WorldWideScience

Sample records for site soil samples

  1. A soil sampling reference site: The challenge in defining reference material for sampling

    International Nuclear Information System (INIS)

    De Zorzi, Paolo; Barbizzi, Sabrina; Belli, Maria; Fajgelj, Ales; Jacimovic, Radojko; Jeran, Zvonka; Sansone, Umberto; Perk, Marcel van der

    2008-01-01

    In the frame of the international SOILSAMP project, funded and coordinated by the Italian Environmental Protection Agency, an agricultural area was established as a reference site suitable for performing soil sampling inter-comparison exercises. The reference site was characterized for trace element content in soil, in terms of the spatial and temporal variability of their mass fraction. Considering that the behaviour of long-lived radionuclides in soil can be expected to be similar to that of some stable trace elements and that the distribution of these trace elements in soil can simulate the distribution of radionuclides, the reference site characterised in term of trace elements, can be also used to compare the soil sampling strategies developed for radionuclide investigations

  2. A soil sampling reference site: The challenge in defining reference material for sampling

    Energy Technology Data Exchange (ETDEWEB)

    De Zorzi, Paolo [Agenzia per la Protezione dell' Ambiente e per i Servizi Tecnici (APAT), Servizio Metrologia Ambientale, Via di Castel Romano, Rome 100-00128 (Italy)], E-mail: paolo.dezorzi@apat.it; Barbizzi, Sabrina; Belli, Maria [Agenzia per la Protezione dell' Ambiente e per i Servizi Tecnici (APAT), Servizio Metrologia Ambientale, Via di Castel Romano, Rome 100-00128 (Italy); Fajgelj, Ales [International Atomic Energy Agency (IAEA), Agency' s Laboratories Seibersdorf, Vienna A-1400 (Austria); Jacimovic, Radojko; Jeran, Zvonka; Sansone, Umberto [Jozef Stefan Institute, Jamova 39, Ljubljana 1000 (Slovenia); Perk, Marcel van der [Department of Physical Geography, Utrecht University, P.O. Box 80115, TC Utrecht 3508 (Netherlands)

    2008-11-15

    In the frame of the international SOILSAMP project, funded and coordinated by the Italian Environmental Protection Agency, an agricultural area was established as a reference site suitable for performing soil sampling inter-comparison exercises. The reference site was characterized for trace element content in soil, in terms of the spatial and temporal variability of their mass fraction. Considering that the behaviour of long-lived radionuclides in soil can be expected to be similar to that of some stable trace elements and that the distribution of these trace elements in soil can simulate the distribution of radionuclides, the reference site characterised in term of trace elements, can be also used to compare the soil sampling strategies developed for radionuclide investigations.

  3. A soil sampling reference site: the challenge in defining reference material for sampling.

    Science.gov (United States)

    de Zorzi, Paolo; Barbizzi, Sabrina; Belli, Maria; Fajgelj, Ales; Jacimovic, Radojko; Jeran, Zvonka; Sansone, Umberto; van der Perk, Marcel

    2008-11-01

    In the frame of the international SOILSAMP project, funded and coordinated by the Italian Environmental Protection Agency, an agricultural area was established as a reference site suitable for performing soil sampling inter-comparison exercises. The reference site was characterized for trace element content in soil, in terms of the spatial and temporal variability of their mass fraction. Considering that the behaviour of long-lived radionuclides in soil can be expected to be similar to that of some stable trace elements and that the distribution of these trace elements in soil can simulate the distribution of radionuclides, the reference site characterised in term of trace elements, can be also used to compare the soil sampling strategies developed for radionuclide investigations.

  4. Characterisation of a reference site for quantifying uncertainties related to soil sampling

    International Nuclear Information System (INIS)

    Barbizzi, Sabrina; Zorzi, Paolo de; Belli, Maria; Pati, Alessandra; Sansone, Umberto; Stellato, Luisa; Barbina, Maria; Deluisa, Andrea; Menegon, Sandro; Coletti, Valter

    2004-01-01

    An integrated approach to quality assurance in soil sampling remains to be accomplished. - The paper reports a methodology adopted to face problems related to quality assurance in soil sampling. The SOILSAMP project, funded by the Environmental Protection Agency of Italy (APAT), is aimed at (i) establishing protocols for soil sampling in different environments; (ii) assessing uncertainties associated with different soil sampling methods in order to select the 'fit-for-purpose' method; (iii) qualifying, in term of trace elements spatial variability, a reference site for national and international inter-comparison exercises. Preliminary results and considerations are illustrated

  5. EDRXF measurements of heavy elements in soil samples from some potentially polluted sites in zambia

    International Nuclear Information System (INIS)

    Hayumbu, P.; Phiri, L.K.; Mambo, A.; Sokotela, S.B.

    2001-01-01

    A survey of heavy element levels in top soils collected around four industrial plants and along four highway stretches demonstrated that there was significant pollution only around an abandoned Pb/Zn mine. Sample collection in a rectangular grid encompassing each source sought to depict the spatial extent of pollution. Ascertaining levels of heavy elements in potentially polluted soils in urban areas of Zambia and along major highways was deemed desirable because it is common practice to grow maize and vegetables in lots adjacent to accessible industrial sites and highways. Pb is a heavy element of interest for all sampled sites whose distribution at the abandoned mine ranged from 13 to 2028 ppm

  6. Comparison of tree coring and soil gas sampling for screening of contaminated sites

    DEFF Research Database (Denmark)

    Nielsen, Mette Algreen; Stalder, Marcel; Riis, Charlotte

    and then identify high risk areas. The uptake of BTEX into trees varies to a greater extent with the tree species and the site conditions than chlorinated solvents, which lead to greater uncertainty. Both methods have their advantages and disadvantages. Hence, the methods supplement each other. Based on results......Site characterization is often time consuming and a financial burden for the site owners, which raises a demand for rapid and inexpensive (pre)screening methods. Phytoscreening by tree coring has shown to be a useful tool to detect subsurface contamination, especially of chlorinated solvents...... suitable as initial screening methods for site characterization. The aim of this study is to compare tree coring and soil gas sampling to evaluate to which extent tree coring may supplement or substitute soil gas sampling as a site contaminant screening tool. And where both methods are feasible, evaluate...

  7. Soil sampling

    International Nuclear Information System (INIS)

    Fortunati, G.U.; Banfi, C.; Pasturenzi, M.

    1994-01-01

    This study attempts to survey the problems associated with techniques and strategies of soil sampling. Keeping in mind the well defined objectives of a sampling campaign, the aim was to highlight the most important aspect of representativeness of samples as a function of the available resources. Particular emphasis was given to the techniques and particularly to a description of the many types of samplers which are in use. The procedures and techniques employed during the investigations following the Seveso accident are described. (orig.)

  8. 1996 Phase 2 soil sampling at the 183-H Solar Evaporation Basin site

    International Nuclear Information System (INIS)

    Kramer, C.D.

    1996-10-01

    This report consolidates 1996 soil sampling data collected from the 183-H Solar Evaporation Basin Site. This report is intended to be a data reference and does not make comparisons or conclusions regarding specific regulatory criteria. Chemical and radiological data were collected to support cleanup activities at the Hanford Site; soil sampling occurred beneath and next to the former basin structures. The 183-H Solar Evaporation Basins, which consisted of four adjoining concrete basins, were located in the 100 Area of the Hanford Site, north of the retired 105-H Reactor. Originally, the basins were built as part of the 100-H water treatment structures. The four basins were inactive from the mid-1960's until 1973 when radioactive and dangerous (mixed) waste from the 300 Area Fuel Fabrication Facility was shipped to the basins for storage and treatment. The basins were used for solar evaporation of the waste. The last shipment of waste to the 183-H Basins took place in November 1985. Decontamination of the cement structure took place in 1995. The structure has subsequently been dismantled and disposed. Chapters 2.0 through 4.0 present summary information about sampling (1) beneath the loading ramp and berm piles, (2) in shallow soils beneath the former basin floor, and (3) deep vadose soils. Detailed data are provided in the appendices

  9. [PHAHs levels in soil samples from the E-waste disassembly sites and their sources allocation].

    Science.gov (United States)

    Zhao, Gao-Feng; Wang, Zi-Jian

    2009-06-15

    Soil samples (each with 3 replicates of - 1 kg, at the top 0-5 cm layer) were collected from each of the e-waste disassembly sites and the control site. Also obtained from each disassembly site were samples (each weighing - 0.2 kg) of cable coating,stuffing powder, and circuit boards chipping. The contents of 23 PBB congeners, 12 PBDE congeners, and 27 PCB congeners in soil and in their potential sources, including e-waste residues, were measured using the GC-MS5975B technique. The highest level of PBBs was found in the cable coating among the three e-waste residues, with a concentration of 35.25 ng x g(-1). The contents of low-brominated PBBs (including monobromobiphenyls and dibromobiphenyls) accounted for 38% of the total PBBs concentration observed in cable coating sample. The highest levels of PBDEs and PBDE209 were found in the stuffing powder for electronic component among the collected e-waste residues, with a concentration of 29.71 and 4.19 x 10(3) ng x g(-1). PBDE153 and PBDE183 were the most predominant PBDE congeners, with their concentration accounting for 43% and 24% of the total PBDEs concentration observed in the stuffing powder sample, respectively. Levels of PCBs in cable coating were the highest in these e-waste residues, with a concentration of 680.02 ngx g(-1). The observed values of the three PHAHs in soils from the disassembly site were considerably higher than their corresponding values observed in the control site (p < 0.05), which indicates that these PHAHs from e-waste is the pollution source of local environment.

  10. LEAK AND GAS PERMEABILITY TESTING DURING SOIL-GAS SAMPLING AT HAL'S CHEVRON LUST SITE IN GREEN RIVER, UTAH

    Science.gov (United States)

    The results of gas permeability and leak testing during active soil-gas sampling at Hal’s Chevron LUST Site in Green River, Utah are presented. This study was conducted to support development of a passive soil-gas sampling method. Gas mixtures containing helium and methane were...

  11. [The assessment of radionuclide contamination and toxicity of soils sampled from "experimental field" site of Semipalatinsk nuclear test site].

    Science.gov (United States)

    Evseeva, T I; Maĭstrenko, T A; Belykh, E S; Geras'kin, S A; Kriazheva, E Iu

    2009-01-01

    Large-scale maps (1:25000) of soil contamination with radionuclides, lateral distribution of 137Cs, 90Sr, Fe and Mn water-soluble compounds and soil toxicity in "Experimental field" site of Semipalatinsk nuclear test site were charted. At present soils from studied site (4 km2) according to basic sanitary standards of radiation safety adopted in Russian Federation (OSPORB) do not attributed to radioactive wastes with respect to data on artificial radionuclide concentration, but they do in compliance with IAEA safety guide. The soils studied can not be released from regulatory control due to radioactive decay of 137Cs and 90Sr and accumulation-decay of 241Am up to 2106 year according to IAEA concept of exclusion, exemption and clearance. Data on bioassay "increase of Chlorella vulgaris Beijer biomass production in aqueous extract from soils" show that the largest part of soils from the studied site (74%) belongs to stimulating or insignificantly influencing on the algae reproduction due to water-soluble compounds effect. Toxic soils occupy 26% of the territory. The main factors effecting the algae reproduction in the aqueous extracts from soil are Fe concentration and 90Sr specific activity: 90Sr inhibits but Fe stimulates algae biomass production.

  12. Bio indication of soil samples from contaminated military sites in Georgia

    International Nuclear Information System (INIS)

    Zakariadze, N.; Gagelidze, N.; Amiranashvili, L.; Nabakhtiani, G.; Tsigroshvili, Z.

    2005-01-01

    State of environment in Georgia is influenced significantly by political and economic situation of the last several years.The consequences of these conditions are pollution of water, air, and soil with health-hazardous emissions, dissemination of uncontrolled waste, highly toxic substances and unfit military and industrial materials in civil, agricultural, and military sites and respective facilities. In Georgia the specific problems of soil contamination are: spot type distribution of contaminants; simultaneous (synergetic) impacts of various pollutants; chronic and enduring impacts; pollution of moderate or low intensity. Pollutants, at low doses, may not cause immediate changes; however in some time they can create danger and become the risk factors for acquired lethal diseases developed in living organisms and accumulated in environment. Several cases of contamination with radionuclide substances distribution have been detected on in a number of regions in Georgia, which became the range for investigation of specific, spot type of pollution. The soil samples contaminated with following nuclides were studied: Single sources 226 Ra, Dust 226 Ra, Single sources 90 Sr, Single sources 137 Cs. The main goal of the team is complex study of contaminated territories. In parallel with polluted spots' indication, the investigation of ecological systems' reactions to diverse impacts is carried out. Bioassays application significantly increases quality and reliability of: assessment of contaminated territories; selection of optimal and available technologies for sanation and remediation; recommendations on urgent measures. As bio-indicators the main groups of microorganisms were studied: Bacteria, Actinomycetes and Microphyte fungi. The primary results showed that behaviour of observed microorganisms colonies could be satisfactorily described with the following parameters: CCU; Meeting factor; Diameter of colonies; Morphological similarity and difference. Simultaneous study

  13. Assessing NIR & MIR Spectral Analysis as a Method for Soil C Estimation Across a Network of Sampling Sites

    Science.gov (United States)

    Spencer, S.; Ogle, S.; Borch, T.; Rock, B.

    2008-12-01

    Monitoring soil C stocks is critical to assess the impact of future climate and land use change on carbon sinks and sources in agricultural lands. A benchmark network for soil carbon monitoring of stock changes is being designed for US agricultural lands with 3000-5000 sites anticipated and re-sampling on a 5- to10-year basis. Approximately 1000 sites would be sampled per year producing around 15,000 soil samples to be processed for total, organic, and inorganic carbon, as well as bulk density and nitrogen. Laboratory processing of soil samples is cost and time intensive, therefore we are testing the efficacy of using near-infrared (NIR) and mid-infrared (MIR) spectral methods for estimating soil carbon. As part of an initial implementation of national soil carbon monitoring, we collected over 1800 soil samples from 45 cropland sites in the mid-continental region of the U.S. Samples were processed using standard laboratory methods to determine the variables above. Carbon and nitrogen were determined by dry combustion and inorganic carbon was estimated with an acid-pressure test. 600 samples are being scanned using a bench- top NIR reflectance spectrometer (30 g of 2 mm oven-dried soil and 30 g of 8 mm air-dried soil) and 500 samples using a MIR Fourier-Transform Infrared Spectrometer (FTIR) with a DRIFT reflectance accessory (0.2 g oven-dried ground soil). Lab-measured carbon will be compared to spectrally-estimated carbon contents using Partial Least Squares (PLS) multivariate statistical approach. PLS attempts to develop a soil C predictive model that can then be used to estimate C in soil samples not lab-processed. The spectral analysis of soil samples either whole or partially processed can potentially save both funding resources and time to process samples. This is particularly relevant for the implementation of a national monitoring network for soil carbon. This poster will discuss our methods, initial results and potential for using NIR and MIR spectral

  14. Iodine-129 measurements in soil samples from Dolon village near the Semipalatinsk nuclear test site.

    Science.gov (United States)

    Endo, Satoru; Tomita, Junpei; Tanaka, Kenichi; Yamamoto, Masayoshi; Fukutani, Satoshi; Imanaka, Tetsuji; Sakaguchi, Aya; Amano, Hikaru; Kawamura, Hidehisa; Kawamura, Hisao; Apsalikov, Kazbek N; Gusev, Boris I; Whitehead, Neil E; Shinkarev, Sergey; Hoshi, Masaharu

    2008-07-01

    Dolon village, located about 60 km from the border of the Semipalatinsk nuclear test site, is known to be heavily contaminated by the first USSR atomic bomb test in August 1949. Soil samples around Dolon were taken in October 2005 in an attempt to evaluate internal thyroid dose arising from incorporation of radioiodine isotopes (mainly (131)I). Iodine-129 in soil was measured by using the technique of accelerator mass spectrometry. The (129)I/(127)I atom ratios measured were in the range from 3.3 x 10(-9) to 3.3 x 10(-7). These values were within the range of the current background level ( approximately 10(-9) to 10(-7)) in the environment, including contributions from the global fallout of atmospheric nuclear tests and local fallout of nuclear facilities. The (129)I atom accumulated level in soil ranged from 1.28 x 10(13) to 1.59 x 10(14) atoms m(-2), the average (8.0 x 10(13)) of which was higher than the background level of (2-5) x 10(13). From the relationship between (129)I and( 137)Cs (corrected for background and decay from 1949 to 2005) accumulated levels, the background level of (129)I and the (129)I/(137)Cs ratio around Dolon were estimated to be (6.4 +/- 0.4) x 10(13) atoms m(-2) and 0.25 +/- 0.16, respectively. This (129)I/(137)Cs ratio is almost similar to the fission yield ratio for (239)Pu fast fission (0.24).

  15. On-Site Processing and Subsampling of Surface Soil Samples for the Analysis of Explosives

    National Research Council Canada - National Science Library

    Hewitt, Alan D

    2003-01-01

    The on-site implementation of a sampling and analysis plan for the determination of explosives residues exposed a large uncertainty in our ability to quickly obtain representative subsamples from either large (>500 g...

  16. Correlation of PCDD/F and PCB concentrations in soil samples from the Swiss Soil Monitoring Network (NABO) to specific parameters of the observation sites

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, P.; Gujer, E.; Zennegg, M. [Swiss Federal Laboratories for Materials Testing and Research (EMPA), Duebendorf (Switzerland); Bucheli, T. [Agroscope FAL Reckenholz, Zuerich (Switzerland)

    2004-09-15

    Soils are natural sinks for persistent organic pollutants (POPs) such as polychlorinated dibenzo-pdioxins (PCDD/F) and polychlorinated biphenyls (PCB). Being lipophilic compounds, these contaminants adsorb to the organic carbon of the soil, and due to the low mobility and high persistence, they accumulate in the soil. Soil therefore represents rather a long-term archive for the atmospheric deposition than an indicator for the actual input of these compounds. In 1986, on demand of the Swiss ordinance of 9 June 1986 relating to hazardous substances in the soil, a national soil monitoring network (NABO) was set up in Switzerland aiming at monitoring the soil pollution. Sites were selected to reflect typical land use, vegetation, land management, air quality, and soil conditions in Switzerland. 50% of the sites are located on agricultural land, 30% in forests, and 20% on open land with extensive farming (alpine pastures, etc.); two sites are situated in urban parks. The sites are distributed throughout Switzerland including rural/remote areas as well as urban, urban fringe and industrial regions. Soil samples are taken every 5 years and are analysed for eight heavy metals (lead, copper, cadmium, zinc, nickel, chromium, cobalt, and mercury) as well as fluorine. So far, organic pollutants (PAH and PCB) have been determined in isolated samples only, and there is no data on PCDD/F concentrations so far. The present program was set up to fill this knowledge gap. A subset of 23 sites representing locations where contaminant immissions above average were expected was selected for PCDD/F and PCB analysis.

  17. Test of Tree Core Sampling for Screening of Toxic Elements in Soils from a Norwegian Site

    DEFF Research Database (Denmark)

    Nielsen, Mette Algreen; Rein, Arno; Legind, Charlotte Nielsen

    2011-01-01

    Tree core samples have been used to delineate organic subsurface plumes. In 2009 and 2010, samples were taken at trees growing on a former dump site in Norway and analyzed for arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), and zinc (Zn). Concentrations in wood were in averag...

  18. Soil sampling in emergency situations

    International Nuclear Information System (INIS)

    Carvalho, Zenildo Lara de; Ramos Junior, Anthenor Costa

    1997-01-01

    The soil sampling methods used in Goiania's accident (1987) by the environmental team of Brazilian Nuclear Energy Commission (CNEN) are described. The development of this method of soil sampling to a emergency sampling method used in a Nuclear Emergency Exercise in Angra dos Reis Reactor Site (1991) is presented. A new method for soil sampling based on a Chernobyl environmental monitoring experience (1995) is suggested. (author)

  19. Historical review of long-term soil sampling for environmental surveillance at the Hanford Site and vicinity

    Energy Technology Data Exchange (ETDEWEB)

    Price, K.R.; Rickard, W.H.

    1997-08-01

    Soil samples have been collected routinely from the environs of the Hanford Site and analyzed since 1971. Correct interpretation of results depends on samples being collected from the same locations, the locations remaining relatively undisturbed, and collection and analytical procedures remaining the same or being equivalent. Historical files, documents, and annual environmental reports were reviewed to evaluate these factors. It was determined that 20 soil sampling locations, 11 onsite and 9 offsite, were established between 1971 and 1977 and represent long-term sampling locations. Sample collection and analytical procedures have remained essentially the same since 1971. The physical ecological attributes of each long-term soil sampling location were evaluated. During the review of historical records, a few results for 1970, 1971, and 1972 were noted as previously unreported in annual or special reports. These results are included in Appendix A. To complete the record, results previously reported in annual environmental reports are given in Appendix B. Global Positioning System (GPS) reading for 20 long-term soil sampling locations are provided in Appendix C.

  20. Historical review of long-term soil sampling for environmental surveillance at the Hanford Site and vicinity

    International Nuclear Information System (INIS)

    Price, K.R.; Rickard, W.H.

    1997-08-01

    Soil samples have been collected routinely from the environs of the Hanford Site and analyzed since 1971. Correct interpretation of results depends on samples being collected from the same locations, the locations remaining relatively undisturbed, and collection and analytical procedures remaining the same or being equivalent. Historical files, documents, and annual environmental reports were reviewed to evaluate these factors. It was determined that 20 soil sampling locations, 11 onsite and 9 offsite, were established between 1971 and 1977 and represent long-term sampling locations. Sample collection and analytical procedures have remained essentially the same since 1971. The physical ecological attributes of each long-term soil sampling location were evaluated. During the review of historical records, a few results for 1970, 1971, and 1972 were noted as previously unreported in annual or special reports. These results are included in Appendix A. To complete the record, results previously reported in annual environmental reports are given in Appendix B. Global Positioning System (GPS) reading for 20 long-term soil sampling locations are provided in Appendix C

  1. Comparison of in situ gamma soil analysis and soil sampling data for mapping 241Am and 239Pu soil concentrations at the Nevada Test Site

    International Nuclear Information System (INIS)

    Kirby, J.A.; Anspaugh, L.R.; Phelps, P.L.; Huckabay, G.W.; Markwell, F.; Barnes, M.

    1976-01-01

    Soil sampling and in situ 241 Am-gamma counting with an array of four high purity, planar, Ge detectors are compared as means of determining soil concentration contours of plutonium and their associated uncertainties. Results of this survey, which covered an area of approximately 300,000 m 2 , indicate that with one-third the number of sampling locations, the in situ gamma survey provided soil concentration contours with confidence intervals that were about one-third as wide as those obtained with soil sampling. The methods of the survey are described and a discussion of advantages and limitations of both methods is given

  2. Comparison of in situ gamma soil analysis and soil sampling data for mapping 241Am and 239Pu soil concentrations at the Nevada Test Site

    International Nuclear Information System (INIS)

    Kirby, J.A.; Anspaugh, L.R.; Phelps, P.L.; Huckabay, G.W.; Markwell, F.R.; Barnes, M.G.

    1977-01-01

    Soil sampling and in situ 241 Am-gamma counting with an array of four high-purity, planar, Ge detectors are compared as means of determining soil concentration contours of plutonium and their associated uncertainties. Results of this survey, which covered an area of approximately 300,000 m 2 , indicate that with one-third the number of sampling locations, the in situ gamma survey provided soil concentration contours with confidence intervals that were about one-third as wide as those obtained with soil sampling. The methods of the survey are described and a discussion of advantages and limitations of both methods is given

  3. Radionuclide Concentrations in Terrestrial Vegetation and Soil Samples On and Around the Hanford Site, 1971 Through 2008

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Mary Ann; Poston, Ted M.; Fritz, Brad G.; Bisping, Lynn E.

    2011-07-29

    Environmental monitoring is conducted on the U.S. Department of Energy (DOE) Hanford Site to comply with DOE Orders and federal and state regulations. Major objectives of the monitoring are to characterize contaminant levels in the environment and to determine site contributions to the contaminant inventory. This report focuses on surface soil and perennial vegetation samples collected between 1971 and 2008 as part of the Pacific Northwest National Laboratory Surface Environmental Surveillance Project performed under contract to DOE. Areas sampled under this program are located on the Hanford Site but outside facility boundaries and on public lands surrounding the Hanford Site. Additional samples were collected during the past 8 years under DOE projects that evaluated parcels of land for radiological release. These data were included because the same sampling methodology and analytical laboratory were used for the projects. The spatial and temporal trends of six radionuclides collected over a 38-year period were evaluated. The radionuclides----cobalt-60, cesium-137, strontium-90, plutonium-238, plutonium-239/240, and uranium (reported either as uranium-238 or total uranium)----were selected because they persist in the environment and are still being monitored routinely and reported in Hanford Site environmental reports. All these radionuclides were associated with plutonium production and waste management of activities occurring on the site. Other sources include fallout from atmospheric testing of nuclear weapons, which ended in 1980, and the Chernobyl explosion in 1986. Uranium is also a natural component of the soil. This assessment of soil and vegetation data provides important information on the distribution of radionuclides in areas adjacent to industrial areas, established perimeter locations and buffer areas, and more offsite nearby and distant locations. The concentrations reflect a tendency for detection of some radionuclides close to where they were

  4. Derivation of residual radioactive material guidelines for uranium in soil at the Middlesex Sampling Plant Site, Middlesex, New Jersey

    International Nuclear Information System (INIS)

    Dunning, D.E.

    1995-02-01

    Residual radioactive material guidelines for uranium in soil were derived for the Middlesex Sampling Plant (MSP) site in Middlesex, New Jersey. This site has been designated for remedial action under the Formerly Utilized Sites Remedial Action Program (FUSRAP) of the US Department of Energy. The site became contaminated from operations conducted in support of the Manhattan Engineer District (MED) and the Atomic Energy Commission (AEC) between 1943 and 1967. Activities conducted at the site included sampling, storage, and shipment of uranium, thorium, and beryllium ores and residues. Uranium guidelines for single radioisotopes and total uranium were derived on the basis of the requirement that the 50-year committed effective dose equivalent to a hypothetical individual living or working in the immediate vicinity of the MSP site should not exceed a dose of 30 mrem/yr following remedial action for the current-use and likely future-use scenarios or a dose of 100 mrem/yr for less likely future-use scenarios. The RESRAD computer code, which implements the methodology described in the DOE manual for establishing residual radioactive material guidelines, was used in this evaluation. Four scenarios were considered for the site. These scenarios vary regarding future land use at the site, sources of water used, and sources of food consumed

  5. Surface radiation survey and soil sampling of the 300-FF-1 operable unit, Hanford Site, southeastern Washington: A case study

    International Nuclear Information System (INIS)

    Teel, S.S.; Olsen, K.B.

    1990-10-01

    The methods used for conducting a radiological characterization of the soil surface for the Phase I Remedial Investigation of a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) site is presented via a case study. The study site is an operable unit (300-FF-1) located in and adjacent to the 300 Area of the US Department of Energy's Hanford Site in southeastern Washington State. The operable unit contains liquid and solid waste disposal facilities associated with nuclear fuels fabrication. Continuous surface radiation surveying and soil sampling of selected locations were conducted. Contamination was found in several locations within the operable unit including areas near the liquid and solid waste disposal facilities. Instruments used during surveying included portable beta/gamma (P-11) detectors, and the Ultrasonic Ranging and Data System using an NaI (Tl) detector. Laboratory analyses results indicate that above-background radiation levels were primarily due to the presence of uranium. Both types of field instruments used in the study were effective in detecting surface contamination from radionuclides; however, each had specific advantages. Guidelines are presented for the optimum use of these instruments when performing a radiological characterization of the soil surface. 4 refs., 3 figs., 3 tabs

  6. Pilot studies for the North American Soil Geochemical Landscapes Project - Site selection, sampling protocols, analytical methods, and quality control protocols

    Science.gov (United States)

    Smith, D.B.; Woodruff, L.G.; O'Leary, R. M.; Cannon, W.F.; Garrett, R.G.; Kilburn, J.E.; Goldhaber, M.B.

    2009-01-01

    In 2004, the US Geological Survey (USGS) and the Geological Survey of Canada sampled and chemically analyzed soils along two transects across Canada and the USA in preparation for a planned soil geochemical survey of North America. This effort was a pilot study to test and refine sampling protocols, analytical methods, quality control protocols, and field logistics for the continental survey. A total of 220 sample sites were selected at approximately 40-km intervals along the two transects. The ideal sampling protocol at each site called for a sample from a depth of 0-5 cm and a composite of each of the O, A, and C horizons. The Ca, Fe, K, Mg, Na, S, Ti, Ag, As, Ba, Be, Bi, Cd, Ce, Co, Cr, Cs, Cu, Ga, In, La, Li, Mn, Mo, Nb, Ni, P, Pb, Rb, Sb, Sc, Sn, Sr, Te, Th, Tl, U, V, W, Y, and Zn by inductively coupled plasma-mass spectrometry and inductively coupled plasma-atomic emission spectrometry following a near-total digestion in a mixture of HCl, HNO3, HClO4, and HF. Separate methods were used for Hg, Se, total C, and carbonate-C on this same size fraction. Only Ag, In, and Te had a large percentage of concentrations below the detection limit. Quality control (QC) of the analyses was monitored at three levels: the laboratory performing the analysis, the USGS QC officer, and the principal investigator for the study. This level of review resulted in an average of one QC sample for every 20 field samples, which proved to be minimally adequate for such a large-scale survey. Additional QC samples should be added to monitor within-batch quality to the extent that no more than 10 samples are analyzed between a QC sample. Only Cr (77%), Y (82%), and Sb (80%) fell outside the acceptable limits of accuracy (% recovery between 85 and 115%) because of likely residence in mineral phases resistant to the acid digestion. A separate sample of 0-5-cm material was collected at each site for determination of organic compounds. A subset of 73 of these samples was analyzed for a suite of

  7. Predicting risk of trace element pollution from municipal roads using site-specific soil samples and remotely sensed data.

    Science.gov (United States)

    Reeves, Mari Kathryn; Perdue, Margaret; Munk, Lee Ann; Hagedorn, Birgit

    2018-07-15

    Studies of environmental processes exhibit spatial variation within data sets. The ability to derive predictions of risk from field data is a critical path forward in understanding the data and applying the information to land and resource management. Thanks to recent advances in predictive modeling, open source software, and computing, the power to do this is within grasp. This article provides an example of how we predicted relative trace element pollution risk from roads across a region by combining site specific trace element data in soils with regional land cover and planning information in a predictive model framework. In the Kenai Peninsula of Alaska, we sampled 36 sites (191 soil samples) adjacent to roads for trace elements. We then combined this site specific data with freely-available land cover and urban planning data to derive a predictive model of landscape scale environmental risk. We used six different model algorithms to analyze the dataset, comparing these in terms of their predictive abilities and the variables identified as important. Based on comparable predictive abilities (mean R 2 from 30 to 35% and mean root mean square error from 65 to 68%), we averaged all six model outputs to predict relative levels of trace element deposition in soils-given the road surface, traffic volume, sample distance from the road, land cover category, and impervious surface percentage. Mapped predictions of environmental risk from toxic trace element pollution can show land managers and transportation planners where to prioritize road renewal or maintenance by each road segment's relative environmental and human health risk. Published by Elsevier B.V.

  8. Source Identification and Sequential Leaching of Heavy Metals in Soil Samples Collected from Selected Dump Sites in Ekiti State, Nigeria

    OpenAIRE

    , E.E. Awokunmi; , S.S. Asaolu; , O.O Ajayi; , A.O. Adebayo

    2011-01-01

    Ten heavy metals (Fe, Cu, Mn, Zn, Pb, Ni, Co, Cd, Cr and Sn) in fractioned and bulk soil samples collected from four dump sites located in AdoEkiti and Ikere -Ekiti, South western Nigeria were analysed using a modified Tessier’s procedure and acid digestion to obtain the distribution pattern of metal in this region. The metals were found to have been distributed in all phases with Fe, Cr, and Sn dominating the residual fraction (90.12 - 94.88%), Co, Ni, Cu, and Zn were found in all the extrac...

  9. Comparison of soil sampling and analytical methods for asbestos at the Sumas Mountain Asbestos Site-Working towards a toolbox for better assessment.

    Science.gov (United States)

    Wroble, Julie; Frederick, Timothy; Frame, Alicia; Vallero, Daniel

    2017-01-01

    Established soil sampling methods for asbestos are inadequate to support risk assessment and risk-based decision making at Superfund sites due to difficulties in detecting asbestos at low concentrations and difficulty in extrapolating soil concentrations to air concentrations. Environmental Protection Agency (EPA)'s Office of Land and Emergency Management (OLEM) currently recommends the rigorous process of Activity Based Sampling (ABS) to characterize site exposures. The purpose of this study was to compare three soil analytical methods and two soil sampling methods to determine whether one method, or combination of methods, would yield more reliable soil asbestos data than other methods. Samples were collected using both traditional discrete ("grab") samples and incremental sampling methodology (ISM). Analyses were conducted using polarized light microscopy (PLM), transmission electron microscopy (TEM) methods or a combination of these two methods. Data show that the fluidized bed asbestos segregator (FBAS) followed by TEM analysis could detect asbestos at locations that were not detected using other analytical methods; however, this method exhibited high relative standard deviations, indicating the results may be more variable than other soil asbestos methods. The comparison of samples collected using ISM versus discrete techniques for asbestos resulted in no clear conclusions regarding preferred sampling method. However, analytical results for metals clearly showed that measured concentrations in ISM samples were less variable than discrete samples.

  10. Soil Gas Sampling

    Science.gov (United States)

    Field Branches Quality System and Technical Procedures: This document describes general and specific procedures, methods and considerations to be used and observed when collecting soil gas samples for field screening or laboratory analysis.

  11. Soil Sampling Operating Procedure

    Science.gov (United States)

    EPA Region 4 Science and Ecosystem Support Division (SESD) document that describes general and specific procedures, methods, and considerations when collecting soil samples for field screening or laboratory analysis.

  12. Application of a series of artificial neural networks to on-site quantitative analysis of lead into real soil samples by laser induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    El Haddad, J.; Bruyère, D.; Ismaël, A.; Gallou, G.; Laperche, V.; Michel, K.; Canioni, L.; Bousquet, B.

    2014-01-01

    Artificial neural networks were applied to process data from on-site LIBS analysis of soil samples. A first artificial neural network allowed retrieving the relative amounts of silicate, calcareous and ores matrices into soils. As a consequence, each soil sample was correctly located inside the ternary diagram characterized by these three matrices, as verified by ICP-AES. Then a series of artificial neural networks were applied to quantify lead into soil samples. More precisely, two models were designed for classification purpose according to both the type of matrix and the range of lead concentrations. Then, three quantitative models were locally applied to three data subsets. This complete approach allowed reaching a relative error of prediction close to 20%, considered as satisfying in the case of on-site analysis. - Highlights: • Application of a series of artificial neural networks (ANN) to quantitative LIBS • Matrix-based classification of the soil samples by ANN • Concentration-based classification of the soil samples by ANN • Series of quantitative ANN models dedicated to the analysis of data subsets • Relative error of prediction lower than 20% for LIBS analysis of soil samples

  13. Determination of naturally occurring radioactive materials and heavy metals in soil sample at industrial site area Gebeng, Pahang

    International Nuclear Information System (INIS)

    Muhammad Dzulkhairi Zulkifly

    2012-01-01

    A study has been carried out to determine the natural occurring radioactivity and heavy metal at an industrial site area Gebeng, Pahang. Sampling has been done in four different stations. This study has been carried out to determine the natural radioactivity ( 238 U, 232 Th, 40 K and 226 Ra) and heavy metal in soil sample. Natural radioactivities were determined using Gamma Spectrometry System, the heavy metal determination was done using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). The result for analysis radioactivity concentration showed that Uranium-238 were in the range of 28.18 ± 4.78 Bq/ kg - 39.63 ± 4.79 Bq/ kg, while the concentration for Thorium-232 were in the range of 45.66 ± 5.49 Bq/ kg - 72.43 ± 9.47 Bq/ kg and for the Radium-226, the concentration were in the range of 8.93 ± 1.15 Bq/ kg - 14.29 ± 2.61 Bq/ kg. The concentration of Potassium-40 were in the range of 51.06 ± 12.18 Bq/ kg - 426.28 ± 137.70 Bq/ kg. 8 heavy metals have been found from the four different stations which are Al, Fe, V, Mn, Cr, Cu, Zn and Pb. Fe show the highest concentration among the other heavy metal while Pb show the lowest concentration. From this study, the specific activities of natural radionuclide in almost all stations were below the world limit average for soil, which is 35 Bq/ kg for Uranium-238 and Radium-226, while Thorium-232 and Potassium-40 were above the world limit average which are 30 Bq/ kg and 400 Bq/ kg. (author)

  14. Sampling errors associated with soil composites used to estimate mean Ra-226 concentrations at an UMTRA remedial-action site

    International Nuclear Information System (INIS)

    Gilbert, R.O.; Baker, K.R.; Nelson, R.A.; Miller, R.H.; Miller, M.L.

    1987-07-01

    The decision whether to take additional remedial action (removal of soil) from regions contaminated by uranium mill tailings involves collecting 20 plugs of soil from each 10-m by 10-m plot in the region and analyzing a 500-g portion of the mixed soil for 226 Ra. A soil sampling study was conducted in the windblown mill-tailings flood plain area at Shiprock, New Mexico, to evaluate whether reducing the number of soil plugs to 9 would have any appreciable impact on remedial-action decisions. The results of the Shiprock study are described and used in this paper to develop a simple model of the standard deviation of 226 Ra measurements on composite samples formed from 21 or fewer plugs. This model is used to predict as a function of the number of soil plugs per composite, the percent accuracy with which the mean 226 Ra concentration in surface soil can be estimated, and the probability of making incorrect remedial action decisions on the basis of statistical tests. 8 refs., 15 figs., 9 tabs

  15. Summary of Inorganic Compositional Data for Groundwater, Soil-Water, and Surface-Water Samples at the Headgate Draw Subsurface Drip Irrigation Site

    Energy Technology Data Exchange (ETDEWEB)

    Geboy, Nicholas J.; Engle, Mark A.; Schroeder, Karl T.; Zupanic, John W.

    2007-01-01

    As part of a 5-year project on the impact of subsurface drip irrigation (SDI) application of coalbed-methane (CBM) produced waters, water samples were collected from the Headgate Draw SDI site in the Powder River Basin, Wyoming, USA. This research is part of a larger study to understand short- and long-term impacts on both soil and water quality from the beneficial use of CBM waters to grow forage crops through use of SDI. This document provides a summary of the context, sampling methodology, and quality assurance and quality control documentation of samples collected prior to and over the first year of SDI operation at the site (May 2008-October 2009). This report contains an associated database containing inorganic compositional data, water-quality criteria parameters, and calculated geochemical parameters for samples of groundwater, soil water, surface water, treated CBM waters, and as-received CBM waters collected at the Headgate Draw SDI site.

  16. The content and radiosensitivity of bacteria of Pseudomonas and Bacillus genera in soil samples from the sites adjacent to Armenian nuclear power plant

    International Nuclear Information System (INIS)

    Khachatryan, G.E.; Mkrtchyan, N.I.; Simonyan, N.V.; Arakelyan, V.B.

    2014-01-01

    From the samples of soils taken from the sites adjoining to the Armenian Nuclear Power Plant along the predominant direction of winds representatives of rather radiosensitive closely-related species of bacteria Pseudomonas putida and P. fluorescence and rather radioresistant bacilli B. mesentericus and B. subtilis were isolated. Their quantitative content in the soils of monitoring points and radiosensitivity was investigated. It was shown that in soils with the raised quantity of 137 Cs the amount of Pseudomonas cells is understated; contrariwise their radioresistance was a little bit raised. The maintenance of cells of Bacillus species varied without certain law, and survival curves had practically identical characteristics in all the points

  17. Superfund Site Information - Site Sampling Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — This asset includes Superfund site-specific sampling information including location of samples, types of samples, and analytical chemistry characteristics of...

  18. Evaluation the total exposure of soil sample in Adaya site and the obtain risk assessments for the worker by Res Rad code program

    International Nuclear Information System (INIS)

    Mahadi, A. M.; Khadim, A. A. N.; Ibrahim, Z. H.; Ali, S. A.

    2012-12-01

    The present study aims to evaluation the total exposure to the worker in Adaya site risk assessment by using Res Rad code program. The study including 5 areas soil sample calculate in the site and analysis it by High Pure Germaniums (Hg) system made (CANBERRA) company. The soil sample simulation by (Res Rad) code program by inter the radioactive isotope concentration and the specification of the contamination zone area, depth and the cover depth of it. The total exposure of same sample was about 9 mSv/year and the (Heast 2001 Morbidity, FGR13 Morbidity) about 2.045 state every 100 worker in the year. There are simple different between Heast 2001 Morbidity and FGR13 Morbidity according to the Dose Conversion Factor (DCF) use it. The (FGR13 Morbidity) about 2.041 state every 100 worker in the year. (Author)

  19. Tree Sampling as a Method to Assess Vapor Intrusion Potential at a Site Characterized by VOC-Contaminated Groundwater and Soil.

    Science.gov (United States)

    Wilson, Jordan L; Limmer, Matthew A; Samaranayake, V A; Schumacher, John G; Burken, Joel G

    2017-09-19

    Vapor intrusion (VI) by volatile organic compounds (VOCs) in the built environment presents a threat to human health. Traditional VI assessments are often time-, cost-, and labor-intensive; whereas traditional subsurface methods sample a relatively small volume in the subsurface and are difficult to collect within and near structures. Trees could provide a similar subsurface sample where roots act as the "sampler' and are already onsite. Regression models were developed to assess the relation between PCE concentrations in over 500 tree-core samples with PCE concentrations in over 50 groundwater and 1000 soil samples collected from a tetrachloroethylene- (PCE-) contaminated Superfund site and analyzed using gas chromatography. Results indicate that in planta concentrations are significantly and positively related to PCE concentrations in groundwater samples collected at depths less than 20 m (adjusted R 2 values greater than 0.80) and in soil samples (adjusted R 2 values greater than 0.90). Results indicate that a 30 cm diameter tree characterizes soil concentrations at depths less than 6 m over an area of 700-1600 m 2 , the volume of a typical basement. These findings indicate that tree sampling may be an appropriate method to detect contamination at shallow depths at sites with VI.

  20. Tree sampling as a method to assess vapor intrusion potential at a site characterized by VOC-contaminated groundwater and soil

    Science.gov (United States)

    Wilson, Jordan L.; Limmer, Matthew A.; Samaranayake, V. A.; Schumacher, John G.; Burken, Joel G.

    2017-01-01

    Vapor intrusion (VI) by volatile organic compounds (VOCs) in the built environment presents a threat to human health. Traditional VI assessments are often time-, cost-, and labor-intensive; whereas traditional subsurface methods sample a relatively small volume in the subsurface and are difficult to collect within and near structures. Trees could provide a similar subsurface sample where roots act as the “sampler’ and are already onsite. Regression models were developed to assess the relation between PCE concentrations in over 500 tree-core samples with PCE concentrations in over 50 groundwater and 1000 soil samples collected from a tetrachloroethylene- (PCE-) contaminated Superfund site and analyzed using gas chromatography. Results indicate that in planta concentrations are significantly and positively related to PCE concentrations in groundwater samples collected at depths less than 20 m (adjusted R2 values greater than 0.80) and in soil samples (adjusted R2 values greater than 0.90). Results indicate that a 30 cm diameter tree characterizes soil concentrations at depths less than 6 m over an area of 700–1600 m2, the volume of a typical basement. These findings indicate that tree sampling may be an appropriate method to detect contamination at shallow depths at sites with VI.

  1. Hanford Site background: Part 1, Soil background for nonradioactive analytes

    International Nuclear Information System (INIS)

    1993-04-01

    Volume two contains the following appendices: Description of soil sampling sites; sampling narrative; raw data soil background; background data analysis; sitewide background soil sampling plan; and use of soil background data for the detection of contamination at waste management unit on the Hanford Site

  2. The use of atomic absorption spectroscopy to measure arsenic, selenium, molybdenum, and vanadium in water and soil samples from uranium mill tailings sites

    International Nuclear Information System (INIS)

    Hollenbach, M.H.

    1988-01-01

    The Technical Measurements Center (TMC) was established to support the environmental measurement needs of the various DOE remedial action programs. A laboratory intercomparison study conducted by the TMC, using soil and water samples from sites contaminated by uranium mill tailings, indicated large discrepancies in analytical results reported by participating laboratories for arsenic, selenium, molybdenum, and vanadium. The present study was undertaken to investigate the most commonly used analytical techniques for measuring these four elements, ascertain routine and reliable quantification, and assess problems and successes of analysts. Based on a survey of the technical literature, the analytical technique of atomic absorption spectroscopy was selected for detailed study. The application of flame atomic absorption, graphite furnace atomic absorption, and hydride generation atomic absorption to the analysis of tailings-contaminated samples is discussed. Additionally, laboratory sample preparation methods for atomic absorption spectroscopy are presented. The conclusion of this report is that atomic absorption can be used effectively for the determination of arsenic, selenium, molybdenum, and vanadium in water and soil samples if the analyst understands the measurement process and is aware of potential problems. The problem of accurate quantification of arsenic, selenium, molybdenum, and vanadium in water and soil contaminated by waste products from uranium milling operations affects all DOE remedial action programs [Surplus Facilities Management Program (SFMP), Formerly Utilized Site Remedial Action Program (FUSRAP), and Uranium Mill Tailings Remedial Action Program (UMTRAP)], since all include sites where uranium was processed. 96 refs., 9 figs

  3. Biological Soil Crust Web Site

    Science.gov (United States)

    www.soilcrust.org Crust 101 Advanced Gallery References CCERS site Links Biological Soil Crusts Textbook Corrections Level of Development Index Biological soil crusts are the community of organisms , mosses, liverworts and lichens. A Field Guide to Biological Soil Crusts of Western U.S. Drylands: Common

  4. Soil sampling strategies: Evaluation of different approaches

    International Nuclear Information System (INIS)

    De Zorzi, Paolo; Barbizzi, Sabrina; Belli, Maria; Mufato, Renzo; Sartori, Giuseppe; Stocchero, Giulia

    2008-01-01

    The National Environmental Protection Agency of Italy (APAT) performed a soil sampling intercomparison, inviting 14 regional agencies to test their own soil sampling strategies. The intercomparison was carried out at a reference site, previously characterised for metal mass fraction distribution. A wide range of sampling strategies, in terms of sampling patterns, type and number of samples collected, were used to assess the mean mass fraction values of some selected elements. The different strategies led in general to acceptable bias values (D) less than 2σ, calculated according to ISO 13258. Sampling on arable land was relatively easy, with comparable results between different sampling strategies

  5. Soil sampling strategies: Evaluation of different approaches

    Energy Technology Data Exchange (ETDEWEB)

    De Zorzi, Paolo [Agenzia per la Protezione dell' Ambiente e per i Servizi Tecnici (APAT), Servizio Metrologia Ambientale, Via di Castel Romano, 100-00128 Roma (Italy)], E-mail: paolo.dezorzi@apat.it; Barbizzi, Sabrina; Belli, Maria [Agenzia per la Protezione dell' Ambiente e per i Servizi Tecnici (APAT), Servizio Metrologia Ambientale, Via di Castel Romano, 100-00128 Roma (Italy); Mufato, Renzo; Sartori, Giuseppe; Stocchero, Giulia [Agenzia Regionale per la Prevenzione e Protezione dell' Ambiente del Veneto, ARPA Veneto, U.O. Centro Qualita Dati, Via Spalato, 14-36045 Vicenza (Italy)

    2008-11-15

    The National Environmental Protection Agency of Italy (APAT) performed a soil sampling intercomparison, inviting 14 regional agencies to test their own soil sampling strategies. The intercomparison was carried out at a reference site, previously characterised for metal mass fraction distribution. A wide range of sampling strategies, in terms of sampling patterns, type and number of samples collected, were used to assess the mean mass fraction values of some selected elements. The different strategies led in general to acceptable bias values (D) less than 2{sigma}, calculated according to ISO 13258. Sampling on arable land was relatively easy, with comparable results between different sampling strategies.

  6. Soil sampling strategies: evaluation of different approaches.

    Science.gov (United States)

    de Zorzi, Paolo; Barbizzi, Sabrina; Belli, Maria; Mufato, Renzo; Sartori, Giuseppe; Stocchero, Giulia

    2008-11-01

    The National Environmental Protection Agency of Italy (APAT) performed a soil sampling intercomparison, inviting 14 regional agencies to test their own soil sampling strategies. The intercomparison was carried out at a reference site, previously characterised for metal mass fraction distribution. A wide range of sampling strategies, in terms of sampling patterns, type and number of samples collected, were used to assess the mean mass fraction values of some selected elements. The different strategies led in general to acceptable bias values (D) less than 2sigma, calculated according to ISO 13258. Sampling on arable land was relatively easy, with comparable results between different sampling strategies.

  7. Vertical Distribution and Estimated Doses from Artificial Radionuclides in Soil Samples around the Chernobyl Nuclear Power Plant and the Semipalatinsk Nuclear Testing Site

    Science.gov (United States)

    Taira, Yasuyuki; Hayashida, Naomi; Tsuchiya, Rimi; Yamaguchi, Hitoshi; Takahashi, Jumpei; Kazlovsky, Alexander; Urazalin, Marat; Rakhypbekov, Tolebay; Yamashita, Shunichi; Takamura, Noboru

    2013-01-01

    For the current on-site evaluation of the environmental contamination and contributory external exposure after the accident at the Chernobyl Nuclear Power Plant (CNPP) and the nuclear tests at the Semipalatinsk Nuclear Testing Site (SNTS), the concentrations of artificial radionuclides in soil samples from each area were analyzed by gamma spectrometry. Four artificial radionuclides (241Am, 134Cs, 137Cs, and 60Co) were detected in surface soil around CNPP, whereas seven artificial radionuclides (241Am, 57Co, 137Cs, 95Zr, 95Nb, 58Co, and 60Co) were detected in surface soil around SNTS. Effective doses around CNPP were over the public dose limit of 1 mSv/y (International Commission on Radiological Protection, 1991). These levels in a contaminated area 12 km from Unit 4 were high, whereas levels in a decontaminated area 12 km from Unit 4 and another contaminated area 15 km from Unit 4 were comparatively low. On the other hand, the effective doses around SNTS were below the public dose limit. These findings suggest that the environmental contamination and effective doses on the ground definitely decrease with decontamination such as removing surface soil, although the effective doses of the sampling points around CNPP in the present study were all over the public dose limit. Thus, the remediation of soil as a countermeasure could be an extremely effective method not only for areas around CNPP and SNTS but also for areas around the Fukushima Dai-ichi Nuclear Power Plant (FNPP), and external exposure levels will be certainly reduced. Long-term follow-up of environmental monitoring around CNPP, SNTS, and FNPP, as well as evaluation of the health effects in the population residing around these areas, could contribute to radiation safety and reduce unnecessary exposure to the public. PMID:23469013

  8. Vertical distribution and estimated doses from artificial radionuclides in soil samples around the Chernobyl nuclear power plant and the Semipalatinsk nuclear testing site.

    Directory of Open Access Journals (Sweden)

    Yasuyuki Taira

    Full Text Available For the current on-site evaluation of the environmental contamination and contributory external exposure after the accident at the Chernobyl Nuclear Power Plant (CNPP and the nuclear tests at the Semipalatinsk Nuclear Testing Site (SNTS, the concentrations of artificial radionuclides in soil samples from each area were analyzed by gamma spectrometry. Four artificial radionuclides ((241Am, (134Cs, (137Cs, and (60Co were detected in surface soil around CNPP, whereas seven artificial radionuclides ((241Am, (57Co, (137Cs, (95Zr, (95Nb, (58Co, and (60Co were detected in surface soil around SNTS. Effective doses around CNPP were over the public dose limit of 1 mSv/y (International Commission on Radiological Protection, 1991. These levels in a contaminated area 12 km from Unit 4 were high, whereas levels in a decontaminated area 12 km from Unit 4 and another contaminated area 15 km from Unit 4 were comparatively low. On the other hand, the effective doses around SNTS were below the public dose limit. These findings suggest that the environmental contamination and effective doses on the ground definitely decrease with decontamination such as removing surface soil, although the effective doses of the sampling points around CNPP in the present study were all over the public dose limit. Thus, the remediation of soil as a countermeasure could be an extremely effective method not only for areas around CNPP and SNTS but also for areas around the Fukushima Dai-ichi Nuclear Power Plant (FNPP, and external exposure levels will be certainly reduced. Long-term follow-up of environmental monitoring around CNPP, SNTS, and FNPP, as well as evaluation of the health effects in the population residing around these areas, could contribute to radiation safety and reduce unnecessary exposure to the public.

  9. Vertical distribution and estimated doses from artificial radionuclides in soil samples around the Chernobyl nuclear power plant and the Semipalatinsk nuclear testing site.

    Science.gov (United States)

    Taira, Yasuyuki; Hayashida, Naomi; Tsuchiya, Rimi; Yamaguchi, Hitoshi; Takahashi, Jumpei; Kazlovsky, Alexander; Urazalin, Marat; Rakhypbekov, Tolebay; Yamashita, Shunichi; Takamura, Noboru

    2013-01-01

    For the current on-site evaluation of the environmental contamination and contributory external exposure after the accident at the Chernobyl Nuclear Power Plant (CNPP) and the nuclear tests at the Semipalatinsk Nuclear Testing Site (SNTS), the concentrations of artificial radionuclides in soil samples from each area were analyzed by gamma spectrometry. Four artificial radionuclides ((241)Am, (134)Cs, (137)Cs, and (60)Co) were detected in surface soil around CNPP, whereas seven artificial radionuclides ((241)Am, (57)Co, (137)Cs, (95)Zr, (95)Nb, (58)Co, and (60)Co) were detected in surface soil around SNTS. Effective doses around CNPP were over the public dose limit of 1 mSv/y (International Commission on Radiological Protection, 1991). These levels in a contaminated area 12 km from Unit 4 were high, whereas levels in a decontaminated area 12 km from Unit 4 and another contaminated area 15 km from Unit 4 were comparatively low. On the other hand, the effective doses around SNTS were below the public dose limit. These findings suggest that the environmental contamination and effective doses on the ground definitely decrease with decontamination such as removing surface soil, although the effective doses of the sampling points around CNPP in the present study were all over the public dose limit. Thus, the remediation of soil as a countermeasure could be an extremely effective method not only for areas around CNPP and SNTS but also for areas around the Fukushima Dai-ichi Nuclear Power Plant (FNPP), and external exposure levels will be certainly reduced. Long-term follow-up of environmental monitoring around CNPP, SNTS, and FNPP, as well as evaluation of the health effects in the population residing around these areas, could contribute to radiation safety and reduce unnecessary exposure to the public.

  10. Postwildfire measurement of soil physical and hydraulic properties at selected sampling sites in the 2011 Las Conchas wildfire burn scar, Jemez Mountains, north-central New Mexico

    Science.gov (United States)

    Romero, Orlando C.; Ebel, Brian A.; Martin, Deborah A.; Buchan, Katie W.; Jornigan, Alanna D.

    2018-04-10

    The generation of runoff and the resultant flash flooding can be substantially larger following wildfire than for similar rainstorms that precede wildfire disturbance. Flash flooding after the 2011 Las Conchas Fire in New Mexico provided the motivation for this investigation to assess postwildfire effects on soil-hydraulic properties (SHPs) and soil-physical properties (SPPs) as a function of remotely sensed burn severity 4 years following the wildfire. A secondary purpose of this report is to illustrate a methodology to determine SHPs that analyzes infiltrometer data by using three different analysis methods. The SPPs and SHPs are measured as a function of remotely sensed burn severity by using the difference in the Normalized Burn Ratio (dNBR) metric for seven sites. The dNBR metric was used to guide field sample collection across a full spectrum of burn severities that covered the range of Monitoring Trends in Burn Severity (MTBS) and Burned Area Reflectance Classification (BARC) thematic classes from low to high severity. The SPPs (initial and saturated soil-water content, bulk density, soil-organic matter, and soil-particle size) and SHPs (field-saturated hydraulic conductivity and sorptivity) were measured under controlled laboratory conditions for soil cores collected in the field. The SHPs were estimated by using tension infiltrometer measurements and three different data analysis methods. These measurements showed large effects of burn severity, focused in the top1 centimeter (cm) of soil, on some SPPs (bulk density, soil organic matter, and particle sizes). The threshold of these bulk density and soil organic matter effects was between 300 and 400 dNBR, which corresponds to a MTBS thematic class between moderate and high burn severity and a BARC4 thematic class of high severity. Gravel content and the content of fines in the top 1 cm of soil had a higher threshold value between 450 and 500 dNBR. Lesser effects on SPPs were observed at depths of 1–3 cm

  11. Physical sampling for site and waste characterization

    International Nuclear Information System (INIS)

    Bonnough, T.L.

    1994-01-01

    Physical sampling plays a basic role in site and waste characterization program effort. The term ''physical sampling'' used here means collecting tangible, physical samples of soil, water, air, waste streams, or other materials. The industry defines the term ''physical sampling'' broadly to include measurements of physical conditions such as temperature, wind conditions, and pH which are also often taken in a sample collection effort. Most environmental compliance actions are supported by the results of taking, recording, and analyzing physical samples and the measuring of physical conditions taken in association with sample collecting

  12. Development testing of the chemical analysis automation polychlorinated biphenyl standard analysis method during surface soils sampling at the David Witherspoon 1630 site

    International Nuclear Information System (INIS)

    Hunt, M.A.; Klatt, L.N.; Thompson, D.H.

    1998-02-01

    The Chemical Analysis Automation (CAA) project is developing standardized, software-driven, site-deployable robotic laboratory systems with the objective of lowering the per-sample analysis cost, decreasing sample turnaround time, and minimizing human exposure to hazardous and radioactive materials associated with DOE remediation projects. The first integrated system developed by the CAA project is designed to determine polychlorinated biphenyls (PCB) content in soil matrices. A demonstration and development testing of this system was conducted in conjuction with surface soil characterization activities at the David Witherspoon 1630 Site in Knoxville, Tennessee. The PCB system consists of five hardware standard laboratory modules (SLMs), one software SLM, the task sequence controller (TSC), and the human-computer interface (HCI). Four of the hardware SLMs included a four-channel Soxhlet extractor, a high-volume concentrator, a column cleanup, and a gas chromatograph. These SLMs performed the sample preparation and measurement steps within the total analysis protocol. The fifth hardware module was a robot that transports samples between the SLMs and the required consumable supplies to the SLMs. The software SLM is an automated data interpretation module that receives raw data from the gas chromatograph SLM and analyzes the data to yield the analyte information. The TSC is a software system that provides the scheduling, management of system resources, and the coordination of all SLM activities. The HCI is a graphical user interface that presents the automated laboratory to the analyst in terms of the analytical procedures and methods. Human control of the automated laboratory is accomplished via the HCI. Sample information required for processing by the automated laboratory is entered through the HCI. Information related to the sample and the system status is presented to the analyst via graphical icons

  13. Soil sampling for environmental contaminants

    International Nuclear Information System (INIS)

    2004-10-01

    The Consultants Meeting on Sampling Strategies, Sampling and Storage of Soil for Environmental Monitoring of Contaminants was organized by the International Atomic Energy Agency to evaluate methods for soil sampling in radionuclide monitoring and heavy metal surveys for identification of punctual contamination (hot particles) in large area surveys and screening experiments. A group of experts was invited by the IAEA to discuss and recommend methods for representative soil sampling for different kinds of environmental issues. The ultimate sinks for all kinds of contaminants dispersed within the natural environment through human activities are sediment and soil. Soil is a particularly difficult matrix for environmental pollution studies as it is generally composed of a multitude of geological and biological materials resulting from weathering and degradation, including particles of different sizes with varying surface and chemical properties. There are so many different soil types categorized according to their content of biological matter, from sandy soils to loam and peat soils, which make analytical characterization even more complicated. Soil sampling for environmental monitoring of pollutants, therefore, is still a matter of debate in the community of soil, environmental and analytical sciences. The scope of the consultants meeting included evaluating existing techniques with regard to their practicability, reliability and applicability to different purposes, developing strategies of representative soil sampling for cases not yet considered by current techniques and recommending validated techniques applicable to laboratories in developing Member States. This TECDOC includes a critical survey of existing approaches and their feasibility to be applied in developing countries. The report is valuable for radioanalytical laboratories in Member States. It would assist them in quality control and accreditation process

  14. Soil Gas Sampling Operating Procedure

    Science.gov (United States)

    EPA Region 4 Science and Ecosystem Support Division (SESD) document that describes general and specific procedures, methods, and considerations when collecting soil gas samples for field screening or laboratory analysis.

  15. Determination of strontium-90 in soil samples

    Energy Technology Data Exchange (ETDEWEB)

    Chang, C C

    1976-06-01

    The determination of /sup 90/Sr in soil by tri-n-butyl phosphate (TBP) is often interfered with iron which is always present in soil sample. Based on the method given by the U.S. Environmental Protection Agency, HClO/sub 4/ is added to remove iron ions while the soil sample is analyzed with TBP. The effect of different concentrations of HClO/sub 4/ on extraction yield of iron and chemical yield of yttrium is investigated. The experimental results show that 2N HClO/sub 4/ is the optimum concentration. The chemical yield of yttrium can reach about 60 percent, and all iron ions can be removed. This method has successfully been applied to analyze the soil samples taken from the site of the nuclear power plant in North Taiwan.

  16. Bioremediation of PAH contaminated soil samples

    International Nuclear Information System (INIS)

    Joshi, M.M.; Lee, S.

    1994-01-01

    Soils contaminated with polynuclear aromatic hydrocarbons (PAHs) pose a hazard to life. The remediation of such sites can be done using physical, chemical, and biological treatment methods or a combination of them. It is of interest to study the decontamination of soil using bioremediation. The experiments were conducted using Acinetobacter (ATCC 31012) at room temperature without pH or temperature control. In the first series of experiments, contaminated soil samples obtained from Alberta Research Council were analyzed to determine the toxic contaminant and their composition in the soil. These samples were then treated using aerobic fermentation and removal efficiency for each contaminant was determined. In the second series of experiments, a single contaminant was used to prepare a synthetic soil sample. This sample of known composition was then treated using aerobic fermentation in continuously stirred flasks. In one set of flasks, contaminant was the only carbon source and in the other set, starch was an additional carbon source. In the third series of experiments, the synthetic contaminated soil sample was treated in continuously stirred flasks in the first set and in fixed bed in the second set and the removal efficiencies were compared. The removal efficiencies obtained indicated the extent of biodegradation for various contaminants, the effect of additional carbon source, and performance in fixed bed without external aeration

  17. Sampling for Soil Carbon Stock Assessment in Rocky Agricultural Soils

    Science.gov (United States)

    Beem-Miller, Jeffrey P.; Kong, Angela Y. Y.; Ogle, Stephen; Wolfe, David

    2016-01-01

    Coring methods commonly employed in soil organic C (SOC) stock assessment may not accurately capture soil rock fragment (RF) content or soil bulk density (rho (sub b)) in rocky agricultural soils, potentially biasing SOC stock estimates. Quantitative pits are considered less biased than coring methods but are invasive and often cost-prohibitive. We compared fixed-depth and mass-based estimates of SOC stocks (0.3-meters depth) for hammer, hydraulic push, and rotary coring methods relative to quantitative pits at four agricultural sites ranging in RF content from less than 0.01 to 0.24 cubic meters per cubic meter. Sampling costs were also compared. Coring methods significantly underestimated RF content at all rocky sites, but significant differences (p is less than 0.05) in SOC stocks between pits and corers were only found with the hammer method using the fixed-depth approach at the less than 0.01 cubic meters per cubic meter RF site (pit, 5.80 kilograms C per square meter; hammer, 4.74 kilograms C per square meter) and at the 0.14 cubic meters per cubic meter RF site (pit, 8.81 kilograms C per square meter; hammer, 6.71 kilograms C per square meter). The hammer corer also underestimated rho (sub b) at all sites as did the hydraulic push corer at the 0.21 cubic meters per cubic meter RF site. No significant differences in mass-based SOC stock estimates were observed between pits and corers. Our results indicate that (i) calculating SOC stocks on a mass basis can overcome biases in RF and rho (sub b) estimates introduced by sampling equipment and (ii) a quantitative pit is the optimal sampling method for establishing reference soil masses, followed by rotary and then hydraulic push corers.

  18. In situ analysis of Mars soil sample with the sam gcms instrumentation onboard Curiosity : interpretation and comparison of measurements done at Rocknest and Yelloknife bay sites

    Science.gov (United States)

    Szopa, Cyril; Coll, Patrice; Cabane, Michel; Coscia, David; Buch, Arnaud; Francois, Pascaline; Millan, Maeva; Teinturier, Sammy; Navarro-Gonzales, Rafael; Glavin, Daniel; Freissinet, Caro; Steele, Andrew; Eigenbrode, Jen; Mahaffy, Paul

    2014-05-01

    The characterisation of the chemical and mineralogical composition of regolith samples collected with the Curiosity rover is a primary objective of the SAM experiment. These data should provide essential clues on the past habitability of Gale crater. Amongst the SAM suite of instruments [1], SAM-GC (Gas Chromatograph) is devoted to identify and quantify volatiles evolved from the thermal (heating up to about 900°C)/chemical (derivatization procedure) treatment of any soil sample collected by the Curiosity rover. With the aim to search for potential organic molecules outgassed from the samples, a SAM-GC analytical channel composed of thermal-desorption injector and a MXT-CLP chromatographic column was chosen to achieve all the measurements done up today, as it was designed for the separation of a wide range of volatile organic molecules. Three solid samples have been analyzed with GCMS, one sand sample collected at the Rocknest site, and two rock samples (John Klein and Cumberland respectively) collected at the Yellowknife Bay site using the Curiosity driller. All the measurements were successful and they produced complex chromatograms with both detectors used for SAM GC, i.e. a thermal conductivity detector and the SAM quandrupole mass spectrometer. Their interpretation already revealed the presence of an oxychlorine phase present in the sample which is at the origin of chlorohydrocarbons clearly identified [2] but this represents only a fraction of the GCMS signal recorded [3,4]. This work presents a systematic comparison of the GCMS measurements done for the different samples collected, supported by reference data obtained in laboratory with different spare models of the gas chromatograph, with the aim to bring new elements of interpretation of the SAM measurements. References: [1] Mahaffy, P. et al. (2012) Space Sci Rev, 170, 401-478. [2] Glavin, D. et al. (2013), JGR. [3] Leshin L. et al. (2013), Science, [4] Ming D. et al. (2013), Science, 32, 64

  19. Curiosity analyzes Martian soil samples

    Science.gov (United States)

    Showstack, Randy; Balcerak, Ernie

    2012-12-01

    NASA's Mars Curiosity rover has conducted its first analysis of Martian soil samples using multiple instruments, the agency announced at a 3 December news briefing at the AGU Fall Meeting in San Francisco. "These results are an unprecedented look at the chemical diversity in the area," said NASA's Michael Meyer, program scientist for Curiosity.

  20. Determination of Pu in soil samples

    International Nuclear Information System (INIS)

    Torres C, C. O.; Hernandez M, H.; Romero G, E. T.; Vega C, H. R.

    2016-10-01

    The irreversible consequences of accidents occurring in nuclear plants and in nuclear fuel reprocessing sites are mainly the distribution of different radionuclides in different matrices such as the soil. The distribution in the superficial soil is related to the internal and external exposure to the radiation of the affected population. The internal contamination with radionuclides such as Pu is of great relevance to the nuclear forensic science, where is important to know the chemical and isotopic compositions of nuclear materials. The objective of this work is to optimize the radiochemical separation of plutonium (Pu) from soil samples and to determine their concentration. The soil samples were prepared using acid digestion assisted by microwave; purification of Pu was carried out with AG1X8 resin using ion exchange chromatography. Pu isotopes were measured using ICP-SFMS. In order to reduce the interference due to the presence of "2"3"8UH "+ in the samples, a solvent removal system (Apex) was used. In addition, the limit of detection and quantification of Pu was determined. It was found that the recovery efficiency of Pu in soil samples ranges from 70 to 93%. (Author)

  1. Hanford site transuranic waste sampling plan

    International Nuclear Information System (INIS)

    GREAGER, T.M.

    1999-01-01

    This sampling plan (SP) describes the selection of containers for sampling of homogeneous solids and soil/gravel and for visual examination of transuranic and mixed transuranic (collectively referred to as TRU) waste generated at the U.S. Department of Energy (DOE) Hanford Site. The activities described in this SP will be conducted under the Hanford Site TRU Waste Certification Program. This SP is designed to meet the requirements of the Transuranic Waste Characterization Quality Assurance Program Plan (CAO-94-1010) (DOE 1996a) (QAPP), site-specific implementation of which is described in the Hanford Site Transuranic Waste Characterization Program Quality Assurance Project Plan (HNF-2599) (Hanford 1998b) (QAPP). The QAPP defines the quality assurance (QA) requirements and protocols for TRU waste characterization activities at the Hanford Site. In addition, the QAPP identifies responsible organizations, describes required program activities, outlines sampling and analysis strategies, and identifies procedures for characterization activities. The QAPP identifies specific requirements for TRU waste sampling plans. Table 1-1 presents these requirements and indicates sections in this SP where these requirements are addressed

  2. Residual neutron-induced radionuclides in a soil sample collected in the vicinity of the criticality accident site in Tokai-mura, Japan: A Progress Report

    International Nuclear Information System (INIS)

    Nakanishi, Takashi; Hosotani, Risa; Komura, Kazuhisa; Muroyama, Toshiharu; Kofuji, Hisaki; Murata, Yoshimasa; Kimura, Shinzo; Kumar Sahoo, Sarata; Yonehara, Hidenori; Watanabe, Yoshito; Ban-nai, Tada-aki

    2000-01-01

    Residual neutron-induced radionuclides were measured in a soil sample collected in the vicinity of the location where a criticality accident occurred (in Tokai-mura, from 30 September to 1 October, 1999). Concentrations of 24 Na, 140 La, 122 Sb, 59 Fe, 124 Sb, 46 Sc, 65 Zn, 134 Cs and 60 Co in the soil sample were determined by γ-ray spectrometry, and neutron activation analysis was carried out for selected target elements in the sample. Tentative estimates of the apparent thermal and epithermal neutron fluences which reached the sample were obtained through combined analyses of 59 Fe/ 58 Fe, 124 Sb/ 123 Sb, 46 Sc/ 45 Sc, 65 Zn/ 64 Zn, 134 Cs/ 133 Cs and 60 Co/ 59 Co

  3. Hanford Site background: Part 1, Soil background for nonradioactive analytes. Revision 1, Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1993-04-01

    Volume two contains the following appendices: Description of soil sampling sites; sampling narrative; raw data soil background; background data analysis; sitewide background soil sampling plan; and use of soil background data for the detection of contamination at waste management unit on the Hanford Site.

  4. Hanford site environmental surveillance master sampling schedule

    International Nuclear Information System (INIS)

    Bisping, L.E.

    1998-01-01

    Environmental surveillance of the Hanford Site and surrounding areas is conducted by the Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy (DOE). Sampling is conducted to evaluate levels of radioactive and nonradioactive pollutants in the Hanford environs, as required in DOE Order 5400.1 open-quotes General Environmental Protection Program,close quotes and DOE Order 5400.5, open-quotes Radiation Protection of the Public and the Environment.close quotes The sampling methods are described in the Environmental Monitoring Plan, United States Department of Energy, Richland Operations Office, DOE/RL91-50, Rev. 2, U.S. Department of Energy, Richland, Washington. This document contains the 1998 schedules for routine collection of samples for the Surface Environmental Surveillance Project (SESP) and Drinking Water Monitoring Project. Each section of this document describes the planned sampling schedule for a specific media (air, surface water, biota, soil and vegetation, sediment, and external radiation). Each section includes the sample location, sample type, and analyses to be performed on the sample. In some cases, samples are scheduled on a rotating basis and may not be planned for 1998 in which case the anticipated year for collection is provided. In addition, a map is included for each media showing sample locations

  5. Determination of Dioxins in Soil Samples from industrial and burned forest sites in Syria Using an Enzyme Linked Immunosorbent Assay (ELIZA)

    International Nuclear Information System (INIS)

    Ghanem, I.; Orfi, M.; Abu-Alnaser, A.

    2013-01-01

    Sixty soil samples were collected from three industrial locations and burnt forest locution of Syria, namely, Banyas refinery and the Thermal Electricity Generation Station area (7 samples), Central factory area, Tartous (11 samples), AlFrunlok Forest, Lattakia (22 samples), Alwaer and Oil refinery area in Homs (20 samples) Dioxin presence in these samples was determined using a specific ELIZA Kit, Results indicate the absence of any detectable levels of Dioxins from any of the samples collected in Banyas refinery, Electricity Generation Station of Banyas, Central factory and the area of Hsain AlBaher, Mazrahat AlArous in Tartous. Likewise, all samples (22 samples) taken from AlFrunlok forest area were free of Dioxin contamination except the samples taken from the road to Nubu Issa, and Shahrura, where 8 samples (36.36%) and 6 samples (27.27%) contained concentration of Dioxin ranging between 5-15 and 15-25 PPT respectively. Results showed the presence of Dioxins in samples collected at AlWa-er area, Homs (17 sample) at high concentration in comparison with samples collected in other areas. Three of those samples (17.6%) and four samples (23.5%) contained Dioxins at levels ranging between 15-25 and 15-25 PPT respectively. (58.8%) of all samples (10 samples) collected in this area, contained Dioxins at levels exceeding the maximum level detectable by the ELIZA kit (i.e. 50 PPT). The results reported in the present study justify a follow up and detailed study in AlWa-er area. (author)

  6. Remaining Sites Verification Package for 100-F-38 Stained Soil Site. Attachment to Waste Site Reclassification Form 2004-093

    International Nuclear Information System (INIS)

    Carlson, R.A.

    2006-01-01

    The 100-F-38 Stained Soil site was an area of yellow stained soil that was discovered while excavating a trench for the placement of electrical conduit. The 100-F-38 Stained Soil site meets the remedial action objectives specified in the Remaining Sites ROD. The results of verification sampling show demonstrate that residual contaminant concentrations support future unrestricted land uses that can be represented by a rural-residential scenario. The results also show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils and the contaminant concentrations remaining in the soil are protective of groundwater and the Columbia River

  7. Diffusion probe for gas sampling in undisturbed soil

    DEFF Research Database (Denmark)

    Petersen, Søren O

    2014-01-01

    Soil-atmosphere fluxes of trace gases such as methane (CH4) and nitrous oxide (N2O) are determined by complex interactions between biological activity and soil conditions. Soil gas concentration profiles may, in combination with other information about soil conditions, help to understand emission...... controls. This note describes a simple and robust diffusion probe for soil gas sampling as part of flux monitoring programs. It can be deployed with minimum disturbance of in-situ conditions, also at sites with a high or fluctuating water table. Separate probes are used for each sampling depth...... on peat soils used for grazing showed soil gas concentrations of CH4 and N2O as influenced by topography, site conditions, and season. The applicability of the diffusion probe for trace gas monitoring is discussed....

  8. Polycyclic hydrocarbon biomarkers confirm selective incorporation of petroleum in soil and kangaroo rat liver samples near an oil well blowout site in the western San Joaquin Valley, California

    International Nuclear Information System (INIS)

    Kaplan, I.; Lu, S.T.; Lee, R.P.; Warrick, G.

    1996-01-01

    Following an accidental oil well blow out at an oil field in the western part of the San Joaquin Valley, soil samples and specimens of Heermann's kangaroo rats (Dipodomys heermanni) were collected from two oil-impacted areas and one control area. Fingerprinting by GC-MS and quantitative evaluation of metabolized petroleum hydrocarbons was performed on oil, soil extracts, and rat livers. A liver from a domestically raised rabbit was used as an experimental control. The results show that there is no significant incorporation of PAHs or low molecular weight n-alkanes (C 13 --C 25 ) into the liver tissues. The C 25 --C 35 n-alkane range for all soil samples, kangaroo rat livers, and rabbit liver, is dominated by a high abundance of C 27 , C 29 , C 31 , and C 33 hydrocarbons typical of epicuticular plant waxes. In all liver tissue samples, squalene, the cholesterol precursor, is the dominant hydrocarbon. Although evidence is lacking for metabolism of PAHs and paraffinic petroleum hydrocarbons, very strong evidence is available for incorporation of a set of polycyclic hydrocarbons (biomarkers) belonging to the terpane, sterane, and monoaromatic and triaromatic sterane families, identified by ion monitoring at 191, 217, 253, and 231 m/z, respectively. Because these hydrocarbons are not known to exist in the biosphere, but are only synthesized during oil- and coal-forming processes, their presence in the liver samples constitutes proof for crude oil incorporation into tissues. This conclusion is further substantiated by the selective incorporation of only the 20S enantiomer of C 28 and C 29 steranes and aromatic steranes into the livers, with the exclusion of the 20R enantiomer. The results from the study conclusively demonstrate that polycyclic hydrocarbon biomarkers provide excellent indices for proof of petroleum exposure and metabolism in some terrestrial herbivores

  9. Lodgepole pine site index in relation to synoptic measures of climate, soil moisture and soil nutrients.

    Science.gov (United States)

    G. Geoff Wang; Shongming Huang; Robert A. Monserud; Ryan J. Klos

    2004-01-01

    Lodgepole pine site index was examined in relation to synoptic measures of topography, soil moisture, and soil nutrients in Alberta. Data came from 214 lodgepole pine-dominated stands sampled as a part of the provincial permanent sample plot program. Spatial location (elevation, latitude, and longitude) and natural subregions (NSRs) were topographic variables that...

  10. PAH loss during bioremediation of manufactured gas plant site soils

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, D C [and others

    1993-01-01

    Laboratory studies using soil samples from a former gas works site showed that PAH in the soil were present in a form resistant to biodegradation, whereas added naphthalene and phenanthrene were quickly degraded. The PAH already present were not extractable into water, and were not toxic to bacteria.

  11. Sampling soils for transuranic nuclides: a review

    International Nuclear Information System (INIS)

    Fowler, E.B.; Essington, E.H.

    1976-01-01

    A review of the literature pertinent to the sampling of soils for radionuclides is presented; emphasis is placed on transuranic nuclides. Sampling of soils is discussed relative to systems of heterogeneous distributions and varied particle sizes encountered in certain environments. Sampling methods that have been used for two different sources of contamination, global fallout, and accidental or operational releases, are included

  12. Reducing Contingency through Sampling at the Luckey FUSRAP Site - 13186

    International Nuclear Information System (INIS)

    Frothingham, David; Barker, Michelle; Buechi, Steve; Durham, Lisa

    2013-01-01

    Typically, the greatest risk in developing accurate cost estimates for the remediation of hazardous, toxic, and radioactive waste sites is the uncertainty in the estimated volume of contaminated media requiring remediation. Efforts to address this risk in the remediation cost estimate can result in large cost contingencies that are often considered unacceptable when budgeting for site cleanups. Such was the case for the Luckey Formerly Utilized Sites Remedial Action Program (FUSRAP) site near Luckey, Ohio, which had significant uncertainty surrounding the estimated volume of site soils contaminated with radium, uranium, thorium, beryllium, and lead. Funding provided by the American Recovery and Reinvestment Act (ARRA) allowed the U.S. Army Corps of Engineers (USACE) to conduct additional environmental sampling and analysis at the Luckey Site between November 2009 and April 2010, with the objective to further delineate the horizontal and vertical extent of contaminated soils in order to reduce the uncertainty in the soil volume estimate. Investigative work included radiological, geophysical, and topographic field surveys, subsurface borings, and soil sampling. Results from the investigative sampling were used in conjunction with Argonne National Laboratory's Bayesian Approaches for Adaptive Spatial Sampling (BAASS) software to update the contaminated soil volume estimate for the site. This updated volume estimate was then used to update the project cost-to-complete estimate using the USACE Cost and Schedule Risk Analysis process, which develops cost contingencies based on project risks. An investment of $1.1 M of ARRA funds for additional investigative work resulted in a reduction of 135,000 in-situ cubic meters (177,000 in-situ cubic yards) in the estimated base volume estimate. This refinement of the estimated soil volume resulted in a $64.3 M reduction in the estimated project cost-to-complete, through a reduction in the uncertainty in the contaminated soil

  13. Reducing Contingency through Sampling at the Luckey FUSRAP Site - 13186

    Energy Technology Data Exchange (ETDEWEB)

    Frothingham, David; Barker, Michelle; Buechi, Steve [U.S. Army Corps of Engineers Buffalo District, 1776 Niagara St., Buffalo, NY 14207 (United States); Durham, Lisa [Argonne National Laboratory, Environmental Science Division, 9700 S. Cass Ave., Argonne, IL 60439 (United States)

    2013-07-01

    Typically, the greatest risk in developing accurate cost estimates for the remediation of hazardous, toxic, and radioactive waste sites is the uncertainty in the estimated volume of contaminated media requiring remediation. Efforts to address this risk in the remediation cost estimate can result in large cost contingencies that are often considered unacceptable when budgeting for site cleanups. Such was the case for the Luckey Formerly Utilized Sites Remedial Action Program (FUSRAP) site near Luckey, Ohio, which had significant uncertainty surrounding the estimated volume of site soils contaminated with radium, uranium, thorium, beryllium, and lead. Funding provided by the American Recovery and Reinvestment Act (ARRA) allowed the U.S. Army Corps of Engineers (USACE) to conduct additional environmental sampling and analysis at the Luckey Site between November 2009 and April 2010, with the objective to further delineate the horizontal and vertical extent of contaminated soils in order to reduce the uncertainty in the soil volume estimate. Investigative work included radiological, geophysical, and topographic field surveys, subsurface borings, and soil sampling. Results from the investigative sampling were used in conjunction with Argonne National Laboratory's Bayesian Approaches for Adaptive Spatial Sampling (BAASS) software to update the contaminated soil volume estimate for the site. This updated volume estimate was then used to update the project cost-to-complete estimate using the USACE Cost and Schedule Risk Analysis process, which develops cost contingencies based on project risks. An investment of $1.1 M of ARRA funds for additional investigative work resulted in a reduction of 135,000 in-situ cubic meters (177,000 in-situ cubic yards) in the estimated base volume estimate. This refinement of the estimated soil volume resulted in a $64.3 M reduction in the estimated project cost-to-complete, through a reduction in the uncertainty in the contaminated soil

  14. A Comparison of Soil-Water Sampling Techniques

    Science.gov (United States)

    Tindall, J. A.; Figueroa-Johnson, M.; Friedel, M. J.

    2007-12-01

    The representativeness of soil pore water extracted by suction lysimeters in ground-water monitoring studies is a problem that often confounds interpretation of measured data. Current soil water sampling techniques cannot identify the soil volume from which a pore water sample is extracted, neither macroscopic, microscopic, or preferential flowpath. This research was undertaken to compare values of extracted suction lysimeters samples from intact soil cores with samples obtained by the direct extraction methods to determine what portion of soil pore water is sampled by each method. Intact soil cores (30 centimeter (cm) diameter by 40 cm height) were extracted from two different sites - a sandy soil near Altamonte Springs, Florida and a clayey soil near Centralia in Boone County, Missouri. Isotopically labeled water (O18? - analyzed by mass spectrometry) and bromide concentrations (KBr- - measured using ion chromatography) from water samples taken by suction lysimeters was compared with samples obtained by direct extraction methods of centrifugation and azeotropic distillation. Water samples collected by direct extraction were about 0.25 ? more negative (depleted) than that collected by suction lysimeter values from a sandy soil and about 2-7 ? more negative from a well structured clayey soil. Results indicate that the majority of soil water in well-structured soil is strongly bound to soil grain surfaces and is not easily sampled by suction lysimeters. In cases where a sufficient volume of water has passed through the soil profile and displaced previous pore water, suction lysimeters will collect a representative sample of soil pore water from the sampled depth interval. It is suggested that for stable isotope studies monitoring precipitation and soil water, suction lysimeter should be installed at shallow depths (10 cm). Samples should also be coordinated with precipitation events. The data also indicate that each extraction method be use to sample a different

  15. Optimizing Soil Moisture Sampling Locations for Validation Networks for SMAP

    Science.gov (United States)

    Roshani, E.; Berg, A. A.; Lindsay, J.

    2013-12-01

    Soil Moisture Active Passive satellite (SMAP) is scheduled for launch on Oct 2014. Global efforts are underway for establishment of soil moisture monitoring networks for both the pre- and post-launch validation and calibration of the SMAP products. In 2012 the SMAP Validation Experiment, SMAPVEX12, took place near Carman Manitoba, Canada where nearly 60 fields were sampled continuously over a 6 week period for soil moisture and several other parameters simultaneous to remotely sensed images of the sampling region. The locations of these sampling sites were mainly selected on the basis of accessibility, soil texture, and vegetation cover. Although these criteria are necessary to consider during sampling site selection, they do not guarantee optimal site placement to provide the most efficient representation of the studied area. In this analysis a method for optimization of sampling locations is presented which combines the state-of-art multi-objective optimization engine (non-dominated sorting genetic algorithm, NSGA-II), with the kriging interpolation technique to minimize the number of sampling sites while simultaneously minimizing the differences between the soil moisture map resulted from the kriging interpolation and soil moisture map from radar imaging. The algorithm is implemented in Whitebox Geospatial Analysis Tools, which is a multi-platform open-source GIS. The optimization framework is subject to the following three constraints:. A) sampling sites should be accessible to the crew on the ground, B) the number of sites located in a specific soil texture should be greater than or equal to a minimum value, and finally C) the number of sampling sites with a specific vegetation cover should be greater than or equal to a minimum constraint. The first constraint is implemented into the proposed model to keep the practicality of the approach. The second and third constraints are considered to guarantee that the collected samples from each soil texture categories

  16. Results of Soil Vapor Sampling at SA 6, McClellan Air Force Base, California

    National Research Council Canada - National Science Library

    1998-01-01

    ...) and total petroleum hydrocarbon (TPH) contamination in site soil. The soil vapor sampling event was performed in accordance with the Final Sampling and Analysis Plan to Support Recommendation for No Further Investigation at SA 6 (Parsons ES, 1998...

  17. Prompt Gamma Ray Analysis of Soil Samples

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, A.A.; Khiari, F.Z.; Haseeb, S.M.A.; Hussein, Tanvir; Khateeb-ur-Rehman [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Isab, A.H. [Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia)

    2015-07-01

    Neutron moderation effects were measured in bulk soil samples through prompt gamma ray measurements from water and benzene contaminated soil samples using 14 MeV neutron inelastic scattering. The prompt gamma rays were measured using a cylindrical 76 mm x 76 mm (diameter x height) LaBr{sub 3}:Ce detector. Since neutron moderation effects strongly depend upon hydrogen concentration of the sample, for comparison purposes, moderation effects were studied from samples containing different hydrogen concentrations. The soil samples with different hydrogen concentration were prepared by mixing soil with water as well as benzene in different weight proportions. Then, the effects of increasing water and benzene concentrations on the yields of hydrogen, carbon and silicon prompt gamma rays were measured. Moderation effects are more pronounced in soil samples mixed with water as compared to those from soil samples mixed with benzene. This is due to the fact that benzene contaminated soil samples have about 30% less hydrogen concentration by weight than the water contaminated soil samples. Results of the study will be presented. (authors)

  18. Sampling for validation of digital soil maps

    NARCIS (Netherlands)

    Brus, D.J.; Kempen, B.; Heuvelink, G.B.M.

    2011-01-01

    The increase in digital soil mapping around the world means that appropriate and efficient sampling strategies are needed for validation. Data used for calibrating a digital soil mapping model typically are non-random samples. In such a case we recommend collection of additional independent data and

  19. Sampling depth confounds soil acidification outcomes

    Science.gov (United States)

    In the northern Great Plains (NGP) of North America, surface sampling depths of 0-15 or 0-20 cm are suggested for testing soil characteristics such as pH. However, acidification is often most pronounced near the soil surface. Thus, sampling deeper can potentially dilute (increase) pH measurements an...

  20. Performance evaluation soil samples utilizing encapsulation technology

    Science.gov (United States)

    Dahlgran, James R.

    1999-01-01

    Performance evaluation soil samples and method of their preparation using encapsulation technology to encapsulate analytes which are introduced into a soil matrix for analysis and evaluation by analytical laboratories. Target analytes are mixed in an appropriate solvent at predetermined concentrations. The mixture is emulsified in a solution of polymeric film forming material. The emulsified solution is polymerized to form microcapsules. The microcapsules are recovered, quantitated and introduced into a soil matrix in a predetermined ratio to form soil samples with the desired analyte concentration.

  1. Physical sampling for site and waste characterization

    International Nuclear Information System (INIS)

    Bonnough, T.L.

    1996-01-01

    Physical sampling plays a basic role in high-level radioactive waste management program effort. The term ''physical sampling'' used here means collecting tangible, physical samples of soil, water, air, waste streams, or other materials. The industry defines the term ''physical sampling'' broadly to include measurements of physical conditions such as temperature, wind conditions, and pH, which are also often taken in a sample collection effort. Most environmental compliance actions are supported by the results of taking, recording, and analyzing physical samples and the measurements of physical conditions taken in association with sample collecting. Therefore, the when and how to take samples is needed to be known and planned

  2. Analyses of soils at commercial radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Piciulo, P.L.; Shea, C.E.; Barletta, R.E.

    1983-01-01

    Brookhaven National Laboratory, in order to provide technical assistance to the NRC, has measured a number of physical and chemical characteristics of soils from three commercial low-level radioactive waste disposal sites. Samples were collected from an area adjacent to the disposal site at Sheffield, IL, and from two operating sites: one at Barnwell, SC, and the other near Richland, WA. The soil samples, which were analyzed from each site, were believed to include soil which was representative of that in contact with buried waste forms. Results of field measurements of earth resistivity and of soil pH will be presented. Additionally, the results of laboratory measurements of resistivity, moisture content, pH, exchange acidity and the soluble ion content of the soils will be discussed. The soluble ion content of the soils was determined by analysis of aqueous extracts of saturated soil pastes. The concentrations of the following ions were determined: Ca 2+ , Mg 2+ , K + , Na + , HCO 3 - , CO 3 2- , SO 4 2- , Cl - , S 2-

  3. Hanford Site background: Part 1, Soil background for nonradioactive analytes

    International Nuclear Information System (INIS)

    1993-04-01

    The determination of soil background is one of the most important activities supporting environmental restoration and waste management on the Hanford Site. Background compositions serve as the basis for identifying soil contamination, and also as a baseline in risk assessment processes used to determine soil cleanup and treatment levels. These uses of soil background require an understanding of the extent to which analytes of concern occur naturally in the soils. This report documents the results of sampling and analysis activities designed to characterize the composition of soil background at the Hanford Site, and to evaluate the feasibility for use as Sitewide background. The compositions of naturally occurring soils in the vadose Zone have been-determined for-nonradioactive inorganic and organic analytes and related physical properties. These results confirm that a Sitewide approach to the characterization of soil background is technically sound and is a viable alternative to the determination and use of numerous local or area backgrounds that yield inconsistent definitions of contamination. Sitewide soil background consists of several types of data and is appropriate for use in identifying contamination in all soils in the vadose zone on the Hanford Site. The natural concentrations of nearly every inorganic analyte extend to levels that exceed calculated health-based cleanup limits. The levels of most inorganic analytes, however, are well below these health-based limits. The highest measured background concentrations occur in three volumetrically minor soil types, the most important of which are topsoils adjacent to the Columbia River that are rich in organic carbon. No organic analyte levels above detection were found in any of the soil samples

  4. Procedures for sampling radium-contaminated soils

    International Nuclear Information System (INIS)

    Fleischhauer, H.L.

    1985-10-01

    Two procedures for sampling the surface layer (0 to 15 centimeters) of radium-contaminated soil are recommended for use in remedial action projects. Both procedures adhere to the philosophy that soil samples should have constant geometry and constant volume in order to ensure uniformity. In the first procedure, a ''cookie cutter'' fashioned from pipe or steel plate, is driven to the desired depth by means of a slide hammer, and the sample extracted as a core or plug. The second procedure requires use of a template to outline the sampling area, from which the sample is obtained using a trowel or spoon. Sampling to the desired depth must then be performed incrementally. Selection of one procedure over the other is governed primarily by soil conditions, the cookie cutter being effective in nongravelly soils, and the template procedure appropriate for use in both gravelly and nongravelly soils. In any event, a minimum sample volume of 1000 cubic centimeters is recommended. The step-by-step procedures are accompanied by a description of the minimum requirements for sample documentation. Transport of the soil samples from the field is then addressed in a discussion of the federal regulations for shipping radioactive materials. Interpretation of those regulations, particularly in light of their application to remedial action soil-sampling programs, is provided in the form of guidance and suggested procedures. Due to the complex nature of the regulations, however, there is no guarantee that our interpretations of them are complete or entirely accurate. Preparation of soil samples for radium-226 analysis by means of gamma-ray spectroscopy is described

  5. Soil microbiota of Area 13 of the Nevada Test Site

    International Nuclear Information System (INIS)

    Au, F.H.F.; Leavitt, V.D.

    1985-01-01

    The influence of two desert plants, Atriplex canescens and Eurotia lanata, on kind and abundance of soil microbiota was determined in soil samples collected from Area 13 of the Nevada Test Site. This study was part of a larger research program to elucidate the role of soil microorganisms on the biological availability and the mobility of soil-deposited plutonium. The fungi identified in the soil samples included Aspergillus, Penicillium, Rhizopus, Stachybotrys, stysanus, Circinella, Cheaetomium, and Fusarium. The numbers of bacteria and fungi were generally highest at the 2.5- to 5.0-cm soil depth at both the mound and the interspace sampling sites. The highest numbers of fungi were found around the mound. The relative abundance of Aspergillus increased with increasing distance from the plants, whereas that of Penicillium decreased. Dematiaceae and chaetomium, both cellulose decomposers, were highest in the 0- to 2.5-cm soil segment. The abundance and distribution of soil microorganisms capable of incorporating plutonium (and probably other radionuclides as well) around the plants investigated indicate that this may be a factor in the bioavailability and movement of plutonium in the edaphic system. 17 references, 1 figure, 27 tables

  6. Analysis of large soil samples for actinides

    Science.gov (United States)

    Maxwell, III; Sherrod, L [Aiken, SC

    2009-03-24

    A method of analyzing relatively large soil samples for actinides by employing a separation process that includes cerium fluoride precipitation for removing the soil matrix and precipitates plutonium, americium, and curium with cerium and hydrofluoric acid followed by separating these actinides using chromatography cartridges.

  7. Analysis of soil samples from OMRE decommissioning project

    International Nuclear Information System (INIS)

    Simpson, O.D.; Chapin, J.A.; Hine, R.E.; Mandler, J.W.; Orme, M.P.; Soli, G.A.

    1979-01-01

    In order to establish that the present Organic Moderated Reactor Experiment (OMRE) site does not exceed the criteria for radioactive contamination, samples obtained from the remainder of the facility that was not removed such as soil, concrete pads, various structural materials, and the leach pond area were analyzed to determine their radioactive content. The results of the analyses performed on soil samples are presented. Results of this study indicate that the activity at the OMRE decommissioned area is confined to localized areas (i.e., the leach pond area and reactor area). Comparisons of radionuclide concentrations measured in soil taken from the lip of the leach pond with concentrations in soil obtained outside the Idaho National Engineering Laboratory (INEL) site boundaries indicate that the concentration in the soil at the edge of the leach pond is at background levels. The vertical augering technique was determined to be the best approach for obtaining shallow soil samples at the INEL. Selection of this technique was based on ease of operation and analytical results. Less area is disturbed per sample than with the horizontal trenching and coring techniques. The radionuclide analysis of the samples shows the existence of a few regions in the reactor and leach pond areas that were still above INEL release criteria. These regions have been or are being further decontaminated

  8. Use of passive sampling devices to determine soil contaminant concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, K.A. [Clemson Univ., Pendleton, SC (United States)]|[Washington State Univ., Richland, WA (United States); Hooper, M.J. [Clemson Univ., Pendleton, SC (United States); Weisskopf, C.P. [Washington State Univ., Richland, WA (United States)

    1996-12-31

    The effective remediation of contaminated sites requires accurate identification of chemical distributions. A rapid sampling method using passive sampling devices (PSDs) can provide a thorough site assessment. We have been pursuing their application in terrestrial systems and have found that they increase the ease and speed of analysis, decrease solvent usage and overall cost, and minimize the transport of contaminated soils. Time and cost savings allow a higher sampling frequency than is generally the case using traditional methods. PSDs have been used in the field in soils of varying physical properties and have been successful in estimating soil concentrations ranging from 1 {mu}g/kg (parts per billion) to greater than 200 mg/kg (parts per million). They were also helpful in identifying hot spots within the sites. Passive sampling devices show extreme promise as an analytical tool to rapidly characterize contaminant distributions in soil. There are substantial time and cost savings in laboratory personnel and supplies. By selectively excluding common interferences that require sample cleanup, PSDs can be retrieved from the field and processed rapidly (one technician can process approximately 90 PSDs in an 8-h work day). The results of our studies indicate that PSDs can be used to accurately estimate soil contaminant concentrations and provide lower detection limits. Further, time and cost savings will allow a more thorough and detailed characterization of contaminant distributions. 13 refs., 4 figs., 2 tabs.

  9. Analyses of soils at commercial radioactive-waste-disposal sites

    International Nuclear Information System (INIS)

    Piciulo, P.L.; Shea, C.E.; Barletta, R.E.

    1982-01-01

    Brookhaven National Laboratory, in order to provide technical assistance to the NRC, has measured a number of physical and chemical characteristics of soils from two currently operating commercial radioactive waste disposal sites; one at Barnwell, SC, and the other near Richland, WA. Soil samples believed to be representative of the soil that will contact the buried waste were collected and analyzed. Earth resistivities (field measurements), from both sites, supply information to identify variations in subsurface material. Barnwell soil resistivities (laboratory measurements) range from 3.6 x 10 5 ohm-cm to 8.9 x 10 4 ohm-cm. Soil resistivities of the Hanford sample vary from 3.0 x 10 5 ohm-cm to 6.6 x 10 3 ohm-cm. The Barnwell and Hanford soil pH ranges from 4.8 to 5.4 and from 4.0 to 7.2 respectively. The pH of a 1:2 mixture of soil to 0.01 M CaCl 2 resulted in a pH for the Barnwell samples of 3.9 +- 0.1 and for the Hanford samples of 7.4 +- 0.2. These values are comparable to the pH measurements of the water extract of the soils used for the analyses of soluble ion content of the soils. The exchange acidity of the soils was found to be approximately 7 mg-eq per 100 g of dry soil for clay material from Barnwell, whereas the Hanford soils showed an alkaline reaction. Aqueous extracts of saturated pastes were used to determine the concentrations of the following ions: Ca 2+ , Mg 2+ , K + , Na + , HCO 3 - , SO 4 /sup =/, and Cl - . The sulfide content of each of the soils was measured in a 1:2.5 mixture of soil to an antioxidant buffer solution. The concentrations of soluble ions found in the soils from both sites are consistent with the high resistivities

  10. Site Study Plan for laboratory soil mechanics, Deaf Smith County site, Texas: Revision 1

    International Nuclear Information System (INIS)

    1987-12-01

    This Site Study Plan for laboratory soil mechanics describes the laboratory testing to be conducted on soil samples collected as part of the characterization of the Deaf Smith County site, Texas. This study provides for measurements of index, mechanical, thermal, hydrologic, chemical, and mineral properties of soils from boring throughout the site. Samples will be taken from Playa Borings/Trenching, Transportation/Utilities Foundation Borings, Repository Surface Facilities Design Foundation Borings, and Exploratory Shaft Facilities Design Foundation Borings. Data from the laboratory tests will be used for soil strata characterization, design of foundations for surface structures, design of transportation facilities and utility structures, design of impoundments, design of shaft lining, design of the shaft freeze wall, shaft permitting, performance assessment calculations, and other program requirements. A tentative testing schedule and milestone log are given. A quality assurance program will be utilized to assure that activities affecting quality are performed correctly and that appropriate documentation is maintained. 18 refs., 6 figs., 3 tabs

  11. Determination of heavy metals in soils from dump site of tanneries ...

    African Journals Online (AJOL)

    Heavy metals were determined in soil samples at the dump site, Challawa town, Karfi Irrigation site and farmlands near the dump site by flame Atomic Absorption Spectrophotometer (AAS). The results showed that soil at the dump site contains significant amount of toxic elements. Hence remediation processes were ...

  12. A soil sampling intercomparison exercise for the ALMERA network

    International Nuclear Information System (INIS)

    Belli, Maria; Zorzi, Paolo de; Sansone, Umberto; Shakhashiro, Abduhlghani; Gondin da Fonseca, Adelaide; Trinkl, Alexander; Benesch, Thomas

    2009-01-01

    Soil sampling and analysis for radionuclides after an accidental or routine release is a key factor for the dose calculation to members of the public, and for the establishment of possible countermeasures. The IAEA organized for selected laboratories of the ALMERA (Analytical Laboratories for the Measurement of Environmental Radioactivity) network a Soil Sampling Intercomparison Exercise (IAEA/SIE/01) with the objective of comparing soil sampling procedures used by different laboratories. The ALMERA network is a world-wide network of analytical laboratories located in IAEA member states capable of providing reliable and timely analysis of environmental samples in the event of an accidental or intentional release of radioactivity. Ten ALMERA laboratories were selected to participate in the sampling exercise. The soil sampling intercomparison exercise took place in November 2005 in an agricultural area qualified as a 'reference site', aimed at assessing the uncertainties associated with soil sampling in agricultural, semi-natural, urban and contaminated environments and suitable for performing sampling intercomparison. In this paper, the laboratories sampling performance were evaluated.

  13. A soil sampling intercomparison exercise for the ALMERA network

    Energy Technology Data Exchange (ETDEWEB)

    Belli, Maria [Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Via di Castel Romano 100, I-00128 Roma (Italy)], E-mail: maria.belli@apat.it; Zorzi, Paolo de [Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Via di Castel Romano 100, I-00128 Roma (Italy)], E-mail: paolo.dezorzi@isprambiente.it; Sansone, Umberto [International Atomic Energy Agency (IAEA), Agency' s Laboratories Seibersdorf, A-2444 Seibersdorf (Austria)], E-mail: u.sansone@iaea.org; Shakhashiro, Abduhlghani [International Atomic Energy Agency (IAEA), Agency' s Laboratories Seibersdorf, A-2444 Seibersdorf (Austria)], E-mail: a.shakhashiro@iaea.org; Gondin da Fonseca, Adelaide [International Atomic Energy Agency (IAEA), Agency' s Laboratories Seibersdorf, A-2444 Seibersdorf (Austria)], E-mail: a.gondin-da-fonseca-azeredo@iaea.org; Trinkl, Alexander [International Atomic Energy Agency (IAEA), Agency' s Laboratories Seibersdorf, A-2444 Seibersdorf (Austria)], E-mail: a.trinkl@iaea.org; Benesch, Thomas [International Atomic Energy Agency (IAEA), Agency' s Laboratories Seibersdorf, A-2444 Seibersdorf (Austria)], E-mail: t.benesch@iaea.org

    2009-11-15

    Soil sampling and analysis for radionuclides after an accidental or routine release is a key factor for the dose calculation to members of the public, and for the establishment of possible countermeasures. The IAEA organized for selected laboratories of the ALMERA (Analytical Laboratories for the Measurement of Environmental Radioactivity) network a Soil Sampling Intercomparison Exercise (IAEA/SIE/01) with the objective of comparing soil sampling procedures used by different laboratories. The ALMERA network is a world-wide network of analytical laboratories located in IAEA member states capable of providing reliable and timely analysis of environmental samples in the event of an accidental or intentional release of radioactivity. Ten ALMERA laboratories were selected to participate in the sampling exercise. The soil sampling intercomparison exercise took place in November 2005 in an agricultural area qualified as a 'reference site', aimed at assessing the uncertainties associated with soil sampling in agricultural, semi-natural, urban and contaminated environments and suitable for performing sampling intercomparison. In this paper, the laboratories sampling performance were evaluated.

  14. Including Below Detection Limit Samples in Post Decommissioning Soil Sample Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Hwan; Yim, Man Sung [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    To meet the required standards the site owner has to show that the soil at the facility has been sufficiently cleaned up. To do this one must know the contamination of the soil at the site prior to clean up. This involves sampling that soil to identify the degree of contamination. However there is a technical difficulty in determining how much decontamination should be done. The problem arises when measured samples are below the detection limit. Regulatory guidelines for site reuse after decommissioning are commonly challenged because the majority of the activity in the soil at or below the limit of detection. Using additional statistical analyses of contaminated soil after decommissioning is expected to have the following advantages: a better and more reliable probabilistic exposure assessment, better economics (lower project costs) and improved communication with the public. This research will develop an approach that defines an acceptable method for demonstrating compliance of decommissioned NPP sites and validates that compliance. Soil samples from NPP often contain censored data. Conventional methods for dealing with censored data sets are statistically biased and limited in their usefulness.

  15. The Impact of Including Below Detection Limit Samples in Post Decommissioning Soil Sample Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Hwan; Yim, Man-Sung [KAIST, Daejeon (Korea, Republic of)

    2016-10-15

    To meet the required standards the site owner has to show that the soil at the facility has been sufficiently cleaned up. To do this one must know the contamination of the soil at the site prior to clean up. This involves sampling that soil to identify the degree of contamination. However there is a technical difficulty in determining how much decontamination should be done. The problem arises when measured samples are below the detection limit. Regulatory guidelines for site reuse after decommissioning are commonly challenged because the majority of the activity in the soil at or below the limit of detection. Using additional statistical analyses of contaminated soil after decommissioning is expected to have the following advantages: a better and more reliable probabilistic exposure assessment, better economics (lower project costs) and improved communication with the public. This research will develop an approach that defines an acceptable method for demonstrating compliance of decommissioned NPP sites and validates that compliance. Soil samples from NPP often contain censored data. Conventional methods for dealing with censored data sets are statistically biased and limited in their usefulness. In this research, additional methods are performed using real data from a monazite manufacturing factory.

  16. Composite Sampling Approaches for Bacillus anthracis Surrogate Extracted from Soil.

    Directory of Open Access Journals (Sweden)

    Brian France

    Full Text Available Any release of anthrax spores in the U.S. would require action to decontaminate the site and restore its use and operations as rapidly as possible. The remediation activity would require environmental sampling, both initially to determine the extent of contamination (hazard mapping and post-decon to determine that the site is free of contamination (clearance sampling. Whether the spore contamination is within a building or outdoors, collecting and analyzing what could be thousands of samples can become the factor that limits the pace of restoring operations. To address this sampling and analysis bottleneck and decrease the time needed to recover from an anthrax contamination event, this study investigates the use of composite sampling. Pooling or compositing of samples is an established technique to reduce the number of analyses required, and its use for anthrax spore sampling has recently been investigated. However, use of composite sampling in an anthrax spore remediation event will require well-documented and accepted methods. In particular, previous composite sampling studies have focused on sampling from hard surfaces; data on soil sampling are required to extend the procedure to outdoor use. Further, we must consider whether combining liquid samples, thus increasing the volume, lowers the sensitivity of detection and produces false negatives. In this study, methods to composite bacterial spore samples from soil are demonstrated. B. subtilis spore suspensions were used as a surrogate for anthrax spores. Two soils (Arizona Test Dust and sterilized potting soil were contaminated and spore recovery with composites was shown to match individual sample performance. Results show that dilution can be overcome by concentrating bacterial spores using standard filtration methods. This study shows that composite sampling can be a viable method of pooling samples to reduce the number of analysis that must be performed during anthrax spore remediation.

  17. Herbage Dynamics and Soils of two Different Sites of Calotropis ...

    African Journals Online (AJOL)

    To determine herbage dynamics, herbs in each quadrat of the experimental sites were harvested, sorted out according to species, counted and identified in the herbarium. Simpson's index, D = ∑Pi2 was used to obtain relative frequencies and abundance of species. Soil samples were derived from the quadrats and ...

  18. Designing chemical soil characterization programs for mixed waste sites

    International Nuclear Information System (INIS)

    Meyers, K.A. Jr.

    1989-01-01

    The Weldon Spring Site Remedial Action Project is a remedial action effort funded by the U.S. Department of Energy. The Weldon Spring Site, a former uranium processing facility, is located in east-central Missouri on a portion of a former ordnance works facility which produced trinitrotoluene during World War II. As a result of both uranium and ordnance production, the soils have become both radiologically and chemically contaminated. As a part of site characterization efforts in support of the environmental documentation process, a chemical soil characterization program was developed. This program consisted of biased and unbiased sampling program which maximized areal coverage, provided a statistically sound data base and maintained cost effectiveness. This paper discusses how the general rationale and processes used at the Weldon Spring Site can be applied to other mixed and hazardous waste sites

  19. Confirmation Sampling and Analysis Plan for Spill Site Number 1

    National Research Council Canada - National Science Library

    1998-01-01

    ... No. 1 to document the effectiveness of bioventing for the remediation of petroleum-hydrocarbon-contaminated soils and to provide data for a risk-based assessment of contaminants remaining in site soils and groundwater. Spill Site...

  20. Hanford Site background: Evaluation of existing soil radionuclide data

    International Nuclear Information System (INIS)

    1995-07-01

    This report is an evaluation of the existing data on radiological background for soils in the vicinity of the Hanford Site. The primary purpose of this report is to assess the adequacy of the existing data to serve as a radiological background baseline for use in environmental restoration and remediation activities at the Hanford Site. The soil background data compiled and evaluated in this report were collected by the Pacific Northwest Laboratory (PNL) and Washington State Department of Health (DOH) radiation surveillance programs in southeastern Washington. These two programs provide the largest well-documented, quantitative data sets available to evaluate background conditions at the Hanford Site. The data quality objectives (DQOs) considered in this evaluation include the amount of data, number of sampling localities, spatial coverage, number and types of radionuclides reported, frequency of reporting, documentation and traceability of sampling and laboratory methods used, and comparability between sets of data. Although other data on soil radionuclide abundances around the Hanford Site exist, they are generally limited in scope and lack the DQOs necessary for consideration with the PNL and DOH data sets. Collectively, these two sources provide data on the activities of 25 radionuclides and four other parameters (gross alpha, gross beta, total uranium, and total thorium). These measurements were made on samples from the upper 2.5 cm of soil at over 70 localities within the region

  1. Instrumental neutron activation analysis of soil sample

    International Nuclear Information System (INIS)

    Abdul Khalik Haji Wood.

    1983-01-01

    This paper describes the analysis of soil samples collected from 5 different location around Sungai Lui, Kajang, Selangor, Malaysia. These sample were taken at 22-24 cm from the top of the ground and were analysed using the techniques of Instrumental Neutron Activation Analysis (INAA). The analysis on soil sample taken above 22-24 cm level were done in order to determine if there is any variation in elemental contents at different sampling levels. The results indicate a wide variation in the contents of the samples. About 30 elements have been analysed. The major ones are Na, I, Cl, Mg, Al, K, Ti, Ca and Fe. Trace elements analysed were Ba, Sc, V, Cr, Mn, Ga, As, Zn, Br, Rb, Co, Hf, Zr, Th, U, Sb, Cs, Ce, Sm, Eu, Tb, Dy, Yb, Lu and La. (author)

  2. Statistical sampling approaches for soil monitoring

    NARCIS (Netherlands)

    Brus, D.J.

    2014-01-01

    This paper describes three statistical sampling approaches for regional soil monitoring, a design-based, a model-based and a hybrid approach. In the model-based approach a space-time model is exploited to predict global statistical parameters of interest such as the space-time mean. In the hybrid

  3. Soil Characterization at the Linde FUSRAP Site and the Impact on Soil Volume Estimates

    International Nuclear Information System (INIS)

    Boyle, J.; Kenna, T.; Pilon, R.

    2002-01-01

    The former Linde site in Tonawanda, New York is currently undergoing active remediation of Manhattan Engineering District's radiological contamination. This remediation is authorized under the Formerly Utilized Sites Remedial Action Program (FUSRAP). The focus of this paper will be to describe the impact of soil characterization efforts as they relate to soil volume estimates and project cost estimates. An additional objective is to stimulate discussion about other characterization and modeling technologies, and to provide a ''Lessons Learned'' scenario to assist in future volume estimating at other FUSRAP sites. Initial soil characterization efforts at the Linde FUSRAP site in areas known to be contaminated or suspected to be contaminated were presented in the Remedial Investigation Report for the Tonawanda Site, dated February 1993. Results of those initial characterization efforts were the basis for soil volume estimates that were used to estimate and negotiate the current remediation contract. During the course of remediation, previously unidentified areas of contamination were discovered, and additional characterization was initiated. Additional test pit and geoprobe samples were obtained at over 500 locations, bringing the total to over 800 sample locations at the 135-acre site. New data continues to be collected on a routine basis during ongoing remedial actions

  4. Soil sampling in emergency situations; Amostragem de solos em situacoes de emergencia

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Zenildo Lara de [Instituto de Radioprotecao e Dosimetria (IRD), Rio de Janeiro, RJ (Brazil); Ramos Junior, Anthenor Costa [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil). Superintendencia de Licenciamento e Controle

    1997-12-31

    The soil sampling methods used in Goiania`s accident (1987) by the environmental team of Brazilian Nuclear Energy Commission (CNEN) are described. The development of this method of soil sampling to a emergency sampling method used in a Nuclear Emergency Exercise in Angra dos Reis Reactor Site (1991) is presented. A new method for soil sampling based on a Chernobyl environmental monitoring experience (1995) is suggested. (author) 15 refs.

  5. Sampling soils for 137Cs using various field-sampling volumes

    International Nuclear Information System (INIS)

    Nyhan, J.W.; Schofield, T.G.; White, G.C.; Trujillo, G.

    1981-10-01

    The sediments from a liquid effluent receiving area at the Los Alamos National Laboratory and soils from intensive study area in the fallout pathway of Trinity were sampled for 137 Cs using 25-, 500-, 2500-, and 12 500-cm 3 field sampling volumes. A highly replicated sampling program was used to determine mean concentrations and inventories of 137 Cs at each site, as well as estimates of spatial, aliquoting, and counting variance components of the radionuclide data. The sampling methods were also analyzed as a function of soil size fractions collected in each field sampling volume and of the total cost of the program for a given variation in the radionuclide survey results. Coefficients of variation (CV) of 137 Cs inventory estimates ranged from 0.063 to 0.14 for Mortandad Canyon sediments, where CV values for Trinity soils were observed from 0.38 to 0.57. Spatial variance components of 137 Cs concentration data were usually found to be larger than either the aliquoting or counting variance estimates and were inversely related to field sampling volume at the Trinity intensive site. Subsequent optimization studies of the sampling schemes demonstrated that each aliquot should be counted once, and that only 2 to 4 aliquots out of an many as 30 collected need be assayed for 137 Cs. The optimization studies showed that as sample costs increased to 45 man-hours of labor per sample, the variance of the mean 137 Cs concentration decreased dramatically, but decreased very little with additional labor

  6. Foliar and soil chemistry at red spruce sites in the Monongahela National Forest

    Science.gov (United States)

    Stephanie J. Connolly

    2010-01-01

    In 2005, soil and foliar chemistry were sampled from 10 sites in the Monongahela National Forest which support red spruce. Soils were sampled from hand-dug pits, by horizon, from the O-horizon to bedrock or 152 cm, and each pit was described fully. Replicate, archived samples also were collected.

  7. Trench sampling report Salmon Site Lamar County, Mississippi

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    This report describes trench excavation and sample-collection activities conducted by IT Corporation (IT) as part of the ongoing Remedial Investigation and Feasibility Study at the Salmon Site, Lamar County, Mississippi (DOE, 1992). During construction, operation, and closure of the site wastes of unknown composition were buried in pits on site. Surface-geophysical field investigations were conducted intermittently between November 1992 and October 1993 to identify potential waste-burial sites and buried metallic materials. The geophysical investigations included vertical magnetic gradient, electromagnetic conductivity, electromagnetic in-phase component, and ground-penetrating radar surveys. A number of anomalies identified by the magnetic gradiometer survey in the Reynolds Electrical & Engineering Co., Inc., (REECo) pits area indicated buried metallic objects. All of the anomalies were field checked to determine if any were caused by surface features or debris. After field checking, 17 anomalies were still unexplained; trenching was planned to attempt to identify their sources. Between December 8, 1993, and December 17, 1993, 15 trenches were excavated and soil samples were collected at the anomalies. Samples were collected, placed in 250- and 500-milliliter (m{ell}) amber glass containers, and shipped on ice to IT Analytical Services (ITAS) in St. Louis, Missouri, using standard IT chain-of-custody procedures. The samples were analyzed for various chemical and radiological parameters. Data validation has not been conducted on any of the samples. During excavation and sampling, soil samples were also collected by IT for the MSDEQ and the Mississippi Department of Radiological Health, in accordance with their instructions, and delivered into their custody.

  8. Trench sampling report Salmon Site Lamar County, Mississippi

    International Nuclear Information System (INIS)

    1994-07-01

    This report describes trench excavation and sample-collection activities conducted by IT Corporation (IT) as part of the ongoing Remedial Investigation and Feasibility Study at the Salmon Site, Lamar County, Mississippi (DOE, 1992). During construction, operation, and closure of the site wastes of unknown composition were buried in pits on site. Surface-geophysical field investigations were conducted intermittently between November 1992 and October 1993 to identify potential waste-burial sites and buried metallic materials. The geophysical investigations included vertical magnetic gradient, electromagnetic conductivity, electromagnetic in-phase component, and ground-penetrating radar surveys. A number of anomalies identified by the magnetic gradiometer survey in the Reynolds Electrical ampersand Engineering Co., Inc., (REECo) pits area indicated buried metallic objects. All of the anomalies were field checked to determine if any were caused by surface features or debris. After field checking, 17 anomalies were still unexplained; trenching was planned to attempt to identify their sources. Between December 8, 1993, and December 17, 1993, 15 trenches were excavated and soil samples were collected at the anomalies. Samples were collected, placed in 250- and 500-milliliter (m ell) amber glass containers, and shipped on ice to IT Analytical Services (ITAS) in St. Louis, Missouri, using standard IT chain-of-custody procedures. The samples were analyzed for various chemical and radiological parameters. Data validation has not been conducted on any of the samples. During excavation and sampling, soil samples were also collected by IT for the MSDEQ and the Mississippi Department of Radiological Health, in accordance with their instructions, and delivered into their custody

  9. Analysis of PAH in soil samples

    International Nuclear Information System (INIS)

    Haeufel, J.; Weisweiler, W.

    1994-01-01

    The supercritical fluid extraction of polycyclic aromatic hydrocarbons (PAH) from soil samples is described. Carbon dioxide mixed with a small amount of methanol is used for solvent. The results are compared with those obtained by a classical extraction method (that means with the use of organic liquids). The extracted PAH from both procedures can be separated by HPLC and analyzed with UV- and fluorescence detection. (orig.) [de

  10. Soils and site types in the Forsmark area

    International Nuclear Information System (INIS)

    Lundin, Lars; Lode, Elve; Stendahl, Johan; Melkerud, Per-Arne; Bjoerkvald, Louise; Thorstensson, Anna

    2004-01-01

    young and therefore fairly undeveloped. Climate is characterised by an annual precipitation of c 700 mm, mean annual temperature of c +5 deg C and a semi-arid condition during the vegetation period. Determinations on sites include a site survey over the 30 m x 30 m plots and eight soil profile investigations on each plot. Properties determined were ground vegetation, site hydrology, drainage and stoniness together with profile conditions such as horizons, parent material, texture, humus form, soil type and peat humification degree. Added to this was soil sampling from top soil layers (0-20 cm) and of the parent material on 0.6 m depth. Soil samples were analysed on pH, total C and N. The investigation resulted in the overall impression that the Forsmark area exhibit similarities concerning land types with large parts of Sweden, with a dominating forest type and soil parent material not differing to any major extent. But, the young soils has resulted in more or less immature soil types, to a large extent being Regosols but also six other classes occurred. The considerable influence of calcareous soil material furnishes nutrient rich conditions that in these fairly summer-warm conditions provide a rich and diversified flora. In the Forsmark area the soils are young, mainly less than 1500 years. Till soils dominate. The impacts of sea waves have redistributed the material and left coarse water washed tills in large parts with in low-lying areas sorted sediments and in higher locations thin soils and bare bedrock. Site hydrology variations on investigated plots ranged mainly over fresh to wet types while the class dry mainly occurred on local small hills, where also the bedrock outcrops existed. Sea bays have been cut off and now form inland lakes partly being in transgression to swamps and peatlands. Typical soils for Sweden would be Podzols but these are poorly developed in the Forsmark area and only a few locations were identified. Instead immature soils such as Regosols

  11. Soils and site types in the Forsmark area

    Energy Technology Data Exchange (ETDEWEB)

    Lundin, Lars; Lode, Elve; Stendahl, Johan; Melkerud, Per-Arne; Bjoerkvald, Louise; Thorstensson, Anna [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Forest Soils

    2004-01-01

    young and therefore fairly undeveloped. Climate is characterised by an annual precipitation of c 700 mm, mean annual temperature of c +5 deg C and a semi-arid condition during the vegetation period. Determinations on sites include a site survey over the 30 m x 30 m plots and eight soil profile investigations on each plot. Properties determined were ground vegetation, site hydrology, drainage and stoniness together with profile conditions such as horizons, parent material, texture, humus form, soil type and peat humification degree. Added to this was soil sampling from top soil layers (0-20 cm) and of the parent material on 0.6 m depth. Soil samples were analysed on pH, total C and N. The investigation resulted in the overall impression that the Forsmark area exhibit similarities concerning land types with large parts of Sweden, with a dominating forest type and soil parent material not differing to any major extent. But, the young soils has resulted in more or less immature soil types, to a large extent being Regosols but also six other classes occurred. The considerable influence of calcareous soil material furnishes nutrient rich conditions that in these fairly summer-warm conditions provide a rich and diversified flora. In the Forsmark area the soils are young, mainly less than 1500 years. Till soils dominate. The impacts of sea waves have redistributed the material and left coarse water washed tills in large parts with in low-lying areas sorted sediments and in higher locations thin soils and bare bedrock. Site hydrology variations on investigated plots ranged mainly over fresh to wet types while the class dry mainly occurred on local small hills, where also the bedrock outcrops existed. Sea bays have been cut off and now form inland lakes partly being in transgression to swamps and peatlands. Typical soils for Sweden would be Podzols but these are poorly developed in the Forsmark area and only a few locations were identified. Instead immature soils such as Regosols

  12. Quality evaluation of processed clay soil samples.

    Science.gov (United States)

    Steiner-Asiedu, Matilda; Harrison, Obed Akwaa; Vuvor, Frederick; Tano-Debrah, Kwaku

    2016-01-01

    This study assessed the microbial quality of clay samples sold on two of the major Ghanaian markets. The study was a cross-sectional assessing the evaluation of processed clay and effects it has on the nutrition of the consumers in the political capital town of Ghana. The items for the examination was processed clay soil samples. Staphylococcus spp and fecal coliforms including Klebsiella, Escherichia, and Shigella and Enterobacterspp were isolated from the clay samples. Samples from the Kaneshie market in Accra recorded the highest total viable counts 6.5 Log cfu/g and Staphylococcal count 5.8 Log cfu/g. For fecal coliforms, Madina market samples had the highest count 6.5 Log cfu/g and also recorded the highest levels of yeast and mould. For Koforidua, total viable count was highest in the samples from the Zongo market 6.3 Log cfu/g. Central market samples had the highest count of fecal coliforms 4.6 Log cfu/g and yeasts and moulds 6.5 Log cfu/g. "Small" market recorded the highest staphylococcal count 6.2 Log cfu/g. The water activity of the clay samples were low, and ranged between 0.65±0.01 and 0.66±0.00 for samples collected from Koforidua and Accra respectively. The clay samples were found to contain Klebsiella spp. Escherichia, Enterobacter, Shigella spp. staphylococcus spp., yeast and mould. These have health implications when consumed.

  13. Remediation of Soil at Nuclear Sites

    International Nuclear Information System (INIS)

    Holmes, R.; Boardman, C.; Robbins, R; Fox, Robert Vincent; Mincher, Bruce Jay

    2000-01-01

    As the major nuclear waste and decontamination and decommissioning projects progress, one of the remaining problems that faces the nuclear industry is that of site remediation. The range of contamination levels and contaminants is wide and varied and there is likely to be a significant volume of soil contaminated with transuranics and hazardous organic materials that could qualify as mixed TRU waste. There are many technologies that offer the potential for remediating this waste but few that tackle all or most of the contaminants and even fewer that have been deployed with confidence. This paper outlines the progress made in proving the ability of Supercritical Fluid Extraction as a method of remediating soil, classified as mixed (TRU) transuranic waste

  14. Hanford Site Environmental Surveillance Master Sampling Schedule

    International Nuclear Information System (INIS)

    Bisping, L.E.

    1999-01-01

    Environmental surveillance of the Hanford Site and surrounding areas is conducted by the Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy (DOE). Sampling is conducted to evaluate levels of radioactive and nonradioactive pollutants in the Hanford environs, as required in DOE Order 5400.1, ''General Environmental protection Program,'' and DOE Order 5400.5, ''Radiation Protection of the Public and the Environment.'' The sampling methods are described in the Environmental Monitoring Plan, United States Department of Energy, Richland Operations Office, DOE/RL-91-50, Rev.2, U.S. Department of Energy, Richland, Washington. This document contains the CY1999 schedules for the routine collection of samples for the Surface Environmental Surveillance Project (SESP) and Drinking Water Monitoring Project. Each section includes the sampling location, sample type, and analyses to be performed on the sample. In some cases, samples are scheduled on a rotating basis and may not be collected in 1999 in which case the anticipated year for collection is provided. In addition, a map is included for each media showing approximate sampling locations

  15. Optimum size in grid soil sampling for variable rate application in site-specific management Tamanho ideal em grades de amostragem de solos para aplicação em taxa variável em manejo localizado

    Directory of Open Access Journals (Sweden)

    Marcos Rafael Nanni

    2011-06-01

    Full Text Available The importance of understanding spatial variability of soils is connected to crop management planning. This understanding makes it possible to treat soil not as a uniform, but a variable entity, and it enables site-specific management to increase production efficiency, which is the target of precision agriculture. Questions remain as the optimum soil sampling interval needed to make site-specific fertilizer recommendations in Brazil. The objectives of this study were: i to evaluate the spatial variability of the main attributes that influence fertilization recommendations, using georeferenced soil samples arranged in grid patterns of different resolutions; ii to compare the spatial maps generated with those obtained with the standard sampling of 1 sample ha-1, in order to verify the appropriateness of the spatial resolution. The attributes evaluated were phosphorus (P, potassium (K, organic matter (OM, base saturation (V% and clay. Soil samples were collected in a 100 × 100 m georeferenced grid. Thinning was performed in order to create a grid with one sample every 2.07, 2.88, 3.75 and 7.20 ha. Geostatistical techniques, such as semivariogram and interpolation using kriging, were used to analyze the attributes at the different grid resolutions. This analysis was performed with the Vesper software package. The maps created by this method were compared using the kappa statistics. Additionally, correlation graphs were drawn by plotting the observed values against the estimated values using cross-validation. P, K and V%, a finer sampling resolution than the one using 1 sample ha-1 is required, while for OM and clay coarser resolutions of one sample every two and three hectares, respectively, may be acceptable.A importância de compreender a variabilidade espacial do solo está conectada ao planejamento do manejo das culturas. Este entendimento faz com que seja possível tratar o solo não como uma entidade uniforme, mas variável, e permite o

  16. Specification for soil multisensor and soil sampling cone penetrometer probes

    International Nuclear Information System (INIS)

    Iwatate, D.F.

    1997-01-01

    Specification requirements for engineering, fabrication, and performance of cone penetrometer (CP) soil multisensor and sampling probes (CP-probes) which are required to support contract procurement for services are presented. The specification provides a documented technical basis of quality assurance that is required to use the probes in an operating Hanford tank farm. The documentation cited in this specification will be incorporated into an operational fielding plan that will address all activities associated with the use of the CP-probes. The probes discussed in this specification support the Hanford Tanks Initiative AX-104 Tank Plume Characterization Sub-task. The probes will be used to interrogate soils and vadose zone surrounding tank AX-104

  17. Hanford Site Environmental Surveillance Master Sampling Schedule

    International Nuclear Information System (INIS)

    Bisping, L.E.

    2000-01-01

    Environmental surveillance of the Hanford Site and surrounding areas is conducted by the Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy (DOE). Sampling is conducted to evaluate levels of radioactive and nonradioactive pollutants in the Hanford environs, as required in DOE Order 5400.1, General Environmental Protection Program: and DOE Order 5400.5, Radiation Protection of the Public and the Environment. The sampling design is described in the Operations Office, Environmental Monitoring Plan, United States Department of Energy, Richland DOE/RL-91-50, Rev.2, U.S. Department of Energy, Richland, Washington. This document contains the CY 2000 schedules for the routine collection of samples for the Surface Environmental Surveillance Project (SESP) and Drinking Water Monitoring Project. Each section includes sampling locations, sample types, and analyses to be performed. In some cases, samples are scheduled on a rotating basis and may not be collected in 2000 in which case the anticipated year for collection is provided. In addition, a map showing approximate sampling locations is included for each media scheduled for collection

  18. Sorption of BTX mixtures to contaminated and uncontaminated site soils

    International Nuclear Information System (INIS)

    Uchrin, C.G.; Koshy, K.; Wojtenko, I.

    1995-01-01

    Both adsorption and desorption studies are being performed examining benzene, toluene, and meta-xylene (BTX) as single components, binary mixtures, and trinary mixture onto both existing contaminated soils as well as some uncontaminated reference soils. The contaminated soils were obtained from an oil refinery site and another industrial site in New Jersey. The oil refinery site soil did not exhibit significant amounts of either benzene, toluene or xylene but was contaminated with other compounds while the other industrial site soil was contaminated with toluene among other compounds. The organic carbon content of the soils ranged from 0.14 to 2.91 percent. Preliminary adsorption studies showed BTX to strongly sorb to these soils. The adsorption studies onto the reference soils also demonstrated the effect of organic matter on adsorption. Sequential batch desorption studies show the BTX to desorb quickly, reaching equilibrium within 48 hours. Long-term uptake and release were not noted with these soil/contaminant systems

  19. Managing soil moisture on waste burial sites

    International Nuclear Information System (INIS)

    Anderson, J.E.; Ratzlaff, T.D.

    1991-11-01

    Shallow land burial is a common method of disposing of industrial, municipal, and low-level radioactive waste. The exclusion of water from buried wastes is a primary objective in designing and managing waste disposal sites. If wastes are not adequately isolated, water from precipitation may move through the landfill cover and into the wastes. The presence of water in the waste zone may promote the growth of plant roots to that depth and result in the transport of toxic materials to above-ground foliage. Furthermore, percolation of water through the waste zone may transport contaminants into ground water. This report presents results from a field study designed to assess the the potential for using vegetation to deplete soil moisture and prevent water from reaching buried wastes at the Idaho National Engineering Laboratory (INEL). Our results show that this approach may provide an economical means of limiting the intrusion of water on waste sites

  20. Variation of the rare earth element concentrations in the soil, soil extract and in individual plants from the same site

    International Nuclear Information System (INIS)

    Wyttenbach, A.; Tobler, L.; Furrer, V.; Schleppi, P.

    1998-01-01

    Samples of various types (spruce needles, blackberry leaves, soils, and soil extracts) have each been taken at 6 places from the same site. In addition, 4 whirls each from 2 spruce trees were sampled. Rare earth elements (REEs) were determined in these samples by neutron activation analysis with a chemical group separation. Variations between places were found to be small with soils and soil extracts, but large with plants. Variations between whirls were small. Plants neither reflected the soil nor the soil extract. Both plant species were dissimilar, but the logarithm of their ratio was a linear function of the atomic number of the REE. A negative Ce anomaly (with respect to soil) was found in both plant species. (author)

  1. The Impact of Soil Sampling Errors on Variable Rate Fertilization

    Energy Technology Data Exchange (ETDEWEB)

    R. L. Hoskinson; R C. Rope; L G. Blackwood; R D. Lee; R K. Fink

    2004-07-01

    Variable rate fertilization of an agricultural field is done taking into account spatial variability in the soil’s characteristics. Most often, spatial variability in the soil’s fertility is the primary characteristic used to determine the differences in fertilizers applied from one point to the next. For several years the Idaho National Engineering and Environmental Laboratory (INEEL) has been developing a Decision Support System for Agriculture (DSS4Ag) to determine the economically optimum recipe of various fertilizers to apply at each site in a field, based on existing soil fertility at the site, predicted yield of the crop that would result (and a predicted harvest-time market price), and the current costs and compositions of the fertilizers to be applied. Typically, soil is sampled at selected points within a field, the soil samples are analyzed in a lab, and the lab-measured soil fertility of the point samples is used for spatial interpolation, in some statistical manner, to determine the soil fertility at all other points in the field. Then a decision tool determines the fertilizers to apply at each point. Our research was conducted to measure the impact on the variable rate fertilization recipe caused by variability in the measurement of the soil’s fertility at the sampling points. The variability could be laboratory analytical errors or errors from variation in the sample collection method. The results show that for many of the fertility parameters, laboratory measurement error variance exceeds the estimated variability of the fertility measure across grid locations. These errors resulted in DSS4Ag fertilizer recipe recommended application rates that differed by up to 138 pounds of urea per acre, with half the field differing by more than 57 pounds of urea per acre. For potash the difference in application rate was up to 895 pounds per acre and over half the field differed by more than 242 pounds of potash per acre. Urea and potash differences

  2. 90Sr and 137Cs in environmental samples from Dolon near the Semipalatinsk Nuclear Test Site.

    Science.gov (United States)

    Gastberger, M; Steinhäusler, F; Gerzabek, M H; Hubmer, A; Lettner, H

    2000-09-01

    The (90)Sr and (137)Cs activities of soil, plant, and milk samples from the village of Dolon, located close to the Semipalatinsk Nuclear Test Site in Kazakhstan, were determined. The areal deposition at the nine sampling sites is in the range of sites both nuclides mainly have remained in the top 6 cm of the soil profiles; at others they were partly transported into deeper soil layers since the deposition. For most of the samples the (90)Sr yield after destruction of the soil matrix is significantly higher than after extracting with 6 M HCl indicating that (90)Sr is partly associated with fused silicates. The low mean (90)Sr activity concentrations of vegetation samples (14 Bq kg(-1) dw) and milk samples (0.05 Bq kg(-1) fw) suggest that this has favorable consequences in terms of limiting its bioavailability.

  3. Measurement of radioactivity in the environment - Soil - Part 2: Guidance for the selection of the sampling strategy, sampling and pre-treatment of samples

    International Nuclear Information System (INIS)

    2007-01-01

    This part of ISO 18589 specifies the general requirements, based on ISO 11074 and ISO/IEC 17025, for all steps in the planning (desk study and area reconnaissance) of the sampling and the preparation of samples for testing. It includes the selection of the sampling strategy, the outline of the sampling plan, the presentation of general sampling methods and equipment, as well as the methodology of the pre-treatment of samples adapted to the measurements of the activity of radionuclides in soil. This part of ISO 18589 is addressed to the people responsible for determining the radioactivity present in soil for the purpose of radiation protection. It is applicable to soil from gardens, farmland, urban or industrial sites, as well as soil not affected by human activities. This part of ISO 18589 is applicable to all laboratories regardless of the number of personnel or the range of the testing performed. When a laboratory does not undertake one or more of the activities covered by this part of ISO 18589, such as planning, sampling or testing, the corresponding requirements do not apply. Information is provided on scope, normative references, terms and definitions and symbols, principle, sampling strategy, sampling plan, sampling process, pre-treatment of samples and recorded information. Five annexes inform about selection of the sampling strategy according to the objectives and the radiological characterization of the site and sampling areas, diagram of the evolution of the sample characteristics from the sampling site to the laboratory, example of sampling plan for a site divided in three sampling areas, example of a sampling record for a single/composite sample and example for a sample record for a soil profile with soil description. A bibliography is provided

  4. Quantitative imaging of cation adsorption site densities in undisturbed soil

    Science.gov (United States)

    Keck, Hannes; Strobel, Bjarne W.; Gustafsson, Jon-Petter; Koestel, John

    2017-04-01

    The vast majority of present soil system models assume a homogeneous distribution and accessibility of cation adsorption sites (CAS) within soil structural units like e.g. soil horizons. This is however in conflict with several recent studies finding that CAS in soils are not uniformly but patchily distributed at and below the cm-scale. It is likely that the small-scale distribution of CAS has significant impact on the performance of these models. However, systematic approaches to map CAS densities in undisturbed soil with 3-D resolution that could lead to respective model improvements are still lacking. We therefore investigated the 3-D distribution of the CAS in undisturbed soils using X-ray scanning and barium ions as a contrast agent. We appraised the validity of the approach by comparing X-ray image-derived cation exchange coefficients (CEC) with ones obtained using the ammonium acetate method. In the process, we evaluated whether there were larger CAS concentrations at aggregate and biopore boundaries as it is often hypothesized. We sampled eight small soil cores (approx. 10 ccm) from different locations with contrasting soil texture and organic matter contents. The samples were first saturated with a potassium chloride solution (0.1 mol per liter), whereupon a 3-D X-ray image was taken. Then, the potassium chloride solution was flushed out with a barium chloride solution (0.3 mol per liter) with barium replacing the potassium from the CAS due to its larger exchange affinity. After X-ray images as well as electrical conductivity in the effluent indicated that the entire sample had been saturated with the barium chloride, the sample was again rinsed using the potassium chloride solution. When the rinsing was complete a final 3-D X-ray image was acquired. The difference images between final and initial 3-D X-ray images were interpreted as depicting the adsorbed barium as the density of barium exceeds the one of potassium by more than 2 times. The X-ray image

  5. Measurements of Plutonium and Americium in Soil Samples from Project 57 using the Suspended Soil Particle Sizing System (SSPSS)

    International Nuclear Information System (INIS)

    John L. Bowen; Rowena Gonzalez; David S. Shafer

    2001-01-01

    As part of the preliminary site characterization conducted for Project 57, soils samples were collected for separation into several size-fractions using the Suspended Soil Particle Sizing System (SSPSS). Soil samples were collected specifically for separation by the SSPSS at three general locations in the deposited Project 57 plume, the projected radioactivity of which ranged from 100 to 600 pCi/g. The primary purpose in focusing on samples with this level of activity is that it would represent anticipated residual soil contamination levels at the site after corrective actions are completed. Consequently, the results of the SSPSS analysis can contribute to dose calculation and corrective action-level determinations for future land-use scenarios at the site

  6. Rapid separation method for {sup 237}Np and Pu isotopes in large soil samples

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, Sherrod L., E-mail: sherrod.maxwell@srs.go [Savannah River Nuclear Solutions, LLC, Building 735-B, Aiken, SC 29808 (United States); Culligan, Brian K.; Noyes, Gary W. [Savannah River Nuclear Solutions, LLC, Building 735-B, Aiken, SC 29808 (United States)

    2011-07-15

    A new rapid method for the determination of {sup 237}Np and Pu isotopes in soil and sediment samples has been developed at the Savannah River Site Environmental Lab (Aiken, SC, USA) that can be used for large soil samples. The new soil method utilizes an acid leaching method, iron/titanium hydroxide precipitation, a lanthanum fluoride soil matrix removal step, and a rapid column separation process with TEVA Resin. The large soil matrix is removed easily and rapidly using these two simple precipitations with high chemical recoveries and effective removal of interferences. Vacuum box technology and rapid flow rates are used to reduce analytical time.

  7. 218 E-8 Borrow Pit Demolition Site clean closure soil evaluation report

    International Nuclear Information System (INIS)

    Korematsu-Olund, D.M.

    1995-01-01

    This report summarizes the sampling activities undertaken and the analytical results obtained in a soil sampling and analyses study performed for the 218 E-8 Borrow Pit Demolition Site (218 E-8 Demolition Site). The 218 E-8 Demolition Site is identified as a Resource Conservation and Recovery Act (RCRA) treatment unit that will be closed in accordance with the applicable laws and regulations. The site was used for the thermal treatment of discarded explosive chemical products. No constituents of concern were found in concentrations indicating contamination of the soil by 218 E-8 Demolition Site activities

  8. An evaluation of soil sampling for 137Cs using various field-sampling volumes.

    Science.gov (United States)

    Nyhan, J W; White, G C; Schofield, T G; Trujillo, G

    1983-05-01

    The sediments from a liquid effluent receiving area at the Los Alamos National Laboratory and soils from an intensive study area in the fallout pathway of Trinity were sampled for 137Cs using 25-, 500-, 2500- and 12,500-cm3 field sampling volumes. A highly replicated sampling program was used to determine mean concentrations and inventories of 137Cs at each site, as well as estimates of spatial, aliquoting, and counting variance components of the radionuclide data. The sampling methods were also analyzed as a function of soil size fractions collected in each field sampling volume and of the total cost of the program for a given variation in the radionuclide survey results. Coefficients of variation (CV) of 137Cs inventory estimates ranged from 0.063 to 0.14 for Mortandad Canyon sediments, whereas CV values for Trinity soils were observed from 0.38 to 0.57. Spatial variance components of 137Cs concentration data were usually found to be larger than either the aliquoting or counting variance estimates and were inversely related to field sampling volume at the Trinity intensive site. Subsequent optimization studies of the sampling schemes demonstrated that each aliquot should be counted once, and that only 2-4 aliquots out of as many as 30 collected need be assayed for 137Cs. The optimization studies showed that as sample costs increased to 45 man-hours of labor per sample, the variance of the mean 137Cs concentration decreased dramatically, but decreased very little with additional labor.

  9. Reconnaissance soil geochemistry at the Riverton Uranium Mill Tailings Remedial Action Site, Fremont County, Wyoming

    Science.gov (United States)

    Smith, David B.; Sweat, Michael J.

    2012-01-01

    Soil samples were collected and chemically analyzed from the Riverton Uranium Mill Tailings Remedial Action Site, which lies within the Wind River Indian Reservation in Fremont County, Wyoming. Nineteen soil samples from a depth of 0 to 5 centimeters were collected in August 2011 from the site. The samples were sieved to less than 2 millimeters and analyzed for 44 major and trace elements following a near-total multi-acid extraction. Soil pH was also determined. The geochemical data were compared to a background dataset consisting of 160 soil samples previously collected from the same depth throughout the State of Wyoming as part of another ongoing study by the U.S. Geological Survey. Risk from potentially toxic elements in soil from the site to biologic receptors and humans was estimated by comparing the concentration of these elements with soil screening values established by the U.S. Environmental Protection Agency. All 19 samples exceeded the carcinogenic human health screening level for arsenic in residential soils of 0.39 milligrams per kilogram (mg/kg), which represents a one-in-one-million cancer risk (median arsenic concentration in the study area is 2.7 mg/kg). All 19 samples also exceeded the lead and vanadium screening levels for birds. Eighteen of the 19 samples exceeded the manganese screening level for plants, 13 of the 19 samples exceeded the antimony screening level for mammals, and 10 of 19 samples exceeded the zinc screening level for birds. However, these exceedances are also found in soils at most locations in the Wyoming Statewide soil database, and elevated concentrations alone are not necessarily cause for alarm. Uranium and thorium, two other elements of environmental concern, are elevated in soils at the site as compared to the Wyoming dataset, but no human or ecological soil screening levels have been established for these elements.

  10. Soil attributes drive nest-site selection by the campo miner Geositta poeciloptera

    Science.gov (United States)

    Teixeira, João Paulo Gusmão; Solar, Ricardo; Vasconcelos, Bruno Nery F.; Fernandes, Raphael B. A.; Lopes, Leonardo Esteves

    2018-01-01

    Substrate type is a key-factor in nest-site selection and nest architecture of burrowing birds. However, little is known about which factors drive nest-site selection for these species, especially in the tropics. We studied the influence of soil attributes on nest-site selection by the campo miner Geositta poeciloptera, an open grassland bird that builds its nests within soil cavities. For all nests found, we measured the depth of the nest cavity and the resistance of the soil to penetration, and identified the soil horizon in which the nest was located. In soil banks with nests, we collected soil samples for granulometric analysis around each nest cavity, while in soil banks without nests we collected these samples at random points. From 43 nests found, 86% were located in the deeper soil horizons (C-horizon), and only 14% in the shallower horizons (B-horizon). Granulometric analysis showed that the C-horizons possessed a high similar granulometric composition, with high silt and low clay contents. These characteristics are associated with a low degree of structural development of the soil, which makes it easier to excavate. Contrarily, soil resistance to penetration does not seem to be an important criterion for nest site selection, although nests in more resistant the soils tend to have shallower nest cavities. Among the soil banks analyzed, 40% of those without cavities possessed a larger proportion of B-horizon relative to the C-horizon, and their texture was more clayey. On the other hand, almost all soil banks containing nest cavities had a larger C-horizon and a silty texture, indicating that soil attributes drive nest-site selection by G. poeciloptera. Thus, we conclude that the patchy distribution of G. poeciloptera can attributed to the infrequent natural exposure of the C-horizon in the tropical region, where well developed, deep and permeable soils are more common. PMID:29381768

  11. Soil attributes drive nest-site selection by the campo miner Geositta poeciloptera.

    Science.gov (United States)

    Meireles, Ricardo Camargos de; Teixeira, João Paulo Gusmão; Solar, Ricardo; Vasconcelos, Bruno Nery F; Fernandes, Raphael B A; Lopes, Leonardo Esteves

    2018-01-01

    Substrate type is a key-factor in nest-site selection and nest architecture of burrowing birds. However, little is known about which factors drive nest-site selection for these species, especially in the tropics. We studied the influence of soil attributes on nest-site selection by the campo miner Geositta poeciloptera, an open grassland bird that builds its nests within soil cavities. For all nests found, we measured the depth of the nest cavity and the resistance of the soil to penetration, and identified the soil horizon in which the nest was located. In soil banks with nests, we collected soil samples for granulometric analysis around each nest cavity, while in soil banks without nests we collected these samples at random points. From 43 nests found, 86% were located in the deeper soil horizons (C-horizon), and only 14% in the shallower horizons (B-horizon). Granulometric analysis showed that the C-horizons possessed a high similar granulometric composition, with high silt and low clay contents. These characteristics are associated with a low degree of structural development of the soil, which makes it easier to excavate. Contrarily, soil resistance to penetration does not seem to be an important criterion for nest site selection, although nests in more resistant the soils tend to have shallower nest cavities. Among the soil banks analyzed, 40% of those without cavities possessed a larger proportion of B-horizon relative to the C-horizon, and their texture was more clayey. On the other hand, almost all soil banks containing nest cavities had a larger C-horizon and a silty texture, indicating that soil attributes drive nest-site selection by G. poeciloptera. Thus, we conclude that the patchy distribution of G. poeciloptera can attributed to the infrequent natural exposure of the C-horizon in the tropical region, where well developed, deep and permeable soils are more common.

  12. Studies and further needed investigations on radioactive contaminants in soil samples

    International Nuclear Information System (INIS)

    Belivermis, M.; Kilic, O.; Topcuoglu, S.; Cotuk, Y.; Kalayci, G.; Pestreli, D.

    2009-01-01

    Following the Chernobyl nuclear reactor accident, the radionuclides were deposited on the marine and terrestrial environments of Turkey and other countries as wet and / or dry fallout. It is well known that, the soil is the main reservoir at the terrestrial environment. The geographic distribution of the Chernobyl radionuclides per unit area is significantly different. Many countries have drawn radiation maps using the radionuclide data of the soil samples. The radioecological monitoring study in the soil samples are also investigated in the our country. However, the exist data is limited for whole region of Turkey. In general, the type study, that make, in uncultivated soil sample use of different soil layers (0-5, 5-10, 10-20, 20-30 cm). In our previous studies, the activity concentration of gamma emitting radionuclides were determined in soil samples (0-5 cm) from the Thrace (73 sites) and East and South Marmara (100 sites) regions. Moreover, the mean values of the annual effective dose equivalent were also calculated. In literature, numerous studies have been published concerning vertical migration of 1 37Cs in uncultivated soil samples use of different soil types. However, we have not enough data on this subject. On the other hand, we want to present a previously published data on the vertical distribution of 1 37Cs radionuclide in an uncultivated site in the eastern Black Sea region. It is well known that the determination of soil to plant transfer factors of radiocesium that take account all economically crops on the soil varieties is a need to support dose assessment or countermeasure studies. Previously published IAEA reports, we determined transfer factors for some crops of 1 37Cs radionuclides in cultivated soil samples (0-20 cm depth) in the eastern Black Sea region. At the same time, we have given a new project to IAEA for the determination of transfer factor of radiocesium from soil to some crops for Akkuyu Nuclear Power Plant site.

  13. Sample sizes to control error estimates in determining soil bulk density in California forest soils

    Science.gov (United States)

    Youzhi Han; Jianwei Zhang; Kim G. Mattson; Weidong Zhang; Thomas A. Weber

    2016-01-01

    Characterizing forest soil properties with high variability is challenging, sometimes requiring large numbers of soil samples. Soil bulk density is a standard variable needed along with element concentrations to calculate nutrient pools. This study aimed to determine the optimal sample size, the number of observation (n), for predicting the soil bulk density with a...

  14. Waste site grouping for 200 Areas soil investigations

    International Nuclear Information System (INIS)

    1997-01-01

    The purpose of this document is to identify logical waste site groups for characterization based on criteria established in the 200 Areas Soil Remediation Strategy (DOE-RL 1996a). Specific objectives of the document include the following: finalize waste site groups based on the approach and preliminary groupings identified in the 200 Areas Soil Remediation Strategy; prioritize the waste site groups based on criteria developed in the 200 Areas Soil Remediation Strategy; select representative site(s) that best represents typical and worse-case conditions for each waste group; develop conceptual models for each waste group. This document will serve as a technical baseline for implementing the 200 Areas Soil Remediation Strategy. The intent of the document is to provide a framework, based on waste site groups, for organizing soil characterization efforts in the 200 Areas and to present initial conceptual models

  15. Operable Unit 3-13, Group 3, Other Surface Soils (Phase II) Field Sampling Plan

    Energy Technology Data Exchange (ETDEWEB)

    G. L. Schwendiman

    2006-07-27

    This Field Sampling Plan describes the Operable Unit 3-13, Group 3, Other Surface Soils, Phase II remediation field sampling activities to be performed at the Idaho Nuclear Technology and Engineering Center located within the Idaho National Laboratory Site. Sampling activities described in this plan support characterization sampling of new sites, real-time soil spectroscopy during excavation, and confirmation sampling that verifies that the remedial action objectives and remediation goals presented in the Final Record of Decision for Idaho Nuclear Technology and Engineering Center, Operable Unit 3-13 have been met.

  16. Degradation of aldrin im samples of 'cerrado' Brazilian soils

    International Nuclear Information System (INIS)

    Musumeci, M.R.; Ruegg, E.F.

    1981-01-01

    14 C-aldrin degradation was studied in the laboratory, in samples of 'cerrado' Brazilian soils, during a period of 240 days. Recovery of radiocarbon decreased with time, although radiocarbon was not incorporated to the soil organic matter as show by soil combustion. In both soils 14 C-aldrin degraded to dieldrin and another compound that showed caracteristics of a hydrosoluble derivative of aldrin 14 C-aldrin was more persistent in sandy soil but amendment of this soil with nutrients or fertilizers did not enhanced aldrin degradation in this soil. (Author) [pt

  17. Forest Soil Productivity on the Southern Long-Term Soil Productivity Sites at Age 5

    Science.gov (United States)

    D. Andrew Scott; Allan E. Tiarks; Felipe G. Sanchez; Michael Elliott-Smith; Rick Stagg

    2004-01-01

    Forest management operations have the potential to reduce soil productivity through organic matter and nutrient removal and soil compaction. We measured pine volume, bulk density, and soil and foliar nitrogen and phosphorus at age 5 on the 13 southern Long-Term Soil Productivity study sites. The treatments were organic matter removal [bole only (BO), whole tree (WT),...

  18. Optimization of sampling for the determination of the mean Radium-226 concentration in surface soil

    International Nuclear Information System (INIS)

    Williams, L.R.; Leggett, R.W.; Espegren, M.L.; Little, C.A.

    1987-08-01

    This report describes a field experiment that identifies an optimal method for determination of compliance with the US Environmental Protection Agency's Ra-226 guidelines for soil. The primary goals were to establish practical levels of accuracy and precision in estimating the mean Ra-226 concentration of surface soil in a small contaminated region; to obtain empirical information on composite vs. individual soil sampling and on random vs. uniformly spaced sampling; and to examine the practicality of using gamma measurements in predicting the average surface radium concentration and in estimating the number of soil samples required to obtain a given level of accuracy and precision. Numerous soil samples were collected on each six sites known to be contaminated with uranium mill tailings. Three types of samples were collected on each site: 10-composite samples, 20-composite samples, and individual or post hole samples; 10-composite sampling is the method of choice because it yields a given level of accuracy and precision for the least cost. Gamma measurements can be used to reduce surface soil sampling on some sites. 2 refs., 5 figs., 7 tabs

  19. Characterization of hazardous waste sites: a methods manual. Volume 2. Available sampling methods (second edition)

    International Nuclear Information System (INIS)

    Ford, P.J.; Turina, P.J.; Seely, D.E.

    1984-12-01

    Investigations at hazardous waste sites and sites of chemical spills often require on-site measurements and sampling activities to assess the type and extent of contamination. This document is a compilation of sampling methods and materials suitable to address most needs that arise during routine waste site and hazardous spill investigations. The sampling methods presented in this document are compiled by media, and were selected on the basis of practicality, economics, representativeness, compatability with analytical considerations, and safety, as well as other criteria. In addition to sampling procedures, sample handling and shipping, chain-of-custody procedures, instrument certification, equipment fabrication, and equipment decontamination procedures are described. Sampling methods for soil, sludges, sediments, and bulk materials cover the solids medium. Ten methods are detailed for surface waters, groundwater and containerized liquids; twelve are presented for ambient air, soil gases and vapors, and headspace gases. A brief discussion of ionizing radiation survey instruments is also provided

  20. Soil Characterization by Large Scale Sampling of Soil Mixed with Buried Construction Debris at a Former Uranium Fuel Fabrication Facility

    International Nuclear Information System (INIS)

    Nardi, A.J.; Lamantia, L.

    2009-01-01

    Recent soil excavation activities on a site identified the presence of buried uranium contaminated building construction debris. The site previously was the location of a low enriched uranium fuel fabrication facility. This resulted in the collection of excavated materials from the two locations where contaminated subsurface debris was identified. The excavated material was temporarily stored in two piles on the site until a determination could be made as to the appropriate disposition of the material. Characterization of the excavated material was undertaken in a manner that involved the collection of large scale samples of the excavated material in 1 cubic meter Super Sacks. Twenty bags were filled with excavated material that consisted of the mixture of both the construction debris and the associated soil. In order to obtain information on the level of activity associated with the construction debris, ten additional bags were filled with construction debris that had been separated, to the extent possible, from the associated soil. Radiological surveys were conducted of the resulting bags of collected materials and the soil associated with the waste mixture. The 30 large samples, collected as bags, were counted using an In-Situ Object Counting System (ISOCS) unit to determine the average concentration of U-235 present in each bag. The soil fraction was sampled by the collection of 40 samples of soil for analysis in an on-site laboratory. A fraction of these samples were also sent to an off-site laboratory for additional analysis. This project provided the necessary soil characterization information to allow consideration of alternate options for disposition of the material. The identified contaminant was verified to be low enriched uranium. Concentrations of uranium in the waste were found to be lower than the calculated site specific derived concentration guideline levels (DCGLs) but higher than the NRC's screening values. The methods and results are presented

  1. Validated sampling strategy for assessing contaminants in soil stockpiles

    International Nuclear Information System (INIS)

    Lame, Frank; Honders, Ton; Derksen, Giljam; Gadella, Michiel

    2005-01-01

    Dutch legislation on the reuse of soil requires a sampling strategy to determine the degree of contamination. This sampling strategy was developed in three stages. Its main aim is to obtain a single analytical result, representative of the true mean concentration of the soil stockpile. The development process started with an investigation into how sample pre-treatment could be used to obtain representative results from composite samples of heterogeneous soil stockpiles. Combining a large number of random increments allows stockpile heterogeneity to be fully represented in the sample. The resulting pre-treatment method was then combined with a theoretical approach to determine the necessary number of increments per composite sample. At the second stage, the sampling strategy was evaluated using computerised models of contaminant heterogeneity in soil stockpiles. The now theoretically based sampling strategy was implemented by the Netherlands Centre for Soil Treatment in 1995. It was applied to all types of soil stockpiles, ranging from clean to heavily contaminated, over a period of four years. This resulted in a database containing the analytical results of 2570 soil stockpiles. At the final stage these results were used for a thorough validation of the sampling strategy. It was concluded that the model approach has indeed resulted in a sampling strategy that achieves analytical results representative of the mean concentration of soil stockpiles. - A sampling strategy that ensures analytical results representative of the mean concentration in soil stockpiles is presented and validated

  2. Shrinkage Module of Soil Samples with Different Cement Content

    Directory of Open Access Journals (Sweden)

    Mohannad Sabry

    2017-12-01

    Full Text Available The differences in soil's body mass during shrinkage over time have changes in soil physical properties which provide an important reason to check the design of underground foundations in expansive soils. In this paper, a state-of-art of the soil heat stress-strain relationship prediction methods is checked using soil engineering laboratory experiments and Matlab R2013b numerical modelling. The shrinkage of soils with different cement content of (0%, 2%, 4%, 6% and 8% with the same water content of 20 percent in room temperature for 24 hours, are critically reviewed in terms of their predictive shrinkage along with their strengths and flexural behaviour. The review highlights the prediction methods present to determine the effect of heat stress on the shrinkage of soil samples with different cement content after classifying the soils into clay, silt and sand depending on their particle size using sieve and hydrometer experiments. The results of the soil engineering laboratory experiments showed that as the cement content increases, the shrinkage of soil decreases as a result of increased elasticity in soil. The numerical analysis using finite element method in Matlab R2013b shows that as the cement content increases the displacement in the soil sample decreases and that the soil sample with 8% cement content has more resistance to shrinkage and less displacement than the soil with 6% cement, which has less resistance to heat stresses and more displacement.

  3. Soil Characterization Database for the Area 3 Radioactive Waste Management Site, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    Remortel, R. D. Van; Lee, Y. J.; Snyder, K. E.

    2005-01-01

    Soils were characterized in an investigation at the Area 3 Radioactive Waste Management Site at the U.S. Department of Energy Nevada Test Site in Nye County, Nevada. Data from the investigation are presented in four parameter groups: sample and site characteristics, U.S. Department of Agriculture (USDA) particle size fractions, chemical parameters, and American Society for Testing Materials-Unified Soil Classification System (ASTM-USCS) particle size fractions. Spread-sheet workbooks based on these parameter groups are presented to evaluate data quality, conduct database updates, and set data structures and formats for later extraction and analysis. This document does not include analysis or interpretation of presented data

  4. Soil Characterization Database for the Area 5 Radioactive Waste Management Site, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    Lee, Y. J.; Remortel, R. D. Van; Snyder, K. E.

    2005-01-01

    Soils were characterized in an investigation at the Area 5 Radioactive Waste Management Site at the U.S. Department of Energy Nevada Test Site in Nye County, Nevada. Data from the investigation are presented in four parameter groups: sample and site characteristics, U.S. Department of Agriculture (USDA) particle size fractions, chemical parameters, and American Society for Testing Materials-Unified Soil Classification System (ASTM-USCS) particle size fractions. Spread-sheet workbooks based on these parameter groups are presented to evaluate data quality, conduct database updates,and set data structures and formats for later extraction and analysis. This document does not include analysis or interpretation of presented data

  5. Interaction of Sr-90 with site candidate soil for demonstration disposal facility at Serpong

    Energy Technology Data Exchange (ETDEWEB)

    Setiawan, Budi, E-mail: bravo@batan.go.id [Radwaste Technology Center-National Nuclear Energy Agency, PUSPIPTEK, Serpong-Tangerang 15310 (Indonesia); Mila, Oktri; Safni [Dept. of Chemistry, Fac. of Math. and Nat. Sci., Andalas University, Kampus Limau Manis, Padang-West Sumatra 25163 (Indonesia)

    2014-03-24

    Interaction of radiostrontium (Sr-90) with site candidate soil for demonstration disposal facility to be constructed in the near future at Serpong has been done. This activity is to anticipate the interim storage facility at Serpong nuclear area becomes full off condition, and show to the public how radioactive waste can be well managed with the existing technology. To ensure that the location is save, a reliability study of site candidate soil becomes very importance to be conducted through some experiments consisted some affected parameters such as contact time, effect of ionic strength, and effect of Sr{sup +} ion in solution. Radiostrontium was used as a tracer on the experiments and has role as radionuclide reference in low-level radioactive waste due to its long half-live and it's easy to associate with organism in nature. So, interaction of radiostrontium and soil samples from site becomes important to be studied. Experiment was performed in batch method, and soil sample-solution containing radionuclide was mixed in a 20 ml of PE vial. Ratio of solid: liquid was 10{sup −2} g/ml. Objective of the experiment is to collect the specific characteristics data of radionuclide sorption onto soil from site candidate. Distribution coefficient value was used as indicator where the amount of initial and final activities of radiostrontium in solution was compared. Result showed that equilibrium condition was reached after contact time 10 days with Kd values ranged from 1600-2350 ml/g. Increased in ionic strength in solution made decreased of Kd value into soil sample due to competition of background salt and radiostrontium into soil samples, and increased in Sr ion in solution caused decreased of Kd value in soil sample due to limitation of sorption capacity in soil samples. Fast condition in saturated of metal ion into soil samples was reached due to a simple reaction was occurred.

  6. Sampling of soils for transuranic nuclides: a review

    International Nuclear Information System (INIS)

    Fowler, E.B.; Essington, E.H.

    1977-01-01

    A review of the literature pertinent to the sampling of soils for radionuclides is presented; emphasis is placed on transuranic nuclides. Sampling of soils is discussed relative to systems of heterogeneous distributions and varied particle sizes encountered in certain environments. Sampling methods that have been used for two different sources of contamination, global fallout, and accidental or operational releases, are included

  7. Characterization of Pu-contaminated soils from Nuclear Site 201 at the Nevada Test Site

    International Nuclear Information System (INIS)

    Lee, S.Y.; Tamura, T.; Larsen, I.L.

    1983-01-01

    Distribution and characteristics of Pu-bearing radioactive particles throughout five soil profiles from Nuclear Site (NS) 201 were investigated. Concentrations of 239 240 Pu and 241 Am decreased with depth and most of the contamination was contained in the top 5 cm except in profile 4 where it extended to 10 cm. The mean activity ratio of 239 240 Pu to 241 Am and its standard error were 5.8 +- 0.3 (N=42). Most of the total radioactivity of the soils was contributed by 0.25 to 2 mm sand size fraction which comprised 20 to 50% by weight of the soils. The radioactive particles in the 0.25 to 2 mm size fraction occurred as spherical glass particles or as glass coatings on sand particles. The glass coatings had gas voids in the matrix but were not as porous as the radioactive particles from NS 219. After impact grinding the >0.25-mm size fractions for one hour, 85% of the initial activity in a NS 201 sample remained with the particles on the 0.25 mm sieve, whereas in the NS 219 sample only 10% remained. The results show that the radioactive particles from NS 201 were much more stable against the impact grinding force than those from NS 219. Therefore, the NS 201 soils would be expected to have a lower probability of producing respirable-size radioactive particles by saltation during wind erosion. 19 references, 3 figures, 3 tables

  8. Soil separator and sampler and method of sampling

    Science.gov (United States)

    O'Brien, Barry H [Idaho Falls, ID; Ritter, Paul D [Idaho Falls, ID

    2010-02-16

    A soil sampler includes a fluidized bed for receiving a soil sample. The fluidized bed may be in communication with a vacuum for drawing air through the fluidized bed and suspending particulate matter of the soil sample in the air. In a method of sampling, the air may be drawn across a filter, separating the particulate matter. Optionally, a baffle or a cyclone may be included within the fluidized bed for disentrainment, or dedusting, so only the finest particulate matter, including asbestos, will be trapped on the filter. The filter may be removable, and may be tested to determine the content of asbestos and other hazardous particulate matter in the soil sample.

  9. Soils element history, sampling, analyses, and recommendations

    International Nuclear Information System (INIS)

    Fowler, E.B.; Essington, E.H.

    1976-01-01

    A five year history of the Soils Element of the Nevada Applied Ecology Group (NAEG) is presented. Major projects are reviewed. Emphasis is placed on mound studies and profile studies for the period March 1, 1975, through February 1, 1976. A series of recommendations is made relative to extensions of past efforts of the Soils Element of the NAEG

  10. Soil classification basing on the spectral characteristics of topsoil samples

    Science.gov (United States)

    Liu, Huanjun; Zhang, Xiaokang; Zhang, Xinle

    2016-04-01

    Soil taxonomy plays an important role in soil utility and management, but China has only course soil map created based on 1980s data. New technology, e.g. spectroscopy, could simplify soil classification. The study try to classify soils basing on the spectral characteristics of topsoil samples. 148 topsoil samples of typical soils, including Black soil, Chernozem, Blown soil and Meadow soil, were collected from Songnen plain, Northeast China, and the room spectral reflectance in the visible and near infrared region (400-2500 nm) were processed with weighted moving average, resampling technique, and continuum removal. Spectral indices were extracted from soil spectral characteristics, including the second absorption positions of spectral curve, the first absorption vale's area, and slope of spectral curve at 500-600 nm and 1340-1360 nm. Then K-means clustering and decision tree were used respectively to build soil classification model. The results indicated that 1) the second absorption positions of Black soil and Chernozem were located at 610 nm and 650 nm respectively; 2) the spectral curve of the meadow is similar to its adjacent soil, which could be due to soil erosion; 3) decision tree model showed higher classification accuracy, and accuracy of Black soil, Chernozem, Blown soil and Meadow are 100%, 88%, 97%, 50% respectively, and the accuracy of Blown soil could be increased to 100% by adding one more spectral index (the first two vole's area) to the model, which showed that the model could be used for soil classification and soil map in near future.

  11. Stability of mercury concentration measurements in archived soil and peat samples

    Science.gov (United States)

    Navrátil, Tomáš; Burns, Douglas; Nováková, Tereza; Kaňa, Jiří; Rohovec, Jan; Roll, Michal; Ettler, Vojtěch

    2018-01-01

    Archived soil samples can provide important information on the history of environmental contamination and by comparison with recently collected samples, temporal trends can be inferred. Little previous work has addressed whether mercury (Hg) concentrations in soil samples are stable with long-term storage under standard laboratory conditions. In this study, we have re-analyzed using cold vapor atomic adsorption spectroscopy a set of archived soil samples that ranged from relatively pristine mountainous sites to a polluted site near a non-ferrous metal smelter with a wide range of Hg concentrations (6 - 6485 µg kg-1). Samples included organic and mineral soils and peats with a carbon content that ranged from 0.2 to 47.7%. Soil samples were stored in polyethylene bags or bottles and held in laboratory rooms where temperature was not kept to a constant value. Mercury concentrations in four subsets of samples were originally measured in 2000, 2005, 2006 and 2007, and re-analyzed in 2017, i.e. after 17, 12, 11 and 10 years of storage. Statistical analyses of either separated or lumped data yielded no significant differences between the original and current Hg concentrations. Based on these analyses, we show that archived soil and peat samples can be used to evaluate historical soil mercury contamination.

  12. Field sampling of soil pore water to evaluate trace element mobility and associated environmental risk

    Energy Technology Data Exchange (ETDEWEB)

    Moreno-Jimenez, Eduardo, E-mail: eduardo.moreno@uam.es [Departamento de Quimica Agricola, Universidad Autonoma de Madrid, 28049 Madrid (Spain); Beesley, Luke [James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH (United Kingdom); Lepp, Nicholas W. [35, Victoria Road, Formby, Liverpool L37 7DH (United Kingdom); Dickinson, Nicholas M. [Department of Ecology, Lincoln University, Lincoln 7647, PO Box 84 (New Zealand); Hartley, William [School of Computing, Science and Engineering, University of Salford, Cockcroft Building, Salford, M5 4WT (United Kingdom); Clemente, Rafael [Dep. of Soil and Water Conservation and Organic Waste Management, CEBAS-CSIC, Campus Universitario de Espinardo, PO Box 164, 30100 Espinardo, Murcia (Spain)

    2011-10-15

    Monitoring soil pollution is a key aspect in sustainable management of contaminated land but there is often debate over what should be monitored to assess ecological risk. Soil pore water, containing the most labile pollutant fraction in soils, can be easily collected in situ offering a routine way to monitor this risk. We present a compilation of data on concentration of trace elements (As, Cd, Cu, Pb, and Zn) in soil pore water collected in field conditions from a range of polluted and non-polluted soils in Spain and the UK during single and repeated monitoring, and propose a simple eco-toxicity test using this media. Sufficient pore water could be extracted for analysis both under semi-arid and temperate conditions, and eco-toxicity comparisons could be effectively made between polluted and non-polluted soils. We propose that in-situ pore water extraction could enhance the realism of risk assessment at some contaminated sites. - Highlights: > In situ pore water sampling successfully evaluates trace elements mobility in soils. > Field sampling proved robust for different soils, sites and climatic regimes. > Measurements may be directly related to ecotoxicological assays. > Both short and long-term monitoring of polluted lands may be achieved. > This method complements other widely used assays for environmental risk assessment. - In situ pore water sampling from a wide variety of soils proves to be a beneficial application to monitor the stability of pollutants in soils and subsequent risk through mobility.

  13. Soil sorting, new approach to site remediation management

    International Nuclear Information System (INIS)

    Bramlitt, E.T.; Woods, J.A.; Dillon, M.J.

    1996-01-01

    Soil sorting is the technology which conveys soil beneath contaminant detectors and, based on contaminant signal, automatically toggles a gate at the conveyor end to send soil with contamination above a guideline to a separate location from soil which meets the guideline. The technology was perfected for remediation of sites having soils with radioactive contamination, but it is applicable to other contaminants when instrumental methods exist for rapid contaminant detection at levels of concern. This paper examines the three methods for quantifying contamination in soil in support of site remediation management. Examples are discussed where the primary contaminant is plutonium, a radioactive substance and source of nuclear energy which can be hazardous to health when in the environment without controls. Field survey instruments are very sensitive to plutonium and can detect it in soil at levels below a part per billion, and there are a variety of soils which have been contaminated by plutonium and thoroughly investigated. The lessons learned with plutonium are applicable to other types of contaminants and site remediations. The paper concludes that soil sorting can be the most cost effective approach to site remediation, and it leads to the best overall cleanup

  14. Residual radioactivity in the soil of the Semipalatinsk Nuclear Test Site in the former USSR

    International Nuclear Information System (INIS)

    Yamamoto, Masayoshi; Tsukatani, Tsuneo; Katayama, Yukio

    1996-01-01

    This paper deals with our efforts to survey residual readioactivity in the soil sampled at teh Semipalatinsk Nuclear Test Site and at off-site areas in Kazakhstan. The soil sampled at the hypocenter where the first Soviet nuclear explosion was carried out on 29 August 1949, and at the bank of the crater called open-quotes Bolapan,close quotes which was formed by an underground nuclear detonation on 15 January 1965 along the Shagan River. As a comparison, other soil was also sampled in the cities of Kurchatov and Almaty. These data have allowed a preliminary evaluation of the contemporary radioactive contamination of the land in and around the test site. At the first nuclear explosion site and at Bolapan, higher than background levels of 239,240 Pu with weapons-grade plutonium were detected together with fission and activation products such as 137 Cs, 60 Co, 152 Eu, and 154 Eu. 20 refs., 3 figs., 5 tabs

  15. Residual radioactivity in the soil of the Semipalatinsk Nuclear Test Site in the former USSR.

    Science.gov (United States)

    Yamamoto, M; Tsukatani, T; Katayama, Y

    1996-08-01

    This paper deals with our efforts to survey residual radioactivity in the soil sampled at the Semipalatinsk Nuclear Test Site and at off-site areas in Kazakhstan. The soil was sampled at the hypocenter where the first Soviet nuclear explosion was carried out on 29 August 1949, and at the bank of the crater called "Bolapan," which was formed by an underground nuclear detonation on 15 January 1965 along the Shagan River. As a comparison, other soil was also sampled in the cities of Kurchatov and Almaty. These data have allowed a preliminary evaluation of the contemporary radioactive contamination of the land in and around the test site. At the first nuclear explosion site and at Bolapan, higher than background levels of 239,240Pu with weapons-grade plutonium were detected together with fission and activation products such as 137Cs, 60Co, 152Eu, and 154Eu.

  16. EG ampersand G Mount Plant, December 1990 and January 1991, D ampersand D soil box sampling

    International Nuclear Information System (INIS)

    1991-04-01

    Six hundred eighty-two (682) containers of soil were generated at Mound Plant between April 1 and October 31, 1990 as a result of the excavation of soils containing plutonium-238 at two ongoing Decontamination and Decommissioning (D ampersand D) Program sites; these areas are known as Area 14, the waste transfer system (WTS) hillside, and Area 17, the Special Metallurgical (SM) Building Area. The soils from these areas are part of the Mound Plant waste stream number AMDM-000000010, Contaminated Soil, and are proposed for shipment to the Nevada Test Site (NTS) for disposal as low-level radioactive waste. These containers of soil are currently in storage at Mound Plant. The purpose of this sampling and analysis was to demonstrate that the D ampersand D soils comply with the waste acceptance requirements of the NTS, as presented In Nevada Test Site Defense Waste Acceptance Criteria, Certification, and Transfer Requirements (DOE 1988). The sealed waste packages, constructed of wood or metal, are currently being stored In Building 31 and at other locations throughout the Mound Plant. For additional historical information concerning the D ampersand D soils, Including waste stream evaluations and past sampling data see the Sampling and Analysis Plan for Mound Plant D ampersand D Soils Packages (EG ampersand G 1991)

  17. Enviromental sampling at remote sites based on radiological screening assessments

    International Nuclear Information System (INIS)

    Ebinger, M.H.; Hansen, W.R.; Wenz, G.; Oxenberg, T.P.

    1996-01-01

    Environmental radiation monitoring (ERM) data from remote sites on the White Sands Missile Range, New Mexico, were used to estimate doses to humans and terrestrial mammals from residual radiation deposited during testing of components containing depleted uranium (DU) and thorium (Th). ERM data were used with the DOE code RESRAD and a simple steady-state pathway code to estimate the potential adverse effects from DU and Th to workers in the contaminated zones, to hunters consuming animals from the contaminated zones, and to terrestrial mammals that inhabit the contaminated zones. Assessments of zones contaminated with DU and Th and DU alone were conducted. Radiological doses from Th and DU in soils were largest with a maximum of about 3.5 mrem y -1 in humans and maximum of about 0.1 mrad d -1 in deer. Dose estimates from DU alone in soils were significantly less with a maximum of about 1 mrem y -1 in humans and about 0.04 mrad d -1 in deer. The results of the dose estimates suggest strongly that environmental sampling in these affected areas can be infrequent and still provide adequate assessments of radiological doses to workers, hunters, and terrestrial mammals

  18. Soil Contamination at the Historical Zn-Pb Ore Mining Sites (Southern Poland

    Directory of Open Access Journals (Sweden)

    Aleksander-Kwaterczak U.

    2013-04-01

    Full Text Available Results of metals analyses in soil profiles sampled at two 18/19th century mine shafts of the Trzebinia lead-zinc ore mining region in southern Poland are presented. Waste dump sites located at these shafts exhibit initial pedogenesis with clear differences in zinc and cadmium content between soil horizons which changes in depth across each of the investigated dump. The highest metal concentrations occur in horizons containing excavated ore-bearing Triassic dolomites, soils buried beneath are less polluted whereas, initial A0 soil horizons are virtually unpolluted. Relatively low downward metal migration in profiles to the horizons underlying the dumps is related to alkaline pH of soils. Migration appear to be important in the more acidic soils of outer zones in the two dump sites overgrown either with coniferous and deciduous trees.

  19. Successful Implementation of Soil Segregation Technology at the Painesville FUSRAP Site - 12281

    Energy Technology Data Exchange (ETDEWEB)

    Buechi, Stephen P.; Andrews, Shawn M. [U.S. Army Corps of Engineers, Buffalo District, Buffalo, New York (United States); Lombardo, Andrew J. [Safety and Ecology Corporation, Beaver, Pennsylvania (United States); Lively, Jeffrey W. [AMEC Environment and Infrastructure, Grand Junction, Colorado (United States)

    2012-07-01

    Typically the highest cost component of the radiological soils remediation of Formerly Utilized Sites Remedial Action Program (FUSRAP) sites is the cost to transport and dispose of the excavated soils, typically contaminated with naturally occurring isotopes of uranium, thorium and radium, at an appropriately permitted off-site disposal facility. The heterogeneous nature of the contamination encountered at these sites makes it difficult to accurately delineate the extent of contaminated soil using the limited, discrete sampling data collected during the investigation phases; and difficult to precisely excavate only the contaminated soil that is above the established cleanup limits using standard in-field scanning and guiding methodologies. This usually results in a conservative guided excavation to ensure cleanup criteria are met, with the attendant transportation and disposal costs for the larger volumes of soil excavated. To address this issue during the remediation of the Painesville FUSRAP Site, located in Painesville, Ohio, the Buffalo District of the U.S. Army Corps of Engineers, and its contractor, Safety and Ecology Corporation (SEC), employed automatic soil segregation technology provided by MACTEC (now AMEC) to reduce the potential for transportation and disposal of soils that met the cleanup limits. This waste minimization technology utilized gamma spectroscopy of conveyor-fed soils to automatically segregate the material into above and below criteria discharge piles. Use of the soil segregation system resulted in cost savings through the significant reduction of the volume of excavated soil that required off-site transportation and disposal, and the reduction of the amount of imported clean backfill required via reuse of 'below criteria' segregated soil as place back material in restoring the excavations. Measurements taken by the soil segregation system, as well as results of quality control sampling of segregated soils, confirmed that soils

  20. Method for spiking soil samples with organic compounds

    DEFF Research Database (Denmark)

    Brinch, Ulla C; Ekelund, Flemming; Jacobsen, Carsten S

    2002-01-01

    We examined the harmful side effects on indigenous soil microorganisms of two organic solvents, acetone and dichloromethane, that are normally used for spiking of soil with polycyclic aromatic hydrocarbons for experimental purposes. The solvents were applied in two contamination protocols to either...... higher than in control soil, probably due mainly to release of predation from indigenous protozoa. In order to minimize solvent effects on indigenous soil microorganisms when spiking native soil samples with compounds having a low water solubility, we propose a common protocol in which the contaminant...... tagged with luxAB::Tn5. For both solvents, application to the whole sample resulted in severe side effects on both indigenous protozoa and bacteria. Application of dichloromethane to the whole soil volume immediately reduced the number of protozoa to below the detection limit. In one of the soils...

  1. How much will afforestation of former cropland influence soil C stocks? A synthesis of paired sampling, chronosequence sampling and repeated sampling studies

    Science.gov (United States)

    Vesterdal, Lars; Hansen, K.; Stupak, I.; Don, Axel; Poeplau, C.; Leifeld, Jens; van Wesemael, Bas

    2010-05-01

    The need for documentation of land-use change effects on soil C is high on the agenda in most signatory countries to the Kyoto Protocol. Large land areas in Europe have experienced land-use change from cropland to forest since 1990 by direct afforestation as well as abandonment and regrowth of marginally productive cropland. Soil C dynamics following land-use change remain highly uncertain due to a limited number of available studies and due to influence of interacting factors such as land use history, soil type, and climate. Common approaches for estimation of potential soil C changes following land-use change are i) paired sampling of plots with a long legacy of different land uses, ii) chronosequence studies of land-use change, and lastly iii) repeated sampling of plots subject to changed land use. This paper will synthesize the quantitative effects of cropland afforestation on soil C sequestration based on all three approaches and will report on related work within Cost 639. Paired plots of forest and cropland were used to study the general differences between soil C stocks in the two land uses. At 27 sites in Denmark distributed among different regions and soil types forest floor and mineral soil were sampled in and around soil pits. Soil C stocks were higher in forest than cropland (mean difference 22 Mg C ha-1 to 1 m depth). This difference was caused solely by the presence of a forest floor in forests; mineral soil C stocks were similar (108 vs. 109 Mg C ha-1) in the two land uses regardless of soil type and the soil layers considered. The chronosequence approach was employed in the AFFOREST project for evaluation of C sequestration in biomass and soils following afforestation of cropland. Two oak (Quercus robur) and four Norway spruce (Picea abies) afforestation chronosequences (age range 1 to 90 years) were studied in Denmark, Sweden and the Netherlands. Forest floor and mineral soil (0-25 cm) C contents were as a minimum unchanged and in most cases there

  2. Soil formation and soil biological properties post mining sites after coal mining in central Europe

    Czech Academy of Sciences Publication Activity Database

    Kaneda, Satoshi; Frouz, Jan; Krištůfek, Václav; Elhottová, Dana; Pižl, Václav; Starý, Josef; Háněl, Ladislav; Tajovský, Karel; Chroňáková, Alica

    2007-01-01

    Roč. 53, - (2007), s. 13 ISSN 0288-5840. [Annual Meeting Japanese Society of Soil Science and Plant Nutrition . 22.08.2007, Setagaya city] Institutional research plan: CEZ:AV0Z60660521 Keywords : soil formation * soil biological properties * post mining sites Subject RIV: EH - Ecology, Behaviour

  3. Analysis on soil compressibility changes of samples stabilized with lime

    Directory of Open Access Journals (Sweden)

    Elena-Andreea CALARASU

    2016-12-01

    Full Text Available In order to manage and control the stability of buildings located on difficult foundation soils, several techniques of soil stabilization were developed and applied worldwide. Taking into account the major significance of soil compressibility on construction durability and safety, the soil stabilization with a binder like lime is considered one of the most used and traditional methods. The present paper aims to assess the effect of lime content on soil geotechnical parameters, especially on compressibility ones, based on laboratory experimental tests, for several soil categories in admixture with different lime dosages. The results of this study indicate a significant improvement of stabilized soil parameters, such as compressibility and plasticity, in comparison with natural samples. The effect of lime stabilization is related to an increase of soil structure stability by increasing the bearing capacity.

  4. Soil water repellency at old crude oil spill sites

    International Nuclear Information System (INIS)

    Roy, J.L.

    1999-08-01

    This thesis presents the current state of knowledge regarding the cause of soil water repellency and characterizes disaggregated nonwettable surface soils found at old crude oil spill sites. Pollution-induced water repellency generally develops following prolonged exposures of soil to liquid- or vapour-phase petroleum hydrocarbons. The condition varies significantly in terms of severity and persistence. Soil water repellency retards plant growth and disturbs the hydrological balance of ecosystems. Disaggregated water-repellent soils are also very susceptible to dispersal by erosion, posing a threat to the productivity of surrounding soils. The author described the probable causes of soil water repellency under the following three main themes: (1) accumulation of hydrophobic organic material in soil, (2) redistribution and re-organisation of this material in soil, and (3) stabilisation of the hydrophobic organic material. This final process is necessary to ensure persistence of induced water repellency symptoms. Petroleum residues as water-repellent substances in weathered nonwettable oil-contaminated soils were also discussed and a hypothesis about soil water repellency was presented which deals with flexible conformation in organic matter coatings. Processes leading to the development of soil water repellency following crude oil contamination were also described. It was determined that soil water repellency is a function of the packing density and the chain conformation of amphiphilic organic molecules in the outermost layer of soil organic matter coatings. This research suggests that the fractional coverage of alkyl chains on soil particle surfaces determines the degree of water repellency that is displayed by soil. It was shown that prompt remediation of some oil-contaminated plots can effectively prevent the development of soil water repellency. 4 refs., 32 tabs., 22 figs., 5 appendices

  5. Time-dependent performance of soil mix technology stabilized/solidified contaminated site soils.

    Science.gov (United States)

    Wang, Fei; Wang, Hailing; Al-Tabbaa, Abir

    2015-04-09

    This paper presents the strength and leaching performance of stabilized/solidified organic and inorganic contaminated site soil as a function of time and the effectiveness of modified clays applied in this project. Field trials of deep soil mixing application of stabilization/solidification (S/S) were performed at a site in Castleford in 2011. A number of binders and addictives were applied in this project including Portland cement (PC), ground granulated blastfurnace slag (GGBS), pulverised fuel ash (PFA), MgO and modified clays. Field trial samples were subjected to unconfined compressive strength (UCS), BS CN 12457 batch leaching test and the extraction of total organics at 28 days and 1.5 years after treatment. The results of UCS test show that the average strength values of mixes increased from 0-3250 kPa at 28 days to 250-4250 kPa at 1.5 years curing time. The BS EN 12457 leachate concentrations of all metals were well below their drinking water standard, except Ni in some mixes exceed its drinking water standard at 0.02 mg/l, suggesting that due to varied nature of binders, not all of them have the same efficiency in treating contaminated soil. The average leachate concentrations of total organics were in the range of 20-160 mg/l at 28 days after treatment and reduced to 18-140 mg/l at 1.5 years. In addition, organo clay (OC)/inorgano-organo clay (IOC) slurries used in this field trial were found to have a negative effect on the strength development, but were very effective in immobilizing heavy metals. The study also illustrates that the surfactants used to modify bentonite in this field trail were not suitable for the major organic pollutants exist in the site soil in this project. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Contamination valuation of soil and groundwater source at anaerobic municipal solid waste landfill site.

    Science.gov (United States)

    Aziz, Shuokr Qarani; Maulood, Yousif Ismael

    2015-12-01

    The present work aimed to determine the risks that formed landfill leachate from anaerobic Erbil Landfill Site (ELS) poses on groundwater source and to observe the effects of disposed municipal solid waste (MSW) on soil properties. The study further aims to fill the gap in studies on the effects of disposed MSW and produced leachate on the groundwater characteristics and soil quality at ELS, Iraq. Soil, leachate, and groundwater samples were collected from ELS for use as samples in this study. Unpolluted groundwater samples were collected from an area outside of the landfill. Field and laboratory experiments for the soil samples were conducted. Chemical analyses for the soil samples such as organic matter, total salts, and SO4 (=) were also performed. Raw leachate and groundwater samples were analyzed using physical and chemical experiments. The yields for sorptivity, steady-state infiltration rate, and hydraulic conductivity of the soil samples were 0.0006 m/√s, 0.00004 m/s, and 2.17 × 10(-5) m/s, respectively. The soil at ELS was found to be light brown clayey gravel with sand and light brown gravely lean clay layers with low permeability. Unprocessed leachate analysis identified the leachate as stabilized. Findings showed that the soil and groundwater at the anaerobic ELS were contaminated.

  7. The Application of Adaptive Sampling and Analysis Program (ASAP) Techniques to NORM Sites; FINAL

    International Nuclear Information System (INIS)

    Johnson, Robert; Smith, Karen P.; Quinn, John

    1999-01-01

    The results from the Michigan demonstration establish that this type of approach can be very effective for NORM sites. The advantages include (1) greatly reduced per sample analytical costs; (2) a reduced reliance on soil sampling and ex situ gamma spectroscopy analyses; (3) the ability to combine characterization with remediation activities in one fieldwork cycle; (4) improved documentation; and (5) ultimately better remediation, as measured by greater precision in delineating soils that are not in compliance with requirements from soils that are in compliance. In addition, the demonstration showed that the use of real-time technologies, such as the RadInSoil, can facilitate the implementation of a Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM)-based final status survey program

  8. Enhanced bioremediation of PAH contaminated soils from coal processing sites

    International Nuclear Information System (INIS)

    Joshi, M.M.; Lee, S.

    1995-01-01

    The polycyclic aromatic hydrocarbons (PAH) are a potential hazard to health due to their carcinogenic, mutagenic nature and acute toxicity and there is an imminent need for remediation of PAH contaminated soils abounding the several coke oven and town gas sites. Aerobic biological degradation of PAHs is an innovative technology and has shown high decontamination efficiencies, complete mineralization of contaminants, and is environmentally safe. The present study investigates the remediation of PAH contaminated soils achieved using Acinetobacter species and fungal strain Phanerochaete Chrysosporium. The soil used for the experiments was an industrially contaminated soil obtained from Alberta Research Council (ARC) primary cleanup facility, Alberta, Canada. Soil characterization was done using High Performance Liquid Chromatography (HPLC) to qualitatively and quantitatively determine the contaminants in the soil. Artificially contaminated soil was also used for some experiments. All the experiments were conducted under completely mixed conditions with suitable oxygen and nutrient amendments. The removal efficiency obtained for various PAHs using the two microorganisms was compared

  9. Applying Nitrogen Site-Specifically Using Soil Electrical Conductivity Maps and Precision Agriculture Technology

    Directory of Open Access Journals (Sweden)

    E.D. Lund

    2001-01-01

    Full Text Available Soil texture varies significantly within many agricultural fields. The physical properties of soil, such as soil texture, have a direct effect on water holding capacity, cation exchange capacity, crop yield, production capability, and nitrogen (N loss variations within a field. In short, mobile nutrients are used, lost, and stored differently as soil textures vary. A uniform application of N to varying soils results in a wide range of N availability to the crop. N applied in excess of crop usage results in a waste of the grower’s input expense, a potential negative effect on the environment, and in some crops a reduction of crop quality, yield, and harvestability. Inadequate N levels represent a lost opportunity for crop yield and profit. The global positioning system (GPS-referenced mapping of bulk soil electrical conductivity (EC has been shown to serve as an effective proxy for soil texture and other soil properties. Soils with a high clay content conduct more electricity than coarser textured soils, which results in higher EC values. This paper will describe the EC mapping process and provide case studies of site-specific N applications based on EC maps. Results of these case studies suggest that N can be managed site-specifically using a variety of management practices, including soil sampling, variable yield goals, and cropping history.

  10. Characterization and forensic analysis of soil samples using laser-induced breakdown spectroscopy (LIBS).

    Science.gov (United States)

    Jantzi, Sarah C; Almirall, José R

    2011-07-01

    A method for the quantitative elemental analysis of surface soil samples using laser-induced breakdown spectroscopy (LIBS) was developed and applied to the analysis of bulk soil samples for discrimination between specimens. The use of a 266 nm laser for LIBS analysis is reported for the first time in forensic soil analysis. Optimization of the LIBS method is discussed, and the results compared favorably to a laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) method previously developed. Precision for both methods was LIBS limits of detection were LIBS method successfully discriminated samples from two different sites in Dade County, FL. Analysis of variance, Tukey's post hoc test and Student's t test resulted in 100% discrimination with no type I or type II errors. Principal components analysis (PCA) resulted in clear groupings of the two sites. A correct classification rate of 99.4% was obtained with linear discriminant analysis using leave-one-out validation. Similar results were obtained when the same samples were analyzed by LA-ICP-MS, showing that LIBS can provide similar information to LA-ICP-MS. In a forensic sampling/spatial heterogeneity study, the variation between sites, between sub-plots, between samples and within samples was examined on three similar Dade sites. The closer the sampling locations, the closer the grouping on a PCA plot and the higher the misclassification rate. These results underscore the importance of careful sampling for geographic site characterization.

  11. Removal of fission products from waste solutions using 16 different soil samples

    International Nuclear Information System (INIS)

    Bangash, M.A.; Hanif, J.

    1997-01-01

    Most of the nuclear sites use pits in the surrounding soils for the storage/disposal of low active waste (LAW) solutions. The characteristics of the soil if not suitable for the fixation or adsorption of the radioactive nuclides, may cause migration of these nuclides to hydrosphere. The phenomenon has the risk of radio toxic pollution for the living bodies therefore minerals composing the soil and their adsorption properties need to be investigated. For this purpose 16 different soil samples were collected from all over Pakistan. Mineralogical composition of the soils was determined by X-ray diffraction analysis. It was found that most of the samples contained clay minerals, illite, kaolinite and montmorillonite. Studies for the removal of fission products like, /sup 137/Cs. /sup 60/Sr and activation product /sup 60/CO from solution were carried out on these samples. The sorption experiments were performed by batch technique using radioactive as tracers. Distribution co-efficient were determined by mixing he element solution at pH 3 with the soil at soil solution ratios of 1 to 20. It is revealed from the experimental data that efficient removal of fission products from solutions is achieved by soil samples containing clay mineral montmorillonite, followed by little and kaolinite. These soils thus can be effectively used for the disposal of low level radioactive waste solutions without causing any environmental hazard. (author)

  12. Erodibility of waste (Loess) soils from construction sites under water and wind erosional forces.

    Science.gov (United States)

    Tanner, Smadar; Katra, Itzhak; Argaman, Eli; Ben-Hur, Meni

    2018-03-01

    Excess soils from construction sites (waste soils) become a problem when exposed to soil erosion by water or wind. Understanding waste soil erodibility can contribute to its proper reuse for various surface applications. The general objective of the study was to provide a better understanding of the effects of soil properties on erodibility of waste soils excavated from various depths in a semiarid region under rainfall and wind erosive forces. Soil samples excavated from the topsoil (0-0.3m) and subsoil layers (0.3-0.9 and >1m depths) were subjected to simulated rainfall and wind. Under rainfall erosive forces, the subsoils were more erodible than the topsoil, in contrast to the results obtained under wind erosive forces. Exchangeable sodium percentage was the main factor controlling soil erodibility (K i ) under rainfall, and a significant logarithmic regression line was found between these two parameters. In addition, a significant, linear regression was found between K i and slaking values for the studied soil samples, suggesting that the former can be predicted from the latter. Soil erodibility under wind erosion force was controlled mainly by the dry aggregate characteristics (mean weight diameter and aggregate density): their higher values in the subsoil layers resulted in lower soil erodibility compared to the topsoil. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Radionuclide concentrations in terrestrial vegetation and soil on and around the Hanford Site, 1983 through 1993

    International Nuclear Information System (INIS)

    Poston, T.M.; Antonio, E.J.; Cooper, A.T.

    1995-08-01

    This report reviews concentrations of 60 Co, 90 Sr, 137 Cs, U isotopes, 238 Pu, 239,240 Pu, and 241 Am in soil and vegetation samples collected from 1983 through 1993 during routine surveillance of the Hanford Site. Sampling locations were grouped in study areas associated with operational areas on the Site. While radionuclide concentrations were very low and representative of background concentrations from historic fallout, some study areas on the Site contained slightly elevated concentrations compared to other study areas onsite and offsite. The 100 Areas had concentrations of 60 Co comparable to the minimum detectable concentration of 0.02 pCi/g in soil. Concentrations of 90 Sr, 137 Cs, 238 Pu, 239,240 Pu, and 241 Am in 200 Area soils were slightly elevated. The 300 Area had a slight elevation of U in soil. These observations were expected because many of the sampling locations were selected to monitor specific facilities or operations at the operational areas. Generally, concentrations of the radionuclides studied were greater and more readily measured in soil samples compared to vegetation samples. The general pattern of concentrations of radionuclide concentrations in vegetation by area mirrored that observed in soil. Declines in 90 Sr in soil appear to be attributed to radioactive decay and possibly downward migration out of the sampling horizon. The other radionuclides addressed in this report strongly sorb to soil and are readily retained in surface soil. Because of their long half-lives compared to the length of the study period, there was no significant indication that concentrations of U isotopes and Pu isotopes were decreasing over time

  14. Disposal of the radioactive contaminated soils from the NPP site

    International Nuclear Information System (INIS)

    Matusek, I.; Plsko, J.; Sajtlava, M.; Hulla, J.; Kovacs, T.

    2004-01-01

    Disposal of contaminated soils at site of NPP is one of the most important task within the frame of research and development tasks of the NPP decommissioning. The works within this field can be seen in several areas. Considered soil activity monitoring, observation of its geo-technical and geo-chemical parameters, volume balance, research of the radio nuclides behaviour in the soil and simulation of their influence on the surrounding environment with special emphasis on underground water, project studies and construction of the disposal facility for contaminated soils. This work presents overview of gained results in the mentioned areas of the research and development. (author)

  15. SEAMIST trademark soil sampling for tritiated water: First year's results

    International Nuclear Information System (INIS)

    Mallon, B.; Martins, S.A.; Houpis, J.L.; Lowry, W.; Cremer, C.D.

    1992-01-01

    SEAMIST trademark is a recently developed sampling system that enables one to measure various soil parameters by means of an inverted, removable, impermeable membrane tube inserted in a borehole. This membrane tube can have various measuring devices installed on it, such as gas ports, adsorbent pads, and electrical sensors. These membrane tubes are made of a laminated polymer. The Lawrence Livermore National Laboratory in Livermore, California, has installed two of these systems to monitor tritium in soil resulting from a leak in an underground storage tank. One tube is equipped with gas ports to sample soil vapor and the other with adsorbent pads to sample soil moisture. Borehole stability was maintained using either sand-filled or air-inflated tubes. Both system implementations yielded concentrations or activities that compared well with the measured concentrations of tritium in the soil taken during borehole construction. In addition, an analysis of the data suggest that both systems prevented the vertical migration of tritium in the boreholes. Also, a neutron probe was successfully used in a blank membrane inserted in one of the boreholes to monitor the moisture in the soil without exposing the probe to the tritium. The neutron log showed excellent agreement with the soil moisture content measured in soil samples taken during borehole construction. This paper describes the two SEAMIST trademark systems used and presents sampling results and comparisons

  16. Decontamination of soil from the research reactor site

    International Nuclear Information System (INIS)

    Won, H. Z.; Kim, K. N.; Choi, W. K.; Jeong, J. H.; Oh, W. J.

    2002-01-01

    The two research reactors (TRIGA MARK II and III) in Korea are to be decommissioned in the near future. When the reactors are completely dismantled, the site may remain contaminated due to the long period of operation. We assume that the site is radioactively contaminated by Co-60. Soils gathered from the research reactor site were artificially contaminated with Co 2+ ion. The desorption characteristics of Co 2+ ion from the soil surface by citric acid solution were investigated. Decontamination performances of citric acid and EDTA on soil stored in the radioactive waste drums was examined. The feasibility test of recycling the citric acid was also performed. We concluded that the radioactive waste volume could be reduced significantly by soil washing with a citric acid solution

  17. Site Study Plan for soils, Deaf Smith County site, Texas: Environmental Field Program: Preliminary draft

    International Nuclear Information System (INIS)

    1987-06-01

    The Soils Site Study Plan describes a field program consisting of a soil characterization survey, impact monitoring of soils, predisturbance soil salinity survey, and a reclamation suitability study. This information will be used to plan for soil stripping, stockpiling, and replacement; reclamation of soils; determining predisturbance chemical and physical characteristics of the soils; including salinity levels; and monitoring for changes in chemical and physical characteristics of the soil. The SSP describes for each study the need for the study, the study design, data management and use, schedule of proposed activities, and the quality assurance program. These studies will provide data needed to satisfy requirements contained in, or derived from, the Salt Repository Project Requirements Document. 75 refs., 10 figs., 5 tabs

  18. Sampling design for use by the soil decontamination project

    International Nuclear Information System (INIS)

    Rutherford, D.W.; Stevens, J.R.

    1981-01-01

    This report proposes a general approach to the problem and discusses sampling of soil to map the contaminated area and to provide samples for characterizaton of soil components and contamination. Basic concepts in sample design are reviewed with reference to environmental transuranic studies. Common designs are reviewed and evaluated for use with specific objectives that might be required by the soil decontamination project. Examples of a hierarchial design pilot study and a combined hierarchial and grid study are proposed for the Rocky Flats 903 pad area

  19. Soil Sampling Plan for the transuranic storage area soil overburden and final report: Soil overburden sampling at the RWMC transuranic storage area

    International Nuclear Information System (INIS)

    Stanisich, S.N.

    1994-12-01

    This Soil Sampling Plan (SSP) has been developed to provide detailed procedural guidance for field sampling and chemical and radionuclide analysis of selected areas of soil covering waste stored at the Transuranic Storage Area (TSA) at the Idaho National Engineering Laboratory's (INEL) Radioactive Waste Management Complex (RWMC). The format and content of this SSP represents a complimentary hybrid of INEL Waste Management--Environmental Restoration Program, and Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) Remedial Investigation/Feasibility Study (RI/FS) sampling guidance documentation. This sampling plan also functions as a Quality Assurance Project Plan (QAPP). The QAPP as a controlling mechanism during sampling to ensure that all data collected are valid, reliabile, and defensible. This document outlines organization, objectives and quality assurance/quality control (QA/QC) activities to achieve the desired data quality goals. The QA/QC requirements for this project are outlined in the Data Collection Quality Assurance Plan (DCQAP) for the Buried Waste Program. The DCQAP is a program plan and does not outline the site specific requirements for the scope of work covered by this SSP

  20. Geochemical and physical properties of soils and shallow sediments at the Savannah River Site

    International Nuclear Information System (INIS)

    Looney, B.B.; Eddy, C.A.; Ramdeen, M.; Pickett, J.; Rogers, V.; Scott, M.T.; Shirley, P.A.

    1990-01-01

    A program to characterize the geochemical and physical properties of the unimpacted soils and shallow sediments at the Savannah River Site (SRS) has been completed. The maximum, minimum, median, standard deviation, and mean values for metals, radionuclides, inorganic anions, organic compounds, and agricultural indicator parameters are summarized for six soil series that were identified as representative of the 29 soil series at SRS. The soils from unimpacted areas of SRS are typical of soils found in moderately aggressive weathering environments, including the southeastern United States. Appendix 8 organic compounds were detected in all samples. Since these constituents are not generally present in soil, this portion of the investigation was intended to assess possible laboratory artifacts. An additional objective of the SRS Soil Study was to determine if the composition of the split spoon sampler biased chemical analysis of the soils. Twenty-five duplicate samples were analyzed for a number of metals, radiological and agricultural parameters, and organics by two laboratories currently contracted with to analyze samples during waste site characterization. In all cases, the absolute values of the average differences are relatively small compared to the overall variability in the population. 31 refs., 14 figs., 48 tabs

  1. Geochemical and physical properties of soils and shallow sediments at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Looney, B.B.; Eddy, C.A.; Ramdeen, M.; Pickett, J. (Savannah River Lab., Aiken, SC (USA)); Rogers, V. (Soil Conservation Service, Aiken, SC (USA). Savannah River Site Savannah River Lab., Aiken, SC (USA)); Scott, M.T.; Shirley, P.A. (Sirrine Environmental Consultants, Greenville, SC (USA))

    1990-08-31

    A program to characterize the geochemical and physical properties of the unimpacted soils and shallow sediments at the Savannah River Site (SRS) has been completed. The maximum, minimum, median, standard deviation, and mean values for metals, radionuclides, inorganic anions, organic compounds, and agricultural indicator parameters are summarized for six soil series that were identified as representative of the 29 soil series at SRS. The soils from unimpacted areas of SRS are typical of soils found in moderately aggressive weathering environments, including the southeastern United States. Appendix 8 organic compounds were detected in all samples. Since these constituents are not generally present in soil, this portion of the investigation was intended to assess possible laboratory artifacts. An additional objective of the SRS Soil Study was to determine if the composition of the split spoon sampler biased chemical analysis of the soils. Twenty-five duplicate samples were analyzed for a number of metals, radiological and agricultural parameters, and organics by two laboratories currently contracted with to analyze samples during waste site characterization. In all cases, the absolute values of the average differences are relatively small compared to the overall variability in the population. 31 refs., 14 figs., 48 tabs.

  2. Analysis of core samples from jet grouted soil

    International Nuclear Information System (INIS)

    Allan, M.L.; Kukacka, L.E.

    1995-10-01

    Superplasticized cementitious grouts were tested for constructing subsurface containment barriers using jet grouting in July, 1994. The grouts were developed in the Department of Applied Science at Brookhaven National Laboratory. The test site was located close to the Chemical Waste Landfill at Sandia National Laboratories, Albuquerque, NM. Sandia was responsible for the placement contract. The jet grouted soil was exposed to the service environment for one year and core samples were extracted to evaluate selected properties. The cores were tested for strength, density, permeability (hydraulic conductivity) and cementitious content. The tests provided an opportunity to determine the performance of the grouts and grout-treated soil. Several recommendations arise from the results of the core tests. These are: (1) grout of the same mix proportions as the final grout should be used as a drilling fluid in order to preserve the original mix design and utilize the benefits of superplasticizers; (2) a high shear mixer should be used for preparation of the grout; (3) the permeability under unsaturated conditions requires consideration when subsurface barriers are used in the vadose zone; and (4) suitable methods for characterizing the permeability of barriers in-situ should be applied

  3. Exchangeable phosphorus and others parameters in soil samples from Sapucai

    Energy Technology Data Exchange (ETDEWEB)

    Facetti, J F; Zanotti, J F [Asuncion Nacional Univ. (Paraguay). Inst. de Ciencias

    1972-01-01

    Soils samples from the alkaline rocks area at Sapucai were studied. The total amount of P in the soils shows to be high, as well as the E value for the 32 P exclangeable phosphorus. Other parameters like V values, TEC, etc., and their relationschip also were analyzed.

  4. Exchangeable phosphorus and others parameters in soil samples from Sapucai

    International Nuclear Information System (INIS)

    Facetti, J.F.; Zanotti, J.F.

    1972-01-01

    Soils samples from the alkaline rocks area at Sapucai were studied. The total amount of P in the soils shows to be high, as well as the E value for the 32 P exclangeable phosphorus. Other parameters like V values, TEC, etc., and their relationschip also were analyzed

  5. Statistical sampling strategies for survey of soil contamination

    NARCIS (Netherlands)

    Brus, D.J.

    2011-01-01

    This chapter reviews methods for selecting sampling locations in contaminated soils for three situations. In the first situation a global estimate of the soil contamination in an area is required. The result of the surey is a number or a series of numbers per contaminant, e.g. the estimated mean

  6. USDA soil classification system dictates site surface management

    International Nuclear Information System (INIS)

    Bowmer, W.J.

    1985-01-01

    Success or failure of site surface management practices greatly affects long-term site stability. The US Department of Agriculture (USDA) soil classification system best documents those parameters which control the success of installed practices for managing both erosion and surface drainage. The USDA system concentrates on soil characteristics in the upper three meters of the surface that support the associated flora both physically and physiologically. The USDA soil survey first identifies soil series based on detailed characteristics that are related to production potential. Using the production potential, land use capability classes are developed. Capability classes reveal the highest and best agronomic use for the site. Lower number classes are considered arable while higher number classes are best suited for grazing agriculture. Application of ecological principles based on the USDA soil survey reveals the current state of the site relative to its ecological potential. To assure success, site management practices must be chosen that are compatible with both production capability and current state of the site

  7. Distribution of pesticide residues in soil and uncertainty of sampling.

    Science.gov (United States)

    Suszter, Gabriela K; Ambrus, Árpád

    2017-08-03

    Pesticide residues were determined in about 120 soil cores taken randomly from the top 15 cm layer of two sunflower fields about 30 days after preemergence herbicide treatments. Samples were extracted with acetone-ethyl acetate mixture and the residues were determined with GC-TSD. Residues of dimethenamid, pendimethalin, and prometryn ranged from 0.005 to 2.97 mg/kg. Their relative standard deviations (CV) were between 0.66 and 1.13. The relative frequency distributions of residues in soil cores were very similar to those observed in root and tuber vegetables grown in pesticide treated soils. Based on all available information, a typical CV of 1.00 was estimated for pesticide residues in primary soil samples (soil cores). The corresponding expectable relative uncertainty of sampling is 20% when composite samples of size 25 are taken. To obtain a reliable estimate of the average residues in the top 15 cm layer of soil of a field up to 8 independent replicate random samples should be taken. To obtain better estimate of the actual residue level of the sampled filed would be marginal if larger number of samples were taken.

  8. Soil Gas Sample Handling: Evaluation of Water Removal and Sample Ganging

    Energy Technology Data Exchange (ETDEWEB)

    Fritz, Brad G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Abrecht, David G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hayes, James C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mendoza, Donaldo P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-10-31

    Soil gas sampling is currently conducted in support of Nuclear Test Ban treaty verification. Soil gas samples are collected and analyzed for isotopes of interest. Some issues that can impact sampling and analysis of these samples are excess moisture and sample processing time. Here we discuss three potential improvements to the current sampling protocol; a desiccant for water removal, use of molecular sieve to remove CO2 from the sample during collection, and a ganging manifold to allow composite analysis of multiple samples.

  9. Engineered soil covers for management of salt impacted sites

    International Nuclear Information System (INIS)

    Sweeney, D.A.; Tratch, D.J.

    2005-01-01

    The use of engineered soil cover systems to mitigate environmental impacts from tailings and waste rock piles is becoming an accepted practice. This paper presented design concepts for soil covers related to reclamation practices in the mining industry as an effective risk management practice at salt impacted sites. Research and field programs have demonstrated that a layered engineered soil cover can reduce or eliminate infiltration. Key components of the system included re-establishing surface vegetation to balance precipitation fluxes with evapotranspiration potential, and design of a capillary break below the rooting zone to minimize deeper seated infiltration. It was anticipated that the incorporation of a vegetation cover and a capillary break would minimize infiltration into the waste rock or tailing pile and reduce the generation of acid rock drainage (ARD). Design of a layered soil cover requires the incorporation of meteorological data, moisture retention characteristics of the impacted soils, and proposed engineered cover materials. Performance of the soil cover was predicted using a finite element model combined with meteorological data from the site area, unsaturated soil properties of the parent sub-surface soils and potential covered materials. The soil cover design consisted of re-vegetation and a loose clay cover overlying a compacted till layer. The design was conducted for an off site release of salt impacted pasture land adjacent to a former highway maintenance yard. The model predicted minimal infiltration during high precipitation events and no infiltration during low precipitation events. Results indicated that the proposed soil cover would enable re-establishment of a productive agricultural ground cover, as well as minimizing the potential for additional salt migration. It was concluded that further research and development is needed to ensure that the cover system is an acceptable method for long-term risk management. 17 refs., 5 figs

  10. Natural radioactivity in soil samples of Kocaeli basin, Turkey

    International Nuclear Information System (INIS)

    Karakelle, B.; Oeztuerk, N.; Erkol, A.Y.; Koese, A.; Varinlioglu, A.; Yilmaz, F.

    2002-01-01

    The city of Kocaeli is in the western part of Anatolia in Turkey and has a population of approximately 1.000.000. There is no information about radioactivity in the Kocaeli soils samples so far. For this reason, the concentrations of the natural radionuclides in soil samples from 27 different sampling stations in Kocaeli Basin and its surroundings have been determined. The results have been compared with other radioactivity measurements in different country's soils. The typical concentrations of 137 Cs, 238 U, 40 K, 226 Ra, 232 Th found in surface soil samples ranged from 2 ± 0.6 to 25 ± 6 Bq/kg, from 11 ± 4 to 49 ± 10 Bq/kg, from 161 ± 30 to 964 ± 127 Bq/kg, from 10 ± 4 to 58 ± 11 Bq/kg, and from 11 ± 3 to 65 ± 13 Bq/kg, respectively. (author)

  11. A method for assessing residual NAPL based on organic chemical concentrations in soil samples

    International Nuclear Information System (INIS)

    Feenstra, S.; Mackay, D.M.; Cherry, J.A.

    1991-01-01

    Ground water contamination by non-aqueous phase liquid (NAPL) chemicals is a serious concern at many industrial facilities and waste disposal sites. NAPL in the form of immobile residual contamination, or pools of mobile or potentially mobile NAPL, can represent continuing sources of ground water contamination. In order to develop rational and cost-effective plans for remediation of soil and ground water contamination at such sites, it is essential to determine if non-aqueous phase liquid (NAPL) chemicals are present in the subsurface and delineate the zones of NAPL contamination. Qualitatively, soil analyses that exhibit chemical concentrations in the percent range or >10,000 mg/kg would generally be considered to indicate the presence of NAPL. However, the results of soil analyses are seldom used in a quantitative manner to assess the possible presence of residual NAPL contamination when chemical concentrations are lower and the presence of NAPL is not obvious. The assessment of the presence of NAPL in soil samples is possible using the results of chemical and physical analyses of the soil, and the fundamental principles of chemical partitioning in unsaturated or saturated soil. The method requires information on the soil of the type typically considered in ground water contamination studies and provides a simple tool for the investigators of chemical spill and waste disposal sites to assess whether soil chemical analyses indicate the presence of residual NAPL in the subsurface

  12. Statistical sampling methods for soils monitoring

    Science.gov (United States)

    Ann M. Abbott

    2010-01-01

    Development of the best sampling design to answer a research question should be an interactive venture between the land manager or researcher and statisticians, and is the result of answering various questions. A series of questions that can be asked to guide the researcher in making decisions that will arrive at an effective sampling plan are described, and a case...

  13. Methods for the collection of subsurface samples during environmental site assessments

    International Nuclear Information System (INIS)

    Weinstock, E.A.

    1996-01-01

    This paper discusses numerous sample collection techniques that have been successfully employed during Phase 2 Assessments and presents case histories of their application. Pollutants of concern include PCE and petroleum. The collection of shallow soil samples is described using commercially available hand augers and hand-driven core samplers. These devices are modified with extensions to collect deeper samples from storm drains and leaching pools. The performance of soil gas surveys are described using both hand-driven sample probes and vehicle-mounted, hydraulically driven vapor probes. Once the soil vapor is collected at the ground surface, a sample of the media is either analyzed on-site using a field-operated detection device or delivered to a laboratory for analysis. Application and case histories of the Geoprobe(trademark)sampling system, a form of direct push technology, are described. This device uses vehicle-mounted, hydraulically-driven sample probes. The probe can be advanced to depths as great as 100 feet below grade and can retrieve soil, soil gas and groundwater samples

  14. Laboratory and Airborne BRDF Analysis of Vegetation Leaves and Soil Samples

    Science.gov (United States)

    Georgiev, Georgi T.; Gatebe, Charles K.; Butler, James J.; King, Michael D.

    2008-01-01

    Laboratory-based Bidirectional Reflectance Distribution Function (BRDF) analysis of vegetation leaves, soil, and leaf litter samples is presented. The leaf litter and soil samples, numbered 1 and 2, were obtained from a site located in the savanna biome of South Africa (Skukuza: 25.0degS, 31.5degE). A third soil sample, number 3, was obtained from Etosha Pan, Namibia (19.20degS, 15.93degE, alt. 1100 m). In addition, BRDF of local fresh and dry leaves from tulip tree (Liriodendron tulipifera) and acacia tree (Acacia greggii) were studied. It is shown how the BRDF depends on the incident and scatter angles, sample size (i.e. crushed versus whole leaf,) soil samples fraction size, sample status (i.e. fresh versus dry leaves), vegetation species (poplar versus acacia), and vegetation s biochemical composition. As a demonstration of the application of the results of this study, airborne BRDF measurements acquired with NASA's Cloud Absorption Radiometer (CAR) over the same general site where the soil and leaf litter samples were obtained are compared to the laboratory results. Good agreement between laboratory and airborne measured BRDF is reported.

  15. Sampling and analysis plan for Wayne Interim Storage Site (WISS), Wayne, New Jersey

    International Nuclear Information System (INIS)

    Brown, K.S.; Murray, M.E.; Rodriguez, R.E.

    1998-10-01

    This field sampling plan describes the methodology to perform an independent radiological verification survey and chemical characterization of a remediated area of the subpile at the Wayne Interim Storage Site, Wayne, New Jersey.Data obtained from collection and analysis of systematic and biased soil samples will be used to assess the status of remediation at the site and verify the final radiological status. The objective of this plan is to describe the methods for obtaining sufficient and valid measurements and analytical data to supplement and verify a radiological profile already established by the Project Remediation Management Contractor (PMC). The plan describes the procedure for obtaining sufficient and valid analytical data on soil samples following remediation of the first layer of the subpile. Samples will be taken from an area of the subpile measuring approximately 30 m by 80 m from which soil has been excavated to a depth of approximately 20 feet to confirm that the soil beneath the excavated area does not exceed radiological guidelines established for the site or chemical regulatory limits for inorganic metals. After the WISS has been fully remediated, the Department of Energy will release it for industrial/commercial land use in accordance with the Record of Decision. This plan provides supplemental instructions to guidelines and procedures established for sampling and analysis activities. Procedures will be referenced throughout this plan as applicable, and are available for review if necessary

  16. BOREAS TGB-6 Soil Methane Oxidation and Production from NSA BP and Fen Sites

    Science.gov (United States)

    Deck, Bruce; Wahlen, Martin; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor)

    2000-01-01

    The BOReal Ecosystem-Atmosphere Study Trace Gas Biogeochemistry (BOREAS TGB-6) team collected soil methane measurements at several sites in the Southern Study Area (SSA) and Northern Study Area (NSA). This data set contains soil methane consumption (bacterial CH4 oxidation) and associated C-13 fractionation effects in samples that were collected at various sites in 1994 and 1996 from enclosures (chambers). Methane C-13 data in soil gas samples from the NSA Young Jack Pine (YJP) and Old Jack Pine (OJP) sites for 1994 and 1996 are also given. Additional data on the isotopic composition of methane (carbon and hydrogen isotopes) produced in the NSA beaver ponds and fen bog in 1993 and 1994 are given as well. The data are stored in tabular ASCII files.

  17. Determining photon energy absorption parameters for different soil samples

    International Nuclear Information System (INIS)

    Kucuk, Nil; Cakir, Merve; Tumsavas, Zeynal

    2013-01-01

    The mass attenuation coefficients (μ s ) for five different soil samples were measured at 661.6, 1173.2 and 1332.5 keV photon energies. The soil samples were separately irradiated with 137 Cs and 60 Co (370 kBq) radioactive point gamma sources. The measurements were made by performing transmission experiments with a 2″ x 2″ NaI(Tl) scintillation detector, which had an energy resolution of 7% at 0.662 MeV for the gamma-rays from the decay of 137 Cs. The effective atomic numbers (Z eff ) and the effective electron densities (N eff ) were determined experimentally and theoretically using the obtained μ s values for the soil samples. Furthermore, the Z eff and N eff values of the soil samples were computed for the total photon interaction cross-sections using theoretical data over a wide energy region ranging from 1 keV to 15 MeV. The experimental values of the soils were found to be in good agreement with the theoretical values. Sandy loam and sandy clay loam soils demonstrated poor photon energy absorption characteristics. However, clay loam and clay soils had good photon energy absorption characteristics. (author)

  18. A Bayesian sampling strategy for hazardous waste site characterization

    International Nuclear Information System (INIS)

    Skalski, J.R.

    1987-12-01

    Prior knowledge based on historical records or physical evidence often suggests the existence of a hazardous waste site. Initial surveys may provide additional or even conflicting evidence of site contamination. This article presents a Bayes sampling strategy that allocates sampling at a site using this prior knowledge. This sampling strategy minimizes the environmental risks of missing chemical or radionuclide hot spots at a waste site. The environmental risk is shown to be proportional to the size of the undetected hot spot or inversely proportional to the probability of hot spot detection. 12 refs., 2 figs

  19. Removal of arsenic from Janghang smelter site and energy crops-grown soil with soil washing using magnetic iron oxide

    Science.gov (United States)

    Han, Jaemaro; Zhao, Xin; Lee, Jong Keun; Kim, Jae Young

    2014-05-01

    Arsenic compounds are considered carcinogen and easily enter drinking water supplies with their natural abundance. US Environmental Protection Agency is finalizing a regulation to reduce the public health risks from arsenic in drinking water by revising the current drinking water standard for arsenic from 50 ppb to 10 ppb in 2001 (USEPA, 2001). Therefore, soil remediation is also growing field to prevent contamination of groundwater as well as crop cultivation. Soil washing is adjusted as ex-situ soil remediation technique which reduces volume of the contaminated soil. The technique is composed of physical separation and chemical extraction to extract target metal contamination in the soil. Chemical extraction methods have been developed solubilizing contaminants containing reagents such as acids or chelating agents. And acid extraction is proven as the most commonly used technology to treat heavy metals in soil, sediment, and sludge (FRTR, 2007). Due to the unique physical and chemical properties, magnetic iron oxide have been used in diverse areas including information technology and biomedicine. Magnetic iron oxides also can be used as adsorbent to heavy metal enhancing removal efficiency of arsenic concentration. In this study, magnetite is used as the washing agent with acid extraction condition so that the injected oxide can be separated by magnetic field. Soil samples were collected from three separate areas in the Janghang smelter site and energy crops-grown soil to have synergy effect with phytoremediation. Each sample was air-dried and sieved (2mm). Soil washing condition was adjusted on pH in the range of 0-12 with hydrogen chloride and sodium hydroxide. After performing soil washing procedure, arsenic-extracted samples were analyzed for arsenic concentration by inductively coupled plasma optical emission spectrometer (ICP-OES). All the soils have exceeded worrisome level of soil contamination for region 1 (25mg/kg) so the soil remediation techniques are

  20. Comparison of soil sampling and analytical methods for asbestos at the Sumas Mountain Asbestos Site—Working towards a toolbox for better assessment

    Science.gov (United States)

    Established soil sampling methods for asbestos are inadequate to support risk assessment and risk-based decision making at Superfund sites due to difficulties in detecting asbestos at low concentrations and difficulty in extrapolating soil concentrations to air concentrations. En...

  1. Assessment of Selected Heavy Metals and Enzymes in Soil Within the Range of Impact of Illegal Dumping Sites

    International Nuclear Information System (INIS)

    Bartkowiak, A.; Lemanowicz, J.; Siwik-Ziomek, A.

    2016-01-01

    Defining the physicochemical and biological parameters in soil under illegally dumping sites provides information on the real threat and the direction of changes in the soil environment. The paper demonstrates the result of changes in the properties in soil as a result of the operation of illegal dumping sites. Soil was sampled from the research points located on the outskirts of the city of Bydgoszcz (Poland) from the site not affected by illegal dumping sites (control C), within the dumping sites, having removed the waste layer (W), and 10 m away from the dumping sites (W 10). In the soil the content of phosphorus, potassium, magnesium and sulphur, total content of copper, zinc, lead and nickel as well as the activity of enzymes were assayed. The content of Pb, Zn, Cu and Ni in the soil samples qualifies the soils as representing the soil category with natural content. The greatest activity of all the enzymes analysed was identified in the soil sampled from the control point affected by waste, whereas the highest content of macroelements was reported in the soil from the dumping sites (W 10). A high variation in the enzymes under study in soils confirms a high value of the coefficient of variation (CV >36%). The analysis of correlation confirmed the relationship between the content of organic carbon compounds and the content of zinc, lead, nickel. The soils show a slight value of the coefficient of contamination for heavy metals (CF<1). The contamination degree (Cdeg) ranged from 1.993 to 5.116, which points to a low level of soil contamination with Zn, Cu, Pb and Ni.

  2. Optimizing detection of noble gas emission at a former UNE site: sample strategy, collection, and analysis

    Science.gov (United States)

    Kirkham, R.; Olsen, K.; Hayes, J. C.; Emer, D. F.

    2013-12-01

    Underground nuclear tests may be first detected by seismic or air samplers operated by the CTBTO (Comprehensive Nuclear-Test-Ban Treaty Organization). After initial detection of a suspicious event, member nations may call for an On-Site Inspection (OSI) that in part, will sample for localized releases of radioactive noble gases and particles. Although much of the commercially available equipment and methods used for surface and subsurface environmental sampling of gases can be used for an OSI scenario, on-site sampling conditions, required sampling volumes and establishment of background concentrations of noble gases require development of specialized methodologies. To facilitate development of sampling equipment and methodologies that address OSI sampling volume and detection objectives, and to collect information required for model development, a field test site was created at a former underground nuclear explosion site located in welded volcanic tuff. A mixture of SF-6, Xe127 and Ar37 was metered into 4400 m3 of air as it was injected into the top region of the UNE cavity. These tracers were expected to move towards the surface primarily in response to barometric pumping or through delayed cavity pressurization (accelerated transport to minimize source decay time). Sampling approaches compared during the field exercise included sampling at the soil surface, inside surface fractures, and at soil vapor extraction points at depths down to 2 m. Effectiveness of various sampling approaches and the results of tracer gas measurements will be presented.

  3. NG09 And CTBT On-Site Inspection Noble Gas Sampling and Analysis Requirements

    Science.gov (United States)

    Carrigan, Charles R.; Tanaka, Junichi

    2010-05-01

    A provision of the Comprehensive Test Ban Treaty (CTBT) allows on-site inspections (OSIs) of suspect nuclear sites to determine if the occurrence of a detected event is nuclear in origin. For an underground nuclear explosion (UNE), the potential success of an OSI depends significantly on the containment scenario of the alleged event as well as the application of air and soil-gas radionuclide sampling techniques in a manner that takes into account both the suspect site geology and the gas transport physics. UNE scenarios may be broadly divided into categories involving the level of containment. The simplest to detect is a UNE that vents a significant portion of its radionuclide inventory and is readily detectable at distance by the International Monitoring System (IMS). The most well contained subsurface events will only be detectable during an OSI. In such cases, 37 Ar and radioactive xenon cavity gases may reach the surface through either "micro-seepage" or the barometric pumping process and only the careful siting of sampling locations, timing of sampling and application of the most site-appropriate atmospheric and soil-gas capturing methods will result in a confirmatory signal. The OSI noble gas field tests NG09 was recently held in Stupava, Slovakia to consider, in addition to other field sampling and analysis techniques, drilling and subsurface noble gas extraction methods that might be applied during an OSI. One of the experiments focused on challenges to soil-gas sampling near the soil-atmosphere interface. During withdrawal of soil gas from shallow, subsurface sample points, atmospheric dilution of the sample and the potential for introduction of unwanted atmospheric gases were considered. Tests were designed to evaluate surface infiltration and the ability of inflatable well-packers to seal out atmospheric gases during sample acquisition. We discuss these tests along with some model-based predictions regarding infiltration under different near

  4. Overview of JGC soil washing and site stabilization (SWSS) concept

    International Nuclear Information System (INIS)

    Goetsch, S.; Fujimura, Y.; Sauda, K.; Yagi, T.; Suzuki, K.

    1991-01-01

    The JGC Soil Washing and Site Stabilization (SWSS) concept is to wash heavy metal and uranium-contaminated soils using well demonstrated techniques, and to follow that process with its innovative stabilization process, to fix the remaining contaminates within a stable matrix. In addition, the solution used to wash the soil is stripped of contaminates, so that it can be reused. This process reduces the total amount of wastes generated from washing the soil, since not only can the solution be reused, but often the extracted contaminates can be recovered for industrial use. The stabilization portion of the concept is based on a family of proprietary fixing agents which can render the remaining contaminates insoluble. These agents are significantly different from other (generally silicate) agents used for stabilizing contaminated soils in that they appear to bond more strongly to heavy metal contaminants than the silicate-based reagents, resulting in improved leach-rate performance when combined with bentonite or portland cement stabilization

  5. Aluminium, extractable from soil samples by the acid ammonium acetate soil-testing method

    Directory of Open Access Journals (Sweden)

    Osmo Mäkitie

    1968-05-01

    Full Text Available The extractant, 0.5 M acetic acid –0.5 M ammonium acetate at pH 4.65, which is used in soil-testing, extracts relatively high amounts of aluminium from acid soils. The mean values of acetate-extractable aluminium at pH 4.65, 1.75 meq Al/100 g of soil, and of exchangeable aluminium (M KCI extraction, 0.41 meq Al were obtained from a material of 30 samples of acid soils (Table 2. Several other acetic acid ammonium acetate extractants, from M acetic acid to M ammonium acetate solution were also used for studying the extractability of soil aluminium. The soil-testing extractant can be used for the estimation of the soluble amounts of aluminium in acid soils, however, further studies are needed for a better interpretation of the ammonium acetate extractable (at pH 4.65 aluminium in our soils.

  6. PCR detection of Burkholderia multivorans in water and soil samples.

    Science.gov (United States)

    Peeters, Charlotte; Daenekindt, Stijn; Vandamme, Peter

    2016-08-12

    Although semi-selective growth media have been developed for the isolation of Burkholderia cepacia complex bacteria from the environment, thus far Burkholderia multivorans has rarely been isolated from such samples. Because environmental B. multivorans isolates mainly originate from water samples, we hypothesized that water rather than soil is its most likely environmental niche. The aim of the present study was to assess the occurrence of B. multivorans in water samples from Flanders (Belgium) using a fast, culture-independent PCR assay. A nested PCR approach was used to achieve high sensitivity, and specificity was confirmed by sequencing the resulting amplicons. B. multivorans was detected in 11 % of the water samples (n = 112) and 92 % of the soil samples (n = 25) tested. The percentage of false positives was higher for water samples compared to soil samples, showing that the presently available B. multivorans recA primers lack specificity when applied to the analysis of water samples. The results of the present study demonstrate that B. multivorans DNA is commonly present in soil samples and to a lesser extent in water samples in Flanders (Belgium).

  7. The effect of short-range spatial variability on soil sampling uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Perk, Marcel van der [Department of Physical Geography, Utrecht University, P.O. Box 80115, 3508 TC Utrecht (Netherlands)], E-mail: m.vanderperk@geo.uu.nl; De Zorzi, Paolo; Barbizzi, Sabrina; Belli, Maria [Agenzia per la Protezione dell' Ambiente e per i Servizi Tecnici (APAT), Servizio Laboratori, Misure ed Attivita di Campo, Via di Castel Romano, 100-00128 Roma (Italy); Fajgelj, Ales; Sansone, Umberto [International Atomic Energy Agency (IAEA), Agency' s Laboratories Seibersdorf, A-1400 Vienna (Austria); Jeran, Zvonka; Jacimovic, Radojko [Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia)

    2008-11-15

    This paper aims to quantify the soil sampling uncertainty arising from the short-range spatial variability of elemental concentrations in the topsoils of agricultural, semi-natural, and contaminated environments. For the agricultural site, the relative standard sampling uncertainty ranges between 1% and 5.5%. For the semi-natural area, the sampling uncertainties are 2-4 times larger than in the agricultural area. The contaminated site exhibited significant short-range spatial variability in elemental composition, which resulted in sampling uncertainties of 20-30%.

  8. The effect of short-range spatial variability on soil sampling uncertainty.

    Science.gov (United States)

    Van der Perk, Marcel; de Zorzi, Paolo; Barbizzi, Sabrina; Belli, Maria; Fajgelj, Ales; Sansone, Umberto; Jeran, Zvonka; Jaćimović, Radojko

    2008-11-01

    This paper aims to quantify the soil sampling uncertainty arising from the short-range spatial variability of elemental concentrations in the topsoils of agricultural, semi-natural, and contaminated environments. For the agricultural site, the relative standard sampling uncertainty ranges between 1% and 5.5%. For the semi-natural area, the sampling uncertainties are 2-4 times larger than in the agricultural area. The contaminated site exhibited significant short-range spatial variability in elemental composition, which resulted in sampling uncertainties of 20-30%.

  9. CHARACTERISTIC OF AIRBORNE PARTICULATE MATTER SAMPLES COLLECTED FROM TWO SEMI INDUSTRIAL SITES IN BANDUNG, INDONESIA

    Directory of Open Access Journals (Sweden)

    Diah Dwiana Lestiani

    2013-12-01

    Full Text Available Air particulate matter concentrations, black carbon as well as elemental concentrations in two semi industrial sites were investigated as a preliminary study for evaluation of air quality in these areas. Sampling of airborne particulate matter was conducted in July 2009 using a Gent stacked filter unit sampler and a total of 18 pairs of samples were collected. Black carbon was determined by reflectance measurement and elemental analysis was performed using particle induced X-ray emission (PIXE. Elements Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, Cr, Mn, Fe, Cu, Zn and As were detected. Twenty four hour PM2.5 concentration at semi industrial sites Kiaracondong and Holis ranged from 4.0 to 22.2 µg m-3, while the PM10 concentration ranged from 24.5 to 77.1 µg m-3. High concentration of crustal elements, sulphur and zinc were identified in fine and coarse fractions for both sites. The fine fraction data from both sites were analyzed using a multivariate principal component analysis and for Kiaracondong site, identified factors are attributed to sea-salt with soil dust, vehicular emissions and biomass burning, non ferrous smelter, and iron/steel work industry, while for Holis site identified factors are attributed to soil dust, industrial emissions, vehicular emissions with biomass burning, and sea-salt. Although particulate samples were collected from semi industrial sites, vehicular emissions constituted with S, Zn and BC were identified in both sites.

  10. Sampling and analysis plan for Mount Plant D ampersand D soils packages, Revision 1

    International Nuclear Information System (INIS)

    1991-02-01

    There are currently 682 containers of soils in storage at Mound Plant, generated between April 1 and October 31, 1990 as a result of excavation of soils containing plutonium-238 at two ongoing Decontamination and Decommissioning (D ampersand D) Program sites. These areas are known as Area 14, the waste transfer system (WTS) hillside, and Area 17, the Special Metallurgical (SM) Building area. The soils from these areas are part of Mound Plant waste stream number AMDM-000000010, Contaminated Soil, and are proposed for shipment to the Nevada Test Site (NTS) for disposal as low-level radioactive waste. The sealed waste packages, constructed of either wood or metal, are currently being stored in Building 31 and at other locations throughout the Mound facility. At a meeting in Las Vegas, Nevada on October, 26, 1990, DOE Nevada Operations Office (DOE-NV) and NTS representatives requested that the Mound Plant D ampersand D soils proposed for shipment to NTS be sampled for Toxicity Characteristic Leaching Procedure (TCLP) constituents. On December 14, 1990, DOE-NV also requested that additional analyses be performed on the soils from one of the soils boxes for polychlorinated biphenyls (PCBs), particle size distribution, and free liquids. The purpose of this plan is to document the proposed sampling and analyses of the packages of D ampersand D soils produced prior to October 31, 1990. In order to provide a thorough description of the soils excavated from the WTS and SM areas, sections 1.1 and 1.2 provide historical Information concerning the D ampersand D soils, including waste stream evaluations and past sampling data

  11. Removal of overburden soils from buried waste sites

    International Nuclear Information System (INIS)

    Rice, P.M.

    1994-01-01

    Transuranic (TRU) waste buried in pits and trenches is covered with a soil cap, or overburden, to shed water. During retrieval operations, the overburden (expected to be clean) must be removed carefully to avoid breaching the soil/waste matrix within a pit or trench and to confine any possible local spot contamination. This necessitates removal in precise (7.6- to 15.25-cm) increments with a high degree of accuracy. In addition, during overburden removal the overburden must be characterized to a depth that exceeds each cut of soil. A field demonstration was conducted to evaluate a technology for removing overburden soils a the Radioactive Waste Management Complex (RWMC), Subsurface Disposal Area (SDA) at the Idaho National Engineering Laboratory (INEL). The demonstration evaluated equipment performance and techniques for removing overburden soil and controlling contamination and dust. To evaluate the performance of these techniques during removal operations, personnel took air particulate samples, physical measurements of the soil cuts, maneuverability measurements, and rate of soil removal data. The overburden was spiked at specific locations and depths with rare earth tracers to provide a medium for evaluating samples. Analysis to determine the precision and accuracy of the soil removal, amount of dust generated, and potential spread of contamination was performed

  12. Managing soil moisture on waste burial sites in arid regions

    International Nuclear Information System (INIS)

    Anderson, J.E.; Ratzlaff, T.D.; Nowak, R.S.; Markham, O.D.

    1993-01-01

    In semiarid regions, where potential evapotranspiration greatly exceeds precipitation, it is theoretically possible to preclude water form reaching interred wastes by (i) providing a sufficient cap of soil to store precipitation that falls while plants are dormant and (ii) establishing sufficient plant cover to deplete soil moisture during the growing season, thereby emptying the water storage reservoir of the soil. Here the authors discuss the theory and rationale for such an approach and then present the results of a field study to test its efficacy at the Idaho National Engineering Laboratory (INEL). They examined the capacity of four species of perennial plants to deplete soil moisture on simulated waste trenches and determined the effective water storage capacity of the soil. Those data enabled them to estimate the minimum depth of fill soil required to prevent deep drainage. Any of the species studied can use all of the plant-available soil water, even during a very wet growing season. The water storage capacity of the soil studied is 17% by volume, so a trench cap of 1.6 m of soil should be adequate to store precipitation received at the INEL while plants are dormant. They recommend a fill soil depth of 2 m to provide a margin of safety in case water accumulates in local areas as a result of heavy snow accumulation, subsidence, or runoff. Fill soil requirements and choice of plant species will vary, but the concepts and general approach are applicable to other shallow land burial sites in arid or semiarid regions. 23 refs., 5 figs

  13. Distribution of 137Cs in the Surface Soil of Serpong Nuclear Site

    OpenAIRE

    Lubis, E

    2011-01-01

    The distribution of 137Cs in the surface soil layer of Serpong Nuclear Site (SNS) was investigated by field sampling. The Objectives of the investigation is finding the profile of 137Cs distribution in the surface soil and the Tf value that can be used for estimation of radiation dose from livestock product-man pathways. The results indicates that the 137Cs activity in surface soil of SNS is 0.80 ± 0,29 Bq/kg, much lower than in the Antarctic. The contribution value of 137Cs from the operatio...

  14. Contamination of apple orchard soils and fruit trees with copper-based fungicides: sampling aspects.

    Science.gov (United States)

    Wang, Quanying; Liu, Jingshuang; Liu, Qiang

    2015-01-01

    Accumulations of copper in orchard soils and fruit trees due to the application of Cu-based fungicides have become research hotspots. However, information about the sampling strategies, which can affect the accuracy of the following research results, is lacking. This study aimed to determine some sampling considerations when Cu accumulations in the soils and fruit trees of apple orchards are studied. The study was conducted in three apple orchards from different sites. Each orchard included two different histories of Cu-based fungicides usage, varying from 3 to 28 years. Soil samples were collected from different locations varying with the distances from tree trunk to the canopy drip line. Fruits and leaves from the middle heights of tree canopy at two locations (outer canopy and inner canopy) were collected. The variation in total soil Cu concentrations between orchards was much greater than the variation within orchards. Total soil Cu concentrations had a tendency to increase with the increasing history of Cu-based fungicides usage. Moreover, total soil Cu concentrations had the lowest values at the canopy drip line, while the highest values were found at the half distances between the trunk and the canopy drip line. Additionally, Cu concentrations of leaves and fruits from the outer parts of the canopy were significantly higher than from the inner parts. Depending on the findings of this study, not only the between-orchard variation but also the within-orchard variation should be taken into consideration when conducting future soil and tree samplings in apple orchards.

  15. Sample collection and sample analysis plan in support of the 105-C/190-C concrete and soil sampling activities

    International Nuclear Information System (INIS)

    Marske, S.G.

    1996-07-01

    This sampling and analysis plan describes the sample collection and sample analysis in support of the 105-C water tunnels and 190-C main pumphouse concrete and soil sampling activities. These analytical data will be used to identify the radiological contamination and presence of hazardous materials to support the decontamination and disposal activities

  16. The relationship between orbital, earth-based, and sample data for lunar landing sites

    Science.gov (United States)

    Clark, P. E.; Hawke, B. R.; Basu, A.

    1990-01-01

    Results are reported of a detailed examination of data available for the Apollo lunar landing sites, including the Apollo orbital measurements of six major elements derived from XRF and gamma-ray instruments and geochemical parameters derived from earth-based spectral reflectivity data. Wherever orbital coverage for Apollo landing sites exist, the remote data were correlated with geochemical data derived from the soil sample averages for major geological units and the major rock components associated with these units. Discrepancies were observed between the remote and the soil-anlysis elemental concentration data, which were apparently due to the differences in the extent of exposure of geological units, and, hence, major rock eomponents, in the area sampled. Differences were observed in signal depths between various orbital experiments, which may provide a mechanism for explaining differences between the XRF and other landing-site data.

  17. Comparison of Soxhlet and Shake Extraction of Polycyclic Aromatic Hydrocarbons from Coal Tar Polluted Soils Sampled in the Field

    DEFF Research Database (Denmark)

    Lindhardt, Bo; Holst, Helle; Christensen, Thomas Højlund

    1994-01-01

    This study compares three extraction methods for PAHs in coal tar polluted soil: 3-times repeated shaking of the soil with dichloromethane-methanol (1:1), Soxhlet extraction with dichloromethane, and Soxhlet extraction with dichloromethane followed by Soxhlet extraction with methanol....... The extraction efficiencies were determined for ten selected PAHs in triplicate samples of six soils sampled at former gasworks sites. The samples covered a wide range of PAH concentrations, from 0.6 to 397 mg/kg soil. Soxhlet extraction with dichloromethane followed by Soxhlet extraction with methanol...

  18. Adaptive sampling program support for expedited site characterization

    International Nuclear Information System (INIS)

    Johnson, R.

    1993-01-01

    Expedited site characterizations offer substantial savings in time and money when assessing hazardous waste sites. Key to some of these savings is the ability to adapt a sampling program to the ''real-time'' data generated by an expedited site characterization. This paper presents a two-prong approach to supporting adaptive sampling programs: a specialized object-oriented database/geographical information system for data fusion, management and display; and combined Bayesian/geostatistical methods for contamination extent estimation and sample location selection

  19. Empirical Site Amplification Factors Incorporating Soil Nonlinearity in Taiwan

    Science.gov (United States)

    Kuo, C. H.; Chung, C. H.; Che-Min, L.; Huang, J. Y.; Wen, K. L.

    2017-12-01

    Characteristics of site amplifications caused by both crustal and subduction earthquakes are important in Taiwan. For example, seismic waves were amplified and led to significant building damages in the Taipei Basin by the 1986 Hualien offshore (subduction interface) and the 1999 Chi-Chi earthquakes (crustal), for which the epicentral distances were about 100 km. To understand local site amplifications in Taiwan, empirical site amplification factors for horizontal ground motions are studied using recently constructed strong motion and site databases for the free-field TSMIP stations in Taiwan. Records of large magnitude earthquakes of ML larger than six from 1994 to 2014 were selected for this study. Site amplification factors at site conditions with Vs30 of 120 m/s to 1500 m/s and base accelerations up to 0.7g were inferred from intensity ratios of station pairs within specific distances. The reference site condition is assumed as Vs30 of 760 m/s (B/C boundary). Preliminary results indicate: 1. Soil nonlinearity is more obviously at short periods (PGA, Sa0.3) than long periods (PGV, Sa1.0). 2. Soil nonlinearity is significant for stations belong to site classes of B, C, D, and E in Taiwan. 3. Effect of station-pair distance is seen at short periods (PGA and Sa0.3). 4. No significant different is found in site amplifications of crustal and subduction earthquakes. The result could be a reference for the Fa and Fv in Taiwan's building code.

  20. Stability of volatile organics in environmental soil samples. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Maskarinec, M.P.; Bayne, C.K.; Jenkins, R.A.; Johnson, L.H.; Holladay, S.K.

    1992-11-01

    This report focuses on data generated for the purpose of establishing the stability of 19 volatile organic compounds in environmental soil samples. The study was carried out over a 56 day (for two soils) and a 111 day (for one reference soil) time frame and took into account as many variables as possible within the constraints of budget and time. The objectives of the study were: 1) to provide a data base which could be used to provide guidance on pre-analytical holding times for regulatory purposes; and 2) to provide a basis for the evaluation of data which is generated outside of the currently allowable holding times.

  1. Stability of volatile organics in environmental soil samples

    Energy Technology Data Exchange (ETDEWEB)

    Maskarinec, M.P.; Bayne, C.K.; Jenkins, R.A.; Johnson, L.H.; Holladay, S.K.

    1992-11-01

    This report focuses on data generated for the purpose of establishing the stability of 19 volatile organic compounds in environmental soil samples. The study was carried out over a 56 day (for two soils) and a 111 day (for one reference soil) time frame and took into account as many variables as possible within the constraints of budget and time. The objectives of the study were: 1) to provide a data base which could be used to provide guidance on pre-analytical holding times for regulatory purposes; and 2) to provide a basis for the evaluation of data which is generated outside of the currently allowable holding times.

  2. Spectral shapes for accelerograms recorded at soil sites

    International Nuclear Information System (INIS)

    Ghosh, A.K.; Sharma, R.D.

    1987-01-01

    Earthquake accelerograms recorded on soil sites have been analysed to develop site-specific response spectra. This report presents the normalised pseudo-absolute acceleration spectra for various values of damping and ground motion parameters viz. v/a, ad/v 2 and the ratios of peak accelerations in the three orthogonal directions. These results will be useful in the earthquake resistant design of structures. 4 tables, 14 figures. (author)

  3. BOREAS TGB-1 Soil CH4 and CO2 Profile Data from NSA Tower Sites

    Science.gov (United States)

    Crill, Patrick; Varner, Ruth K.; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor)

    2000-01-01

    The BOREAS TGB-1 team made numerous measurements of trace gas concentrations and fluxes at various NSA sites. This data set contains methane (CH4) and carbon dioxide (CO2) concentrations in soil profiles from the NSA-OJP, NSA-OBS, NSA-YJP, and NSA-BP sites during the period of 23-May to 20-Sep-1994. The soil gas sampling profiles of CH 4 and CO 2 were completed to quantify controls on CO2 and CH4 fluxes in the boreal forest. The data are provided in tabular ASCII files.

  4. Radon exhalation rates from soil and sand samples collected from the vicinity of Yamuna river

    International Nuclear Information System (INIS)

    Garg, A.K.; Sushil Kumar; Chauhan, Pooja; Chauhan, R.P.

    2011-01-01

    Soil, sand and stones are the most popular building materials for Indian dwellings. Radon is released into ambient air from these materials due to ubiquitous uranium and radium in them, thus increasing the airborne radon concentration. The radioactivity in sand and soils is related to radioactivity in the rocks from which they are formed. These materials contain varying amount of uranium. In the present investigation, the radon emanated from soil and sand samples from different locations in the vicinity of Yamuna river has been estimated. The samples have been collected from different locations near the Yamuna river. The samples collecting sites are from Yamunanagar in Haryana to Delhi. The radon concentration in different samples has been calculated, based upon the data, the mass and the surface exhalation rates of radon emanated from them have also been calculated

  5. Development of site-specific soil cleanup criteria: New Brunswick Laboratory, New Jersey site

    Energy Technology Data Exchange (ETDEWEB)

    Veluri, V.R.; Moe, H.J.; Robinet, M.J.; Wynveen, R.A.

    1983-03-01

    The potential human exposure which results from the residual soil radioactivity at a decommissioned site is a prime concern during D and D projects. To estimate this exposure, a pathway analysis approach is often used to arrive at the residual soil radioactivity criteria. The development of such a criteria for the decommissioning of the New Brunswick Laboratory, New Jersey site is discussed. Contamination on this site was spotty and located in small soil pockets spread throughout the site area. Less than 1% of the relevant site area was contaminated. The major contaminants encountered at the site were /sup 239/Pu, /sup 241/Am, normal and natural uranium, and natural thorium. During the development of the pathway analysis to determine the site cleanup criteria, corrections for the inhomogeneity of the contamination were made. These correction factors and their effect upon the relevant pathway parameters are presented. Major pathways by which radioactive material may reach an individual are identified and patterns of use are specified (scenario). Each pathway is modeled to estimate the transfer parameters along the given pathway, such as soil to air to man, etc. The transfer parameters are then combined with dose rate conversion factors (ICRP 30 methodology) to obtain soil concentration to dose rate conversion factors (pCi/g/mrem/yr). For an appropriate choice of annual dose equivalent rate, one can then arrive at a value for the residual soil concentration. Pathway modeling, transfer parameters, and dose rate factors for the three major pathways; inhalation, ingestion and external exposure, which are important for the NBL site, are discussed.

  6. Soil and water pollution studies from a waste site deposit in Bantama, Kumasi, Ghana using magnetic susceptibility measurements

    International Nuclear Information System (INIS)

    Hadi, M.; Preko, K.; Ashia, T.

    2012-01-01

    The magnetic susceptibility of soil and water samples from around the Uadara barracks waste site deposit in Bantama, a suburb of Kumasi was measured with the aim of investigating the potential threat of pollution to the soil, streams, fish ponds and other water sources at the site around Armed Forces Senior High School campus which shares the same premises with the barracks. The studied soil samples were picked from the near surface (∼10 cm depth) along profiles taken from the waste site towards the stream and the ponds. Again, water samples were picked along the stream and from ten (10) ponds aligned along the stream. Laboratory measurements of the magnetic susceptibility were done using the Bartington MS2 metre and the MS2B dual frequency sensor for the soil samples, and the MS2G sensor for the water samples. The soil samples from the site registered an average magnetic susceptibility of 180. 04 x 10 -5 SI whereas the water samples recorded an average of -2.3 x 10 -6 SI showing a significant increment in comparison with the standard water magnetic susceptibility of -9.04 x 10 -6 SI. Thus, not withstand the lithology of the area studied, the presence of heavy metals and other chemical waste materials form the Uadara barracks garbage deposit site were found to greatly pollute the soil and particularly the water bodies around the Armed Forces Senior High School. (au)

  7. About condition of soil ground at locations of the former Azgir nuclear test site

    International Nuclear Information System (INIS)

    Akhmetov, E.Z.; Adymov, Zh.I.; Ermatov, A.S.

    2003-01-01

    Full text: Soil condition after underground nuclear explosions at locations of the test sites is considered. The region is situated in the zone of northern deserts and characterized by prevalence of greyish-brown soils in conditions of sharply continental climate and presence of salt in soil-formative complex including tertiary clays, loess-like loam, loam sands and sands. There are small quantity of humus in such soil. During investigation of soil characteristics and ability of soil particles to form conglomerates, possessing of different properties, it is necessary to know both element and phase composition, determining, in the most extent, such physical and mechanical macro-characteristics as: density, stickiness, air and water penetrability, solubility, chemical resistance, granulometric set and others. Phase composition of soil samples can be, to a sufficient extent, determined by the X-ray diffractometry methods using ordinary X-ray experimental facilities. Phase composition of soil includes gypsum, quartz, calcium, potash feldspar hematite, kaolin, peach and mica in different quantities. Data on element composition of soil samples were obtained from the territory of technological locations of test site using the method of X-ray-fluorescent analysis. Granulometric composition of soil ground has been investigated using the methods of dry sieving and wet sieving for determination of radionuclide distribution in different fractions of soil particles. By the method of the dry sieving of soil ground samples there are taken place a sticking the small together of fine fractions and an adhesion of stuck-together particles to more large ones. Therefore, fine fractions cannot be separate completely at dry sieving. As distinct from the dry sieving an use of water jet in the sieving allows to overcome defects of the dry method and, by a sufficiently effective separation of granulometric fractions, to obtain more precise results of investigations of granulometric

  8. Uranium determination in soil samples using Eichrom resins

    International Nuclear Information System (INIS)

    Marabini, S.; Serdeiro, Nelidad H.

    2003-01-01

    Traditionally, the radiochemical methods for uranium activity determination in soil samples by alpha spectrometry, use some techniques like solvent extraction, precipitation and ion exchange in the separation and purification stages. In the last years, some new materials have been developed for using in extraction chromatography, specific for actinides determinations. In the present method the long and tedious stages were eliminated, and the reagents consumption and concentration were minimised. This new procedure was applied to soils since it is one of the most complex matrices. In order to reduce time and chemical reagents, the soil samples up to 0,5 g were leached with nitric, hydrofluoric and perchloric acids in hermetic sealed recipients of Teflon at 150 C degrees during 5 hours. UTEVA Eichrom resin was used for uranium separation and purification. The uranium activity concentration was determined by alpha spectrometry. Several standard samples were analysed and the results are presented. (author)

  9. Sampling and analysis of alien materials in soil

    Energy Technology Data Exchange (ETDEWEB)

    Liphard, K G

    1987-02-01

    For the determination of alien materials in soil, sampling is the decisive step. After minute planning, samples can be obtained by probing, boring or abrasion. Some types of substances can be verified by advance sampling, partly already in the field. Inorganic substances present as anions or cations are eluted and determined with water, heavy metals are determined after preparing a number of solutions by spectroscopic methods. Organic alien substances are extracted with solvents and, as a rule, analysed by chromatography.

  10. Assessment of Soil Erosion Methods for Sludge Recovery, Savannah River Site

    National Research Council Canada - National Science Library

    Smith, Lawson

    1997-01-01

    ...) from selected storage tanks at the Savannah River Site (SRS) was assessed conceptually. Soil erosion methods are defined as the processes of soil detachment, entrainment, transport, and deposition...

  11. The use of NTA for lead phytoextraction from soil from a battery recycling site.

    Science.gov (United States)

    Freitas, Eriberto Vagner de Souza; do Nascimento, Clístenes Williams Araújo

    2009-11-15

    The application of synthetic aminopolycarboxylic acids to soil increases metal solubility, and therefore enhances phytoextraction. However, synthetic chelants degrade poorly in soil, and metal leaching threatens human and animal health. The aim of this study is to assess the use of a biodegradable chelant (NTA) for Pb phytoextraction from a soil contaminated by battery-casing disposal. EDTA was also included in the experiment to assess the behavior of a non-degradable chelant. Each synthetic chelant was applied to soil pots cultivated with maize plants at rates of 0, 2, 5, 10, and 20 mmol kg(-1). Soil samples were extracted with CaCl(2) and by sequential extraction for Pb. In addition, a soil column experiment was set up to study the leaching of Pb from the chelant-amended soil. The results showed that both NTA and EDTA were highly effective in solubilizing Pb from soil. The Pb distribution into soil fractions after chelant addition followed the sequence: Ex (exchangeable)>OM (organic matter)>AFeOx (amorphous iron oxides)>CFeOx (crystalline iron oxides). The 5 mmol kg(-1) dose of EDTA increased the Pb concentration in maize shoots to 1.1%, but it promoted unacceptable Pb leaching rates. On the other hand, the results showed that phytoremediating the site using 5 mmol kg(-1) NTA could be feasible with no environmental effects due to Pb leaching over a five-year period.

  12. Degradation of hydrocarbons in soil samples analyzed within accepted analytical holding times

    International Nuclear Information System (INIS)

    Jackson, J.; Thomey, N.; Dietlein, L.F.

    1992-01-01

    Samples which are collected in conjunction with subsurface investigations at leaking petroleum storage tank sites and petroleum refineries are routinely analyzed for benzene, toluene, ethylbenzene, xylenes (BTEX), and total petroleum hydrocarbons (TPH). Water samples are preserved by the addition of hydrochloric acid and maintained at four degrees centigrade prior to analysis. This is done to prevent bacterial degradation of hydrocarbons. Chemical preservation is not presently performed on soil samples. Instead, the samples are cooled and maintained at four degrees centigrade. This study was done to measure the degree of degradation of hydrocarbons in soil samples which are analyzed within accepted holding times. Soil samples were collected and representative subsamples were prepared from the initial sample. Subsamples were analyzed in triplicate for BTEX and TPH throughout the length of the approved holding times to measure the extent of sample constituent degradation prior to analysis. Findings imply that for sandy soils, BTEX and TPH concentrations can be highly dependent upon the length of time which elapses between sample collection and analysis

  13. Event-based soil loss models for construction sites

    Science.gov (United States)

    Trenouth, William R.; Gharabaghi, Bahram

    2015-05-01

    The elevated rates of soil erosion stemming from land clearing and grading activities during urban development, can result in excessive amounts of eroded sediments entering waterways and causing harm to the biota living therein. However, construction site event-based soil loss simulations - required for reliable design of erosion and sediment controls - are one of the most uncertain types of hydrologic models. This study presents models with improved degree of accuracy to advance the design of erosion and sediment controls for construction sites. The new models are developed using multiple linear regression (MLR) on event-based permutations of the Universal Soil Loss Equation (USLE) and artificial neural networks (ANN). These models were developed using surface runoff monitoring datasets obtained from three sites - Greensborough, Cookstown, and Alcona - in Ontario and datasets mined from the literature for three additional sites - Treynor, Iowa, Coshocton, Ohio and Cordoba, Spain. The predictive MLR and ANN models can serve as both diagnostic and design tools for the effective sizing of erosion and sediment controls on active construction sites, and can be used for dynamic scenario forecasting when considering rapidly changing land use conditions during various phases of construction.

  14. Use of Magnetic Parameters to Asses Soil Erosion Rates on Agricultural Site

    Science.gov (United States)

    Petrovsky, E.; Kapicka, A.; Dlouha, S.; Jaksik, O.; Grison, H.; Kodesova, R.

    2014-12-01

    A detailed field study on a small test site of agricultural land situated in loess region in Southern Moravia (Czech Republic) and laboratory analyses were carried out in order to test the applicability of magnetic methods in assessing soil erosion. Haplic Chernozem, the original dominant soil unit in the area, is nowadays progressively transformed into different soil units along with intense soil erosion. As a result, an extremely diversified soil cover structure has developed due to the erosion. The site was characterized by a flat upper part while the middle part, formed by a substantive side valley, is steeper. We carried out field measurements of magnetic susceptibility on a regular grid, resulting in 101 data points. The bulk soil material for laboratory investigation was gathered from all the grid points. Values of the magnetic susceptibility are spatially distributed depending on the terrain. Higher values were measured in the flat upper part (where the original top horizon remained). The lowest values of were obtained on the steep valley sides. Here the original topsoil was eroded and mixed by tillage with the soil substrate (loess). A soil profile unaffected by erosion was investigated in detail. The vertical distribution of magnetic susceptibility along this "virgin" profile was measured in laboratory on the samples collected with 2-cm spacing. The undisturbed profile shows several soil horizons. Horizons Ac and A show a slight increase in magnetic susceptibility up to a depth of about 70 cm. Horizon A/Ck is characterized by a decrease in susceptibility, and the underlying C horizon (h > 103 cm) has a very low value of magnetic susceptibility. The differences between the values of susceptibility in the undisturbed soil profile and the magnetic signal after uniform mixing the soil material as a result of tillage and erosion are fundamental for the estimation of soil loss in the studied test field. Using the uneroded profile from the studied locality as a

  15. Vadose zone characterization of highly radioactive contaminated soil at the Hanford Site

    International Nuclear Information System (INIS)

    Buckmaster, M.A.

    1993-05-01

    The Hanford Site in south-central Washington State contains over 1500 identified waste sites and numerous groundwater plumes that will be characterized and remediated over the next 30 years. As a result of the Hanford Federal Facility Agreement and Consent Order, the US Department of Energy has initiated a remedial investigation/feasibility study at the 200-BP-1 operable unit. The 200-BP-1 remedial investigation is the first Comprehensive Environmental Response, Compensation, and Liability Act of 1980 investigation on the Hanford Site that involves drilling into highly radioactive and chemically contaminated soils. The initial phase of site characterization was designed to assess the nature and extent of contamination associated with the source waste site within the 200-BP-1 operable unit. Characterization activities consisted of drilling and sampling the waste site, chemical and physical analysis of samples, and development of a conceptual vadose zone model. Predicted modeling concentrations compared favorably to analytical data collected during the initial characterization activities

  16. Spatial Variation of Soil Lead in an Urban Community Garden: Implications for Risk-Based Sampling.

    Science.gov (United States)

    Bugdalski, Lauren; Lemke, Lawrence D; McElmurry, Shawn P

    2014-01-01

    Soil lead pollution is a recalcitrant problem in urban areas resulting from a combination of historical residential, industrial, and transportation practices. The emergence of urban gardening movements in postindustrial cities necessitates accurate assessment of soil lead levels to ensure safe gardening. In this study, we examined small-scale spatial variability of soil lead within a 15 × 30 m urban garden plot established on two adjacent residential lots located in Detroit, Michigan, USA. Eighty samples collected using a variably spaced sampling grid were analyzed for total, fine fraction (less than 250 μm), and bioaccessible soil lead. Measured concentrations varied at sampling scales of 1-10 m and a hot spot exceeding 400 ppm total soil lead was identified in the northwest portion of the site. An interpolated map of total lead was treated as an exhaustive data set, and random sampling was simulated to generate Monte Carlo distributions and evaluate alternative sampling strategies intended to estimate the average soil lead concentration or detect hot spots. Increasing the number of individual samples decreases the probability of overlooking the hot spot (type II error). However, the practice of compositing and averaging samples decreased the probability of overestimating the mean concentration (type I error) at the expense of increasing the chance for type II error. The results reported here suggest a need to reconsider U.S. Environmental Protection Agency sampling objectives and consequent guidelines for reclaimed city lots where soil lead distributions are expected to be nonuniform. © 2013 Society for Risk Analysis.

  17. Forensic Comparison of Soil Samples Using Nondestructive Elemental Analysis.

    Science.gov (United States)

    Uitdehaag, Stefan; Wiarda, Wim; Donders, Timme; Kuiper, Irene

    2017-07-01

    Soil can play an important role in forensic cases in linking suspects or objects to a crime scene by comparing samples from the crime scene with samples derived from items. This study uses an adapted ED-XRF analysis (sieving instead of grinding to prevent destruction of microfossils) to produce elemental composition data of 20 elements. Different data processing techniques and statistical distances were evaluated using data from 50 samples and the log-LR cost (C llr ). The best performing combination, Canberra distance, relative data, and square root values, is used to construct a discriminative model. Examples of the spatial resolution of the method in crime scenes are shown for three locations, and sampling strategy is discussed. Twelve test cases were analyzed, and results showed that the method is applicable. The study shows how the combination of an analysis technique, a database, and a discriminative model can be used to compare multiple soil samples quickly. © 2016 American Academy of Forensic Sciences.

  18. Preparation and application of radioactive soil samples for intercomparison

    International Nuclear Information System (INIS)

    Gao Zequan; Li Zhou; Li Pengxiang; Wang Ruijun; Ren Xiaona

    2014-01-01

    This article summarized the preparation process and intercomparison results of the simulated environmental radioactive soil samples. The components of the matrix were: SiO 2 , Al 2 O 3 , Fe 2 O 3 , MgO, CaO, NaCl, KCl and TiO 2 . All of the components were milled, oven-dried, sieved and then blended together. The homogeneity test was according to GB 15000. 5-1994, and no significant differences were observed. The 3 H analysis soils were spiked natural soils with the moisture content of 15%. Eight laboratories attended this intercomparison. The results proves that the preparation of the simulated soils were suitable for the inter-laboratories comparison. (authors)

  19. Using Environmental Variables for Studying of the Quality of Sampling in Soil Mapping

    OpenAIRE

    A. Jafari; Norair Toomanian; R. Taghizadeh Mehrjerdi

    2016-01-01

    Introduction: Methods of soil survey are generally empirical and based on the mental development of the surveyor, correlating soil with underlying geology, landforms, vegetation and air-photo interpretation. Since there are no statistical criteria for traditional soil sampling; this may lead to bias in the areas being sampled. In digital soil mapping, soil samples may be used to elaborate quantitative relationships or models between soil attributes and soil covariates. Because the relationshi...

  20. Geochemical and isotopic study of soils and waters from an Italian contaminated site: Agro Aversano (Campania)

    Science.gov (United States)

    Bove, M.A.; Ayuso, R.A.; de Vivo, B.; Lima, A.; Albanese, S.

    2011-01-01

    Lead isotope applications have been widely used in recent years in environmental studies conducted on different kinds of sampled media. In the present paper, Pb isotope ratios have been used to determine the sources of metal pollution in soils and waters in the Agro Aversano area. During three different sampling phases, a total of 113 surface soils (5-20. cm), 20 samples from 2 soil profiles (0-1. m), 11 stream waters and 4 groundwaters were collected. Major element concentrations in sampled media have been analyzed by the ICP-MS technique. Surface soils (20 samples), all soil profiles and all waters have been also analyzed for Pb isotope compositions by thermal ionization (TIMS). The geochemical data were assessed using statistic methods and cartographically elaborated in order to have a clear picture of the level of disturbance of the area. Pb isotopic data were studied to discriminate between anthropogenic and geologic sources. Our results show that As (5.6-25.6. mg/kg), Cu (9-677. mg/kg), Pb (22-193. mg/kg), Tl (0.53-3.62. mg/kg), V (26-142. mg/kg) and Zn (34-215. mg//kg) contents in analyzed soils, exceed the intervention limits fixed by the Italian Environmental Law for residential areas in some of the sampled sites, while intervention limit for industrial areas is exceeded only for Cu concentrations. Lead isotopic data, show that there is a high similarity between the ratios measured in the leached soil samples and those deriving from anthropic activities. This similarity with anthropogenic Pb is also evident in the ratios measured in both groundwater and stream water samples. ?? 2010 Elsevier B.V.

  1. Response of soil aggregate stability to storage time of soil samples

    International Nuclear Information System (INIS)

    Gerzabek, M.H.; Roessner, H.

    1993-04-01

    The aim of the present study was to investigate the well known phenomenon of changing aggregate stability values as result of soil sample storage. In order to evaluate the impact of soil microbial activity, the soil sample was split into three subsamples. Two samples were sterilized by means of chloroform fumigation and gamma irradiation, respectively. However, the aggregate stability measurements at three different dates were not correlated with the microbial activity (dehydrogenase activity). The moisture content of the aggregate samples seems to be of higher significance. Samples with lower moisture content (range: 0.4 to 1.9%) exhibited higher aggregate stabilities. Thus, airdried aggregate samples without further treatment don't seem to be suitable for standardized stability measurements. (authors)

  2. Soil-moisture transport in arid site vadose zones

    International Nuclear Information System (INIS)

    Isaacson, R.E.; Brownell, L.E.; Nelson, R.W.; Roetman, E.L.

    1974-01-01

    Soil-moisture transport processes in the arid soils of the United States Atomic Energy Commission's Hanford site are being evaluated. The depth of penetration of meteoric precipitation has been determined by profiling fall-out tritium at two locations where the water table is about 90 m below ground surface. In situ temperatures and water potentials were measured with temperature transducers and thermocouple psychrometers at the same location to obtain thermodynamic data for identifying the factors influencing soil-moisture transport. Neutron probes are being used to monitor soil-moisture changes in two lysimeters, three metres in diameter by 20 metres deep. The lysimeters are also equipped to measure pressure, temperature and relative humidity as a function of depth and time. Theoretical models based on conservation of momentum expressions are being developed to analyse non-isothermal soil-moisture transport processes. Future work will be concerned with combining the theoretical and experimental work and determining the amount of rainfall required to cause migration of soil-moisture to the water table. (author)

  3. A quantitative method to detect explosives and selected semivolatiles in soil samples by Fourier transform infrared spectroscopy

    International Nuclear Information System (INIS)

    Clapper-Gowdy, M.; Dermirgian, J.; Robitaille, G.

    1995-01-01

    This paper describes a novel Fourier transform infrared (FTIR) spectroscopic method that can be used to rapidly screen soil samples from potentially hazardous waste sites. Samples are heated in a thermal desorption unit and the resultant vapors are collected and analyzed in a long-path gas cell mounted in a FTIR. Laboratory analysis of a soil sample by FTIR takes approximately 10 minutes. This method has been developed to identify and quantify microgram concentrations of explosives in soil samples and is directly applicable to the detection of selected volatile organics, semivolatile organics, and pesticides

  4. Heavy metal contamination in soils and vegetables near an e-waste processing site, South China.

    Science.gov (United States)

    Luo, Chunling; Liu, Chuanping; Wang, Yan; Liu, Xiang; Li, Fangbai; Zhang, Gan; Li, Xiangdong

    2011-02-15

    Environmental pollution due to uncontrolled e-waste recycling activities has been reported in a number of locations of China. In the present study, metal pollution to the surrounding environment from a primitive e-waste processing facility was investigated. Soils at sites where e-waste is burned in the open air, those of surrounding paddy fields and vegetable gardens, as well as common vegetable samples were collected and analyzed for heavy metals. The results showed that the soils of former incineration sites had the highest concentrations of Cd, Cu, Pb, and Zn with mean values of 17.1, 11,140, 4500, and 3690 mg kg(-1), respectively. The soils of nearby paddy fields and vegetable gardens also had relatively high concentrations of Cd and Cu. In the edible tissues of vegetables, the concentrations of Cd and Pb in most samples exceeded the maximum level permitted for food in China. Sequential leaching tests revealed that the Cu, Pb, and Zn were predominantly associated with the residual fraction, followed by the carbonate/specifically adsorbed phases with the exception of Cd, which was mainly in the extractable form in paddy fields and vegetable soils. The data showed that uncontrolled e-waste processing operations caused serious pollution to local soils and vegetables. The cleaning up of former incineration sites should be a priority in any future remediation program. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Soil organic matter status in forest soils - possible indicators for climate change induced site shifts

    Science.gov (United States)

    Koch, Nadine; Thiele-Bruhn, Sören

    2010-05-01

    The quantity and quality of soil organic matter (SOM) and SOM pools and thus the soil properties related to carbon sequestration and water retention are not constant but exhibit considerable variation through changing climate. In total changes in soil fertility and an increase in plant stress are expected. This is relevant for northwest Europe as well and may have economic and social impacts since functions of forests for wood production, groundwater recharge, soil protection and recreation might be affected. The study is done by comparative investigation of selected sites at four watersheds that represent typical forest stands in the region of Luxembourg and South West Germany. The aim is to identify SOM storage and stability in forest soils and its dependence on site properties and interaction with tree stand conditions. According to state of the art fractionation schemes functional C pools in forest soils and their stabilization mechanisms are investigated. In particular, distribution patterns are determined depending on location, tree stand and climatic conditions. Aim is to identify characteristics of SOM stability through fractionation of SOM according to density, particle size and chemical extractability and their subsequent analytical characterization. So far, reasons about the origin, composition and stabilization mechanisms underlying the different SOM pools are not fully understood. Presented are different patterns of distribution of SOM in relation to land use and site conditions, as well as similarities and differences between the different forest soils and results in addition to passive OM pool, which is mainly responsible for long-term stabilization of carbon in soils. These are aligned with selected general' soil properties such as pH, CEC and texture.

  6. Metal concentrations in earthworms from sewage sludge-amended soils at a strip mine reclamation site

    Energy Technology Data Exchange (ETDEWEB)

    Pietz, R.I.; Peterson, J.R.; Prater, J.E.; Zenz, D.R.

    A 3-yr study of earthworms was initiated in selected mine soil and nonmined fields at a Fulton County, IL land reclamation site. The purpose of this research was to determine the effect of the land application of anaerobically digested sewage sludge, used to reclaim the site, on heavy metal accumulations in earthworms. Two species of earthworms, Lumbricus terrestris and Aporrectodea tuberculata, were identified in the sludge-amended and nonamended, nonmined fields sampled. Only A. tuberculata was found in the sludge-amended and nonamended mine soil fields sampled. Earthworm metal concentrations generally increased with time in all the sampled fields. The decreasing order of metal accumulation by earthworms in all sludge-amended fields sampled was Cu > Cd > Ni > Cr > Pb > Zn. Sewage sludge applications to fields on both land types resulted in significant accumulations of Cd, Cu, and Zn. Land type (mine soil vs. nonmined) significantly affected earthworm Zn concentrations, with levels being higher in all nonmined fields sampled. Earthworm Cd and Cu accumulations in all fields sampled were significantly related to the current amounts of sludge-applied metals, the amount applied since the previous sampling. Concentrations of Ni, Cr, and Pb in earthworms were not significantly related to sewage sludge applications during the 1975 to 1977 sampling period. The higher Cd and Cu concentrations in earthworms from sludge-amended fields may pose a potential hazard to predators.

  7. Site Response Analysis Using DeepSoil: Case Study of Bangka Site, Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Iswanto, Eko Rudi; Yee, Eric [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2015-10-15

    Indonesia government declared through Act No. 17 year 2007 on the National Long-Term Development Plant Year 2005-2025 and Presidential Decree No. 5 year 2006 on the National Energy Policy (Indonesia 2007; Indonesia 2006), that nuclear energy is stated as a part of the national energy system. In order to undertake the above national policy, National Nuclear Energy Agency of Indonesia, as the promotor for the utilization of nuclear energy will conduct site study, which is a part of infrastructure preparation for NPP construction. Thorough preparation and steps are needed to operate an NPP and it takes between 10 to 15 years from the preliminary study (site selection, financial study, etc.) up to project implementation (manufacturing, construction, commissioning). During project implementation, it is necessary to prepare various documents relevant for permit application such as Safety Evaluation Report for site permit, Preliminary Safety Analysis Report and Environment Impact Assessment Report for construction permit. Considering the continuously increasing electricity energy demand, it is necessary to prepare for alternative NPP sites. The safety requirements of NPP's are stringent; amongst the various requirements is the ability to safely shut down in the wake of a possible earthquake. Ground response analysis of a potential site therefore needs to be carried out, parameter that affect the resistance of an NPP to earthquakes such as peak strain profiles is analysed. The objective of this paper is to analyse the ground response of the selected site for a NPP, using The Mw 7.9 in Sikuai Island, West Sumatra on September 12, 2007 as present input motion. This analysis will be carried out using a ground response analysis program, DeepSoil. In addition to this, an attempt was made to define the site specific input motion characteristics of the selected site for use in DeepSoil (DeepSoil 5.0). A site investigation at the WB site was performed primarily on the PS

  8. Comparing measured and modelled soil carbon: which site-specific variables are linked to high stability?

    Science.gov (United States)

    Robertson, Andy; Schipanski, Meagan; Ma, Liwang; Ahuja, Lajpat; McNamara, Niall; Smith, Pete; Davies, Christian

    2016-04-01

    Changes in soil carbon (C) stocks have been studied in depth over the last two decades, as net greenhouse gas (GHG) sinks are highlighted to be a partial solution to the causes of climate change. However, the stability of this soil C is often overlooked when measuring these changes. Ultimately a net sequestration in soils is far less beneficial if labile C is replacing more stable forms. To date there is no accepted framework for measuring soil C stability, and as a result there is considerable uncertainty associated with the simulated impacts of land management and land use change when using process-based systems models. However, a recent effort to equate measurable soil C fractions to model pools has generated data that help to assess the impacts of land management, and can ultimately help to reduce the uncertainty of model predictions. Our research compiles this existing fractionation data along with site metadata to create a simplistic statistical model able to quantify the relative importance of different site-specific conditions. Data was mined from 23 published studies and combined with original data to generate a dataset of 100+ land use change sites across Europe. For sites to be included they required soil C fractions isolated using the Zimmermann et al. (2007) method and specific site metadata (mean annual precipitation, MAP; mean annual temperature, MAT; soil pH; land use; altitude). Of the sites, 75% were used to develop a generalized linear mixed model (GLMM) to create coefficients where site parameters can be used to predict influence on the measured soil fraction C stocks. The remaining 25% of sites were used to evaluate uncertainty and validate this empirical model. Further, four of the aforementioned sites were used to simulate soil C dynamics using the RothC, DayCent and RZWQM2 models. A sensitivity analysis (4096 model runs for each variable applying Latin hypercube random sampling techniques) was then used to observe whether these models place

  9. MMRP Guidance Document for Soil Sampling of Energetics and Metals

    Science.gov (United States)

    2011-10-01

    studies have measured the persistence of HE in the field. Radtke et al. (2002) sampled surface soils at an explosives testing area that had not been...Munitions Residues. CRREL Report CR-92-5. Radtke C. W., D. Gianotto, and F. F. Roberto. 2002. Effects of particulate explosives on estimating

  10. Guidance for Soil Sampling for Energetics and Metals

    Science.gov (United States)

    2011-10-01

    studies have measured the persistence of HE in the field. Radtke et al. (2002) sampled surface soils at an explosives testing area that had not been...in Eagle River Flats, Alaska: The Role of Munitions Residues. CRREL Report CR-92-5. Radtke C. W., D. Gianotto, and F. F. Roberto. 2002. Effects of

  11. Determination of thorium and uranium contents in soil samples ...

    Indian Academy of Sciences (India)

    using CR-39 and LR-115-II solid-state nuclear track detectors (SSNTDs). ... standard soil samples have been determined and compared with its known values. ... measure α-tracks activity [1], where SSNTDs have been used in geology [2–6] ...

  12. Artificial neural network for on-site quantitative analysis of soils using laser induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    El Haddad, J. [Univ. Bordeaux, LOMA, UMR 5798, F-33400 Talence (France); CNRS, LOMA, UMR 5798, F-33400 Talence (France); Villot-Kadri, M.; Ismaël, A.; Gallou, G. [IVEA Solution, Centre Scientifique d' Orsay, Bât 503, 91400 Orsay (France); Michel, K.; Bruyère, D.; Laperche, V. [BRGM, Service Métrologie, Monitoring et Analyse, 3 avenue Claude Guillemin, B.P 36009, 45060 Orléans Cedex (France); Canioni, L. [Univ. Bordeaux, LOMA, UMR 5798, F-33400 Talence (France); CNRS, LOMA, UMR 5798, F-33400 Talence (France); Bousquet, B., E-mail: bruno.bousquet@u-bordeaux1.fr [Univ. Bordeaux, LOMA, UMR 5798, F-33400 Talence (France); CNRS, LOMA, UMR 5798, F-33400 Talence (France)

    2013-01-01

    Nowadays, due to environmental concerns, fast on-site quantitative analyses of soils are required. Laser induced breakdown spectroscopy is a serious candidate to address this challenge and is especially well suited for multi-elemental analysis of heavy metals. However, saturation and matrix effects prevent from a simple treatment of the LIBS data, namely through a regular calibration curve. This paper details the limits of this approach and consequently emphasizes the advantage of using artificial neural networks well suited for non-linear and multi-variate calibration. This advanced method of data analysis is evaluated in the case of real soil samples and on-site LIBS measurements. The selection of the LIBS data as input data of the network is particularly detailed and finally, resulting errors of prediction lower than 20% for aluminum, calcium, copper and iron demonstrate the good efficiency of the artificial neural networks for on-site quantitative LIBS of soils. - Highlights: ► We perform on-site quantitative LIBS analysis of soil samples. ► We demonstrate that univariate analysis is not convenient. ► We exploit artificial neural networks for LIBS analysis. ► Spectral lines other than the ones from the analyte must be introduced.

  13. Artificial neural network for on-site quantitative analysis of soils using laser induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    El Haddad, J.; Villot-Kadri, M.; Ismaël, A.; Gallou, G.; Michel, K.; Bruyère, D.; Laperche, V.; Canioni, L.; Bousquet, B.

    2013-01-01

    Nowadays, due to environmental concerns, fast on-site quantitative analyses of soils are required. Laser induced breakdown spectroscopy is a serious candidate to address this challenge and is especially well suited for multi-elemental analysis of heavy metals. However, saturation and matrix effects prevent from a simple treatment of the LIBS data, namely through a regular calibration curve. This paper details the limits of this approach and consequently emphasizes the advantage of using artificial neural networks well suited for non-linear and multi-variate calibration. This advanced method of data analysis is evaluated in the case of real soil samples and on-site LIBS measurements. The selection of the LIBS data as input data of the network is particularly detailed and finally, resulting errors of prediction lower than 20% for aluminum, calcium, copper and iron demonstrate the good efficiency of the artificial neural networks for on-site quantitative LIBS of soils. - Highlights: ► We perform on-site quantitative LIBS analysis of soil samples. ► We demonstrate that univariate analysis is not convenient. ► We exploit artificial neural networks for LIBS analysis. ► Spectral lines other than the ones from the analyte must be introduced

  14. Associative diazotrophic bacteria in grass roots and soils from heavy metal contaminated sites.

    Science.gov (United States)

    Moreira, Fátima M S; Lange, Anderson; Klauberg-Filho, Osmar; Siqueira, José O; Nóbrega, Rafaela S A; Lima, Adriana S

    2008-12-01

    This work aimed to evaluate density of associative diazotrophic bacteria populations in soil and grass root samples from heavy metal contaminated sites, and to characterize isolates from these populations, both, phenotypically (Zinc, Cadmium and NaCl tolerance in vitro, and protein profiles) and genotypically (16S rDNA sequencing), as compared to type strains of known diazotrophic species. Densities were evaluated by using NFb, Fam and JNFb media, commonly used for enrichment cultures of diazotrophic bacteria. Bacterial densities found in soil and grass root samples from contaminated sites were similar to those reported for agricultural soils. Azospirillum spp. isolates from contaminated sites and type strains from non-contaminated sites varied substantially in their in vitro tolerance to Zn+2 and Cd+2, being Cd+2 more toxic than Zn+2. Among the most tolerant isolates (UFLA 1S, 1R, S181, S34 and S22), some (1R, S34 and S22) were more tolerant to heavy metals than rhizobia from tropical and temperate soils. The majority of the isolates tolerant to heavy metals were also tolerant to salt stress as indicated by their ability to grow in solid medium supplemented with 30 g L(-1) NaCl. Five isolates exhibited high dissimilarity in protein profiles, and the 16S rDNA sequence analysis of two of them revealed new sequences for Azospirillum.

  15. Intra- versus inter-site macroscale variation in biogeochemical properties along a paddy soil chronosequence

    Directory of Open Access Journals (Sweden)

    C. Mueller-Niggemann

    2012-03-01

    Full Text Available In order to assess the intrinsic heterogeneity of paddy soils, a set of biogeochemical soil parameters was investigated in five field replicates of seven paddy fields (50, 100, 300, 500, 700, 1000, and 2000 yr of wetland rice cultivation, one flooded paddy nursery, one tidal wetland (TW, and one freshwater site (FW from a coastal area at Hangzhou Bay, Zhejiang Province, China. All soils evolved from a marine tidal flat substrate due to land reclamation. The biogeochemical parameters based on their properties were differentiated into (i a group behaving conservatively (TC, TOC, TN, TS, magnetic susceptibility, soil lightness and colour parameters, δ13C, δ15N, lipids and n-alkanes and (ii one encompassing more labile properties or fast cycling components (Nmic, Cmic, nitrate, ammonium, DON and DOC. The macroscale heterogeneity in paddy soils was assessed by evaluating intra- versus inter-site spatial variability of biogeochemical properties using statistical data analysis (descriptive, explorative and non-parametric. Results show that the intrinsic heterogeneity of paddy soil organic and minerogenic components per field is smaller than between study sites. The coefficient of variation (CV values of conservative parameters varied in a low range (10% to 20%, decreasing from younger towards older paddy soils. This indicates a declining variability of soil biogeochemical properties in longer used cropping sites according to progress in soil evolution. A generally higher variation of CV values (>20–40% observed for labile parameters implies a need for substantially higher sampling frequency when investigating these as compared to more conservative parameters. Since the representativeness of the sampling strategy could be sufficiently demonstrated, an investigation of long-term carbon accumulation/sequestration trends in topsoils of the 2000 yr paddy chronosequence under wetland rice cultivation

  16. Mobility, bioavailability, and toxic effects of cadmium in soil samples

    International Nuclear Information System (INIS)

    Prokop, Z.; Cupr, P.; Zlevorova-Zlamalikova V.; Komarek, J.; Dusek, L.; Holoubek, I.

    2003-01-01

    Total concentration is not a reliable indicator of metal mobility or bioavailability in soils. The physicochemical form determines the behavior of metals in soils and hence the toxicity toward terrestrial biota. The main objectives of this study were the application and comparison of three approaches for the evaluation of cadmium behavior in soil samples. The mobility and bioavailability of cadmium in five selected soil samples were evaluated using equilibrium speciation (Windermere humic aqueous mode (WHAM)), extraction procedures (Milli-Q water, DMSO, and DTPA), and a number of bioassays (Microtox, growth inhibition test, contact toxicity test, and respiration). The mobility, represented by the water-extractable fraction corresponded well with the amount of cadmium in the soil solution, calculate using the WHAM (r 2 =0.96, P<0.001). The results of the ecotoxicologica evaluation, which represent the bioavailable fraction of cadmium, correlated well with DTPA extractability and also with the concentration of free cadmium ion, which is recognized as the most bioavailable metal form. The results of the WHAM as well as the results of extraction experiments showed a strong binding of cadmium to organic matter and a weak sorption of cadmium to clay minerals

  17. Analysis of soil samples from Gebeng area using NAA technique

    Science.gov (United States)

    Elias, Md Suhaimi; Wo, Yii Mei; Hamzah, Mohd Suhaimi; Shukor, Shakirah Abd; Rahman, Shamsiah Ab; Salim, Nazaratul Ashifa Abdullah; Azman, Muhamad Azfar; Hashim, Azian

    2017-01-01

    Rapid development and urbanization will increase number of residence and industrial area. Without proper management and control of pollution, these will give an adverse effect to environment and human life. The objective of this study to identify and quantify key contaminants into the environment of the Gebeng area as a result of industrial and human activities. Gebeng area was gazetted as one of the industrial estate in Pahang state. Assessment of elemental pollution in soil of Gebeng area base on level of concentration, enrichment factor and geo-accumulation index. The enrichment factors (EFs) were determined by the elemental rationing method, whilst the geo-accumulation index (Igeo) by comparing of current to continental crustal average concentration of element. Twenty-seven of soil samples were collected from Gebeng area. Soil samples were analysed by using Neutron Activation Analyses (NAA) technique. The obtained data showed higher concentration of iron (Fe) due to abundance in soil compared to other elements. The results of enrichment factor showed that Gebeng area have enrich with elements of As, Br, Hf, Sb, Th and U. Base on the geo-accumulation index (Igeo) classification, the soil quality of Gebeng area can be classified as class 0, (uncontaminated) to Class 3, (moderately to heavily contaminated).

  18. Critical evaluation of distillation procedure for the determination of methylmercury in soil samples.

    Science.gov (United States)

    Perez, Pablo A; Hintelman, Holger; Quiroz, Waldo; Bravo, Manuel A

    2017-11-01

    In the present work, the efficiency of distillation process for extracting monomethylmercury (MMHg) from soil samples was studied and optimized using an experimental design methodology. The influence of soil composition on MMHg extraction was evaluated by testing of four soil samples with different geochemical characteristics. Optimization suggested that the acid concentration and the duration of the distillation process were most significant and the most favorable conditions, established as a compromise for the studied soils, were determined to be a 70 min distillation using an 0.2 M acid. Corresponding limits of detection (LOD) and quantification (LOQ) were 0.21 and 0.7 pg absolute, respectively. The optimized methodology was applied with satisfactory results to soil samples and was compared to a reference methodology based on isotopic dilution analysis followed by gas chromatography-inductively coupled plasma mass spectrometry (IDA-GC-ICP-MS). Using the optimized conditions, recoveries ranged from 82 to 98%, which is an increase of 9-34% relative to the previously used standard operating procedure. Finally, the validated methodology was applied to quantify MMHg in soils collected from different sites impacted by coal fired power plants in the north-central zone of Chile, measuring MMHg concentrations ranging from 0.091 to 2.8 ng g -1 . These data are to the best of our knowledge the first MMHg measurements reported for Chile. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Spatial distribution of metals in soil samples from Zona da Mata, Pernambuco, Brazil using XRF technique

    International Nuclear Information System (INIS)

    Fernandez, Zahily Herrero; Santos Junior, Jose Araujo dos; Amaral, Romilton dos Santos; Menezes, Romulo Simoes Cezar; Santos, Josineide Marques do Nascimento; Bezerra, Jairo Dias; Damascena, Kennedy Francys Rodrigues; Silva, Edvane Borges da; Silva, Alberto Antonio da

    2015-01-01

    Soil contamination is today one of the most important environmental issues for society. In the past, soil pollution was not considered as important as air and water contamination, because this was more difficult to be controlled, becoming an important topic in studies of environmental protection worldwide. Based on this, this paper provides information on the determination of metals in soil samples collected in Zona da Mata, Pernambuco, Brazil, where normally the application of pesticides, insecticides and other agricultural additives are used in a disorderly manner and without control. A total of 24 sampling points were monitored. The analysis of Mn, Fe, Ni, Zn, Br, Rb, Sr, Pb, Ti, La, Al, Si and P were performed using Energy Dispersive X-Ray Fluorescence. In order to assess the development of analytical method, inorganic Certified Reference Materials (IAEA-SOIL-7 and SRM 2709) were analyzed. In each sampling site, the geoaccumulation index were calculated to estimate the level of metal contamination in the soil, this was made taking into account the resolution 460 of the National Environmental Council (CONAMA in Portuguese). The elemental distribution patterns obtained for each metal were associated with different pollution sources. This assessment provides an initial description of pollution levels presented by metals in soils from several areas of Zona da Mata, providing quantitative evidence and demonstrating the need to improve the regulation of agricultural and industrial activities. (author)

  20. Spatial distribution of metals in soil samples from Zona da Mata, Pernambuco, Brazil using XRF technique

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Zahily Herrero; Santos Junior, Jose Araujo dos; Amaral, Romilton dos Santos; Menezes, Romulo Simoes Cezar; Santos, Josineide Marques do Nascimento; Bezerra, Jairo Dias; Damascena, Kennedy Francys Rodrigues, E-mail: zahily1985@gmail.com, E-mail: jaraujo@ufpe.br, E-mail: romilton@ufpe.br, E-mail: rmenezes@ufpe.br, E-mail: neideden@hotmail.com, E-mail: jairo.dias@ufpe.br, E-mail: kennedy.eng.ambiental@gmail.com [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Centro de Tecnologia e Geociencias. Departamento de Energia Nuclear; Alvarez, Juan Reinaldo Estevez, E-mail: jestevez@ceaden.cu [Centro de Aplicaciones Tecnologicas y Desarrollo Nuclear (CEADEN), Havana (Cuba); Silva, Edvane Borges da, E-mail: edvane.borges@pq.cnpq.br [Universidade Federal de Pernambuco (UFPE), Vitoria de Santo Antao, PE (Brazil). Nucleo de Biologia; Franca, Elvis Joacir de; Farias, Emerson Emiliano Gualberto de, E-mail: ejfranca@cnen.gov.br, E-mail: emersonemiliano@yahoo.com.br [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Silva, Alberto Antonio da, E-mail: alberto.silva@barreiros.ifpe.edu.br [Instituto Federal de Educacao, Ciencia e Tecnologia de Pernambuco (IFPE), Barreiros, PE (Brazil)

    2015-07-01

    Soil contamination is today one of the most important environmental issues for society. In the past, soil pollution was not considered as important as air and water contamination, because this was more difficult to be controlled, becoming an important topic in studies of environmental protection worldwide. Based on this, this paper provides information on the determination of metals in soil samples collected in Zona da Mata, Pernambuco, Brazil, where normally the application of pesticides, insecticides and other agricultural additives are used in a disorderly manner and without control. A total of 24 sampling points were monitored. The analysis of Mn, Fe, Ni, Zn, Br, Rb, Sr, Pb, Ti, La, Al, Si and P were performed using Energy Dispersive X-Ray Fluorescence. In order to assess the development of analytical method, inorganic Certified Reference Materials (IAEA-SOIL-7 and SRM 2709) were analyzed. In each sampling site, the geoaccumulation index were calculated to estimate the level of metal contamination in the soil, this was made taking into account the resolution 460 of the National Environmental Council (CONAMA in Portuguese). The elemental distribution patterns obtained for each metal were associated with different pollution sources. This assessment provides an initial description of pollution levels presented by metals in soils from several areas of Zona da Mata, providing quantitative evidence and demonstrating the need to improve the regulation of agricultural and industrial activities. (author)

  1. Radon Emanation from NORM-Contaminated Pipe Scale, Soil, and Sediment at Petroleum Industry Sites

    International Nuclear Information System (INIS)

    Rood, A.S.; White, G.J.

    1999-01-01

    This report describes a study of radon (Rn) emanation from pipe scale and soil samples contaminated with naturally occurring radioactive material (NORM). Samples were collected at petroleum production sites in Oklahoma, Michigan, Kentucky, and Illinois. For comparison, data are also presented from preliminary studies conducted at sites in Texas and Wyoming. All samples collected were analyzed for their Rn emanation fraction, defined as the fraction of 222Rn produced that enters the interconnected pore space within a medium contaminated with 226Ra before the 222Rn undergoes radioactive decay. This measure represents one of the important parameters that determine the overall Rn activity flux from any solid medium. The goal of this project was to determine whether Rn emanation from pipe scale and soil is similar to emanation from uranium mill tailings

  2. Methods to ensure the quality of excavated soil material from geogenically metalliferous sites

    Science.gov (United States)

    Liebhard, Peter; Sager, Manfred

    2017-04-01

    Soils at geogenically metalliferous sites might exceed heavy metal threshold levels with respect to agricultural use, apart from anthropogenic contamination sources. As a fundamental substrate for green plants and green plant production, soil is not easily renewable, its formation needs long time (e.g. 500 years for 20 mm). In Austria, about 10ha of soil get sealed every day, resulting in complete loss of its biological functions. Excavated soil material has been classified as waste from a legal point of view, which made 33 mill. tons resp. 48% of total waste in Austria in 2010. Recycling of excavated soil material for agricultural use will be an important task to reduce future waste and to enlarge agricultural substrate volumes, but methods to ensure proper qualities are needed to improve regulations. Within this investigation, the transfer of various metals from geogenically metalliferous soils to various crop plants will be investigated, and correlated with various simple soil test methods. Four excavated soil materials from the metalliferous schist zone within the Austrian province of Styria (Kraubath/Mur, Übelbach) and a low-metal reference sample have been taken as substrates to grow raygrass (lolium multiflorum) as a green cover, salad (Lactuca sativa) as a vegetable food item, oats (Avena sativa), maize (Zea mais) and stinging nettle (Urtica dioica) as a hyperaccumulating species. Results and recommendations will be presented.

  3. Forming artificial soils from waste materials for mine site rehabilitation

    Science.gov (United States)

    Yellishetty, Mohan; Wong, Vanessa; Taylor, Michael; Li, Johnson

    2014-05-01

    Surface mining activities often produce large volumes of solid wastes which invariably requires the removal of significant quantities of waste rock (overburden). As mines expand, larger volumes of waste rock need to be moved which also require extensive areas for their safe disposal and containment. The erosion of these dumps may result in landform instability, which in turn may result in exposure of contaminants such as trace metals, elevated sediment delivery in adjacent waterways, and the subsequent degradation of downstream water quality. The management of solid waste materials from industrial operations is also a key component for a sustainable economy. For example, in addition to overburden, coal mines produce large amounts of waste in the form of fly ash while sewage treatment plants require disposal of large amounts of compost. Similarly, paper mills produce large volumes of alkaline rejected wood chip waste which is usually disposed of in landfill. These materials, therefore, presents a challenge in their use, and re-use in the rehabilitation of mine sites and provides a number of opportunities for innovative waste disposal. The combination of solid wastes sourced from mines, which are frequently nutrient poor and acidic, with nutrient-rich composted material produced from sewage treatment and alkaline wood chip waste has the potential to lead to a soil suitable for mine rehabilitation and successful seed germination and plant growth. This paper presents findings from two pilot projects which investigated the potential of artificial soils to support plant growth for mine site rehabilitation. We found that pH increased in all the artificial soil mixtures and were able to support plant establishment. Plant growth was greatest in those soils with the greatest proportion of compost due to the higher nutrient content. These pot trials suggest that the use of different waste streams to form an artificial soil can potentially be used in mine site rehabilitation

  4. How to Perform Precise Soil and Sediment Sampling? One solution: The Fine Increment Soil Collector (FISC)

    International Nuclear Information System (INIS)

    Mabit, L.; Toloza, A.; Meusburger, K.; Alewell, C.; Iurian, A-R.; Owens, P.N.

    2014-01-01

    Soil and sediment related research for terrestrial agrienvironmental assessments requires accurate depth incremental sampling to perform detailed analysis of physical, geochemical and biological properties of soil and exposed sediment profiles. Existing equipment does not allow collecting soil/sediment increments at millimetre resolution. The Fine Increment Soil Collector (FISC), developed by the SWMCN Laboratory, allows much greater precision in incremental soil/sediment sampling. It facilitates the easy recovery of collected material by using a simple screw-thread extraction system (see Figure 1). The FISC has been designed specifically to enable standardized scientific investigation of shallow soil/sediment samples. In particular, applications have been developed in two IAEA Coordinated Research Projects (CRPs): CRP D1.20.11 on “Integrated Isotopic Approaches for an Area-wide Precision Conservation to Control the Impacts of Agricultural Practices on Land Degradation and Soil Erosion” and CRP D1.50.15 on “Response to Nuclear Emergencies Affecting Food and Agriculture.”

  5. How to Perform Precise Soil and Sediment Sampling? One solution: The Fine Increment Soil Collector (FISC)

    Energy Technology Data Exchange (ETDEWEB)

    Mabit, L.; Toloza, A. [Soil and Water Management and Crop Nutrition Laboratory, IAEA, Seibersdorf (Austria); Meusburger, K.; Alewell, C. [Environmental Geosciences, Department of Environmental Sciences, University of Basel, Basel (Switzerland); Iurian, A-R. [Babes-Bolyai University, Faculty of Environmental Science and Engineering, Cluj-Napoca (Romania); Owens, P. N. [Environmental Science Program and Quesnel River Research Centre, University of Northern British Columbia, Prince George, British Columbia (Canada)

    2014-07-15

    Soil and sediment related research for terrestrial agrienvironmental assessments requires accurate depth incremental sampling to perform detailed analysis of physical, geochemical and biological properties of soil and exposed sediment profiles. Existing equipment does not allow collecting soil/sediment increments at millimetre resolution. The Fine Increment Soil Collector (FISC), developed by the SWMCN Laboratory, allows much greater precision in incremental soil/sediment sampling. It facilitates the easy recovery of collected material by using a simple screw-thread extraction system (see Figure 1). The FISC has been designed specifically to enable standardized scientific investigation of shallow soil/sediment samples. In particular, applications have been developed in two IAEA Coordinated Research Projects (CRPs): CRP D1.20.11 on “Integrated Isotopic Approaches for an Area-wide Precision Conservation to Control the Impacts of Agricultural Practices on Land Degradation and Soil Erosion” and CRP D1.50.15 on “Response to Nuclear Emergencies Affecting Food and Agriculture.”.

  6. Control of Eolian soil erosion from waste site surface barriers

    International Nuclear Information System (INIS)

    Ligotke, M.W.

    1994-11-01

    Physical models were tested in a wind tunnel to determine optimum surface-ravel admixtures for protecting silt-loam soil from erosion by, wind and saltating, sand stresses. The tests were performed to support the development of a natural-material surface barrier for and waste sites. Plans call for a 2-m deep silt-loam soil reservoir to retain infiltrating water from rainfall and snowmelt. The objective of the study was to develop a gravel admixture that would produce an erosion-resistant surface layer during, periods of extended dry climatic stress. Thus, tests were performed using simulated surfaces representing dry, unvegetated conditions present just after construction, after a wildfire, or during an extended drought. Surfaces were prepared using silt-loam soil mixed with various grades of sand and Travel. Wind-induced surface shear stresses were controlled over the test surfaces, as were saltating, sand mass flow rates and intensities. Tests were performed at wind speeds that approximated and exceeded local 100-year peak gust intensities. Surface armors produced by pea gravel admixtures were shown to provide the best protection from wind and saltating sand stresses. Compared with unprotected silt-loam surfaces, armored surfaces reduced erosion rates by more than 96%. Based in part on wind tunnel results, a pea gravel admixture of 15% will be added to the top 1 in of soil in a prototype barrier under construction in 1994. Field tests are planned at the prototype site to provide data for comparison with wind tunnel results

  7. Visible and infrared spectroscopy to evaluate soil quality in degraded sites: an applicative study in southern Italy

    Science.gov (United States)

    Ancona, Valeria; Matarrese, Raffaella; Salvatori, Rosamaria; Salzano, Roberto; Regano, Simona; Calabrese, Angelantonio; Campanale, Claudia; Felice Uricchio, Vito

    2014-05-01

    Land degradation processes like organic matter impoverishment and contamination are growing increasingly all over the world due to a non-rational and often sustainable spread of human activities on the territory. Consequently the need to characterize and monitor degraded sites is becoming very important, with the aim to hinder such main threats, which could compromise drastically, soil quality. Visible and infrared spectroscopy is a well-known technique/tool to study soil properties. Vis-NIR spectral reflectance, in fact, can be used to characterize spatial and temporal variation in soil constituents (Brown et al., 2006; Viscarra Rossel et al., 2006), and potentially its surface structure (Chappell et al., 2006, 2007). It is a rapid, non-destructive, reproducible and cost-effective analytical method to analyse soil properties and therefore, it can be a useful method to study land degradation phenomena. In this work, we present the results of proximal sensing investigations of three degraded sites (one affected by organic and inorganic contamination and two affected by soil organic matter decline) situated southern Italy close to Taranto city (in Apulia Region). A portable spectroradiometer (ASD-FieldSpec) was used to measure the reflectance properties in the spectral range between 350-2500 nm of the soil, in the selected sites, before and after a recovery treatment by using compost (organic fertilizer). For each measurement point the soil was sampled in order to perform chemical analyses to evaluate soil quality status. Three in-situ campaigns have been carried out (September 2012, June 2013, and September 2013), collecting about 20 soil samples for each site and for each campaign. Chemical and spectral analyses have been focused on investigating soil organic carbon, carbonate content, texture and, in the case of polluted site, heavy metals and organic toxic compounds. Statistical analyses have been carried out to test a prediction model of different soil quality

  8. Chemical and microbiological investigations on mineral-oil contaminated soils following on-site regeneration measures

    International Nuclear Information System (INIS)

    Hollerbach, A.; Teschner, M.; Bosecker, K.; Wehner, H.; Kassner, H.

    1992-01-01

    In the site of a former petroleum refinery, where bombing during the second World War has caused in part deep-down contamination of the ground with petroleum and its products, a pilot study with five on-site biological treatment beds was carried through by different firms with the aim to reduce the hydrocarbon content of the soil to 1 gramme per kilogramme of dry weight. Thus, good comparability of the different regeneration measures was given. Sampling was done at the end of the regeneration experiments by obtaining an average sample. (orig.) [de

  9. Anaerobic bacterial quantitation of Yucca Mountain, Nevada DOE site samples

    International Nuclear Information System (INIS)

    Clarkson, W.W.; Krumholz, L.R.; Suflita, J.M.

    1996-01-01

    Anaerobic bacteria were studied from samples of excavated rock material as one phase of the overall Yucca Mountain site characterization effort. An indication of the abundance of important groups of anaerobic bacteria would enable inferences to be made regarding the natural history of the site and allow for more complete risk evaluation of the site as a nuclear repository. Six bacterial groups were investigated including anaerobic heterotrophs, acetogens, methanogens, sulfate-, nitrate-, and iron-reducing bacteria. The purpose of this portion of the study was to detect and quantify the aforementioned bacterial groups

  10. Studies of infiltration and lead-soil interactions at the Radioactive Waste Management Site in Area 5 of the Nevada Test Site

    International Nuclear Information System (INIS)

    Case, C.M.; Davis, J.O.; Heidker, J.C.; Whitbeck, M.R.

    1992-07-01

    Several studies were conducted to investigate the possibility of buried lead being transported by water in the unsaturated zone at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada Test Site. All involved soil from a 37-m soil core collected at the RWMS. The core consisted primarily of sand and small pebbles, with occasional layers of loose rocks. Few buried soil horizons were observed, and the core showed no evidence of a carbonate layer that would act as a barrier to infiltration. Samples chosen from various depths in the soil core were analyzed chemically. Calcium and sulfate occurred in a prominent layer about 5 m below the surface. The concentration of soluble carbonate increased gradually with depth, while chloride concentrations decreased. Lead concentrations ranged from 1 to 2 mg/kg. Additional data from the soil core were combined with results of earlier field infiltration studies at two sites near the RWMS to estimate flow velocities for water in the unsaturated zone. Under normal (dry) conditions, the degree of saturation is so small that gravity drainage does not occur; water moves by vapor transport and capillary action. Significant water movement occurs only if the soil is at or near saturation. The results suggest that even continuously ponded water at the RWMS would take several months to infiltrate to the water table. Seven samples from the soil core were tested for their ability to adsorb lead. All took up lead with about the same intensity and capacity. Adsorption of lead by insoluble carbonate minerals and precipitation of lead by soluble carbonate in the soil at the RWMS should provide a barrier to lead migration. Finally, measurements were made of the corrosion rates of lead and steel in contact with soil samples from the core. Corrosion rates generally increased with increasing soil saturation at all depths. Under ambient soil conditions at the RWMS, corrosion rates would be low

  11. Environmental radiation in coal and soil samples from Savannah area (Chatham County, GA)

    International Nuclear Information System (INIS)

    Hongo, D.; Ghuman, G.S.; Chandra, K.

    1997-01-01

    Radiation measurements were made in coal and fly ash samples from Savannah Electric ampersand Power Company (SEPCO) plant on the Savannah River and the soil core samples from three sites along the flow gradient of Savannah State University Campus Creek. The objective of this study was to determine the magnitude of natural radiation due to radon and potassium in the Savannah area and possible effect of external factors such as the operations at Savannah River Site (SRS). The instrument used for this purpose was Geiger Counter Model 500 (Tennelec/Nucleus, Inc.) which was standardized with known samples of Sr-90 (0.1 μCi t 1/2 = 28.6 yrs., beta radiation) and Co-60 (1.0 μCi t 1/2 = 5.27 yrs., gamma radiation). Beta and gamma radiations in the samples were differentiated with the help of polyethylene and lead absorbers. Results showed quite low radioactivity in bituminous coal from SEPCO plant and it reduced by a factor of 0.5 and 0.25 in fly ash and weathered fly ash, respectively. Radioactivity of soil samples was slightly greater in the top soil (0-3 cm) of two sites and it decreased markedly with depth (20 cm). Site III soil samples containing lime shells had a negligible radioactivity because carbonate rocks developed from calcareous skeletal matter have low radioactivity from their beginning. Radioactivity appeared to be mainly associated with the fine textured top soil of two sites (high clay content) and it exhibited very little leaching downward into lower layers. Clay particles with greater radioactivity, are formed from the decomposition of feldspars and micas which contain a large fraction of earth's potassium fraction. Measurements with the use of absorbers indicated that the observed radiation in all the samples was mainly due to the gamma rays. A comparison with the radioactivity in coal dust and fly ash samples from SRS revealed that the Savannah samples contained extremely low radiation, which may be due only to the natural sources

  12. Pyrosequencing of environmental soil samples reveals biodiversity of the Phytophthora resident community in chestnut forests.

    Science.gov (United States)

    Vannini, Andrea; Bruni, Natalia; Tomassini, Alessia; Franceschini, Selma; Vettraino, Anna Maria

    2013-09-01

    Pyrosequencing analysis was performed on soils from Italian chestnut groves to evaluate the diversity of the resident Phytophthora community. Sequences analysed with a custom database discriminated 15 pathogenic Phytophthoras including species common to chestnut soils, while a total of nine species were detected with baiting. The two sites studied differed in Phytophthora diversity and the presence of specific taxa responded to specific ecological traits of the sites. Furthermore, some species not previously recorded were represented by a discrete number of reads; among these species, Phytophthora ramorum was detected at both sites. Pyrosequencing was demonstrated to be a very sensitive technique to describe the Phytophthora community in soil and was able to detect species not easy to be isolated from soil with standard baiting techniques. In particular, pyrosequencing is an highly efficient tool for investigating the colonization of new environments by alien species, and for ecological and adaptive studies coupled with biological detection methods. This study represents the first application of pyrosequencing for describing Phytophthoras in environmental soil samples. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  13. Determination of Pu in soil samples; Determinacion de Pu en muestras de suelo

    Energy Technology Data Exchange (ETDEWEB)

    Torres C, C. O.; Hernandez M, H.; Romero G, E. T. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Vega C, H. R., E-mail: carioli_32907@hotmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas, Zac. (Mexico)

    2016-10-15

    The irreversible consequences of accidents occurring in nuclear plants and in nuclear fuel reprocessing sites are mainly the distribution of different radionuclides in different matrices such as the soil. The distribution in the superficial soil is related to the internal and external exposure to the radiation of the affected population. The internal contamination with radionuclides such as Pu is of great relevance to the nuclear forensic science, where is important to know the chemical and isotopic compositions of nuclear materials. The objective of this work is to optimize the radiochemical separation of plutonium (Pu) from soil samples and to determine their concentration. The soil samples were prepared using acid digestion assisted by microwave; purification of Pu was carried out with AG1X8 resin using ion exchange chromatography. Pu isotopes were measured using ICP-SFMS. In order to reduce the interference due to the presence of {sup 238}UH {sup +} in the samples, a solvent removal system (Apex) was used. In addition, the limit of detection and quantification of Pu was determined. It was found that the recovery efficiency of Pu in soil samples ranges from 70 to 93%. (Author)

  14. Closure Report for Corrective Action Unit 107: Low Impact Soil Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2009-01-01

    Corrective Action Unit (CAU) 107 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Low Impact Soil Sites' and consists of the following 15 Corrective Action Sites (CASs), located in Areas 1, 2, 3, 4, 5, 9, 10, and 18 of the Nevada Test Site: CAS 01-23-02, Atmospheric Test Site - High Alt; CAS 02-23-02, Contaminated Areas (2); CAS 02-23-03, Contaminated Berm; CAS 02-23-10, Gourd-Amber Contamination Area; CAS 02-23-11, Sappho Contamination Area; CAS 02-23-12, Scuttle Contamination Area; CAS 03-23-24, Seaweed B Contamination Area; CAS 03-23-27, Adze Contamination Area; CAS 03-23-28, Manzanas Contamination Area; CAS 03-23-29, Truchas-Chamisal Contamination Area; CAS 04-23-02, Atmospheric Test Site T4-a; CAS 05-23-06, Atmospheric Test Site; CAS 09-23-06, Mound of Contaminated Soil; CAS 10-23-04, Atmospheric Test Site M-10; and CAS 18-23-02, U-18d Crater (Sulky). Closure activities were conducted from February through April 2009 according to the FFACO (1996; as amended February 2008) and Revision 1 of the Streamlined Approach for Environmental Restoration Plan for CAU 107 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2009). The corrective action alternatives included No Further Action and Closure in Place with Administrative Controls. Closure activities are summarized.

  15. Latin Hypercube Sampling (LHS) at variable resolutions for enhanced watershed scale Soil Sampling and Digital Soil Mapping.

    Science.gov (United States)

    Hamalainen, Sampsa; Geng, Xiaoyuan; He, Juanxia

    2017-04-01

    Latin Hypercube Sampling (LHS) at variable resolutions for enhanced watershed scale Soil Sampling and Digital Soil Mapping. Sampsa Hamalainen, Xiaoyuan Geng, and Juanxia, He. AAFC - Agriculture and Agr-Food Canada, Ottawa, Canada. The Latin Hypercube Sampling (LHS) approach to assist with Digital Soil Mapping has been developed for some time now, however the purpose of this work was to complement LHS with use of multiple spatial resolutions of covariate datasets and variability in the range of sampling points produced. This allowed for specific sets of LHS points to be produced to fulfil the needs of various partners from multiple projects working in the Ontario and Prince Edward Island provinces of Canada. Secondary soil and environmental attributes are critical inputs that are required in the development of sampling points by LHS. These include a required Digital Elevation Model (DEM) and subsequent covariate datasets produced as a result of a Digital Terrain Analysis performed on the DEM. These additional covariates often include but are not limited to Topographic Wetness Index (TWI), Length-Slope (LS) Factor, and Slope which are continuous data. The range of specific points created in LHS included 50 - 200 depending on the size of the watershed and more importantly the number of soil types found within. The spatial resolution of covariates included within the work ranged from 5 - 30 m. The iterations within the LHS sampling were run at an optimal level so the LHS model provided a good spatial representation of the environmental attributes within the watershed. Also, additional covariates were included in the Latin Hypercube Sampling approach which is categorical in nature such as external Surficial Geology data. Some initial results of the work include using a 1000 iteration variable within the LHS model. 1000 iterations was consistently a reasonable value used to produce sampling points that provided a good spatial representation of the environmental

  16. Decision support for the selection of reference sites using 137Cs as a soil erosion tracer

    Directory of Open Access Journals (Sweden)

    L. Arata

    2017-08-01

    Full Text Available The classical approach of using 137Cs as a soil erosion tracer is based on the comparison between stable reference sites and sites affected by soil redistribution processes; it enables the derivation of soil erosion and deposition rates. The method is associated with potentially large sources of uncertainty with major parts of this uncertainty being associated with the selection of the reference sites. We propose a decision support tool to Check the Suitability of reference Sites (CheSS. Commonly, the variation among 137Cs inventories of spatial replicate reference samples is taken as the sole criterion to decide on the suitability of a reference inventory. Here we propose an extension of this procedure using a repeated sampling approach, in which the reference sites are resampled after a certain time period. Suitable reference sites are expected to present no significant temporal variation in their decay-corrected 137Cs depth profiles. Possible causes of variation are assessed by a decision tree. More specifically, the decision tree tests for (i uncertainty connected to small-scale variability in 137Cs due to its heterogeneous initial fallout (such as in areas affected by the Chernobyl fallout, (ii signs of erosion or deposition processes and (iii artefacts due to the collection, preparation and measurement of the samples; (iv finally, if none of the above can be assigned, this variation might be attributed to turbation processes (e.g. bioturbation, cryoturbation and mechanical turbation, such as avalanches or rockfalls. CheSS was exemplarily applied in one Swiss alpine valley where the apparent temporal variability called into question the suitability of the selected reference sites. In general we suggest the application of CheSS as a first step towards a comprehensible approach to test for the suitability of reference sites.

  17. Sampling and analysis plan for assessment of beryllium in soils surrounding TA-40 building 15

    Energy Technology Data Exchange (ETDEWEB)

    Ruedig, Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-12-19

    Technical Area (TA) 40 Building 15 (40-15) is an active firing site at Los Alamos National Laboratory. The weapons facility operations (WFO) group plans to build an enclosure over the site in 2017, so that test shots may be conducted year-round. The enclosure project is described in PRID 16P-0209. 40-15 is listed on LANL OSH-ISH’s beryllium inventory, which reflects the potential for beryllium in/on soils and building surfaces at 40-15. Some areas in and around 40-15 have previously been sampled for beryllium, but past sampling efforts did not achieve complete spatial coverage of the area. This Sampling and Analysis Plan (SAP) investigates the area surrounding 40-15 via 9 deep (≥1-ft.) soil samples and 11 shallow (6-in.) soil samples. These samples will fill the spatial data gaps for beryllium at 40-15, and will be used to support OSH-ISH’s final determination of 40-15’s beryllium registry status. This SAP has been prepared by the Environmental Health Physics program in consultation with the Industrial Hygiene program. Industrial Hygiene is the owner of LANL’s beryllium program, and will make a final determination with regard to the regulatory status of beryllium at 40-15.

  18. Soil an-d nutrient loss following site preparation burning

    Science.gov (United States)

    E.A. Carter; J.P. Field; K.W. Farrish

    2000-01-01

    Sediment loss and nutrient cpncentrations in runoff were evaluated to determine the effects of site preparation burning on a recently harvested loblolly pine (Pinur taeda L.) site in east Texas. Sediment and nutrient losses prior to treatment were approximately the same from control plots and pretreatment burn plots. Nutrient analysis of runoff samples indicated that...

  19. Effects of Spatial Sampling Interval on Roughness Parameters and Microwave Backscatter over Agricultural Soil Surfaces

    Directory of Open Access Journals (Sweden)

    Matías Ernesto Barber

    2016-06-01

    Full Text Available The spatial sampling interval, as related to the ability to digitize a soil profile with a certain number of features per unit length, depends on the profiling technique itself. From a variety of profiling techniques, roughness parameters are estimated at different sampling intervals. Since soil profiles have continuous spectral components, it is clear that roughness parameters are influenced by the sampling interval of the measurement device employed. In this work, we contributed to answer which sampling interval the profiles needed to be measured at to accurately account for the microwave response of agricultural surfaces. For this purpose, a 2-D laser profiler was built and used to measure surface soil roughness at field scale over agricultural sites in Argentina. Sampling intervals ranged from large (50 mm to small ones (1 mm, with several intermediate values. Large- and intermediate-sampling-interval profiles were synthetically derived from nominal, 1 mm ones. With these data, the effect of sampling-interval-dependent roughness parameters on backscatter response was assessed using the theoretical backscatter model IEM2M. Simulations demonstrated that variations of roughness parameters depended on the working wavelength and was less important at L-band than at C- or X-band. In any case, an underestimation of the backscattering coefficient of about 1-4 dB was observed at larger sampling intervals. As a general rule a sampling interval of 15 mm can be recommended for L-band and 5 mm for C-band.

  20. Laboratory study on metal attenuation capacity of fine grained soil near ash pond site.

    Science.gov (United States)

    Ghosh, Sudipta; Mukherjee, Somnath; Sarkar, Sujoy; Kumar, Sunil

    2008-10-01

    Waste settling tanks of earthen containment nature are common in India for disposal of solid waste in slurry form. For a large pond system, e.g. ash slurry disposal tank of coal base thermal power plant, leachate generation and its migration pose a serious problem. A natural attenuation of controlling the migratory leachate is to use locally available clay material as lining system due to the adsorption properties of soil for reducing some metallic ions. The present investigation was carried out to explore the Ni2+ and Cr6+ removal capacity of surrounding soil of the ash pond site of Super Thermal Power Plant in West Bengal, India through some laboratory scale and field studies. The soil and water samples collected from the site showed the existence of Ni2+ and Cr6+ in excess to permissible limit. A two-dimensional adsorption behaviour of these pollutants through soil was assessed. The results showed that more than 80% of nickel and 72% of chromium were found to be sorbed by the soil corresponding to initial concentrations of two ions, i.e. 1.366 mg/L and 0.76 mg/L respectively. The batch adsorption data are tested Langmuir and Freundlich isotherm models and found reasonably fit. Breakthrough adsorption study uptake also showed a good adsorption capacity of the soil. The experimental results found to fit well with the existing two dimensional (2D) mathematical models as proposed by Fetter (1999).

  1. The Influences of Soil Characteristics on Nest-Site Selection in Painted Turtles (Chrysemys picta)

    Science.gov (United States)

    Page, R.

    2017-12-01

    A variety of animals dig nests and lay their eggs in soil, leaving them to incubate and hatch without assistance from the parents. Nesting habitat is important for these organisms many of which exhibit temperature dependent sex determination (TSD) whereby the incubation temperature determines the sex of each hatchling. However, suitable nesting habitat may be limited due to anthropogenic activities and global temperature increases. Soil thermal properties are critical to these organisms and are positively correlated with water retention and soil carbon; carbon-rich soils result in higher incubation temperatures. We investigated nest-site selection in painted turtles (Chrysemys picta) inhabiting an anthropogenic pond in south central Pennsylvania. We surveyed for turtle nests and documented location, depth, width, temperature, canopy coverage, clutch size, and hatch success for a total of 31 turtle nests. To address the influence of soil carbon and particle size on nest selection, we analyzed samples collected from: 1) actual nests that were depredated, 2) false nests, incomplete nests aborted during digging prior to nest completion, and 3) randomized locations. Soil samples were separated into coarse, medium, and fine grain size fractions through a stack of sieves. Samples were combusted in a total carbon analyzer to measure weight percent organic carbon. We found that anthropogenic activity at this site has created homogenous, sandy, compacted soils at the uppermost layer that may limit females' access to appropriate nesting habitat. Turtle nesting activity was limited to a linear region north of the pond and was constrained by an impassable rail line. Relative to other studies, turtle nests were notably shallow (5.8±0.9 cm) and placed close to the pond. Compared to false nests and random locations, turtle-selected sites averaged greater coarse grains (35% compared to 20.24 and 20.57%) and less fine grains (47% compared to 59 and 59, respectively). Despite

  2. Environmentally Persistent Free Radicals in Soils of Past Coking Sites: Distribution and Stabilization.

    Science.gov (United States)

    Jia, Hanzhong; Zhao, Song; Nulaji, Gulimire; Tao, Kelin; Wang, Fu; Sharma, Virender K; Wang, Chuanyi

    2017-06-06

    This study presents the existence of environmentally persistent free radicals (EPFRs) in soils of past coking sites, mainly contaminated by polycyclic aromatic hydrocarbons (PAHs). Measurements of EPFRs were conducted by electron paramagnetic resonance (EPR) technique with numerous soil samples, which were collected from different distances (0-1000 m) and different depths (0-30 cm) of three contaminant sources. EPR signals with ∼3 × 10 17 radicals/g of the soil samples were obtained, which are very similar to that generated in PAHs contaminated clays, that is, g = 2.0028-2.0036. Concentrations of PAHs and soil components were determined to understand their role in producing EPFRs. PAHs, clay, and iron predominately contributed to generating EPRFs. Meanwhile, organic matter negatively influenced the production of EPRFs. The effects of environmental factors (moisture and oxic/anoxic) were also studied to probe the persistency of EPFRs under various simulated conditions. The EPFRs are stable under relatively dry and oxic conditions. Under anoxic conditions without O 2 and H 2 O, the spin densities decrease initially, followed by gradual increase before attaining constant values in two months period time. The present work implies that continuous formation of EPFRs induced by PAHs is largely responsible for the presence of relatively stable radicals in soils of coking sites.

  3. Temporal dynamics in microbial soil communities at anthrax carcass sites.

    Science.gov (United States)

    Valseth, Karoline; Nesbø, Camilla L; Easterday, W Ryan; Turner, Wendy C; Olsen, Jaran S; Stenseth, Nils Chr; Haverkamp, Thomas H A

    2017-09-26

    Anthrax is a globally distributed disease affecting primarily herbivorous mammals. It is caused by the soil-dwelling and spore-forming bacterium Bacillus anthracis. The dormant B. anthracis spores become vegetative after ingestion by grazing mammals. After killing the host, B. anthracis cells return to the soil where they sporulate, completing the lifecycle of the bacterium. Here we present the first study describing temporal microbial soil community changes in Etosha National Park, Namibia, after decomposition of two plains zebra (Equus quagga) anthrax carcasses. To circumvent state-associated-challenges (i.e. vegetative cells/spores) we monitored B. anthracis throughout the period using cultivation, qPCR and shotgun metagenomic sequencing. The combined results suggest that abundance estimation of spore-forming bacteria in their natural habitat by DNA-based approaches alone is insufficient due to poor recovery of DNA from spores. However, our combined approached allowed us to follow B. anthracis population dynamics (vegetative cells and spores) in the soil, along with closely related organisms from the B. cereus group, despite their high sequence similarity. Vegetative B. anthracis abundance peaked early in the time-series and then dropped when cells either sporulated or died. The time-series revealed that after carcass deposition, the typical semi-arid soil community (e.g. Frankiales and Rhizobiales species) becomes temporarily dominated by the orders Bacillales and Pseudomonadales, known to contain plant growth-promoting species. Our work indicates that complementing DNA based approaches with cultivation may give a more complete picture of the ecology of spore forming pathogens. Furthermore, the results suggests that the increased vegetation biomass production found at carcass sites is due to both added nutrients and the proliferation of microbial taxa that can be beneficial for plant growth. Thus, future B. anthracis transmission events at carcass sites may be

  4. Nonlinear Time Domain Seismic Soil-Structure Interaction (SSI) Deep Soil Site Methodology Development

    International Nuclear Information System (INIS)

    Spears, Robert Edward; Coleman, Justin Leigh

    2015-01-01

    Currently the Department of Energy (DOE) and the nuclear industry perform seismic soil-structure interaction (SSI) analysis using equivalent linear numerical analysis tools. For lower levels of ground motion, these tools should produce reasonable in-structure response values for evaluation of existing and new facilities. For larger levels of ground motion these tools likely overestimate the in-structure response (and therefore structural demand) since they do not consider geometric nonlinearities (such as gaping and sliding between the soil and structure) and are limited in the ability to model nonlinear soil behavior. The current equivalent linear SSI (SASSI) analysis approach either joins the soil and structure together in both tension and compression or releases the soil from the structure for both tension and compression. It also makes linear approximations for material nonlinearities and generalizes energy absorption with viscous damping. This produces the potential for inaccurately establishing where the structural concerns exist and/or inaccurately establishing the amplitude of the in-structure responses. Seismic hazard curves at nuclear facilities have continued to increase over the years as more information has been developed on seismic sources (i.e. faults), additional information gathered on seismic events, and additional research performed to determine local site effects. Seismic hazard curves are used to develop design basis earthquakes (DBE) that are used to evaluate nuclear facility response. As the seismic hazard curves increase, the input ground motions (DBE's) used to numerically evaluation nuclear facility response increase causing larger in-structure response. As ground motions increase so does the importance of including nonlinear effects in numerical SSI models. To include material nonlinearity in the soil and geometric nonlinearity using contact (gaping and sliding) it is necessary to develop a nonlinear time domain methodology. This

  5. Radioactivity in Soil Samples Collected in Southern Serbia

    International Nuclear Information System (INIS)

    Jankovic, M.; Nikolic, J.; Pantelic, G.; Rajacic, M.; Sarap, N.; Todorovic, D.

    2013-01-01

    In the attack on the Federal Republic of Yugoslavia (the focus effect was of Kosovo and Metohija and southern Serbia) in 1999, NATO forces used ammunition containing depleted uranium. Cleaning action of depleted uranium was performed by Radiation and Environmental Protection Department of the Vinca Institute of Nuclear Science, during 2002?2007 at locations: Pljackovica, Bratoselce, Borovac and Reljan. At all locations underwent detailed dosimetric screening and decontamination was performed. Because of the loose soil, DU projectils were found to a depth of 1 m. Found missiles, contaminated soil and radioactive material has been collected and stored on radioactive waste. After cleaning the ground is leveled and another dosimetric prospecting was performed. Monitoring of radioactivity in southern Serbia included determination of gamma emitters as well as determination of gross alpha and beta activities in soil, water and plant. Sampling was carried out at Pljackovica, Borovac, Bratoselce and Reljan in July 2011. This paper presents only the results of measurement of gamma emitters in soil samples and showed the presence of natural radionuclides: 226Ra, 232Th, 40K, 235U, 238U and the produced radionuclide 137Cs (from the Chernobyl accident). Also, the ratio between the 235U and 238U is given. In order to evaluate the radiological hazard of the natural radioactivity, the radium equivalent activity, the gamma-absorbed dose rate and the external hazard index have been calculated. (author)

  6. Remaining Sites Verification Package for the 600-243 Petroleum-Contaminated Soil Bioremediation Pad. Attachment to Waste Site Reclassification Form 2007-033

    International Nuclear Information System (INIS)

    Capron, J.M.

    2008-01-01

    The 600-243 waste site consisted of a bioremediation pad for petroleum-contaminated soils resulting from the 1100 Area Underground Storage Tank (UST) upgrades in 1994. In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River

  7. 105-DR Large sodium fire facility soil sampling data evaluation report

    International Nuclear Information System (INIS)

    Adler, J.G.

    1996-01-01

    This report evaluates the soil sampling activities, soil sample analysis, and soil sample data associated with the closure activities at the 105-DR Large Sodium Fire Facility. The evaluation compares these activities to the regulatory requirements for meeting clean closure. The report concludes that there is no soil contamination from the waste treatment activities

  8. Soil pollution with trace elements at selected sites in Romania studied by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Pantelica, A.; Carmo Freitas, M. do; Ene, A.; Steinnes, E.

    2013-01-01

    Instrumental neutron activation analysis (INAA) was used to determine concentrations of 42 elements in samples of surface soil collected at seven sites polluted from various anthropogenic activities and a control site in a relatively clean area. Elements studied were Ag, Al, As, Au, Ba, Br, Ca, Cd, Ce, Co, Cr, Cs, Eu, Fe, Gd, Hf, Hg, K, La, Lu, Mg, Mn, Mo, Na, Nd, Ni, Rb, Sb, Sc, Se, Sm, Sr, Ta, Tb, Th, Ti, U, V, W, Yb, Zn, and Zr. The results are compared with data for trace elements atmospheric deposition in lichen transplants from the same sites. The most severe soil contamination was observed at Copsa Mica from non-ferrous metallurgy. Appreciable soil contamination was also indicated at Baia Mare (non-ferrous mining and metallurgy), Deva (coal-fired power plant, cement and building materials industry), Galati (ferrous metallurgy), Magurele and Afumati (general urban pollution), and Oradea (chemical and light industries). In most cases excessive levels of toxic metals in soils matched correspondingly high values in lichen transplants. Compared to Romanian norms, legal upper limits were exceeded for Zn and Cd at Copsa Mica. Also, As and Sb occurred in excessive levels at given sites. (orig.)

  9. Soil pollution with trace elements at selected sites in Romania studied by instrumental neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pantelica, A. [Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Magurele, Ilfov County (Romania); Carmo Freitas, M. do [Technological and Nuclear Institute (ITN), Sacavem (Portugal); Ene, A. [Dunarea de Jos Univ. of Galati (Romania). Dept. of Chemistry, Physics and Environment; Steinnes, E. [Norwegian Univ. of Science and Technology, Trondheim (Norway). Dept. of Chemistry

    2013-03-01

    Instrumental neutron activation analysis (INAA) was used to determine concentrations of 42 elements in samples of surface soil collected at seven sites polluted from various anthropogenic activities and a control site in a relatively clean area. Elements studied were Ag, Al, As, Au, Ba, Br, Ca, Cd, Ce, Co, Cr, Cs, Eu, Fe, Gd, Hf, Hg, K, La, Lu, Mg, Mn, Mo, Na, Nd, Ni, Rb, Sb, Sc, Se, Sm, Sr, Ta, Tb, Th, Ti, U, V, W, Yb, Zn, and Zr. The results are compared with data for trace elements atmospheric deposition in lichen transplants from the same sites. The most severe soil contamination was observed at Copsa Mica from non-ferrous metallurgy. Appreciable soil contamination was also indicated at Baia Mare (non-ferrous mining and metallurgy), Deva (coal-fired power plant, cement and building materials industry), Galati (ferrous metallurgy), Magurele and Afumati (general urban pollution), and Oradea (chemical and light industries). In most cases excessive levels of toxic metals in soils matched correspondingly high values in lichen transplants. Compared to Romanian norms, legal upper limits were exceeded for Zn and Cd at Copsa Mica. Also, As and Sb occurred in excessive levels at given sites. (orig.)

  10. Petroleum hydrocarbon biodegradation under seasonal freeze-thaw soil temperature regimes in contaminated soils from a sub-Arctic site.

    Science.gov (United States)

    Chang, Wonjae; Klemm, Sara; Beaulieu, Chantale; Hawari, Jalal; Whyte, Lyle; Ghoshal, Subhasis

    2011-02-01

    Several studies have shown that biostimulation in ex situ systems such as landfarms and biopiles can facilitate remediation of petroleum hydrocarbon contaminated soils at sub-Arctic sites during summers when temperatures are above freezing. In this study, we examine the biodegradation of semivolatile (F2: C10-C16) and nonvolatile (F3: C16-C34) petroleum hydrocarbons and microbial respiration and population dynamics at post- and presummer temperatures ranging from -5 to 14 °C. The studies were conducted in pilot-scale tanks with soils obtained from a historically contaminated sub-Arctic site in Resolution Island (RI), Canada. In aerobic, nutrient-amended, unsaturated soils, the F2 hydrocarbons decreased by 32% during the seasonal freeze-thaw phase where soils were cooled from 2 to -5 °C at a freezing rate of -0.12 °C d(-1) and then thawed from -5 to 4 °C at a thawing rate of +0.16 °C d(-1). In the unamended (control) tank, the F2 fraction only decreased by 14% during the same period. Biodegradation of individual hydrocarbon compounds in the nutrient-amended soils was also confirmed by comparing their abundance over time to that of the conserved diesel biomarker, bicyclic sesquiterpanes (BS). During this period, microbial respiration was observed, even at subzero temperatures when unfrozen liquid water was detected during the freeze-thaw period. An increase in culturable heterotrophs and 16S rDNA copy numbers was noted during the freezing phase, and the (14)C-hexadecane mineralization in soil samples obtained from the nutrient-amended tank steadily increased. Hydrocarbon degrading bacterial populations identified as Corynebacterineae- and Alkanindiges-related strains emerged during the freezing and thawing phases, respectively, indicating there were temperature-based microbial community shifts.

  11. Geochemical and radiological characterization of soils from former radium processing sites.

    Science.gov (United States)

    Landa, E R

    1984-02-01

    Soil samples were collected from former radium processing sites in Denver, CO, and East Orange, NJ. Particle-size separations and radiochemical analyses of selected samples showed that while the greatest contents of both 226Ra and U were generally found in the finest (less than 45 micron) fraction, the pattern was not always of progressive increase in radionuclide content with decreasing particle size. Leaching tests on these samples showed a large portion of the 226Ra and U to be soluble in dilute hydrochloric acid. Radon-emanation coefficients measured for bulk samples of contaminated soil were about 20%. Recovery of residual uranium and vanadium, as an adjunct to any remedial action program, appears unlikely due to economic considerations.

  12. Isolation of antimicrobial producing Actinobacteria from soil samples.

    Science.gov (United States)

    Elbendary, Afaf Ahmed; Hessain, Ashgan Mohamed; El-Hariri, Mahmoud Darderi; Seida, Ahmed Adel; Moussa, Ihab Mohamed; Mubarak, Ayman Salem; Kabli, Saleh A; Hemeg, Hassan A; El Jakee, Jakeen Kamal

    2018-01-01

    Emergence of multidrug resistant bacteria has made the search for novel bioactive compounds from natural and unexplored habitats a necessity. Actinobacteria have important bioactive substances. The present study investigated antimicrobial activity of Actinobacteria isolated from soil samples of Egypt. One hundred samples were collected from agricultural farming soil of different governorates. Twelve isolates have produced activity against the tested microorganisms ( S. aureus , Bacillus cereus , E. coli , K. pneumoniae , P. aeruginosa , S. Typhi, C. albicans , A. niger and A. flavus ). By VITEK 2 system version: 07.01 the 12 isolates were identified as Kocuria kristinae , Kocuria rosea , Streptomyces griseus , Streptomyces flaveolus and Actinobacteria . Using ethyl acetate extraction method the isolates culture's supernatants were tested by diffusion method against indicator microorganisms. These results indicate that Actinobacteria isolated from Egypt farms could be sources of antimicrobial bioactive substances.

  13. Isolation of antimicrobial producing Actinobacteria from soil samples

    Directory of Open Access Journals (Sweden)

    Afaf Ahmed Elbendary

    2018-01-01

    Full Text Available Emergence of multidrug resistant bacteria has made the search for novel bioactive compounds from natural and unexplored habitats a necessity. Actinobacteria have important bioactive substances. The present study investigated antimicrobial activity of Actinobacteria isolated from soil samples of Egypt. One hundred samples were collected from agricultural farming soil of different governorates. Twelve isolates have produced activity against the tested microorganisms (S. aureus, Bacillus cereus, E. coli, K. pneumoniae, P. aeruginosa, S. Typhi, C. albicans, A. niger and A. flavus. By VITEK 2 system version: 07.01 the 12 isolates were identified as Kocuria kristinae, Kocuria rosea, Streptomyces griseus, Streptomyces flaveolus and Actinobacteria. Using ethyl acetate extraction method the isolates culture’s supernatants were tested by diffusion method against indicator microorganisms. These results indicate that Actinobacteria isolated from Egypt farms could be sources of antimicrobial bioactive substances.

  14. Amounts of mercury in soil of some golf course sites

    Energy Technology Data Exchange (ETDEWEB)

    MacLean, A J; Stone, B; Cordukes, W E

    1973-01-01

    Mercurial compounds are widely used for controlling diseases of turfgrass of golf courses, but the fungicides are usually confined to the greens. Composite soil samples were obtained from three golf courses in the Ottawa and Ontario region of Canada. Samples from the turf and surface layer of soil were analyzed and high amounts of mercury were found. The soil of No.I course was a sand; No.II was a sandy loam in the surface and a loam below; and No. III was a loam in the surface layer and a clay loam below. The pH of the surface layer was 6.4 in No. I, 7.5 in No. II, and 6.0 in No. III. The amounts of Hg in the turf were high near the green but they decreased with distance. Fairway III contained the highest amounts of Hg and there was evidence of it leaching to a depth of 90 cm at the edge of the green. The particularly high amounts of Hg in no III were in accord with the liberal use of mercurial fungicides on this course in the period 1912-64. The leaching of Hg depends on amounts of organic matter and the clay in the soil.

  15. Bioavailability and bioaccessibility of petroleum hydrocarbons in contaminated site soils

    International Nuclear Information System (INIS)

    Stephenson, G.; Angell, R.; Strive, E.; Ma, W.

    2010-01-01

    Although the bioavailability and/or bioaccessibility of contaminants in soil can be measured by various ecological receptors, the methods that are suitable for metals do not necessarily work well for petroleum hydrocarbons (PHCs). In this study, several biological and chemical methods were used at various PHC contaminated sites to find the most fitting method for different soil types in terms of predicting the biological responses of organisms as measured by standard single species toxicity tests. Organisms such as plants, earthworms, and collembolan were exposed to soils with different PHC concentrations. Multiple endpoints were then measured to evaluate the biological responses. The exposure concentrations for the 4 CCME hydrocarbon fractions were measured using hexane:acetone extraction as well as extractions with cyclodextrin, and a mixture of enzymes to simulate the gastro-intestinal fluid of an earthworm. The estimated exposure concentrations depended on the extraction method. The study showed that existing methodologies must be modified in order to better estimate the biological effect of PHCs in soil. Comparative data was presented and discussed along with proposed methodological modifications.

  16. Bioavailability and bioaccessibility of petroleum hydrocarbons in contaminated site soils

    Energy Technology Data Exchange (ETDEWEB)

    Stephenson, G.; Angell, R.; Strive, E.; Ma, W. [Stantec Consulting Ltd., Surrey, BC (Canada)

    2010-07-01

    Although the bioavailability and/or bioaccessibility of contaminants in soil can be measured by various ecological receptors, the methods that are suitable for metals do not necessarily work well for petroleum hydrocarbons (PHCs). In this study, several biological and chemical methods were used at various PHC contaminated sites to find the most fitting method for different soil types in terms of predicting the biological responses of organisms as measured by standard single species toxicity tests. Organisms such as plants, earthworms, and collembolan were exposed to soils with different PHC concentrations. Multiple endpoints were then measured to evaluate the biological responses. The exposure concentrations for the 4 CCME hydrocarbon fractions were measured using hexane:acetone extraction as well as extractions with cyclodextrin, and a mixture of enzymes to simulate the gastro-intestinal fluid of an earthworm. The estimated exposure concentrations depended on the extraction method. The study showed that existing methodologies must be modified in order to better estimate the biological effect of PHCs in soil. Comparative data was presented and discussed along with proposed methodological modifications.

  17. Molecular identification of Coccidioides spp. in soil samples from Brazil

    OpenAIRE

    de Macêdo, Regina CL; Rosado, Alexandre S; da Mota, Fabio F; Cavalcante, Maria AS; Eulálio, Kelsen D; Filho, Antônio D; Martins, Liline MS; Lazéra, Márcia S; Wanke, Bodo

    2011-01-01

    Abstract Background Since 1991 several outbreaks of acute coccidioidomycosis (CM) were diagnosed in the semi-arid Northeast of Brazil, mainly related to disturbance of armadillo burrows caused by hunters while digging them for the capture of these animals. This activity causes dust contaminated with arthroconidia of Coccidioides posadasii, which, once inhaled, cause the mycosis. We report on the identification of C. posadasii in soil samples related to outbreaks of CM. Results Twenty four soi...

  18. Gamma spectroscopy analysis of archived Marshall Island soil samples

    International Nuclear Information System (INIS)

    Herman, S.; Hoffman, K.; Lavelle, K.; Trauth, A.; Glover, S.E.; Connick, W.; Spitz, H.; LaMont, S.P.; Hamilton, T.

    2016-01-01

    Four samples of archival Marshall Islands soil were subjected to non-destructive, broad energy (17 keV-2.61 MeV) gamma-ray spectrometry analysis using a series of different high-resolution germanium detectors. These archival samples were collected in 1967 from different locations on Bikini Atoll and were contaminated with a range of fission and activation products, and other nuclear material from multiple weapons tests. Unlike samples collected recently, these samples have been stored in sealed containers and have been unaffected by approximately 50 years of weathering. Initial results show that the samples contained measurable but proportionally different concentrations of plutonium, 241 Am, and 137 Cs, and 60 Co. (author)

  19. Initial data of seismic input and soil conditions of Kozloduy NPP site. Extension to Part 2 soil conditions, issued October '93

    International Nuclear Information System (INIS)

    Boyadjiev, Z.

    1995-01-01

    On the basis of the results of the carried out experimental (laboratory and in situ) investigations of the dynamic characteristics, the following conclusions for the Kozloduy NPP site are presented. (1) The established through experimental studies relationships for the shear module and the damping factor as strain dependent of representative samples of soils of the site profile, can be used for all similar soils in the profile in the different parts of the site, taking into account the possible differences by means of the initial shear module in the normalized relationship for the respective generalized soil type. (2) When solving the problems of the site response and the 'soil - structure analysis', the geotechnical seismic model of the 'free field' profile can be assumed for all parts of the NPP site. (3) The changes of the lithological profile in different parts of the site, in respect to type and thickness, as well as in view of the different way and depth of the NPP structures foundation, make it necessary the elaboration of a geotechnical seismic model of the profile below the foundation plates of the reactor buildings of the NPP units in each particular case. These models can be made out on the basis of the summarized data about the shear velocities of the soil types, the lithological data of the studied boreholes in these places and the data having natural bulk density from 30 - 40 m depth determined by the laboratory studies of samples of these soils, assuming with approximation that the geotechnical seismic model below this depth is the same as the one of the 'free field'. (4) Studies have been carried out through in situ and laboratory studies of all the fundamental structures on the NPP site and the results of them are sufficient as an addition to the present initial data for solving the problems of the site response and the 'soil-structure inter-action' analyses of each structure

  20. Molecular identification of Coccidioides spp. in soil samples from Brazil.

    Science.gov (United States)

    de Macêdo, Regina C L; Rosado, Alexandre S; da Mota, Fabio F; Cavalcante, Maria A S; Eulálio, Kelsen D; Filho, Antônio D; Martins, Liline M S; Lazéra, Márcia S; Wanke, Bodo

    2011-05-16

    Since 1991 several outbreaks of acute coccidioidomycosis (CM) were diagnosed in the semi-arid Northeast of Brazil, mainly related to disturbance of armadillo burrows caused by hunters while digging them for the capture of these animals. This activity causes dust contaminated with arthroconidia of Coccidioides posadasii, which, once inhaled, cause the mycosis. We report on the identification of C. posadasii in soil samples related to outbreaks of CM. Twenty four soil samples had their DNA extracted and subsequently submitted to a semi-nested PCR technique using specific primers. While only 6 (25%) soil samples were positive for C. posadasii by mice inoculation, all (100%) were positive by the molecular tool. This methodology represents a simple, sensitive and specific molecular technique to determine the environmental distribution of Coccidioides spp. in endemic areas, but cannot distinguish the species. Moreover, it may be useful to identify culture isolates. Key-words: 1. Coccidioidomycosis. 2. Coccidioides spp. 3. C. posadasii. 4. Semi-arid. 5. Semi-nested PCR.

  1. Molecular identification of Coccidioides spp. in soil samples from Brazil

    Directory of Open Access Journals (Sweden)

    Filho Antônio D

    2011-05-01

    Full Text Available Abstract Background Since 1991 several outbreaks of acute coccidioidomycosis (CM were diagnosed in the semi-arid Northeast of Brazil, mainly related to disturbance of armadillo burrows caused by hunters while digging them for the capture of these animals. This activity causes dust contaminated with arthroconidia of Coccidioides posadasii, which, once inhaled, cause the mycosis. We report on the identification of C. posadasii in soil samples related to outbreaks of CM. Results Twenty four soil samples had their DNA extracted and subsequently submitted to a semi-nested PCR technique using specific primers. While only 6 (25% soil samples were positive for C. posadasii by mice inoculation, all (100% were positive by the molecular tool. Conclusion This methodology represents a simple, sensitive and specific molecular technique to determine the environmental distribution of Coccidioides spp. in endemic areas, but cannot distinguish the species. Moreover, it may be useful to identify culture isolates. Key-words: 1. Coccidioidomycosis. 2. Coccidioides spp. 3. C. posadasii. 4. Semi-arid. 5. Semi-nested PCR

  2. An intercomparison of sampling techniques among five European laboratories for measurements of radiocaesium in upland pasture and soil

    International Nuclear Information System (INIS)

    Nielsen, S.P.; Aarkrog, A.; Colgan, P.A.; McGee, E.; Synnott, H.J.; Johansson, K.J.; Horrill, A.D.; Kennedy, V.H.; Barbayiannis, N.

    1992-02-01

    An intercomparison of sampling procedures used by five European laboratories for the determination of radiocaesium in vegetation and peaty soil was carried out at two locations in Cumbria. The soil sampling procedures included th ecollection of depth profiles in order to obtain information on the vertical distribution of radiocaesium in addition to the total deposition. The number of samples taken by each laboratory varied from one to five. The multiple sampling has given information on the homogeneity of the parameters studied at each location. The parameters comprise soil bulk densities, total deposition of 137 Cs, deposition of 137 Cs in three soil layers, biomass densities, concentrations of 137 Cs in pasture, and activity ratios ( 134 Cs/ 137 Cs) in soil and vegetation. The determination of total deposition of 137 Cs gave no indication of differences between the laboratories. The total depositions of 134 Cs and 137 Cs observed at one site were compared with levels obtained from another study and the two sets of data were found to be in good agreement. The results from the soil profiles do indicate significant differences between laboratories. This covers the vertical distributions of 137 Cs deposition including the 134 Cs/ 137 Cs-activity ratios as well as the soil bulk densities. One laboratory using a coring technique observed difficulties during sampling due to compression of the soil. The coring technique should thus be avoided or applied with extreme care for the sampling of depth profiles in peaty soil. The results from the sampling of pasture show no indication of differences between the laboratories. For the parameters studied the observed variabilities across soil depths and locations range from 10% to 82% in terms of relative standard deviations. A comparison across all results at the two locations indicate a 50% higher field variability at one of the sites relative to the other. (au) (24 tabs., 9 ills., 3 refs.)

  3. Radionuclide contents and radiological risk to the population due to raw minerals and soil samples from the mining sites of quality ceramic and pottery industries in Akwa Ibom, Nigeria; Contenu en radionucleides et risque radiologique aux populations d'echantillons de sols et de mineraux bruts issus de sites miniers des industries de la poterie et de la ceramique de qualite a Akwa Ibom, Nigeria

    Energy Technology Data Exchange (ETDEWEB)

    Jibiri, N.N.; Esen, N.U. [Radiation and Health Physics Research Laboratory, Department of Physics, University of Ibadan, Ibadan (Nigeria)

    2011-01-15

    Samples of domestically produced industrial raw minerals and soil samples from three mining sites of quality ceramic/smelting and pottery industries in Akwa Ibom, Nigeria, were collected and analyzed for their {sup 226}Ra, {sup 232}Th and {sup 40}K contents using gamma-ray spectroscopy. The range of activity concentrations of the radionuclides in the industrial raw minerals were 17.55 {+-} 1.63 to 80.99 {+-} 2.61 Bq.kg{sup -1} for {sup 226}Ra, 7.64 {+-} 0.77 to 23.94 {+-} 0.92 Bq.kg{sup -1} for {sup 232}Th and 63.22 {+-} 3.43 to 503.90 {+-} 5.69 Bq.kg{sup -1} for {sup 40}K, while in the soil samples they varied from 2.87 to 34.78 Bq.kg{sup -1}, 7.02 to 24.47 Bq.kg{sup -1} and 7.05 to 162.81 Bq.kg{sup -1} for {sup 226}Ra, {sup 232}Th and {sup 40}K, respectively. These results, along with the estimated absorbed dose rates, annual effective dose rates, radium equivalent (Ra{sub eq}), external hazard index (H{sub ex}), internal hazard index (H{sub in}) and representative of the gamma index (I{gamma}r) are presented. The results obtained were below the internationally accepted safe limits. Therefore, the analyzed samples could be used in the local industries in the area as component raw materials and/or as building materials. Also, the mining activities of these minerals in the area have not significantly affected the natural radiation dose levels in the area, hence the resulting dose to the population is therefore considered generally low. (authors)

  4. The effects of copper oxy chloride waste contamination on selected soil biochemical properties at disposal site

    International Nuclear Information System (INIS)

    Masaka, J.; Muunganirwa, M.

    2007-01-01

    A study was carried out at a sanitary waste disposal site for Kutsaga Tobacco Research Station, Zimbabwe, which uses large amounts of copper oxy chloride for sterilization of recycled float trays in flooded bench tobacco seedling production systems. Soil samples randomly collected from six stream bank zones (bands up the valley slope) varying in their distance ranges from the centre of both the wastewater-free and wastewater-affected paths [0-5 m (B1); 6-10 m (B2); 11-15 m (B3); 16-20 m (B4); 21-25 m (B5) and 26-30 m (B6)] in two sample depths (0-15; 15-30 cm) were analysed for metal copper, organic matter contents, and soil pH and subjected to agarized incubation for microbial counts. Results suggest that the repeated disposals of copper oxy chloride waste from tobacco float tray sanitation sinks into a creek amplify metal copper loads in the soil by 500 fold. The greatest concentrations of copper in both the topsoil and upper subsoil were recorded in the B3, B4 and B5 stream bank zones of the wastewater path. The concentration of copper was significantly lower in the middle of the waste-affected creek than that in the stream bank zones. This trend in the copper concentration coincided with the lowest acidity of the soil. Overloading the soil with copper, surprisingly, enhances the content of soil organic matter. The repeated release of copper oxy chloride waste into a stream causes an accelerated build-up of metal copper and soil acidity in the stream bank on-site while contamination is translocated to either underground water reserve or surface stream water flow in the middle of the wastewater path

  5. Increased soil organic carbon stocks under agroforestry: A survey of six different sites in France

    Science.gov (United States)

    Cardinael, Rémi; Chevallier, Tiphaine; Cambou, Aurélie; Beral, Camille; Barthes, Bernard; Dupraz, Christian; Kouakoua, Ernest; Chenu, Claire

    2017-04-01

    Introduction: Agroforestry systems are land use management systems in which trees are grown in combination with crops or pasture in the same field. In silvoarable systems, trees are intercropped with arable crops, and in silvopastoral systems trees are combined with pasture for livestock. These systems may produce forage and timber as well as providing ecosystem services such as climate change mitigation. Carbon (C) is stored in the aboveground and belowground biomass of the trees, and the transfer of organic matter from the trees to the soil can increase soil organic carbon (SOC) stocks. Few studies have assessed the impact of agroforestry systems on carbon storage in soils in temperate climates, as most have been undertaken in tropical regions. Methods: This study assessed five silvoarable systems and one silvopastoral system in France. All sites had an agroforestry system with an adjacent, purely agricultural control plot. The land use management in the inter-rows in the agroforestry systems and in the control plots were identical. The age of the study sites ranged from 6 to 41 years after tree planting. Depending on the type of soil, the sampling depth ranged from 20 to 100 cm and SOC stocks were assessed using equivalent soil masses. The aboveground biomass of the trees was also measured at all sites. Results: In the silvoarable systems, the mean organic carbon stock accumulation rate in the soil was 0.24 (0.09-0.46) Mg C ha-1 yr-1 at a depth of 30 cm and 0.65 (0.004-1.85) Mg C ha-1 yr-1 in the tree biomass. Increased SOC stocks were also found in deeper soil layers at two silvoarable sites. Young plantations stored additional SOC but mainly in the soil under the rows of trees, possibly as a result of the herbaceous vegetation growing in the rows. At the silvopastoral site, the SOC stock was significantly greater at a depth of 30-50 cm than in the control. Overall, this study showed the potential of agroforestry systems to store C in both soil and biomass in

  6. Determination of heavy metal pollution in soils from selected potentially contaminated sites in Tema

    International Nuclear Information System (INIS)

    Nyaaba, A.K.L.

    2011-01-01

    The objective of the study was to assess the concentration and determine the level of pollution by harmful heavy metals in soils from selected potentially contaminated sites in Tema. The metals of interest include; mercury, lead, cadmium, cobalt zinc, arsenic, nickel, copper and chromium. A total of forty seven (47) samples comprising thirty eight sub-samples (38) and nine (9) composite samples were collected from nine (9) different locations. These included playgrounds, steel processing factories, used Lead Acid Battery (ULAB) recycling plant, mechanic workshops and the municipal waste disposal site. The samples were prepared after which the elemental concentrations were determined using energy dispersive X-ray fluorescence (EDXRF) with a secondary target excitation arrangement (5.9 keV). The analysis of the samples yielded the following mean heavy metal concentrations in mg/kg: 424.38 (Cr); 408.68 (Ni); 14427 (Cu); 4129.87 (Zn); 1580.68 (As); 647.48 (Hg); 73361.51 (Pb) and 1176.16 (Co). The mean concentrations of heavy metals in the soils were in the following order Pb>Zn>As>Co>Cu>Hg>Cr>Ni. Mercury was detected at only two of the sites. The average heavy metals in the soils from the sites were generally high since most of them exceeded the optimum and action values of the New Dutch List. The Enrichment Factor (EF) ratios show that the enrichment of the elements in the soils ranged from deficiently to extremely highly enriched. The contamination factor show that the contamination by the heavy metals were low at some of the sites and very high at others. The geoaccumulation indices indicated that the playground (PG) has not been contaminated by any of the metals, C8 is contaminated strongly by mercury only and the contamination at the remaining sites varied from moderately contaminated to extremely contaminated by the metals. The Igeo also indicated that the elements accounting for extreme contamination are lead, arsenic, copper, zinc mercury and chromium. Lead

  7. Phthalate esters contamination in soil and plants on agricultural land near an electronic waste recycling site.

    Science.gov (United States)

    Ma, Ting Ting; Christie, Peter; Luo, Yong Ming; Teng, Ying

    2013-08-01

    The accumulation of phthalic acid esters (PAEs) in soil and plants in agricultural land near an electronic waste recycling site in east China has become a great threat to the neighboring environmental quality and human health. Soil and plant samples collected from land under different utilization, including fallow plots, vegetable plots, plots with alfalfa (Medicago sativa L.) as green manure, fallow plots under long-term flooding and fallow plots under alternating wet and dry periods, together with plant samples from relative plots were analyzed for six PAE compounds nominated as prior pollutants by USEPA. In the determined samples, the concentrations of six target PAE pollutants ranged from 0.31-2.39 mg/kg in soil to 1.81-5.77 mg/kg in various plants (dry weight/DW), and their bioconcentration factors (BCFs) ranged from 5.8 to 17.9. Health risk assessments were conducted on target PAEs, known as typical environmental estrogen analogs, based on their accumulation in the edible parts of vegetables. Preliminary risk assessment to human health from soil and daily vegetable intake indicated that DEHP may present a high-exposure risk on all ages of the population in the area by soil ingestion or vegetable consumption. The potential damage that the target PAE compounds may pose to human health should be taken into account in further comprehensive risk assessments in e-waste recycling sites areas. Moreover, alfalfa removed substantial amounts of PAEs from the soil, and its use can be considered a good strategy for in situ remediation of PAEs.

  8. A cost-saving statistically based screening technique for focused sampling of a lead-contaminated site

    International Nuclear Information System (INIS)

    Moscati, A.F. Jr.; Hediger, E.M.; Rupp, M.J.

    1986-01-01

    High concentrations of lead in soils along an abandoned railroad line prompted a remedial investigation to characterize the extent of contamination across a 7-acre site. Contamination was thought to be spotty across the site reflecting its past use in battery recycling operations at discrete locations. A screening technique was employed to delineate the more highly contaminated areas by testing a statistically determined minimum number of random samples from each of seven discrete site areas. The approach not only quickly identified those site areas which would require more extensive grid sampling, but also provided a statistically defensible basis for excluding other site areas from further consideration, thus saving the cost of additional sample collection and analysis. The reduction in the number of samples collected in ''clean'' areas of the site ranged from 45 to 60%

  9. Sr-90 determination in aqueous and soils samples

    International Nuclear Information System (INIS)

    Gonzalez Sintas, Maria F.; Cerchietti, Maria L.; Arguelles, Maria G.

    2009-01-01

    The main objective of this paper is to evaluate the method for Sr-90 determination in aqueous sample and soils. Area and Personal Dosimetry laboratory (DPA) determines the presence of Sr-90 by Liquid Scintillation (LSC) by applying method of the double window and corresponding adjustments. Calibration is performed by standard solutions of 90 Sr/ 90 Y, where spectral 90 Sr and 90 Y zones are optimized. The initial treatment of the liquid samples includes the concentration for evaporation, while the solid ones dissolve for microwave and acidic digestion. The separation of the analyte involves a selective chromatographic extraction. An average efficiency for 90 Sr of 77 ± 1 % was obtained; the factor a/b was 0,85 ± 0,01 and recovery of 82 ± 8 %. The resultant MAD was 0,10 Bq/L in aqueous samples and 0,10 Bq/g in solid samples. (author)

  10. Soil sample preparation using microwave digestion for uranium analysis

    International Nuclear Information System (INIS)

    Mohagheghi, Amir H.; Preston, Rose; Akbarzadeh, Mansoor; Bakthiar, Steven

    2000-01-01

    A new sample preparation procedure has been developed for digestion of soil samples for uranium analysis. The technique employs a microwave oven digestion system to digest the sample and to prepare it for separation chemistry and analysis. The method significantly reduces the volume of acids used, eliminates a large fraction of acid vapor emissions, and speeds up the analysis time. The samples are analyzed by four separate techniques: Gamma Spectrometry, Alpha Spectroscopy using the open digestion method, Kinetic Phosphorescence Analysis (KPA) using open digestion, and KPA by Microwave digestion technique. The results for various analytical methods are compared and used to confirm the validity of the new procedure. The details of the preparation technique along with its benefits are discussed

  11. Estimation of distribution coefficient for uranium in soil around a waste disposal site at Trombay

    International Nuclear Information System (INIS)

    Mishra, S.; Chaudhary, D.K.; Sandeep, P.; Pandit, G.G.

    2014-01-01

    Soil contamination arising from the disposed waste from industrial origin is of major concern now a days. There is a possibility of run off as well as Ieaching of contaminants from the sites to nearby aquatic bodies through rain water. Distribution coefficient, K d in soil is an important parameter to predict the migration of contaminants. However it requires precise measurement not only for the accurate prediction of contaminant transport but also for describing the sorption behavior in a particular environment. The variation of K d values for a radionuclide is due to differences in geochemical conditions, soil materials, nature of water and methods used for the measurements. For the present study soil samples have been collected near a waste disposal site at Trombay and the sorption of uranium has been studied by measuring the distribution coefficient (K d ) by laboratory batch method. In our earlier studies, we could notice substantial effect of ionic composition of ground water on the K d values of uranium. In this study we have used rain water as the sorption media and the measured K d value s were compared with previous values for different soil and water characteristics from different regions of India

  12. Hazard evaluation of soil contaminants from an abandoned oil refinery site with chemical and biological assays

    International Nuclear Information System (INIS)

    Ramanathan, A.; Yates, C.W.; Burks, S.L.

    1993-01-01

    The phytotoxic characteristics of soil and leachates of soil from an abandoned oil refinery site were evaluated with rice (Oryza sativa L.) seed germinations and root elongation assays. Toxicity of soil leachates to aquatic animals was determined with acute and martial chronic toxicity tests with Ceriodaphnia dubia, fathead minnows, and Microtox reg-sign. Soil samples from uncontaminated (control) and selected contaminated areas within the old refinery were extracted with Toxic Characteristics Leachate Procedure (TCLP), an aqueous procedure and a supercritical carbon dioxide method. Aqueous extracts of soil from the oil leaded gasoline storage area exhibited greatest effects in all tests. Aqueous extracts from this site also caused a significant reduction in rice root development. Supercritical carbon dioxide extraction proved to be a quick and non-toxic procedure for isolating non-polar organics for assay with aquatic toxicity tests. Subsequent supercritical extracts collected in solvent can help characterize the class of toxicants through HPLC and Gas Chromatography. The toxic constituents were characterized with a Toxicity Identification/Toxicity Reduction Evaluation protocol to fractionate the contaminants into conventional non-polar organics, weak acids, base-neutrals, or heavy metals for subsequent analysis

  13. Estimation of radioactivity in some sand and soil samples

    International Nuclear Information System (INIS)

    Gupta, Monika; Chauhan, R.P.; Garg, Ajay; Kumar, Sushil; Sonkawade, R.G.

    2010-01-01

    Natural radioactivity is composed of the cosmogenic and primordial radionuclides. It is common in the rocks and soil that make up our planet, water and oceans, and in our building materials and homes. Natural radioactivity in sand and soils comes from 238 U and 232 Th series and natural 40 K. Radon is formed from the decay of radium which in turn is formed from uranium. The gaseous radioactive isotope of radon from natural sources has a significant share in the total quantum of natural sources exposure to the human bwings. Gamma radiation from 238 U, 232 Th and 40 K represents the main external source of irradiation of the human body. In the present study, the activity for 238 U, 232 Th and 40 K is found to vary from 45 ± 1.2 to 97 ± 4.9 Bq/kg, 63 ± 2.0 to 132 ± 3.2 Bq/kg and 492 ± 5.9 to 1110 ± 10.5 Bq/kg, respectively in the soil samples while the variations have been observed from 63 ± 3.8 to 65 ± 3.7 Bq/kg, 86 ±2.5 to 96 ± 2.6 Bq/kg and 751 ± 7.7 to 824 ± 8.2 Bq/kg, respectively in the sand samples. (author)

  14. Prioritization to limit sampling and drilling in site investigations

    International Nuclear Information System (INIS)

    Burton, J.C.

    1992-01-01

    One of the major goals of the Environmental Research Division of Argonne National Laboratory is to develop and provide governmental agencies with technically sound, cost-effective frameworks for environmental site characterization and remedial programs. An example of the development of such a framework for preremedial site characterization is presented in this paper. Specifically, this paper presents portions of an expanded site investigation program developed for landfills suspected of containing hazardous waste. The work was sponsored by the New Mexico State Office of the US Department of Interior's Bureau of Land Management (BLM). The emphasis of the BLM program was on identifying initial characterization procedures that would decrease the need for sampling and drilling on a random grid

  15. Polluted sites and soils - Management of environmental liabilities; Sites et sols pollues - Gestion des passifs environnementaux

    Energy Technology Data Exchange (ETDEWEB)

    Le Corfec, Y.

    2011-07-01

    This book presents in a synthetic and structured way the essential notions for the understanding of the stakes of polluted sites and soils management. In particular: the regulatory context, the environmental considerations (toxicological constraints, indeterminations), the conditions of environments characterization and cleansing (interventions typology, properties of contaminants (metal trace amounts, organic compounds), decontamination and cleansing logics), and the essential conditions of risk management in an industrial or urban context. (J.S.)

  16. Nevada National Security Site Integrated Groundwater Sampling Plan, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Marutzky, Sam; Farnham, Irene

    2014-10-01

    The purpose of the Nevada National Security Site (NNSS) Integrated Sampling Plan (referred to herein as the Plan) is to provide a comprehensive, integrated approach for collecting and analyzing groundwater samples to meet the needs and objectives of the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) Underground Test Area (UGTA) Activity. Implementation of this Plan will provide high-quality data required by the UGTA Activity for ensuring public protection in an efficient and cost-effective manner. The Plan is designed to ensure compliance with the UGTA Quality Assurance Plan (QAP). The Plan’s scope comprises sample collection and analysis requirements relevant to assessing the extent of groundwater contamination from underground nuclear testing. This Plan identifies locations to be sampled by corrective action unit (CAU) and location type, sampling frequencies, sample collection methodologies, and the constituents to be analyzed. In addition, the Plan defines data collection criteria such as well-purging requirements, detection levels, and accuracy requirements; identifies reporting and data management requirements; and provides a process to ensure coordination between NNSS groundwater sampling programs for sampling of interest to UGTA. This Plan does not address compliance with requirements for wells that supply the NNSS public water system or wells involved in a permitted activity.

  17. Site-specific analysis of the cobbly soils at the Grand Junction processing site

    International Nuclear Information System (INIS)

    1992-06-01

    This report describes a recent site-specific analysis to evaluate the necessity of a recommendation to install a slurry trench around the Grand Junction processing site. The following analysis addresses the cobbly nature of the site's radiologically contaminated foundation soil, reassesses the excavation depths based on bulk radionuclide concentrations, and presents data-based arguments that support the elimination of the initially proposed slurry trench. The slurry trench around the processing site was proposed by the Remedial Action Contractor (RAC) to minimize the amount of water encountered during excavation. The initial depths of excavation developed during conceptual design, which indicated the need for a slurry wall, were reexamined as part of this analysis. This reanalysis, based on bulk concentrations of a cobbly subsoil, supports decreasing the original excavation depth, limiting the dewatering quantities to those which can be dissipated by normal construction activities. This eliminates the need for a slurry trench andseparate water treatment prior to permitted discharge

  18. Variability and scaling of hydraulic properties for 200 Area soils, Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Khaleel, R.; Freeman, E.J.

    1995-10-01

    Over the years, data have been obtained on soil hydraulic properties at the Hanford Site. Much of these data have been obtained as part of recent site characterization activities for the Environmental Restoration Program. The existing data on vadose zone soil properties are, however, fragmented and documented in reports that have not been formally reviewed and released. This study helps to identify, compile, and interpret all available data for the principal soil types in the 200 Areas plateau. Information on particle-size distribution, moisture retention, and saturated hydraulic conductivity (K{sub s}) is available for 183 samples from 12 sites in the 200 Areas. Data on moisture retention and K{sub s} are corrected for gravel content. After the data are corrected and cataloged, hydraulic parameters are determined by fitting the van Genuchten soil-moisture retention model to the data. A nonlinear parameter estimation code, RETC, is used. The unsaturated hydraulic conductivity relationship can subsequently be predicted using the van Genuchten parameters, Mualem`s model, and laboratory-measured saturated hydraulic conductivity estimates. Alternatively, provided unsaturated conductivity measurements are available, the moisture retention curve-fitting parameters, Mualem`s model, and a single unsaturated conductivity measurement can be used to predict unsaturated conductivities for the desired range of field moisture regime.

  19. Determination of radiostrontium in soil samples using a crown ether

    Energy Technology Data Exchange (ETDEWEB)

    Vajda, N; Ghods-Esphahani, A; Danesi, P R [International Atomic Energy Agency, Agency' s Laboratories, Chemistry Unit, PCI Laboratory, Seibersdorf (Austria)

    1995-07-01

    A simple and rapid method has been developed for the separation and successive determination of total radiostrontium in soil. The method consists of three basic steps: oxalate precipitation to remove bulk potassium, chromatographic separation of strontium from most inactive and radioactive interferences utilizing a crown ether (Sr. Spec, EIChroM Industries, II. USA), oxalate precipitation of strontium to evaluate the chemical yield. Radiostrontium is then determined by liquid scintillation counting of the dissolved precipitate. When 10 g samples of soil are used the sensitivity of the method is about 10 Bq/kg. The chemical yield is about 80%. The separation and determination of radiostrontium can be carried out in about 8 hours. (author)

  20. Determination of radiostrontium in soil samples using a crown ether

    International Nuclear Information System (INIS)

    Vajda, N.; Ghods-Esphahani, A.; Danesi, P.R.

    1995-01-01

    A simple and rapid method has been developed for the separation and successive determination of total radiostrontium in soil. The method consists of three basic steps: oxalate precipitation to remove bulk potassium, chromatographic separation of strontium from most inactive and radioactive interferences utilizing a crown ether (Sr. Spec, EIChroM Industries, II. USA), oxalate precipitation of strontium to evaluate the chemical yield. Radiostrontium is then determined by liquid scintillation counting of the dissolved precipitate. When 10 g samples of soil are used the sensitivity of the method is about 10 Bq/kg. The chemical yield is about 80%. The separation and determination of radiostrontium can be carried out in about 8 hours. (author)

  1. Off-Site Radiation Exposure Review Project: Phase 2 soils program

    Energy Technology Data Exchange (ETDEWEB)

    McArthur, R.D.; Miller, F.L. Jr.

    1989-12-01

    To help estimate population doses of radiation from fallout originating at the Nevada Test Site, soil samples were collected throughout the western United States. Each sample was prepared by drying and ball-milling, then analyzed by gamma-spectrometry to determine the amount of {sup 137}Cs it contained. Most samples were also analyzed by chemical separation and alpha-spectrometry to determine {sup 239 + 240}Pu and by isotope mass spectroscopy to determine the ratios of {sup 240}Pu to {sup 239}Pu and {sup 241}Pu to {sup 239}Pu. The total inventories of cesium and plutonium at 171 sites were computed from the results. This report describes the sample collection, processing, and analysis, presents the analytical results, and assesses the quality of the data. 10 refs., 9 figs., 12 tabs.

  2. Heavy Metal Contamination of Soils around a Hospital Waste Incinerator Bottom Ash Dumps Site

    Directory of Open Access Journals (Sweden)

    M. Adama

    2016-01-01

    Full Text Available Waste incineration is the main waste management strategy used in treating hospital waste in many developing countries. However, the release of dioxins, POPs, and heavy metals in fly and bottom ash poses environmental and public health concerns. To determine heavy metal (Hg, Pb, Cd, Cr, and Ag in levels in incinerator bottom ash and soils 100 m around the incinerator bottom ash dump site, ash samples and surrounding soil samples were collected at 20 m, 40 m, 60 m, 80 m, 100 m, and 1,200 m from incinerator. These were analyzed using the absorption spectrophotometer method. The geoaccumulation (Igeo and pollution load indices (PLI were used to assess the level of heavy metal contamination of surrounding soils. The study revealed high concentrations in mg/kg for, Zn (16417.69, Pb (143.80, Cr (99.30, and Cd (7.54 in bottom ash and these were above allowable limits for disposal in landfill. The study also found soils within 60 m radius of the incinerator to be polluted with the metals. It is recommended that health care waste managers be educated on the implication of improper management of incinerator bottom ash and regulators monitor hospital waste incinerator sites.

  3. Heavy Metal Contamination of Soils around a Hospital Waste Incinerator Bottom Ash Dumps Site.

    Science.gov (United States)

    Adama, M; Esena, R; Fosu-Mensah, B; Yirenya-Tawiah, D

    2016-01-01

    Waste incineration is the main waste management strategy used in treating hospital waste in many developing countries. However, the release of dioxins, POPs, and heavy metals in fly and bottom ash poses environmental and public health concerns. To determine heavy metal (Hg, Pb, Cd, Cr, and Ag) in levels in incinerator bottom ash and soils 100 m around the incinerator bottom ash dump site, ash samples and surrounding soil samples were collected at 20 m, 40 m, 60 m, 80 m, 100 m, and 1,200 m from incinerator. These were analyzed using the absorption spectrophotometer method. The geoaccumulation (I geo) and pollution load indices (PLI) were used to assess the level of heavy metal contamination of surrounding soils. The study revealed high concentrations in mg/kg for, Zn (16417.69), Pb (143.80), Cr (99.30), and Cd (7.54) in bottom ash and these were above allowable limits for disposal in landfill. The study also found soils within 60 m radius of the incinerator to be polluted with the metals. It is recommended that health care waste managers be educated on the implication of improper management of incinerator bottom ash and regulators monitor hospital waste incinerator sites.

  4. Heavy Metal Contamination of Soils around a Hospital Waste Incinerator Bottom Ash Dumps Site

    Science.gov (United States)

    Adama, M.; Esena, R.; Fosu-Mensah, B.; Yirenya-Tawiah, D.

    2016-01-01

    Waste incineration is the main waste management strategy used in treating hospital waste in many developing countries. However, the release of dioxins, POPs, and heavy metals in fly and bottom ash poses environmental and public health concerns. To determine heavy metal (Hg, Pb, Cd, Cr, and Ag) in levels in incinerator bottom ash and soils 100 m around the incinerator bottom ash dump site, ash samples and surrounding soil samples were collected at 20 m, 40 m, 60 m, 80 m, 100 m, and 1,200 m from incinerator. These were analyzed using the absorption spectrophotometer method. The geoaccumulation (I geo) and pollution load indices (PLI) were used to assess the level of heavy metal contamination of surrounding soils. The study revealed high concentrations in mg/kg for, Zn (16417.69), Pb (143.80), Cr (99.30), and Cd (7.54) in bottom ash and these were above allowable limits for disposal in landfill. The study also found soils within 60 m radius of the incinerator to be polluted with the metals. It is recommended that health care waste managers be educated on the implication of improper management of incinerator bottom ash and regulators monitor hospital waste incinerator sites. PMID:27034685

  5. Distribution of 137Cs in the Surface Soil of Serpong Nuclear Site

    International Nuclear Information System (INIS)

    Lubis, E.

    2011-01-01

    The distribution of 137 Cs in the surface soil layer of Serpong Nuclear Site (SNS) was investigated by field sampling. The Objectives of the investigation is finding the profile of 137 Cs distribution in the surface soil and the T f value that can be used for estimation of radiation dose from livestock product-man pathways. The results indicates that the 137 Cs activity in surface soil of SNS is 0.80 ± 0.29 Bq/kg, much lower than in the Antarctic. The contribution value of 137 Cs from the operation of G.A. Siwabessy Reactor until now is undetectable. The T f of 137 Cs from surface soil to Panisetum Purpureum, Setaria Spha Celata and Imperata Cylindrica grasses were 0.71 ± 0.14, 0.84 ± 0.27 and 0.81 ± 0.11 respectively. The results show that value of the transfer factor of 137 Cs varies between cultivated and uncultivated soil and also with the soils with thick humus. (author)

  6. Distribution of {sup 137}Cs in the Surface Soil of Serpong Nuclear Site

    Energy Technology Data Exchange (ETDEWEB)

    Lubis, E., E-mail: erlub@batan.go.id [Center for Radioactive Waste Technology, National Nuclear Energy Agency, Serpong (Indonesia)

    2011-08-15

    The distribution of {sup 137}Cs in the surface soil layer of Serpong Nuclear Site (SNS) was investigated by field sampling. The Objectives of the investigation is finding the profile of {sup 137}Cs distribution in the surface soil and the T{sub f} value that can be used for estimation of radiation dose from livestock product-man pathways. The results indicates that the {sup 137}Cs activity in surface soil of SNS is 0.80 {+-} 0.29 Bq/kg, much lower than in the Antarctic. The contribution value of {sup 137}Cs from the operation of G.A. Siwabessy Reactor until now is undetectable. The T{sub f} of {sup 137}Cs from surface soil to Panisetum Purpureum, Setaria Spha Celata and Imperata Cylindrica grasses were 0.71 {+-} 0.14, 0.84 {+-} 0.27 and 0.81 {+-} 0.11 respectively. The results show that value of the transfer factor of {sup 137}Cs varies between cultivated and uncultivated soil and also with the soils with thick humus. (author)

  7. Distribution of 137Cs In the Surface Soil of Serpong Nuclear Site

    Directory of Open Access Journals (Sweden)

    E. Lubis

    2011-08-01

    Full Text Available The distribution of 137Cs in the surface soil layer of Serpong Nuclear Site (SNS was investigated by field sampling. The Objectives of the investigation is finding the profile of 137Cs distribution in the surface soil and the Tf value that can be used for estimation of radiation dose from livestock product-man pathways. The results indicates that the 137Cs activity in surface soil of SNS is 0.80 ± 0,29 Bq/kg, much lower than in the Antarctic. The contribution value of 137Cs from the operation of G.A.Siwabessy Reactor until now is undetectable. The Tf of 137Cs from surface soil to Panisetum Purpureum, Setaria Spha Celata and Imperata Cylindrica grasses were 0.71 ± 0.14, 0.84 ± 0.27 and 0.81 ± 0.11 respectively. The results show that value of the transfer factor of 137Cs varies between cultivated and uncultivated soil and also with the soils with thick humus

  8. Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites

    International Nuclear Information System (INIS)

    2012-01-01

    This plan incorporates U.S. Department of Energy (DOE) Office of Legacy Management (LM) standard operating procedures (SOPs) into environmental monitoring activities and will be implemented at all sites managed by LM. This document provides detailed procedures for the field sampling teams so that samples are collected in a consistent and technically defensible manner. Site-specific plans (e.g., long-term surveillance and maintenance plans, environmental monitoring plans) document background information and establish the basis for sampling and monitoring activities. Information will be included in site-specific tabbed sections to this plan, which identify sample locations, sample frequencies, types of samples, field measurements, and associated analytes for each site. Additionally, within each tabbed section, program directives will be included, when developed, to establish additional site-specific requirements to modify or clarify requirements in this plan as they apply to the corresponding site. A flowchart detailing project tasks required to accomplish routine sampling is displayed in Figure 1. LM environmental procedures are contained in the Environmental Procedures Catalog (LMS/PRO/S04325), which incorporates American Society for Testing and Materials (ASTM), DOE, and U.S. Environmental Protection Agency (EPA) guidance. Specific procedures used for groundwater and surface water monitoring are included in Appendix A. If other environmental media are monitored, SOPs used for air, soil/sediment, and biota monitoring can be found in the site-specific tabbed sections in Appendix D or in site-specific documents. The procedures in the Environmental Procedures Catalog are intended as general guidance and require additional detail from planning documents in order to be complete; the following sections fulfill that function and specify additional procedural requirements to form SOPs. Routine revision of this Sampling and Analysis Plan will be conducted annually at the

  9. Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-10-24

    This plan incorporates U.S. Department of Energy (DOE) Office of Legacy Management (LM) standard operating procedures (SOPs) into environmental monitoring activities and will be implemented at all sites managed by LM. This document provides detailed procedures for the field sampling teams so that samples are collected in a consistent and technically defensible manner. Site-specific plans (e.g., long-term surveillance and maintenance plans, environmental monitoring plans) document background information and establish the basis for sampling and monitoring activities. Information will be included in site-specific tabbed sections to this plan, which identify sample locations, sample frequencies, types of samples, field measurements, and associated analytes for each site. Additionally, within each tabbed section, program directives will be included, when developed, to establish additional site-specific requirements to modify or clarify requirements in this plan as they apply to the corresponding site. A flowchart detailing project tasks required to accomplish routine sampling is displayed in Figure 1. LM environmental procedures are contained in the Environmental Procedures Catalog (LMS/PRO/S04325), which incorporates American Society for Testing and Materials (ASTM), DOE, and U.S. Environmental Protection Agency (EPA) guidance. Specific procedures used for groundwater and surface water monitoring are included in Appendix A. If other environmental media are monitored, SOPs used for air, soil/sediment, and biota monitoring can be found in the site-specific tabbed sections in Appendix D or in site-specific documents. The procedures in the Environmental Procedures Catalog are intended as general guidance and require additional detail from planning documents in order to be complete; the following sections fulfill that function and specify additional procedural requirements to form SOPs. Routine revision of this Sampling and Analysis Plan will be conducted annually at the

  10. Variations in radon-222 in soil and ground water at the Nevada Test Site

    International Nuclear Information System (INIS)

    Wollenberg, H.; Straume, T.; Smith, A.; King, C.Y.

    1977-01-01

    To help evaluate the applicability of variations of radon-222 in ground water and soil gas as a possible earthquake predictor, measurements were conducted in conjunction with underground explosions at the Nevada Test Site (NTS). Radon fluctuations in ground water have been observed during a sequence of aftershocks following the Oroville, California earthquake of 1 August 1975. The NTS measurements were designed to show if these fluctuations were in response to ground shaking; if not, they could be attributed to changes in earth strain prior to the aftershocks. Well waters were periodically sampled and soil-gas 222 Rn monitored prior to and following seven underground explosions of varying strength and distance from sampling and detector locations. Soil-gas 222 Rn contents were measured by the alpha-track method; well water 222 Rn by gamma-ray spectrometry. There was no clearly identifiable correlation between well-water radon fluctuations and individual underground tests. One prominent variation in soil-gas radon corresponded to ground shaking from a pair of underground tests in alluvium; otherwise, there was no apparent correlation between radon emanation and other explosions. Markedly lower soil-gas radon contents following the tests were probably caused by consolidation of alluvium in response to ground shaking

  11. Determination of total organic phosphorus in samples of mineral soils

    Directory of Open Access Journals (Sweden)

    Armi Kaila

    1962-01-01

    Full Text Available In this paper some observations on the estimation of organic phosphorus in mineral soils are reported. The fact is emphasized that the accuracy of all the methods available is relatively poor. Usually, there are no reasons to pay attention to differences less than about 20 ppm. of organic P. Analyses performed on 345 samples of Finnish mineral soils by the extraction method of MEHTA et. al. (10 and by a simple procedure adopted by the author (successive extractions with 4 N H2SO4 and 0.5 N NaOH at room temperature in the ratio of 1 to 100 gave, on the average, equal results. It seemed to be likely that the MEHTA method removed the organic phosphorus more completely than did the less vigorous method, but in the former the partial hydrolysis of organic phosphorus compounds tends to be higher than in the latter. An attempt was made to find out whether the differences between the respective values for organic phosphorus obtained by an ignition method and the simple extraction method could be connected with any characteristics of the soil. No correlation or only a low correlation coefficient could be calculated between the difference in the results of these two methods and e. g. the pH-value, the content of clay, organic carbon, aluminium and iron soluble in Tamm’s acid oxalate, the indicator of the phosphate sorption capacity, or the »Fe-bound» inorganic phosphorus, respectively. The absolute difference tended to increase with an increase in the content of organic phosphorus. For the 250 samples of surface soils analyzed, the ignition method gave values which were, on the average, about 50 ppm. higher than the results obtained by the extraction procedure. The corresponding difference for the 120 samples from deeper layers was about 20 ppm of organic P. The author recommends, for the present, the determination of the total soil organic phosphorus as an average of the results obtained by the ignition method and the extraction method.

  12. Evaluation of soil bioassays for use at Washington state hazardous waste sites: A pilot study

    International Nuclear Information System (INIS)

    Blakley, N.; Norton, D.; Stinson, M.; Boyer, R.

    1994-01-01

    The Washington State Department of Ecology (Ecology) is developing guidelines to assess soil toxicity at hazardous waste sites being investigated under the Washington Model Toxics Control Act Cleanup Regulation. To evaluate soil toxicity, Ecology selected five bioassay protocols -- Daphnia, Earthworm, Seedling, Fathead Minnow, and Frog Embryo Teratogenesis Assay Xenopus (FETAX) -- for use as screening level assessment tools at six State hazardous waste sites. Sites contained a variety of contaminants including metals, creosote, pesticides, and petroleum products (leaking underground storage tanks). Three locations, representing high, medium, and low levels of contamination, were samples at each site. In general, the high contaminant samples resulted in the highest toxic response in all bioassays. The order of site toxicity, as assessed by overall toxic response, is creosote, petroleum products, metals, and pesticides. Results indicate that human health standards, especially for metals, may not adequately protect some of the species tested. The FETAX bioassay had the greatest overall number of toxic responses and lowest variance. The seedling and Daphnia bioassays had lower and similar overall toxic response results, followed by the earthworm and fathead minnow. Variability was markedly highest for the seedling. The Daphnia and fathead minnow variability were similar to the FETAX level, while the earthworm variability was slightly higher

  13. Quantifying accelerated soil erosion through ecological site-based assessments of wind and water erosion

    Science.gov (United States)

    This work explores how organising soil erosion assessments using established groupings of similar soils (ecological sites) can inform systems for managing accelerated soil erosion. We evaluated aeolian sediment transport and fluvial erosion rates for five ecological sites in southern New Mexico, USA...

  14. Maize (Zea mays L.) performance in organically amended mine site soils.

    Science.gov (United States)

    Oladipo, Oluwatosin Gbemisola; Olayinka, Akinyemi; Awotoye, Olusegun Olufemi

    2016-10-01

    Organic amendments play an important role in the eco-friendly remediation of degraded mine site soils. This study investigated the quality (essential nutrients and heavy metal content) of maize grown on organically amended soils from three active mines in Nigeria. Soil samples were collected randomly at 0-15 cm depth, air-dried and sieved. Five kg of soil were amended with poultry manure and sawdust (poultry manure only, sawdust only, poultry manure-sawdust mixtures in 3:1, 2:1 and 1:1 ratios) at 10 g kg(-1). Maize (Zea mays L.) seeds were planted and watered for two consecutive periods of 8 weeks, with the control and treatment experiments set up in the screenhouse in quadruples. Harvested tissues were weighed, dried, ground and digested. Chemical properties were determined using standard methods while atomic absorption spectrophotometry was used to determine total metal concentrations (Ca, Mg, Fe, Zn, Pb, Cd and Cu). ANOVA was used to test for significant differences among treatment groups in the various parameters. Application of poultry manure-sawdust mixtures significantly (p < 0.05) enhanced tissue dry matter yield, as well as N, P, K, and Na contents while Zn, Cd, Cu and Pb were immobilized to approximately 50-100%. Treatment with sawdust alone reduced tissue nutrient content resulting in depressed plant yield while poultry manure only though enhanced crop yield, contained higher heavy metal contents. Soil amendments comprised of poultry manure-sawdust mixtures can be effective remediation strategy for mine site soils, as these organic materials help replenish soil nutrients, immobilize heavy metals, and enhance food productivity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Evaluation of soil radioactivity data from the Nevada Test Site

    International Nuclear Information System (INIS)

    1995-03-01

    Since 1951, 933 nuclear tests have been conducted at the Nevada Test Site (NTS) and test areas on the adjacent Tonopah Test Range (TTR) and Nellis Air Force Range (NAFR). Until the early 1960s. the majority of tests were atmospheric, involving detonation of nuclear explosive devices on the ground or on a tower, suspended from a balloon or dropped from an airplane. Since the signing of the Limited Test Ban Treaty in 1963, most tests have been conducted underground, although several shallow subsurface tests took place between 1962 and 1968. As a result of the aboveground and near-surface nuclear explosions, as well as ventings of underground tests, destruction of nuclear devices with conventional explosives, and nuclear-rocket engine tests, the surface soil on portions of the NTS has been contaminated with radionuclides. Relatively little consideration was given to the environmental effects of nuclear testing during the first two decades of operations at the NTS. Since the early 1970s, however, increasingly strict environmental regulations have forced greater attention to be given to contamination problems at the site and how to remediate them. One key element in the current environmental restoration program at the NTS is determining the amount and extent of radioactivity in the surface soil. The general distribution of soil radioactivity on the NTS is already well known as a result of several programs carried out in the 1970s and 1980s. However, questions have been raised as to whether the data from those earlier studies are suitable for use in the current environmental assessments and risk analyses. The primary purpose of this preliminary data review is to determine to what extent the historical data collected at the NTS can be used in the characterization/remediation process

  16. Remaining Sites Verification Package for the 100-F-52, 146-FR Radioecology and Aquatic Biology Laboratory Soil. Attachment to Waste Site Reclassification Form 2008-022

    International Nuclear Information System (INIS)

    Capron, J.M.

    2008-01-01

    The 100-F-52 waste site consisted of the soil under and around the former 146-FR Radioecology and Aquatic Biology Laboratory. The laboratory was used for studies of the effects of pre-reactor and post-reactor process water on fish eggs, young fish, and other small river creatures of interest. In accordance with this evaluation, the confirmatory sampling results support a reclassification of this site to No Action. The current site conditions achieve the remedial action objectives and the corresponding remedial action goals established in the Remaining Sites ROD. The results of confirmatory sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River

  17. Remaining Sites Verification Package for the 100-F-52, 146-FR Radioecology and Aquatic Biology Laboratory Soil, Waste Site Reclassification Form 2008-022

    Energy Technology Data Exchange (ETDEWEB)

    J. M. Capron

    2008-06-27

    The 100-F-52 waste site consisted of the soil under and around the former 146-FR Radioecology and Aquatic Biology Laboratory. The laboratory was used for studies of the effects of pre-reactor and post-reactor process water on fish eggs, young fish, and other small river creatures of interest. In accordance with this evaluation, the confirmatory sampling results support a reclassification of this site to No Action. The current site conditions achieve the remedial action objectives and the corresponding remedial action goals established in the Remaining Sites ROD. The results of confirmatory sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

  18. Monitoring well design and sampling techniques at NAPL sites

    International Nuclear Information System (INIS)

    Collins, M.; Rohrman, W.R.; Drake, K.D.

    1992-01-01

    The existence of Non-Aqueous Phase Liquids (NAPLs) at many Superfund and RCRA hazardous waste sites has become a recognized problem in recent years. The large number of sites exhibiting this problem results from the fact that many of the most frequently used industrial solvents and petroleum products can exist as NAPLs. Hazardous waste constituents occurring as NAPLs possess a common characteristic that causes great concern during groundwater contamination evaluation: while solubility in water is generally very low, it is sufficient to cause groundwater to exceed Maximum Contamination Levels (MCLs). Thus, even a small quantity of NAPL within a groundwater regime can act as a point source with the ability to contaminate vast quantities of groundwater over time. This property makes it imperative that groundwater investigations focus heavily on characterizing the nature, extent, and migration pathways of NAPLs at sites where it exists. Two types of NAPLs may exist in a groundwater system. Water-immiscible liquid constituents having a specific gravity greater than one are termed Dense Non-Aqueous Phase Liquids, while those with a specific gravity less than one are considered Light Non-Aqueous Phase Liquids. For a groundwater investigation to properly characterize the two types of NAPLs, careful consideration must be given to the placement and sampling of groundwater monitoring wells. Unfortunately, technical reviewers at EPA Region VII and the Corps of Engineers find that many groundwater investigations fall short in characterizing NAPLs because several basic considerations were overlooked. Included among these are monitoring well location and screen placement with respect to the water table and significant confining units, and the ability of the well sampling method to obtain samples of NAPL. Depending on the specific gravity of the NAPL that occurs at a site, various considerations can substantially enhance adequate characterization of NAPL contaminants

  19. Soil characterization methods for unsaturated low-level waste sites

    International Nuclear Information System (INIS)

    Wierenga, P.J.; Young, M.H.; Hills, R.G.

    1993-01-01

    To support a license application for the disposal of low-level radioactive waste (LLW), applicants must characterize the unsaturated zone and demonstrate that waste will not migrate from the facility boundary. This document provides a strategy for developing this characterization plan. It describes principles of contaminant flow and transport, site characterization and monitoring strategies, and data management. It also discusses methods and practices that are currently used to monitor properties and conditions in the soil profile, how these properties influence water and waste migration, and why they are important to the license application. The methods part of the document is divided into sections on laboratory and field-based properties, then further subdivided into the description of methods for determining 18 physical, flow, and transport properties. Because of the availability of detailed procedures in many texts and journal articles, the reader is often directed for details to the available literature. References are made to experiments performed at the Las Cruces Trench site, New Mexico, that support LLW site characterization activities. A major contribution from the Las Cruces study is the experience gained in handling data sets for site characterization and the subsequent use of these data sets in modeling studies

  20. Field sampling of residual aviation gasoline in sandy soil

    International Nuclear Information System (INIS)

    Ostendorf, D.W.; Hinlein, E.S.; Yuefeng, Xie; Leach, L.E.

    1991-01-01

    Two complementary field sampling methods for the determination of residual aviation gasoline content in the contaminated capillary fringe of a fine, uniform, sandy soil were investigated. The first method featured field extrusion of core barrels into pint-size Mason jars, while the second consisted of laboratory partitioning of intact stainless steel core sleeves. Soil samples removed from the Mason jars (in the field) and sleeve segments (in the laboratory) were subjected to methylene chloride extraction and gas chromatographic analysis to compare their aviation gasoline content. The barrel extrusion sampling method yielded a vertical profile with 0.10m resolution over an essentially continuous 5.0m interval from the ground surface to the water table. The sleeve segment alternative yielded a more resolved 0.03m vertical profile over a shorter 0.8m interval through the capillary fringe. The two methods delivered precise estimates of the vertically integrated mass of aviation gasoline at a given horizontal location, and a consistent view of the vertical profile as well. In the latter regard, a 0.2m thick lens of maximum contamination was found in the center of the capillary fringe, where moisture filled all voids smaller than the mean pore size. The maximum peak was resolved by the core sleeve data, but was partially obscured by the barrel extrusion observations, so that replicate barrels or a half-pint Mason jar size should be considered for data supporting vertical transport analyses in the absence of sleeve partitions

  1. Study of lead pollution in air, soil and water samples of Quetta city

    International Nuclear Information System (INIS)

    Khan, M.; Khan, G.M.; Akbar, S.; Panezai, M.A.; Haq, Z.U.

    2011-01-01

    This study briefly presents the collected data of lead pollution in the environment of Quetta City in Balochistan, Pakistan. The samples were collected from different sites. The analysis of lead was carried out in underground water samples, the exhaust of different vehicles, roadside and sewage soils from selected points of Quetta City. The average discharge resulted in deposition by motorcycles (29.12 g/h), cars (44.47 g/h), wagons (176.54 g/h) and buses (141.52 g/h). The maximum deposition was 222.96 g/h from auto-rickshaws. The value for lead in smoke of different vehicles seems quite high when extrapolated to the large number of such vehicles for a longer time. The concentration of lead in roadside soil varied from 73.3 mg/kg (T and T closed colony) to 731.9 mg/kg (Sirki road bus-stop). The average content of lead in sewage soil of City Nala is 1250.6 mg/kg. The level of lead was more than WHO standards for such soils. The lead quantity in all 24 tube- well water samples, was slightly above the WHO standards (10 macro g/L).The results of this study were comparable to similar study in twin cities of Rawalpindi and islamabad. (author)

  2. Multiresidual determination of pesticides in agricultural soil sample using Quechers extraction methodology

    International Nuclear Information System (INIS)

    Castro Garcia, Consuelo del Pilar

    2011-01-01

    To achieve a sustainable agricultural production there are used different organic and inorganic products, among them we found the fertilizers and pesticides. When they are applied most of the product falls to the ground, generating significant sources of pollution in the areas near the application and depending on the mobility of the pesticide, it can reach more remote areas. That is why it is important to determine the pesticide residues in soil after their application, being the selection of the extraction method crucial for the subsequent traces detection. In the present work there was evaluated the QUECHERS extraction technique, a method used in food but modified for a different and complex matrix like soil in order to achieve acceptable efficiencies multi-residue extraction of 20 pesticides and their subsequent determination by gas chromatography with electron capture and mass detection. The method was applied for the determination of pesticides in three soil samples from an agricultural site with different slopes between them. The Results indicated that 75% of the pesticides tested had acceptable efficiencies, thus meeting the objective of achieving multiresidue determination of pesticides in agricultural soil samples by extraction methodology QUECHERS. Besides, the presence of the fungicide penconazole was only detected in the three samples, being the highest concentration of pesticide found in the area with less slope (V_A_B_A_J_O) (author)

  3. Phosphatase activity in Antarctica soil samples as a biosignature of extant life

    Science.gov (United States)

    Sato, Shuji; Itoh, Yuki; Takano, Yoshinori; Fukui, Manabu; Kaneko, Takeo; Kobayashi, Kensei

    Microbial activities have been detected in such extreme terrestrial environments as deep lithosphere, a submarine hydrothermal systems, stratosphere, and Antarctica. Microorganisms have adapted to such harsh environments by evolving their biomolecules. Some of these biomolecules such as enzymes might have different characteristics from those of organisms in ordinary environments. Many biosignatures (or biomarkers) have been proposed to detect microbial activities in such extreme environments. A number of techniques are proposed to evaluate biological activities in extreme environments including cultivation methods, assay of metabolism, and analysis of bioorganic compounds like amino acids and DNA. Enzyme activities are useful signature of extant life in extreme environments. Among many enzymes, phosphatase could be a good indicator of biological activities, since phosphate esters are essential for all the living terrestrial organisms. In addition, alkaline phosphatase is known as a typical zinc-containing metalloenzyme and quite stable in environments. We analyzed phosphatase activities in Antarctica soil samples to see whether they can be used as biosignatures for extant life. In addition, we characterized phosphatases extracted from the Antarctica soil samples, and compared with those obtained from other types of environments. Antarctica surface environments are quite severe environments for life since it is extremely cold and dry and exposed to strong UV and cosmic rays. We tried to evaluate biological activities in Antarctica by measuring phosphatase activities. Surface soil samples are obtained at the Sites 1-8 near Showa Base in Antarctica during the 47th Japan Antarctic exploration mission in 2005-6. Activities of acid phosphatase (ACP) and alkaline phosphatase (ALP) are measured spectrophotometrically after mixing the powdered sample and p-nitrophenyl phosphate solution (pH 6.5 for ACP, pH 8.0 for ALP). ALP was characterized after extraction from soils with

  4. Comparison of soil solution sampling techniques to assess metal fluxes from contaminated soil to groundwater.

    Science.gov (United States)

    Coutelot, F; Sappin-Didier, V; Keller, C; Atteia, O

    2014-12-01

    The unsaturated zone plays a major role in elemental fluxes in terrestrial ecosystems. A representative chemical analysis of soil pore water is required for the interpretation of soil chemical phenomena and particularly to assess Trace Elements (TEs) mobility. This requires an optimal sampling system to avoid modification of the extracted soil water chemistry and allow for an accurate estimation of solute fluxes. In this paper, the chemical composition of soil solutions sampled by Rhizon® samplers connected to a standard syringe was compared to two other types of suction probes (Rhizon® + vacuum tube and Rhizon® + diverted flow system). We investigated the effects of different vacuum application procedures on concentrations of spiked elements (Cr, As, Zn) mixed as powder into the first 20 cm of 100-cm columns and non-spiked elements (Ca, Na, Mg) concentrations in two types of columns (SiO2 sand and a mixture of kaolinite + SiO2 sand substrates). Rhizon® was installed at different depths. The metals concentrations showed that (i) in sand, peak concentrations cannot be correctly sampled, thus the flux cannot be estimated, and the errors can easily reach a factor 2; (ii) in sand + clay columns, peak concentrations were larger, indicating that they could be sampled but, due to sorption on clay, it was not possible to compare fluxes at different depths. The different samplers tested were not able to reflect the elemental flux to groundwater and, although the Rhizon® + syringe device was more accurate, the best solution remains to be the use of a lysimeter, whose bottom is kept continuously at a suction close to the one existing in the soil.

  5. Chemical and geotechnical analyses of soil samples from Olkiluoto for studies on sorption in soils

    International Nuclear Information System (INIS)

    Lusa, M.; Aemmaelae, K.; Hakanen, M.; Lehto, J.; Lahdenperae, A.-M.

    2009-05-01

    The safety assessment of disposal of spent nuclear fuel will include an estimate on the behavior of nuclear waste nuclides in the biosphere. As a part of this estimate also the transfer of nuclear waste nuclides in the soil and sediments is to be considered. In this study soil samples were collected from three excavator pits in Olkiluoto and the geotechnical and chemical characteristics of the samples were determined. In later stage these results will be used in sorption tests. Aim of these tests is to determine the Kd-values for Cs, Tc and I and later for Mo, Nb and Cl. Results of these sorption tests will be reported later. The geotechnical characteristics studied included dry weight and organic matter content as well as grain size distribution and mineralogy analyses. Selective extractions were carried out to study the sorption of cations into different mineral types. The extractions included five steps in which the cations bound to exchangeable, carbonate, oxides of Fe and Mn, organic matter and residual fractions were determined. For all fractions ICPMS analyses were carried out. In these analyses Li, Na, Mg, K, Ca, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Sr, Mo, Cd, Cs and Pb were determined. In addition six profiles were taken from the surroundings of two excavator pits for the 137 Cs determination. Besides the samples taken for the characterization of soil, supplement samples were taken from the same layers for the separation of soil water. From the soil water pH, DOC, anions (F, Cl, NO 3 , SO 4 ) and cations (Na, Mg, K, Ca, Al, Cr, Mn, Fe, Ni, Cu, Zn, As, S, Cd, Cs, Pb, U) were determined. (orig.)

  6. Bidens tripartite L.: A Cd-accumulator confirmed by pot culture and site sampling experiment

    International Nuclear Information System (INIS)

    Wei Shuhe; Niu Rongcheng; Srivastava, Mrittunjai; Zhou Qixing; Wu Zhijie; Sun Tieheng; Hu Yahu; Li Yunmeng

    2009-01-01

    Characteristics of accumulation and tolerance of cadmium (Cd) in Bidens tripartite L. were investigated to identify Cd-accumulating properties. In this study, pot culture experiment and site sampling experiments were conducted to assess whether this plant is a heavy metal hyperaccumulator or accumulator. The results indicated that the Cd enrichment factor (concentration in plant/soil) and Cd translocation factor (concentration in shoot/root) of B. tripartite was principally >1 in pot culture and concentration gradient experiments. Shoot biomass was not reduced significantly (p -1 , the threshold concentration for a Cd-hyperaccumulator. In the site sampling experiment, B. tripartite also showed Cd-accumulator properties. Based on these results, B. tripartite could be identified as a Cd-accumulator. Thus, B. tripartite should only be considered as a Cd-accumulator.

  7. Plutonium, americium, and uranium concentrations in Nevada Test Site soil profiles

    International Nuclear Information System (INIS)

    Essington, E.H.; Gilbert, R.O.; Eberhardt, L.L.; Fowler, E.B.

    1975-01-01

    Many soil profile samples were collected by the Nevada Applied Ecology Group from five nuclear safety test sites on the Nevada Test Site and Tonopah Test Range in Nevada, U.S.A. The profile samples were analyzed for 239 Pu, 240 Pu, 241 Am, and in some cases 235 U and 238 U, in order to estimate the depth of radionuclide penetration and level of contamination at specific sampling depths after an extended period of time since deposition on the surface. Nearly 70 individual profiles were examined. About one-half of the profiles exhibited a smooth leaching pattern with more than 95 percent of the plutonium in the top 5 cm. Other profile patterns are discussed relative to mechanical disturbance of the profile after the initial deposition, accumulation of plutonium in specific zones within the soil profile, and occurrence of large amounts of plutonium in the deepest parts of the soil profile. The implications of these observations are discussed with respect to redistribution of radioactivity by wind, water, and burrowing animals, ingestion by burrowing and grazing animals, uptake by vegetation, and cleanup operations. (auth)

  8. Saturation and porosity measurements of different soil samples by gamma ray transmission

    International Nuclear Information System (INIS)

    Akbal, S.; Filiz Baytas, A.

    2000-01-01

    Gamma-ray transmission methods have been used accurately for the study of the properties of soil samples. In this study, the soil samples were collected from various regions of Turkey and a Nal (TI) detector measured the attenuation of strongly collimated monoenergetic gamma beam (from Cs-137) through soil samples. The water saturation and porosity were therefore calculated from the transmission measurements for each soil sample. (authors)

  9. Monitoring Soil Erosion of a Burn Site in the Central Basin and Range Ecoregion: Final Report on Measurements at the Gleason Fire Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Julianne [DRI; Etyemezian, Vicken [DRI; Shillito, Rose [DRI; Cablk, Mary [DRI; Fenstermaker, Lynn [DRI; Shafer, David [DOE Legacy Management

    2013-10-01

    The increase in wildfires in arid and semi-arid parts of Nevada and elsewhere in the southwestern United States has implications for post-closure management and long-term stewardship for Soil Corrective Action Units (CAUs) on the Nevada National Security Site (NNSS) for which the Nevada Field Office of the United States Department of Energy, National Nuclear Security Administration has responsibility. For many CAUs and Corrective Action Sites, where closure-in-place alternatives are now being implemented or considered, there is a chance that these sites could burn over at some time while they still pose a risk to the environment or human health, given the long half lives of some of the radionuclide contaminants. This study was initiated to examine the effects and duration of wildfire on wind and water erodibility on sites analogous to those that exist on the NNSS. The data analyzed herein were gathered at the prescribed Gleason Fire site near Ely, Nevada, a site comparable to the northern portion of the NNSS. Quantification of wind erosion was conducted with a Portable In-Situ Wind ERosion Lab (PI-SWERL) on unburned soils, and on interspace and plant understory soils within the burned area. The PI-SWERL was used to estimate emissions of suspendible particles (particulate matter with aerodynamic diameters less than or equal to 10 micrometers) at different wind speeds. Filter samples, collected from the exhaust of the PI-SWERL during measurements, were analyzed for chemical composition. Based on nearly three years of data, the Gleason Fire site does not appear to have returned to pre burn wind erosion levels. Chemical composition data of suspendible particles are variable and show a trend toward pre-burn levels, but provide little insight into how the composition has been changing over time since the fire. Soil, runoff, and sediment data were collected from the Gleason Fire site to monitor the water erosion potential over the nearly three-year period. Soil

  10. Soil contamination by brominated flame retardants in open waste dumping sites in Asian developing countries.

    Science.gov (United States)

    Eguchi, Akifimi; Isobe, Tomohiko; Ramu, Karri; Tue, Nguyen Minh; Sudaryanto, Agus; Devanathan, Gnanasekaran; Viet, Pham Hung; Tana, Rouch Seang; Takahashi, Shin; Subramanian, Annamalai; Tanabe, Shinsuke

    2013-03-01

    In Asian developing countries, large amounts of municipal wastes are dumped into open dumping sites each day without adequate management. This practice may cause several adverse environmental consequences and increase health risks to local communities. These dumping sites are contaminated with many chemicals including brominated flame retardants (BFRs) such as polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecanes (HBCDs). BFRs may be released into the environment through production processes and through the disposal of plastics and electronic wastes that contain them. The purpose of this study was to elucidate the status of BFR pollution in municipal waste dumping sites in Asian developing countries. Soil samples were collected from six open waste dumping sites and five reference sites in Cambodia, India, Indonesia, Malaysia, and Vietnam from 1999 to 2007. The results suggest that PBDEs are the dominant contaminants in the dumping sites in Asian developing countries, whereas HBCD contamination remains low. Concentrations of PBDEs and HBCDs ranged from ND to 180 μg/kg dry wt and ND to 1.4 μg/kg dry wt, respectively, in the reference sites and from 0.20 to 430 μg/kg dry wt and ND to 2.5 μg/kg dry wt, respectively, in the dumping sites. Contamination levels of PBDEs in Asian municipal dumping sites were comparable with those reported from electronic waste dismantling areas in Pearl River delta, China. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Determination of metallic elements in soils and plants in industrial and urban sites

    Energy Technology Data Exchange (ETDEWEB)

    Delearte, E; Nangniot, P; Impens, R

    1973-01-01

    The first phase of a program to study metals in soils and plants in industrial and urban sites is reported. The metals analyzed were copper, cobalt, nickel, zinc, lead, and cadmium. The soil samples were taken at increasing distances from potential emission sources with respect to dominant wind directions. Ubiquitous plants, such as Tussilago farfara L., Plantago major L., Mercurialis annua L., and Agrostis velgaris With. were used as samples for differential oscillopolarographic analyses. Soil samples taken around a zinc ore roasting plant showed very high zinc contents, and irregular distribution of cadmium and copper. Plant samples taken at different distances from the plant revealed rapid reduction of the copper, zinc, and cadmium levels with increasing distance. Very high concentrations of copper were found in plants around a petroleum refinery. Leaves of Aeer platanoides variety Schwedlerii in a town contained an average of 14.1 ppM copper, 0.7 ppM cobalt, 5.4 ppM nickel, 160 ppM zinc, 145 ppM lead, and 0.08 ppM cadmium, relative to the dry weight. The findings indicate that samples should be obtained over a period of sufficient length.

  12. Methane Transmission and Oxidation throughout the Soil Column from Three Central Florida Sites

    Science.gov (United States)

    Bond-Lamberty, B. P.; Fansler, S.; Becker, K. E.; Hinkle, C. R.; Bailey, V. L.

    2015-12-01

    When methane (CH4) is generated in anoxic soil sites, it may be subsequently re-oxidized to carbon dioxide (CO2). Understanding the controls on, and magnitudes of, these processes is necessary to accurately represent greenhouse gas production and emission from soils. We used a laboratory incubation to examine the influence of variable conditions on methane transmission and oxidation, and identify critical reaction zones throughout the soil column. Sandy soils were sampled from three different sites at Disney Wilderness Preserve (DWP), Florida, USA: a depression marsh characterized by significant surface organic matter accumulation, a dry pine flatwood site with water intrusion and organic horizon at depth (200+ cm); and an intermediate-drainage site. Contiguous, 30-cm long cores were sampled from N=4 random boreholes at each site, from the surface to the water table (varying from 90 to 240 cm). In the lab, each core was monitored for 50 hours to quantify baseline (pretreatment) gas fluxes before injection with 6 ml CH4 (an amount commensurate with previous field collar measurements) at the base of each core. We then monitored CH4 and CO2 evolution for 100 hours after injection, calculating per-gas and total C evolution. Methane emissions spiked ~10 hours after injection for all cores, peaking at 0.001 μmol/g soil/hr, ~30x larger than pre-injection flux rates. On a C basis, CO2 emissions were orders of magnitude larger, and rose significantly after injection, with elevated rates generally sustained throughout the incubation. Cores from the depression marsh and shallower depths had significantly higher fluxes of both gases. We estimate that 99.1% of the original CH4 injection was oxidized to CO2. These findings suggest either that the methane measured in the field at DWP originates from within a few centimeters of the surface, or that it is produced in much larger quantities deeper in the profile before most is subsequently oxidized. This highlights the need for

  13. Nevada National Security Site Integrated Groundwater Sampling Plan, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Farnham, Irene

    2018-03-01

    . Frenchman Flat is currently the only UGTA CAU in the CR stage. Sampling requirements for this CAU are described in Underground Test Area (UGTA) Closure Report for Corrective Action Unit 98: Frenchman Flat Nevada National Security Site, Nevada (NNSA/NFO, 2016).

  14. Plutonium measurements in Hanford DOE site waste samples

    International Nuclear Information System (INIS)

    Dewberry, R.A.; Boyce, W.T.

    1999-01-01

    Development work to prepare a method to measure absolute 239 Pu content and Pu-isotopics by ICP-MS in acidified Hanford DOE-site samples which are very high in 90 Sr, 99 Tc, and 137 Cs radioactivity and which are frequently high in organic carbon content is described. Samples with very large 90 Sr and 137 Cs contents have historically been difficult to analyze for Pu content by each of three alpha-counting techniques in use at SRS, and analysis by ICP-MS in these samples is complicated by the high organics content. An ion exchange chemical preparation is reported to obtain fraction of Pu that does not contain any fission product contribution and no interfering organics to allow measure of absolute 239 Pu and of 239 Pu through 241 Pu isotopics by ICP-MS. The method uses a 242 Pu spike to measure Pu recovery and is demonstrated in this paper with three distinct commercially available resins and with over 300 samples. Measured absolute 239 Pu contents in sixty-three spiked/unspiked duplicates have agreed within 15% precision. Overall 242 Pu recoveries were near 90% with 25% precision. Comparisons of absolute 239 Pu contents measured directly on three samples agreed within the quoted 25% uncertainty. (author)

  15. Human-Robot Site Survey and Sampling for Space Exploration

    Science.gov (United States)

    Fong, Terrence; Bualat, Maria; Edwards, Laurence; Flueckiger, Lorenzo; Kunz, Clayton; Lee, Susan Y.; Park, Eric; To, Vinh; Utz, Hans; Ackner, Nir

    2006-01-01

    NASA is planning to send humans and robots back to the Moon before 2020. In order for extended missions to be productive, high quality maps of lunar terrain and resources are required. Although orbital images can provide much information, many features (local topography, resources, etc) will have to be characterized directly on the surface. To address this need, we are developing a system to perform site survey and sampling. The system includes multiple robots and humans operating in a variety of team configurations, coordinated via peer-to-peer human-robot interaction. In this paper, we present our system design and describe planned field tests.

  16. Measurement of thermal properties of soil and concrete samples

    DEFF Research Database (Denmark)

    Pagola, Maria Alberdi; Jensen, Rasmus Lund; Madsen, Søren

    February 2016 and February 2017. The presented work mainly consists of thermal property measurements. They become important as they form the basis for dimensioning a planned ground source heat pump installation based on closed loop vertical ground heat exchangers. This report complements the report......, the measurements of the properties of the concrete are treated. The work is extended in appendixes.......This document aims to present the laboratory work undertaken to analyse the thermal properties of the soil at two test sites in Denmark and the concrete produced by Centrum Pæle A/S, used to produce the pile heat exchangers studied in the present PhD project. The tasks have been carried out between...

  17. Identification of vulnerable sites in salts affected agricultural soils from South-Eastern Spain

    Science.gov (United States)

    Acosta, Jose A.; Faz, Angel; Kalbitz, Karsten; Jansen, Boris; Silvia, Martinez-Martinez

    2010-05-01

    Soil salinization is one of the main problems in many soils under intensive agricultural practices, especially in arid and semiarid zones. Two important reasons for the occurrence of salinization are i) the use of low quality irrigation water and ii) climatic conditions reducing soil quality. The results of salinization can be quite serious. It limits the growing of crops, constrains agricultural productivity, and in severe cases, leads to the abandonment of agricultural soils. There are mainly two kinds of soil salinity: naturally occurring dry-land salinity and human-induced salinity caused by the low quality of irrigation water, excessive water and fertilizer applications. In both cases the development of plants and soil organisms is limited. Natural occurrence of salts in soils is very difficult to handle and requires higher investments than the reduction of human-induced salinity. For these reasons, identification of vulnerable sites is essential for sustainable agricultural management, especially in these semiarid and arid environments. The main aim of this study was to examine spatial and vertical distribution pattern of salts in a semi-arid study site in South-Eastern Spain in order to identify vulnerable sites. In order to achieve this objective, surface soil samples were collected in January and July 2009 at 48 sites located in a representative lemon production area close to City of Murcia, covering a surface area of 44 km2. The area was divided using a square grid of 1000 m and the samples were taken from these squares. The ionic concentrations were used as the input data for distribution maps. The software used for the spatial analysis was Arcview 3.1. An interpolation method called the Inverse Distanced Weighted (IDW) method was adopted for the interpolation of the data. The results indicated that the concentrations of most anions are higher in summer. The difference was particularly large for chloride, most likely because of its high mobility and

  18. Probabilistic Seismic Hazard Assessment Method for Nonlinear Soil Sites based on the Hazard Spectrum of Bedrock Sites

    International Nuclear Information System (INIS)

    Hahm, Dae Gi; Seo, Jeong Moon; Choi, In Kil

    2011-01-01

    For the probabilistic safety assessment of the nuclear power plants (NPP) under seismic events, the rational probabilistic seismic hazard estimation should be performed. Generally, the probabilistic seismic hazard of NPP site is represented by the uniform hazard spectrum (UHS) for the specific annual frequency. In most case, since that the attenuation equations were defined for the bedrock sites, the standard attenuation laws cannot be applied to the general soft soil sites. Hence, for the probabilistic estimation of the seismic hazard of soft soil sites, a methodology of probabilistic seismic hazard analysis (PSHA) coupled with nonlinear dynamic analyses of the soil column are required. Two methods are commonly used for the site response analysis considering the nonlinearity of sites. The one is the deterministic method and another is the probabilistic method. In the analysis of site response, there exist many uncertainty factors such as the variation of the magnitude and frequency contents of input ground motion, and material properties of soil deposits. Hence, nowadays, it is recommended that the adoption of the probabilistic method for the PSHA of soft soil deposits considering such uncertainty factors. In this study, we estimated the amplification factor of the surface of the soft soil deposits with considering the uncertainties of the input ground motions and the soil material properties. Then, we proposed the probabilistic methodology to evaluate the UHS of the soft soil site by multiplying the amplification factor to that of the bedrock site. The proposed method was applied to four typical target sites of KNGR and APR1400 NPP site categories

  19. Biodegradation of cyanide in groundwater and soils from gasworks sites in south-eastern Australia

    Energy Technology Data Exchange (ETDEWEB)

    Meehan, S.M.E.; Weaver, T.R.; Lawrence, C.R. [University of Melbourne, Parkvills, Vic. (Australia). School of Earth Sciences

    1999-07-01

    Groundwater from a gasworks site in south-eastern Australia has been found to contain high concentrations of cyanide (total), sulphate, and ammonia (1400 mg L{sup -1}, 6500 mg L{sup -1}, and 580 mg L{sup -1} respectively). Soil from another gasworks site has been found to contain 587 mg kg{sup -1} of cyanide (total), with concentrations of cyanide in the groundwater at this site being relatively low ({lt} 21 mgL{sup -1} CN(Total)). Experiments were conducted to determine the biodegradation rates of cyanide in groundwater and soils using samples from both sites. Column experiments and bioreactors were constructed to produce both aerobic and anaerobic conditions for the groundwater containing high concentrations of cyanide. Samples of water were taken periodically to analyse the pH, redox potential, temperature, and concentrations of cyanide (free and total), sulphate, ammonia, nitrate and dissolved organic carbon (DOC). Initial results indicate that concentrations of cyanide are declining in both aerobic and anaerobic conditions, with biodegradation one process producing degradation. 9 refs., 4 figs., 2 tabs.

  20. Can standard sequential extraction determinations effectively define heavy metal species in superfund site soils?

    Energy Technology Data Exchange (ETDEWEB)

    Dahlin, Cheryl L.; Williamson, Connie A.; Collins, Wesley K.; Dahlin, David C.

    2001-01-01

    Speciation and distribution of heavy metals in soils controls the degree to which metals and their compounds are mobile, extractable, and plant-available. Consequently, speciation impacts the success of remediation efforts both by defining the relationship of the contaminants with their environment and by guiding development and evaluation of workable remediation strategies. The U.S. Department of Energy, Albany Research Center (Albany, OR), under a two-year interagency project with the U.S. Environmental Protection Agency (EPA), examined the suitability of sequential extraction as a definitive means to determine species of heavy metals in soil samples. Representative soil samples, contaminated with lead, arsenic, and/or chromium, were collected by EPA personnel from two Superfund sites, the National Lead Company site in Pedricktown, NJ, and the Roebling Steel, Inc., site in Florence, NJ. Data derived from Tessier=s standard three-stage sequential-extraction procedure were compared to data from a comprehensive characterization study that combined optical- and scanning-electron microscopy (with energy-dispersive x-ray and wavelength-dispersive x-ray analyses), x-ray diffraction, and chemical analyses. The results show that standard sequential-extraction procedures that were developed for characterizing species of contaminants in river sediments may be unsuitable for sole evaluation of contaminant species in industrial-site materials (particularly those that contain larger particles of the contaminants, encapsulated contaminants, and/or man-made materials such as slags, metals, and plastics). However, each sequential extraction or comprehensive characterization procedure has it=s own strengths and weaknesses. Findings of this study indicate that the use of both approaches, during the early stages of site studies, would be a best practice. The investigation also highlights the fact that an effective speciation study does not simply identify metal contaminants as

  1. Remaining Sites Verification Package for the 100-F-46, 119-F Stack Sampling French Drain. Attachment to Waste Site Reclassification Form 2008-021

    International Nuclear Information System (INIS)

    Capron, J.M.

    2008-01-01

    The 100-F-46 french drain consisted of a 1.5 to 3 m long, vertically buried, gravel-filled pipe that was approximately 1 m in diameter. Also included in this waste site was a 5 cm cast-iron pipeline that drained condensate from the 119-F Stack Sampling Building into the 100-F-46 french drain. In accordance with this evaluation, the confirmatory sampling results support a reclassification of this site to No Action. The current site conditions achieve the remedial action objectives and the corresponding remedial action goals established in the Remaining Sites ROD. The results of confirmatory sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River

  2. Site-specific analysis of radiological and physical parameters for cobbly soils at the Gunnison, Colorado, processing site

    International Nuclear Information System (INIS)

    1993-10-01

    The remedial action at the Gunnison, Colorado, processing site is being performed under the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978 [Public Law (PL) 95-6041]. Under UMTRCA, the US Environmental Protection Agency (EPA) is charged with the responsibility of developing appropriate and applicable standards for the cleanup of radiologically contaminated land and buildings at 24 designated sites, including the Gunnison, Colorado, inactive processing site. The remedial action at the processing site will be conducted to remove the tailings and contaminated materials to meet the EPA bulk soil cleanup standards for surface and subsurface soils. The site areas disturbed by remedial action excavation will be either contoured or backfilled with radiologically uncontaminated soil and contoured to restore the site. The final contours will produce a final surface grade that will create positive drainage from the site

  3. Estimation of radioecological parameters of soil samples from a phosphatic area

    Directory of Open Access Journals (Sweden)

    Harb Shaaban

    2016-01-01

    Full Text Available The activity concentrations of natural radionuclides (226Ra, 232Th, and 40K for a set of 31 agricultural soil samples from the Nile River banks in the area of El-Sebaiya city, Aswan Governorate, Egypt were measured by gamma-spectrometry. The study revealed that the average activity concentrations of natural radionuclides 226Ra, 232Th, and 40K were 23.2 ± 2.8Bq/kg, 21.1 ± 2.8 Bq/kg, and 218.6 ± 3.7 Bq/kg, respectively. The obtained results of the activity concentrations are within the range of values reported for neighbouring areas in Egypt. The values obtained for the hazard indices and the representative level index in all sampling sites were lower than unity, showing that there is no significant risk arising from the exposure to the soil in the studied area. The absorbed dose rate and annual effective dose in air outdoors and indoors were calculated from 226Ra, 232Th, and 40K in soil, the average values being 32.64 nGy/h, 40.06 µSv, and 160.25 µSv, respectively. The absorbed dose rate at the eastof El-Sebaiya city is higher than that obtained for the west because of higher concentrations of tri-calcium phosphate in the soil. The studied area is not significantly affected by the industrial activities, except for a few isolated spots.

  4. Assessing Soil Organic C Stability at the Continental Scale: An Analysis of Soil C and Radiocarbon Profiles Across the NEON Sites

    Science.gov (United States)

    Heckman, K. A.; Gallo, A.; Hatten, J. A.; Swanston, C.; McKnight, D. M.; Strahm, B. D.; Sanclements, M.

    2017-12-01

    Soil carbon stocks have become recognized as increasingly important in the context of climate change and global C cycle modeling. As modelers seek to identify key parameters affecting the size and stability of belowground C stocks, attention has been drawn to the mineral matrix and the soil physiochemical factors influenced by it. Though clay content has often been utilized as a convenient and key explanatory variable for soil C dynamics, its utility has recently come under scrutiny as new paradigms of soil organic matter stabilization have been developed. We utilized soil cores from a range of National Ecological Observatory Network (NEON) experimental plots to examine the influence of physicochemical parameters on soil C stocks and turnover, and their relative importance in comparison to climatic variables. Soils were cored at NEON sites, sampled by genetic horizon, and density separated into light fractions (particulate organics neither occluded within aggregates nor associated with mineral surfaces), occluded fractions (particulate organics occluded within aggregates), and heavy fractions (organics associated with mineral surfaces). Bulk soils and density fractions were measured for % C and radiocarbon abundance (as a measure of C stability). Carbon and radiocarbon abundances were examined among fractions and in the context of climatic variables (temperature, precipitation, elevation) and soil physiochemical variables (% clay and pH). No direct relationships between temperature and soil C or radiocarbon abundances were found. As a whole, soil radiocarbon abundance in density fractions decreased in the order of light>heavy>occluded, highlighting the importance of both surface sorption and aggregation to the preservation of organics. Radiocarbon abundance was correlated with pH, with variance also grouping by dominate vegetation type. Soil order was also identified as an important proxy variable for C and radiocarbon abundance. Preliminary results suggest that

  5. Physico-chemical Status of Soil at the Site of UKM Research Centre, Tasik Chini, Pahang, Malaysia

    International Nuclear Information System (INIS)

    Sahibin Abdul Rahim; Wan Mohd Razi Idris; Zulfahmi Ali Rahman

    2011-01-01

    This study was carried out to determine the physico-chemical properties, nutrient and heavy metal contents in soil within the UKM Tasik Chini Research Centre. Top-soil samples were collected from three sampling transect namely T1, T2 and T3. Two soil profiles from transect 1 (T1S1and T1S3) were observed and soil samples were collected from the profiles as well as top-soil for physico-chemical, nutrient and heavy metal determination. For topsoil samples, four top-soil sampling stations (S1, S2, S3, S4) were chosen along T1, two sampling stations (S1 and S2) along T2 and three sampling stations (S1, S2, S3) along T3. The soil physical properties determined were particle size and organic matter, whereas chemical properties determined were pH, electrical conductivity (EC), cation exchange capacity (CEC), available phosphorus, potassium and magnesium, soluble nutrient, and selected heavy metals. All physico-chemical, nutrient and heavy metal determinations follow the normal standard procedures. Results showed that the textures of the soil were dominated by clay size particle. Organic matter content was high in the top-soil and decreased with depth. The average soil pH in the studied profile and in the top-soil was very acidic with values from 3.66 to 4.73. The average range of electrical conductivity in soil profile and top-soil was between 2412 μScm -1 and 2742 μScm -1 . The average CEC was low with a range between 4.86 and 12.58 meq/ 100 g. The concentration of available phosphorus, magnesium and potassium was between 1.76 and 3.32 μg/ g, 16.80 and 122.23 μg/ g, and 20.09 and 30.50 μg/ g, respectively. The concentration of soluble sulphate, nitrate-nitrogen, ammonium-nitrogen and phosphorus was between 37.50 and 1350 μg/ g, 12.17 and 90.00 μg/ g, 12.17 to 53.17 μg/ g and 0.05 to 0.62 μg/ g, respectively. The concentration of iron and lead was very high in T1S1 and in the lower horizon of profile T1S3. In general the soil of the PPTC site was very acidic and

  6. Laser ablation ICP-mass spectrometry determination of Th230 in soils at the Gunnison, Colorado UMTRA site

    International Nuclear Information System (INIS)

    Anderson, M.S.; Braymen, S.; McIntosh, R.

    1994-01-01

    This report describes an innovative technology, laser ablation-inductively couple plasma-mass spectrometry (LA-ICP-MS), operated in a mobile laboratory, to rapidly detect thorium 230 activity levels in soil samples. This technology was demonstrated on-site during November 1993 at the Gunnison, Colorado, UMTRA project site in support of their remediation effort. The LA-ICP-MS sampling and analysis technique was chosen because of the capability for rapid analysis, approximately three samples per hour, with minimal sample preparation

  7. Chemical and physical characteristics of tar samples from selected Manufactured Gas Plant (MGP) sites

    International Nuclear Information System (INIS)

    Ripp, J.; Taylor, B.; Mauro, D.; Young, M.

    1993-05-01

    A multiyear, multidisciplinary project concerning the toxicity of former Manufactured Gas Plant (MGP) tarry residues was initiated by EPRI under the Environmental Behavior of Organic Substances (EBOS) Program. This report concerns one portion of that work -- the collection and chemical characterization of tar samples from several former MGP sites. META Environmental, Inc. and Atlantic Environmental Services, Inc. were contracted by EPRI to collect several samples of tarry residues from former MGP sites with varied historical gas production processes and from several parts of the country. The eight tars collected during this program were physically very different. Some tars were fluid and easily pumped from existing wells, while other tars were thicker, semi-solid, or solid. Although care was taken to collect only tar, the nature of the residues at several sites made it impossible not to collect other material, such as soil, gravel, and plant matter. After the samples were collected, they were analyzed for 37 organic compounds, 8 metals, and cyanide. In addition, elemental analysis was performed on the tar samples for carbon, hydrogen, oxygen, sulfur and nitrogen content and several physical/chemical properties were determined for each tar. The tars were mixed together in different batches and distributed to researchers for use in animal toxicity studies. The results of this work show that, although the tars were produced from different processes and stored in different manners, they had some chemical similarities. All of the tars, with the exception of one unusual solid tar, contained similar relative abundances of polycyclic aromatic hydrocarbons (PAHs)

  8. Soil change induced by prairie dogs across three ecological sites

    Science.gov (United States)

    Prairie dogs (Cynomys spp.) can influence vegetation dynamics and landscape hydrology by altering soil properties, yet few studies have evaluated soil responses to prairie dog activities across a range of soil types. This study was conducted to quantify prairie dog effects on soil properties within...

  9. 14CO2 analysis of soil gas: Evaluation of sample size limits and sampling devices

    Science.gov (United States)

    Wotte, Anja; Wischhöfer, Philipp; Wacker, Lukas; Rethemeyer, Janet

    2017-12-01

    Radiocarbon (14C) analysis of CO2 respired from soils or sediments is a valuable tool to identify different carbon sources. The collection and processing of the CO2, however, is challenging and prone to contamination. We thus continuously improve our handling procedures and present a refined method for the collection of even small amounts of CO2 in molecular sieve cartridges (MSCs) for accelerator mass spectrometry 14C analysis. Using a modified vacuum rig and an improved desorption procedure, we were able to increase the CO2 recovery from the MSC (95%) as well as the sample throughput compared to our previous study. By processing series of different sample size, we show that our MSCs can be used for CO2 samples of as small as 50 μg C. The contamination by exogenous carbon determined in these laboratory tests, was less than 2.0 μg C from fossil and less than 3.0 μg C from modern sources. Additionally, we tested two sampling devices for the collection of CO2 samples released from soils or sediments, including a respiration chamber and a depth sampler, which are connected to the MSC. We obtained a very promising, low process blank for the entire CO2 sampling and purification procedure of ∼0.004 F14C (equal to 44,000 yrs BP) and ∼0.003 F14C (equal to 47,000 yrs BP). In contrast to previous studies, we observed no isotopic fractionation towards lighter δ13C values during the passive sampling with the depth samplers.

  10. Radiation hazard indices of soil and water samples in Northern Malaysian Peninsula.

    Science.gov (United States)

    Almayahi, B A; Tajuddin, A A; Jaafar, M S

    2012-11-01

    The radioactivity quantity and quality were determined in soil and water samples in Northern Malaysian Peninsula (NMP) using HPGe spectroscopy and GR-135 spectrometer. The (226)Ra, (232)Th and (40)K concentrations in soil samples are 57±2, 68±4 and 427±17 Bq kg(-1), respectively, whereas in water samples were found to be 2.86±0.79, 3.78±1.73 and 152±12 Bq l(-1), respectively. These concentrations are within those reported from literature in other countries in the world. The radiological hazard indices of the samples were also calculated. The mean values obtained from soil samples are 186 Bq kg(-1), 88 nGy h(-1), 108 μSv y(-1), 0.50 and 0.65 for Radium Equivalent Activity (Ra(eq)), Absorbed Dose Rates (D(R)), Annual Effective Dose Rates (ED), External Hazard Index (H(ex)) and Internal Hazard Index (H(in)) respectively, whereas, for water samples were found to be 20, 10, 13, 0.05 and 0.06, respectively. All the health hazard indices are well below their recommended limits, except in two soil sampling sites which were found to be (*)025 (1.1 H(ex)) and (*)026 (1.1 H(ex), 1.6 H(in)). The calculated and the measured gamma dose rates had a good correlation coefficient, R=0.88. Moreover, the average value radon is 20 (in the range of 7-64) Bq m(-3), a positive correlation (R=0.81) was observed between the (222)Rn and (226)Ra concentrations in samples measured by the SNC continuous radon monitor (model 1029, Sun Nuclear Corporation) and HPGe detector, respectively. Some soils in this study with H(in) and H(ex)samples, therefore, water after processing and filtration is safe and suitable for use in household and industrial purposes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Quantitative imaging of the 3-D distribution of cation adsorption sites in undisturbed soil

    Science.gov (United States)

    Keck, Hannes; Strobel, Bjarne W.; Petter Gustafsson, Jon; Koestel, John

    2017-10-01

    Several studies have shown that the distribution of cation adsorption sites (CASs) is patchy at a millimetre to centimetre scale. Often, larger concentrations of CASs in biopores or aggregate coatings have been reported in the literature. This heterogeneity has implications on the accessibility of CASs and may influence the performance of soil system models that assume a spatially homogeneous distribution of CASs. In this study, we present a new method to quantify the abundance and 3-D distribution of CASs in undisturbed soil that allows for investigating CAS densities with distance to the soil macropores. We used X-ray imaging with Ba2+ as a contrast agent. Ba2+ has a high adsorption affinity to CASs and is widely used as an index cation to measure the cation exchange capacity (CEC). Eight soil cores (approx. 10 cm3) were sampled from three locations with contrasting texture and organic matter contents. The CASs of our samples were saturated with Ba2+ in the laboratory using BaCl2 (0.3 mol L-1). Afterwards, KCl (0.1 mol L-1) was used to rinse out Ba2+ ions that were not bound to CASs. Before and after this process the samples were scanned using an industrial X-ray scanner. Ba2+ bound to CASs was then visualized in 3-D by the difference image technique. The resulting difference images were interpreted as depicting the Ba2+ bound to CASs only. The X-ray image-derived CEC correlated significantly with results of the commonly used ammonium acetate method to determine CEC in well-mixed samples. The CEC of organic-matter-rich samples seemed to be systematically overestimated and in the case of the clay-rich samples with less organic matter the CEC seemed to be systematically underestimated. The results showed that the distribution of the CASs varied spatially within most of our samples down to a millimetre scale. There was no systematic relation between the location of CASs and the soil macropore structure. We are convinced that the approach proposed here will strongly

  12. Soil stabilization mat for lunar launch/landing site

    Science.gov (United States)

    Acord, Amy L.; Cohenour, Mark W.; Ephraim, Daniel; Gochoel, Dennis; Roberts, Jefferson G.

    1990-01-01

    Facilities which are capable of handling frequent arrivals and departures of spaceships between Earth and a lunar colony are necessary. The facility must be able to provide these services with minimal interruption of operational activity within the colony. The major concerns associated with the space traffic are the dust and rock particles that will be kicked up by the rocket exhaust. As a result of the reduced gravitation of the Moon, these particles scatter over large horizontal distances. This flying debris will not only seriously interrupt the routine operations of the colony, but could cause damage to the equipment and facilities surrounding the launch site. An approach to overcome this problem is presented. A proposed design for a lunar take-off/landing mat is presented. This proposal goes beyond dealing with the usual problems of heat and load resistances associated with take-off and landing, by solving the problem of soil stabilization at the site. Through adequate stabilization, the problem of flying debris is eliminated.

  13. Search for Extralunar Materials in Apollo Soil Samples

    Science.gov (United States)

    Lucey, P. G.; Honniball, C.; Crites, S.; Taylor, G. J.; Martel, L.

    2017-12-01

    It has long been proposed that the lunar surface is a pristine collector of material from across the solar system. The Moon is exposed to the same meteorite flux as the Earth, but because its surface is unaltered by processes such as plate tectonics, aqueous alteration, or recent volcanism, the Moon may have recorded a much longer meteoritic history than the chemically and physically active Earth. By studying lunar soils at the individual grain level, we have the potential to identify and study material from across the inner solar system. We have developed three hyperspectral imaging microscopes to search a large quantity of lunar soil grains for rare lunar, and extra-lunar minerals. We are using lunar-exotic mineralogy as a tracer to detect extralunar candidates. One hyperspectral microscope covers the 1-2.5 micron region for detection of water and hydroxyl overtones in alteration minerals such as phyllosilicates. The second instrument covers the 2.5 to 5 micron region to characterize the 3 micron water region, and for detection of organics and carbonates. The third covers the thermal infrared for detection of phosphates and zeolites as well as the major lunar silicates. We are examining 1 million grains of varying sizes from Apollo 11 ,12, 14 and 16 landing sites. Using the USGS spectral library and the Tetracorder mineral mapping algorithm, we are matching library mineral spectra with the grain spectra we acquire. To validate our ability to detect and match mineral spectra, we are conducting scans of relevent mineral seperates and mixtures at the individual grain level. Results of this mineral inventory will provide contraints on various models and estimates for material transfer between the terrestrial planets.

  14. Effect of the grain size of the soil on the measured activity and variation in activity in surface and subsurface soil samples

    International Nuclear Information System (INIS)

    Sulaiti, H.A.; Rega, P.H.; Bradley, D.; Dahan, N.A.; Mugren, K.A.; Dosari, M.A.

    2014-01-01

    soil samples (0-5 cm) and 129+-7 to 299+-14 Bq/kg, in the subsurface soil samples (5-25 cm). The activity concentrations of 238U series, 232Th series and 4 degree K in the surface and deep soil samples are approximately same. The 137CS activity concentration levels in surface soil samples in four sites were found to be higher than those observed for the soil samples that been collected at a depth of 5-25 cm. They ranged from 1.65+-0.22 to 19.0:1:0.9 ijq/kg, in the surface soil samples (0-5 cm) and 0.5+-0.2 to 15.4+-0.7 Bq/kg, in the subsurface soil samples (5-25 cm). (author)

  15. Sampling and analysis plan for remediation of Operable Unit 100-IU-3 waste site 600-104

    International Nuclear Information System (INIS)

    1997-08-01

    This sampling and analysis plan (SAP) presents the rationale and strategy for the sampling and analysis activities to support remediation of 100-IU-3 Operable Unit waste site 600-104. The purpose of the proposed sampling and analysis activities is to demonstrate that time-critical remediation of the waste site for soil containing 2,4-Dichlorophonoxyacetic acid salts and esters (2,4-D) and dioxin/furan isomers at concentrations that exceed cleanup levels has been effective. This shall be accomplished by sampling various locations of the waste site before and after remediation, analyzing the samples, and comparing the results to action levels set by the Washington State Department of Ecology

  16. Sampling and analysis plan for remediation of Operable Unit 100-IU-3 waste site 600-104. Revision 1

    International Nuclear Information System (INIS)

    1997-08-01

    This sampling and analysis plan presents the rationale and strategy for the sampling and analysis activities to support remediation of 100-IU-3 Operable Unit waste site 600-104. The purpose of the proposed sampling and analysis activities is to demonstrate that time-critical remediation of the waste site for soil containing 2,4-Dichlorophenoxyacetic acid salts and esters (2,4-D) and dioxin/furan isomers at concentrations that exceed cleanup levels has been effective. This shall be accomplished by sampling various locations of the waste site before and after remediation, analyzing the samples, and comparing the results to action levels set by the Washington State Department of Ecology

  17. Open dumping of municipal solid waste and its hazardous impacts on soil and vegetation diversity at waste dumping sites of Islamabad city

    Directory of Open Access Journals (Sweden)

    Syeda Maria Ali

    2014-01-01

    Full Text Available Deteriorating soil quality and decrease in vegetation abundance are grave consequences of open waste dumping which have resulted in growing public concern. The focus of this study is to assess the contribution of open waste dumping in soil contamination and its effect on plant diversity in one of the renowned green cities of Pakistan. Surface soil samples (n = 12 + 12 were collected from both the open waste dumping areas allocated by Capital Development Authority (CDA and sub- sectors of H-belt of Islamabad city (representative of control site. The diversity of vegetation was studied at both sampling sites. Significant modifications were observed in the soil properties of the dumping sites. Soils at the disposal sites showed high pH, TDS and EC regime in comparison to control sites. Various heavy metal concentrations i.e., Lead (Pb, Copper (Cu, Nickel (Ni, Chromium (Cr and Zinc (Zn were also found to be higher at the dumping sites except for Cadmium (Cd which had a higher value in control site. A similar trend was observed in plant diversity. Control sites showed diversified variety of plants i.e., 44 plant species while this number reduced to only 32 plant species at the disposal sites. This is attributed to changes in soil characteristics at disposal sites and in its vicinity areas.

  18. Investigative studies on water contamination in Bangladesh. Primary treatment of water samples at the sampling site

    International Nuclear Information System (INIS)

    Sera, K.; Islam, Md. Shafiqul; Takatsuji, T.; Nakamura, T.; Goto, S.; Takahashi, C.; Saitoh, Y.

    2010-01-01

    Arsenic concentration in 13 well waters, 9 pond waters, 10 agricultural waters and a coconut juice taken in Comilla district, Bangladesh, where the problem of arsenic pollution is the most severe, was investigated. High-level arsenic is detected even in the well water which has been kept drinking by the people. Relatively high arsenic concentration was detected for some pond and farm waters even though the sampling was performed just after the rainy season and the waters were expected to be highly diluted. Clear relationship was observed in elemental compositions between the pond water and the coconut juice collected at the edge of the water. These results are expected to become the basic information for evaluating the risk of individual food such as cultured fishes, shrimps and farm products, and for controlling total intakes of arsenic. In order to solve the problem of transportation of water samples internationally, a simple method of target preparation performed at the sampling site was established and its validity was confirmed. All targets were prepared at the sampling sites in this study on the basis of this method. (author)

  19. Growth of plants on soils from two metalliferous sites in Rhodesia

    Energy Technology Data Exchange (ETDEWEB)

    Wiltshire, G H

    1974-07-01

    A study to determine whether species and ecotypes from metalliferous areas (copper-lead and nickel-chromium sites) have a greater tolerance of metalliferous soils than species and ecotypes from non-metalliferous sites is reported. Populations from metalliferous sites usually appeared to grow better in the copper-lead and nickel-chromium test soils than populations from non-metalliferous sites but the differences were statistically significant in only a few cases.

  20. Heavy metal levels in soil samples from highly industrialized Lagos ...

    African Journals Online (AJOL)

    Anyakora

    2013-09-05

    Sep 5, 2013 ... The effect of heavy metals on the environment is of serious concern and threatens life in all forms. Environmental ... have affected the quality of soil due to contamination of soil with heavy metals and the consequent effects on the ..... tested for remediation of chromium-contaminated soils. (Collen, 2003).

  1. Application of a visual soil examination and evaluation technique at site and farm level

    NARCIS (Netherlands)

    Sonneveld, M.P.W.; Heuvelink, G.B.M.; Moolenaar, S.W.

    2014-01-01

    Visual soil examination and evaluation (VSEE) techniques are semi-quantitative methods that provide rapid and cost-effective information on soil quality. These are mostly applied at site or field level, but there is an increased need for soil quality indicators at farm level to allow integration

  2. Evidence that soil aluminum enforces site fidelity of southern New England forest trees

    Science.gov (United States)

    S. W. Bigelow; C. D. Canham

    2010-01-01

    Tree species composition of hardwood forests of the northeastern United States corresponds with soil chemistry, and differential performance along soil calcium (Ca) gradients has been proposed as a mechanism for enforcing this fidelity of species to site. We conducted studies in a southern New England forest to test if surface-soil Ca is more important than other...

  3. Mercury pollution in the lake sediments and catchment soils of anthropogenically-disturbed sites across England.

    Science.gov (United States)

    Yang, Handong; Turner, Simon; Rose, Neil L

    2016-12-01

    Sediment cores and soil samples were taken from nine lakes and their catchments across England with varying degrees of direct human disturbance. Mercury (Hg) analysis demonstrated a range of impacts, many from local sources, resulting from differing historical and contemporary site usage and management. Lakes located in industrially important areas showed clear evidence for early Hg pollution with concentrations in sediments reaching 400-1600 ng g -1 prior to the mid-19th century. Control of inputs resulting from local management practices and a greater than 90% reduction in UK Hg emissions since 1970 were reflected by reduced Hg pollution in some lakes. However, having been a sink for Hg deposition for centuries, polluted catchment soils are now the major Hg source for most lakes and consequently recovery from reduced Hg deposition is being delayed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Variability of δ15N in soil and plants at a New Zealand hill country site: correlations with soil chemistry and nutrient inputs

    International Nuclear Information System (INIS)

    Hawke, D.J.

    2000-01-01

    This study investigated 15 N enrichment and nutrient cycling in hill country used for semi-extensive pastoral agriculture, at a site where pre-European seabird breeding occurred. Soil (>15 cm) and plant samples were taken from 18 ridgeline and sideslope transects. Three stock camps (locations which grazing animals frequent) were identified within the study area, two on the ridgeline and one on the sideslope. Soil 15 N enrichment was greatest at stock camps, and lowest where stock input was minimal. Soil natural abundance 15 N (815N) was therefore an index of stock nutrient inputs. Soil δ 15 N increased with decreasing C:N ratio, consistent with N loss through volatilisation and/or nitrate leaching from net mineralisation. Plant δ 15 N from stock camps was lower than its associated soil, implying that 15 N enrichment of plant-available N was lower than that of total soil N. However, the correlation between plant δ 15 N and soil δ 15 N varied between stock camps, indicating differences in N cycling. Olsen P was higher at stock camps, although again differences were found between stock camps. Total P and N were correlated neither with stock camps nor topography, but were higher than expected from parent material concentrations and literature results, respectively. It is postulated that significant contributions of both elements from former seabird breeding remain in the soil. Copyright (2000) CSIRO Publishing

  5. Characterization of mineral phases of agricultural soil samples of Colombian coffee using Moessbauer spectroscopy and X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Humberto Bustos, E-mail: hbustos@ut.edu.co; Lozano, Dagoberto Oyola; Martinez, Yebrayl Antonio Rojas; Pinilla, Marlene Rivera [Universidad del Tolima, Grupo Ciencia de Materiales y Tecnologia en Plasma (Colombia); Alcazar, German Antonio Perez [Universidad del Valle, Grupo Metalurgia Fisica y Teoria de las Transiciones de Fase (Colombia)

    2012-03-15

    Soil chemical analysis, X-ray diffraction (XRD) and Moessbauer spectrometry (MS) of {sup 57}Fe were used to characterize mineral phases of samples taken from the productive layer (horizon A) of agricultural coffee soil from Tolima (Colombia). Chemical analysis shows the chemical and textural parameters of samples from two different regions of Tolima, i.e., Ibague and Santa Isabel. By XRD phases like illite (I), andesine (A) and quartz (Q) in both samples were identified. The quantity of these phases is different for the two samples. The MS spectra taken at room temperature were adjusted by using five doublets, three of them associated to Fe{sup + 3} type sites and the other two to Fe{sup + 2} type sites. According to their isomer shift and quadrupole splitting the presence of phases like illite (detected by DRX), nontronite and biotite (not detected by XRD) can be postulated.

  6. In situ bioventing in deep soils at arid sites

    International Nuclear Information System (INIS)

    Frishmuth, R.A.; Ratz, J.W.; Blicker, B.R.; Hall, J.F.; Downey, D.C.

    1995-01-01

    In situ bioventing has been shown to be a cost-effective remedial alternative for vadose zone soils. The success of the technology relies on the ability of indigenous soil microorganisms to utilize petroleum hydrocarbon contaminants as a primary metabolic substrate. Soil microbial populations are typically elevated in shallow soils due to an abundance of naturally occurring substrates and nutrients, but may be limited at greater depths due to a lack of these constituents. Therefore, the effectiveness of in situ bioventing is questionable in contaminated soil zones that extend far below the ground surface. Also, because the soil microbial population relies on soil moisture to sustain hydrocarbon degradation, the viability of bioventing is questionable in arid climates, where the soil moisture content is suspected to be minimal

  7. Sampling and Analysis Plan for Release of the 105-C Below-Grade Structures and Underlying Soils

    International Nuclear Information System (INIS)

    Bauer, R.G.

    1998-02-01

    This sampling and analysis plan (SAP) presents the rationale and strategies for the sampling, field measurements, and analyses of the below-grade concrete structures from the Hanford 105-C Reactor Building and the underlying soils consistent with the land-use assumptions in the Record of Decision for the U.S. Department of Energy 100-BC-1, 100-DR-1, and 100-HR-1 Operable Units (ROD) (EPA 1995). This structure is one of nine surplus production reactors in the 100 Area of the Hanford Site. This SAP is based on the data quality objectives developed for the 105-C below-grade structures and underlying soils (BHI 1997)

  8. THE DEVELOPMENT OF SYNTHETIC SOIL MATERIALS FOR THE SUCCESSFUL RECLAMATION OF ABANDONED MINED LAND SITES

    Energy Technology Data Exchange (ETDEWEB)

    Song Jin

    2006-03-01

    Abandoned mine sites associated with coal and metal mining across the western United States have been left as unproductive wastelands. The availability of soil materials or other materials to support the restoration of the vegetative cover and enhance the recovery of such areas is limited. The restoration of these areas often requires the use of available amendments such as organic waste products or to help stabilize the soil. Many of the organic waste products, including sewage sludge, clarifier sludge, fly ash sludge, and other by-products from the agricultural industries such as compost can be employed for beneficial uses. This study looked at the feasibility of applying organic waste products to a mine soil in Montana to increase soil fertility and enhance plant productivity. Waste rock samples were tested for acid forming potential via acid base accounting. Samples cores were constructed and leached with simulated rainwater to determine amendment affect on metal leaching. A greenhouse study was completed to determine the most suitable amendment(s) for the field mine land site. Results from the acid base accounting indicate that acid formed from the waste rock would be neutralized with the alkalinity in the system. Results also show that metals in solution are easily held by organics from the amendments and not allowed to leach in to the surrounding water system. Data from the greenhouse study indicated that the amendment of sewage sludge was most promising. Application of 2% sewage sludge along with 1% sewage sludge plus 1% clarifier sludge, 2% compost, and no treatment were used for mine land application. Initial results were encouraging and it appears that sewage sludge may be a good reclamation option for mine lands.

  9. Fly pupae and puparia as potential contaminants of forensic entomology samples from sites of body discovery.

    Science.gov (United States)

    Archer, M S; Elgar, M A; Briggs, C A; Ranson, D L

    2006-11-01

    Fly pupae and puparia may contaminate forensic entomology samples at death scenes if they have originated not from human remains but from animal carcasses or other decomposing organic material. These contaminants may erroneously lengthen post-mortem interval estimates if no pupae or puparia are genuinely associated with the body. Three forensic entomology case studies are presented, in which contamination either occurred or was suspected. In the first case, blow fly puparia collected near the body were detected as contaminants because the species was inactive both when the body was found and when the deceased was last sighted reliably. The second case illustrates that contamination may be suspected at particularly squalid death scenes because of the likely presence of carcasses or organic material. The third case involves the presence at the body discovery site of numerous potentially contaminating animal carcasses. Soil samples were taken along transects to show that pupae and puparia were clustered around their probable sources.

  10. New approach to measure soil particulate organic matter in intact samples using X-ray computed micro-tomography

    Science.gov (United States)

    Kravchenko, Alexandra; Negassa, Wakene; Guber, Andrey; Schmidt, Sonja

    2014-05-01

    Particulate soil organic matter (POM) is biologically and chemically active fraction of soil organic matter. It is a source of many agricultural and ecological benefits, among which are POM's contribution to C sequestration. Most of conventional research methods for studying organic matter dynamics involve measurements conducted on pre-processed i.e., ground and sieved soil samples. Unfortunately, grinding and sieving completely destroys soil structure, the component crucial for soil functioning and C protection. Importance of a better understanding of the role of soil structure and of the physical protection that it provides to soil C cannot be overstated; and analysis of quantities, characteristics, and decomposition rates of POM in soil samples with intact structure is among the key elements of gaining such understanding. However, a marked difficulty hindering the progress in such analyses is a lack of tools for identification and quantitative analysis of POM in intact soil samples. Recent advancement in applications of X-ray computed micro-tomography (μ-CT) to soil science has given an opportunity to conduct such analyses. The objective of the current study is to develop a procedure for identification and quantitative characterization of POM within intact soil samples using X-ray μ-CT images and to test performance of the proposed procedure on a set of multiple intact soil macro-aggregates. We used 16 4-6 mm soil aggregates collected at 0-15 cm depth from a Typic Hapludalf soil at multiple field sites with diverse agricultural management history. The aggregates have been scanned at SIMBIOS Centre, Dundee, Scotland at 10 micron resolution. POM was determined from the aggregate images using the developed procedure. The procedure was based on combining image pre-processing steps with discriminant analysis classification. The first component of the procedure consisted of image pre-processing steps based on the range of gray values (GV) along with shape and size

  11. A new site for 85Kr measurements on groundwater samples

    International Nuclear Information System (INIS)

    Lange, T.; Hebert, D.

    2000-01-01

    Analysis of stable and radioactive isotopes is essential as a complement to geochemistry and geohydraulic investigations on groundwater regimes and their genesis. This is widely acknowledged also for the determination of the specific activity of 85 Kr in groundwater. The geochemical inertness and well-defined input function of 85 Kr allow estimates of groundwater age and enhance characterization of groundwater flow and components in many aquifer systems. A new site for measurement of the 85 Kr specific activity has been established at the Institute of Applied Physics at the Freiberg University, Saxony. Under normal conditions ca. 80 μl krypton are dissolved in 1 m 3 of water in contact with air. Therefore gas extraction has to be most effectively. A modified CO 2 extractor of 45 cm x 10 cm was chosen. The water is continuously pumped under pressure (3 - 4 bar) passing a Venturi-type nozzle, which simultaneously operates as a water-jet pump. The extracted gas flows through a CO 2 trap (NaOH 10 %), a H 2 O cold trap, through molecular sieves (5, 3 A) and a charcoal column, cooled by liquid nitrogen, where krypton, nitrogene and other components are adsorbed. Remaining gases re-enter the extractor at the Venturi-type nozzle. A small membrane pump supports the circulation. Due to the special design of the water outlet, contamination of the sample is avoided. Optional a compact stove heats the water to improve the extraction efficiency. If pressure supply is high enough, additional extractors can be run simultaneously. In a test run the recovery for radon was around 65 to 70 %. Further preparation steps of the raw krypton sample is performed in the laboratory. To obtain a good first enrichment a tube furnace filled with chrome powder is used to separate nitrogen and oxygen from the sample at 900 deg C. The following enrichment steps are performed by a preparation setup developed at GSF-Institute for Hydrology, Neuherberg. (author)

  12. Assessment of mycorrhizal colonisation and soil nutrients in unmanaged fire-impacted soils from two target restoration sites

    Energy Technology Data Exchange (ETDEWEB)

    Dias, J. M.; Oliveira, R. S.; Franco, A. R.; Ritz, K.; Nunan, N.; Castro, P. M. L.

    2010-07-01

    The mycorrhizal colonisation of plants grown in unmanaged soils from two restoration sites with a fire history in Northern Portugal was evaluated from the perspective of supporting restoration programmes. To promote restoration of original tree stands, Quercus ilex L. and Pinus pinaster Ait. were used as target species on two sites, denoted Site 1 and 2 respectively. The aim of the study was to assess whether mycorrhizal propagules that survived fire episodes could serve as in situ inoculum sources, and to analyse the spatial distribution of soil nutrients and mycorrhizal parameters. In a laboratory bioassay, P. pinaster and Q. ilex seedlings were grown on soils from the target sites and root colonisation by ectomycorrhizal (ECM) and arbuscular mycorrhizal (AM) fungi was determined. The ECM root colonisation levels found indicated that soil from Site 2 contained sufficient ECM propagules to serve as a primary source of inoculum for P. pinaster. The low levels of ECM and AM colonisation obtained on the roots of plants grown in soil from Site 1 indicated that the existing mycorrhizal propagules might be insufficient for effective root colonisation of Q. ilex. Different ECM morphotypes were found in plants grown in soil from the two sites. At Site 2 mycorrhizal parameters were found to be spatially structured, with significant differences in ECM colonisation and soil P concentrations between regions of either side of an existing watercourse. The spatial distribution of mycorrhizal propagules was related to edaphic parameters (total C and extractable P), and correlations between soil nutrients and mycorrhizal parameters were found. (Author) 31 refs.

  13. Heavy metals in vegetables sampled from farm and market sites in Accra metropolis, Ghana

    International Nuclear Information System (INIS)

    Fordjour, Linda Addae

    2015-07-01

    This study reports for the first time in Ghana long-term monitoring of heavy metal contamination of vegetables. As reliable residue data analysis resulting from monitoring programs in foods is of great value to the general populace; this could address the possible risk of heavy metal exposure to human health. In this study, monitoring of heavy metals (As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn) in consumable vegetables was assessed for a period of 2 years, 2013-2014. In all, a total of 479 vegetables (cabbage (Brassica oleracea), carrot (Daucus carota), cucumber (Cucumis sativus), green pepper (Capsicum annuum) and lettuce (Lactuca sativa)) were purchased from farm (production) and market sites within Accra Metropolis, Ghana. Samples were subjected to acid digestion and analyzed with atomic absorption spectrometer (AAS). All the vegetables studied contained at least two (2) or more metals; 18.99% of the samples had metal detections below the European Union (EU) guideline values, whereas 81% were above limits. Vegetables from Mallam Attah market and the Ghana Broadcasting Corporation (GBC) sites registered the highest percentage exceedances (100%) with the largest violation occurring in lettuce (97.41%). Elevated concentrations of these metals were also observed in vegetables from markets compared to the farms except As, Cd, Co and Fe. Ni and Cr were undetected in vegetables from farms, however their maximum concentrations (1.236 and 2.459 mg/kg) were recorded in lettuce at market sites. Additionally, the significant metal increases in vegetables from the markets could be due to atmospheric depositions and mode of handling by both farmers and buyers. On the other hand, studies of the soils from the various farm sites had varying mean concentrations of heavy metals, Fe (189.703), Mn (142.246) and As (9.145 mg/kg). However, all the metal levels in the soil were below EU limits, except As (24.2 mg/kg) found at Dzorwulu site, which exceeded the 20.0 mg/kg limit for As in

  14. Soil-water partition coefficients for uranium and thorium: a systematic study of Tummalapalle mining site, India

    International Nuclear Information System (INIS)

    Dalvi, Aditi; Verma, Rakesh; Kumar, Sangita D.; Reddy, A.V.R.

    2012-01-01

    The simplest and most common parameter for modeling radionuclide mobility in soils is the partition coefficient (K d ). The soil-water partition coefficient for radionuclide is affected by numerous geochemical parameters like pH, sorption to clays, presence of organic matter, iron oxides, other soil constituents and the chemical forms of the radionuclide as well as oxidation/reduction conditions and major ion chemistry. In these studies radionuclides uranium and thorium were systematically assessed for their behaviour in the soils from Tummalapalle mining site. Physico-chemical characteristics such as chemical composition, pH, CaCO 3 content and organic carbon were determined for soils and synthetic groundwater samples. Oven dried soil samples (1g) were taken in polycarbonate tube and washed with synthetic ground water till the pH of the supernatant solution remained unchanged. The soil sample was then equilibrated with 30 mL of synthetic ground water spiked with an element of interest. The pH was adjusted to its initial value by addition of small increments of dilute NaOH/HNO 3 . The tubes containing samples were gently shaken for 72 h at room temperature. On completion of the experiment, it was centrifuged using high-speed centrifugation for 30 min and the aqueous phase was separated and analysed. The blank was processed in the same manner without adding soil. Determination of U and Th in the supernatant was carried out using ICPMS. The K d of thorium was found to be two-three order of magnitude higher than that of uranium for both the soil samples assessed in this study. The presence of carbonates and organic carbon in the groundwater has a significant effect on the K d of uranium. The K d values for uranium were found to be hundred fold lower in the presence of carbonates. (author)

  15. Actinide migration from contaminated soil to surface water at the rocky flats environmental technology site

    International Nuclear Information System (INIS)

    Santschi, Peter H.; Roberts, Kimberly

    2002-01-01

    Surficial soils of the Rocky Flats Environmental Technology Site (RFETS) contain elevated levels of 239,240 Pu and 241 Am due to wind dispersal of soil particles, contaminated in the 1960's by leaking drums stored on the 903 Pad. Over the past 4 years, actinide mobility in the surface environment at RFETS, Golden, Colorado, USA, was examined through field and laboratory experiments. From measurements of total 239,240 Pu and 241 Am concentrations in storm runoff and pond discharge samples, collected during spring and summer times, it was established that most of the actinide transport from contaminated soils to streams occurred in the particulate (0.45μm) and colloidal (3kDa - 0.45μm) phases. Controlled laboratory investigations of soil resuspension, indicated that remobilization of colloid-bound Pu during soil erosion events can be enhanced by humic acids. 2-D Polyacrylamide Gel electrophoresis (PAGE) experiments of radiolabeled colloidal organic and inorganic matter, extracted from RFETS soils, suggested that colloidal Pu, which was focused at pH IEP of 4.5, is mainly associated with organic (humic acids) colloids of 10-15 kDa molecular weight. Pu(IV) oxide and inorganic colloids such as iron and aluminum oxides have pH IEP of 8-10. While some clay minerals also have pH IEP of 3-5, no Al was found coincident with Pu. This finding has important ramifications for possible remediation, erosion controls, and land-management strategies. (author)

  16. Effects of soil water saturation on sampling equilibrium and kinetics of selected polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Kim, Pil-Gon; Roh, Ji-Yeon; Hong, Yongseok; Kwon, Jung-Hwan

    2017-10-01

    Passive sampling can be applied for measuring the freely dissolved concentration of hydrophobic organic chemicals (HOCs) in soil pore water. When using passive samplers under field conditions, however, there are factors that might affect passive sampling equilibrium and kinetics, such as soil water saturation. To determine the effects of soil water saturation on passive sampling, the equilibrium and kinetics of passive sampling were evaluated by observing changes in the distribution coefficient between sampler and soil (K sampler/soil ) and the uptake rate constant (k u ) at various soil water saturations. Polydimethylsiloxane (PDMS) passive samplers were deployed into artificial soils spiked with seven selected polycyclic aromatic hydrocarbons (PAHs). In dry soil (0% water saturation), both K sampler/soil and k u values were much lower than those in wet soils likely due to the contribution of adsorption of PAHs onto soil mineral surfaces and the conformational changes in soil organic matter. For high molecular weight PAHs (chrysene, benzo[a]pyrene, and dibenzo[a,h]anthracene), both K sampler/soil and k u values increased with increasing soil water saturation, whereas they decreased with increasing soil water saturation for low molecular weight PAHs (phenanthrene, anthracene, fluoranthene, and pyrene). Changes in the sorption capacity of soil organic matter with soil water content would be the main cause of the changes in passive sampling equilibrium. Henry's law constant could explain the different behaviors in uptake kinetics of the selected PAHs. The results of this study would be helpful when passive samplers are deployed under various soil water saturations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Evaluation of inactive uranium mill tailings sites for liner requirements: Characterization and interaction of tailings, soil, and liner materials

    International Nuclear Information System (INIS)

    Relyea, J.F.; Martin, W.J.

    1982-01-01

    This paper summarizes the results of laboratory experiments using soils from Clive, Utah and tailings samples from three inactive uranium processing sites. The results are to be used to predict contaminant behavior for comparison with the regulatory criteria to decide whether a liner is needed. The interactions of leachates with soils and liner material were studied using both batch and column methods. It is determined that batch leaching tests are suitable for screening a large number of tailings samples for relative contaminant concentrations between samples but not for determining contaminant concentrations and release rates in tailings leachate. The results of column leaching tests on samples of tailings from inactive sites indicate that contaminant concentrations are highest in initial leachate from the columns and that concentrations decrease by an order of magnitude or more after one pore volume

  18. Site Specific Waste Management Instruction for the 116-F-4 soil storage unit

    International Nuclear Information System (INIS)

    Hopkins, G.G.

    1996-08-01

    This Site Specific Waste Management Instruction provides guidance for management of waste generated during the excavation and remediation of soil and debris from the 116-4 soil storage unit located at the Hanford Site in Richland, Washington. This document outlines the waste management practices that will be performed in the field to implement federal, state, and US Department of Energy requirements

  19. Fingerprinting of petroleum hydrocarbons (PHC) and other biogenic organic compounds (BOC) in oil-contaminated and background soil samples.

    Science.gov (United States)

    Wang, Zhendi; Yang, C; Yang, Z; Hollebone, B; Brown, C E; Landriault, M; Sun, J; Mudge, S M; Kelly-Hooper, F; Dixon, D G

    2012-09-01

    Total petroleum hydrocarbons (TPH) or petroleum hydrocarbons (PHC) are one of the most widespread soil contaminants in Canada, the United States and many other countries worldwide. Clean-up of PHC-contaminated soils costs the Canadian economy hundreds of millions of dollars annually. In Canada, most PHC-contaminated site evaluations are based on the methods developed by the Canadian Council of the Ministers of the Environment (CCME). However, the CCME method does not differentiate PHC from BOC (the naturally occurring biogenic organic compounds), which are co-extracted with petroleum hydrocarbons in soil samples. Consequently, this could lead to overestimation of PHC levels in soil samples. In some cases, biogenic interferences can even exceed regulatory levels (300 μg g(-1) for coarse soils and 1300 μg g(-1) for fine soils for Fraction 3, C(16)-C(34) range, in the CCME Soil Quality Level). Resulting false exceedances can trigger unnecessary and costly cleanup or remediation measures. Therefore, it is critically important to develop new protocols to characterize and quantitatively differentiate PHC and BOC in contaminated soils. The ultimate objective of this PERD (Program of Energy Research and Development) project is to correct the misconception that all detectable hydrocarbons should be regulated as toxic petroleum hydrocarbons. During 2009-2010, soil and plant samples were collected from over forty oil-contaminated and paired background sites in various provinces. The silica gel column cleanup procedure was applied to effectively remove all target BOC from the oil-contaminated sample extracts. Furthermore, a reliable GC-MS method in combination with the derivatization technique, developed in this laboratory, was used for identification and characterization of various biogenic sterols and other major biogenic compounds in these oil-contaminated samples. Both PHC and BOC in these samples were quantitatively determined. This paper reports the characterization

  20. Contaminant transport in the sub-surface soil of an uncontrolled landfill site in China: site investigation and two-dimensional numerical analysis.

    Science.gov (United States)

    Xie, Haijian; Chen, Yunmin; Thomas, Hywel R; Sedighi, Majid; Masum, Shakil A; Ran, Qihua

    2016-02-01

    A field investigation of contaminant transport beneath and around an uncontrolled landfill site in Huainan in China is presented in this paper. The research aimed at studying the migration of some chemicals present in the landfill leachate into the surrounding clayey soils after 17 years of landfill operation. The concentrations of chloride and sodium ions in the pore water of soil samples collected at depths up to 15 m were obtained through an extensive site investigation. The contents of organic matter in the soil samples were also determined. A two-dimensional numerical study of the reactive transport of sodium and chloride ion in the soil strata beneath and outside the landfill is also presented. The numerical modelling approach adopted is based on finite element/finite difference techniques. The domain size of approximately 300 × 30 m has been analysed and major chemical transport parameters/mechanisms are established via a series of calibration exercises. Numerical simulations were then performed to predict the long-term behaviour of the landfill in relation to the chemicals studied. The lateral migration distance of the chloride ions was more than 40 m which indicates that the advection and mechanical dispersion are the dominant mechanism controlling the contaminant transport at this site. The results obtained from the analysis of chloride and sodium migration also indicated a non-uniform advective flow regime of ions with depth, which were localised in the first few metres of the soil beneath the disposal site. The results of long-term simulations of contaminant transport indicated that the concentrations of ions can be 10 to 30 times larger than that related to the allowable limit of concentration values. The results of this study may be of application and interest in the assessment of potential groundwater and soil contamination at this site with a late Pleistocene clayey soil. The obtained transport properties of the soils and the contaminant transport

  1. Analysis of Mars Analogue Soil Samples Using Solid-Phase Microextraction, Organic Solvent Extraction and Gas Chromatography/Mass Spectrometry

    Science.gov (United States)

    Orzechowska, G. E.; Kidd, R. D.; Foing, B. H.; Kanik, I.; Stoker, C.; Ehrenfreund, P.

    2011-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are robust and abundant molecules in extraterrestrial environments. They are found ubiquitously in the interstellar medium and have been identified in extracts of meteorites collected on Earth. PAHs are important target molecules for planetary exploration missions that investigate the organic inventory of planets, moons and small bodies. This study is part of an interdisciplinary preparation phase to search for organic molecules and life on Mars. We have investigated PAH compounds in desert soils to determine their composition, distribution and stability. Soil samples (Mars analogue soils) were collected at desert areas of Utah in the vicinity of the Mars Desert Research Station (MDRS), in the Arequipa region in Peru and from the Jutland region of Denmark. The aim of this study was to optimize the solid-phase microextraction (SPME) method for fast screening and determination of PAHs in soil samples. This method minimizes sample handling and preserves the chemical integrity of the sample. Complementary liquid extraction was used to obtain information on five- and six-ring PAH compounds. The measured concentrations of PAHs are, in general, very low, ranging from 1 to 60 ng g(sup -1). The texture of soils is mostly sandy loam with few samples being 100% silt. Collected soils are moderately basic with pH values of 8-9 except for the Salten Skov soil, which is slightly acidic. Although the diverse and variable microbial populations of the samples at the sample sites might have affected the levels and variety of PAHs detected, SPME appears to be a rapid, viable field sampling technique with implications for use on planetary missions.

  2. Distribution coefficients of different soil types at Olkiluoto repository site and its surroundings, southwestern Finland

    Energy Technology Data Exchange (ETDEWEB)

    Lahdenperae, Anne-Maj [Saanio and Riekkola Oy, Laulukuja 4, FI-00420 Helsinki (Finland); Ikonen, Ari T.K. [Environmental Research and Assessment EnviroCase, Ltd., Hallituskatu 1 D 4, 28100 Pori (Finland)

    2014-07-01

    In Finland, the Olkiluoto Island on the western coast has been selected as a repository site for the spent nuclear fuel. Due to shallow sea areas around the island, the post-glacial crustal rebound (around 6 mm/y) is changing the landscape significantly; during the next thousands of years new soil types are emerging, the present bays will narrow and form future lakes and mires assumedly similar to those farther inland at present. The effects of terrain development are important in long-term safety assessments for the repository, especially in the biosphere assessments addressing radiation exposure of people and biota in scenarios of radionuclide releases. 'In situ' distribution coefficients, K{sub d} values are used to indicate the relevant mobility of radionuclides of concern from nuclear waste. These radionuclides have very long half-lives and long interaction times with soils, ranging from centuries to millennia. By measuring the desorption K{sub d} values of the indigenous stable elements (Ag, Cl, Cs, I, Mo, Nb, Ni, Se and Sr) from field moist samples are a valid description of slow retention processes. The 'in situ' K{sub d} desorption values are calculated for humus, peat and different mineral soil samples taken from the Olkiluoto Island and the Reference Area used as an analogue of the future terrain. The solids are extracted alternatively by HNO{sub 3}-HF and NH{sub 4}Ac (pH 4.5). The K{sub d} values are highly dependent on environmental factors, including but not limited to pH, soil type, soil horizon, soil body, texture, element chemical form, organic matter, carbon content and biological activity. This is discussed in the contribution; e.g., for several elements pH and K{sub d} values correlate - the finer the soil or sediment, the higher the K{sub d} values - and humus and peat samples have a clear correlation with the organic matter and carbon contents. The contribution also compares the 'in situ' K{sub d} values to

  3. Site-Wide Integrated Water Monitoring - Defining and Implementing Sampling Objectives to Support Site Closure - 13060

    International Nuclear Information System (INIS)

    Wilborn, Bill; Knapp, Kathryn; Farnham, Irene; Marutzky, Sam

    2013-01-01

    The Underground Test Area (UGTA) activity is responsible for assessing and evaluating the effects of the underground nuclear weapons tests on groundwater at the Nevada National Security Site (NNSS), formerly the Nevada Test Site (NTS), and implementing a corrective action closure strategy. The UGTA strategy is based on a combination of characterization, modeling studies, monitoring, and institutional controls (i.e., monitored natural attenuation). The closure strategy verifies through appropriate monitoring activities that contaminants of concern do not exceed the SDWA at the regulatory boundary and that adequate institutional controls are established and administered to ensure protection of the public. Other programs conducted at the NNSS supporting the environmental mission include the Routine Radiological Environmental Monitoring Program (RREMP), Waste Management, and the Infrastructure Program. Given the current programmatic and operational demands for various water-monitoring activities at the same locations, and the ever-increasing resource challenges, cooperative and collaborative approaches to conducting the work are necessary. For this reason, an integrated sampling plan is being developed by the UGTA activity to define sampling and analysis objectives, reduce duplication, eliminate unnecessary activities, and minimize costs. The sampling plan will ensure the right data sets are developed to support closure and efficient transition to long-term monitoring. The plan will include an integrated reporting mechanism for communicating results and integrating process improvements within the UGTA activity as well as between other U.S. Department of Energy (DOE) Programs. (authors)

  4. The Viking X ray fluorescence experiment - Sampling strategies and laboratory simulations. [Mars soil sampling

    Science.gov (United States)

    Baird, A. K.; Castro, A. J.; Clark, B. C.; Toulmin, P., III; Rose, H., Jr.; Keil, K.; Gooding, J. L.

    1977-01-01

    Ten samples of Mars regolith material (six on Viking Lander 1 and four on Viking Lander 2) have been delivered to the X ray fluorescence spectrometers as of March 31, 1977. An additional six samples at least are planned for acquisition in the remaining Extended Mission (to January 1979) for each lander. All samples acquired are Martian fines from the near surface (less than 6-cm depth) of the landing sites except the latest on Viking Lander 1, which is fine material from the bottom of a trench dug to a depth of 25 cm. Several attempts on each lander to acquire fresh rock material (in pebble sizes) for analysis have yielded only cemented surface crustal material (duricrust). Laboratory simulation and experimentation are required both for mission planning of sampling and for interpretation of data returned from Mars. This paper is concerned with the rationale for sample site selections, surface sampler operations, and the supportive laboratory studies needed to interpret X ray results from Mars.

  5. Potential of bioleaching of arsenic from ash soils from site Zemianske Kostolany

    International Nuclear Information System (INIS)

    Slebodnikova, Z.; Petkova, K.; Molnarova, M.

    2014-01-01

    The essence of this work is to study bioleaching of potentially toxic elements, arsenic, using the filamentous fungus Asperillus niger. As a model locality was chosen Zemianske Kosto.any, which represents the heart of coal mining in Slovakia. Species A. niger was isolated from anthropogenic sediments with a high content of potentially toxic elements, especially arsenic. Filamentous fungus A. niger was put on soil samples from the site model. The aim of this work is to evaluate the potential of arsenic bioleaching using the three different soil samples for analysis (1 g, 10 g and 100 g). It was found that the most efficient leaching of arsenic was achieved with furnish at 1 g of the substrate. The highest portion of arsenic was released into the medium, values range from 131.75 μg.dm -3 to 1517.55 μg.dm -3 . At the furnish 10 g of soil were released lower amounts, from 69.77 μg.dm -3 to 553.45 μg.dm -3 . Lowest bioleaching efficiency was achieved with the furnish 100 g, values are from 38.02 μg.dm -3 to 254.07 μg.dm -3 . (authors)

  6. Major and minor elements analysis in soil samples by neutron activation analysis and X-ray fluorescence

    International Nuclear Information System (INIS)

    Morcelli, Claudia Petronilho Ribeiro; Ana Maria Graciano; Enzweiler, Jacinta

    2002-01-01

    In the present work, Instrumental Neutron Activation Analysis (INAA) and X-Ray Fluorescence were employed to analyze major and minor elements in soil samples collected near Bandeirantes road. Elements of environmental interest, such as Al, Sb, As, Ba, Cd, Pb, Co, Cu, Cr, Fe, Mn, Mo, Ni, Se, V and Zn, which have reference background levels, were determined. The samples were dried in an oven at 40 deg C, were sieved (<2 mm), grinded and were analyzed by INAA and FRX. The aims of this work were: to evaluate the possible variations in the concentration levels in soil due to emission of particulate from vehicles and other anthropogenic sources; to compare the results obtained by using both techniques. This preliminary study showed that the concentration levels of the elements of environmental interest agree with reference values for tropical soils in the sampling sites, except for Ba, which presented higher values. (author)

  7. A strategy to sample nutrient dynamics across the terrestrial-aquatic interface at NEON sites

    Science.gov (United States)

    Hinckley, E. S.; Goodman, K. J.; Roehm, C. L.; Meier, C. L.; Luo, H.; Ayres, E.; Parnell, J.; Krause, K.; Fox, A. M.; SanClements, M.; Fitzgerald, M.; Barnett, D.; Loescher, H. W.; Schimel, D.

    2012-12-01

    The construction of the National Ecological Observatory Network (NEON) across the U.S. creates the opportunity for researchers to investigate biogeochemical transformations and transfers across ecosystems at local-to-continental scales. Here, we examine a subset of NEON sites where atmospheric, terrestrial, and aquatic observations will be collected for 30 years. These sites are located across a range of hydrological regimes, including flashy rain-driven, shallow sub-surface (perched, pipe-flow, etc), and deep groundwater, which likely affect the chemical forms and quantities of reactive elements that are retained and/or mobilized across landscapes. We present a novel spatial and temporal sampling design that enables researchers to evaluate long-term trends in carbon, nitrogen, and phosphorus biogeochemical cycles under these different hydrological regimes. This design focuses on inputs to the terrestrial system (atmospheric deposition, bulk precipitation), transfers (soil-water and groundwater sources/chemistry), and outputs (surface water, and evapotranspiration). We discuss both data that will be collected as part of the current NEON design, as well as how the research community can supplement the NEON design through collaborative efforts, such as providing additional datasets, including soil biogeochemical processes and trace gas emissions, and developing collaborative research networks. Current engagement with the research community working at the terrestrial-aquatic interface is critical to NEON's success as we begin construction, to ensure that high-quality, standardized and useful data are not only made available, but inspire further, cutting-edge research.

  8. Leachability and heavy metal speciation of 17-year old stabilised/solidified contaminated site soils

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Fei, E-mail: fwtiffany@gmail.com [Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ (United Kingdom); Wang, Hailing, E-mail: wanghailing@njtech.edu.cn [College of Environment, Nanjing Tech University, Nanjing 210009 (China); Al-Tabbaa, Abir, E-mail: aa22@cam.ac.uk [Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ (United Kingdom)

    2014-08-15

    Highlights: • The effectiveness of the cement-based S/S at 17 years in West Drayton site is still satisfactory. • Major leaching of Cu, Zn, Ni, Cd and Pb in all mixes took place in the Fe/Mn oxides phase. • The hydration process has been fully completed and further carbonation took place at 17 years. • Microstructure analyses show that unreacted PFA exists. - Abstract: The long-term leachability, heavy metal speciation transformation and binding mechanisms in a field stabilised/solidified contaminated soil (made ground) from West Drayton site were recently investigated following in situ auger mixing treatment with a number of cement-based binders back in 1996. Two batch leaching tests (TCLP and BS EN 12457) and a modified five step sequential extraction procedure along with X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses were employed for the testing of the 17-year-old field soil. The results of batch leaching tests show that the treatment employed remained effective at 17 years of service time, with all BS EN 12457 test samples and most of TCLP test samples satisfied drinking water standards. Sequential extraction results illustrate that the leaching of Cu, Ni, Zn, Pb and Cd in all mixes mainly occurred at the Fe/Mn phase, ranging from 43% to 83%. Amongst the five metals tested, Ni was the most stable with around 40% remained in the residual phase for all the different cement-based binder stabilised/solidified samples. XRD and SEM analyses show that the hydration process has been fully completed and further carbonation took place. In summary, this study confirms that such cement-based stabilisation/solidification (S/S) treatment can achieve satisfactory durability and thus is a reliable technique for long-term remediation of heavy metal contaminated soil.

  9. Adaptive sampling based on the cumulative distribution function of order statistics to delineate heavy-metal contaminated soils using kriging

    International Nuclear Information System (INIS)

    Juang, K.-W.; Lee, D.-Y.; Teng, Y.-L.

    2005-01-01

    Correctly classifying 'contaminated' areas in soils, based on the threshold for a contaminated site, is important for determining effective clean-up actions. Pollutant mapping by means of kriging is increasingly being used for the delineation of contaminated soils. However, those areas where the kriged pollutant concentrations are close to the threshold have a high possibility for being misclassified. In order to reduce the misclassification due to the over- or under-estimation from kriging, an adaptive sampling using the cumulative distribution function of order statistics (CDFOS) was developed to draw additional samples for delineating contaminated soils, while kriging. A heavy-metal contaminated site in Hsinchu, Taiwan was used to illustrate this approach. The results showed that compared with random sampling, adaptive sampling using CDFOS reduced the kriging estimation errors and misclassification rates, and thus would appear to be a better choice than random sampling, as additional sampling is required for delineating the 'contaminated' areas. - A sampling approach was derived for drawing additional samples while kriging

  10. EPA RREL's mobile volume reduction unit advances soil washing at four Superfund sites

    International Nuclear Information System (INIS)

    Gaire, R.; Borst, M.

    1994-01-01

    Research testing of the US. Environmental Protection Agency (EPA) Risk Reduction Engineering Laboratory's (RREL) Volume Reduction Unit (VRU), produced data helping advance soil washing as a remedial technology for contaminated soils. Based on research at four Superfund sites, each with a different matrix of organic contaminants, EPA evaluated the soil technology and provided information to forecast realistic, full-scale remediation costs. Primarily a research tool, the VRU is RREL's mobile test unit for investigating the breadth of this technology. During a Superfund Innovative Technology Evaluation (SITE) Demonstration at Escambia Wood Treating Company Site, Pensacola, FL, the VRU treated soil contaminated with pentachlorophenol (PCP) and polynuclear aromatic hydrocarbon-laden creosote (PAH). At Montana Pole and Treatment Plant Site, Butte, MT, the VRU treated soil containing PCP mixed with diesel oil (measured as total petroleum hydrocarbons) and a trace of dioxin. At Dover Air Force Base Site, Dover, DE, the VRU treated soil containing JP-4 jet fuel, measured as TPHC. At Sand Creek Site, Commerce City, CO, the feed soil at this site was contaminated with two pesticides: heptachlor and dieldrin. Less than 10 percent of these pesticides remained in the treated coarse soil fractions

  11. Soil map disaggregation improved by soil-landscape relationships, area-proportional sampling and random forest implementation

    DEFF Research Database (Denmark)

    Møller, Anders Bjørn; Malone, Brendan P.; Odgers, Nathan

    implementation generally improved the algorithm’s ability to predict the correct soil class. The implementation of soil-landscape relationships and area-proportional sampling generally increased the calculation time, while the random forest implementation reduced the calculation time. In the most successful......Detailed soil information is often needed to support agricultural practices, environmental protection and policy decisions. Several digital approaches can be used to map soil properties based on field observations. When soil observations are sparse or missing, an alternative approach...... is to disaggregate existing conventional soil maps. At present, the DSMART algorithm represents the most sophisticated approach for disaggregating conventional soil maps (Odgers et al., 2014). The algorithm relies on classification trees trained from resampled points, which are assigned classes according...

  12. Geochemical soil sampling for deeply-buried mineralized breccia pipes, northwestern Arizona

    Science.gov (United States)

    Wenrich, K.J.; Aumente-Modreski, R. M.

    1994-01-01

    Thousands of solution-collapse breccia pipes crop out in the canyons and on the plateaus of northwestern Arizona; some host high-grade uranium deposits. The mineralized pipes are enriched in Ag, As, Ba, Co, Cu, Mo, Ni, Pb, Sb, Se, V and Zn. These breccia pipes formed as sedimentary strata collapsed into solution caverns within the underlying Mississippian Redwall Limestone. A typical pipe is approximately 100 m (300 ft) in diameter and extends upward from the Redwall Limestone as much as 1000 m (3000 ft). Unmineralized gypsum and limestone collapses rooted in the Lower Permian Kaibab Limestone or Toroweap Formation also occur throughout this area. Hence, development of geochemical tools that can distinguish these unmineralized collapse structures, as well as unmineralized breccia pipes, from mineralized breccia pipes could significantly reduce drilling costs for these orebodies commonly buried 300-360 m (1000-1200 ft) below the plateau surface. Design and interpretation of soil sampling surveys over breccia pipes are plagued with several complications. (1) The plateau-capping Kaibab Limestone and Moenkopi Formation are made up of diverse lithologies. Thus, because different breccia pipes are capped by different lithologies, each pipe needs to be treated as a separate geochemical survey with its own background samples. (2) Ascertaining true background is difficult because of uncertainties in locations of poorly-exposed collapse cones and ring fracture zones that surround the pipes. Soil geochemical surveys were completed on 50 collapse structures, three of which are known mineralized breccia pipes. Each collapse structure was treated as an independent geochemical survey. Geochemical data from each collapse feature were plotted on single-element geochemical maps and processed by multivariate factor analysis. To contrast the results between geochemical surveys (collapse structures), a means of quantifying the anomalousness of elements at each site was developed. This

  13. Assessment of soil sample quality used for density evaluations through computed tomography

    International Nuclear Information System (INIS)

    Pires, Luiz F.; Arthur, Robson C.J.; Bacchi, Osny O.S.

    2005-01-01

    There are several methods to measure soil bulk density (ρ s ) like the paraffin sealed clod (PS), the volumetric ring (VR), the computed tomography (CT), and the neutron-gamma surface gauge (SG). In order to evaluate by a non-destructive way the possible modifications in soil structure caused by sampling for the PS and VR methods of ρ s evaluation we proposed to use the gamma ray CT method. A first generation tomograph was used having a 241 Am source and a 3 in x 3 in NaI(Tl) scintillation crystal detector coupled to a photomultiplier tube. Results confirm the effect of soil sampler devices on the structure of soil samples, and that the compaction caused during sampling causes significant alterations of soil bulk density. Through the use of CT it was possible to determine the level of compaction and to make a detailed analysis of the soil bulk density distribution within the soil sample. (author)

  14. Isotope determination of sulfur by mass spectrometry in soil samples

    Directory of Open Access Journals (Sweden)

    Alexssandra Luiza Rodrigues Molina Rossete

    2012-12-01

    Full Text Available Sulphur plays an essential role in plants and is one of the main nutrients in several metabolic processes. It has four stable isotopes (32S, 33S, 34S, and 36S with a natural abundance of 95.00, 0.76, 4.22, and 0.014 in atom %, respectively. A method for isotopic determination of S by isotope-ratio mass spectrometry (IRMS in soil samples is proposed. The procedure involves the oxidation of organic S to sulphate (S-SO4(2-, which was determined by dry combustion with alkaline oxidizing agents. The total S-SO4(2- concentration was determined by turbidimetry and the results showed that the conversion process was adequate. To produce gaseous SO2 gas, BaSO4 was thermally decomposed in a vacuum system at 900 ºC in the presence of NaPO3. The isotope determination of S (atom % 34S atoms was carried out by isotope ratio mass spectrometry (IRMS. In this work, the labeled material (K2(34SO4 was used to validate the method of isotopic determination of S; the results were precise and accurate, showing the viability of the proposed method.

  15. Autonomous site selection and instrument positioning for sample acquisition

    Science.gov (United States)

    Shaw, A.; Barnes, D.; Pugh, S.

    The European Space Agency Aurora Exploration Program aims to establish a European long-term programme for the exploration of Space, culminating in a human mission to space in the 2030 timeframe. Two flagship missions, namely Mars Sample Return and ExoMars, have been proposed as recognised steps along the way. The Exomars Rover is the first of these flagship missions and includes a rover carrying the Pasteur Payload, a mobile exobiology instrumentation package, and the Beagle 2 arm. The primary objective is the search for evidence of past or present life on mars, but the payload will also study the evolution of the planet and the atmosphere, look for evidence of seismological activity and survey the environment in preparation for future missions. The operation of rovers in unknown environments is complicated, and requires large resources not only on the planet but also in ground based operations. Currently, this can be very labour intensive, and costly, if large teams of scientists and engineers are required to assess mission progress, plan mission scenarios, and construct a sequence of events or goals for uplink. Furthermore, the constraints in communication imposed by the time delay involved over such large distances, and line-of-sight required, make autonomy paramount to mission success, affording the ability to operate in the event of communications outages and be opportunistic with respect to scientific discovery. As part of this drive to reduce mission costs and increase autonomy the Space Robotics group at the University of Wales, Aberystwyth is researching methods of autonomous site selection and instrument positioning, directly applicable to the ExoMars mission. The site selection technique used builds on the geometric reasoning algorithms used previously for localisation and navigation [Shaw 03]. It is proposed that a digital elevation model (DEM) of the local surface, generated during traverse and without interaction from ground based operators, can be

  16. SEM/EDS analysis of soil and roasting vessels fragments from ancient mercury ore roasting sites at Idrija area

    Directory of Open Access Journals (Sweden)

    Tamara Teršič

    2011-06-01

    Full Text Available Numerous roasting vessels fragments can be found at ancient roasting site areas in the surroundings of Idrija town, which were used for ore roasting in the first 150 years of Hg production in Idrija. The earthen vessels fragments lay just below the surface humus layer and in some parts they stretch more than 1 meter deep; they arecovered with red (cinnabar or black (metacinnabar coatings.SEM/EDS analysis of roasting vessels fragments and soil samples from roasting site areas P{enk and Frbejžene trate was performed in order to characterize the solid forms of Hg in applied sampling material. Mercuric sulphide HgS was found to be the main mercury compound present in the samples. Analysis of earthen vessels fragmentsshowed abundant HgS coatings on the surface of ceramics, forming either crust-like aggregates on matrix or isolated grains. Some well-shaped grains with indicated structure and the size of up to 200 μm could also be observed. In soil HgS was present as powder-like concentrations scattered in soil samples, frequently coating silicate and quartz crystals and clay-minerals. Polycristalline, mercury- and sulphur- rich particles comprising silica, clay mineralsand Al-, Fe- and Mg-oxides that were also observed in the samples were interpreted as soil aggregates infiltrated by mercuric and sulphur vapours and by liquid mercury spilled during roasting. These particles suggest a possible presence of mercury-sulphur associations other than HgS.

  17. Sulfur Polymer Stabilization/Solidification Treatability Study of Mercury Contaminated Soil from the Y-12 Site

    Energy Technology Data Exchange (ETDEWEB)

    Kalb P.; Milian, L.; Yim, S. P.

    2012-11-30

    As a result of past operations, the Department of Energy’s (DOE) Oak Ridge Y-12 National Security Complex (Y-12 Plant) has extensive mercury-contamination in building structures, soils, storm sewer sediments, and stream sediments, which are a source of pollution to the local ecosystem. Because of mercury’s toxicity and potential impacts on human health and the environment, DOE continues to investigate and implement projects to support the remediation of the Y-12 site.URS and #9122;CH2M Oak Ridge LLC (UCOR) under its prime contract with DOE has cleanup responsibilities on the DOE Oak Ridge Reservation and is investigating potential mercury-contaminated soil treatment technologies through an agreement with Babcock and Wilcox (B and W) Y-12, the Y-12 operating contractor to DOE. As part of its investigations, UCOR has subcontracted with Brookhaven National Laboratory (BNL) to conduct laboratory-scale studies evaluating the applicability of the Sulfur Polymer Stabilization/Solidification (SPSS) process using surrogate and actual mixed waste Y-12 soils containing mercury (Hg) at 135, 2,000, and 10,000 ppm.SPSS uses a thermoplastic sulfur binder to convert Hg to stable mercury sulfide (HgS) and solidifies the chemically stable product in a monolithic solid final waste form to reduce dispersion and permeability. Formulations containing 40 – 60 dry wt% Y-12 soil were fabricated and samples were prepared in triplicate for Environmental Protection Agency Toxicity Characteristic Leaching Procedure (TCLP) testing by an independent laboratory. Those containing 50 and 60 wt% soil easily met the study criteria for maximum allowable Hg concentrations (47 and 1 ppb, respectively compared with the TCLP limit of 200 ppb Hg). The lowest waste loading of 40 wt% yielded TCLP Hg concentrations slightly higher (240 ppb) than the allowable limit. Since the Y-12 soil tended to form clumps, the improved leaching at higher waste loadings was probably due to reduction in particle size

  18. Radionuclide characterization of subsurface soil on the site of building 3505 at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Alexander, W.A.; Oakes, T.W.; Eldridge, J.S.; Huang, S.; Hubbard, H.M.

    1982-12-01

    Ninety-two samples at varying depths were collected from 25 cores. Sample tubes were driven into the ground and segments of soil cores were retrieved at depths from the ground surface to subsurface consolidated material. forty samples of the 92 collected had detectable gamma activities [i.e., > 2 x 10 - 2 Bq/g (0.5 pCi/g)] of 137 Cs. However, only four samples, all from the same borehole, were found to have significant amounts of 137 Cs with a maximum of 1.7 x 10 3 Bq/g (4.6 x 10 4 pCi/g). These four samples also contained the highest activities of other radionuclides ( 60 Co, 90 Sr, 235 U, 238 U, 239 Pu, and 241 Am). These subsamples came from core number 4DD, which was the deepest core collected. Core 4DD was taken at the southwest corner of the site, which is at the lower elevation of the site. Since most of the activity in this core was found below the bedrock (or shale) in the groundwater region, the contamination is probably not from Building 3505. Additional investigation in the area around core location 4DD will be required to determine the extent of contamination

  19. A stratified two-stage sampling design for digital soil mapping in a Mediterranean basin

    Science.gov (United States)

    Blaschek, Michael; Duttmann, Rainer

    2015-04-01

    The quality of environmental modelling results often depends on reliable soil information. In order to obtain soil data in an efficient manner, several sampling strategies are at hand depending on the level of prior knowledge and the overall objective of the planned survey. This study focuses on the collection of soil samples considering available continuous secondary information in an undulating, 16 km²-sized river catchment near Ussana in southern Sardinia (Italy). A design-based, stratified, two-stage sampling design has been applied aiming at the spatial prediction of soil property values at individual locations. The stratification based on quantiles from density functions of two land-surface parameters - topographic wetness index and potential incoming solar radiation - derived from a digital elevation model. Combined with four main geological units, the applied procedure led to 30 different classes in the given test site. Up to six polygons of each available class were selected randomly excluding those areas smaller than 1ha to avoid incorrect location of the points in the field. Further exclusion rules were applied before polygon selection masking out roads and buildings using a 20m buffer. The selection procedure was repeated ten times and the set of polygons with the best geographical spread were chosen. Finally, exact point locations were selected randomly from inside the chosen polygon features. A second selection based on the same stratification and following the same methodology (selecting one polygon instead of six) was made in order to create an appropriate validation set. Supplementary samples were obtained during a second survey focusing on polygons that have either not been considered during the first phase at all or were not adequately represented with respect to feature size. In total, both field campaigns produced an interpolation set of 156 samples and a validation set of 41 points. The selection of sample point locations has been done using

  20. Monitoring Soil Erosion on a Burned Site in the Mojave-Great Basin Transition Zone: Final Report for the Jacob Fire Site

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Julianne [DRI; Etyemezian, Vic [DRI; Cablk, Mary E. [DRI; Shillito, Rose [DRI; Shafer, David [DOE Grand Junction, Colorado

    2013-06-01

    A historic return interval of 100 years for large fires in the U.S. southwestern deserts is being replaced by one where fires may reoccur as frequently as every 20 to 30 years. The shortened return interval, which translates to an increase in fires, has implications for management of Soil Corrective Action Units (CAUs) and Corrective Action Sites (CASs) for which the Department of Energy, National Nuclear Security Administration Nevada Field Office has responsibility. A series of studies was initiated at uncontaminated analog sites to better understand the possible impacts of erosion and transport by wind and water should contaminated soil sites burn. The first of these studies was undertaken at the Jacob Fire site approximately 12 kilometers (7.5 miles) north of Hiko, Nevada. A lightning-caused fire burned approximately 200 hectares during August 6-8, 2008. The site is representative of a transition between Mojave and Great Basin desert ecoregions on the Nevada National Security Site (NNSS), where the largest number of Soil CAUs/CASs are located. The area that burned at the Jacob Fire site was primarily a Coleogyne ramosissima (blackbrush) and Ephedra nevadensis (Mormon tea) community, also an abundant shrub assemblage in the similar transition zone on the NNSS. This report summarizes three years of measurements after the fire. Seven measurement campaigns at the Jacob Fire site were completed. Measurements were made on burned ridge (upland) and drainage sites, and on burned and unburned sites beneath and between vegetation. A Portable In-Situ Wind Erosion Lab (PI-SWERL) was used to estimate emissions of suspended particles at different wind speeds. Context for these measurements was provided through a meteorological tower that was installed at the Jacob Fire site to obtain local, relevant environmental parameters. Filter samples, collected from the exhaust of the PI-SWERL during measurements, were analyzed for chemical composition. Runoff and water erosion were

  1. Site geological and geotechnical studies, determination of soil characteristics and soil response studies

    International Nuclear Information System (INIS)

    1985-08-01

    RFS or Regles Fondamentales de Surete (Basic Safety Rules) applicable to certain types of nuclear facilities lay down requirements with which compliance, for the type of facilities and within the scope of application covered by the RFS, is considered to be equivalent to compliance with technical French regulatory practice. The object of the RFS is to take advantage of standardization in the field of safety, while allowing for technical progress in that field. They are designed to enable the operating utility and contractors to know the rules pertaining to various subjects which are considered to be acceptable by the Service Central de Surete des Installations Nucleaires, or the SCSIN (Central Department for the Safety of Nuclear Facilities). These RFS should make safety analysis easier and lead to better understanding between experts and individuals concerned with the problems of nuclear safety. The SCSIN reserves the right to modify, when considered necessary, any RFS and specify, if need be, the terms under which a modification is deemed retroactive. The purpose of this RFS is to specify the soil characteristics to be determined and the soil response studies to be performed as part of site geological and geotechnical studies

  2. Kinetics of exchange of a tracer in soil and clay samples

    International Nuclear Information System (INIS)

    Zanotti, J.C.; Facetti, J.F.

    1971-01-01

    The kinetics of exchange of a Na tracer in soil and clay samples, provides with a reliable and convenient method for the determination of the different soil fraction ahd their CEC values, In addition, the analysis of the exchanges curves can be used for the identification of the clay present in the soil

  3. Kinetics of exchange of a tracer in soil and clay samples

    Energy Technology Data Exchange (ETDEWEB)

    Zanotti, J C; Facetti, J F [Asuncion Nacional Univ. (Paraguay). Inst. de Ciencias

    1971-01-01

    The kinetics of exchange of a Na tracer in soil and clay samples, provides with a reliable and convenient method for the determination of the different soil fraction ahd their CEC values, In addition, the analysis of the exchanges curves can be used for the identification of the clay present in the soil.

  4. Measuring environmental change in forest ecosystems by repeated soil sampling: A North American perspective

    Science.gov (United States)

    Gregory B. Lawrence; Ivan J. Fernandez; Daniel D. Richter; Donald S. Ross; Paul W. Hazlett; Scott W. Bailey; Rock Ouimet; Richard A. F. Warby; Arthur H. Johnson; Henry Lin; James M. Kaste; Andrew G. Lapenis; Timothy J. Sullivan

    2013-01-01

    Environmental change is monitored in North America through repeated measurements of weather, stream and river flow, air and water quality, and most recently, soil properties. Some skepticism remains, however, about whether repeated soil sampling can effectively distinguish between temporal and spatial variability, and efforts to document soil change in forest...

  5. Extraction and analysis of 14C-carbofuran radioactivity in soil sample

    International Nuclear Information System (INIS)

    Maizatul Akmam Mhd Nasir; Nashriyah Mat

    2005-01-01

    Carbofuran insecticide or nematicide sprayed onto soil in the agroecosystem will be taken up by plant. Carbofuran residue will pollute the environment and organisms in the food chain. Extraction and analysis of 14 C-carbofuran in soil from lysimeter were carried out. The Liquid Scintillation Counter (LSC) was used to measure radioactivity of 14 C-carbofuran in soil sample. (Author)

  6. Comparison of Statistically Modeled Contaminated Soil Volume Estimates and Actual Excavation Volumes at the Maywood FUSRAP Site - 13555

    Energy Technology Data Exchange (ETDEWEB)

    Moore, James [U.S. Army Corps of Engineers - New York District 26 Federal Plaza, New York, New York 10278 (United States); Hays, David [U.S. Army Corps of Engineers - Kansas City District 601 E. 12th Street, Kansas City, Missouri 64106 (United States); Quinn, John; Johnson, Robert; Durham, Lisa [Argonne National Laboratory, Environmental Science Division 9700 S. Cass Ave., Argonne, Illinois 60439 (United States)

    2013-07-01

    As part of the ongoing remediation process at the Maywood Formerly Utilized Sites Remedial Action Program (FUSRAP) properties, Argonne National Laboratory (Argonne) assisted the U.S. Army Corps of Engineers (USACE) New York District by providing contaminated soil volume estimates for the main site area, much of which is fully or partially remediated. As part of the volume estimation process, an initial conceptual site model (ICSM) was prepared for the entire site that captured existing information (with the exception of soil sampling results) pertinent to the possible location of surface and subsurface contamination above cleanup requirements. This ICSM was based on historical anecdotal information, aerial photographs, and the logs from several hundred soil cores that identified the depth of fill material and the depth to bedrock under the site. Specialized geostatistical software developed by Argonne was used to update the ICSM with historical sampling results and down-hole gamma survey information for hundreds of soil core locations. The updating process yielded both a best guess estimate of contamination volumes and a conservative upper bound on the volume estimate that reflected the estimate's uncertainty. Comparison of model results to actual removed soil volumes was conducted on a parcel-by-parcel basis. Where sampling data density was adequate, the actual volume matched the model's average or best guess results. Where contamination was un-characterized and unknown to the model, the actual volume exceeded the model's conservative estimate. Factors affecting volume estimation were identified to assist in planning further excavations. (authors)

  7. Elemental contents in soil samples in Wad Hamid, River Nile State

    International Nuclear Information System (INIS)

    Mohammed, Khansaa Elawad Elhag

    2016-03-01

    In the present study a total of 30 samples were collected from Wad Hamid River Nile State. Sampling area of (two feddan) of agricultural soil. The sampling area was divided in two locations (fertile and non fertile soil). The samples were analyzed for their content of 13 elements (K, Ca, Ti, Mn, Fe, Cu, Zn, Pb, Rb, Sr, Y, Zr, and Np). 10 samples from location 1 (non-fertile soil) and 20 samples from location 2 (fertile soil). X-ray fluorescence (X RF) Spectrometer (system used based on 1"0"9"Cd excitation 1"0"9"Cd source which has an average energy of 22.6 kev and able to excite the elements from Z = 13 to 92 using K and L lines) used to identify the elemental concentration in soil samples. The reliability of X RF technique as multi elements detecting method for measuring elements concentration in soil sample , (IAEA-SOIL-7) standard reference material was used. Measured values found in agreement with the certified values. The average elemental concentration of K,Ca, Ti, Fe, Cu, Zn, Pb, Sr, Y, Zr, and Np in location 1 were 878, 29690, 13400, 983, 70380, 10.07, 19.07, 40.92,261.4, 23.59,294.8, 47.82, while the average elemental concentration in location 2 were 9848, 27780, 13076,13076,989, 68135, 9.6, 96.3 19.86, 43.7, 225.5, 22.49, 284.75, 46.15, respectively. comparison between the average elemental concentration in fertile soil and non-fertile was done correlations between element were performed Cluster analyses of element in soil samples were obtained comparison between this study and data from literature were done. The elemental concentration in location 1 (non- fertile soil) are higher than location 2 ( fertile soil) because the plant absorbed fertilizer of soil and transfer most elements in soil to plant. (Author)

  8. Biochar effect on maize yield and soil characteristics in five conservation farming sites in Zambia

    Science.gov (United States)

    Cornelissen, Gerard; Martinsen, Vegard; Shitumbanuma, Victor; Alling, Vanja; Breedveld, Gijs D.; Rutherford, David W.; Sparrevik, Magnus; Hale, Sarah E.; Obia, Alfred; Mulder, Jan

    2013-01-01

    Biochar addition to agricultural soils can improve soil fertility, with the added bonus of climate change mitigation through carbon sequestration. Conservation farming (CF) is precision farming, often combining minimum tillage, crop rotation and residue retention. In the present farmer-led field trials carried out in Zambia, the use of a low dosage biochar combined with CF minimum tillage was tested as a way to increase crop yields. Using CF minimum tillage allows the biochar to be applied to the area where most of the plant roots are present and mirrors the fertilizer application in CF practices. The CF practice used comprised manually hoe-dug planting 10-L sized basins, where 10%–12% of the land was tilled. Pilot trials were performed with maize cob biochar and wood biochar on five soils with variable physical/chemical characteristics. At a dosage as low as 4 tons/ha, both biochars had a strong positive effect on maize yields in the coarse white aeolian sand of Kaoma, West-Zambia, with yields of 444% ± 114% (p = 0.06) and 352% ± 139% (p = 0.1) of the fertilized reference plots for maize and wood biochar, respectively. Thus for sandy acidic soils, CF and biochar amendment can be a promising combination for increasing harvest yield. Moderate but non-significant effects on yields were observed for maize and wood biochar in a red sandy clay loam ultisol east of Lusaka, central Zambia (University of Zambia, UNZA, site) with growth of 142% ± 42% (p > 0.2) and 131% ± 62% (p > 0.2) of fertilized reference plots, respectively. For three other soils (acidic and neutral clay loams and silty clay with variable cation exchange capacity, CEC), no significant effects on maize yields were observed (p > 0.2). In laboratory trials, 5% of the two biochars were added to the soil samples in order to study the effect of the biochar on physical and chemical soil characteristics. The large increase in crop yield in Kaoma soil was tentatively explained by a combination of an

  9. Biochar Effect on Maize Yield and Soil Characteristics in Five Conservation Farming Sites in Zambia

    Directory of Open Access Journals (Sweden)

    Alfred Obia

    2013-04-01

    Full Text Available Biochar addition to agricultural soils can improve soil fertility, with the added bonus of climate change mitigation through carbon sequestration. Conservation farming (CF is precision farming, often combining minimum tillage, crop rotation and residue retention. In the present farmer-led field trials carried out in Zambia, the use of a low dosage biochar combined with CF minimum tillage was tested as a way to increase crop yields. Using CF minimum tillage allows the biochar to be applied to the area where most of the plant roots are present and mirrors the fertilizer application in CF practices. The CF practice used comprised manually hoe-dug planting 10-L sized basins, where 10%–12% of the land was tilled. Pilot trials were performed with maize cob biochar and wood biochar on five soils with variable physical/chemical characteristics. At a dosage as low as 4 tons/ha, both biochars had a strong positive effect on maize yields in the coarse white aeolian sand of Kaoma, West-Zambia, with yields of 444% ± 114% (p = 0.06 and 352% ± 139% (p = 0.1 of the fertilized reference plots for maize and wood biochar, respectively. Thus for sandy acidic soils, CF and biochar amendment can be a promising combination for increasing harvest yield. Moderate but non-significant effects on yields were observed for maize and wood biochar in a red sandy clay loam ultisol east of Lusaka, central Zambia (University of Zambia, UNZA, site with growth of 142% ± 42% (p > 0.2 and 131% ± 62% (p > 0.2 of fertilized reference plots, respectively. For three other soils (acidic and neutral clay loams and silty clay with variable cation exchange capacity, CEC, no significant effects on maize yields were observed (p > 0.2. In laboratory trials, 5% of the two biochars were added to the soil samples in order to study the effect of the biochar on physical and chemical soil characteristics. The large increase in crop yield in Kaoma soil was tentatively explained by a combination

  10. Biochar effect on maize yield and soil characteristics in five conservation farming sites in Zambia

    Science.gov (United States)

    Cornelissen, Gerard; Martinsen, Vegard; Shitumbanuma, Victor; Alling, Vanja; Breedveld, Gijs D.; Rutherford, David W.; Sparrevik, Magnus; Hale, Sarah E.; Obia, Alfred; Mulder, Jan

    2013-01-01

    Biochar addition to agricultural soils can improve soil fertility, with the added bonus of climate change mitigation through carbon sequestration. Conservation farming (CF) is precision farming, often combining minimum tillage, crop rotation and residue retention. In the present farmer-led field trials carried out in Zambia, the use of a low dosage biochar combined with CF minimum tillage was tested as a way to increase crop yields. Using CF minimum tillage allows the biochar to be applied to the area where most of the plant roots are present and mirrors the fertilizer application in CF practices. The CF practice used comprised manually hoe-dug planting 10-L sized basins, where 10%–12% of the land was tilled. Pilot trials were performed with maize cob biochar and wood biochar on five soils with variable physical/chemical characteristics. At a dosage as low as 4 tons/ha, both biochars had a strong positive effect on maize yields in the coarse white aeolian sand of Kaoma, West-Zambia, with yields of 444% ± 114% (p = 0.06) and 352% ± 139% (p = 0.1) of the fertilized reference plots for maize and wood biochar, respectively. Thus for sandy acidic soils, CF and biochar amendment can be a promising combination for increasing harvest yield. Moderate but non-significant effects on yields were observed for maize and wood biochar in a red sandy clay loam ultisol east of Lusaka, central Zambia (University of Zambia, UNZA, site) with growth of 142% ± 42% (p > 0.2) and 131% ± 62% (p > 0.2) of fertilized reference plots, respectively. For three other soils (acidic and neutral clay loams and silty clay with variable cation exchange capacity, CEC), no significant effects on maize yields were observed (p > 0.2). In laboratory trials, 5% of the two biochars were added to the soil samples in order to study the effect of the biochar on physical and chemical soil characteristics. The large increase in crop yield in Kaoma soil was tentatively explained by a combination of an

  11. Random sampling or geostatistical modelling? Choosing between design-based and model-based sampling strategies for soil (with discussion)

    NARCIS (Netherlands)

    Brus, D.J.; Gruijter, de J.J.

    1997-01-01

    Classical sampling theory has been repeatedly identified with classical statistics which assumes that data are identically and independently distributed. This explains the switch of many soil scientists from design-based sampling strategies, based on classical sampling theory, to the model-based

  12. Soil structural analysis tools and properties for Hanford site waste tank evaluation

    International Nuclear Information System (INIS)

    Moore, C.J.; Holtz, R.D.; Wagenblast, G.R.; Weiner, E.D.; Marlow, R.S.

    1995-09-01

    As Hanford Site contractors address future structural demands on nuclear waste tanks, built as early as 1943, it is necessary to address their current safety margins and ensure safe margins are maintained. Although the current civil engineering practice guidelines for soil modeling are suitable as preliminary design tools, future demands potentially result in loads and modifications to the tanks that are outside the original design basis and current code based structural capabilities. For example, waste removal may include cutting a large hole in a tank. This report addresses both spring modeling of site soils and finite-element modeling of soils. Additionally seismic dynamic modeling of Hanford Site soils is also included. Of new and special interest is Section 2.2 that Professor Robert D. Holtz of the University of Washington wrote on plane strain soil testing versus triaxial testing with Hanford Site application to large buried waste tanks

  13. Soil structural analysis tools and properties for Hanford site waste tank evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Moore, C.J.; Holtz, R.D.; Wagenblast, G.R.; Weiner, E.D.; Marlow, R.S.

    1995-09-01

    As Hanford Site contractors address future structural demands on nuclear waste tanks, built as early as 1943, it is necessary to address their current safety margins and ensure safe margins are maintained. Although the current civil engineering practice guidelines for soil modeling are suitable as preliminary design tools, future demands potentially result in loads and modifications to the tanks that are outside the original design basis and current code based structural capabilities. For example, waste removal may include cutting a large hole in a tank. This report addresses both spring modeling of site soils and finite-element modeling of soils. Additionally seismic dynamic modeling of Hanford Site soils is also included. Of new and special interest is Section 2.2 that Professor Robert D. Holtz of the University of Washington wrote on plane strain soil testing versus triaxial testing with Hanford Site application to large buried waste tanks.

  14. Soil chemistry and pollution study of a closed landfill site at Ampar Tenang, Selangor, Malaysia.

    Science.gov (United States)

    Mohd Adnan, Siti Nur Syahirah Binti; Yusoff, Sumiani; Piaw, Chua Yan

    2013-06-01

    A total of 20 landfills are located in State of Selangor, Malaysia. This includes the Ampar Tenang landfill site, which was closed on 26 January 2010. It was reported that the landfill has been upgraded to a level I type of sanitary classification. However, the dumpsite area is not being covered according to the classification. In addition, municipal solid waste was dumped directly on top of the unlined natural alluvium formation. This does not only contaminate surface and subsurface soils, but also initiates the potential risk of groundwater pollution. Based on previous studies, the Ampar Tenang soil has been proven to no longer be capable of preventing pollution migration. In this study, metal concentrations of soil samples up to 30 m depth were analyzed based on statistical analysis. It is very significant because research of this type has not been carried out before. The subsurface soils were significantly polluted by arsenic (As), lead (Pb), iron (Fe), copper (Cu) and aluminium (Al). As and Pb exceeded the safe limit values of 5.90 mg/kg and 31.00 mg/kg, respectively, based on Provincial Sediment Quality Guidelines for Metals and the Interim Sediment Quality Values. Furthermore, only Cu concentrations showed a significantly decreasing trend with increasing depth. Most metals were found on clay-type soils based on the cluster analysis method. Moreover, the analysis also differentiates two clusters: cluster I-Pb, As, zinc, Cu, manganese, calcium, sodium, magnesium, potassium and Fe; cluster II-Al. Different clustering may suggest a different contamination source of metals.

  15. TL dating of pottery sherds and baked soil from the Xian Terracotta Army Site, Shaanxi Province, China

    International Nuclear Information System (INIS)

    Lu Yanchou; Zhang Jingzhao; Xie Jun

    1988-01-01

    Six ceramics and two baked soil samples collected from the famous Xian Terracotta Army Site have been dated by using fine grain (2-8 μ) thermoluminescence (TL) technique. Five samples of pottery sherds exhibited peak TL at about 275 0 C and 395 0 C gave the TL age ranges from 2.13 ± 0.14 ka to 2.25 ± 0.14 ka and a mean TL age of 2.20 ± 0.15 ka, with a good plateau in the range of 290-400 0 C. Another sample, however, showed a larger peak at 365 0 C and could not be dated because of serious fading. TL ages of 1.93 ± 0.13 ka and 2.20 ± 0.19 ka have been also obtained from the baked soil samples with a plateau between 300 and 350 0 C. The TL dates of the ceramics and baked soil are consistent with C-14 dates on charcoal samples taken from the same layer in Xian Terracotta Army Site. It is consistent with other evidence that the Terracotta Army figures were made about 2200 yr ago and that the site burned down soon afterwards. (author)

  16. Towards quantitative laser-induced breakdown spectroscopy analysis of soil samples

    International Nuclear Information System (INIS)

    Bousquet, B.; Sirven, J.-B.; Canioni, L.

    2007-01-01

    A quantitative analysis of chromium in soil samples is presented. Different emission lines related to chromium are studied in order to select the best one for quantitative features. Important matrix effects are demonstrated from one soil to the other, preventing any prediction of concentration in different soils on the basis of a univariate calibration curve. Finally, a classification of the LIBS data based on a series of Principal Component Analyses (PCA) is applied to a reduced dataset of selected spectral lines related to the major chemical elements in the soils. LIBS data of heterogeneous soils appear to be widely dispersed, which leads to a reconsideration of the sampling step in the analysis process

  17. Misrepresentation of hydro-erosional processes in rainfall simulations using disturbed soil samples

    Science.gov (United States)

    Thomaz, Edivaldo L.; Pereira, Adalberto A.

    2017-06-01

    Interrill erosion is a primary soil erosion process which consists of soil detachment by raindrop impact and particle transport by shallow flow. Interill erosion affects other soil erosion sub-processes, e.g., water infiltration, sealing, crusting, and rill initiation. Interrill erosion has been widely studied in laboratories, and the use of a sieved soil, i.e., disturbed soil, has become a standard method in laboratory experiments. The aims of our study are to evaluate the hydro-erosional response of undisturbed and disturbed soils in a laboratory experiment, and to quantify the extent to which hydraulic variables change during a rainstorm. We used a splash pan of 0.3 m width, 0.45 m length, and 0.1 m depth. A rainfall simulation of 58 mm h- 1 lasting for 30 min was conducted on seven replicates of undisturbed and disturbed soils. During the experiment, several hydro-physical parameters were measured, including splashed sediment, mean particle size, runoff, water infiltration, and soil moisture. We conclude that use of disturbed soil samples results in overestimation of interrill processes. Of the nine assessed parameters, four displayed greater responses in the undisturbed soil: infiltration, topsoil shear strength, mean particle size of eroded particles, and soil moisture. In the disturbed soil, five assessed parameters displayed greater responses: wash sediment, final runoff coefficient, runoff, splash, and sediment yield. Therefore, contextual soil properties are most suitable for understanding soil erosion, as well as for defining soil erodibility.

  18. Study on a pattern classification method of soil quality based on simplified learning sample dataset

    Science.gov (United States)

    Zhang, Jiahua; Liu, S.; Hu, Y.; Tian, Y.

    2011-01-01

    Based on the massive soil information in current soil quality grade evaluation, this paper constructed an intelligent classification approach of soil quality grade depending on classical sampling techniques and disordered multiclassification Logistic regression model. As a case study to determine the learning sample capacity under certain confidence level and estimation accuracy, and use c-means algorithm to automatically extract the simplified learning sample dataset from the cultivated soil quality grade evaluation database for the study area, Long chuan county in Guangdong province, a disordered Logistic classifier model was then built and the calculation analysis steps of soil quality grade intelligent classification were given. The result indicated that the soil quality grade can be effectively learned and predicted by the extracted simplified dataset through this method, which changed the traditional method for soil quality grade evaluation. ?? 2011 IEEE.

  19. On-site radioactive soil contamination at the Andreeva Bay shore technical base, Northwest Russia.

    Science.gov (United States)

    Reistad, O; Dowdall, M; Selnaes, Ø G; Standring, W J F; Hustveit, S; Steenhuisen, F; Sørlie, A

    2008-07-01

    The radioactive waste (RAW) storage site at Andreeva Bay in the Russian Northwest has experienced radioactive contamination both as a result of activities carried out at the site and due to incidents that have occurred there in the past such as accidental releases of radioactive materials. The site is an interesting case study for decommissioning due to the extremely large amounts of radioactivity present at the site and the conditions under which it is stored; very little has been previously published in the scientific literature about this site. This paper complements the paper describing dose rates at Andreeva Bay which is published in this issue of Journal of Environmental Radioactivity by the same authors. This study presents new data related to the activity concentrations of (137)Cs and (90)Sr in surface soils and measurements of alpha- and beta-particle fluxes taken at different areas around the site. Limited data on 60Co is also presented. The results of the study indicate that the main areas of site contamination are associated with the former spent nuclear fuel storage facility at Building 5, due to accidental discharges which began in 1982. Substantial contamination is also observed at the solid radioactive waste storage facilities, probably due to the ingress of water into these facilities. More than 240 samples were measured: maximum contamination levels were 1 x 10(6)Bq/kg (137)Cs (mean value 4.1 x 10(5)Bq/kg) and 4 x 10(6)Bq/kg (90)Sr (mean value 1.2 x1 0(5)Bq/kg). Localised patches of alpha and beta contamination were also observed throughout the site.

  20. On-site investigations of hydrocarbon contaminated soil by the Pollut-Eval methodology

    International Nuclear Information System (INIS)

    Benoit, Y.; Prigent, S.; Haeseler, F.

    2005-01-01

    lack of sample pre-treatment and the adaptation of a cooled auto-sampler, short time analysis suited for light petroleum pollutant such as gasoline and kerosene. The simple protocol applied to the soil appeared rapidly suitable for keeping the track of depollution process efficiency. During its qualification, the analyser has been involved in rehabilitation process evaluation by analysing various contaminated soils before and after clean-up treatment. From 1999, IFP was frequently asked for on-site diagnosis involving Pollut-Eval methodology. So, IFP installed this lab equipment in a mobile van in order to qualify the methodology through real time and on-site diagnosis. In addition to the qualification program, the aim of the project was also to identify the analytical parameters available in the method and sufficient for field contaminated soil characterisation. During 2 years, all over France, IFP, Gester and Vinci Technologies gathered their effort to ensure 10-site diagnosis. The variety of pollutants encountered has enriched a data base that has been included in a user guide. The gathered experience ended by the design of a compact apparatus dedicated to field analyses. Its small size and weight (less than 20 kg) was designed to perform on-site and autonomous characterisations. (authors)

  1. Inter comparison of 90Sr and 137Cs contents in biologic samples and natural U in soil samples

    International Nuclear Information System (INIS)

    Liu Jianfen; Zeng Guangjian; Lu Xuequan

    2001-01-01

    The results of the 90 Sr and 137 Cs contents in biologic samples and the natural U in soil samples obtained in a joint effort by fourteen environmental radiation laboratories in the Chinese environmental protection system were analyzed and compared. Two kinds of biologic samples and one kind of soil samples were used for inter comparison. Of which, one kind of biologic samples (biologic powder samples) and the soil samples came from the IAEA samples were environmental and the reference values were known. The another kind of biologic samples were environmental tea-leaf that were taken from a tea garden near Hangzhou. The mean values obtained by all the joined laboratories was used as the reference. The inter comparison results were expressed in terms of the deviation from the reference value. It was found that the deviation of the 90 Sr and 137 Cs contents of biologic powder samples ranged from -15.4% to 26.5% and -15.0% to 0.4%, respectively. The deviation of the natural U content ranged from -25.5% to 7.3% for the soil samples. For the tea-leaf, the 90 Sr deviation was -22.7% to 19.1%, and the 137 Cs data had a relative large scatter with a ratio of the maximum and the minimum values being about 7. It was pointed out that the analysis results offered by different laboratories might have involved system errors

  2. [Assessment of soil degradation in regions of nuclear power explosions at Semipalatinsk Nuclear Test Site].

    Science.gov (United States)

    Evseeva, T I; Geras'kin, S A; Maĭstrenko, T A; Belykh, E S

    2011-01-01

    Degree of the soil cover degradation at the "Balapan" and "Experimental field" test sites was assessed based on Allium-test of soil toxicity results and international guidelines on radioactive restriction of solid materials (IAEA, 2004) and environment (Smith, 2005). Soil cover degradation maps of large-scale (1 : 25000) were made. The main part of the area mapped belongs to high-contaminated toxic degraded soil. A relationship between the soil toxicity and the total radionuclide activity concentrations was found to be described by power functions. When the calculated value (equal to 413-415 Bq/kg of air dry soil) increases, the soil becomes toxic for plants. This value is 7.8 times higher than the maximal value for background territories (53 Bq/kg) surrounding SNTS. Russian sanitary and hygienic guidelines (Radiation safety norms, 2009; Sanitary regulations of radioactive waste management, 2003) underestimate the degree of soil radioactive contamination for plants.

  3. Cesium-137 and natural radionuclides in soils from southern Brazil and soils and others environmental samples from Antarctic

    International Nuclear Information System (INIS)

    Schuch, L.A.

    1993-04-01

    This work presents a study of environmental artificial and natural radioactivity levels in soil samples from the Southern Brazil and in soils and other environmental samples form Antarctica. Artificial radioactivity was determined by measuring Cs-137 which is a 30.1 year half-life man-made radionuclide produced in the past by atmospheric tests of nuclear weapons. Natural radioactivity was determined by measuring some radionuclides belonging to Th-232 and U-238 natural radioactive families, and of K-40 concentrations. Several types of soils from Southern Brazil; and soil samples, marine sediments, lichens, mosses and algae collected at King George and other nearby islands (South Shetland Archipelago, Antarctica) were analyzed. A gamma-ray spectrometer was used to measure radioactivity levels of the collected samples and its overall characteristics are analyzed in this work. (author)

  4. Laboratory analysis of soil hydraulic properties of TA-49 soil samples. Volume I: Report summary

    International Nuclear Information System (INIS)

    1995-04-01

    The Hydrologic Testing Laboratory at Daniel B. Stephens ampersand Associates, Inc. (DBS ampersand A) has completed laboratory tests on TA-49 soil samples as specified by Mr. Daniel A. James and summarized in Table 1. Tables 2 through 12 give the results of the specified analyses. Raw laboratory data and graphical plots of data (where appropriate) are contained in Appendices A through K. Appendix L lists the methods used in these analyses. A detailed description of each method is available upon request. Thermal properties were calculated using methods reviewed by Campbell and covered in more detail in Appendix K. Typically, soil thermal conductivities are determined using empirical fitting parameters (five in this case), Some assumptions are also made in the equations used to reduce the raw data. In addition to the requested thermal property measurements, calculated values are also presented as the best available internal check on data quality. For both thermal conductivities and specific heats, calculated and measured values are consistent and the functions often cross. Interestingly, measured thermal conductivities tend to be higher than calculated thermal conductivities around typically encountered in situ moisture contents (±5 percent). While we do not venture an explanation of the difference, sensitivity testing of any problem requiring nonisothermal modeling across this range is in order

  5. Natural radioactivity and metal concentrations in soil samples taken along the Izmir - Ankara E-023 highway, Turkey

    International Nuclear Information System (INIS)

    Baba, A.; Bassari, A.; Erees, F; Cam, S.

    2004-01-01

    The specific activity and the gamma-absorbed dose rates of the terrestrial naturally occurring radionuclides ( 238 U, 232 Th, and 40 K) were determined in roadside soil obtained from fifteen sites along Izmir-Ankara Highway, using gamma-ray spectrometry. The soil activity ranged from 42.6 to 47.3 Bqkg -1 for 238 U, 31.8 to 36.3 Bqkg -1 for 232 Th, and 432 to 488 Bqkg -1 for 40 K. The highest mean value of 238 U was found in the soil samples obtained from a site close to the intersection of the roads. The study yielded an annual effective dose equivalent in the range of 58 - 80 μSv. The average value falls within the global range of outdoor radiation exposure given in UNSCEAR-2000 publications. Also Ca, Ti, Fe, Cu, Zn, Rb, Sr and Zr concentrations were determined in roadside soil. Rb, Sr, Zr and Zn concentrations in roadside soil around the intersection of the roads were higher than maximum concentration levels of these heavy metals in normal soil

  6. Sorption, desorption and mineralisation of the herbicides glyphosate and MCPA in samples from two Danish soil and subsurface profiles

    International Nuclear Information System (INIS)

    Sorensen, Sebastian R.; Schultz, Anne; Jacobsen, Ole S.; Aamand, Jens

    2006-01-01

    The vertical distribution of the sorption, desorption and mineralisation of glyphosate and MCPA was examined in samples from two contrasting soil and subsurface profiles, obtained from a sandy agricultural site and a non-agricultural clay rich site. The highest mineralisation of [ 14 C-methylen]glyphosate, with 9.3-14.7% degraded to 14 CO 2 within 3 months was found in the deepest sample from the clay site. In the deeper parts of the sandy profile high sorption and low desorption of glyphosate coincided with no or minor mineralisation indicating a limited glyphosate bioavailability. MCPA was readily mineralised except in the deepest samples from both sites. The highest MCPA mineralisation was detected just below the surface layers with 72% or 44% degraded to 14 CO 2 at the sandy or the clay sites, respectively. MCPA sorped to a minor extent in all samples and no indications of sorption-controlled mineralisation was revealed. None of the herbicides were mineralised under anoxic conditions. - Natural attenuation potential of the herbicides glyphosate and MCPA was assessed in soil and subsurface profiles

  7. Sorption, desorption and mineralisation of the herbicides glyphosate and MCPA in samples from two Danish soil and subsurface profiles

    Energy Technology Data Exchange (ETDEWEB)

    Sorensen, Sebastian R. [Department of Geochemistry, Geological Survey of Denmark and Greenland (GEUS), Oster Voldgade 10, DK-1350 Copenhagen K (Denmark)]. E-mail: srs@geus.dk; Schultz, Anne [Department of Geochemistry, Geological Survey of Denmark and Greenland (GEUS), Oster Voldgade 10, DK-1350 Copenhagen K (Denmark); Jacobsen, Ole S. [Department of Geochemistry, Geological Survey of Denmark and Greenland (GEUS), Oster Voldgade 10, DK-1350 Copenhagen K (Denmark); Aamand, Jens [Department of Geochemistry, Geological Survey of Denmark and Greenland (GEUS), Oster Voldgade 10, DK-1350 Copenhagen K (Denmark)

    2006-05-15

    The vertical distribution of the sorption, desorption and mineralisation of glyphosate and MCPA was examined in samples from two contrasting soil and subsurface profiles, obtained from a sandy agricultural site and a non-agricultural clay rich site. The highest mineralisation of [{sup 14}C-methylen]glyphosate, with 9.3-14.7% degraded to {sup 14}CO{sub 2} within 3 months was found in the deepest sample from the clay site. In the deeper parts of the sandy profile high sorption and low desorption of glyphosate coincided with no or minor mineralisation indicating a limited glyphosate bioavailability. MCPA was readily mineralised except in the deepest samples from both sites. The highest MCPA mineralisation was detected just below the surface layers with 72% or 44% degraded to {sup 14}CO{sub 2} at the sandy or the clay sites, respectively. MCPA sorped to a minor extent in all samples and no indications of sorption-controlled mineralisation was revealed. None of the herbicides were mineralised under anoxic conditions. - Natural attenuation potential of the herbicides glyphosate and MCPA was assessed in soil and subsurface profiles.

  8. IN SITU NON-INVASIVE SOIL CARBON ANALYSIS: SAMPLE SIZE AND GEOSTATISTICAL CONSIDERATIONS.

    Energy Technology Data Exchange (ETDEWEB)

    WIELOPOLSKI, L.

    2005-04-01

    I discuss a new approach for quantitative carbon analysis in soil based on INS. Although this INS method is not simple, it offers critical advantages not available with other newly emerging modalities. The key advantages of the INS system include the following: (1) It is a non-destructive method, i.e., no samples of any kind are taken. A neutron generator placed above the ground irradiates the soil, stimulating carbon characteristic gamma-ray emission that is counted by a detection system also placed above the ground. (2) The INS system can undertake multielemental analysis, so expanding its usefulness. (3) It can be used either in static or scanning modes. (4) The volume sampled by the INS method is large with a large footprint; when operating in a scanning mode, the sampled volume is continuous. (5) Except for a moderate initial cost of about $100,000 for the system, no additional expenses are required for its operation over two to three years after which a NG has to be replenished with a new tube at an approximate cost of $10,000, this regardless of the number of sites analyzed. In light of these characteristics, the INS system appears invaluable for monitoring changes in the carbon content in the field. For this purpose no calibration is required; by establishing a carbon index, changes in carbon yield can be followed with time in exactly the same location, thus giving a percent change. On the other hand, with calibration, it can be used to determine the carbon stock in the ground, thus estimating the soil's carbon inventory. However, this requires revising the standard practices for deciding upon the number of sites required to attain a given confidence level, in particular for the purposes of upward scaling. Then, geostatistical considerations should be incorporated in considering properly the averaging effects of the large volumes sampled by the INS system that would require revising standard practices in the field for determining the number of spots to

  9. Fluoride concentrations in soils, vegetation samples and soil fauna in the direct vicinity of a pollution source

    International Nuclear Information System (INIS)

    Vogel, J.; Ottow, J.C.G.; Breimer, R.F.

    1989-01-01

    Fluoride analyses CF t = total F; F w = water soluble F and F HCI HCI-extractable F) of different soils, vegetation samples and soil fauna (Helix pomatia, Lumbricus spp., arthropodes) in a locally polluted area (for nearly 65 years) clearly revealed an F-accumulation in top soil, vegetation and animals. Based on 1N HCI-extractable fluoride, two contamination zones around the emitting industry could be identified. In the calcareous soils, leaching of fluoride seems to be insignificant because of a strong immobilization as CaF 2 . A highly significant correlation between the F HCI content of soils and Lumbricus spp. (with and without gut content) or Helix pomatia shells was found. Fluoride concentrations in washed leaves of Hedera helix and in decaying grass reached levels of 306 and 997 μgF/g respectively. Saprophagous soil arthropods contained high fluoride levels, up to 732 μgF/g in Armadillidium vulgare. (orig.)

  10. Soil Stabilization Methods with Potential for Application at the Nevada National Security Site: A Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Shillito, Rose [DRI; Fenstermaker, Lynn [DRI

    2014-01-01

    Nuclear testing at the Nevada National Security Site (NNSS) has resulted in large areas of surficial radionuclide-contaminated soils. Much of the radionuclide contamination is found at or near the soil surface, and due to the dry climate setting, and the long half-life of radioactive isotopes, soil erosion poses a long-term health risk at the NNSS. The objective of this literature review is to present a survey of current stabilization methods used for minimizing soil erosion, both by water and wind. The review focuses on in situ uses of fundamental chemical and physical mechanisms for soil stabilization. A basic overview of the physical and chemical properties of soil is also presented to provide a basis for assessing stabilization methods. Some criteria for stabilization evaluation are identified based on previous studies at the NNSS. Although no specific recommendations are presented as no stabilization method, alone or in combination, will be appropriate in all circumstances, discussions of past and current stabilization procedures and specific soil tests that may aid in current or future soil stabilization activities at the NNSS are presented. However, not all Soils Corrective Action Sites (CASs) or Corrective Action Units (CAUs) will require stabilization of surficial radionuclide-contaminated soils. Each Soils CAS or CAU should be evaluated for site-specific conditions to determine if soil stabilization is necessary or practical for a given specific site closure alternative. If stabilization is necessary, then a determination will be made as to which stabilization technique is the most appropriate for that specific site.

  11. Health Risk-Based Assessment and Management of Heavy Metals-Contaminated Soil Sites in Taiwan

    Directory of Open Access Journals (Sweden)

    Zueng-Sang Chen

    2010-10-01

    Full Text Available Risk-based assessment is a way to evaluate the potential hazards of contaminated sites and is based on considering linkages between pollution sources, pathways, and receptors. These linkages can be broken by source reduction, pathway management, and modifying exposure of the receptors. In Taiwan, the Soil and Groundwater Pollution Remediation Act (SGWPR Act uses one target regulation to evaluate the contamination status of soil and groundwater pollution. More than 600 sites contaminated with heavy metals (HMs have been remediated and the costs of this process are always high. Besides using soil remediation techniques to remove contaminants from these sites, the selection of possible remediation methods to obtain rapid risk reduction is permissible and of increasing interest. This paper discusses previous soil remediation techniques applied to different sites in Taiwan and also clarified the differences of risk assessment before and after soil remediation obtained by applying different risk assessment models. This paper also includes many case studies on: (1 food safety risk assessment for brown rice growing in a HMs-contaminated site; (2 a tiered approach to health risk assessment for a contaminated site; (3 risk assessment for phytoremediation techniques applied in HMs-contaminated sites; and (4 soil remediation cost analysis for contaminated sites in Taiwan.

  12. Health Risk-Based Assessment and Management of Heavy Metals-Contaminated Soil Sites in Taiwan

    Science.gov (United States)

    Lai, Hung-Yu; Hseu, Zeng-Yei; Chen, Ting-Chien; Chen, Bo-Ching; Guo, Horng-Yuh; Chen, Zueng-Sang

    2010-01-01

    Risk-based assessment is a way to evaluate the potential hazards of contaminated sites and is based on considering linkages between pollution sources, pathways, and receptors. These linkages can be broken by source reduction, pathway management, and modifying exposure of the receptors. In Taiwan, the Soil and Groundwater Pollution Remediation Act (SGWPR Act) uses one target regulation to evaluate the contamination status of soil and groundwater pollution. More than 600 sites contaminated with heavy metals (HMs) have been remediated and the costs of this process are always high. Besides using soil remediation techniques to remove contaminants from these sites, the selection of possible remediation methods to obtain rapid risk reduction is permissible and of increasing interest. This paper discusses previous soil remediation techniques applied to different sites in Taiwan and also clarified the differences of risk assessment before and after soil remediation obtained by applying different risk assessment models. This paper also includes many case studies on: (1) food safety risk assessment for brown rice growing in a HMs-contaminated site; (2) a tiered approach to health risk assessment for a contaminated site; (3) risk assessment for phytoremediation techniques applied in HMs-contaminated sites; and (4) soil remediation cost analysis for contaminated sites in Taiwan. PMID:21139851

  13. Distribution and characterization of radionuclides in soils from Nevada Test Site

    International Nuclear Information System (INIS)

    Lee, S.Y.; Tamura, T.

    1985-01-01

    Selected physicochemical properties of plutonium-bearing radioactive particles and their association with host soils from the Nevada Test Site (NTS) were studied to aid in the environmental assessment of the radionuclides in the area and to provide technological concepts for potential cleanup operations. The dominant radioactive particles were amorphous to X-ray diffraction, very fragile by compression tests, and extremely porous with particle density 3 . The physical properties of the particles suggest that they can be broken to smaller respirable sizes by saltation during wind erosion and that their unique physical properties may be useful for mechanically separating them from the nonradioactive soil particles. Experimental results revealed that more than 90% of the total radioactivity was recovered in about 25% of the total sample weight through density separation techniques and in about 18% of the total weight by a grinding-sieving process. Radioactive particles might therefore be removed from the contaminated soil by a controlled vacuum collector, density separation, grinding-sieving separation, or a combination of these techniques on the basis of the density and compressibility differences between radioactive and nonradioactive particles. 21 references, 5 figures, 5 tables

  14. Decomposition of 14C - malathion in three Brazilian soil samples

    International Nuclear Information System (INIS)

    Helene, C.G.; Ruegg, E.F.

    1982-01-01

    The degradation of 14 C-malathion in soil was examined using gas chromatography and radiotracer techniques. About half of the malathion added was degraded within a day in soil from three regions of Brazil. Almost all the radiolabelled material extracted from the Red Latosol (Londrina, PR) was malathion, but metabolites were extracted from the 'Sandy' cerrado soil (Planaltina, DF) and Dark-Red Latosol (Passo Fundo, RS). The proportion of metabolites in the extracts increased until most of the malathion was degraded, after four days. Radiocarbon dioxide was liberated from all three soils at similar rates. When about half of the label had been recovered as carbon dioxide after eight weeks, the rate of evolution diminished. (Author) [pt

  15. Selected micrometeorological and soil-moisture data at Amargosa Desert Research Site, an arid site near Beatty, Nye County, Nevada, 1998-2000

    Science.gov (United States)

    Johnson, Michael J.; Mayers, Charles J.; Andraski, Brian J.

    2002-01-01

    Selected micrometeorological and soil-moisture data were collected at the Amargosa Desert Research Site adjacent to a low-level radioactive waste and hazardous chemical waste facility near Beatty, Nev., 1998-2000. Data were collected in support of ongoing research studies to improve the understanding of hydrologic and contaminant-transport processes in arid environments. Micrometeorological data include precipitation, air temperature, solar radiation, net radiation, relative humidity, ambient vapor pressure, wind speed and direction, barometric pressure, soil temperature, and soil-heat flux. All micrometeorological data were collected using a 10-second sampling interval by data loggers that output daily mean, maximum, and minimum values, and hourly mean values. For precipitation, data output consisted of daily, hourly, and 5-minute totals. Soil-moisture data included periodic measurements of soil-water content at nine neutron-probe access tubes with measurable depths ranging from 5.25 to 29.75 meters. The computer data files included in this report contain the complete micrometeorological and soil-moisture data sets. The computer data consists of seven files with about 14 megabytes of information. The seven files are in tabular format: (1) one file lists daily mean, maximum, and minimum micrometeorological data and daily total precipitation; (2) three files list hourly mean micrometeorological data and hourly precipitation for each year (1998-2000); (3) one file lists 5-minute precipitation data; (4) one file lists mean soil-water content by date and depth at four experimental sites; and (5) one file lists soil-water content by date and depth for each neutron-probe access tube. This report highlights selected data contained in the computer data files using figures, tables, and brief discussions. Instrumentation used for data collection