WorldWideScience

Sample records for site specific endonucleases

  1. Purification and characterization of VDE, a site-specific endonuclease from the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Gimble, F S; Thorner, J

    1993-10-15

    The 119-kDa primary translation product of the VMA1 gene of Saccharomyces cerevisiae undergoes a self-catalyzed rearrangement ("protein splicing") that excises an internal 50-kDa segment of the polypeptide and joins the amino-terminal and carboxyl-terminal segments to generate the 69-kDa subunit of the vacuolar membrane-associated H(+)-ATPase. We have shown previously that the internal segment is a site-specific endonuclease (Gimble, F. S., and Thorner, J. (1992) Nature 357, 301-306). Here we describe methods for the high level expression and purification to near homogeneity of both the authentic VMA1-derived endonuclease (or VDE) from yeast (yield 18%) and a recombinant form of VDE made in bacteria (yield 29%). Detailed characterization of these preparations demonstrated that the yeast-derived and bacterially produced enzymes were indistinguishable, as judged by: (a) behavior during purification; (b) apparent native molecular mass (50 kDa); (c) immunological reactivity; and (d) catalytic properties (specific activity; cleavage site recognition; and optima for pH, temperature, divalent cation and ionic strength). The minimal site required for VDE cleavage was delimited to a 30-base pair sequence within its specific substrate (the VMA1 delta vde allele).

  2. The mechanisms of action of E. coli endonuclease III and T4 UV endonuclease (endonuclease V) at AP sites.

    OpenAIRE

    Kim, J; Linn, S

    1988-01-01

    Treatment of DNA containing AP sites with either T4 UV endonuclease or with E. coli endonuclease III followed by a human class II AP endonuclease releases a putative beta-elimination product. This result suggests that both the T4 endonuclease and E. coli endonuclease III class I AP endonucleases catalyze phosphodiester bond cleavage via a lyase- rather than a hydrolase mechanism. Indeed, we have not detected a class I AP endonuclease which hydrolytically catalyzes phosphodiester bond cleavage...

  3. Evolution of divergent DNA recognition specificities in VDE homing endonucleases from two yeast species.

    Science.gov (United States)

    Posey, Karen L; Koufopanou, Vassiliki; Burt, Austin; Gimble, Frederick S

    2004-01-01

    Homing endonuclease genes (HEGs) are mobile DNA elements that are thought to confer no benefit to their host. They encode site-specific DNA endonucleases that perpetuate the element within a species population by homing and disseminate it between species by horizontal transfer. Several yeast species contain the VMA1 HEG that encodes the intein-associated VMA1-derived endonuclease (VDE). The evolutionary state of VDEs from 12 species was assessed by assaying their endonuclease activities. Only two enzymes are active, PI-ZbaI from Zygosaccharomyces bailii and PI-ScaI from Saccharomyces cariocanus. PI-ZbaI cleaves the Z.bailii recognition sequence significantly faster than the Saccharomyces cerevisiae site, which differs at six nucleotide positions. A mutational analysis indicates that PI-ZbaI cleaves the S.cerevisiae substrate poorly due to the absence of a contact that is analogous to one made in PI-SceI between Gln-55 and nucleotides +9/+10. PI-ZbaI cleaves the Z.bailii substrate primarily due to a single base-pair substitution (A/T+5 --> T/A+5). Structural modeling of the PI-ZbaI/DNA complex suggests that Arg-331, which is absent in PI-SceI, contacts T/A+5, and the reduced activity observed in a PI-ZbaI R331A mutant provides evidence for this interaction. These data illustrate that homing endonucleases evolve altered specificity as they adapt to recognize alternative target sites.

  4. Evolution of divergent DNA recognition specificities in VDE homing endonucleases from two yeast species

    Science.gov (United States)

    Posey, Karen L.; Koufopanou, Vassiliki; Burt, Austin; Gimble, Frederick S.

    2004-01-01

    Homing endonuclease genes (HEGs) are mobile DNA elements that are thought to confer no benefit to their host. They encode site-specific DNA endonucleases that perpetuate the element within a species population by homing and disseminate it between species by horizontal transfer. Several yeast species contain the VMA1 HEG that encodes the intein-associated VMA1-derived endonuclease (VDE). The evolutionary state of VDEs from 12 species was assessed by assaying their endonuclease activities. Only two enzymes are active, PI-ZbaI from Zygosaccharomyces bailii and PI-ScaI from Saccharomyces cariocanus. PI-ZbaI cleaves the Z.bailii recognition sequence significantly faster than the Saccharomyces cerevisiae site, which differs at six nucleotide positions. A mutational analysis indicates that PI-ZbaI cleaves the S.cerevisiae substrate poorly due to the absence of a contact that is analogous to one made in PI-SceI between Gln-55 and nucleotides +9/+10. PI-ZbaI cleaves the Z.bailii substrate primarily due to a single base-pair substitution (A/T+5 → T/A+5). Structural modeling of the PI-ZbaI/DNA complex suggests that Arg-331, which is absent in PI-SceI, contacts T/A+5, and the reduced activity observed in a PI-ZbaI R331A mutant provides evidence for this interaction. These data illustrate that homing endonucleases evolve altered specificity as they adapt to recognize alternative target sites. PMID:15280510

  5. Phage T4 endonuclease SegD that is similar to group I intron endonucleases does not initiate homing of its own gene.

    Science.gov (United States)

    Sokolov, Andrey S; Latypov, Oleg R; Kolosov, Peter M; Shlyapnikov, Michael G; Bezlepkina, Tamara A; Kholod, Natalia S; Kadyrov, Farid A; Granovsky, Igor E

    2018-02-01

    Homing endonucleases are a group of site-specific endonucleases that initiate homing, a nonreciprocal transfer of its own gene into a new allele lacking this gene. This work describes a novel phage T4 endonuclease, SegD, which is homologous to the GIY-YIG family of homing endonucleases. Like other T4 homing endonucleases SegD recognizes an extended, 16bp long, site, cleaves it asymmetrically to form 3'-protruding ends and digests both unmodified DNA and modified T-even phage DNA with similar efficiencies. Surprisingly, we revealed that SegD cleavage site was identical in the genomes of segD - and segD + phages. We found that segD gene was expressed during the T4 developmental cycle. Nevertheless, endonuclease SegD was not able to initiate homing of its own gene as well as genetic recombination between phages in its site inserted into the rII locus. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. A site-specific endonuclease encoded by a typical archaeal intron

    DEFF Research Database (Denmark)

    Dalgaard, Jacob; Garrett, Roger Antony; Belfort, Malene

    1993-01-01

    The protein encoded by the archaeal intron in the 23S rRNA gene of the hyperthermophile Desulfurococcus mobilis is a double-strand DNase that, like group I intron homing endonucleases, is capable of cleaving an intronless allele of the gene. This enzyme, I-Dmo I, is unusual among the intron...

  7. Identification of a mismatch-specific endonuclease in hyperthermophilic Archaea.

    Science.gov (United States)

    Ishino, Sonoko; Nishi, Yuki; Oda, Soichiro; Uemori, Takashi; Sagara, Takehiro; Takatsu, Nariaki; Yamagami, Takeshi; Shirai, Tsuyoshi; Ishino, Yoshizumi

    2016-04-20

    The common mismatch repair system processed by MutS and MutL and their homologs was identified in Bacteria and Eukarya. However, no evidence of a functional MutS/L homolog has been reported for archaeal organisms, and it is not known whether the mismatch repair system is conserved in Archaea. Here, we describe an endonuclease that cleaves double-stranded DNA containing a mismatched base pair, from the hyperthermophilic archaeon Pyrococcus furiosus The corresponding gene revealed that the activity originates from PF0012, and we named this enzyme Endonuclease MS (EndoMS) as the mismatch-specific Endonuclease. The sequence similarity suggested that EndoMS is the ortholog of NucS isolated from Pyrococcus abyssi, published previously. Biochemical characterizations of the EndoMS homolog from Thermococcus kodakarensis clearly showed that EndoMS specifically cleaves both strands of double-stranded DNA into 5'-protruding forms, with the mismatched base pair in the central position. EndoMS cleaves G/T, G/G, T/T, T/C and A/G mismatches, with a more preference for G/T, G/G and T/T, but has very little or no effect on C/C, A/C and A/A mismatches. The discovery of this endonuclease suggests the existence of a novel mismatch repair process, initiated by the double-strand break generated by the EndoMS endonuclease, in Archaea and some Bacteria. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Characterization of DNA substrate specificities of apurinic/apyrimidinic endonucleases from Mycobacterium tuberculosis.

    Science.gov (United States)

    Abeldenov, Sailau; Talhaoui, Ibtissam; Zharkov, Dmitry O; Ishchenko, Alexander A; Ramanculov, Erlan; Saparbaev, Murat; Khassenov, Bekbolat

    2015-09-01

    Apurinic/apyrimidinic (AP) endonucleases are key enzymes involved in the repair of abasic sites and DNA strand breaks. Pathogenic bacteria Mycobacterium tuberculosis contains two AP endonucleases: MtbXthA and MtbNfo members of the exonuclease III and endonuclease IV families, which are exemplified by Escherichia coli Xth and Nfo, respectively. It has been shown that both MtbXthA and MtbNfo contain AP endonuclease and 3'→5' exonuclease activities. However, it remains unclear whether these enzymes hold 3'-repair phosphodiesterase and nucleotide incision repair (NIR) activities. Here, we report that both mycobacterial enzymes have 3'-repair phosphodiesterase and 3'-phosphatase, and MtbNfo contains in addition a very weak NIR activity. Interestingly, depending on pH, both enzymes require different concentrations of divalent cations: 0.5mM MnCl2 at pH 7.6 and 10 mM at pH 6.5. MtbXthA requires a low ionic strength and 37 °C, while MtbNfo requires high ionic strength (200 mM KCl) and has a temperature optimum at 60 °C. Point mutation analysis showed that D180 and N182 in MtbXthA and H206 and E129 in MtbNfo are critical for enzymes activities. The steady-state kinetic parameters indicate that MtbXthA removes 3'-blocking sugar-phosphate and 3'-phosphate moieties at DNA strand breaks with an extremely high efficiency (kcat/KM=440 and 1280 μM(-1)∙min(-1), respectively), while MtbNfo exhibits much lower 3'-repair activities (kcat/KM=0.26 and 0.65 μM(-1)∙min(-1), respectively). Surprisingly, both MtbXthA and MtbNfo exhibited very weak AP site cleavage activities, with kinetic parameters 100- and 300-fold lower, respectively, as compared with the results reported previously. Expression of MtbXthA and MtbNfo reduced the sensitivity of AP endonuclease-deficient E. coli xth nfo strain to methylmethanesulfonate and H2O2 to various degrees. Taken together, these data establish the DNA substrate specificity of M. tuberculosis AP endonucleases and suggest their possible role

  9. Comparative studies of the endonucleases from two related Xenopus laevis retrotransposons, Tx1L and Tx2L: target site specificity and evolutionary implications.

    Science.gov (United States)

    Christensen, S; Pont-Kingdon, G; Carroll, D

    2000-01-01

    In the genome of the South African frog, Xenopus laevis, there are two complex families of transposable elements, Tx1 and Tx2, that have identical overall structures, but distinct sequences. In each family there are approximately 1500 copies of an apparent DNA-based element (Tx1D and Tx2D). Roughly 10% of these elements in each family are interrupted by a non-LTR retrotransposon (Tx1L and Tx2L). Each retrotransposon is flanked by a 23-bp target duplication of a specific D element sequence. In earlier work, we showed that the endonuclease domain (Tx1L EN) located in the second open reading frame (ORF2) of Tx1L encodes a protein that makes a single-strand cut precisely at the expected site within its target sequence, supporting the idea that Tx1L is a site-specific retrotransposon. In this study, we express the endonuclease domain of Tx2L (Tx2L EN) and compare the target preferences of the two enzymes. Each endonuclease shows some preference for its cognate target, on the order of 5-fold over the non-cognate target. The observed discrimination is not sufficient, however, to explain the observation that no cross-occupancy is observed - that is, L elements of one family have never been found within D elements of the other family. Possible sources of additional specificity are discussed. We also compare two hypotheses regarding the genome duplication event that led to the contemporary pseudotetraploid character of Xenopus laevis in light of the Tx1L and Tx2L data.

  10. Isolation and properties of the acid site-specific endonuclease from mature eggs of the sea urchin Strongylocentrotus intermedius

    International Nuclear Information System (INIS)

    Sibirtsev, Yu.T.; Konechnyi, A.A.; Rasskazov, V.A.

    1986-01-01

    An acid site-specific endonuclease has been detected in mature sea urchin eggs and cells of embryos at early stages of differentiation. Fractionation with ammonium sulfate, followed by chromatography on columns with DEAE, phosphocellulose, and hydroxyapatite resulted in an 18,000-fold purification. The molecular weight of the enzyme was determined at ∼ 29,000, the optimum pH 5.5. The activity of the enzyme does not depend on divalent metal ions, EDTA, ATP, and tRNA, but it is modulated to a substantial degree by NaCl. The maximum rate of cleavage of the DNA supercoil (form I) is observed at 100 mM NaCl. Increasing the NaCl concentration to 350 mM only slightly lowers the rate of cleavage of form I, yielding form II, but entirely suppresses the accumulation of form III. Restriction analysis of the products of enzymatic hydrolysis of Co1E1 and pBR322 DNA showed that at the early stages of hydrolysis the enzyme exhibits pronounced specificity for definite sites, the number of which is 12 for Co1 E1 DNA and 8 sites for pBR322 DNA

  11. Fluorescence quenching of graphene oxide combined with the site-specific cleavage of restriction endonuclease for deoxyribonucleic acid demethylase activity assay

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Lijuan; Qian, Yingdan; Wu, Ping; Zhang, Hui; Cai, Chenxin, E-mail: cxcai@njnu.edu.cn

    2015-04-15

    Highlights: • An approach for sensitive and selective DNA demethylase activity assay is reported. • This assay is based on the fluorescence quenching of GO and site-specific cleavage of endonuclease. • It can determine as low as 0.05 ng mL{sup −1} of MBD2 with a linear range of 0.2–300 ng mL{sup −1}. • It has an ability to recognize MBD2 from other possibly coexisting proteins and cancer cell extracts. • It can avoid false signals, requiring no bisulfite conversion, PCR amplification, radioisotope-labeling. - Abstract: We report on the development of a sensitive and selective deoxyribonucleic acid (DNA) demethylase (using MBD2 as an example) activity assay by coupling the fluorescence quenching of graphene oxide (GO) with the site-specific cleavage of HpaII endonuclease to improve the selectivity. This approach was developed by designing a single-stranded probe (P1) that carries a binding region to facilitate the interaction with GO, which induces fluorescence quenching of the labeled fluorophore (FAM, 6-carboxyfluorescein), and a sensing region, which contains a hemi-methylated site of 5′-CmCGG-3′, to specifically recognize the target (T1, a 32-mer DNA from the promoter region of p53 gene) and hybridize with it to form a P1/T1 duplex. After demethylation with MBD2, the duplex can be specifically cleaved using HpaII, which releases the labeled FAM from the GO surface and results in the recovery of fluorescence. However, this cleavage is blocked by the hemi-methylation of this site. Thus, the magnitude of the recovered fluorescence signal is related to the MBD2 activity, which establishes the basis of the DNA demethylase activity assay. This assay can determine as low as ∼(0.05 ± 0.01) ng mL{sup −1} (at a signal/noise of 3) of MBD2 with a linear range of 0.2–300 ng mL{sup −1} and recognize MBD2 from other possibly coexisting proteins and cancer cell extracts. The advantage of this assay is its ability to avoid false signals and no

  12. Comparison of the cleavage of pyrimidine dimers by the bacteriophage T4 and Micrococcus luteus uv-specific endonucleases

    International Nuclear Information System (INIS)

    Gordon, L.K.; Haseltine, W.A.

    1980-01-01

    A comparison was made of the activity of the uv-specific endonucleases of bacteriophage T4 (T4 endonuclease V) and of Micrococcus luteus on ultraviolet light-irradiated DNA substrates of defined sequence. The two enzyms cleave DNA at the site of pyrimidine dimers with the same frequency. The products of the cleavage reaction are the same. The pyrimidine dimer DNA-glycosylase activity of both enzymes is more active on double-stranded DNA than it is on single-stranded DNA

  13. Sequence specificity of DNA cleavage by Micrococcus luteus γ endonuclease

    International Nuclear Information System (INIS)

    Hentosh, P.; Henner, W.D.; Reynolds, R.J.

    1985-01-01

    DNA fragments of defined sequence have been used to determine the sites of cleavage by γ-endonuclease activity in extracts prepared from Micrococcus luteus. End-labeled DNA restriction fragments of pBR322 DNA that had been irradiated under nitrogen in the presence of potassium iodide or t-butanol were treated with M. luteus γ endonuclease and analyzed on irradiated DNA preferentially at the positions of cytosines and thymines. DNA cleavage occurred immediately to the 3' side of pyrimidines in irradiated DNA and resulted in fragments that terminate in a 5'-phosphoryl group. These studies indicate that both altered cytosines and thymines may be important DNA lesions requiring repair after exposure to γ radiation

  14. Efficient genome editing in hematopoietic stem cells with helper-dependent Ad5/35 vectors expressing site-specific endonucleases under microRNA regulation

    Directory of Open Access Journals (Sweden)

    Kamola Saydaminova

    Full Text Available Genome editing with site-specific endonucleases has implications for basic biomedical research as well as for gene therapy. We generated helper-dependent, capsid-modified adenovirus (HD-Ad5/35 vectors for zinc-finger nuclease (ZFN– or transcription activator-like effector nuclease (TALEN–mediated genome editing in human CD34+ hematopoietic stem cells (HSCs from mobilized adult donors. The production of these vectors required that ZFN and TALEN expression in HD-Ad5/35 producer 293-Cre cells was suppressed. To do this, we developed a microRNA (miRNA-based system for regulation of gene expression based on miRNA expression profiling of 293-Cre and CD34+ cells. Using miR-183-5p and miR-218-5p based regulation of transgene gene expression, we first produced an HD-Ad5/35 vector expressing a ZFN specific to the HIV coreceptor gene ccr5. We demonstrated that HD-Ad5/35.ZFNmiR vector conferred ccr5 knock out in primitive HSC (i.e., long-term culture initiating cells and NOD/SCID repopulating cells. The ccr5 gene disruption frequency achieved in engrafted HSCs found in the bone marrow of transplanted mice is clinically relevant for HIV therapy considering that these cells can give rise to multiple lineages, including all the lineages that represent targets and reservoirs for HIV. We produced a second HD-Ad5/35 vector expressing a TALEN targeting the DNase hypersensitivity region 2 (HS2 within the globin locus control region. This vector has potential for targeted gene correction in hemoglobinopathies. The miRNA regulated HD-Ad5/35 vector platform for expression of site-specific endonucleases has numerous advantages over currently used vectors as a tool for genome engineering of HSCs for therapeutic purposes.

  15. Karyopherin-Mediated Nuclear Import of the Homing Endonuclease VMA1-Derived Endonuclease Is Required for Self-Propagation of the Coding Region

    OpenAIRE

    Nagai, Yuri; Nogami, Satoru; Kumagai-Sano, Fumi; Ohya, Yoshikazu

    2003-01-01

    VMA1-derived endonuclease (VDE), a site-specific endonuclease in Saccharomyces cerevisiae, enters the nucleus to generate a double-strand break in the VDE-negative allelic locus, mediating the self-propagating gene conversion called homing. Although VDE is excluded from the nucleus in mitotic cells, it relocalizes at premeiosis, becoming localized in both the nucleus and the cytoplasm in meiosis. The nuclear localization of VDE is induced by inactivation of TOR kinases, which constitute centr...

  16. Efficient fdCas9 Synthetic Endonuclease with Improved Specificity for Precise Genome Engineering

    KAUST Repository

    Aouida, Mustapha

    2015-07-30

    The Cas9 endonuclease is used for genome editing applications in diverse eukaryotic species. A high frequency of off-target activity has been reported in many cell types, limiting its applications to genome engineering, especially in genomic medicine. Here, we generated a synthetic chimeric protein between the catalytic domain of the FokI endonuclease and the catalytically inactive Cas9 protein (fdCas9). A pair of guide RNAs (gRNAs) that bind to sense and antisense strands with a defined spacer sequence range can be used to form a catalytically active dimeric fdCas9 protein and generate double-strand breaks (DSBs) within the spacer sequence. Our data demonstrate an improved catalytic activity of the fdCas9 endonuclease, with a spacer range of 15–39 nucleotides, on surrogate reporters and genomic targets. Furthermore, we observed no detectable fdCas9 activity at known Cas9 off-target sites. Taken together, our data suggest that the fdCas9 endonuclease variant is a superior platform for genome editing applications in eukaryotic systems including mammalian cells.

  17. Efficient fdCas9 Synthetic Endonuclease with Improved Specificity for Precise Genome Engineering

    KAUST Repository

    Aouida, Mustapha; Eid, Ayman; Ali, Zahir; Cradick, Thomas; Lee, Ciaran; Deshmukh, Harshavardhan; Atef, Ahmed; Abu Samra, Dina Bashir Kamil; Gadhoum, Samah Zeineb; Merzaban, Jasmeen; Bao, Gang; Mahfouz, Magdy M.

    2015-01-01

    The Cas9 endonuclease is used for genome editing applications in diverse eukaryotic species. A high frequency of off-target activity has been reported in many cell types, limiting its applications to genome engineering, especially in genomic medicine. Here, we generated a synthetic chimeric protein between the catalytic domain of the FokI endonuclease and the catalytically inactive Cas9 protein (fdCas9). A pair of guide RNAs (gRNAs) that bind to sense and antisense strands with a defined spacer sequence range can be used to form a catalytically active dimeric fdCas9 protein and generate double-strand breaks (DSBs) within the spacer sequence. Our data demonstrate an improved catalytic activity of the fdCas9 endonuclease, with a spacer range of 15–39 nucleotides, on surrogate reporters and genomic targets. Furthermore, we observed no detectable fdCas9 activity at known Cas9 off-target sites. Taken together, our data suggest that the fdCas9 endonuclease variant is a superior platform for genome editing applications in eukaryotic systems including mammalian cells.

  18. Selective inhibition by harmane of the apurinic apyrimidinic endonuclease activity of phage T4-induced UV endonuclease.

    Science.gov (United States)

    Warner, H R; Persson, M L; Bensen, R J; Mosbaugh, D W; Linn, S

    1981-11-25

    1-Methyl-9H-pyrido-[3,4-b]indole (harmane) inhibits the apurinic/apyrimidinic (AP) endonuclease activity of the UV endonuclease induced by phage T4, whereas it stimulates the pyrimidine dimer-DNA glycosylase activity of that enzyme. E. coli endonuclease IV, E. coli endonuclease VI (the AP endonuclease activity associated with E. coli exonuclease III), and E. coli uracil-DNA glycosylase were not inhibited by harmane. Human fibroblast AP endonucleases I and II also were only slightly inhibited. Therefore, harmane is neither a general inhibitor of AP endonucleases, nor a general inhibitor of Class I AP endonucleases which incise DNA on the 3'-side of AP sites. However, E. coli endonuclease III and its associated dihydroxythymine-DNA glycosylase activity were both inhibited by harmane. This observation suggests that harmane may inhibit only AP endonucleases which have associated glycosylase activities.

  19. The metabolic enhancer piracetam attenuates mitochondrion-specific endonuclease G translocation and oxidative DNA fragmentation.

    Science.gov (United States)

    Gupta, Sonam; Verma, Dinesh Kumar; Biswas, Joyshree; Rama Raju, K Siva; Joshi, Neeraj; Wahajuddin; Singh, Sarika

    2014-08-01

    This study was performed to investigate the involvement of mitochondrion-specific endonuclease G in piracetam (P)-induced protective mechanisms. Studies have shown the antiapoptotic effects of piracetam but the mechanism of action of piracetam is still an enigma. To assess the involvement of endonuclease G in piracetam-induced protective effects, astrocyte glial cells were treated with lipopolysaccharide (LPS) and piracetam. LPS treatment caused significantly decreased viability, mitochondrial activity, oxidative stress, chromatin condensation, and DNA fragmentation, which were attenuated by piracetam cotreatment. Cotreatment of astrocytes with piracetam showed its significantly time-dependent absorption as observed with high-performance liquid chromatography. Astrocytes treated with piracetam alone showed enhanced mitochondrial membrane potential (MMP) in comparison to control astrocytes. However, in LPS-treated cells no significant alteration in MMP was observed in comparison to control cells. Protein and mRNA levels of the terminal executor of the caspase-mediated pathway, caspase-3, were not altered significantly in LPS or LPS + piracetam-treated astrocytes, whereas endonuclease G was significantly translocated to the nucleus in LPS-treated astrocytes. Piracetam cotreatment attenuated the LPS-induced endonuclease G translocation. In conclusion this study indicates that LPS treatment of astrocytes caused decreased viability, oxidative stress, mitochondrial dysfunction, chromatin condensation, DNA damage, and translocation of endonuclease G to the nucleus, which was inhibited by piracetam cotreatment, confirming that the mitochondrion-specific endonuclease G is one of the factors involved in piracetam-induced protective mechanisms. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Presence of UV-endonuclease sensitive sites in daughter DNA of UV-irradiated mammalian cells

    International Nuclear Information System (INIS)

    D'Ambrosio, S.; Setlow, R.B.

    1978-02-01

    Asynchronous Chinese hamster cells were irradiated with 10 Jm -2 uv radiation and 0.25 to 4 hours later pulse-labeled with [ 3 H]thymidine. Cells synchronized by shaking off mitotic and G 1 cells were irradiated in either the G 1 -phase or S-phase of the cell cycle and pulse-labeled with [ 3 H]thymidine in the S-phase. After a 12 to 14 hour chase in unlabeled medium, the DNA was extracted, incubated with Micrococcus luteus uv-endonuclease and sedimented in alkaline sucrose. The number of endonuclease sensitive sites decreased as the time between uv irradiation and pulse-labeling of daughter DNA increased. Further, there were significantly less endonuclease sensitive sites in the daughter DNA from cells irradiated in the G 1 -phase than in the S-phase. These data indicate that very few, if any, dimers are transferred from parental DNA to daughter DNA and that the dimers detected in daughter DNA may be due to the irradiation of replicating daughter DNA before labeling

  1. Endonuclease IV Is the major apurinic/apyrimidinic endonuclease in Mycobacterium tuberculosis and is important for protection against oxidative damage.

    Directory of Open Access Journals (Sweden)

    Rupangi Verma Puri

    Full Text Available During the establishment of an infection, bacterial pathogens encounter oxidative stress resulting in the production of DNA lesions. Majority of these lesions are repaired by base excision repair (BER pathway. Amongst these, abasic sites are the most frequent lesions in DNA. Class II apurinic/apyrimidinic (AP endonucleases play a major role in BER of damaged DNA comprising of abasic sites. Mycobacterium tuberculosis, a deadly pathogen, resides in the human macrophages and is continually subjected to oxidative assaults. We have characterized for the first time two AP endonucleases namely Endonuclease IV (End and Exonuclease III (XthA that perform distinct functions in M.tuberculosis. We demonstrate that M.tuberculosis End is a typical AP endonuclease while XthA is predominantly a 3'→5' exonuclease. The AP endonuclease activity of End and XthA was stimulated by Mg(2+ and Ca(2+ and displayed a preferential recognition for abasic site paired opposite to a cytosine residue in DNA. Moreover, End exhibited metal ion independent 3'→5' exonuclease activity while in the case of XthA this activity was metal ion dependent. We demonstrate that End is not only a more efficient AP endonuclease than XthA but it also represents the major AP endonuclease activity in M.tuberculosis and plays a crucial role in defense against oxidative stress.

  2. Biochemical properties and base excision repair complex formation of apurinic/apyrimidinic endonuclease from Pyrococcus furiosus

    OpenAIRE

    Kiyonari, Shinichi; Tahara, Saki; Shirai, Tsuyoshi; Iwai, Shigenori; Ishino, Sonoko; Ishino, Yoshizumi

    2009-01-01

    Apurinic/apyrimidinic (AP) sites are the most frequently found mutagenic lesions in DNA, and they arise mainly from spontaneous base loss or modified base removal by damage-specific DNA glycosylases. AP sites are cleaved by AP endonucleases, and the resultant gaps in the DNA are repaired by DNA polymerase/DNA ligase reactions. We identified the gene product that is responsible for the AP endonuclease activity in the hyperthermophilic euryarchaeon, Pyrococcus furiosus. Furthermore, we detected...

  3. A functional endonuclease Q exists in the bacterial domain: identification and characterization of endonuclease Q from Bacillus pumilus.

    Science.gov (United States)

    Shiraishi, Miyako; Ishino, Sonoko; Cann, Isaac; Ishino, Yoshizumi

    2017-05-01

    DNA base deamination occurs spontaneously under physiological conditions and is promoted by high temperature. Therefore, hyperthermophiles are expected to have efficient repair systems of the deaminated bases in their genomes. Endonuclease Q (EndoQ) was originally identified from the hyperthermophlic archaeon, Pyrococcus furiosus, as a hypoxanthine-specific endonuclease recently. Further biochemical analyses revealed that EndoQ also recognizes uracil, xanthine, and the AP site in DNA, and is probably involved in a specific repair process for damaged bases. Initial phylogenetic analysis showed that an EndoQ homolog is found only in the Thermococcales and some of the methanogens in Archaea, and is not present in most members of the domains Bacteria and Eukarya. A better understanding of the distribution of the EndoQ-mediated repair system is, therefore, of evolutionary interest. We showed here that an EndoQ-like polypeptide from Bacillus pumilus, belonging to the bacterial domain, is functional and has similar properties with the archaeal EndoQs.

  4. Simple and sensitive fluorescence assay of restriction endonuclease on graphene oxide

    International Nuclear Information System (INIS)

    Gang, Jong Back

    2015-01-01

    Restriction endonucleases hydrolyze internal phosphodiester bonds at specific sites in a DNA sequence. These enzymes are essential in a variety of fields, such as biotechnology and clinical diagnostics. It is of great importance and necessity for the scientific and biomedical use of enzymes to measure endonuclease activity. In this study, graphene oxide (GO) has been used as a platform to measure enzyme activity with high sensitivity. To increase the detection sensitivity of Hinf I, the endonuclease-digested reaction was treated with exonuclease III (Exo III) and a fluorescence assay was conducted to measure the emission. Results showed that Exo III treatment enhanced 2.7-fold signal-to-background ratio for the detection of Hinf I compared with that done without Exo III in the presence of GO

  5. Specific action of T4 endonuclease V on damaged DNA in xeroderma pigmentosum cells in vivo

    International Nuclear Information System (INIS)

    Tanaka, K.; Hayakawa, H.; Sekiguchi, M.; Okada, Y.

    1977-01-01

    The specific action of T4 endonuclease V on damaged DNA in xeroderma pigmentosum cells was examined using an in vivo assay system with hemagglutinating virus of Japan (Sendai virus) inactivated by uv light. A clear dose response was observed between the level of uv-induced unscheduled DNA synthesis of xeroderma pigmentosum cells and the amount of T4 endonuclease V activity added. The T4 enzyme was unstable in human cells, and its half-life was 3 hr. Fractions derived from an extract of Escherichia coli infected with T4v 1 , a mutant defective in the endonuclease V gene, showed no ability to restore the uv-induced unscheduled DNA synthesis of xeroderma pigmentosum cells. However, fractions derived from an extract of T4D-infected E. coli with endonuclease V activity were effective. The T4 enzyme was effective in xeroderma pigmentosum cells on DNA damaged by uv light but not in cells damaged by 4-nitroquinoline 1-oxide. The results of these experiments show that the T4 enzyme has a specific action on human cell DNA in vivo. Treatment with the T4 enzyme increased the survival of group A xeroderma pigmentosum cells after uv irradiation

  6. Site-specific DNA transesterification catalyzed by a restriction enzyme

    OpenAIRE

    Sasnauskas, Giedrius; Connolly, Bernard A.; Halford, Stephen E.; Siksnys, Virginijus

    2007-01-01

    Most restriction endonucleases use Mg2+ to hydrolyze phosphodiester bonds at specific DNA sites. We show here that BfiI, a metal-independent restriction enzyme from the phospholipase D superfamily, catalyzes both DNA hydrolysis and transesterification reactions at its recognition site. In the presence of alcohols such as ethanol or glycerol, it attaches the alcohol covalently to the 5′ terminus of the cleaved DNA. Under certain conditions, the terminal 3′-OH of one DNA strand can attack the t...

  7. Molecular dynamics simulations of deoxyribonucleic acids and repair enzyme T4 endonuclease V

    International Nuclear Information System (INIS)

    Pinak, Miroslav

    1999-01-01

    This report describes the results of molecular dynamics (MD) simulation of deoxyribonucleic acids (DNA) and specific repair enzyme T4 endonuclease V. Namely research described here is focused on the examination of specific recognition process, in which this repair enzyme recognizes the damaged site on the DNA molecule-thymine dimer (TD). TD is frequent DNA damage induced by UV radiation in sun light and unless properly repaired it may be mutagenic or lethal for cell, and is also considered among the major causes of skin cancer. T4 endonuclease V is a DNA specific repair enzyme from bacteriophage T4 that catalyzes the first reaction step of TD repair pathway. MD simulations of three molecules - native DNA dodecamer (12 base pairs), DNA of the same sequence of nucleotides as native one but with TD, and repair enzyme T4 endonuclease V - were performed for 1 ns individually for each molecule. Simulations were analyzed to determine the role of electrostatic interaction in the recognition process. It is found that electrostatic energies calculated for amino acids of the enzyme have positive values of around +15 kcal/mol. The electrostatic energy of TD site has negative value of approximately -9 kcal/mol, different from the nearly neutral value of the respective thymines site of the native DNA. The electrostatic interaction of TD site with surrounding water environment differs from the electrostatic interaction of other nucleotides. Differences found between TD site and respective thymines site of native DNA indicate that the electrostatic energy is an important factor contributing to proper recognition of TD site during scanning process in which enzyme scans the DNA. In addition to the electrostatic energy, the important factor in recognition process might be structural complementarity of enzyme and bent DNA with TD. There is significant kink formed around TD site, that is not observed in native DNA. (author)

  8. Creating a monomeric endonuclease TALE-I-SceI with high specificity and low genotoxicity in human cells.

    Science.gov (United States)

    Lin, Jianfei; Chen, He; Luo, Ling; Lai, Yongrong; Xie, Wei; Kee, Kehkooi

    2015-01-01

    To correct a DNA mutation in the human genome for gene therapy, homology-directed repair (HDR) needs to be specific and have the lowest off-target effects to protect the human genome from deleterious mutations. Zinc finger nucleases, transcription activator-like effector nuclease (TALEN) and CRISPR-CAS9 systems have been engineered and used extensively to recognize and modify specific DNA sequences. Although TALEN and CRISPR/CAS9 could induce high levels of HDR in human cells, their genotoxicity was significantly higher. Here, we report the creation of a monomeric endonuclease that can recognize at least 33 bp by fusing the DNA-recognizing domain of TALEN (TALE) to a re-engineered homing endonuclease I-SceI. After sequentially re-engineering I-SceI to recognize 18 bp of the human β-globin sequence, the re-engineered I-SceI induced HDR in human cells. When the re-engineered I-SceI was fused to TALE (TALE-ISVB2), the chimeric endonuclease induced the same HDR rate at the human β-globin gene locus as that induced by TALEN, but significantly reduced genotoxicity. We further demonstrated that TALE-ISVB2 specifically targeted at the β-globin sequence in human hematopoietic stem cells. Therefore, this monomeric endonuclease has the potential to be used in therapeutic gene targeting in human cells. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Excision repair of gamma-ray-induced alkali-stable DNA lesions with the help of γ-endonuclease from Micrococcus luteus

    International Nuclear Information System (INIS)

    Tomilin, N.V.; Barenfeld, L.S.

    1979-01-01

    γ-endonuclease Y, an enzyme that hydrolyses phosphodiester bonds at alkali-stable lesions in γ-irradiated (N 2 , tris buffer) DNA, has been partially purified from Micrococcus luteus. The enzyme has a molecular weight of about 19 000, induces single-strand breaks with 3'OH-5'PO 4 termini and contains endonuclease activity towards DNA treated with 7-bromomethylbenz(a)anthracene. γ-endonuclease Y induces breaks in OsO 4 -treated poly(dA-dT) and apparently is specific towards γ-ray-induced base lesions of the t' type. The complete excision repair of γ-endonuclease Y substrate sites has been performed in vitro by γ-endonuclease Y, DNA polymerase and ligase. (author)

  10. Excision repair of gamma-ray-induced alkali-stable DNA lesions with the help of. gamma. -endonuclease from Micrococcus luteus

    Energy Technology Data Exchange (ETDEWEB)

    Tomilin, N V; Barenfeld, L S [AN SSSR, Leningrad. Inst. Tsitologii

    1979-03-01

    ..gamma..-endonuclease Y, an enzyme that hydrolyses phosphodiester bonds at alkali-stable lesions in ..gamma..-irradiated (N/sub 2/, tris buffer) DNA, has been partially purified from Micrococcus luteus. The enzyme has a molecular weight of about 19 000, induces single-strand breaks with 3'OH-5'PO/sub 4/ termini and contains endonuclease activity towards DNA treated with 7-bromomethylbenz(a)anthracene. ..gamma..-endonuclease Y induces breaks in OsO/sub 4/-treated poly(dA-dT) and apparently is specific towards ..gamma..-ray-induced base lesions of the t' type. The complete excision repair of ..gamma..-endonuclease Y substrate sites has been performed in vitro by ..gamma..-endonuclease Y, DNA polymerase and ligase.

  11. Physical association of pyrimidine dimer DNA glycosylase and apurinic/apyrimidinic DNA endonuclease essential for repair of ultraviolet-damaged DNA

    International Nuclear Information System (INIS)

    Nakabeppu, Y.; Sekiguchi, M.

    1981-01-01

    T4 endonuclease, which is involved in repair of uv-damaged DNA, has been purified to apparent physical homogeneity. Incubation of uv-irradiated poly(dA).poly(dT) with the purified enzyme preparations resulted in production of alkali-labile apyrimidinic sites, followed by formation of nicks in the polymer. By performing a limited reaction with T4 endonuclease V at pH 8.5, irradiated polymer was converted to an intermediate form that carried a large number of alkali-labile sites but only a few nicks. The intermediate was used as substrate for the assay of apurinic/apyrimidinic DNA endonuclease activity. The two activities, a pyrimidine dimer DNA glycosylase and an apurinic/apyrimidinic DNA endonuclease, were copurified and found in enzyme preparations that contained only a 16,000-dalton polypeptide. These results strongly suggested that a DNA glycosylase specific for pyrimidine dimers and an apurinic/apyrimidinic DNA endonuclease reside in a single polypeptide chain coded by the denV gene of bacteriophage T4

  12. Evolutionary maintenance of selfish homing endonuclease genes in the absence of horizontal transfer.

    Science.gov (United States)

    Yahara, Koji; Fukuyo, Masaki; Sasaki, Akira; Kobayashi, Ichizo

    2009-11-03

    Homing endonuclease genes are "selfish" mobile genetic elements whose endonuclease promotes the spread of its own gene by creating a break at a specific target site and using the host machinery to repair the break by copying and inserting the gene at this site. Horizontal transfer across the boundary of a species or population within which mating takes place has been thought to be necessary for their evolutionary persistence. This is based on the assumption that they will become fixed in a host population, where opportunities of homing will disappear, and become susceptible to degeneration. To test this hypothesis, we modeled behavior of a homing endonuclease gene that moves during meiosis through double-strand break repair. We mathematically explored conditions for persistence of the homing endonuclease gene and elucidated their parameter dependence as phase diagrams. We found that, if the cost of the pseudogene is lower than that of the homing endonuclease gene, the 2 forms can persist in a population through autonomous periodic oscillation. If the cost of the pseudogene is higher, 2 types of dynamics appear that enable evolutionary persistence: bistability dependent on initial frequency or fixation irrespective of initial frequency. The prediction of long persistence in the absence of horizontal transfer was confirmed by stochastic simulations in finite populations. The average time to extinction of the endonuclease gene was found to be thousands of meiotic generations or more based on realistic parameter values. These results provide a solid theoretical basis for an understanding of these and other extremely selfish elements.

  13. Micrococcus luteus correndonucleases. II. Mechanism of action of two endonucleases specific for DNA containing pyrimidine dimers

    International Nuclear Information System (INIS)

    Riazuddin, S.; Grossman, L.

    1977-01-01

    Py--Py correndonucleases I and II from Micrococcus luteus act exclusively on thymine-thymine, cytosine-cytosine, and thymine-cytosine cyclobutyl dimers in DNA, catalyzing incision 5' to the damage and generating 3'-hydroxyl and 5'-phosphoryl termini. Both enzymes initiate excision of pyrimidine dimers in vitro by correxonucleases and DNA polymerase I. The respective incised DNAs, however, differ in their ability to act as substrate for phage T4 polynucleotide ligase or bacterial alkaline phosphatase, suggesting that each endonuclease is specific for a conformationally unique site. The possibility that their respective action generates termini which represent different degrees of single strandedness is suggested by the unequal protection by Escherichia coli binding protein from the hydrolytic action of exonuclease VII

  14. Crystal structure of the apurinic/apyrimidinic endonuclease IV from Mycobacterium tuberculosis.

    Science.gov (United States)

    Zhang, Wei; Xu, Yueyang; Yan, Mengrong; Li, Shanshan; Wang, Huiying; Yang, Haitao; Zhou, Weihong; Rao, Zihe

    2018-03-25

    Endonuclease IV is a typical endonuclease of the apurinic-apyrimidinic (AP) or abasic endonuclease superfamily. It repairs damaged DNA through base excision repair by cleaving the DNA backbone immediately 5' of an AP site. In Mycobacterium tuberculosis, endonuclease IV is the major AP endonuclease. This enzyme is absent from mammalian cells, making it an attractive target for anti-tuberculosis drug development. In this study, the structure of the recombinant endonuclease IV from M. tuberculosis (MtbEndo IV) was determined at a high resolution of 1.18 Å. MtbEndo IV was found to have a classical α8β8-fold TIM barrel with loops on its surface connecting the α-helices and β-strands that constitute a groove for DNA binding. Three zinc ions were identified at the active site. A comparison between the structures of MtbEndo IV and Escherichia coli End IV suggested that Gln32 of MtbEndo IV may plays a role in regulating substrate binding. Copyright © 2018. Published by Elsevier Inc.

  15. Divalent metal ion differentially regulates the sequential nicking reactions of the GIY-YIG homing endonuclease I-BmoI.

    Directory of Open Access Journals (Sweden)

    Benjamin P Kleinstiver

    Full Text Available Homing endonucleases are site-specific DNA endonucleases that function as mobile genetic elements by introducing double-strand breaks or nicks at defined locations. Of the major families of homing endonucleases, the modular GIY-YIG endonucleases are least understood in terms of mechanism. The GIY-YIG homing endonuclease I-BmoI generates a double-strand break by sequential nicking reactions during which the single active site of the GIY-YIG nuclease domain must undergo a substantial reorganization. Here, we show that divalent metal ion plays a significant role in regulating the two independent nicking reactions by I-BmoI. Rate constant determination for each nicking reaction revealed that limiting divalent metal ion has a greater impact on the second strand than the first strand nicking reaction. We also show that substrate mutations within the I-BmoI cleavage site can modulate the first strand nicking reaction over a 314-fold range. Additionally, in-gel DNA footprinting with mutant substrates and modeling of an I-BmoI-substrate complex suggest that amino acid contacts to a critical GC-2 base pair are required to induce a bottom-strand distortion that likely directs conformational changes for reaction progress. Collectively, our data implies mechanistic roles for divalent metal ion and substrate bases, suggesting that divalent metal ion facilitates the re-positioning of the GIY-YIG nuclease domain between sequential nicking reactions.

  16. Endonuclease activities in extracts of Micrococcus luteus that act on. gamma. -irradiated DNA

    Energy Technology Data Exchange (ETDEWEB)

    Schoen-Bopp, A; Schaefer, G; Hagen, U [Kernforschungszentrum Karlsruhe (Germany, F.R.). Inst. fuer Strahlenbiologie

    1977-03-01

    Several protein fractions containing endonuclease activity against ..gamma..-irradiated DNA (..gamma..-endonuclease) were isolated from M.luteus. The crude extract was eluted on a phosphocellulose column and chromatographed on TEAE cellulose and subsequently on hydroxypatite. Five peaks of ..gamma..-endonuclease were obtained from each preparation. Repeated experiments showed comparable chromatographic behaviour of the fractions. There was no detectable activity of uv-endonuclease in the fractions with ..gamma..-endonuclease but a small contamination of endonuclease against unirradiated DNA and against DNA with apurinic sites. The ..gamma..-endonuclease was stimulated by, but was not dependent on, magnesium. Several tests for endonuclease activity have been used: the analysis of strand breaks in calf-thymus DNA or in PM2 DNA, and the determination of end-groups formed by endonuclease, either 3'OH end-groups or phosphomonoester end groups. From the results obtained it can be assumed that the strand breaks induced by the ..gamma..-endonuclease carry 3'OH and 5' phosphate end groups.

  17. Yeast redoxyendonuclease, a DNA repair enzyme similar to Escherichia coli endonuclease III

    International Nuclear Information System (INIS)

    Gossett, J.; Lee, K.; Cunningham, R.P.; Doetsch, P.W.

    1988-01-01

    A DNA repair endonuclease (redoxyendonuclease) was isolated from bakers' yeast (Saccharomyces cerevisiae). The enzyme has been purified by a series of column chromatography steps and cleaves OsO 4 -damaged, double-stranded DNA at sites of thymine glycol and heavily UV-irradiated DNA at sites of cytosine, thymine, and guanine photoproducts. The base specificity and mechanism of phosphodiester bond cleavage for the yeast redoxyendonuclease appear to be identical with those of Escherichia coli endonuclease III when thymine glycol containing, end-labeled DNA fragments of defined sequence are employed as substrates. Yeast redoxyendonuclease has an apparent molecular size of 38,000-42,000 daltons and is active in the absence of divalent metal cations. The identification of such an enzyme in yeast may be of value in the elucidation of the biochemical basis for radiation sensitivity in certain yeast mutants

  18. Properties of an endonuclease activity in Micrococcus luteus acting on γ-irradiated DNA and on apurinic DNA

    International Nuclear Information System (INIS)

    Schaefer, G.; Haas, P.; Coquerelle, Th.; Hagen, U.

    1980-01-01

    A protein fraction from Micrococcus luteus with endonuclease activity against γ-irradiated DNA was isolated and characterized. An additional activity on apurinic sites could not be separated, either by sucrose gradient sedimentation or by gel filtration through Sephadex G 100. From gel filtration, a molecular weight of about 25 000 was calculated for both endonuclease activities. The endonuclease activity against γ-irradiated DNA was stimulated five-fold with 5 mM Mg ++ , whereas that against apurinic sites was less dependent on the Mg ++ concentration. 100 mM KCl inhibited the γ-ray endonuclease, but not the apurinic endonuclease activity. In γ-irradiated DNA the protein recognized 1.65 endonuclease sensitive sites per radiation-induced single-strand break, among which are 0.45 alkali labile lesions in the nucleotide strand. The was evaluated resulting in a Ksub(m)-value of 73 nM. (author)

  19. Substrate specificity of Micrococcus luteus uv endonuclease and its overlap with DNA photolyase activity

    International Nuclear Information System (INIS)

    Patrick, M.H.

    1975-01-01

    The action of an endonuclease from Micrococcus luteus that operates on uv damage in DNA overlaps with that of DNA photolyase from yeast: homo- and heterocyclobutane dipyrimidines in DNA are substrates for both enzymes, but pyrimidine adducts or the spore photoproduct in DNA are not. As expected from this overlap, the action of the two enzymes is mutually interfering: single-strand nicks introduced by the endonuclease effectively preclude photoreactivation; conversely, formation of a photolyase-cyclobutane dipyrimidine complex can prevent nicking by the endonuclease

  20. Properties of an endonuclease activity in Micrococcus luteus acting on. gamma. -irradiated DNA and on apurinic DNA

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, G; Haas, P; Coquerelle, Th; Hagen, U [Kernforschungszentrum Karlsruhe G.m.b.H. (Germany, F.R.). Inst. fuer Genetik und fuer Toxikologie von Spaltstoffen

    1980-01-01

    A protein fraction from Micrococcus luteus with endonuclease activity against ..gamma..-irradiated DNA was isolated and characterized. An additional activity on apurinic sites could not be separated, either by sucrose gradient sedimentation or by gel filtration through Sephadex G 100. From gel filtration, a molecular weight of about 25 000 was calculated for both endonuclease activities. The endonuclease activity against ..gamma..-irradiated DNA was stimulated five-fold with 5 mM Mg/sup + +/, whereas that against apurinic sites was less dependent on the Mg/sup + +/ concentration. 100 mM KCl inhibited the ..gamma..-ray endonuclease, but not the apurinic endonuclease activity. In ..gamma..-irradiated DNA the protein recognized 1.65 endonuclease sensitive sites per radiation-induced single-strand break, among which are 0.45 alkali labile lesions in the nucleotide strand. The was evaluated resulting in a Ksub(m)-value of 73 nM.

  1. The structure-specific endonuclease Ercc1-Xpf is required for targeted gene replacement in embryonic stem cells

    NARCIS (Netherlands)

    L.J. Niedernhofer (Laura); J. Essers (Jeroen); G. Weeda (Geert); H.B. Beverloo (Berna); J. de Wit (Jan); M. Muijtjens (Manja); H. Odijk (Hanny); J.H.J. Hoeijmakers (Jan); R. Kanaar (Roland)

    2001-01-01

    textabstractThe Ercc1-Xpf heterodimer, a highly conserved structure-specific endonuclease, functions in multiple DNA repair pathways that are pivotal for maintaining genome stability, including nucleotide excision repair, interstrand crosslink repair and homologous recombination. Erccl-Xpf incises

  2. Selective inhibition by methoxyamine of the apurinic/apyrimidinic endonuclease activity associated with pyrimidine dimer-DNA glycosylases from Micrococcus luteus and bacteriophage T4

    International Nuclear Information System (INIS)

    Liuzzi, M.; Weinfeld, M.; Paterson, M.C.

    1987-01-01

    The UV endonucleases from Micrococcus luteus and bacteriophage T4 possess two catalytic activities specific for the site of cyclobutane pyrimidine dimers in UV-irradiated DNA: a DNA glycosylase that cleaves the 5'-glycosyl bond of the dimerized pyrimidines and an apurinic/apyrimidinic (AP) endonuclease that thereupon incises the phosphodiester bond 3' to the resulting apyrimidinic site. The authors have explored the potential use of methoxyamine, a chemical that reacts at neutral pH with AP sites in DNA, as a selective inhibitor of the AP endonuclease activities residing in the M. luteus and T4 enzymes. The presence of 50 mM methoxyamine during incubation of UV-treated, [ 3 H]thymine-labeled poly(dA) x poly(dT) with either enzyme preparation was found to protect completely the irradiated copolymer from endonucleolytic attack at dimer sites, as assayed by yield of acid-soluble radioactivity. In contrast, the dimer-DNA glycosylase activity of each enzyme remained fully functional, as monitored retrospectively by release of free thymine after either photochemical-(5 kJ/m 2 , 254 nm) or photoenzymic- (Escherichia coli photolyase plus visible light) induced reversal of pyrimidine dimers in the UV-damaged substrate. The data demonstrate that the inhibition of the strand-incision reaction arises because of chemical modification of the AP sites and is not due to inactivation of the enzyme by methoxyamine. The results, combined with earlier findings for 5'-acting AP endonucleases, strongly suggest that methoxyamine is a highly specific inhibitor of virtually all AP endonucleases, irrespective of their modes of action, and may therefore prove useful in a wide variety of DNA repair studies

  3. Dominant mutations in S. cerevisiae PMS1 identify the Mlh1-Pms1 endonuclease active site and an exonuclease 1-independent mismatch repair pathway.

    Science.gov (United States)

    Smith, Catherine E; Mendillo, Marc L; Bowen, Nikki; Hombauer, Hans; Campbell, Christopher S; Desai, Arshad; Putnam, Christopher D; Kolodner, Richard D

    2013-10-01

    Lynch syndrome (hereditary nonpolypsis colorectal cancer or HNPCC) is a common cancer predisposition syndrome. Predisposition to cancer in this syndrome results from increased accumulation of mutations due to defective mismatch repair (MMR) caused by a mutation in one of the mismatch repair genes MLH1, MSH2, MSH6 or PMS2/scPMS1. To better understand the function of Mlh1-Pms1 in MMR, we used Saccharomyces cerevisiae to identify six pms1 mutations (pms1-G683E, pms1-C817R, pms1-C848S, pms1-H850R, pms1-H703A and pms1-E707A) that were weakly dominant in wild-type cells, which surprisingly caused a strong MMR defect when present on low copy plasmids in an exo1Δ mutant. Molecular modeling showed these mutations caused amino acid substitutions in the metal coordination pocket of the Pms1 endonuclease active site and biochemical studies showed that they inactivated the endonuclease activity. This model of Mlh1-Pms1 suggested that the Mlh1-FERC motif contributes to the endonuclease active site. Consistent with this, the mlh1-E767stp mutation caused both MMR and endonuclease defects similar to those caused by the dominant pms1 mutations whereas mutations affecting the predicted metal coordinating residue Mlh1-C769 had no effect. These studies establish that the Mlh1-Pms1 endonuclease is required for MMR in a previously uncharacterized Exo1-independent MMR pathway.

  4. Dominant mutations in S. cerevisiae PMS1 identify the Mlh1-Pms1 endonuclease active site and an exonuclease 1-independent mismatch repair pathway.

    Directory of Open Access Journals (Sweden)

    Catherine E Smith

    2013-10-01

    Full Text Available Lynch syndrome (hereditary nonpolypsis colorectal cancer or HNPCC is a common cancer predisposition syndrome. Predisposition to cancer in this syndrome results from increased accumulation of mutations due to defective mismatch repair (MMR caused by a mutation in one of the mismatch repair genes MLH1, MSH2, MSH6 or PMS2/scPMS1. To better understand the function of Mlh1-Pms1 in MMR, we used Saccharomyces cerevisiae to identify six pms1 mutations (pms1-G683E, pms1-C817R, pms1-C848S, pms1-H850R, pms1-H703A and pms1-E707A that were weakly dominant in wild-type cells, which surprisingly caused a strong MMR defect when present on low copy plasmids in an exo1Δ mutant. Molecular modeling showed these mutations caused amino acid substitutions in the metal coordination pocket of the Pms1 endonuclease active site and biochemical studies showed that they inactivated the endonuclease activity. This model of Mlh1-Pms1 suggested that the Mlh1-FERC motif contributes to the endonuclease active site. Consistent with this, the mlh1-E767stp mutation caused both MMR and endonuclease defects similar to those caused by the dominant pms1 mutations whereas mutations affecting the predicted metal coordinating residue Mlh1-C769 had no effect. These studies establish that the Mlh1-Pms1 endonuclease is required for MMR in a previously uncharacterized Exo1-independent MMR pathway.

  5. Processive nicking activity of T4 endonuclease V on UV-irradiated chromatin

    International Nuclear Information System (INIS)

    Gruskin, E.A.; Lloyd, R.S.

    1986-01-01

    T4 endonuclease V initiates the excision repair of pyrimidine dimers in UV-irradiated T4 infected E. coli cells. The pyrimidine dimer specific nicking activity of T4 endonuclease V functions by a processive scanning on UV-irradiated DNA. Previously it has been demonstrated that introduction of endonuclease V into repair-deficient human cells causes a restoration of UV survival in these cells. This demonstrates that endonuclease V is competent to incise mammalian DNA at the site of pyrimidine dimers. In order to assess the ability of endonuclease V to act processively on DNA associated as chromatin, minichromosomes were prepared for use as a substrate. Form I DNA was reconstituted with H3, H4 +/- H1 histones by sequential dialysis steps from 2.0 M NaCl to 50 mM NaCl. Time course reactions were performed with minichromosomes containing 10 and 25 dimers per molecule. In each case the rate of disappearance of form I DNA which was associated as chromatin was decreased relative to that of naked form I DNA. Concurrent with that observation, the rate and extent of appearance of form III DNA was increased with the DNA in minichromosomes relative to naked DNA. This is diagnostic of an enhancement of processivity. The inclusion of H1 in the minichromosomes resulted in a slight additional increase in processivity relative to minichromosomes consisting only of H3 and H4

  6. Specificity of binding to four-way junctions in DNA by bacteriophage T7 endonuclease I.

    OpenAIRE

    Parsons, C A; West, S C

    1990-01-01

    T7 endonuclease I binds specifically to four-way junctions in duplex DNA and promotes their resolution into linear duplexes. Under conditions in which the nuclease activity is blocked by the absence of divalent cations, the enzyme forms a distinct protein-DNA complex with the junction, as detected by gel retardation and filter binding assays. The formation of this complex is structure-specific and contrasts with the short-lived binding complexes formed on linear duplex DNA. The binding comple...

  7. Conserved structural chemistry for incision activity in structurally non-homologous apurinic/apyrimidinic endonuclease APE1 and endonuclease IV DNA repair enzymes.

    Energy Technology Data Exchange (ETDEWEB)

    Tsutakawa, Susan E.; Shin, David S.; Mol, Clifford D.; Izum, Tadahide; Arvai, Andrew S.; Mantha, Anil K.; Szczesny, Bartosz; Ivanov, Ivaylo N.; Hosfield, David J.; Maiti, Buddhadev; Pique, Mike E.; Frankel, Kenneth A.; Hitomi, Kenichi; Cunningham, Richard P.; Mitra, Sankar; Tainer, John A.

    2013-03-22

    Non-coding apurinic/apyrimidinic (AP) sites in DNA form spontaneously and as DNA base excision repair intermediates are the most common toxic and mutagenic in vivo DNA lesion. For repair, AP sites must be processed by 5' AP endonucleases in initial stages of base repair. Human APE1 and bacterial Nfo represent the two conserved 5' AP endonuclease families in the biosphere; they both recognize AP sites and incise the phosphodiester backbone 5' to the lesion, yet they lack similar structures and metal ion requirements. Here, we determined and analyzed crystal structures of a 2.4 ? resolution APE1-DNA product complex with Mg(2+) and a 0.92 Nfo with three metal ions. Structural and biochemical comparisons of these two evolutionarily distinct enzymes characterize key APE1 catalytic residues that are potentially functionally similar to Nfo active site components, as further tested and supported by computational analyses. We observe a magnesium-water cluster in the APE1 active site, with only Glu-96 forming the direct protein coordination to the Mg(2+). Despite differences in structure and metal requirements of APE1 and Nfo, comparison of their active site structures surprisingly reveals strong geometric conservation of the catalytic reaction, with APE1 catalytic side chains positioned analogously to Nfo metal positions, suggesting surprising functional equivalence between Nfo metal ions and APE1 residues. The finding that APE1 residues are positioned to substitute for Nfo metal ions is supported by the impact of mutations on activity. Collectively, the results illuminate the activities of residues, metal ions, and active site features for abasic site endonucleases.

  8. Sequential and Multistep Substrate Interrogation Provides the Scaffold for Specificity in Human Flap Endonuclease 1

    KAUST Repository

    Sobhy, M.; Joudeh, L.; Huang, X.; Takahashi, Masateru; Hamdan, S.

    2013-01-01

    Human flap endonuclease 1 (FEN1), one of the structure-specific 5' nucleases, is integral in replication, repair, and recombination of cellular DNA. The 5' nucleases share significant unifying features yet cleave diverse substrates at similar positions relative to 5' end junctions. Using single-molecule Förster resonance energy transfer, we find a multistep mechanism that verifies all substrate features before inducing the intermediary-DNA bending step that is believed to unify 5' nuclease mechanisms. This is achieved by coordinating threading of the 5' flap of a nick junction into the conserved capped-helical gateway, overseeing the active site, and bending by binding at the base of the junction. We propose that this sequential and multistep substrate recognition process allows different 5' nucleases to recognize different substrates and restrict the induction of DNA bending to the last common step. Such mechanisms would also ensure the protection ofDNA junctions from nonspecific bending and cleavage. 2013 The Authors.

  9. Sequential and Multistep Substrate Interrogation Provides the Scaffold for Specificity in Human Flap Endonuclease 1

    KAUST Repository

    Sobhy, M.

    2013-06-06

    Human flap endonuclease 1 (FEN1), one of the structure-specific 5\\' nucleases, is integral in replication, repair, and recombination of cellular DNA. The 5\\' nucleases share significant unifying features yet cleave diverse substrates at similar positions relative to 5\\' end junctions. Using single-molecule Förster resonance energy transfer, we find a multistep mechanism that verifies all substrate features before inducing the intermediary-DNA bending step that is believed to unify 5\\' nuclease mechanisms. This is achieved by coordinating threading of the 5\\' flap of a nick junction into the conserved capped-helical gateway, overseeing the active site, and bending by binding at the base of the junction. We propose that this sequential and multistep substrate recognition process allows different 5\\' nucleases to recognize different substrates and restrict the induction of DNA bending to the last common step. Such mechanisms would also ensure the protection ofDNA junctions from nonspecific bending and cleavage. 2013 The Authors.

  10. Positioning the 5'-flap junction in the active site controls the rate of flap endonuclease-1-catalyzed DNA cleavage

    KAUST Repository

    Song, Bo

    2018-02-09

    Flap endonucleases catalyze cleavage of single-stranded DNA flaps formed during replication, repair and recombination, and are therefore essential for genome processing and stability. Recent crystal structures of DNA-bound human flap endonuclease (hFEN1) offer new insights into how conformational changes in the DNA and hFEN1 may facilitate the reaction mechanism. For example, previous biochemical studies of DNA conformation performed under non-catalytic conditions with Ca2+ have suggested that base unpairing at the 5\\'-flap:template junction is an important step in the reaction, but the new structural data suggest otherwise. To clarify the role of DNA changes in the kinetic mechanism, we measured a series of transient steps - from substrate binding to product release - during the hFEN1-catalyzed reaction in the presence of Mg2+. We found that while hFEN1 binds and bends DNA at a fast, diffusion-limited rate, much slower Mg2+-dependent conformational changes in DNA around the active site are subsequently necessary and rate-limiting for 5\\'-flap cleavage. These changes are reported overall by fluorescence of 2-aminopurine at the 5\\'-flap:template junction, indicating that local DNA distortion (e.g., disruption of base stacking observed in structures), associated with positioning the 5\\'-flap scissile phosphodiester bond in the hFEN1 active site, controls catalysis. hFEN1 residues with distinct roles in the catalytic mechanism, including those binding metal ions (Asp-34, Asp-181), steering the 5\\'-flap through the active site and binding the scissile phosphate (Lys-93, Arg-100), and stacking against the base 5\\' to the scissile phosphate (Tyr-40), all contribute to these rate-limiting conformational changes, ensuring efficient and specific cleavage of 5\\'-flaps.

  11. Positioning the 5'-flap junction in the active site controls the rate of flap endonuclease-1-catalyzed DNA cleavage

    KAUST Repository

    Song, Bo; Hamdan, Samir; Hingorani, Manju M

    2018-01-01

    Flap endonucleases catalyze cleavage of single-stranded DNA flaps formed during replication, repair and recombination, and are therefore essential for genome processing and stability. Recent crystal structures of DNA-bound human flap endonuclease (hFEN1) offer new insights into how conformational changes in the DNA and hFEN1 may facilitate the reaction mechanism. For example, previous biochemical studies of DNA conformation performed under non-catalytic conditions with Ca2+ have suggested that base unpairing at the 5'-flap:template junction is an important step in the reaction, but the new structural data suggest otherwise. To clarify the role of DNA changes in the kinetic mechanism, we measured a series of transient steps - from substrate binding to product release - during the hFEN1-catalyzed reaction in the presence of Mg2+. We found that while hFEN1 binds and bends DNA at a fast, diffusion-limited rate, much slower Mg2+-dependent conformational changes in DNA around the active site are subsequently necessary and rate-limiting for 5'-flap cleavage. These changes are reported overall by fluorescence of 2-aminopurine at the 5'-flap:template junction, indicating that local DNA distortion (e.g., disruption of base stacking observed in structures), associated with positioning the 5'-flap scissile phosphodiester bond in the hFEN1 active site, controls catalysis. hFEN1 residues with distinct roles in the catalytic mechanism, including those binding metal ions (Asp-34, Asp-181), steering the 5'-flap through the active site and binding the scissile phosphate (Lys-93, Arg-100), and stacking against the base 5' to the scissile phosphate (Tyr-40), all contribute to these rate-limiting conformational changes, ensuring efficient and specific cleavage of 5'-flaps.

  12. Recruitment of RecA homologs Dmc1p and Rad51p to the double-strand break repair site initiated by meiosis-specific endonuclease VDE (PI-SceI).

    Science.gov (United States)

    Fukuda, Tomoyuki; Ohya, Yoshikazu

    2006-02-01

    During meiosis, VDE (PI-SceI), a homing endonuclease in Saccharomyces cerevisiae, introduces a double-strand break (DSB) at its recognition sequence and induces homologous recombinational repair, called homing. Meiosis-specific RecA homolog Dmc1p, as well as mitotic RecA homolog Rad51p, acts in the process of meiotic recombination, being required for strand invasion and exchange. In this study, recruitment of Dmc1p and Rad51p to the VDE-induced DSB repair site is investigated by chromatin immunoprecipitation assay. It is revealed that Dmc1p and Rad51p are loaded to the repair site in an independent manner. Association of Rad51p requires other DSB repair proteins of Rad52p, Rad55p, and Rad57p, while loading of Dmc1p is facilitated by the different protein, Sae3p. Absence of Tid1p, which can bind both RecA homologs, appears specifically to cause an abnormal distribution of Dmc1p. Lack of Hop2, Mnd1p, and Sae1p does not impair recruitment of both RecA homologs. These findings reveal the discrete functions of each strand invasion protein in VDE-initiated homing, confirm the similarity between VDE-initiated homing and Spo11p-initiated meiotic recombination, and demonstrate the availability of VDE-initiated homing for the study of meiotic recombination.

  13. Phosphate steering by Flap Endonuclease 1 promotes 5′-flap specificity and incision to prevent genome instability

    KAUST Repository

    Tsutakawa, Susan E.

    2017-06-27

    DNA replication and repair enzyme Flap Endonuclease 1 (FEN1) is vital for genome integrity, and FEN1 mutations arise in multiple cancers. FEN1 precisely cleaves single-stranded (ss) 5\\'-flaps one nucleotide into duplex (ds) DNA. Yet, how FEN1 selects for but does not incise the ss 5\\'-flap was enigmatic. Here we combine crystallographic, biochemical and genetic analyses to show that two dsDNA binding sites set the 5\\'polarity and to reveal unexpected control of the DNA phosphodiester backbone by electrostatic interactions. Via phosphate steering\\', basic residues energetically steer an inverted ss 5\\'-flap through a gateway over FEN1\\'s active site and shift dsDNA for catalysis. Mutations of these residues cause an 18,000-fold reduction in catalytic rate in vitro and large-scale trinucleotide (GAA) repeat expansions in vivo, implying failed phosphate-steering promotes an unanticipated lagging-strand template-switch mechanism during replication. Thus, phosphate steering is an unappreciated FEN1 function that enforces 5\\'-flap specificity and catalysis, preventing genomic instability.

  14. Site- and strand-specific nicking of DNA by fusion proteins derived from MutH and I-SceI or TALE repeats.

    Science.gov (United States)

    Gabsalilow, Lilia; Schierling, Benno; Friedhoff, Peter; Pingoud, Alfred; Wende, Wolfgang

    2013-04-01

    Targeted genome engineering requires nucleases that introduce a highly specific double-strand break in the genome that is either processed by homology-directed repair in the presence of a homologous repair template or by non-homologous end-joining (NHEJ) that usually results in insertions or deletions. The error-prone NHEJ can be efficiently suppressed by 'nickases' that produce a single-strand break rather than a double-strand break. Highly specific nickases have been produced by engineering of homing endonucleases and more recently by modifying zinc finger nucleases (ZFNs) composed of a zinc finger array and the catalytic domain of the restriction endonuclease FokI. These ZF-nickases work as heterodimers in which one subunit has a catalytically inactive FokI domain. We present two different approaches to engineer highly specific nickases; both rely on the sequence-specific nicking activity of the DNA mismatch repair endonuclease MutH which we fused to a DNA-binding module, either a catalytically inactive variant of the homing endonuclease I-SceI or the DNA-binding domain of the TALE protein AvrBs4. The fusion proteins nick strand specifically a bipartite recognition sequence consisting of the MutH and the I-SceI or TALE recognition sequences, respectively, with a more than 1000-fold preference over a stand-alone MutH site. TALE-MutH is a programmable nickase.

  15. Endonuclease IV of Escherichia coli is induced by paraquat

    Energy Technology Data Exchange (ETDEWEB)

    Chan, E.; Weiss, B.

    1987-05-01

    The addition of paraquat (methyl viologen) to a growing culture of Escherichia coli K-12 led within 1 hr to a 10- to 20-fold increase in the level of endonuclease IV, a DNase for apurinic/apyrimidinic sites. The induction was blocked by chloramphenicol. Increases of 3-fold or more were also seen with plumbagin, menadione, and phenazine methosulfate. H/sub 2/O/sub 2/ produced no more than a 2-fold increase in endonuclease IV activity. The following agents had no significant effect: streptonigrin, nitrofurantoin, tert-butyl hydroperoxide, ..gamma.. rays, 260-nm UV radiation, methyl methanesulfonate, mitomycin C, and ascorbate. Paraquat, plumbagin, menadione, and phenazine methosulfate are known to generate superoxide radical anions via redox cycling in vivo. A mutant lacking superoxide dismutase was unusually sensitive to induction by paraquat. In addition, endonuclease IV could be induced by merely growing the mutant in pure O/sub 2/. The levels of endonuclease IV in uninduced or paraquat-treated cells were unaffected by mutations of oxyR, a H/sub 2/O/sub 2/-inducible gene that governs an oxidative-stress regulon. The results indicate that endonuclease IV is an inducible DNA-repair enzyme and that its induction can be mediated via the production of superoxide radicals.

  16. Endonuclease IV of Escherichia coli is induced by paraquat

    International Nuclear Information System (INIS)

    Chan, E.; Weiss, B.

    1987-01-01

    The addition of paraquat (methyl viologen) to a growing culture of Escherichia coli K-12 led within 1 hr to a 10- to 20-fold increase in the level of endonuclease IV, a DNase for apurinic/apyrimidinic sites. The induction was blocked by chloramphenicol. Increases of 3-fold or more were also seen with plumbagin, menadione, and phenazine methosulfate. H 2 O 2 produced no more than a 2-fold increase in endonuclease IV activity. The following agents had no significant effect: streptonigrin, nitrofurantoin, tert-butyl hydroperoxide, γ rays, 260-nm UV radiation, methyl methanesulfonate, mitomycin C, and ascorbate. Paraquat, plumbagin, menadione, and phenazine methosulfate are known to generate superoxide radical anions via redox cycling in vivo. A mutant lacking superoxide dismutase was unusually sensitive to induction by paraquat. In addition, endonuclease IV could be induced by merely growing the mutant in pure O 2 . The levels of endonuclease IV in uninduced or paraquat-treated cells were unaffected by mutations of oxyR, a H 2 O 2 -inducible gene that governs an oxidative-stress regulon. The results indicate that endonuclease IV is an inducible DNA-repair enzyme and that its induction can be mediated via the production of superoxide radicals

  17. Molecular Recognition of DNA Damage Sites by Apurinic/Apyrimidinic Endonucleases

    Energy Technology Data Exchange (ETDEWEB)

    Braun, W. A.

    2005-07-28

    The DNA repair/redox factor AP endonuclease 1 (APE1) is a multifunctional protein which is known to to be essential for DNA repair activity in human cells. Structural/functional analyses of the APE activity is thus been an important research field to assess cellular defense mechanisms against ionizing radiation.

  18. DNA scanning mechanism of T4 endonuclease V. Effect of NaCl concentration on processive nicking activity

    International Nuclear Information System (INIS)

    Gruskin, E.A.; Lloyd, R.S.

    1986-01-01

    T4 endonuclease V is a pyrimidine dimer-specific endonuclease which generates incisions in DNA at the sites of pyrimidine dimers by a processive reaction mechanism. A model is presented in which the degree of processivity is directly related to the efficacy of the one-dimensional diffusion of endonuclease V on DNA by which the enzyme locates pyrimidine dimers. The modulation of the processive nicking activity of T4 endonuclease V on superhelical covalently closed circular DNA (form I) which contains pyrimidine dimers has been investigated as a function of the ionic strength of the reaction. Agarose gel electrophoresis was used to separate the three topological forms of the DNA which were generated in time course reactions of endonuclease V with dimer-containing form I DNA in the absence of NaCl, and in 25, 50, and 100 mM NaCl. The degree of processivity was evaluated in terms of the mass fraction of form III (linear) DNA which was produced as a function of the fraction of form I DNA remaining. Processivity is maximal in the absence of NaCl and decreases as the NaCl concentration is increased. At 100 mM NaCl, processivity is abolished and endonuclease V generates incisions in DNA at the site of dimers by a distributive reaction mechanism. The change from the distributive to a processive reaction mechanism occurs at NaCl concentrations slightly below 50 mM. The high degree of processivity which is observed in the absence of NaCl is reversible to the distributive mechanism, as demonstrated by experiments in which the NaCl concentration was increased during the time course reaction. In addition, unirradiated DNA inhibited the incision of irradiated DNA only at NaCl concentrations at which processivity was observed

  19. Home and away- the evolutionary dynamics of homing endonucleases

    Directory of Open Access Journals (Sweden)

    Barzel Adi

    2011-11-01

    Full Text Available Abstract Background Homing endonucleases (HEases are a large and diverse group of site-specific DNAases. They reside within self-splicing introns and inteins, and promote their horizontal dissemination. In recent years, HEases have been the focus of extensive research due to their promising potential use in gene targeting procedures for the treatment of genetic diseases and for the genetic engineering of crop, animal models and cell lines. Results Using mathematical analysis and computational modeling, we present here a novel account for the evolution and population dynamics of HEase genes (HEGs. We describe HEGs as paradoxical selfish elements whose long-term persistence in a single population relies on low transmission rates and a positive correlation between transmission efficiency and toxicity. Conclusion Plausible conditions allow HEGs to sustain at high frequency through long evolutionary periods, with the endonuclease frequency being either at equilibrium or periodically oscillating. The predictions of our model may prove important not only for evolutionary theory but also for gene therapy and bio-engineering applications of HEases.

  20. Cleavage of phosphorothioated DNA and methylated DNA by the type IV restriction endonuclease ScoMcrA.

    Directory of Open Access Journals (Sweden)

    Guang Liu

    2010-12-01

    Full Text Available Many taxonomically diverse prokaryotes enzymatically modify their DNA by replacing a non-bridging oxygen with a sulfur atom at specific sequences. The biological implications of this DNA S-modification (phosphorothioation were unknown. We observed that simultaneous expression of the dndA-E gene cluster from Streptomyces lividans 66, which is responsible for the DNA S-modification, and the putative Streptomyces coelicolor A(32 Type IV methyl-dependent restriction endonuclease ScoA3McrA (Sco4631 leads to cell death in the same host. A His-tagged derivative of ScoA3McrA cleaved S-modified DNA and also Dcm-methylated DNA in vitro near the respective modification sites. Double-strand cleavage occurred 16-28 nucleotides away from the phosphorothioate links. DNase I footprinting demonstrated binding of ScoA3McrA to the Dcm methylation site, but no clear binding could be detected at the S-modified site under cleavage conditions. This is the first report of in vitro endonuclease activity of a McrA homologue and also the first demonstration of an enzyme that specifically cleaves S-modified DNA.

  1. RECQ5 Helicase Cooperates with MUS81 Endonuclease in Processing Stalled Replication Forks at Common Fragile Sites during Mitosis

    DEFF Research Database (Denmark)

    Di Marco, Stefano; Hasanova, Zdenka; Kanagaraj, Radhakrishnan

    2017-01-01

    The MUS81-EME1 endonuclease cleaves late replication intermediates at common fragile sites (CFSs) during early mitosis to trigger DNA-repair synthesis that ensures faithful chromosome segregation. Here, we show that these DNA transactions are promoted by RECQ5 DNA helicase in a manner dependent...... on its Ser727 phosphorylation by CDK1. Upon replication stress, RECQ5 associates with CFSs in early mitosis through its physical interaction with MUS81 and promotes MUS81-dependent mitotic DNA synthesis. RECQ5 depletion or mutational inactivation of its ATP-binding site, RAD51-interacting domain...

  2. Karyopherin-mediated nuclear import of the homing endonuclease VMA1-derived endonuclease is required for self-propagation of the coding region.

    Science.gov (United States)

    Nagai, Yuri; Nogami, Satoru; Kumagai-Sano, Fumi; Ohya, Yoshikazu

    2003-03-01

    VMA1-derived endonuclease (VDE), a site-specific endonuclease in Saccharomyces cerevisiae, enters the nucleus to generate a double-strand break in the VDE-negative allelic locus, mediating the self-propagating gene conversion called homing. Although VDE is excluded from the nucleus in mitotic cells, it relocalizes at premeiosis, becoming localized in both the nucleus and the cytoplasm in meiosis. The nuclear localization of VDE is induced by inactivation of TOR kinases, which constitute central regulators of cell differentiation in S. cerevisiae, and by nutrient depletion. A functional genomic approach revealed that at least two karyopherins, Srp1p and Kap142p, are required for the nuclear localization pattern. Genetic and physical interactions between Srp1p and VDE imply direct involvement of karyopherin-mediated nuclear transport in this process. Inactivation of TOR signaling or acquisition of an extra nuclear localization signal in the VDE coding region leads to artificial nuclear localization of VDE and thereby induces homing even during mitosis. These results serve as evidence that VDE utilizes the host systems of nutrient signal transduction and nucleocytoplasmic transport to ensure the propagation of its coding region.

  3. Identification of a mismatch-specific endonuclease in hyperthermophilic Archaea

    OpenAIRE

    Ishino, Sonoko; Nishi, Yuki; Oda, Soichiro; Uemori, Takashi; Sagara, Takehiro; Takatsu, Nariaki; Yamagami, Takeshi; Shirai, Tsuyoshi; Ishino, Yoshizumi

    2016-01-01

    The common mismatch repair system processed by MutS and MutL and their homologs was identified in Bacteria and Eukarya. However, no evidence of a functional MutS/L homolog has been reported for archaeal organisms, and it is not known whether the mismatch repair system is conserved in Archaea. Here, we describe an endonuclease that cleaves double-stranded DNA containing a mismatched base pair, from the hyperthermophilic archaeon Pyrococcus furiosus. The corresponding gene revealed that the act...

  4. Engineering a Nickase on the Homing Endonuclease I-DmoI Scaffold

    DEFF Research Database (Denmark)

    Molina, Rafael; Marcaida, María José; Redondo, Pilar

    2015-01-01

    strand break could be an approach to reduce the toxicity associated with non-homologous end joining by promoting the use of homologous recombination to repair the cleavage of a single DNA break. Taking advantage of the sequential DNA cleavage mechanism of I-DmoI LAGLIDADG homing endonuclease, we have......Homing endonucleases are useful tools for genome modification because of their capability to recognize and cleave specifically large DNA targets. These endonucleases generate a DNA double strand break that can be repaired by the DNA damage response machinery. The break can be repaired by homologous...

  5. Permeabilization of ultraviolet-irradiated chinese hamster cells with polyethylene glycol and introduction of ultraviolet endonuclease from Micrococcus luteus

    International Nuclear Information System (INIS)

    Yarosh, D.B.; Setlow, R.B.

    1981-01-01

    Chinese hamster V-79 cells were made permeable by treatment with polyethylene glycol and then incubated with a Micrococcus luteus extract containing ultraviolet-specific endonuclease activity. This treatment introduced nicks in irradiated, but not in unirradiated, deoxyribonucleic acid. The nicks remained open for at least 3 h; there was no loss of endonuclease-sensitive sites, and no excision of dimers as measured by chromatography was detected. In addition, there was no increase in ultraviolet resistance in treated cells. This suggests that the absence of a significant amount of excision repair in rodent cells is due to the lack of both incision and excision capacity

  6. Expression analysis of a ''Cucurbita'' cDNA encoding endonuclease

    International Nuclear Information System (INIS)

    Szopa, J.

    1995-01-01

    The nuclear matrices of plant cell nuclei display intrinsic nuclease activity which consists in nicking supercoiled DNA. A cDNA encoding a 32 kDa endonuclease has been cloned and sequenced. The nucleotide and deduced amino-acid sequences show high homology to known 14-3-3-protein sequences from other sources. The amino-acid sequence shows agreement with consensus sequences for potential phosphorylation by protein kinase A and C and for calcium, lipid and membrane-binding sites. The nucleotide-binding site is also present within the conserved part of the sequence. By Northern blot analysis, the differential expression of the corresponding mRNA was detected; it was the strongest in sink tissues. The endonuclease activity found on DNA-polyacrylamide gel electrophoresis coincided with mRNA content and was the highest in tuber. (author). 22 refs, 6 figs

  7. Measurement of M. luteus endonuclease-sensitive lesions by alkaline elution

    Energy Technology Data Exchange (ETDEWEB)

    Fornace, Jr, A J [National Cancer Inst., Bethesda, MD (USA). Lab. for Experimental Pathology

    1982-01-01

    The UV-endonuclease approach to detect DNA damage has been combined with the alkaline elution technique with a resultant marked increase in sensitivity compared to the conventional method using alkaline sedimentation. DNA from UV-irradiated cells was digested on an inert filter with an extract from Micrococcus luteus and then analyzed by alkaline elution. Endonuclease-sensitive sites (endo-sites) were measured after doses of 0.08-0.7 Jm/sup -2/ of UV-radiation. An estimate of endo-site production with UV radiation, 0.27 endo-sites/10/sup 8/ daltons of DNA/0.1 Jm/sup -2/, was similar to that usually seen at higher doses by others. With repair incubation, approx. 50% of the endo-sites were removed in 4 h by normal human fibroblasts after 0.2 or 0.4 Jm/sup -2/, no appreciable repair was seen in xeroderma pigmentosum fibroblasts from complementation group A after 24 h of repair incubation. No photoreaction of UV damage due to 0.4 Jm/sup -2/ was detected in normal human fibroblasts.

  8. Measurement of M. luteus endonuclease-sensitive lesions by alkaline elution

    International Nuclear Information System (INIS)

    Fornace, A.J. Jr.

    1982-01-01

    The UV-endonuclease approach to detect DNA damage has been combined with the alkaline elution technique with a resultant marked increase in sensitivity compared to the conventional method using alkaline sedimentation. DNA from UV-irradiated cells was digested on an inert filter with an extract from Micrococcus luteus and then analyzed by alkaline elution. Endonuclease-sensitive sites (endo-sites) were measured after doses of 0.08-0.7 Jm -2 of UV-radiation. An estimate of endo-site production with UV radiation, 0.27 endo-sites/10 8 daltons of DNA/0.1 Jm -2 , was similar to that usually seen at higher doses by others. With repair incubation, approx. 50% of the endo-sites were removed in 4 h by normal human fibroblasts after 0.2 or 0.4 Jm -2 , no appreciable repair was seen in xeroderma pigmentosum fibroblasts from complementation group A after 24 h of repair incubation. No photoreaction of UV damage due to 0.4 Jm -2 was detected in normal human fibroblasts. (orig./AJ)

  9. Complementary specificity of restriction endonucleases of Diplococcus pneumoniae with respect to DNA methylation. [Haemophilus influenzae, Escherichia coli, Paramecium aurelia

    Energy Technology Data Exchange (ETDEWEB)

    Lacks, S.; Greenberg, B.

    1977-01-01

    Restriction endonucleases Dpn I and Dpn II are produced by two distinct strains of Diplococcus pneumoniae. The two enzymes show complementary specificity with respect to methylation of sites in DNA. From the identity of its cleavage site with that of Mbo I, it appears that Dpn II cleaves at the unmodified sequence 5'-G-A-T-C-3'. Dpn I cleaves at the same sequence when the adenine residue is methylated. Both enzymes produce only double-strand breaks in susceptible DNA. Their susceptibility to Dpn I and not Dpn II shows that essentially all the G-A-T-C sequences are methylated in DNA from the pneumococcal strain that produces Dpn II as well as in DNA from Hemophilus influenzae and Escherichia coli. In the dam-3 mutant of E. coli none of these sequences appear to be methylated. Residual adenine methylation in the dam-3 mutant DNA most likely occurs at different sites. Different but characteristic degrees of methylation at G-A-T-C sites are found in the DNA of bacterial viruses grown in E. coli. DNAs from mammalian cells and viruses are not methylated at this sequence. Mitochondrial DNA from Paramecium aurelia is not methylated, but a small proportion of G-A-T-C sequences in the macronuclear DNA of this eukaryote appear to be methylated. Possible roles of sequence-specific methylation in the accommodation of plasmids, in the replication of DNA, in the regulation of gene function and in the restriction of viral infection are discussed.

  10. Inroads into base excision repair I. The discovery of apurinic/apyrimidinic (AP) endonuclease. "An endonuclease for depurinated DNA in Escherichia coli B," Canadian Journal of Biochemistry, 1972.

    Science.gov (United States)

    Lindahl, Tomas; Verly, W G; Paquette Y

    2004-11-02

    DNA treated with alkylating agents is incised at sites of damage by cell extracts. A key component of this DNA repair function was shown by Verly and co-workers to be an endonuclease acting at secondary lesions, apurinic sites, rather than directly at alkylated nucleotide residues.

  11. Structural insights of the ssDNA binding site in the multifunctional endonuclease AtBFN2 from Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Tsung-Fu Yu

    Full Text Available The multi S1/P1 nuclease AtBFN2 (EC 3.1.30.1 encoded by the Arabidopsis thaliana At1g68290 gene is a glycoprotein that digests RNA, ssDNA, and dsDNA. AtBFN2 depends on three zinc ions for cleaving DNA and RNA at 3'-OH to yield 5'-nucleotides. In addition, AtBFN2's enzymatic activity is strongly glycan dependent. Plant Zn(2+-dependent endonucleases present a unique fold, and belong to the Phospholipase C (PLC/P1 nuclease superfamily. In this work, we present the first complete, ligand-free, AtBFN2 crystal structure, along with sulfate, phosphate and ssDNA co-crystal structures. With these, we were able to provide better insight into the glycan structure and possible enzymatic mechanism. In comparison with other nucleases, the AtBFN2/ligand-free and AtBFN2/PO4 models suggest a similar, previously proposed, catalytic mechanism. Our data also confirm that the phosphate and vanadate can inhibit the enzyme activity by occupying the active site. More importantly, the AtBFN2/A5T structure reveals a novel and conserved secondary binding site, which seems to be important for plant Zn(2+-dependent endonucleases. Based on these findings, we propose a rational ssDNA binding model, in which the ssDNA wraps itself around the protein and the attached surface glycan, in turn, reinforces the binding complex.

  12. PI-PfuI and PI-PfuII, intein-coded homing endonucleases from Pyrococcus furiosus. II. Characterization Of the binding and cleavage abilities by site-directed mutagenesis.

    OpenAIRE

    Komori, K; Ichiyanagi, K; Morikawa, K; Ishino, Y

    1999-01-01

    PI- Pfu I and PI- Pfu II from Pyrococcus furiosus are homing endonucleases, as shown in the accompanying paper. These two endonucleases are produced by protein splicing from the precursor protein including ribonucleotide reductase (RNR). We show here that both enzymes specifically interact with their substrate DNA and distort the DNA strands by 73 degrees and 67 degrees, respectively. They have two copies of the amino acid sequence motif LAGLIDADG, which is present in the majority of homing e...

  13. Molecular characterization of a complex site-specific radiation-induced DNA double-strand break

    International Nuclear Information System (INIS)

    Datta, K.; Dizdaroglu, M.; Jaruga, P.; Neumann, R.D.; Winters, T.A.

    2003-01-01

    Radiation lethality is a function of radiation-induced DNA double-strand breaks (DSB). Current models propose the lethality of a DSB to be a function of its structural complexity. We present here for the first time a map of damage associated with a site-specific double-strand break produced by decay of 125 I in a plasmid bound by a 125 I-labeled triplex forming oligonucleotide ( 125 I-TFO). The E. coli DNA repair enzymes, endonuclease IV (endo IV), endonuclease III (endo III), and formamidopyrimidine-DNA glycosylase (Fpg), which recognize AP sites, and pyrimidine and purine base damage respectively, were used as probes in this study. 125 I-TFO bound plasmid was incubated with and without DMSO at -80 deg C for 1 month. No significant difference in DSB yield was observed under these conditions. A 32 base pair fragment from the upstream side of the decay site was isolated by restriction digestion and enzymatically probed to identify damage sites. Endo IV treatment of the 5'-end labeled upper strand indicated clustering of AP sites within 3 bases downstream and 7 bases upstream of the targeted base. Also, repeated experiments consistently detected an AP site 4 bases upstream of the 125 Itarget base. This was further supported by complementary results with the 3'-end labeled upper strand. Endo IV analysis of the lower strand also shows clustering of AP sites near the DSB end. Endo III and Fpg probing demonstrated that base damage is also clustered near the targeted break site. DSBs produced in the absence of DMSO displayed a different pattern of enzyme sensitive damage than those produced in the presence of DMSO. Identification of specific base damage types within the restriction fragment containing the DSB end was achieved with GC/MS. Base damage consisted of 8-hydroguanine, 8-hydroxyadenine, and 5-hydroxycytosine. These lesions were observed at relative yields of 8-hydroguanine and 5-hydroxycytosine to 8-hydroxyadenine of 7.4:1 and 4.7:1, respectively, in the absence

  14. Biological significance of facilitated diffusion in protein-DNA interactions. Applications to T4 endonuclease V-initiated DNA repair

    International Nuclear Information System (INIS)

    Dowd, D.R.; Lloyd, R.S.

    1990-01-01

    Facilitated diffusion along nontarget DNA is employed by numerous DNA-interactive proteins to locate specific targets. Until now, the biological significance of DNA scanning has remained elusive. T4 endonuclease V is a DNA repair enzyme which scans nontarget DNA and processively incises DNA at the site of pyrimidine dimers which are produced by exposure to ultraviolet (UV) light. In this study we tested the hypothesis that there exists a direct correlation between the degree of processivity of wild type and mutant endonuclease V molecules and the degree of enhanced UV resistance which is conferred to repair-deficient Eshcerichia coli. This was accomplished by first creating a series of endonuclease V mutants whose in vitro catalytic activities were shown to be very similar to that of the wild type enzyme. However, when the mechanisms by which these enzymes search nontarget DNA for its substrate were analyzed in vitro and in vivo, the mutants displayed varying degrees of nontarget DNA scanning ranging from being nearly as processive as wild type to randomly incising dimers within the DNA population. The ability of these altered endonuclease V molecules to enhance UV survival in DNA repair-deficient E. coli then was assessed. The degree of enhanced UV survival was directly correlated with the level of facilitated diffusion. This is the first conclusive evidence directly relating a reduction of in vivo facilitated diffusion with a change in an observed phenotype. These results support the assertion that the mechanisms which DNA-interactive proteins employ in locating their target sites are of biological significance

  15. Structural aspects of catalytic mechanisms of endonucleases and their binding to nucleic acids

    Energy Technology Data Exchange (ETDEWEB)

    Zhukhlistova, N. E.; Balaev, V. V.; Lyashenko, A. V.; Lashkov, A. A., E-mail: alashkov83@gmail.com [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2012-05-15

    Endonucleases (EC 3.1) are enzymes of the hydrolase class that catalyze the hydrolytic cleavage of deoxyribonucleic and ribonucleic acids at any region of the polynucleotide chain. Endonucleases are widely used both in biotechnological processes and in veterinary medicine as antiviral agents. Medical applications of endonucleases in human cancer therapy hold promise. The results of X-ray diffraction studies of the spatial organization of endonucleases and their complexes and the mechanism of their action are analyzed and generalized. An analysis of the structural studies of this class of enzymes showed that the specific binding of enzymes to nucleic acids is characterized by interactions with nitrogen bases and the nucleotide backbone, whereas the nonspecific binding of enzymes is generally characterized by interactions only with the nucleic-acid backbone. It should be taken into account that the specificity can be modulated by metal ions and certain low-molecular-weight organic compounds. To test the hypotheses about specific and nonspecific nucleic-acid-binding proteins, it is necessary to perform additional studies of atomic-resolution three-dimensional structures of enzyme-nucleic-acid complexes by methods of structural biology.

  16. Cofactor requirement of HpyAV restriction endonuclease.

    Directory of Open Access Journals (Sweden)

    Siu-Hong Chan

    Full Text Available BACKGROUND: Helicobacter pylori is the etiologic agent of common gastritis and a risk factor for gastric cancer. It is also one of the richest sources of Type II restriction-modification (R-M systems in microorganisms. PRINCIPAL FINDINGS: We have cloned, expressed and purified a new restriction endonuclease HpyAV from H. pylori strain 26695. We determined the HpyAV DNA recognition sequence and cleavage site as CCTTC 6/5. In addition, we found that HpyAV has a unique metal ion requirement: its cleavage activity is higher with transition metal ions than in Mg(++. The special metal ion requirement of HpyAV can be attributed to the presence of a HNH catalytic site similar to ColE9 nuclease instead of the canonical PD-X-D/EXK catalytic site found in many other REases. Site-directed mutagenesis was carried out to verify the catalytic residues of HpyAV. Mutation of the conserved metal-binding Asn311 and His320 to alanine eliminated cleavage activity. HpyAV variant H295A displayed approximately 1% of wt activity. CONCLUSIONS/SIGNIFICANCE: Some HNH-type endonucleases have unique metal ion cofactor requirement for optimal activities. Homology modeling and site-directed mutagenesis confirmed that HpyAV is a member of the HNH nuclease family. The identification of catalytic residues in HpyAV paved the way for further engineering of the metal binding site. A survey of sequenced microbial genomes uncovered 10 putative R-M systems that show high sequence similarity to the HpyAV system, suggesting lateral transfer of a prototypic HpyAV-like R-M system among these microorganisms.

  17. Type III restriction endonucleases are heterotrimeric: comprising one helicase–nuclease subunit and a dimeric methyltransferase that binds only one specific DNA

    Science.gov (United States)

    Butterer, Annika; Pernstich, Christian; Smith, Rachel M.; Sobott, Frank; Szczelkun, Mark D.; Tóth, Júlia

    2014-01-01

    Fundamental aspects of the biochemistry of Type III restriction endonucleases remain unresolved despite being characterized by numerous research groups in the past decades. One such feature is the subunit stoichiometry of these hetero-oligomeric enzyme complexes, which has important implications for the reaction mechanism. In this study, we present a series of results obtained by native mass spectrometry and size exclusion chromatography with multi-angle light scattering consistent with a 1:2 ratio of Res to Mod subunits in the EcoP15I, EcoPI and PstII complexes as the main holoenzyme species and a 1:1 stoichiometry of specific DNA (sDNA) binding by EcoP15I and EcoPI. Our data are also consistent with a model where ATP hydrolysis activated by recognition site binding leads to release of the enzyme from the site, dissociation from the substrate via a free DNA end and cleavage of the DNA. These results are discussed critically in the light of the published literature, aiming to resolve controversies and discuss consequences in terms of the reaction mechanism. PMID:24510100

  18. Selective metal binding to Cys-78 within endonuclease V causes an inhibition of catalytic activities without altering nontarget and target DNA binding

    International Nuclear Information System (INIS)

    Prince, M.A.; Friedman, B.; Gruskin, E.A.; Schrock, R.D. III; Lloyd, R.S.

    1991-01-01

    T4 endonuclease V is a pyrimidine dimer-specific DNA repair enzyme which has been previously shown not to require metal ions for either of its two catalytic activities or its DNA binding function. However, we have investigated whether the single cysteine within the enzyme was able to bind metal salts and influence the various activities of this repair enzyme. A series of metals (Hg2+, Ag+, Cu+) were shown to inactivate both endonuclease Vs pyrimidine dimer-specific DNA glycosylase activity and the subsequent apurinic nicking activity. The binding of metal to endonuclease V did not interfere with nontarget DNA scanning or pyrimidine dimer-specific binding. The Cys-78 codon within the endonuclease V gene was changed by oligonucleotide site-directed mutagenesis to Thr-78 and Ser-78 in order to determine whether the native cysteine was directly involved in the enzyme's DNA catalytic activities and whether the cysteine was primarily responsible for the metal binding. The mutant enzymes were able to confer enhanced ultraviolet light (UV) resistance to DNA repair-deficient Escherichia coli at levels equal to that conferred by the wild type enzyme. The C78T mutant enzyme was purified to homogeneity and shown to be catalytically active on pyrimidine dimer-containing DNA. The catalytic activities of the C78T mutant enzyme were demonstrated to be unaffected by the addition of Hg2+ or Ag+ at concentrations 1000-fold greater than that required to inhibit the wild type enzyme. These data suggest that the cysteine is not required for enzyme activity but that the binding of certain metals to that amino acid block DNA incision by either preventing a conformational change in the enzyme after it has bound to a pyrimidine dimer or sterically interfering with the active site residue's accessibility to the pyrimidine dimer

  19. A new restriction endonuclease from Citrobacter freundii

    OpenAIRE

    Janulaitis, A.A.; Stakenas, P.S.; Lebedenko, E.N.; Berlin, Yu.A.

    1982-01-01

    CfrI, a new restriction endonuclease of unique substrate specificity, has been isolated from a Citrobacter freundii strain. The enzyme recognizes a degenerated sequence PyGGCCPu in double-strand DNA and cleaves it between Py and G residues to yield 5′ -protruding tetranucleotide ends GGCC.

  20. A new restriction endonuclease from Citrobacter freundii

    Science.gov (United States)

    Janulaitis, A.A.; Stakenas, P.S.; Lebedenko, E.N.; Berlin, Yu.A.

    1982-01-01

    CfrI, a new restriction endonuclease of unique substrate specificity, has been isolated from a Citrobacter freundii strain. The enzyme recognizes a degenerated sequence PyGGCCPu in double-strand DNA and cleaves it between Py and G residues to yield 5′ -protruding tetranucleotide ends GGCC. Images PMID:6294607

  1. Computational Characterization of Small Molecules Binding to the Human XPF Active Site and Virtual Screening to Identify Potential New DNA Repair Inhibitors Targeting the ERCC1-XPF Endonuclease

    Directory of Open Access Journals (Sweden)

    Francesco Gentile

    2018-04-01

    Full Text Available The DNA excision repair protein ERCC-1-DNA repair endonuclease XPF (ERCC1-XPF is a heterodimeric endonuclease essential for the nucleotide excision repair (NER DNA repair pathway. Although its activity is required to maintain genome integrity in healthy cells, ERCC1-XPF can counteract the effect of DNA-damaging therapies such as platinum-based chemotherapy in cancer cells. Therefore, a promising approach to enhance the effect of these therapies is to combine their use with small molecules, which can inhibit the repair mechanisms in cancer cells. Currently, there are no structures available for the catalytic site of the human ERCC1-XPF, which performs the metal-mediated cleavage of a DNA damaged strand at 5′. We adopted a homology modeling strategy to build a structural model of the human XPF nuclease domain which contained the active site and to extract dominant conformations of the domain using molecular dynamics simulations followed by clustering of the trajectory. We investigated the binding modes of known small molecule inhibitors targeting the active site to build a pharmacophore model. We then performed a virtual screening of the ZINC Is Not Commercial 15 (ZINC15 database to identify new ERCC1-XPF endonuclease inhibitors. Our work provides structural insights regarding the binding mode of small molecules targeting the ERCC1-XPF active site that can be used to rationally optimize such compounds. We also propose a set of new potential DNA repair inhibitors to be considered for combination cancer therapy strategies.

  2. Structure-specific endonucleases

    DEFF Research Database (Denmark)

    Minocherhomji, Sheroy; Hickson, Ian D

    2014-01-01

    Fragile sites are conserved loci predisposed to form breaks in metaphase chromosomes. The inherent instability of these loci is associated with chromosomal rearrangements in cancers and is a feature of cells from patients with chromosomal instability syndromes. One class of fragile sites, the com...

  3. Identification of flap structure-specific endonuclease 1 as a factor involved in long-term memory formation of aversive learning.

    Science.gov (United States)

    Saavedra-Rodríguez, Lorena; Vázquez, Adrinel; Ortiz-Zuazaga, Humberto G; Chorna, Nataliya E; González, Fernando A; Andrés, Lissette; Rodríguez, Karen; Ramírez, Fernando; Rodríguez, Alan; Peña de Ortiz, Sandra

    2009-05-06

    We previously proposed that DNA recombination/repair processes play a role in memory formation. Here, we examined the possible role of the fen-1 gene, encoding a flap structure-specific endonuclease, in memory consolidation of conditioned taste aversion (CTA). Quantitative real-time PCR showed that amygdalar fen-1 mRNA induction was associated to the central processing of the illness experience related to CTA and to CTA itself, but not to the central processing resulting from the presentation of a novel flavor. CTA also increased expression of the Fen-1 protein in the amygdala, but not the insular cortex. In addition, double immunofluorescence analyses showed that amygdalar Fen-1 expression is mostly localized within neurons. Importantly, functional studies demonstrated that amygdalar antisense knockdown of fen-1 expression impaired consolidation, but not short-term memory, of CTA. Overall, these studies define the fen-1 endonuclease as a new DNA recombination/repair factor involved in the formation of long-term memories.

  4. A new endonuclease recognizing the deoxynucleotide sequence CCNNGG from the cyanobacterium Synechocystis 6701.

    Science.gov (United States)

    Calléja, F; Tandeau de Marsac, N; Coursin, T; van Ormondt, H; de Waard, A

    1985-09-25

    A new sequence-specific endonuclease from the cyanobacterium Synechocystis species PCC 6701 has been purified and characterized. This enzyme, SecI, is unique in recognizing the nucleotide sequence: 5' -CCNNGG-3' 3' -GGNNCC-5' and cleaves it at the position indicated by the symbol. Two other restriction endonucleases, SecII and SecIII, found in this organism are isoschizomers of MspI and MstII, respectively.

  5. Computational study of hydration at the TD damaged site of DNA in complex with repair enzyme T4 endonuclease V

    International Nuclear Information System (INIS)

    Pinak, Miroslav

    2000-02-01

    An analysis of the distribution of water around DNA surface focusing on the role of the distribution of water molecules in the proper recognition of damaged site by repair enzyme T4 Endonuclease V was performed. The native DNA dodecamer, dodecamer with the thymine dimer (TD) and complex of DNA and part of repair enzyme T4 Endonuclease V were examined throughout the 500 ps of molecular dynamics simulation. During simulation the number of water molecules close to the DNA atoms and the residence time were calculated. There is an increase in number of water molecules lying in the close vicinity to TD if compared with those lying close to two native thymines (TT). Densely populated area with water molecules around TD is one of the factors detected by enzyme during scanning process. The residence time was found higher for molecule of the complex and the six water molecules were found occupying the stabile positions between the TD and catalytic center close to atoms P, C3' and N3. These molecules originate water mediated hydrogen bond network that contribute to the stability of complex required for the onset of repair process. (author)

  6. Computational study of hydration at the TD damaged site of DNA in complex with repair enzyme T4 endonuclease V

    Energy Technology Data Exchange (ETDEWEB)

    Pinak, Miroslav [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2000-02-01

    An analysis of the distribution of water around DNA surface focusing on the role of the distribution of water molecules in the proper recognition of damaged site by repair enzyme T4 Endonuclease V was performed. The native DNA dodecamer, dodecamer with the thymine dimer (TD) and complex of DNA and part of repair enzyme T4 Endonuclease V were examined throughout the 500 ps of molecular dynamics simulation. During simulation the number of water molecules close to the DNA atoms and the residence time were calculated. There is an increase in number of water molecules lying in the close vicinity to TD if compared with those lying close to two native thymines (TT). Densely populated area with water molecules around TD is one of the factors detected by enzyme during scanning process. The residence time was found higher for molecule of the complex and the six water molecules were found occupying the stabile positions between the TD and catalytic center close to atoms P, C3' and N3. These molecules originate water mediated hydrogen bond network that contribute to the stability of complex required for the onset of repair process. (author)

  7. Phage T4 SegB protein is a homing endonuclease required for the preferred inheritance of T4 tRNA gene region occurring in co-infection with a related phage.

    Science.gov (United States)

    Brok-Volchanskaya, Vera S; Kadyrov, Farid A; Sivogrivov, Dmitry E; Kolosov, Peter M; Sokolov, Andrey S; Shlyapnikov, Michael G; Kryukov, Valentine M; Granovsky, Igor E

    2008-04-01

    Homing endonucleases initiate nonreciprocal transfer of DNA segments containing their own genes and the flanking sequences by cleaving the recipient DNA. Bacteriophage T4 segB gene, which is located in a cluster of tRNA genes, encodes a protein of unknown function, homologous to homing endonucleases of the GIY-YIG family. We demonstrate that SegB protein is a site-specific endonuclease, which produces mostly 3' 2-nt protruding ends at its DNA cleavage site. Analysis of SegB cleavage sites suggests that SegB recognizes a 27-bp sequence. It contains 11-bp conserved sequence, which corresponds to a conserved motif of tRNA TpsiC stem-loop, whereas the remainder of the recognition site is rather degenerate. T4-related phages T2L, RB1 and RB3 contain tRNA gene regions that are homologous to that of phage T4 but lack segB gene and several tRNA genes. In co-infections of phages T4 and T2L, segB gene is inherited with nearly 100% of efficiency. The preferred inheritance depends absolutely on the segB gene integrity and is accompanied by the loss of the T2L tRNA gene region markers. We suggest that SegB is a homing endonuclease that functions to ensure spreading of its own gene and the surrounding tRNA genes among T4-related phages.

  8. Murine leukemia virus pol gene products: analysis with antisera generated against reverse transcriptase and endonuclease fusion proteins expressed in Escherichia coli

    International Nuclear Information System (INIS)

    Hu, S.C.; Court, D.L.; Zweig, M.; Levin, J.G.

    1986-01-01

    The organization of the murine leukemia virus (MuLV) pol gene was investigated by expressing molecular clones containing AKR MuLV reverse transcriptase or endonuclease or both gene segments in Escherichia coli and generating specific antisera against the expressed bacterial proteins. Reaction of these antisera with detergent-disrupted virus precipitated and 80-kilodalton (kDa) protein, the MuLV reverse transcriptase, and a 46-kDa protein which we believe is the viral endonuclease. A third (50-kDa) protein, related to reverse transcriptase, was also precipitated. Bacterial extracts of clones expressing reverse transcriptase and endonuclease sequences competed with the viral 80- and 46-kDa proteins, respectively. These results demonstrate that the antisera are specific for viral reverse transcriptase and endonuclease. Immunoprecipitation of AKR MuLV with antisera prepared against a bacterial protein containing only endonuclease sequences led to the observation that reverse transcriptase and endonuclease can be associated as a complex involving a disulfide bond(s)

  9. Crystal Structure of the Homing Endonuclease I-CvuI Provides a New Template for Genome Modification

    DEFF Research Database (Denmark)

    Molina, Rafael; Redondo, Pilar; López-Méndez, Blanca

    2015-01-01

    Homing endonucleases recognize and generate a DNA double-strand break, which has been used to promote gene targeting. These enzymes recognize long DNA stretches; they are highly sequence-specific enzymes and display a very low frequency of cleavage even in complete genomes. Although a large number...... of homing endonucleases have been identified, the landscape of possible target sequences is still very limited to cover the complexity of the whole eukaryotic genome. Therefore, the finding and molecular analysis of homing endonucleases identified but not yet characterized may widen the landscape...

  10. Modulation of the DNA scanning activity of the Micrococcus luteus UV endonuclease

    International Nuclear Information System (INIS)

    Hamilton, R.W.; Lloyd, R.S.

    1989-01-01

    Micrococcus luteus UV endonuclease incises DNA at the sites of ultraviolet (UV) light-induced pyrimidine dimers. The mechanism of incision has been previously shown to be a glycosylic bond cleavage at the 5'-pyrimidine of the dimer followed by an apyrimidine endonuclease activity which cleaves the phosphodiester backbone between the pyrimidines. The process by which M. luteus UV endonuclease locates pyrimidine dimers within a population of UV-irradiated plasmids was shown to occur, in vitro, by a processive or sliding mechanism on non-target DNA as opposed to a distributive or random hit mechanism. Form I plasmid DNA containing 25 dimers per molecule was incubated with M. luteus UV endonuclease in time course reactions. The three topological forms of plasmid DNA generated were analyzed by agarose gel electrophoresis. When the enzyme encounters a pyrimidine dimer, it is significantly more likely to make only the glycosylase cleavage as opposed to making both the glycosylic and phosphodiester bond cleavages. Thus, plasmids are accumulated with many alkaline-labile sites relative to single-stranded breaks. In addition, reactions were performed at both pH 8.0 and pH 6.0, in the absence of NaCl, as well as 25,100, and 250 mM NaCl. The efficiency of the DNA scanning reaction was shown to be dependent on both the ionic strength and pH of the reaction. At low ionic strengths, the reaction was shown to proceed by a processive mechanism and shifted to a distributive mechanism as the ionic strength of the reaction increased. Processivity at pH 8.0 is shown to be more sensitive to increases in ionic strength than reactions performed at pH 6.0

  11. DENV gene of bacteriophage T4 codes for both pyrimidine dimer-DNA glycosylase and apyrimidinic endonuclease activities

    International Nuclear Information System (INIS)

    McMillan, S.; Edenberg, H.J.; Radany, E.H.; Friedberg, R.C.; Friedberg, E.C.

    1981-01-01

    Recent studies have shown that purified preparations of phage T4 UV DNA-incising activity (T4 UV endonuclease or endonuclease V of phase T4) contain a pyrimidine dimer-DNA glycosylase activity that catalyzes hydrolysis of the 5' glycosyl bond of dimerized pyrimidines in UV-irradiated DNA. Such enzyme preparations have also been shown to catalyze the hydrolysis of phosphodiester bonds in UV-irradiated DNA at a neutral pH, presumably reflecting the action of an apurinic/apyrimidinic endonuclease at the apyrimidinic sites created by the pyrimidine dimer-DNA glycosylase. In this study we found that preparations of T4 UV DNA-incising activity contained apurinic/apyrimidinic endonuclease activity that nicked depurinated form I simian virus 40 DNA. Apurinic/apyrimidinic endonuclease activity was also found in extracts of Escherichia coli infected with T4 denV + phage. Extracts of cells infected with T4 denV mutants contained significantly lower levels of apurinic/apyrimidinic endonuclease activity; these levels were no greater than the levels present in extracts of uninfected cells. Furthermore, the addition of DNA containing UV-irradiated DNA and T4 enzyme resulted in competition for pyrimidine dimer-DNA glycosylase activity against the UV-irradiated DNA. On the basis of these results, we concluded that apurinic/apyrimidinic endonuclease activity is encoded by the denV gene of phage T4, the same gene that codes for pyrimidine dimer-DNA glycosylase activity

  12. PMS2 endonuclease activity has distinct biological functions and is essential for genome maintenance.

    Science.gov (United States)

    van Oers, Johanna M M; Roa, Sergio; Werling, Uwe; Liu, Yiyong; Genschel, Jochen; Hou, Harry; Sellers, Rani S; Modrich, Paul; Scharff, Matthew D; Edelmann, Winfried

    2010-07-27

    The DNA mismatch repair protein PMS2 was recently found to encode a novel endonuclease activity. To determine the biological functions of this activity in mammals, we generated endonuclease-deficient Pms2E702K knock-in mice. Pms2EK/EK mice displayed increased genomic mutation rates and a strong cancer predisposition. In addition, class switch recombination, but not somatic hypermutation, was impaired in Pms2EK/EK B cells, indicating a specific role in Ig diversity. In contrast to Pms2-/- mice, Pms2EK/EK male mice were fertile, indicating that this activity is dispensable in spermatogenesis. Therefore, the PMS2 endonuclease activity has distinct biological functions and is essential for genome maintenance and tumor suppression.

  13. A new restriction endonuclease-based method for highly-specific detection of DNA targets from methicillin-resistant Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Maria W Smith

    Full Text Available PCR multiplexing has proven to be challenging, and thus has provided limited means for pathogen genotyping. We developed a new approach for analysis of PCR amplicons based on restriction endonuclease digestion. The first stage of the restriction enzyme assay is hybridization of a target DNA to immobilized complementary oligonucleotide probes that carry a molecular marker, horseradish peroxidase (HRP. At the second stage, a target-specific restriction enzyme is added, cleaving the target-probe duplex at the corresponding restriction site and releasing the HRP marker into solution, where it is quantified colorimetrically. The assay was tested for detection of the methicillin-resistant Staphylococcus aureus (MRSA pathogen, using the mecA gene as a target. Calibration curves indicated that the limit of detection for both target oligonucleotide and PCR amplicon was approximately 1 nM. Sequences of target oligonucleotides were altered to demonstrate that (i any mutation of the restriction site reduced the signal to zero; (ii double and triple point mutations of sequences flanking the restriction site reduced restriction to 50-80% of the positive control; and (iii a minimum of a 16-bp target-probe dsDNA hybrid was required for significant cleavage. Further experiments showed that the assay could detect the mecA amplicon from an unpurified PCR mixture with detection limits similar to those with standard fluorescence-based qPCR. Furthermore, addition of a large excess of heterologous genomic DNA did not affect amplicon detection. Specificity of the assay is very high because it involves two biorecognition steps. The proposed assay is low-cost and can be completed in less than 1 hour. Thus, we have demonstrated an efficient new approach for pathogen detection and amplicon genotyping in conjunction with various end-point and qPCR applications. The restriction enzyme assay may also be used for parallel analysis of multiple different amplicons from the same

  14. Active site electrostatics protect genome integrity by blocking abortive hydrolysis during DNA recombination

    Science.gov (United States)

    Ma, Chien-Hui; Rowley, Paul A; Macieszak, Anna; Guga, Piotr; Jayaram, Makkuni

    2009-01-01

    Water, acting as a rogue nucleophile, can disrupt transesterification steps of important phosphoryl transfer reactions in DNA and RNA. We have unveiled this risk, and identified safeguards instituted against it, during strand cleavage and joining by the tyrosine site-specific recombinase Flp. Strand joining is threatened by a latent Flp endonuclease activity (type I) towards the 3′-phosphotyrosyl intermediate resulting from strand cleavage. This risk is not alleviated by phosphate electrostatics; neutralizing the negative charge on the scissile phosphate through methylphosphonate (MeP) substitution does not stimulate type I endonuclease. Rather, protection derives from the architecture of the recombination synapse and conformational dynamics within it. Strand cleavage is protected against water by active site electrostatics. Replacement of the catalytic Arg-308 of Flp by alanine, along with MeP substitution, elicits a second Flp endonuclease activity (type II) that directly targets the scissile phosphodiester bond in DNA. MeP substitution, combined with appropriate active site mutations, will be useful in revealing anti-hydrolytic mechanisms engendered by systems that mediate DNA relaxation, DNA transposition, site-specific recombination, telomere resolution, RNA splicing and retrohoming of mobile introns. PMID:19440204

  15. Crystal structure and DNA-binding property of the ATPase domain of bacterial mismatch repair endonuclease MutL from Aquifex aeolicus.

    Science.gov (United States)

    Fukui, Kenji; Iino, Hitoshi; Baba, Seiki; Kumasaka, Takashi; Kuramitsu, Seiki; Yano, Takato

    2017-09-01

    DNA mismatch repair (MMR) system corrects mismatched bases that are generated mainly by DNA replication errors. The repair system excises the error-containing single-stranded region and enables the re-synthesis of the strand. In the early reactions of MMR, MutL endonuclease incises the newly-synthesized/error-containing strand of the duplex to initiate the downstream excision reaction. MutL endonuclease consists of the N-terminal ATPase and C-terminal endonuclease domains. In this study, we report the crystal structure of the ATPase domain of MutL endonuclease from Aquifex aeolicus. The overall structure of the domain was similar to those of human MutL homologs and Escherichia coli MutL, although E. coli MutL has no endonuclease activity. The ATPase domain was comprised of two subdomains: the N-terminal ATP-binding subdomain and the C-terminal α-β sandwich subdomain. Site-directed mutagenesis experiment identified DNA-interacting eight basic amino acid residues, which were distributed across both the two subdomains and formed a DNA-binding cleft. Docking simulation between the structures of the ATPase and endonuclease domains generated a reliable model structure for the full-length A. aeolicus MutL, which satisfies our previous result of small-angle X-ray scattering analysis. On the basis of the model structure and further experimental results, we concluded that the two separate DNA-binding sites in the full-length A. aeolicus MutL simultaneously bind a dsDNA molecule. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. [Restriction endonuclease digest - melting curve analysis: a new SNP genotyping and its application in traditional Chinese medicine authentication].

    Science.gov (United States)

    Jiang, Chao; Huang, Lu-Qi; Yuan, Yuan; Chen, Min; Hou, Jing-Yi; Wu, Zhi-Gang; Lin, Shu-Fang

    2014-04-01

    Single nucleotide polymorphisms (SNP) is an important molecular marker in traditional Chinese medicine research, and it is widely used in TCM authentication. The present study created a new genotyping method by combining restriction endonuclease digesting with melting curve analysis, which is a stable, rapid and easy doing SNP genotyping method. The new method analyzed SNP genotyping of two chloroplast SNP which was located in or out of the endonuclease recognition site, the results showed that when attaching a 14 bp GC-clamp (cggcgggagggcgg) to 5' end of the primer and selecting suited endonuclease to digest the amplification products, the melting curve of Lonicera japonica and Atractylodes macrocephala were all of double peaks and the adulterants Shan-yin-hua and A. lancea were of single peaks. The results indicated that the method had good stability and reproducibility for identifying authentic medicines from its adulterants. It is a potential SNP genotyping method and named restriction endonuclease digest - melting curve analysis.

  17. Alteration of Sequence Specificity of the Type IIS Restriction Endonuclease BtsI

    OpenAIRE

    Guan, Shengxi; Blanchard, Aine; Zhang, Penghua; Zhu, Zhenyu

    2010-01-01

    The Type IIS restriction endonuclease BtsI recognizes and digests at GCAGTG(2/0). It comprises two subunits: BtsIA and BtsIB. The BtsIB subunit contains the recognition domain, one catalytic domain for bottom strand nicking and part of the catalytic domain for the top strand nicking. BtsIA has the rest of the catalytic domain that is responsible for the DNA top strand nicking. BtsIA alone has no activity unless it mixes with BtsIB to reconstitute the BtsI activity. During characterization of ...

  18. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9.

    Science.gov (United States)

    Sternberg, Samuel H; Redding, Sy; Jinek, Martin; Greene, Eric C; Doudna, Jennifer A

    2014-03-06

    The clustered regularly interspaced short palindromic repeats (CRISPR)-associated enzyme Cas9 is an RNA-guided endonuclease that uses RNA-DNA base-pairing to target foreign DNA in bacteria. Cas9-guide RNA complexes are also effective genome engineering agents in animals and plants. Here we use single-molecule and bulk biochemical experiments to determine how Cas9-RNA interrogates DNA to find specific cleavage sites. We show that both binding and cleavage of DNA by Cas9-RNA require recognition of a short trinucleotide protospacer adjacent motif (PAM). Non-target DNA binding affinity scales with PAM density, and sequences fully complementary to the guide RNA but lacking a nearby PAM are ignored by Cas9-RNA. Competition assays provide evidence that DNA strand separation and RNA-DNA heteroduplex formation initiate at the PAM and proceed directionally towards the distal end of the target sequence. Furthermore, PAM interactions trigger Cas9 catalytic activity. These results reveal how Cas9 uses PAM recognition to quickly identify potential target sites while scanning large DNA molecules, and to regulate scission of double-stranded DNA.

  19. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9

    Science.gov (United States)

    Sternberg, Samuel H.; Redding, Sy; Jinek, Martin; Greene, Eric C.; Doudna, Jennifer A.

    2014-03-01

    The clustered regularly interspaced short palindromic repeats (CRISPR)-associated enzyme Cas9 is an RNA-guided endonuclease that uses RNA-DNA base-pairing to target foreign DNA in bacteria. Cas9-guide RNA complexes are also effective genome engineering agents in animals and plants. Here we use single-molecule and bulk biochemical experiments to determine how Cas9-RNA interrogates DNA to find specific cleavage sites. We show that both binding and cleavage of DNA by Cas9-RNA require recognition of a short trinucleotide protospacer adjacent motif (PAM). Non-target DNA binding affinity scales with PAM density, and sequences fully complementary to the guide RNA but lacking a nearby PAM are ignored by Cas9-RNA. Competition assays provide evidence that DNA strand separation and RNA-DNA heteroduplex formation initiate at the PAM and proceed directionally towards the distal end of the target sequence. Furthermore, PAM interactions trigger Cas9 catalytic activity. These results reveal how Cas9 uses PAM recognition to quickly identify potential target sites while scanning large DNA molecules, and to regulate scission of double-stranded DNA.

  20. Pre-steady-state fluorescence analysis of damaged DNA transfer from human DNA glycosylases to AP endonuclease APE1.

    Science.gov (United States)

    Kuznetsova, Alexandra A; Kuznetsov, Nikita A; Ishchenko, Alexander A; Saparbaev, Murat K; Fedorova, Olga S

    2014-10-01

    DNA glycosylases remove the modified, damaged or mismatched bases from the DNA by hydrolyzing the N-glycosidic bonds. Some enzymes can further catalyze the incision of a resulting abasic (apurinic/apyrimidinic, AP) site through β- or β,δ-elimination mechanisms. In most cases, the incision reaction of the AP-site is catalyzed by special enzymes called AP-endonucleases. Here, we report the kinetic analysis of the mechanisms of modified DNA transfer from some DNA glycosylases to the AP endonuclease, APE1. The modified DNA contained the tetrahydrofurane residue (F), the analogue of the AP-site. DNA glycosylases AAG, OGG1, NEIL1, MBD4(cat) and UNG from different structural superfamilies were used. We found that all DNA glycosylases may utilise direct protein-protein interactions in the transient ternary complex for the transfer of the AP-containing DNA strand to APE1. We hypothesize a fast "flip-flop" exchange mechanism of damaged and undamaged DNA strands within this complex for monofunctional DNA glycosylases like MBD4(cat), AAG and UNG. Bifunctional DNA glycosylase NEIL1 creates tightly specific complex with DNA containing F-site thereby efficiently competing with APE1. Whereas APE1 fast displaces other bifunctional DNA glycosylase OGG1 on F-site thereby induces its shifts to undamaged DNA regions. Kinetic analysis of the transfer of DNA between human DNA glycosylases and APE1 allows us to elucidate the critical step in the base excision repair pathway. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Atomic Structure and Biochemical Characterization of an RNA Endonuclease in the N Terminus of Andes Virus L Protein.

    Directory of Open Access Journals (Sweden)

    Yaiza Fernández-García

    2016-06-01

    Full Text Available Andes virus (ANDV is a human-pathogenic hantavirus. Hantaviruses presumably initiate their mRNA synthesis by using cap structures derived from host cell mRNAs, a mechanism called cap-snatching. A signature for a cap-snatching endonuclease is present in the N terminus of hantavirus L proteins. In this study, we aimed to solve the atomic structure of the ANDV endonuclease and characterize its biochemical features. However, the wild-type protein was refractory to expression in Escherichia coli, presumably due to toxic enzyme activity. To circumvent this problem, we introduced attenuating mutations in the domain that were previously shown to enhance L protein expression in mammalian cells. Using this approach, 13 mutant proteins encompassing ANDV L protein residues 1-200 were successfully expressed and purified. Protein stability and nuclease activity of the mutants was analyzed and the crystal structure of one mutant was solved to a resolution of 2.4 Å. Shape in solution was determined by small angle X-ray scattering. The ANDV endonuclease showed structural similarities to related enzymes of orthobunya-, arena-, and orthomyxoviruses, but also differences such as elongated shape and positively charged patches surrounding the active site. The enzyme was dependent on manganese, which is bound to the active site, most efficiently cleaved single-stranded RNA substrates, did not cleave DNA, and could be inhibited by known endonuclease inhibitors. The atomic structure in conjunction with stability and activity data for the 13 mutant enzymes facilitated inference of structure-function relationships in the protein. In conclusion, we solved the structure of a hantavirus cap-snatching endonuclease, elucidated its catalytic properties, and present a highly active mutant form, which allows for inhibitor screening.

  2. The Helicobacter pylori HpyAXII restriction–modification system limits exogenous DNA uptake by targeting GTAC sites but shows asymmetric conservation of the DNA methyltransferase and restriction endonuclease components

    Science.gov (United States)

    Humbert, Olivier; Salama, Nina R.

    2008-01-01

    The naturally competent organism Helicobacter pylori encodes a large number of restriction–modification (R–M) systems that consist of a restriction endonuclease and a DNA methyltransferase. R–M systems are not only believed to limit DNA exchange among bacteria but may also have other cellular functions. We report a previously uncharacterized H. pylori type II R–M system, M.HpyAXII/R.HpyAXII. We show that this system targets GTAC sites, which are rare in the H. pylori chromosome but numerous in ribosomal RNA genes. As predicted, this type II R–M system showed attributes of a selfish element. Deletion of the methyltransferase M.HpyAXII is lethal when associated with an active endonuclease R.HpyAXII unless compensated by adaptive mutation or gene amplification. R.HpyAXII effectively restricted both unmethylated plasmid and chromosomal DNA during natural transformation and was predicted to belong to the novel ‘half pipe’ structural family of endonucleases. Analysis of a panel of clinical isolates revealed that R.HpyAXII was functional in a small number of H. pylori strains (18.9%, n = 37), whereas the activity of M.HpyAXII was highly conserved (92%, n = 50), suggesting that GTAC methylation confers a selective advantage to H. pylori. However, M.HpyAXII activity did not enhance H. pylori fitness during stomach colonization of a mouse infection model. PMID:18978016

  3. Endonucleases induced TRAIL-insensitive apoptosis in ovarian carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Geel, Tessa M. [Department of Pathology and Medical Biology, Groningen University Institute for Drug Exploration (GUIDE), University Medical Center Groningen (UMCG), Hanzeplein 1, 9713 GZ, Groningen (Netherlands); Meiss, Gregor [Institute of Biochemistry, Justus-Liebig-University Giessen, D-35392 Giessen (Germany); Gun, Bernardina T. van der; Kroesen, Bart Jan; Leij, Lou F. de [Department of Pathology and Medical Biology, Groningen University Institute for Drug Exploration (GUIDE), University Medical Center Groningen (UMCG), Hanzeplein 1, 9713 GZ, Groningen (Netherlands); Zaremba, Mindaugas; Silanskas, Arunas [Institute of Biotechnology, Vilnius LT-02241 (Lithuania); Kokkinidis, Michael [IMBB/FORTH and University of Crete/Department of Biology, GR-71409 Heraklion/Crete (Greece); Pingoud, Alfred [Institute of Biochemistry, Justus-Liebig-University Giessen, D-35392 Giessen (Germany); Ruiters, Marcel H. [Department of Pathology and Medical Biology, Groningen University Institute for Drug Exploration (GUIDE), University Medical Center Groningen (UMCG), Hanzeplein 1, 9713 GZ, Groningen (Netherlands); Synvolux therapeutics, Groningen (Netherlands); McLaughlin, Pamela M. [Department of Pathology and Medical Biology, Groningen University Institute for Drug Exploration (GUIDE), University Medical Center Groningen (UMCG), Hanzeplein 1, 9713 GZ, Groningen (Netherlands); Rots, Marianne G., E-mail: m.g.rots@med.umcg.nl [Department of Pathology and Medical Biology, Groningen University Institute for Drug Exploration (GUIDE), University Medical Center Groningen (UMCG), Hanzeplein 1, 9713 GZ, Groningen (Netherlands)

    2009-09-10

    TRAIL induced apoptosis of tumor cells is currently entering phase II clinical settings, despite the fact that not all tumor types are sensitive to TRAIL. TRAIL resistance in ovarian carcinomas can be caused by a blockade upstream of the caspase 3 signaling cascade. We explored the ability of restriction endonucleases to directly digest DNA in vivo, thereby circumventing the caspase cascade. For this purpose, we delivered enzymatically active endonucleases via the cationic amphiphilic lipid SAINT-18{sup Registered-Sign }:DOPE to both TRAIL-sensitive and insensitive ovarian carcinoma cells (OVCAR and SKOV-3, respectively). Functional nuclear localization after delivery of various endonucleases (BfiI, PvuII and NucA) was indicated by confocal microscopy and genomic cleavage analysis. For PvuII, analysis of mitochondrial damage demonstrated extensive apoptosis both in SKOV-3 and OVCAR. This study clearly demonstrates that cellular delivery of restriction endonucleases holds promise to serve as a novel therapeutic tool for the treatment of resistant ovarian carcinomas.

  4. Recruitment and positioning determine the specific role of the XPF-ERCC1 endonuclease in interstrand crosslink repair.

    Science.gov (United States)

    Klein Douwel, Daisy; Hoogenboom, Wouter S; Boonen, Rick Acm; Knipscheer, Puck

    2017-07-14

    XPF-ERCC1 is a structure-specific endonuclease pivotal for several DNA repair pathways and, when mutated, can cause multiple diseases. Although the disease-specific mutations are thought to affect different DNA repair pathways, the molecular basis for this is unknown. Here we examine the function of XPF-ERCC1 in DNA interstrand crosslink (ICL) repair. We used Xenopus egg extracts to measure both ICL and nucleotide excision repair, and we identified mutations that are specifically defective in ICL repair. One of these separation-of-function mutations resides in the helicase-like domain of XPF and disrupts binding to SLX4 and recruitment to the ICL A small deletion in the same domain supports recruitment of XPF to the ICL, but inhibited the unhooking incisions most likely by disrupting a second, transient interaction with SLX4. Finally, mutation of residues in the nuclease domain did not affect localization of XPF-ERCC1 to the ICL but did prevent incisions on the ICL substrate. Our data support a model in which the ICL repair-specific function of XPF-ERCC1 is dependent on recruitment, positioning and substrate recognition. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  5. Endonuclease α from Saccharomyces cerevisiae shows increased activity on ultraviolet irradiated native DNA

    International Nuclear Information System (INIS)

    Bryant, D.W.; Haynes, R.H.

    1978-01-01

    Endonuclease α isolated from the nucleus of the yeast Saccharomyces cerevisiae is a DNA endonuclease which has been shown to act preferentially on denatured T7 DNA. The purified enzyme is more active with UV-irradiated native T7 DNA than with unirradiated substrate. The relation between damage, measured by pyrimidine dimer concentration, and excess endonuclease activity is most readily explained by local denaturation caused by the presence of pyrimidine dimers. When three radiation sensitive mutants of yeast were tested for the level of endonuclease α present, none were found lacking the enzyme. However, nuclei of strain rad 1-1, a mutant that may be defective in heteroduplex repair as well as excision repair, were found to contain reduced levels of the endonuclease. (orig./AJ) [de

  6. Two models of distribution of sites sensitive to the endonuclease from Micrococcus luteus in the DNA of UV irradiated Escherichia coli B/r Hcr-

    International Nuclear Information System (INIS)

    Kleibl, K.; Sedliakova, M.

    1984-01-01

    Cells prelabelled with 14 C-thymine and irradiated with 5 J/m 2 were at various intervals after UV labelled with 3 H-thymidine then treated with the extract from M. luteus and DNA was analyzed in alkaline sucrose gradients. Loss of endonuclease sensitive sites (Es sites) from the parental DNA and their occurrence in the daughter DNA were followed for at least three replication cycles. Data obtained indicate that about 50% of Es sites were lost during the first replication cycle but no additional loss was observed during subsequent cycles. Thus our data do not support a hypothesis that a half of the dimers are transferred from the parental into the daughter strands at each replication cycle. They rather indicate that dimers remain in situ and distortions accompanying dimers are distinguished either on the side of the parental or on the side of the daughter strands with an equal probability. (author)

  7. Identification and characterization of inhibitors of human apurinic/apyrimidinic endonuclease APE1.

    Directory of Open Access Journals (Sweden)

    Anton Simeonov

    2009-06-01

    Full Text Available APE1 is the major nuclease for excising abasic (AP sites and particular 3'-obstructive termini from DNA, and is an integral participant in the base excision repair (BER pathway. BER capacity plays a prominent role in dictating responsiveness to agents that generate oxidative or alkylation DNA damage, as well as certain chain-terminating nucleoside analogs and 5-fluorouracil. We describe within the development of a robust, 1536-well automated screening assay that employs a deoxyoligonucleotide substrate operating in the red-shifted fluorescence spectral region to identify APE1 endonuclease inhibitors. This AP site incision assay was used in a titration-based high-throughput screen of the Library of Pharmacologically Active Compounds (LOPAC(1280, a collection of well-characterized, drug-like molecules representing all major target classes. Prioritized hits were authenticated and characterized via two high-throughput screening assays -- a Thiazole Orange fluorophore-DNA displacement test and an E. coli endonuclease IV counterscreen -- and a conventional, gel-based radiotracer incision assay. The top, validated compounds, i.e. 6-hydroxy-DL-DOPA, Reactive Blue 2 and myricetin, were shown to inhibit AP site cleavage activity of whole cell protein extracts from HEK 293T and HeLa cell lines, and to enhance the cytotoxic and genotoxic potency of the alkylating agent methylmethane sulfonate. The studies herein report on the identification of novel, small molecule APE1-targeted bioactive inhibitor probes, which represent initial chemotypes towards the development of potential pharmaceuticals.

  8. Clustered Regularly Interspaced Short Palindromic Repeats/Cas9 Triggered Isothermal Amplification for Site-Specific Nucleic Acid Detection.

    Science.gov (United States)

    Huang, Mengqi; Zhou, Xiaoming; Wang, Huiying; Xing, Da

    2018-02-06

    A novel CRISPR/Cas9 triggered isothermal exponential amplification reaction (CAS-EXPAR) strategy based on CRISPR/Cas9 cleavage and nicking endonuclease (NEase) mediated nucleic acids amplification was developed for rapid and site-specific nucleic acid detection. CAS-EXPAR was primed by the target DNA fragment produced by cleavage of CRISPR/Cas9, and the amplification reaction performed cyclically to generate a large number of DNA replicates which were detected using a real-time fluorescence monitoring method. This strategy that combines the advantages of CRISPR/Cas9 and exponential amplification showed high specificity as well as rapid amplification kinetics. Unlike conventional nucleic acids amplification reactions, CAS-EXPAR does not require exogenous primers, which often cause target-independent amplification. Instead, primers are first generated by Cas9/sgRNA directed site-specific cleavage of target and accumulated during the reaction. It was demonstrated this strategy gave a detection limit of 0.82 amol and showed excellent specificity in discriminating single-base mismatch. Moreover, the applicability of this method to detect DNA methylation and L. monocytogenes total RNA was also verified. Therefore, CAS-EXPAR may provide a new paradigm for efficient nucleic acid amplification and hold the potential for molecular diagnostic applications.

  9. Differential distribution of a SINE element in the Entamoeba histolytica and Entamoeba dispar genomes: Role of the LINE-encoded endonuclease

    Directory of Open Access Journals (Sweden)

    Gupta Abhishek K

    2011-05-01

    Full Text Available Abstract Background Entamoeba histolytica and Entamoeba dispar are closely related protistan parasites but while E. histolytica can be invasive, E. dispar is completely non pathogenic. Transposable elements constitute a significant portion of the genome in these species; there being three families of LINEs and SINEs. These elements can profoundly influence the expression of neighboring genes. Thus their genomic location can have important phenotypic consequences. A genome-wide comparison of the location of these elements in the E. histolytica and E. dispar genomes has not been carried out. It is also not known whether the retrotransposition machinery works similarly in both species. The present study was undertaken to address these issues. Results Here we extracted all genomic occurrences of full-length copies of EhSINE1 in the E. histolytica genome and matched them with the homologous regions in E. dispar, and vice versa, wherever it was possible to establish synteny. We found that only about 20% of syntenic sites were occupied by SINE1 in both species. We checked whether the different genomic location in the two species was due to differences in the activity of the LINE-encoded endonuclease which is required for nicking the target site. We found that the endonucleases of both species were essentially very similar, both in their kinetic properties and in their substrate sequence specificity. Hence the differential distribution of SINEs in these species is not likely to be influenced by the endonuclease. Further we found that the physical properties of the DNA sequences adjoining the insertion sites were similar in both species. Conclusions Our data shows that the basic retrotransposition machinery is conserved in these sibling species. SINEs may indeed have occupied all of the insertion sites in the genome of the common ancestor of E. histolytica and E. dispar but these may have been subsequently lost from some locations. Alternatively, SINE

  10. Purification, crystallization, X-ray diffraction analysis and phasing of an engineered single-chain PvuII restriction endonuclease

    International Nuclear Information System (INIS)

    Meramveliotaki, Chrysi; Kotsifaki, Dina; Androulaki, Maria; Hountas, Athanasios; Eliopoulos, Elias; Kokkinidis, Michael

    2007-01-01

    PvuII is the first type II restriction endonuclease to be converted from its wild-type homodimeric form into an enzymatically active single-chain variant. The enzyme was crystallized and phasing was successfully performed by molecular replacement. The restriction endonuclease PvuII from Proteus vulgaris has been converted from its wild-type homodimeric form into the enzymatically active single-chain variant scPvuII by tandemly joining the two subunits through the peptide linker Gly-Ser-Gly-Gly. scPvuII, which is suitable for the development of programmed restriction endonucleases for highly specific DNA cleavage, was purified and crystallized. The crystals diffract to a resolution of 2.35 Å and belong to space group P4 2 , with unit-cell parameters a = b = 101.92, c = 100.28 Å and two molecules per asymmetric unit. Phasing was successfully performed by molecular replacement

  11. Sequence-specific protection of duplex DNA against restriction and methylation enzymes by pseudocomplementary PNAs

    DEFF Research Database (Denmark)

    Izvolsky, K I; Demidov, V V; Nielsen, P E

    2000-01-01

    I restriction endonuclease and dam methylase. The pcPNA-assisted protection against enzymatic methylation is more efficient when the PNA-binding site embodies the methylase-recognition site rather than overlaps it. We conclude that pcPNAs may provide the robust tools allowing to sequence-specifically manipulate...... DNA duplexes in a virtually sequence-unrestricted manner....

  12. Enhancement of ultraviolet-DNA repair in denV gene transfectants and T4 endonuclease V-liposome recipients

    International Nuclear Information System (INIS)

    Kibitel, J.T.; Yee, V.; Yarosh, D.B.

    1991-01-01

    The phage T4 denV gene, coding for the pyrimidine-dimer specific T4 endonuclease V, was transfected into human repair-proficient fibroblasts, repair-deficient xeroderma pigmentosum fibroblasts, and wild type CHO hamster cells. Transfectants maintained denV DNA and expressed denV mRNA. Purified T4 endonuclease V encapsulated in liposomes was also used to treat repair-proficient and -deficient human cells. The denV transfected clones and liposome-treated cells showed increased unscheduled DNA synthesis and enhanced removal of pyrimidine dimers compared to controls. Both denV gene transfection and endonuclease V liposome treatment enhanced post-UV survival in xeroderma pigmentosum cells but had no effect on survival in repair-proficient human or hamster cells. The results demonstrate that an exogenous DNA repair enzyme can correct the DNA repair defect in xeroderma pigmentosum cells and enhance DNA repair in normal cells. (author)

  13. Repair of abasic sites in DNA

    Energy Technology Data Exchange (ETDEWEB)

    Dianov, Grigory L.; Sleeth, Kate M.; Dianova, Irina I.; Allinson, Sarah L

    2003-10-29

    Repair of both normal and reduced AP sites is activated by AP endonuclease, which recognizes and cleaves a phosphodiester bond 5' to the AP site. For a short period of time an incised AP site is occupied by poly(ADP-ribose) polymerase and then DNA polymerase {beta} adds one nucleotide into the repair gap and simultaneously removes the 5'-sugar phosphate. Finally, the DNA ligase III/XRCC1 complex accomplishes repair by sealing disrupted DNA ends. However, long-patch BER pathway, which is involved in the removal of reduced abasic sites, requires further DNA synthesis resulting in strand displacement and the generation of a damage-containing flap that is later removed by the flap endonuclease. Strand-displacement DNA synthesis is accomplished by DNA polymerase {delta}/{epsilon} and DNA ligase I restores DNA integrity. DNA synthesis by DNA polymerase {delta}/{epsilon} is dependent on proliferating cell nuclear antigen, which also stimulates the DNA ligase I and flap endonuclease. These repair events are supported by multiple protein-protein interactions.

  14. Effects of Dimerization of Serratia marcescens Endonuclease on Water Dynamics.

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chuanying; Beck, Brian W.; Krause, Kurt; Weksberg, Tiffany E.; Pettitt, Bernard M.

    2007-02-15

    The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. The dynamics and structure of Serratia marcescens endonuclease and its neighboring solvent are investigated by molecular dynamics (MD). Comparisons are made with structural and biochemical experiments. The dimer form is physiologic and functions more processively than the monomer. We previously found a channel formed by connected clusters of waters from the active site to the dimer interface. Here, we show that dimerization clearly changes correlations in the water structure and dynamics in the active site not seen in the monomer. Our results indicate that water at the active sites of the dimer is less affected compared with bulk solvent than in the monomer where it has much slower characteristic relaxation times. Given that water is a required participant in the reaction, this gives a clear advantage to dimerization in the absence of an apparent ability to use both active sites simultaneously.

  15. Binding of T4 endonuclease V to deoxyribonucleic acid irradiated with ultraviolet light

    International Nuclear Information System (INIS)

    Seawell, P.C.; Simon, T.J.; Ganesan, A.K.

    1980-01-01

    Endonuclease V of bacteriophage T4 binds to uv-irradiated deoxyribonucleic acid (DNA) but not to unirradiated DNA. We have developed an assay to detect this binding, based on the retention of enzyme - DNA complexes on nitrocellulose filters. The amount of complex retained, ascertained by using radioactive DNA, is a measure of T4 endonuclease V activity. From our data we conclude that (1) T4 endonuclease V binds to uv-irradiated DNA but not to DNA that has been previously incised by the endonuclease, (2) equilibrium between the free and complexed form of the enzyme is attained under our reaction conditions, (3) dissociation of enzyme - DNA complexes is retarded by sodium cyanide, and (4) retention of enzyme - DNA complexes on nitrocellulose filters is enhanced by high concentrations of saline-citrate

  16. The mismatch repair and meiotic recombination endonuclease Mlh1-Mlh3 is activated by polymer formation and can cleave DNA substrates in trans.

    Science.gov (United States)

    Manhart, Carol M; Ni, Xiaodan; White, Martin A; Ortega, Joaquin; Surtees, Jennifer A; Alani, Eric

    2017-04-01

    Crossing over between homologs is initiated in meiotic prophase by the formation of DNA double-strand breaks that occur throughout the genome. In the major interference-responsive crossover pathway in baker's yeast, these breaks are resected to form 3' single-strand tails that participate in a homology search, ultimately forming double Holliday junctions (dHJs) that primarily include both homologs. These dHJs are resolved by endonuclease activity to form exclusively crossovers, which are critical for proper homolog segregation in Meiosis I. Recent genetic, biochemical, and molecular studies in yeast are consistent with the hypothesis of Mlh1-Mlh3 DNA mismatch repair complex acting as the major endonuclease activity that resolves dHJs into crossovers. However, the mechanism by which the Mlh1-Mlh3 endonuclease is activated is unknown. Here, we provide evidence that Mlh1-Mlh3 does not behave like a structure-specific endonuclease but forms polymers required to generate nicks in DNA. This conclusion is supported by DNA binding studies performed with different-sized substrates that contain or lack polymerization barriers and endonuclease assays performed with varying ratios of endonuclease-deficient and endonuclease-proficient Mlh1-Mlh3. In addition, Mlh1-Mlh3 can generate religatable double-strand breaks and form an active nucleoprotein complex that can nick DNA substrates in trans. Together these observations argue that Mlh1-Mlh3 may not act like a canonical, RuvC-like Holliday junction resolvase and support a novel model in which Mlh1-Mlh3 is loaded onto DNA to form an activated polymer that cleaves DNA.

  17. Site-specific genome editing for correction of induced pluripotent stem cells derived from dominant dystrophic epidermolysis bullosa.

    Science.gov (United States)

    Shinkuma, Satoru; Guo, Zongyou; Christiano, Angela M

    2016-05-17

    Genome editing with engineered site-specific endonucleases involves nonhomologous end-joining, leading to reading frame disruption. The approach is applicable to dominant negative disorders, which can be treated simply by knocking out the mutant allele, while leaving the normal allele intact. We applied this strategy to dominant dystrophic epidermolysis bullosa (DDEB), which is caused by a dominant negative mutation in the COL7A1 gene encoding type VII collagen (COL7). We performed genome editing with TALENs and CRISPR/Cas9 targeting the mutation, c.8068_8084delinsGA. We then cotransfected Cas9 and guide RNA expression vectors expressed with GFP and DsRed, respectively, into induced pluripotent stem cells (iPSCs) generated from DDEB fibroblasts. After sorting, 90% of the iPSCs were edited, and we selected four gene-edited iPSC lines for further study. These iPSCs were differentiated into keratinocytes and fibroblasts secreting COL7. RT-PCR and Western blot analyses revealed gene-edited COL7 with frameshift mutations degraded at the protein level. In addition, we confirmed that the gene-edited truncated COL7 could neither associate with normal COL7 nor undergo triple helix formation. Our data establish the feasibility of mutation site-specific genome editing in dominant negative disorders.

  18. Single-molecule FRET unveils induced-fit mechanism for substrate selectivity in flap endonuclease 1

    KAUST Repository

    Rashid, Fahad

    2017-02-23

    Human flap endonuclease 1 (FEN1) and related structure-specific 5\\'nucleases precisely identify and incise aberrant DNA structures during replication, repair and recombination to avoid genomic instability. Yet, it is unclear how the 5\\'nuclease mechanisms of DNA distortion and protein ordering robustly mediate efficient and accurate substrate recognition and catalytic selectivity. Here, single-molecule sub-millisecond and millisecond analyses of FEN1 reveal a protein-DNA induced-fit mechanism that efficiently verifies substrate and suppresses off-target cleavage. FEN1 sculpts DNA with diffusion-limited kinetics to test DNA substrate. This DNA distortion mutually \\'locks\\' protein and DNA conformation and enables substrate verification with extreme precision. Strikingly, FEN1 never misses cleavage of its cognate substrate while blocking probable formation of catalytically competent interactions with noncognate substrates and fostering their pre-incision dissociation. These findings establish FEN1 has practically perfect precision and that separate control of induced-fit substrate recognition sets up the catalytic selectivity of the nuclease active site for genome stability.

  19. Homing endonuclease genes: the rise and fall and rise again of a selfish element.

    Science.gov (United States)

    Burt, Austin; Koufopanou, Vassiliki

    2004-12-01

    Homing endonuclease genes (HEGs) are selfish genetic elements that spread by first cleaving chromosomes that do not contain them and then getting copied across to the broken chromosome as a byproduct of the repair process. The success of this strategy will depend on the opportunities for homing--in other words, the frequency with which HEG(+) and HEG(-) chromosomes come into contact--which varies widely among host taxa. HEGs are also unusual in that the selection pressure for endonuclease function disappears if they become fixed in a population, which makes them susceptible to degeneration and imposes a need for regular horizontal transmission between species. HEGs will be selected to reduce the harm done to the host organism, and this is expected to influence the evolution of their sequence specificity and maturase functions. HEGs may also be domesticated by their hosts, and are currently being put to human uses.

  20. The mitochondrial LSU rRNA group II intron of Ustilago maydis encodes an active homing endonuclease likely involved in intron mobility.

    Directory of Open Access Journals (Sweden)

    Anja Pfeifer

    Full Text Available BACKGROUND: The a2 mating type locus gene lga2 is critical for uniparental mitochondrial DNA inheritance during sexual development of Ustilago maydis. Specifically, the absence of lga2 results in biparental inheritance, along with efficient transfer of intronic regions in the large subunit rRNA gene between parental molecules. However, the underlying role of the predicted LAGLIDADG homing endonuclease gene I-UmaI located within the group II intron LRII1 has remained unresolved. METHODOLOGY/PRINCIPAL FINDINGS: We have investigated the enzymatic activity of I-UmaI in vitro based on expression of a tagged full-length and a naturally occurring mutant derivative, which harbors only the N-terminal LAGLIDADG domain. This confirmed Mg²⁺-dependent endonuclease activity and cleavage at the LRII1 insertion site to generate four base pair extensions with 3' overhangs. Specifically, I-UmaI recognizes an asymmetric DNA sequence with a minimum length of 14 base pairs (5'-GACGGGAAGACCCT-3' and tolerates subtle base pair substitutions within the homing site. Enzymatic analysis of the mutant variant indicated a correlation between the activity in vitro and intron homing. Bioinformatic analyses revealed that putatively functional or former functional I-UmaI homologs are confined to a few members within the Ustilaginales and Agaricales, including the phylogenetically distant species Lentinula edodes, and are linked to group II introns inserted into homologous positions in the LSU rDNA. CONCLUSIONS/SIGNIFICANCE: The present data provide strong evidence that intron homing efficiently operates under conditions of biparental inheritance in U. maydis. Conversely, uniparental inheritance may be critical to restrict the transmission of mobile introns. Bioinformatic analyses suggest that I-UmaI-associated introns have been acquired independently in distant taxa and are more widespread than anticipated from available genomic data.

  1. Key Players in I-DmoI Endonuclease Catalysis Revealed from Structure and Dynamics

    DEFF Research Database (Denmark)

    Molina, Rafael; Besker, Neva; Marcaida, Maria Jose

    2016-01-01

    . The cleavage mechanism was related both to key structural effects, such as the position of water molecules and ions participating in the cleavage reaction, and to dynamical effects related to protein behavior. In particular, we found that the protein perturbation pattern significantly changes between cleaved......Homing endonucleases, such as I-DmoI, specifically recognize and cleave long DNA target sequences (∼20 bp) and are potentially powerful tools for genome manipulation. However, inefficient and off-target DNA cleavage seriously limits specific editing in complex genomes. One approach to overcome...

  2. Total sequence decomposition distinguishes functional modules, "molegos" in apurinic/apyrimidinic endonucleases

    Directory of Open Access Journals (Sweden)

    Braun Werner

    2002-11-01

    Full Text Available Abstract Background Total sequence decomposition, using the web-based MASIA tool, identifies areas of conservation in aligned protein sequences. By structurally annotating these motifs, the sequence can be parsed into individual building blocks, molecular legos ("molegos", that can eventually be related to function. Here, the approach is applied to the apurinic/apyrimidinic endonuclease (APE DNA repair proteins, essential enzymes that have been highly conserved throughout evolution. The APEs, DNase-1 and inositol 5'-polyphosphate phosphatases (IPP form a superfamily that catalyze metal ion based phosphorolysis, but recognize different substrates. Results MASIA decomposition of APE yielded 12 sequence motifs, 10 of which are also structurally conserved within the family and are designated as molegos. The 12 motifs include all the residues known to be essential for DNA cleavage by APE. Five of these molegos are sequentially and structurally conserved in DNase-1 and the IPP family. Correcting the sequence alignment to match the residues at the ends of two of the molegos that are absolutely conserved in each of the three families greatly improved the local structural alignment of APEs, DNase-1 and synaptojanin. Comparing substrate/product binding of molegos common to DNase-1 showed that those distinctive for APEs are not directly involved in cleavage, but establish protein-DNA interactions 3' to the abasic site. These additional bonds enhance both specific binding to damaged DNA and the processivity of APE1. Conclusion A modular approach can improve structurally predictive alignments of homologous proteins with low sequence identity and reveal residues peripheral to the traditional "active site" that control the specificity of enzymatic activity.

  3. DNA Nucleotide Sequence Restricted by the RI Endonuclease

    Science.gov (United States)

    Hedgpeth, Joe; Goodman, Howard M.; Boyer, Herbert W.

    1972-01-01

    The sequence of DNA base pairs adjacent to the phosphodiester bonds cleaved by the RI restriction endonuclease in unmodified DNA from coliphage λ has been determined. The 5′-terminal nucleotide labeled with 32P and oligonucleotides up to the heptamer were analyzed from a pancreatic DNase digest. The following sequence of nucleotides adjacent to the RI break made in λ DNA was deduced from these data and from the 3′-dinucleotide sequence and nearest-neighbor analysis obtained from repair synthesis with the DNA polymerase of Rous sarcoma virus [Formula: see text] The RI endonuclease cleavage of the phosphodiester bonds (indicated by arrows) generates 5′-phosphoryls and short cohesive termini of four nucleotides, pApApTpT. The most striking feature of the sequence is its symmetry. PMID:4343974

  4. Visualizing phosphodiester-bond hydrolysis by an endonuclease

    DEFF Research Database (Denmark)

    Molina, Rafael; Stella, Stefano; Redondo, Pilar

    2015-01-01

    The enzymatic hydrolysis of DNA phosphodiester bonds has been widely studied, but the chemical reaction has not yet been observed. Here we follow the generation of a DNA double-strand break (DSB) by the Desulfurococcus mobilis homing endonuclease I-DmoI, trapping sequential stages of a two-metal-...

  5. Spectroelectrochemical insights into structural and redox properties of immobilized endonuclease III and its catalytically inactive mutant

    Science.gov (United States)

    Moe, Elin; Rollo, Filipe; Silveira, Célia M.; Sezer, Murat; Hildebrandt, Peter; Todorovic, Smilja

    2018-01-01

    Endonuclease III is a Fe-S containing bifunctional DNA glycosylase which is involved in the repair of oxidation damaged DNA. Here we employ surface enhanced IR spectroelectrochemistry and electrochemistry to study the enzyme from the highly radiation- and desiccation-resistant bacterium Deinococcus radiodurans (DrEndoIII2). The experiments are designed to shed more light onto specific parameters that are currently proposed to govern damage search and recognition by endonucleases III. We demonstrate that electrostatic interactions required for the redox activation of DrEndoIII2 may result in high electric fields that alter its structural and thermodynamic properties. Analysis of inactive DrEndoIII2 (K132A/D150A double mutant) interacting with undamaged DNA, and the active enzyme interacting with damaged DNA also indicate that the electron transfer is modulated by subtle differences in the protein-DNA complex.

  6. Comparison of genomes of malignant catarrhal fever-associated herpesviruses by restriction endonuclease analysis.

    Science.gov (United States)

    Shih, L M; Zee, Y C; Castro, A E

    1989-01-01

    The restriction endonuclease DNA cleavage patterns of eight isolates of malignant catarrhal fever-associated herpesviruses were examined using the restriction endonucleases HindIII and EcoRI. The eight viruses could be assigned to two distinct groups. Virus isolates from a blue wildebeest, a sika deer and an ibex had restriction endonuclease DNA cleavage patterns that were in general similar to each other. The restriction pattern of these three viruses was distinct from the other five. Of these five, four were isolated from a greater kudu, a white tailed wildebeest, a white bearded wildebeest, and a cape hartebeest. The fifth isolate C500, was isolated from a domestic cow with malignant catarrhal fever. These five viruses had similar DNA cleavage patterns.

  7. Multiplex, rapid and sensitive isothermal detection of nucleic-acid sequence by endonuclease restriction-mediated real-time multiple cross displacement amplification

    Directory of Open Access Journals (Sweden)

    Yi eWang

    2016-05-01

    Full Text Available We have devised a novel isothermal amplification technology, termed endonuclease restriction-mediated real-time multiple cross displacement amplification (ET-MCDA, which facilitated multiplex, rapid, specific and sensitive detection of nucleic-acid sequences at a constant temperature. The ET-MCDA integrated multiple cross displacement amplification strategy, restriction endonuclease cleavage and real-time fluorescence detection technique. In the ET-MCDA system, the functional cross primer E-CP1 or E-CP2 was constructed by adding a short sequence at the 5’ end of CP1 or CP2, respectively, and the new E-CP1 or E-CP2 primer was labelled at the 5’ end with a fluorophore and in the middle with a dark quencher. The restriction endonuclease Nb.BsrDI specifically recognized the short sequence and digested the newly synthesized double-stranded terminal sequences (5’ end short sequences and their complementary sequences, which released the quenching, resulting on a gain of fluorescence signal. Thus, the ET-MCDA allowed real-time detection of single or multiple targets in only a single reaction, and the positive results were observed in as short as 12 minutes, detecting down to 3.125 fg of genomic DNA per tube. Moreover, the analytical specificity and the practical application of the ET-MCDA were also successfully evaluated in this study. Here we provided the details on the novel ET-MCDA technique and expounded the basic ET-MCDA amplification mechanism.

  8. Multiplex, Rapid, and Sensitive Isothermal Detection of Nucleic-Acid Sequence by Endonuclease Restriction-Mediated Real-Time Multiple Cross Displacement Amplification.

    Science.gov (United States)

    Wang, Yi; Wang, Yan; Zhang, Lu; Liu, Dongxin; Luo, Lijuan; Li, Hua; Cao, Xiaolong; Liu, Kai; Xu, Jianguo; Ye, Changyun

    2016-01-01

    We have devised a novel isothermal amplification technology, termed endonuclease restriction-mediated real-time multiple cross displacement amplification (ET-MCDA), which facilitated multiplex, rapid, specific and sensitive detection of nucleic-acid sequences at a constant temperature. The ET-MCDA integrated multiple cross displacement amplification strategy, restriction endonuclease cleavage and real-time fluorescence detection technique. In the ET-MCDA system, the functional cross primer E-CP1 or E-CP2 was constructed by adding a short sequence at the 5' end of CP1 or CP2, respectively, and the new E-CP1 or E-CP2 primer was labeled at the 5' end with a fluorophore and in the middle with a dark quencher. The restriction endonuclease Nb.BsrDI specifically recognized the short sequence and digested the newly synthesized double-stranded terminal sequences (5' end short sequences and their complementary sequences), which released the quenching, resulting on a gain of fluorescence signal. Thus, the ET-MCDA allowed real-time detection of single or multiple targets in only a single reaction, and the positive results were observed in as short as 12 min, detecting down to 3.125 fg of genomic DNA per tube. Moreover, the analytical specificity and the practical application of the ET-MCDA were also successfully evaluated in this study. Here, we provided the details on the novel ET-MCDA technique and expounded the basic ET-MCDA amplification mechanism.

  9. Cloning-free genome engineering in Sinorhizobium meliloti advances applications of Cre/loxP site-specific recombination.

    Science.gov (United States)

    Döhlemann, Johannes; Brennecke, Meike; Becker, Anke

    2016-09-10

    The soil-dwelling α-proteobacterium Sinorhizobium meliloti serves as model for studies of symbiotic nitrogen fixation, a highly important process in sustainable agriculture. Here, we report advancements of the genetic toolbox accelerating genome editing in S. meliloti. The hsdMSR operon encodes a type-I restriction-modification (R-M) system. Transformation of S. meliloti is counteracted by the restriction endonuclease HsdR degrading DNA which lacks the appropriate methylation pattern. We provide a stable S. meliloti hsdR deletion mutant showing enhanced transformation with Escherichia coli-derived plasmid DNA and demonstrate that using an E. coli plasmid donor, expressing S. meliloti methyl transferase genes, is an alternative strategy of increasing the transformation efficiency of S. meliloti. Furthermore, we devise a novel cloning-free genome editing (CFGE) method for S. meliloti, Agrobacterium tumefaciens and Xanthomonas campestris, and demonstrate the applicability of this method for intricate applications of the Cre/lox recombination system in S. meliloti. An enhanced Cre/lox system, allowing for serial deletions of large genomic regions, was established. An assay of lox spacer mutants identified a set of lox sites mediating specific recombination. The availability of several non-promiscuous Cre recognition sites enables simultaneous specific Cre/lox recombination events. CFGE combined with Cre/lox recombination is put forward as powerful approach for targeted genome editing, involving serial steps of manipulation to expedite the genetic accessibility of S. meliloti as chassis. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Hanford Site environmental management specification

    Energy Technology Data Exchange (ETDEWEB)

    Grygiel, M.L.

    1998-06-10

    The US Department of Energy, Richland Operations Office (RL) uses this Hanford Site Environmental Management Specification (Specification) to document top-level mission requirements and planning assumptions for the prime contractors involved in Hanford Site cleanup and infrastructure activities under the responsibility of the US Department of Energy, Office of Environmental Management. This Specification describes at a top level the activities, facilities, and infrastructure necessary to accomplish the cleanup of the Hanford Site and assigns this scope to Site contractors and their respective projects. This Specification also references the key National Environmental Policy Act of 1969 (NEPA), Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), and safety documentation necessary to accurately describe the cleanup at a summary level. The information contained in this document reflects RL`s application of values, priorities, and critical success factors expressed by those involved with and affected by the Hanford Site project. The prime contractors and their projects develop complete baselines and work plans to implement this Specification. These lower-level documents and the data that support them, together with this Specification, represent the full set of requirements applicable to the contractors and their projects. Figure 1-1 shows the relationship of this Specification to the other basic Site documents. Similarly, the documents, orders, and laws referenced in this specification represent only the most salient sources of requirements. Current and contractual reference data contain a complete set of source documents.

  11. Hanford Site environmental management specification

    International Nuclear Information System (INIS)

    Grygiel, M.L.

    1998-01-01

    The US Department of Energy, Richland Operations Office (RL) uses this Hanford Site Environmental Management Specification (Specification) to document top-level mission requirements and planning assumptions for the prime contractors involved in Hanford Site cleanup and infrastructure activities under the responsibility of the US Department of Energy, Office of Environmental Management. This Specification describes at a top level the activities, facilities, and infrastructure necessary to accomplish the cleanup of the Hanford Site and assigns this scope to Site contractors and their respective projects. This Specification also references the key National Environmental Policy Act of 1969 (NEPA), Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), and safety documentation necessary to accurately describe the cleanup at a summary level. The information contained in this document reflects RL's application of values, priorities, and critical success factors expressed by those involved with and affected by the Hanford Site project. The prime contractors and their projects develop complete baselines and work plans to implement this Specification. These lower-level documents and the data that support them, together with this Specification, represent the full set of requirements applicable to the contractors and their projects. Figure 1-1 shows the relationship of this Specification to the other basic Site documents. Similarly, the documents, orders, and laws referenced in this specification represent only the most salient sources of requirements. Current and contractual reference data contain a complete set of source documents

  12. Site-Specific Innovation

    DEFF Research Database (Denmark)

    Reeh, Henrik; Hemmersam, Peter

    2015-01-01

    Currently, cities across the Northern European region are actively redeveloping their former industrial harbours. Indeed, harbours areas are essential in the long-term transition from industrial to information and experience societies; harbours are becoming sites for new businesses and residences...... question is how innovation may contribute to urban life and site-specific qualities....

  13. Adenosine triphosphate stimulates Aquifex aeolicus MutL endonuclease activity.

    Directory of Open Access Journals (Sweden)

    Jerome Mauris

    2009-09-01

    Full Text Available Human PMS2 (hPMS2 homologues act to nick 5' and 3' to misincorporated nucleotides during mismatch repair in organisms that lack MutH. Mn(++ was previously found to stimulate the endonuclease activity of these homologues. ATP was required for the nicking activity of hPMS2 and yPMS1, but was reported to inhibit bacterial MutL proteins from Thermus thermophilus and Aquifex aeolicus that displayed homology to hPMS2. Mutational analysis has identified the DQHA(X(2E(X(4E motif present in the C-terminus of PMS2 homologues as important for endonuclease activity.We examined the effect ATP had on the Mn(++ induced nicking of supercoiled pBR322 by full-length and mutant A. aeolicus MutL (Aae MutL proteins. Assays were single time point, enzyme titration experiments or reaction time courses. The maximum velocity for MutL nicking was determined to be 1.6+/-0.08x10(-5 s(-1 and 4.2+/-0.3x10(-5 s(-1 in the absence and presence of ATP, respectively. AMPPNP stimulated the nicking activity to a similar extent as ATP. A truncated Aae MutL protein composed of only the C-terminal 123 amino acid residues was found to nick supercoiled DNA. Furthermore, mutations in the conserved C-terminal DQHA(X(2E(X(4E and CPHGRP motifs were shown to abolish Aae MutL endonuclease activity.ATP stimulated the Mn(++ induced endonuclease activity of Aae MutL. Experiments utilizing AMPPNP implied that the stimulation did not require ATP hydrolysis. A mutation in the DQHA(X(2E(X(4E motif of Aae MutL further supported the role of this region in endonclease activity. For the first time, to our knowledge, we demonstrate that changing the histidine residue in the conserved CPHGRP motif abolishes endonucleolytic activity of a hPMS2 homologue. Finally, the C-terminal 123 amino acid residues of Aae MutL were sufficient to display Mn(++ induced nicking activity.

  14. Site specific information in site selection

    International Nuclear Information System (INIS)

    Aeikaes, T.; Hautojaervi, A.

    1998-01-01

    The programme for the siting of a deep repository for final disposal of spent nuclear fuel was started already in 1983 and is carried out today by Posiva Oy which continues the work started by Teollisuuden Voima Oy. The programme aims at site selection by the end of the year 2000. The programme has progressed in successive interim stages with defined goals. After an early phase for site identification, five sites were selected in 1987 for preliminary site characterisation. Three of these were selected and judged to be best suited for the more detailed characterisation in 1992. An additional new site was included into the programme based on a separate feasibility study in the beginning of 1997. Since the year 1983 several safety assessments together with technical plans of the facility have been completed. When approaching the site selection the needs for more detailed consideration of the site specific properties in the safety assessment have been increased. The Finnish regulator STUK has published a proposal for general safety requirements for the final disposal of spent nuclear fuel in Finland. This set of requirements has been projected to be used in conjunction of the decision making by the end 2000. Based on the site evaluation all sites can provide a stable environment and there is evidence that the requirements for the longevity of the canister can be fulfilled at each site. In this manner the four candidate sites do not differ too much from each other. The main difference between the sites is in the salinity of the deep groundwater. The significance of differences in the salinity for the long-term safety cannot be defined yet. The differences may contribute to the discussion of the longevity of the bentonite buffer and also to the modelling of the groundwater flow and transport. The use of the geosphere as a transport barrier is basically culminated on the questions about sparse but fast flow routes and 'how bad channeling can be'. To answer these questions

  15. An AP endonuclease 1-DNA polymerase beta complex: theoretical prediction of interacting surfaces.

    Directory of Open Access Journals (Sweden)

    Alexej Abyzov

    2008-04-01

    Full Text Available Abasic (AP sites in DNA arise through both endogenous and exogenous mechanisms. Since AP sites can prevent replication and transcription, the cell contains systems for their identification and repair. AP endonuclease (APEX1 cleaves the phosphodiester backbone 5' to the AP site. The cleavage, a key step in the base excision repair pathway, is followed by nucleotide insertion and removal of the downstream deoxyribose moiety, performed most often by DNA polymerase beta (pol-beta. While yeast two-hybrid studies and electrophoretic mobility shift assays provide evidence for interaction of APEX1 and pol-beta, the specifics remain obscure. We describe a theoretical study designed to predict detailed interacting surfaces between APEX1 and pol-beta based on published co-crystal structures of each enzyme bound to DNA. Several potentially interacting complexes were identified by sliding the protein molecules along DNA: two with pol-beta located downstream of APEX1 (3' to the damaged site and three with pol-beta located upstream of APEX1 (5' to the damaged site. Molecular dynamics (MD simulations, ensuring geometrical complementarity of interfaces, enabled us to predict interacting residues and calculate binding energies, which in two cases were sufficient (approximately -10.0 kcal/mol to form a stable complex and in one case a weakly interacting complex. Analysis of interface behavior during MD simulation and visual inspection of interfaces allowed us to conclude that complexes with pol-beta at the 3'-side of APEX1 are those most likely to occur in vivo. Additional multiple sequence analyses of APEX1 and pol-beta in related organisms identified a set of correlated mutations of specific residues at the predicted interfaces. Based on these results, we propose that pol-beta in the open or closed conformation interacts and makes a stable interface with APEX1 bound to a cleaved abasic site on the 3' side. The method described here can be used for analysis in

  16. Site-specific weed control technologies

    DEFF Research Database (Denmark)

    Christensen, Svend; Søgaard, Henning Tangen; Kudsk, Per

    2009-01-01

    Site-specific weed control technologies are defined as machinery or equipment embedded with technologies that detect weeds growing in a crop and, taking into account predefined factors such as economics, takes action to maximise the chances of successfully controlling them. In the article, we...... describe the basic parts of site specific weed control technologies, comprising of weed sensing systems, weed management models and precision weed control implements. A review of state-of-the-art technologies shows that several weed sensing systems and precision implements have been developed over the last...... of knowledge about the economic and environmental potential for increasing the resolution of weed control. The integration of site-specific information on weed distribution, weed species composition and density, and the effect on crop yield, is decisive for successful site-specific weed management.   Keywords...

  17. Molecular mechanisms involved in the production of chromosomal aberrations. I. Utilization of Neurospora endonuclease for the study of aberration production in G2 stage of the cell cycle

    Energy Technology Data Exchange (ETDEWEB)

    Natarajan, A T; Obe, G [Rijksuniversiteit Leiden (Netherlands). J.A. Cohen Inst. voor Radiopathologie en Stralingsbescherming

    1978-10-01

    Chinese hamster ovary cells (CHO) were X-irradiated in G2 stage of the cell cycle and immediately treated, in the presence of inactivated Sendai virus, with Neurospora endonuclease (E.C. 3.1.4.), an enzyme which is specific for cleaving single-stranded DNA. With this treatment, the frequencies of all types of chromosome aberrations increased when compared to X-irradiated controls. These results are interpreted as due to the conversion of some of the X-ray induced single-stranded DNA breaks into double-strand breaks by this enzyme. Similar enhancement due to this enzyme was found following treatment with methyl methanesulfonate (MMS) and bleomycin, but not following UV and mitomycin C. Addition of Micrococcus endonuclease and Neurospora endonuclease to the cells did not alter the frequencies of aberrations induced by UV. The introduction of enzymes with specific DNA-repair function offers possibilities to probe into the molecular events involved in the formation of structural chromosome aberrations induced by different classes of physical and chemical mutagens.

  18. Activities and specificities of homodimeric TALENs in Saccharomyces cerevisiae

    KAUST Repository

    Aouida, Mustapha; Piatek, Marek J.; Bangarusamy, Dhinoth Kumar; Mahfouz, Magdy M.

    2013-01-01

    The development of highly efficient genome engineering reagents is of paramount importance to launch the next wave of biotechnology. TAL effectors have been developed as an adaptable DNA binding scaffold that can be engineered to bind to any user-defined sequence. Thus, TAL-based DNA binding modules have been used to generate chimeric proteins for a variety of targeted genome modifications across eukaryotic species. For example, TAL effectors fused to the catalytic domain of FokI endonuclease (TALENs) were used to generate site-specific double strand breaks (DSBs), the repair of which can be harnessed to dictate user-desired, genome-editing outcomes. To cleave DNA, FokI endonuclease must dimerize which can be achieved using a pair of TALENs that bind to the DNA targeted in a tail-to-tail orientation with proper spacing allowing the dimer formation. Because TALENs binding to DNA are dependent on their repeat sequences and nucleotides binding specificities, homodimers and heterodimers binding can be formed. In the present study, we used several TALEN monomers with increased repeats binding degeneracy to allow homodimer formation at increased number of genomic loci. We assessed their binding specificities and genome modification activities. Our results indicate that homodimeric TALENs could be used to modify the yeast genome in a site-specific manner and their binding to the promoter regions might modulate the expression of target genes. Taken together, our data indicate that homodimeric TALENs could be used to achieve different engineering possibilities of biotechnological applications and that their transcriptional modulations need to be considered when analyzing their phenotypic effects. © 2013 Springer-Verlag.

  19. Activities and specificities of homodimeric TALENs in Saccharomyces cerevisiae

    KAUST Repository

    Aouida, Mustapha

    2013-10-01

    The development of highly efficient genome engineering reagents is of paramount importance to launch the next wave of biotechnology. TAL effectors have been developed as an adaptable DNA binding scaffold that can be engineered to bind to any user-defined sequence. Thus, TAL-based DNA binding modules have been used to generate chimeric proteins for a variety of targeted genome modifications across eukaryotic species. For example, TAL effectors fused to the catalytic domain of FokI endonuclease (TALENs) were used to generate site-specific double strand breaks (DSBs), the repair of which can be harnessed to dictate user-desired, genome-editing outcomes. To cleave DNA, FokI endonuclease must dimerize which can be achieved using a pair of TALENs that bind to the DNA targeted in a tail-to-tail orientation with proper spacing allowing the dimer formation. Because TALENs binding to DNA are dependent on their repeat sequences and nucleotides binding specificities, homodimers and heterodimers binding can be formed. In the present study, we used several TALEN monomers with increased repeats binding degeneracy to allow homodimer formation at increased number of genomic loci. We assessed their binding specificities and genome modification activities. Our results indicate that homodimeric TALENs could be used to modify the yeast genome in a site-specific manner and their binding to the promoter regions might modulate the expression of target genes. Taken together, our data indicate that homodimeric TALENs could be used to achieve different engineering possibilities of biotechnological applications and that their transcriptional modulations need to be considered when analyzing their phenotypic effects. © 2013 Springer-Verlag.

  20. Purification, crystallization and preliminary crystallographic analysis of a thermostable endonuclease IV from Thermotoga maritima

    International Nuclear Information System (INIS)

    Hughes, Ronny C.; Tomanicek, Stephen J.; Ng, Joseph D.; Coates, Leighton

    2009-01-01

    The overexpression, purification and crystallization of endonuclease IV from T. maritima are reported. The crystals belonged to the hexagonal space group P6 1 and diffracted to 2.36 Å resolution. The DNA-repair enzyme endonuclease IV from the thermophilic bacterium Thermotoga maritima MSB8 (reference sequence NC-000853) has been expressed in Escherichia coli and crystallized for X-ray analysis. T. maritima endonuclease IV is a 287-amino-acid protein with 32% sequence identity to E. coli endonuclease IV. The protein was purified to homogeneity and was crystallized using the sitting-drop vapor-diffusion method. The protein crystallized in space group P6 1 , with one biological molecule in the asymmetric unit, corresponding to a Matthews coefficient of 2.39 Å 3 Da −1 and 47% solvent content. The unit-cell parameters of the crystals were a = b = 123.2, c = 35.6 Å. Microseeding and further optimization yielded crystals with an X-ray diffraction limit of 2.36 Å. A single 70° data set was collected and processed, resulting in an overall R merge and a completeness of 9.5% and 99.3%, respectively

  1. Activation of Saccharomyces cerevisiae Mlh1-Pms1 Endonuclease in a Reconstituted Mismatch Repair System*

    Science.gov (United States)

    Smith, Catherine E.; Bowen, Nikki; Graham, William J.; Goellner, Eva M.; Srivatsan, Anjana; Kolodner, Richard D.

    2015-01-01

    Previous studies reported the reconstitution of an Mlh1-Pms1-independent 5′ nick-directed mismatch repair (MMR) reaction using Saccharomyces cerevisiae proteins. Here we describe the reconstitution of a mispair-dependent Mlh1-Pms1 endonuclease activation reaction requiring Msh2-Msh6 (or Msh2-Msh3), proliferating cell nuclear antigen (PCNA), and replication factor C (RFC) and a reconstituted Mlh1-Pms1-dependent 3′ nick-directed MMR reaction requiring Msh2-Msh6 (or Msh2-Msh3), exonuclease 1 (Exo1), replication protein A (RPA), RFC, PCNA, and DNA polymerase δ. Both reactions required Mg2+ and Mn2+ for optimal activity. The MMR reaction also required two reaction stages in which the first stage required incubation of Mlh1-Pms1 with substrate DNA, with or without Msh2-Msh6 (or Msh2-Msh3), PCNA, and RFC but did not require nicking of the substrate, followed by a second stage in which other proteins were added. Analysis of different mutant proteins demonstrated that both reactions required a functional Mlh1-Pms1 endonuclease active site, as well as mispair recognition and Mlh1-Pms1 recruitment by Msh2-Msh6 but not sliding clamp formation. Mutant Mlh1-Pms1 and PCNA proteins that were defective for Exo1-independent but not Exo1-dependent MMR in vivo were partially defective in the Mlh1-Pms1 endonuclease and MMR reactions, suggesting that both reactions reflect the activation of Mlh1-Pms1 seen in Exo1-independent MMR in vivo. The availability of this reconstituted MMR reaction should now make it possible to better study both Exo1-independent and Exo1-dependent MMR. PMID:26170454

  2. Activation of Saccharomyces cerevisiae Mlh1-Pms1 Endonuclease in a Reconstituted Mismatch Repair System.

    Science.gov (United States)

    Smith, Catherine E; Bowen, Nikki; Graham, William J; Goellner, Eva M; Srivatsan, Anjana; Kolodner, Richard D

    2015-08-28

    Previous studies reported the reconstitution of an Mlh1-Pms1-independent 5' nick-directed mismatch repair (MMR) reaction using Saccharomyces cerevisiae proteins. Here we describe the reconstitution of a mispair-dependent Mlh1-Pms1 endonuclease activation reaction requiring Msh2-Msh6 (or Msh2-Msh3), proliferating cell nuclear antigen (PCNA), and replication factor C (RFC) and a reconstituted Mlh1-Pms1-dependent 3' nick-directed MMR reaction requiring Msh2-Msh6 (or Msh2-Msh3), exonuclease 1 (Exo1), replication protein A (RPA), RFC, PCNA, and DNA polymerase δ. Both reactions required Mg(2+) and Mn(2+) for optimal activity. The MMR reaction also required two reaction stages in which the first stage required incubation of Mlh1-Pms1 with substrate DNA, with or without Msh2-Msh6 (or Msh2-Msh3), PCNA, and RFC but did not require nicking of the substrate, followed by a second stage in which other proteins were added. Analysis of different mutant proteins demonstrated that both reactions required a functional Mlh1-Pms1 endonuclease active site, as well as mispair recognition and Mlh1-Pms1 recruitment by Msh2-Msh6 but not sliding clamp formation. Mutant Mlh1-Pms1 and PCNA proteins that were defective for Exo1-independent but not Exo1-dependent MMR in vivo were partially defective in the Mlh1-Pms1 endonuclease and MMR reactions, suggesting that both reactions reflect the activation of Mlh1-Pms1 seen in Exo1-independent MMR in vivo. The availability of this reconstituted MMR reaction should now make it possible to better study both Exo1-independent and Exo1-dependent MMR. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. SITE-94. Site specific base data for the performance assessment

    International Nuclear Information System (INIS)

    Geier, J.; Tiren, S.; Dverstorp, B.; Glynn, P.

    1996-06-01

    This report documents the site specific base data that were available, and the utilization of these data within SITE-94. A brief summary is given of SKB's preliminary site investigations for the Aespoe Hard Rock Laboratory (HRL), which were the main source of site-specific data for SITE-94, and an overview is given of the field methods and instrumentation for the preliminary investigations. A compilation is given of comments concerning the availability and quality of the data for Aespoe, and specific recommendations are given for future site investigations. It was found that the HRL pre-investigations produced a large quantity of data which were, for the most part, of sufficient quality to be valuable for a performance assessment. However, some problems were encountered regarding documentation, procedural consistency, positional information, and storage of the data from the measurements. 77 refs, 4 tabs

  4. Coupling of the nucleotide incision and 3' {yields} 5' exonuclease activities in Escherichia coli endonuclease IV: Structural and genetic evidences

    Energy Technology Data Exchange (ETDEWEB)

    Golan, Gali [Hebrew University of Jerusalem, Jerusalem 91904 (Israel); Ishchenko, Alexander A. [Groupe Reparation de l' ADN, CNRS UMR 8126, Univ. Paris-Sud, Institut de Cancerologie Gustave Roussy, 39, rue Camille Desmoulins, F-94805 Villejuif Cedex (France); Khassenov, Bekbolat [National Center for Biotechnology, Astana (Kazakhstan); Shoham, Gil, E-mail: gil2@vms.huji.ac.il [Hebrew University of Jerusalem, Jerusalem 91904 (Israel); Saparbaev, Murat K., E-mail: smurat@igr.fr [Groupe Reparation de l' ADN, CNRS UMR 8126, Univ. Paris-Sud, Institut de Cancerologie Gustave Roussy, 39, rue Camille Desmoulins, F-94805 Villejuif Cedex (France)

    2010-03-01

    Aerobic respiration generates reactive oxygen species (ROS) as a by-product of cellular metabolism which can damage DNA. The complex nature of oxidative DNA damage requires actions of several repair pathways. Oxidized DNA bases are substrates for two overlapping pathways: base excision repair (BER) and nucleotide incision repair (NIR). In the BER pathway a DNA glycosylase cleaves the N-glycosylic bond between the abnormal base and deoxyribose, leaving either an abasic site or single-stranded DNA break. Alternatively, in the NIR pathway, an apurinic/apyrimidinic (AP) endonuclease incises duplex DNA 5' next to oxidatively damaged nucleotide. The multifunctional Escherichia coli endonuclease IV (Nfo) is involved in both BER and NIR pathways. Nfo incises duplex DNA 5' of a damaged residue but also possesses an intrinsic 3' {yields} 5' exonuclease activity. Herein, we demonstrate that Nfo-catalyzed NIR and exonuclease activities can generate a single-strand gap at the 5' side of 5,6-dihydrouracil residue. Furthermore, we show that Nfo mutants carrying amino acid substitutions H69A and G149D are deficient in both NIR and exonuclease activities, suggesting that these two functions are genetically linked and governed by the same amino acid residues. The crystal structure of Nfo-H69A mutant reveals the loss of one of the active site zinc atoms (Zn1) and rearrangements of the catalytic site, but no gross changes in the overall enzyme conformation. We hypothesize that these minor changes strongly affect the DNA binding of Nfo. Decreased affinity may lead to a different kinking angle of the DNA helix and this in turn thwart nucleotide incision and exonuclease activities of Nfo mutants but to lesser extent of their AP endonuclease function. Based on the biochemical and genetic data we propose a model where nucleotide incision coupled to 3' {yields} 5' exonuclease activity prevents formation of lethal double-strand breaks when repairing bi

  5. Spectrophotometric, colorimetric and visually detection of Pseudomonas aeruginosa ETA gene based gold nanoparticles DNA probe and endonuclease enzyme

    Science.gov (United States)

    Amini, Bahram; Kamali, Mehdi; Salouti, Mojtaba; Yaghmaei, Parichehreh

    2018-06-01

    Colorimetric DNA detection is preferred over other methods for clinical molecular diagnosis because it does not require expensive equipment. In the present study, the colorimetric method based on gold nanoparticles (GNPs) and endonuclease enzyme was used for the detection of P. aeruginosa ETA gene. Firstly, the primers and probe for P. aeruginosa exotoxin A (ETA) gene were designed and checked for specificity by the PCR method. Then, GNPs were synthesized using the citrate reduction method and conjugated with the prepared probe to develop the new nano-biosensor. Next, the extracted target DNA of the bacteria was added to GNP-probe complex to check its efficacy for P. aeruginosa ETA gene diagnosis. A decrease in absorbance was seen when GNP-probe-target DNA cleaved into the small fragments of BamHI endonuclease due to the weakened electrostatic interaction between GNPs and the shortened DNA. The right shift of the absorbance peak from 530 to 562 nm occurred after adding the endonuclease. It was measured using a UV-VIS absorption spectroscopy that indicates the existence of the P. aeruginosa ETA gene. Sensitivity was determined in the presence of different concentrations of target DNA of P. aeruginosa. The results obtained from the optimized conditions showed that the absorbance value has linear correlation with concentration of target DNA (R: 0.9850) in the range of 10-50 ng mL-1 with the limit detection of 9.899 ng mL-1. Thus, the specificity of the new method for detection of P. aeruginosa was established in comparison with other bacteria. Additionally, the designed assay was quantitatively applied to detect the P. aeruginosa ETA gene from 103 to 108 CFU mL-1 in real samples with a detection limit of 320 CFU mL-1.

  6. Apurinic/apyrimidinic endonucleases of Mycobacterium tuberculosis protect against DNA damage but are dispensable for the growth of the pathogen in guinea pigs.

    Science.gov (United States)

    Puri, Rupangi Verma; Reddy, P Vineel; Tyagi, Anil K

    2014-01-01

    In host cells, Mycobacterium tuberculosis encounters an array of reactive molecules capable of damaging its genome. Non-bulky DNA lesions are the most common damages produced on the exposure of the pathogen to reactive species and base excision repair (BER) pathway is involved in the repair of such damage. During BER, apurinic/apyrimidinic (AP) endonuclease enzymes repair the abasic sites that are generated after spontaneous DNA base loss or by the action of DNA glycosylases, which if left unrepaired lead to inhibition of replication and transcription. However, the role of AP endonucleases in imparting protection against DNA damage and in the growth and pathogenesis of M.tuberculosis has not yet been elucidated. To demonstrate the biological significance of these enzymes in M.tuberculosis, it would be desirable to disrupt the relevant genes and evaluate the resulting mutants for their ability to grow in the host and cause disease. In this study, we have generated M.tuberculosis mutants of the base excision repair (BER) system, disrupted in either one (MtbΔend or MtbΔxthA) or both the AP endonucleases (MtbΔendΔxthA). We demonstrate that these genes are crucial for bacteria to withstand alkylation and oxidative stress in vitro. In addition, the mutant disrupted in both the AP endonucleases (MtbΔendΔxthA) exhibited a significant reduction in its ability to survive inside human macrophages. However, infection of guinea pigs with either MtbΔend or MtbΔxthA or MtbΔendΔxthA resulted in the similar bacillary load and pathological damage in the organs as observed in the case of infection with wild-type M.tuberculosis. The implications of these observations are discussed.

  7. Apurinic/apyrimidinic endonucleases of Mycobacterium tuberculosis protect against DNA damage but are dispensable for the growth of the pathogen in guinea pigs.

    Directory of Open Access Journals (Sweden)

    Rupangi Verma Puri

    Full Text Available In host cells, Mycobacterium tuberculosis encounters an array of reactive molecules capable of damaging its genome. Non-bulky DNA lesions are the most common damages produced on the exposure of the pathogen to reactive species and base excision repair (BER pathway is involved in the repair of such damage. During BER, apurinic/apyrimidinic (AP endonuclease enzymes repair the abasic sites that are generated after spontaneous DNA base loss or by the action of DNA glycosylases, which if left unrepaired lead to inhibition of replication and transcription. However, the role of AP endonucleases in imparting protection against DNA damage and in the growth and pathogenesis of M.tuberculosis has not yet been elucidated. To demonstrate the biological significance of these enzymes in M.tuberculosis, it would be desirable to disrupt the relevant genes and evaluate the resulting mutants for their ability to grow in the host and cause disease. In this study, we have generated M.tuberculosis mutants of the base excision repair (BER system, disrupted in either one (MtbΔend or MtbΔxthA or both the AP endonucleases (MtbΔendΔxthA. We demonstrate that these genes are crucial for bacteria to withstand alkylation and oxidative stress in vitro. In addition, the mutant disrupted in both the AP endonucleases (MtbΔendΔxthA exhibited a significant reduction in its ability to survive inside human macrophages. However, infection of guinea pigs with either MtbΔend or MtbΔxthA or MtbΔendΔxthA resulted in the similar bacillary load and pathological damage in the organs as observed in the case of infection with wild-type M.tuberculosis. The implications of these observations are discussed.

  8. PAM-Dependent Target DNA Recognition and Cleavage by C2c1 CRISPR-Cas Endonuclease

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hui; Gao, Pu; Rajashankar, Kanagalaghatta R.; Patel, Dinshaw J. (MSKCC); (Cornell); (Chinese Aca. Sci.)

    2016-12-01

    C2c1 is a newly identified guide RNA-mediated type V-B CRISPR-Cas endonuclease that site-specifically targets and cleaves both strands of target DNA. We have determined crystal structures of Alicyclobacillus acidoterrestris C2c1 (AacC2c1) bound to sgRNA as a binary complex and to target DNAs as ternary complexes, thereby capturing catalytically competent conformations of AacC2c1 with both target and non-target DNA strands independently positioned within a single RuvC catalytic pocket. Moreover, C2c1-mediated cleavage results in a staggered seven-nucleotide break of target DNA. crRNA adopts a pre-ordered five-nucleotide A-form seed sequence in the binary complex, with release of an inserted tryptophan, facilitating zippering up of 20-bp guide RNA:target DNA heteroduplex on ternary complex formation. Notably, the PAM-interacting cleft adopts a “locked” conformation on ternary complex formation. Structural comparison of C2c1 ternary complexes with their Cas9 and Cpf1 counterparts highlights the diverse mechanisms adopted by these distinct CRISPR-Cas systems, thereby broadening and enhancing their applicability as genome editing tools.

  9. Site-specific selfish genes as tools for the control and genetic engineering of natural populations.

    Science.gov (United States)

    Burt, Austin

    2003-05-07

    Site-specific selfish genes exploit host functions to copy themselves into a defined target DNA sequence, and include homing endonuclease genes, group II introns and some LINE-like transposable elements. If such genes can be engineered to target new host sequences, then they can be used to manipulate natural populations, even if the number of individuals released is a small fraction of the entire population. For example, a genetic load sufficient to eradicate a population can be imposed in fewer than 20 generations, if the target is an essential host gene, the knockout is recessive and the selfish gene has an appropriate promoter. There will be selection for resistance, but several strategies are available for reducing the likelihood of it evolving. These genes may also be used to genetically engineer natural populations, by means of population-wide gene knockouts, gene replacements and genetic transformations. By targeting sex-linked loci just prior to meiosis one may skew the population sex ratio, and by changing the promoter one may limit the spread of the gene to neighbouring populations. The proposed constructs are evolutionarily stable in the face of the mutations most likely to arise during their spread, and strategies are also available for reversing the manipulations.

  10. Flap Endonuclease 1 Limits Telomere Fragility on the Leading Strand*

    Science.gov (United States)

    Teasley, Daniel C.; Parajuli, Shankar; Nguyen, Mai; Moore, Hayley R.; Alspach, Elise; Lock, Ying Jie; Honaker, Yuchi; Saharia, Abhishek; Piwnica-Worms, Helen; Stewart, Sheila A.

    2015-01-01

    The existence of redundant replication and repair systems that ensure genome stability underscores the importance of faithful DNA replication. Nowhere is this complexity more evident than in challenging DNA templates, including highly repetitive or transcribed sequences. Here, we demonstrate that flap endonuclease 1 (FEN1), a canonical lagging strand DNA replication protein, is required for normal, complete leading strand replication at telomeres. We find that the loss of FEN1 nuclease activity, but not DNA repair activities, results in leading strand-specific telomere fragility. Furthermore, we show that FEN1 depletion-induced telomere fragility is increased by RNA polymerase II inhibition and is rescued by ectopic RNase H1 expression. These data suggest that FEN1 limits leading strand-specific telomere fragility by processing RNA:DNA hybrid/flap intermediates that arise from co-directional collisions occurring between the replisome and RNA polymerase. Our data reveal the first molecular mechanism for leading strand-specific telomere fragility and the first known role for FEN1 in leading strand DNA replication. Because FEN1 mutations have been identified in human cancers, our findings raise the possibility that unresolved RNA:DNA hybrid structures contribute to the genomic instability associated with cancer. PMID:25922071

  11. The elastic network model reveals a consistent picture on intrinsic functional dynamics of type II restriction endonucleases

    International Nuclear Information System (INIS)

    Uyar, A; Kurkcuoglu, O; Doruker, P; Nilsson, L

    2011-01-01

    The vibrational dynamics of various type II restriction endonucleases, in complex with cognate/non-cognate DNA and in the apo form, are investigated with the elastic network model in order to reveal common functional mechanisms in this enzyme family. Scissor-like and tong-like motions observed in the slowest modes of all enzymes and their complexes point to common DNA recognition and cleavage mechanisms. Normal mode analysis further points out that the scissor-like motion has an important role in differentiating between cognate and non-cognate sequences at the recognition site, thus implying its catalytic relevance. Flexible regions observed around the DNA-binding site of the enzyme usually concentrate on the highly conserved β-strands, especially after DNA binding. These β-strands may have a structurally stabilizing role in functional dynamics for target site recognition and cleavage. In addition, hot spot residues based on high-frequency modes reveal possible communication pathways between the two distant cleavage sites in the enzyme family. Some of these hot spots also exist on the shortest path between the catalytic sites and are highly conserved

  12. 29 CFR 1926.752 - Site layout, site-specific erection plan and construction sequence.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Site layout, site-specific erection plan and construction... Steel Erection § 1926.752 Site layout, site-specific erection plan and construction sequence. (a... strength or sufficient strength to support the loads imposed during steel erection. (c) Site layout. The...

  13. Site Specific Vendor's License

    Data.gov (United States)

    Montgomery County of Maryland — This dataset contains information of a site-specific vendor's license which is required if an individual sells or offers to sell goods or services from a stationary...

  14. Site-Specific Atmospheric Dispersion Characteristics of Korean Nuclear Power Plant Sites

    International Nuclear Information System (INIS)

    Han, M. H.; Kim, E. H.; Suh, K. S.; Hwang, W. T.; Choi, Y. G.

    2001-01-01

    Site-specific atmospheric dispersion characteristics have been analyzed. The northwest and the southwest wind prevail on nuclear sites of Korea. The annual isobaric surface averaged for twenty years around Korean peninsula shows that west wind prevails. The prevailing west wind is profitable in the viewpoint of radiation protection because three of four nuclear sites are located in the east side. Large scale field tracer experiments over nuclear sites have been conducted for the purpose of analyzing the atmospheric dispersion characteristics and validating a real-time atmospheric dispersion and dose assessment system FADAS. To analyze the site-specific atmospheric dispersion characteristics is essential for making effective countermeasures against a nuclear emergency

  15. Statistical and Economic Techniques for Site-specific Nematode Management.

    Science.gov (United States)

    Liu, Zheng; Griffin, Terry; Kirkpatrick, Terrence L

    2014-03-01

    Recent advances in precision agriculture technologies and spatial statistics allow realistic, site-specific estimation of nematode damage to field crops and provide a platform for the site-specific delivery of nematicides within individual fields. This paper reviews the spatial statistical techniques that model correlations among neighboring observations and develop a spatial economic analysis to determine the potential of site-specific nematicide application. The spatial econometric methodology applied in the context of site-specific crop yield response contributes to closing the gap between data analysis and realistic site-specific nematicide recommendations and helps to provide a practical method of site-specifically controlling nematodes.

  16. Expression and Purification of BmrI Restriction Endonuclease and Its N-terminal Cleavage Domain Variants

    OpenAIRE

    Bao, Yongming; Higgins, Lauren; Zhang, Penghua; Chan, Siu-hong; Laget, Sophie; Sweeney, Suzanne; Lunnen, Keith; Xu, Shuang-yong

    2007-01-01

    BmrI (ACTGGG N5/N4) is one of the few metal-independent restriction endonucleases (REases) found in bacteria. The BmrI restriction-modification system was cloned by the methylase selection method, inverse PCR, and PCR. BmrI REase shows significant amino acid sequence identity to BfiI and a putative endonuclease MspBNCORF3798 from the sequenced Mesorhizobium sp. BNC1 genome. The EDTA-resistant BmrI REase was successfully over-expressed in a pre-modified E. coli strain from pET21a or pBAC-expIQ...

  17. Site-Specific Seismic Site Response Model for the Waste Treatment Plant, Hanford, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Reidel, Steve P.

    2005-02-24

    This interim report documents the collection of site-specific geologic and geophysical data characterizing the Waste Treatment Plant site and the modeling of the site-specific structure response to earthquake ground motions.

  18. Cloning and analysis of a bifunctional methyltransferase/restriction endonuclease TspGWI, the prototype of a Thermus sp. enzyme family

    Directory of Open Access Journals (Sweden)

    Zylicz-Stachula Agnieszka

    2009-05-01

    Full Text Available Abstract Background Restriction-modification systems are a diverse class of enzymes. They are classified into four major types: I, II, III and IV. We have previously proposed the existence of a Thermus sp. enzyme family, which belongs to type II restriction endonucleases (REases, however, it features also some characteristics of types I and III. Members include related thermophilic endonucleases: TspGWI, TaqII, TspDTI, and Tth111II. Results Here we describe cloning, mutagenesis and analysis of the prototype TspGWI enzyme that recognises the 5'-ACGGA-3' site and cleaves 11/9 nt downstream. We cloned, expressed, and mutagenised the tspgwi gene and investigated the properties of its product, the bifunctional TspGWI restriction/modification enzyme. Since TspGWI does not cleave DNA completely, a cloning method was devised, based on amino acid sequencing of internal proteolytic fragments. The deduced amino acid sequence of the enzyme shares significant sequence similarity with another representative of the Thermus sp. family – TaqII. Interestingly, these enzymes recognise similar, yet different sequences in the DNA. Both enzymes cleave DNA at the same distance, but differ in their ability to cleave single sites and in the requirement of S-adenosylmethionine as an allosteric activator for cleavage. Both the restriction endonuclease (REase and methyltransferase (MTase activities of wild type (wt TspGWI (either recombinant or isolated from Thermus sp. are dependent on the presence of divalent cations. Conclusion TspGWI is a bifunctional protein comprising a tandem arrangement of Type I-like domains; particularly noticeable is the central HsdM-like module comprising a helical domain and a highly conserved S-adenosylmethionine-binding/catalytic MTase domain, containing DPAVGTG and NPPY motifs. TspGWI also possesses an N-terminal PD-(D/EXK nuclease domain related to the corresponding domains in HsdR subunits, but lacks the ATP-dependent translocase module

  19. Flap Endonuclease 1 Limits Telomere Fragility on the Leading Strand.

    Science.gov (United States)

    Teasley, Daniel C; Parajuli, Shankar; Nguyen, Mai; Moore, Hayley R; Alspach, Elise; Lock, Ying Jie; Honaker, Yuchi; Saharia, Abhishek; Piwnica-Worms, Helen; Stewart, Sheila A

    2015-06-12

    The existence of redundant replication and repair systems that ensure genome stability underscores the importance of faithful DNA replication. Nowhere is this complexity more evident than in challenging DNA templates, including highly repetitive or transcribed sequences. Here, we demonstrate that flap endonuclease 1 (FEN1), a canonical lagging strand DNA replication protein, is required for normal, complete leading strand replication at telomeres. We find that the loss of FEN1 nuclease activity, but not DNA repair activities, results in leading strand-specific telomere fragility. Furthermore, we show that FEN1 depletion-induced telomere fragility is increased by RNA polymerase II inhibition and is rescued by ectopic RNase H1 expression. These data suggest that FEN1 limits leading strand-specific telomere fragility by processing RNA:DNA hybrid/flap intermediates that arise from co-directional collisions occurring between the replisome and RNA polymerase. Our data reveal the first molecular mechanism for leading strand-specific telomere fragility and the first known role for FEN1 in leading strand DNA replication. Because FEN1 mutations have been identified in human cancers, our findings raise the possibility that unresolved RNA:DNA hybrid structures contribute to the genomic instability associated with cancer. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Hanford Site Environmental Management Specification

    International Nuclear Information System (INIS)

    DAILY, J.L.

    2001-01-01

    The US Department of Energy, Richland Operations Office (RL) has established a document hierarchy as part of its integrated management system. The Strategic Plan defines the vision, values, missions, strategic goals, high-level outcomes, and the basic strategies in achieving those outcomes. As shown in Figure 1-1, the Site Specification derives requirements from the Strategic Plan and documents the top-level mission technical requirements for the work involved in the RL Hanford Site cleanup and infrastructure activities under the responsibility of the U.S. Department of Energy, Office of Environmental Management (EM). It also provides the basis for all contract technical requirements. Since this is limited to the EM work, neither the Fast Flux Test Facility (FFTF) nor the Pacific Northwest National Laboratory (PNNL) non-EM science activities are included. Figure 1-1 also shows the relationship between this Site Specification and the other Site management and planning documents. Similarly, the documents, orders, and laws referenced in this document represent only the most salient sources of requirements. Current and contractual reference data contain a complete set of source documents

  1. Intruder scenarios for site-specific waste classification

    International Nuclear Information System (INIS)

    Kennedy, W.E. Jr.

    1988-01-01

    The US Department of Energy (DOE) is currently revising its low-level radioactive waste (LLW) management requirements and guidelines for waste generated at its facilities that support defense missions. Specifically, draft DOE 5820.2A, Chapter 3, describes the purpose, policy, and requirements necessary for the management of defense LLW. The draft DOE policy calls for DOE LLW operations to be managed to protect the health and safety of the public, preserve the environment, and ensure that no remedial action will be necessary after termination of operations. The requirements and guidelines apply to radioactive wastes but are also intended to apply to mixed hazardous and radioactive wastes as defined in draft DOE 5400.5, Hazardous and Radioactive Mixed Waste. The basic approach used by DOE is to establish overall performance objectives in terms of ground-water protection and public radiation dose limits and to require site-specific performance assessments to determine compliance. As a result of these performance assessments, each site shall develop waste acceptance criteria that define the allowable quantities and concentrations of specific radioisotopes. Additional limitations on waste disposal design, waste form, and waste treatment shall also be developed on a site-specific basis. As a key step in the site-specific performance assessments, an evaluation must be conducted of potential radiation doses to intruders who may inadvertently move onto a closed DOE LLW disposal site after loss of institutional controls must be conducted. This paper describes the types of intruder scenarios that should be considered when performing this step of the site-specific performance assessment

  2. DOE site-specific threat assessment

    International Nuclear Information System (INIS)

    West, D.J.; Al-Ayat, R.A.; Judd, B.R.

    1985-01-01

    A facility manager faced with the challenges of protecting a nuclear facility against potential threats must consider the likelihood and consequences of such threats, know the capabilities of the facility safeguards and security systems, and make informed decisions about the cost-effectivness of safeguards and security upgrades. To help meet these challenges, the San Francisco Operations Office of the Department of Energy, in conjunction with the Lawrence Livermore Laboratory, has developed a site-specific threat assessment approach and a quantitative model to improve the quality and consistency of site-specific threat assessment and resultant security upgrade decisions at sensitive Department of Energy facilities. 5 figs

  3. Site-specific design optimization of wind turbines

    DEFF Research Database (Denmark)

    Fuglsang, P.; Bak, C.; Schepers, J.G.

    2002-01-01

    This article reports results from a European project, where site characteristics were incorporated into the design process of wind turbines, to enable site-specific design. Two wind turbines of different concept were investigated at six different sites comprising normal flat terrain, offshore...... and complex terrain wind farms. Design tools based on numerical optimization and aeroelastic calculations were combined with a cost model to allow optimization for minimum cost of energy. Different scenarios were optimized ranging from modifications of selected individual components to the complete design...... of a new wind turbine. Both annual energy yield and design-determining loads depended on site characteristics, and this represented a potential for site-specific design. The maximum variation in annual energy yield was 37% and the maximum variation in blade root fatigue loads was 62%. Optimized site...

  4. Site-Specific PEGylation of Therapeutic Proteins

    Directory of Open Access Journals (Sweden)

    Jonathan K. Dozier

    2015-10-01

    Full Text Available The use of proteins as therapeutics has a long history and is becoming ever more common in modern medicine. While the number of protein-based drugs is growing every year, significant problems still remain with their use. Among these problems are rapid degradation and excretion from patients, thus requiring frequent dosing, which in turn increases the chances for an immunological response as well as increasing the cost of therapy. One of the main strategies to alleviate these problems is to link a polyethylene glycol (PEG group to the protein of interest. This process, called PEGylation, has grown dramatically in recent years resulting in several approved drugs. Installing a single PEG chain at a defined site in a protein is challenging. Recently, there is has been considerable research into various methods for the site-specific PEGylation of proteins. This review seeks to summarize that work and provide background and context for how site-specific PEGylation is performed. After introducing the topic of site-specific PEGylation, recent developments using chemical methods are described. That is followed by a more extensive discussion of bioorthogonal reactions and enzymatic labeling.

  5. Evaluation of an Internally Controlled Multiplex Tth Endonuclease Cleavage Loop-Mediated Isothermal Amplification (TEC-LAMP Assay for the Detection of Bacterial Meningitis Pathogens

    Directory of Open Access Journals (Sweden)

    Owen Higgins

    2018-02-01

    Full Text Available Bacterial meningitis infection is a leading global health concern for which rapid and accurate diagnosis is essential to reduce associated morbidity and mortality. Loop-mediated isothermal amplification (LAMP offers an effective low-cost diagnostic approach; however, multiplex LAMP is difficult to achieve, limiting its application. We have developed novel real-time multiplex LAMP technology, TEC-LAMP, using Tth endonuclease IV and a unique LAMP primer/probe. This study evaluates the analytical specificity, limit of detection (LOD and clinical application of an internally controlled multiplex TEC-LAMP assay for detection of leading bacterial meningitis pathogens: Streptococcus pneumoniae, Neisseria meningitidis and Haemophilus influenzae. Analytical specificities were established by testing 168 bacterial strains, and LODs were determined using Probit analysis. The TEC-LAMP assay was 100% specific, with LODs for S. pneumoniae, N. meningitidis and H. influenzae of 39.5, 17.3 and 25.9 genome copies per reaction, respectively. Clinical performance was evaluated by testing 65 archived PCR-positive samples. Compared to singleplex real-time PCR, the multiplex TEC-LAMP assay demonstrated diagnostic sensitivity and specificity of 92.3% and 100%, respectively. This is the first report of a single-tube internally controlled multiplex LAMP assay for bacterial meningitis pathogen detection, and the first report of Tth endonuclease IV incorporation into nucleic acid amplification diagnostic technology.

  6. Evaluation of an Internally Controlled Multiplex Tth Endonuclease Cleavage Loop-Mediated Isothermal Amplification (TEC-LAMP) Assay for the Detection of Bacterial Meningitis Pathogens

    Science.gov (United States)

    Clancy, Eoin; Cormican, Martin; Boo, Teck Wee; Cunney, Robert

    2018-01-01

    Bacterial meningitis infection is a leading global health concern for which rapid and accurate diagnosis is essential to reduce associated morbidity and mortality. Loop-mediated isothermal amplification (LAMP) offers an effective low-cost diagnostic approach; however, multiplex LAMP is difficult to achieve, limiting its application. We have developed novel real-time multiplex LAMP technology, TEC-LAMP, using Tth endonuclease IV and a unique LAMP primer/probe. This study evaluates the analytical specificity, limit of detection (LOD) and clinical application of an internally controlled multiplex TEC-LAMP assay for detection of leading bacterial meningitis pathogens: Streptococcus pneumoniae, Neisseria meningitidis and Haemophilus influenzae. Analytical specificities were established by testing 168 bacterial strains, and LODs were determined using Probit analysis. The TEC-LAMP assay was 100% specific, with LODs for S. pneumoniae, N. meningitidis and H. influenzae of 39.5, 17.3 and 25.9 genome copies per reaction, respectively. Clinical performance was evaluated by testing 65 archived PCR-positive samples. Compared to singleplex real-time PCR, the multiplex TEC-LAMP assay demonstrated diagnostic sensitivity and specificity of 92.3% and 100%, respectively. This is the first report of a single-tube internally controlled multiplex LAMP assay for bacterial meningitis pathogen detection, and the first report of Tth endonuclease IV incorporation into nucleic acid amplification diagnostic technology. PMID:29425124

  7. Interaction of the E. coli DNA G:T-mismatch endonuclease (vsr protein) with oligonucleotides containing its target sequence.

    Science.gov (United States)

    Turner, D P; Connolly, B A

    2000-12-15

    The Escherichia coli vsr endonuclease recognises G:T base-pair mismatches in double-stranded DNA and initiates a repair pathway by hydrolysing the phosphate group 5' to the incorrectly paired T. The enzyme shows a preference for G:T mismatches within a particular sequence context, derived from the recognition site of the E. coli dcm DNA-methyltransferase (CC[A/T]GG). Thus, the preferred substrate for the vsr protein is (CT[A/T]GG), where the underlined T is opposed by a dG base. This paper provides quantitative data for the interaction of the vsr protein with a number of oligonucleotides containing G:T mismatches. Evaluation of specificity constant (k(st)/K(D); k(st)=rate constant for single turnover, K(D)=equilibrium dissociation constant) confirms vsr's preference for a G:T mismatch within a hemi-methylated dcm sequence, i.e. the best substrate is a duplex (both strands written in the 5'-3' orientation) composed of CT[A/T]GG and C(5Me)C[T/A]GG. Conversion of the mispaired T (underlined) to dU or the d(5Me)C to dC gave poorer substrates. No interaction was observed with oligonucleotides that lacked a G:T mismatch or did not possess a dcm sequence. An analysis of the fraction of active protein, by "reverse-titration" (i.e. adding increasing amounts of DNA to a fixed amount of protein followed by gel-mobility shift analysis) showed that less than 1% of the vsr endonuclease was able to bind to the substrate. This was confirmed using "competitive titrations" (where competitor oligonucleotides are used to displace a (32)P-labelled nucleic acid from the vsr protein) and burst kinetic analysis. This result is discussed in the light of previous in vitro and in vivo data which indicate that the MutL protein may be needed for full vsr activity. Copyright 2000 Academic Press.

  8. Nanoparticles for Site Specific Genome Editing

    Science.gov (United States)

    McNeer, Nicole Ali

    Triplex-forming peptide nucleic acids (PNAs) can be used to coordinate the recombination of short 50-60 by "donor DNA" fragments into genomic DNA, resulting in site-specific correction of genetic mutations or the introduction of advantageous genetic modifications. Site-specific gene editing in hematopoietic stem and progenitor cells (HSPCs) could result in treatment or cure of inherited disorders of the blood such as beta-thalassemia. Gene editing in HSPCs and differentiated T cells could help combat HIV/AIDs by modifying receptors, such as CCR5, necessary for R5-tropic HIV entry. However, translation of genome modification technologies to clinical practice is limited by challenges in intracellular delivery, especially in difficult-to-transfect hematolymphoid cells. In vivo gene editing could also provide novel treatment for systemic monogenic disorders such as cystic fibrosis, an autosomal recessive disorder caused by mutations in the cystic fibrosis transmembrane receptor. Here, we have engineered biodegradable nanoparticles to deliver oligonucleotides for site-specific genome editing of disease-relevant genes in human cells, with high efficiency, low toxicity, and editing of clinically relevant cell types. We designed nanoparticles to edit the human beta-globin and CCR5 genes in hematopoietic cells. We show that poly(lactic-co-glycolic acid) (PLGA) nanoparticles can delivery PNA and donor DNA for site-specific gene modification in human hematopoietic cells in vitro and in vivo in NOD-scid IL2rgammanull mice. Nanoparticles delivered by tail vein localized to hematopoietic compartments in the spleen and bone marrow of humanized mice, resulting in modification of the beta-globin and CCR5 genes. Modification frequencies ranged from 0.005 to 20% of cells depending on the organ and cell type, without detectable toxicity. This project developed highly versatile methods for delivery of therapeutics to hematolymphoid cells and hematopoietic stem cells, and will help to

  9. An ultra-sensitive colorimetric Hg(2+)-sensing assay based on DNAzyme-modified Au NP aggregation, MNPs and an endonuclease.

    Science.gov (United States)

    Li, Chao; Dai, Peiqing; Rao, Xinyi; Shao, Lin; Cheng, Guifang; He, Pingang; Fang, Yuzhi

    2015-01-01

    This paper reports the development of an ultra-sensitive colorimetric method for the detection of trace mercury ions involving DNAzymes, Au nanoparticle aggregation, magnetic nanoparticles and an endonuclease. DNAzyme-sensing elements are conjugated to the surface of Au nanoparticle-2, which can crosslink with the T-rich strands coated on Au nanoparticle-1 to form Au nanoparticle aggregation. Other T-rich stands are immobilized on the surface of MNPs. The specific hybridization of these two T-rich strands depends on the presence of Hg(2+), resulting in the formation of a T-Hg(2+)-T structure. Added endonuclease then digests the hybridized strands, and DNAzyme-modified Au NP aggregation is released, catalysing the conversion of the colourless ABTS into a blue-green product by H2O2-mediated oxidation. The increase in the adsorption spectrum of ABTS(+) at 421 nm is related to the concentration of Hg(2+). This assay was validated by detecting mercury ion concentrations in river water. The colorimetric responses were not significantly altered in the presence of 100-fold excesses of other metal ions such as Zn(2+), Pb(2+), Cd(2+), Mn(2+), Ca(2+) and Ni(2+). The inclusion of both Au NP aggregation and an endonuclease enables the assay to eliminate interference from the magnetic nanoparticles with colorimetric detection, decrease the background and improve the detection sensitivity. The calibration curve of the assay was linear over the range of Hg(2+) concentrations from 1 to 30 nM, and the detection limit was 0.8 nM, which is far lower than the 10 nM US EPA limit for drinking water. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Savannah River Site's Site Specific Plan

    International Nuclear Information System (INIS)

    1991-01-01

    This Site Specific Plan (SSP) has been prepared by the Savannah River Site (SRS) in order to show the Environmental Restoration and Waste Management activities that were identified during the preparation of the Department of Energy-Headquarters (DOE-HQ) Environmental Restoration and Waste Management Five-Year Plan (FYP) for FY 1992--1996. The SSP has been prepared in accordance with guidance received from DOE-HQ. DOE-SR is accountable to DOE-HQ for the implementation of this plan. The purpose of the SSP is to develop a baseline for policy, budget, and schedules for the DOE Environmental Restoration and Waste Management activities. The plan explains accomplishments since the Fiscal Year (FY) 1990 plan, demonstrates how present and future activities are prioritized, identifies currently funded activities and activities that are planned to be funded in the upcoming fiscal year, and describes future activities that SRS is considering

  11. Glycosylase-mediated repair of radiation-induced DNA bases: substrate specificities and mechanisms

    International Nuclear Information System (INIS)

    D'ham, Cedric

    1998-01-01

    Cellular DNA is subject to permanent damage and repair processes. One way to restore the integrity of DNA involves the base excision repair pathway. Glycosylases are the key-enzymes of this process. The present work deals with the determination of the substrate specificity and the mechanism of action of three glycosylases: endonuclease III and Fpg of Escherichia coli and Ogg1 of Saccharomyces cerevisiae. The present manuscript is divided into four parts: Endonuclease III-mediated excision of 5,6-dihydro-thymine and 5-hydroxy-5,6-dihydro-thymine from γ-irradiated DNA was analyzed by a gas chromatography-mass spectrometry assay, including a liquid chromatography pre-purification step. This was found to be necessary in order to separate the cis and trans isomers of 6-hydroxy-5,6-dihydro-thymine from the 5-hydroxy-5,6-dihydro-thymine. Modified oligonucleotides that contained a unique lesion, including thymine glycol, 5,6-dihydro-thymine and 5-hydroxy-cytosine were synthesized to assess the substrate specificity of endonuclease III and Fpg. The order of preference of the enzymes for the substrates was determined by the measurement of the Michaelis constants of the kinetics. Furthermore, the mechanism of action of endonuclease III has been reconsidered, after analysis using the MALDI mass spectrometry technique. These studies reveal that hydrolysis is the main pathway by which endonuclease III cleaves the DNA backbone. Using a modified oligonucleotide, 8-oxo-7,8-dihydro-adenine was shown to be a product of excision of the Ogg1 enzyme. The role of the complementary base towards the lesion was found to be preponderant in the damage excision. A last chapter concerns the synthesis and the characterization of the four isomers of 5(6)-hydroxy-6(5)-hydroperoxides of thymine. These products may be substrates for endonuclease III or Fpg. (author) [fr

  12. Cleavage and protection of locked nucleic acid-modified DNA by restriction endonucleases

    DEFF Research Database (Denmark)

    Crouzier, Lucile; Dubois, Camille; Wengel, Jesper

    2012-01-01

    Locked nucleic acid (LNA) is one of the most prominent nucleic acid analogues reported so far. We herein for the first time report cleavage by restriction endonuclease of LNA-modified DNA oligonucleotides. The experiments revealed that RsaI is an efficient enzyme capable of recognizing and cleaving...

  13. Site specific plan

    International Nuclear Information System (INIS)

    Hutchison, J.; Jernigan, G.

    1989-12-01

    The Environmental Restoration and Waste Management Five-Year Plan (FYP) covers the period for FY 1989 through FY 1995. The plan establishes a Department of Energy -- Headquarters (DOE-HQ) agenda for cleanup and compliance against which overall progress can be measured. The FYP covers three areas: Corrective Activities, Environmental Restoration, and Waste Management Operations. Corrective Activities are those activities necessary to bring active or standby facilities into compliance with local, state, and federal environmental regulations. Environmental restoration activities include the assessment and cleanup of surplus facilities and inactive waste sites. Waste management operations includes the treatment, storage, and disposal of wastes which are generated as a result of ongoing operations. This Site Specific Plan (SSP) has been prepared by the Savannah River Site (SRS) in order to show how environmental restoration and waste management activities that were identified during the preparation of the FYP will be implemented, tracked, and reported. The SSP describes DOE Savannah River (DOE-SR) and operating contractor, Westinghouse Savannah River Company (WSRC), organizations that are responsible, for undertaking the activities identified in this plan. The SSP has been prepared in accordance with guidance received from DOE-HQ. DOE-SR is accountable to DOE-HQ for the implementation of this plan. 8 refs., 46 figs., 23 tabs

  14. Next-generation sequencing of multiple individuals per barcoded library by deconvolution of sequenced amplicons using endonuclease fragment analysis

    DEFF Research Database (Denmark)

    Andersen, Jeppe D; Pereira, Vania; Pietroni, Carlotta

    2014-01-01

    The simultaneous sequencing of samples from multiple individuals increases the efficiency of next-generation sequencing (NGS) while also reducing costs. Here we describe a novel and simple approach for sequencing DNA from multiple individuals per barcode. Our strategy relies on the endonuclease...... digestion of PCR amplicons prior to library preparation, creating a specific fragment pattern for each individual that can be resolved after sequencing. By using both barcodes and restriction fragment patterns, we demonstrate the ability to sequence the human melanocortin 1 receptor (MC1R) genes from 72...... individuals using only 24 barcoded libraries....

  15. Altered endoribonuclease activity of apurinic/apyrimidinic endonuclease 1 variants identified in the human population.

    Directory of Open Access Journals (Sweden)

    Wan Cheol Kim

    Full Text Available Apurinic/apyrimidinic endonuclease 1 (APE1 is the major mammalian enzyme in the DNA base excision repair pathway and cleaves the DNA phosphodiester backbone immediately 5' to abasic sites. APE1 also has 3'-5' DNA exonuclease and 3' DNA phosphodiesterase activities, and regulates transcription factor DNA binding through its redox regulatory function. The human APE1 has recently been shown to endonucleolytically cleave single-stranded regions of RNA. Towards understanding the biological significance of the endoribonuclease activity of APE1, we examined eight different amino acid substitution variants of APE1 previously identified in the human population. Our study shows that six APE1 variants, D148E, Q51H, I64V, G241R, R237A, and G306A, exhibit a 76-85% reduction in endoribonuclease activity against a specific coding region of the c-myc RNA, yet fully retain the ability to cleave apurinic/apyrimidinic DNA. We found that two APE1 variants, L104R and E126D, exhibit a unique RNase inhibitor-resistant endoribonuclease activity, where the proteins cleave c-myc RNA 3' of specific single-stranded guanosine residues. Expression of L104R and E126D APE1 variants in bacterial Origami cells leads to a 60-80% reduction in colony formation and a 1.5-fold increase in cell doubling time, whereas the other variants, which exhibit diminished endoribonuclease activity, had no effect. These data indicate that two human APE1 variants exhibit a unique endoribonuclease activity, which correlates with their ability to induce cytotoxicity or slow down growth in bacterial cells and supports the notion of their biological functionality.

  16. Type II restriction endonucleases : a historical perspective and more

    OpenAIRE

    Pingoud, Alfred; Wilson, Geoffrey G.; Wende, Wolfgang

    2014-01-01

    This article continues the series of Surveys and Summaries on restriction endonucleases (REases) begun this year in Nucleic Acids Research. Here we discuss ‘Type II’ REases, the kind used for DNA analysis and cloning. We focus on their biochemistry: what they are, what they do, and how they do it. Type II REases are produced by prokaryotes to combat bacteriophages. With extreme accuracy, each recognizes a particular sequence in double-stranded DNA and cleaves at a fixed position within or nea...

  17. Innovation and Diffusion of Site-specific Crop Management

    DEFF Research Database (Denmark)

    Pedersen, Søren Marcus; Pedersen, Jørgen Lindgaard

    2006-01-01

    Site-specific crop management or precision farming is a highly complex managementsystem for site-specific input application of lime, fertilizers and pesticides in arable farming. The Global Positioning System (GPS)is the backbone of the system. To conduct precision farming several technical systems...

  18. Innovation and diffusion of site-specific crop management

    DEFF Research Database (Denmark)

    Pedersen, Søren Marcus; Pedersen, Jørgen Lindgaard

    2004-01-01

    Site-specific crop management or precision farming (PF) is a highly complex management system for site-specific input application of lime, fertilizers and pesticides in arable farming. The Global Positioning System (GPS) is the backbone of the system. To conduct PF several technical systems...

  19. Cell-Autonomous Progeroid Changes in Conditional Mouse Models for Repair Endonuclease XPG Deficiency

    NARCIS (Netherlands)

    S. Barnhoorn (Sander); L.M. Uittenboogaard (Lieneke); D. Jaarsma (Dick); W.P. Vermeij (Wilbert); M. Tresini (Maria); M. Weymaere (Michael); H. Menoni (Hervé); R.M.C. Brandt (Renata); M.C. de Waard (Monique); S.M. Botter (Sander); A.H. Sarker (Altraf); N.G.J. Jaspers (Nicolaas); G.T.J. van der Horst (Gijsbertus); P.K. Cooper (Priscilla K.); J.H.J. Hoeijmakers (Jan); I. van der Pluijm (Ingrid)

    2014-01-01

    textabstractAs part of the Nucleotide Excision Repair (NER) process, the endonuclease XPG is involved in repair of helix-distorting DNA lesions, but the protein has also been implicated in several other DNA repair systems, complicating genotype-phenotype relationship in XPG patients. Defects in XPG

  20. Germline excision of transgenes in Aedes aegypti by homing endonucleases.

    Science.gov (United States)

    Aryan, Azadeh; Anderson, Michelle A E; Myles, Kevin M; Adelman, Zach N

    2013-01-01

    Aedes (Ae.) aegypti is the primary vector for dengue viruses (serotypes1-4) and chikungunya virus. Homing endonucleases (HEs) are ancient selfish elements that catalyze double-stranded DNA breaks (DSB) in a highly specific manner. In this report, we show that the HEs Y2-I-AniI, I-CreI and I-SceI are all capable of catalyzing the excision of genomic segments from the Ae. aegypti genome in a heritable manner. Y2-I-AniI demonstrated the highest efficiency at two independent genomic targets, with 20-40% of Y2-I-AniI-treated individuals producing offspring that had lost the target transgene. HE-induced DSBs were found to be repaired via the single-strand annealing (SSA) and non-homologous end-joining (NHEJ) pathways in a manner dependent on the availability of direct repeat sequences in the transgene. These results support the development of HE-based gene editing and gene drive strategies in Ae. aegypti, and confirm the utility of HEs in the manipulation and modification of transgenes in this important vector.

  1. An analysis of the repair processes in ultraviolet-irradiated Micrococcus luteus using purified ultraviolet-endonuclease

    International Nuclear Information System (INIS)

    Tomilin, N.V.; Zherebtsov, S.V.

    1982-01-01

    The measurement of the frequency of endonucleolytic incisions in ultraviolet-irradiated DNA serves as the test for the presence of pyrimidine dimers. In accordance with this approach, the lysates of three Micrococcus luteus strains containing radioactively labeled chromosomes were treated with purified M. luteus ultraviolet-endonuclease to trace segregation of dimers amongst parental and newly synthesized DNA and their removal during postreplication and excision DNA repair. A considerable proportion of the dimers in all strains tested proved to be insensitive to the action of exogenous incising enzyme. The use of chloramphenicol as an inhibitor of postirradiation protein synthesis in combination with ultraviolet-endonuclease treatment of DNA allowed to reveal at least two alternative pathways of postreplication repair: constitutively active recombinational pathway and inducible nonrecombinational one. (Auth.)

  2. Site-Specific Infrared Probes of Proteins

    Science.gov (United States)

    Ma, Jianqiang; Pazos, Ileana M.; Zhang, Wenkai; Culik, Robert M.; Gai, Feng

    2015-01-01

    Infrared spectroscopy has played an instrumental role in studying a wide variety of biological questions. However, in many cases it is impossible or difficult to rely on the intrinsic vibrational modes of biological molecules of interest, such as proteins, to reveal structural and/or environmental information in a site-specific manner. To overcome this limitation, many recent efforts have been dedicated to the development and application of various extrinsic vibrational probes that can be incorporated into biological molecules and used to site-specifically interrogate their structural and/or environmental properties. In this Review, we highlight some recent advancements of this rapidly growing research area. PMID:25580624

  3. A detailed experimental study of a DNA computer with two endonucleases.

    Science.gov (United States)

    Sakowski, Sebastian; Krasiński, Tadeusz; Sarnik, Joanna; Blasiak, Janusz; Waldmajer, Jacek; Poplawski, Tomasz

    2017-07-14

    Great advances in biotechnology have allowed the construction of a computer from DNA. One of the proposed solutions is a biomolecular finite automaton, a simple two-state DNA computer without memory, which was presented by Ehud Shapiro's group at the Weizmann Institute of Science. The main problem with this computer, in which biomolecules carry out logical operations, is its complexity - increasing the number of states of biomolecular automata. In this study, we constructed (in laboratory conditions) a six-state DNA computer that uses two endonucleases (e.g. AcuI and BbvI) and a ligase. We have presented a detailed experimental verification of its feasibility. We described the effect of the number of states, the length of input data, and the nondeterminism on the computing process. We also tested different automata (with three, four, and six states) running on various accepted input words of different lengths such as ab, aab, aaab, ababa, and of an unaccepted word ba. Moreover, this article presents the reaction optimization and the methods of eliminating certain biochemical problems occurring in the implementation of a biomolecular DNA automaton based on two endonucleases.

  4. 78 FR 14088 - Environmental Management Site-Specific Advisory Board, Savannah River Site

    Science.gov (United States)

    2013-03-04

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Savannah River Site. The Federal Advisory Committee Act requires that public notice of this meeting be announced in the Federal Register.

  5. 75 FR 65310 - Environmental Management Site-Specific Advisory Board, Nevada

    Science.gov (United States)

    2010-10-22

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Nevada AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Nevada Test Site. The Federal Advisory... Board is to make recommendations to DOE-EM and site management in the areas of environmental restoration...

  6. Survival of Saccharomyces cerevisiae after treatment with the restriction endonuclease Alu I

    International Nuclear Information System (INIS)

    Winckler, K.; Bach, B.; Obe, G.

    1988-01-01

    Treatment of yeast cells proficient in the repair of radiation damage (Saccharomyces cervisiae) with the restriction endonuclease Alu I leads to a positive dose-effect relationship between inactivation level and enzyme concentration. The data suggest an uptake of the active restriction enzyme into the cells and a relationship between induction of DNA double-strand breaks and cell killing. (author)

  7. Endonuclease G is a novel determinant of cardiac hypertrophy and mitochondrial function

    Czech Academy of Sciences Publication Activity Database

    McDermott-Roe, Ch.; Ye, J.; Ahmed, R.; Sun, X. M.; Serafín, A.; Ware, J.; Bottolo, L.; Muckett, P.; Caňas, X.; Zhang, J.; Rowe, G. C.; Buchan, R.; Lu, H.; Braithwaite, A.; Mancini, M.; Hauton, D.; Martí, R.; García-Arumí, E.; Hubner, N.; Jacob, H.; Serikawa, T.; Zídek, Václav; Papoušek, František; Kolář, František; Cardona, M.; Ruiz-Meana, M.; García-Dorado, D.; Comella, J. X.; Felkin, L. E.; Barton, P. J. R.; Arany, Z.; Pravenec, Michal; Petretto, E.; Sanchis, D.; Cook, S.A.

    2011-01-01

    Roč. 478, č. 7367 (2011), s. 114-118 ISSN 0028-0836 R&D Projects: GA MŠk(CZ) 1M0520; GA ČR(CZ) GA301/08/0166 Institutional research plan: CEZ:AV0Z50110509 Keywords : left ventricular hypertrophy * endonuclease G * mitochondrial dysfunction Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 36.280, year: 2011

  8. FLP recombinase-mediated site-specific recombination in silkworm, Bombyx mori.

    Directory of Open Access Journals (Sweden)

    Ding-Pei Long

    Full Text Available A comprehensive understanding of gene function and the production of site-specific genetically modified mutants are two major goals of genetic engineering in the post-genomic era. Although site-specific recombination systems have been powerful tools for genome manipulation of many organisms, they have not yet been established for use in the manipulation of the silkworm Bombyx mori genome. In this study, we achieved site-specific excision of a target gene at predefined chromosomal sites in the silkworm using a FLP/FRT site-specific recombination system. We first constructed two stable transgenic target silkworm strains that both contain a single copy of the transgene construct comprising a target gene expression cassette flanked by FRT sites. Using pre-blastoderm microinjection of a FLP recombinase helper expression vector, 32 G3 site-specific recombinant transgenic individuals were isolated from five of 143 broods. The average frequency of FLP recombinase-mediated site-specific excision in the two target strains genome was approximately 3.5%. This study shows that it is feasible to achieve site-specific recombination in silkworms using the FLP/FRT system. We conclude that the FLP/FRT system is a useful tool for genome manipulation in the silkworm. Furthermore, this is the first reported use of the FLP/FRT system for the genetic manipulation of a lepidopteran genome and thus provides a useful reference for the establishment of genome manipulation technologies in other lepidopteran species.

  9. Transient and Switchable (Triethylsilyl)ethynyl Protection of DNA against Cleavage by Restriction Endonucleases

    Czech Academy of Sciences Publication Activity Database

    Kielkowski, Pavel; Macíčková-Cahová, Hana; Pohl, Radek; Hocek, Michal

    2011-01-01

    Roč. 50, č. 37 (2011), s. 8727-8730 ISSN 1433-7851 R&D Projects: GA ČR GA203/09/0317 Institutional research plan: CEZ:AV0Z40550506 Keywords : alkynes * DNA * protecting groups * nucleotides * restriction endonucleases Subject RIV: CC - Organic Chemistry Impact factor: 13.455, year: 2011

  10. Human RECQL5beta stimulates flap endonuclease 1

    DEFF Research Database (Denmark)

    Speina, Elzbieta; Dawut, Lale; Hedayati, Mohammad

    2010-01-01

    devoid of RECQL1 and RECQL5 display increased chromosomal instability. Here, we report the physical and functional interaction of the large isomer of RECQL5, RECQL5beta, with the human flap endonuclease 1, FEN1, which plays a critical role in DNA replication, recombination and repair. RECQL5beta...... dramatically stimulates the rate of FEN1 cleavage of flap DNA substrates. Moreover, we show that RECQL5beta and FEN1 interact physically and co-localize in the nucleus in response to DNA damage. Our findings, together with the previous literature on WRN, BLM and RECQL4's stimulation of FEN1, suggests...

  11. Structural Plasticity of PAM Recognition by Engineered Variants of the RNA-Guided Endonuclease Cas9.

    Science.gov (United States)

    Anders, Carolin; Bargsten, Katja; Jinek, Martin

    2016-03-17

    The RNA-guided endonuclease Cas9 from Streptococcus pyogenes (SpCas9) forms the core of a powerful genome editing technology. DNA cleavage by SpCas9 is dependent on the presence of a 5'-NGG-3' protospacer adjacent motif (PAM) in the target DNA, restricting the choice of targetable sequences. To address this limitation, artificial SpCas9 variants with altered PAM specificities have recently been developed. Here we report crystal structures of the VQR, EQR, and VRER SpCas9 variants bound to target DNAs containing their preferred PAM sequences. The structures reveal that the non-canonical PAMs are recognized by an induced fit mechanism. Besides mediating sequence-specific base recognition, the amino acid substitutions introduced in the SpCas9 variants facilitate conformational remodeling of the PAM region of the bound DNA. Guided by the structural data, we engineered a SpCas9 variant that specifically recognizes NAAG PAMs. Taken together, these studies inform further development of Cas9-based genome editing tools. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. 78 FR 26005 - Environmental Management Site-Specific Advisory Board, Savannah River Site

    Science.gov (United States)

    2013-05-03

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Savannah River Site. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  13. 78 FR 65979 - Environmental Management Site-Specific Advisory Board, Savannah River Site

    Science.gov (United States)

    2013-11-04

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Savannah River Site. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  14. 77 FR 24695 - Environmental Management Site-Specific Advisory Board, Savannah River Site

    Science.gov (United States)

    2012-04-25

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Savannah River Site. The Federal Advisory Committee Act (Pub. L. . 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  15. 77 FR 60688 - Environmental Management Site-Specific Advisory Board, Savannah River Site

    Science.gov (United States)

    2012-10-04

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Savannah River Site. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  16. 77 FR 13104 - Environmental Management Site-Specific Advisory Board, Savannah River Site

    Science.gov (United States)

    2012-03-05

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Savannah River Site. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  17. 77 FR 39235 - Environmental Management Site-Specific Advisory Board, Savannah River Site

    Science.gov (United States)

    2012-07-02

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Savannah River Site. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  18. 78 FR 716 - Environmental Management Site-Specific Advisory Board, Savannah River Site

    Science.gov (United States)

    2013-01-04

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Savannah River Site. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  19. 78 FR 54461 - Environmental Management Site-Specific Advisory Board, Savannah River Site

    Science.gov (United States)

    2013-09-04

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Savannah River Site. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  20. 77 FR 53193 - Environmental Management Site-Specific Advisory Board, Savannah River Site

    Science.gov (United States)

    2012-08-31

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Savannah River Site. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  1. 78 FR 40130 - Environmental Management Site-Specific Advisory Board, Savannah River Site

    Science.gov (United States)

    2013-07-03

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Savannah River Site. The Federal Advisory Committee Act (Pub. L. No. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  2. 78 FR 16260 - Environmental Management Site-Specific Advisory Board, Savannah River Site

    Science.gov (United States)

    2013-03-14

    ...On March 4, 2013, the Department of Energy (DOE) published a notice of open meeting announcing a meeting on March 25-26, 2013 of the Environmental Management Site-Specific Advisory Board, Savannah River Site (78 FR 14088). This document makes a correction to that notice.

  3. 75 FR 6018 - Environmental Management Site-Specific Advisory Board, Hanford

    Science.gov (United States)

    2010-02-05

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Hanford AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Hanford (known locally as the Hanford Advisory... and site management in the areas of environmental restoration, waste management, and related...

  4. 76 FR 5147 - Environmental Management Site-Specific Advisory Board, Paducah

    Science.gov (United States)

    2011-01-28

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Paducah AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Paducah. The Federal Advisory Committee Act... recommendations to DOE-EM and site management in the areas of environmental restoration, waste management and...

  5. 77 FR 59598 - Environmental Management Site-Specific Advisory Board, Paducah

    Science.gov (United States)

    2012-09-28

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Paducah AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Paducah. The Federal Advisory Committee Act... recommendations to DOE-EM and site management in the areas of environmental restoration, waste management and...

  6. 75 FR 13269 - Environmental Management Site-Specific Advisory Board, Hanford

    Science.gov (United States)

    2010-03-19

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Hanford AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Hanford. The Federal Advisory Committee Act... is to make recommendations to DOE-EM and site management in the areas of environmental restoration...

  7. 75 FR 54600 - Environmental Management Site-Specific Advisory Board, Paducah

    Science.gov (United States)

    2010-09-08

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Paducah AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Paducah. The Federal Advisory Committee Act... recommendations to DOE-EM and site management in the areas of environmental restoration, waste management and...

  8. 75 FR 66074 - Environmental Management Site-Specific Advisory Board, Paducah

    Science.gov (United States)

    2010-10-27

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Paducah AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Paducah. The Federal Advisory Committee Act... recommendations to DOE-EM and site management in the areas of environmental restoration, waste management and...

  9. 75 FR 8050 - Environmental Management Site-Specific Advisory Board, Hanford

    Science.gov (United States)

    2010-02-23

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Hanford AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Hanford. The Federal Advisory Committee Act... is to make recommendations to DOE-EM and site management in the areas of environmental restoration...

  10. 75 FR 24686 - Environmental Management Site-Specific Advisory Board, Paducah

    Science.gov (United States)

    2010-05-05

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Paducah AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Paducah. The Federal Advisory Committee Act... recommendations to DOE-EM and site management in the areas of environmental restoration, waste management and...

  11. 76 FR 80355 - Environmental Management Site-Specific Advisory Board, Paducah

    Science.gov (United States)

    2011-12-23

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Paducah AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Paducah. The Federal Advisory Committee Act... make recommendations to DOE-EM and site management in the areas of environmental restoration, waste...

  12. 75 FR 9404 - Environmental Management Site-Specific Advisory Board, Paducah

    Science.gov (United States)

    2010-03-02

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Paducah AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Paducah. The Federal Advisory Committee Act... recommendations to DOE-EM and site management in the areas of environmental restoration, waste management and...

  13. 75 FR 56526 - Environmental Management Site-Specific Advisory Board, Portsmouth

    Science.gov (United States)

    2010-09-16

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Portsmouth AGENCY... Initiative Workshop of the Environmental Management Site-Specific Advisory Board (EM SSAB), Portsmouth. The... recommendations to DOE-EM and site management in the areas of environmental restoration, waste management and...

  14. 77 FR 43583 - Environmental Management Site-Specific Advisory Board, Paducah

    Science.gov (United States)

    2012-07-25

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Paducah AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Paducah. The Federal Advisory Committee Act... recommendations to DOE-EM and site management in the areas of environmental restoration, waste management and...

  15. 75 FR 61711 - Environmental Management Site-Specific Advisory Board, Paducah

    Science.gov (United States)

    2010-10-06

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Paducah AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Paducah. The Federal Advisory Committee Act... recommendations to DOE-EM and site management in the areas of environmental restoration, waste management and...

  16. 75 FR 82002 - Environmental Management Site-Specific Advisory Board, Paducah

    Science.gov (United States)

    2010-12-29

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Paducah AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Paducah. The Federal Advisory Committee Act... recommendations to DOE-EM and site management in the areas of environmental restoration, waste management and...

  17. 76 FR 61350 - Environmental Management Site-Specific Advisory Board, Paducah

    Science.gov (United States)

    2011-10-04

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Paducah AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Paducah. The Federal Advisory Committee Act... make recommendations to DOE-EM and site management in the areas of environmental restoration, waste...

  18. 76 FR 4645 - Environmental Management Site-Specific Advisory Board, Hanford

    Science.gov (United States)

    2011-01-26

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Hanford AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Hanford. The Federal Advisory Committee Act... recommendations to DOE-EM and site management in the areas of environmental restoration, waste management, and...

  19. 76 FR 48148 - Environmental Management Site-Specific Advisory Board, Paducah

    Science.gov (United States)

    2011-08-08

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Paducah AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Paducah. The Federal Advisory Committee Act... recommendations to DOE-EM and site management in the areas of environmental restoration, waste management and...

  20. 75 FR 82004 - Environmental Management Site-Specific Advisory Board, Nevada

    Science.gov (United States)

    2010-12-29

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Nevada AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Nevada. The Federal Advisory Committee Act (Pub... recommendations to DOE-EM and site management in the areas of environmental restoration, waste management, and...

  1. 77 FR 4027 - Environmental Management Site-Specific Advisory Board, Nevada

    Science.gov (United States)

    2012-01-26

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Nevada AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Nevada. The Federal Advisory Committee Act (Pub... recommendations to DOE-EM and site management in the areas of environmental restoration, waste management, and...

  2. 76 FR 80354 - Environmental Management Site-Specific Advisory Board, Nevada

    Science.gov (United States)

    2011-12-23

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Nevada AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Nevada. The Federal Advisory Committee Act (Pub... recommendations to DOE-EM and site management in the areas of environmental restoration, waste management, and...

  3. 77 FR 12044 - Environmental Management Site-Specific Advisory Board, Nevada

    Science.gov (United States)

    2012-02-28

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Nevada AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Nevada. The Federal Advisory Committee Act (Pub... Board is to make recommendations to DOE-EM and site management in the areas of environmental restoration...

  4. Modulation of the Pyrococcus abyssi NucS endonuclease activity by replication clamp at functional and structural levels.

    Science.gov (United States)

    Creze, Christophe; Ligabue, Alessio; Laurent, Sébastien; Lestini, Roxane; Laptenok, Sergey P; Khun, Joelle; Vos, Marten H; Czjzek, Mirjam; Myllykallio, Hannu; Flament, Didier

    2012-05-04

    Pyrococcus abyssi NucS is the founding member of a new family of structure-specific DNA endonucleases that interact with the replication clamp proliferating cell nuclear antigen (PCNA). Using a combination of small angle x-ray scattering and surface plasmon resonance analyses, we demonstrate the formation of a stable complex in solution, in which one molecule of the PabNucS homodimer binds to the outside surface of the PabPCNA homotrimer. Using fluorescent labels, PCNA is shown to increase the binding affinity of NucS toward single-strand/double-strand junctions on 5' and 3' flaps, as well as to modulate the cleavage specificity on the branched DNA structures. Our results indicate that the presence of a single major contact between the PabNucS and PabPCNA proteins, together with the complex-induced DNA bending, facilitate conformational flexibility required for specific cleavage at the single-strand/double-strand DNA junction.

  5. Modulation of the Pyrococcus abyssi NucS Endonuclease Activity by Replication Clamp at Functional and Structural Levels*

    Science.gov (United States)

    Creze, Christophe; Ligabue, Alessio; Laurent, Sébastien; Lestini, Roxane; Laptenok, Sergey P.; Khun, Joelle; Vos, Marten H.; Czjzek, Mirjam; Myllykallio, Hannu; Flament, Didier

    2012-01-01

    Pyrococcus abyssi NucS is the founding member of a new family of structure-specific DNA endonucleases that interact with the replication clamp proliferating cell nuclear antigen (PCNA). Using a combination of small angle x-ray scattering and surface plasmon resonance analyses, we demonstrate the formation of a stable complex in solution, in which one molecule of the PabNucS homodimer binds to the outside surface of the PabPCNA homotrimer. Using fluorescent labels, PCNA is shown to increase the binding affinity of NucS toward single-strand/double-strand junctions on 5′ and 3′ flaps, as well as to modulate the cleavage specificity on the branched DNA structures. Our results indicate that the presence of a single major contact between the PabNucS and PabPCNA proteins, together with the complex-induced DNA bending, facilitate conformational flexibility required for specific cleavage at the single-strand/double-strand DNA junction. PMID:22431731

  6. DNA and Protein Requirements for Substrate Conformational Changes Necessary for Human Flap Endonuclease-1-catalyzed Reaction*

    Science.gov (United States)

    Algasaier, Sana I.; Exell, Jack C.; Bennet, Ian A.; Thompson, Mark J.; Gotham, Victoria J. B.; Shaw, Steven J.; Craggs, Timothy D.; Finger, L. David; Grasby, Jane A.

    2016-01-01

    Human flap endonuclease-1 (hFEN1) catalyzes the essential removal of single-stranded flaps arising at DNA junctions during replication and repair processes. hFEN1 biological function must be precisely controlled, and consequently, the protein relies on a combination of protein and substrate conformational changes as a prerequisite for reaction. These include substrate bending at the duplex-duplex junction and transfer of unpaired reacting duplex end into the active site. When present, 5′-flaps are thought to thread under the helical cap, limiting reaction to flaps with free 5′-termini in vivo. Here we monitored DNA bending by FRET and DNA unpairing using 2-aminopurine exciton pair CD to determine the DNA and protein requirements for these substrate conformational changes. Binding of DNA to hFEN1 in a bent conformation occurred independently of 5′-flap accommodation and did not require active site metal ions or the presence of conserved active site residues. More stringent requirements exist for transfer of the substrate to the active site. Placement of the scissile phosphate diester in the active site required the presence of divalent metal ions, a free 5′-flap (if present), a Watson-Crick base pair at the terminus of the reacting duplex, and the intact secondary structure of the enzyme helical cap. Optimal positioning of the scissile phosphate additionally required active site conserved residues Tyr40, Asp181, and Arg100 and a reacting duplex 5′-phosphate. These studies suggest a FEN1 reaction mechanism where junctions are bound and 5′-flaps are threaded (when present), and finally the substrate is transferred onto active site metals initiating cleavage. PMID:26884332

  7. Small-angle X-ray scattering analysis reveals the ATP-bound monomeric state of the ATPase domain from the homodimeric MutL endonuclease, a GHKL phosphotransferase superfamily protein.

    Science.gov (United States)

    Iino, Hitoshi; Hikima, Takaaki; Nishida, Yuya; Yamamoto, Masaki; Kuramitsu, Seiki; Fukui, Kenji

    2015-05-01

    DNA mismatch repair is an excision system that removes mismatched bases chiefly generated by replication errors. In this system, MutL endonucleases direct the excision reaction to the error-containing strand of the duplex by specifically incising the newly synthesized strand. Both bacterial homodimeric and eukaryotic heterodimeric MutL proteins belong to the GHKL ATPase/kinase superfamily that comprises the N-terminal ATPase and C-terminal dimerization regions. Generally, the GHKL proteins show large ATPase cycle-dependent conformational changes, including dimerization-coupled ATP binding of the N-terminal domain. Interestingly, the ATPase domain of human PMS2, a subunit of the MutL heterodimer, binds ATP without dimerization. The monomeric ATP-bound state of the domain has been thought to be characteristic of heterodimeric GHKL proteins. In this study, we characterized the ATP-bound state of the ATPase domain from the Aquifex aeolicus MutL endonuclease, which is a homodimeric GHKL protein unlike the eukaryotic MutL. Gel filtration, dynamic light scattering, and small-angle X-ray scattering analyses clearly showed that the domain binds ATP in a monomeric form despite its homodimeric nature. This indicates that the uncoupling of dimerization and ATP binding is a common feature among bacterial and eukaryotic MutL endonucleases, which we suggest is closely related to the molecular mechanisms underlying mismatch repair.

  8. Restriction endonuclease analysis of chloroplast DNA in interspecies somatic Hybrids of Petunia.

    Science.gov (United States)

    Kumar, A; Cocking, E C; Bovenberg, W A; Kool, A J

    1982-12-01

    Restriction endonuclease cleavage pattern analysis of chloroplast DNA (cpDNA) of three different interspecific somatic hybrid plants revealed that the cytoplasms of the hybrids contained only cpDNA of P. parodii. The somatic hybrid plants analysed were those between P. parodii (wild type) + P. hybrida (wild type); P. parodii (wild type)+P. inflata (cytoplasmic albino mutant); P. parodii (wild type) + P. parviflora (nuclear albino mutant). The presence of only P. parodii chloroplasts in the somatic hybrid of P. parodii + P. inflata is possibly due to the stringent selection used for somatic hybrid production. However, in the case of the two other somatic hybrids P. parodii + P. hybrida and P. parodii + P. parviflora it was not possible to determine whether the presence of only P. parodii chloroplasts in these somatic hybrid plants was due to the nature of the selection schemes used or simply occurred by chance. The relevance of such somatic hybrid material for the study of genomic-cytoplasmic interaction is discussed, as well as the use of restriction endonuclease fragment patterns for the analysis of taxonomic and evolutionary inter-relationships in the genus Petunia.

  9. Cleavage of DNA containing 5-fluorocytosine or 5-fluorouracil by type II restriction endonucleases

    Czech Academy of Sciences Publication Activity Database

    Olszewska, Agata; Daďová, Jitka; Mačková, Michaela; Hocek, Michal

    2015-01-01

    Roč. 23, č. 21 (2015), s. 6885-6890 ISSN 0968-0896 R&D Projects: GA ČR GA14-04289S Institutional support: RVO:61388963 Keywords : modified nucleotides * DNA * restriction endonucleases * DNA polymerase * pyrimidine nucleosides Subject RIV: CC - Organic Chemistry Impact factor: 2.923, year: 2015

  10. RPA activates the XPF‐ERCC1 endonuclease to initiate processing of DNA interstrand crosslinks

    KAUST Repository

    Abdullah, Ummi B

    2017-06-13

    During replication‐coupled DNA interstrand crosslink (ICL) repair, the XPF‐ERCC1 endonuclease is required for the incisions that release, or “unhook”, ICLs, but the mechanism of ICL unhooking remains largely unknown. Incisions are triggered when the nascent leading strand of a replication fork strikes the ICL. Here, we report that while purified XPF‐ERCC1 incises simple ICL‐containing model replication fork structures, the presence of a nascent leading strand, modelling the effects of replication arrest, inhibits this activity. Strikingly, the addition of the single‐stranded DNA (ssDNA)‐binding replication protein A (RPA) selectively restores XPF‐ERCC1 endonuclease activity on this structure. The 5′–3′ exonuclease SNM1A can load from the XPF‐ERCC1‐RPA‐induced incisions and digest past the crosslink to quantitatively complete the unhooking reaction. We postulate that these collaborative activities of XPF‐ERCC1, RPA and SNM1A might explain how ICL unhooking is achieved in vivo.

  11. RPA activates the XPF‐ERCC1 endonuclease to initiate processing of DNA interstrand crosslinks

    KAUST Repository

    Abdullah, Ummi B; McGouran, Joanna F; Brolih, Sanja; Ptchelkine, Denis; El‐Sagheer, Afaf H; Brown, Tom; McHugh, Peter J

    2017-01-01

    During replication‐coupled DNA interstrand crosslink (ICL) repair, the XPF‐ERCC1 endonuclease is required for the incisions that release, or “unhook”, ICLs, but the mechanism of ICL unhooking remains largely unknown. Incisions are triggered when the nascent leading strand of a replication fork strikes the ICL. Here, we report that while purified XPF‐ERCC1 incises simple ICL‐containing model replication fork structures, the presence of a nascent leading strand, modelling the effects of replication arrest, inhibits this activity. Strikingly, the addition of the single‐stranded DNA (ssDNA)‐binding replication protein A (RPA) selectively restores XPF‐ERCC1 endonuclease activity on this structure. The 5′–3′ exonuclease SNM1A can load from the XPF‐ERCC1‐RPA‐induced incisions and digest past the crosslink to quantitatively complete the unhooking reaction. We postulate that these collaborative activities of XPF‐ERCC1, RPA and SNM1A might explain how ICL unhooking is achieved in vivo.

  12. Site-directed mutagenesis in Petunia × hybrida protoplast system using direct delivery of purified recombinant Cas9 ribonucleoproteins.

    Science.gov (United States)

    Subburaj, Saminathan; Chung, Sung Jin; Lee, Choongil; Ryu, Seuk-Min; Kim, Duk Hyoung; Kim, Jin-Soo; Bae, Sangsu; Lee, Geung-Joo

    2016-07-01

    Site-directed mutagenesis of nitrate reductase genes using direct delivery of purified Cas9 protein preassembled with guide RNA produces mutations efficiently in Petunia × hybrida protoplast system. The clustered, regularly interspaced, short palindromic repeat (CRISPR)-CRISPR associated endonuclease 9 (CRISPR/Cas9) system has been recently announced as a powerful molecular breeding tool for site-directed mutagenesis in higher plants. Here, we report a site-directed mutagenesis method targeting Petunia nitrate reductase (NR) gene locus. This method could create mutations efficiently using direct delivery of purified Cas9 protein and single guide RNA (sgRNA) into protoplast cells. After transient introduction of RNA-guided endonuclease (RGEN) ribonucleoproteins (RNPs) with different sgRNAs targeting NR genes, mutagenesis at the targeted loci was detected by T7E1 assay and confirmed by targeted deep sequencing. T7E1 assay showed that RGEN RNPs induced site-specific mutations at frequencies ranging from 2.4 to 21 % at four different sites (NR1, 2, 4 and 6) in the PhNR gene locus with average mutation efficiency of 14.9 ± 2.2 %. Targeted deep DNA sequencing revealed mutation rates of 5.3-17.8 % with average mutation rate of 11.5 ± 2 % at the same NR gene target sites in DNA fragments of analyzed protoplast transfectants. Further analysis from targeted deep sequencing showed that the average ratio of deletion to insertion produced collectively by the four NR-RGEN target sites (NR1, 2, 4, and 6) was about 63:37. Our results demonstrated that direct delivery of RGEN RNPs into protoplast cells of Petunia can be exploited as an efficient tool for site-directed mutagenesis of genes or genome editing in plant systems.

  13. Apoptotic DNA Degradation into Oligonucleosomal Fragments, but Not Apoptotic Nuclear Morphology, Relies on a Cytosolic Pool of DFF40/CAD Endonuclease*

    Science.gov (United States)

    Iglesias-Guimarais, Victoria; Gil-Guiñon, Estel; Gabernet, Gisela; García-Belinchón, Mercè; Sánchez-Osuna, María; Casanelles, Elisenda; Comella, Joan X.; Yuste, Victor J.

    2012-01-01

    Apoptotic cell death is characterized by nuclear fragmentation and oligonucleosomal DNA degradation, mediated by the caspase-dependent specific activation of DFF40/CAD endonuclease. Here, we describe how, upon apoptotic stimuli, SK-N-AS human neuroblastoma-derived cells show apoptotic nuclear morphology without displaying concomitant internucleosomal DNA fragmentation. Cytotoxicity afforded after staurosporine treatment is comparable with that obtained in SH-SY5Y cells, which exhibit a complete apoptotic phenotype. SK-N-AS cell death is a caspase-dependent process that can be impaired by the pan-caspase inhibitor q-VD-OPh. The endogenous inhibitor of DFF40/CAD, ICAD, is correctly processed, and dff40/cad cDNA sequence does not reveal mutations altering its amino acid composition. Biochemical approaches show that both SH-SY5Y and SK-N-AS resting cells express comparable levels of DFF40/CAD. However, the endonuclease is poorly expressed in the cytosolic fraction of healthy SK-N-AS cells. Despite this differential subcellular distribution of DFF40/CAD, we find no differences in the subcellular localization of both pro-caspase-3 and ICAD between the analyzed cell lines. After staurosporine treatment, the preferential processing of ICAD in the cytosolic fraction allows the translocation of DFF40/CAD from this fraction to a chromatin-enriched one. Therefore, the low levels of cytosolic DFF40/CAD detected in SK-N-AS cells determine the absence of DNA laddering after staurosporine treatment. In these cells DFF40/CAD cytosolic levels can be restored by the overexpression of their own endonuclease, which is sufficient to make them proficient at degrading their chromatin into oligonucleosome-size fragments after staurosporine treatment. Altogether, the cytosolic levels of DFF40/CAD are determinants in achieving a complete apoptotic phenotype, including oligonucleosomal DNA degradation. PMID:22253444

  14. Site-Specific Waste Management Instruction - 100-DR-1 Group 2 Sites

    International Nuclear Information System (INIS)

    Jackson, R.W.

    1998-01-01

    This site-specific waste management instruction (SSWMI) provides guidance for the management of wastes that may be generated during the excavation and remediation of the 100-DR-1 Group 2 sites. The management of waste generated as a result of these activities will be as directed in this SSWMI. This SSWMI will be revised to incorporate guidance for management of wastes encountered that are not addressed in this SSWMI

  15. Structural studies on metal-containing enzymes: T4 endonuclease VII and D. gigas formate dehydrogenase

    NARCIS (Netherlands)

    Raaijmakers, H.C.A.

    2001-01-01

    Many biological processes require metal ions, and many of these metal-ion functions involve metalloproteins. The metal ions in metalloproteins are often critical to the protein's function, structure, or stability. This thesis focuses on two of these proteins, bacteriophage T4 endonuclease

  16. Mlh1-Mlh3, a Meiotic Crossover and DNA Mismatch Repair Factor, Is a Msh2-Msh3-stimulated Endonuclease*

    Science.gov (United States)

    Rogacheva, Maria V.; Manhart, Carol M.; Chen, Cheng; Guarne, Alba; Surtees, Jennifer; Alani, Eric

    2014-01-01

    Crossing over between homologous chromosomes is initiated in meiotic prophase in most sexually reproducing organisms by the appearance of programmed double strand breaks throughout the genome. In Saccharomyces cerevisiae the double-strand breaks are resected to form three prime single-strand tails that primarily invade complementary sequences in unbroken homologs. These invasion intermediates are converted into double Holliday junctions and then resolved into crossovers that facilitate homolog segregation during Meiosis I. Work in yeast suggests that Msh4-Msh5 stabilizes invasion intermediates and double Holliday junctions, which are resolved into crossovers in steps requiring Sgs1 helicase, Exo1, and a putative endonuclease activity encoded by the DNA mismatch repair factor Mlh1-Mlh3. We purified Mlh1-Mlh3 and showed that it is a metal-dependent and Msh2-Msh3-stimulated endonuclease that makes single-strand breaks in supercoiled DNA. These observations support a direct role for an Mlh1-Mlh3 endonuclease activity in resolving recombination intermediates and in DNA mismatch repair. PMID:24403070

  17. Site specific study for possible ongoing salt dome movement

    International Nuclear Information System (INIS)

    Thoms, R.L.; Manning, T.A.; Paille, L.K.; Gehle, R.M.

    1977-01-01

    U.S. Gulf Coast salt domes, among other geologic structures, currently are being considered for storage of commercial radioactive wastes. A major concern with dome storage of long lived radioactive wastes lies with the possible tectonic movement of the host dome. Any ongoing movement of a salt dome can be monitored with a site specific complementary system of field instrumentation and finite element modelling. Field instrumentation and accompanying finite element analyses for a study dome in northwest Louisiana are described. Site specific data and early experience associated with tiltmeters over the dome are presented. Also, recommendations are made for modifications and extensions of the field instrumentation and finite element modelling appropriate to the specific site under study

  18. Site-specific Probabilistic Analysis of DCGLs Using RESRAD Code

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeongju; Yoon, Suk Bon; Sohn, Wook [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    In general, DCGLs can be conservative (screening DCGL) if they do not take into account site specific factors. Use of such conservative DCGLs can lead to additional remediation that would not be required if the effort was made to develop site-specific DCGLs. Therefore, the objective of this work is to provide an example on the use of the RESRAD 6.0 probabilistic (site-specific) dose analysis to compare with the screening DCGL. Site release regulations state that a site will be considered acceptable for unrestricted use if the residual radioactivity that is distinguishable from background radiation results in a Total Effective Dose Equivalent (TEDE) to an average member of the critical group of less than the site release criteria, for example 0.25 mSv per year in U.S. Utilities use computer dose modeling codes to establish an acceptable level of contamination, the derived concentration guideline level (DCGL) that will meet this regulatory limit. Since the DCGL value is the principal measure of residual radioactivity, it is critical to understand the technical basis of these dose modeling codes. The objective this work was to provide example on nuclear power plant decommissioning dose analysis in a probabilistic analysis framework. The focus was on the demonstration of regulatory compliance for surface soil contamination using the RESRAD 6.0 code. Both the screening and site-specific probabilistic dose analysis methodologies were examined. Example analyses performed with the screening probabilistic dose analysis confirmed the conservatism of the NRC screening values and indicated the effectiveness of probabilistic dose analysis in reducing the conservatism in DCGL derivation.

  19. Savannah River Site's Site Specific Plan

    Energy Technology Data Exchange (ETDEWEB)

    1991-08-01

    This Site Specific Plan (SSP) has been prepared by the Savannah River Site (SRS) in order to show the Environmental Restoration and Waste Management activities that were identified during the preparation of the Department of Energy-Headquarters (DOE-HQ) Environmental Restoration and Waste Management Five-Year Plan (FYP) for FY 1992--1996. The SSP has been prepared in accordance with guidance received from DOE-HQ. DOE-SR is accountable to DOE-HQ for the implementation of this plan. The purpose of the SSP is to develop a baseline for policy, budget, and schedules for the DOE Environmental Restoration and Waste Management activities. The plan explains accomplishments since the Fiscal Year (FY) 1990 plan, demonstrates how present and future activities are prioritized, identifies currently funded activities and activities that are planned to be funded in the upcoming fiscal year, and describes future activities that SRS is considering.

  20. 76 FR 55370 - Environmental Management Site-Specific Advisory Board, Nevada

    Science.gov (United States)

    2011-09-07

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Nevada AGENCY...-Wide Environmental Impact Statement (EIS) Committee of the Environmental Management Site- Specific... the areas of environmental restoration, waste management, and related activities. Purpose of the...

  1. [Endonuclease modified comet assay for oxidative DNA damage induced by detection of genetic toxicants].

    Science.gov (United States)

    Zhao, Jian; Li, Hongli; Zhai, Qingfeng; Qiu, Yugang; Niu, Yong; Dai, Yufei; Zheng, Yuxin; Duan, Huawei

    2014-03-01

    The aim of this study was to investigate the use of the lesion-specific endonucleases-modified comet assay for analysis of DNA oxidation in cell lines. DNA breaks and oxidative damage were evaluated by normal alkaline and formamidopyrimidine-DNA-glycosylase (FPG) modified comet assays. Cytotoxicity were assessed by MTT method. The human bronchial epithelial cell (16HBE) were treated with benzo (a) pyrene (B(a)P), methyl methanesulfonate (MMS), colchicine (COL) and vincristine (VCR) respectively, and the dose is 20 µmol/L, 25 mg/ml, 5 mg/L and 0.5 mg/L for 24 h, respectively. Oxidative damage was also detected by levels of reactive oxygen species in treated cells. Four genotoxicants give higher cytotoxicity and no significant changes on parameters of comet assay treated by enzyme buffer. Cell survival rate were (59.69 ± 2.60) %, (54.33 ± 2.81) %, (53.11 ± 4.00) %, (51.43 ± 3.92) % in four groups, respectively. There was the direct DNA damage induced by test genotoxicants presented by tail length, Olive tail moment (TM) and tail DNA (%) in the comet assay. The presence of FPG in the assays increased DNA migration in treated groups when compared to those without it, and the difference was statistically significant which indicated that the clastogen and aneugen could induce oxidative damage in DNA strand. In the three parameters, the Olive TM was changed most obviously after genotoxicants treatment. In the contrast group, the Olive TM of B(a) P,MMS, COL,VCR in the contrast groups were 22.99 ± 17.33, 31.65 ± 18.86, 19.86 ± 9.56 and 17.02 ± 9.39, respectively, after dealing with the FPG, the Olive TM were 34.50 ± 17.29, 43.80 ± 10.06, 33.10 ± 12.38, 28.60 ± 10.53, increased by 58.94%, 38.48%, 66.86% and 68.21%, respectively (t value was 3.91, 3.89, 6.66 and 3.87, respectively, and all P comet assay appears more specific for detecting oxidative DNA damage induced by genotoxicants exposure, and the application of comet assay will be expanded. The endonuclease

  2. 76 FR 57981 - Environmental Management Site-Specific Advisory Board, Portsmouth

    Science.gov (United States)

    2011-09-19

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Portsmouth AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Portsmouth. The Federal Advisory Committee Act... environmental restoration, waste management and related activities. Tentative Agenda Call to Order...

  3. 77 FR 2283 - Environmental Management Site-Specific Advisory Board, Portsmouth

    Science.gov (United States)

    2012-01-17

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Portsmouth AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Portsmouth. The Federal Advisory Committee Act... environmental restoration, waste management and related activities. Tentative Agenda Call to Order...

  4. 76 FR 36100 - Environmental Management Site-Specific Advisory Board, Portsmouth

    Science.gov (United States)

    2011-06-21

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Portsmouth AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Portsmouth. The Federal Advisory Committee Act... environmental restoration, waste management and related activities. Tentative Agenda Call to Order...

  5. 77 FR 29997 - Environmental Management Site-Specific Advisory Board, Portsmouth

    Science.gov (United States)

    2012-05-21

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Portsmouth AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Portsmouth. The Federal Advisory Committee Act... environmental restoration, waste management and related activities. Tentative Agenda Call to Order...

  6. 77 FR 37390 - Environmental Management Site-Specific Advisory Board, Portsmouth

    Science.gov (United States)

    2012-06-21

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Portsmouth AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Portsmouth. The Federal Advisory Committee Act... environmental restoration, waste management and related activities. Tentative Agenda: Call to Order...

  7. 76 FR 78909 - Environmental Management Site-Specific Advisory Board, Portsmouth

    Science.gov (United States)

    2011-12-20

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Portsmouth AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Portsmouth. The Federal Advisory Committee Act... the areas of environmental restoration, waste management, and related activities. Tentative Agenda...

  8. 76 FR 50204 - Environmental Management Site-Specific Advisory Board, Nevada

    Science.gov (United States)

    2011-08-12

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Nevada AGENCY...-Wide Environmental Impact Statement (EIS) Committee of the Environmental Management Site- Specific... management in the areas of environmental restoration, waste management, and related activities. Purpose of...

  9. 77 FR 6790 - Environmental Management Site-Specific Advisory Board, Portsmouth

    Science.gov (United States)

    2012-02-09

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Portsmouth AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Portsmouth. The Federal Advisory Committee Act... environmental restoration, waste management and related activities. Tentative Agenda Call to Order...

  10. 75 FR 51026 - Environmental Management Site-Specific Advisory Board, Portsmouth

    Science.gov (United States)

    2010-08-18

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Portsmouth AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Portsmouth. The Federal Advisory Committee Act... the areas of environmental restoration, waste management and related activities. Tentative Agenda...

  11. 75 FR 7577 - Environmental Management Site-Specific Advisory Board, Portsmouth

    Science.gov (United States)

    2010-02-22

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Portsmouth AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Portsmouth. The Federal Advisory Committee Act... areas of environmental restoration, waste management and related activities. Tentative Agenda: Call to...

  12. 75 FR 65615 - Environmental Management Site-Specific Advisory Board, Portsmouth

    Science.gov (United States)

    2010-10-26

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Portsmouth AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Portsmouth. The Federal Advisory Committee Act... areas of environmental restoration, waste management and related activities. Tentative Agenda Call to...

  13. 76 FR 17118 - Environmental Management Site-Specific Advisory Board Chairs

    Science.gov (United States)

    2011-03-28

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board Chairs AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB) Chairs. The Federal Advisory Committee Act (Pub... areas of environmental restoration, waste management, and related activities. Tentative Agenda Topics...

  14. 76 FR 62054 - Environmental Management Site-Specific Advisory Board Chairs

    Science.gov (United States)

    2011-10-06

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board Chairs AGENCY... of the Environmental Management Site-Specific Advisory Board (EM SSAB) Chairs. The Federal Advisory... environmental restoration, waste management, and related activities. Tentative Agenda Topics [cir] EM Program...

  15. 75 FR 82003 - Environmental Management Site-Specific Advisory Board, Portsmouth

    Science.gov (United States)

    2010-12-29

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Portsmouth AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Portsmouth. The Federal Advisory Committee Act... areas of environmental restoration, waste management and related activities. Tentative Agenda: Call to...

  16. 75 FR 19379 - Environmental Management Site-Specific Advisory Board, Portsmouth

    Science.gov (United States)

    2010-04-14

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Portsmouth AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Portsmouth. The Federal Advisory Committee Act... areas of environmental restoration, waste management and related activities. Tentative Agenda Call to...

  17. 77 FR 51789 - Environmental Management Site-Specific Advisory Board, Paducah

    Science.gov (United States)

    2012-08-27

    ... management and related activities. Tentative Agenda Call to Order, Introductions, Review of Agenda... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Paducah AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Paducah. The Federal Advisory Committee Act...

  18. Polymerase-endonuclease amplification reaction (PEAR for large-scale enzymatic production of antisense oligonucleotides.

    Directory of Open Access Journals (Sweden)

    Xiaolong Wang

    Full Text Available Antisense oligonucleotides targeting microRNAs or their mRNA targets prove to be powerful tools for molecular biology research and may eventually emerge as new therapeutic agents. Synthetic oligonucleotides are often contaminated with highly homologous failure sequences. Synthesis of a certain oligonucleotide is difficult to scale up because it requires expensive equipment, hazardous chemicals and a tedious purification process. Here we report a novel thermocyclic reaction, polymerase-endonuclease amplification reaction (PEAR, for the amplification of oligonucleotides. A target oligonucleotide and a tandem repeated antisense probe are subjected to repeated cycles of denaturing, annealing, elongation and cleaving, in which thermostable DNA polymerase elongation and strand slipping generate duplex tandem repeats, and thermostable endonuclease (PspGI cleavage releases monomeric duplex oligonucleotides. Each round of PEAR achieves over 100-fold amplification. The product can be used in one more round of PEAR directly, and the process can be further repeated. In addition to avoiding dangerous materials and improved product purity, this reaction is easy to scale up and amenable to full automation. PEAR has the potential to be a useful tool for large-scale production of antisense oligonucleotide drugs.

  19. Prospects for site specific weed management

    DEFF Research Database (Denmark)

    Christensen, Svend; Rasmussen, Jesper; Pedersen, Søren Marcus

    2014-01-01

    Research on Site Specific Weed Management (SSWM) started in the late 80's. Since that moment, considerable research has been conducted on different aspects of SSWM, from fundamental studies on the spatial ecology of weeds to the applied development and testing of new technologies for weed detection...

  20. RPA activates the XPF-ERCC1 endonuclease to initiate processing of DNA interstrand crosslinks.

    Science.gov (United States)

    Abdullah, Ummi B; McGouran, Joanna F; Brolih, Sanja; Ptchelkine, Denis; El-Sagheer, Afaf H; Brown, Tom; McHugh, Peter J

    2017-07-14

    During replication-coupled DNA interstrand crosslink (ICL) repair, the XPF-ERCC1 endonuclease is required for the incisions that release, or "unhook", ICLs, but the mechanism of ICL unhooking remains largely unknown. Incisions are triggered when the nascent leading strand of a replication fork strikes the ICL Here, we report that while purified XPF-ERCC1 incises simple ICL-containing model replication fork structures, the presence of a nascent leading strand, modelling the effects of replication arrest, inhibits this activity. Strikingly, the addition of the single-stranded DNA (ssDNA)-binding replication protein A (RPA) selectively restores XPF-ERCC1 endonuclease activity on this structure. The 5'-3' exonuclease SNM1A can load from the XPF-ERCC1-RPA-induced incisions and digest past the crosslink to quantitatively complete the unhooking reaction. We postulate that these collaborative activities of XPF-ERCC1, RPA and SNM1A might explain how ICL unhooking is achieved in vivo . © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  1. Restriction endonuclease analysis of Pasteurella multocida isolates from three California turkey premises.

    Science.gov (United States)

    Christiansen, K H; Carpenter, T E; Snipes, K P; Hird, D W; Ghazikhanian, G Y

    1992-01-01

    Three California turkey premises that had repeated outbreaks of fowl cholera were studied for periods of 2 to 4 years. Using biochemical, serologic, plasmid DNA, and restriction endonuclease analyses of isolates of Pasteurella multocida from turkeys and wildlife on the premises, strains of the organism were found to be enzootic on two of the premises. On the third, a variety of strains of P. multocida were isolated from fowl cholera outbreak flocks.

  2. 77 FR 2282 - Environmental Management Site-Specific Advisory Board, Paducah

    Science.gov (United States)

    2012-01-17

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Paducah AGENCY... the Environmental Management Site-Specific Advisory Board, Paducah. This notice announces the... Management Officer. [FR Doc. 2012-831 Filed 1-12-12; 4:15 pm] BILLING CODE 6405-01-P ...

  3. Hold your horSSEs: controlling structure-selective endonucleases MUS81 and Yen1/GEN1.

    Science.gov (United States)

    Blanco, Miguel G; Matos, Joao

    2015-01-01

    Repair of DNA lesions through homologous recombination promotes the establishment of stable chromosomal interactions. Multiple helicases, topoisomerases and structure-selective endonucleases (SSEs) act upon recombining joint molecules (JMs) to disengage chromosomal connections and safeguard chromosome segregation. Recent studies on two conserved SSEs - MUS81 and Yen1/GEN1- uncovered multiple layers of regulation that operate to carefully tailor JM-processing according to specific cellular needs. Temporal restriction of SSE function imposes a hierarchy in pathway usage that ensures efficient JM-processing while minimizing reciprocal exchanges between the recombining DNAs. Whereas a conserved strategy of fine-tuning SSE functions exists in different model systems, the precise molecular mechanisms to implement it appear to be significantly different. Here, we summarize the current knowledge on the cellular switches that are in place to control MUS81 and Yen1/GEN1 functions.

  4. The DNA repair endonuclease XPG interacts directly and functionally with the WRN helicase defective in Werner syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Trego, Kelly S.; Chernikova, Sophia B.; Davalos, Albert R.; Perry, J. Jefferson P.; Finger, L. David; Ng, Cliff; Tsai, Miaw-Sheue; Yannone, Steven M.; Tainer, John A.; Campisi, Judith; Cooper, Priscilla K.

    2011-04-20

    XPG is a structure-specific endonuclease required for nucleotide excision repair (NER). XPG incision defects result in the cancer-prone syndrome xeroderma pigmentosum, whereas truncating mutations of XPG cause the severe postnatal progeroid developmental disorder Cockayne syndrome. We show that XPG interacts directly with WRN protein, which is defective in the premature aging disorder Werner syndrome, and that the two proteins undergo similar sub-nuclear redistribution in S-phase and co-localize in nuclear foci. The co-localization was observed in mid- to late-S-phase, when WRN moves from nucleoli to nuclear foci that have been shown to contain protein markers of both stalled replication forks and telomeric proteins. We mapped the interaction between XPG and WRN to the C-terminal domains of each and show that interaction with the C-terminal domain of XPG strongly stimulates WRN helicase activity. WRN also possesses a competing DNA single-strand annealing activity that, combined with unwinding, has been shown to coordinate regression of model replication forks to form Holliday junction/chicken foot intermediate structures. We tested whether XPG stimulated WRN annealing activity and found that XPG itself has intrinsic strand annealing activity that requires the unstructured R- and C-terminal domains, but not the conserved catalytic core or endonuclease activity. Annealing by XPG is cooperative, rather than additive, with WRN annealing. Taken together, our results suggest a novel function for XPG in S-phase that is at least in part carried out coordinately with WRN, and which may contribute to the severity of the phenotypes that occur upon loss of XPG.

  5. Proposed Site-Specific Response Spectra for Surabaya-Madura Bridge

    Directory of Open Access Journals (Sweden)

    Dyah Kusumastuti

    2008-01-01

    Full Text Available This paper presents a site-specific seismic hazard study to determine the recommended seismic design criteria for Suramadu Bridge. The study is performed using probabilistic seismic hazard approach to determine maximum acceleration and response spectra at bedrock and followed by local site effect analysis to determine maximum acceleration and response spectra at ground surface. The probabilistic seismic hazard analysis (PSHA is carried out using 3-dimension (3-D seismic source models (fault source model. Two hazard levels are analysed to represent 150 and 3,300 years return period of ground motion around site location. The local site effect analysis is performed using 1-dimension (1-D shear wave propagation theory to obtain peak ground acceleration and response spectra at ground surface. Finally, the site-specific surface response spectra with 5 percent damping are developed based on the mean plus one standard deviation concept from the result of local site effect analysis.

  6. Removal of pyrimidine dimers from Saccharomyces cerevisiae nuclear DNA under nongrowth conditions as detected by a sensitive, enzymatic assay

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, R J [Tennessee Univ., Oak Ridge (USA). Graduate School of Biomedical Sciences

    1978-04-01

    A sensitive and quantitative procedure for the detection of pyrimidine dimers in yeast nuclear DNA is described. The assay employs dimer-specific, endonuclease activities from Micrococcus luteus together with DNA sedimentation through calibrated, alkaline sucrose gradients to detect endonuclease-induced, single-strand breaks. Breaks were induced in a dose-dependent manner from 0 to 80 J m/sup -2/ at 254 nm and in numbers equivalent to the numbers of dimers induced by similar doses. Endonuclease-sensitive sites in the wild-type, haploid strain S288C, after irradiation with 5 J m/sup -2/ (254 nm), were removed in less than 5 min when cells were incuba ted in buffer (pH 7.0) at 28/sup 0/C. After irra diation with dos es from 30 to 100 J m/sup -2/ site removal in S288C required longer postirradiation incubations and was about 90% complete. In a radiation-sensitive strain carrying the mutant allele rad 4-3 the number of endonuclease-sensitive sites remained constant for 6 h after irradiation with 5 J m/sup -2/. The retention of sites in this strain indicates that it is defective in the excision of pyrimidine dimers. (Auth.

  7. 76 FR 20651 - Environmental Management Site-Specific Advisory Board Chairs

    Science.gov (United States)

    2011-04-13

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board Chairs AGENCY... a meeting on April 13-14, 2011 of the Environmental Management Site-Specific Advisory Board Chairs... R. Butler, Acting Deputy Committee Management Officer. [FR Doc. 2011-8970 Filed 4-8-11; 4:15 pm...

  8. FLP recombinase-mediated site-specific recombination in silkworm, Bombyx mori

    Science.gov (United States)

    A comprehensive understanding of gene function and the production of site-specific genetically modified mutants are two major goals of genetic engineering in the post-genomic era. Although site-specific recombination systems have been powerful tools for genome manipulation of many organisms, they h...

  9. Precision agriculture - from mapping to site-specific application

    DEFF Research Database (Denmark)

    Pedersen, Søren Marcus; Lind, Kim Martin Hjorth

    2017-01-01

    of each chapter in the book. Each chapter address a different topic starting with an overview of technologies that are currently available, followed by specific Variable-Rate Technologies such as VRT fertilizer application, VRT pesticide application, site-specific irrigation management, Auto...

  10. Early endonuclease-mediated evasion of RNA sensing ensures efficient coronavirus replication.

    Directory of Open Access Journals (Sweden)

    Eveline Kindler

    2017-02-01

    Full Text Available Coronaviruses are of veterinary and medical importance and include highly pathogenic zoonotic viruses, such as SARS-CoV and MERS-CoV. They are known to efficiently evade early innate immune responses, manifesting in almost negligible expression of type-I interferons (IFN-I. This evasion strategy suggests an evolutionary conserved viral function that has evolved to prevent RNA-based sensing of infection in vertebrate hosts. Here we show that the coronavirus endonuclease (EndoU activity is key to prevent early induction of double-stranded RNA (dsRNA host cell responses. Replication of EndoU-deficient coronaviruses is greatly attenuated in vivo and severely restricted in primary cells even during the early phase of the infection. In macrophages we found immediate induction of IFN-I expression and RNase L-mediated breakdown of ribosomal RNA. Accordingly, EndoU-deficient viruses can retain replication only in cells that are deficient in IFN-I expression or sensing, and in cells lacking both RNase L and PKR. Collectively our results demonstrate that the coronavirus EndoU efficiently prevents simultaneous activation of host cell dsRNA sensors, such as Mda5, OAS and PKR. The localization of the EndoU activity at the site of viral RNA synthesis-within the replicase complex-suggests that coronaviruses have evolved a viral RNA decay pathway to evade early innate and intrinsic antiviral host cell responses.

  11. Ultraviolet-endonuclease activity in cell extracts of Saccharomyces cerevisiae mutants defective in excision of pyrimidine dimers

    International Nuclear Information System (INIS)

    Bekker, M.L.; Kaboev, O.K.; Akhmedov, A.T.; Luchkina, L.A.

    1980-01-01

    Cell-free extracts of ultraviolet-sensitive mutants of Saccharomyces cerevisiae defective in excision of pyrimidine dimers, rad1, rad2, rad3, rad4, rad10, and rad16, as well as the extracts of the wild-type strain RAD+, display ultraviolet-endonuclease activity

  12. Binding site of ribosomal proteins on prokaryotic 5S ribonucleic acids: a study with ribonucleases

    DEFF Research Database (Denmark)

    Douthwaite, S; Christensen, A; Garrett, R A

    1982-01-01

    The binding sites of ribosomal proteins L18 and L25 on 5S RNA from Escherichia coli were probed with ribonucleases A, T1, and T2 and a double helix specific cobra venom endonuclease. The results for the protein-RNA complexes, which were compared with those for the free RNA [Douthwaite, S...... stearothermophilus 5S RNA. Several protein-induced changes in the RNA structures were identified; some are possibly allosteric in nature. The two prokaryotic 5S RNAs were also incubated with total 50S subunit proteins from E. coli and B. stearothermophilus ribosomes. Homologous and heterologous reconstitution....... stearothermophilus 5S RNA, which may have been due to a third ribosomal protein L5....

  13. Deconstructing thermodynamic parameters of a coupled system from site-specific observables.

    Science.gov (United States)

    Chowdhury, Sandipan; Chanda, Baron

    2010-11-02

    Cooperative interactions mediate information transfer between structural domains of a protein molecule and are major determinants of protein function and modulation. The prevalent theories to understand the thermodynamic origins of cooperativity have been developed to reproduce the complex behavior of a global thermodynamic observable such as ligand binding or enzyme activity. However, in most cases the measurement of a single global observable cannot uniquely define all the terms that fully describe the energetics of the system. Here we establish a theoretical groundwork for analyzing protein thermodynamics using site-specific information. Our treatment involves extracting a site-specific parameter (defined as χ value) associated with a structural unit. We demonstrate that, under limiting conditions, the χ value is related to the direct interaction terms associated with the structural unit under observation and its intrinsic activation energy. We also introduce a site-specific interaction energy term (χ(diff)) that is a function of the direct interaction energy of that site with every other site in the system. When combined with site-directed mutagenesis and other molecular level perturbations, analyses of χ values of site-specific observables may provide valuable insights into protein thermodynamics and structure.

  14. Host Factors Influencing the Retrohoming Pathway of Group II Intron RmInt1, Which Has an Intron-Encoded Protein Naturally Devoid of Endonuclease Activity.

    Directory of Open Access Journals (Sweden)

    Rafael Nisa-Martínez

    Full Text Available Bacterial group II introns are self-splicing catalytic RNAs and mobile retroelements that have an open reading frame encoding an intron-encoded protein (IEP with reverse transcriptase (RT and RNA splicing or maturase activity. Some IEPs carry a DNA endonuclease (En domain, which is required to cleave the bottom strand downstream from the intron-insertion site for target DNA-primed reverse transcription (TPRT of the inserted intron RNA. Host factors complete the insertion of the intron. By contrast, the major retrohoming pathway of introns with IEPs naturally lacking endonuclease activity, like the Sinorhizobium meliloti intron RmInt1, is thought to involve insertion of the intron RNA into the template for lagging strand DNA synthesis ahead of the replication fork, with possible use of the nascent strand to prime reverse transcription of the intron RNA. The host factors influencing the retrohoming pathway of such introns have not yet been described. Here, we identify key candidates likely to be involved in early and late steps of RmInt1 retrohoming. Some of these host factors are common to En+ group II intron retrohoming, but some have different functions. Our results also suggest that the retrohoming process of RmInt1 may be less dependent on the intracellular free Mg2+ concentration than those of other group II introns.

  15. 76 FR 5365 - Environmental Management Site-Specific Advisory Board, Nevada

    Science.gov (United States)

    2011-01-31

    ... Industrial Sites and Soils Committees of the Environmental Management Site-Specific Advisory Board (EM SSAB... sites at the Nevada National Security Site including decontamination, closure, re-use and/or demolition. Purpose of the Soils Committee: The purpose of the Committee is to focus on issues related to soil...

  16. 75 FR 71677 - Environmental Management Site-Specific Advisory Board, Nevada

    Science.gov (United States)

    2010-11-24

    ... Industrial Sites and Soils Committees of the Environmental Management Site-Specific Advisory Board (EM SSAB... sites at the Nevada Test Site including decontamination, closure, re-use and/or demolition. Purpose of the Soils Committee: The purpose of the Committee is to focus on issues related to soil contamination...

  17. Geographically diverse Australian isolates of Melissococcus pluton exhibit minimal genotypic diversity by restriction endonuclease analysis.

    Science.gov (United States)

    Djordjevic, S P; Smith, L A; Forbes, W A; Hornitzky, M A

    1999-04-15

    Melissococcus pluton, the causative agent of European foulbrood is an economically significant disease of honey bees (Apis mellifera) across most regions of the world and is prevalent throughout most states of Australia. 49 Isolates of M. pluton recovered from diseased colonies or honey samples in New South Wales, Queensland, South Australia, Tasmania and Victoria were compared using SDS-PAGE, Western immunoblotting and restriction endonuclease analyses. DNA profiles of all 49 geographically diverse isolates showed remarkably similar AluI profiles although four isolates (one each from Queensland, South Australia, New South Wales and Victoria) displayed minor profile variations compared to AluI patterns of all other isolates. DNA from a subset of the 49 Australian and three isolates from the United Kingdom were digested separately with the restriction endonucleases CfoI, RsaI and DraI. Restriction endonuclease fragment patterns generated using these enzymes were also similar although minor variations were noted. SDS-PAGE of whole cell proteins from 13 of the 49 isolates from different states of Australia, including the four isolates which displayed minor profile variations (AluI) produced indistinguishable patterns. Major immunoreactive proteins of approximate molecular masses of 21, 24, 28, 30, 36, 40, 44, 56, 60, 71, 79 and 95 kDa were observed in immunoblots of whole cell lysates of 22 of the 49 isolates and reacted with rabbit hyperimmune antibodies raised against M. pluton whole cells. Neither SDS-PAGE or immunoblotting was capable of distinguishing differences between geographically diverse isolates of M. pluton. Collectively these data confirm that Australian isolates of M. pluton are genetically homogeneous and that this species may be clonal. Plasmid DNA was not detected in whole cell DNA profiles of any isolate resolved using agarose gel electrophoresis.

  18. 77 FR 22772 - Environmental Management Site-Specific Advisory Board

    Science.gov (United States)

    2012-04-17

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board AGENCY: Office of Environmental Management, Department of Energy. ACTION: Notice of renewal. SUMMARY: Pursuant to Section 14(a)(2... Secretariat, General Services Administration, notice is hereby given that the Environmental Management Site...

  19. Biochemical characterization of recombinant influenza A polymerase heterotrimer complex: Endonuclease activity and evaluation of inhibitors

    Czech Academy of Sciences Publication Activity Database

    Xing, W.; Barauskas, O.; Kirschberg, T.; Niedziela-Majka, A.; Clarke, M.; Birkuš, Gabriel; Weissburg, P.; Liu, X.; Schultz, B. E.; Sakowicz, R.; Kwon, H. J.; Feng, J. Y.

    2017-01-01

    Roč. 12, č. 8 (2017), č. článku e0181969. E-ISSN 1932-6203 Institutional support: RVO:61388963 Keywords : virus PA endonuclease * respiratory syncytial virus * RNA synthesis Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology Impact factor: 2.806, year: 2016 http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0181969

  20. An ultrasensitive colorimeter assay strategy for p53 mutation assisted by nicking endonuclease signal amplification.

    Science.gov (United States)

    Lin, Zhenyu; Yang, Weiqiang; Zhang, Guiyun; Liu, Qida; Qiu, Bin; Cai, Zongwei; Chen, Guonan

    2011-08-28

    A novel catalytic colorimetric assay assisted by nicking endonuclease signal amplification (NESA) was developed. With the signal amplification, the detection limit of the p53 target gene can be as low as 1 pM, which is nearly 5 orders of magnitude lower than that of other previously reported colorimetric DNA detection strategies based on catalytic DNAzyme.

  1. Technical specifications for the Pajarito Site Critical Experiments Facility

    International Nuclear Information System (INIS)

    Malenfant, R.E.; Paxton, H.C.

    1980-12-01

    This document is to satisfy the requirement for technical specifications spelled out in DOE Manual Chapter 0540, Safety of DOE-Owned Reactors. Technical specifications are defined in Sec. 0540-048, and the requirement for them appears in Sec. 0540-015. The following technical specifications update the document, Technical Specifications for the Pajarito Site Critical Experiments Facility

  2. Appreciating Site-Specific Qualities in Urban Harbours

    DEFF Research Database (Denmark)

    Reeh, Henrik

    2015-01-01

    of observa-tions from Marseille in southern France. After modernization and dislocation of its harbor territories in the early 20th century already, this city is currently taking important steps from industrial urbanism into cultural planning. This transformation allows for new and unprogrammed experiences......When “site-specificity” becomes a central value in city and harbor transformation, it soon proves necessary to address the ways in which scholars and professionals actually determine site-specific qualities in urban fabrics and social life. This paper delves into the above questions by means...

  3. Pinellas Plant FY1990 site specific implementation plan

    International Nuclear Information System (INIS)

    Klein, R.D.

    1990-02-01

    This Site Specific Implementation Plan describes the Corrective Action, Environmental Restoration, and Waste Management activities to be performed at the Pinellas Plant in FY1990 (October 1, 1989 to September 30, 1989). These FY1990 activities are described in the Pinellas Plant FY1991--95 Five-Year Plan. The information used to prepare this plan reflects the best estimate of the project scope, schedules, regulatory, and funding requirements at the time of plan preparation. The Environmental Restoration/Waste Management Five-Year Plan is a dynamic document and will be modified each year; the Site Specific Implementation Plan will, in turn, be modified each year to reflect new findings, information, and knowledge of the various projects. 4 figs., 11 tabs

  4. APE1 incision activity at abasic sites in tandem repeat sequences.

    Science.gov (United States)

    Li, Mengxia; Völker, Jens; Breslauer, Kenneth J; Wilson, David M

    2014-05-29

    Repetitive DNA sequences, such as those present in microsatellites and minisatellites, telomeres, and trinucleotide repeats (linked to fragile X syndrome, Huntington disease, etc.), account for nearly 30% of the human genome. These domains exhibit enhanced susceptibility to oxidative attack to yield base modifications, strand breaks, and abasic sites; have a propensity to adopt non-canonical DNA forms modulated by the positions of the lesions; and, when not properly processed, can contribute to genome instability that underlies aging and disease development. Knowledge on the repair efficiencies of DNA damage within such repetitive sequences is therefore crucial for understanding the impact of such domains on genomic integrity. In the present study, using strategically designed oligonucleotide substrates, we determined the ability of human apurinic/apyrimidinic endonuclease 1 (APE1) to cleave at apurinic/apyrimidinic (AP) sites in a collection of tandem DNA repeat landscapes involving telomeric and CAG/CTG repeat sequences. Our studies reveal the differential influence of domain sequence, conformation, and AP site location/relative positioning on the efficiency of APE1 binding and strand incision. Intriguingly, our data demonstrate that APE1 endonuclease efficiency correlates with the thermodynamic stability of the DNA substrate. We discuss how these results have both predictive and mechanistic consequences for understanding the success and failure of repair protein activity associated with such oxidatively sensitive, conformationally plastic/dynamic repetitive DNA domains. Published by Elsevier Ltd.

  5. Unusual Structure of the attB Site of the Site-Specific Recombination System of Lactobacillus delbrueckii Bacteriophage mv4

    Science.gov (United States)

    Auvray, Frédéric; Coddeville, Michèle; Ordonez, Romy Catoira; Ritzenthaler, Paul

    1999-01-01

    The temperate phage mv4 integrates its genome into the chromosome of Lactobacillus delbrueckii subsp. bulgaricus by site-specific recombination within the 3′ end of a tRNASer gene. Recombination is catalyzed by the phage-encoded integrase and occurs between the phage attP site and the bacterial attB site. In this study, we show that the mv4 integrase functions in vivo in Escherichia coli and we characterize the bacterial attB site with a site-specific recombination test involving compatible plasmids carrying the recombination sites. The importance of particular nucleotides within the attB sequence was determined by site-directed mutagenesis. The structure of the attB site was found to be simple but rather unusual. A 16-bp DNA fragment was sufficient for function. Unlike most genetic elements that integrate their DNA into tRNA genes, none of the dyad symmetry elements of the tRNASer gene were present within the minimal attB site. No inverted repeats were detected within this site either, in contrast to the lambda site-specific recombination model. PMID:10572145

  6. Potentials for site-specific design of MW sized wind turbines

    DEFF Research Database (Denmark)

    Thomsen, K.; Fuglsang, P.; Schepers, G.

    2001-01-01

    The potential for site specific design of MW sized wind turbines is quantified by comparing design loads for wind turbines installed at a range of different sites. The sites comprise on-shore normal flat terrain stand-alone conditions and wind farm conditions together with offshore and mountainous...

  7. 75 FR 64718 - Environmental Management Site-Specific Advisory Board, Nevada

    Science.gov (United States)

    2010-10-20

    ... Test Site including decontamination, closure, re-use and/or demolition. Purpose of the Soils Committee: The purpose of the Committee is to focus on issues related to soil contamination at the Nevada Test... Industrial Sites and Soils Committees of the Environmental Management Site-Specific Advisory Board (EM SSAB...

  8. A grammar inference approach for predicting kinase specific phosphorylation sites.

    Science.gov (United States)

    Datta, Sutapa; Mukhopadhyay, Subhasis

    2015-01-01

    Kinase mediated phosphorylation site detection is the key mechanism of post translational mechanism that plays an important role in regulating various cellular processes and phenotypes. Many diseases, like cancer are related with the signaling defects which are associated with protein phosphorylation. Characterizing the protein kinases and their substrates enhances our ability to understand the mechanism of protein phosphorylation and extends our knowledge of signaling network; thereby helping us to treat such diseases. Experimental methods for predicting phosphorylation sites are labour intensive and expensive. Also, manifold increase of protein sequences in the databanks over the years necessitates the improvement of high speed and accurate computational methods for predicting phosphorylation sites in protein sequences. Till date, a number of computational methods have been proposed by various researchers in predicting phosphorylation sites, but there remains much scope of improvement. In this communication, we present a simple and novel method based on Grammatical Inference (GI) approach to automate the prediction of kinase specific phosphorylation sites. In this regard, we have used a popular GI algorithm Alergia to infer Deterministic Stochastic Finite State Automata (DSFA) which equally represents the regular grammar corresponding to the phosphorylation sites. Extensive experiments on several datasets generated by us reveal that, our inferred grammar successfully predicts phosphorylation sites in a kinase specific manner. It performs significantly better when compared with the other existing phosphorylation site prediction methods. We have also compared our inferred DSFA with two other GI inference algorithms. The DSFA generated by our method performs superior which indicates that our method is robust and has a potential for predicting the phosphorylation sites in a kinase specific manner.

  9. A Grammar Inference Approach for Predicting Kinase Specific Phosphorylation Sites

    Science.gov (United States)

    Datta, Sutapa; Mukhopadhyay, Subhasis

    2015-01-01

    Kinase mediated phosphorylation site detection is the key mechanism of post translational mechanism that plays an important role in regulating various cellular processes and phenotypes. Many diseases, like cancer are related with the signaling defects which are associated with protein phosphorylation. Characterizing the protein kinases and their substrates enhances our ability to understand the mechanism of protein phosphorylation and extends our knowledge of signaling network; thereby helping us to treat such diseases. Experimental methods for predicting phosphorylation sites are labour intensive and expensive. Also, manifold increase of protein sequences in the databanks over the years necessitates the improvement of high speed and accurate computational methods for predicting phosphorylation sites in protein sequences. Till date, a number of computational methods have been proposed by various researchers in predicting phosphorylation sites, but there remains much scope of improvement. In this communication, we present a simple and novel method based on Grammatical Inference (GI) approach to automate the prediction of kinase specific phosphorylation sites. In this regard, we have used a popular GI algorithm Alergia to infer Deterministic Stochastic Finite State Automata (DSFA) which equally represents the regular grammar corresponding to the phosphorylation sites. Extensive experiments on several datasets generated by us reveal that, our inferred grammar successfully predicts phosphorylation sites in a kinase specific manner. It performs significantly better when compared with the other existing phosphorylation site prediction methods. We have also compared our inferred DSFA with two other GI inference algorithms. The DSFA generated by our method performs superior which indicates that our method is robust and has a potential for predicting the phosphorylation sites in a kinase specific manner. PMID:25886273

  10. Temporally-controlled site-specific recombination in zebrafish.

    Directory of Open Access Journals (Sweden)

    Stefan Hans

    Full Text Available Conventional use of the site-specific recombinase Cre is a powerful technology in mouse, but almost absent in other vertebrate model organisms. In zebrafish, Cre-mediated recombination efficiency was previously very low. Here we show that using transposon-mediated transgenesis, Cre is in fact highly efficient in this organism. Furthermore, temporal control of recombination can be achieved by using the ligand-inducible CreER(T2. Site-specific recombination only occurs upon administration of the drug tamoxifen (TAM or its active metabolite, 4-hydroxy-tamoxifen (4-OHT. Cre-mediated recombination is detectable already 4 or 2 hours after administration of TAM or 4-OHT, demonstrating fast recombination kinetics. In addition, low doses of TAM allow mosaic labeling of single cells. Combined, our results show that conditional Cre/lox will be a valuable tool for both, embryonic and adult zebrafish studies. Furthermore, single copy insertion transgenesis of Cre/lox constructs suggest a strategy suitable also for other organisms.

  11. Creation of targeted inversion mutations in plants using an RNA-guided endonuclease

    Institute of Scientific and Technical Information of China (English)

    Congsheng Zhang; Changlin Liu; Jianfeng Weng; Beijiu Cheng; Fang Liu; Xinhai Li; Chuanxiao Xie

    2017-01-01

    Inversions are DNA rearrangements that are essential for plant gene evolution and adaptation to environmental changes. We demonstrate the creation of targeted inversions and previously reported targeted deletion mutations via delivery of a pair of RNA-guided endonucleases (RGENs) of CRISPR/Cas9. The efficiencies of the targeted inversions were 2.6%and 2.2%in the Arabidopsis FLOWERING TIME (AtFT) and TERMINAL FLOWER 1 (AtTFL1) loci, respectively. Thus, we successfully established an approach that can potentially be used to introduce targeted DNA inversions of interest for functional studies and crop improvement.

  12. Multipronged regulatory functions of a novel endonuclease (TieA) from Helicobacter pylori.

    Science.gov (United States)

    Devi, Savita; Ansari, Suhail A; Tenguria, Shivendra; Kumar, Naveen; Ahmed, Niyaz

    2016-11-02

    Helicobacter pylori portrays a classical paradigm of persistent bacterial infections. A well balanced homeostasis of bacterial effector functions and host responses is purported to be the key in achieving long term colonization in specific hosts. H. pylori nucleases have been shown to assist in natural transformation, but their role in virulence and colonization remains elusive. Therefore, it is imperative to understand the involvement of these nucleases in the pathogenesis of H. pylori Here, we report the multifaceted role of a TNFR-1 interacting endonuclease A (TieA) from H. pylori. tieA expression is differentially regulated in response to environmental stress and post adherence to gastric epithelial cells. Studies with isogenic knockouts of tieA revealed it to be a secretory protein which translocates into the host gastric epithelial cells independent of a type IV secretion system, gets phosphorylated by DNA-PK kinase and auto-phosphorylates as serine kinase. Furthermore, TieA binds to and cleaves DNA in a non-specific manner and promotes Fas mediated apoptosis in AGS cells. Additionally, TieA induced pro-inflammatory cytokine secretion via activation of transcription factor AP-1 and signaled through MAP kinase pathway. Collectively, TieA with its multipronged and moonlighting functions could facilitate H. pylori in maintaining a balance of bacterial adaptation, and elimination by the host responses. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. A RecB-family nuclease motif in the Type I restriction endonuclease EcoR124I

    Czech Academy of Sciences Publication Activity Database

    Šišáková, Eva; Stanley, L. K.; Weiserová, Marie; Szczelkun, M. D.

    2008-01-01

    Roč. 36, č. 12 (2008), s. 1-11 ISSN 0305-1048 R&D Projects: GA ČR GA204/07/0325 Grant - others:XE(XE) BioNano-Switch 043288 Institutional research plan: CEZ:AV0Z50200510 Keywords : restriction endonuclease * mutagenesis * dsdna Subject RIV: EE - Microbiology, Virology Impact factor: 6.878, year: 2008

  14. Selective pressures to maintain attachment site specificity of integrative and conjugative elements.

    Directory of Open Access Journals (Sweden)

    Kayla L Menard

    Full Text Available Integrative and conjugative elements (ICEs are widespread mobile genetic elements that are usually found integrated in bacterial chromosomes. They are important agents of evolution and contribute to the acquisition of new traits, including antibiotic resistances. ICEs can excise from the chromosome and transfer to recipients by conjugation. Many ICEs are site-specific in that they integrate preferentially into a primary attachment site in the bacterial genome. Site-specific ICEs can also integrate into secondary locations, particularly if the primary site is absent. However, little is known about the consequences of integration of ICEs into alternative attachment sites or what drives the apparent maintenance and prevalence of the many ICEs that use a single attachment site. Using ICEBs1, a site-specific ICE from Bacillus subtilis that integrates into a tRNA gene, we found that integration into secondary sites was detrimental to both ICEBs1 and the host cell. Excision of ICEBs1 from secondary sites was impaired either partially or completely, limiting the spread of ICEBs1. Furthermore, induction of ICEBs1 gene expression caused a substantial drop in proliferation and cell viability within three hours. This drop was dependent on rolling circle replication of ICEBs1 that was unable to excise from the chromosome. Together, these detrimental effects provide selective pressure against the survival and dissemination of ICEs that have integrated into alternative sites and may explain the maintenance of site-specific integration for many ICEs.

  15. AAV Vectorization of DSB-mediated Gene Editing Technologies.

    Science.gov (United States)

    Moser, Rachel J; Hirsch, Matthew L

    2016-01-01

    Recent work both at the bench and the bedside demonstrate zinc-finger nucleases (ZFNs), CRISPR/Cas9, and other programmable site-specific endonuclease technologies are being successfully utilized within and alongside AAV vectors to induce therapeutically relevant levels of directed gene editing within the human chromosome. Studies from past decades acknowledge that AAV vector genomes are enhanced substrates for homology-directed repair in the presence or absence of targeted DNA damage within the host genome. Additionally, AAV vectors are currently the most efficient format for in vivo gene delivery with no vector related complications in >100 clinical trials for diverse diseases. At the same time, advancements in the design of custom-engineered site-specific endonucleases and the utilization of elucidated endonuclease formats have resulted in efficient and facile genetic engineering for basic science and for clinical therapies. AAV vectors and gene editing technologies are an obvious marriage, using AAV for the delivery of repair substrate and/or a gene encoding a designer endonuclease; however, while efficient delivery and enhanced gene targeting by vector genomes are advantageous, other attributes of AAV vectors are less desirable for gene editing technologies. This review summarizes the various roles that AAV vectors play in gene editing technologies and provides insight into its trending applications for the treatment of genetic diseases.

  16. Atypical myxomatosis--virus isolation, experimental infection of rabbits and restriction endonuclease analysis of the isolate.

    Science.gov (United States)

    Psikal, I; Smíd, B; Rodák, L; Valícek, L; Bendová, J

    2003-08-01

    Atypical form of myxomatosis, which caused non-lethal and clinically mild disease in domestic rabbits 1 month after immunization with a commercially available vaccine MXT, is described. The isolated myxoma virus designated as Litovel 2 (Li-2) did not induce systemic disease following subcutaneous and intradermal applications in susceptible experimental rabbits but led to the immune response demonstrated by ELISA. No severe disease was induced in those Li-2 inoculated rabbits by challenge with the virulent strains Lausanne (Lu) or Sanar (SA), while the control animals showed nodular form of myxomatosis with lethal course of the illness. Restriction fragment length polymorphism (RFLP) of genomic DNA with KpnI and BamHI endonucleases was used for genetic characterization of the Li-2 isolate, the vaccine strain MXT and both virulent strains Lu and SA, respectively. In general, RFLP analysis has shown to be informative for inferring genetic relatedness between myxoma viruses. Based on restriction endonuclease DNA fragment size distribution, it was evident that the pathogenic strain SA is genetically related to the reference strain Lu and the isolate Li-2 is more related, but not identical, to the vaccination strain MXT.

  17. Single substitution in bacteriophage T4 RNase H alters the ratio between its exo- and endonuclease activities.

    Science.gov (United States)

    Kholod, Natalia; Sivogrivov, Dmitry; Latypov, Oleg; Mayorov, Sergey; Kuznitsyn, Rafail; Kajava, Andrey V; Shlyapnikov, Mikhail; Granovsky, Igor

    2015-11-01

    The article describes substitutions in bacteriophage T4 RNase H which provide so called das-effect. Phage T4 DNA arrest suppression (das) mutations have been described to be capable of partially suppressing the phage DNA arrest phenotype caused by a dysfunction in genes 46 and/or 47 (also known as Mre11/Rad50 complex). Genetic mapping of das13 (one of the das mutations) has shown it to be in the region of the rnh gene encoding RNase H. Here we report that Das13 mutant of RNase H has substitutions of valine 43 and leucine 242 with isoleucines. To investigate the influence of these mutations on RNase H nuclease properties we have designed a novel in vitro assay that allows us to separate and quantify exo- or endonuclease activities of flap endonuclease. The nuclease assay in vitro showed that V43I substitution increased the ratio between exonuclease/endonuclease activities of RNase H whereas L242I substitution did not affect the nuclease activity of RNase H in vitro. However, both mutations were necessary for the full das effect in vivo. Molecular modelling of the nuclease structure suggests that V43I substitution may lead to disposition of H4 helix, responsible for the interaction with the first base pairs of 5'end of branched DNA. These structural changes may affect unwinding of the first base pairs of gapped or nicked DNA generating a short flap and therefore may stabilize the DNA-enzyme complex. L242I substitution did not affect the structure of RNase H and its role in providing das-effect remains unclear. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Site specific modification of the human plasma proteome by methylglyoxal

    International Nuclear Information System (INIS)

    Kimzey, Michael J.; Kinsky, Owen R.; Yassine, Hussein N.; Tsaprailis, George; Stump, Craig S.; Monks, Terrence J.; Lau, Serrine S.

    2015-01-01

    Increasing evidence identifies dicarbonyl stress from reactive glucose metabolites, such as methylglyoxal (MG), as a major pathogenic link between hyperglycemia and complications of diabetes. MG covalently modifies arginine residues, yet the site specificity of this modification has not been thoroughly investigated. Sites of MG adduction in the plasma proteome were identified using LC–MS/MS analysis in vitro following incubation of plasma proteins with MG. Treatment of plasma proteins with MG yielded 14 putative MG hotspots from five plasma proteins (albumin [nine hotspots], serotransferrin, haptoglobin [2 hotspots], hemopexin, and Ig lambda-2 chain C regions). The search results revealed two versions of MG-arginine modification, dihydroxyimidazolidine (R + 72) and hydroimidazolone (R + 54) adducts. One of the sites identified was R257 in human serum albumin, which is a critical residue located in drug binding site I. This site was validated as a target for MG modification by a fluorescent probe displacement assay, which revealed significant drug dissociation at 300 μM MG from a prodan–HSA complex (75 μM). Moreover, twelve human plasma samples (six male, six female, with two type 2 diabetic subjects from both genders) were analyzed using multiple reaction monitoring (MRM) tandem mass spectrometry and revealed the presence of the MG-modified albumin R257 peptide. These data provide insights into the nature of the site-specificity of MG modification of arginine, which may be useful for therapeutic treatments that aim to prevent MG-mediated adverse responses in patients. - Highlights: • Methylglyoxal (MG) selectively modifies arginine sites in human plasma proteome. • Dihydroxyimidazolidine and hydroimidazolone adducts on serum albumin identified • MG modification on albumin R257 associated with loss of drug site I binding capacity • MRM-tandem mass spectrometry enables sensitive detection of albumin MG-R257. • Site-specific MG modification may

  19. Site specific modification of the human plasma proteome by methylglyoxal

    Energy Technology Data Exchange (ETDEWEB)

    Kimzey, Michael J.; Kinsky, Owen R. [Southwest Environmental Health Sciences Center, Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721 (United States); Yassine, Hussein N. [Department of Medicine, The University of Arizona, Tucson, AZ 85721 (United States); Tsaprailis, George [Southwest Environmental Health Sciences Center, Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721 (United States); Stump, Craig S. [Department of Medicine, The University of Arizona, Tucson, AZ 85721 (United States); Southern Arizona VA Health Care System, Tucson, AZ 85723 (United States); Monks, Terrence J. [Southwest Environmental Health Sciences Center, Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721 (United States); Lau, Serrine S., E-mail: lau@pharmacy.arizona.edu [Southwest Environmental Health Sciences Center, Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721 (United States)

    2015-12-01

    Increasing evidence identifies dicarbonyl stress from reactive glucose metabolites, such as methylglyoxal (MG), as a major pathogenic link between hyperglycemia and complications of diabetes. MG covalently modifies arginine residues, yet the site specificity of this modification has not been thoroughly investigated. Sites of MG adduction in the plasma proteome were identified using LC–MS/MS analysis in vitro following incubation of plasma proteins with MG. Treatment of plasma proteins with MG yielded 14 putative MG hotspots from five plasma proteins (albumin [nine hotspots], serotransferrin, haptoglobin [2 hotspots], hemopexin, and Ig lambda-2 chain C regions). The search results revealed two versions of MG-arginine modification, dihydroxyimidazolidine (R + 72) and hydroimidazolone (R + 54) adducts. One of the sites identified was R257 in human serum albumin, which is a critical residue located in drug binding site I. This site was validated as a target for MG modification by a fluorescent probe displacement assay, which revealed significant drug dissociation at 300 μM MG from a prodan–HSA complex (75 μM). Moreover, twelve human plasma samples (six male, six female, with two type 2 diabetic subjects from both genders) were analyzed using multiple reaction monitoring (MRM) tandem mass spectrometry and revealed the presence of the MG-modified albumin R257 peptide. These data provide insights into the nature of the site-specificity of MG modification of arginine, which may be useful for therapeutic treatments that aim to prevent MG-mediated adverse responses in patients. - Highlights: • Methylglyoxal (MG) selectively modifies arginine sites in human plasma proteome. • Dihydroxyimidazolidine and hydroimidazolone adducts on serum albumin identified • MG modification on albumin R257 associated with loss of drug site I binding capacity • MRM-tandem mass spectrometry enables sensitive detection of albumin MG-R257. • Site-specific MG modification may

  20. Optimization Under Uncertainty of Site-Specific Turbine Configurations

    Science.gov (United States)

    Quick, J.; Dykes, K.; Graf, P.; Zahle, F.

    2016-09-01

    Uncertainty affects many aspects of wind energy plant performance and cost. In this study, we explore opportunities for site-specific turbine configuration optimization that accounts for uncertainty in the wind resource. As a demonstration, a simple empirical model for wind plant cost of energy is used in an optimization under uncertainty to examine how different risk appetites affect the optimal selection of a turbine configuration for sites of different wind resource profiles. If there is unusually high uncertainty in the site wind resource, the optimal turbine configuration diverges from the deterministic case and a generally more conservative design is obtained with increasing risk aversion on the part of the designer.

  1. Development of site specific response spectra

    International Nuclear Information System (INIS)

    Bernreuter, D.L.; Chen, J.C.; Savy, J.B.

    1987-03-01

    For a number of years the US Nuclear Regulatory Commission (NRC) has employed site specific spectra (SSSP) in their evaluation of the adequacy of the Safe Shutdown Earthquake (SSE). These spectra were developed only from the spectra of the horizontal components of the ground motion and from a very limited data set. As the data set has considerably increased for Eastern North America (ENA) and as more relevant data has become available from earthquakes occurring in other parts of the world (e.g., Italy), together with the fact that recent data indicated the importance of the vertical component, it became clear that an update of the SSSP's for ENA was desirable. The methodology used in this study is similar to the previous ones in that it used actual earthquake ground motion data with magnitudes within a certain range and recorded at distances and at sites similar to those that would be chosen for the definition of an SSE. An extensive analysis of the origin and size of the uncertainty is an important part of this study. The results of this analysis of the uncertainties is used to develop criteria for selecting the earthquake records to be used in the derivation of the SSSP's. We concluded that the SSSPs were not very sensitive to the distribution of the source to site distance of the earthquake records used in the analysis. That is, the variability (uncertainty) introduced by the range of distances was relatively small compared to the variability introduced by other factors. We also concluded that the SSSP are somewhat sensitive to the distribution of the magnitudes of these earthquakes, particularly at rock sites and, by inference, at shallow soil sites. We found that one important criterion in selecting records to generate SSSP is the depth of soil at the site

  2. A newly discovered Bordetella species carries a transcriptionally active CRISPR-Cas with a small Cas9 endonuclease

    Science.gov (United States)

    The Cas9 endonuclease of the Type II-a clustered regularly interspersed short palindromic repeats (CRISPR), of Streptococcus pyogenes (SpCas9) has been adapted as a widely used tool for genome editing and genome engineering. Herein, we describe a gene encoding a novel Cas9 ortholog (BpsuCas9) and th...

  3. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease.

    Science.gov (United States)

    Anders, Carolin; Niewoehner, Ole; Duerst, Alessia; Jinek, Martin

    2014-09-25

    The CRISPR-associated protein Cas9 is an RNA-guided endonuclease that cleaves double-stranded DNA bearing sequences complementary to a 20-nucleotide segment in the guide RNA. Cas9 has emerged as a versatile molecular tool for genome editing and gene expression control. RNA-guided DNA recognition and cleavage strictly require the presence of a protospacer adjacent motif (PAM) in the target DNA. Here we report a crystal structure of Streptococcus pyogenes Cas9 in complex with a single-molecule guide RNA and a target DNA containing a canonical 5'-NGG-3' PAM. The structure reveals that the PAM motif resides in a base-paired DNA duplex. The non-complementary strand GG dinucleotide is read out via major-groove interactions with conserved arginine residues from the carboxy-terminal domain of Cas9. Interactions with the minor groove of the PAM duplex and the phosphodiester group at the +1 position in the target DNA strand contribute to local strand separation immediately upstream of the PAM. These observations suggest a mechanism for PAM-dependent target DNA melting and RNA-DNA hybrid formation. Furthermore, this study establishes a framework for the rational engineering of Cas9 enzymes with novel PAM specificities.

  4. Taxon- and Site-Specific Melatonin Catabolism

    Directory of Open Access Journals (Sweden)

    Rüdiger Hardeland

    2017-11-01

    Full Text Available Melatonin is catabolized both enzymatically and nonenzymatically. Nonenzymatic processes mediated by free radicals, singlet oxygen, other reactive intermediates such as HOCl and peroxynitrite, or pseudoenzymatic mechanisms are not species- or tissue-specific, but vary considerably in their extent. Higher rates of nonenzymatic melatonin metabolism can be expected upon UV exposure, e.g., in plants and in the human skin. Additionally, melatonin is more strongly nonenzymatically degraded at sites of inflammation. Typical products are several hydroxylated derivatives of melatonin and N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK. Most of these products are also formed by enzymatic catalysis. Considerable taxon- and site-specific differences are observed in the main enzymatic routes of catabolism. Formation of 6-hydroxymelatonin by cytochrome P450 subforms are prevailing in vertebrates, predominantly in the liver, but also in the brain. In pineal gland and non-mammalian retina, deacetylation to 5-methoxytryptamine (5-MT plays a certain role. This pathway is quantitatively prevalent in dinoflagellates, in which 5-MT induces cyst formation and is further converted to 5-methoxyindole-3-acetic acid, an end product released to the water. In plants, the major route is catalyzed by melatonin 2-hydroxylase, whose product is tautomerized to 3-acetamidoethyl-3-hydroxy-5-methoxyindolin-2-one (AMIO, which exceeds the levels of melatonin. Formation and properties of various secondary products are discussed.

  5. Conversion of MyoD to a Neurogenic Factor: Binding Site Specificity Determines Lineage

    Directory of Open Access Journals (Sweden)

    Abraham P. Fong

    2015-03-01

    Full Text Available MyoD and NeuroD2, master regulators of myogenesis and neurogenesis, bind to a “shared” E-box sequence (CAGCTG and a “private” sequence (CAGGTG or CAGATG, respectively. To determine whether private-site recognition is sufficient to confer lineage specification, we generated a MyoD mutant with the DNA-binding specificity of NeuroD2. This chimeric mutant gained binding to NeuroD2 private sites but maintained binding to a subset of MyoD-specific sites, activating part of both the muscle and neuronal programs. Sequence analysis revealed an enrichment for PBX/MEIS motifs at the subset of MyoD-specific sites bound by the chimera, and point mutations that prevent MyoD interaction with PBX/MEIS converted the chimera to a pure neurogenic factor. Therefore, redirecting MyoD binding from MyoD private sites to NeuroD2 private sites, despite preserved binding to the MyoD/NeuroD2 shared sites, is sufficient to change MyoD from a master regulator of myogenesis to a master regulator of neurogenesis.

  6. Development of the NUMO pre-selection, site-specific safety case

    International Nuclear Information System (INIS)

    Fujiyama, Tetsuo; Suzuki, Satoru; Deguchi, Akira; Umeki, Hiroyuki

    2016-01-01

    Key conclusions: ◆ “The NUMO pre-selection, site-specific safety case” provides the basic structure for subsequent safety cases that will be applied to any selected site, emphasising practical approaches and methodology which will be applicable for the conditions/constraints during an actual siting process. ◆ The preliminary results of the design and safety assessment would underpin the feasibility and safety of geological disposal in Japan.

  7. Engineered Cpf1 variants with altered PAM specificities.

    Science.gov (United States)

    Gao, Linyi; Cox, David B T; Yan, Winston X; Manteiga, John C; Schneider, Martin W; Yamano, Takashi; Nishimasu, Hiroshi; Nureki, Osamu; Crosetto, Nicola; Zhang, Feng

    2017-08-01

    The RNA-guided endonuclease Cpf1 is a promising tool for genome editing in eukaryotic cells. However, the utility of the commonly used Acidaminococcus sp. BV3L6 Cpf1 (AsCpf1) and Lachnospiraceae bacterium ND2006 Cpf1 (LbCpf1) is limited by their requirement of a TTTV protospacer adjacent motif (PAM) in the DNA substrate. To address this limitation, we performed a structure-guided mutagenesis screen to increase the targeting range of Cpf1. We engineered two AsCpf1 variants carrying the mutations S542R/K607R and S542R/K548V/N552R, which recognize TYCV and TATV PAMs, respectively, with enhanced activities in vitro and in human cells. Genome-wide assessment of off-target activity using BLISS indicated that these variants retain high DNA-targeting specificity, which we further improved by introducing an additional non-PAM-interacting mutation. Introducing the identified PAM-interacting mutations at their corresponding positions in LbCpf1 similarly altered its PAM specificity. Together, these variants increase the targeting range of Cpf1 by approximately threefold in human coding sequences to one cleavage site per ∼11 bp.

  8. Analysis of Endonuclease R·EcoRI Fragments of DNA from Lambdoid Bacteriophages and Other Viruses by Agarose-Gel Electrophoresis

    Science.gov (United States)

    Helling, Robert B.; Goodman, Howard M.; Boyer, Herbert W.

    1974-01-01

    By means of agarose-gel electrophoresis, endonuclease R·EcoRI-generated fragments of DNA from various viruses were separated, their molecular weights were determined, and complete or partial fragment maps for lambda, φ80, and hybrid phages were constructed. Images PMID:4372397

  9. Annotated Administrative Record Site-Specific Document Index, American Drum & Pallet Co. Removal Site, Memphis, Shelby County, Tennessee

    Science.gov (United States)

    Contains annotated index of site specific documents for the American Drum & Pallet Co. Removal Site in Memphis, Shelby County, Tennessee, January 9, 2008 Region ID: 04 DocID: 10517016, DocDate: 01-09-2008

  10. Site-specific fab fragment biotinylation at the conserved nucleotide binding site for enhanced Ebola detection.

    Science.gov (United States)

    Mustafaoglu, Nur; Alves, Nathan J; Bilgicer, Basar

    2015-07-01

    The nucleotide binding site (NBS) is a highly conserved region between the variable light and heavy chains at the Fab domains of all antibodies, and a small molecule that we identified, indole-3-butyric acid (IBA), binds specifically to this site. Fab fragment, with its small size and simple production methods compared to intact antibody, is good candidate for use in miniaturized diagnostic devices and targeted therapeutic applications. However, commonly used modification techniques are not well suited for Fab fragments as they are often more delicate than intact antibodies. Fab fragments are of particular interest for sensor surface functionalization but immobilization results in damage to the antigen binding site and greatly reduced activity due to their truncated size that allows only a small area that can bind to surfaces without impeding antigen binding. In this study, we describe an NBS-UV photocrosslinking functionalization method (UV-NBS(Biotin) in which a Fab fragment is site-specifically biotinylated with an IBA-EG11-Biotin linker via UV energy exposure (1 J/cm(2)) without affecting its antigen binding activity. This study demonstrates successful immobilization of biotinylated Ebola detecting Fab fragment (KZ52 Fab fragment) via the UV-NBS(Biotin) method yielding 1031-fold and 2-fold better antigen detection sensitivity compared to commonly used immobilization methods: direct physical adsorption and NHS-Biotin functionalization, respectively. Utilization of the UV-NBS(Biotin) method for site-specific conjugation to Fab fragment represents a proof of concept use of Fab fragment for various diagnostic and therapeutic applications with numerous fluorescent probes, affinity molecules and peptides. © 2015 Wiley Periodicals, Inc.

  11. Site Specific Advisory Board initiative, evaluation survey results supplementary appendix: Summary of individual site results

    International Nuclear Information System (INIS)

    1996-08-01

    This Appendix presents results of the Site-Specific Advisory Board (SSAB) Initiative for each of the 11 sites that participated in the survey. These individual results are a supplement to the June 1996 Summary Report which presented overall survey results. Results are presented in 11 sections, arranged alphabetically by site. Each section includes a series of figures and tables that parallel those presented in the Summary Report. To facilitate comparison, figures are presented both for the individual site and for the overall long survey. The sequence of sections is: Fernald, Hanford, Idaho, Los Alamos, Monticello, Nevada, Pantex, Rocky Flats, St. Louis, Sandia, and Savannah River

  12. Site-Specific Biomolecule Labeling with Gold Clusters

    OpenAIRE

    Ackerson, Christopher J.; Powell, Richard D.; Hainfeld, James F.

    2010-01-01

    Site-specific labeling of biomolecules in vitro with gold clusters can enhance the information content of electron cryomicroscopy experiments. This chapter provides a practical overview of well-established techniques for forming biomolecule/gold cluster conjugates. Three bioconjugation chemistries are covered: Linker-mediated bioconjugation, direct gold–biomolecule bonding, and coordination-mediated bonding of nickel(II) nitrilotriacetic acid (NTA)-derivatized gold clusters to polyhistidine (...

  13. Computational studies of radiation and oxidative damage to DNA and its recognition by repair enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Pinak, M. [Center for Promotion of Computational Science and Engineering, Tokai Research Establishment, Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan)

    2000-03-01

    Molecular dynamics (MD) simulation is used to study the time evolution of the recognition processes and to construct a model of the specific DNA-repair enzyme' complexes. MD simulations of the following molecules were performed: DNA dodecamer with thymine dimer (TD), DNA 30-mer with thymine glycol (TG), and respective specific repair enzymes T4 Endonuclease V and Endonuclease III. Both DNA lesions are experimentally suggested to be mutagenic and carcinogenic unless properly recognized and repaired by repair enzymes. In the case of TD, there is detected a strong kink around the TD site, that is not observed in native DNA. In addition there is observed a different value of electrostatic energy at the TD site - negative '-9 kcal/mol', in contrast to the nearly neutral value of the native thymine site. These two factors - structural changes and specific electrostatic energy - seem to be important for proper recognition of a TD damaged site and for formation of DNA-enzyme complex. Formation of this complex is the onset of the repair of DNA. In the case of TG damaged DNA the structural characteristics of the TG were calculated (charges, bond lengths, bond angles, etc.). The formed TG was used to replace the native thymine and then submitted to the simulation in the system with a repair enzyme with Endonuclease III for the purpose of the study of the formation of the DNA-enzyme complex. (author)

  14. WAG 2 remedial investigation and site investigation site-specific work plan/health and safety checklist for the sediment transport modeling task

    International Nuclear Information System (INIS)

    Holt, V.L.; Baron, L.A.

    1994-05-01

    This site-specific Work Plan/Health and Safety Checklist (WP/HSC) is a supplement to the general health and safety plan (HASP) for Waste Area Grouping (WAG) 2 remedial investigation and site investigation (WAG 2 RI ampersand SI) activities [Health and Safety Plan for the Remedial Investigation and Site Investigation of Waste Area Grouping 2 at the Oak Ridge National Laboratory, Oak Ridge, Tennessee (ORNL/ER-169)] and provides specific details and requirements for the WAG 2 RI ampersand SI Sediment Transport Modeling Task. This WP/HSC identifies specific site operations, site hazards, and any recommendations by Oak Ridge National Laboratory (ORNL) health and safety organizations [i.e., Industrial Hygiene (IH), Health Physics (HP), and/or Industrial Safety] that would contribute to the safe completion of the WAG 2 RI ampersand SI. Together, the general HASP for the WAG 2 RI ampersand SI (ORNL/ER-169) and the completed site-specific WP/HSC meet the health and safety planning requirements specified by 29 CFR 1910.120 and the ORNL Hazardous Waste Operations and Emergency Response (HAZWOPER) Program Manual. In addition to the health and safety information provided in the general HASP for the WAG 2 RI ampersand SI, details concerning the site-specific task are elaborated in this site-specific WP/HSC, and both documents, as well as all pertinent procedures referenced therein, will be reviewed by all field personnel prior to beginning operations

  15. Site-specific analysis of the cobbly soils at the Grand Junction processing site

    International Nuclear Information System (INIS)

    1992-06-01

    This report describes a recent site-specific analysis to evaluate the necessity of a recommendation to install a slurry trench around the Grand Junction processing site. The following analysis addresses the cobbly nature of the site's radiologically contaminated foundation soil, reassesses the excavation depths based on bulk radionuclide concentrations, and presents data-based arguments that support the elimination of the initially proposed slurry trench. The slurry trench around the processing site was proposed by the Remedial Action Contractor (RAC) to minimize the amount of water encountered during excavation. The initial depths of excavation developed during conceptual design, which indicated the need for a slurry wall, were reexamined as part of this analysis. This reanalysis, based on bulk concentrations of a cobbly subsoil, supports decreasing the original excavation depth, limiting the dewatering quantities to those which can be dissipated by normal construction activities. This eliminates the need for a slurry trench andseparate water treatment prior to permitted discharge

  16. Site-Specific ecological risk assessment. Case-study 2

    DEFF Research Database (Denmark)

    Jensen, John

    “Development of a decision support system for sustainable management of contaminated land by linking bioavailability, ecological risk and ground water pollution of organic pollutants”or in short “LIBERATION”. The presentation includes examples on how to scale and integrate the results from various scientific......The decision supporting and integrating assessment tool, TRIAD, is used site-specific on PAH- and heavy metal contaminated sites in Denmark. The various aspects of the TRIAD approach are used on a set of chemistry-, ecotoxicology- and ecology related data collected among others in the EU project...

  17. Modified TCLP test for evaluating the leachability of site-specific wastes

    International Nuclear Information System (INIS)

    Pier, J.

    1996-01-01

    The Weldon Spring Site Remedial Action Project (WSSRAP) has developed a site-specific test to assess the leachability of wastes that will be placed in its on-site disposal cell. This test is modelled after the TCLP, but examines an expanded list of parameters and uses an extraction solution that is representative of conditions that are expected to exist in the disposal facility. Following the same logic that guided development of TCLP protocols, the WSSRAP developed concentration guidelines for non-TCLP parameters that were contaminants of concern in its wastes. Response actions, specific to the WSSRAP cell and wastes, were also developed to address constituents that failed to meet these guides. From 1955 to 1966, the US Atomic Energy Commission operated a uranium feed materials plant on this site. Nitroaromatic, and later, radiological wastes were disposed of in the quarry from 1945 until 1970. This paper describes testing to determine whether contaminant concentrations in leachates derived from the major waste-types that will be placed in its on-site disposal cell conform with the Department of Energy's (DOE) as low as reasonably achievable (ALARA) policy. Although the WSSRAP will continue to use the TCLP test to determine if any waste is classified RCRA-hazardous, the site-specific test described in this paper will be used to further assess whether leachate from any waste-type has the potential to adversely impact groundwater

  18. Microinjection of Micrococcus luteus UV-endonuclease restores UV-induced unscheduled DNA synthesis in cells of 9 xeroderma pigmentosum complementation groups.

    NARCIS (Netherlands)

    A.J.R. de Jonge; W. Vermeulen (Wim); W. Keijzer; J.H.J. Hoeijmakers (Jan); D. Bootsma (Dirk)

    1985-01-01

    textabstractThe UV-induced unscheduled DNA synthesis (UDS) in cultured cells of excision-deficient xeroderma pigmentosum (XP) complementation groups A through I was assayed after injection of Micrococcus luteus UV-endonuclease using glass microneedles. In all complementation groups a restoration of

  19. Site specific atomic polarizabilities in endohedral fullerenes and carbon onions

    International Nuclear Information System (INIS)

    Zope, Rajendra R.; Baruah, Tunna; Bhusal, Shusil; Basurto, Luis; Jackson, Koblar

    2015-01-01

    We investigate the polarizability of trimetallic nitride endohedral fullerenes by partitioning the total polarizability into site specific components. This analysis indicates that the polarizability of the endohedral fullerene is essentially due to the outer fullerene cage and has insignificant contribution from the encapsulated unit. Thus, the outer fullerene cages effectively shield the encapsulated clusters and behave like Faraday cages. The polarizability of endohedral fullerenes is slightly smaller than the polarizability of the corresponding bare carbon fullerenes. The application of the site specific polarizabilities to C 60 @C 240 and C 60 @C 180 onions shows that, compared to the polarizability of isolated C 60 fullerene, the encapsulation of the C 60 in C 240 and C 180 fullerenes reduces its polarizability by 75% and 83%, respectively. The differences in the polarizability of C 60 in the two onions is a result of differences in the bonding (intershell electron transfer), fullerene shell relaxations, and intershell separations. The site specific analysis further shows that the outer atoms in a fullerene shell contribute most to the fullerene polarizability

  20. Site specific atomic polarizabilities in endohedral fullerenes and carbon onions

    Science.gov (United States)

    Zope, Rajendra R.; Bhusal, Shusil; Basurto, Luis; Baruah, Tunna; Jackson, Koblar

    2015-08-01

    We investigate the polarizability of trimetallic nitride endohedral fullerenes by partitioning the total polarizability into site specific components. This analysis indicates that the polarizability of the endohedral fullerene is essentially due to the outer fullerene cage and has insignificant contribution from the encapsulated unit. Thus, the outer fullerene cages effectively shield the encapsulated clusters and behave like Faraday cages. The polarizability of endohedral fullerenes is slightly smaller than the polarizability of the corresponding bare carbon fullerenes. The application of the site specific polarizabilities to C60@C240 and C60@C180 onions shows that, compared to the polarizability of isolated C60 fullerene, the encapsulation of the C60 in C240 and C180 fullerenes reduces its polarizability by 75% and 83%, respectively. The differences in the polarizability of C60 in the two onions is a result of differences in the bonding (intershell electron transfer), fullerene shell relaxations, and intershell separations. The site specific analysis further shows that the outer atoms in a fullerene shell contribute most to the fullerene polarizability.

  1. Site-Specific Biomolecule Labeling with Gold Clusters

    Science.gov (United States)

    Ackerson, Christopher J.; Powell, Richard D.; Hainfeld, James F.

    2013-01-01

    Site-specific labeling of biomolecules in vitro with gold clusters can enhance the information content of electron cryomicroscopy experiments. This chapter provides a practical overview of well-established techniques for forming biomolecule/gold cluster conjugates. Three bioconjugation chemistries are covered: Linker-mediated bioconjugation, direct gold–biomolecule bonding, and coordination-mediated bonding of nickel(II) nitrilotriacetic acid (NTA)-derivatized gold clusters to polyhistidine (His)-tagged proteins. PMID:20887859

  2. Drainage filter technologies to mitigate site-specific phosphorus losses

    DEFF Research Database (Denmark)

    Kjærgaard, Charlotte; Heckrath, Goswin Johann; Iversen, Bo Vangsø

    2014-01-01

    -specific nutrient losses in drainage. The “SUPREME-TECH” project (2010-2015), funded by the Danish Strategic Research Council, aims at providing the scientific basis for developing cost-effective drainage filter technologies to retain P in agricultural drainage waters. The project studies different approaches...... high risks areas of P loss and applying site-specific measures therefore seems a more cost-efficient approach. The Danish Commission for Nature and Agriculture has now called for a shift of paradigm towards targeted mitigation and development of new, cost-efficient technologies to mitigate site......-scale surface-flow constructed wetland. In the former, various natural and industrial P filter substrates have been tested for their ability to reduce inlet P concentrations to below environmental threshold values (

  3. SPEER-SERVER: a web server for prediction of protein specificity determining sites.

    Science.gov (United States)

    Chakraborty, Abhijit; Mandloi, Sapan; Lanczycki, Christopher J; Panchenko, Anna R; Chakrabarti, Saikat

    2012-07-01

    Sites that show specific conservation patterns within subsets of proteins in a protein family are likely to be involved in the development of functional specificity. These sites, generally termed specificity determining sites (SDS), might play a crucial role in binding to a specific substrate or proteins. Identification of SDS through experimental techniques is a slow, difficult and tedious job. Hence, it is very important to develop efficient computational methods that can more expediently identify SDS. Herein, we present Specificity prediction using amino acids' Properties, Entropy and Evolution Rate (SPEER)-SERVER, a web server that predicts SDS by analyzing quantitative measures of the conservation patterns of protein sites based on their physico-chemical properties and the heterogeneity of evolutionary changes between and within the protein subfamilies. This web server provides an improved representation of results, adds useful input and output options and integrates a wide range of analysis and data visualization tools when compared with the original standalone version of the SPEER algorithm. Extensive benchmarking finds that SPEER-SERVER exhibits sensitivity and precision performance that, on average, meets or exceeds that of other currently available methods. SPEER-SERVER is available at http://www.hpppi.iicb.res.in/ss/.

  4. Mycobacterium tuberculosis class II apurinic/apyrimidinic-endonuclease/3'-5' exonuclease III exhibits DNA regulated modes of interaction with the sliding DNA β-clamp.

    Science.gov (United States)

    Khanam, Taran; Rai, Niyati; Ramachandran, Ravishankar

    2015-10-01

    The class-II AP-endonuclease (XthA) acts on abasic sites of damaged DNA in bacterial base excision repair. We identified that the sliding DNA β-clamp forms in vivo and in vitro complexes with XthA in Mycobacterium tuberculosis. A novel 239 QLRFPKK245 motif in the DNA-binding domain of XthA was found to be important for the interactions. Likewise, the peptide binding-groove (PBG) and the C-terminal of β-clamp located on different domains interact with XthA. The β-clamp-XthA complex can be disrupted by clamp binding peptides and also by a specific bacterial clamp inhibitor that binds at the PBG. We also identified that β-clamp stimulates the activities of XthA primarily by increasing its affinity for the substrate and its processivity. Additionally, loading of the β-clamp onto DNA is required for activity stimulation. A reduction in XthA activity stimulation was observed in the presence of β-clamp binding peptides supporting that direct interactions between the proteins are necessary to cause stimulation. Finally, we found that in the absence of DNA, the PBG located on the second domain of the β-clamp is important for interactions with XthA, while the C-terminal domain predominantly mediates functional interactions in the substrate's presence. © 2015 John Wiley & Sons Ltd.

  5. Vika/vox, a novel efficient and specific Cre/loxP-like site-specific recombination system

    Science.gov (United States)

    Karimova, Madina; Abi-Ghanem, Josephine; Berger, Nicolas; Surendranath, Vineeth; Pisabarro, Maria Teresa; Buchholz, Frank

    2013-01-01

    Targeted genome engineering has become an important research area for diverse disciplines, with site-specific recombinases (SSRs) being among the most popular genome engineering tools. Their ability to trigger excision, integration, inversion and translocation has made SSRs an invaluable tool to manipulate DNA in vitro and in vivo. However, sophisticated strategies that combine different SSR systems are ever increasing. Hence, the demand for additional precise and efficient recombinases is dictated by the increasing complexity of the genetic studies. Here, we describe a novel site-specific recombination system designated Vika/vox. Vika originates from a degenerate bacteriophage of Vibrio coralliilyticus and shares low sequence similarity to other tyrosine recombinases, but functionally carries out a similar type of reaction. We demonstrate that Vika is highly specific in catalyzing vox recombination without recombining target sites from other SSR systems. We also compare the recombination activity of Vika/vox with other SSR systems, providing a guideline for deciding on the most suitable enzyme for a particular application and demonstrate that Vika expression does not cause cytotoxicity in mammalian cells. Our results show that Vika/vox is a novel powerful and safe instrument in the ‘genetic toolbox’ that can be used alone or in combination with other SSRs in heterologous hosts. PMID:23143104

  6. Musite, a tool for global prediction of general and kinase-specific phosphorylation sites.

    Science.gov (United States)

    Gao, Jianjiong; Thelen, Jay J; Dunker, A Keith; Xu, Dong

    2010-12-01

    Reversible protein phosphorylation is one of the most pervasive post-translational modifications, regulating diverse cellular processes in various organisms. High throughput experimental studies using mass spectrometry have identified many phosphorylation sites, primarily from eukaryotes. However, the vast majority of phosphorylation sites remain undiscovered, even in well studied systems. Because mass spectrometry-based experimental approaches for identifying phosphorylation events are costly, time-consuming, and biased toward abundant proteins and proteotypic peptides, in silico prediction of phosphorylation sites is potentially a useful alternative strategy for whole proteome annotation. Because of various limitations, current phosphorylation site prediction tools were not well designed for comprehensive assessment of proteomes. Here, we present a novel software tool, Musite, specifically designed for large scale predictions of both general and kinase-specific phosphorylation sites. We collected phosphoproteomics data in multiple organisms from several reliable sources and used them to train prediction models by a comprehensive machine-learning approach that integrates local sequence similarities to known phosphorylation sites, protein disorder scores, and amino acid frequencies. Application of Musite on several proteomes yielded tens of thousands of phosphorylation site predictions at a high stringency level. Cross-validation tests show that Musite achieves some improvement over existing tools in predicting general phosphorylation sites, and it is at least comparable with those for predicting kinase-specific phosphorylation sites. In Musite V1.0, we have trained general prediction models for six organisms and kinase-specific prediction models for 13 kinases or kinase families. Although the current pretrained models were not correlated with any particular cellular conditions, Musite provides a unique functionality for training customized prediction models

  7. Joint assessment of specific sites for ITER begins at Clarington

    International Nuclear Information System (INIS)

    Stewart, M.J.

    2002-01-01

    Clarington, Ontario, Canada was the subject of the first official stage of the Joint Assessment of Specific Sites (JASS) for the ITER Project. The Assessment is part of the Negotiations process and is being conducted by an ad-hoc group of the Negotiators with representatives from Canada, the European Union, Japan and Russian Federation, supported by the ITER international team. The evaluation was conducted over four days through a series of visits to the site itself, a review of materials included in Canada's submission to host ITER, presentations from group leading Canada's offer and experts on specific aspects of the offer

  8. Site-specific parameter values for the Nuclear Regulatory Commission's food pathway dose model

    International Nuclear Information System (INIS)

    Hamby, D.M.

    1992-01-01

    Routine operations at the Savannah River Site (SRS) in Western South Carolina result in radionuclide releases to the atmosphere and to the Savannah River. The resulting radiation doses to the off-site maximum individual and the off-site population within 80 km of the SRS are estimated on a yearly basis. These estimates are currently generated using dose models prescribed for the commercial nuclear power industry by the Nuclear Regulatory Commission (NRC). The NRC provides default values for dose-model parameters for facilities without resources to develop site-specific values. A survey of land- and water-use characteristics for the Savannah River area has been conducted to determine site-specific values for water recreation, consumption, and agricultural parameters used in the NRC Regulatory Guide 1.109 (1977) dosimetric models. These site parameters include local characteristics of meat, milk, and vegetable production; recreational and commercial activities on the Savannah River; and meat, milk, vegetable, and seafood consumption rates. This paper describes how parameter data were obtained at the Savannah River Site and the impacts of such data on off-site dose. Dose estimates using site-specific parameter values are compared to estimates using the NRC default values

  9. Active site mutations change the cleavage specificity of neprilysin.

    Directory of Open Access Journals (Sweden)

    Travis Sexton

    Full Text Available Neprilysin (NEP, a member of the M13 subgroup of the zinc-dependent endopeptidase family is a membrane bound peptidase capable of cleaving a variety of physiological peptides. We have generated a series of neprilysin variants containing mutations at either one of two active site residues, Phe(563 and Ser(546. Among the mutants studied in detail we observed changes in their activity towards leucine(5-enkephalin, insulin B chain, and amyloid β(1-40. For example, NEP(F563I displayed an increase in preference towards cleaving leucine(5-enkephalin relative to insulin B chain, while mutant NEP(S546E was less discriminating than neprilysin. Mutants NEP(F563L and NEP(S546E exhibit different cleavage site preferences than neprilysin with insulin B chain and amyloid ß(1-40 as substrates. These data indicate that it is possible to alter the cleavage site specificity of neprilysin opening the way for the development of substrate specific or substrate exclusive forms of the enzyme with enhanced therapeutic potential.

  10. Site-Specific Bioorthogonal Labeling for Fluorescence Imaging of Intracellular Proteins in Living Cells.

    Science.gov (United States)

    Peng, Tao; Hang, Howard C

    2016-11-02

    Over the past years, fluorescent proteins (e.g., green fluorescent proteins) have been widely utilized to visualize recombinant protein expression and localization in live cells. Although powerful, fluorescent protein tags are limited by their relatively large sizes and potential perturbation to protein function. Alternatively, site-specific labeling of proteins with small-molecule organic fluorophores using bioorthogonal chemistry may provide a more precise and less perturbing method. This approach involves site-specific incorporation of unnatural amino acids (UAAs) into proteins via genetic code expansion, followed by bioorthogonal chemical labeling with small organic fluorophores in living cells. While this approach has been used to label extracellular proteins for live cell imaging studies, site-specific bioorthogonal labeling and fluorescence imaging of intracellular proteins in live cells is still challenging. Herein, we systematically evaluate site-specific incorporation of diastereomerically pure bioorthogonal UAAs bearing stained alkynes or alkenes into intracellular proteins for inverse-electron-demand Diels-Alder cycloaddition reactions with tetrazine-functionalized fluorophores for live cell labeling and imaging in mammalian cells. Our studies show that site-specific incorporation of axial diastereomer of trans-cyclooct-2-ene-lysine robustly affords highly efficient and specific bioorthogonal labeling with monosubstituted tetrazine fluorophores in live mammalian cells, which enabled us to image the intracellular localization and real-time dynamic trafficking of IFITM3, a small membrane-associated protein with only 137 amino acids, for the first time. Our optimized UAA incorporation and bioorthogonal labeling conditions also enabled efficient site-specific fluorescence labeling of other intracellular proteins for live cell imaging studies in mammalian cells.

  11. Microbial profile comparisons of saliva, pooled and site-specific subgingival samples in periodontitis patients.

    Directory of Open Access Journals (Sweden)

    Daniel Belstrøm

    Full Text Available The purpose of this study was to compare microbial profiles of saliva, pooled and site-specific subgingival samples in patients with periodontitis. We tested the hypotheses that saliva can be an alternative to pooled subgingival samples, when screening for presence of periopathogens.Site specific subgingival plaque samples (n = 54, pooled subgingival plaque samples (n = 18 and stimulated saliva samples (n = 18 were collected from 18 patients with generalized chronic periodontitis. Subgingival and salivary microbiotas were characterized by means of HOMINGS (Human Oral Microbe Identification using Next Generation Sequencing and microbial community profiles were compared using Spearman rank correlation coefficient.Pronounced intraindividual differences were recorded in site-specific microbial profiles, and site-specific information was in general not reflected by pooled subgingival samples. Presence of Porphyromonas gingivalis, Treponema denticola, Prevotella intermedia, Filifactor alocis, Tannerella forsythia and Parvimona micra in site-specific subgingival samples were detected in saliva with an AUC of 0.79 (sensitivity: 0.61, specificity: 0.94, compared to an AUC of 0.76 (sensitivity: 0.56, specificity: 0.94 in pooled subgingival samples.Site-specific presence of periodontal pathogens was detected with comparable accuracy in stimulated saliva samples and pooled subgingival plaque samples. Consequently, saliva may be a reasonable surrogate for pooled subgingival samples when screening for presence of periopathogens. Future large-scale studies are needed to confirm findings from this study.

  12. Optimization under Uncertainty of Site-Specific Turbine Configurations: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Quick, Julian; Dykes, Katherine; Graf, Peter; Zahle, Frederik

    2016-11-01

    Uncertainty affects many aspects of wind energy plant performance and cost. In this study, we explore opportunities for site-specific turbine configuration optimization that accounts for uncertainty in the wind resource. As a demonstration, a simple empirical model for wind plant cost of energy is used in an optimization under uncertainty to examine how different risk appetites affect the optimal selection of a turbine configuration for sites of different wind resource profiles. If there is unusually high uncertainty in the site wind resource, the optimal turbine configuration diverges from the deterministic case and a generally more conservative design is obtained with increasing risk aversion on the part of the designer.

  13. Determination of site-specific glycan heterogeneity on glycoproteins

    DEFF Research Database (Denmark)

    Kolarich, Daniel; Jensen, Pia Hønnerup; Altmann, Friedrich

    2012-01-01

    and the determination of site-specific glycan heterogeneity. The described workflow takes approximately 3-5 d, including sample preparation and data analysis. The data obtained from analyzing released glycans of rHuEPO and IgG, described in the second protocol of this series (10.1038/nprot.2012.063), provide...

  14. Identifying protein phosphorylation sites with kinase substrate specificity on human viruses.

    Directory of Open Access Journals (Sweden)

    Neil Arvin Bretaña

    Full Text Available Viruses infect humans and progress inside the body leading to various diseases and complications. The phosphorylation of viral proteins catalyzed by host kinases plays crucial regulatory roles in enhancing replication and inhibition of normal host-cell functions. Due to its biological importance, there is a desire to identify the protein phosphorylation sites on human viruses. However, the use of mass spectrometry-based experiments is proven to be expensive and labor-intensive. Furthermore, previous studies which have identified phosphorylation sites in human viruses do not include the investigation of the responsible kinases. Thus, we are motivated to propose a new method to identify protein phosphorylation sites with its kinase substrate specificity on human viruses. The experimentally verified phosphorylation data were extracted from virPTM--a database containing 301 experimentally verified phosphorylation data on 104 human kinase-phosphorylated virus proteins. In an attempt to investigate kinase substrate specificities in viral protein phosphorylation sites, maximal dependence decomposition (MDD is employed to cluster a large set of phosphorylation data into subgroups containing significantly conserved motifs. The experimental human phosphorylation sites are collected from Phospho.ELM, grouped according to its kinase annotation, and compared with the virus MDD clusters. This investigation identifies human kinases such as CK2, PKB, CDK, and MAPK as potential kinases for catalyzing virus protein substrates as confirmed by published literature. Profile hidden Markov model is then applied to learn a predictive model for each subgroup. A five-fold cross validation evaluation on the MDD-clustered HMMs yields an average accuracy of 84.93% for Serine, and 78.05% for Threonine. Furthermore, an independent testing data collected from UniProtKB and Phospho.ELM is used to make a comparison of predictive performance on three popular kinase-specific

  15. Identifying protein phosphorylation sites with kinase substrate specificity on human viruses.

    Science.gov (United States)

    Bretaña, Neil Arvin; Lu, Cheng-Tsung; Chiang, Chiu-Yun; Su, Min-Gang; Huang, Kai-Yao; Lee, Tzong-Yi; Weng, Shun-Long

    2012-01-01

    Viruses infect humans and progress inside the body leading to various diseases and complications. The phosphorylation of viral proteins catalyzed by host kinases plays crucial regulatory roles in enhancing replication and inhibition of normal host-cell functions. Due to its biological importance, there is a desire to identify the protein phosphorylation sites on human viruses. However, the use of mass spectrometry-based experiments is proven to be expensive and labor-intensive. Furthermore, previous studies which have identified phosphorylation sites in human viruses do not include the investigation of the responsible kinases. Thus, we are motivated to propose a new method to identify protein phosphorylation sites with its kinase substrate specificity on human viruses. The experimentally verified phosphorylation data were extracted from virPTM--a database containing 301 experimentally verified phosphorylation data on 104 human kinase-phosphorylated virus proteins. In an attempt to investigate kinase substrate specificities in viral protein phosphorylation sites, maximal dependence decomposition (MDD) is employed to cluster a large set of phosphorylation data into subgroups containing significantly conserved motifs. The experimental human phosphorylation sites are collected from Phospho.ELM, grouped according to its kinase annotation, and compared with the virus MDD clusters. This investigation identifies human kinases such as CK2, PKB, CDK, and MAPK as potential kinases for catalyzing virus protein substrates as confirmed by published literature. Profile hidden Markov model is then applied to learn a predictive model for each subgroup. A five-fold cross validation evaluation on the MDD-clustered HMMs yields an average accuracy of 84.93% for Serine, and 78.05% for Threonine. Furthermore, an independent testing data collected from UniProtKB and Phospho.ELM is used to make a comparison of predictive performance on three popular kinase-specific phosphorylation site

  16. Discovery of Nigri/nox and Panto/pox site-specific recombinase systems facilitates advanced genome engineering.

    Science.gov (United States)

    Karimova, Madina; Splith, Victoria; Karpinski, Janet; Pisabarro, M Teresa; Buchholz, Frank

    2016-07-22

    Precise genome engineering is instrumental for biomedical research and holds great promise for future therapeutic applications. Site-specific recombinases (SSRs) are valuable tools for genome engineering due to their exceptional ability to mediate precise excision, integration and inversion of genomic DNA in living systems. The ever-increasing complexity of genome manipulations and the desire to understand the DNA-binding specificity of these enzymes are driving efforts to identify novel SSR systems with unique properties. Here, we describe two novel tyrosine site-specific recombination systems designated Nigri/nox and Panto/pox. Nigri originates from Vibrio nigripulchritudo (plasmid VIBNI_pA) and recombines its target site nox with high efficiency and high target-site selectivity, without recombining target sites of the well established SSRs Cre, Dre, Vika and VCre. Panto, derived from Pantoea sp. aB, is less specific and in addition to its native target site, pox also recombines the target site for Dre recombinase, called rox. This relaxed specificity allowed the identification of residues that are involved in target site selectivity, thereby advancing our understanding of how SSRs recognize their respective DNA targets.

  17. Human AP Endonuclease 1: A Potential Marker for the Prediction of Environmental Carcinogenesis Risk

    Directory of Open Access Journals (Sweden)

    Jae Sung Park

    2014-01-01

    Full Text Available Human apurinic/apyrimidinic endonuclease 1 (APE1 functions mainly in DNA repair as an enzyme removing AP sites and in redox signaling as a coactivator of various transcription factors. Based on these multifunctions of APE1 within cells, numerous studies have reported that the alteration of APE1 could be a crucial factor in development of human diseases such as cancer and neurodegeneration. In fact, the study on the combination of an individual’s genetic make-up with environmental factors (gene-environment interaction is of great importance to understand the development of diseases, especially lethal diseases including cancer. Recent reports have suggested that the human carcinogenic risk following exposure to environmental toxicants is affected by APE1 alterations in terms of gene-environment interactions. In this review, we initially outline the critical APE1 functions in the various intracellular mechanisms including DNA repair and redox regulation and its roles in human diseases. Several findings demonstrate that the change in expression and activity as well as genetic variability of APE1 caused by environmental chemical (e.g., heavy metals and cigarette smoke and physical carcinogens (ultraviolet and ionizing radiation is likely associated with various cancers. These enable us to ultimately suggest APE1 as a vital marker for the prediction of environmental carcinogenesis risk.

  18. Restoration of ultraviolet-induced unscheduled DNA synthesis of xeroderma pigmentosum cells by the concomitant treatment with bacteriophage T4 endonuclease V and HVJ (Sendai virus)

    International Nuclear Information System (INIS)

    Tanaka, K.; Sekiguchi, M.; Okada, Y.

    1975-01-01

    Ultraviolet (uv)-induced unscheduled DNA synthesis of xeroderma pigmentosum cells, belonging to complementation groups, A, B, C, D, and E, was restored to the normal level by concomitant treatment of the cells with T4 endonuclease V and uv-inactivated HVJ (Sendai virus). The present results suggest that T4 endonuclease molecules were inserted effectively into the cells by the interaction of HVJ with the cell membranes, the enzyme was functional on human chromosomal DNA which had been damaged by uv irradiation in the viable cells, all the studied groups of xeroderma pigmentosum (variant was not tested) were defective in the first step (incision) of excision repair

  19. Site specific atomic polarizabilities in endohedral fullerenes and carbon onions

    Energy Technology Data Exchange (ETDEWEB)

    Zope, Rajendra R., E-mail: rzope@utep.edu; Baruah, Tunna [Department of Physics, The University of Texas at El Paso, El Paso, Texas 79958 (United States); Computational Science Program, The University of Texas at El Paso, El Paso, Texas 79958 (United States); Bhusal, Shusil; Basurto, Luis [Department of Physics, The University of Texas at El Paso, El Paso, Texas 79958 (United States); Jackson, Koblar [Physics Department and Science of Advanced Materials Ph.D. Program, Central Michigan University, Mt. Pleasant, Michigan 48859 (United States)

    2015-08-28

    We investigate the polarizability of trimetallic nitride endohedral fullerenes by partitioning the total polarizability into site specific components. This analysis indicates that the polarizability of the endohedral fullerene is essentially due to the outer fullerene cage and has insignificant contribution from the encapsulated unit. Thus, the outer fullerene cages effectively shield the encapsulated clusters and behave like Faraday cages. The polarizability of endohedral fullerenes is slightly smaller than the polarizability of the corresponding bare carbon fullerenes. The application of the site specific polarizabilities to C{sub 60}@C{sub 240} and C{sub 60}@C{sub 180} onions shows that, compared to the polarizability of isolated C{sub 60} fullerene, the encapsulation of the C{sub 60} in C{sub 240} and C{sub 180} fullerenes reduces its polarizability by 75% and 83%, respectively. The differences in the polarizability of C{sub 60} in the two onions is a result of differences in the bonding (intershell electron transfer), fullerene shell relaxations, and intershell separations. The site specific analysis further shows that the outer atoms in a fullerene shell contribute most to the fullerene polarizability.

  20. Site specific plan. [Environmental Restoration and Waste Management, Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Hutchison, J.; Jernigan, G.

    1989-12-01

    The Environmental Restoration and Waste Management Five-Year Plan (FYP) covers the period for FY 1989 through FY 1995. The plan establishes a Department of Energy -- Headquarters (DOE-HQ) agenda for cleanup and compliance against which overall progress can be measured. The FYP covers three areas: Corrective Activities, Environmental Restoration, and Waste Management Operations. Corrective Activities are those activities necessary to bring active or standby facilities into compliance with local, state, and federal environmental regulations. Environmental restoration activities include the assessment and cleanup of surplus facilities and inactive waste sites. Waste management operations includes the treatment, storage, and disposal of wastes which are generated as a result of ongoing operations. This Site Specific Plan (SSP) has been prepared by the Savannah River Site (SRS) in order to show how environmental restoration and waste management activities that were identified during the preparation of the FYP will be implemented, tracked, and reported. The SSP describes DOE Savannah River (DOE-SR) and operating contractor, Westinghouse Savannah River Company (WSRC), organizations that are responsible, for undertaking the activities identified in this plan. The SSP has been prepared in accordance with guidance received from DOE-HQ. DOE-SR is accountable to DOE-HQ for the implementation of this plan. 8 refs., 46 figs., 23 tabs.

  1. A Mismatch EndoNuclease Array-Based Methodology (MENA) for Identifying Known SNPs or Novel Point Mutations.

    Science.gov (United States)

    Comeron, Josep M; Reed, Jordan; Christie, Matthew; Jacobs, Julia S; Dierdorff, Jason; Eberl, Daniel F; Manak, J Robert

    2016-04-05

    Accurate and rapid identification or confirmation of single nucleotide polymorphisms (SNPs), point mutations and other human genomic variation facilitates understanding the genetic basis of disease. We have developed a new methodology (called MENA (Mismatch EndoNuclease Array)) pairing DNA mismatch endonuclease enzymology with tiling microarray hybridization in order to genotype both known point mutations (such as SNPs) as well as identify previously undiscovered point mutations and small indels. We show that our assay can rapidly genotype known SNPs in a human genomic DNA sample with 99% accuracy, in addition to identifying novel point mutations and small indels with a false discovery rate as low as 10%. Our technology provides a platform for a variety of applications, including: (1) genotyping known SNPs as well as confirming newly discovered SNPs from whole genome sequencing analyses; (2) identifying novel point mutations and indels in any genomic region from any organism for which genome sequence information is available; and (3) screening panels of genes associated with particular diseases and disorders in patient samples to identify causative mutations. As a proof of principle for using MENA to discover novel mutations, we report identification of a novel allele of the beethoven (btv) gene in Drosophila, which encodes a ciliary cytoplasmic dynein motor protein important for auditory mechanosensation.

  2. Site-Specific Modification Using the 2′-Methoxyethyl Group Improves the Specificity and Activity of siRNAs

    Directory of Open Access Journals (Sweden)

    Xinyun Song

    2017-12-01

    Full Text Available Rapid progress has been made toward small interfering RNA (siRNA-based therapy for human disorders, but rationally optimizing siRNAs for high specificity and potent silencing remains a challenge. In this study, we explored the effect of chemical modification at the cleavage site of siRNAs. We found that modifications at positions 9 and 10 markedly reduced the silencing potency of the unmodified strand of siRNAs but were well tolerated by the modified strand. Intriguingly, addition of the 2′-methoxyethyl (MOE group at the cleavage site improved both the specificity and silencing activity of siRNAs by facilitating the oriented RNA-induced silencing complex (RISC loading of the modified strand. Furthermore, we combined MOE modifications at positions 9 and 10 of one strand together with 2′-O-methylation (OMe at position 14 of the other strand and found a synergistic effect that improved the specificity of siRNAs. The surprisingly beneficial effect of the combined modification was validated using siRNA-targeting endogenous gene intercellular adhesion molecule 1 (ICAM1. We found that the combined modifications eliminated its off-target effects. In conclusion, we established effective strategies to optimize siRNAs using site-specific MOE modifications. The findings may allow the creation of superior siRNAs for therapy in terms of activity and specificity.

  3. Studies on the repair of damaged DNA in bacteriophage, bacterial and mammalian systems. Comprehensive report, 1 February 1981-15 September 1983

    International Nuclear Information System (INIS)

    Friedberg, E.C.

    1983-01-01

    We have explored the molecular mechanism of the repair of DNA at a number of different levels of biological organization, by investigating bacteriophage, bacterial, yeast and mammalian (including human) cells. We have demonstrated that uv endonuclease of phage T4 not only possesses pyrimidine dimer (PD)-DNA glycosylase activity but also apyrimidinic (AP) endonuclease activity. The demonstration of both activities provided an explanation for the specific endonucleosytic cleavage of DNA at sites of pyrimidine dimers catalyzed by this small protein. A new apurinic/apyrimidinic (AP) endonuclease, specific for sites of of base loss in single stranded DNA has been isolated from E. celi and presumably recognizes these lesions in single stranded regions of duplex DNA. We have partially purified this enzyme and have carried out a preliminary characterization of the activity. We treated xeroderma pigmentosum and normal cells with sodium butyrate in the hope of restoring normal levels of excision repair to the former. Although this result was not obtained, we established that all cells treated with sodium butyrate show enhanced levels of repair synthesis, thus providing a means for increasing the sensitivity of this commonly used technique for measuring DNA repair in mammalian cells in culture

  4. Cell-autonomous progeroid changes in conditional mouse models for repair endonuclease XPG deficiency.

    Directory of Open Access Journals (Sweden)

    Sander Barnhoorn

    2014-10-01

    Full Text Available As part of the Nucleotide Excision Repair (NER process, the endonuclease XPG is involved in repair of helix-distorting DNA lesions, but the protein has also been implicated in several other DNA repair systems, complicating genotype-phenotype relationship in XPG patients. Defects in XPG can cause either the cancer-prone condition xeroderma pigmentosum (XP alone, or XP combined with the severe neurodevelopmental disorder Cockayne Syndrome (CS, or the infantile lethal cerebro-oculo-facio-skeletal (COFS syndrome, characterized by dramatic growth failure, progressive neurodevelopmental abnormalities and greatly reduced life expectancy. Here, we present a novel (conditional Xpg-/- mouse model which -in a C57BL6/FVB F1 hybrid genetic background- displays many progeroid features, including cessation of growth, loss of subcutaneous fat, kyphosis, osteoporosis, retinal photoreceptor loss, liver aging, extensive neurodegeneration, and a short lifespan of 4-5 months. We show that deletion of XPG specifically in the liver reproduces the progeroid features in the liver, yet abolishes the effect on growth or lifespan. In addition, specific XPG deletion in neurons and glia of the forebrain creates a progressive neurodegenerative phenotype that shows many characteristics of human XPG deficiency. Our findings therefore exclude that both the liver as well as the neurological phenotype are a secondary consequence of derailment in other cell types, organs or tissues (e.g. vascular abnormalities and support a cell-autonomous origin caused by the DNA repair defect itself. In addition they allow the dissection of the complex aging process in tissue- and cell-type-specific components. Moreover, our data highlight the critical importance of genetic background in mouse aging studies, establish the Xpg-/- mouse as a valid model for the severe form of human XPG patients and segmental accelerated aging, and strengthen the link between DNA damage and aging.

  5. Generalized theory on the mechanism of site-specific DNA-protein interactions

    Science.gov (United States)

    Niranjani, G.; Murugan, R.

    2016-05-01

    We develop a generalized theoretical framework on the binding of transcription factor proteins (TFs) with specific sites on DNA that takes into account the interplay of various factors regarding overall electrostatic potential at the DNA-protein interface, occurrence of kinetic traps along the DNA sequence, presence of other roadblock protein molecules along DNA and crowded environment, conformational fluctuations in the DNA binding domains (DBDs) of TFs, and the conformational state of the DNA. Starting from a Smolochowski type theoretical framework on site-specific binding of TFs we logically build our model by adding the effects of these factors one by one. Our generalized two-step model suggests that the electrostatic attractive forces present inbetween the positively charged DBDs of TFs and the negatively charged phosphate backbone of DNA, along with the counteracting shielding effects of solvent ions, is the core factor that creates a fluidic type environment at the DNA-protein interface. This in turn facilitates various one-dimensional diffusion (1Dd) processes such as sliding, hopping and intersegmental transfers. These facilitating processes as well as flipping dynamics of conformational states of DBDs of TFs between stationary and mobile states can enhance the 1Dd coefficient on a par with three-dimensional diffusion (3Dd). The random coil conformation of DNA also plays critical roles in enhancing the site-specific association rate. The extent of enhancement over the 3Dd controlled rate seems to be directly proportional to the maximum possible 1Dd length. We show that the overall site-specific binding rate scales with the length of DNA in an asymptotic way. For relaxed DNA, the specific binding rate will be independent of the length of DNA as length increases towards infinity. For condensed DNA as in in vivo conditions, the specific binding rate depends on the length of DNA in a turnover way with a maximum. This maximum rate seems to scale with the

  6. A unique dual recognition hairpin probe mediated fluorescence amplification method for sensitive detection of uracil-DNA glycosylase and endonuclease IV activities.

    Science.gov (United States)

    Wu, Yushu; Yan, Ping; Xu, Xiaowen; Jiang, Wei

    2016-03-07

    Uracil-DNA glycosylase (UDG) and endonuclease IV (Endo IV) play cooperative roles in uracil base-excision repair (UBER) and inactivity of either will interrupt the UBER to cause disease. Detection of UDG and Endo IV activities is crucial to evaluate the UBER process in fundamental research and diagnostic application. Here, a unique dual recognition hairpin probe mediated fluorescence amplification method was developed for sensitively and selectively detecting UDG and Endo IV activities. For detecting UDG activity, the uracil base in the probe was excised by the target enzyme to generate an apurinic/apyrimidinic (AP) site, achieving the UDG recognition. Then, the AP site was cleaved by a tool enzyme Endo IV, releasing a primer to trigger rolling circle amplification (RCA) reaction. Finally, the RCA reaction produced numerous repeated G-quadruplex sequences, which interacted with N-methyl-mesoporphyrin IX to generate an enhanced fluorescence signal. Alternatively, for detecting Endo IV activity, the uracil base in the probe was first converted into an AP site by a tool enzyme UDG. Next, the AP site was cleaved by the target enzyme, achieving the Endo IV recognition. The signal was then generated and amplified in the same way as those in the UDG activity assay. The detection limits were as low as 0.00017 U mL(-1) for UDG and 0.11 U mL(-1) for Endo IV, respectively. Moreover, UDG and Endo IV can be well distinguished from their analogs. This method is beneficial for properly evaluating the UBER process in function studies and disease prognoses.

  7. Savannah River Site`s Site Specific Plan. Environmental restoration and waste management, fiscal year 1992

    Energy Technology Data Exchange (ETDEWEB)

    1991-08-01

    This Site Specific Plan (SSP) has been prepared by the Savannah River Site (SRS) in order to show the Environmental Restoration and Waste Management activities that were identified during the preparation of the Department of Energy-Headquarters (DOE-HQ) Environmental Restoration and Waste Management Five-Year Plan (FYP) for FY 1992--1996. The SSP has been prepared in accordance with guidance received from DOE-HQ. DOE-SR is accountable to DOE-HQ for the implementation of this plan. The purpose of the SSP is to develop a baseline for policy, budget, and schedules for the DOE Environmental Restoration and Waste Management activities. The plan explains accomplishments since the Fiscal Year (FY) 1990 plan, demonstrates how present and future activities are prioritized, identifies currently funded activities and activities that are planned to be funded in the upcoming fiscal year, and describes future activities that SRS is considering.

  8. Environmental transportation of tritium and estimation of site-specific model parameters for Kaiga site, India.

    Science.gov (United States)

    Reji, T K; Ravi, P M; Ajith, T L; Dileep, B N; Hegde, A G; Sarkar, P K

    2012-04-01

    Tritium content in air moisture, soil water, rain water and plant water samples collected around the Kaiga site, India was estimated and the scavenging ratio, wet deposition velocity and ratio of specific activities of tritium between soil water and air moisture were calculated and the results are interpreted. Scavenging ratio was found to vary from 0.06 to 1.04 with a mean of 0.46. The wet deposition velocity of tritium observed in the present study was in the range of 3.3E-03 to 1.1E-02 m s(-1) with a mean of 6.6E-03 m s(-1). The ratio of specific activity of tritium in soil moisture to that in air moisture ranged from 0.17 to 0.95 with a mean of 0.49. The specific activity of tritium in plant water in this study varied from 73 to 310 Bq l(-1). The present study is very useful for understanding the process and modelling of transfer of tritium through air/soil/plant system at the Kaiga site.

  9. Site-specific data confirm arsenic exposure predicted by the U.S. Environmental Protection Agency.

    OpenAIRE

    Walker, S; Griffin, S

    1998-01-01

    The EPA uses an exposure assessment model to estimate daily intake to chemicals of potential concern. At the Anaconda Superfund site in Montana, the EPA exposure assessment model was used to predict total and speciated urinary arsenic concentrations. Predicted concentrations were then compared to concentrations measured in children living near the site. When site-specific information on concentrations of arsenic in soil, interior dust, and diet, site-specific ingestion rates, and arsenic abso...

  10. Site-Specific Multilevel Modeling of Potato Response to Nitrogen Fertilization

    Directory of Open Access Journals (Sweden)

    Serge-Étienne Parent

    2017-12-01

    Full Text Available Technologies of precision agriculture, digital soil maps, and meteorological stations provide a minimum data set to guide precision farming operations. However, determining optimal nutrient requirements for potato (Solanum tuberosum L. crops at subfield scale remains a challenge given specific climatic, edaphic, and managerial conditions. Multilevel modeling can generalize yield response to fertilizer additions using data easily accessible to growers. Our objective was to elaborate a multilevel N fertilizer response model for potato crops using the Mitscherlich equation and a core data set of 93 N fertilizer trials conducted in Québec, Canada. Daily climatic data were collected at 10 × 10 km resolution. Soils were characterized by organic matter content, pH, and texture in the arable layer, and by texture and tools of pedometrics across a gleization-podzolization continuum in subsoil layers. There were five categories of preceding crops and five cultivar maturity orders. The three Mitscherlich parameters (Asymptote, Rate, and Environment were most often site-specific. Sensitivity analysis showed that optimum N dosage increased with non-leguminous high-residue preceding crops, coarser soils, podzolization, drier climatic condition, and late cultivar maturity. The inferential model could guide site-specific N fertilization using an accessible minimum data set to support fertilization decisions. As decision-support system, the model could also provide a range of optimum N doses across a large spectrum of site-specific conditions including climate change.

  11. Site Specific Probable Maximum Precipitation Estimates and Professional Judgement

    Science.gov (United States)

    Hayes, B. D.; Kao, S. C.; Kanney, J. F.; Quinlan, K. R.; DeNeale, S. T.

    2015-12-01

    State and federal regulatory authorities currently rely upon the US National Weather Service Hydrometeorological Reports (HMRs) to determine probable maximum precipitation (PMP) estimates (i.e., rainfall depths and durations) for estimating flooding hazards for relatively broad regions in the US. PMP estimates for the contributing watersheds upstream of vulnerable facilities are used to estimate riverine flooding hazards while site-specific estimates for small water sheds are appropriate for individual facilities such as nuclear power plants. The HMRs are often criticized due to their limitations on basin size, questionable applicability in regions affected by orographic effects, their lack of consist methods, and generally by their age. HMR-51 for generalized PMP estimates for the United States east of the 105th meridian, was published in 1978 and is sometimes perceived as overly conservative. The US Nuclear Regulatory Commission (NRC), is currently reviewing several flood hazard evaluation reports that rely on site specific PMP estimates that have been commercially developed. As such, NRC has recently investigated key areas of expert judgement via a generic audit and one in-depth site specific review as they relate to identifying and quantifying actual and potential storm moisture sources, determining storm transposition limits, and adjusting available moisture during storm transposition. Though much of the approach reviewed was considered a logical extension of HMRs, two key points of expert judgement stood out for further in-depth review. The first relates primarily to small storms and the use of a heuristic for storm representative dew point adjustment developed for the Electric Power Research Institute by North American Weather Consultants in 1993 in order to harmonize historic storms for which only 12 hour dew point data was available with more recent storms in a single database. The second issue relates to the use of climatological averages for spatially

  12. Evaluation of potential water conservation using site-specific irrigation

    Science.gov (United States)

    With the advent of site-specific variable-rate irrigation (VRI) systems, irrigation can be spatially managed within sub-field-sized zones. Spatial irrigation management can optimize spatial water use efficiency and may conserve water. Spatial VRI systems are currently being managed by consultants ...

  13. High-Affinity Quasi-Specific Sites in the Genome: How the DNA-Binding Proteins Cope with Them

    Science.gov (United States)

    Chakrabarti, J.; Chandra, Navin; Raha, Paromita; Roy, Siddhartha

    2011-01-01

    Many prokaryotic transcription factors home in on one or a few target sites in the presence of a huge number of nonspecific sites. Our analysis of λ-repressor in the Escherichia coli genome based on single basepair substitution experiments shows the presence of hundreds of sites having binding energy within 3 Kcal/mole of the OR1 binding energy, and thousands of sites with binding energy above the nonspecific binding energy. The effect of such sites on DNA-based processes has not been fully explored. The presence of such sites dramatically lowers the occupation probability of the specific site far more than if the genome were composed of nonspecific sites only. Our Brownian dynamics studies show that the presence of quasi-specific sites results in very significant kinetic effects as well. In contrast to λ-repressor, the E. coli genome has orders of magnitude lower quasi-specific sites for GalR, an integral transcription factor, thus causing little competition for the specific site. We propose that GalR and perhaps repressors of the same family have evolved binding modes that lead to much smaller numbers of quasi-specific sites to remove the untoward effects of genomic DNA. PMID:21889449

  14. LHRH-pituitary plasma membrane binding: the presence of specific binding sites in other tissues.

    Science.gov (United States)

    Marshall, J C; Shakespear, R A; Odell, W D

    1976-11-01

    Two specific binding sites for LHRH are present on plasma membranes prepared from rat and bovine anterior pituitary glands. One site is of high affinity (K = 2X108 1/MOL) and the second is of lower affinity (8-5X105 1/mol) and much greater capacity. Studies on membrane fractions prepared from other tissues showed the presence of a single specific site for LHRH. The kinetics and specificity of this site were similar to those of the lower affinity pituitary receptor. These results indicate that only pituitary membranes possess the higher affinity binding site and suggest that the low affinity site is not of physiological importance in the regulation of gonadotrophin secretion. After dissociation from membranes of non-pituitary tissues 125I-LHRH rebound to pituitary membrane preparations. Thus receptor binding per se does not result in degradation of LHRH and the function of these peripheral receptors remains obscure.

  15. Towards soft robotic devices for site-specific drug delivery.

    Science.gov (United States)

    Alici, Gursel

    2015-01-01

    Considerable research efforts have recently been dedicated to the establishment of various drug delivery systems (DDS) that are mechanical/physical, chemical and biological/molecular DDS. In this paper, we report on the recent advances in site-specific drug delivery (site-specific, controlled, targeted or smart drug delivery are terms used interchangeably in the literature, to mean to transport a drug or a therapeutic agent to a desired location within the body and release it as desired with negligibly small toxicity and side effect compared to classical drug administration means such as peroral, parenteral, transmucosal, topical and inhalation) based on mechanical/physical systems consisting of implantable and robotic drug delivery systems. While we specifically focus on the robotic or autonomous DDS, which can be reprogrammable and provide multiple doses of a drug at a required time and rate, we briefly cover the implanted DDS, which are well-developed relative to the robotic DDS, to highlight the design and performance requirements, and investigate issues associated with the robotic DDS. Critical research issues associated with both DDSs are presented to describe the research challenges ahead of us in order to establish soft robotic devices for clinical and biomedical applications.

  16. Position specific variation in the rate of evolution intranscription factor binding sites

    Energy Technology Data Exchange (ETDEWEB)

    Moses, Alan M.; Chiang, Derek Y.; Kellis, Manolis; Lander, EricS.; Eisen, Michael B.

    2003-08-28

    The binding sites of sequence specific transcription factors are an important and relatively well-understood class of functional non-coding DNAs. Although a wide variety of experimental and computational methods have been developed to characterize transcription factor binding sites, they remain difficult to identify. Comparison of non-coding DNA from related species has shown considerable promise in identifying these functional non-coding sequences, even though relatively little is known about their evolution. Here we analyze the genome sequences of the budding yeasts Saccharomyces cerevisiae, S. bayanus, S. paradoxus and S. mikataeto study the evolution of transcription factor binding sites. As expected, we find that both experimentally characterized and computationally predicted binding sites evolve slower than surrounding sequence, consistent with the hypothesis that they are under purifying selection. We also observe position-specific variation in the rate of evolution within binding sites. We find that the position-specific rate of evolution is positively correlated with degeneracy among binding sites within S. cerevisiae. We test theoretical predictions for the rate of evolution at positions where the base frequencies deviate from background due to purifying selection and find reasonable agreement with the observed rates of evolution. Finally, we show how the evolutionary characteristics of real binding motifs can be used to distinguish them from artifacts of computational motif finding algorithms. As has been observed for protein sequences, the rate of evolution in transcription factor binding sites varies with position, suggesting that some regions are under stronger functional constraint than others. This variation likely reflects the varying importance of different positions in the formation of the protein-DNA complex. The characterization of the pattern of evolution in known binding sites will likely contribute to the effective use of comparative

  17. Restriction endonucleases from invasive Neisseria gonorrhoeae cause double-strand breaks and distort mitosis in epithelial cells during infection.

    Directory of Open Access Journals (Sweden)

    Linda Weyler

    Full Text Available The host epithelium is both a barrier against, and the target for microbial infections. Maintaining regulated cell growth ensures an intact protective layer towards microbial-induced cellular damage. Neisseria gonorrhoeae infections disrupt host cell cycle regulation machinery and the infection causes DNA double strand breaks that delay progression through the G2/M phase. We show that intracellular gonococci upregulate and release restriction endonucleases that enter the nucleus and damage human chromosomal DNA. Bacterial lysates containing restriction endonucleases were able to fragment genomic DNA as detected by PFGE. Lysates were also microinjected into the cytoplasm of cells in interphase and after 20 h, DNA double strand breaks were identified by 53BP1 staining. In addition, by using live-cell microscopy and NHS-ester stained live gonococci we visualized the subcellular location of the bacteria upon mitosis. Infected cells show dysregulation of the spindle assembly checkpoint proteins MAD1 and MAD2, impaired and prolonged M-phase, nuclear swelling, micronuclei formation and chromosomal instability. These data highlight basic molecular functions of how gonococcal infections affect host cell cycle regulation, cause DNA double strand breaks and predispose cellular malignancies.

  18. Restriction endonucleases from invasive Neisseria gonorrhoeae cause double-strand breaks and distort mitosis in epithelial cells during infection.

    Science.gov (United States)

    Weyler, Linda; Engelbrecht, Mattias; Mata Forsberg, Manuel; Brehwens, Karl; Vare, Daniel; Vielfort, Katarina; Wojcik, Andrzej; Aro, Helena

    2014-01-01

    The host epithelium is both a barrier against, and the target for microbial infections. Maintaining regulated cell growth ensures an intact protective layer towards microbial-induced cellular damage. Neisseria gonorrhoeae infections disrupt host cell cycle regulation machinery and the infection causes DNA double strand breaks that delay progression through the G2/M phase. We show that intracellular gonococci upregulate and release restriction endonucleases that enter the nucleus and damage human chromosomal DNA. Bacterial lysates containing restriction endonucleases were able to fragment genomic DNA as detected by PFGE. Lysates were also microinjected into the cytoplasm of cells in interphase and after 20 h, DNA double strand breaks were identified by 53BP1 staining. In addition, by using live-cell microscopy and NHS-ester stained live gonococci we visualized the subcellular location of the bacteria upon mitosis. Infected cells show dysregulation of the spindle assembly checkpoint proteins MAD1 and MAD2, impaired and prolonged M-phase, nuclear swelling, micronuclei formation and chromosomal instability. These data highlight basic molecular functions of how gonococcal infections affect host cell cycle regulation, cause DNA double strand breaks and predispose cellular malignancies.

  19. 30 CFR 46.11 - Site-specific hazard awareness training.

    Science.gov (United States)

    2010-07-01

    ... Section 46.11 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR EDUCATION AND... workers; (4) Customers, including commercial over-the-road truck drivers; (5) Construction workers or... procedures. The training must address site-specific health and safety risks, such as unique geologic or...

  20. Site-specific identification of heparan and chondroitin sulfate glycosaminoglycans in hybrid proteoglycans.

    Science.gov (United States)

    Noborn, Fredrik; Gomez Toledo, Alejandro; Green, Anders; Nasir, Waqas; Sihlbom, Carina; Nilsson, Jonas; Larson, Göran

    2016-10-03

    Heparan sulfate (HS) and chondroitin sulfate (CS) are complex polysaccharides that regulate important biological pathways in virtually all metazoan organisms. The polysaccharides often display opposite effects on cell functions with HS and CS structural motifs presenting unique binding sites for specific ligands. Still, the mechanisms by which glycan biosynthesis generates complex HS and CS polysaccharides required for the regulation of mammalian physiology remain elusive. Here we present a glycoproteomic approach that identifies and differentiates between HS and CS attachment sites and provides identity to the core proteins. Glycopeptides were prepared from perlecan, a complex proteoglycan known to be substituted with both HS and CS chains, further digested with heparinase or chondroitinase ABC to reduce the HS and CS chain lengths respectively, and thereafter analyzed by nLC-MS/MS. This protocol enabled the identification of three consensus HS sites and one hybrid site, carrying either a HS or a CS chain. Inspection of the amino acid sequence at the hybrid attachment locus indicates that certain peptide motifs may encode for the chain type selection process. This analytical approach will become useful when addressing fundamental questions in basic biology specifically in elucidating the functional roles of site-specific glycosylations of proteoglycans.

  1. Improving Site-Specific Radiological Performance Assessments - 13431

    Energy Technology Data Exchange (ETDEWEB)

    Tauxe, John; Black, Paul; Catlett, Kate; Lee, Robert; Perona, Ralph; Stockton, Tom; Sully, Mike [Neptune and Company, Inc., Los Alamos, New Mexico 87544 (United States)

    2013-07-01

    An improved approach is presented for conducting complete and defensible radiological site-specific performance assessments (PAs) to support radioactive waste disposal decisions. The basic tenets of PA were initiated some thirty years ago, focusing on geologic disposals and evaluating compliance with regulations. Some of these regulations were inherently probabilistic (i.e., addressing uncertainty in a quantitative fashion), such as the containment requirements of the U.S. Environmental Protection Agency's (EPA's) 40 CFR 191, Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes, Chap. 191.13 [1]. Methods of analysis were developed to meet those requirements, but at their core early PAs used 'conservative' parameter values and modeling approaches. This limited the utility of such PAs to compliance evaluation, and did little to inform decisions about optimizing disposal, closure and long-term monitoring and maintenance, or, in general, maintaining doses 'as low as reasonably achievable' (ALARA). This basic approach to PA development in the United States was employed essentially unchanged through the end of the 20. century, principally by the U.S. Department of Energy (DOE). Performance assessments developed in support of private radioactive waste disposal operations, regulated by the U.S. Nuclear Regulatory Commission (NRC) and its agreement states, were typically not as sophisticated. Discussion of new approaches to PA is timely, since at the time of this writing, the DOE is in the midst of revising its Order 435.1, Radioactive Waste Management [2], and the NRC is revising 10 CFR 61, Licensing Requirements for Land Disposal of Radioactive Waste [3]. Over the previous decade, theoretical developments and improved computational technology have provided the foundation for integrating decision analysis (DA) concepts and objective-focused thinking, plus

  2. Improving Site-Specific Radiological Performance Assessments - 13431

    International Nuclear Information System (INIS)

    Tauxe, John; Black, Paul; Catlett, Kate; Lee, Robert; Perona, Ralph; Stockton, Tom; Sully, Mike

    2013-01-01

    An improved approach is presented for conducting complete and defensible radiological site-specific performance assessments (PAs) to support radioactive waste disposal decisions. The basic tenets of PA were initiated some thirty years ago, focusing on geologic disposals and evaluating compliance with regulations. Some of these regulations were inherently probabilistic (i.e., addressing uncertainty in a quantitative fashion), such as the containment requirements of the U.S. Environmental Protection Agency's (EPA's) 40 CFR 191, Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes, Chap. 191.13 [1]. Methods of analysis were developed to meet those requirements, but at their core early PAs used 'conservative' parameter values and modeling approaches. This limited the utility of such PAs to compliance evaluation, and did little to inform decisions about optimizing disposal, closure and long-term monitoring and maintenance, or, in general, maintaining doses 'as low as reasonably achievable' (ALARA). This basic approach to PA development in the United States was employed essentially unchanged through the end of the 20. century, principally by the U.S. Department of Energy (DOE). Performance assessments developed in support of private radioactive waste disposal operations, regulated by the U.S. Nuclear Regulatory Commission (NRC) and its agreement states, were typically not as sophisticated. Discussion of new approaches to PA is timely, since at the time of this writing, the DOE is in the midst of revising its Order 435.1, Radioactive Waste Management [2], and the NRC is revising 10 CFR 61, Licensing Requirements for Land Disposal of Radioactive Waste [3]. Over the previous decade, theoretical developments and improved computational technology have provided the foundation for integrating decision analysis (DA) concepts and objective-focused thinking, plus a Bayesian approach to

  3. Demonstration of specific binding sites for 3H-RRR-alpha-tocopherol on human erythrocytes

    International Nuclear Information System (INIS)

    Kitabchi, A.E.; Wimalasena, J.

    1982-01-01

    Previous work from our laboratory demonstrated specific binding sites for 3 H-RRR-alpha-tocopherol ( 3 H-d alpha T) in membranes of rat adrenal cells. As tocopherol deficiency is associated with increased susceptibility of red blood cells to hemolysis, we investigated tocopherol binding sites in human RBCs. Erythrocytes were found to have specific binding sites for 3 H-d alpha T that exhibited saturability and time and cell-concentration dependence as well as reversibility of binding. Kinetic studies of binding demonstrated two binding sites--one with high affinity (Ka of 2.6 x 10(7) M-1), low capacity (7,600 sites per cell) and the other with low affinity (1.2 x 10(6) M-1), high capacity (150,000 sites per cell). In order to localize the binding sites further, RBCs were fractionated and greater than 90% of the tocopherol binding was located in the membranes. Similar to the findings in intact RBCs, the membranes exhibited two binding sites with a respective Ka of 3.3 x 10(7) M-1 and 1.5 x 10(6) M-1. Specificity data for binding demonstrated 10% binding for RRR-gamma-tocopherol, but not other tocopherol analog exhibited competition for 3 H-d alpha T binding sites. Instability data suggested a protein nature for these binding sites. Preliminary studies on Triton X-100 solubilized fractions resolved the binding sites to a major component with an Mr of 65,000 and a minor component with an Mr of 125,000. We conclude that human erythrocyte membranes contain specific binding sites for RRR-alpha-tocopherol. These sites may be of physiologic significance in the function of tocopherol on the red blood cell membrane

  4. Site-specific variability of loess and palaeosols (Ruma, Vojvodina, northern Serbia)

    NARCIS (Netherlands)

    Vandenberghe, J.; Markovic, S.B.; Jovanovic, M.; Hambach, U.

    2013-01-01

    The study of temporal variations in soil intensity has mostly been limited to specific sites. However, it is important for correctly interpreting the stratigraphy and palaeoclimatic significance of loess and palaeosols series to understand the reasons for the spatial variability. More specifically,

  5. Appreciating "Thirdspace": An Alternative Way of Viewing and Valuing Site-Specific Dance Performance

    Science.gov (United States)

    Munjee, Tara

    2014-01-01

    Site-specific dance performance involves the presentation of choreography in connection with a site. The context of the site combined with a viewer's personal history, beliefs, and identity impact the reading and appreciation of the performance. Although both stage and site dance performance valuing elicit multiple interpretations of artistic…

  6. A Molecular Toolbox to Engineer Site-Specific DNA Replication Perturbation.

    Science.gov (United States)

    Larsen, Nicolai B; Hickson, Ian D; Mankouri, Hocine W

    2018-01-01

    Site-specific arrest of DNA replication is a useful tool for analyzing cellular responses to DNA replication perturbation. The E. coli Tus-Ter replication barrier can be reconstituted in eukaryotic cells as a system to engineer an unscheduled collision between a replication fork and an "alien" impediment to DNA replication. To further develop this system as a versatile tool, we describe a set of reagents and a detailed protocol that can be used to engineer Tus-Ter barriers into any locus in the budding yeast genome. Because the Tus-Ter complex is a bipartite system with intrinsic DNA replication-blocking activity, the reagents and protocols developed and validated in yeast could also be optimized to engineer site-specific replication fork barriers into other eukaryotic cell types.

  7. A Molecular Toolbox to Engineer Site-Specific DNA Replication Perturbation

    DEFF Research Database (Denmark)

    Larsen, Nicolai B; Hickson, Ian D; Mankouri, Hocine W

    2018-01-01

    " impediment to DNA replication. To further develop this system as a versatile tool, we describe a set of reagents and a detailed protocol that can be used to engineer Tus-Ter barriers into any locus in the budding yeast genome. Because the Tus-Ter complex is a bipartite system with intrinsic DNA replication......Site-specific arrest of DNA replication is a useful tool for analyzing cellular responses to DNA replication perturbation. The E. coli Tus-Ter replication barrier can be reconstituted in eukaryotic cells as a system to engineer an unscheduled collision between a replication fork and an "alien......-blocking activity, the reagents and protocols developed and validated in yeast could also be optimized to engineer site-specific replication fork barriers into other eukaryotic cell types....

  8. Versatile and Efficient Site-Specific Protein Functionalization by Tubulin Tyrosine Ligase.

    Science.gov (United States)

    Schumacher, Dominik; Helma, Jonas; Mann, Florian A; Pichler, Garwin; Natale, Francesco; Krause, Eberhard; Cardoso, M Cristina; Hackenberger, Christian P R; Leonhardt, Heinrich

    2015-11-09

    A novel chemoenzymatic approach for simple and fast site-specific protein labeling is reported. Recombinant tubulin tyrosine ligase (TTL) was repurposed to attach various unnatural tyrosine derivatives as small bioorthogonal handles to proteins containing a short tubulin-derived recognition sequence (Tub-tag). This novel strategy enables a broad range of high-yielding and fast chemoselective C-terminal protein modifications on isolated proteins or in cell lysates for applications in biochemistry, cell biology, and beyond, as demonstrated by the site-specific labeling of nanobodies, GFP, and ubiquitin. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Detection of site specific glycosylation in proteins using flow cytometry†

    Science.gov (United States)

    Jayakumar, Deepak; Marathe, Dhananjay D.; Neelamegham, Sriram

    2009-01-01

    We tested the possibility that it is possible to express unique peptide probes on cell surfaces and detect site-specific glycosylation on these peptides using flow cytometry. Such development can enhance the application of flow cytometry to detect and quantify post-translational modifications in proteins. To this end, the N-terminal section of the human leukocyte glycoprotein PSGL-1 (P-selectin glycoprotein ligand-1) was modified to contain a poly-histidine tag followed by a proteolytic cleavage site. Amino acids preceding the cleavage site have a single O-linked glycosylation site. The recombinant protein called PSGL-1 (HT) was expressed on the surface of two mammalian cell lines, CHO and HL-60, using a lentiviral delivery approach. Results demonstrate that the N-terminal portion of PSGL-1 (HT) can be released from these cells by protease, and the resulting peptide can be readily captured and detected using cytometry-bead assays. Using this strategy, the peptide was immunoprecipitated onto beads bearing mAbs against either the poly-histidine sequence or the human PSGL-1. The carbohydrate epitope associated with the released peptide was detected using HECA-452 and CSLEX-1, monoclonal antibodies that recognize the sialyl Lewis-X epitope. Finally, the peptide released from cells could be separated and enriched using nickel chelate beads. Overall, such an approach that combines recombinant protein expression with flow cytometry, may be useful to quantify changes in site-specific glycosylation for basic science and clinical applications. PMID:19735085

  10. 40 CFR 228.6 - Specific criteria for site selection.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Specific criteria for site selection. 228.6 Section 228.6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN..., nursery, feeding, or passage areas of living resources in adult or -juvenile phases; (3) Location in...

  11. Template-directed addition of nucleosides to DNA by the BfiI restriction enzyme

    OpenAIRE

    Sasnauskas, Giedrius; Connolly, Bernard A.; Halford, Stephen E.; Siksnys, Virginijus

    2008-01-01

    Restriction endonucleases catalyse DNA cleavage at specific sites. The BfiI endonuclease cuts DNA to give staggered ends with 1-nt 3′-extensions. We show here that BfiI can also fill in the staggered ends: while cleaving DNA, it can add a 2′-deoxynucleoside to the reaction product to yield directly a blunt-ended DNA. We propose that nucleoside incorporation proceeds through a two-step reaction, in which BfiI first cleaves the DNA to make a covalent enzyme–DNA intermediate and then resolves it...

  12. Construction of physical and genetic maps of Chlamydia trachomatis serovar L2 by pulsed-field gel electrophoresis

    DEFF Research Database (Denmark)

    Birkelund, Svend; Stephens, RS

    1992-01-01

    We constructed the physical map of Chlamydia trachomatis serovar L2 by using three restriction endonucleases, NotI (GC[GGCCGC), SgrAI (C(A/G)[CCGG(T/G)G), and Sse8387I (CCTGCA[GG), and we analyzed the fragments by pulsed-field gel electrophoresis. A total of 25 restriction endonuclease sites and 13...... genes and/or operons were located on the map. The genome size was determined to be 1,045 kb. Neither highly transcribed chlamydia genes nor developmental cycle-specific genes were clustered on the genome....

  13. Site-specific calibration of the Hanford personnel neutron dosimeter

    International Nuclear Information System (INIS)

    Endres, A.W.; Brackenbush, L.W.; Baumgartner, W.V.; Rathbone, B.A.

    1994-10-01

    A new personnel dosimetry system, employing a standard Hanford thermoluminescent dosimeter (TLD) and a combination dosimeter with both CR-39 nuclear track and TLD-albedo elements, is being implemented at Hanford. Measurements were made in workplace environments in order to verify the accuracy of the system and establish site-specific factors to account for the differences in dosimeter response between the workplace and calibration laboratory. Neutron measurements were performed using sources at Hanford's Plutonium Finishing Plant under high-scatter conditions to calibrate the new neutron dosimeter design to site-specific neutron spectra. The dosimeter was also calibrated using bare and moderated 252 Cf sources under low-scatter conditions available in the Hanford Calibration Laboratory. Dose equivalent rates in the workplace were calculated from spectrometer measurements using tissue equivalent proportional counter (TEPC) and multisphere spectrometers. The accuracy of the spectrometers was verified by measurements on neutron sources with calibrations directly traceable to the National Institute of Standards and Technology (NIST)

  14. DNA-tension dependence of restriction enzyme activity reveals mechanochemical properties of the reaction pathway

    NARCIS (Netherlands)

    van den Broek, B.; Noom, M.C.; Wuite, G.J.L.

    2005-01-01

    Type II restriction endonucleases protect bacteria against phage infections by cleaving recognition sites on foreign double-stranded DNA (dsDNA) with extraordinary specificity. This capability arises primarily from large conformational changes in enzyme and/or DNA upon target sequence recognition.

  15. Combining specificity determining and conserved residues improves functional site prediction

    Directory of Open Access Journals (Sweden)

    Gelfand Mikhail S

    2009-06-01

    Full Text Available Abstract Background Predicting the location of functionally important sites from protein sequence and/or structure is a long-standing problem in computational biology. Most current approaches make use of sequence conservation, assuming that amino acid residues conserved within a protein family are most likely to be functionally important. Most often these approaches do not consider many residues that act to define specific sub-functions within a family, or they make no distinction between residues important for function and those more relevant for maintaining structure (e.g. in the hydrophobic core. Many protein families bind and/or act on a variety of ligands, meaning that conserved residues often only bind a common ligand sub-structure or perform general catalytic activities. Results Here we present a novel method for functional site prediction based on identification of conserved positions, as well as those responsible for determining ligand specificity. We define Specificity-Determining Positions (SDPs, as those occupied by conserved residues within sub-groups of proteins in a family having a common specificity, but differ between groups, and are thus likely to account for specific recognition events. We benchmark the approach on enzyme families of known 3D structure with bound substrates, and find that in nearly all families residues predicted by SDPsite are in contact with the bound substrate, and that the addition of SDPs significantly improves functional site prediction accuracy. We apply SDPsite to various families of proteins containing known three-dimensional structures, but lacking clear functional annotations, and discusse several illustrative examples. Conclusion The results suggest a better means to predict functional details for the thousands of protein structures determined prior to a clear understanding of molecular function.

  16. Using Group II Introns for Attenuating the In Vitro and In Vivo Expression of a Homing Endonuclease.

    Directory of Open Access Journals (Sweden)

    Tuhin Kumar Guha

    Full Text Available In Chaetomium thermophilum (DSM 1495 within the mitochondrial DNA (mtDNA small ribosomal subunit (rns gene a group IIA1 intron interrupts an open reading frame (ORF encoded within a group I intron (mS1247. This arrangement offers the opportunity to examine if the nested group II intron could be utilized as a regulatory element for the expression of the homing endonuclease (HEase. Constructs were generated where the codon-optimized ORF was interrupted with either the native group IIA1 intron or a group IIB type intron. This study showed that the expression of the HEase (in vivo in Escherichia coli can be regulated by manipulating the splicing efficiency of the HEase ORF-embedded group II introns. Exogenous magnesium chloride (MgCl2 stimulated the expression of a functional HEase but the addition of cobalt chloride (CoCl2 to growth media antagonized the expression of HEase activity. Ultimately the ability to attenuate HEase activity might be useful in precision genome engineering, minimizing off target activities, or where pathways have to be altered during a specific growth phase.

  17. Risk-based technical specifications program: Site interview results

    International Nuclear Information System (INIS)

    Andre, G.R.; Baker, A.J.; Johnson, R.L.

    1991-08-01

    The Electric Power Research Institute and Pacific Gas and Electric Company are sponsoring a program directed at improving Technical Specifications using risk-based methods. The major objectives of the program are to develop risk-based approaches to improve Technical Specifications and to develop an Interactive Risk Advisor (IRA) prototype. The IRA is envisioned as an interactive system that is available to plant personnel to assist in controlling plant operation. Use of an IRA is viewed as a method to improve plant availability while maintaining or improving plant safety. In support of the program, interviews were conducted at several PWR and BWR plant sites, to elicit opinions and information concerning risk-based approaches to Technical Specifications and IRA requirements. This report presents the results of these interviews, including the functional requirements of an IRA. 2 refs., 6 figs., 2 tabs

  18. Optimising homing endonuclease gene drive performance in a semi-refractory species: the Drosophila melanogaster experience.

    Directory of Open Access Journals (Sweden)

    Yuk-Sang Chan

    Full Text Available Homing endonuclease gene (HEG drive is a promising insect population control technique that employs meganucleases to impair the fitness of pest populations. Our previous studies showed that HEG drive was more difficult to achieve in Drosophila melanogaster than Anopheles gambiae and we therefore investigated ways of improving homing performance in Drosophila. We show that homing in Drosophila responds to increased expression of HEGs specifically during the spermatogonia stage and this could be achieved through improved construct design. We found that 3'-UTR choice was important to maximise expression levels, with HEG activity increasing as we employed Hsp70, SV40, vasa and βTub56D derived UTRs. We also searched for spermatogonium-specific promoters and found that the Rcd-1r promoter was able to drive specific expression at this stage. Since Rcd-1 is a regulator of differentiation in other species, it suggests that Rcd-1r may serve a similar role during spermatogonial differentiation in Drosophila. Contrary to expectations, a fragment containing the entire region between the TBPH gene and the bgcn translational start drove strong HEG expression only during late spermatogenesis rather than in the germline stem cells and spermatogonia as expected. We also observed that the fraction of targets undergoing homing was temperature-sensitive, falling nearly four-fold when the temperature was lowered to 18°C. Taken together, this study demonstrates how a few simple measures can lead to substantial improvements in the HEG-based gene drive strategy and reinforce the idea that the HEG approach may be widely applicable to a variety of insect control programs.

  19. DAFS study of site-specific local structure of Mn in manganese ferrite films

    International Nuclear Information System (INIS)

    Kravtsov, E.; Haskel, D.; Cady, A.; Yang, A.; Vittoria, C.; Zuo, X.; Harris, V.G.

    2006-01-01

    Manganese ferrite (MnFe 2 O 4 ) is a well-known magnetic material widely used in electronics for many years. It is well established that its magnetic behavior is strongly influenced by local structural properties of Mn ions, which are distributed between crystallographically inequivalent tetrahedral and octahedral sites in the unit cell. In order to understand and be able to tune properties of these structures, it is necessary to have detailed site-specific structural information on the system. Here we report on the application of diffraction-anomalous fine structure (DAFS) spectroscopy to resolve site-specific Mn local structures in manganese ferrite films. The DAFS measurements were done at undulator beamline 4-ID-D of the Advanced Photon Source at Argonne National Laboratory. The DAFS spectra (Fig. 1) were measured at several Bragg reflections in the vicinity of the Mn absorption K-edge, having probed separately contributions from tetrahedrally and octahedrally coordinated Mn sites. The DAFS data analysis done with an iterative Kramers-Kroenig algorithm made it possible to solve separately the local structure around different inequivalent Mn sites in the unit cell. The reliability of the data treatment was checked carefully, and it was showed that the site-specific structural parameters obtained with DAFS allow us to describe fluorescence EXAFS spectrum measured independently. Fig. 2 shows individual site contributions to the imaginary part of the resonant scattering amplitude obtained from the treatment of the data of Fig. 1. The analysis of the refined site-specific absorption spectra was done using EXAFS methods based on theoretical standards. We provided direct evidence for the tetrahedral Mn-O bond distance being increased relative to the corresponding Fe-O distance in bulk manganese ferrites. The first coordination shell number was found to be reduced significantly for Mn atoms at these sites. This finding is consistent with the well-known tendency of Mn

  20. A method to determine site-specific, anisotropic fracture toughness in biological materials

    International Nuclear Information System (INIS)

    Bechtle, Sabine; Özcoban, Hüseyin; Yilmaz, Ezgi D.; Fett, Theo; Rizzi, Gabriele; Lilleodden, Erica T.; Huber, Norbert; Schreyer, Andreas; Swain, Michael V.; Schneider, Gerold A.

    2012-01-01

    Many biological materials are hierarchically structured, with highly anisotropic structures and properties on several length scales. To characterize the mechanical properties of such materials, detailed testing methods are required that allow precise and site-specific measurements on several length scales. We propose a fracture toughness measurement technique based on notched focused ion beam prepared cantilevers of lower and medium micron size scales. Using this approach, site-specific fracture toughness values in dental enamel were determined. The usefulness and challenges of the method are discussed.

  1. A systematic identification of species-specific protein succinylation sites using joint element features information

    Directory of Open Access Journals (Sweden)

    Hasan MM

    2017-08-01

    Full Text Available Md Mehedi Hasan,1 Mst Shamima Khatun,2 Md Nurul Haque Mollah,2 Cao Yong,3 Dianjing Guo1 1School of Life Sciences and the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territory, Hong Kong, People’s Republic of China; 2Laboratory of Bioinformatics, Department of Statistics, University of Rajshahi, Rajshahi, Bangladesh; 3Department of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen Graduate School, Shenzhen, People’s Republic of China Abstract: Lysine succinylation, an important type of protein posttranslational modification, plays significant roles in many cellular processes. Accurate identification of succinylation sites can facilitate our understanding about the molecular mechanism and potential roles of lysine succinylation. However, even in well-studied systems, a majority of the succinylation sites remain undetected because the traditional experimental approaches to succinylation site identification are often costly, time-consuming, and laborious. In silico approach, on the other hand, is potentially an alternative strategy to predict succinylation substrates. In this paper, a novel computational predictor SuccinSite2.0 was developed for predicting generic and species-specific protein succinylation sites. This predictor takes the composition of profile-based amino acid and orthogonal binary features, which were used to train a random forest classifier. We demonstrated that the proposed SuccinSite2.0 predictor outperformed other currently existing implementations on a complementarily independent dataset. Furthermore, the important features that make visible contributions to species-specific and cross-species-specific prediction of protein succinylation site were analyzed. The proposed predictor is anticipated to be a useful computational resource for lysine succinylation site prediction. The integrated species-specific online tool of SuccinSite2.0 is publicly

  2. Complex group-I introns in nuclear SSU rDNA of red and green algae: evidence of homing-endonuclease pseudogenes in the Bangiophyceae

    DEFF Research Database (Denmark)

    Haugen, P; Huss, V A; Nielsen, Henrik

    1999-01-01

    on the complementary strand. A comparison between related group-I introns in the Bangiophyceae revealed homing-endonuclease-like pseudogenes due to frame-shifts and deletions in Porphyra and Bangia. The Scenedesmus and Porphyra introns provide new insights into the evolution and possible novel functions of nuclear...

  3. Methylated site display (MSD)-AFLP, a sensitive and affordable method for analysis of CpG methylation profiles.

    Science.gov (United States)

    Aiba, Toshiki; Saito, Toshiyuki; Hayashi, Akiko; Sato, Shinji; Yunokawa, Harunobu; Maruyama, Toru; Fujibuchi, Wataru; Kurita, Hisaka; Tohyama, Chiharu; Ohsako, Seiichiroh

    2017-03-09

    It has been pointed out that environmental factors or chemicals can cause diseases that are developmental in origin. To detect abnormal epigenetic alterations in DNA methylation, convenient and cost-effective methods are required for such research, in which multiple samples are processed simultaneously. We here present methylated site display (MSD), a unique technique for the preparation of DNA libraries. By combining it with amplified fragment length polymorphism (AFLP) analysis, we developed a new method, MSD-AFLP. Methylated site display libraries consist of only DNAs derived from DNA fragments that are CpG methylated at the 5' end in the original genomic DNA sample. To test the effectiveness of this method, CpG methylation levels in liver, kidney, and hippocampal tissues of mice were compared to examine if MSD-AFLP can detect subtle differences in the levels of tissue-specific differentially methylated CpGs. As a result, many CpG sites suspected to be tissue-specific differentially methylated were detected. Nucleotide sequences adjacent to these methyl-CpG sites were identified and we determined the methylation level by methylation-sensitive restriction endonuclease (MSRE)-PCR analysis to confirm the accuracy of AFLP analysis. The differences of the methylation level among tissues were almost identical among these methods. By MSD-AFLP analysis, we detected many CpGs showing less than 5% statistically significant tissue-specific difference and less than 10% degree of variability. Additionally, MSD-AFLP analysis could be used to identify CpG methylation sites in other organisms including humans. MSD-AFLP analysis can potentially be used to measure slight changes in CpG methylation level. Regarding the remarkable precision, sensitivity, and throughput of MSD-AFLP analysis studies, this method will be advantageous in a variety of epigenetics-based research.

  4. Stereospecific suppression of active site mutants by methylphosphonate substituted substrates reveals the stereochemical course of site-specific DNA recombination

    OpenAIRE

    Rowley, Paul A.; Kachroo, Aashiq H.; Ma, Chien-Hui; Maciaszek, Anna D.; Guga, Piotr; Jayaram, Makkuni

    2015-01-01

    Tyrosine site-specific recombinases, which promote one class of biologically important phosphoryl transfer reactions in DNA, exemplify active site mechanisms for stabilizing the phosphate transition state. A highly conserved arginine duo (Arg-I; Arg-II) of the recombinase active site plays a crucial role in this function. Cre and Flp recombinase mutants lacking either arginine can be rescued by compensatory charge neutralization of the scissile phosphate via methylphosphonate (MeP) modificati...

  5. Site-specific DNA Inversion by Serine Recombinases

    Science.gov (United States)

    2015-01-01

    Reversible site-specific DNA inversion reactions are widely distributed in bacteria and their viruses. They control a range of biological reactions that most often involve alterations of molecules on the surface of cells or phage. These programmed DNA rearrangements usually occur at a low frequency, thereby preadapting a small subset of the population to a change in environmental conditions, or in the case of phages, an expanded host range. A dedicated recombinase, sometimes with the aid of additional regulatory or DNA architectural proteins, catalyzes the inversion of DNA. RecA or other components of the general recombination-repair machinery are not involved. This chapter discusses site-specific DNA inversion reactions mediated by the serine recombinase family of enzymes and focuses on the extensively studied serine DNA invertases that are stringently controlled by the Fis-bound enhancer regulatory system. The first section summarizes biological features and general properties of inversion reactions by the Fis/enhancer-dependent serine invertases and the recently described serine DNA invertases in Bacteroides. Mechanistic studies of reactions catalyzed by the Hin and Gin invertases are then discussed in more depth, particularly with regards to recent advances in our understanding of the function of the Fis/enhancer regulatory system, the assembly of the active recombination complex (invertasome) containing the Fis/enhancer, and the process of DNA strand exchange by rotation of synapsed subunit pairs within the invertasome. The role of DNA topological forces that function in concert with the Fis/enhancer controlling element in specifying the overwhelming bias for DNA inversion over deletion and intermolecular recombination is emphasized. PMID:25844275

  6. Occurrence and elimination of sites sensitive to UV-endonuclease in UV-irradiated E. coli cells

    Energy Technology Data Exchange (ETDEWEB)

    Kleibl, K; Sedliakova, M [Slovenska Akademia Vied, Bratislava (Czechoslovakia). Vyskumny Ustav Onkologicky

    1979-01-01

    The occurrence and elimination of sites sensitive to the endonucleolytic action of crude extract from M. luteus (Es sites) were studied in both the parental and daughter DNA of E. coli B/r Hcr/sup +/ irradiated either with lethal fluence only (LF) or with inducing and lethal fluence (IF+LF); after the lethal fluence protein synthesis could either take place or it was inhibited by chlorampehnicol (CAP). The data obtained showed that in the wild type UV-irradiated cells Es sites could be eliminated from their DNA molecules either through pyrimidine dimer excision or through the modification of dimers on replication. It appears that DNA repair takes place most efficiently in cells irradiated with IF+LF and postincubated with CAP; in these conditions cells are supplied with inducible proteins, and enough time for DNA repair is provided before the division of irradiated cells is resumed.

  7. Snake venom serine proteinases specificity mapping by proteomic identification of cleavage sites.

    Science.gov (United States)

    Zelanis, André; Huesgen, Pitter F; Oliveira, Ana Karina; Tashima, Alexandre K; Serrano, Solange M T; Overall, Christopher M

    2015-01-15

    Many snake venom toxins are serine proteases but their specific in vivo targets are mostly unknown. Various act on components of the coagulation cascade, and fibrinolytic and kallikrein-kinin systems to trigger various pathological effects observed in the envenomation. Despite showing high similarity in terms of primary structure snake venom serine proteinases (SVSPs) show exquisite specificity towards macromolecular substrates. Therefore, the characterization of their peptide bond specificity is important for understanding the active site preference associated with effective proteolysis as well as for the design of peptide substrates and inhibitors. Bothrops jararaca contains various SVSPs among which Bothrops protease A is a specific fibrinogenolytic agent and PA-BJ is a platelet-activating enzyme. In this study we used proteome derived peptide libraries in the Proteomic Identification of protease Cleavage Sites (PICS) approach to explore the peptide bond specificity of Bothrops protease A and PA-BJ in order to determine their individual peptide cleavage sequences. A total of 371 cleavage sites (208 for Bothrops protease A and 163 for PA-BJ) were detected and both proteinases displayed a clear preference for arginine at the P1 position. Moreover, the analysis of the specificity profiles of Bothrops protease A and PA-BJ revealed subtle differences in the preferences along P6-P6', despite a common yet unusual preference for Pro at P2. Taken together, these results map the subsite specificity of both SVSPs and shed light in the functional differences between these proteinases. Proteolysis is key to various pathological effects observed upon envenomation by viperid snakes. The use of the Proteomic Identification of protease Cleavage Sites (PICS) approach for the easy mapping of proteinase subsite preferences at both the prime- and non-prime sides concurrently gives rise to a fresh understanding of the interaction of the snake venom serine proteinases with peptide and

  8. Site-specific local structure of Mn in artificial manganese ferrite films

    International Nuclear Information System (INIS)

    Kravtsov, E.; Haskel, D.; Cady, A.; Yang, A.; Vittoria, C.; Harris, V. G.; Zuo, X.

    2006-01-01

    Diffraction anomalous fine structure (DAFS) spectroscopy has been applied to resolve site-specific Mn local structure in manganese ferrite films grown under nonequilibrium conditions. The DAFS spectra were measured at a number of Bragg reflections in the vicinity of the Mn absorption K edge. The DAFS data analysis done with an iterative Kramers-Kroenig algorithm made it possible to solve separately the local structure around crystallographically inequivalent Mn sites in the unit cell with nominal octahedral and tetrahedral coordination. The strong preference for Mn to be tetrahedrally coordinated in this compound is not only manifested in the relative site occupancies but also in a strong reduction in coordination number for Mn ions at nominal octahedral sites

  9. 78 FR 73519 - Environmental Management Site-Specific Advisory Board, Paducah

    Science.gov (United States)

    2013-12-06

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Paducah. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  10. 78 FR 45518 - Environmental Management Site-Specific Advisory Board, Paducah

    Science.gov (United States)

    2013-07-29

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Paducah. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  11. 78 FR 38969 - Environmental Management Site-Specific Advisory Board, Paducah

    Science.gov (United States)

    2013-06-28

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Paducah. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  12. 78 FR 23760 - Environmental Management Site-Specific Advisory Board, Nevada

    Science.gov (United States)

    2013-04-22

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Nevada. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  13. 77 FR 50488 - Environmental Management Site-Specific Advisory Board, Portsmouth

    Science.gov (United States)

    2012-08-21

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Portsmouth. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  14. 78 FR 17192 - Environmental Management Site-Specific Advisory Board, Nevada

    Science.gov (United States)

    2013-03-20

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Nevada. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  15. 77 FR 2713 - Environmental Management Site-Specific Advisory Board, Hanford

    Science.gov (United States)

    2012-01-19

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Hanford. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  16. 77 FR 55813 - Environmental Management Site-Specific Advisory Board Chairs

    Science.gov (United States)

    2012-09-11

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB) Chairs. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  17. 77 FR 28368 - Environmental Management Site-Specific Advisory Board, Hanford

    Science.gov (United States)

    2012-05-14

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Hanford. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  18. 78 FR 54460 - Environmental Management Site-Specific Advisory Board, Paducah

    Science.gov (United States)

    2013-09-04

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Paducah. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  19. 77 FR 18242 - Environmental Management Site-Specific Advisory Board Chairs

    Science.gov (United States)

    2012-03-27

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB) Chairs. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  20. 78 FR 46330 - Environmental Management Site-Specific Advisory Board, Nevada

    Science.gov (United States)

    2013-07-31

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Nevada. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  1. 78 FR 25064 - Environmental Management Site-Specific Advisory Board, Paducah

    Science.gov (United States)

    2013-04-29

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Paducah. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  2. 78 FR 69657 - Environmental Management Site-Specific Advisory Board, Portsmouth

    Science.gov (United States)

    2013-11-20

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Portsmouth. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  3. 78 FR 78952 - Environmental Management Site-Specific Advisory Board, Paducah

    Science.gov (United States)

    2013-12-27

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Paducah. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  4. 77 FR 16021 - Environmental Management Site-Specific Advisory Board, Portsmouth

    Science.gov (United States)

    2012-03-19

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Portsmouth. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  5. 78 FR 22255 - Environmental Management Site-Specific Advisory Board, Portsmouth

    Science.gov (United States)

    2013-04-15

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Portsmouth. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  6. 78 FR 32640 - Environmental Management Site-Specific Advisory Board, Paducah

    Science.gov (United States)

    2013-05-31

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Paducah. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  7. 77 FR 24694 - Environmental Management Site-Specific Advisory Board, Nevada

    Science.gov (United States)

    2012-04-25

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Nevada. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  8. 78 FR 10611 - Environmental Management Site-Specific Advisory Board, Portsmouth

    Science.gov (United States)

    2013-02-14

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Portsmouth. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  9. 77 FR 4799 - Environmental Management Site-Specific Advisory Board, Paducah

    Science.gov (United States)

    2012-01-31

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Paducah. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  10. 78 FR 7767 - Environmental Management Site-Specific Advisory Board, Paducah

    Science.gov (United States)

    2013-02-04

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Paducah. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  11. 78 FR 53135 - Environmental Management Site-Specific Advisory Board, Nevada

    Science.gov (United States)

    2013-08-28

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Nevada. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  12. 77 FR 63300 - Environmental Management Site-Specific Advisory Board, Portsmouth

    Science.gov (United States)

    2012-10-16

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Portsmouth. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  13. 78 FR 4139 - Environmental Management Site-Specific Advisory Board, Hanford

    Science.gov (United States)

    2013-01-18

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Hanford. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  14. 78 FR 20311 - Environmental Management Site-Specific Advisory Board Chairs

    Science.gov (United States)

    2013-04-04

    ...This notice announces a webinar of the Environmental Management Site-Specific Advisory Board (EM SSAB) Chairs. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this webinar be announced in the Federal Register.

  15. 77 FR 39234 - Environmental Management Site-Specific Advisory Board, Nevada

    Science.gov (United States)

    2012-07-02

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Nevada. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  16. 77 FR 22566 - Environmental Management Site-Specific Advisory Board, Portsmouth

    Science.gov (United States)

    2012-04-16

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Portsmouth. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  17. 78 FR 64932 - Environmental Management Site-Specific Advisory Board, Nevada

    Science.gov (United States)

    2013-10-30

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Nevada. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  18. 78 FR 28207 - Environmental Management Site-Specific Advisory Board, Hanford

    Science.gov (United States)

    2013-05-14

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Hanford. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  19. 78 FR 49738 - Environmental Management Site-Specific Advisory Board, Hanford

    Science.gov (United States)

    2013-08-15

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Hanford. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  20. 78 FR 36543 - Environmental Management Site-Specific Advisory Board, Portsmouth

    Science.gov (United States)

    2013-06-18

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Portsmouth. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  1. 77 FR 16021 - Environmental Management Site-Specific Advisory Board, Nevada

    Science.gov (United States)

    2012-03-19

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Nevada. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  2. 78 FR 59012 - Environmental Management Site-Specific Advisory Board Chairs

    Science.gov (United States)

    2013-09-25

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB) Chairs. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  3. 78 FR 56871 - Environmental Management Site-Specific Advisory Board, Portsmouth

    Science.gov (United States)

    2013-09-16

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Portsmouth. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  4. Using a site-specific technical error to establish training responsiveness: a preliminary explorative study.

    Science.gov (United States)

    Weatherwax, Ryan M; Harris, Nigel K; Kilding, Andrew E; Dalleck, Lance C

    2018-01-01

    Even though cardiorespiratory fitness (CRF) training elicits numerous health benefits, not all individuals have positive training responses following a structured CRF intervention. It has been suggested that the technical error (TE), a combination of biological variability and measurement error, should be used to establish specific training responsiveness criteria to gain further insight on the effectiveness of the training program. To date, most training interventions use an absolute change or a TE from previous findings, which do not take into consideration the training site and equipment used to establish training outcomes or the specific cohort being evaluated. The purpose of this investigation was to retrospectively analyze training responsiveness of two CRF training interventions using two common criteria and a site-specific TE. Sixteen men and women completed two maximal graded exercise tests and verification bouts to identify maximal oxygen consumption (VO 2 max) and establish a site-specific TE. The TE was then used to retrospectively analyze training responsiveness in comparison to commonly used criteria: percent change of >0% and >+5.6% in VO 2 max. The TE was found to be 7.7% for relative VO 2 max. χ 2 testing showed significant differences in all training criteria for each intervention and pooled data from both interventions, except between %Δ >0 and %Δ >+7.7% in one of the investigations. Training nonresponsiveness ranged from 11.5% to 34.6%. Findings from the present study support the utility of site-specific TE criterion to quantify training responsiveness. A similar methodology of establishing a site-specific and even cohort specific TE should be considered to establish when true cardiorespiratory training adaptations occur.

  5. Excision of thymine dimers from specifically incised DNA by extracts of xeroderma pigmentosum cells

    Energy Technology Data Exchange (ETDEWEB)

    Cook, K; Friedberg, E C; Slor, H; Cleaver, J E

    1975-07-17

    DNA repair defects as exhibited in fibroblasts from patients with xeroderma pigmentosa were studied. Five complementation groups for excision-repair defects were examined to test the hypothesis that a defective endonuclease or exonuclease may be the cause. No evidence was found to indicate that the enzyme activity functions in dimer excision. Since ultraviolet irradiated E. coli DNA incised with an endonuclease purified from phage-infected cells were used, it is possible that other factors may be involved in human UV endonuclease action. (JWP)

  6. Risks of all-cause and site-specific fractures among hospitalized patients with COPD

    OpenAIRE

    Liao, Kuang-Ming; Liang, Fu-Wen; Li, Chung-Yi

    2016-01-01

    Abstract Patients with chronic obstructive pulmonary disease (COPD) have a high prevalence of osteoporosis. The clinical sequel of osteoporosis is fracture. Patients with COPD who experience a fracture also have increased morbidity and mortality. Currently, the types of all-cause and site-specific fracture among patients with COPD are unknown. Thus, we elucidated the all-cause and site-specific fractures among patients with COPD. A retrospective, population-based, cohort study was conducted u...

  7. Degeneration and domestication of a selfish gene in yeast: molecular evolution versus site-directed mutagenesis.

    Science.gov (United States)

    Koufopanou, Vassiliki; Burt, Austin

    2005-07-01

    VDE is a homing endonuclease gene in yeasts with an unusual evolutionary history including horizontal transmission, degeneration, and domestication into the mating-type switching locus HO. We investigate here the effects of these features on its molecular evolution. In addition, we correlate rates of evolution with results from site-directed mutagenesis studies. Functional elements have lower rates of evolution than degenerate ones and higher conservation at functionally important sites. However, functionally important and unimportant sites are equally likely to have been involved in the evolution of new function during the domestication of VDE into HO. The domestication event also indicates that VDE has been lost in some species and that VDE has been present in yeasts for more than 50 Myr.

  8. Recent Developments in the Site-Specific Immobilization of Proteins onto Solid Supports

    Energy Technology Data Exchange (ETDEWEB)

    Camarero, J A

    2007-02-21

    Immobilization of proteins onto surfaces is of great importance in numerous applications, including protein analysis, drug screening, and medical diagnostics, among others. The success of all these technologies relies on the immobilization technique employed to attach a protein to the corresponding surface. Non-specific physical adsorption or chemical cross-linking with appropriate surfaces results in the immobilization of the protein in random orientations. Site-specific covalent attachment, on the other hand, leads to molecules being arranged in a definite, orderly fashion and allows the use of spacers and linkers to help minimize steric hindrances between the protein and the surface. The present work reviews the latest chemical and biochemical developments for the site-specific covalent attachment of proteins onto solid supports.

  9. 77 FR 31837 - Environmental Management Site-Specific Advisory Board, Paducah

    Science.gov (United States)

    2012-05-30

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Paducah. The Federal Advisory Committee Act (Pub. L. No. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  10. 78 FR 64208 - Environmental Management Site-Specific Advisory Board Chairs

    Science.gov (United States)

    2013-10-28

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB) Chairs. The Federal Advisory Committee Act (Pub. L. No. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  11. 78 FR 16260 - Environmental Management Site-Specific Advisory Board, Paducah

    Science.gov (United States)

    2013-03-14

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Paducah. The Federal Advisory Committee Act (Pub. L. No. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  12. 78 FR 68431 - Environmental Management Site-Specific Advisory Board, Hanford

    Science.gov (United States)

    2013-11-14

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Hanford. The Federal Advisory Committee Act (Pub. L. No. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  13. 78 FR 26635 - Environmental Management Site-Specific Advisory Board, Paducah

    Science.gov (United States)

    2013-05-07

    ...On April 29, 2013, the Department of Energy (DOE) published a notice of open meeting announcing a meeting on May 16, 2013 of the Environmental Management Site-Specific Advisory Board, Paducah (78 FR 25064). This document makes a correction to that notice.

  14. 77 FR 49442 - Environmental Management Site-Specific Advisory Board, Nevada

    Science.gov (United States)

    2012-08-16

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Nevada. The Federal Advisory Committee Act (Pub. L. No. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  15. 77 FR 64112 - Environmental Management Site-Specific Advisory Board, Hanford

    Science.gov (United States)

    2012-10-18

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Hanford. The Federal Advisory Committee Act (Pub. L. No. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  16. Assessment of Wind Turbine for Site-Specific Conditions using Probabilistic Methods

    DEFF Research Database (Denmark)

    Heras, Enrique Gómez de las; Gutiérrez, Roberto; Azagra, Elena

    2013-01-01

    turbines, helping to the decision making during the site assessment phase of wind farm designs. First, the design equation for the failure mode of interest is defined, where the loads associated to the site-specific wind conditions are compared with the design limits of the structural component. A limit...... be very dependent on the site. The uncertainties on the wind properties depend on issues like the available wind data, the quality of the measurement sensors, the type of terrain or the accuracy of the engineering models for horizontal and vertical spatial extrapolation. An example is included showing two...

  17. Custom-Designed Molecular Scissors for Site-Specific Manipulation of the Plant and Mammalian Genomes

    Science.gov (United States)

    Kandavelou, Karthikeyan; Chandrasegaran, Srinivasan

    Zinc finger nucleases (ZFNs) are custom-designed molecular scissors, engineered to cut at specific DNA sequences. ZFNs combine the zinc finger proteins (ZFPs) with the nonspecific cleavage domain of the FokI restriction enzyme. The DNA-binding specificity of ZFNs can be easily altered experimentally. This easy manipulation of the ZFN recognition specificity enables one to deliver a targeted double-strand break (DSB) to a genome. The targeted DSB stimulates local gene targeting by several orders of magnitude at that specific cut site via homologous recombination (HR). Thus, ZFNs have become an important experimental tool to make site-specific and permanent alterations to genomes of not only plants and mammals but also of many other organisms. Engineering of custom ZFNs involves many steps. The first step is to identify a ZFN site at or near the chosen chromosomal target within the genome to which ZFNs will bind and cut. The second step is to design and/or select various ZFP combinations that will bind to the chosen target site with high specificity and affinity. The DNA coding sequence for the designed ZFPs are then assembled by polymerase chain reaction (PCR) using oligonucleotides. The third step is to fuse the ZFP constructs to the FokI cleavage domain. The ZFNs are then expressed as proteins by using the rabbit reticulocyte in vitro transcription/translation system and the protein products assayed for their DNA cleavage specificity.

  18. Pyrimidine dimer sites associated with the daughter DNA strands in uv-irradiated human fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, A R; Kirk-Bell, S [Sussex Univ., Brighton (UK)

    1978-03-01

    Pyrimidine dimer sites associated with the newly-synthesized DNA were detected during post-replication repair of DNA in uv-irradiated human fibroblasts. These pyrimidine dimer sites were inferred from a decrease in the molecular weight of pulse-labelled DNA after treatment with an extract of Micrococcus luteus containing uv-specific endonuclease activity. In DNA synthesized immediately after irradiation, the frequency of these daughter strand dimer sites was 7 to 20% of that in the parental DNA. Such sites were found in fibroblasts from normal donors and from xeroderma pigmentosum patients (with defects in excision-repair or post-replication repair). They were excised from the DNA of normal cells. As the time between uv irradiation and pulse-labelling was increased, the frequency of dimer sites associated with the labelled DNA decreased. If the pulse-label was delivered 6 h after irradiation of normal cells or excision-defective xeroderma pigmentosum cells, no dimer sites were detected in the labelled DNA. It has usually been assumed that daughter-strand dimer sites were the result of recombinational exchanges. The assay procedure used in these experiments and in similar experiments of others did not distinguish between labelled DNA containing pyrimidine dimers within the labelled section, and labelled DNA which did not contain pyrimidine dimers but was attached to unlabelled DNA which did contain dimers. The latter structures would arise during normal replication immediately following uv irradiation of mammalian cells. Calculations are presented which suggest that a significant proportion and conceivably all of the dimer sites associated with the daughter strands may have arisen in this way, rather than from recombinational exchanges as has been generally assumed.

  19. Pyrimidine dimer sites associated with the daughter DNA strands in UV-irradiated human fibroblasts

    International Nuclear Information System (INIS)

    Lehmann, A.R.; Kirk-Bell, S.

    1978-01-01

    Pyrimidine dimer sites associated with the newly-synthesized DNA were detected during post-replication repair of DNA in UV-irradiated human fibroblasts. These pyrimidine dimer sites were inferred from a decrease in the molecular weight of pulse-labelled DNA after treatment with an extract of Micrococcus luteus containing UV-specific endonuclease activity. In DNA synthesized immediately after irradiation the frequency of these daughter strand dimer sites was 7-20% of that in the parental DNA. Such sites were found in fibroblasts from normal donors and from xeroderma pigmentosum patients (with defects in excision-repair or post-replication repair). They were excised from the DNA of normal cells. As the time between UV-irradiation and pulse-labelling was increased, the frequency of dimer sites associated with the labelled DNA decreased. If the pulse-label was delivered 6 h after irradiation of normal cells or excision-defective xeroderma pigmentosum cells, no dimer sites were detected in the labelled DNA. It has usually been assumed that daughter-strand dimer sites were the result of recombinational exchanges. The assay procedure used in these experiments and in similar experiments of others did not distinguish between labelled DNA containing pyrimidine dimers within the labelled section, and labelled DNA which did not contain pyrimidine dimers but was attached to unlabelled DNA which did contain dimers. The latter structures would arise during normal replication immediately following UV-irradiation of mammalian cells. Calculations are presented which suggest that a significant proportion and conceivably all of the dimer sites associated with the daughter strands may have arisen in this way, rather than from recombinational exchanges as has been generally assumed. (author)

  20. Site-Specific Analyses for Demonstrating Compliance with 10 CFR 61 Performance Objectives - 12179

    Energy Technology Data Exchange (ETDEWEB)

    Grossman, C.J.; Esh, D.W.; Yadav, P.; Carrera, A.G. [U.S. Nuclear Regulatory Commission, 11545 Rockville Pike, Rockville, MD 20852 (United States)

    2012-07-01

    The U.S. Nuclear Regulatory Commission (NRC) is proposing to amend its regulations at 10 CFR Part 61 to require low-level radioactive waste disposal facilities to conduct site-specific analyses to demonstrate compliance with the performance objectives in Subpart C. The amendments would require licensees to conduct site-specific analyses for protection of the public and inadvertent intruders as well as analyses for long-lived waste. The amendments would ensure protection of public health and safety, while providing flexibility to demonstrate compliance with the performance objectives, for current and potential future waste streams. NRC staff intends to submit proposed rule language and associated regulatory basis to the Commission for its approval in early 2012. The NRC staff also intends to develop associated guidance to accompany any proposed amendments. The guidance is intended to supplement existing low-level radioactive waste guidance on issues pertinent to conducting site-specific analyses to demonstrate compliance with the performance objectives. The guidance will facilitate implementation of the proposed amendments by licensees and assist competent regulatory authorities in reviewing the site-specific analyses. Specifically, the guidance provides staff recommendations on general considerations for the site-specific analyses, modeling issues for assessments to demonstrate compliance with the performance objectives including the performance assessment, intruder assessment, stability assessment, and analyses for long-lived waste. This paper describes the technical basis for changes to the rule language and the proposed guidance associated with implementation of the rule language. The NRC staff, per Commission direction, intends to propose amendments to 10 CFR Part 61 to require licensees to conduct site-specific analyses to demonstrate compliance with performance objectives for the protection of public health and the environment. The amendments would require a

  1. Site-specific electronic structure analysis by channeling EELS and first-principles calculations.

    Science.gov (United States)

    Tatsumi, Kazuyoshi; Muto, Shunsuke; Yamamoto, Yu; Ikeno, Hirokazu; Yoshioka, Satoru; Tanaka, Isao

    2006-01-01

    Site-specific electronic structures were investigated by electron energy loss spectroscopy (EELS) under electron channeling conditions. The Al-K and Mn-L(2,3) electron energy loss near-edge structure (ELNES) of, respectively, NiAl2O4 and Mn3O4 were measured. Deconvolution of the raw spectra with the instrumental resolution function restored the blunt and hidden fine features, which allowed us to interpret the experimental spectral features by comparing with theoretical spectra obtained by first-principles calculations. The present method successfully revealed the electronic structures specific to the differently coordinated cationic sites.

  2. Site-specific labeling of proteins with NMR-active unnatural amino acids

    International Nuclear Information System (INIS)

    Jones, David H.; Cellitti, Susan E.; Hao Xueshi; Zhang Qiong; Jahnz, Michael; Summerer, Daniel; Schultz, Peter G.; Uno, Tetsuo; Geierstanger, Bernhard H.

    2010-01-01

    A large number of amino acids other than the canonical amino acids can now be easily incorporated in vivo into proteins at genetically encoded positions. The technology requires an orthogonal tRNA/aminoacyl-tRNA synthetase pair specific for the unnatural amino acid that is added to the media while a TAG amber or frame shift codon specifies the incorporation site in the protein to be studied. These unnatural amino acids can be isotopically labeled and provide unique opportunities for site-specific labeling of proteins for NMR studies. In this perspective, we discuss these opportunities including new photocaged unnatural amino acids, outline usage of metal chelating and spin-labeled unnatural amino acids and expand the approach to in-cell NMR experiments.

  3. TU-A-201-02: Treatment Site-Specific Considerations for Clinical IGRT

    Energy Technology Data Exchange (ETDEWEB)

    Wijesooriya, K. [University of Virginia Health Systems (United States)

    2016-06-15

    Recent years have seen a widespread proliferation of available in-room image guidance systems for radiation therapy target localization with many centers having multiple in-room options. In this session, available imaging systems for in-room IGRT will be reviewed highlighting the main differences in workflow efficiency, targeting accuracy and image quality as it relates to target visualization. Decision-making strategies for integrating these tools into clinical image guidance protocols that are tailored to specific disease sites like H&N, lung, pelvis, and spine SBRT will be discussed. Learning Objectives: Major system characteristics of a wide range of available in-room imaging systems for IGRT. Advantages / disadvantages of different systems for site-specific IGRT considerations. Concepts of targeting accuracy and time efficiency in designing clinical imaging protocols.

  4. Detection of endonuclease III- and 8-oxoguanine glycosylase-sensitive base modifications in γ-irradiated DNA and cells by the aldehyde reactive probe (ARP) assay

    International Nuclear Information System (INIS)

    Mohsin Ali, M.; Kurisu, Satofumi; Yoshioka, Yoshihiro; Terato, Hiroaki; Ohyama, Yoshihiko; Ide Hiroshi; Kubo, Kihei

    2004-01-01

    Ionizing radiation generates diverse DNA lesions that differentially induce cell death and mutations. In the present study, calf thymus DNA (400 μg/ml) and HeLa cells were irradiated by 60 Co γ-rays, and abasic (AP) sites and endonuclease (Endo) III- and 8-oxoguanine glycosylase (hOGG1)-sensitive base modifications in DNA were quantitated by the aldehyde reactive probe (ARP) assay. The irradiation of calf thymus DNA in phosphate buffer generated 91 Endo III- and 100 hOGG1-sensitive base modifications and 110 AP sites per 10 6 base pairs (bp) per Gy. The yield of the lesions in Tris buffer was 41- to 91-fold lower than that in phosphate, demonstrating a radioprotective effect of Tris. The HeLa cell chromosomal DNA contained 12 Endo III- and 3.8 hOGG1-sensitive base modifications and less than 1 AP sites per 10 6 bp as endogenous damage, and their level was increased by irradiation. The yields of the damage at 1 Gy (roughly equivalent to the lethal dose of HeLa cells [1.6-1.8 Gy]) were 0.13 Endo III, 0.091 hOGG1, and 0.065 AP sites per 10 6 bp, showing that irradiation with a lethal dose brought about only a marginal increase in base damage relative to an endogenous one. A comparison of the present data with those reported for DNA strand breaks supports the primary importance of double-strand breaks and clustered lesions as lethal damages formed by ionizing radiation. (author)

  5. Bacterial CRISPR/Cas DNA endonucleases: A revolutionary technology that could dramatically impact viral research and treatment

    International Nuclear Information System (INIS)

    Kennedy, Edward M.; Cullen, Bryan R.

    2015-01-01

    CRISPR/Cas systems mediate bacterial adaptive immune responses that evolved to protect bacteria from bacteriophage and other horizontally transmitted genetic elements. Several CRISPR/Cas systems exist but the simplest variant, referred to as Type II, has a single effector DNA endonuclease, called Cas9, which is guided to its viral DNA target by two small RNAs, the crRNA and the tracrRNA. Initial efforts to adapt the CRISPR/Cas system for DNA editing in mammalian cells, which focused on the Cas9 protein from Streptococcus pyogenes (Spy), demonstrated that Spy Cas9 can be directed to DNA targets in mammalian cells by tracrRNA:crRNA fusion transcripts called single guide RNAs (sgRNA). Upon binding, Cas9 induces DNA cleavage leading to mutagenesis as a result of error prone non-homologous end joining (NHEJ). Recently, the Spy Cas9 system has been adapted for high throughput screening of genes in human cells for their relevance to a particular phenotype and, more generally, for the targeted inactivation of specific genes, in cell lines and in vivo in a number of model organisms. The latter aim seems likely to be greatly enhanced by the recent development of Cas9 proteins from bacterial species such as Neisseria meningitidis and Staphyloccus aureus that are small enough to be expressed using adeno-associated (AAV)-based vectors that can be readily prepared at very high titers. The evolving Cas9-based DNA editing systems therefore appear likely to not only impact virology by allowing researchers to screen for human genes that affect the replication of pathogenic human viruses of all types but also to derive clonal human cell lines that lack individual gene products that either facilitate or restrict viral replication. Moreover, high titer AAV-based vectors offer the possibility of directly targeting DNA viruses that infect discrete sites in the human body, such as herpes simplex virus and hepatitis B virus, with the hope that the entire population of viral DNA genomes

  6. Bacterial CRISPR/Cas DNA endonucleases: A revolutionary technology that could dramatically impact viral research and treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, Edward M.; Cullen, Bryan R., E-mail: bryan.cullen@duke.edu

    2015-05-15

    CRISPR/Cas systems mediate bacterial adaptive immune responses that evolved to protect bacteria from bacteriophage and other horizontally transmitted genetic elements. Several CRISPR/Cas systems exist but the simplest variant, referred to as Type II, has a single effector DNA endonuclease, called Cas9, which is guided to its viral DNA target by two small RNAs, the crRNA and the tracrRNA. Initial efforts to adapt the CRISPR/Cas system for DNA editing in mammalian cells, which focused on the Cas9 protein from Streptococcus pyogenes (Spy), demonstrated that Spy Cas9 can be directed to DNA targets in mammalian cells by tracrRNA:crRNA fusion transcripts called single guide RNAs (sgRNA). Upon binding, Cas9 induces DNA cleavage leading to mutagenesis as a result of error prone non-homologous end joining (NHEJ). Recently, the Spy Cas9 system has been adapted for high throughput screening of genes in human cells for their relevance to a particular phenotype and, more generally, for the targeted inactivation of specific genes, in cell lines and in vivo in a number of model organisms. The latter aim seems likely to be greatly enhanced by the recent development of Cas9 proteins from bacterial species such as Neisseria meningitidis and Staphyloccus aureus that are small enough to be expressed using adeno-associated (AAV)-based vectors that can be readily prepared at very high titers. The evolving Cas9-based DNA editing systems therefore appear likely to not only impact virology by allowing researchers to screen for human genes that affect the replication of pathogenic human viruses of all types but also to derive clonal human cell lines that lack individual gene products that either facilitate or restrict viral replication. Moreover, high titer AAV-based vectors offer the possibility of directly targeting DNA viruses that infect discrete sites in the human body, such as herpes simplex virus and hepatitis B virus, with the hope that the entire population of viral DNA genomes

  7. PhosphoRice: a meta-predictor of rice-specific phosphorylation sites

    Directory of Open Access Journals (Sweden)

    Que Shufu

    2012-02-01

    Full Text Available Abstract Background As a result of the growing body of protein phosphorylation sites data, the number of phosphoprotein databases is constantly increasing, and dozens of tools are available for predicting protein phosphorylation sites to achieve fast automatic results. However, none of the existing tools has been developed to predict protein phosphorylation sites in rice. Results In this paper, the phosphorylation site predictors, NetPhos 2.0, NetPhosK, Kinasephos, Scansite, Disphos and Predphosphos, were integrated to construct meta-predictors of rice-specific phosphorylation sites using several methods, including unweighted voting, unreduced weighted voting, reduced unweighted voting and weighted voting strategies. PhosphoRice, the meta-predictor produced by using weighted voting strategy with parameters selected by restricted grid search and conditional random search, performed the best at predicting phosphorylation sites in rice. Its Matthew's Correlation Coefficient (MCC and Accuracy (ACC reached to 0.474 and 73.8%, respectively. Compared to the best individual element predictor (Disphos_default, PhosphoRice archieved a significant increase in MCC of 0.071 (P Conclusions PhosphoRice is a powerful tool for predicting unidentified phosphorylation sites in rice. Compared to the existing methods, we found that our tool showed greater robustness in ACC and MCC. PhosphoRice is available to the public at http://bioinformatics.fafu.edu.cn/PhosphoRice.

  8. Unveiled: Interrogating the Use of Applied Drama in Multiple and Specific Sites

    Science.gov (United States)

    Daboo, Jerri

    2007-01-01

    This article examines a view of site through postcolonial feminism to suggest that multiple and contradictory discourses of culture, location, gender and context are all vital in an understanding of a specific site when working with a community. These views are applied to a project undertaken with a group of Asian women in Britain exploring issues…

  9. Summary of some feasibility studies for site-specific solar industrial process heat

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-01-01

    Some feasibility studies for several different site specific solar industrial process heat applications are summarized. The followng applications are examined. Leather Tanning; Concrete Production: Lumber and Paper Processing; Milk Processing; Molding, Curing or Drying; Automobile Manufacture; and Food Processing and Preparation. For each application, site and process data, system design, and performance and cost estimates are summarized.

  10. Identification of four families of yCCR4- and Mg2+-dependent endonuclease-related proteins in higher eukaryotes, and characterization of orthologs of yCCR4 with a conserved leucine-rich repeat essential for hCAF1/hPOP2 binding

    Directory of Open Access Journals (Sweden)

    Corbo Laura

    2001-11-01

    Full Text Available Abstract Background The yeast yCCR4 factor belongs to the CCR4-NOT transcriptional regulatory complex, in which it interacts, through its leucine-rich repeat (LRR motif with yPOP2. Recently, yCCR4 was shown to be a component of the major cytoplasmic mRNA deadenylase complex, and to contain a fold related to the Mg2+-dependent endonuclease core. Results Here, we report the identification of nineteen yCCR4-related proteins in eukaryotes (including yeast, plants and animals, which all contain the yCCR4 endonuclease-like fold, with highly conserved CCR4-specific residues. Phylogenetic and genomic analyses show that they form four distinct families, one of which contains the yCCR4 orthologs. The orthologs in animals possess a leucine-rich repeat domain. We show, using two-hybrid and far-Western assays, that the human member binds to the human yPOP2 homologs, i.e. hCAF1 and hPOP2, in a LRR-dependent manner. Conclusions We have identified the mammalian orthologs of yCCR4 and have shown that the human member binds to the human yPOP2 homologs, thus strongly suggesting conservation of the CCR4-NOT complex from yeast to human. All members of the four identified yCCR4-related protein families show stricking conservation of the endonuclease-like catalytic motifs of the yCCR4 C-terminal domain and therefore constitute a new family of potential deadenylases in mammals.

  11. Site-Specific Genome Engineering in Human Pluripotent Stem Cells.

    Science.gov (United States)

    Merkert, Sylvia; Martin, Ulrich

    2016-06-24

    The possibility to generate patient-specific induced pluripotent stem cells (iPSCs) offers an unprecedented potential of applications in clinical therapy and medical research. Human iPSCs and their differentiated derivatives are tools for diseases modelling, drug discovery, safety pharmacology, and toxicology. Moreover, they allow for the engineering of bioartificial tissue and are promising candidates for cellular therapies. For many of these applications, the ability to genetically modify pluripotent stem cells (PSCs) is indispensable, but efficient site-specific and safe technologies for genetic engineering of PSCs were developed only recently. By now, customized engineered nucleases provide excellent tools for targeted genome editing, opening new perspectives for biomedical research and cellular therapies.

  12. Tree-, stand- and site-specific controls on landscape-scale patterns of transpiration

    Science.gov (United States)

    Kathrin Hassler, Sibylle; Weiler, Markus; Blume, Theresa

    2018-01-01

    Transpiration is a key process in the hydrological cycle, and a sound understanding and quantification of transpiration and its spatial variability is essential for management decisions as well as for improving the parameterisation and evaluation of hydrological and soil-vegetation-atmosphere transfer models. For individual trees, transpiration is commonly estimated by measuring sap flow. Besides evaporative demand and water availability, tree-specific characteristics such as species, size or social status control sap flow amounts of individual trees. Within forest stands, properties such as species composition, basal area or stand density additionally affect sap flow, for example via competition mechanisms. Finally, sap flow patterns might also be influenced by landscape-scale characteristics such as geology and soils, slope position or aspect because they affect water and energy availability; however, little is known about the dynamic interplay of these controls.We studied the relative importance of various tree-, stand- and site-specific characteristics with multiple linear regression models to explain the variability of sap velocity measurements in 61 beech and oak trees, located at 24 sites across a 290 km2 catchment in Luxembourg. For each of 132 consecutive days of the growing season of 2014 we modelled the daily sap velocity and derived sap flow patterns of these 61 trees, and we determined the importance of the different controls.Results indicate that a combination of mainly tree- and site-specific factors controls sap velocity patterns in the landscape, namely tree species, tree diameter, geology and aspect. For sap flow we included only the stand- and site-specific predictors in the models to ensure variable independence. Of those, geology and aspect were most important. Compared to these predictors, spatial variability of atmospheric demand and soil moisture explains only a small fraction of the variability in the daily datasets. However, the temporal

  13. Characterization and validation of new tools for measuring site-specific cardiac troponin I phosphorylation.

    Science.gov (United States)

    Thoemmes, Stephen F; Stutzke, Crystal A; Du, Yanmei; Browning, Michael D; Buttrick, Peter M; Walker, Lori A

    2014-01-31

    Phosphorylation of cardiac troponin I is a well established mechanism by which cardiac contractility is modulated. However, there are a number of phosphorylation sites on TnI which contribute singly or in combination to influence cardiac function. Accordingly, methods for accurately measuring site-specific TnI phosphorylation are needed. Currently, two strategies are employed: mass spectrometry, which is costly, difficult and has a low throughput; and Western blotting using phospho-specific antibodies, which is limited by the availability of reagents. In this report, we describe a cohort of new site-specific TnI phosphoantibodies, generated against physiologically relevant phosphorylation sites, that are superior to the current commercially available antibodies: to phospho-serine 22/23 which shows a >5-fold phospho-specificity for phosphorylated TnI; to phospho-serine 43, which has >3-fold phospho-specificity for phosphorylated TnI; and phospho-serine 150 which has >2-fold phospho-specificity for phosphorylated TnI. These new antibodies demonstrated greater sensitivity and specificity for the phosphorylated TnI than the most widely used commercially available reagents. For example, at a protein load of 20 μg of total cardiac extract, a commercially available antibody recognized both phosphorylated and dephosphorylated TnI to the same degree. At the same protein load our phospho-serine 22/23 antibody exhibited no cross-reactivity with dephosphorylated TnI. These new tools should allow a more accurate assessment and a better understanding of the role of TnI phosphorylation in the response of the heart to pathologic stress. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Evaluating Variability and Uncertainty of Geological Strength Index at a Specific Site

    Science.gov (United States)

    Wang, Yu; Aladejare, Adeyemi Emman

    2016-09-01

    Geological Strength Index (GSI) is an important parameter for estimating rock mass properties. GSI can be estimated from quantitative GSI chart, as an alternative to the direct observational method which requires vast geological experience of rock. GSI chart was developed from past observations and engineering experience, with either empiricism or some theoretical simplifications. The GSI chart thereby contains model uncertainty which arises from its development. The presence of such model uncertainty affects the GSI estimated from GSI chart at a specific site; it is, therefore, imperative to quantify and incorporate the model uncertainty during GSI estimation from the GSI chart. A major challenge for quantifying the GSI chart model uncertainty is a lack of the original datasets that have been used to develop the GSI chart, since the GSI chart was developed from past experience without referring to specific datasets. This paper intends to tackle this problem by developing a Bayesian approach for quantifying the model uncertainty in GSI chart when using it to estimate GSI at a specific site. The model uncertainty in the GSI chart and the inherent spatial variability in GSI are modeled explicitly in the Bayesian approach. The Bayesian approach generates equivalent samples of GSI from the integrated knowledge of GSI chart, prior knowledge and observation data available from site investigation. Equations are derived for the Bayesian approach, and the proposed approach is illustrated using data from a drill and blast tunnel project. The proposed approach effectively tackles the problem of how to quantify the model uncertainty that arises from using GSI chart for characterization of site-specific GSI in a transparent manner.

  15. The Escherichia coli Tus-Ter replication fork barrier causes site-specific DNA replication perturbation in yeast

    DEFF Research Database (Denmark)

    Larsen, Nicolai B; Sass, Ehud; Suski, Catherine

    2014-01-01

    Replication fork (RF) pausing occurs at both 'programmed' sites and non-physiological barriers (for example, DNA adducts). Programmed RF pausing is required for site-specific DNA replication termination in Escherichia coli, and this process requires the binding of the polar terminator protein, Tus...... as a versatile, site-specific, heterologous DNA replication-perturbing system, with a variety of potential applications....

  16. The Escherichia coli Tus-Ter replication fork barrier causes site-specific DNA replication perturbation in yeast.

    Science.gov (United States)

    Larsen, Nicolai B; Sass, Ehud; Suski, Catherine; Mankouri, Hocine W; Hickson, Ian D

    2014-04-07

    Replication fork (RF) pausing occurs at both 'programmed' sites and non-physiological barriers (for example, DNA adducts). Programmed RF pausing is required for site-specific DNA replication termination in Escherichia coli, and this process requires the binding of the polar terminator protein, Tus, to specific DNA sequences called Ter. Here, we demonstrate that Tus-Ter modules also induce polar RF pausing when engineered into the Saccharomyces cerevisiae genome. This heterologous RF barrier is distinct from a number of previously characterized, protein-mediated, RF pause sites in yeast, as it is neither Tof1-dependent nor counteracted by the Rrm3 helicase. Although the yeast replisome can overcome RF pausing at Tus-Ter modules, this event triggers site-specific homologous recombination that requires the RecQ helicase, Sgs1, for its timely resolution. We propose that Tus-Ter can be utilized as a versatile, site-specific, heterologous DNA replication-perturbing system, with a variety of potential applications.

  17. Stabilization of bacterially expressed erythropoietin by single site-specific introduction of short branched PEG chains at naturally occurring glycosylation sites.

    Science.gov (United States)

    Hoffmann, E; Streichert, K; Nischan, N; Seitz, C; Brunner, T; Schwagerus, S; Hackenberger, C P R; Rubini, M

    2016-05-24

    The covalent attachment of polyethylene glycol (PEG) to therapeutic proteins can improve their physicochemical properties. In this work we utilized the non-natural amino acid p-azidophenylalanine (pAzF) in combination with the chemoselective Staudinger-phosphite reaction to install branched PEG chains to recombinant unglycosylated erythropoietin (EPO) at each single naturally occurring glycosylation site. PEGylation with two short 750 or 2000 Da PEG units at positions 24, 38, or 83 significantly decreased unspecific aggregation and proteolytic degradation while biological activity in vitro was preserved or even increased in comparison to full-glycosylated EPO. This site-specific bioconjugation approach permits to analyse the impact of PEGylation at single positions. These results represent an important step towards the engineering of site-specifically modified EPO variants from bacterial expression with increased therapeutic efficacy.

  18. 78 FR 61348 - Environmental Management Site-Specific Advisory Board, Portsmouth

    Science.gov (United States)

    2013-10-03

    ...On September 16, 2013, in FR Doc. 2013-22453, on page 56871, the Department of Energy (DOE) published a notice of open meeting announcing a meeting on October 2, 2013 of the Environmental Management Site-Specific Advisory Board, Portsmouth (78 FR 56871). This notice announces the cancellation of this meeting.

  19. Ultrasensitive electrochemical biosensor for detection of DNA from Bacillus subtilis by coupling target-induced strand displacement and nicking endonuclease signal amplification.

    Science.gov (United States)

    Hu, Yuhua; Xu, Xueqin; Liu, Qionghua; Wang, Ling; Lin, Zhenyu; Chen, Guonan

    2014-09-02

    A simple, ultrasensitive, and specific electrochemical biosensor was designed to determine the given DNA sequence of Bacillus subtilis by coupling target-induced strand displacement and nicking endonuclease signal amplification. The target DNA (TD, the DNA sequence from the hypervarient region of 16S rDNA of Bacillus subtilis) could be detected by the differential pulse voltammetry (DPV) in a range from 0.1 fM to 20 fM with the detection limit down to 0.08 fM at the 3s(blank) level. This electrochemical biosensor exhibits high distinction ability to single-base mismatch, double-bases mismatch, and noncomplementary DNA sequence, which may be expected to detect single-base mismatch and single nucleotide polymorphisms (SNPs). Moreover, the applicability of the designed biosensor for detecting the given DNA sequence from Bacillus subtilis was investigated. The result obtained by electrochemical method is approximately consistent with that by a real-time quantitative polymerase chain reaction detecting system (QPCR) with SYBR Green.

  20. Waste classification and methods applied to specific disposal sites

    International Nuclear Information System (INIS)

    Rogers, V.C.

    1979-01-01

    An adequate definition of the classes of radioactive wastes is necessary to regulating the disposal of radioactive wastes. A classification system is proposed in which wastes are classified according to characteristics relating to their disposal. Several specific sites are analyzed with the methodology in order to gain insights into the classification of radioactive wastes. Also presented is the analysis of ocean dumping as it applies to waste classification. 5 refs

  1. Drainage filter technologies to mitigate site-specific phosphorus losses in agricultural drainage discharge

    DEFF Research Database (Denmark)

    Kjærgaard, Charlotte; Heckrath, Goswin Johann; Canga, Eriona

    in drainage. The Danish “SUPREME-TECH” project (2010-2016) (www.supreme-tech.dk) aims at providing the scientific basis for developing cost-effective filter technologies for P in agricultural drainage waters. The project studies different approaches of implementing filter technologies including drainage well....... Targeting high risk areas of P loss and applying site-specific measures promises to be a cost-efficient approach. The Danish Commission for Nature and Agriculture has, therefore, now called for a paradigm shift towards targeted, cost-efficient technologies to mitigate site-specific nutrient losses...... environmental threshold values (

  2. Biological role of site-specific O-glycosylation in cell adhesion activity and phosphorylation of osteopontin.

    Science.gov (United States)

    Oyama, Midori; Kariya, Yoshinobu; Kariya, Yukiko; Matsumoto, Kana; Kanno, Mayumi; Yamaguchi, Yoshiki; Hashimoto, Yasuhiro

    2018-05-09

    Osteopontin (OPN) is an extracellular glycosylated phosphoprotein that promotes cell adhesion by interacting with several integrin receptors. We previously reported that an OPN mutant lacking five O-glycosylation sites (Thr 134 /Thr 138 /Thr 143 /Thr 147 /Thr 152 ) in the threonine/proline-rich region increased cell adhesion activity and phosphorylation compared with the wild type. However, the role of O-glycosylation in cell adhesion activity and phosphorylation of OPN remains to be clarified. Here, we show that site-specific O-glycosylation in the threonine/proline-rich region of OPN affects its cell adhesion activity and phosphorylation independently and/or synergistically. Using site-directed mutagenesis, we found that OPN mutants with substitution sets of Thr 134 /Thr 138 or Thr 143 /Thr 147 /Thr 152 had decreased and increased cell adhesion activity, respectively. In contrast, the introduction of a single mutation into the O-glycosylation sites had no effect on OPN cell adhesion activity. An adhesion assay using function-blocking antibodies against αvβ3 and β1 integrins, as well as αvβ3 integrin-overexpressing A549 cells, revealed that site-specific O-glycosylation affected the association of OPN with the two integrins. Phosphorylation analyses using phos-tag and LC-MS/MS indicated that phosphorylation levels and sites were influenced by the O-glycosylation status, although the number of O-glycosylation sites was not correlated with the phosphorylation level in OPN. Furthermore, a correlation analysis between phosphorylation level and cell adhesion activity in OPN mutants with the site-specific O-glycosylation showed that they were not always correlated. These results provide conclusive evidence of a novel regulatory mechanism of cell adhesion activity and phosphorylation of OPN by site-specific O-glycosylation. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  3. A Comparison of Regional and SiteSpecific Volume Estimation Equations

    Science.gov (United States)

    Joe P. McClure; Jana Anderson; Hans T. Schreuder

    1987-01-01

    Regression equations for volume by region and site class were examined for lobiolly pine. The regressions for the Coastal Plain and Piedmont regions had significantly different slopes. The results shared important practical differences in percentage of confidence intervals containing the true total volume and in percentage of estimates within a specific proportion of...

  4. A site-specific slurry application technique on grassland and on arable crops.

    Science.gov (United States)

    Schellberg, Jürgen; Lock, Reiner

    2009-01-01

    There is evidence that unequal slurry application on agricultural land contributes to N losses to the environment. Heterogeneity within fields demands adequate response by means of variable rate application. A technique is presented which allows site-specific application of slurry on grassland and arable land based on pre-defined application maps. The system contains a valve controlling flow rate by an on-board PC. During operation, flow rate is measured and scaled against set point values given in the application map together with the geographic position of the site. The systems worked sufficiently precise at a flow rate between 0 and 25 l s(-1) and an offset of actual slurry flow from set point values between 0.33 and 0.67 l s(-1). Long-term experimentation is required to test if site-specific application de facto reduces N surplus within fields and so significantly contributes to the unloading of N in agricultural areas.

  5. Characterization of site-specific biomechanical properties of human meniscus-Importance of collagen and fluid on mechanical nonlinearities.

    Science.gov (United States)

    Danso, E K; Mäkelä, J T A; Tanska, P; Mononen, M E; Honkanen, J T J; Jurvelin, J S; Töyräs, J; Julkunen, P; Korhonen, R K

    2015-06-01

    Meniscus adapts to joint loads by depth- and site-specific variations in its composition and structure. However, site-specific mechanical characteristics of intact meniscus under compression are poorly known. In particular, mechanical nonlinearities caused by different meniscal constituents (collagen and fluid) are not known. In the current study, in situ indentation testing was conducted to determine site-specific elastic, viscoelastic and poroelastic properties of intact human menisci. Lateral and medial menisci (n=26) were harvested from the left knee joint of 13 human cadavers. Indentation tests, using stress-relaxation and dynamic (sinusoidal) loading protocols, were conducted for menisci at different sites (anterior, middle, posterior, n=78). Sample- and site-specific axisymmetric finite element models with fibril-reinforced poroelastic properties were fitted to the corresponding stress-relaxation curves to determine the mechanical parameters. Elastic moduli, especially the instantaneous and dynamic moduli, showed site-specific variation only in the medial meniscus (pmeniscus. The phase angle showed no statistically significant variation between the sites (p>0.05). The values for the strain-dependent fibril network modulus (nonlinear behaviour of collagen) were significantly different (pmeniscus only between the middle and posterior sites. For the strain-dependent permeability coefficient, only anterior and middle sites showed a significant difference (pmeniscus. This parameter demonstrated a significant difference (pmeniscus shows more site-dependent variation in the mechanical properties as compared to lateral meniscus. In particular, anterior horn of medial meniscus was the stiffest and showed the most nonlinear mechanical behaviour. The nonlinearity was related to both collagen fibrils and fluid. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. A climatological model for risk computations incorporating site- specific dry deposition influences

    International Nuclear Information System (INIS)

    Droppo, J.G. Jr.

    1991-07-01

    A gradient-flux dry deposition module was developed for use in a climatological atmospheric transport model, the Multimedia Environmental Pollutant Assessment System (MEPAS). The atmospheric pathway model computes long-term average contaminant air concentration and surface deposition patterns surrounding a potential release site incorporating location-specific dry deposition influences. Gradient-flux formulations are used to incorporate site and regional data in the dry deposition module for this atmospheric sector-average climatological model. Application of these formulations provide an effective means of accounting for local surface roughness in deposition computations. Linkage to a risk computation module resulted in a need for separate regional and specific surface deposition computations. 13 refs., 4 figs., 2 tabs

  7. CTCF Binding Sites in the Herpes Simplex Virus 1 Genome Display Site-Specific CTCF Occupation, Protein Recruitment, and Insulator Function.

    Science.gov (United States)

    Washington, Shannan D; Musarrat, Farhana; Ertel, Monica K; Backes, Gregory L; Neumann, Donna M

    2018-04-15

    There are seven conserved CTCF binding domains in the herpes simplex virus 1 (HSV-1) genome. These binding sites individually flank the latency-associated transcript (LAT) and the immediate early (IE) gene regions, suggesting that CTCF insulators differentially control transcriptional domains in HSV-1 latency. In this work, we show that two CTCF binding motifs in HSV-1 display enhancer blocking in a cell-type-specific manner. We found that CTCF binding to the latent HSV-1 genome was LAT dependent and that the quantity of bound CTCF was site specific. Following reactivation, CTCF eviction was dynamic, suggesting that each CTCF site was independently regulated. We explored whether CTCF sites recruit the polycomb-repressive complex 2 (PRC2) to establish repressive domains through a CTCF-Suz12 interaction and found that Suz12 colocalized to the CTCF insulators flanking the ICP0 and ICP4 regions and, conversely, was removed at early times postreactivation. Collectively, these data support the idea that CTCF sites in HSV-1 are independently regulated and may contribute to lytic-latent HSV-1 control in a site-specific manner. IMPORTANCE The role of chromatin insulators in DNA viruses is an area of interest. It has been shown in several beta- and gammaherpesviruses that insulators likely control the lytic transcriptional profile through protein recruitment and through the formation of three-dimensional (3D) chromatin loops. The ability of insulators to regulate alphaherpesviruses has been understudied to date. The alphaherpesvirus HSV-1 has seven conserved insulator binding motifs that flank regions of the genome known to contribute to the establishment of latency. Our work presented here contributes to the understanding of how insulators control transcription of HSV-1. Copyright © 2018 American Society for Microbiology.

  8. Site-SpecificCu Labeling of the Serine Protease, Active Site Inhibited Factor Seven Azide (FVIIai-N), Using Copper Free Click Chemistry

    DEFF Research Database (Denmark)

    Jeppesen, Troels E; Kristensen, Lotte K; Nielsen, Carsten H

    2018-01-01

    A method for site-specific radiolabeling of the serine protease active site inhibited factor seven (FVIIai) with64Cu has been applied using a biorthogonal click reaction. FVIIai binds to tissue factor (TF), a trans-membrane protein involved in hemostasis, angiogenesis, proliferation, cell migrati...

  9. Autoantibodies to myelin basic protein catalyze site-specific degradation of their antigen.

    Science.gov (United States)

    Ponomarenko, Natalia A; Durova, Oxana M; Vorobiev, Ivan I; Belogurov, Alexey A; Kurkova, Inna N; Petrenko, Alexander G; Telegin, Georgy B; Suchkov, Sergey V; Kiselev, Sergey L; Lagarkova, Maria A; Govorun, Vadim M; Serebryakova, Marina V; Avalle, Bérangère; Tornatore, Pete; Karavanov, Alexander; Morse, Herbert C; Thomas, Daniel; Friboulet, Alain; Gabibov, Alexander G

    2006-01-10

    Autoantibody-mediated tissue destruction is among the main features of organ-specific autoimmunity. This report describes "an antibody enzyme" (abzyme) contribution to the site-specific degradation of a neural antigen. We detected proteolytic activity toward myelin basic protein (MBP) in the fraction of antibodies purified from the sera of humans with multiple sclerosis (MS) and mice with induced experimental allergic encephalomyelitis. Chromatography and zymography data demonstrated that the proteolytic activity of this preparation was exclusively associated with the antibodies. No activity was found in the IgG fraction of healthy donors. The human and murine abzymes efficiently cleaved MBP but not other protein substrates tested. The sites of MBP cleavage determined by mass spectrometry were localized within immunodominant regions of MBP. The abzymes could also cleave recombinant substrates containing encephalytogenic MBP(85-101) peptide. An established MS therapeutic Copaxone appeared to be a specific abzyme inhibitor. Thus, the discovered epitope-specific antibody-mediated degradation of MBP suggests a mechanistic explanation of the slow development of neurodegeneration associated with MS.

  10. Site Specific Analyses of a Spent Nuclear Fuel Transportation Accident

    International Nuclear Information System (INIS)

    Biwer, B. M.; Chen, S. Y.

    2003-01-01

    The number of spent nuclear fuel (SNF) shipments is expected to increase significantly during the time period that the United States' inventory of SNF is sent to a final disposal site. Prior work estimated that the highest accident risks of a SNF shipping campaign to the proposed geologic repository at Yucca Mountain were in the corridor states, such as Illinois. The largest potential human health impacts would be expected to occur in areas with high population densities such as urban settings. Thus, our current study examined the human health impacts from the most plausible severe SNF transportation accidents in the Chicago metropolitan area. The RISKIND 2.0 program was used to model site-specific data for an area where the largest impacts might occur. The results have shown that the radiological human health consequences of a severe SNF rail transportation accident on average might be similar to one year of exposure to natural background radiation for those persons living a nd working in the most affected areas downwind of the actual accident location. For maximally exposed individuals, an exposure similar to about two years of exposure to natural background radiation was estimated. In addition to the accident probabilities being very low (approximately 1 chance in 10,000 or less during the entire shipping campaign), the actual human health impacts are expected to be lower if any of the accidents considered did occur, because the results are dependent on the specific location and weather conditions, such as wind speed and direction, that were selected to maximize the results. Also, comparison of the results of longer duration accident scenarios against U.S. Environmental Protection Agency guidelines was made to demonstrate the usefulness of this site-specific analysis for emergency planning purposes

  11. Protein and Site Specificity of Fucosylation in Liver-Secreted Glycoproteins

    Czech Academy of Sciences Publication Activity Database

    Pompach, Petr; Ashline, David J.; Brnáková, Z.; Benicky, J.; Sanda, M.; Goldman, R.

    2014-01-01

    Roč. 13, č. 12 (2014), s. 5561-5569 ISSN 1535-3893 R&D Projects: GA MŠk LH13051; GA ČR GAP206/12/0503 Grant - others:Charles Univ.(CZ) UNCE_204025/2012 Institutional support: RVO:61388971 Keywords : fucose * glycoproteins * liver * site specificity Subject RIV: CE - Biochemistry Impact factor: 4.245, year: 2014

  12. Practical Application of Site-Specific Earthquake Early Warning (EEW) System

    International Nuclear Information System (INIS)

    Kanda, Katsuhisa

    2014-01-01

    The development of an on-site warning system was reported. This system improves the timing of warnings and reduces the number of false alarms by improving the method of estimating the JMA seismic intensity using earthquake early warning system information based on site-specific data. Moreover, the development of an application for practical use in a construction company and an integrated system for realizing system shutdown was also reported. The concept of this system is based on the following. Seismic intensity is not distributed concentrically, and the attenuation relationship cannot explain the distribution of seismic intensity precisely. The standard method of seismic intensity prediction is construed as 'attenuation relationship + soil amplification factor', but this may be improved in the reformulation 'original attenuation relationship for each site + correction factors dependent on the epicenter location and depth' using a seismic intensity database that includes data on recent and historical earthquakes. (authors)

  13. 78 FR 63172 - Environmental Management Site-Specific Advisory Board, Paducah; Meeting

    Science.gov (United States)

    2013-10-23

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Paducah. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  14. SafetyAnalyst : software tools for safety management of specific highway sites

    Science.gov (United States)

    2010-07-01

    SafetyAnalyst provides a set of software tools for use by state and local highway agencies for highway safety management. SafetyAnalyst can be used by highway agencies to improve their programming of site-specific highway safety improvements. SafetyA...

  15. Engineered Cpf1 variants with altered PAM specificities increase genome targeting range

    Science.gov (United States)

    Gao, Linyi; Cox, David B.T.; Yan, Winston X.; Manteiga, John C.; Schneider, Martin W.; Yamano, Takashi; Nishimasu, Hiroshi; Nureki, Osamu; Crosetto, Nicola; Zhang, Feng

    2017-01-01

    The RNA-guided endonuclease Cpf1 is a promising tool for genome editing in eukaryotic cells1–7. However, the utility of the commonly used Acidaminococcus sp. BV3L6 Cpf1 (AsCpf1) and Lachnospiraceae bacterium ND2006 Cpf1 (LbCpf1) is limited by their requirement of a TTTV protospacer adjacent motif (PAM) in the DNA substrate. To address this limitation, we performed a structure-guided mutagenesis screen to increase the targeting range of Cpf1. We engineered two AsCpf1 variants carrying the mutations S542R/K607R and S542R/K548V/N552R, which recognize TYCV and TATV PAMs, respectively, with enhanced activities in vitro and in human cells. Genome-wide assessment of off-target activity using BLISS7 assay indicated that these variants retain high DNA targeting specificity, which we further improved by introducing an additional non-PAM-interacting mutation. Introducing the identified mutations at their corresponding positions in LbCpf1 similarly altered its PAM specificity. Together, these variants increase the targeting range of Cpf1 by approximately three-fold in human coding sequences to one cleavage site per ~11 bp. PMID:28581492

  16. Specific mixing facilitates the comparative quantification of phosphorylation sites with significant dysregulations

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jing [Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R& A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Xu, Bo [Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R& A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023 (China); Liu, Zheyi; Dong, Mingming; Mao, Jiawei; Zhou, Ye; Chen, Jin [Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R& A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Wang, Fangjun, E-mail: wangfj@dicp.ac.cn [Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R& A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023 (China); Zou, Hanfa [Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R& A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023 (China)

    2017-01-15

    Mass spectrometry (MS) based quantitative analyses of proteome and proteome post-translational modifications (PTMs) play more and more important roles in biological, pharmaceutical and clinical studies. However, it is still a big challenge to accurately quantify the proteins or proteins PTM sites with extreme relative abundances in comparative protein samples, such as the significantly dysregulated ones. Herein, a novel quantification strategy, Mixing at Specific Ratio (MaSR) before isotope labeling, had been developed to improve the quantification accuracy and coverage of extreme proteins and protein phosphorylation sites. Briefly, the comparative protein samples were firstly mixed together at specific ratios of 9:1 and 1:9 (w/w), followed with mass differentiate light and heavy isotope labeling, respectively. The extreme proteins and protein phosphorylation sites, even if the newly expressed or disappeared ones, could be accurately quantified due to all of the proteins' relative abundances had been adjusted to 2 orders of magnitude (1/9-9) by this strategy. The number of quantified phosphorylation sites with more than 20 folds changes was improved about 10 times in comparative quantification of pervanadate stimulated phosphoproteome of HeLa cells, and 134 newly generated and 21 disappeared phosphorylation sites were solely quantified by the MaSR strategy. The significantly up-regulated phosphorylation sites were mainly involved in the key phosphoproteins regulating the insulin-related pathways, such as PI3K-AKT and RAS-MAPK pathways. Therefore, the MaSR strategy exhibits as a promising way in elucidating the biological processes with significant dysregulations. - Highlights: • All the proteins' relative abundances were adjusted into 2 orders of magnitude (1/9-9). • The quantification accuracy and coverage of extreme proteins and protein phosphorylation sites had been improved. • The newly expressed or disappeared proteins and protein

  17. Recent advances in covalent, site-specific protein immobilization [version 1; referees

    DEFF Research Database (Denmark)

    Meldal, Morten Peter; Schoffelen, Sanne

    2016-01-01

    The properties of biosensors, biomedical implants, and other materials based on immobilized proteins greatly depend on the method employed to couple the protein molecules to their solid support. Covalent, site-specific immobilization strategies are robust and can provide the level of control...

  18. A Qualitative and Quantitative Assay to Study DNA/Drug Interaction ...

    African Journals Online (AJOL)

    Purpose: To explore the use of restriction inhibition assay (RIA) to study the binding specificity of some anticancer drugs. Methods: A 448 bp DNA fragment derived from pBCKS+ plasmid (harboring the polylinker region with multiple restriction endonuclease sites) was used as a template for sequence selective inhibition of ...

  19. Site-Specific Antibody Functionalization Using Tetrazine-Styrene Cycloaddition.

    Science.gov (United States)

    Umlauf, Benjamin J; Mix, Kalie A; Grosskopf, Vanessa A; Raines, Ronald T; Shusta, Eric V

    2018-05-03

    Biologics, such as antibody-drug conjugates, are becoming mainstream therapeutics. Consequently, methods to functionalize biologics without disrupting their native properties are essential for identifying, characterizing, and translating candidate biologics from the bench to clinical practice. Here, we present a method for site-specific, carboxy-terminal modification of single-chain antibody fragments (scFvs). ScFvs displayed on the surface of yeast were isolated and functionalized by combining intein-mediated expressed protein ligation (EPL) with inverse electron-demand Diels-Alder (IEDDA) cycloaddition using a styrene-tetrazine pair. The high thiol concentration required to trigger EPL can hinder the subsequent chemoselective ligation reactions; therefore, the EPL reaction was used to append styrene to the scFv, limiting tetrazine exposure to damaging thiols. Subsequently, the styrene-functionalized scFv was reacted with tetrazine-conjugated compounds in an IEDDA cycloaddition to generate functionalized scFvs that retain their native binding activity. Rapid functionalization of yeast surface-derived scFv in a site-directed manner could find utility in many downstream laboratory and preclinical applications.

  20. The Application of TAPM for Site Specific Wind Energy Forecasting

    Directory of Open Access Journals (Sweden)

    Merlinde Kay

    2016-02-01

    Full Text Available The energy industry uses weather forecasts for determining future electricity demand variations due to the impact of weather, e.g., temperature and precipitation. However, as a greater component of electricity generation comes from intermittent renewable sources such as wind and solar, weather forecasting techniques need to now also focus on predicting renewable energy supply, which means adapting our prediction models to these site specific resources. This work assesses the performance of The Air Pollution Model (TAPM, and demonstrates that significant improvements can be made to only wind speed forecasts from a mesoscale Numerical Weather Prediction (NWP model. For this study, a wind farm site situated in North-west Tasmania, Australia was investigated. I present an analysis of the accuracy of hourly NWP and bias corrected wind speed forecasts over 12 months spanning 2005. This extensive time frame allows an in-depth analysis of various wind speed regimes of importance for wind-farm operation, as well as extreme weather risk scenarios. A further correction is made to the basic bias correction to improve the forecast accuracy further, that makes use of real-time wind-turbine data and a smoothing function to correct for timing-related issues. With full correction applied, a reduction in the error in the magnitude of the wind speed by as much as 50% for “hour ahead” forecasts specific to the wind-farm site has been obtained.

  1. 40 CFR 170.232 - Knowledge of labeling and site-specific information.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Knowledge of labeling and site-specific information. 170.232 Section 170.232 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS WORKER PROTECTION STANDARD Standard for Pesticide Handlers § 170.232 Knowledge...

  2. WAG 2 remedial investigation and site investigation site-specific work plan/health and safety checklist for the soil and sediment task

    International Nuclear Information System (INIS)

    Holt, V.L.; Burgoa, B.B.

    1993-12-01

    This document is a site-specific work plan/health and safety checklist (WP/HSC) for a task of the Waste Area Grouping 2 Remedial Investigation and Site Investigation (WAG 2 RI ampersand SI). Title 29 CFR Part 1910.120 requires that a health and safety program plan that includes site- and task-specific information be completed to ensure conformance with health- and safety-related requirements. To meet this requirement, the health and safety program plan for each WAG 2 RI ampersand SI field task must include (1) the general health and safety program plan for all WAG 2 RI ampersand SI field activities and (2) a WP/HSC for that particular field task. These two components, along with all applicable referenced procedures, must be kept together at the work site and distributed to field personnel as required. The general health and safety program plan is the Health and Safety Plan for the Remedial Investigation and Site Investigation of Waste Area Grouping 2 at the Oak Ridge National Laboratory, Oak Ridge, Tennessee (ORNL/ER-169). The WP/HSCs are being issued as supplements to ORNL/ER-169

  3. Characterization of a depurinated-DNA purine-base-insertion activity from Drosophila.

    Science.gov (United States)

    Deutsch, W A; Spiering, A L

    1985-01-01

    An activity that binds preferentially to depurinated DNA and inserts purines into those sites was partially purified from Drosophila melanogaster embryos. The protein has a sedimentation coefficient of 4.9 S and is devoid of AP (apurinic/apyrimidinic) endonuclease activity. Upon incorporation of purines into apurinic DNA, the number of alkali-labile sites decreases, thus establishing the conversion of depurinated sites into normal nucleotides. The activity requires K+, and is totally inhibited by caffeine or EDTA. Guanine is specifically incorporated into partially depurinated poly(dG-dC) and adenine is specifically incorporated into poly(dA-dT), thus demonstrating the apparent template specificity of the enzyme. PMID:2417589

  4. Impairments in site-specific AS160 phosphorylation and effects of exercise training

    DEFF Research Database (Denmark)

    Consitt, Leslie A; Van Meter, Jessica; Newton, Christopher A

    2013-01-01

    The purpose of this study was to determine if site-specific phosphorylation at the level of Akt substrate of 160 kDa (AS160) is altered in skeletal muscle from sedentary humans across a wide range of the adult lifespan (18 to 84 years) and if endurance- and/or strength-oriented exercise training ...... population and that exercise training is an effective intervention for treating these impairments.......The purpose of this study was to determine if site-specific phosphorylation at the level of Akt substrate of 160 kDa (AS160) is altered in skeletal muscle from sedentary humans across a wide range of the adult lifespan (18 to 84 years) and if endurance- and/or strength-oriented exercise training...... in whole-body insulin action were associated with impairments in insulin-induced phosphorylation of skeletal muscle AS160 on sites Ser-588, Thr-642, Ser-666 and phospho-Akt substrate (PAS), but not Ser-318 or Ser-751. Twelve weeks of either endurance- or strength-oriented exercise training increased whole...

  5. Identification of Cyclin-dependent Kinase 1 Specific Phosphorylation Sites by an In Vitro Kinase Assay.

    Science.gov (United States)

    Cui, Heying; Loftus, Kyle M; Noell, Crystal R; Solmaz, Sozanne R

    2018-05-03

    Cyclin-dependent kinase 1 (Cdk1) is a master controller for the cell cycle in all eukaryotes and phosphorylates an estimated 8 - 13% of the proteome; however, the number of identified targets for Cdk1, particularly in human cells is still low. The identification of Cdk1-specific phosphorylation sites is important, as they provide mechanistic insights into how Cdk1 controls the cell cycle. Cell cycle regulation is critical for faithful chromosome segregation, and defects in this complicated process lead to chromosomal aberrations and cancer. Here, we describe an in vitro kinase assay that is used to identify Cdk1-specific phosphorylation sites. In this assay, a purified protein is phosphorylated in vitro by commercially available human Cdk1/cyclin B. Successful phosphorylation is confirmed by SDS-PAGE, and phosphorylation sites are subsequently identified by mass spectrometry. We also describe purification protocols that yield highly pure and homogeneous protein preparations suitable for the kinase assay, and a binding assay for the functional verification of the identified phosphorylation sites, which probes the interaction between a classical nuclear localization signal (cNLS) and its nuclear transport receptor karyopherin α. To aid with experimental design, we review approaches for the prediction of Cdk1-specific phosphorylation sites from protein sequences. Together these protocols present a very powerful approach that yields Cdk1-specific phosphorylation sites and enables mechanistic studies into how Cdk1 controls the cell cycle. Since this method relies on purified proteins, it can be applied to any model organism and yields reliable results, especially when combined with cell functional studies.

  6. Site-specific data confirm arsenic exposure predicted by the U.S. Environmental Protection Agency.

    Science.gov (United States)

    Walker, S; Griffin, S

    1998-03-01

    The EPA uses an exposure assessment model to estimate daily intake to chemicals of potential concern. At the Anaconda Superfund site in Montana, the EPA exposure assessment model was used to predict total and speciated urinary arsenic concentrations. Predicted concentrations were then compared to concentrations measured in children living near the site. When site-specific information on concentrations of arsenic in soil, interior dust, and diet, site-specific ingestion rates, and arsenic absorption rates were used, measured and predicted urinary arsenic concentrations were in reasonable agreement. The central tendency exposure assessment model successfully described the measured urinary arsenic concentration for the majority of children at the site. The reasonable maximum exposure assessment model successfully identified the uppermost exposed population. While the agreement between measured and predicted urinary arsenic is good, it is not exact. The variables that were identified which influenced agreement included soil and dust sample collection methodology, daily urinary volume, soil ingestion rate, and the ability to define the exposure unit. The concentration of arsenic in food affected agreement between measured and predicted total urinary arsenic, but was not considered when comparing measured and predicted speciated urinary arsenic. Speciated urinary arsenic is the recommended biomarker for recent inorganic arsenic exposure. By using site-specific data in the exposure assessment model, predicted risks from exposure to arsenic were less than predicted risks would have been if the EPA's default values had been used in the exposure assessment model. This difference resulted in reduced magnitude and cost of remediation while still protecting human health.

  7. Site-specific cancer risk in the Baltic cohort of Chernobyl cleanup workers, 1986-2007.

    Science.gov (United States)

    Rahu, Kaja; Hakulinen, Timo; Smailyte, Giedre; Stengrevics, Aivars; Auvinen, Anssi; Inskip, Peter D; Boice, John D; Rahu, Mati

    2013-09-01

    To assess site-specific cancer risk in the Baltic cohort of Chernobyl cleanup workers, 1986-2007. The Baltic cohort includes 17,040 men from Estonia, Latvia and Lithuania who participated in the environmental cleanup after the accident at the Chernobyl Nuclear Power Station in 1986-1991 and who were followed up for cancer incidence until the end of 2007. Cancer cases diagnosed in the cohort and in the male population of each country were identified from the respective national cancer registers. The proportional incidence ratio (PIR) with 95% confidence interval (CI) was used to estimate the site-specific cancer risk in the cohort. For comparison and as it was possible, the site-specific standardised incidence ratio (SIR) was calculated for the Estonian sub-cohort, which was not feasible for the other countries. Overall, 756 cancer cases were reported during 1986-2007. A higher proportion of thyroid cancers in relation to the male population was found (PIR=2.76; 95%CI 1.63-4.36), especially among those who started their mission shortly after the accident, in April-May 1986 (PIR=6.38; 95%CI 2.34-13.89). Also, an excess of oesophageal cancers was noted (PIR=1.52; 95% CI 1.06-2.11). No increased PIRs for leukaemia or radiation-related cancer sites combined were observed. PIRs and SIRs for the Estonian sub-cohort demonstrated the same site-specific cancer risk pattern. Consistent evidence of an increase in radiation-related cancers in the Baltic cohort was not observed with the possible exception of thyroid cancer, where conclusions are hampered by known medical examination including thyroid screening among cleanup workers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. From principles to practice in site remediation: Specific application in the UK

    International Nuclear Information System (INIS)

    Hill, M.; Higgins, P.; Longley, P.; Kerrigan, E.; Smith, G.M.

    2005-01-01

    As a result of wide-scale application of radioactive materials in research, medicine, defence, nuclear power and industry, significant areas of land have become contaminated with radioactivity. Whilst many practices aim to minimise the potential for contamination, there remain a number of sites that are contaminated as a result of historical discharges and accidental releases. In the UK, defence sites are being remediated to be released for redevelopment. International principles, national guidelines and best practice are taken into account, but quantities of low or very low activity radioactive waste are generated, and require disposal. This paper discusses these issues and illustrates their implementation at a specific site in the UK. (author)

  9. New developments for the site-specific attachment of protein to surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Camarero, J A

    2005-05-12

    Protein immobilization on surfaces is of great importance in numerous applications in biology and biophysics. The key for the success of all these applications relies on the immobilization technique employed to attach the protein to the corresponding surface. Protein immobilization can be based on covalent or noncovalent interaction of the molecule with the surface. Noncovalent interactions include hydrophobic interactions, hydrogen bonding, van der Waals forces, electrostatic forces, or physical adsorption. However, since these interactions are weak, the molecules can get denatured or dislodged, thus causing loss of signal. They also result in random attachment of the protein to the surface. Site-specific covalent attachment of proteins onto surfaces, on the other hand, leads to molecules being arranged in a definite, orderly fashion and uses spacers and linkers to help minimize steric hindrances between the protein surface. This work reviews in detail some of the methods most commonly used as well as the latest developments for the site-specific covalent attachment of protein to solid surfaces.

  10. Identification of leukotriene D4 specific binding sites in the membrane preparation isolated from guinea pig lung

    International Nuclear Information System (INIS)

    Mong, S.; Wu, H.L.; Clark, M.A.; Stadel, J.M.; Gleason, J.G.; Crooke, S.T.

    1984-01-01

    A radioligand binding assay has been established to study leukotriene specific binding sites in the guinea pig and rabbit tissues. Using high specific activity [ 3 H]-leukotriene D4 [( 3 H]-LTD4), in the presence or absence of unlabeled LTD4, the diastereoisomer of LTD4 (5R,6S-LTD4), leukotriene E4 (LTE4) and the end-organ antagonist, FPL 55712, the authors have identified specific binding sites for [ 3 H]-LTD4 in the crude membrane fraction isolated from guinea pig lung. The time required for [ 3 H]-LTD4 binding to reach equilibrium was approximately 20 to 25 min at 37 degrees C in the presence of 10 mM Tris-HCl buffer (pH 7.5) containing 150 mM NaCl. The binding of [ 3 H]-LTD4 to the specific sites was saturable, reversible and stereospecific. The maximal number of binding sites (Bmax), derived from Scatchard analysis, was approximately 320 +/- 200 fmol per mg of crude membrane protein. The dissociation constants, derived from kinetic and saturation analyses, were 9.7 nM and 5 +/- 4 nM, respectively. The specific binding sites could not be detected in the crude membrane fraction prepared from guinea pig ileum, brain and liver, or rabbit lung, trachea, ileum and uterus. In radioligand competition experiments, LTD4, FPL 55712 and 5R,6S-LTD4 competed with [ 3 H]-LTD4. The metabolic inhibitors of arachidonic acid and SKF 88046, an antagonist of the indirectly-mediated actions of LTD4, did not significantly compete with [ 3 H]-LTD4 at the specific binding sites. These correlations indicated that these specific binding sites may be the putative leukotriene receptors in the guinea-pig lung

  11. Site-specific mouth rinsing can improve oral odor by altering bacterial counts. Blind crossover clinical study.

    Science.gov (United States)

    Alqumber, Mohammed A; Arafa, Khaled A

    2014-11-01

    To determine whether site-specific mouth rinsing with oral disinfectants can improve oral odor beyond the traditional panoral mouth disinfection with mouth rinses by targeting specifically oral malodor implicated anaerobic bacteria. Twenty healthy fasting subjects volunteered for a blinded prospective, descriptive correlational crossover cross-section clinical trial conducted during the month of Ramadan between July and August 2013 in Albaha province in Saudi Arabia involving the application of Listerine Cool Mint mouth rinse by either the traditional panoral rinsing method, or a site-specific disinfection method targeting the subgingival and supragingival plaque and the posterior third of the tongue dorsum, while avoiding the remaining locations within the oral cavity. The viable anaerobic and aerobic bacterial counts, volatile sulfur compounds (VSCs) levels, organoleptic assessment of oral odor, and the tongue-coating index were compared at baseline, one, 5, and 9 hours after the treatment. The site-specific disinfection method reduced the VSCs and anaerobic bacterial loads while keeping the aerobic bacterial numbers higher than the traditional panoral rinsing method. Site-specific disinfection can more effectively maintain a healthy oral cavity by predominantly disinfecting the niches of anaerobic bacteria within the oral cavity.

  12. An Intraoperative Site-specific Bone Density Device: A Pilot Test Case.

    Science.gov (United States)

    Arosio, Paolo; Moschioni, Monica; Banfi, Luca Maria; Di Stefano, Anilo Alessio

    2015-08-01

    This paper reports a case of all-on-four rehabilitation where bone density at implant sites was assessed both through preoperative computed tomographic (CT) scans and using a micromotor working as an intraoperative bone density measurement device. Implant-supported rehabilitation is a predictable treatment option for tooth replacement whose success depends on the clinician's experience, the implant characteristics and location and patient-related factors. Among the latter, bone density is a determinant for the achievement of primary implant stability and, eventually, for implant success. The ability to measure bone density at the placement site before implant insertion could be important in the clinical setting. A patient complaining of masticatory impairment was presented with a plan calling for extraction of all her compromised teeth, followed by implant rehabilitation. A week before surgery, she underwent CT examination, and the bone density on the CT scans was measured. When the implant osteotomies were created, the bone density was again measured with a micromotor endowed with an instantaneous torque-measuring system. The implant placement protocols were adapted for each implant, according to the intraoperative measurements, and the patient was rehabilitated following an all-on-four immediate loading protocol. The bone density device provided valuable information beyond that obtained from CT scans, allowing for site-specific, intraoperative assessment of bone density immediately before implant placement and an estimation of primary stability just after implant insertion. Measuring jaw-bone density could help clinicians to select implant-placement protocols and loading strategies based on site-specific bone features.

  13. The use of the hypervariable P8 region of trnL(UAA intron for identification of orchid species: Evidence from restriction site polymorphism analysis.

    Directory of Open Access Journals (Sweden)

    Rajkumar Kishor

    Full Text Available The P8 stem-loop region of the trnL intron, which is known to be hypervariable in size with multiple repeat motifs and created difficulties in alignment, is always excluded in phylogenetic as well as barcode analyses. This region was investigated for species discrimination in 98 taxa of orchids belonging to the tribe Vandeae using in silico mapping of restriction site polymorphism. The length of the P8 regions varied from 200 nucleotides in Aerides rosea to 669 nucleotides in Dendrophylax sallei. Forty two taxa had unique lengths, while as many as eight shared a common length of 521 nucleotides. Of the 35 restriction endonucleases producing digestions in the P8 regions, three, viz., AgsI, ApoI and TspDTI turned out to have recognition sites across all the 98 taxa being studied. When their restriction data were combined, 92 taxa could be discriminated leaving three taxon pairs. However, Acampe papillosa and Aeranthes arachnites despite having similar restriction sites differed in their P8 lengths. This is the first report on thorough investigation of the P8 region of trnL intron for search of species specific restriction sites and hence its use as a potential plant DNA barcode.

  14. Site Specific Waste Management Instruction for the 116-F-4 soil storage unit

    International Nuclear Information System (INIS)

    Hopkins, G.G.

    1996-08-01

    This Site Specific Waste Management Instruction provides guidance for management of waste generated during the excavation and remediation of soil and debris from the 116-4 soil storage unit located at the Hanford Site in Richland, Washington. This document outlines the waste management practices that will be performed in the field to implement federal, state, and US Department of Energy requirements

  15. Use of toxicity assessment to develop site specific remediation criteria for oil and gas facilities : guidance manual

    International Nuclear Information System (INIS)

    1996-01-01

    The results of a two year study into the evaluation of toxicity-based methods to develop site-specific, risk-based cleanup objectives for the decommissioning of oil and gas facilities were compiled into a manual of guidance. The two basic approaches used in determining remediation criteria for contaminated sites are: (1) comparison of the concentrations of chemicals found on-site with broad regional or national soil and water quality objectives developed for the chemicals involved, and (2) site-specific risk assessment. Toxicity tests are used to test organisms such as earthworms, lettuce seeds, or larval fish directly in the soil, water or sediment suspected of being contaminated. The effects of any contamination on the survival, growth, reproduction, and behaviour of the test organisms are then evaluated. The manual provides guidance in: (1) using toxicity assessments within the regulatory framework of site decommissioning, (2) performing a toxicity assessment, and (3) developing site-specific criteria for a risk assessment. 18 refs., 3 tabs., 5 figs

  16. Differential regulation of the transcriptional activity of the glucocorticoid receptor through site-specific phosphorylation

    Directory of Open Access Journals (Sweden)

    Raj Kumar

    2008-08-01

    Full Text Available Raj Kumar1, William J Calhoun21Division of Gastroenterology; 2Division of Allergy, Pulmonary, Immunology, Critical Care, and Sleep (APICS, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USAAbstract: Post-translational modifications such as phosphorylation are known to play an important role in the gene regulation by the transcription factors including the nuclear hormone receptor superfamily of which the glucocorticoid receptor (GR is a member. Protein phosphorylation often switches cellular activity from one state to another. Like many other transcription factors, the GR is a phosphoprotein, and phosphorylation plays an important role in the regulation of GR activity. Cell signaling pathways that regulate phosphorylation of the GR and its associated proteins are important determinants of GR function under various physiological conditions. While the role of many phosphorylation sites in the GR is still not fully understood, the role of others is clearer. Several aspects of transcription factor function, including DNA binding affinity, interaction of transactivation domains with the transcription initiation complex, and shuttling between the cytoplasmic compartments, have all been linked to site-specific phosphorylation. All major phosphorylation sites in the human GR are located in the N-terminal domain including the major transactivation domain, AF1. Available literature clearly indicates that many of these potential phosphorylation sites are substrates for multiple kinases, suggesting the potential for a very complex regulatory network. Phosphorylated GR interacts favorably with critical coregulatory proteins and subsequently enhances transcriptional activity. In addition, the activities and specificities of coregulators may be subject to similar regulation by phosphorylation. Regulation of the GR activity due to phosphorylation appears to be site-specific and dependent upon specific cell signaling cascade

  17. Quantitative chemoproteomics for site-specific analysis of protein alkylation by 4-hydroxy-2-nonenal in cells.

    Science.gov (United States)

    Yang, Jing; Tallman, Keri A; Porter, Ned A; Liebler, Daniel C

    2015-03-03

    Protein alkylation by 4-hydroxy-2-nonenal (HNE), an endogenous lipid derived electrophile, contributes to stress signaling and cellular toxicity. Although previous work has identified protein targets for HNE alkylation, the sequence specificity of alkylation and dynamics in a cellular context remain largely unexplored. We developed a new quantitative chemoproteomic platform, which uses isotopically tagged, photocleavable azido-biotin reagents to selectively capture and quantify the cellular targets labeled by the alkynyl analogue of HNE (aHNE). Our analyses site-specifically identified and quantified 398 aHNE protein alkylation events (386 cysteine sites and 12 histidine sites) in intact cells. This data set expands by at least an order of magnitude the number of such modification sites previously reported. Although adducts formed by Michael addition are thought to be largely irreversible, we found that most aHNE modifications are lost rapidly in situ. Moreover, aHNE adduct turnover occurs only in intact cells and loss rates are site-selective. This quantitative chemoproteomics platform provides a versatile general approach to map bioorthogonal-chemically engineered post-translational modifications and their cellular dynamics in a site-specific and unbiased manner.

  18. Using sequence-specific chemical and structural properties of DNA to predict transcription factor binding sites.

    Directory of Open Access Journals (Sweden)

    Amy L Bauer

    2010-11-01

    Full Text Available An important step in understanding gene regulation is to identify the DNA binding sites recognized by each transcription factor (TF. Conventional approaches to prediction of TF binding sites involve the definition of consensus sequences or position-specific weight matrices and rely on statistical analysis of DNA sequences of known binding sites. Here, we present a method called SiteSleuth in which DNA structure prediction, computational chemistry, and machine learning are applied to develop models for TF binding sites. In this approach, binary classifiers are trained to discriminate between true and false binding sites based on the sequence-specific chemical and structural features of DNA. These features are determined via molecular dynamics calculations in which we consider each base in different local neighborhoods. For each of 54 TFs in Escherichia coli, for which at least five DNA binding sites are documented in RegulonDB, the TF binding sites and portions of the non-coding genome sequence are mapped to feature vectors and used in training. According to cross-validation analysis and a comparison of computational predictions against ChIP-chip data available for the TF Fis, SiteSleuth outperforms three conventional approaches: Match, MATRIX SEARCH, and the method of Berg and von Hippel. SiteSleuth also outperforms QPMEME, a method similar to SiteSleuth in that it involves a learning algorithm. The main advantage of SiteSleuth is a lower false positive rate.

  19. Type II restriction endonucleases--a historical perspective and more.

    Science.gov (United States)

    Pingoud, Alfred; Wilson, Geoffrey G; Wende, Wolfgang

    2014-07-01

    This article continues the series of Surveys and Summaries on restriction endonucleases (REases) begun this year in Nucleic Acids Research. Here we discuss 'Type II' REases, the kind used for DNA analysis and cloning. We focus on their biochemistry: what they are, what they do, and how they do it. Type II REases are produced by prokaryotes to combat bacteriophages. With extreme accuracy, each recognizes a particular sequence in double-stranded DNA and cleaves at a fixed position within or nearby. The discoveries of these enzymes in the 1970s, and of the uses to which they could be put, have since impacted every corner of the life sciences. They became the enabling tools of molecular biology, genetics and biotechnology, and made analysis at the most fundamental levels routine. Hundreds of different REases have been discovered and are available commercially. Their genes have been cloned, sequenced and overexpressed. Most have been characterized to some extent, but few have been studied in depth. Here, we describe the original discoveries in this field, and the properties of the first Type II REases investigated. We discuss the mechanisms of sequence recognition and catalysis, and the varied oligomeric modes in which Type II REases act. We describe the surprising heterogeneity revealed by comparisons of their sequences and structures. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Establishment of monoclonal HCC cell lines with organ site-specific tropisms

    International Nuclear Information System (INIS)

    Wan, Jinliang; Wen, Duo; Dong, Lili; Tang, Jun; Liu, Dongli; Liu, Yang; Tao, Zhonghua; Gao, Dongmei; Sun, Huichuan; Cao, Ya; Fan, Jia; Wu, Weizhong

    2015-01-01

    Organ site-specific metastasis is an ominous feature for most poor-prognostic hepatocellular carcinoma (HCC) patients. Cancer cell lines and animal models are indispensable for investigating the molecular mechanisms of organ specific tropism. However, till now, little is known about the drivers in HCC metastatic tropism, and also no effective way has been developed to block the process of tropistic metastasis. In this study, we established several monoclonal HCC cell lines from HCCLM3-RFP together with their xenograft models, and then analyzed their metastatic potentials and tropisms using in-vitro and in-vivo assays, and finally elucidated the driving forces of HCC tropistic metastases. Six monoclonal cell lines with different organ site-specific tropism were established successfully. SPARC, VCAM1 and ANGPTL4 were found positively correlated with the potentials of lung metastasis, while ITGA1 had a positive relation to lymph node metastasis of enterocoelia. By our powerful platforms, HCC metastatic tropisms in clinic could be easily mimicked and recapitulated for exploring the bilateral interactions between tumor and its microenvironment, elucidating the drivers of HCC metastatic tropisms, and testing anti-cancer effects of newly developed agent in pre-clinical stage. The online version of this article (doi:10.1186/s12885-015-1692-0) contains supplementary material, which is available to authorized users