabacum, N. debneyi, N. glauca, and Daucus carota but was virulent on Zinnia elegans and Lycopersicon esculentum (tomato). That the mutant phenotype was due to the transposon insertion was d...

  5. Site-Directed Immobilization of BMP-2: Two Approaches for the Production of Innovative Osteoinductive Scaffolds.

    Science.gov (United States)

    Tabisz, Barbara; Schmitz, Werner; Schmitz, Michael; Luehmann, Tessa; Heusler, Eva; Rybak, Jens-Christoph; Meinel, Lorenz; Fiebig, Juliane E; Mueller, Thomas D; Nickel, Joachim

    2017-03-13

    The regenerative potential of bone is strongly impaired in pathological conditions, such as nonunion fractures. To support bone regeneration various scaffolds have been developed in the past, which have been functionalized with osteogenic growth factors such as bone morphogenetic proteins (BMPs). However, most of them required supra-physiological levels of these proteins leading to burst releases, thereby causing severe side effects. Site-specific, covalent coupling of BMP2 to implant materials might be an optimal strategy in order to overcome these problems. Therefore, we created a BMP-2 variant (BMP2-K3Plk) containing a noncanonical amino acid (propargyl-l-lysine) substitution introduced by genetic code expansion that allows for site-specific and covalent immobilization onto polymeric scaffold materials. To directly compare different coupling strategies, we also produced a BMP2 variant containing an additional cysteine residue (BMP2-A2C) allowing covalent coupling by thioether formation. The BMP2-K3Plk mutant was coupled to functionalized beads by a copper-catalyzed azide-alkyne cycloaddition (CuAAC) either directly or via a short biotin-PEG linker both with high specificity. After exposing the BMP-coated beads to C2C12 cells, ALP expression appeared locally restricted in close proximity to these beads, showing that both coupled BMP2 variants trigger cell differentiation. The advantage of our approach over non-site-directed immobilization techniques is the ability to produce fully defined osteogenic surfaces, allowing for lower BMP2 loads and concomitant higher bioactivities, for example, due to controlled orientation toward BMP2 receptors. Such products might provide superior bone healing capabilities with potential safety advantages as of homogeneous product outcome.

  6. Root hair mutants of barley

    International Nuclear Information System (INIS)

    Engvild, K.C.; Rasmussen, K.

    2005-01-01

    Barley mutants without root hairs or with short or reduced root hairs were isolated among M 2 seeds of 'Lux' barley (Hordeum vulgare L.) after acidified sodium azide mutagenesis. Root hair mutants are investigated intensively in Arabidopsis where about 40 genes are known. A few root hair mutants are known in maize, rice, barley and tomato. Many plants without root hairs grow quite well with good plant nutrition, and mutants have been used for investigations of uptake of strongly bound nutrients like phosphorus, iron, zinc and silicon. Seed of 'Lux' barley (Sejet Plant Breeding, Denmark) were soaked overnight, and then treated with 1.5-millimolarsodium azide in 0.1 molar sodium phosphate buffer, pH 3, for 2.5 hours according to the IAEA Manual on Mutation Breeding (2nd Ed.). After rinsing in tap water and air-drying, the M 2 seeds were sown in the field the same day. Spikes, 4-6 per M 1 plant, were harvested. The mutation frequency was similar to that obtained with other barley cultivars from which low-phytate mutants were isolated [5]. Seeds were germinated on black filter paper in tap water for 3 or 4 days before scoring for root hair mutants

  7. A cGMP kinase mutant with increased sensitivity to the protein kinase inhibitor peptide PKI(5-24).

    Science.gov (United States)

    Ruth, P; Kamm, S; Nau, U; Pfeifer, A; Hofmann, F

    1996-01-01

    Synthetic peptides corresponding to the active domain of the heat-stable inhibitor protein PKI are very potent inhibitors of cAMP-dependent protein kinase, but are extremely weak inhibitors of cGMP-dependent protein kinase. In this study, we tried to confer PKI sensitivity to cGMP kinase by site-directed mutagenesis. The molecular requirements for high affinity inhibition by PKI were deduced from the crystal structure of the cAMP kinase/PKI complex. A prominent site of interaction are residues Tyr235 and Phe239 in the catalytic subunit, which from a sandwich-like structure with Phe10 of the PKI(5-24) peptide. To increase the sensitivity for PKI, the cGMP kinase codons at the corresponding sites, Ser555 and Ser559, were changed to Tyr and Phe. The mutant cGMP kinase was stimulated half maximally by cGMP at 3-fold higher concentrations (240 nM) than the wild type (77 nM). Wild type and mutant cGMP kinase did not differ significantly in their Km and Vmax for three different substrate peptides. The PKI(5-24) peptide inhibited phosphotransferase activity of the mutant cGMP kinase with higher potency than that of wild type, with Ki values of 42 +/- .3 microM and 160 +/- .7 microM, respectively. The increased affinity of the mutant cGMP kinase was specific for the PKI(5-24) peptide. Mutation of the essential Phe10 in the PKI(5-24) sequence to an Ala yielded a peptide that inhibited mutant and wild type cGMP kinase with similar potency, with Ki values of 160 +/- 11 and 169 +/- 27 microM, respectively. These results suggest that the mutations Ser555Tyr and Ser559Phe are required, but not sufficient, for high affinity inhibition of cGMP kinase by PKI.

  8. NMR studies of differences in the conformations and dynamics of ligand complexes formed with mutant dihydrofolate reductases

    International Nuclear Information System (INIS)

    Birdsall, B.; Andrews, J.; Ostler, G.; Tendler, S.J.B.; Feeney, J.; Roberts, G.C.K.; Davies, R.W.; Cheung, H.T.A.

    1989-01-01

    Two mutants of Lactobacillus casei dihydrofolate reductase, Trp 21 → Leu and Asp 26 → Glu, have been prepared by using site-directed mutagenesis methods, and their ligand binding and structural properties have been compared with those of the wild-type enzyme. 1 H, 13 C, and 31 P NMR studies have been carried out to characterize the structural changes in the complexes of the mutant and wild-type enzymes. Replacement of the conserved Trp 21 by a Leu residue causes a decrease in activity of the enzyme and reduces the NADPH binding constant by a factor of 400. The binding of substrates and substrate analogues is only slightly affected. 1 H NMR studies of the Trp 21 → Leu enzyme complexes have confirmed the original resonance assignments for Trp 21. In complexes formed with methotrexate and the mutant enzyme, the results indicate some small changes in conformation occurring as much as 14 angstrom away from the site of substitution. For the enzyme-NADPH complexes, the chemical shifts of nuclei in the bound coenzyme indicate that the nicotinamide ring binds differently in complexes with the mutant and the wild-type enzyme. There are complexes where the wild-type enzyme has been shown to exist in solution as a mixture of conformations, and studies on the corresponding complexes with the Trp 21 → Leu mutant indicate that the delicately poised equilibria can be perturbed. Some conformational adjustments are required to allow the carboxylate of Glu 26 to bind effectively to the N1 proton of inhibitors such as methotrexate and trimethoprim

  9. Radiation-induced base substitution mutagenesis in single-stranded DNA phage M13

    International Nuclear Information System (INIS)

    Brandenburger, A.; Godson, G.N.; Glickman, B.W.; Sluis, C.A. van

    1981-01-01

    To elucidate the relative contributions of targeted and untargeted mutations to γ and UV radiation mutagenesis, the DNA sequences of 174 M13 revertant phages isolated from stocks of irradiated or unirradiated amber mutants grown in irradiated (SOS-induced) or unirradiated (non-induced) host bacteria, have been determined. Differences in the spectra of base change mutations induced in the various conditions were apparent, but no obvious specificity of mutagenesis was detected. In particular, under the present conditions, pyrimidine dimers did not seem to be the principal sites of UV-induced base substitution mutagenesis, suggesting that such mutagenesis occurs at the sites of lesions other than pyrimidine dimers, or is untargeted. (U.K.)

  10. The Yeast Environmental Stress Response Regulates Mutagenesis Induced by Proteotoxic Stress

    Science.gov (United States)

    Shor, Erika; Fox, Catherine A.; Broach, James R.

    2013-01-01

    Conditions of chronic stress are associated with genetic instability in many organisms, but the roles of stress responses in mutagenesis have so far been elucidated only in bacteria. Here, we present data demonstrating that the environmental stress response (ESR) in yeast functions in mutagenesis induced by proteotoxic stress. We show that the drug canavanine causes proteotoxic stress, activates the ESR, and induces mutagenesis at several loci in an ESR-dependent manner. Canavanine-induced mutagenesis also involves translesion DNA polymerases Rev1 and Polζ and non-homologous end joining factor Ku. Furthermore, under conditions of chronic sub-lethal canavanine stress, deletions of Rev1, Polζ, and Ku-encoding genes exhibit genetic interactions with ESR mutants indicative of ESR regulating these mutagenic DNA repair processes. Analyses of mutagenesis induced by several different stresses showed that the ESR specifically modulates mutagenesis induced by proteotoxic stress. Together, these results document the first known example of an involvement of a eukaryotic stress response pathway in mutagenesis and have important implications for mechanisms of evolution, carcinogenesis, and emergence of drug-resistant pathogens and chemotherapy-resistant tumors. PMID:23935537

  11. Mutagenesis in mammalian cells

    International Nuclear Information System (INIS)

    Burki, H.J.

    1981-01-01

    Mutagenic processes in synchronous cultures of Chinese hamster ovary cells have been studied. There is a difference in the induction of mutants by ultraviolet light during the cell cycle. There appears to be a sensitive period in the middle of the G1 stage of the cell cycle suggesting some mutagenic mechanism is present at that time. Studies indicate that mutation induction during the cell cycle is also mutagen specific since exposure to ethyl nitrosourea in the same system produces different results. Two clones have been isolated which are ultrasensitive to ultraviolet light. These cells are being used to determine if this hypermutability is cell-cycle dependent, related to cell cycle biochemistry, or to repair processes independent of cell cycle. Tritium and bromodeoxyuridine induced damage to synchronously dividing cell cultures are also being studied in relation to DNA replication. Cell killing by ionizing radiation is also related to the cell cycle. Sensitive times in the cell cycle for mutation induction by ionization radiation are identified

  12. Mutagenesis of Jatropha curcas - Exploring new traits in the breeding of a biofuel plant

    International Nuclear Information System (INIS)

    Azhar Mohamad; Sobri Hussein; Abdul Rahim Harun

    2010-01-01

    Mutagenesis in plant species is considered effective in recovering and producing useful mutants as it leads to a high degree of chimerism and produces high degree of somaclonal variations for further selection in breeding programmes. Jatropha curcas is a species with many attributes and considerable potential, especially as bio diesel. Narrow genetic background of Jatropha spp. gives less selection to growers for better quality plant materials. In this study, a new method through nuclear technology was used to increase the genetic variability of Jatropha towards novel superior potential mutant lines. The objective of the study is to generate new mutant varieties of Jatropha curcas through the mutagenesis approach in getting new sustainable mutants for high oil yield and improved plant characteristics. Seeds of a Jatropha cultivar were from selected materials from Lembaga Kenaf and Tembakau Negara, Kelantan. Radiosensitivity test was done by irradiating a total of each 60 seeds at multiple doses (0 Gy, 20 Gy, 40 Gy, 60 Gy, 80 Gy, 100 Gy, 200 Gy, 300 Gy, 400 Gy, 600 Gy and 700 Gy). After getting the LD 50 , three doses i.e. 250 Gy, 300 Gy and 350 Gy were selected for mutagenesis, where a total of 1000 seeds were exposed to gamma radiation. The seeds were hardened and field planted at close distance of 1 m x 1 m. Pruning was conducted three times at two months interval prior to screening for early flowering, short stature and high branching mutant lines. Radiosensitivity of seeds to acute gamma irradiation revealed that the LD 50 was at 320 Gy. At nursery stage, somatic mutations related to chlorophyll changes were observed on leaves with certain shapes. Screening of Jatropha via seed mutagenesis bore 6 early flowering mutants, 7 dwarf mutants and, 17 high branching plants. In narrowing the mutant lines, cuttings from each selected trait were collected and re-planted for further evaluation. (author)

  13. Improvement of DNA transfer frequency and transposon mutagenesis of Erwinia carotovora subsp. betavasculorum.

    OpenAIRE

    Rella, M; Axelrood, P E; Weinhold, A R; Schroth, M N

    1989-01-01

    The production of antibiotics and their role in microbial competition under natural conditions can be readily studied by the use of transposon mutants. Several antibiotic-producing strains of Erwinia carotovora subsp. betavasculorum were unable to accept foreign DNA. A plasmid delivery system was developed, using ethyl methanesulfonate mutagenesis, which entailed isolating E. carotovora subsp. betavasculorum mutants able to accept foreign DNA and transfer it to other strains. This enabled tra...

  14. Scoring function to predict solubility mutagenesis

    Directory of Open Access Journals (Sweden)

    Deutsch Christopher

    2010-10-01

    Full Text Available Abstract Background Mutagenesis is commonly used to engineer proteins with desirable properties not present in the wild type (WT protein, such as increased or decreased stability, reactivity, or solubility. Experimentalists often have to choose a small subset of mutations from a large number of candidates to obtain the desired change, and computational techniques are invaluable to make the choices. While several such methods have been proposed to predict stability and reactivity mutagenesis, solubility has not received much attention. Results We use concepts from computational geometry to define a three body scoring function that predicts the change in protein solubility due to mutations. The scoring function captures both sequence and structure information. By exploring the literature, we have assembled a substantial database of 137 single- and multiple-point solubility mutations. Our database is the largest such collection with structural information known so far. We optimize the scoring function using linear programming (LP methods to derive its weights based on training. Starting with default values of 1, we find weights in the range [0,2] so that predictions of increase or decrease in solubility are optimized. We compare the LP method to the standard machine learning techniques of support vector machines (SVM and the Lasso. Using statistics for leave-one-out (LOO, 10-fold, and 3-fold cross validations (CV for training and prediction, we demonstrate that the LP method performs the best overall. For the LOOCV, the LP method has an overall accuracy of 81%. Availability Executables of programs, tables of weights, and datasets of mutants are available from the following web page: http://www.wsu.edu/~kbala/OptSolMut.html.

  15. Chromosomal damages and mutagenesis in mammalian and human cells induced by ionizing radiations with different LET

    International Nuclear Information System (INIS)

    Govorun, R.D.

    1997-01-01

    On the basis of literature and proper data the inference was made about essential role of structural chromosomal (and gene) damages in spontaneous and radiation-induced mutagenesis of mammalian and human cells on HPRT-loci. The evidences of increasing role of these damages in the mutagenesis after the influence of ionizing radiations with high LET are adduced. The consequences of HPRT-gene damages have been examined hypothetically. The geterogeneity of mutant subclones on their cytogenetical properties were revealed experimentally. The data reflect a phenomenon of the reproductive chromosomal instability in many generations of mutant cell. The mutagenesis of mammalian cells is also accompanied by the impairment of chromosome integrity with high probability as a stage of appropriate genome reorganization because of changed vital conditions

  16. Forward and reverse mutagenesis in C. elegans

    Science.gov (United States)

    Kutscher, Lena M.; Shaham, Shai

    2014-01-01

    Mutagenesis drives natural selection. In the lab, mutations allow gene function to be deciphered. C. elegans is highly amendable to functional genetics because of its short generation time, ease of use, and wealth of available gene-alteration techniques. Here we provide an overview of historical and contemporary methods for mutagenesis in C. elegans, and discuss principles and strategies for forward (genome-wide mutagenesis) and reverse (target-selected and gene-specific mutagenesis) genetic studies in this animal. PMID:24449699

  17. Workshop on ENU Mutagenesis: Planning for Saturation, July 25-28, 2002

    Energy Technology Data Exchange (ETDEWEB)

    Nadeau, Joseph H

    2002-07-25

    The goal of the conference is to enhance the development of improved technologies and new approaches to the identification of genes underlying chemically-induced mutant phenotypes. The conference brings together ENU mutagenesis experts from the United States and aborad for a small, intensive workshop to consider these issues.

  18. Deletion mutagenesis identifies a haploinsufficient role for gamma-zein in opaque-2 endosperm modification

    Science.gov (United States)

    Quality Protein Maize (QPM) is a hard kernel variant of the high-lysine mutant, opaque-2. Using gamma irradiation, we created opaque QPM variants to identify opaque-2 modifier genes and to investigate deletion mutagenesis combined with Illumina sequencing as a maize functional genomics tool. A K0326...

  19. Spectrum of mutant characters utilized in developing improved cultivars

    International Nuclear Information System (INIS)

    Donini, B.; Kawai, T.; Micke, A.

    1984-01-01

    Although about 500 cultivars are known to have been developed by using induced mutations, the range of mutant traits seems to be rather narrow. Mutant traits have mostly been used that can be detected visually on an individual plant basis. However, in the background of such mutants other valuable mutations have been found in later generations. In cross-breeding with mutants valuable characteristics occurred, which could not be predicted from the phenotypes of the parents. It is concluded that improved attributes in the released mutant varieties do not comprise the entire genetic variation that could derive from mutagenesis. Current selection techniques are inadequate to exploit the full potential of mutagenesis for plant breeding. (author)

  20. DinB Upregulation Is the Sole Role of the SOS Response in Stress-Induced Mutagenesis in Escherichia coli

    Science.gov (United States)

    Galhardo, Rodrigo S.; Do, Robert; Yamada, Masami; Friedberg, Errol C.; Hastings, P. J.; Nohmi, Takehiko; Rosenberg, Susan M.

    2009-01-01

    Stress-induced mutagenesis is a collection of mechanisms observed in bacterial, yeast, and human cells in which adverse conditions provoke mutagenesis, often under the control of stress responses. Control of mutagenesis by stress responses may accelerate evolution specifically when cells are maladapted to their environments, i.e., are stressed. It is therefore important to understand how stress responses increase mutagenesis. In the Escherichia coli Lac assay, stress-induced point mutagenesis requires induction of at least two stress responses: the RpoS-controlled general/starvation stress response and the SOS DNA-damage response, both of which upregulate DinB error-prone DNA polymerase, among other genes required for Lac mutagenesis. We show that upregulation of DinB is the only aspect of the SOS response needed for stress-induced mutagenesis. We constructed two dinB(oc) (operator-constitutive) mutants. Both produce SOS-induced levels of DinB constitutively. We find that both dinB(oc) alleles fully suppress the phenotype of constitutively SOS-“off” lexA(Ind−) mutant cells, restoring normal levels of stress-induced mutagenesis. Thus, dinB is the only SOS gene required at induced levels for stress-induced point mutagenesis. Furthermore, although spontaneous SOS induction has been observed to occur in only a small fraction of cells, upregulation of dinB by the dinB(oc) alleles in all cells does not promote a further increase in mutagenesis, implying that SOS induction of DinB, although necessary, is insufficient to differentiate cells into a hypermutable condition. PMID:19270270

  1. Construction and functional characterization of double and triple mutants of parallel beta-bulge of ubiquitin.

    Science.gov (United States)

    Sharma, Mrinal; Prabha, C Ratna

    2011-12-01

    Ubiquitin, a small eukaryotic protein serving as a post-translational modification on many important proteins, plays central role in cellular homeostasis and cell cycle regulation. Ubiquitin features two beta-bulges, the second beta-bulge, located at the C-terminal region of the protein along with type II turn, holds 3 residues Glu64(1), Ser65(2) and Gln2(X). Percent frequency of occurrence of such a sequence in parallel beta-bulge is very low. However, the sequence and structure have been conserved in ubiquitin through out the evolution. Present study involves replacement of residues in unusual beta-bulge of ubiquitin by introducing mutations in combination through site directed mutagenesis, generating double and triple mutants and their functional characterization. Mutant ubiquitins cloned in yeast expression vector YEp96 tested for growth profile, viability assay and heat stress complementation study have revealed significant decrease in growth rate, loss of viability and non-complementation of heat sensitive phenotype with UbE64G-S65D and UbQ2N-E64G-S65D mutations. However, UbQ2N-S65D did not show any negative effects in the above assays. Present results show that, replacement of residues in beta-bulge of ubiquitin exerts severe effects on growth and viability in Saccharomyces cerevisiae due to functional failure of the mutant ubiquitins UbE64G-S65D and UbQ2N-E64G-S65D.

  2. Structure prediction and activity analysis of human heme oxygenase-1 and its mutant.

    Science.gov (United States)

    Xia, Zhen-Wei; Zhou, Wen-Pu; Cui, Wen-Jun; Zhang, Xue-Hong; Shen, Qing-Xiang; Li, Yun-Zhu; Yu, Shan-Chang

    2004-08-15

    To predict wild human heme oxygenase-1 (whHO-1) and hHO-1 His25Ala mutant (delta hHO-1) structures, to clone and express them and analyze their activities. Swiss-PdbViewer and Antheprot 5.0 were used for the prediction of structure diversity and physical-chemical changes between wild and mutant hHO-1. hHO-1 His25Ala mutant cDNA was constructed by site-directed mutagenesis in two plasmids of E. coli DH5alpha. Expression products were purified by ammonium sulphate precipitation and Q-Sepharose Fast Flow column chromatography, and their activities were measured. rHO-1 had the structure of a helical fold with the heme sandwiched between heme-heme oxygenase-1 helices. Bond angle, dihedral angle and chemical bond in the active pocket changed after Ala25 was replaced by His25, but Ala25 was still contacting the surface and the electrostatic potential of the active pocket was negative. The mutated enzyme kept binding activity to heme. Two vectors pBHO-1 and pBHO-1(M) were constructed and expressed. Ammonium sulphate precipitation and column chromatography yielded 3.6-fold and 30-fold higher purities of whHO-1, respectively. The activity of delta hHO-1 was reduced 91.21% after mutation compared with whHO-1. Proximal His25 ligand is crucial for normal hHO-1 catalytic activity. delta hHO-1 is deactivated by mutation but keeps the same binding site as whHO-1. delta hHO-1 might be a potential inhibitor of whHO-1 for preventing neonatal hyperbilirubinemia.

  3. Comments on mutagenesis risk estimation

    International Nuclear Information System (INIS)

    Russell, W.L.

    1976-01-01

    Several hypotheses and concepts have tended to oversimplify the problem of mutagenesis and can be misleading when used for genetic risk estimation. These include: the hypothesis that radiation-induced mutation frequency depends primarily on the DNA content per haploid genome, the extension of this concept to chemical mutagenesis, the view that, since DNA is DNA, mutational effects can be expected to be qualitatively similar in all organisms, the REC unit, and the view that mutation rates from chronic irradiation can be theoretically and accurately predicted from acute irradiation data. Therefore, direct determination of frequencies of transmitted mutations in mammals continues to be important for risk estimation, and the specific-locus method in mice is shown to be not as expensive as is commonly supposed for many of the chemical testing requirements

  4. Molecular fundamentals of chromosomal mutagenesis

    International Nuclear Information System (INIS)

    Ganassi, E.Eh.; Zaichkina, S.I.; Malakhova, L.V.

    1987-01-01

    Precise quantitative correlation between the yield of chromosome structure damages and the yield of DNA damages is shown when comparing data on molecular and cytogenetic investigations carried out in cultural Mammalia cells. As the chromosome structure damage is to be connected with the damage of its carcass structure, then it is natural that DNA damage in loop regions is not to affect considerably the structure, while DNA damage lying on the loop base and connected with the chromosome carcass is to play a determining role in chromosomal mutagenesis. This DNA constitutes 1-2% from the total quantity of nuclear DNA. If one accepts that damages of these regions of DNA are ''hot'' points of chromosomal mutagenesis, then it becomes clear why 1-2% of preparation damages in a cell are realized in chromosome structural damages

  5. Primer Extension Mutagenesis Powered by Selective Rolling Circle Amplification

    Science.gov (United States)

    Huovinen, Tuomas; Brockmann, Eeva-Christine; Akter, Sultana; Perez-Gamarra, Susan; Ylä-Pelto, Jani; Liu, Yuan; Lamminmäki, Urpo

    2012-01-01

    Primer extension mutagenesis is a popular tool to create libraries for in vitro evolution experiments. Here we describe a further improvement of the method described by T.A. Kunkel using uracil-containing single-stranded DNA as the template for the primer extension by additional uracil-DNA glycosylase treatment and rolling circle amplification (RCA) steps. It is shown that removal of uracil bases from the template leads to selective amplification of the nascently synthesized circular DNA strand carrying the desired mutations by phi29 DNA polymerase. Selective RCA (sRCA) of the DNA heteroduplex formed in Kunkel's mutagenesis increases the mutagenesis efficiency from 50% close to 100% and the number of transformants 300-fold without notable diversity bias. We also observed that both the mutated and the wild-type DNA were present in at least one third of the cells transformed directly with Kunkel's heteroduplex. In contrast, the cells transformed with sRCA product contained only mutated DNA. In sRCA, the complex cell-based selection for the mutant strand is replaced with the more controllable enzyme-based selection and less DNA is needed for library creation. Construction of a gene library of ten billion members is demonstrated with the described method with 240 nanograms of DNA as starting material. PMID:22355397

  6. The mutagenesis and breeding of high productive strains of streptomyces jingyangensis '5406'

    International Nuclear Information System (INIS)

    Qi Hongyan; Yin Xinyun

    1988-03-01

    The purpose of these experiments is to explore the mutagenesis rhythm and breed high productive strains of actinomycete '5406'. The single colony agar pieces of strain F 358 were treated with fast neutron and 60 Co-γ ray irradiation Two mutants have been selected from 20025 treated single colonies. The output of cytokinins from them is higher than from strain F 358 . The original strain 'Mu-Tan-al' rejuvenated by freezing was treated with several physical and chemical mutagens. The mutagenesis rhythm has been summed up tentatively. Eight mutants obtained from 93014 treated single colonies produced more '5406' antibiotics than that of strain 'Mu-Tan-al,. The effect of mutant 'N2-10-Ra3' was the best

  7. Random mutagenesis of the hyperthermophilic archaeon Pyrococcus furiosus using in vitro mariner transposition and natural transformation.

    Science.gov (United States)

    Guschinskaya, Natalia; Brunel, Romain; Tourte, Maxime; Lipscomb, Gina L; Adams, Michael W W; Oger, Philippe; Charpentier, Xavier

    2016-11-08

    Transposition mutagenesis is a powerful tool to identify the function of genes, reveal essential genes and generally to unravel the genetic basis of living organisms. However, transposon-mediated mutagenesis has only been successfully applied to a limited number of archaeal species and has never been reported in Thermococcales. Here, we report random insertion mutagenesis in the hyperthermophilic archaeon Pyrococcus furiosus. The strategy takes advantage of the natural transformability of derivatives of the P. furiosus COM1 strain and of in vitro Mariner-based transposition. A transposon bearing a genetic marker is randomly transposed in vitro in genomic DNA that is then used for natural transformation of P. furiosus. A small-scale transposition reaction routinely generates several hundred and up to two thousands transformants. Southern analysis and sequencing showed that the obtained mutants contain a single and random genomic insertion. Polyploidy has been reported in Thermococcales and P. furiosus is suspected of being polyploid. Yet, about half of the mutants obtained on the first selection are homozygous for the transposon insertion. Two rounds of isolation on selective medium were sufficient to obtain gene conversion in initially heterozygous mutants. This transposition mutagenesis strategy will greatly facilitate functional exploration of the Thermococcales genomes.

  8. Genome-wide LORE1 retrotransposon mutagenesis and high-throughput insertion detection in Lotus japonicus

    DEFF Research Database (Denmark)

    Urbanski, Dorian Fabian; Malolepszy, Anna; Stougaard, Jens

    2012-01-01

    Insertion mutants facilitate functional analysis of genes, but for most plant species it has been difficult to identify a suitable mutagen and to establish large populations for reverse genetics. The main challenge is developing efficient high-throughput procedures for both mutagenesis and insert......Insertion mutants facilitate functional analysis of genes, but for most plant species it has been difficult to identify a suitable mutagen and to establish large populations for reverse genetics. The main challenge is developing efficient high-throughput procedures for both mutagenesis...... plants. The identified insertions showed that the endogenous LORE1 retrotransposon is well suited for insertion mutagenesis due to its homogenous gene targeting and exonic insertion preference. Since LORE1 transposition occurs in the germline, harvesting seeds from a single founder line and cultivating...... progeny generates a complete mutant population. This ease of LORE1 mutagenesis combined with the efficient FSTpoolit protocol, which exploits 2D pooling, Illumina sequencing, and automated data analysis, allows highly cost-efficient development of a comprehensive reverse genetic resource....

  9. The influence of glycerol on γ-induced mutagenesis in Salmonella typhimurium cells

    International Nuclear Information System (INIS)

    Basha, S.G.; Krasavin, E.A.; Kozubek, S.; Amirtaev, K.G.

    1990-01-01

    A study was made of the modifying effect of glycerol on the survival rate and γ-radiation-induced mutagenesis of Salmonella typhimurium cells TA98, TA100 and TA102. The DMF value, with respect to the survival rate, was 2.05-0.20. The dependence of the yield of γ-radiation-induced mutants on radiation dose was described by the curve with a maximum; the mutation frequency M(D) was well described by a gradual function M(D)=kD x . DMF values of the induced mutagenesis amounted to 2 for strains TA100 and TA102, and 1.5 for strain TA98

  10. Crowding depression of UV-mutagenesis in E. coli

    International Nuclear Information System (INIS)

    Bockrath, R.; Harper, D.; Kristoff, S.; Stanford Univ., CA

    1980-01-01

    Strains of E. coli Br were exposed to UV radiation and assayed for reversion mutation, using a standard selection medium. If more irradiated bacteria were assayed per petri dish, a proportional increase in the number of indicated reversion mutants was oud only up to a limiting plating density. Beyond a density of about 10 8 viable bacteria per petri dish, the number of indicated revertants per viable bacteriy assayed (the mutation frequency) decreased as the plating density was increased. The crowding depression of mutagenesis was more severe for de novo and converted suppressor mutations, the mutation frequency being reduced 100-fold at a plating density of about 6 x 10 9 viable bacteria per plate. The effect on backmutation was 10 times less. Crowding depression of mutagenesis occured in excision-proficient and -deficient strains, with identical effects in the 2 strains on de novo and converted suppressor mutation, but different effects on backmutations. There were no accompanying effects on viability. Irreversible loss of potential mutants during crowded growth was indicated in wash-off experiments. The kinetics suggested a half-life of approximately 1 h. Kinetics for accumulation by the bacteria of the limiting metabolite (tyrosine) on the assay plate indicated a short period of time for protein synthesis, but direct examination of the proteins synthesized during early growth on a crowded plate demonstrated successful induction of recA protein. (orig.)

  11. Replication-dependent 65R→K reversion in human immunodeficiency virus type 1 reverse transcriptase double mutant K65R + L74V

    International Nuclear Information System (INIS)

    Sharma, Prem L.; Nurpeisov, Viktoria; Lee, Kimberly; Skaggs, Sara; Di San Filippo, Christina Amat; Schinazi, Raymond F.

    2004-01-01

    Understanding of the mechanisms of interaction among nucleoside reverse transcriptase inhibitor (NRTI)-selected mutations in the human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) coding sequence is essential for the design of newer drugs and for enhancing our vision of the structure function relationship among amino acids of the polymerase domain of HIV-1. Although several nucleoside reverse transcriptase inhibitors select RT mutations K65R and L74V, the combination of 65R + 74V is rare in clinics. A novel NRTI (-)-β-D-dioxolane-guanosine (DXG) is known to select in vitro either the 65R or 74V mutant virus (Antimicrob. Agents Chemother. 44 (2000) 1783). These mutations were not selected together during repeated passaging of the HIV-1 in the presence of this drug. To analyze the impact of these RT mutations on viral replication, a double mutant containing K65R + L74V was created by site-directed mutagenesis in a pNL4-3 background. Replication kinetic assays revealed that the mutant K65R + L74V is unstable, and 65R→K reversion occurs during replication of virus in phytohemagglutinin (PHA)-stimulated human peripheral blood mononuclear (PBM) cells in the absence of selection pressure. Replication kinetic assays in MT-2 cells demonstrated that double mutant 65R + 74V is highly attenuated for replication and the initiation of reversion is related to the increase in RT activity. Additionally, the suppression of viral replication in the presence of DXG or under suboptimal human recombinant interleukin-2 leads to minimal or no 65R→K reversion. These observations provide evidence that 65R→K reversion in the double mutant 65R + 74V is dependent on a specific rate of viral replication in a pNL4-3 background. A similar phenomenon may occur in vivo, which may have implications for treatment management strategies

  12. Mechanisms of umuC-dependent mutagenesis

    International Nuclear Information System (INIS)

    Kato, Takeji; Kitagawa, Yoshinori

    1985-01-01

    Present status of studies on umcDC genes-induced mutagenesis is introduced. Specificity of umuCD-dependent and -independent base substitution and frameshift mutagenesis is presented. Biochemical examinations of U.V.-induced umuCD gene function are described. Previous studies suggest that umuCD genes are induced by SOS inhibitory systems, that gene products are directly responsible for mutagenesis, that base substitution is largely involved in inducible mutagenesis, and that many of frameshifts are induced irrespective of gene function. (Namekawa, K.)

  13. Induced repair and mutagenesis in animal cells

    International Nuclear Information System (INIS)

    Takimoto, Koichi

    1981-01-01

    Induced repair and mutagenesis of animal cells against UV were studied in contrast with SOS repair of E. coli primarily by the use of viruses. Since UV-enhanced reactivation is a phenomenon similar to UV-reactivation (mutagenesis) and the presence of lesion bypass synthsis has been suggested, UV-enhanced reactivation has several common aspects with SOS reactivation of E. coli. However, correlation is not necessarily noted between increase in the viral survival rate and mutagenesis, nor do protease blockers exert any effect. Therefore, SOS repair of E. coli may have different mechansms from induced repair and mutagenesis in animal cells. (Ueda, J.)

  14. Multiple pathways for SOS-induced mutagenesis in Escherichia coli: An overexpression of dinB/dinP results in strongly enhancing mutagenesis in the absence of any exogenous treatment to damage DNA

    Science.gov (United States)

    Kim, Su-Ryang; Maenhaut-Michel, Geneviéve; Yamada, Masami; Yamamoto, Yoshihiro; Matsui, Keiko; Sofuni, Toshio; Nohmi, Takehiko; Ohmori, Haruo

    1997-01-01

    dinP is an Escherichia coli gene recently identified at 5.5 min of the genetic map, whose product shows a similarity in amino acid sequence to the E. coli UmuC protein involved in DNA damage-induced mutagenesis. In this paper we show that the gene is identical to dinB, an SOS gene previously localized near the lac locus at 8 min, the function of which was shown to be required for mutagenesis of nonirradiated λ phage infecting UV-preirradiated bacterial cells (termed λUTM for λ untargeted mutagenesis). A newly constructed dinP null mutant exhibited the same defect for λUTM as observed previously with a dinB::Mu mutant, and the defect was complemented by plasmids carrying dinP as the only intact bacterial gene. Furthermore, merely increasing the dinP gene expression, without UV irradiation or any other DNA-damaging treatment, resulted in a strong enhancement of mutagenesis in F′lac plasmids; at most, 800-fold increase in the G6-to-G5 change. The enhanced mutagenesis did not depend on recA, uvrA, or umuDC. Thus, our results establish that E. coli has at least two distinct pathways for SOS-induced mutagenesis: one dependent on umuDC and the other on dinB/P. PMID:9391106

  15. In vitro mutagenesis of roses

    International Nuclear Information System (INIS)

    Salahbiah Abdul Majid; Rusli Ibrahim

    2006-01-01

    In roses, numerous in vivo mutation induction experiments have been described, but only a few commercial mutants were published. The reason for this restriction may be that it sometimes takes a few years before mutants can be isolated and propagated by conventional methods. Roses mutate readily and most selected mutants concern flower colour, shape and plant type. A major problem for improvement of roses by means of mutation breeding is chimera formation, particularly when it aims to induce changes in quantitative characters. In vitro propagation could probably accelerate the isolation of periclinal chimera. Studies were conducted to investigate the potential of using gamma rays in orderto get mutations. Dormant axillary bud explants subjected to increasing doses of gamma rays showed a decrease in regeneration capacity, which was completely suppressed at 100 Gy. The lethal dose for 50 % of the regenerating explants (LD50) for both cut and miniature roses were observed between 20-40 Gy. For the main experiment, doses between 20 and 40 Gy were found to be most suitable for the induction of high mutation rate. A few new flower mutants, with new colour and shape were selected for further testing in order to produce stable mutants and this had to be micro propagated for a few generations. Thus, using axillary bud explants for the induction of mutation through in vitro shoots regeneration, several potential stable mutants of horticultural value were isolated. (Author)

  16. The significance of disulfide bonding in biological activity of HB-EGF, a mutagenesis approach

    OpenAIRE

    Hoskins, J.T.; Zhou, Z.; Harding, P.A.

    2008-01-01

    A site-directed mutagenesis approach was taken to disrupt each of 3 disulfide bonds within human HB-EGF by substituting serine for both cysteine residues that contribute to disulfide bonding. Each HB-EGF disulfide analogue (HB-EGF-Cys/Ser108/121, HB-EGF-Cys/Ser116/132, and HB-EGF-Cys/Ser134/143) was cloned under the regulation of the mouse metallothionein (MT) promoter and stably expressed in mouse fibroblasts. HB-EGF immunoreactive proteins with Mr of 6.5, 21 and 24kDa were observed from lys...

  17. Improvement of lipid production by the oleaginous yeast Rhodosporidium toruloides through UV mutagenesis.

    Science.gov (United States)

    Yamada, Ryosuke; Kashihara, Tomomi; Ogino, Hiroyasu

    2017-05-01

    Oleaginous yeasts are considered a promising alternative lipid source for biodiesel fuel production. In this study, we attempted to improve the lipid productivity of the oleaginous yeast Rhodosporidium toruloides through UV irradiation mutagenesis and selection based on ethanol and H 2 O 2 tolerance or cerulenin, a fatty acid synthetase inhibitor. Glucose consumption, cell growth, and lipid production of mutants were evaluated. The transcription level of genes involved in lipid production was also evaluated in mutants. The ethanol and H 2 O 2 tolerant strain 8766 2-31M and the cerulenin resistant strain 8766 3-11C were generated by UV mutagenesis. The 8766 2-31M mutant showed a higher lipid production rate, and the 8766 3-11C mutant produced a larger amount of lipid and had a higher lipid production rate than the wild type strain. Transcriptional analysis revealed that, similar to the wild type strain, the ACL1 and GND1 genes were expressed at significantly low levels, whereas IDP1 and ME1 were highly expressed. In conclusion, lipid productivity in the oleaginous yeast R. toruloides was successfully improved via UV mutagenesis and selection. The study also identified target genes for improving lipid productivity through gene recombination.

  18. Kinetics of formation of induced mutants of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Chepurnoj, A.I.; Levkovich, N.V.; Mikhova-Tsenova, N.; Mel'nikova, L.A.

    1990-01-01

    UV and γ-radiation mutagenic effect an various strains of Saccharomyces cerevisiae was studied by analyzing formation kinetics of induced mutants at the period of postirradiation incubation. Mechanisms of induced reverse formation was suggested. The presented analysis is considered to be differential taking account of more subtle aspects of induced mutagenesis. 8 refs.; 10 figs.; 3 tabs

  19. Environmental Stress Induces Trinucleotide Repeat Mutagenesis in Human Cells by Alt-Nonhomologous End Joining Repair.

    Science.gov (United States)

    Chatterjee, Nimrat; Lin, Yunfu; Yotnda, Patricia; Wilson, John H

    2016-07-31

    Multiple pathways modulate the dynamic mutability of trinucleotide repeats (TNRs), which are implicated in neurodegenerative disease and evolution. Recently, we reported that environmental stresses induce TNR mutagenesis via stress responses and rereplication, with more than 50% of mutants carrying deletions or insertions-molecular signatures of DNA double-strand break repair. We now show that knockdown of alt-nonhomologous end joining (alt-NHEJ) components-XRCC1, LIG3, and PARP1-suppresses stress-induced TNR mutagenesis, in contrast to the components of homologous recombination and NHEJ, which have no effect. Thus, alt-NHEJ, which contributes to genetic mutability in cancer cells, also plays a novel role in environmental stress-induced TNR mutagenesis. Published by Elsevier Ltd.

  20. Mutagenesis and phenotyping resources in zebrafish for studying development and human disease

    Science.gov (United States)

    Varshney, Gaurav Kumar

    2014-01-01

    The zebrafish (Danio rerio) is an important model organism for studying development and human disease. The zebrafish has an excellent reference genome and the functions of hundreds of genes have been tested using both forward and reverse genetic approaches. Recent years have seen an increasing number of large-scale mutagenesis projects and the number of mutants or gene knockouts in zebrafish has increased rapidly, including for the first time conditional knockout technologies. In addition, targeted mutagenesis techniques such as zinc finger nucleases, transcription activator-like effector nucleases and clustered regularly interspaced short sequences (CRISPR) or CRISPR-associated (Cas), have all been shown to effectively target zebrafish genes as well as the first reported germline homologous recombination, further expanding the utility and power of zebrafish genetics. Given this explosion of mutagenesis resources, it is now possible to perform systematic, high-throughput phenotype analysis of all zebrafish gene knockouts. PMID:24162064

  1. Engineering the cytokinin-glucoside specificity of the maize beta-D-glucosidase Zm-p60.1 using site-directed random mutagenesis

    Czech Academy of Sciences Publication Activity Database

    Filipi, T.; Mazura, P.; Janda, L.; Kiran, N.S.; Brzobohatý, Břetislav

    2012-01-01

    Roč. 74, FEB2012 (2012), s. 40-48 ISSN 0031-9422 Institutional support: RVO:68081707 Keywords : beta-Glucosidase * cis-Zeatin-O-beta-D-glucopyranoside * Cytokinin metabolism Subject RIV: BO - Biophysics Impact factor: 3.050, year: 2012

  2. Dissecting the Catalytic Mechanism of Betaine - Homocysteine S-Methyltransferase by Use of Intrinsic Tryptophan Fluorescence and Site-Directed Mutagenesis

    Czech Academy of Sciences Publication Activity Database

    Castro, C.; Gratson, A. A.; Evans, J. C.; Jiráček, Jiří; Collinsová, Michaela; Ludwig, M. L.; Garrow, T. A.

    2004-01-01

    Roč. 43, č. 18 (2004), s. 5341-5351 ISSN 0006-2960 R&D Projects: GA AV ČR IAA4055302 Grant - others:NIH(US) GM16429; NIH(US) DK52501; Illinois Agricultural Experimental Station(US) ILLU-698-352 Institutional research plan: CEZ:AV0Z4055905 Keywords : BHMT * CBHcy * fluorescence Subject RIV: CE - Biochemistry Impact factor: 4.008, year: 2004

  3. 1.68-angstrom crystal structure of endopolygalacturonase II from Aspergillus niger and identification of active site residues by site-directed mutagenesis

    NARCIS (Netherlands)

    van Santen, Y; Benen, JAE; Schroter, KH; Kalk, KH; Armand, S; Visser, J.; Dijkstra, BW

    1999-01-01

    Polygalacturonases specifically hydrolyze polygalaturonate, a major constituent of plant cell wall pectin. To understand the catalytic mechanism and substrate and product specificity of these enzymes, we have solved the x-ray structure of endopolygalacturonase LT of Aspergillus niger and we have

  4. In silico site-directed mutagenesis informs species-specific predictions of chemical susceptibility derived from the Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) tool

    Science.gov (United States)

    The Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) tool was developed to address needs for rapid, cost effective methods of species extrapolation of chemical susceptibility. Specifically, the SeqAPASS tool compares the primary sequence (Level 1), functiona...

  5. Dominating IgE-binding epitope of Bet v 1, the major allergen of birch pollen, characterized by X-ray crystallography and site-directed mutagenesis

    DEFF Research Database (Denmark)

    Spangfort, Michael D; Mirza, Osman; Ipsen, Henrik

    2003-01-01

    Specific allergy vaccination is an efficient treatment for allergic disease; however, the development of safer vaccines would enable a more general use of the treatment. Determination of molecular structures of allergens and allergen-Ab complexes facilitates epitope mapping and enables a rational...

  6. Site-Directed Mutagenesis Study of an Antibiotic-Sensing Noncoding RNA Integrated into a One-Semester Project-Based Biochemistry Lab Course

    Science.gov (United States)

    Gerczei, Timea

    2017-01-01

    A laboratory sequence is described that is suitable for upper-level biochemistry or molecular biology laboratories that combines project-based and traditional laboratory experiments. In the project-based sequence, the individual laboratory experiments are thematically linked and aim to show how a bacterial antibiotic sensing noncoding RNA (the…

  7. Probing the mechanistic role of the long α-helix in subunit L of respiratory Complex I from Escherichia coli by site-directed mutagenesis

    Science.gov (United States)

    Belevich, Galina; Knuuti, Juho; Verkhovsky, Michael I; Wikström, Mårten; Verkhovskaya, Marina

    2011-01-01

    The C-terminus of the NuoL subunit of Complex I includes a long amphipathic α-helix positioned parallel to the membrane, which has been considered to function as a piston in the proton pumping machinery. Here, we have introduced three types of mutations into the nuoL gene to test the piston-like function. First, NuoL was truncated at its C- and N-termini, which resulted in low production of a fragile Complex I with negligible activity. Second, we mutated three partially conserved residues of the amphipathic α-helix: Asp and Lys residues and a Pro were substituted for acidic, basic or neutral residues. All these variants exhibited almost a wild-type phenotype. Third, several substitutions and insertions were made to reduce rigidity of the amphipathic α-helix, and/or to change its geometry. Most insertions/substitutions resulted in a normal growth phenotype, albeit often with reduced stability of Complex I. In contrast, insertion of six to seven amino acids at a site of the long α-helix between NuoL and M resulted in substantial loss of proton pumping efficiency. The implications of these results for the proton pumping mechanism of Complex I are discussed. PMID:22060017

  8. Characterization of the free energy dependence of an interprotein electron transfer reaction by variation of pH and site-directed mutagenesis.

    Science.gov (United States)

    Dow, Brian A; Davidson, Victor L

    2015-10-01

    The interprotein electron transfer (ET) reactions of the cupredoxin amicyanin, which mediates ET from the tryptophan tryptophylquinone (TTQ) cofactor of methylamine dehydrogenase to cytochrome c-551i have been extensively studied. However, it was not possible to perform certain key experiments in that native system. This study examines the ET reaction from reduced amicyanin to an alternative electron acceptor, the diheme protein MauG. It was possible to vary the ΔG° for this ET reaction by simply changing pH to determine the dependence of kET on ΔG°. A P94A mutation of amicyanin significantly altered its oxidation-reduction midpoint potential value. It was not possible to study the ET from reduced P94A amicyanin to cytochrome c-551i in the native system because that reaction was kinetically coupled. However, the reaction from reduced P94A amicyanin to MauG was a true ET reaction and it was possible to determine values of reorganization energy (λ) and electronic coupling for the reactions of this variant as well as native amicyanin. Comparison of the λ values associated with the ET reactions between amicyanin and the TTQ of methylamine dehydrogenase, the diheme center of MauG and the single heme of cytochrome c-551i, provides insight into the factors that dictate the λ values for the respective reactions. These results demonstrate how study of ET reactions with alternative redox partner proteins can complement and enhance our understanding of the reactions with the natural redox partners, and further our understanding of mechanisms of protein ET reactions. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. The CrIIL reduction of [2Fe-2S] ferredoxins and site of attachment of CrIII using 1H NMR and site-directed mutagenesis.

    Science.gov (United States)

    Im, S C; Worrall, J A; Liu, G; Aliverti, A; Zanetti, G; Luchinat, C; Bertini, I; Sykes, A G

    2000-04-17

    The recently reported NMR solution structure of FeIIIFeIII parsley FdI has made possible 2D NOESY NMR studies to determine the point of attachment of CrIIIL in FeIIIFeIII...CrIIIL. The latter Cr-modified product was obtained by reduction of FeIIIFeIII parsley and spinach FdI forms with [Cr(15-aneN4) (H2O)2]2+ (15-aneN4 = 1,4,8,12-tetraazacyclopentadecane), referred to here as CrIIL, followed by air oxidation and chromatographic purification. From a comparison of NMR cross-peak intensities of native and Cr-modified proteins, two surface sites designated A and B, giving large paramagnetic CrIIIL broadening of a number of amino acid peaks, have been identified. The effects at site A (residues 19-22, 27, and 30) are greater than those at site B (residues 92-94 and 96), which is on the opposite side of the protein. From metal (ICP-AES) and electrospray ionization mass spectrometry (EIMS) analyses on the Cr-modified protein, attachment of a single CrIIIL only is confirmed for both parsley and spinach FdI and FdII proteins. Electrostatic interaction of the 3+ CrIIIL center covalently attached to one protein molecule (charge approximately -18) with a second (like) molecule provides an explanation for the involvement of two regions. Thus for 3-4 mM FeIIIFeIII...CrIIIL solutions used in NMR studies (CrIIIL attached at A), broadening effects due to electrostatic interactions at B on a second molecule are observed. Experiments with the Cys18Ala spinach FdI variant have confirmed that the previously suggested Cys-18 at site A is not the site of CrIIIL attachment. Line broadening at Val-22 of A gives the largest effect, and CrIIIL attachment at one or more adjacent (conserved) acidic residues in this region is indicated. The ability of CrIIL to bind in some (parsley and spinach) but not all cases (Anabaena variabilis) suggests that intramolecular H-bonding of acidic residues at A is relevant. The parsley and spinach FeIIFeIII...CrIIIL products undergo a second stage of reduction with the formation of FeIIFeII...CrIIIL. However, the spinach Glu92Ala (site B) variant undergoes only the first stage of reduction, and it appears that Glu-92 is required for the second stage of reduction to occur. A sample of CrIIIL-modified parsley FeIIIFeIII Fd is fully active as an electron carrier in the NADPH-cytochrome c reductase reaction catalyzed by ferredoxin-NADP+ reductase.

  10. Site-directed mutagenesis of Arg58 and Asp86 of elongation factor Tu from Escherichia coli: effects on the GTPase reaction and aminoacyl-tRNA binding

    DEFF Research Database (Denmark)

    Knudsen, Charlotte Rohde; Clark, Brian F. C.

    1996-01-01

    Elongation factor Tu from Escherichia coli was mutated separately at positions Asp86 and Arg58, in order to shed light both on the GTPase mechanism of elongation factor Tu and on the binding of aminoacyl-tRNA. In addition, the binding of guanine nucleotides was investigated by determination...

  11. Crucial role of Asp408 in the proton translocation pathway of multidrug transporter AcrB: evidence from site-directed mutagenesis and carbodiimide labeling.

    Science.gov (United States)

    Seeger, Markus A; von Ballmoos, Christoph; Verrey, François; Pos, Klaas M

    2009-06-30

    The three-component AcrA/AcrB/TolC efflux system of Escherichia coli catalyzes the proton motive force-driven extrusion of a variety of cytotoxic compounds. The inner membrane pump component AcrB belongs to the resistance nodulation and cell division (RND) superfamily and is responsible for drug specificity and energy transduction of the entire tripartite efflux system. Systematic mutational analysis of titratable and polar membrane-located amino acids revealed four residues, D407, D408, K940, and, R971, to be of prime importance for AcrB function. Using matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry, D408 was shown to specifically react with dicyclohexylcarbodiimide (DCCD) in a pH-dependent manner. The apparent pK(a) of D408 of 7.4 would enable binding and release of protons under physiological conditions. In contrast to other secondary transporters, D408 was not protected from carbodiimide modification in the presence of drugs, which supports the notion of spatially separated transport pathways for drugs and protons. This study provides evidence for a substantial role of membrane-located carboxylates as a central element of the proton translocation pathway in AcrB and other members of the RND superfamily.

  12. Mechanism of adenylate kinase. Demonstration of a functional relationship between aspartate 93 and Mg2+ by site-directed mutagenesis and proton, phosphorus-31, and magnesium-25 NMR

    International Nuclear Information System (INIS)

    Yan, Honggao; Tsai, Mingdaw

    1991-01-01

    Earlier magnetic resonance studies suggested no direct interaction between Mg 2+ ions and adenylate kinase (AK) in the AK·MgATP (adenosine 5'-triphosphate) complex. However, recent NMR studies concluded that the carboxylate of aspartate 119 accepts a hydrogen bond from a water ligand of the bound Mg 2+ ion in the muscle AK · MgATP complex. On the other hand, in the 2.6-angstrom crystal structure of the yeast AK·MgAP 5 A [P 1 , P 5 -bis(5'-adenosyl)pentaphosphate] complex, the Mg 2+ ion is in proximity to aspartate 93. Substitution of Asp-93 with alanine resulted in no change in dissociation constants, 4-fold increases in K m , and a 650-fold decrease in k cat . Notable changes have been observed in the chemical shifts of the aromatic protons of histidine 36 and a few other aromatic residues. However, the results of detailed analyses of the free enzymes and the AK·MgAP 5 A complexes by one- and two-dimensional NMR suggested that the changes are due to localized perturbations. Thus it is concluded that Asp-93 stabilizes the transition state by ca. 3.9 kcal/mol. Other results raised the question of whether Mg 2+ could bind to D93A·nucleotide complexes, which was then probed by 25 MgNMR. The results suggest that Mg 2+ does bind to the D93A·AP 5 A complex, but possibly only weakly

  13. Analysis of Mycobacterium avium subsp. paratuberculosis mutant libraries reveals loci-dependent transcription biases and strategies to novel mutant discovery

    Science.gov (United States)

    Mycobacterium avium subsp. paratuberculosis (MAP) is the etiologic agent of Johne’s disease in ruminants and it has been implicated as a cause of Crohn’s disease in humans. The generation of comprehensive random mutant banks by transposon mutagenesis is a fundamental wide genomic technology utilized...

  14. Comparative production of cellulases by mutants of Trichoderma parceramosume PTCC5140

    Directory of Open Access Journals (Sweden)

    Hoda Nouri

    2017-06-01

    Discussion and conclusion: Evaluation of cellulase production in mutant strains of Trichoderma parceramosume PTCC 5140 showed that use of chemical mutagenesis with 2 to 11 fold increasing in enzyme activity is a potent method to improve cellulase complex activity. In the current study, obtained mutant strains could be introduced as a potent cellulase producer for further studies in bioconversion processes.

  15. Direct random insertion mutagenesis of Helicobacter pylori.

    NARCIS (Netherlands)

    Jonge, de R.; Bakker, D.; Vliet, van AH; Kuipers, E.J.; Vandenbroucke-Grauls, C.M.J.E.; Kusters, J.G.

    2003-01-01

    Random insertion mutagenesis is a widely used technique for the identification of bacterial virulence genes. Most strategies for random mutagenesis involve cloning in Escherichia coli for passage of plasmids or for phenotypic selection. This can result in biased selection due to restriction or

  16. Mutagenesis and carcinogenesis resulting from environment pollution

    International Nuclear Information System (INIS)

    Dimitrov, B.

    2001-01-01

    The paper reviews different ways of environmental contamination with natural and artificial harmful substances (chemical and radioactive) and their role in the processes of mutagenesis and carcinogenesis. The recent studies of the mechanism of mutagenesis and carcinogenesis due to environmental pollution are discussed

  17. Direct random insertion mutagenesis of Helicobacter pylori

    NARCIS (Netherlands)

    de Jonge, Ramon; Bakker, Dennis; van Vliet, Arnoud H. M.; Kuipers, Ernst J.; Vandenbroucke-Grauls, Christina M. J. E.; Kusters, Johannes G.

    2003-01-01

    Random insertion mutagenesis is a widely used technique for the identification of bacterial virulence genes. Most strategies for random mutagenesis involve cloning in Escherichia coli for passage of plasmids or for phenotypic selection. This can result in biased selection due to restriction or

  18. Highly Efficient ENU Mutagenesis in Zebrafish.

    NARCIS (Netherlands)

    de Bruijn, E.; Cuppen, E.; Feitsma, H.

    2009-01-01

    ENU (N-ethyl-N-nitrosourea) mutagenesis is a widely accepted and proven method to introduce random point mutations in the genome. Because there are no targeted knockout strategies available for zebrafish so far, random mutagenesis is currently the preferred method in both forward and reverse genetic

  19. Identification of 17 hearing impaired mouse strains in the TMGC ENU-mutagenesis screen

    Energy Technology Data Exchange (ETDEWEB)

    Kermany, Mohammad [St. Jude Children' s Research Hospital; Parker, Lisan [St. Jude Children' s Research Hospital; Guo, Yun-Kai [St. Jude Children' s Research Hospital; Miller, Darla R [ORNL; Swanson, Douglas J [ORNL; Yoo, Tai-June [Neuroscience Institute, Memphis, TN; Goldowitz, Daniel [University of Tennessee Health Science Center, Memphis; Zuo, Jian [St. Jude Children' s Research Hospital

    2006-01-01

    The Tennessee Mouse Genome Consortium (TMGC) employed an N-ethyl-N-nitrosourea (ENU)-mutagenesis scheme to identify mouse recessive mutants with hearing phenotypes. We employed auditory brainstem responses (ABR) to click and 8, 16, and 32 kHz stimuli and screened 285 pedigrees (1819 mice of 8-11 weeks old in various mixed genetic backgrounds) each bred to carry a homozygous ENU-induced mutation. To define mutant pedigrees, we measured P12 mice per pedigree in P2 generations and used a criterion where the mean ABR threshold per pedigree was two standard deviations above the mean of all offspring from the same parental strain. We thus identified 17 mutant pedigrees (6%), all exhibiting hearing loss at high frequencies (P16 kHz) with an average threshold elevation of 30-35 dB SPL. Interestingly, four mutants showed sex-biased hearing loss and six mutants displayed wide range frequency hearing loss. Temporal bone histology revealed that six of the first nine mutants displayed cochlear morphological defects: degeneration of spiral ganglia, spiral ligament fibrocytes or inner hair cells (but not outer hair cells) mostly in basal turns. In contrast to other ENU-mutagenesis auditory screens, our screen identified high-frequency, mild and sex-biased hearing defects. Further characterization of these 17 mouse models will advance our understanding of presbycusis and noise-induced hearing loss in humans.

  20. Genetic separation of Escherichia coli recA functions for SOS mutagenesis and repressor cleavage

    International Nuclear Information System (INIS)

    Ennis, D.G.; Ossanna, N.; Mount, D.W.

    1989-01-01

    Evidence is presented that recA functions which promote the SOS functions of mutagenesis, LexA protein proteolysis, and lambda cI repressor proteolysis are each genetically separable from the others. This separation was observed in recombination-proficient recA mutants and rec+ (F' recA56) heterodiploids. recA430, recA433, and recA435 mutants and recA+ (F' recA56) heterodiploids were inducible for only one or two of the three functions and defective for mutagenesis. recA80 and recA432 mutants were constitutively activated for two of the three functions in that these mutants did not have to be induced to express the functions. We propose that binding of RecA protein to damaged DNA and subsequent interaction with small inducer molecules gives rise to conformational changes in RecA protein. These changes promote surface-surface interactions with other target proteins, such as cI and LexA proteins. By this model, the recA mutants are likely to have incorrect amino acids substituted as sites in the RecA protein structure which affect surface regions required for protein-protein interactions. The constitutively activated mutants could likewise insert altered amino acids at sites in RecA which are involved in the activation of RecA protein by binding small molecules or polynucleotides which metabolically regulate RecA protein

  1. Soybean breeding with EMS mutagenesis

    International Nuclear Information System (INIS)

    Gu Aiqiu; Geng Yuxuan; Zhu Baogo

    1990-01-01

    Full text: 'Yudou No. 2' is a good soybean variety grown in the Honan Province. EMS was applied to seeds and valuable mutants were selected among the descendants. In a short period, several genetically stable strains were obtained. In the M 2 population, the early-maturing mutants were the most frequent, followed by short culm mutants. Other mutations altered leaf shape, grain size, habit of pod bearing, number of pods etc. One of the best strains is '86-180'. It is highly disease-resistant and ripens 19 days earlier than the original 'Yodou No. 2'. It bears more pods, although the seeds are a little bit smaller and is highly productive (4110kg/ha). Another good strain is '86-223'. It is also disease-resistant and highly productive (3390kg/ha). (author)

  2. Soybean breeding with EMS mutagenesis

    Energy Technology Data Exchange (ETDEWEB)

    Aiqiu, Gu; Yuxuan, Geng; Baogo, Zhu [Institute of Genetics, Academia Sinica, Beijing (China)

    1990-01-01

    Full text: 'Yudou No. 2' is a good soybean variety grown in the Honan Province. EMS was applied to seeds and valuable mutants were selected among the descendants. In a short period, several genetically stable strains were obtained. In the M{sub 2} population, the early-maturing mutants were the most frequent, followed by short culm mutants. Other mutations altered leaf shape, grain size, habit of pod bearing, number of pods etc. One of the best strains is '86-180'. It is highly disease-resistant and ripens 19 days earlier than the original 'Yodou No. 2'. It bears more pods, although the seeds are a little bit smaller and is highly productive (4110kg/ha). Another good strain is '86-223'. It is also disease-resistant and highly productive (3390kg/ha). (author)

  3. Calcium imaging with genetically encoded sensor Case12: Facile analysis of α7/α9 nAChR mutants.

    Directory of Open Access Journals (Sweden)

    Irina Shelukhina

    Full Text Available Elucidation of the structural basis of pharmacological differences for highly homologous α7 and α9 nicotinic acetylcholine receptors (nAChRs may shed light on their involvement in different physiological functions and diseases. Combination of site-directed mutagenesis and electrophysiology is a powerful tool to pinpoint the key amino-acid residues in the receptor ligand-binding site, but for α7 and α9 nAChRs it is complicated by their poor expression and fast desensitization. Here, we probed the ligand-binding properties of α7/α9 nAChR mutants by a proposed simple and fast calcium imaging method. The method is based on transient co-expression of α7/α9 nAChR mutants in neuroblastoma cells together with Ric-3 or NACHO chaperones and Case12 fluorescent calcium ion sensor followed by analysis of their pharmacology using a fluorescence microscope or a fluorometric imaging plate reader (FLIPR with a GFP filter set. The results obtained were confirmed by electrophysiology and by calcium imaging with the conventional calcium indicator Fluo-4. The affinities for acetylcholine and epibatidine were determined for human and rat α7 nAChRs, and for their mutants with homologous residues of α9 nAChR incorporated at positions 117-119, 184, 185, 187, and 189, which are anticipated to be involved in ligand binding. The strongest decrease in the affinity was observed for mutations at positions 187 and 119. The L119D mutation of α7 nAChR, showing a larger effect for epibatidine than for acetylcholine, may implicate this position in pharmacological differences between α7 and α9 nAChRs.

  4. Mutant Runx2 regulates amelogenesis and osteogenesis through a miR-185-5p-Dlx2 axis.

    Science.gov (United States)

    Chang, Huaiguang; Wang, Yue; Liu, Haochen; Nan, Xu; Wong, Singwai; Peng, Saihui; Gu, Yajuan; Zhao, Hongshan; Feng, Hailan

    2017-12-14

    Regulation of microRNAs (miRNA) has been extensively investigated in diseases; however, little is known about the roles of miRNAs in cleidocranial dysplasia (CCD). The aim of the present study was to investigate the potential involvement of miRNAs in CCD. In vitro site-directed mutagenesis was performed to construct three mutant Runx2 expression vectors, which were then transfected into LS8 cells and MC3T3-E1 cells, to determine the impact on amelogenesis and osteogenesis, respectively. miRCURY LNA miRNA microarray identify miR-185-5p as a miRNA target commonly induced by all three Runx2 mutants. Real-time quantitative PCR was applied to determine the expression of miR-185-5p and Dlx2 in samples. Dual-luciferase reporter assays were conducted to confirm Dlx2 as a legitimate target of miR-185-5p. The suppressive effect of miR-185-5p on amelogenesis and osteogenesis of miR-185-5p was evaluated by RT-PCR and western blot examination of Amelx, Enam, Klk4, and Mmp20 gene and protein expression, and by Alizarin Red stain. We found that mutant Runx2 suppressed amelogenesis and osteogenesis. miR-185-5p, induced by Runx2, suppressed amelogenesis and osteogenesis. Furthermore, we identified Dlx2 as direct target of miR-185-5p. Consistently, Dlx2 expression was inversely correlated with miR-185-5p levels. This study highlights the molecular etiology and significance of miR-185-5p in CCD, and suggests that targeting miR-185-5p may represent a new therapeutic strategy in prevention or intervention of CCD.

  5. Comparison of CRISPR/Cas9 expression constructs for efficient targeted mutagenesis in rice.

    Science.gov (United States)

    Mikami, Masafumi; Toki, Seiichi; Endo, Masaki

    2015-08-01

    The CRISPR/Cas9 system is an efficient tool used for genome editing in a variety of organisms. Despite several recent reports of successful targeted mutagenesis using the CRISPR/Cas9 system in plants, in each case the target gene of interest, the Cas9 expression system and guide-RNA (gRNA) used, and the tissues used for transformation and subsequent mutagenesis differed, hence the reported frequencies of targeted mutagenesis cannot be compared directly. Here, we evaluated mutation frequency in rice using different Cas9 and/or gRNA expression cassettes under standardized experimental conditions. We introduced Cas9 and gRNA expression cassettes separately or sequentially into rice calli, and assessed the frequency of mutagenesis at the same endogenous targeted sequences. Mutation frequencies differed significantly depending on the Cas9 expression cassette used. In addition, a gRNA driven by the OsU6 promoter was superior to one driven by the OsU3 promoter. Using an all-in-one expression vector harboring the best combined Cas9/gRNA expression cassette resulted in a much improved frequency of targeted mutagenesis in rice calli, and bi-allelic mutant plants were produced in the T0 generation. The approach presented here could be adapted to optimize the construction of Cas9/gRNA cassettes for genome editing in a variety of plants.

  6. Characterization of the functional epitope on the urokinase receptor. Complete alanine scanning mutagenesis supplemented by chemical cross-linking

    DEFF Research Database (Denmark)

    Gårdsvoll, Henrik; Gilquin, Bernard; Le Du, Marie Hélène

    2006-01-01

    a comprehensive alanine scanning mutagenesis of uPAR combined with low resolution distance constraints defined within the complex using chemical cross-linkers as molecular rulers. The kinetic rate constants for the interaction between pro-uPA and 244 purified uPAR mutants with single-site replacements were...

  7. Effect of radiation-sensitive mutations and mutagens/carcinogens on bacterial recombination and mutagenesis. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Matney, T.S.

    1978-01-01

    Progress is reported on effects of temperature sensitive DNA-initiation mutation in E. coli K-12 mutants; the use of Bacillus subtilis transforming system as an in vitro mutagenesis system; characteristics of the E. coli lysogen used to test the permeability to polycyclic aromatic hydrocarbons; and the genetic toxicology of gentian violet. (PCS)

  8. Evaluation of the catalytic mechanism of AICAR transformylase by pH-dependent kinetics, mutagenesis, and quantum chemical calculations.

    Science.gov (United States)

    Shim, J H; Wall, M; Benkovic, S J; Díaz, N; Suárez, D; Merz, K M

    2001-05-23

    The catalytic mechanism of 5-aminoimidazole-4-carboxamide ribonucleotide transformylase (AICAR Tfase) is evaluated with pH dependent kinetics, site-directed mutagenesis, and quantum chemical calculations. The chemistry step, represented by the burst rates, was not pH-dependent, which is consistent with our proposed mechanism that the 4-carboxamide of AICAR assists proton shuttling. Quantum chemical calculations on a model system of 5-amino-4-carboxamide imidazole (AICA) and formamide using the B3LYP/6-31G level of theory confirmed that the 4-carboxamide participated in the proton-shuttling mechanism. The result also indicated that the amide-assisted mechanism is concerted such that the proton transfers from the 5-amino group to the formamide are simultaneous with nucleophilic attack by the 5-amino group. Because the process does not lead to a kinetically stable intermediate, the intramolecular proton transfer from the 5-amino group through the 4-carboxamide to the formamide proceeds in the same transition state. Interestingly, the calculations predicted that protonation of the N3 of the imidazole of AICA would reduce the energy barrier significantly. However, the pK(a) of the imidazole of AICAR was determined to be 3.23 +/- 0.01 by NMR titration, and AICAR is likely to bind to the enzyme with its imidazole in the free base form. An alternative pathway was suggested by modeling Lys266 to have a hydrogen-bonding interaction with the N3 of the imidazole of AICAR. Lys266 has been implicated in catalysis based on mutagenesis studies and the recent X-ray structure of AICAR Tfase. The quantum chemical calculations on a model system that contains AICA complexed with CH3NH3+ as a mimic of the Lys residue confirmed that such an interaction lowered the activation energy of the reaction and likewise implicated the 4-carboxamide. To experimentally verify this hypothesis, we prepared the K266R mutant and found that its kcat is reduced by 150-fold from that of the wild type

  9. Altered lipid accumulation in Nannochloropsis salina CCAP849/3 following EMS and UV induced mutagenesis

    Directory of Open Access Journals (Sweden)

    T.A. Beacham

    2015-09-01

    Full Text Available Microalgae have potential as a chemical feed stock in a range of industrial applications. Nannochloropsis salina was subject to EMS mutagenesis and the highest lipid containing cells selected using fluorescence-activated cell sorting. Assessment of growth, lipid content and fatty acid composition identified mutant strains displaying a range of altered traits including changes in the PUFA content and a total FAME increase of up to 156% that of the wild type strain. Combined with a reduction in growth this demonstrated a productivity increase of up to 76%. Following UV mutagenesis, lipid accumulation of the mutant cultures was elevated to more than 3 fold that of the wild type strain, however reduced growth rates resulted in a reduction in overall productivity. Changes observed are indicative of alterations to the regulation of the omega 6 Kennedy pathway. The importance of these variations in physiology for industrial applications such as biofuel production is discussed.

  10. Random transposon mutagenesis of the Saccharopolyspora erythraea genome reveals additional genes influencing erythromycin biosynthesis

    Science.gov (United States)

    Fedashchin, Andrij; Cernota, William H.; Gonzalez, Melissa C.; Leach, Benjamin I.; Kwan, Noelle; Wesley, Roy K.; Weber, J. Mark

    2015-01-01

    A single cycle of strain improvement was performed in Saccharopolyspora erythraea mutB and 15 genotypes influencing erythromycin production were found. Genotypes generated by transposon mutagenesis appeared in the screen at a frequency of ∼3%. Mutations affecting central metabolism and regulatory genes were found, as well as hydrolases, peptidases, glycosyl transferases and unknown genes. Only one mutant retained high erythromycin production when scaled-up from micro-agar plug fermentations to shake flasks. This mutant had a knockout of the cwh1 gene (SACE_1598), encoding a cell-wall-associated hydrolase. The cwh1 knockout produced visible growth and morphological defects on solid medium. This study demonstrated that random transposon mutagenesis uncovers strain improvement-related genes potentially useful for strain engineering. PMID:26468041

  11. Simulation and estimation of gene number in a biological pathway using almost complete saturation mutagenesis screening of haploid mouse cells.

    Science.gov (United States)

    Tokunaga, Masahiro; Kokubu, Chikara; Maeda, Yusuke; Sese, Jun; Horie, Kyoji; Sugimoto, Nakaba; Kinoshita, Taroh; Yusa, Kosuke; Takeda, Junji

    2014-11-24

    Genome-wide saturation mutagenesis and subsequent phenotype-driven screening has been central to a comprehensive understanding of complex biological processes in classical model organisms such as flies, nematodes, and plants. The degree of "saturation" (i.e., the fraction of possible target genes identified) has been shown to be a critical parameter in determining all relevant genes involved in a biological function, without prior knowledge of their products. In mammalian model systems, however, the relatively large scale and labor intensity of experiments have hampered the achievement of actual saturation mutagenesis, especially for recessive traits that require biallelic mutations to manifest detectable phenotypes. By exploiting the recently established haploid mouse embryonic stem cells (ESCs), we present an implementation of almost complete saturation mutagenesis in a mammalian system. The haploid ESCs were mutagenized with the chemical mutagen N-ethyl-N-nitrosourea (ENU) and processed for the screening of mutants defective in various steps of the glycosylphosphatidylinositol-anchor biosynthetic pathway. The resulting 114 independent mutant clones were characterized by a functional complementation assay, and were shown to be defective in any of 20 genes among all 22 known genes essential for this well-characterized pathway. Ten mutants were further validated by whole-exome sequencing. The predominant generation of single-nucleotide substitutions by ENU resulted in a gene mutation rate proportional to the length of the coding sequence, which facilitated the experimental design of saturation mutagenesis screening with the aid of computational simulation. Our study enables mammalian saturation mutagenesis to become a realistic proposition. Computational simulation, combined with a pilot mutagenesis experiment, could serve as a tool for the estimation of the number of genes essential for biological processes such as drug target pathways when a positive selection of

  12. Chemical mutagenesis for crop improvement

    International Nuclear Information System (INIS)

    1986-01-01

    Focusses on methodological aspects for the efficient induction of mutations in crop plants by chemomutagens. Mutagen treatment of barley seeds with ethylmethane sulfonate (EMS) is documented in detail to exemplify procedural phases. Reference is made to safe handling and the prevention of biohazards. Induced biological and genetic effects at various plant generations are documented and the use of mutants for crop improvement is discussed

  13. Random Mutagenesis of the Aspergillus oryzae Genome Results in Fungal Antibacterial Activity

    OpenAIRE

    Leonard, Cory A.; Brown, Stacy D.; Hayman, J. Russell

    2013-01-01

    Multidrug-resistant bacteria cause severe infections in hospitals and communities. Development of new drugs to combat resistant microorganisms is needed. Natural products of microbial origin are the source of most currently available antibiotics. We hypothesized that random mutagenesis of Aspergillus oryzae would result in secretion of antibacterial compounds. To address this hypothesis, we developed a screen to identify individual A. oryzae mutants that inhibit the growth of Methicillin-res...

  14. Repair and mutagenesis of herpes simplex virus in UV-irradiated monkey cells

    International Nuclear Information System (INIS)

    Lytle, C.D.; Goddard, J.G.; Lin, C.H.

    1980-01-01

    Mutagenic repair in mammalian cells was investigated by determining the mutagenesis of UV-irradiated or unirradiated herpes simplex virus in UV-irradiated CV-1 monkey kidney cells. These results were compared with the results for UV-enhanced virus reactivation (UVER) in the same experimental situation. High and low multiplicities of infection were used to determine the effects of multiplicity reactivation (MR). UVER and MR were readily demonstrable and were approximately equal in amount in an infectious center assay. For this study, a forward-mutation assay was developed to detect virus mutants resistant to iododeoxycytidine (ICdR), probably an indication of the mutant virus being defective at its thymidine kinase locus. ICdR-resistant mutants did not have a growth advantage over wild-type virus in irradiated or unirradiated cells. Thus, higher fractions of mutant virus indicated greater mutagenesis during virus repair and/or replication. The data showed that: (1) unirradiated virus was mutated in unirradiated cells, providing a background level of mutagenesis; (2) unirradiated virus was mutated about 40% more in irradiated cells, indicating that virus replication (DNA synthesis) became more mutagenic as a result of cell irradiation; (3) irradiated virus was mutated much more (about 6-fold) than unirradiated virus, even in unirradiated cells; (4) cell irradiation did not change the mutagenesis of irradiated virus except at high multiplicity of infection. High multiplicity of infection did not demonstrate UVER or MR alone to be either error-free or error-prone. When the two processes were present simultaneously, they were mutagenic. (orig.)

  15. Combined mutagenesis of Rhodosporidium toruloides for improved production of carotenoids and lipids.

    Science.gov (United States)

    Zhang, Chaolei; Shen, Hongwei; Zhang, Xibin; Yu, Xue; Wang, Han; Xiao, Shan; Wang, Jihui; Zhao, Zongbao K

    2016-10-01

    To improve production of lipids and carotenoids by the oleaginous yeast Rhodosporidium toruloides by screening mutant strains. Upon physical mutagenesis of the haploid strain R. toruloides np11 with an atmospheric and room temperature plasma method followed by chemical mutagenesis with nitrosoguanidine, a mutant strain, R. toruloides XR-2, formed dark-red colonies on a screening plate. When cultivated in nitrogen-limited media, XR-2 cells grew slower but accumulated 0.23 g lipids/g cell dry wt and 0.75 mg carotenoids/g CDW. To improve its production capacity, different amino acids and vitamins were supplemented. p-Aminobenzoic acid and tryptophan had beneficial effects on cell growth. When cultivated in nitrogen-limited media in the presence of selected vitamins, XR-2 accumulated 0.41 g lipids/g CDW and 0.69 mg carotenoids/g CDW. A mutant R. toruloides strain with improved production profiles for lipids and carotenoids was obtained, indicating its potential to use combined mutagenesis for a more productive phenotype.

  16. Scientific projection paper for mutagenesis, transformation and cell killing

    International Nuclear Information System (INIS)

    Todd, P.

    1980-01-01

    Our knowledge about mutagenesis, transformation, and cell killing by ionizing radiation consists of large bodies of data, which are potentially useful in terms of application to human risk assessment and to the constructive use of radiation, as in cancer treatment. The three end-points discussed above are united by at least five significant concepts in radiation research strategy: (1) The inter-relationships among the important end-points, mutation, carcinogenesis, and cell killing. Research on one is meaningful only in the context of information about the other two. (2) The interaction of radiations with other agents in producing these end-points. (3) The mechanisms of action of other environmental mutagenic, carcinogenic, and cytotoxic agents. (4) The use of repair deficient human mutant cells. (5) The study of radiation damage mechanisms. There is no better way to extrapolate laboratory data to the clinical and public worlds than to understand the underlying biological mechanisms that produced the data

  17. Results and perspectives of mutagenesis applied to durum wheat

    International Nuclear Information System (INIS)

    Bagnara, D.

    1975-01-01

    A review is made of the main aspects and problems of mutagenesis applied to the breeding of durum wheat (Triticum turgidum ssp. durum). Features and type of action of the main physical and chemical mutagens are considered: a comparison is also made between the two classes of mutagens, on the basis of results so far achieved. Mentions is then made of methods of treatment; parts of plant which can be treated; growing of treated material in segregating generations: data to be successively recorded. Methods of estimating mutation frequency and the problem of arising chimerical tissues and its possible overcoming are also discussed. Examination is made of some special effects of mutagens, namely: induction of translocations; diploidization of polyploids; induction of haploids and aneuploids; genetic analysis of specific loci; induction of male sterility. Finally, results are reviewed concerning induction and utilization, either as varieties or in cross breeding programmes, of mutants for characters of agronomic interest. (Bagnara, D.)

  18. Study of UV-mutagenesis in Bacillus subtilis

    International Nuclear Information System (INIS)

    Lotareva, O.V.; Filippov, V.D.

    1974-01-01

    The sensitivity of Bac. subtilis to the inactivating and mutagenic effects of UV-mutants has been determined: uvr, which does not extract pyrimidine dimers from damaged DNA; recsub(x), which exhibits a reduced activity of ATP-dependent DNAase; poll, which is devoid of DNA polymerase, and wild strains (DT). The sensitivity of these strains to the inactivating effects of UV rays increases in the order: DT<= recsub(x) << uvr < poll, and UV mutability in the order: DT = rec(sub(x) < poll<< uvr. A comparison of UV mutagenesis in Bac. subtilis and E. coli suggests the hypothesis that the mechanisms of UV mutation formation are similar in these two organisms. (author)

  19. Commercialization Of Orchid Mutants For Floriculture Industry

    International Nuclear Information System (INIS)

    Sakinah Ariffin; Zaiton Ahmad

    2014-01-01

    Orchids are the main contributors to cut flower industry in Malaysia with an existing good market and a huge business potential. Orchid industry has been established in Malaysia since 1960s but only started to develop and expand since 1980s. Continuous development of new orchid varieties is essential to meet customers' demands. Orchid mutagenesis research using gamma irradiation at Malaysian Nuclear Agency has successfully generated a number of new orchid varieties with commercial potentials. Therefore, Nuclear Malaysia has collaborated with an industrial partner, Hexagon Green Sdn Bhd (HGSB), to carry out commercialization research on these mutants under a Technofund project entitled 'Pre-Commercialization of Mutant Orchids for Cut Flowers Industry' from July 2011 to July 2014. Through this collaboration, Dendrobium orchid mutant plants developed by Nuclear Malaysia were transferred to HGSB's commercial orchid nursery at Bukit Changgang Agrotechnology Park, Banting, Selangor, for mass-propagation. The activities include evaluations on plant growth performance, flower quality, post harvest and market potential of these mutants. Mutants with good field performance have been identified and filed for Plant Variety Protection (PVP) with Department of Agriculture Malaysia. This paper describes outputs from this collaboration and activities undertaken in commercializing these mutants. (author)

  20. Mutagenesis: Interactions with a parallel universe.

    Science.gov (United States)

    Miller, Jeffrey H

    Unexpected observations in mutagenesis research have led to a new perspective in this personal reflection based on years of studying mutagenesis. Many mutagens have been thought to operate via a single principal mechanism, with secondary effects usually resulting in only minor changes in the observed mutation frequencies and spectra. For example, we conceive of base analogs as resulting in direct mispairing as their main mechanism of mutagenesis. Recent studies now show that in fact even these simple mutagens can cause very large and unanticipated effects both in mutation frequencies and in the mutational spectra when used in certain pair-wise combinations. Here we characterize this leap in mutation frequencies as a transport to an alternate universe of mutagenesis. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Cellular components required for mutagenesis

    International Nuclear Information System (INIS)

    Elledge, S.J.; Perry, K.L.; Krueger, J.H.; Mitchell, B.B.; Walker, G.C.

    1983-01-01

    We have cloned the umuD and umuC genes of Escherichia coli and have shown that they code for two proteins of 16,000 and 45,000 daltons respectively; the two genes are organized in an operon that is repressed by the LexA protein. Similarly, we have shown that the mucA and mucB genes of the mutagenesis-enhancing plasmid pKM101 code for proteins of 16,000 and 45,000 daltons respectively and, like umuD/C, the genes are organized in an operon. Preliminary sequencing studies have indicated that the umuD/C and mucA/B loci are approximately 50% homologous at both the nucleic acid and deduced protein sequence levels and that the umuD gene is preceeded by two putative LexA binding sites separated by 4 basepairs. Like umuD/C, the mucA/B genes of pKM101 are induced by DNA damage and are repressed by LexA. In addition to inducing recA + lexA + -regulated din genes, DNA damaging agents such as uv and nalidixic acid also induce the heat shock proteins GroEL and DnaK in an htpR-dependent fashion. 22 references, 1 figure, 1 table

  2. Identification of virulence determinants for endocarditis in Streptococcus sanguinis by signature-tagged mutagenesis.

    Science.gov (United States)

    Paik, Sehmi; Senty, Lauren; Das, Sankar; Noe, Jody C; Munro, Cindy L; Kitten, Todd

    2005-09-01

    Streptococcus sanguinis is a gram-positive, facultative anaerobe and a normal inhabitant of the human oral cavity. It is also one of the most common agents of infective endocarditis, a serious endovascular infection. To identify virulence factors for infective endocarditis, signature-tagged mutagenesis (STM) was applied to the SK36 strain of S. sanguinis, whose genome is being sequenced. STM allows the large-scale creation, in vivo screening, and recovery of a series of mutants with altered virulence. Screening of 800 mutants by STM identified 38 putative avirulent and 5 putative hypervirulent mutants. Subsequent molecular analysis of a subset of these mutants identified genes encoding undecaprenol kinase, homoserine kinase, anaerobic ribonucleotide reductase, adenylosuccinate lyase, and a hypothetical protein. Virulence reductions ranging from 2-to 150-fold were confirmed by competitive index assays. One putatively hypervirulent strain with a transposon insertion in an intergenic region was identified, though increased virulence was not confirmed in competitive index assays. All mutants grew comparably to SK36 in aerobic broth culture except for the homoserine kinase mutant. Growth of this mutant was restored by the addition of threonine to the medium. Mutants containing an insertion or in-frame deletion in the anaerobic ribonucleotide reductase gene failed to grow under strictly anaerobic conditions. The results suggest that housekeeping functions such as cell wall synthesis, amino acid and nucleic acid synthesis, and the ability to survive under anaerobic conditions are important virulence factors in S. sanguinis endocarditis.

  3. [Stress-induced cellular adaptive mutagenesis].

    Science.gov (United States)

    Zhu, Linjiang; Li, Qi

    2014-04-01

    The adaptive mutations exist widely in the evolution of cells, such as antibiotic resistance mutations of pathogenic bacteria, adaptive evolution of industrial strains, and cancerization of human somatic cells. However, how these adaptive mutations are generated is still controversial. Based on the mutational analysis models under the nonlethal selection conditions, stress-induced cellular adaptive mutagenesis is proposed as a new evolutionary viewpoint. The hypothetic pathway of stress-induced mutagenesis involves several intracellular physiological responses, including DNA damages caused by accumulation of intracellular toxic chemicals, limitation of DNA MMR (mismatch repair) activity, upregulation of general stress response and activation of SOS response. These responses directly affect the accuracy of DNA replication from a high-fidelity manner to an error-prone one. The state changes of cell physiology significantly increase intracellular mutation rate and recombination activity. In addition, gene transcription under stress condition increases the instability of genome in response to DNA damage, resulting in transcription-associated DNA mutagenesis. In this review, we summarize these two molecular mechanisms of stress-induced mutagenesis and transcription-associated DNA mutagenesis to help better understand the mechanisms of adaptive mutagenesis.

  4. High throughput mutagenesis for identification of residues regulating human prostacyclin (hIP receptor expression and function.

    Directory of Open Access Journals (Sweden)

    Anke Bill

    Full Text Available The human prostacyclin receptor (hIP receptor is a seven-transmembrane G protein-coupled receptor (GPCR that plays a critical role in vascular smooth muscle relaxation and platelet aggregation. hIP receptor dysfunction has been implicated in numerous cardiovascular abnormalities, including myocardial infarction, hypertension, thrombosis and atherosclerosis. Genomic sequencing has discovered several genetic variations in the PTGIR gene coding for hIP receptor, however, its structure-function relationship has not been sufficiently explored. Here we set out to investigate the applicability of high throughput random mutagenesis to study the structure-function relationship of hIP receptor. While chemical mutagenesis was not suitable to generate a mutagenesis library with sufficient coverage, our data demonstrate error-prone PCR (epPCR mediated mutagenesis as a valuable method for the unbiased screening of residues regulating hIP receptor function and expression. Here we describe the generation and functional characterization of an epPCR derived mutagenesis library compromising >4000 mutants of the hIP receptor. We introduce next generation sequencing as a useful tool to validate the quality of mutagenesis libraries by providing information about the coverage, mutation rate and mutational bias. We identified 18 mutants of the hIP receptor that were expressed at the cell surface, but demonstrated impaired receptor function. A total of 38 non-synonymous mutations were identified within the coding region of the hIP receptor, mapping to 36 distinct residues, including several mutations previously reported to affect the signaling of the hIP receptor. Thus, our data demonstrates epPCR mediated random mutagenesis as a valuable and practical method to study the structure-function relationship of GPCRs.

  5. High throughput mutagenesis for identification of residues regulating human prostacyclin (hIP) receptor expression and function.

    Science.gov (United States)

    Bill, Anke; Rosethorne, Elizabeth M; Kent, Toby C; Fawcett, Lindsay; Burchell, Lynn; van Diepen, Michiel T; Marelli, Anthony; Batalov, Sergey; Miraglia, Loren; Orth, Anthony P; Renaud, Nicole A; Charlton, Steven J; Gosling, Martin; Gaither, L Alex; Groot-Kormelink, Paul J

    2014-01-01

    The human prostacyclin receptor (hIP receptor) is a seven-transmembrane G protein-coupled receptor (GPCR) that plays a critical role in vascular smooth muscle relaxation and platelet aggregation. hIP receptor dysfunction has been implicated in numerous cardiovascular abnormalities, including myocardial infarction, hypertension, thrombosis and atherosclerosis. Genomic sequencing has discovered several genetic variations in the PTGIR gene coding for hIP receptor, however, its structure-function relationship has not been sufficiently explored. Here we set out to investigate the applicability of high throughput random mutagenesis to study the structure-function relationship of hIP receptor. While chemical mutagenesis was not suitable to generate a mutagenesis library with sufficient coverage, our data demonstrate error-prone PCR (epPCR) mediated mutagenesis as a valuable method for the unbiased screening of residues regulating hIP receptor function and expression. Here we describe the generation and functional characterization of an epPCR derived mutagenesis library compromising >4000 mutants of the hIP receptor. We introduce next generation sequencing as a useful tool to validate the quality of mutagenesis libraries by providing information about the coverage, mutation rate and mutational bias. We identified 18 mutants of the hIP receptor that were expressed at the cell surface, but demonstrated impaired receptor function. A total of 38 non-synonymous mutations were identified within the coding region of the hIP receptor, mapping to 36 distinct residues, including several mutations previously reported to affect the signaling of the hIP receptor. Thus, our data demonstrates epPCR mediated random mutagenesis as a valuable and practical method to study the structure-function relationship of GPCRs.

  6. History of the science of mutagenesis from a personal perspective.

    Science.gov (United States)

    Malling, Heinrich V

    2004-01-01

    A career in the study of mutagenesis spanning 50 years is a gift few scientists have been bestowed. My tenure in the field started in 1953, the year the structure of DNA became known (Watson and Crick [1953]: Nature 171:737). Before that time, it was suspected that DNA was the genetic material based on the research of Oswald T. Avery (Avery et al. [1944]: J Exp Med 79:137), but many scientists still believed that proteins or polysaccharides could be the genetic material. The present article describes a lifetime of personal experience in the field of chemical mutagenesis. The methods used to treat viruses with chemical mutagens were well developed in the 1950s. Here I review the early use of nitrous acid and hydroxylamine as mutagens in eukaryotes, the development of methods for the metabolic activation of mutagens by microsomal preparations, and the selection of a mutant tester set for the qualitative characterization of the mutagenic activity of chemicals. These studies provided critical background information that was used by Bruce Ames in the development of his Salmonella/microsome assay, widely known as the Ames test (Ames et al. [1973]: Proc Nat Acad Sci USA 70:2281-2285). This article also describes how a set of diagnostic chemical mutagens was selected and used to identify the molecular nature of gene mutations. Today, DNA sequencing has replaced the use of diagnostic mutagens, but studies of this kind formed the foundation of modern mutation research. They also helped set the stage for the organization of the Environmental Mutagen Society and the Environmental Mutagen Information Center, which are described. The article ends with the development of mammalian single-cell mutation assays, the first system for studying in vivo mutagenesis using recoverable vectors in transgenic animals, other mutation assays in intact mammals, and my thoughts on the critically important area of germ cell mutagenesis. This narrative is not a complete autobiographical account

  7. piggyBac transposon somatic mutagenesis with an activated reporter and tracker (PB-SMART for genetic screens in mice.

    Directory of Open Access Journals (Sweden)

    Sean F Landrette

    Full Text Available Somatic forward genetic screens have the power to interrogate thousands of genes in a single animal. Retroviral and transposon mutagenesis systems in mice have been designed and deployed in somatic tissues for surveying hematopoietic and solid tumor formation. In the context of cancer, the ability to visually mark mutant cells would present tremendous advantages for identifying tumor formation, monitoring tumor growth over time, and tracking tumor infiltrations and metastases into wild-type tissues. Furthermore, locating mutant clones is a prerequisite for screening and analyzing most other somatic phenotypes. For this purpose, we developed a system using the piggyBac (PB transposon for somatic mutagenesis with an activated reporter and tracker, called PB-SMART. The PB-SMART mouse genetic screening system can simultaneously induce somatic mutations and mark mutated cells using bioluminescence or fluorescence. The marking of mutant cells enable analyses that are not possible with current somatic mutagenesis systems, such as tracking cell proliferation and tumor growth, detecting tumor cell infiltrations, and reporting tissue mutagenesis levels by a simple ex vivo visual readout. We demonstrate that PB-SMART is highly mutagenic, capable of tumor induction with low copy transposons, which facilitates the mapping and identification of causative insertions. We further integrated a conditional transposase with the PB-SMART system, permitting tissue-specific mutagenesis with a single cross to any available Cre line. Targeting the germline, the system could also be used to conduct F1 screens. With these features, PB-SMART provides an integrated platform for individual investigators to harness the power of somatic mutagenesis and phenotypic screens to decipher the genetic basis of mammalian biology and disease.

  8. Complementation of a pKM101 derivative that decreases resistance to UV killing but increases susceptibility to mutagenesis

    International Nuclear Information System (INIS)

    Langer, P.J.; Perry, K.L.; Walker, G.C.

    1985-01-01

    The drug resistance plasmid pKM101 makes Escherichia coli resistant to the lethal effects of ultraviolet (UV) irradiation and more susceptible to mutagenesis by a variety of agents. The plasmid operon responsible for increasing mutagenesis has been termed mucAB (Mutagenesis, UV and chemical). The authors have isolated a derivative of pKM101 called pGW1975 which makes cells more sensitive to killing by UV but which retains the ability of pKM101 to increase susceptibility to methyl methanesulfonate (MMS) mutagenesis. pGW1975 increases UV mutagenesis less than pKM101 in a uvrA + strain but more than pKM101 in a uvrA - strain. muc - point and insertion mutants of pKM101 and pGW1975 complement to restore the plasmid-mediated: (i) ability to reactivate UV-irradiated phage, (ii) resistance to killing by UV, and (iii) level of susceptibility to UV mutagenesis. They have identified a 2.0 kb region of pKM101 which is responsible for the complementation and which maps counterclockwise of mucAB. (Auth)

  9. Microbial mutagenesis and cell division

    International Nuclear Information System (INIS)

    Adler, H.I.; Carrasco, A.; Nagel, R.; Gill, J.S.; Crow, W.D.

    1982-01-01

    Our group has been pursuing three related objectives. The first of these is a study of a mechanism by which the bacterium Escherichia coli repairs radiation-induced damage. In particular, we have observed that cells of certain strains of this bacterium, mutant at the lon locus, can be restored to viability after exposure to ionizing radiation if they are incubated in a nutrient medium to which a preparation of partially purified bacterial membranes has been added. These preparations stimulate division by producing chemical alterations in the nutrient medium and simultaneously creating a highly anaerobic environment. A second objective of the group was to make use of lon mutants for a rapid, sensitive, and inexpensive assay for chemical mutagens. Cells of lon mutants form long multinucleate filaments if exposed to a variety of agents that react with DNA. These filaments can readily be observed microscopically 2 to 3 h after exposure to the suspect agent. A third objective of our group has been to make use of the oxygen reducing properties of bacterial membrane preparations to stimulate the growth of anaerobic bacteria. Our general goal is to develop basic microbiological techniques that will facilitate the application of genetic manipulation methods to important anaerobic species. To this end, we have developed a method, based on the use of membranes, that allows us to grow liquid cultures of Clostridium acetobutylicum from very small inocula to high titers without elaborate chemical or physical methods for excluding oxygen. We have also developed efficient methods for plating this bacterium that do not require the use of anaerobic incubators

  10. Mutagenesis and cytotoxicity in human epithelial cells by far- and near-ultraviolet radiations: action spectra

    International Nuclear Information System (INIS)

    Jones, C.A.; Huberman, E.; Cunningham, M.L.; Peak, M.J.

    1987-01-01

    Action spectra were determined for cell killing and mutation by monochromatic ultraviolet and visible radiations (254-434 nm) in cultured human epithelial P3 cells. Cell killing was more efficient following radiation at the shorter wavelengths (254-434 nm) than at longer wavelengths (365-434 nm). At 254 nm, for example, a fluence of 11 Jm-2 gave 37% cell survival, while at 365 nm, 17 X 10(5) Jm-2 gave equivalent survival. At 434 nm little killing was observed with fluences up to 3 X 10(6) Jm-2. Mutant induction, determined at the hypoxanthine-guanine phosphoribosyltransferase locus, was caused by radiation at 254, 313, and 365 nm. There was no mutant induction at 334 nm although this wavelength was highly cytotoxic. Mutagenesis was not induced by 434 nm radiation, either. There was a weak response at 405 nm; the mutant frequencies were only slightly increased above background levels. For the mutagenic wavelengths, log-log plots of the mutation frequency against fluence showed linear regressions with positive slopes of 2.5, consistent with data from a previous study using Escherichia coli. The data points of the action spectra for lethality and mutagenesis were similar to the spectrum for DNA damage at wavelengths shorter than 313 nm, whereas at longer wavelengths the lethality spectrum had a shoulder, and the mutagenesis spectrum had a secondary peak at 365 nm. No correlation was observed for the P3 cells between the spectra for cell killing and mutagenesis caused by wavelengths longer than 313 nm and the induction of DNA breakage or the formation of DNA-to-protein covalent bonds in these cells

  11. A plasmid-transposon hybrid mutagenesis system effective in a broad range of Enterobacteria

    Directory of Open Access Journals (Sweden)

    Rita eMonson

    2015-12-01

    Full Text Available Random transposon mutagenesis is a powerful technique used to generate libraries of genetic insertions in many different bacterial strains. Here we develop a system facilitating random transposon mutagenesis in a range of different Gram-negative bacterial strains, including Pectobacterium atrosepticum, Citrobacter rodentium, Serratia sp. ATCC39006, Serratia plymuthica, Dickeya dadantii and many more. Transposon mutagenesis was optimized in each of these strains and three studies are presented to show the efficacy of this system. Firstly, the important agricultural pathogen D. dadantii was mutagenized. Two mutants that showed reduced protease production and one mutant producing the previously cryptic pigment, indigoidine, were identified and characterized. Secondly, the enterobacterium, Serratia sp. ATCC39006 was mutagenized and mutants incapable of producing gas vesicles, proteinaceous intracellular organelles, were identified. One of these contained a β-galactosidase transcriptional fusion within the gene gvpA1, essential for gas vesicle production. Finally, the system was used to mutate the biosynthetic gene clusters of the antifungal, anti-oomycete and anticancer polyketide, oocydin A, in the plant-associated enterobacterium, Dickeya solani MK10. The mutagenesis system was developed to allow easy identification of transposon insertion sites by sequencing, after facile generation of a replicon encompassing the transposon and adjacent DNA, post-excision. Furthermore, the system can also create transcriptional fusions with either β-galactosidase or β-glucuronidase as reporters, and exploits a variety of drug resistance markers so that multiple selectable fusions can be generated in a single strain. This system of various transposons has wide utility and can be combined in many different ways.

  12. Use of a simian virus 40-based shuttle vector to analyze enhanced mutagenesis in mitomycin C-treated monkey cells

    International Nuclear Information System (INIS)

    Roilides, E.; Munson, P.J.; Levine, A.S.; Dixon, K.

    1988-01-01

    When monkey cells were treated with mitomycin C 24 h before transfection with UV-irradiated pZ189 (a simian virus 40-based shuttle vector), there was a twofold increase in the frequency of mutations in the supF gene of the vector. These results suggest the existence of an enhancible mutagenesis pathway in mammalian cells. However, DNA sequence analysis of the SupF- mutants suggested no dramatic changes in the mechanisms of mutagenesis due to mitomycin C treatment of the cells

  13. BAX and tumor suppressor TRP53 are important in regulating mutagenesis in spermatogenic cells in mice.

    Science.gov (United States)

    Xu, Guogang; Vogel, Kristine S; McMahan, C Alex; Herbert, Damon C; Walter, Christi A

    2010-12-01

    During the first wave of spermatogenesis, and in response to ionizing radiation, elevated mutant frequencies are reduced to a low level by unidentified mechanisms. Apoptosis is occurring in the same time frame that the mutant frequency declines. We examined the role of apoptosis in regulating mutant frequency during spermatogenesis. Apoptosis and mutant frequencies were determined in spermatogenic cells obtained from Bax-null or Trp53-null mice. The results showed that spermatogenic lineage apoptosis was markedly decreased in Bax-null mice and was accompanied by a significantly increased spontaneous mutant frequency in seminiferous tubule cells compared to that of wild-type mice. Apoptosis profiles in the seminiferous tubules for Trp53-null were similar to control mice. Spontaneous mutant frequencies in pachytene spermatocytes and in round spermatids from Trp53-null mice were not significantly different from those of wild-type mice. However, epididymal spermatozoa from Trp53-null mice displayed a greater spontaneous mutant frequency compared to that from wild-type mice. A greater proportion of spontaneous transversions and a greater proportion of insertions/deletions 15 days after ionizing radiation were observed in Trp53-null mice compared to wild-type mice. Base excision repair activity in mixed germ cell nuclear extracts prepared from Trp53-null mice was significantly lower than that for wild-type controls. These data indicate that BAX-mediated apoptosis plays a significant role in regulating spontaneous mutagenesis in seminiferous tubule cells obtained from neonatal mice, whereas tumor suppressor TRP53 plays a significant role in regulating spontaneous mutagenesis between postmeiotic round spermatid and epididymal spermatozoon stages of spermiogenesis.

  14. Estimations of On-site Directional Wave Spectra from Measured Ship Responses

    DEFF Research Database (Denmark)

    Nielsen, Ulrik Dam

    2006-01-01

    include an quivalence of energy in the governing equations and, as regards the parametric concept, a frequency dependent spreading of the waves is introduced. The paper includes an extensive analysis of full-scale measurements for which the directional wave spectra are estimated by the two ship response......In general, two main concepts can be applied to estimate the on-site directional wave spectrum on the basis of ship response measurements: 1) a parametric method which assumes the wave spectrum to be composed by parameterised wave spectra, or 2) a non-parametric method where the directional wave...

  15. Improving isopropanol tolerance and production of Clostridium beijerinckii DSM 6423 by random mutagenesis and genome shuffling.

    Science.gov (United States)

    Gérando, H Máté de; Fayolle-Guichard, F; Rudant, L; Millah, S K; Monot, F; Ferreira, Nicolas Lopes; López-Contreras, A M

    2016-06-01

    Random mutagenesis and genome shuffling was applied to improve solvent tolerance and isopropanol/butanol/ethanol (IBE) production in the strictly anaerobic bacteria Clostridium beijerinckii DSM 6423. Following chemical mutagenesis with N-methyl-N-nitro-N-nitrosoguanidine (NTG), screening of putatively improved strains was done by submitting the mutants to toxic levels of inhibitory chemicals or by screening for their tolerance to isopropanol (>35 g/L). Suicide substrates, such as ethyl or methyl bromobutyrate or alcohol dehydrogenase inhibitors like allyl alcohol, were tested and, finally, 36 mutants were isolated. The fermentation profiles of these NTG mutant strains were characterized, and the best performing mutants were used for consecutive rounds of genome shuffling. Screening of strains with further enhancement in isopropanol tolerance at each recursive shuffling step was then used to spot additionally improved strains. Three highly tolerant strains were finally isolated and able to withstand up to 50 g/L isopropanol on plates. Even if increased tolerance to the desired end product was not always accompanied by higher production capabilities, some shuffled strains showed increased solvent titers compared to the parental strains and the original C. beijerinckii DSM 6423. This study confirms the efficiency of genome shuffling to generate improved strains toward a desired phenotype such as alcohol tolerance. This tool also offers the possibility of obtaining improved strains of Clostridium species for which targeted genetic engineering approaches have not been described yet.

  16. Defect of Fe-S cluster binding by DNA polymerase δ in yeast suppresses UV-induced mutagenesis, but enhances DNA polymerase ζ - dependent spontaneous mutagenesis.

    Science.gov (United States)

    Stepchenkova, E I; Tarakhovskaya, E R; Siebler, H M; Pavlov, Y I

    2017-01-01

    Eukaryotic genomes are duplicated by a complex machinery, utilizing high fidelity replicative B-family DNA polymerases (pols) α, δ and ε. Specialized error-prone pol ζ, the fourth B-family member, is recruited when DNA synthesis by the accurate trio is impeded by replication stress or DNA damage. The damage tolerance mechanism dependent on pol ζ prevents DNA/genome instability and cell death at the expense of increased mutation rates. The pol switches occurring during this specialized replication are not fully understood. The loss of pol ζ results in the absence of induced mutagenesis and suppression of spontaneous mutagenesis. Disruption of the Fe-S cluster motif that abolish the interaction of the C-terminal domain (CTD) of the catalytic subunit of pol ζ with its accessory subunits, which are shared with pol δ, leads to a similar defect in induced mutagenesis. Intriguingly, the pol3-13 mutation that affects the Fe-S cluster in the CTD of the catalytic subunit of pol δ also leads to defective induced mutagenesis, suggesting the possibility that Fe-S clusters are essential for the pol switches during replication of damaged DNA. We confirmed that yeast strains with the pol3-13 mutation are UV-sensitive and defective in UV-induced mutagenesis. However, they have increased spontaneous mutation rates. We found that this increase is dependent on functional pol ζ. In the pol3-13 mutant strain with defective pol δ, there is a sharp increase in transversions and complex mutations, which require functional pol ζ, and an increase in the occurrence of large deletions, whose size is controlled by pol ζ. Therefore, the pol3-13 mutation abrogates pol ζ-dependent induced mutagenesis, but allows for pol ζ recruitment for the generation of spontaneous mutations and prevention of larger deletions. These results reveal differential control of the two major types of pol ζ-dependent mutagenesis by the Fe-S cluster present in replicative pol δ. Copyright © 2016

  17. Natural selection underlies apparent stress-induced mutagenesis in a bacteriophage infection model.

    Science.gov (United States)

    Yosef, Ido; Edgar, Rotem; Levy, Asaf; Amitai, Gil; Sorek, Rotem; Munitz, Ariel; Qimron, Udi

    2016-04-18

    The emergence of mutations following growth-limiting conditions underlies bacterial drug resistance, viral escape from the immune system and fundamental evolution-driven events. Intriguingly, whether mutations are induced by growth limitation conditions or are randomly generated during growth and then selected by growth limitation conditions remains an open question(1). Here, we show that bacteriophage T7 undergoes apparent stress-induced mutagenesis when selected for improved recognition of its host's receptor. In our unique experimental set-up, the growth limitation condition is physically and temporally separated from mutagenesis: growth limitation occurs while phage DNA is outside the host, and spontaneous mutations occur during phage DNA replication inside the host. We show that the selected beneficial mutations are not pre-existing and that the initial slow phage growth is enabled by the phage particle's low-efficiency DNA injection into the host. Thus, the phage particle allows phage populations to initially extend their host range without mutagenesis by virtue of residual recognition of the host receptor. Mutations appear during non-selective intracellular replication, and the frequency of mutant phages increases by natural selection acting on free phages, which are not capable of mutagenesis.

  18. Mismatch repair deficiency does not enhance ENU mutagenesis in the zebrafish germ line.

    Science.gov (United States)

    Feitsma, Harma; de Bruijn, Ewart; van de Belt, Jose; Nijman, Isaac J; Cuppen, Edwin

    2008-07-01

    S(N)1-type alkylating agents such as N-ethyl-N-nitrosourea (ENU) are very potent mutagens. They act by transferring their alkyl group to DNA bases, which, upon mispairing during replication, can cause single base pair mutations in the next replication cycle. As DNA mismatch repair (MMR) proteins are involved in the recognition of alkylation damage, we hypothesized that ENU-induced mutation rates could be increased in a MMR-deficient background, which would be beneficial for mutagenesis approaches. We applied a standard ENU mutagenesis protocol to adult zebrafish deficient in the MMR gene msh6 and heterozygous controls to study the effect of MMR on ENU-induced DNA damage. Dose-dependent lethality was found to be similar for homozygous and heterozygous mutants, indicating that there is no difference in ENU resistance. Mutation discovery by high-throughput dideoxy resequencing of genomic targets in outcrossed progeny of the mutagenized fish did also not reveal any differences in germ line mutation frequency. These results may indicate that the maximum mutation load for zebrafish has been reached with the currently used, highly optimized ENU mutagenesis protocol. Alternatively, the MMR system in the zebrafish germ line may be saturated very rapidly, thereby having a limited effect on high-dose ENU mutagenesis.

  19. Gene discovery by chemical mutagenesis and whole-genome sequencing in Dictyostelium.

    Science.gov (United States)

    Li, Cheng-Lin Frank; Santhanam, Balaji; Webb, Amanda Nicole; Zupan, Blaž; Shaulsky, Gad

    2016-09-01

    Whole-genome sequencing is a useful approach for identification of chemical-induced lesions, but previous applications involved tedious genetic mapping to pinpoint the causative mutations. We propose that saturation mutagenesis under low mutagenic loads, followed by whole-genome sequencing, should allow direct implication of genes by identifying multiple independent alleles of each relevant gene. We tested the hypothesis by performing three genetic screens with chemical mutagenesis in the social soil amoeba Dictyostelium discoideum Through genome sequencing, we successfully identified mutant genes with multiple alleles in near-saturation screens, including resistance to intense illumination and strong suppressors of defects in an allorecognition pathway. We tested the causality of the mutations by comparison to published data and by direct complementation tests, finding both dominant and recessive causative mutations. Therefore, our strategy provides a cost- and time-efficient approach to gene discovery by integrating chemical mutagenesis and whole-genome sequencing. The method should be applicable to many microbial systems, and it is expected to revolutionize the field of functional genomics in Dictyostelium by greatly expanding the mutation spectrum relative to other common mutagenesis methods. © 2016 Li et al.; Published by Cold Spring Harbor Laboratory Press.

  20. Comparing Different Strategies in Directed Evolution of Enzyme Stereoselectivity: Single- versus Double-Code Saturation Mutagenesis.

    Science.gov (United States)

    Sun, Zhoutong; Lonsdale, Richard; Li, Guangyue; Reetz, Manfred T

    2016-10-04

    Saturation mutagenesis at sites lining the binding pockets of enzymes constitutes a viable protein engineering technique for enhancing or inverting stereoselectivity. Statistical analysis shows that oversampling in the screening step (the bottleneck) increases astronomically as the number of residues in the randomization site increases, which is the reason why reduced amino acid alphabets have been employed, in addition to splitting large sites into smaller ones. Limonene epoxide hydrolase (LEH) has previously served as the experimental platform in these methodological efforts, enabling comparisons between single-code saturation mutagenesis (SCSM) and triple-code saturation mutagenesis (TCSM); these employ either only one or three amino acids, respectively, as building blocks. In this study the comparative platform is extended by exploring the efficacy of double-code saturation mutagenesis (DCSM), in which the reduced amino acid alphabet consists of two members, chosen according to the principles of rational design on the basis of structural information. The hydrolytic desymmetrization of cyclohexene oxide is used as the model reaction, with formation of either (R,R)- or (S,S)-cyclohexane-1,2-diol. DCSM proves to be clearly superior to the likewise tested SCSM, affording both R,R- and S,S-selective mutants. These variants are also good catalysts in reactions of further substrates. Docking computations reveal the basis of enantioselectivity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Evolving artificial metalloenzymes via random mutagenesis

    Science.gov (United States)

    Yang, Hao; Swartz, Alan M.; Park, Hyun June; Srivastava, Poonam; Ellis-Guardiola, Ken; Upp, David M.; Lee, Gihoon; Belsare, Ketaki; Gu, Yifan; Zhang, Chen; Moellering, Raymond E.; Lewis, Jared C.

    2018-03-01

    Random mutagenesis has the potential to optimize the efficiency and selectivity of protein catalysts without requiring detailed knowledge of protein structure; however, introducing synthetic metal cofactors complicates the expression and screening of enzyme libraries, and activity arising from free cofactor must be eliminated. Here we report an efficient platform to create and screen libraries of artificial metalloenzymes (ArMs) via random mutagenesis, which we use to evolve highly selective dirhodium cyclopropanases. Error-prone PCR and combinatorial codon mutagenesis enabled multiplexed analysis of random mutations, including at sites distal to the putative ArM active site that are difficult to identify using targeted mutagenesis approaches. Variants that exhibited significantly improved selectivity for each of the cyclopropane product enantiomers were identified, and higher activity than previously reported ArM cyclopropanases obtained via targeted mutagenesis was also observed. This improved selectivity carried over to other dirhodium-catalysed transformations, including N-H, S-H and Si-H insertion, demonstrating that ArMs evolved for one reaction can serve as starting points to evolve catalysts for others.

  2. Incorporation of a lambda phage recombination system and EGFP detection to simplify mutagenesis of Herpes simplex virus bacterial artificial chromosomes

    Directory of Open Access Journals (Sweden)

    Weir Jerry P

    2007-05-01

    Full Text Available Abstract Background Targeted mutagenesis of the herpesvirus genomes has been facilitated by the use of bacterial artificial chromosome (BAC technology. Such modified genomes have potential uses in understanding viral pathogenesis, gene identification and characterization, and the development of new viral vectors and vaccines. We have previously described the construction of a herpes simplex virus 2 (HSV-2 BAC and the use of an allele replacement strategy to construct HSV-2 recombinants. While the BAC mutagenesis procedure is a powerful method to generate HSV-2 recombinants, particularly in the absence of selective marker in eukaryotic culture, the mutagenesis procedure is still difficult and cumbersome. Results Here we describe the incorporation of a phage lambda recombination system into an allele replacement vector. This strategy enables any DNA fragment containing the phage attL recombination sites to be efficiently inserted into the attR sites of the allele replacement vector using phage lambda clonase. We also describe how the incorporation of EGFP into the allele replacement vector can facilitate the selection of the desired cross-over recombinant BACs when the allele replacement reaction is a viral gene deletion. Finally, we incorporate the lambda phage recombination sites directly into an HSV-2 BAC vector for direct recombination of gene cassettes using the phage lambda clonase-driven recombination reaction. Conclusion Together, these improvements to the techniques of HSV BAC mutagenesis will facilitate the construction of recombinant herpes simplex viruses and viral vectors.

  3. The Fanconi anemia pathway limits the severity of mutagenesis.

    Science.gov (United States)

    Hinz, John M; Nham, Peter B; Salazar, Edmund P; Thompson, Larry H

    2006-08-13

    Fanconi anemia (FA) is a developmental and cancer predisposition disorder in which key, yet unknown, physiological events promoting chromosome stability are compromised. FA cells exhibit excess metaphase chromatid breaks and are universally hypersensitive to DNA interstrand crosslinking agents. Published mutagenesis data from single-gene mutation assays show both increased and decreased mutation frequencies in FA cells. In this review we discuss the data from the literature and from our isogenic fancg knockout hamster CHO cells, and interpret these data within the framework of a molecular model that accommodates these seemingly divergent observations. In FA cells, reduced rates of recovery of viable X-linked hypoxanthine phosphoribosyltransferase (hprt) mutants are characteristically observed for diverse mutagenic agents, but also in untreated cultures, indicating the relevance of the FA pathway for processing assorted DNA lesions. We ascribe these reductions to: (1) impaired mutagenic translesion synthesis within hprt during DNA replication and (2) lethality of mutant cells following replication fork breakage on the X chromosome, caused by unrepaired double-strand breaks or large deletions/translocations encompassing essential genes flanking hprt. These findings, along with studies showing increased spontaneous mutability of FA cells at two autosomal loci, support a model in which FA proteins promote both translesion synthesis at replication-blocking lesions and repair of broken replication forks by homologous recombination and DNA end joining. The essence of this model is that the FANC protein pathway serves to restrict the severity of mutational outcome by favoring base substitutions and small deletions over larger deletions and chromosomal rearrangements.

  4. Studies of radioinduced mutations in sorghum grain: 1. Comparison of phenotypic variability obtained through hybridation and mutagenesis of F2 and M2 populations; 2. Agronomical and physiotechnical characterization of mutants lines in the original collection and in the advanced lines of the Chapingo Postgraduate college

    International Nuclear Information System (INIS)

    Parra Negrete, L.A.

    1986-01-01

    Genetic inprovement of cultivated plants consists essentially of three phases (1) generation of genetic variability (2) selection of genotypes and (3) evaluation of selected genotypes. Hybridization and spontaneous or induced mutations are, responsible for the generation of and increase in genetic vegetative variability. Accordingly, such methods are used alternatively in local programs for plant improvement either for introducing improved genotypes or as sources of germplasma. This thesis is based on two experiments of mutations induced by cobalt 60 ionizing radiation while using distinct materials and methods presented in two parts, the first section analyze the mutation variability and the second the evaluation of mutant lines. (author)

  5. Mutagenesis in naturally coloured cotton

    International Nuclear Information System (INIS)

    Khatod, J.P.; Meshram, L.D.; Jain, P.P.

    2000-01-01

    The seeds of naturally coloured cotton were treated with 15 kR, 20 kR doses of gamma rays and 0.5% Ethyl Methane Sulphonate (EMS) and their combinations. The M 1 and M 2 generations were studied for mutagenic effectiveness and efficiency in inducing the useful mutants, spectrum of mutation and their effects on bract characters. Results obtained revealed that 15 kR and 20 kR doses were more effective in inducing the mutations. In G. hirsutum, significant differences were found for bract size and dry weight of bract was noted in 20 kR dose and low in 0.5% EMS in M 1 . In the M 2 generation increased ratio of bract surface area to lint weight per boll was noted in 20 kR + 0.5% EMS. (author)

  6. Application of In Vitro Transposon Mutagenesis to Erythromycin Strain Improvement in Saccharopolyspora erythraea.

    Science.gov (United States)

    Weber, J Mark; Reeves, Andrew; Cernota, William H; Wesley, Roy K

    2017-01-01

    Transposon mutagenesis is an invaluable technique in molecular biology for the creation of random mutations that can be easily identified and mapped. However, in the field of microbial strain improvement, transposon mutagenesis has scarcely been used; instead, chemical and physical mutagenic methods have been traditionally favored. Transposons have the advantage of creating single mutations in the genome, making phenotype to genotype assignments less challenging than with traditional mutagens which commonly create multiple mutations in the genome. The site of a transposon mutation can also be readily mapped using DNA sequencing primer sites engineered into the transposon termini. In this chapter an in vitro method for transposon mutagenesis of Saccharopolyspora erythraea is presented. Since in vivo transposon tools are not available for most actinomycetes including S. erythraea, an in vitro method was developed. The in vitro method involves a significant investment in time and effort to create the mutants, but once the mutants are made and screened, a large number of highly relevant mutations of direct interest to erythromycin production can be found.

  7. MMS exposure promotes increased MtDNA mutagenesis in the presence of replication-defective disease-associated DNA polymerase γ variants.

    Science.gov (United States)

    Stumpf, Jeffrey D; Copeland, William C

    2014-10-01

    Mitochondrial DNA (mtDNA) encodes proteins essential for ATP production. Mutant variants of the mtDNA polymerase cause mutagenesis that contributes to aging, genetic diseases, and sensitivity to environmental agents. We interrogated mtDNA replication in Saccharomyces cerevisiae strains with disease-associated mutations affecting conserved regions of the mtDNA polymerase, Mip1, in the presence of the wild type Mip1. Mutant frequency arising from mtDNA base substitutions that confer erythromycin resistance and deletions between 21-nucleotide direct repeats was determined. Previously, increased mutagenesis was observed in strains encoding mutant variants that were insufficient to maintain mtDNA and that were not expected to reduce polymerase fidelity or exonuclease proofreading. Increased mutagenesis could be explained by mutant variants stalling the replication fork, thereby predisposing the template DNA to irreparable damage that is bypassed with poor fidelity. This hypothesis suggests that the exogenous base-alkylating agent, methyl methanesulfonate (MMS), would further increase mtDNA mutagenesis. Mitochondrial mutagenesis associated with MMS exposure was increased up to 30-fold in mip1 mutants containing disease-associated alterations that affect polymerase activity. Disrupting exonuclease activity of mutant variants was not associated with increased spontaneous mutagenesis compared with exonuclease-proficient alleles, suggesting that most or all of the mtDNA was replicated by wild type Mip1. A novel subset of C to G transversions was responsible for about half of the mutants arising after MMS exposure implicating error-prone bypass of methylated cytosines as the predominant mutational mechanism. Exposure to MMS does not disrupt exonuclease activity that suppresses deletions between 21-nucleotide direct repeats, suggesting the MMS-induce mutagenesis is not explained by inactivated exonuclease activity. Further, trace amounts of CdCl2 inhibit mtDNA replication but

  8. Effect of hsm mutations enhancing spontaneous mutability on induced mutagenesis and mitotic recombination in Saccharomyces cerevisiae yeast

    International Nuclear Information System (INIS)

    Fedorova, I.V.; Koval'tsova, S.V.; Ivanov, E.L.

    1993-01-01

    The authors have studied the effect of five nonallelic hms1-hms5 mutations on the incidence of direct mutations in loci ADE1 and ADE2, induced by UV-radiation, 6-hydroxyl-aminopurine, and nitrosomethylurea. All hms mutants were found to be insensitive to the lethal action of these mutagens. The frequency of UV-induced mutations to adenine dependence was increased in mutants hsm2-1, hsm3-1, hsm5-1, and particularly in hsm1-1, but remained unchanged in hsm4-1 compared to HSM. Mutagenesis induced by 6-hydroxylaminopurine was increased in all mutants studied, particularly in mutant hsm3-1. The authors did not detect any appreciable effect of hsm mutations on mutagenesis induced by nitrosomethylurea. The frequency of spontaneous mitotic conversion to prototrophy was studied in diploids heteroallelic to gene ADE2 and homo- and heterozygous for hsm mutations. Mutation hsm5-1 considerably increased the frequency of conversion for all heteroalleles studied, mutations hsm1-1 and hsm3-1 also considerably increased the conversion frequency, while mutations hsm1-1 and hsm4-1 had little effect on this process. The study of the properties of hsm mutations revealed joint genetic control of spontaneous and induced mutagenesis and recombination in yeast. The possibility that hsm mutations belong to the class of mutations impairing correction of unpaired DNA bases is discussed. 25 refs., 3 figs., 3 tabs

  9. Modification of Antibody Function by Mutagenesis.

    Science.gov (United States)

    Dasch, James R; Dasch, Amy L

    2017-09-01

    The ability to "fine-tune" recombinant antibodies by mutagenesis separates recombinant antibodies from hybridoma-derived antibodies because the latter are locked with respect to their properties. Recombinant antibodies can be modified to suit the application: Changes in isotype, format (e.g., scFv, Fab, bispecific antibodies), and specificity can be made once the heavy- and light-chain sequences are available. After immunoglobulin heavy and light chains for a particular antibody have been cloned, the binding site-namely, the complementarity determining regions (CDR)-can be manipulated by mutagenesis to obtain antibody variants with improved properties. The method described here is relatively simple, uses commercially available reagents, and is effective. Using the pComb3H vector, a commercial mutagenesis kit, PfuTurbo polymerase (Agilent), and two mutagenic primers, a library of phage with mutagenized heavy and light CDR3 can be obtained. © 2017 Cold Spring Harbor Laboratory Press.

  10. U.v.-induced and N-methyl-N'-nitrosoguanidine-induced mutagenesis in Bacillus thuringiensis

    International Nuclear Information System (INIS)

    Auffray, Y.; Boutibonnes, P.

    1987-01-01

    The lethal and mutagenic effects of u.v. light and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) on Bacillus thuringiensis were investigated. Lethality studies demonstrated that B. thuringiensis was relatively sensitive to these agents. This bacterium was mutated at the rifampicin resistance marker by u.v. light and to a lesser extent by the direct acting alkylating agent MNNG. One mutant selected for its greater sensitivity to u.v. light expressed a higher frequency of mutagenesis after u.v. light treatment and appeared to be defective in an excision repair pathway. However, this mutant was only slightly mutable by MNNG in comparison with the wild-type strain. This unusual phenotype does not yet have a parallel among the radiation sensitive mutants described in other bacterial species. (author)

  11. Checkpoint responses to replication stalling: inducing tolerance and preventing mutagenesis

    Energy Technology Data Exchange (ETDEWEB)

    Kai, Mihoko; Wang, Teresa S.-F

    2003-11-27

    Replication mutants often exhibit a mutator phenotype characterized by point mutations, single base frameshifts, and the deletion or duplication of sequences flanked by homologous repeats. Mutation in genes encoding checkpoint proteins can significantly affect the mutator phenotype. Here, we use fission yeast (Schizosaccharomyces pombe) as a model system to discuss the checkpoint responses to replication perturbations induced by replication mutants. Checkpoint activation induced by a DNA polymerase mutant, aside from delay of mitotic entry, up-regulates the translesion polymerase DinB (Pol{kappa}). Checkpoint Rad9-Rad1-Hus1 (9-1-1) complex, which is loaded onto chromatin by the Rad17-Rfc2-5 checkpoint complex in response to replication perturbation, recruits DinB onto chromatin to generate the point mutations and single nucleotide frameshifts in the replication mutator. This chain of events reveals a novel checkpoint-induced tolerance mechanism that allows cells to cope with replication perturbation, presumably to make possible restarting stalled replication forks. Fission yeast Cds1 kinase plays an essential role in maintaining DNA replication fork stability in the face of DNA damage and replication fork stalling. Cds1 kinase is known to regulate three proteins that are implicated in maintaining replication fork stability: Mus81-Eme1, a hetero-dimeric structure-specific endonuclease complex; Rqh1, a RecQ-family helicase involved in suppressing inappropriate recombination during replication; and Rad60, a protein required for recombinational repair during replication. These Cds1-regulated proteins are thought to cooperatively prevent mutagenesis and maintain replication fork stability in cells under replication stress. These checkpoint-regulated processes allow cells to survive replication perturbation by preventing stalled replication forks from degenerating into deleterious DNA structures resulting in genomic instability and cancer development.

  12. Checkpoint responses to replication stalling: inducing tolerance and preventing mutagenesis

    International Nuclear Information System (INIS)

    Kai, Mihoko; Wang, Teresa S.-F.

    2003-01-01

    Replication mutants often exhibit a mutator phenotype characterized by point mutations, single base frameshifts, and the deletion or duplication of sequences flanked by homologous repeats. Mutation in genes encoding checkpoint proteins can significantly affect the mutator phenotype. Here, we use fission yeast (Schizosaccharomyces pombe) as a model system to discuss the checkpoint responses to replication perturbations induced by replication mutants. Checkpoint activation induced by a DNA polymerase mutant, aside from delay of mitotic entry, up-regulates the translesion polymerase DinB (Polκ). Checkpoint Rad9-Rad1-Hus1 (9-1-1) complex, which is loaded onto chromatin by the Rad17-Rfc2-5 checkpoint complex in response to replication perturbation, recruits DinB onto chromatin to generate the point mutations and single nucleotide frameshifts in the replication mutator. This chain of events reveals a novel checkpoint-induced tolerance mechanism that allows cells to cope with replication perturbation, presumably to make possible restarting stalled replication forks. Fission yeast Cds1 kinase plays an essential role in maintaining DNA replication fork stability in the face of DNA damage and replication fork stalling. Cds1 kinase is known to regulate three proteins that are implicated in maintaining replication fork stability: Mus81-Eme1, a hetero-dimeric structure-specific endonuclease complex; Rqh1, a RecQ-family helicase involved in suppressing inappropriate recombination during replication; and Rad60, a protein required for recombinational repair during replication. These Cds1-regulated proteins are thought to cooperatively prevent mutagenesis and maintain replication fork stability in cells under replication stress. These checkpoint-regulated processes allow cells to survive replication perturbation by preventing stalled replication forks from degenerating into deleterious DNA structures resulting in genomic instability and cancer development

  13. DC-Analyzer-facilitated combinatorial strategy for rapid directed evolution of functional enzymes with multiple mutagenesis sites.

    Science.gov (United States)

    Wang, Xiong; Zheng, Kai; Zheng, Huayu; Nie, Hongli; Yang, Zujun; Tang, Lixia

    2014-12-20

    Iterative saturation mutagenesis (ISM) has been shown to be a powerful method for directed evolution. In this study, the approach was modified (termed M-ISM) by combining the single-site saturation mutagenesis method with a DC-Analyzer-facilitated combinatorial strategy, aiming to evolve novel biocatalysts efficiently in the case where multiple sites are targeted simultaneously. Initially, all target sites were explored individually by constructing single-site saturation mutagenesis libraries. Next, the top two to four variants in each library were selected and combined using the DC-Analyzer-facilitated combinatorial strategy. In addition to site-saturation mutagenesis, iterative saturation mutagenesis also needed to be performed. The advantages of M-ISM over ISM were that the screening effort is greatly reduced, and the entire M-ISM procedure was less time-consuming. The M-ISM strategy was successfully applied to the randomization of halohydrin dehalogenase from Agrobacterium radiobacter AD1 (HheC) when five interesting sites were targeted simultaneously. After screening 900 clones in total, six positive mutants were obtained. These mutants exhibited 4.0- to 9.3-fold higher k(cat) values than did the wild-type HheC toward 1,3-dichloro-2-propanol. However, with the ISM strategy, the best hit showed a 5.9-fold higher k(cat) value toward 1,3-DCP than the wild-type HheC, which was obtained after screening 4000 clones from four rounds of mutagenesis. Therefore, M-ISM could serve as a simple and efficient version of ISM for the randomization of target genes with multiple positions of interest.

  14. Impact of increased mutagenesis on adaptation to high temperature in bacteriophage Qβ.

    Science.gov (United States)

    Arribas, María; Cabanillas, Laura; Kubota, Kirina; Lázaro, Ester

    2016-10-01

    RNA viruses replicate with very high error rates, which makes them more sensitive to additional increases in this parameter. This fact has inspired an antiviral strategy named lethal mutagenesis, which is based on the artificial increase of the error rate above a threshold incompatible with virus infectivity. A relevant issue concerning lethal mutagenesis is whether incomplete treatments might enhance the adaptive possibilities of viruses. We have addressed this question by subjecting an RNA virus, the bacteriophage Qβ, to different transmission regimes in the presence or the absence of sublethal concentrations of the mutagenic nucleoside analogue 5-azacytidine (AZC). Populations obtained were subsequently exposed to a non-optimal temperature and analyzed to determine their consensus sequences. Our results show that previously mutagenized populations rapidly fixed a specific set of mutations upon propagation at the new temperature, suggesting that the expansion of the mutant spectrum caused by AZC has an influence on later evolutionary behavior. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Pecularities of mutagenesis of T4Br bacteriophage under the direct and indirect radiation effects

    International Nuclear Information System (INIS)

    Yurov, S.S.

    1975-01-01

    Different lethal and mutagenic effects were shown when bacteriophage T4Br + (470 r/min) was irradiated in broth (direct effect) and a buffer solution (direct and indirect action). The survival rate of the bacteriophage in the buffer solution was 0.1 percent for a dose rate of 60 kr; in the broth it was 10 percent. The frequency of mutation of the bacteriophage also showed the greater effect of the irradiation in the buffer solution than in the broth (25 and 5 r-mutants respectively at a dose rate of 10 kr). An analysis of the ratio of the r-groups when the bacteriophage was treated in various ways revealed differences between mutagenesis produced in the broth and the buffer, and spontaneous mutagenesis. (V.A.P.)

  16. A highly efficient transposon mutagenesis system for the tomato pathogen Clavibacter michiganensis subsp. michiganensis.

    Science.gov (United States)

    Kirchner, O; Gartemann, K H; Zellermann, E M; Eichenlaub, R; Burger, A

    2001-11-01

    A transposon mutagenesis system for Clavibacter michiganensis subsp. michiganensis was developed based on antibiotic resistance transposons that were derived from the insertion element IS1409 from Arthrobacter sp. strain TM1 NCIB12013. As a prerequisite, the electroporation efficiency was optimized by using unmethylated DNA and treatment of the cells with glycine such that about 5 x 10(6) transformants per microg of DNA were generally obtained. Electroporation of C. michiganensis subsp. michiganensis with a suicide vector carrying transposon Tn1409C resulted in approximately 1 x 10(3) transposon mutants per pg of DNA and thus is suitable for saturation mutagenesis. Analysis of Tn1409C insertion sites suggests a random mode of transposition. Transposition of Tn1409C was also demonstrated for other subspecies of C. michiganensis.

  17. Mutagenesis of lambda phage by tif-expression or host-irradiation functions is largely independent of damage in the phage DNA

    International Nuclear Information System (INIS)

    Von Wright, A.; Bridges, B.A.

    1980-01-01

    The survival and mutagenesis of UV-irradiated phage lambda, as well as bacterial mutagenesis, are enhanced in tif mutants of Escherichia coli when these strains are grown at 43 0 C (Castellazzi et al., 1972). This was interpreted on the basis of a hypothesis (the SOS hypothesis) according to which the UV-inducible phenomena connected with reactivation and mutagenesis of UV-irradiated bacteriophages (Weigle, 1953; Radman, 1975) are constitutively expressed in tif-bacteria at high temperature (Witkin, 1974). In unpublished experiments with phage T3 we found that the survival of UV-irradiated phage is also better at 43 0 C than at 32 0 C in tif + cells and this made us reexamine the significance and nature of tif expression and examine its effects on both unirradiated and UV-irradiated phage lambda. Our results indicate that tif-induced mutagenesis and possibly reactivation of UV-irradiated phage lambda should be reinterpreted. (orig./AJ)

  18. Metabolic Engineering of Light and Dark Biochemical Pathways in Wild-Type and Mutant Strains of Synechocystis PCC 6803 for Maximal, 24-Hour Production of Hydrogen Gas

    Energy Technology Data Exchange (ETDEWEB)

    Ely, Roger L.; Chaplen, Frank W.R.

    2014-03-11

    This project used the cyanobacterial species Synechocystis PCC 6803 to pursue two lines of inquiry, with each line addressing one of the two main factors affecting hydrogen (H2) production in Synechocystis PCC 6803: NADPH availability and O2 sensitivity. H2 production in Synechocystis PCC 6803 requires a very high NADPH:NADP+ ratio, that is, the NADP pool must be highly reduced, which can be problematic because several metabolic pathways potentially can act to raise or lower NADPH levels. Also, though the [NiFe]-hydrogenase in PCC 6803 is constitutively expressed, it is reversibly inactivated at very low O2 concentrations. Largely because of this O2 sensitivity and the requirement for high NADPH levels, a major portion of overall H2 production occurs under anoxic conditions in the dark, supported by breakdown of glycogen or other organic substrates accumulated during photosynthesis. Also, other factors, such as N or S limitation, pH changes, presence of other substances, or deletion of particular respiratory components, can affect light or dark H2 production. Therefore, in the first line of inquiry, under a number of culture conditions with wild type (WT) Synechocystis PCC 6803 cells and a mutant with impaired type I NADPH-dehydrogenase (NDH-1) function, we used H2 production profiling and metabolic flux analysis, with and without specific inhibitors, to examine systematically the pathways involved in light and dark H2 production. Results from this work provided rational bases for metabolic engineering to maximize photobiological H2 production on a 24-hour basis. In the second line of inquiry, we used site-directed mutagenesis to create mutants with hydrogenase enzymes exhibiting greater O2 tolerance. The research addressed the following four tasks: 1. Evaluate the effects of various culture conditions (N, S, or P limitation; light/dark; pH; exogenous organic carbon) on H2 production profiles of WT cells and an NDH-1 mutant; 2. Conduct metabolic flux analyses for

  19. Photodynamic action of the methylene blue: mutagenesis and sinergism

    International Nuclear Information System (INIS)

    Capella, M.A.M.

    1988-01-01

    Two aspects of photodynamic therapy were studied: the associated mutagenesis and the interactions with physical agents, in order to increase its biological effects. The photodynamic action with methylene blue in the mutagenesis and sinergism is studied. (L.M.J.)

  20. Site-Directed Immobilization of Bone Morphogenetic Protein 2 to Solid Surfaces by Click Chemistry.

    Science.gov (United States)

    Siverino, Claudia; Tabisz, Barbara; Lühmann, Tessa; Meinel, Lorenz; Müller, Thomas; Walles, Heike; Nickel, Joachim

    2018-03-29

    Different therapeutic strategies for the treatment of non-healing long bone defects have been intensively investigated. Currently used treatments present several limitations that have led to the use of biomaterials in combination with osteogenic growth factors, such as bone morphogenetic proteins (BMPs). Commonly used absorption or encapsulation methods require supra-physiological amounts of BMP2, typically resulting in a so-called initial burst release effect that provokes several severe adverse side effects. A possible strategy to overcome these problems would be to covalently couple the protein to the scaffold. Moreover, coupling should be performed in a site-specific manner in order to guarantee a reproducible product outcome. Therefore, we created a BMP2 variant, in which an artificial amino acid (propargyl-L-lysine) was introduced into the mature part of the BMP2 protein by codon usage expansion (BMP2-K3Plk). BMP2-K3Plk was coupled to functionalized beads through copper catalyzed azide-alkyne cycloaddition (CuAAC). The biological activity of the coupled BMP2-K3Plk was proven in vitro and the osteogenic activity of the BMP2-K3Plk-functionalized beads was proven in cell based assays. The functionalized beads in contact with C2C12 cells were able to induce alkaline phosphatase (ALP) expression in locally restricted proximity of the bead. Thus, by this technique, functionalized scaffolds can be produced that can trigger cell differentiation towards an osteogenic lineage. Additionally, lower BMP2 doses are sufficient due to the controlled orientation of site-directed coupled BMP2. With this method, BMPs are always exposed to their receptors on the cell surface in the appropriate orientation, which is not the case if the factors are coupled via non-site-directed coupling techniques. The product outcome is highly controllable and, thus, results in materials with homogeneous properties, improving their applicability for the repair of critical size bone defects.

  1. Mechanisms of uv mutagenesis in yeast and E. coli

    International Nuclear Information System (INIS)

    Lawrence, C.; Christensen, R.; Christensen, J.R.; O'Brien, T.

    1983-01-01

    Experiments investigating ultraviolet light mutagenesis in either bakers' yeast, Saccharomyces cerevisiae, or E. coli have led to the following conclusions. First, cyclobutane pyrimidine dimers cause most mutations in both organisms; pyrimidine adducts, such as PyC, can account at best for only a small proportion. 86 percent of forward mutations induced at the E. coli lacI locus can be abolished by photoreactivation under conditions which do not alter the level of recA induction. About 75 percent of the forward mutations induced at the CAN1 locus of yeast could be removed by photoreactivation, a value that lies within the range observed previously for the reversion of CYC1 alleles (60 percent - 97 percent). Second, about 10 percent of the lacI forward mutations are untargeted, a smaller fraction than found previously for cycl-91 reversion in yeast. It is not yet clear whether the two species are really different in this respect, of whether the cycl-91 reversion site is a typical of the yeast genome at large. Third, analysis of reversion frequencies of 20 mutant alleles suggests that about 10 to 25 percent of all replication errors produced by mutagenic mechanisms in uv-irradiated yeast involve additions or deletions of base-pairs, indicating that error-prone repair does not just produce substitutions. Last, the REV1 locus in yeast is concerned with the induction of frameshift mutations at some, but not all, genetic sites, just as found previously for substitution mutations. The function of the REV3 gene is more widely, though not universally, required while the function of the RAD6 gene, like that of the recA locus in E. coli, appears to be necessary for all kinds of uv mutagenesis. E coli genes comparable to REV1 and REV3 have not yet been described; conversely, there does not yet appear to be a yeast equivalent of umuC

  2. Mechanisms of uv mutagenesis in yeast and E. coli

    International Nuclear Information System (INIS)

    Lawrence, C.; Christensen, R.; Christensen, J.R.; O'Brien, T.

    1983-01-01

    Experiments investigating ultraviolet light mutagenesis in either bakers' yeast, Saccharomyces cerevisiae, or E. coli have led to the following conclusions. First, cyclobutane pyrimidine dimers cause most mutations in both organisms; pyrimidine adducts, such as PyC, can account at best for only a small proportion. Eighty-six percent of forward mutations induced at the E. coli lacI locus can be abolished by photoreactivation under conditions which do not alter the level of recA induction. About 75 percent of the forward mutations induced at the CAN1 locus of yeast could be removed by photoreactivation, a value that lies within the range observed previously for the reversion of CYC1 alleles (60 percent - 97 percent). Second, about 10 percent of the lacI forward mutations are untargeted, a smaller fraction than found previously for cycl1-91 reversion in yeast. It is not yet clear whether the two species are really different in this respect, or whether the cyc1-91 reversion site is atypical of the yeast genome at large. Third, analysis of reversion frequencies of 20 mutant alleles suggests that about 10 - 25 percent of all replication errors produced by mutagenic mechanisms in UV-irradiated yeast involve additions or deletions of base-pairs, indicating that error-prone repair does not just produce substitutions. Last, the REV1 locus in yeast is concerned with the induction of frameshift mutations at some, but not all, genetic sites, just as found previously for substitution mutations. The function of the REV3 gene is more widely, though not universally, required while the function of the RAD6 gene, like that of the recA locus in E. coli, appears to be necessary for all kinds of UV mutagenesis. E. coli genes comparable to REV1 and REV3 have not yet been described, conversely, there does not yet appear to be a yeast equivalent of umuC. 13 references, 4 tables

  3. The contribution of Nth and Nei DNA glycosylases to mutagenesis in Mycobacterium smegmatis.

    Science.gov (United States)

    Moolla, Nabiela; Goosens, Vivianne J; Kana, Bavesh D; Gordhan, Bhavna G

    2014-01-01

    The increased prevalence of drug resistant strains of Mycobacterium tuberculosis (Mtb) indicates that significant mutagenesis occurs during tuberculosis disease in humans. DNA damage by host-derived reactive oxygen/nitrogen species is hypothesized to be critical for the mutagenic process in Mtb thus, highlighting an important role for DNA repair enzymes in maintenance of genome fidelity. Formamidopyrimidine (Fpg/MutM/Fapy) and EndonucleaseVIII (Nei) constitute the Fpg/Nei family of DNA glycosylases and together with EndonucleaseIII (Nth) are central to the base excision repair pathway in bacteria. In this study we assess the contribution of Nei and Nth DNA repair enzymes in Mycobacterium smegmatis (Msm), which retains a single nth homologue and duplications of the Fpg (fpg1 and fpg2) and Nei (nei1 and nei2) homologues. Using an Escherichia coli nth deletion mutant, we confirm the functionality of the mycobacterial nth gene in the base excision repair pathway. Msm mutants lacking nei1, nei2 and nth individually or in combination did not display aberrant growth in broth culture. Deletion of nth individually results in increased UV-induced mutagenesis and combinatorial deletion with the nei homologues results in reduced survival under oxidative stress conditions and an increase in spontaneous mutagenesis to rifampicin. Deletion of nth together with the fpg homolgues did not result in any growth/survival defects or changes in mutation rate. Furthermore, no differential emergence of the common rifampicin resistance conferring genotypes were noted. Collectively, these data confirm a role for Nth in base excision repair in mycobacteria and further highlight a novel interplay between the Nth and Nei homologues in spontaneous mutagenesis. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Biological safety assessment of mutant variant of Allium sativum leaf agglutinin (mASAL), a novel antifungal protein for future transgenic application.

    Science.gov (United States)

    Ghosh, Prithwi; Roy, Amit; Chakraborty, Joydeep; Das, Sampa

    2013-12-04

    Genetic engineering has established itself to be an important tool for crop improvement. Despite the success, there is always a risk of food allergy induced by alien gene products. The present study assessed the biosafety of mutant Allium sativum leaf agglutinin (mASAL), a potent antifungal protein generated by site directed mutagenesis of Allium sativum leaf agglutinin (ASAL). mASAL was cloned in pET28a+ and expressed in E. coli, and the safety assessment was carried out according to the FAO/WHO guideline (2001). Bioinformatics analysis, pepsin digestion, and thermal stability assay showed the protein to be nonallergenic. Targeted sera screening revealed no significant IgE affinity of mASAL. Furthermore, mASAL sensitized Balb/c mice showed normal histopathology of lung and gut tissue. All results indicated the least possibility of mASAL being an allergen. Thus, mASAL appears to be a promising antifungal candidate protein suitable for agronomical biotechnology.

  5. A high-throughput shotgun mutagenesis approach to mapping B-cell antibody epitopes.

    Science.gov (United States)

    Davidson, Edgar; Doranz, Benjamin J

    2014-09-01

    Characterizing the binding sites of monoclonal antibodies (mAbs) on protein targets, their 'epitopes', can aid in the discovery and development of new therapeutics, diagnostics and vaccines. However, the speed of epitope mapping techniques has not kept pace with the increasingly large numbers of mAbs being isolated. Obtaining detailed epitope maps for functionally relevant antibodies can be challenging, particularly for conformational epitopes on structurally complex proteins. To enable rapid epitope mapping, we developed a high-throughput strategy, shotgun mutagenesis, that enables the identification of both linear and conformational epitopes in a fraction of the time required by conventional approaches. Shotgun mutagenesis epitope mapping is based on large-scale mutagenesis and rapid cellular testing of natively folded proteins. Hundreds of mutant plasmids are individually cloned, arrayed in 384-well microplates, expressed within human cells, and tested for mAb reactivity. Residues are identified as a component of a mAb epitope if their mutation (e.g. to alanine) does not support candidate mAb binding but does support that of other conformational mAbs or allows full protein function. Shotgun mutagenesis is particularly suited for studying structurally complex proteins because targets are expressed in their native form directly within human cells. Shotgun mutagenesis has been used to delineate hundreds of epitopes on a variety of proteins, including G protein-coupled receptor and viral envelope proteins. The epitopes mapped on dengue virus prM/E represent one of the largest collections of epitope information for any viral protein, and results are being used to design better vaccines and drugs. © 2014 John Wiley & Sons Ltd.

  6. Roles for the yeast RAD18 and RAD52 DNA repair genes in UV mutagenesis.

    Science.gov (United States)

    Armstrong, J D; Chadee, D N; Kunz, B A

    1994-11-01

    Experimental evidence indicates that although the Saccharomyces cerevisiae RAD18 and RAD52 genes are not required for nucleotide excision repair, they function in the processing of UV-induced DNA damage in yeast. Conflicting statements regarding the UV mutability of strains deleted for RAD18 prompted us to re-examine the influence of RAD18, and RAD52, on UV mutagenesis. To do so, we characterized mutations induced by UV in SUP4-o, a yeast suppressor tRNA gene. SUP4-o was maintained on a plasmid in isogenic strains that either carried one of two different rad18 deletions (rad18 delta) or had RAD52 disrupted. Both rad18 deletions decreased the frequency of UV-induced SUP4-o mutations to levels close to those for spontaneous mutagenesis in the rad18 delta backgrounds, and prevented a net increase in mutant yield. A detailed analysis of mutations isolated after UV irradiation of one of the rad18 delta strains uncovered little evidence of the specificity features typical for UV mutagenesis in the isogenic repair-proficient (RAD) parent (e.g., predominance of G.C-->A.T transitions). Evidently, UV induction of SUP4-o mutations is highly dependent on the RAD18 gene. Compared to the RAD strain, disruption of RAD52 reduced the frequency and yield of UV mutagenesis by about two-thirds. Closer inspection revealed that 80% of this reduction was due to a decrease in the frequency of G.C-->A.T transitions. In addition, there were differences in the distributions and site specificities of single base-pair substitutions. Thus, RAD52 also participates in UV mutagenesis of a plasmid-borne gene in yeast, but to a lesser extent than RAD18.

  7. Complex epidemiological approach to human mutagenesis

    International Nuclear Information System (INIS)

    Czeizel, A.

    1980-01-01

    The main characteristics of the epidemiological approach are summarised and the criteria discussed for the adoption of this approach for the detection of human mutagenesis. Mutation monitoring systems are described and results of epidemiological studies of higher risk populations are presented. (C.F.)

  8. Target-selected mutagenesis of the rat

    NARCIS (Netherlands)

    Smits, B.M.; Mudde, J.B.; Plasterk, R.; Cuppen, E.

    2004-01-01

    The rat is one of the most extensively studied model organisms, and with its genome being sequenced, tools to manipulate gene function in vivo have become increasingly important. We here report proof of principle for target-selected mutagenesis as a reverse genetic or knockout approach for the rat.

  9. Excision repair and mutagenesis in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Kilbey, Brian

    1987-01-01

    This and succeeding letters discuss the James and Kilbey (1977 and 1978) model for the initiation of u.v. mutagenesis in Saccharomyces cerevisiae and its application to include a number of chemical mutagens. The Baranowska et al (1987) results indicating the role of DNA replication, the differing mechanisms in Escherichia coli, are all discussed. (UK)

  10. Seed mutagenesis in Portulaca grandiflora (Hook)

    International Nuclear Information System (INIS)

    Bennani, F.; Rossi-Hassani, B.D.

    2001-01-01

    Betalain pigments have been used as natural additives. Despite their importance, the biochemistry and genetics of betalain synthesis remain relatively undetermined. Portulaca grandiflora represents an ideal material for genetic analysis. In the present work, seed mutagenesis was examined with a view to enhance the chance of detection of new genetic markers in this species

  11. Mutagenesis of Xanthomonas campestris and selection of strains with enhanced Xanthan production

    International Nuclear Information System (INIS)

    Kamal, F.; Mehrgan, H.; Mazaheri, M.; Mortazavi, A. R.

    2003-01-01

    Xanthan gum is microbial polysaccharide of great commercial importance as it has been unusual rheological properties in solution and consequent range of applications. In this study, a series of mutants were isolated from Xanthomonas PTSS 1473 by ethyl methanesulfonate mutagenesis. The polysaccharide yield of one mutant, XC1473E 2 , was 30% better than that of the parent strain. It also showed higher xanthan formation of glucose consumption rates compared to the parent strain. xanthan produced by the mutant and enhanced viscosity, higher pseudo plasticity and larger molecular weight. Since mutant XC1473E 2 appeared white on agar plates, it underwent pigment extraction with methanol. Contrary to the parent strain, the mutant showed no absorption at 443 nm, i.e. the wavelength related to yellow pigment. This finding suggested that yellow pigmentation and normal xanthan biosynthesis are not necessarily concurrent. In general, mutant ZC1473e 2 seems to be a strain with interesting characteristics for use in commercial production of Xanthan

  12. Effect of SOS-induced levels of imuABC on spontaneous and damage-induced mutagenesis in Caulobacter crescentus.

    Science.gov (United States)

    Alves, Ingrid R; Lima-Noronha, Marco A; Silva, Larissa G; Fernández-Silva, Frank S; Freitas, Aline Luiza D; Marques, Marilis V; Galhardo, Rodrigo S

    2017-11-01

    imuABC (imuAB dnaE2) genes are responsible for SOS-mutagenesis in Caulobacter crescentus and other bacterial species devoid of umuDC. In this work, we have constructed operator-constitutive mutants of the imuABC operon. We used this genetic tool to investigate the effect of SOS-induced levels of these genes upon both spontaneous and damage-induced mutagenesis. We showed that constitutive expression of imuABC does not increase spontaneous or damage-induced mutagenesis, nor increases cellular resistance to DNA-damaging agents. Nevertheless, the presence of the operator-constitutive mutation rescues mutagenesis in a recA background, indicating that imuABC are the only genes required at SOS-induced levels for translesion synthesis (TLS) in C. crescentus. Furthermore, these data also show that TLS mediated by ImuABC does not require RecA, unlike umuDC-dependent mutagenesis in E. coli. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. A report on 36 years practical work on crop improvement through induced mutagenesis

    Energy Technology Data Exchange (ETDEWEB)

    Datta, S.K. [CSIR, Madhyamgram Experimental Farm, Bose Institute, Kolkata (India)], E-mail: subodhskdatta@rediffmail.com

    2008-07-01

    Physical and/or chemical mutagens cause random changes in the nuclear DNA or cytoplasmic organelles, resulting in gene, chromosomal or genomic mutations. The author will share his life time experience and achievement on induced mutagenesis. The author initiated induced mutagenesis work in 1971 till July 2007 and used both physical (X-ray and Gamma rays) and chemical (EMS, MMS, Colchicine) mutagens for improvement of vegetables (Trichosanthes anguina L, T. cucumarina , Cucurbita maxima L, Cephalandra indica, Luffa acutangula Roxb., Lagenaria ciceraria), medicinal (Trigonella foenum-graecum L, Mentha citrate Ehrh), pulse (Winged Bean (Psophocarpus tetragonolobus L. D.C.), oil bearing (Jatropha curcas L, Rosa damascene, Cymbopogon flexuosus (Nees) Wats) and ornamental (Bougainvillea, Chrysanthemum, Dahlia, Gladiolus, Hibiscus, Lantana depressa Naud, Rose, Tuberose, Narcissus etc.) crops. All classical and advanced mutagenesis methods have been extensively used for the development of new and novel cultivars of economic importance. Early flowering, late flowering, dwarf, yellow fruit color, crinkled leaf, short thick fruit, increased branching, increased pod and seed number, seed size, seed color (green, brown, chocolate color) high fruit-, seed-, oil- and punicic acidyielding mutants have been developed in T. anguina, T. fornum-graecum, Winged Bean and in J.curcas containing 'curcas oil', an efficient substitute fuel for diesel engines. Induction of flower color and chlorophyll variegated mutants in L. depressa proved the efficiency of mutation technique for domestication of wild relatives. Author was deeply engaged for the last 30 years for improvement of ornamentals and has been most successful to produce quite a large number of new promising mutant varieties in different ornamentals. Colchicine has been successfully used to develop new flower color in chrysanthemum and rose and high yielding strains in T. anguina. A novel direct in vitro regeneration technique has

  14. An inducible tool for random mutagenesis in Aspergillus niger based on the transposon Vader.

    Science.gov (United States)

    Paun, Linda; Nitsche, Benjamin; Homan, Tim; Ram, Arthur F; Kempken, Frank

    2016-07-01

    The ascomycete Aspergillus niger is widely used in the biotechnology, for instance in producing most of the world's citric acid. It is also known as a major food and feed contaminant. While generation of gene knockouts for functional genomics has become feasible in ku70 mutants, analyzing gene functions or metabolic pathways remains a laborious task. An unbiased transposon-based mutagenesis approach may aid this process of analyzing gene functions by providing mutant libraries in a short time. The Vader transposon is a non-autonomous DNA-transposon, which is activated by the homologous tan1-transposase. However, in the most commonly used lab strain of A. niger (N400 strain and derivatives), we found that the transposase, encoded by the tan1 gene, is mutated and inactive. To establish a Vader transposon-based mutagenesis system in the N400 background, we expressed the functional transposase of A. niger strain CBS 513.88 under the control of an inducible promoter based on the Tet-on system, which is activated in the presence of the antibiotic doxycycline (DOX). Increasing amounts of doxycycline lead to higher Vader excision frequencies, whereas little to none activity of Vader was observed without addition of doxycycline. Hence, this system appears to be suitable for producing stable mutants in the A. niger N400 background.

  15. Construction of a horseradish peroxidase resistant toward hydrogen peroxide by saturation mutagenesis.

    Science.gov (United States)

    Asad, Sedigheh; Dastgheib, Seyed Mohammad Mehdi; Khajeh, Khosro

    2016-11-01

    Horseradish peroxidase (HRP) with a variety of potential biotechnological applications is still isolated from the horseradish root as a mixture of different isoenzymes with different biochemical properties. There is an increasing demand for preparations of high amounts of pure enzyme but its recombinant production is limited because of the lack of glycosylation in Escherichia coli and different glycosylation patterns in yeasts which affects its stability parameters. The goal of this study was to increase the stability of non-glycosylated enzyme, which is produced in E. coli, toward hydrogen peroxide via mutagenesis. Asparagine 268, one of the N-glycosylation sites of the enzyme, has been mutated via saturation mutagenesis using the megaprimer method. Modification and miniaturization of previously described protocols enabled screening of a library propagated in E. coli XJb (DE3). The library of mutants was screened for stability toward hydrogen peroxide with azinobis (ethylbenzthiazoline sulfonate) as a reducing substrate. Asn268Gly mutant, the top variant from the screening, exhibited 18-fold increased stability toward hydrogen peroxide and twice improved thermal stability compared with the recombinant HRP. Moreover, the substitution led to 2.5-fold improvement in the catalytic efficiency with phenol/4-aminoantipyrine. Constructed mutant represents a stable biocatalyst, which may find use in medical diagnostics, biosensing, and bioprocesses. © 2015 International Union of Biochemistry and Molecular Biology, Inc.

  16. umuC-mediated misrepair mutagenesis in Escherichia coli: Extent and specificity of SOS mutagenesis

    International Nuclear Information System (INIS)

    Shinoura, Y.; Ise, T.; Kato, T.; Glickman, B.W.

    1983-01-01

    The role of the error-prone misrepair pathway in mutagenesis was examined for a series of mutagens in umuC + and umuC36 strains of Escherichia coli. Mutagenesis by ENU, MNU, MNNG and EMS was independent of the umuC + gene function, while mutagenesis by MMS, 4NQO, γ-rays and UV was largely umuC + -dependent. Residual mutagenesis following UV-treatment of a umuC - strain showed the same mutational specificity seen in the umuC + strain. In contrast, the umuC mutation altered specificity substantially in an excision-repair-defective strain that showed a UV-spectrum strikingly different from that seen in an excision-repair-proficient strain. Only one of nine trpE frameshift mutations examined was reverted by UV-light and its reversion was umuC-dependent. In comparison, the dependence of frameshift mutagenesis following ICR191 treatment was site-specific, suggesting at least two mechanisms of frameshift mutagenesis, one dependent upon misrepair, the other not. (orig./AJ)

  17. Direct site-directed photocoupling of proteins onto surfaces coated with β-cyclodextrins

    DEFF Research Database (Denmark)

    Städe, Lars W; Wimmer, Reinhard; Stensballe, Allan

    2010-01-01

    . Insertion of pBpa was verified by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectroscopy. A molecular dynamic simulation, with water as solvent, showed high solvent accessibility of the pBpa benzophenone group in N27pBpa-cutinase mutant. The formation of an inclusion......A method called Dock'n'Flash was developed to offer site-specific capture and direct UVA-induced photocoupling of recombinant proteins. The method involves the tagging of recombinant proteins with photoreactive p-benzoyl-L-phenylalanine (pBpa) by genetic engineering. The photoreactive pBpa tag...... is used for affinity capture of the recombinant protein by beta-cyclodextrin (beta-CD), which provides hydrogen atoms to be abstracted in the photocoupling process. To exemplify the method, a recombinant, folded, and active N27pBpa mutant of cutinase from Fusarium solani pisi was produced in E. coli...

  18. Multiplex Sequence Analysis Demonstrates the Competitive Growth Advantage of the A-to-G Mutants of Clarithromycin-Resistant Helicobacter pylori

    OpenAIRE

    Wang, Ge; Rahman, M. Sayeedur; Humayun, M. Zafri; Taylor, Diane E.

    1999-01-01

    Clarithromycin resistance in Helicobacter pylori is due to point mutation within the 23S rRNA. We examined the growth rates of different types of site-directed mutants and demonstrated quantitatively the competitive growth advantage of A-to-G mutants over other types of mutants by a multiplex sequencing assay. The results provide a rational explanation of why A-to-G mutants are predominantly observed among clarithromycin-resistant clinical isolates.

  19. Multiplex sequence analysis demonstrates the competitive growth advantage of the A-to-G mutants of clarithromycin-resistant Helicobacter pylori.

    Science.gov (United States)

    Wang, G; Rahman, M S; Humayun, M Z; Taylor, D E

    1999-03-01

    Clarithromycin resistance in Helicobacter pylori is due to point mutation within the 23S rRNA. We examined the growth rates of different types of site-directed mutants and demonstrated quantitatively the competitive growth advantage of A-to-G mutants over other types of mutants by a multiplex sequencing assay. The results provide a rational explanation of why A-to-G mutants are predominantly observed among clarithromycin-resistant clinical isolates.

  20. Targeted mutagenesis in tetraploid switchgrass (Panicum virgatum L.) using CRISPR/Cas9.

    Science.gov (United States)

    Liu, Yang; Merrick, Paul; Zhang, Zhengzhi; Ji, Chonghui; Yang, Bing; Fei, Shui-Zhang

    2018-02-01

    The CRISPR/Cas9 system has become a powerful tool for targeted mutagenesis. Switchgrass (Panicum virgatum L.) is a high yielding perennial grass species that has been designated as a model biomass crop by the U.S. Department of Energy. The self-infertility and high ploidy level make it difficult to study gene function or improve germplasm. To overcome these constraints, we explored the feasibility of using CRISPR/Cas9 for targeted mutagenesis in a tetraploid cultivar 'Alamo' switchgrass. We first developed a transient assay by which a non-functional green-fluorescent protein gene containing a 1-bp frameshift insertion in its 5' coding region was successfully mutated by a Cas9/sgRNA complex resulting in its restored function. Agrobacterium-mediated stable transformation of embryogenic calli derived from mature caryopses averaged a 3.0% transformation efficiency targeting the genes of teosinte branched 1(tb1)a and b and phosphoglycerate mutase (PGM). With a single construct containing two sgRNAs targeting different regions of tb1a and tb1b genes, primary transformants (T0) containing CRISPR/Cas9-induced mutations were obtained at frequencies of 95.5% (tb1a) and 11% (tb1b), respectively, with T0 mutants exhibiting increased tiller production. Meanwhile, a mutation frequency of 13.7% was obtained for the PGM gene with a CRISPR/Cas9 construct containing a single sgRNA. Among the PGM T0 mutants, six are heterozygous and one is homozygous for a 1-bp deletion in the target region with no apparent phenotypical alterations. We show that CRISPR/Cas9 system can generate targeted mutagenesis effectively and obtain targeted homozygous mutants in T0 generation in switchgrass, circumventing the need of inbreeding. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  1. Nutritional value of quinua (chenopodium quinoa) seeds improved by radioinduced mutagenesis

    International Nuclear Information System (INIS)

    De La Cruz, T. E.; Avila R, S.; Garcia R, A.

    2006-01-01

    Quinua (Chenopodium quinoa), a pseudo cereal considered as an alternative crop for areas with marginal agricultural conditions has been subjected since 1990 to a radioinduced mutagenesis programme aiming to obtain lines with low saponin content, good yields and high nutritional value. Seeds obtained from lines grown in M7 generation which exhibited yields averaging 1.5 ton/ha, were analyzed regarding grain quality and nutritive value. Evaluated parameters were diameter and thickness of the seed, weight of 100 seeds and density. Regarding to bromatological analysis, determinations were made of moisture, ash, raw fiber, proteins, oil content and carbohydrates, following the procedures indicated in Official Mexican Norms (NOM). Evaluated genotypes were the varieties Sajama, Barandales and Amarilla de Marangani and the mutant lines 20R110, 94, 20R333, 20R227, 20R342, 20R37 and the advanced line obtained by selection 640304. Mutant genotypes 20R333 and 20R342 exhibited outstanding characteristics regarding to grain quality (diameter 2.0 mm, thickness 1.2mm, weight of 100 seeds 0.42 and 0.22 g respectively and density 710 and 686 grams per liter). In the bromatological analysis the protein content ranged from 11.82 % (genotype 20 R227) to 16.8% in mutant 20R333 while mutant 20R342 exhibited 15.6%. The lipid content was minimum on Barandales and 20R333 both with 3.8%, having the genotype 20R110 the highest value among evaluated genotypes with 4.35%, line 20R342 exhibited 4.2%.. The high percentages of proteins and lipids, found among some analyzed mutants exhibit the feasibility to obtain, through radioinduced mutagenesis, lines with low saponins and high nutritive value

  2. Use of CRISPR/Cas Genome Editing Technology for Targeted Mutagenesis in Rice.

    Science.gov (United States)

    Xu, Rongfang; Wei, Pengcheng; Yang, Jianbo

    2017-01-01

    Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein (Cas) system is a newly emerging mutagenesis (gene-editing) tool in genetic engineering. Among the agriculturally important crops, several genes have been successfully mutated by the system, and some agronomic important traits have been rapidly generated, which indicates the potential applications in both scientific research and plant breeding. In this chapter, we describe a standard gene-editing procedure to effectively target rice genes and to make specific rice mutants using the CRISPR/Cas9 system mediated by Agrobacterium transformation.

  3. Application of radiation induced in vitro mutagenesis for the improvement of sugarcane

    International Nuclear Information System (INIS)

    Penna, Suprasanna; Patade, Vikas Y.; Vaidya, E.R.; Patil, V.D.

    2009-01-01

    Sugarcane varieties with improved tolerance to adverse environmental conditions are highly desirable, as unfavourable environmental factors are the major contributors that can reduce average productivity by 65% to 87%. In this study, we have employed in vitro cultures and radiation induced mutagenesis in three commercially used cultivars. Irradiated callus cultures were also selected for salt tolerance, and radiosensitivity in terms of growth rate and cell viability indicated stress effects. Several mutants with agronomically desirable traits have been isolated that are in field evaluation. (author)

  4. Design of Deinococcus radiodurans thioredoxin reductase with altered thioredoxin specificity using computational alanine mutagenesis

    OpenAIRE

    Obiero, Josiah; Sanders, David AR

    2011-01-01

    In this study, the X-ray crystal structure of the complex between Escherichia coli thioredoxin reductase (EC TrxR) and its substrate thioredoxin (Trx) was used as a guide to design a Deinococcus radiodurans TrxR (DR TrxR) mutant with altered Trx specificity. Previous studies have shown that TrxRs have higher affinity for cognate Trxs (same species) than that for Trxs from different species. Computational alanine scanning mutagenesis and visual inspection of the EC TrxR–Trx interface suggested...

  5. Nevada National Security Site: Site-Directed Research and Development (SDRD) Fiscal Year 2015 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Bender, Howard A. [National Security Technologies, LLC. (NSTec), Mercury, NV (United States). Site-Directed Research and Development Program

    2016-04-01

    This report presents results of multiple research projects, new and ongoing, funded under the Site-Directed Research and Development Program for the Nevada National Security Site during federal fiscal year 2015. The Site's legacy capabilities in remote sensing combined with new paradigms for emergency response and consequence management help drive the need to develop advanced aerial sensor platforms. Likewise, dynamic materials science is a critical area of scientific research for which basic physics issues are still unresolved. New methods of characterizing materials in extreme states are vitally needed, and these efforts are paving the way with new knowledge. Projects selected in FY 2015 for the Exploratory Research portfolio exhibit a strong balance of NNSS mission relevance. Geoscience, seismology, and techniques for detecting underground nuclear events are still essential focus areas. Many of the project reports in the second major section of this annual report are ongoing continuations in multi-year lifecycles. Diagnostic techniques for stockpile and nuclear security science figured prominently as well, with a few key efforts coming to fruition, such as phase transition detection. In other areas, modeling efforts toward better understanding plasma focus physics has also started to pay dividends for major program needs.

  6. Nevada Test Site-Directed Research and Development FY 2010 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Howard Bender, comp.

    2011-04-04

    This annual report of the Site-Directed Research and Development (SDRD) program represents the highly significant R&D accomplishments conducted during fiscal year 2010. This year was noteworthy historically, as the Nevada Test Site was renamed to the Nevada National Security Site (NNSS). This change not only recognizes how the site's mission has evolved, but also heralds a future of new challenges and opportunities for the NNSS. In many ways, since its inception in 2002, the SDRD program has helped shape that evolving mission. As we approach 2012, SDRD will also mark a milestone, having completed its first full decade of innovative R&D in support of the site and national security. The program continues to fund advanced science and technology development across traditional Department of Energy (DOE) nuclear security areas such as stockpile stewardship and non-proliferation while also supporting Department of Homeland Security (DHS) needs, and specialized work for government agencies like the Department of Defense (DoD) and others. The NNSS will also contribute technologies in the areas of treaty verification and monitoring, two areas of increasing importance to national security. Keyed to the NNSS's broadened scope, the SDRD program will continue to anticipate and advance R&D projects that will help the NNSS meet forthcoming challenges.

  7. Nevada National Security Site. Site-Directed Research and Development FY 2011 Annual Report

    International Nuclear Information System (INIS)

    Bender, Howard

    2012-01-01

    This fiscal year 2011 annual report of the Site-Directed Research and Development program, the 10th anniversary edition, recognizes a full decade of innovative R and D accomplishments in support of the Nevada National Security Site (NNSS). Last year the NNSS itself was renamed to reflect a diversifying mission, and our R and D program has contributed significantly to shape emerging missions that will continue to evolve. New initiatives in stockpile stewardship science, nonproliferation, and treaty verification and monitoring have had substantial successes in FY 2011, and many more accomplishments are expected. SDRD is the cornerstone on which many of these initiatives rest. Historically supporting our main focus areas, SDRD is also building a solid foundation for new, and non-traditional, emerging national security missions. The program continues its charter to advance science and technology for a broad base of agencies including the U.S. Department of Energy (DOE), U.S. Department of Defense (DoD), U.S. Department of Homeland Security (DHS), and many others.

  8. Nevada Test Site-Directed Research and Development: FY 2006 Report

    International Nuclear Information System (INIS)

    Wil Lewis, editor

    2007-01-01

    The Nevada Test Site Directed Research and Development (SDRD) program completed its fifth successful year of research and development activities in FY 2006. Forty new projects were selected for funding this year, and ten FY 2005 projects were brought to conclusion. The total funds expended by the SDRD program were $6 million, for an average per-project cost of $120 thousand. Beginning in May, 2006 programmatic burden rates were applied to SDRD project costs. An external audit conducted in September 2006 verified that appropriate accounting practices were applied to the SDRD program. Highlights for the year included: the filing of 27 invention disclosures for intellectual property generated by FY 2006 projects; programmatic adoption of four FY 2005 SDRD-developed technologies; participation in the tri-Lab Laboratory Directed Research and Development (LDRD) and SDRD program review that was broadly attended by NTS, NNSA, LDRD, and U.S. Department of Homeland Security representatives; peer reviews of all FY 2006 projects; and the successful completion of 50 R and D projects, as presented in this report

  9. Nevada Natonal Security Site-Directed Research and Development FY 2010 Annual Report

    International Nuclear Information System (INIS)

    Bender, Howard

    2011-01-01

    This annual report of the Site-Directed Research and Development (SDRD) program represents the highly significant R and D accomplishments conducted during fiscal year 2010. This year was noteworthy historically, as the Nevada Test Site was renamed to the Nevada National Security Site (NNSS). This change not only recognizes how the site's mission has evolved, but also heralds a future of new challenges and opportunities for the NNSS. In many ways, since its inception in 2002, the SDRD program has helped shape that evolving mission. As we approach 2012, SDRD will also mark a milestone, having completed its first full decade of innovative R and D in support of the site and national security. The program continues to fund advanced science and technology development across traditional Department of Energy (DOE) nuclear security areas such as stockpile stewardship and non-proliferation while also supporting Department of Homeland Security (DHS) needs, and specialized work for government agencies like the Department of Defense (DoD) and others. The NNSS will also contribute technologies in the areas of treaty verification and monitoring, two areas of increasing importance to national security. Keyed to the NNSS's broadened scope, the SDRD program will continue to anticipate and advance R and D projects that will help the NNSS meet forthcoming challenges.

  10. Nevada Test Site-Directed Research, Development, and Demonstration. FY2005 report

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Will [comp.

    2006-09-01

    The Nevada Test Site-Directed Research, Development, and Demonstration (SDRD) program completed a very successful year of research and development activities in FY 2005. Fifty new projects were selected for funding this year, and five FY 2004 projects were brought to conclusion. The total funds expended by the SDRD program were $5.4 million, for an average per project cost of just under $100,000. Two external audits of SDRD accounting practices were conducted in FY 2005. Both audits found the program's accounting practices consistent with the requirements of DOE Order 413.2A, and one included the observation that the NTS contractor ''did an exceptional job in planning and executing year-start activities.'' Highlights for the year included: the filing of 18 invention disclosures for intellectual property generated by FY 2005 projects; programmatic adoption of 17 FY 2004 SDRD-developed technologies; participation in the tri-lab Laboratory Directed Research and Development (LDRD) and SDRD program review that was broadly attended by NTS, NNSA, LDRD, and U.S. Department of Homeland Security representatives; peer reviews of all FY 2005 projects; and the successful completion of 55 R&D projects, as presented in this report.

  11. Nevada National Security Site-Directed Research and Development FY 2011 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Howard Bender, comp.

    2012-04-25

    This fiscal year 2011 annual report of the Site-Directed Research and Development program, the 10th anniversary edition, recognizes a full decade of innovative R&D accomplishments in support of the Nevada National Security Site (NNSS). Last year the NNSS itself was renamed to reflect a diversifying mission, and our R&D program has contributed significantly to shape emerging missions that will continue to evolve. New initiatives in stockpile stewardship science, nonproliferation, and treaty verification and monitoring have had substantial successes in FY 2011, and many more accomplishments are expected. SDRD is the cornerstone on which many of these initiatives rest. Historically supporting our main focus areas, SDRD is also building a solid foundation for new, and non-traditional, emerging national security missions. The program continues its charter to advance science and technology for a broad base of agencies including the U.S. Department of Energy (DOE), U.S. Department of Defense (DoD), U.S. Department of Homeland Security (DHS), and many others.

  12. Production and enzyme engineerinq of human acetylcholinesterase and its mutant derivatives. Midterm report, 15 January 1993-15 July 1994

    Energy Technology Data Exchange (ETDEWEB)

    Shafferman, A.

    1994-07-15

    Specificity determinants of human acetylcholinesterase (HuAChE) towards ligands (substrate and some reversible and irreversible inhibitors) were identified by combination of site-directed mutagenesis, molecular modeling and kinetic studies with enzymes mutated in active center residues Trp86, Glu202, Trp286, Phe295, Phe297, Tyr337, Phe338 and Glu450. Thus, the anionic and hydrophobic subsites as well as the acyl pocket were identified. Enzymes with resistance to OP aging were engineered.The role of N-glycosylation in the function, biosynthesis and stability of HuAChE was examined by site-directed mutagenesis (Asn to GIn substitution) of the three potential N glycosylation sites, Asn265, Asn350 and Asn464. Large scale preparation of recombinant HuAChE was performed utilizing the microcarrier technology. Over 500 milligrams of enzyme was prepared for x-ray crystallography.

  13. High-throughput screening of cellulase F mutants from multiplexed plasmid sets using an automated plate assay on a functional proteomic robotic workcell

    Directory of Open Access Journals (Sweden)

    Qureshi Nasib

    2006-05-01

    Full Text Available Abstract Background The field of plasmid-based functional proteomics requires the rapid assay of proteins expressed from plasmid libraries. Automation is essential since large sets of mutant open reading frames are being cloned for evaluation. To date no integrated automated platform is available to carry out the entire process including production of plasmid libraries, expression of cloned genes, and functional testing of expressed proteins. Results We used a functional proteomic assay in a multiplexed setting on an integrated plasmid-based robotic workcell for high-throughput screening of mutants of cellulase F, an endoglucanase from the anaerobic fungus Orpinomyces PC-2. This allowed us to identify plasmids containing optimized clones expressing mutants with improved activity at lower pH. A plasmid library of mutagenized clones of the celF gene with targeted variations in the last four codons was constructed by site-directed PCR mutagenesis and transformed into Escherichia coli. A robotic picker integrated into the workcell was used to inoculate medium in a 96-well deep well plate, combining the transformants into a multiplexed set in each well, and the plate was incubated on the workcell. Plasmids were prepared from the multiplexed culture on the liquid handler component of the workcell and used for in vitro transcription/translation. The multiplexed expressed recombinant proteins were screened for improved activity and stability in an azo-carboxymethylcellulose plate assay. The multiplexed wells containing mutants with improved activity were identified and linked back to the corresponding multiplexed cultures stored in glycerol. Spread plates were prepared from the glycerol stocks and the workcell was used to pick single colonies from the spread plates, prepare plasmid, produce recombinant protein, and assay for activity. The screening assay and subsequent deconvolution of the multiplexed wells resulted in identification of improved Cel

  14. Novel Random Mutagenesis Method for Directed Evolution.

    Science.gov (United States)

    Feng, Hong; Wang, Hai-Yan; Zhao, Hong-Yan

    2017-01-01

    Directed evolution is a powerful strategy for gene mutagenesis, and has been used for protein engineering both in scientific research and in the biotechnology industry. The routine method for directed evolution was developed by Stemmer in 1994 (Stemmer, Proc Natl Acad Sci USA 91, 10747-10751, 1994; Stemmer, Nature 370, 389-391, 1994). Since then, various methods have been introduced, each of which has advantages and limitations depending upon the targeted genes and procedure. In this chapter, a novel alternative directed evolution method which combines mutagenesis PCR with dITP and fragmentation by endonuclease V is described. The kanamycin resistance gene is used as a reporter gene to verify the novel method for directed evolution. This method for directed evolution has been demonstrated to be efficient, reproducible, and easy to manipulate in practice.

  15. Improved antimicrobial activity of Pediococcus acidilactici against Salmonella Gallinarum by UV mutagenesis and genome shuffling.

    Science.gov (United States)

    Han, Geon Goo; Song, Ahn Ah; Kim, Eun Bae; Yoon, Seong-Hyun; Bok, Jin-Duck; Cho, Chong-Su; Kil, Dong Yong; Kang, Sang-Kee; Choi, Yun-Jaie

    2017-07-01

    Pediococcus acidilactici is a widely used probiotic, and Salmonella enterica serovar Gallinarum (SG) is a significant pathogen in the poultry industry. In this study, we improved the antimicrobial activity of P. acidilactici against SG using UV mutation and genome shuffling (GS). To improve antimicrobial activity against SG, UV mutagenesis was performed against wild-type P. acidilactici (WT), and five mutants showed improved antimicrobial activity. To further improve antimicrobial activity, GS was performed on five UV mutants. Following GS, four mutants showed improved antimicrobial activity compared with the UV mutants and WT. The antimicrobial activity of GS1 was highest among the mutants; however, the activity was reduced when the culture supernatant was treated with proteinase K, suggesting that the improved antimicrobial activity is due to a proteinous substance such as bacteriocin. To validate the activity of GS1 in vivo, we designed multi-species probiotics and performed broiler feeding experiments. Groups consisted of no treatment (NC), avilamycin-treated (PC), probiotic group 1 containing WT (T1), and probiotic group 2 containing GS1 (T2). In broiler feeding experiments, coliform bacteria were significantly reduced in T2 compared with NC, PC, and T1. The cecal microbiota was modulated and pathogenic bacteria were reduced by GS1 oral administration. In this study, GS1 showed improved antimicrobial activity against SG in vitro and reduced pathogenic bacteria in a broiler feeding experiment. These results suggest that GS1 can serve as an efficient probiotic, as an alternative to antibiotics in the poultry industry.

  16. Forward genetic screening for regulators involved in cholesterol synthesis using validation-based insertional mutagenesis.

    Directory of Open Access Journals (Sweden)

    Wei Jiang

    Full Text Available Somatic cell genetics is a powerful approach for unraveling the regulatory mechanism of cholesterol metabolism. However, it is difficult to identify the mutant gene(s due to cells are usually mutagenized chemically or physically. To identify important genes controlling cholesterol biosynthesis, an unbiased forward genetics approach named validation-based insertional mutagenesis (VBIM system was used to isolate and characterize the 25-hydroxycholesterol (25-HC-resistant and SR-12813-resistant mutants. Here we report that five mutant cell lines were isolated. Among which, four sterol-resistant mutants either contain a truncated NH2-terminal domain of sterol regulatory element-binding protein (SREBP-2 terminating at amino acids (aa 400, or harbor an overexpressed SREBP cleavage-activating protein (SCAP. Besides, one SR-12813 resistant mutant was identified to contain a truncated COOH-terminal catalytic domain of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase. This study demonstrates that the VBIM system can be a powerful tool to screen novel regulatory genes in cholesterol biosynthesis.

  17. [Dot1 and Set2 Histone Methylases Control the Spontaneous and UV-Induced Mutagenesis Levels in the Saccharomyces cerevisiae Yeasts].

    Science.gov (United States)

    Kozhina, T N; Evstiukhina, T A; Peshekhonov, V T; Chernenkov, A Yu; Korolev, V G

    2016-03-01

    In the Saccharomyces cerevisiae yeasts, the DOT1 gene product provides methylation of lysine 79 (K79) of hi- stone H3 and the SET2 gene product provides the methylation of lysine 36 (K36) of the same histone. We determined that the dot1 and set2 mutants suppress the UV-induced mutagenesis to an equally high degree. The dot1 mutation demonstrated statistically higher sensitivity to the low doses of MMC than the wild type strain. The analysis of the interaction between the dot1 and rad52 mutations revealed a considerable level of spontaneous cell death in the double dot1 rad52 mutant. We observed strong suppression of the gamma-in- duced mutagenesis in the set2 mutant. We determined that the dot1 and set2 mutations decrease the sponta- neous mutagenesis rate in both single and d ouble mutants. The epistatic interaction between the dot1 and set2 mutations and almost similar sensitivity of the corresponding mutants to the different types of DNA damage allow one to conclude that both genes are involved in the control of the same DNA repair pathways, the ho- mologous-recombination-based and the postreplicative DNA repair.

  18. Recovery during radiation and chemical mutagenesis

    International Nuclear Information System (INIS)

    Deen, D.F.

    1975-01-01

    These investigations were directed toward the study of recovery in radiation and chemical mutagenesis in cultured mammalian cells. A mutagenesis system was established in which mutation of V79-17lb Chinese hamster cells to 8-azaguanine resistance was tested. The effects of split dose and postirradiation treatments upon both x-ray and EMS induced mutagenesis were determined. Increasing the cell inoculum by a factor of 5 (from 10 5 to 5 x 10 5 ) decreased both the spontaneous and x-ray induced mutation frequencies by two orders of magnitude. The x-ray induced mutation frequency was found to be higher for those cells allowed to attach for 5 hours before irradiation, in comparison to those allowed to attach for 2 hours. The uv spectrum of 8-azaguanine changes as a function of storage time at low temperature, but not when diluted to either 10 μg/ml or 30 μg/ml and maintained at 37 0 C. The optimal expression time required after irradiation is dose dependent and can be determined from the relationship: E.T. = 1.93(10 -2 )D + 15.5. (E.T. = hours; D = rads). The duration of the optimal expression time can be estimated by summing the cell cycle time and the radiation induced lag time

  19. Retroviral Vectors for Analysis of Viral Mutagenesis and Recombination

    Directory of Open Access Journals (Sweden)

    Jonathan M.O. Rawson

    2014-09-01

    Full Text Available Retrovirus population diversity within infected hosts is commonly high due in part to elevated rates of replication, mutation, and recombination. This high genetic diversity often complicates the development of effective diagnostics, vaccines, and antiviral drugs. This review highlights the diverse vectors and approaches that have been used to examine mutation and recombination in retroviruses. Retroviral vectors for these purposes can broadly be divided into two categories: those that utilize reporter genes as mutation or recombination targets and those that utilize viral genes as targets of mutation or recombination. Reporter gene vectors greatly facilitate the detection, quantification, and characterization of mutants and/or recombinants, but may not fully recapitulate the patterns of mutagenesis or recombination observed in native viral gene sequences. In contrast, the detection of mutations or recombination events directly in viral genes is more biologically relevant but also typically more challenging and inefficient. We will highlight the advantages and disadvantages of the various vectors and approaches used as well as propose ways in which they could be improved.

  20. Directed combinatorial mutagenesis of Escherichia coli for complex phenotype engineering

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Rongming; Liang, Liya; Garst, Andrew D.; Choudhury, Alaksh; Nogué, Violeta Sànchez i.; Beckham, Gregg T.; Gill, Ryan T.

    2018-05-01

    Strain engineering for industrial production requires a targeted improvement of multiple complex traits, which range from pathway flux to tolerance to mixed sugar utilization. Here, we report the use of an iterative CRISPR EnAbled Trackable genome Engineering (iCREATE) method to engineer rapid glucose and xylose co-consumption and tolerance to hydrolysate inhibitors in E. coli. Deep mutagenesis libraries were rationally designed, constructed, and screened to target ~40,000 mutations across 30 genes. These libraries included global and high-level regulators that regulate global gene expression, transcription factors that play important roles in genome-level transcription, enzymes that function in the sugar transport system, NAD(P)H metabolism, and the aldehyde reduction system. Specific mutants that conferred increased growth in mixed sugars and hydrolysate tolerance conditions were isolated, confirmed, and evaluated for changes in genome-wide expression levels. We tested the strain with positive combinatorial mutations for 3-hydroxypropionic acid (3HP) production under high furfural and high acetate hydrolysate fermentation, which demonstrated a 7- and 8-fold increase in 3HP productivity relative to the parent strain, respectively.

  1. Spontaneous mutability and light-induced mutagenesis in Salmonella typhimurium: effects of an R-plasmid

    International Nuclear Information System (INIS)

    Valdivia, L.

    1979-01-01

    The UV-protecting plasmid R46 was transferred by conjugation to a genetically marked mouse-virulent Salmonella typhimurium strain, not derived from LT2; in this host the plasmid conferred UV protection and enhanced UV mutagenesis just as it does in LT2 lines. Tra - derivatives of R46 encountered during transduction retained UV-protecting and mutagenesis-enhancing ability. Stored strains carrying the R46-derived plasmids with strong mutator effect but not UV-protecting had lost most of their original streptomycin resistance but were slightly resistant to spectinomycin; attempts to transfer such plasmids failed. R46 enhanced the weak mutagenic effect of visible light on several his and trp mutants of strain LT2, including some whose frequency of spontaneous reversion was not increased by the plasmid. A mutagenic effect was produced by visible-light irradiation of hisG46(R46), either growing cells or nonmultiplying (histidine-deprived cells at 10 0 C). Presence of catalase or cyanide during irradiation did not prevent mutagenesis, which excludes some hypothetical mechanisms. Visible-light irradiation of hisG46 or hisG46(R46) under strict anaerobiosis had little or no mutagenic effect (controls showed that revertants if produced would have been detected). This is as expected if visible-light irradiation in air causes photodynamic damage to DNA and mutations are produced during error-prone, plasmid-enhanced repair

  2. Site directed spin labeling studies of Escherichia coli dihydroorotate dehydrogenase N-terminal extension

    Energy Technology Data Exchange (ETDEWEB)

    Couto, Sheila G. [Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo, Av. Trabalhador Sao-carlense 400, C.P. 369, 13560-970, Sao Carlos, SP (Brazil); Grupo de Biofisica e Fisica Aplicada a Medicina, Instituto de Fisica, Universidade Federal de Goias, Campus Samambaia, C.P. 131, 74001-970, Goiania, GO (Brazil); Cristina Nonato, M. [Laboratorio de Cristalografia de Proteinas, Faculdade de Ciencias Farmaceuticas de Ribeirao Preto, Universidade de Sao Paulo, Av. do Cafe S/N, 14040-903, Ribeirao Preto, SP (Brazil); Costa-Filho, Antonio J., E-mail: ajcosta@ffclrp.usp.br [Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo, Av. Trabalhador Sao-carlense 400, C.P. 369, 13560-970, Sao Carlos, SP (Brazil); Departamento de Fisica, Faculdade de Filosofia, Ciencias e Letras de Ribeirao Preto, Av. Bandeirantes 3900, 14040-901, Ribeirao Preto, SP (Brazil)

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer EcDHODH is a membrane-associated enzyme and a promising target for drug design. Black-Right-Pointing-Pointer Enzyme's N-terminal extension is responsible for membrane association. Black-Right-Pointing-Pointer N-terminal works as a molecular lid regulating access to the protein interior. -- Abstract: Dihydroorotate dehydrogenases (DHODHs) are enzymes that catalyze the fourth step of the de novo synthesis of pyrimidine nucleotides. In this reaction, DHODH converts dihydroorotate to orotate, using a flavine mononucleotide as a cofactor. Since the synthesis of nucleotides has different pathways in mammals as compared to parasites, DHODH has gained much attention as a promising target for drug design. Escherichia coli DHODH (EcDHODH) is a family 2 DHODH that interacts with cell membranes in order to promote catalysis. The membrane association is supposedly made via an extension found in the enzyme's N-terminal. In the present work, we used site directed spin labeling (SDSL) to specifically place a magnetic probe at positions 2, 5, 19, and 21 within the N-terminal and thus monitor, by using Electron Spin Resonance (ESR), dynamics and structural changes in this region in the presence of a membrane model system. Overall, our ESR spectra show that the N-terminal indeed binds to membranes and that it experiences a somewhat high flexibility that could be related to the role of this region as a molecular lid controlling the entrance of the enzyme's active site and thus allowing the enzyme to give access to quinones that are dispersed in the membrane and that are necessary for the catalysis.

  3. Genetics of Ustilago violacea. I. Carotenoid mutants and carotenogenesis

    International Nuclear Information System (INIS)

    Garber, E.D.; Baird, M.L.; Chapman, D.J.

    1975-01-01

    Wild-type strains of Ustilago violacea produce pink colonies on laboratory medium and yield white, orange, pumpkin, and yellow colonies after uv mutagenesis. The wild-type strains contain neurosporene and lycopene; one orange mutant, γ-carotene; and one yellow mutant, β-carotene. One white mutant had no detectable carotenoids. Diploid colonies heterozygous for wild type and orange, pumpkin, yellow, or white are phenotypically wild type. Diploid colonies heterozygous for yellow and orange are also phenotypically wild type. Diploid colonies heterozygous for white and orange; white and yellow; and white, yellow, and orange are phenotypically light orange, light yellow, and orange-yellow, respectively. The white mutants give a circular complementation map; the color mutants fit a linear complementation map. We propose a multienzyme of four identical dehydrogenases and one or two identical cyclases for carotenogenesis in this species. The white and color mutants represent structural mutations altering the conformation of the dehydrogenase or cyclase, respectively. Furthermore, cyclases may or may not aggregate in association with the dehydrogenase aggregate to form the multienzyme aggregate responsible for the color mutants

  4. Accurate RNA consensus sequencing for high-fidelity detection of transcriptional mutagenesis-induced epimutations.

    Science.gov (United States)

    Reid-Bayliss, Kate S; Loeb, Lawrence A

    2017-08-29

    Transcriptional mutagenesis (TM) due to misincorporation during RNA transcription can result in mutant RNAs, or epimutations, that generate proteins with altered properties. TM has long been hypothesized to play a role in aging, cancer, and viral and bacterial evolution. However, inadequate methodologies have limited progress in elucidating a causal association. We present a high-throughput, highly accurate RNA sequencing method to measure epimutations with single-molecule sensitivity. Accurate RNA consensus sequencing (ARC-seq) uniquely combines RNA barcoding and generation of multiple cDNA copies per RNA molecule to eliminate errors introduced during cDNA synthesis, PCR, and sequencing. The stringency of ARC-seq can be scaled to accommodate the quality of input RNAs. We apply ARC-seq to directly assess transcriptome-wide epimutations resulting from RNA polymerase mutants and oxidative stress.

  5. Mutagenesis Strategies for the Enhancement of Glucose Oxidase Production from Corn Steep Liquor

    International Nuclear Information System (INIS)

    Khalaf, M.A.

    2007-01-01

    During screening of the twenty eight Aspergillus and Penicillium species for GOD production, only A. niger (84) was observed to release high extra (3.15 U ml -1 ) and intracellular (9.30 U mg -l ) GOD activity. Conidia of A. niger S4 were subjected to mutagenesis with UV radiation, nitrous acid, and sodium azide, as a single or combined treatments, and GOD activity was detected with the diffusion plate method. Out of 27 over producing mutants tested in shaken flasks, UVNA54 mutant strain showed the highest level of GOD activity (171 %, higher than the wild type). Using CSL at concentration 25 ml rl as the sol nutrient source, the enzyme activity was increased to 5.16 U ml -1 and 22.40 U mg -1 for extra and intracellular, respectively. Viable cell numbers of Pseudomonas and Salmonella spp. decreased as the concentration of the produced enzyme increased from 1 to 3 U ml -1

  6. Improved inhibitor tolerance in xylose-fermenting yeast Spathaspora passalidarum by mutagenesis and protoplast fusion

    DEFF Research Database (Denmark)

    Hou, Xiaoru; Yao, Shuo

    2012-01-01

    The xylose-fermenting yeast Spathaspora passalidarum showed excellent fermentation performance utilizing glucose and xylose under anaerobic conditions. But this yeast is highly sensitive to the inhibitors such as furfural present in the pretreated lignocellulosic biomass. In order to improve...... from fusion of the protoplasts of S. passalidarum M7 and a robust yeast, Saccharomyces cerevisiae ATCC 96581, were able to grow in 75% WSLQ and produce around 0.4 g ethanol/g consumed xylose. Among the selected hybrid strains, the hybrid FS22 showed the best fermentation capacity in 75% WSLQ...... the inhibitor tolerance of this yeast, a combination of UV mutagenesis and protoplast fusion was used to construct strains with improved performance. Firstly, UVinduced mutants were screened and selected for improved tolerance towards furfural. The most promised mutant, S. passalidarum M7, produced 50% more...

  7. Laser mutagenesis and producing cellulase condition optimization of Trichoderma virid protoplast

    International Nuclear Information System (INIS)

    Chen Shuli; Zhang Qin; Han Jingjing; Lv Jiangtao; Wang Shilong; Yao Side

    2009-01-01

    The protoplast of Trichoderma virid CICC13038 was mutated using Nd:YAG laser of 266 nm light. And a high-cellulase producing strain JG13 was bred by screening with cellulose microcrystalline. Under the condition of 28 degree C, 180 rpm and 72 h of fermentation time, optimal conditions for the celluase ferment by orthogonal experiment were: 2% bran as the carbon source, 1% (NH 4 ) 2 SO 4 as the nitrogen source, 0.5% Tween-80 as a enzyme-promoting agent,and 25 mL of medium volume in a 250 mL bottle. The cellulase activity of the mutant reached 35.68 U/mL, 25.76% higher than that of the original strain under the same conditions. The mutant JG13 has a great potential in industrial production. And it also can be used as the original strain for further mutagenesis to get the strain of higher cellulase activity. (authors)

  8. Phanerochaete mutants with enhanced ligninolytic activity

    International Nuclear Information System (INIS)

    Kakar, S.N.; Perez, A.; Gonzales, J.

    1994-01-01

    In addition to lignin, the white rot fungus Phanerochaete chrysosporium has the ability to degrade a wide spectrum of recalcitrant organo pollutants in soils and aqueous media. Most of the organic compounds are degraded under ligninolytic conditions with the involvement of the extracellular enzymes, lignin peroxidases, and manganese-dependent peroxidases, which are produced as secondary metabolites triggered by conditions of nutrient starvation (e.g., nitrogen limitation). The fungus and its enzymes can thus provide alternative technologies for bioremediation, bio pulping, bio bleaching, and other industrial applications. The efficiency and effectiveness of the fungus can be enhanced by increasing production and secretion of the important enzymes in large quantities and as primary metabolites under enriched conditions. One way this can be achieved is through isolation of mutants that are deregulated, or are hyper producers or super secretors of key enzymes under enriched conditions. Through UV-light and γ-ray mutagenesis, we have isolated a variety of mutants, some of which produce key enzymes of the ligninolytic system under high-nitrogen growth conditions. One of the mutants, 76UV, produced 272 U of lignin peroxidases enzyme activity/L after 9 d under high nitrogen (although the parent strain does not produce this enzyme under these conditions). The mutant and the parent strains produced up to 54 and 62 U/L, respectively, of the enzyme activity under low nitrogen growth conditions during this period. In some experiments, the mutant showed 281 U/L of enzyme activity under high nitrogen after 17 d

  9. Pharmacological and functional characterisation of the wild-type and site-directed mutants of the human H1 histamine receptor stably expressed in CHO cells.

    Science.gov (United States)

    Moguilevsky, N; Varsalona, F; Guillaume, J P; Noyer, M; Gillard, M; Daliers, J; Henichart, J P; Bollen, A

    1995-01-01

    A cDNA clone for the human histamine H1 receptor was isolated from a lung cDNA library and stably expressed in CHO cells. The recombinant receptor protein present in the cell membranes, displayed the functional and binding characteristics of histamine H1 receptors. Mutation of Ser155 to Ala in the fourth transmembrane domain did not significantly change the affinity of the receptor for histamine and H1 antagonists. However, mutation of the fifth transmembrane Asn198 to Ala resulted in a dramatic decrease of the affinity for histamine binding, and for the histamine-induced polyphosphoinositides breakdown, whereas the affinity towards antagonists was not significantly modified. In addition, mutation of another fifth transmembrane amino acid, Thr194 to Ala also diminished, but to a lesser extent, the affinity for histamine. These data led us to propose a molecular model for histamine interaction with the human H1 receptor. In this model, the amide moiety of Asn198 and the hydroxyl group of Thr194 are involved in hydrogen bonding with the nitrogen atoms of the imidazole ring of histamine. Moreover, mutation of Thr194 to Ala demonstrated that this residue is responsible for the discrimination between enantiomers of cetirizine.

  10. Modification of a deoxynivalenol-antigen-mimicking nanobody to improve immunoassay sensitivity by site-saturation mutagenesis.

    Science.gov (United States)

    Qiu, Yu-Lou; He, Qing-Hua; Xu, Yang; Wang, Wei; Liu, Yuan-Yuan

    2016-01-01

    A nanobody (N-28) which can act as a deoxynivalenol (DON) antigen has been generated, and its residues Thr102-Ser106 were identified to bind with anti-DON monoclonal antibody by alanine-scanning mutagenesis. Site-saturation mutagenesis was used to analyze the plasticity of five residues and to improve the sensitivity of the N-28-based immunoassay. After mutagenesis, three mutants were selected by phage immunoassay and were sequenced. The half-maximal inhibitory concentrations of the immunoassay based on mutants N-28-T102Y, N-28-V103L, and N-28-Y105F were 24.49 ± 1.0, 51.83 ± 2.5, and 35.65 ± 1.6 ng/mL, respectively, showing the assay was, respectively, 3.2, 1.5, and 2.2 times more sensitive than the wild-type-based assay. The best mutant, N-28-T102Y, was used to develop a competitive phage ELISA to detect DON in cereals with high specificity and accuracy. In addition, the structural properties of N-28-T102Y and N-28 were investigated, revealing that the affinity of N-28-T102Y decreased because of increased steric hindrance with the large side chain. The lower-binding-affinity antigen mimetic may contribute to the improvement of the sensitivity of competitive immunoassays. These results demonstrate that nanobodies would be a favorable tool for engineering. Moreover, our results have laid a solid foundation for site-saturation mutagenesis of antigen-mimicking nanobodies to improve immunoassay sensitivity for small molecules.

  11. Mutagenesis in sequence encoding of human factor VII for gene therapy of hemophilia

    Directory of Open Access Journals (Sweden)

    B Kazemi

    2009-12-01

    Full Text Available "nBackground: Current treatment of hemophilia which is one of the most common bleeding disorders, involves replacement therapy using concentrates of FVIII and FIX .However, these concentrates have been associated with viral infections and thromboembolic complications and development of antibodies. "nThe use of recombinant human factor VII (rhFVII is effective  for the treatment of patients with  hemophilia A or B, who develop antibodies ( referred as inhibitors against  replacement therapy , because it induces coagulation independent of FVIII and FIX. However, its short half-life and high cost have limited its use. One potential solution to this problem may be the use of FVIIa gene transfer, which would attain continuing therapeutic levels of expression from a single injection. The aim of this study was to engineer a novel hFVII (human FVII gene containing a cleavage site for the intracellular protease and furin, by PCR mutagenesis "nMethods: The sequence encoding light and heavy chains of hFVII, were amplified by using hFVII/pTZ57R and specific primers, separately. The PCR products were cloned in pTZ57R vector. "nResults and discussion: Cloning was confirmed by restriction analysis or PCR amplification using specific primers and plasmid universal primers. Mutagenesis of sequence encoding light and heavy chain was confirmed by restriction enzyme. "nConclusion: In the present study, it was provided recombinant plasmids based on mutant form of DNA encoding light and heavy chains.  Joining mutant form of DNA encoding light chain with mutant heavy chain led to a new variant of hFVII. This variant can be activated by furin and an increase in the proportion of activated form of FVII. This mutant form of hFVII may be used for gene therapy of hemophilia.

  12. High yielding and disease resistant mutants of sorghum in Venezuela

    Energy Technology Data Exchange (ETDEWEB)

    Reinoso, A; Murty, B R; Taborda, F [Faculty of Agronomy, University of Zulia, Maracaibo (Venezuela)

    1987-07-01

    The programme was assisted by IAEA under project VEN/5/005 since 1978. It aims at improvement of plant type, earliness and resistance to Macrophomina in the locally adapted varieties Criollo Rojo Pequeno (CRP) and Criollo Blanco Alto (CBA). The mutagenic treatment consisted of seed irradiation at 20, 30 and 40 kR of gamma rays and chemical mutagenesis using sodium azide followed by 5000 kR gamma radiation. The 16 best mutants were evaluated in multilocation trials during M{sub 6}-M{sub 9} 1981-1984: Mutants from CRP namely 1279, 1543, 1265, 2085, 1251 and 1359 and four mutant from CBA, 109, 467, 469 and 81-1227 were found to be superior to their parents and the existing commercial hybrids. CRP 1279, 1543 and 2085 are already under large scale cultivation by farmers and under process for cultivar certification by the Ministry of Agriculture.

  13. High yielding and disease resistant mutants of sorghum in Venezuela

    International Nuclear Information System (INIS)

    Reinoso, A.; Murty, B.R.; Taborda, F.

    1987-01-01

    The programme was assisted by IAEA under project VEN/5/005 since 1978. It aims at improvement of plant type, earliness and resistance to Macrophomina in the locally adapted varieties Criollo Rojo Pequeno (CRP) and Criollo Blanco Alto (CBA). The mutagenic treatment consisted of seed irradiation at 20, 30 and 40 kR of gamma rays and chemical mutagenesis using sodium azide followed by 5000 kR gamma radiation. The 16 best mutants were evaluated in multilocation trials during M 6 -M 9 1981-1984: Mutants from CRP namely 1279, 1543, 1265, 2085, 1251 and 1359 and four mutant from CBA, 109, 467, 469 and 81-1227 were found to be superior to their parents and the existing commercial hybrids. CRP 1279, 1543 and 2085 are already under large scale cultivation by farmers and under process for cultivar certification by the Ministry of Agriculture

  14. Conformational change in full-length mouse prion: A site-directed spin-labeling study

    International Nuclear Information System (INIS)

    Inanami, Osamu; Hashida, Shukichi; Iizuka, Daisuke; Horiuchi, Motohiro; Hiraoka, Wakako; Shimoyama, Yuhei; Nakamura, Hideo; Inagaki, Fuyuhiko; Kuwabara, Mikinori

    2005-01-01

    The structure of the mouse prion (moPrP) was studied using site-directed spin-labeling electron spin resonance (SDSL-ESR). Since a previous NMR study by Hornemanna et al., [Hornemanna, Korthb, Oeschb, Rieka, Widera, Wuethricha, Glockshubera, Recombinant full-length murine prion protein, mPrP (23-231): purification and spectroscopic characterization, FEBS Lett. 413 (1997) 277-281] has indicated that N96, D143, and T189 in moPrP are localized in a Cu 2+ binding region, Helix1 and Helix2, respectively, three recombinant moPrP mutations (N96C, D143C, and T189C) were expressed in an Escherichia coli system, and then refolded by dialysis under low pH and purified by reverse-phase HPLC. By using the preparation, we succeeded in preserving a target cystein residue without alteration of the α-helix structure of moPrP and were able to apply SDSL-ESR with a methane thiosulfonate spin label to the full-length prion protein. The rotational correlation times (τ) of 1.1, 3.3, and 4.8 ns were evaluated from the X-band ESR spectra at pH 7.4 and 20 deg C for N96R1, D143R1, and T189R1, respectively. τ reflects the fact that the Cu 2+ binding region is more flexible than Helix1 or Helix2. ESR spectra recorded at various temperatures revealed two phases together with a transition point at around 20 deg C in D143R1 and T189R1, but not in N96R1. With the variation of pH from 4.0 to 7.8, ESR spectra of T189R1 at 20 deg C showed a gradual increase of τ from 2.9 to 4.8 ns. On the other hand, the pH-dependent conformational changes in N96R1 and D143R1 were negligible. These results indicated that T189 located in Helix2 possessed a structure sensitive to physiological pH changes; simultaneously, N96 in the Cu 2+ binding region and D143 in Helix1 were conserved

  15. Nevada Test Site-Directed Research and Development, FY 2007 Report

    International Nuclear Information System (INIS)

    Wil Lewis, editor

    2008-01-01

    The Nevada Test Site-Directed Research and Development (SDRD) program completed a very successful year of research and development activities in FY 2007. Twenty-nine new projects were selected for funding this year, and eight projects started in FY 2006 were brought to conclusion. The total funds expended by the SDRD program were $5.67 million, for an average per-project cost of $153 thousand. An external audit conducted in September 2007 verified that appropriate accounting practices were applied to the SDRD program. Highlights for the year included: programmatic adoption of 8 SDRD-developed technologies; the filing of 9 invention disclosures for innovation evolving from SDRD projects; participation in the tri-Lab Laboratory Directed Research and Development (LDRD) and SDRD Symposium that was broadly attended by Nevada Test Site (NTS), National Nuclear Security Administration (NNSA), LDRD, U.S. Department of Homeland Security (DHS), and U.S. Department of Defense (DoD) representatives; peer reviews of all FY 2007 projects; and the successful completion of 37 R and D projects, as presented in this report. In response to a company-wide call, authors throughout the NTS complex submitted 182 proposals for FY 2007 SDRD projects. The SDRD program has seen a dramatic increase in the yearly total of submitted proposals--from 69 in FY 2002 to 182 this year--while the number of projects funded has actually decreased from a program high of 57 in FY 2004. The overall effect of this trend has helped ensure an increasingly competitive program that benefited from a broader set of innovative ideas, making project selection both challenging and rewarding. Proposals were evaluated for technical merit, including such factors as innovation, probability of success, potential benefit, and mission applicability. Authors and reviewers benefited from the use of a shortfalls list entitled the 'NTS Technology Needs Assessment' that was compiled from NTS, National Weapons Laboratory (NWL

  16. Nevada Test Site-Directed Research and Development, FY 2007 Report

    Energy Technology Data Exchange (ETDEWEB)

    Wil Lewis, editor

    2008-02-20

    The Nevada Test Site-Directed Research and Development (SDRD) program completed a very successful year of research and development activities in FY 2007. Twenty-nine new projects were selected for funding this year, and eight projects started in FY 2006 were brought to conclusion. The total funds expended by the SDRD program were $5.67 million, for an average per-project cost of $153 thousand. An external audit conducted in September 2007 verified that appropriate accounting practices were applied to the SDRD program. Highlights for the year included: programmatic adoption of 8 SDRD-developed technologies; the filing of 9 invention disclosures for innovation evolving from SDRD projects; participation in the tri-Lab Laboratory Directed Research and Development (LDRD) and SDRD Symposium that was broadly attended by Nevada Test Site (NTS), National Nuclear Security Administration (NNSA), LDRD, U.S. Department of Homeland Security (DHS), and U.S. Department of Defense (DoD) representatives; peer reviews of all FY 2007 projects; and the successful completion of 37 R&D projects, as presented in this report. In response to a company-wide call, authors throughout the NTS complex submitted 182 proposals for FY 2007 SDRD projects. The SDRD program has seen a dramatic increase in the yearly total of submitted proposals--from 69 in FY 2002 to 182 this year--while the number of projects funded has actually decreased from a program high of 57 in FY 2004. The overall effect of this trend has helped ensure an increasingly competitive program that benefited from a broader set of innovative ideas, making project selection both challenging and rewarding. Proposals were evaluated for technical merit, including such factors as innovation, probability of success, potential benefit, and mission applicability. Authors and reviewers benefited from the use of a shortfalls list entitled the 'NTS Technology Needs Assessment' that was compiled from NTS, National Weapons Laboratory

  17. ENU mutagenesis reveals a novel phenotype of reduced limb strength in mice lacking fibrillin 2.

    Directory of Open Access Journals (Sweden)

    Gaynor Miller

    2010-02-01

    Full Text Available Fibrillins 1 (FBN1 and 2 (FBN2 are components of microfibrils, microfilaments that are present in many connective tissues, either alone or in association with elastin. Marfan's syndrome and congenital contractural arachnodactyly (CCA result from dominant mutations in the genes FBN1 and FBN2 respectively. Patients with both conditions often present with specific muscle atrophy or weakness, yet this has not been reported in the mouse models. In the case of Fbn1, this is due to perinatal lethality of the homozygous null mice making measurements of strength difficult. In the case of Fbn2, four different mutant alleles have been described in the mouse and in all cases syndactyly was reported as the defining phenotypic feature of homozygotes.As part of a large-scale N-ethyl-N-nitrosourea (ENU mutagenesis screen, we identified a mouse mutant, Mariusz, which exhibited muscle weakness along with hindlimb syndactyly. We identified an amber nonsense mutation in Fbn2 in this mouse mutant. Examination of a previously characterised Fbn2-null mutant, Fbn2(fp, identified a similar muscle weakness phenotype. The two Fbn2 mutant alleles complement each other confirming that the weakness is the result of a lack of Fbn2 activity. Skeletal muscle from mutants proved to be abnormal with higher than average numbers of fibres with centrally placed nuclei, an indicator that there are some regenerating muscle fibres. Physiological tests indicated that the mutant muscle produces significantly less maximal force, possibly as a result of the muscles being relatively smaller in Mariusz mice.These findings indicate that Fbn2 is involved in integrity of structures required for strength in limb movement. As human patients with mutations in the fibrillin genes FBN1 and FBN2 often present with muscle weakness and atrophy as a symptom, Fbn2-null mice will be a useful model for examining this aspect of the disease process further.

  18. Characterization of a microalgal mutant for CO_2 biofixation and biofuel production

    International Nuclear Information System (INIS)

    Qi, Feng; Pei, Haiyan; Hu, Wenrong; Mu, Ruimin; Zhang, Shuo

    2016-01-01

    Highlights: • Combination of the isolation using 96-well microplates and traditional UV mutagenesis for screening HCT mutant. • Microalgal mutant Chlorella vulgaris SDEC-3M was screened out by modified UV mutagenesis. • SDEC-3M showed high CO_2 tolerance, high CO_2 requiring and relevant genetic stability. • LCE and carbohydrate content of SDEC-3M were significantly elevated. • SDEC-3M offers a strong candidature as CO_2 biofixation and biofuel production. - Abstract: In the present work, a Chlorella vulgaris mutant, named as SDEC-3M, was screened out through the combination of the isolation using 96-well microplates and traditional UV mutagenesis. Compared with its parent (wild type), the growth of SDEC-3M preferred higher CO_2 (15% v/v) environment to ambient air (0.038% CO_2 (v/v)), indicating that the mutant qualified with good tolerance and growth potential under high level CO_2 (high CO_2 tolerance) but was defective in directly utilizing the low level CO_2 (high CO_2 requiring). The genetic stability under ambient air and high level CO_2 was confirmed by a continuous cultivation for five generations. Higher light conversion efficiency (14.52%) and richer total carbohydrate content (42.48%) demonstrated that both solar energy and CO_2 were more effectively productively fixed into carbohydrates for bioethanol production than the parent strain. The mutant would benefit CO_2 biofixation from industrial exhaust gas to mitigate of global warming and promote biofuel production to relieve energy shortage.

  19. Simple-MSSM: a simple and efficient method for simultaneous multi-site saturation mutagenesis.

    Science.gov (United States)

    Cheng, Feng; Xu, Jian-Miao; Xiang, Chao; Liu, Zhi-Qiang; Zhao, Li-Qing; Zheng, Yu-Guo

    2017-04-01

    To develop a practically simple and robust multi-site saturation mutagenesis (MSSM) method that enables simultaneously recombination of amino acid positions for focused mutant library generation. A general restriction enzyme-free and ligase-free MSSM method (Simple-MSSM) based on prolonged overlap extension PCR (POE-PCR) and Simple Cloning techniques. As a proof of principle of Simple-MSSM, the gene of eGFP (enhanced green fluorescent protein) was used as a template gene for simultaneous mutagenesis of five codons. Forty-eight randomly selected clones were sequenced. Sequencing revealed that all the 48 clones showed at least one mutant codon (mutation efficiency = 100%), and 46 out of the 48 clones had mutations at all the five codons. The obtained diversities at these five codons are 27, 24, 26, 26 and 22, respectively, which correspond to 84, 75, 81, 81, 69% of the theoretical diversity offered by NNK-degeneration (32 codons; NNK, K = T or G). The enzyme-free Simple-MSSM method can simultaneously and efficiently saturate five codons within one day, and therefore avoid missing interactions between residues in interacting amino acid networks.

  20. Development of a Dunaliella tertiolecta Strain with Increased Zeaxanthin Content Using Random Mutagenesis.

    Science.gov (United States)

    Kim, Minjae; Ahn, Junhak; Jeon, Hancheol; Jin, EonSeon

    2017-06-21

    Zeaxanthin is a xanthophyll pigment that is regarded as one of the best carotenoids for the prevention and treatment of degenerative diseases. In the worldwide natural products market, consumers prefer pigments that have been produced from biological sources. In this study, a Dunaliella tertiolecta strain that has 10-15% higher cellular zeaxanthin content than the parent strain ( zea1 ), was obtained by random mutagenesis using ethyl methanesulfonate (EMS) as a mutagen. This mutant, mp3 , was grown under various salinities and light intensities to optimize culture conditions for zeaxanthin production. The highest cellular zeaxanthin content was observed at 1.5 M NaCl and 65-85 μmol photons·m -2 ·s -1 , and the highest daily zeaxanthin productivity was observed at 0.6 M NaCl and 140-160 μmol photons·m -2 ·s -1 . The maximal yield of zeaxanthin from mp3 in fed-batch culture was 8 mg·L -1 , which was obtained at 0.6 M NaCl and 140-160 μmol photons·m -2 ·s -1 . These results suggest that random mutagenesis with EMS is useful for generating D. tertiolecta strains with increased zeaxanthin content, and also suggest optimal culture conditions for the enhancement of biomass and zeaxanthin production by the zeaxanthin accumulating mutant strains.

  1. Random Mutagenesis of the Aspergillus oryzae Genome Results in Fungal Antibacterial Activity

    Directory of Open Access Journals (Sweden)

    Cory A. Leonard

    2013-01-01

    Full Text Available Multidrug-resistant bacteria cause severe infections in hospitals and communities. Development of new drugs to combat resistant microorganisms is needed. Natural products of microbial origin are the source of most currently available antibiotics. We hypothesized that random mutagenesis of Aspergillus oryzae would result in secretion of antibacterial compounds. To address this hypothesis, we developed a screen to identify individual A. oryzae mutants that inhibit the growth of Methicillin-resistant Staphylococcus aureus (MRSA in vitro. To randomly generate A. oryzae mutant strains, spores were treated with ethyl methanesulfonate (EMS. Over 3000 EMS-treated A. oryzae cultures were tested in the screen, and one isolate, CAL220, exhibited altered morphology and antibacterial activity. Culture supernatant from this isolate showed antibacterial activity against Methicillin-sensitive Staphylococcus aureus, MRSA, and Pseudomonas aeruginosa, but not Klebsiella pneumonia or Proteus vulgaris. The results of this study support our hypothesis and suggest that the screen used is sufficient and appropriate to detect secreted antibacterial fungal compounds resulting from mutagenesis of A. oryzae. Because the genome of A. oryzae has been sequenced and systems are available for genetic transformation of this organism, targeted as well as random mutations may be introduced to facilitate the discovery of novel antibacterial compounds using this system.

  2. Random Mutagenesis of the Aspergillus oryzae Genome Results in Fungal Antibacterial Activity

    Science.gov (United States)

    Leonard, Cory A.; Brown, Stacy D.; Hayman, J. Russell

    2013-01-01

    Multidrug-resistant bacteria cause severe infections in hospitals and communities. Development of new drugs to combat resistant microorganisms is needed. Natural products of microbial origin are the source of most currently available antibiotics. We hypothesized that random mutagenesis of Aspergillus oryzae would result in secretion of antibacterial compounds. To address this hypothesis, we developed a screen to identify individual A. oryzae mutants that inhibit the growth of Methicillin-resistant Staphylococcus aureus (MRSA) in vitro. To randomly generate A. oryzae mutant strains, spores were treated with ethyl methanesulfonate (EMS). Over 3000 EMS-treated A. oryzae cultures were tested in the screen, and one isolate, CAL220, exhibited altered morphology and antibacterial activity. Culture supernatant from this isolate showed antibacterial activity against Methicillin-sensitive Staphylococcus aureus, MRSA, and Pseudomonas aeruginosa, but not Klebsiella pneumonia or Proteus vulgaris. The results of this study support our hypothesis and suggest that the screen used is sufficient and appropriate to detect secreted antibacterial fungal compounds resulting from mutagenesis of A. oryzae. Because the genome of A. oryzae has been sequenced and systems are available for genetic transformation of this organism, targeted as well as random mutations may be introduced to facilitate the discovery of novel antibacterial compounds using this system. PMID:23983696

  3. Random Mutagenesis of the Aspergillus oryzae Genome Results in Fungal Antibacterial Activity.

    Science.gov (United States)

    Leonard, Cory A; Brown, Stacy D; Hayman, J Russell

    2013-01-01

    Multidrug-resistant bacteria cause severe infections in hospitals and communities. Development of new drugs to combat resistant microorganisms is needed. Natural products of microbial origin are the source of most currently available antibiotics. We hypothesized that random mutagenesis of Aspergillus oryzae would result in secretion of antibacterial compounds. To address this hypothesis, we developed a screen to identify individual A. oryzae mutants that inhibit the growth of Methicillin-resistant Staphylococcus aureus (MRSA) in vitro. To randomly generate A. oryzae mutant strains, spores were treated with ethyl methanesulfonate (EMS). Over 3000 EMS-treated A. oryzae cultures were tested in the screen, and one isolate, CAL220, exhibited altered morphology and antibacterial activity. Culture supernatant from this isolate showed antibacterial activity against Methicillin-sensitive Staphylococcus aureus, MRSA, and Pseudomonas aeruginosa, but not Klebsiella pneumonia or Proteus vulgaris. The results of this study support our hypothesis and suggest that the screen used is sufficient and appropriate to detect secreted antibacterial fungal compounds resulting from mutagenesis of A. oryzae. Because the genome of A. oryzae has been sequenced and systems are available for genetic transformation of this organism, targeted as well as random mutations may be introduced to facilitate the discovery of novel antibacterial compounds using this system.

  4. Novel patterns of ultraviolet mutagenesis and Weigle reactivation in Staphylococcus aureus and phage phi II

    International Nuclear Information System (INIS)

    Thompson, J.K.; Hart, M.G.R.

    1981-01-01

    The effects of u.v. irradiation on the survival of Staphylococcus aureus and its phage phi11 were studied. The recA and uvr mutations affected their survival like synonymous mutations in Escherichia coli. Weigle reactivation (W-reactivation) of phi11 occurred in wild-type S. aureus and in a uvr mutant. Reactivation was recA-dependent and was accompanied by u.v.-induced mutagenesis in a temperature-sensitive mutant of phi11. Bacterial mutation to streptomycin resistance was induced by u.v. and was also recA-dependent. In S. aureus, as in E. coli, u.v. was a more effective mutagen in the uvr genetic background. However, a dose-squared response for u.v.-induced mutation of wild-type and uvr strains of S. aureus to streptomycin resistance, and of a trp auxotroph to tryptophan independence, was found only with u.v. doses below 1 J m -2 . In relation to the Uvr mechanism of DNA repair, u.v. mutagenesis in S. aureus may involve both repairable and non-repairable lesions. As in E. Coli, the uvr genetic background reduced the u.v. dose required for maximal W-reactivation of u.v.-irradiated phage. However, there was no enhancement of W-reactivation by post-irradiation broth incubation of S. aureus. The results are compatible with a non-inducible mechanism for this phenomenon. (author)

  5. Site-directed fluorescence labeling of a membrane protein with BADAN: probing protein topology and local environment

    NARCIS (Netherlands)

    Koehorst, R.B.M.; Spruijt, R.B.; Hemminga, M.A.

    2008-01-01

    We present a new and simple method based on site-directed fluorescence labeling using the BADAN label that allows to examine protein-lipid interactions in great detail. We apply this approach to a membrane-embedded mainly -helical reference protein, the M13 major coat protein, of which in a

  6. Phenotypic, genetic and molecular characterization of a maize low phytic acid mutant (lpa241)

    DEFF Research Database (Denmark)

    Pilu, R.; Panzeri, D.; Gavazzi, G.

    2003-01-01

    -nutritional factor for animals, and isolation of maize low phytic acid (lpa) mutants provides a novel approach to study its biochemical pathway and to tackle the nutritional problems associated with it. Following chemical mutagenesis of pollen, we have isolated a viable recessive mutant named lpa 241 showing about...... 90% reduction of phytic acid and about a tenfold increase in seed-free phosphate content. Although germination rate was decreased by about 30% compared to wild-type, developement of mutant plants was apparentely unaffected. The results of the genetic, biochemical and molecular characterization...

  7. Different efficiency of UmuDC and MucAB proteins in UV light induced mutagenesis in Escherichia coli

    International Nuclear Information System (INIS)

    Blanco, M.; Herrera, G.; Aleixandre, V.

    1986-01-01

    Two multicopy plasmids carrying either the umuDC or the mucAB operon were used to compare the efficiency of UmuDC and MucAB proteins in UV mutagenesis of Escherichia coli K12. It was found that in recA + uvr + bacteria, plasmid pIC80, mucAB + mediated UV mutagenesis more efficiently than did plasmid pSE 117, umuDC + . A similar result was obtained in lex A51(Def) cells, excluding the possibility that this was due to a differential regulation by LexA of the umuDC and mucAB operons. We conclude that some structural characteristic of the UmuDC and MucAB proteins determines their different efficiency in UV mutagenesis. This characteristic could be also responsible for the observation that in the recA430 mutant, pIC80 but no pSE117 can mediate UV mutagenesis. In the recAS142 mutant pIC80 also promoted UV mutagenesis more efficiently than pSE117. In this mutant, the recombination proficiency, the protease activity toward LexA and the mutation frequency were increased by the presence of adenine in the medium. In recA + uvrB5 bacteria, plasmid pSE117, umuDC caused both an increase in UV sensitivity as well as a reduction in the mutation frequency. These negative effects resulting from the overproduction of UmuDC proteins were higher in recA142 uvrB5 than in recA + uvrB5 cells. In contrast, overproduction of MucAB proteins in excision-deficient bacteria containing pIC80 led to a large increase in the mutation frequency. We suggest that the functional differences between UmuDC and MucAB proteins might be due to their different dependence on the direct role of RecA protease in UV mutagenesis. (orig.)

  8. Fluorometric method of quantitative cell mutagenesis

    Science.gov (United States)

    Dolbeare, F.A.

    1980-12-12

    A method for assaying a cell culture for mutagenesis is described. A cell culture is stained first with a histochemical stain, and then a fluorescent stain. Normal cells in the culture are stained by both the histochemical and fluorescent stains, while abnormal cells are stained only by the fluorescent stain. The two stains are chosen so that the histochemical stain absorbs the wavelengths that the fluorescent stain emits. After the counterstained culture is subjected to exciting light, the fluorescence from the abnormal cells is detected.

  9. Chemical rescue of the post-translationally carboxylated lysine mutant of allantoinase and dihydroorotase by metal ions and short-chain carboxylic acids.

    Science.gov (United States)

    Ho, Ya-Yeh; Huang, Yen-Hua; Huang, Cheng-Yang

    2013-04-01

    Bacterial allantoinase (ALLase) and dihydroorotase (DHOase) are members of the cyclic amidohydrolase family. ALLase and DHOase possess similar binuclear metal centers in the active site in which two metals are bridged by a post-translationally carboxylated lysine. In this study, we determined the effects of carboxylated lysine and metal binding on the activities of ALLase and DHOase. Although DHOase is a metalloenzyme, purified DHOase showed high activity without additional metal supplementation in a reaction mixture or bacterial culture. However, unlike DHOase, ALLase had no activity unless some specific metal ions were added to the reaction mixture or culture. Substituting the metal binding sites H59, H61, K146, H186, H242, or D315 with alanine completely abolished the activity of ALLase. However, the K146C, K146D and K146E mutants of ALLase were still active with about 1-6% activity of the wild-type enzyme. These ALLase K146 mutants were found to have 1.4-1.7 mol metal per mole enzyme subunit, which may indicate that they still contained the binuclear metal center in the active site. The activity of the K146A mutant of the ALLase and the K103A mutant of DHOase can be chemically rescued by short-chain carboxylic acids, such as acetic, propionic, and butyric acids, but not by ethanol, propan-1-ol, and imidazole, in the presence of Co2+ or Mn2+ ions. However, the activity was still ~10-fold less than that of wild-type ALLase. Overall, these results indicated that the 20 natural basic amino acid residues were not sufficiently able to play the role of lysine. Accordingly, we proposed that during evolution, the post-translational modification of carboxylated lysine in the cyclic amidohydrolase family was selected for promoting binuclear metal center self-assembly and increasing the nucleophilicity of the hydroxide at the active site for enzyme catalysis. This kind of chemical rescue combined with site-directed mutagenesis may also be used to identify a binuclear metal

  10. Production of Trichoderma strains with pesticide-polyresistance by mutagenesis and protoplast fusion.

    Science.gov (United States)

    Hatvani, Lóránt; Manczinger, László; Kredics, László; Szekeres, András; Antal, Zsuzsanna; Vágvölgyi, Csaba

    2006-01-01

    The sensitivity of two cold-tolerant Trichoderma strains belonging to the species T. harzianum and T. atroviride was determined to a series of pesticides widely used in agriculture. From the 16 pesticides tested, seven fungicides: copper sulfate, carbendazim, mancozeb, tebuconazole, imazalil, captan and thiram inhibited colony growth of the test strains significantly with minimal inhibitory concentrations of 300, 0.4, 50, 100, 100, 100 and 50 microg/ml, respectively. Mutants resistant to carbendazim and tebuconazole were produced from both wild type strains by means of UV-mutagenesis. The cross-resistance capabilities and in vitro antagonistic properties of the mutants were determined. Carbendazim-resistant mutants showed total cross-resistance to benomyl and thiabendazole at a concentration of 20 microg/ml. Intraspecific protoplast fusion was carried out between carbendazim- and tebuconazole-resistant mutants of both parental strains, and putative haploid recombinants with stable resistance to both pesticides were produced in the case of T. atroviride. These pesticide-polyresistant progenies are potential candidates for application in an integrated pest management system.

  11. Transposon mutagenesis in Mycoplasma hyopneumoniae using a novel mariner-based system for generating random mutations.

    Science.gov (United States)

    Maglennon, Gareth A; Cook, Beth S; Deeney, Alannah S; Bossé, Janine T; Peters, Sarah E; Langford, Paul R; Maskell, Duncan J; Tucker, Alexander W; Wren, Brendan W; Rycroft, Andrew N

    2013-12-21

    Mycoplasma hyopneumoniae is the cause of enzootic pneumonia in pigs, a chronic respiratory disease associated with significant economic losses to swine producers worldwide. The molecular pathogenesis of infection is poorly understood due to the lack of genetic tools to allow manipulation of the organism and more generally for the Mycoplasma genus. The objective of this study was to develop a system for generating random transposon insertion mutants in M. hyopneumoniae that could prove a powerful tool in enabling the pathogenesis of infection to be unraveled. A novel delivery vector was constructed containing a hyperactive C9 mutant of the Himar1 transposase along with a mini transposon containing the tetracycline resistance cassette, tetM. M. hyopneumoniae strain 232 was electroporated with the construct and tetM-expressing transformants selected on agar containing tetracycline. Individual transformants contained single transposon insertions that were stable upon serial passages in broth medium. The insertion sites of 44 individual transformants were determined and confirmed disruption of several M. hyopneumoniae genes. A large pool of over 10 000 mutants was generated that should allow saturation of the M. hyopneumoniae strain 232 genome. This is the first time that transposon mutagenesis has been demonstrated in this important pathogen and could be generally applied for other Mycoplasma species that are intractable to genetic manipulation. The ability to generate random mutant libraries is a powerful tool in the further study of the pathogenesis of this important swine pathogen.

  12. The role of misrepair in experimental mutagenesis

    International Nuclear Information System (INIS)

    Yamaguchi, Hikoyuki

    1983-01-01

    Mutagenesis is classified as being either mispairing occuring at the time of chromosome replication or as being misrepair occuring when damaged nucleotides are converted to the paired ones. In the cell population of the root meristem of barley which is considered to be steadystate, the possibility of the selective segregation of the newly synthesized and the older template strands of DNA at mitosis was studied by the incorporation of 3 H-thymidine. Stochastic removal of de novo synthesized DNA strand to a zone of non-dividing cell population was unlikely. Thus, it has been concluded that there is special mechanisms for protecting the integrity of the DNA by removing the mispairing lesions. Barly seeds first exposed to a low level γ-radiation before treating with ethylmethane sulfonate. Survival rate of M 1 plants as well as mutation frequency of M 2 were higher for the combined treatment than for single treatment of chemical mutagen. A mutational response of barley cell to DNA damaging agent was much affected by a previous treatment with mutagens. It is suggested that in the experimental mutagenesis misrepair plays rather an important role than mispairing. (author)

  13. Promising rice mutants

    International Nuclear Information System (INIS)

    Hakim, L.; Azam, M.A.; Miah, A.J.; Mansur, M.A.; Akanda, H.R.

    1988-01-01

    Two induced mutants namely, Mut NS 1 (tall) and Mut NS 5 (semi-dwarf) derived from rice variety Nizersail were evaluated for various agronomic characters at four locations in Bangladesh. Both the mutants matured about three weeks earlier and yielded significantly higher than the parent variety Nizersail. (author). 3 tabs., 9 refs

  14. Mutant heterosis in rice

    International Nuclear Information System (INIS)

    1987-01-01

    In the variety TKM6 a high yielding semidwarf mutant has been induced. This TKM6 mutant was used in test crosses with a number of other varieties and mutants to examine the extent of heterosis of dwarfs in rice and to select superior crosses. An excerpt of the published data is given. It appears from the backcross of the mutant with its original variety, that an increase in number of productive tillers occurs in the hybrid, leading to a striking grain yield increase, while the semi-dwarf culm length (the main mutant character) reverts to the normal phenotype. In the cross with IR8 on the other hand, there is only a minimal increase in tiller number but a substantial increase in TGW leading to more than 30% yield increase over the better parent

  15. Enhancement of Lutein Production in Chlorella sorokiniana (Chorophyta by Improvement of Culture Conditions and Random Mutagenesis

    Directory of Open Access Journals (Sweden)

    Maria Angeles Vargas

    2011-09-01

    Full Text Available Chlorella sorokiniana has been selected for lutein production, after a screening of thirteen species of microalgae, since it showed both a high content in this carotenoid and a high growth rate. The effects of several nutritional and environmental factors on cell growth and lutein accumulation have been studied. Maximal specific growth rate and lutein content were attained at 690 µmol photons m−2 s−1, 28 °C, 2 mM NaCl, 40 mM nitrate and under mixotrophic conditions. In general, optimal conditions for the growth of this strain also lead to maximal lutein productivity. High lutein yielding mutants of C. sorokiniana have been obtained by random mutagenesis, using N-methyl-N′-nitro-nitrosoguanidine (MNNG as a mutagen and selecting mutants by their resistance to the inhibitors of the carotenogenic pathway nicotine and norflurazon. Among the mutants resistant to the herbicides, those exhibiting both high content in lutein and high growth rate were chosen. Several mutants exhibited higher contents in this carotenoid than the wild type, showing, in addition, either a similar or higher growth rate than the latter strain. The mutant MR-16 exhibited a 2.0-fold higher volumetric lutein content than that of the wild type, attaining values of 42.0 mg L−1 and mutants DMR-5 and DMR-8 attained a lutein cellular content of 7.0 mg g−1 dry weight. The high lutein yield exhibited by C. sorokiniana makes this microalga an excellent candidate for the production of this commercially interesting pigment.

  16. Genetic Characterization of the Carotenoid Biosynthetic Pathway in Methylobacterium extorquens AM1 and Isolation of a Colorless Mutant

    OpenAIRE

    Van Dien, Stephen J.; Marx, Christopher J.; O'Brien, Brooke N.; Lidstrom, Mary E.

    2003-01-01

    Genomic searches were used to reconstruct the putative carotenoid biosynthesis pathway in the pink-pigmented facultative methylotroph Methylobacterium extorquens AM1. Four genes for putative phytoene desaturases were identified. A colorless mutant was obtained by transposon mutagenesis, and the insertion was shown to be in one of the putative phytoene desaturase genes. Mutations in the other three did not affect color. The tetracycline marker was removed from the original transposon mutant, r...

  17. UV-induced reversion of his4 frameshift mutations in rad6, rev1, and rev3 mutants of yeast.

    Science.gov (United States)

    Lawrence, C W; O'Brien, T; Bond, J

    1984-01-01

    The UV-induced reversion of two his4 frameshift alleles was much reduced in rad6 mutants of Saccharomyces cerevisiae, an observation that is consistent with the hypothesis that RAD6 function is required for the induction of all types of genetic alteration in misrepair mutagenesis. The reversion of these his4 alleles, together with two others of the same type, was also reduced in rev1 and rev3 mutant strains; in these, however, the extent of the reduction varied considerably with test allele used, in a manner analogous to the results in these strains for base repair substitution test alleles. The general features of UV-induced frameshift and substitution mutagenesis therefore appear quite similar, indicating that they may depend on related processes. If this conclusion is correct, greater attention must be given to integrating models which account for the production of nucleotide additions and deletions into those concerning misrepair mutagenesis.

  18. Changes in transcript levels of starch hydrolysis genes and raising citric acid production via carbon ion irradiation mutagenesis of Aspergillus niger.

    Directory of Open Access Journals (Sweden)

    Wei Hu

    Full Text Available The filamentous ascomycete Aspergillus niger is well known for its ability to accumulate citric acid for the hydrolysis of starchy materials. To improve citric acid productivity, heavy ion beam mutagenesis was utilized to produce mutant A.niger strains with enhanced production of citric acid in this work. It was demonstrated that a mutant HW2 with high concentration of citric acid was isolated after carbon ion irradiation with the energy of 80Mev/μ, which was obvious increase higher than the original strain from liquefied corn starch as a feedstock. More importantly, with the evidence from the expression profiles of key genes and enzyme activity involved in the starch hydrolysis process between original strain and various phenotype mutants, our results confirmed that different transcript levels of key genes involving in starch hydrolysis process between original strain and mutants could be a significant contributor to different citric acid concentration in A.niger, such as, amyR and glaA, which therefore opened a new avenue for constructing genetically engineered A.niger mutants for high-yield citric acid accumulation in the future. As such, this work demonstrated that heavy ion beam mutagenesis presented an efficient alternative strategy to be developed to generate various phenotype microbe species mutants for functional genes research.

  19. Changes in transcript levels of starch hydrolysis genes and raising citric acid production via carbon ion irradiation mutagenesis of Aspergillus niger.

    Science.gov (United States)

    Hu, Wei; Li, Wenjian; Chen, Hao; Liu, Jing; Wang, Shuyang; Chen, Jihong

    2017-01-01

    The filamentous ascomycete Aspergillus niger is well known for its ability to accumulate citric acid for the hydrolysis of starchy materials. To improve citric acid productivity, heavy ion beam mutagenesis was utilized to produce mutant A.niger strains with enhanced production of citric acid in this work. It was demonstrated that a mutant HW2 with high concentration of citric acid was isolated after carbon ion irradiation with the energy of 80Mev/μ, which was obvious increase higher than the original strain from liquefied corn starch as a feedstock. More importantly, with the evidence from the expression profiles of key genes and enzyme activity involved in the starch hydrolysis process between original strain and various phenotype mutants, our results confirmed that different transcript levels of key genes involving in starch hydrolysis process between original strain and mutants could be a significant contributor to different citric acid concentration in A.niger, such as, amyR and glaA, which therefore opened a new avenue for constructing genetically engineered A.niger mutants for high-yield citric acid accumulation in the future. As such, this work demonstrated that heavy ion beam mutagenesis presented an efficient alternative strategy to be developed to generate various phenotype microbe species mutants for functional genes research.

  20. Changes in transcript levels of starch hydrolysis genes and raising citric acid production via carbon ion irradiation mutagenesis of Aspergillus niger

    Science.gov (United States)

    Li, Wenjian; Chen, Hao; Liu, Jing; Wang, Shuyang; Chen, Jihong

    2017-01-01

    The filamentous ascomycete Aspergillus niger is well known for its ability to accumulate citric acid for the hydrolysis of starchy materials. To improve citric acid productivity, heavy ion beam mutagenesis was utilized to produce mutant A.niger strains with enhanced production of citric acid in this work. It was demonstrated that a mutant HW2 with high concentration of citric acid was isolated after carbon ion irradiation with the energy of 80Mev/μ, which was obvious increase higher than the original strain from liquefied corn starch as a feedstock. More importantly, with the evidence from the expression profiles of key genes and enzyme activity involved in the starch hydrolysis process between original strain and various phenotype mutants, our results confirmed that different transcript levels of key genes involving in starch hydrolysis process between original strain and mutants could be a significant contributor to different citric acid concentration in A.niger, such as, amyR and glaA, which therefore opened a new avenue for constructing genetically engineered A.niger mutants for high-yield citric acid accumulation in the future. As such, this work demonstrated that heavy ion beam mutagenesis presented an efficient alternative strategy to be developed to generate various phenotype microbe species mutants for functional genes research. PMID:28650980

  1. Predicting resistance by mutagenesis: lessons from 45 years of MBC resistance

    Directory of Open Access Journals (Sweden)

    Nichola J. Hawkins

    2016-11-01

    Full Text Available When a new fungicide class is introduced, it is useful to anticipate the resistance risk in advance, attempting to predict both risk level and potential mechanisms. One tool for the prediction of resistance risk is laboratory selection for resistance, with the mutational supply increased through UV or chemical mutagenesis. This enables resistance to emerge more rapidly than in the field, but may produce mutations that would not emerge under field conditions.The methyl-benzimidazole carbamates (MBCs were the first systemic single-site agricultural fungicides, and the first fungicides affected by rapid evolution of target-site resistance. MBC resistance has now been reported in over 90 plant pathogens in the field, and laboratory mutants have been studied in nearly 30 species.The most common field mutations, including β-tubulin E198A/K/G, F200Y and L240F, have all been identified in laboratory mutants. However, of 28 mutations identified in laboratory mutants, only nine have been reported in the field. Therefore, the predictive value of mutagenesis studies would be increased by understanding which mutations are likely to emerge in the field.Our review of the literature indicates that mutations with high resistance factors, and those found in multiple species, are more likely to be reported in the field. However, there are many exceptions, possibly due to fitness penalties. Whether a mutation occurred in the same species appears less relevant, perhaps because β-tubulin is highly conserved so functional constraints are similar across all species. Predictability of mutations in other target sites will depend on the level and conservation of constraints.

  2. Radiation mutagenesis from molecular and genetic points of view

    International Nuclear Information System (INIS)

    Chen, D.J.C.; Park, M.S.; Okinaka, R.T.; Jaberaboansari, A.

    1993-01-01

    An important biological effect of ionizing radiation on living organisms is mutation induction. Mutation is also a primary event in the etiology of cancer. The chain events, from induction of DNA damage by ionizing radiation to processing of these damages by the cellular repair/replication machinery, that lead to mutation are not well understood. The development of quantitative methods for measuring mutation-induction, such as the HPRT system, in cultured mammalian cells has provided an estimate of the mutagenic effects of x- and γ-rays as wen as of high LET radiation in both rodent and human cells. A major conclusion from these mutagenesis data is that high LET radiation induces mutations more efficiently than g-rays. Molecular analysis of mutations induced by sparsely ionizing radiation have detected major structural alterations at the gene level. Our molecular results based on analysis of human HPRT deficient mutants induced by γ-rays, α-particles and high energy charged particles indicate that higher LET radiation induce more total and large deletion mutations than γ-rays. Utilizing molecular techniques including polymerase chain reaction (PCR), Single-strand conformation polymorphism (SSCP), denaturing gradient gel electrophoresis (DGGE) and Direct DNA sequencing, mutational spectra induced by ionizing radiation have been compared in different cell systems. Attempts have also been made to determine the mutagenic potential and the nature of mutation induced by low dose rate γ-rays. Defective repair, in the form of either a diminished capability for repair or inaccurate repair, can lead to increased risk of heritable mutations from radiation exposure. Therefore, the effects of DNA repair deficiency on the mutation induction in mammalian cells is reviewed

  3. Combinatorial effect of mutagenesis and medium component optimization on Bacillus amyloliquefaciens antifungal activity and efficacy in eradicating Botrytis cinerea.

    Science.gov (United States)

    Masmoudi, Fatma; Ben Khedher, Saoussen; Kamoun, Amel; Zouari, Nabil; Tounsi, Slim; Trigui, Mohamed

    2017-04-01

    This work is directed towards Bacillus amyloliquefaciens strain BLB371 metabolite production for biocontrol of fungal phytopathogens. In order to maximise antifungal metabolite production by this strain, two approaches were combined: random mutagenesis and medium component optimization. After three rounds of mutagenesis, a hyper active mutant, named M3-7, was obtained. It produces 7 fold more antifungal metabolites (1800AU/mL) than the wild strain in MC medium. A hybrid design was applied to optimise a new medium to enhance antifungal metabolite production by M3-7. The new optimized medium (35g/L of peptone, 32.5g/L of sucrose, 10.5g/L of yeast extract, 2.4g/L of KH 2 PO 4 , 1.3g/L of MgSO 4 and 23mg/L of MnSO 4 ) achieved 1.62 fold enhancement in antifungal compound production (3000AU/mL) by this mutant, compared to that achieved in MC medium. Therefore, combinatory effect of these two approaches (mutagenesis and medium component optimization) allowed 12 fold improvement in antifungal activity (from 250UA/mL to 3000UA/mL). This improvement was confirmed against several phytopathogenic fungi with an increase of MIC and MFC over than 50%. More interestingly, a total eradication of gray mold was obtained on tomato fruits infected by Botrytis cinerea and treated by M3-7, compared to those treated by BLB371. From the practical point of view, combining random mutagenesis and medium optimization could be considered as an excellent tool for obtaining promising biological products useful against phytopathogenic fungi. Copyright © 2017 Elsevier GmbH. All rights reserved.

  4. Cancerous hyper-mutagenesis in p53 genes is possibly associated with transcriptional bypass of DNA lesions

    International Nuclear Information System (INIS)

    Rodin, S.N.; Rodin, A.S.; Juhasz, A.; Holmquist, G.P.

    2002-01-01

    The database of tumor-associated p53 base substitutions includes about 5% of tumors with two or more base substitutions. These multiplet base substitutions in one tumor are evidence for hyper-mutagenesis. Our retrospective analysis of this database indicates that most multiplets arise from a single transient hyper-mutagenic event in one cell that subsequently proliferated into a clonal tumor. The hyper-mutagenesis, 1.8x10 -4 substitutions per base pair, is detected as multiple mutations in p53 genes of tumors. It requires one strongly tumorigenic p53 substitution, usually missense, called the driver mutation. The occurrence frequencies of ancillary base substitutions, those that hitch-hike along with the driver mutation, are independent of their amino acid coding properties. In this respect, they act like neutral mutations. In support of this neutrality, we find that the frequency distribution of hitch-hiking CpG transitions along the p53 exons, their mutational spectrum, approximates the spontaneous pre-selection mutational spectrum of most human tissues and is correlated with the mutational spectrum of p53 pseudogenes in mammalian germ cells. The driver substitutions of multiplets predominantly originate along the transcribed strand while the ancillary substitutions tend to originate along the non-transcribed strand. This data is consistent with a model of time-dependent mutagenesis in non-dividing stem cells for generating multiple strand-asymmetric p53 mutations in tumors. By transcriptional bypass of DNA lesions with concomitant misincorporation, transcriptional mutagenesis generates a transient mutant p53 mRNA. The associated mutant p53 protein could allow the host cell a growth advantage, release from G 1 -arrest. Then, during subsequent DNA replication and misreading of the same lesion, the damaged base along the transcribed DNA strand would serve as the origin of the p53 base substitution that drives the hyper-mutagenic event leading to tumors with

  5. Structural characterization of bioengineered α-D-glucans produced by mutant glucansucrase GTF180 enzymes of lactobacillus reuteri strain 180

    NARCIS (Netherlands)

    Leeuwen, S.S. van; Kralj, S.; Eeuwema, W.; Gerwig, G.J.; Dijkhuizen, L.; Kamerling, J.P.

    2009-01-01

    Mutagenesis of specific amino acid residues of the glucansucrase (GTF180) enzyme from Lactobacillus reuteri strain 180 yielded 12 mutant enzymes that produced modified exopolysaccharides (mEPSs) from sucrose. Ethanol-precipitated and purified mEPSs were subjected to linkage analysis, Smith

  6. Structural Characterization of Bioengineered alpha-D-Glucans Produced by Mutant Glucansucrase GTF180 Enzymes of Lactobacillus reuteri Strain 180

    NARCIS (Netherlands)

    van Leeuwen, Sander S.; Kralj, Slavko; Eeuwema, Wieger; Gerwig, Gerrit J.; Dijkhuizen, Lubbert; Kamerling, Johannis P.

    Mutagenesis of specific amino acid residues of the glucansucrase (GTF180) enzyme from Lactobacillus reuteri strain 180 yielded 12 mutant enzymes that produced modified exopolysaccharides (mEPSs) from sucrose. Ethanol-precipitated and purified mEPSs were subjected to linkage analysis, Smith

  7. Genetic study on salt tolerance involving mutants of barley

    International Nuclear Information System (INIS)

    Patil, S.S.; Sharma, R.P.

    1990-01-01

    Full text: Cultivar 'R-16' was subjected to mutagenesis through gamma irradiation, EMS and their combination treatments. M 6 lines differing in salt tolerance were utilised along with untreated control to generate 8x3 diallel crosses. The magnitude of combining ability variances indicated a relatively prominent role of SCA variance (non additive). The values of GCA effects indicate high breeding value of the mutant M-3 for salt tolerance based on measuring shoot length and root length of 10 day old seedlings. (author)

  8. Dominant negative umuD mutations decreasing RecA-mediated cleavage suggest roles for intact UmuD in modulation of SOS mutagenesis

    International Nuclear Information System (INIS)

    Battista, J.R.; Ohta, Toshihiro; Nohmi, Takehiko; Sun, W.; Walker, G.C.

    1990-01-01

    The products of the SOS-regulated umuDC operon are required for most UV and chemical mutagenesis in Escherichia coli. The UmuD protein shares homology with a family of proteins that includes LexA and several bacteriophage repressors. UmuD is posttranslationally activated for its role n mutagenesis by a RecA-mediated proteolytic cleavage that yields UmuD'. A set of missense mutants of umuD was isolated and shown to encode mutant UmuD proteins that are deficient in RecA-mediated cleavage in vivo. Most of these mutations are dominant to umuD + with respect to UV mutagenesis yet do not interfere with SOS induction. Although both UmuD and UmuD' form homodimers, the authors provide evidence that they preferentially form heterodimers. The relationship of UmuD to LexA, λ repressor, and other members of the family of proteins is discussed and possible roles intact UmuD in modulating SOS mutagenesis are discussed

  9. Biochemical analyses and molecular modeling explain the functional loss of 17β-hydroxysteroid dehydrogenase 3 mutant G133R in three Tunisian patients with 46, XY Disorders of Sex Development.

    Science.gov (United States)

    Engeli, Roger T; Rhouma, Bochra Ben; Sager, Christoph P; Tsachaki, Maria; Birk, Julia; Fakhfakh, Faiza; Keskes, Leila; Belguith, Neila; Odermatt, Alex

    2016-01-01

    Mutations in the HSD17B3 gene resulting in 17β-hydroxysteroid dehydrogenase type 3 (17β-HSD3) deficiency cause 46, XY Disorders of Sex Development (46, XY DSD). Approximately 40 different mutations in HSD17B3 have been reported; only few mutant enzymes have been mechanistically investigated. Here, we report novel compound heterozygous mutations in HSD17B3, composed of the nonsense mutation C206X and the missense mutation G133R, in three Tunisian patients from two non-consanguineous families. Mutants C206X and G133R were constructed by site-directed mutagenesis and expressed in HEK-293 cells. The truncated C206X enzyme, lacking part of the substrate binding pocket, was moderately expressed and completely lost its enzymatic activity. Wild-type 17β-HSD3 and mutant G133R showed comparable expression levels and intracellular localization. The conversion of Δ4-androstene-3,17-dione (androstenedione) to testosterone was almost completely abolished for mutant G133R compared with wild-type 17β-HSD3. To obtain further mechanistic insight, G133 was mutated to alanine, phenylalanine and glutamine. G133Q and G133F were almost completely inactive, whereas G133A displayed about 70% of wild-type activity. Sequence analysis revealed that G133 on 17β-HSD3 is located in a motif highly conserved in 17β-HSDs and other short-chain dehydrogenase/reductase (SDR) enzymes. A homology model of 17β-HSD3 predicted that arginine or any other bulky residue at position 133 causes steric hindrance of cofactor NADPH binding, whereas substrate binding seems to be unaffected. The results indicate an essential role of G133 in the arrangement of the cofactor binding pocket, thus explaining the loss-of-function of 17β-HSD3 mutant G133R in the patients investigated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Role of RecA protein in untargeted UV mutagenesis of bacteriophage lambda: evidence for the requirement for the dinB gene

    International Nuclear Information System (INIS)

    Brotcorne-Lannoye, A.; Maenhaut-Michel, G.

    1986-01-01

    Untargeted UV mutagenesis of bacteriophage lambda--i.e., the increased recovery of lambda mutants when unirradiated lambda infects UV-irradiated Escherichia coli--is thought to be mediated by a transient decrease in DNA replication fidelity, generating mutations in the newly synthesized strands. Using the bacteriophage lambda cI857----lambda c mutation system, we provide evidence that the RecA protein, shown previously to be required for this mutagenic pathway, is no longer needed when the LexA protein is inactivated by mutation. We suggest that the error-prone DNA replication responsible for UV-induced untargeted mutagenesis is turned on by the presence of replication-blocking lesions in the host cell DNA and that the RecA protein is required only to derepress the relevant din gene(s). This is in contrast to mutagenesis of irradiated bacteria or irradiated phage lambda, in which activated RecA protein has a second role in mutagenesis in addition to the cleavage of the LexA protein. Among the tested din genes, the dinB gene product (in addition to the uvrA and uvrB gene products) was found to be required for untargeted mutagenesis of bacteriophage lambda. To our knowledge, a phenotype associated with the dinB gene has not been reported previously

  11. Mycothiol-Deficient Mycobacterium smegmatis Mutants Are Hypersensitive to Alkylating Agents, Free Radicals, and Antibiotics

    Science.gov (United States)

    Rawat, Mamta; Newton, Gerald L.; Ko, Mary; Martinez, Gladys J.; Fahey, Robert C.; Av-Gay, Yossef

    2002-01-01

    Mycothiol (MSH; 1d-myo-inosityl 2-[N-acetyl-l-cysteinyl]amido-2-deoxy-α-d-glucopyranoside) is the major low-molecular-weight thiol produced by mycobacteria. Mutants of Mycobacterium smegmatis mc2155 deficient in MSH production were produced by chemical mutagenesis as well as by transposon mutagenesis. One chemical mutant (mutant I64) and two transposon mutants (mutants Tn1 and Tn2) stably deficient in MSH production were isolated by screening for reduced levels of MSH content. The MSH contents of transposon mutants Tn1 and Tn2 were found to be less than 0.1% that of the parent strain, and the MSH content of I64 was found to be 1 to 5% that of the parent strain. All three strains accumulated 1d-myo-inosityl 2-deoxy-α-d-glucopyranoside to levels 20- to 25-fold the level found in the parent strain. The cysteine:1d-myo-inosityl 2-amino-2-deoxy-α-d-glucopyranoside ligase (MshC) activities of the three mutant strains were ≤2% that of the parent strain. Phenotypic analysis revealed that these MSH-deficient mutants possess increased susceptibilities to free radicals and alkylating agents and to a wide range of antibiotics including erythromycin, azithromycin, vancomycin, penicillin G, rifamycin, and rifampin. Conversely, the mutants possess at least 200-fold higher levels of resistance to isoniazid than the wild type. We mapped the mutation in the chemical mutant by sequencing the mshC gene and showed that a single amino acid substitution (L205P) is responsible for reduced MSH production and its associated phenotype. Our results demonstrate that there is a direct correlation between MSH depletion and enhanced sensitivity to toxins and antibiotics. PMID:12384335

  12. High efficiency of targeted mutagenesis in arabidopsis via meiotic promoter-driven expression of Cas9 endonuclease

    KAUST Repository

    Eid, Ayman

    2016-05-28

    Key message: The use of a meiosis I-specific promoter increased the efficiency of targeted mutagenesis and will facilitate the manipulation of homologous recombination. Abstract: The CRISPR/Cas9 system has been harnessed for targeted engineering of eukaryotic genomes, including plants; however, CRISPR/Cas9 efficiency varies considerably in different plant tissues and species. In Arabidopsis, the generation of homozygous or bi-allelic mutants in the first (T1) generation is inefficient. Here, we used specific promoters to drive the expression of Cas9 during meiosis to maximize the efficiency of recovering heritable mutants in T1 plants. Our data reveal that the use of a promoter active in meiosis I resulted in high-efficiency (28 %) recovery of targeted mutants in the T1 generation. Moreover, this method enabled efficient simultaneous targeting of three genes for mutagenesis. Taken together, our results show that the use of meiosis-specific promoters will improve methods for functional genomic analysis and studying the molecular underpinnings of homologous recombination. © 2016, Springer-Verlag Berlin Heidelberg.

  13. Semi-dwarf mutants in triticale and wheat breeding

    International Nuclear Information System (INIS)

    Driscoll, C.J.

    1984-01-01

    The triticale lines Beagle and DR-IRA have been subjected to ionizing irradiation and chemical mutagenesis in order to produce semi-dwarf mutants. Beagle is 100 cm tall and DR-IRA 80 cm under average field conditions. A bulk then pedigree method is currently represented by 158 single plots of M 6 (or in some cases M 7 ) mutants that are from 5 to 35 cm shorter than the control variety. The shortest mutants are 65 cm in height. Forty of these mutants are also earlier flowering than the control varieties. Replicated yield testing will be conducted on confirmed mutants in 1983. Response to gibberellic acid of these mutants will also be determined. The Cornerstone male-sterility mutant (ms1c) on chromosome arm 4Aα has been combined with the GA-insensitive/reduced height gene Gai/Rht1 which is also on chromosome arm 4Aα. The ms1c mutant has also been combined with Gai/Rht2 on chromosome 4D and with both Gai/Rht1 and Gai/Rht2. The combination ms1c and Gai/Rht1 has been chosen as the basis of a composite cross. Thirteen varieties were tested with GA 3 and seven (Warigal, Aroona, Oxley, Banks, Avocet, Matipo and Toquifen) which contain Gai/Rht1 were crossed with ms1c Gai/Rht1 and entered into an interpollinating F 2 . The entire composite is homozygous for this semi-dwarf allele and selection will be practiced for increased height on a GA-insensitive background. (author)

  14. Characterization of highly efficient heavy-ion mutagenesis in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Kazama Yusuke

    2011-11-01

    Full Text Available Abstract Background Heavy-ion mutagenesis is recognised as a powerful technology to generate new mutants, especially in higher plants. Heavy-ion beams show high linear energy transfer (LET and thus more effectively induce DNA double-strand breaks than other mutagenic techniques. Previously, we determined the most effective heavy-ion LET (LETmax: 30.0 keV μm-1 for Arabidopsis mutagenesis by analysing the effect of LET on mutation induction. However, the molecular structure of mutated DNA induced by heavy ions with LETmax remains unclear. Knowledge of the structure of mutated DNA will contribute to the effective exploitation of heavy-ion beam mutagenesis. Results Dry Arabidopsis thaliana seeds were irradiated with carbon (C ions with LETmax at a dose of 400 Gy and with LET of 22.5 keV μm-1 at doses of 250 Gy or 450 Gy. The effects on mutation frequency and alteration of DNA structure were compared. To characterise the structure of mutated DNA, we screened the well-characterised mutants elongated hypocotyls (hy and glabrous (gl and identified mutated DNA among the resulting mutants by high-resolution melting curve, PCR and sequencing analyses. The mutation frequency induced by C ions with LETmax was two-fold higher than that with 22.5 keV μm-1 and similar to the mutation frequency previously induced by ethyl methane sulfonate. We identified the structure of 22 mutated DNAs. Over 80% of the mutations caused by C ions with both LETs were base substitutions or deletions/insertions of less than 100 bp. The other mutations involved large rearrangements. Conclusions The C ions with LETmax showed high mutation efficiency and predominantly induced base substitutions or small deletions/insertions, most of which were null mutations. These small alterations can be determined by single-nucleotide polymorphism (SNP detection systems. Therefore, C ions with LETmax might be useful as a highly efficient reverse genetic system in conjunction with SNP detection

  15. Selection of high hectolitre weight mutants of winter wheat

    International Nuclear Information System (INIS)

    Crowley, C.; Jones, P.

    1989-01-01

    Grain quality in wheat includes hectolitre weight (HLW) besides protein content and thousand-grain weight (TGW). The British winter wheat variety ''Guardian'' has a very high yield potential. Although the long grain of ''Guardian'' results in a desirable high TGW the HLW is too low. To select mutants exhibiting increased HLW the character was first analyzed to identify traits that could more easily be screened for using M 2 seeds. In comparison of 6 wheat cultivars, correlation analyses with HLW resulted in coefficients of -0.86 (grain length, L:P 2 seeds for shorter, less prolate grains. Mutagenesis was carried out using EMS sulphonate (1.8 or 3.6%), sodium azide (2 or 20 mM) or X-rays (7.5 or 20 kR). 69 M 2 grains with altered shape were selected. Examination of the M 3 progeny confirmed 6 grain-shape mutants, most of them resulting from EMS treatment (Table). Two of the mutants showed TGW values significantly below the parental variety, but three mutants exhibited HLW and TGW values significantly greater than those of the parental variety. Microplot yield trails on selected M 3 lines are in progress. The influence of physical grain characteristics on HLW offers prospects for mechanical fractionation of large M 2 populations. The application of gravity separators (fractionation on the basis of grain density) and sieves (fractionation on the basis of grain length) in screening mutants possessing improved grain quality is being investigated

  16. Site-directed mutational analysis of structural interactions of low molecule compounds binding to the N-terminal 8 kDa domain of DNA polymerase β

    International Nuclear Information System (INIS)

    Murakami, Shizuka; Kamisuki, Shinji; Takata, Kei-ichi; Kasai, Nobuyuki; Kimura, Seisuke; Mizushina, Yoshiyuki; Ohta, Keisuke; Sugawara, Fumio; Sakaguchi, Kengo

    2006-01-01

    We previously reported the mode of inhibition of DNA polymerase β (pol. β) by long chain fatty acids and a bile acid, involving binding analyses to the N-terminal 8-kDa DNA binding domain. Here we describe a site-directed mutational analysis in which the key amino acids (L11, K35, H51, K60, L77, and T79), which are direct interaction sites in the domain, were substituted with K, A, A, A, K, and A, respectively. And their pol. β interactions with a C24-long chain fatty acid, nervonic acid (NA), and a bile acid, lithocholic acid (LCA), were investigated by gel mobility shift assay and NMR spectroscopy. In the case of K35A, there was complete loss of DNA binding activity while K60A hardly has any activity. In contrast the other mutations had no appreciable effects. Thus, K35 and K60 are key amino acid sites for binding to template DNA. The DNA binding activities of L11K, H51A, and T79A as well as the wild type were inhibited by NA to the same extent. T79A demonstrated a disturbed interaction with LCA. 1 H- 15 N HSQC NMR analysis indicated that despite their many similarities, the wild-type and the mutant proteins displayed some significant chemical shift differences. Not only were the substituted amino acid residues three-dimensionally shifted, but some amino acids which are positioned far distant from the key amino acids showed a shift. These results suggest that the interaction surface was significantly distorted with the result that LCA could not bind to the domain. These findings confirm our previous biochemical and 3D structural proposals concerning inhibition by NA and LCA

  17. Charged particle mutagenesis at low dose and fluence in mouse splenic T cells

    Energy Technology Data Exchange (ETDEWEB)

    Grygoryev, Dmytro [Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239 (United States); Gauny, Stacey [Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Lasarev, Michael; Ohlrich, Anna [Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239 (United States); Kronenberg, Amy [Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Turker, Mitchell S., E-mail: turkerm@ohsu.edu [Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239 (United States); Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239 (United States)

    2016-06-15

    Highlights: • Densely ionizing forms of space radiation induce mutations in splenic T cells at low fluence. • Large interstitial deletions and discontinuous LOH patterns are radiation signature mutations. • Space radiation mutagenesis suggests a cancer risk from deep space travel. - Abstract: High-energy heavy charged particles (HZE ions) found in the deep space environment can significantly affect human health by inducing mutations and related cancers. To better understand the relation between HZE ion exposure and somatic mutation, we examined cell survival fraction, Aprt mutant frequencies, and the types of mutations detected for mouse splenic T cells exposed in vivo to graded doses of densely ionizing {sup 48}Ti ions (1 GeV/amu, LET = 107 keV/μm), {sup 56}Fe ions (1 GeV/amu, LET = 151 keV/μm) ions, or sparsely ionizing protons (1 GeV, LET = 0.24 keV/μm). The lowest doses for {sup 48}Ti and {sup 56}Fe ions were equivalent to a fluence of approximately 1 or 2 particle traversals per nucleus. In most cases, Aprt mutant frequencies in the irradiated mice were not significantly increased relative to the controls for any of the particles or doses tested at the pre-determined harvest time (3–5 months after irradiation). Despite the lack of increased Aprt mutant frequencies in the irradiated splenocytes, a molecular analysis centered on chromosome 8 revealed the induction of radiation signature mutations (large interstitial deletions and complex mutational patterns), with the highest levels of induction at 2 particles nucleus for the {sup 48}Ti and {sup 56}Fe ions. In total, the results show that densely ionizing HZE ions can induce characteristic mutations in splenic T cells at low fluence, and that at least a subset of radiation-induced mutant cells are stably retained despite the apparent lack of increased mutant frequencies at the time of harvest.

  18. Effectiveness of gamma-ray chronic irradiation on in vitro mutagenesis in crops

    International Nuclear Information System (INIS)

    Shigeki Nagatomi

    2002-01-01

    Effects of chronic or acute irradiations were compared using in vitro culture on inducing the mutation in model crops. In chrysanthemum, combined method with irradiation and in vitro culture can solve the problem of chimera formation in induced mutants, and provided 10 times greater mutation frequency than usual plant irradiation. The chronic culture method showed the widest color spectrum, whereas, the acute culture indicated a relatively low mutation rate and a very limited flower color spectrum in chrysanthemum. Flower color mutation of the regenerators could be induced more from petals and buds than from leaves. These facts are supposed that the gene loci fully expressed on floral organs may be unstable for mutation by mutagenesis or culture. It may be likely to control a direction of desired mutation on using explants with specific gene loci activated. In sugarcane, the chronic culture method extended quantitative characteristics of regenerated clonal lines toward not only the negative but positive direction. On the other hand, the acute culture method showed lower quantitative mutation as the irradiation dose rose. In chronic irradiation, regenerated mutant lines in sugarcane indicate generally little decrease in chromosome number and wider variations with relatively less damage. In acute irradiation, regenerated mutant lines show remarkable decrease of chromosome numbers in sugarcane mutant lines as the irradiation dose rose. There is close positive correlation between chromosome number and biomass of each mutant line. The chromosome number estimation is a proper indicator to monitor damage of adopted irradiation methods. Possible reason why the chronic culture methods indicate higher frequency and wider spectrum on mutation is demonstrated. . Problems solved and prospect of chronic irradiation and in vitro techniques are discussed. (Author)

  19. Novel gene function revealed by mouse mutagenesis screens for models of age-related disease.

    Science.gov (United States)

    Potter, Paul K; Bowl, Michael R; Jeyarajan, Prashanthini; Wisby, Laura; Blease, Andrew; Goldsworthy, Michelle E; Simon, Michelle M; Greenaway, Simon; Michel, Vincent; Barnard, Alun; Aguilar, Carlos; Agnew, Thomas; Banks, Gareth; Blake, Andrew; Chessum, Lauren; Dorning, Joanne; Falcone, Sara; Goosey, Laurence; Harris, Shelley; Haynes, Andy; Heise, Ines; Hillier, Rosie; Hough, Tertius; Hoslin, Angela; Hutchison, Marie; King, Ruairidh; Kumar, Saumya; Lad, Heena V; Law, Gemma; MacLaren, Robert E; Morse, Susan; Nicol, Thomas; Parker, Andrew; Pickford, Karen; Sethi, Siddharth; Starbuck, Becky; Stelma, Femke; Cheeseman, Michael; Cross, Sally H; Foster, Russell G; Jackson, Ian J; Peirson, Stuart N; Thakker, Rajesh V; Vincent, Tonia; Scudamore, Cheryl; Wells, Sara; El-Amraoui, Aziz; Petit, Christine; Acevedo-Arozena, Abraham; Nolan, Patrick M; Cox, Roger; Mallon, Anne-Marie; Brown, Steve D M

    2016-08-18

    Determining the genetic bases of age-related disease remains a major challenge requiring a spectrum of approaches from human and clinical genetics to the utilization of model organism studies. Here we report a large-scale genetic screen in mice employing a phenotype-driven discovery platform to identify mutations resulting in age-related disease, both late-onset and progressive. We have utilized N-ethyl-N-nitrosourea mutagenesis to generate pedigrees of mutagenized mice that were subject to recurrent screens for mutant phenotypes as the mice aged. In total, we identify 105 distinct mutant lines from 157 pedigrees analysed, out of which 27 are late-onset phenotypes across a range of physiological systems. Using whole-genome sequencing we uncover the underlying genes for 44 of these mutant phenotypes, including 12 late-onset phenotypes. These genes reveal a number of novel pathways involved with age-related disease. We illustrate our findings by the recovery and characterization of a novel mouse model of age-related hearing loss.

  20. Mechanisms of mutagenesis in human cells exposed to 55 MeV protons

    Science.gov (United States)

    Gauny, S.; Wiese, C.; Kronenberg, A.

    2001-01-01

    Protons represent the major type of charged particle radiation in spaceflight environments. The purpose of this study was to assess mutations arising in human lymphoid cells exposed to protons. Mutations were quantitated at the thymidine kinase (TK1) locus in cell lines derived from the same donor: TK6 cells (wt TP53) and WTK1 cells (mutant TP53). WTK1 cells were much more susceptible to mutagenesis following proton exposure than TK6 cells. Intragenic deletions were observed among early-arising TK1 mutants in TK6 cells, but not in WTK1 cells where all of the mutants arose by LOH. Deletion was the predominant mode of LOH in TK6 cells, while allelic recombination was the major mode of LOH in WTK1 cells. Deletions were of variable lengths, from <1 cM to 64 cM, while mutations that arose by allelic recombination often extended to the telomere. In summary, proton exposures elicited many types of mutations at an autosomal locus in human cells. Most involved large scale loss of genetic information, either through deletion or by recombination.

  1. TALEN-mediated targeted mutagenesis of fatty acid desaturase 2 (FAD2) in peanut (Arachis hypogaea L.) promotes the accumulation of oleic acid.

    Science.gov (United States)

    Wen, Shijie; Liu, Hao; Li, Xingyu; Chen, Xiaoping; Hong, Yanbin; Li, Haifen; Lu, Qing; Liang, Xuanqiang

    2018-05-01

    A first creation of high oleic acid peanut varieties by using transcription activator-like effecter nucleases (TALENs) mediated targeted mutagenesis of Fatty Acid Desaturase 2 (FAD2). Transcription activator like effector nucleases (TALENs), which allow the precise editing of DNA, have already been developed and applied for genome engineering in diverse organisms. However, they are scarcely used in higher plant study and crop improvement, especially in allopolyploid plants. In the present study, we aimed to create targeted mutagenesis by TALENs in peanut. Targeted mutations in the conserved coding sequence of Arachis hypogaea fatty acid desaturase 2 (AhFAD2) were created by TALENs. Genetic stability of AhFAD2 mutations was identified by DNA sequencing in up to 9.52 and 4.11% of the regeneration plants at two different targeted sites, respectively. Mutation frequencies among AhFAD2 mutant lines were significantly correlated to oleic acid accumulation. Genetically, stable individuals of positive mutant lines displayed a 0.5-2 fold increase in the oleic acid content compared with non-transgenic controls. This finding suggested that TALEN-mediated targeted mutagenesis could increase the oleic acid content in edible peanut oil. Furthermore, this was the first report on peanut genome editing event, and the obtained high oleic mutants could serve for peanut breeding project.

  2. Heat shock and herpes virus: enhanced reactivation without untargeted mutagenesis

    International Nuclear Information System (INIS)

    Lytle, C.D.; Carney, P.G.

    1988-01-01

    Enhanced reactivation of Ultraviolet-irradiated virus has been reported to occur in heat-shocked host cells. Since enhanced virus reactivation is often accompanied by untargeted mutagenesis, we investigated whether such mutagenesis would occur for herpes simplex virus (HSV) in CV-1 monkey kidney cells subjected to heat shock. In addition to expressing enhanced reactivation, the treated cells were transiently more susceptible to infection by unirradiated HSV. No mutagenesis of unirradiated HSV was found whether infection occurred at the time of increased susceptibility to infection or during expression of enhanced viral reactivation

  3. Characterization of three Agrobacterium tumefaciens avirulent mutants with chromosomal mutations that affect induction of vir genes.

    Science.gov (United States)

    Metts, J; West, J; Doares, S H; Matthysse, A G

    1991-02-01

    Three Agrobacterium tumefaciens mutants with chromosomal mutations that affect bacterial virulence were isolated by transposon mutagenesis. Two of the mutants were avirulent on all hosts tested. The third mutant, Ivr-211, was a host range mutant which was avirulent on Bryophyllum diagremontiana, Nicotiana tabacum, N. debneyi, N. glauca, and Daucus carota but was virulent on Zinnia elegans and Lycopersicon esculentum (tomato). That the mutant phenotype was due to the transposon insertion was determined by cloning the DNA containing the transposon insertion and using the cloned DNA to replace the wild-type DNA in the parent bacterial strain by marker exchange. The transposon insertions in the three mutants mapped at three widely separated locations on the bacterial chromosome. The effects of the mutations on various steps in tumor formation were examined. All three mutants showed no alteration in binding to carrot cells. However, none of the mutants showed any induction of vir genes by acetosyringone under conditions in which the parent strain showed vir gene induction. When the mutant bacteria were examined for changes in surface components, it was found that all three of the mutants showed a similar alteration in lipopolysaccharide (LPS). LPS from the mutants was larger in size and more heavily saccharide substituted than LPS from the parent strain. Two of the mutants showed no detectable alteration in outer membrane and periplasmic space proteins. The third mutant, Ivr-225, was missing a 79-kDa surface peptide. The reason(s) for the failure of vir gene induction in these mutants and its relationship, if any, to the observed alteration in LPS are unknown.

  4. Up-regulation of granzyme B and perforin by staphylococcal enterotoxin C2 mutant induces enhanced cytotoxicity in Hepa1–6 cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guojun [Institute of Applied Ecology, Chinese Academy of Sciences, No.72 Wenhua Road Shenhe Dis., Shenyang, Liaoning (China); University of Chinese Academy of Sciences, Beijing (China); Xu, Mingkai, E-mail: mkxu@iae.ac.cn [Institute of Applied Ecology, Chinese Academy of Sciences, No.72 Wenhua Road Shenhe Dis., Shenyang, Liaoning (China); Zhang, Huiwen [Institute of Applied Ecology, Chinese Academy of Sciences, No.72 Wenhua Road Shenhe Dis., Shenyang, Liaoning (China); Song, Yubo [Institute of Applied Ecology, Chinese Academy of Sciences, No.72 Wenhua Road Shenhe Dis., Shenyang, Liaoning (China); University of Chinese Academy of Sciences, Beijing (China); Wang, Jian; Zhang, Chenggang [Institute of Applied Ecology, Chinese Academy of Sciences, No.72 Wenhua Road Shenhe Dis., Shenyang, Liaoning (China)

    2016-12-15

    Staphylococcal enterotoxin C2 (SEC2), a member of bacterial superantigen, is one of the most potent known activators of T lymphocytes. With this property, SEC2 has already been used in clinic as a tumor immunotherapy agent in China. To increase the antitumor activity, a SEC2 mutant named ST-4 (GKVTG102-106WWH) with amino acid substitutions in T cell receptor (TCR)-binding domain was generated by site-directed mutagenesis, and the molecular mechanism of the enhanced antitumor activity was investigated. Results showed that ST-4 could activate much more Vβ 8.2 and 8.3 T cells and NK cells compared with SEC2, and exhibited significantly enhanced immunocyte stimulation and antitumor activity in vitro. The synthetic peptide sequencing the residues of mutant TCR-binding domain could competitively inhibit the immunocyte stimulation activity of ST-4. Most importantly, ST-4 up-regulated granzyme B and perforin at both mRNA and protein levels. We also found that expression of proapoptotic proteins cytochrome c, BAX and activation of caspase-3, 9 was up-regulated, and antiapoptotic protein Bcl-xL was down-regulated in the treatment with either ST-4 or SEC2. When granzyme B inhibitor or perforin inhibitor is presented, tumor cell viability was significantly rescued. Taken together, we demonstrate that increased ST-4-TCR recognition contributed to massive T cells and NK cells activation. These activated cells released up-regulated granzyme B and perforin, which induced the enhanced tumor cells apoptosis by mitochondrial apoptotic pathway, and ultimately led to enhanced tumor cell growth inhibition. ST-4 may be a promising candidate for antitumor clinic usage in future. - Highlights: • We obtained a SEC2 mutant ST-4 with enhanced superantigen and antitumor activity. • Increased ST-4-TCR recognition contributed to massive T cells and NK cells activation. • Up-regulated GzmB and PRF1 in T cell by ST-4 induced enhanced tumor cells apoptosis. • Enhanced tumor cell apoptosis

  5. Active site-directed alkylation of Na+-K+-ATPase by digitalis sulphonate derivatives of different lipophilicity.

    Science.gov (United States)

    Fricke, U.; Klaus, W.; Rogatti, M.

    1981-01-01

    1 Sulphonate derivatives of k-strophanthidin and digitoxigenin were tested as active site-directed labels of Na+-K+-adenosine triphosphatase (Na+-ATPase) from guinea-pig heart. 2 Lipophilicity ranged between P = 93 for strophanthidin-3-tosyloxy-acetate (STA) and P = 3028 for digitoxigenin-3-tosyloxy-acetate (DTA). 3 Although the alkylating moiety of STA and DTA was identical, the reversibility of Na+-K+-ATPase inhibition varied appreciably (82% and 35% respectively). 4 It is concluded that lipophilicity contributes considerably to the irreversible binding of alkylating cardiotonic steroids to myocardial Na+-K+-ATPase. PMID:6261865

  6. Mutagenesis at the ad-3A and ad-3B loci in haploid UV-sensitive strains of Neurospora crassa. Pt. 2

    International Nuclear Information System (INIS)

    Serres, F.J. de

    1980-01-01

    UV-induced inactivation and induction of mutations at the ad-3A and ad-3B loci of Neurospora crassa have been compared among 7 different UV-sensitive strains and a standard wild-type strain. The 7 strains show varying degrees of sensitivity to UV-induced inactivation, with the relative sensitivity being: uvs-2 > uvs-3 > uvs-4 > uvs-6 > upr-1 > uvs-5 > uvs-1. Studies on the induction of ad-3 mutants by UV show that the 2 excision-repair deficient mutants uvs-2 and upr-1 exhibit enhanced ad-3 mutant frequencies, while uvs-4 and uvs-5 exhibit reduced ad-3 mutant frequencies, and uvs-3 completely eliminates UV mutagenesis. The ad-3 mutation-induction curves obtained with uvs-1 or uvs-6 are not significantly different from that found with the wild-type strain. (orig.)

  7. Random mutagenesis of aspergillus niger and process optimization for enhanced production of glucose oxidase

    International Nuclear Information System (INIS)

    Haq, I.; Nawaz, A.; Mukhtar, A.N.H.; Mansoor, H.M.Z.; Ameer, S.M.

    2014-01-01

    The study deals with the improvement of wild strain Aspergillus niger IIB-31 through random mutagenesis using chemical mutagens. The main aim of the work was to enhance the glucose oxidase (GOX) yield of wild strain (24.57+-0.01 U/g of cell mass) through random mutagenesis and process optimization. The wild strain of Aspergillus niger IIB-31 was treated with chemical mutagens such as Ethyl methane sulphonate (EMS) and nitrous acid for this purpose. Mutagen treated 98 variants indicating the positive results were picked and screened for the glucose oxidase production using submerged fermentation. EMS treated E45 mutant strain gave the highest glucose oxidase production (69.47 + 0.01 U/g of cell mass), which was approximately 3-folds greater than the wild strain IIB-31. The preliminary cultural conditions for the production of glucose oxidase using submerged fermentation from strain E45 were also optimized. The highest yield of GOD was obtained using 8% glucose as carbon and 0.3% peptone as nitrogen source at a medium pH of 7.0 after an incubation period of 72 hrs at 30 degree. (author)

  8. Gain-of-function mutagenesis approaches in rice for functional genomics and improvement of crop productivity.

    Science.gov (United States)

    Moin, Mazahar; Bakshi, Achala; Saha, Anusree; Dutta, Mouboni; Kirti, P B

    2017-07-01

    The epitome of any genome research is to identify all the existing genes in a genome and investigate their roles. Various techniques have been applied to unveil the functions either by silencing or over-expressing the genes by targeted expression or random mutagenesis. Rice is the most appropriate model crop for generating a mutant resource for functional genomic studies because of the availability of high-quality genome sequence and relatively smaller genome size. Rice has syntenic relationships with members of other cereals. Hence, characterization of functionally unknown genes in rice will possibly provide key genetic insights and can lead to comparative genomics involving other cereals. The current review attempts to discuss the available gain-of-function mutagenesis techniques for functional genomics, emphasizing the contemporary approach, activation tagging and alterations to this method for the enhancement of yield and productivity of rice. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Genetic analysis of γ-ray mutagenesis in yeast. Vol. 3

    International Nuclear Information System (INIS)

    McKee, R.H.; Lawrence, C.W.

    1980-01-01

    Comparisons between the 60 Co γ-ray survival curves of diploid strains of the yeast Saccharomyces cerevisiae that are homozygous for two non-allelic radiation-sensitive mutations and the corresponding single-mutant diploids suggest that there are two main types of repair of ionizing radiation damage in this organism. The first, which is defined by the rad52 epistasis group, depends on the activities of the RAD50 through RAD57 genes and is responsible for repairing the larger amount of lethal damage. Previous work [22] shows that this type of repair is essentially error-free. The second, defined by the rad6 epistasis group, depends on the activities of the RAD6, RAD9, RAD18, REV1 and REV3 genes and repairs a smaller, though still substantial, amount of lethal damage. It is also responsible for induced mutagenesis [22,23]. Data for survival and mutation induction after irradiation in air and partial anoxia show that oxygen-dependent damage can be repaired by either of these two pathways. They also show similar oxygen-enhancement ratios for survival and mutagenesis. (orig.)

  10. Enhancement of Schizochytrium DHA synthesis by plasma mutagenesis aided with malonic acid and zeocin screening.

    Science.gov (United States)

    Zhao, Ben; Li, Yafei; Li, Changling; Yang, Hailin; Wang, Wu

    2018-03-01

    Schizochytrium sp. accumulates valuable polyunsaturated fatty acid (PUFA), such as docosahexaenoic acid (DHA). In order to increase DHA synthesis in this microorganism, physical or chemical mutagenesis aided with powerful screening methods are still preferable, as its DHA synthetic pathway has not yet been clearly defined for gene manipulation. To breed this agglomerate microorganism of thick cell wall and rather large genome for increasing lipid content and DHA percentage, a novel strategy of atmospheric and room temperature plasma (ARTP) mutagenesis coupled with stepped malonic acid (MA) and zeocin resistance screening was developed. The final resulted mutant strain mz-17 was selected with 1.8-fold increased DHA production. Accompanied with supplementation of Fe 2+ in shake flask cultivation, DHA production of 14.0 g/L on average was achieved. This work suggests that ARTP mutation combined with stepped MA and zeocin resistance screening is an efficient method of breeding Schizochytrium sp. of high DHA production, and might be applied on other microorganisms for obtaining higher desired PUFA products.

  11. Improvement of Lead Tolerance of Saccharomyces cerevisiae by Random Mutagenesis of Transcription Regulator SPT3.

    Science.gov (United States)

    Zhu, Liying; Gao, Shan; Zhang, Hongman; Huang, He; Jiang, Ling

    2018-01-01

    Bioremediation of heavy metal pollution with biomaterials such as bacteria and fungi usually suffer from limitations because of microbial sensitivity to high concentration of heavy metals. Herein, we adopted a novel random mutagenesis technique called RAISE to manipulate the transcription regulator SPT3 of Saccharomyces cerevisiae to improve cell lead tolerance. The best strain Mutant VI was selected from the random mutagenesis libraries on account of the growth performance, with higher specific growth rate than the control strain (0.068 vs. 0.040 h -1 ) at lead concentration as high as 1.8 g/L. Combined with the transcriptome analysis of S. cerevisiae, expressing the SPT3 protein was performed to make better sense of the global regulatory effects of SPT3. The data analysis revealed that 57 of S. cerevisiae genes were induced and 113 genes were suppressed, ranging from those for trehalose synthesis, carbon metabolism, and nucleotide synthesis to lead resistance. Especially, the accumulation of intracellular trehalose in S. cerevisiae under certain conditions of stress is considered important to lead resistance. The above results represented that SPT3 was acted as global transcription regulator in the exponential phase of strain and accordingly improved heavy metal tolerance in the heterologous host S. cerevisiae. The present study provides a route to complex phenotypes that are not readily accessible by traditional methods.

  12. DNA MUTAGENESIS IN PANAX GINSENG CELL CULTURES

    Directory of Open Access Journals (Sweden)

    Kiselev K.V.

    2012-08-01

    Full Text Available At the present time, it is well documented that plant tissue culture induces a number of mutations and chromosome rearrangements termed “somaclonal variations”. However, little is known about the nature and the molecular mechanisms of the tissue culture-induced mutagenesis and the effects of long-term subculturing on the rate and specific features of the mutagenesis. The aim of the present study was to investigate and compare DNA mutagenesis in different genes of Panax ginseng callus cultures of different age. It has previously been shown that the nucleotide sequences of the Agrobacterium rhizogenes rolC locus and the selective marker nptII developed mutations during long-term cultivation of transgenic cell cultures of P. ginseng. In the present work, we analyzed nucleotide sequences of selected plant gene families in a 2-year-old and 20-year-old P. ginseng 1c cell culture and in leaves of cultivated P. ginseng plants. We analysed sequence variability between the Actin genes, which are a family of house-keeping genes; the phenylalanine ammonia-lyase (PAL and dammarenediol synthase (DDS genes, which actively participate in the biosynthesis of ginsenosides; and the somatic embryogenesis receptor kinase (SERK genes, which control plant development. The frequency of point mutations in the Actin, PAL, DDS, and SERK genes in the 2-year-old callus culture was markedly higher than that in cultivated plants but lower than that in the 20-year-old callus culture of P. ginseng. Most of the mutations in the 2- and 20-year-old P. ginseng calli were A↔G and T↔C transitions. The number of nonsynonymous mutations was higher in the 2- and 20-year-old callus cultures than the number of nonsynonymous mutations in the cultivated plants of P. ginseng. Interestingly, the total number of N→G or N→C substitutions in the analyzed genes was 1.6 times higher than the total number of N→A or N→T substitutions. Using methylation-sensitive DNA fragmentation

  13. Magnesium-adenosine diphosphate binding sites in wild-type creatine kinase and in mutants: role of aromatic residues probed by Raman and infrared spectroscopies.

    Science.gov (United States)

    Hagemann, H; Marcillat, O; Buchet, R; Vial, C

    2000-08-08

    Two distinct methods were used to investigate the role of Trp residues during Mg-ADP binding to cytosolic creatine kinase (CK) from rabbit muscle: (1) Raman spectroscopy, which is very sensitive to the environment of aromatic side-chain residues, and (2) reaction-induced infrared difference spectroscopy (RIDS) and photolabile substrate (ADP[Et(PhNO(2))]), combined with site-directed mutagenesis on the four Trp residues of CK. Our Raman results indicated that the environment of Trp and of Tyr were not affected during Mg-ADP binding to CK. Analysis of RIDS of wild-type CK, inactive W227Y, and active W210,217,272Y mutants suggested that Trp227 was not involved in the stacking interactions. Results are consistent with Trp227 being essential to prevent water molecules from entering in the active site [as suggested by Gross, M., Furter-Graves, E. M., Wallimann, T., Eppenberger, H. M., and Furter, R. (1994) Protein Sci. 3, 1058-1068] and that another Trp could in addition help to steer the nucleotide in the binding site, although it is not essential for the activity of CK. Raman and infrared spectra indicated that Mg-ADP binding does not involve large secondary structure changes. Only 3-4 residues absorbing in the amide I region are directly implicated in the Mg-ADP binding (corresponding to secondary structure changes less than 1%), suggesting that movement of protein domains due to Mg-nucleotide binding do not promote large secondary structure changes.

  14. Inducible pathway is required for mutagenesis in Salmonella typhimurium LT2

    International Nuclear Information System (INIS)

    Orrego, C.; Eisenstadt, E.

    1987-01-01

    UV mutability of Salmonella typhimurium LT2 was eliminated in the presence of a multicopy plasmid carrying the Escherichia coli lexA + gene. This result suggests that inducible, SOS-like functions are required for UV mutagenesis in S. typhimurium. S. typhimurium strains carrying either point or deletion mutations in topA had previously been shown to lose their mutability by UV or methyl methanesulfonate. Mitomycin C induction of the Phi(mucB'-lacZ') fusion (a DNA damage-inducible locus carried on plasmid pSE205) in S. typhimurium topA was normal, suggesting that RecA is activated in topA mutants. These observations lead the authors deduce that S. typhimurium has at least one DNA damage-inducible locus in addition to recA that is required for UV mutability

  15. Ultraviolet mutagenesis studies of [psi], a cytoplasmic determinant of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Tuite, M.F.; Cox, B.S.

    1980-01-01

    uv mutagenesis was used to probe the molecular nature of [psi], a nonmitochondrial cytoplasmic determinant of Saccharomyces cerevisiae involved in the control of nonsense suppression. The uv-induced mutation from [psi + ] to [psi - ] showed characteristics of forward nuclear gene mutation in terms of frequency, induction kinetics, occurrence of whole and sectored mutant clones and the effect of the stage in the growth cycle on mutation frequency. The involvement of pyrimidine dimers in the premutational lesion giving the [psi - ] mutation was demonstrated by photoreactivation. uv-induced damage to the [psi] genetic determinant was shown to be repaired by nuclear-coded repair enzymes that are responsible for the repair of nuclear DNA damage. uv-induced damage to mitochondrial DNA appeared to be, at least partly, under the control of different repair processes. The evidence obtained suggests that the [psi] determinant is DNA

  16. Enu mutagenesis identifies a novel platelet phenotype in a loss-of-function Jak2 allele.

    Directory of Open Access Journals (Sweden)

    Nicole M Anderson

    Full Text Available Utilizing ENU mutagenesis, we identified a mutant mouse with elevated platelets. Genetic mapping localized the mutation to an interval on chromosome 19 that encodes the Jak2 tyrosine kinase. We identified a A3056T mutation resulting in a premature stop codon within exon 19 of Jak2 (Jak2(K915X, resulting in a protein truncation and functionally inactive enzyme. This novel platelet phenotype was also observed in mice bearing a hemizygous targeted disruption of the Jak2 locus (Jak2(+/-. Timed pregnancy experiments revealed that Jak2(K915X/K915X and Jak2(-/- displayed embryonic lethality; however, Jak2(K915X/K915X embryos were viable an additional two days compared to Jak2(-/- embryos. Our data suggest that perturbing JAK2 activation may have unexpected consequences in elevation of platelet number and correspondingly, important implications for treatment of hematological disorders with constitutive Jak2 activity.

  17. Ultraviolet light protection, enhancement of ultraviolet light mutagenesis, and mutator effect of plasmid R46 in Salmonella typhimurium

    International Nuclear Information System (INIS)

    Mortelmans, K.E.; Stocker, B.A.D.

    1976-01-01

    Plasmid R46 partially protected Salmonella typhimurium, wild type or uvrB or polA, against the lethal effect of ultraviolet (uv) irradiation, but did not protect recA mutants. The plasmid also increased frequency of uv-induced reversion to His + in all tested his point mutants (wild type for uv sensitivity), including amber, ochre, UGA, missense, and frame-shift mutants. Plasmid R46 also increased uv-induced reversion to His + in uvrB and polA strains, but no uv mutagenic effect was detected in R - or R46-carrying recA derivatives of a his(amber) mutant. The spontaneous reversion frequency of his nonsense mutants of all classes, and of some his missense mutants, was increased about 10-fold when the strains carried R46, but the plasmid had no effect on the spontaneous reversion frequency of some other his missense mutations or of reversion rate of his frame-shift mutants (except for two uvrB derivatives of one single-base insertion mutant). The plasmid increased the ability of wild type, polA, and uvrB hosts to support plaque production by uv-irradiated phage, and made strain LT2 his G46 less sensitive to methyl methane sulfonate and to x rays and more responsive to the mutagenic effect of visible-light irradiation. R46 increased spontaneous reversion frequency of a his(amber) rec + strain, but had no such effect in its recA sublines. Since the plasmid in the absence of host recA function fails to produce its mutator effect, or to confer uv protection or to enhance uv mutagenesis, these three effects may be produced via some mechanism involved in recA-dependent deoxyribonucleic acid repair, perhaps by an increase in activity of the ''error-prone'' component of the inducible repair pathway

  18. Application of mutagenesis for improvement of grapevines

    International Nuclear Information System (INIS)

    Becker, H.

    1989-01-01

    Full text: The objectives of our mutation breeding programme are to improve good clones in a limited number of characteristics. One year old grafted vines were treated with x-rays during dormancy just before bud burst. Root sto