WorldWideScience

Sample records for site mediates redox-sensitive

  1. Albumin-bound fatty acids but not albumin itself alter redox balance in tubular epithelial cells and induce a peroxide-mediated redox-sensitive apoptosis

    Science.gov (United States)

    Ruggiero, Christine; Elks, Carrie M.; Kruger, Claudia; Cleland, Ellen; Addison, Kaity; Noland, Robert C.

    2014-01-01

    Albuminuria is associated with metabolic syndrome and diabetes. It correlates with the progression of chronic kidney disease, particularly with tubular atrophy. The fatty acid load on albumin significantly increases in obesity, presenting a proinflammatory environment to the proximal tubules. However, little is known about changes in the redox milieu during fatty acid overload and how redox-sensitive mechanisms mediate cell death. Here, we show that albumin with fatty acid impurities or conjugated with palmitate but not albumin itself compromised mitochondrial and cell viability, membrane potential and respiration. Fatty acid overload led to a redox imbalance which deactivated the antioxidant protein peroxiredoxin 2 and caused a peroxide-mediated apoptosis through the redox-sensitive pJNK/caspase-3 pathway. Transfection of tubular cells with peroxiredoxin 2 was protective and mitigated apoptosis. Mitochondrial fatty acid entry and ceramide synthesis modulators suggested that mitochondrial β oxidation but not ceramide synthesis may modulate lipotoxic effects on tubular cell survival. These results suggest that albumin overloaded with fatty acids but not albumin itself changes the redox environment in the tubules, inducing a peroxide-mediated redox-sensitive apoptosis. Thus, mitigating circulating fatty acid levels may be an important factor in both preserving redox balance and preventing tubular cell damage in proteinuric diseases. PMID:24500687

  2. A redox-mediated chromogenic reaction and application in immunoassay.

    Science.gov (United States)

    Yu, Ru-Jia; Ma, Wei; Peng, Mao-Pan; Bai, Zhi-Shan; Long, Yi-Tao

    2016-08-31

    A novel redox-mediated chromogenic reaction was demonstrated based on the reaction between HAuCl4 and 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), which generate various color responses from red to green in the resulting solutions. Various redox substance could be used to mediate the reaction and trigger a distinct color response. We established a sensitive hydrogen peroxide colorimetric sensor based on the redox-mediated chromogenic reaction and depicted the application both in detection of enzyme and in an immunoassay. Combining the traditional chromogenic reagent with gold nanoparticles, our assay has the advantage in short response time (within three minutes), high sensitivity (10(-12) g mL(-1) for HBsAg) and stability. Copyright © 2016. Published by Elsevier B.V.

  3. Dye-sensitized solar cells using ionic liquids as redox mediator

    Science.gov (United States)

    Denizalti, Serpil; Ali, Abdulrahman Khalaf; Ela, Çağatay; Ekmekci, Mesut; Erten-Ela, Sule

    2018-01-01

    In this research, the influence of ionic liquid on the conversion efficiency, incident photons to converted electrons (IPCE) and performance of fabricated solar cell was investigated using various ionic liquids. Ionic liquids with different substituents and ions were prepared and used as redox mediators in dye-sensitized solar cells (DSSCs). Ionic liquids were characterized 1H and 13C NMR spectra. We practically investigated the performance of ionic liquid salts were used as the mobile ions and found that the efficiencies of DSSCs were increased up to 40% comparing commercial electrolyte system. The ionic liquid compounds were incorporated in DSSCs to obtain an efficient charge transfer, solving the corrosion problem of platinum layer in counter electrode compared to commercial electrolyte.

  4. Alternative bases to 4-tert-butylpyridine for dye-sensitized solar cells employing copper redox mediator

    Czech Academy of Sciences Publication Activity Database

    Ferdowsi, P.; Saygili, Y.; Zakeeruddin, S. M.; Mokhtari, J.; Grätzel, M.; Hagfeldt, A.; Kavan, Ladislav

    2018-01-01

    Roč. 265, MAR 1 (2018), s. 194-201 ISSN 0013-4686 R&D Projects: GA ČR GA13-07724S Institutional support: RVO:61388955 Keywords : electrolytes * efficient * cathodes * shuttle * Dye-sensitized solar cells * Copper(II/I) redox mediators * Pyridine bases * Electrochemical characterization Subject RIV: CG - Electrochemistry OBOR OECD: Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis) Impact factor: 4.798, year: 2016

  5. Identification of redox-sensitive cysteines in the arabidopsis proteome using OxiTRAQ, a quantitative redox proteomics method

    KAUST Repository

    Liu, Pei

    2014-01-28

    Cellular redox status plays a key role in mediating various physiological and developmental processes often through modulating activities of redox-sensitive proteins. Various stresses trigger over-production of reactive oxygen/nitrogen species which lead to oxidative modifications of redox-sensitive proteins. Identification and characterization of redox-sensitive proteins are important steps toward understanding molecular mechanisms of stress responses. Here, we report a high-throughput quantitative proteomic approach termed OxiTRAQ for identifying proteins whose thiols undergo reversible oxidative modifications in Arabidopsis cells subjected to oxidative stress. In this approach, a biotinylated thiol-reactive reagent is used for differential labeling of reduced and oxidized thiols. The biotin-tagged peptides are affinity purified, labeled with iTRAQ reagents, and analyzed using a paralleled HCD-CID fragmentation mode in an LTQ-Orbitrap. With this approach, we identified 195 cysteine-containing peptides from 179 proteins whose thiols underwent oxidative modifications in Arabidopsis cells following the treatment with hydrogen peroxide. A majority of those redox-sensitive proteins, including several transcription factors, were not identified by previous redox proteomics studies. This approach allows identification of the specific redox-regulated cysteine residues, and offers an effective tool for elucidation of redox proteomes. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Polyarene mediators for mediated redox flow battery

    Science.gov (United States)

    Delnick, Frank M.; Ingersoll, David; Liang, Chengdu

    2018-01-02

    The fundamental charge storage mechanisms in a number of currently studied high energy redox couples are based on intercalation, conversion, or displacement reactions. With exception to certain metal-air chemistries, most often the active redox materials are stored physically in the electrochemical cell stack thereby lowering the practical gravimetric and volumetric energy density as a tradeoff to achieve reasonable power density. In a general embodiment, a mediated redox flow battery includes a series of secondary organic molecules that form highly reduced anionic radicals as reaction mediator pairs for the reduction and oxidation of primary high capacity redox species ex situ from the electrochemical cell stack. Arenes are reduced to stable anionic radicals that in turn reduce a primary anode to the charged state. The primary anode is then discharged using a second lower potential (more positive) arene. Compatible separators and solvents are also disclosed herein.

  7. Mapping the diatom redox-sensitive proteome provides insight into response to nitrogen stress in the marine environment.

    Science.gov (United States)

    Rosenwasser, Shilo; Graff van Creveld, Shiri; Schatz, Daniella; Malitsky, Sergey; Tzfadia, Oren; Aharoni, Asaph; Levin, Yishai; Gabashvili, Alexandra; Feldmesser, Ester; Vardi, Assaf

    2014-02-18

    Diatoms are ubiquitous marine photosynthetic eukaryotes responsible for approximately 20% of global photosynthesis. Little is known about the redox-based mechanisms that mediate diatom sensing and acclimation to environmental stress. Here we used a quantitative mass spectrometry-based approach to elucidate the redox-sensitive signaling network (redoxome) mediating the response of diatoms to oxidative stress. We quantified the degree of oxidation of 3,845 cysteines in the Phaeodactylum tricornutum proteome and identified approximately 300 redox-sensitive proteins. Intriguingly, we found redox-sensitive thiols in numerous enzymes composing the nitrogen assimilation pathway and the recently discovered diatom urea cycle. In agreement with this finding, the flux from nitrate into glutamine and glutamate, measured by the incorporation of (15)N, was strongly inhibited under oxidative stress conditions. Furthermore, by targeting the redox-sensitive GFP sensor to various subcellular localizations, we mapped organelle-specific oxidation patterns in response to variations in nitrogen quota and quality. We propose that redox regulation of nitrogen metabolism allows rapid metabolic plasticity to ensure cellular homeostasis, and thus is essential for the ecological success of diatoms in the marine ecosystem.

  8. Polyoxometalate active charge-transfer material for mediated redox flow battery

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Travis Mark; Hudak, Nicholas; Staiger, Chad; Pratt, Harry

    2017-01-17

    Redox flow batteries including a half-cell electrode chamber coupled to a current collecting electrode are disclosed herein. In a general embodiment, a separator is coupled to the half-cell electrode chamber. The half-cell electrode chamber comprises a first redox-active mediator and a second redox-active mediator. The first redox-active mediator and the second redox-active mediator are circulated through the half-cell electrode chamber into an external container. The container includes an active charge-transfer material. The active charge-transfer material has a redox potential between a redox potential of the first redox-active mediator and a redox potential of the second redox-active mediator. The active charge-transfer material is a polyoxometalate or derivative thereof. The redox flow battery may be particularly useful in energy storage solutions for renewable energy sources and for providing sustained power to an electrical grid.

  9. Enzyme mediated synthesis of polypyrrole in the presence of chondroitin sulfate and redox mediators of natural origin

    International Nuclear Information System (INIS)

    Grijalva-Bustamante, G.A.; Evans-Villegas, A.G.; Castillo-Castro, T. del; Castillo-Ortega, M.M.; Cruz-Silva, R.; Huerta, F.; Morallón, E.

    2016-01-01

    Polypyrrole (PPy) was synthesized by enzyme mediated oxidation of pyrrole using naturally occurring compounds as redox mediators. The catalytic mechanism is an enzymatic cascade reaction in which hydrogen peroxide is the oxidizer and soybean peroxidase, in the presence of acetosyringone, syringaldehyde or vanillin, acts as a natural catalysts. The effect of the initial reaction composition on the polymerization yield and electrical conductivity of PPy was analyzed. Morphology of the PPy particles was studied by scanning electron microscopy and transmission electron microscopy whereas the chemical structure was studied by X-ray photoelectron and Fourier transformed infrared spectroscopic techniques. The redox mediators increased the polymerization yield without a significant modification of the electronic structure of PPy. The highest conductivity of PPy was reached when chondroitin sulfate was used simultaneously as dopant and template during pyrrole polymerization. Electroactive properties of PPy obtained from natural precursors were successfully used in the amperometric quantification of uric acid concentrations. PPy increases the amperometric sensitivity of carbon nanotube screen-printed electrodes toward uric acid detection. - Highlights: • A new method of pyrrole polymerization using naturally occurring redox mediators and doping agents was studied. • The catalytic efficiency of different redox mediators toward pyrrole oxidation was evaluated. • Two different naturally occurring polymers were studied as bifunctional steric stabilizer/doping agents. • Polypyrrole improves the amperometric response of carbon nanotube screen printed electrodes toward uric acid sensing.

  10. Enzyme mediated synthesis of polypyrrole in the presence of chondroitin sulfate and redox mediators of natural origin

    Energy Technology Data Exchange (ETDEWEB)

    Grijalva-Bustamante, G.A. [Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, CP 83000 Hermosillo, Sonora (Mexico); Evans-Villegas, A.G. [Departamento de Ciencias Químico Biológicas, Universidad de Sonora, CP 83000 Hermosillo, Sonora (Mexico); Castillo-Castro, T. del, E-mail: terecat@polimeros.uson.mx [Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, CP 83000 Hermosillo, Sonora (Mexico); Castillo-Ortega, M.M. [Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, CP 83000 Hermosillo, Sonora (Mexico); Cruz-Silva, R. [Research Center for Exotic Nanocarbons, Shinshu University, 4-17-1 Wakasato, 380-8553, Nagano (Japan); Huerta, F. [Departamento Ingeniería Textil y Papelera, Universitat Politecnica de Valencia, Plaza Ferrandiz y Carbonell, 1, E-03801 Alcoy (Spain); Morallón, E. [Departamento Química Física e Instituto Universitario de Materiales, Universidad de Alicante, Ap. 99, E-03080 Alicante (Spain)

    2016-06-01

    Polypyrrole (PPy) was synthesized by enzyme mediated oxidation of pyrrole using naturally occurring compounds as redox mediators. The catalytic mechanism is an enzymatic cascade reaction in which hydrogen peroxide is the oxidizer and soybean peroxidase, in the presence of acetosyringone, syringaldehyde or vanillin, acts as a natural catalysts. The effect of the initial reaction composition on the polymerization yield and electrical conductivity of PPy was analyzed. Morphology of the PPy particles was studied by scanning electron microscopy and transmission electron microscopy whereas the chemical structure was studied by X-ray photoelectron and Fourier transformed infrared spectroscopic techniques. The redox mediators increased the polymerization yield without a significant modification of the electronic structure of PPy. The highest conductivity of PPy was reached when chondroitin sulfate was used simultaneously as dopant and template during pyrrole polymerization. Electroactive properties of PPy obtained from natural precursors were successfully used in the amperometric quantification of uric acid concentrations. PPy increases the amperometric sensitivity of carbon nanotube screen-printed electrodes toward uric acid detection. - Highlights: • A new method of pyrrole polymerization using naturally occurring redox mediators and doping agents was studied. • The catalytic efficiency of different redox mediators toward pyrrole oxidation was evaluated. • Two different naturally occurring polymers were studied as bifunctional steric stabilizer/doping agents. • Polypyrrole improves the amperometric response of carbon nanotube screen printed electrodes toward uric acid sensing.

  11. Characterisation of the Redox Sensitive NMDA Receptor

    KAUST Repository

    Alzahrani, Ohood

    2016-05-01

    Glucose entry into the brain and its subsequent metabolism to L-lactate, regulated by astrocytes, plays a major role in synaptic plasticity and memory formation. A recent study has shown that L-lactate produced by the brain upon stimulation of glycolysis, and glycogen-derived L-lactate from astrocytes and its transport into neurons, is crucial for memory formation. A recent study revealed the molecular mechanisms that underlie the role of L-lactate in neuronal plasticity and long-term memory formation. L-lactate was shown to induce a cascade of molecular events via modulation of redox-sensitive N-Methyl-D-aspartate (NMDA) receptor activity that was mimicked by nicotinamide adenine dinucleotide hydride (NADH) co-enzyme. This indicated that changes in cellular redox state, following L-lactate transport inside the cells and its subsequent metabolism, production of NADH, and favouring a reduced state are the key effects of L-lactate. Therefore, we are investigating the role of L-lactate in modulating NMDA receptor function via redox modulatory sites. Accordingly, crucial redox-sensitive cysteine residues, Cys320 and Cys87, of the NR2A NMDA receptor subunit are mutated using site-directed mutation, transfected, and expressed in HEK293 cells. This cellular system will then be used to characterise and monitor its activity upon Llactate stimulation, compared to the wild type. This will be achieved by calcium imaging, using fluorescent microscopy. Our data shows that L-lactate potentiated NMDA receptor activity and increased intracellular calcium influx in NR1/NR2A wild type compared to the control condition (WT NR1/NR2A perfused with (1μM) glutamate and (1μM) glycine agonist only), showing faster response initiation and slower decay rate of the calcium signal to the baseline. Additionally, stimulating with L-lactate associated with greater numbers of cells having high fluorescent intensity (peak amplitude) compared to the control. Furthermore, L-lactate rescued the

  12. Effect of long-term fertilization on humic redox mediators in multiple microbial redox reactions.

    Science.gov (United States)

    Guo, Peng; Zhang, Chunfang; Wang, Yi; Yu, Xinwei; Zhang, Zhichao; Zhang, Dongdong

    2018-03-01

    This study investigated the effects of different long-term fertilizations on humic substances (HSs), humic acids (HAs) and humins, functioning as redox mediators for various microbial redox biotransformations, including 2,2',4,4',5,5'- hexachlorobiphenyl (PCB 153 ) dechlorination, dissimilatory iron reduction, and nitrate reduction, and their electron-mediating natures. The redox activity of HSs for various microbial redox metabolisms was substantially enhanced by long-term application of organic fertilizer (pig manure). As a redox mediator, only humin extracted from soils with organic fertilizer amendment (OF-HM) maintained microbial PCB 153 dechlorination activity (1.03 μM PCB 153 removal), and corresponding HA (OF-HA) most effectively enhanced iron reduction and nitrate reduction by Shewanella putrefaciens. Electrochemical analysis confirmed the enhancement of their electron transfer capacity and redox properties. Fourier transform infrared analysis showed that C=C and C=O bonds, and carboxylic or phenolic groups in HSs might be the redox functional groups affected by fertilization. This research enhances our understanding of the influence of anthropogenic fertility on the biogeochemical cycling of elements and in situ remediation ability in agroecosystems through microorganisms' metabolisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Redox Regulation of Mitochondrial Function

    Science.gov (United States)

    Handy, Diane E.

    2012-01-01

    Abstract Redox-dependent processes influence most cellular functions, such as differentiation, proliferation, and apoptosis. Mitochondria are at the center of these processes, as mitochondria both generate reactive oxygen species (ROS) that drive redox-sensitive events and respond to ROS-mediated changes in the cellular redox state. In this review, we examine the regulation of cellular ROS, their modes of production and removal, and the redox-sensitive targets that are modified by their flux. In particular, we focus on the actions of redox-sensitive targets that alter mitochondrial function and the role of these redox modifications on metabolism, mitochondrial biogenesis, receptor-mediated signaling, and apoptotic pathways. We also consider the role of mitochondria in modulating these pathways, and discuss how redox-dependent events may contribute to pathobiology by altering mitochondrial function. Antioxid. Redox Signal. 16, 1323–1367. PMID:22146081

  14. The N-Terminus of the Floral Arabidopsis TGA Transcription Factor PERIANTHIA Mediates Redox-Sensitive DNA-Binding.

    Directory of Open Access Journals (Sweden)

    Nora Gutsche

    Full Text Available The Arabidopsis TGA transcription factor (TF PERIANTHIA (PAN regulates the formation of the floral organ primordia as revealed by the pan mutant forming an abnormal pentamerous arrangement of the outer three floral whorls. The Arabidopsis TGA bZIP TF family comprises 10 members, of which PAN and TGA9/10 control flower developmental processes and TGA1/2/5/6 participate in stress-responses. For the TGA1 protein it was shown that several cysteines can be redox-dependently modified. TGA proteins interact in the nucleus with land plant-specific glutaredoxins, which may alter their activities posttranslationally. Here, we investigated the DNA-binding of PAN to the AAGAAT motif under different redox-conditions. The AAGAAT motif is localized in the second intron of the floral homeotic regulator AGAMOUS (AG, which controls stamen and carpel development as well as floral determinacy. Whereas PAN protein binds to this regulatory cis-element under reducing conditions, the interaction is strongly reduced under oxidizing conditions in EMSA studies. The redox-sensitive DNA-binding is mediated via a special PAN N-terminus, which is not present in other Arabidopsis TGA TFs and comprises five cysteines. Two N-terminal PAN cysteines, Cys68 and Cys87, were shown to form a disulfide bridge and Cys340, localized in a C-terminal putative transactivation domain, can be S-glutathionylated. Comparative land plant analyses revealed that the AAGAAT motif exists in asterid and rosid plant species. TGA TFs with N-terminal extensions of variable length were identified in all analyzed seed plants. However, a PAN-like N-terminus exists only in the rosids and exclusively Brassicaceae homologs comprise four to five of the PAN N-terminal cysteines. Redox-dependent modifications of TGA cysteines are known to regulate the activity of stress-related TGA TFs. Here, we show that the N-terminal PAN cysteines participate in a redox-dependent control of the PAN interaction with a highly

  15. Enhanced bimolecular exchange reaction through programmed coordination of a five-coordinate oxovanadium complex for efficient redox mediation in dye-sensitized solar cells.

    Science.gov (United States)

    Oyaizu, Kenichi; Hayo, Noriko; Sasada, Yoshito; Kato, Fumiaki; Nishide, Hiroyuki

    2013-12-07

    Electrochemical reversibility and fast bimolecular exchange reaction found for VO(salen) gave rise to a highly efficient redox mediation to enhance the photocurrent of a dye-sensitized solar cell, leading to an excellent photovoltaic performance with a conversion efficiency of 5.4%. A heterogeneous electron-transfer rate constant at an electrode (k0) and a second-order rate constant for an electron self-exchange reaction (k(ex)) were proposed as key parameters that dominate the charge transport property, which afforded a novel design concept for the mediators based on their kinetic aspects.

  16. Redox properties of clay-rich sediments as assessed by mediated electrochemical analysis : Separating pyrite, siderite and structural Fe in clay minerals

    NARCIS (Netherlands)

    Hoving, Alwina L.; Sander, Michael; Bruggeman, Christophe; Behrends, Thilo

    2017-01-01

    Redox reactions with Fe-containing minerals in clay-rich sediments largely affect the speciation, mobility, and (bio-) availability of redox-sensitive contaminants. Here, we use mediated electrochemical oxidation (MEO) and reduction (MER), to quantify the electron accepting and donating capacities

  17. Enhanced microbial decolorization of methyl red with oxidized carbon fiber as redox mediator

    Energy Technology Data Exchange (ETDEWEB)

    Emilia Rios-Del Toro, E. [División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica (IPICyT), Camino a la Presa San José 2055, Col. Lomas 4a Sección, San Luis Potosí, SLP 78216 (Mexico); Celis, Lourdes B. [División de Geociencias Aplicadas, Instituto Potosino de Investigación Científica y Tecnológica (IPICyT), Camino a la Presa San José 2055, Col. Lomas 4a Sección, San Luis Potosí, SLP 78216 (Mexico); Cervantes, Francisco J. [División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica (IPICyT), Camino a la Presa San José 2055, Col. Lomas 4a Sección, San Luis Potosí, SLP 78216 (Mexico); Rangel-Mendez, J. Rene, E-mail: rene@ipicyt.edu.mx [División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica (IPICyT), Camino a la Presa San José 2055, Col. Lomas 4a Sección, San Luis Potosí, SLP 78216 (Mexico)

    2013-09-15

    Highlights: • Activated carbon fibers (ACFs) act as redox mediator. • Electron accepting capacity increased with oxidation time of ACF. •ACFs increased 8-fold the reduction of methyl red in biological assays. •Biofilm formed on the ACFs partly blocked their redox mediator capacity. -- Abstract: The anaerobic degradation of azo dyes under anaerobic conditions is possible but at a slow rate. Redox mediators (quinones, activated carbon) are used to improve the reduction rate. The aim of this work was to use activated carbon fiber (ACF) as a redox mediator for the anaerobic reduction of the azo dye methyl red. ACF was chemically modified with 8 M HNO{sub 3} to increase its redox-mediating capacity and used in chemical and anaerobic biological batch assays for the reduction of methyl red. ACF increased its redox-mediating capacity up to 3-fold in chemical assays; in biological assays ACF increased the reduction rate up to 8-fold compared to controls without ACF. However, since the ACF served as support for biomass, a biofilm formed on the fiber significantly reduced its redox-mediating capacity; substrate consumption suggested that the electron transport from ACF to methyl red was the rate-limiting step in the process. These results are the first evidence of the role of ACF as a redox mediator in the reductive decolorization of methyl red, in addition to the effect of biofilm attached to ACF on methyl red reduction. Due to the versatile characteristics of ACF and its redox-mediating capacity, carbon fibers could be used in biological wastewater treatment systems to accelerate the reductive transformation of pollutants commonly found in industrial effluents.

  18. Enhanced microbial decolorization of methyl red with oxidized carbon fiber as redox mediator

    International Nuclear Information System (INIS)

    Emilia Rios-Del Toro, E.; Celis, Lourdes B.; Cervantes, Francisco J.; Rangel-Mendez, J. Rene

    2013-01-01

    Highlights: • Activated carbon fibers (ACFs) act as redox mediator. • Electron accepting capacity increased with oxidation time of ACF. •ACFs increased 8-fold the reduction of methyl red in biological assays. •Biofilm formed on the ACFs partly blocked their redox mediator capacity. -- Abstract: The anaerobic degradation of azo dyes under anaerobic conditions is possible but at a slow rate. Redox mediators (quinones, activated carbon) are used to improve the reduction rate. The aim of this work was to use activated carbon fiber (ACF) as a redox mediator for the anaerobic reduction of the azo dye methyl red. ACF was chemically modified with 8 M HNO 3 to increase its redox-mediating capacity and used in chemical and anaerobic biological batch assays for the reduction of methyl red. ACF increased its redox-mediating capacity up to 3-fold in chemical assays; in biological assays ACF increased the reduction rate up to 8-fold compared to controls without ACF. However, since the ACF served as support for biomass, a biofilm formed on the fiber significantly reduced its redox-mediating capacity; substrate consumption suggested that the electron transport from ACF to methyl red was the rate-limiting step in the process. These results are the first evidence of the role of ACF as a redox mediator in the reductive decolorization of methyl red, in addition to the effect of biofilm attached to ACF on methyl red reduction. Due to the versatile characteristics of ACF and its redox-mediating capacity, carbon fibers could be used in biological wastewater treatment systems to accelerate the reductive transformation of pollutants commonly found in industrial effluents

  19. Redox-Mediated and Ionizing-Radiation-Induced Inflammatory Mediators in Prostate Cancer Development and Treatment

    Science.gov (United States)

    Miao, Lu; Holley, Aaron K.; Zhao, Yanming; St. Clair, William H.

    2014-01-01

    Abstract Significance: Radiation therapy is widely used for treatment of prostate cancer. Radiation can directly damage biologically important molecules; however, most effects of radiation-mediated cell killing are derived from the generated free radicals that alter cellular redox status. Multiple proinflammatory mediators can also influence redox status in irradiated cells and the surrounding microenvironment, thereby affecting prostate cancer progression and radiotherapy efficiency. Recent Advances: Ionizing radiation (IR)–generated oxidative stress can regulate and be regulated by the production of proinflammatory mediators. Depending on the type and stage of the prostate cancer cells, these proinflammatory mediators may lead to different biological consequences ranging from cell death to development of radioresistance. Critical Issues: Tumors are heterogeneous and dynamic communication occurs between stromal and prostate cancer cells, and complicated redox-regulated mechanisms exist in the tumor microenvironment. Thus, antioxidant and anti-inflammatory strategies should be carefully evaluated for each patient at different stages of the disease to maximize therapeutic benefits while minimizing unintended side effects. Future Directions: Compared with normal cells, tumor cells are usually under higher oxidative stress and secrete more proinflammatory mediators. Thus, redox status is often less adaptive in tumor cells than in their normal counterparts. This difference can be exploited in a search for new cancer therapeutics and treatment regimes that selectively activate cell death pathways in tumor cells with minimal unintended consequences in terms of chemo- and radio-resistance in tumor cells and toxicity in normal tissues. Antioxid. Redox Signal. 20, 1481–1500. PMID:24093432

  20. Importance of the Reorganization Energy Barrier in Computational Design of Porphyrin-Based Solar Cells with Cobalt-Based Redox Mediators

    DEFF Research Database (Denmark)

    Ørnsø, Kristian Baruël; Jónsson, Elvar Örn; Jacobsen, Karsten Wedel

    2015-01-01

    , and this limits the achievable efficiency. Here we show that the large driving force is a direct consequence of the large reorganization energy of the dye regeneration reaction. The reorganization energies for charge transfer between a simple zinc porphyrin dye and two popular cobalt-based redox mediators......The shift from iodide-based redox mediators in dye-sensitized solar cells toward octahedral cobalt complexes has led to a significant increase in the efficiency. However, due to the nature of this type of complexes the driving force required for the regeneration of the dye is very high...... to identify already known highperformance dyes in addition to a number of even better candidates. Our analysis shows that the large internal reorganization energy of the Co-based redox mediators is an obstacle for achieving higher efficiencies....

  1. Paclitaxel-loaded redox-sensitive nanoparticles based on hyaluronic acid-vitamin E succinate conjugates for improved lung cancer treatment.

    Science.gov (United States)

    Song, Yu; Cai, Han; Yin, Tingjie; Huo, Meirong; Ma, Ping; Zhou, Jianping; Lai, Wenfang

    2018-01-01

    Lung cancer is the primary cause of cancer-related death worldwide. A redox-sensitive nanocarrier system was developed for tumor-targeted drug delivery and sufficient drug release of the chemotherapeutic agent paclitaxel (PTX) for improved lung cancer treatment. The redox-sensitive nanocarrier system constructed from a hyaluronic acid-disulfide-vitamin E succinate (HA-SS-VES, HSV) conjugate was synthesized and PTX was loaded in the delivery system. The physicochemical properties of the HSV nanoparticles were characterized. The redox-sensitivity, tumor-targeting and intracellular drug release capability of the HSV nanoparticles were evaluated. Furthermore, in vitro and in vivo antitumor activity of the PTX-loaded HSV nanoparticles was investigated in a CD44 over-expressed A549 tumor model. This HSV conjugate was successfully synthesized and self-assembled to form nanoparticles in aqueous condition with a low critical micelle concentration of 36.3 μg mL -1 . Free PTX was successfully entrapped into the HSV nanoparticles with a high drug loading of 33.5% (w/w) and an entrapment efficiency of 90.6%. Moreover, the redox-sensitivity of the HSV nanoparticles was confirmed by particle size change of the nanoparticles along with in vitro release profiles in different reducing environment. In addition, the HA-receptor mediated endocytosis and the potency of redox-sensitivity for intracellular drug delivery were further verified by flow cytometry and confocal laser scanning microscopic analysis. The antitumor activity results showed that compared to redox-insensitive nanoparticles and Taxol ® , PTX-loaded redox-sensitive nanoparticles exhibited much greater in vitro cytotoxicity and apoptosis-inducing ability against CD44 over-expressed A549 tumor cells. In vivo, the PTX-loaded HSV nanoparticles possessed much higher antitumor efficacy in an A549 mouse xenograft model and demonstrated improved safety profile. In summary, our PTX-loaded redox-sensitive HSV nanoparticles

  2. Effects of non-dissolved redox mediators on a hexavalent chromium bioreduction process

    Directory of Open Access Journals (Sweden)

    Jing Lian

    2016-03-01

    Full Text Available The effects of six non-dissolved redox mediators (RM immobilized in cellulose acetate beads on enhancing Cr(VI reduction by Mangrovibacter plantisponsor CR1 were investigated. In addition, the voltammetric behaviours and electron transfer capacities of the redox mediators were examined using electrochemical methods. Compared to the control beads, the Cr(VI bioreduction rate with 1-chloroanthraquinone cellulose acetate beads (1-CAQ/CA beads was increased up to 4.5-fold, which was mainly attributed to enhanced electron transfer by 1-CAQ. The redox mediators also improved the oxidation–reduction potential values of the Cr(VI bioreduction processes, which might assist in Cr(VI bioreduction. The role of the redox mediators was discussed based on the cyclic voltammetric characteristics (E0' of the redox mediators and the electrochemical impedance spectroscopy characteristics (Rct of the RM/CA beads. A linear correlation was found for the reaction constant k and the 1-CAQ concentration (C1-CAQ, which was k = 1.5674 C1-CAQ + 4.8506 (R2 = 0.9683. The Cr(VI bioreduction was affected by temperature, and the optimum pH for the Cr(VI bioreduction was 6.5. The results of repeated-batch operations showed that 1-CAQ/CA beads exhibited good stability and persistence. This study contributes to a better understanding of the effects of the redox mediator on Cr(VI bioreduction process and demonstrates its promising potential for environmental bioremediation applications.

  3. Redox sensor proteins for highly sensitive direct imaging of intracellular redox state.

    Science.gov (United States)

    Sugiura, Kazunori; Nagai, Takeharu; Nakano, Masahiro; Ichinose, Hiroshi; Nakabayashi, Takakazu; Ohta, Nobuhiro; Hisabori, Toru

    2015-02-13

    Intracellular redox state is a critical factor for fundamental cellular functions, including regulation of the activities of various metabolic enzymes as well as ROS production and elimination. Genetically-encoded fluorescent redox sensors, such as roGFP (Hanson, G. T., et al. (2004)) and Redoxfluor (Yano, T., et al. (2010)), have been developed to investigate the redox state of living cells. However, these sensors are not useful in cells that contain, for example, other colored pigments. We therefore intended to obtain simpler redox sensor proteins, and have developed oxidation-sensitive fluorescent proteins called Oba-Q (oxidation balance sensed quenching) proteins. Our sensor proteins derived from CFP and Sirius can be used to monitor the intracellular redox state as their fluorescence is drastically quenched upon oxidation. These blue-shifted spectra of the Oba-Q proteins enable us to monitor various redox states in conjunction with other sensor proteins. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. A multi-electron redox mediator for redox-targeting lithium-sulfur flow batteries

    Science.gov (United States)

    Li, Guochun; Yang, Liuqing; Jiang, Xi; Zhang, Tianran; Lin, Haibin; Yao, Qiaofeng; Lee, Jim Yang

    2018-02-01

    The lithium-sulfur flow battery (LSFB) is a new addition to the rechargeable lithium flow batteries (LFBs) where sulfur or a sulfur compound is used as the cathode material against the lithium anode. We report here our evaluation of an organic sulfide - dimethyl trisulfide (DMTS), as 1) a catholyte of a LFB and 2) a multi-electron redox mediator for discharging and charging a solid sulfur cathode without any conductive additives. The latter configuration is also known as the redox-targeting lithium-sulfur flow battery (RTLSFB). The LFB provides an initial discharge capacity of 131.5 mAh g-1DMTS (1.66 A h L-1), which decreases to 59 mAh g-1DMTS (0.75 A h L-1) after 40 cycles. The RTLSFB delivers a significantly higher application performance - initial discharge capacity of 1225.3 mAh g-1sulfur (3.83 A h L-1), for which 1030.9 mAh g-1sulfur (3.23 A h L-1) is still available after 40 cycles. The significant increase in the discharge and charge duration of the LFB after sulfur addition indicates that DMTS is better used as a redox mediator in a RTLSFB than as a catholyte in a LFB.

  5. Fate of redox-sensitive elements in two different East-African wetland systems

    Science.gov (United States)

    Glasner, Björn; Fiedler, Sabine

    2017-04-01

    We expect that an intensified cropping alters soil pH and Eh, and negatively affects the production potential of wetlands. Therefore, we investigated the redox-conditions in combination with the fate of different redox-sensitive elements in two prototypical wetland systems that show a high potential for food production in East-Africa. While the floodplains (observed near Ifakara, Kilombero District/Tanzania) serve as major crop producing areas in the region, the Inland Valleys (observed in Namulonge, Central District/Uganda) show a high potential for future production. Both systems have been divided into three positions; the fringe near to the slope, the center near to the river and the middle in between these two positions. In order to get a better understanding of the two systems we installed continuously measuring redox-electrodes in three different positions within both systems. Additionally, the fate of mineral elements was measured using ion-exchange resins with an installation period of 3-4 months. At the Tanzanian field sites the Eh-potential shows one major dry period with moderately reducing to well drained conditions in all sampling depths (10, 30, and 50 cm below ground) in all three positions during the measuring period from March 2015 to Dec 2016. Starting with the rains the Eh-potential drops from 700 mV (in 10 and 30 cm depth) to reducing conditions at all three sites - with intermediate brakes in the middle and fringe positions, showing that there has been no rain during these periods. At the Ugandan field sites the Eh-potential shows more fluctuations during the measuring period, especially in the center position in 2015 ( 750 to -200 mV in 30 and 50 cm depth). Having just the Eh-potential from the first 30 cm below ground it is not really possible to differentiate between dry- and rainy-seasons at the sites. The fate of redox-sensitive elements (Fe, Mn, and P) does not always correlate with the overall Eh-conditions (median) of the installation

  6. Exercise-intensity dependent alterations in plasma redox status do not reflect skeletal muscle redox-sensitive protein signaling.

    Science.gov (United States)

    Parker, Lewan; Trewin, Adam; Levinger, Itamar; Shaw, Christopher S; Stepto, Nigel K

    2018-04-01

    Redox homeostasis and redox-sensitive protein signaling play a role in exercise-induced adaptation. The effects of sprint-interval exercise (SIE), high-intensity interval exercise (HIIE) and continuous moderate-intensity exercise (CMIE), on post-exercise plasma redox status are unclear. Furthermore, whether post-exercise plasma redox status reflects skeletal muscle redox-sensitive protein signaling is unknown. In a randomized crossover design, eight healthy adults performed a cycling session of HIIE (5×4min at 75% W max ), SIE (4×30s Wingate's), and CMIE work-matched to HIIE (30min at 50% of W max ). Plasma hydrogen peroxide (H 2 O 2 ), thiobarbituric acid reactive substances (TBARS), superoxide dismutase (SOD) activity, and catalase activity were measured immediately post, 1h, 2h and 3h post-exercise. Plasma redox status biomarkers were correlated with phosphorylation of skeletal muscle p38-MAPK, JNK, NF-κB, and IκBα protein content immediately and 3h post-exercise. Plasma catalase activity was greater with SIE (56.6±3.8Uml -1 ) compared to CMIE (42.7±3.2, pexercise plasma TBARS and SOD activity significantly (pexercise protocol. A significant positive correlation was detected between plasma catalase activity and skeletal muscle p38-MAPK phosphorylation 3h post-exercise (r=0.40, p=0.04). No other correlations were detected (all p>0.05). Low-volume SIE elicited greater post-exercise plasma catalase activity compared to HIIE and CMIE, and greater H 2 O 2 compared to CMIE. Plasma redox status did not, however, adequately reflect skeletal muscle redox-sensitive protein signaling. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  7. Information processing through a bio-based redox capacitor: signatures for redox-cycling.

    Science.gov (United States)

    Liu, Yi; Kim, Eunkyoung; White, Ian M; Bentley, William E; Payne, Gregory F

    2014-08-01

    Redox-cycling compounds can significantly impact biological systems and can be responsible for activities that range from pathogen virulence and contaminant toxicities, to therapeutic drug mechanisms. Current methods to identify redox-cycling activities rely on the generation of reactive oxygen species (ROS), and employ enzymatic or chemical methods to detect ROS. Here, we couple the speed and sensitivity of electrochemistry with the molecular-electronic properties of a bio-based redox-capacitor to generate signatures of redox-cycling. The redox capacitor film is electrochemically-fabricated at the electrode surface and is composed of a polysaccharide hydrogel with grafted catechol moieties. This capacitor film is redox-active but non-conducting and can engage diffusible compounds in either oxidative or reductive redox-cycling. Using standard electrochemical mediators ferrocene dimethanol (Fc) and Ru(NH3)6Cl3 (Ru(3+)) as model redox-cyclers, we observed signal amplifications and rectifications that serve as signatures of redox-cycling. Three bio-relevant compounds were then probed for these signatures: (i) ascorbate, a redox-active compound that does not redox-cycle; (ii) pyocyanin, a virulence factor well-known for its reductive redox-cycling; and (iii) acetaminophen, an analgesic that oxidatively redox-cycles but also undergoes conjugation reactions. These studies demonstrate that the redox-capacitor can enlist the capabilities of electrochemistry to generate rapid and sensitive signatures of biologically-relevant chemical activities (i.e., redox-cycling). Published by Elsevier B.V.

  8. Rechargable Lithium-Air Batteries: Investigation of Redox Mediators Using DEMS

    DEFF Research Database (Denmark)

    Christensen, Mathias Kjærgård; Storm, Mie Møller; Norby, Poul

    2016-01-01

    material or electrolyte is being decomposed. This is also seen with Thermally reduced Graphene Oxide (TrGO). The graphene based cathode is interesting as it exhibits a high surface area which in turn increases capacity. Using the additive LiI, functioning as a redox mediator, the discharge curve remains...... is observed without the redox mediator [2]. This results in higher energy densities and ideally higher cyclability due to the lower over-potentials. Using DEMS we have investigated the gas evolved in the process to determine the electron to oxygen ratio using both cathode materials mentioned. As has been...

  9. Redox Homeostasis in Plants under Abiotic Stress: Role of electron carriers, energy metabolism mediators and proteinaceous thiols

    Directory of Open Access Journals (Sweden)

    Dhriti Kapoor

    2015-03-01

    Full Text Available Contemporaneous presence of both oxidized and reduced forms of electron carriers is mandatory in efficient flux by plant electron transport cascades. This requirement is considered as redox poising that involves the movement of electron from multiple sites in respiratory and photosynthetic electron transport chains to molecular oxygen. This flux triggers the formation of superoxide, consequently give rise to other reactive oxygen species (ROS under adverse environmental conditions like drought, high or low temperature, heavy metal stress etc. that plants owing during their life span. Plant cells synthesize ascorbate, an additional hydrophilic redox buffer, which protect the plants against oxidative challenge. Large pools of antioxidants also preside over the redox homeostasis. Besides, tocopherol is a liposoluble redox buffer, which efficiently scavenges the ROS like singlet oxygen. In addition, proteinaceous thiol members such as thioredoxin, peroxiredoxin and glutaredoxin, electron carriers and energy metabolism mediators phosphorylated (NADP and non-phosphorylated (NAD+ coenzyme forms interact with ROS, metabolize and maintain redox homeostasis.

  10. Redox-sensitive self-assembled nanoparticles based on alpha-tocopherol succinate-modified heparin for intracellular delivery of paclitaxel.

    Science.gov (United States)

    Yang, Xiaoye; Cai, Xiaoqing; Yu, Aihua; Xi, Yanwei; Zhai, Guangxi

    2017-06-15

    To remedy the problems riddled in cancer chemotherapy, such as poor solubility, low selectivity, and insufficient intra-cellular release of drugs, novel heparin-based redox-sensitive polymeric nanoparticles were developed. The amphiphilic polymer, heparin-alpha-tocopherol succinate (Hep-cys-TOS) was synthesized by grafting hydrophobic TOS to heparin using cystamine as the redox-sensitive linker, which could self-assemble into nanoparticles in phosphate buffer saline (PBS) with low critical aggregation concentration (CAC) values ranging from 0.026 to 0.093mg/mL. Paclitaxel (PTX)-loaded Hep-cys-TOS nanoparticles were prepared via a dialysis method, exhibiting a high drug-loading efficiency of 18.99%. Physicochemical properties of the optimized formulation were characterized by dynamic light scattering (DLS), transmission electron microscope (TEM) and differential scanning calorimetry (DSC). Subsequently, the redox-sensitivity of Hep-cys-TOS nanoparticles was confirmed by the changes in size distribution, morphology and appearance after dithiothreitol (DTT) treatment. Besides, the in vitro release of PTX from Hep-cys-TOS nanoparticles also exhibited a redox-triggered profile. Also, the uptake behavior and pathways of coumarin 6-loaded Hep-cys-TOS nanoparticles were investigated, suggesting the nanoparticles could be taken into MCF-7 cells in energy-dependent, caveolae-mediated and cholesterol-dependent endocytosis manners. Later, MTT assays of different PTX-free and PTX-loaded formulations revealed the desirable safety of PTX-free nanoparticles and the enhanced anti-cancer activity of PTX-loaded Hep-cys-TOS nanoparticles (IC 50 =0.79μg/mL). Apoptosis study indicated the redox-sensitive formulation could induce more apoptosis of MCF-7 cells than insensitive one (55.2% vs. 41.7%), showing the importance of intracellular burst release of PTX. Subsequently, the hemolytic toxicity confirmed the safety of the nanoparticles for intravenous administration. The results

  11. Thiol Redox Sensitivity of Two Key Enzymes of Heme Biosynthesis and Pentose Phosphate Pathways: Uroporphyrinogen Decarboxylase and Transketolase

    Directory of Open Access Journals (Sweden)

    Brian McDonagh

    2013-01-01

    Full Text Available Uroporphyrinogen decarboxylase (Hem12p and transketolase (Tkl1p are key mediators of two critical processes within the cell, heme biosynthesis, and the nonoxidative part of the pentose phosphate pathway (PPP. The redox properties of both Hem12p and Tkl1p from Saccharomyces cerevisiae were investigated using proteomic techniques (SRM and label-free quantification and biochemical assays in cell extracts and in vitro with recombinant proteins. The in vivo analysis revealed an increase in oxidized Cys-peptides in the absence of Grx2p, and also after treatment with H2O2 in the case of Tkl1p, without corresponding changes in total protein, demonstrating a true redox response. Out of three detectable Cys residues in Hem12p, only the conserved residue Cys52 could be modified by glutathione and efficiently deglutathionylated by Grx2p, suggesting a possible redox control mechanism for heme biosynthesis. On the other hand, Tkl1p activity was sensitive to thiol redox modification and although Cys622 could be glutathionylated to a limited extent, it was not a natural substrate of Grx2p. The human orthologues of both enzymes have been involved in certain cancers and possess Cys residues equivalent to those identified as redox sensitive in yeast. The possible implication for redox regulation in the context of tumour progression is put forward.

  12. Immobilization of redox mediators on functionalized carbon nanotube

    Indian Academy of Sciences (India)

    Chemical functionalization of single-walled carbon nanotubes with redox mediators, namely, toluidine blue and thionin have been carried out and the performance of graphite electrode modified with functionalized carbon nanotubes is described. Mechanical immobilization of functionalized single-walled nanotube (SWNT) ...

  13. Redox regulation of cell proliferation: Bioinformatics and redox proteomics approaches to identify redox-sensitive cell cycle regulators.

    Science.gov (United States)

    Foyer, Christine H; Wilson, Michael H; Wright, Megan H

    2018-03-29

    Plant stem cells are the foundation of plant growth and development. The balance of quiescence and division is highly regulated, while ensuring that proliferating cells are protected from the adverse effects of environment fluctuations that may damage the genome. Redox regulation is important in both the activation of proliferation and arrest of the cell cycle upon perception of environmental stress. Within this context, reactive oxygen species serve as 'pro-life' signals with positive roles in the regulation of the cell cycle and survival. However, very little is known about the metabolic mechanisms and redox-sensitive proteins that influence cell cycle progression. We have identified cysteine residues on known cell cycle regulators in Arabidopsis that are potentially accessible, and could play a role in redox regulation, based on secondary structure and solvent accessibility likelihoods for each protein. We propose that redox regulation may function alongside other known posttranslational modifications to control the functions of core cell cycle regulators such as the retinoblastoma protein. Since our current understanding of how redox regulation is involved in cell cycle control is hindered by a lack of knowledge regarding both which residues are important and how modification of those residues alters protein function, we discuss how critical redox modifications can be mapped at the molecular level. Crown Copyright © 2018. Published by Elsevier Inc. All rights reserved.

  14. Exercise and Glycemic Control: Focus on Redox Homeostasis and Redox-Sensitive Protein Signaling

    Science.gov (United States)

    Parker, Lewan; Shaw, Christopher S.; Stepto, Nigel K.; Levinger, Itamar

    2017-01-01

    Physical inactivity, excess energy consumption, and obesity are associated with elevated systemic oxidative stress and the sustained activation of redox-sensitive stress-activated protein kinase (SAPK) and mitogen-activated protein kinase signaling pathways. Sustained SAPK activation leads to aberrant insulin signaling, impaired glycemic control, and the development and progression of cardiometabolic disease. Paradoxically, acute exercise transiently increases oxidative stress and SAPK signaling, yet postexercise glycemic control and skeletal muscle function are enhanced. Furthermore, regular exercise leads to the upregulation of antioxidant defense, which likely assists in the mitigation of chronic oxidative stress-associated disease. In this review, we explore the complex spatiotemporal interplay between exercise, oxidative stress, and glycemic control, and highlight exercise-induced reactive oxygen species and redox-sensitive protein signaling as important regulators of glucose homeostasis. PMID:28529499

  15. Enabling rechargeable non-aqueous Mg-O2 battery operations with dual redox mediators.

    Science.gov (United States)

    Dong, Qi; Yao, Xiahui; Luo, Jingru; Zhang, Xizi; Hwang, Hajin; Wang, Dunwei

    2016-12-11

    Dual redox mediators (RMs) were introduced for Mg-O 2 batteries. 1,4-Benzoquinone (BQ) facilitates the discharge with an overpotential reduction of 0.3 V. 5,10,15,20-Tetraphenyl-21H,23H-porphine cobalt(ii) (Co(ii)TPP) facilitates the recharge with an overpotential decrease of up to 0.3 V. Importantly, the two redox mediators are compatible in the same DMSO-based electrolyte.

  16. Site-Specific Bioconjugation of an Organometallic Electron Mediator to an Enzyme with Retained Photocatalytic Cofactor Regenerating Capacity and Enzymatic Activity

    Directory of Open Access Journals (Sweden)

    Sung In Lim

    2015-04-01

    Full Text Available Photosynthesis consists of a series of reactions catalyzed by redox enzymes to synthesize carbohydrates using solar energy. In order to take the advantage of solar energy, many researchers have investigated artificial photosynthesis systems mimicking the natural photosynthetic enzymatic redox reactions. These redox reactions usually require cofactors, which due to their high cost become a key issue when constructing an artificial photosynthesis system. Combining a photosensitizer and an Rh-based electron mediator (RhM has been shown to photocatalytically regenerate cofactors. However, maintaining the high concentration of cofactors available for efficient enzymatic reactions requires a high concentration of the expensive RhM; making this process cost prohibitive. We hypothesized that conjugation of an electron mediator to a redox enzyme will reduce the amount of electron mediators necessary for efficient enzymatic reactions. This is due to photocatalytically regenerated NAD(PH being readily available to a redox enzyme, when the local NAD(PH concentration near the enzyme becomes higher. However, conventional random conjugation of RhM to a redox enzyme will likely lead to a substantial loss of cofactor regenerating capacity and enzymatic activity. In order to avoid this issue, we investigated whether bioconjugation of RhM to a permissive site of a redox enzyme retains cofactor regenerating capacity and enzymatic activity. As a model system, a RhM was conjugated to a redox enzyme, formate dehydrogenase obtained from Thiobacillus sp. KNK65MA (TsFDH. A RhM-containing azide group was site-specifically conjugated to p-azidophenylalanine introduced to a permissive site of TsFDH via a bioorthogonal strain-promoted azide-alkyne cycloaddition and an appropriate linker. The TsFDH-RhM conjugate exhibited retained cofactor regenerating capacity and enzymatic activity.

  17. Activated Carbon as an Electron Acceptor and Redox Mediator during the Anaerobic Biotransformation of Azo Dyes

    NARCIS (Netherlands)

    Zee, van der F.P.; Bisschops, I.A.E.; Lettinga, G.; Field, J.A.

    2003-01-01

    The role of AC as redox mediator in accelerating the reductive transformation of pollutants as well as a terminal electron acceptor in the biological oxidation of an organic substrate is described. This study explores the use of AC as an immobilized redox mediator for the reduction of a recalcitrant

  18. Unleashing the Power and Energy of LiFePO4-Based Redox Flow Lithium Battery with a Bifunctional Redox Mediator.

    Science.gov (United States)

    Zhu, Yun Guang; Du, Yonghua; Jia, Chuankun; Zhou, Mingyue; Fan, Li; Wang, Xingzhu; Wang, Qing

    2017-05-10

    Redox flow batteries, despite great operation flexibility and scalability for large-scale energy storage, suffer from low energy density and relatively high cost as compared to the state-of-the-art Li-ion batteries. Here we report a redox flow lithium battery, which operates via the redox targeting reactions of LiFePO 4 with a bifunctional redox mediator, 2,3,5,6-tetramethyl-p-phenylenediamine, and presents superb energy density as the Li-ion battery and system flexibility as the redox flow battery. The battery has achieved a tank energy density as high as 1023 Wh/L, power density of 61 mW/cm 2 , and voltage efficiency of 91%. Operando X-ray absorption near-edge structure measurements were conducted to monitor the evolution of LiFePO 4 , which provides insightful information on the redox targeting process, critical to the device operation and optimization.

  19. Are bioassays useful tools to assess redox processes and biodegradation?

    DEFF Research Database (Denmark)

    Albrechtsen, Hans-Jørgen; Pedersen, Philip Grinder; Ludvigsen, L.

    2002-01-01

    sensitive hydrochemical or geochemical parameters, levels of hydrogen, and redox potential. However, all these approaches have to be evaluated against TEAP-bioassays as the most direct measure. We assessed successfully ongoing microbial-mediated redox processes by TEAP-bioassays in degradation studies...... of aromatic and chlorinated aliphatic compounds in landfill leachate plumes, and of pesticides in aquifers with various redox conditions....

  20. Redox-sensitive nanoparticles based on 4-aminothiophenol-carboxymethyl inulin conjugate for budesonide delivery in inflammatory bowel diseases.

    Science.gov (United States)

    Sun, Qijuan; Luan, Lin; Arif, Muhammad; Li, Jiaxin; Dong, Quan-Jiang; Gao, Yuanyuan; Chi, Zhe; Liu, Chen-Guang

    2018-06-01

    The purpose of this study was to develop an oral nanocarrier as budesonide delivery system and to evaluate its therapeutic potential for inflammatory bowel disease (IBD). The nanoparticles (NPs) based on an amphiphilic inulin polymer with 4-aminothiophenol (ATP) grafted onto carboxymethyl inulin (CMI) were prepared. The particle sizes were about 210.18 nm and had the obvious pH/redox sensitive swelling transitions. The drug-release study of NPs in vitro showed a low release rate (about 45 wt%) in GSH-free media, whereas high release rate (about 80 wt%) in the media containing 20 mM GSH, exhibiting a redox-responsive property. Further in vivo experiments found the NPs tended to accumulate in inflamed sites, and exerted excellent therapeutic efficacy in comparison to drug suspension in colitis mice model. All the results demonstrated that the redox-sensitive NPs, based on amphiphilic inulin, may be used as colon-targeted drug delivery for the treatment of IBD. Copyright © 2017. Published by Elsevier Ltd.

  1. The Effects of Acrolein on the Thioredoxin System: Implications for Redox-Sensitive Signaling

    Science.gov (United States)

    Myers, Charles R.; Myers, Judith M.; Kufahl, Timothy D.; Forbes, Rachel; Szadkowski, Adam

    2012-01-01

    The reactive aldehyde acrolein is a ubiquitous environmental pollutant and is also generated endogenously. It is a strong electrophile and reacts rapidly with nucleophiles including thiolates. This review focuses on the effects of acrolein on thioredoxin reductase (TrxR) and thioredoxin (Trx), which are major regulators of intracellular protein thiol redox balance. Acrolein causes irreversible effects on TrxR and Trx, which are consistent with the formation of covalent adducts to selenocysteine and cysteine residues that are key to their activity. TrxR and Trx are more sensitive than some other redox-sensitive proteins, and their prolonged inhibition could disrupt a number of redox-sensitive functions in cells. Among these effects are the oxidation of peroxiredoxins and the activation of apoptosis signal regulating kinase (ASK1). ASK1 promotes MAP kinase activation, and p38 activation contributes to apoptosis and a number of other acrolein-induced stress responses. Overall, the disruption of the TrxR/Trx system by acrolein could be significant early and prolonged events that affects many aspects of redox-sensitive signaling and oxidant stress. PMID:21812108

  2. Proteomic identification of early salicylate- and flg22-responsive redox-sensitive proteins in Arabidopsis

    KAUST Repository

    Liu, Peng

    2015-02-27

    Accumulation of reactive oxygen species (ROS) is one of the early defense responses against pathogen infection in plants. The mechanism about the initial and direct regulation of the defense signaling pathway by ROS remains elusive. Perturbation of cellular redox homeostasis by ROS is believed to alter functions of redox-sensitive proteins through their oxidative modifications. Here we report an OxiTRAQ-based proteomic study in identifying proteins whose cysteines underwent oxidative modifications in Arabidopsis cells during the early response to salicylate or flg22, two defense pathway elicitors that are known to disturb cellular redox homeostasis. Among the salicylate- and/or flg22-responsive redox-sensitive proteins are those involved in transcriptional regulation, chromatin remodeling, RNA processing, post-translational modifications, and nucleocytoplasmic shuttling. The identification of the salicylate-/flg22-responsive redox-sensitive proteins provides a foundation from which further study can be conducted toward understanding biological significance of their oxidative modifications during the plant defense response.

  3. High-resolution imaging of redox signaling in live cells through an oxidation-sensitive yellow fluorescent protein

    DEFF Research Database (Denmark)

    Maulucci, Giuseppe; Labate, Valentina; Mele, Marina

    2008-01-01

    We present the application of a redox-sensitive mutant of the yellow fluorescent protein (rxYFP) to image, with elevated sensitivity and high temporal and spatial resolution, oxidative responses of eukaryotic cells to pathophysiological stimuli. The method presented, based on the ratiometric...... quantitation of the distribution of fluorescence by confocal microscopy, allows us to draw real-time "redox maps" of adherent cells and to score subtle changes in the intracellular redox state, such as those induced by overexpression of redox-active proteins. This strategy for in vivo imaging of redox...

  4. Redox regulation of the MED28 and MED32 mediator subunits is important for development and senescence.

    Science.gov (United States)

    Shaikhali, Jehad; Davoine, Céline; Björklund, Stefan; Wingsle, Gunnar

    2016-05-01

    Mediator is a conserved multi-protein complex that acts as a bridge between promoter-bound transcriptional regulators and RNA polymerase II. While redox signaling is important in adjusting plant metabolism and development, the involvement of Mediator in redox homeostasis and regulation only recently started to emerge. Our previous results show that the MED10a, MED28, and MED32 Mediator subunits form various types of covalent oligomers linked by intermolecular disulfide bonds in vitro. To link that with biological significance we have characterized Arabidopsis med32 and med28 mutants and found that they are affected in root development and senescence, phenotypes possibly associated to redox changes.

  5. Sunlight mediated synthesis of silver nanoparticles using redox phytoprotein and their application in catalysis and colorimetric mercury sensing.

    Science.gov (United States)

    Ahmed, Khan Behlol Ayaz; Senthilnathan, Rajendran; Megarajan, Sengan; Anbazhagan, Veerappan

    2015-10-01

    Owing to the benign nature, plant extracts mediated green synthesis of metal nanoparticles (NPs) is rapidly expanding. In this study, we demonstrated the successful green synthesis of silver nanoparticles (AgNPs) by utilizing natural sunlight and redox protein complex composed of ferredoxin-NADP(+) reductase (FNR) and ferredoxin (FD). The capping and stabilization of the AgNPs by the redox protein was confirmed by Fourier transform infrared spectroscopy. Light and redox protein is the prerequisite factor for the formation of AgNPs. The obtained result shows that the photo generated free radicals by the redox protein is responsible for the reduction of Ag(+) to Ag(0). Transmission electron microscopy revealed the formation of spherical AgNPs with size ranging from 10 to 15 nm. As-prepared AgNPs exhibit excellent catalytic activity toward the degradation of hazardous organic dyes, such as methylene blue, methyl orange and methyl red. These bio-inspired AgNPs is highly sensitive and selective in sensing hazardous mercury ions in the water at micromolar concentration. In addition, FNR/FD extract stabilized AgNPs showed good antimicrobial activity against gram positive and gram negative bacteria. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Redox Mediators for Li-O2 Batteries: Status and Perspectives.

    Science.gov (United States)

    Park, Jin-Bum; Lee, Seon Hwa; Jung, Hun-Gi; Aurbach, Doron; Sun, Yang-Kook

    2018-01-01

    Li-O 2 batteries have received much attention due to their extremely large theoretical energy density. However, the high overpotentials required for charging Li-O 2 batteries lower their energy efficiency and degrade the electrolytes and carbon electrodes. This problem is one of the main obstacles in developing practical Li-O 2 batteries. To solve this problem, it is important to facilitate the oxidation of Li 2 O 2 upon charging by using effective electrocatalysis. Using solid catalysts is not too effective for oxidizing the electronically isolating Li-peroxide layers. In turn, for soluble catalysts, red-ox mediators (RMs) are homogeneously dissolved in the electrolyte solutions and can effectively oxidize all of the Li 2 O 2 precipitated during discharge. RMs can decompose solid Li 2 O 2 species no matter their size, morphology, or thickness and thus dramatically increase energy efficiency. However, some negative side effects, such as the shuttle reactions of RMs and deterioration of the Li-metal occur. Therefore, it is necessary to study the activity and stability of RMs in Li-O 2 batteries in detail. Herein, recent studies related to redox mediators are reviewed and the mechanisms of redox reactions are illustrated. The development opportunities of RMs for this important battery technology are discussed and future directions are suggested. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Investigation of a redox-sensitive predictive model of mouse embryonic stem cells differentiation using quantitative nuclease protection assays and glutathione redox status

    Science.gov (United States)

    Investigation of a redox-sensitive predictive model of mouse embryonic stem cell differentiation via quantitative nuclease protection assays and glutathione redox status Chandler KJ,Hansen JM, Knudsen T,and Hunter ES 1. U.S. Environmental Protection Agency, Research Triangl...

  8. Strain- and Substrate-Dependent Redox Mediator and Electricity Production by Pseudomonas aeruginosa.

    Science.gov (United States)

    Bosire, Erick M; Blank, Lars M; Rosenbaum, Miriam A

    2016-08-15

    Pseudomonas aeruginosa is an important, thriving member of microbial communities of microbial bioelectrochemical systems (BES) through the production of versatile phenazine redox mediators. Pure culture experiments with a model strain revealed synergistic interactions of P. aeruginosa with fermenting microorganisms whereby the synergism was mediated through the shared fermentation product 2,3-butanediol. Our work here shows that the behavior and efficiency of P. aeruginosa in mediated current production is strongly dependent on the strain of P. aeruginosa We compared levels of phenazine production by the previously investigated model strain P. aeruginosa PA14, the alternative model strain P. aeruginosa PAO1, and the BES isolate Pseudomonas sp. strain KRP1 with glucose and the fermentation products 2,3-butanediol and ethanol as carbon substrates. We found significant differences in substrate-dependent phenazine production and resulting anodic current generation for the three strains, with the BES isolate KRP1 being overall the best current producer and showing the highest electrochemical activity with glucose as a substrate (19 μA cm(-2) with ∼150 μg ml(-1) phenazine carboxylic acid as a redox mediator). Surprisingly, P. aeruginosa PAO1 showed very low phenazine production and electrochemical activity under all tested conditions. Microbial fuel cells and other microbial bioelectrochemical systems hold great promise for environmental technologies such as wastewater treatment and bioremediation. While there is much emphasis on the development of materials and devices to realize such systems, the investigation and a deeper understanding of the underlying microbiology and ecology are lagging behind. Physiological investigations focus on microorganisms exhibiting direct electron transfer in pure culture systems. Meanwhile, mediated electron transfer with natural redox compounds produced by, for example, Pseudomonas aeruginosa might enable an entire microbial

  9. Proteomic identification of early salicylate- and flg22-responsive redox-sensitive proteins in Arabidopsis

    KAUST Repository

    Liu, Peng; Zhang, Huoming; Yu, Boying; Xiong, Liming; Xia, Yiji

    2015-01-01

    in Arabidopsis cells during the early response to salicylate or flg22, two defense pathway elicitors that are known to disturb cellular redox homeostasis. Among the salicylate- and/or flg22-responsive redox-sensitive proteins are those involved in transcriptional

  10. Biochemical and redox characterization of the mediator complex and its associated transcription factor GeBPL, a GLABROUS1 enhancer binding protein.

    Science.gov (United States)

    Shaikhali, Jehad; Davoine, Céline; Brännström, Kristoffer; Rouhier, Nicolas; Bygdell, Joakim; Björklund, Stefan; Wingsle, Gunnar

    2015-06-15

    The eukaryotic mediator integrates regulatory signals from promoter-bound transcription factors (TFs) and transmits them to RNA polymerase II (Pol II) machinery. Although redox signalling is important in adjusting plant metabolism and development, nothing is known about a possible redox regulation of mediator. In the present study, using pull-down and yeast two-hybrid assays, we demonstrate the association of mediator (MED) subunits MED10a, MED28 and MED32 with the GLABROUS1 (GL1) enhancer-binding protein-like (GeBPL), a plant-specific TF that binds a promoter containing cryptochrome 1 response element 2 (CryR2) element. All the corresponding recombinant proteins form various types of covalent oligomers linked by intermolecular disulfide bonds that are reduced in vitro by the thioredoxin (TRX) and/or glutathione/glutaredoxin (GRX) systems. The presence of recombinant MED10a, MED28 and MED32 subunits or changes of its redox state affect the DNA-binding capacity of GeBPL suggesting that redox-driven conformational changes might modulate its activity. Overall, these results advance our understanding of how redox signalling affects transcription and identify mediator as a novel actor in redox signalling pathways, relaying or integrating redox changes in combination with specific TFs as GeBPL. © The Authors Journal compilation © 2015 Biochemical Society.

  11. A novel and high-effective redox-mediated gel polymer electrolyte for supercapacitor

    International Nuclear Information System (INIS)

    Ma, Guofu; Feng, Enke; Sun, Kanjun; Peng, Hui; Li, Jiajia; Lei, Ziqiang

    2014-01-01

    Graphical abstract: - Highlights: • Alkali and P-phenylenediamine doped polyvinyl alcohol gel electrolyte is prepared. • The PVA-KOH-PPD gel electrolyte can also be used as separator. • The introduction of PPD increases the ionic conductivity of electrolyte. • The supercapacitor exhibits flexible and high energy density. - Abstract: A supercapacitor utilize a novel redox-mediated gel polymer (PVA-KOH-PPD) as electrolyte and separator, and activated carbon as electrodes is assembled. The PVA-KOH-PPD gel polymer as potential electrolyte for supercapacitor is investigated by cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy techniques. It is found that the supercapacitor exhibits high ionic conductivity (25 mS cm −1 ), large electrode specific capacitance (611 F g −1 ) and high energy density (82.56 Wh kg −1 ). The high performance is attributed to the addition of quick redox reactions at the electrolyte|electrode interface as PPD undergoes a two-proton/two-electron reduction and oxidation during cycling. Furthermore, the supercapacitor with PVA-KOH-PPD gel polymer shows excellent charge-discharge stability, after 1000 charge-discharge cycles, the supercapacitor still retains a high electrode specific capacitance of 470 F g −1 . It is believed that the idea using redox mediator has a good prospect for improving the performances of supercapacitors

  12. Reductant-dependent electron distribution among redox sites of laccase

    DEFF Research Database (Denmark)

    Farver, O; Goldberg, M; Wherland, S

    1978-01-01

    Rhus laccase (monophenol monooxygenase, monophenol,dihydroxyphenylalanine:oxygen oxidoreductase, EC 1.14.18.1) an O2/H2O oxidoreductase containing four copper ions bound to three redox sites (type 1, type 2, and type 3 Cu pair), was titrated anaerobically with several reductants having various ch...

  13. Oxygen cathode based on a layer-by-layer self-assembled laccase and osmium redox mediator

    Energy Technology Data Exchange (ETDEWEB)

    Szamocki, R.; Flexer, V. [INQUIMAE-DQIAyQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires (Argentina); Levin, L.; Forchiasin, F. [Micologia Experimental, Departamento de Biodiversidad y Biologia Experimental. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires (Argentina); Calvo, E.J. [INQUIMAE-DQIAyQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires (Argentina)], E-mail: calvo@qi.fcen.uba.ar

    2009-02-28

    Trametes trogii laccase has been studied as biocatalyst for the oxygen electro-reduction in three different systems: (i) soluble laccase was studied in solution; (ii) an enzyme monolayer was tethered to a gold surface by dithiobis N-succinimidyl propionate (DTSP), with a soluble osmium pyridine-bipyridine redox mediator in both cases. The third case (iii) consisted in the sequential immobilization of laccase and the osmium complex derivatized poly(allylamine) self-assembled layer-by-layer (LbL) on mercaptopropane sulfonate modified gold to produce an all integrated and wired enzymatic oxygen cathode. The polycation was the same osmium complex covalently bound to poly-(ally-lamine) backbone (PAH-Os), the polyanion was the enzyme adsorbed from a solution of a suitable pH so that the protein carries a net negative charge. The adsorption of laccase was studied by monitoring the mass uptake with a quartz crystal microbalance and the oxygen reduction electrocatalysis was studied by linear scan voltammetry. While for the three cases, oxygen electrocatalysis mediated by the osmium complex was observed, for tethered laccase direct electron transfer in the absence of redox mediator was also apparent but no electrocatalysis for the oxygen reduction was recorded in the absence of mediator in solution. For the fully integrated LbL self-assembled laccase and redox mediator (case iii) a catalytic reduction of oxygen could be recorded at different oxygen partial pressures and different electrolyte pH. The tolerance of the reaction to methanol and chloride was also investigated.

  14. Oxygen cathode based on a layer-by-layer self-assembled laccase and osmium redox mediator

    International Nuclear Information System (INIS)

    Szamocki, R.; Flexer, V.; Levin, L.; Forchiasin, F.; Calvo, E.J.

    2009-01-01

    Trametes trogii laccase has been studied as biocatalyst for the oxygen electro-reduction in three different systems: (i) soluble laccase was studied in solution; (ii) an enzyme monolayer was tethered to a gold surface by dithiobis N-succinimidyl propionate (DTSP), with a soluble osmium pyridine-bipyridine redox mediator in both cases. The third case (iii) consisted in the sequential immobilization of laccase and the osmium complex derivatized poly(allylamine) self-assembled layer-by-layer (LbL) on mercaptopropane sulfonate modified gold to produce an all integrated and wired enzymatic oxygen cathode. The polycation was the same osmium complex covalently bound to poly-(ally-lamine) backbone (PAH-Os), the polyanion was the enzyme adsorbed from a solution of a suitable pH so that the protein carries a net negative charge. The adsorption of laccase was studied by monitoring the mass uptake with a quartz crystal microbalance and the oxygen reduction electrocatalysis was studied by linear scan voltammetry. While for the three cases, oxygen electrocatalysis mediated by the osmium complex was observed, for tethered laccase direct electron transfer in the absence of redox mediator was also apparent but no electrocatalysis for the oxygen reduction was recorded in the absence of mediator in solution. For the fully integrated LbL self-assembled laccase and redox mediator (case iii) a catalytic reduction of oxygen could be recorded at different oxygen partial pressures and different electrolyte pH. The tolerance of the reaction to methanol and chloride was also investigated

  15. Charging a Li-O₂ battery using a redox mediator.

    Science.gov (United States)

    Chen, Yuhui; Freunberger, Stefan A; Peng, Zhangquan; Fontaine, Olivier; Bruce, Peter G

    2013-06-01

    The non-aqueous Li-air (O2) battery is receiving intense interest because its theoretical specific energy exceeds that of Li-ion batteries. Recharging the Li-O2 battery depends on oxidizing solid lithium peroxide (Li2O2), which is formed on discharge within the porous cathode. However, transporting charge between Li2O2 particles and the solid electrode surface is at best very difficult and leads to voltage polarization on charging, even at modest rates. This is a significant problem facing the non-aqueous Li-O2 battery. Here we show that incorporation of a redox mediator, tetrathiafulvalene (TTF), enables recharging at rates that are impossible for the cell in the absence of the mediator. On charging, TTF is oxidized to TTF(+) at the cathode surface; TTF(+) in turn oxidizes the solid Li2O2, which results in the regeneration of TTF. The mediator acts as an electron-hole transfer agent that permits efficient oxidation of solid Li2O2. The cell with the mediator demonstrated 100 charge/discharge cycles.

  16. Effect of reducing groundwater on the retardation of redox-sensitive radionuclides

    Directory of Open Access Journals (Sweden)

    Rose TP

    2008-12-01

    Full Text Available Abstract Laboratory batch sorption experiments were used to investigate variations in the retardation behavior of redox-sensitive radionuclides. Water-rock compositions were designed to simulate subsurface conditions at the Nevada Test Site (NTS, where a suite of radionuclides were deposited as a result of underground nuclear testing. Experimental redox conditions were controlled by varying the oxygen content inside an enclosed glove box and by adding reductants into the testing solutions. Under atmospheric (oxidizing conditions, radionuclide distribution coefficients varied with the mineralogic composition of the sorbent and the water chemistry. Under reducing conditions, distribution coefficients showed marked increases for 99Tc (from 1.22 at oxidizing to 378 mL/g at mildly reducing conditions and 237Np (an increase from 4.6 to 930 mL/g in devitrified tuff, but much smaller variations in alluvium, carbonate rock, and zeolitic tuff. This effect was particularly important for 99Tc, which tends to be mobile under oxidizing conditions. A review of the literature suggests that iodine sorption should decrease under reducing conditions when I- is the predominant species; this was not consistently observed in batch tests. Overall, sorption of U to alluvium, devitrified tuff, and zeolitic tuff under atmospheric conditions was less than in the glove-box tests. However, the mildly reducing conditions achieved here were not likely to result in substantial U(VI reduction to U(IV. Sorption of Pu was not affected by the decreasing Eh conditions achieved in this study, as the predominant sorbed Pu species in all conditions was expected to be the low-solubility and strongly sorbing Pu(OH4. Depending on the aquifer lithology, the occurrence of reducing conditions along a groundwater flowpath could potentially contribute to the retardation of redox-sensitive radionuclides 99Tc and 237Np, which are commonly identified as long-term dose contributors in the risk

  17. Relating hyporheic fluxes, residence times, and redox-sensitive biogeochemical processes upstream of beaver dams

    Science.gov (United States)

    Briggs, Martin A.; Lautz, Laura; Hare, Danielle K.

    2013-01-01

    Abstract. Small dams enhance the development of patchy microenvironments along stream corridors by trapping sediment and creating complex streambed morphologies. This patchiness drives intricate hyporheic flux patterns that govern the exchange of O2 and redox-sensitive solutes between the water column and the stream bed. We used multiple tracer techniques, naturally occurring and injected, to evaluate hyporheic flow dynamics and associated biogeochemical cycling and microbial reactivity around 2 beaver dams in Wyoming (USA). High-resolution fiber-optic distributed temperature sensing was used to collect temperature data over 9 vertical streambed profiles and to generate comprehensive vertical flux maps using 1-dimensional (1-D) heat-transport modeling. Coincident with these locations, vertical profiles of hyporheic water were collected every week and analyzed for dissolved O2, pH, dissolved organic C, and several conservative and redox-sensitive solutes. In addition, hyporheic and net stream aerobic microbial reactivity were analyzed with a constant-rate injection of the biologically sensitive resazurin (Raz) smart tracer. The combined results revealed a heterogeneous system with rates of downwelling hyporheic flow organized by morphologic unit and tightly coupled to the redox conditions of the subsurface. Principal component analysis was used to summarize the variability of all redox-sensitive species, and results indicated that hyporheic water varied from oxic-stream-like to anoxic-reduced in direct response to the hydrodynamic conditions and associated residence times. The anaerobic transition threshold predicted by the mean O2 Damko

  18. The different behaviors of three oxidative mediators in probing the redox activities of the yeast Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Jinsheng [Department of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059 (China); Wang Min [School of Medicine, Ehime University, Toon 791-0295 (Japan); Yang Zhenyu [Department of Chemistry, Nanchang University, Jiangxi 330047 (China); Wang Zhong [School of Medicine, Ehime University, Toon 791-0295 (Japan); Wang Huaisheng [Department of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059 (China); Yang Zhengyu [Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100101 (China)

    2007-07-30

    The different behaviors of three lipophilic mediators including 2-methyl-1,4-naphthalenedione(menadione), 2,6-dichlorophenolindophenol (DCPIP) and N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) in probing the redox activity of the yeast Saccharomyces cerevisiae were studied by several comparative factor-influencing experiments. Hydrophilic ferricyanide was employed as an extracellular electron acceptor, and constituted dual mediator system with each of three lipophilic mediators. Limiting-current microelectrode voltammetry was used to measure the quantity of ferrocyanide accumulations, giving a direct measure of the redox activity. It was found that under anaerobic condition, menadione interacts with anaerobic respiration pathway, whereas DCPIP and TMPD interact with fermentation pathway in the yeast. Based on the understanding of the interaction between the yeast and each of three mediators, three mediators were respectively employed in evaluating the toxicity of acetic acid on S. cerevisiae and, the results for the first showed that the mediators are complementary to each other when used as electron carriers in biotoxicity assay.

  19. The different behaviors of three oxidative mediators in probing the redox activities of the yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Zhao Jinsheng; Wang Min; Yang Zhenyu; Wang Zhong; Wang Huaisheng; Yang Zhengyu

    2007-01-01

    The different behaviors of three lipophilic mediators including 2-methyl-1,4-naphthalenedione(menadione), 2,6-dichlorophenolindophenol (DCPIP) and N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) in probing the redox activity of the yeast Saccharomyces cerevisiae were studied by several comparative factor-influencing experiments. Hydrophilic ferricyanide was employed as an extracellular electron acceptor, and constituted dual mediator system with each of three lipophilic mediators. Limiting-current microelectrode voltammetry was used to measure the quantity of ferrocyanide accumulations, giving a direct measure of the redox activity. It was found that under anaerobic condition, menadione interacts with anaerobic respiration pathway, whereas DCPIP and TMPD interact with fermentation pathway in the yeast. Based on the understanding of the interaction between the yeast and each of three mediators, three mediators were respectively employed in evaluating the toxicity of acetic acid on S. cerevisiae and, the results for the first showed that the mediators are complementary to each other when used as electron carriers in biotoxicity assay

  20. Redox Signaling Mediated by Thioredoxin and Glutathione Systems in the Central Nervous System.

    Science.gov (United States)

    Ren, Xiaoyuan; Zou, Lili; Zhang, Xu; Branco, Vasco; Wang, Jun; Carvalho, Cristina; Holmgren, Arne; Lu, Jun

    2017-11-01

    The thioredoxin (Trx) and glutathione (GSH) systems play important roles in maintaining the redox balance in the brain, a tissue that is prone to oxidative stress due to its high-energy demand. These two disulfide reductase systems are active in various areas of the brain and are considered to be critical antioxidant systems in the central nervous system (CNS). Various neuronal disorders have been characterized to have imbalanced redox homeostasis. Recent Advances: In addition to their detrimental effects, recent studies have highlighted that reactive oxygen species/reactive nitrogen species (ROS/RNS) act as critical signaling molecules by modifying thiols in proteins. The Trx and GSH systems, which reversibly regulate thiol modifications, regulate redox signaling involved in various biological events in the CNS. In this review, we focus on the following: (i) how ROS/RNS are produced and mediate signaling in CNS; (ii) how Trx and GSH systems regulate redox signaling by catalyzing reversible thiol modifications; (iii) how dysfunction of the Trx and GSH systems causes alterations of cellular redox signaling in human neuronal diseases; and (iv) the effects of certain small molecules that target thiol-based signaling pathways in the CNS. Further study on the roles of thiol-dependent redox systems in the CNS will improve our understanding of the pathogenesis of many human neuronal disorders and also help to develop novel protective and therapeutic strategies against neuronal diseases. Antioxid. Redox Signal. 27, 989-1010.

  1. Vitamin K3 (menadione) redox cycling inhibits cytochrome P450-mediated metabolism and inhibits parathion intoxication

    Energy Technology Data Exchange (ETDEWEB)

    Jan, Yi-Hua [Department of Environmental and Occupational Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ (United States); Richardson, Jason R., E-mail: jricha3@eohsi.rutgers.edu [Department of Environmental and Occupational Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ (United States); Baker, Angela A. [Department of Environmental and Occupational Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ (United States); Mishin, Vladimir [Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ (United States); Heck, Diane E. [Department of Environmental Health Science, New York Medical College, Valhalla, NY (United States); Laskin, Debra L. [Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ (United States); Laskin, Jeffrey D., E-mail: jlaskin@eohsi.rutgers.edu [Department of Environmental and Occupational Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ (United States)

    2015-10-01

    Parathion, a widely used organophosphate insecticide, is considered a high priority chemical threat. Parathion toxicity is dependent on its metabolism by the cytochrome P450 system to paraoxon (diethyl 4-nitrophenyl phosphate), a cytotoxic metabolite. As an effective inhibitor of cholinesterases, paraoxon causes the accumulation of acetylcholine in synapses and overstimulation of nicotinic and muscarinic cholinergic receptors, leading to characteristic signs of organophosphate poisoning. Inhibition of parathion metabolism to paraoxon represents a potential approach to counter parathion toxicity. Herein, we demonstrate that menadione (methyl-1,4-naphthoquinone, vitamin K3) is a potent inhibitor of cytochrome P450-mediated metabolism of parathion. Menadione is active in redox cycling, a reaction mediated by NADPH-cytochrome P450 reductase that preferentially uses electrons from NADPH at the expense of their supply to the P450s. Using human recombinant CYP 1A2, 2B6, 3A4 and human liver microsomes, menadione was found to inhibit the formation of paraoxon from parathion. Administration of menadione bisulfite (40 mg/kg, ip) to rats also reduced parathion-induced inhibition of brain cholinesterase activity, as well as parathion-induced tremors and the progression of other signs and symptoms of parathion poisoning. These data suggest that redox cycling compounds, such as menadione, have the potential to effectively mitigate the toxicity of organophosphorus pesticides including parathion which require cytochrome P450-mediated activation. - Highlights: • Menadione redox cycles with cytochrome P450 reductase and generates reactive oxygen species. • Redox cycling inhibits cytochrome P450-mediated parathion metabolism. • Short term administration of menadione inhibits parathion toxicity by inhibiting paraoxon formation.

  2. Vitamin K3 (menadione) redox cycling inhibits cytochrome P450-mediated metabolism and inhibits parathion intoxication

    International Nuclear Information System (INIS)

    Jan, Yi-Hua; Richardson, Jason R.; Baker, Angela A.; Mishin, Vladimir; Heck, Diane E.; Laskin, Debra L.; Laskin, Jeffrey D.

    2015-01-01

    Parathion, a widely used organophosphate insecticide, is considered a high priority chemical threat. Parathion toxicity is dependent on its metabolism by the cytochrome P450 system to paraoxon (diethyl 4-nitrophenyl phosphate), a cytotoxic metabolite. As an effective inhibitor of cholinesterases, paraoxon causes the accumulation of acetylcholine in synapses and overstimulation of nicotinic and muscarinic cholinergic receptors, leading to characteristic signs of organophosphate poisoning. Inhibition of parathion metabolism to paraoxon represents a potential approach to counter parathion toxicity. Herein, we demonstrate that menadione (methyl-1,4-naphthoquinone, vitamin K3) is a potent inhibitor of cytochrome P450-mediated metabolism of parathion. Menadione is active in redox cycling, a reaction mediated by NADPH-cytochrome P450 reductase that preferentially uses electrons from NADPH at the expense of their supply to the P450s. Using human recombinant CYP 1A2, 2B6, 3A4 and human liver microsomes, menadione was found to inhibit the formation of paraoxon from parathion. Administration of menadione bisulfite (40 mg/kg, ip) to rats also reduced parathion-induced inhibition of brain cholinesterase activity, as well as parathion-induced tremors and the progression of other signs and symptoms of parathion poisoning. These data suggest that redox cycling compounds, such as menadione, have the potential to effectively mitigate the toxicity of organophosphorus pesticides including parathion which require cytochrome P450-mediated activation. - Highlights: • Menadione redox cycles with cytochrome P450 reductase and generates reactive oxygen species. • Redox cycling inhibits cytochrome P450-mediated parathion metabolism. • Short term administration of menadione inhibits parathion toxicity by inhibiting paraoxon formation.

  3. Mechanistic studies of cancer cell mitochondria- and NQO1-mediated redox activation of beta-lapachone, a potentially novel anticancer agent

    International Nuclear Information System (INIS)

    Li, Jason Z.; Ke, Yuebin; Misra, Hara P.; Trush, Michael A.; Li, Y. Robert; Zhu, Hong; Jia, Zhenquan

    2014-01-01

    Beta-lapachone (beta-Lp) derived from the Lapacho tree is a potentially novel anticancer agent currently under clinical trials. Previous studies suggested that redox activation of beta-Lp catalyzed by NAD(P)H:quinone oxidoreductase 1 (NQO1) accounted for its killing of cancer cells. However, the exact mechanisms of this effect remain largely unknown. Using chemiluminescence and electron paramagnetic resonance (EPR) spin-trapping techniques, this study for the first time demonstrated the real-time formation of ROS in the redox activation of beta-lapachone from cancer cells mediated by mitochondria and NQO1 in melanoma B16–F10 and hepatocellular carcinoma HepG2 cancer cells. ES936, a highly selective NQO1 inhibitor, and rotenone, a selective inhibitor of mitochondrial electron transport chain (METC) complex I were found to significantly block beta-Lp meditated redox activation in B16–F10 cells. In HepG2 cells ES936 inhibited beta-Lp-mediated oxygen radical formation by ∼ 80% while rotenone exerted no significant effect. These results revealed the differential contribution of METC and NQO1 to beta-lapachone-induced ROS formation and cancer cell killing. In melanoma B16–F10 cells that do not express high NQO1 activity, both NOQ1 and METC play a critical role in beta-Lp redox activation. In contrast, in hepatocellular carcinoma HepG2 cells expressing extremely high NQO1 activity, redox activation of beta-Lp is primarily mediated by NQO1 (METC plays a minor role). These findings will contribute to our understanding of how cancer cells are selectively killed by beta-lapachone and increase our ability to devise strategies to enhance the anticancer efficacy of this potentially novel drug while minimizing its possible adverse effects on normal cells. - Highlights: • Both isolated mitochondria and purified NQO1 are able to generate ROS by beta-Lp. • The differential roles of mitochondria and NQO1 in mediating redox activation of beta-Lp • In cancer cells with

  4. Mechanistic studies of cancer cell mitochondria- and NQO1-mediated redox activation of beta-lapachone, a potentially novel anticancer agent

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jason Z. [Virginia Tech CRC, Blacksburg, VA (United States); Ke, Yuebin [Shenzhen Center for Disease Control and Prevention, Shenzhen 518055 (China); Misra, Hara P. [Virginia Tech CRC, Blacksburg, VA (United States); Trush, Michael A. [Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD (United States); Li, Y. Robert [Campbell University School of Osteopathic Medicine, Buies Creek, NC (United States); Virginia Tech-Wake Forest University SBES, Blacksburg, VA (United States); Department of Biology, University of North Carolina at Greensboro, NC (United States); Zhu, Hong, E-mail: zhu@campbell.edu [Campbell University School of Osteopathic Medicine, Buies Creek, NC (United States); Jia, Zhenquan, E-mail: z_jia@uncg.edu [Department of Biology, University of North Carolina at Greensboro, NC (United States)

    2014-12-15

    Beta-lapachone (beta-Lp) derived from the Lapacho tree is a potentially novel anticancer agent currently under clinical trials. Previous studies suggested that redox activation of beta-Lp catalyzed by NAD(P)H:quinone oxidoreductase 1 (NQO1) accounted for its killing of cancer cells. However, the exact mechanisms of this effect remain largely unknown. Using chemiluminescence and electron paramagnetic resonance (EPR) spin-trapping techniques, this study for the first time demonstrated the real-time formation of ROS in the redox activation of beta-lapachone from cancer cells mediated by mitochondria and NQO1 in melanoma B16–F10 and hepatocellular carcinoma HepG2 cancer cells. ES936, a highly selective NQO1 inhibitor, and rotenone, a selective inhibitor of mitochondrial electron transport chain (METC) complex I were found to significantly block beta-Lp meditated redox activation in B16–F10 cells. In HepG2 cells ES936 inhibited beta-Lp-mediated oxygen radical formation by ∼ 80% while rotenone exerted no significant effect. These results revealed the differential contribution of METC and NQO1 to beta-lapachone-induced ROS formation and cancer cell killing. In melanoma B16–F10 cells that do not express high NQO1 activity, both NOQ1 and METC play a critical role in beta-Lp redox activation. In contrast, in hepatocellular carcinoma HepG2 cells expressing extremely high NQO1 activity, redox activation of beta-Lp is primarily mediated by NQO1 (METC plays a minor role). These findings will contribute to our understanding of how cancer cells are selectively killed by beta-lapachone and increase our ability to devise strategies to enhance the anticancer efficacy of this potentially novel drug while minimizing its possible adverse effects on normal cells. - Highlights: • Both isolated mitochondria and purified NQO1 are able to generate ROS by beta-Lp. • The differential roles of mitochondria and NQO1 in mediating redox activation of beta-Lp • In cancer cells with

  5. Highly sensitive electrochemical detection of DNA hybridisation by coupling the chemical reduction of a redox label to the electrode reaction of a solution phase mediator.

    Science.gov (United States)

    Ngoensawat, Umphan; Rijiravanich, Patsamon; Somasundrum, Mithran; Surareungchai, Werasak

    2014-11-21

    We have described a highly sensitive method for detecting DNA hybridisation using a redox-labeled stem loop probe. The redox labels were poly(styrene-co-acrylic) (PSA) spheres of 454 nm diameter, modified by methylene blue (MB) deposited alternatively with poly(sodium 4-styrene sulphonate) (PSS) in a layer-by-layer process. Each PSA sphere carried approx. 3.7 × 10(5) molecules of MB, as determined optically. DIG-tagged stem loop probes were immobilised on screen printed electrodes bearing anti-DIG antibodies. Binding with the target enabled straightening of the stem loop, which made attachment to the MB-coated PSA spheres possible. For measuring the current from the direct reduction of MB by differential pulse voltammetry, a 30 mer DNA target common to 70 strains of Escherichia coli was calibrated across the range 1.0 fM to 100 pM (gradient = 3.2 × 10(-8) A (log fM)(-1), r(2) = 0.95, n = 60), with an LOD of ∼58 fM. By using Fe(CN)6(3-/4-) as a solution phase mediator for the MB reduction, we were able to lower the LOD to ∼39 aM (gradient = 5.95 × 10(-8) A (log aM)(-1), r(2) = 0.96, n = 30), which corresponds to the detection of 0.76 ag (∼50 molecules) in the 2 μL analyte sample. We hypothesise that the lowering of the LOD was due to the fact that not all the MB labels were able to contact the electrode surface.

  6. Free to be me: The relationship between the true self, rejection sensitivity, and use of online dating sites.

    Science.gov (United States)

    Hance, Margaret A; Blackhart, Ginette; Dew, Megan

    2018-01-01

    Prior research (Blackhart et al., 2014) found that rejection-sensitive individuals are more likely to use online dating sites. The purpose of the current research was to explain the relationship between rejection sensitivity and online dating site usage. Study 1 examined whether true self mediated the relation between rejection sensitivity and online dating. Study 2 sought to replicate the findings of Study 1 and to examine whether self-disclosure moderated the relationship between true self and online dating in the mediation model. Results replicated those found by Blackhart et al. and also found that true self mediated the relationship between rejection sensitivity and online dating site usage. These findings suggest that rejection-sensitive individuals feel they can more easily represent their "true" selves in online environments, such as online dating sites, which partially explains why they are more likely to engage in online dating.

  7. Research of the influencing factors of the immobilized redox mediators accelerating Cr(Ⅵ reduction by Escherichia coli BL21

    Directory of Open Access Journals (Sweden)

    Jiapeng PING

    2017-10-01

    Full Text Available In order to study the influencing factors of non-dissolved redox mediators on Cr (Ⅵ bioreduction, the accelerating effect of non-dissolved redox mediators immobilized by cellulose acetate (CA on the reduction of Cr(Ⅵ by Escherichia coli BL21 is investigated. The results show that the accelerating order is 1-chloroanthraquinone>1,5-dichloroanthraquinone>2-chloroanthraquinone>1,8-dichloroanthraquinone>anthraquinone>1,4,5,8-tetrachloroanthtaquinone; the optimal concentration of 1-chloroanthraquinone pH and initial Cr(Ⅵ concentration are 0.048 mol/L, 7.00 and 30 mg/L, respectively; the removal rate increases with the increasing temperature when it is in the range of 20~60 ℃; after 6 times of recycling experiments, and the Cr(Ⅵ bioreduction rate with the immobilized 1-chloroanthraquinone maintains above 5 times of margin bacterium's. It indicates that non-dissolved redox mediators immobilized by CA can effectively accelerate the reduction rate of Cr(Ⅵ by Escherichia coli BL21, which has favourable application value.

  8. Vascular remodeling: A redox-modulated mechanism of vessel caliber regulation.

    Science.gov (United States)

    Tanaka, Leonardo Y; Laurindo, Francisco R M

    2017-08-01

    Vascular remodeling, i.e. whole-vessel structural reshaping, determines lumen caliber in (patho)physiology. Here we review mechanisms underlying vessel remodeling, with emphasis in redox regulation. First, we discuss confusing terminology and focus on strictu sensu remodeling. Second, we propose a mechanobiological remodeling paradigm based on the concept of tensional homeostasis as a setpoint regulator. We first focus on shear-mediated models as prototypes of remodeling closely dominated by highly redox-sensitive endothelial function. More detailed discussions focus on mechanosensors, integrins, extracellular matrix, cytoskeleton and inflammatory pathways as potential of mechanisms potentially coupling tensional homeostasis to redox regulation. Further discussion of remodeling associated with atherosclerosis and injury repair highlights important aspects of redox vascular responses. While neointima formation has not shown consistent responsiveness to antioxidants, vessel remodeling has been more clearly responsive, indicating that despite the multilevel redox signaling pathways, there is a coordinated response of the whole vessel. Among mechanisms that may orchestrate redox pathways, we discuss roles of superoxide dismutase activity and extracellular protein disulfide isomerase. We then discuss redox modulation of aneurysms, a special case of expansive remodeling. We propose that the redox modulation of vascular remodeling may reflect (1) remodeling pathophysiology is dominated by a particularly redox-sensitive cell type, e.g., endothelial cells (2) redox pathways are temporospatially coordinated at an organ level across distinct cellular and acellular structures or (3) the tensional homeostasis setpoint is closely connected to redox signaling. The mechanobiological/redox model discussed here can be a basis for improved understanding of remodeling and helps clarifying mechanisms underlying prevalent hard-to-treat diseases. Copyright © 2017 Elsevier Inc. All

  9. Redox-capacitor to connect electrochemistry to redox-biology.

    Science.gov (United States)

    Kim, Eunkyoung; Leverage, W Taylor; Liu, Yi; White, Ian M; Bentley, William E; Payne, Gregory F

    2014-01-07

    It is well-established that redox-reactions are integral to biology for energy harvesting (oxidative phosphorylation), immune defense (oxidative burst) and drug metabolism (phase I reactions), yet there is emerging evidence that redox may play broader roles in biology (e.g., redox signaling). A critical challenge is the need for tools that can probe biologically-relevant redox interactions simply, rapidly and without the need for a comprehensive suite of analytical methods. We propose that electrochemistry may provide such a tool. In this tutorial review, we describe recent studies with a redox-capacitor film that can serve as a bio-electrode interface that can accept, store and donate electrons from mediators commonly used in electrochemistry and also in biology. Specifically, we (i) describe the fabrication of this redox-capacitor from catechols and the polysaccharide chitosan, (ii) discuss the mechanistic basis for electron exchange, (iii) illustrate the properties of this redox-capacitor and its capabilities for promoting redox-communication between biology and electrodes, and (iv) suggest the potential for enlisting signal processing strategies to "extract" redox information. We believe these initial studies indicate broad possibilities for enlisting electrochemistry and signal processing to acquire "systems level" redox information from biology.

  10. Distribution of Redox-Sensitive Groundwater Quality Parameters Downgradient of a Landfill (Grindsted, Denmark)

    DEFF Research Database (Denmark)

    Bjerg, Poul Løgstrup; Rügge, Kirsten; Pedersen, Jørn K.

    1995-01-01

    The leachate plume stretching 300 m downgradient from the Grindsted Landfill (Denmark) has been characterized in terms of redox-sensitive groundwater quality parameters along two longitudinal transects (285 samples). Variations in the levels of methane, sulfide, iron(ll), manganese(ll), ammonium......, dinitrogen oxide, nitrite, nitrate, and oxygen in the groundwater samples indicate that methane production, sulfate reduction, iron reduction, manganese reduction, and nitrate reduction take place in the plume. Adjacent to the landfill, methanogenic and sulfatereducing zones were identified, while aerobic...... environments were identified furthest away from the landfill. In between, different redox environments, including apparent transition zones, were identified in a sequence in accordance with the thermodynamic principles. The redox zones are believed to constitute an important chemical framework...

  11. The mechanism of mediated oxidation of carboxylates with ferrocene as redox catalyst in absence of grafting effects. An experimental and theoretical approach

    International Nuclear Information System (INIS)

    Hernández-Muñoz, Lindsay S.; Galano, Annia; Astudillo-Sánchez, Pablo D.; Abu-Omar, Mahdi M.; González, Felipe J.

    2014-01-01

    Graphical abstract: - Highlights: • The mechanism of mediated oxidation of carboxylates. • Thermodynamics of the mediated Kolbe and Non-Kolbe mechanisms. • The oxidation of acetate and diphenylacetate ions by using ferrocene as redox catalyst. • Simulation and DFT calculations of the mediated oxidation of carboxylates. • Radical and carbocationic pathways in the carboxylate oxidation in acetonitrile. - Abstract: The oxidation of tetrabutylammonium carboxylates by using ferrocene derivatives as redox mediators has been recently used to perform the covalent grafting of carbon surfaces with organic and organometallic groups. Due to the intervention of this surface process, a partial description of the reaction mechanism has only been stated. Therefore, this article concerns about two features of the oxidation of carboxylates mediated by ferrocene. In the first part, it is discussed that in the oxidation of acetate ions by using ferrocene as redox catalyst, the gap between both oxidation potentials is very high, which means that the homogeneous electron transfer between the acetate ion and the electrochemically generated ferrocenium ion is energetically unfavorable. However, by using density functional theory calculations, it has been shown that the whole set of coupled chemical reactions involved either in a Kolbe or Non-Kolbe pathway drive the overall mechanisms towards a thermodynamically favorable situation. In order to avoid the strong covalent grafting process that occurs during the mediated oxidation of acetate ions, the second part of this work deals with the oxidation of tetrabutylammonium diphenylacetate by using ferrocene as a redox mediator in acetonitrile on glassy carbon electrodes. With this carboxylate, no electrode inhibition process occurs and, therefore cyclic voltammetry simulation was done to propose the electrochemical and chemical steps that are present when a carboxylate oxidation is performed in the presence of ferrocene derivatives

  12. Conformational differences between the methoxy groups of QA and QB site ubisemiquinones in bacterial reaction centers: a key role for methoxy group orientation in modulating ubiquinone redox potential.

    Science.gov (United States)

    Taguchi, Alexander T; O'Malley, Patrick J; Wraight, Colin A; Dikanov, Sergei A

    2013-07-09

    Ubiquinone is an almost universal, membrane-associated redox mediator. Its ability to accept either one or two electrons allows it to function in critical roles in biological electron transport. The redox properties of ubiquinone in vivo are determined by its environment in the binding sites of proteins and by the dihedral angle of each methoxy group relative to the ring plane. This is an attribute unique to ubiquinone among natural quinones and could account for its widespread function with many different redox complexes. In this work, we use the photosynthetic reaction center as a model system for understanding the role of methoxy conformations in determining the redox potential of the ubiquinone/semiquinone couple. Despite the abundance of X-ray crystal structures for the reaction center, quinone site resolution has thus far been too low to provide a reliable measure of the methoxy dihedral angles of the primary and secondary quinones, QA and QB. We performed 2D ESEEM (HYSCORE) on isolated reaction centers with ubiquinones (13)C-labeled at the headgroup methyl and methoxy substituents, and have measured the (13)C isotropic and anisotropic components of the hyperfine tensors. Hyperfine couplings were compared to those derived by DFT calculations as a function of methoxy torsional angle allowing estimation of the methoxy dihedral angles for the semiquinones in the QA and QB sites. Based on this analysis, the orientation of the 2-methoxy groups are distinct in the two sites, with QB more out of plane by 20-25°. This corresponds to an ≈50 meV larger electron affinity for the QB quinone, indicating a substantial contribution to the experimental difference in redox potentials (60-75 mV) of the two quinones. The methods developed here can be readily extended to ubiquinone-binding sites in other protein complexes.

  13. Monitoring thioredoxin redox with a genetically encoded red fluorescent biosensor.

    Science.gov (United States)

    Fan, Yichong; Makar, Merna; Wang, Michael X; Ai, Hui-Wang

    2017-09-01

    Thioredoxin (Trx) is one of the two major thiol antioxidants, playing essential roles in redox homeostasis and signaling. Despite its importance, there is a lack of methods for monitoring Trx redox dynamics in live cells, hindering a better understanding of physiological and pathological roles of the Trx redox system. In this work, we developed the first genetically encoded fluorescent biosensor for Trx redox by engineering a redox relay between the active-site cysteines of human Trx1 and rxRFP1, a redox-sensitive red fluorescent protein. We used the resultant biosensor-TrxRFP1-to selectively monitor perturbations of Trx redox in various mammalian cell lines. We subcellularly localized TrxRFP1 to image compartmentalized Trx redox changes. We further combined TrxRFP1 with a green fluorescent Grx1-roGFP2 biosensor to simultaneously monitor Trx and glutathione redox dynamics in live cells in response to chemical and physiologically relevant stimuli.

  14. Redox signaling in the growth and development of colonial hydroids.

    Science.gov (United States)

    Blackstone, Neil W

    2003-02-01

    Redox signaling provides a quick and efficient mechanism for clonal or colonial organisms to adapt their growth and development to aspects of the environment, e.g. the food supply. A 'signature' of mitochondrial redox signaling, particularly as mediated by reactive oxygen species (ROS), can be elucidated by experimental manipulation of the electron transport chain. The major sites of ROS formation are found at NADH dehydrogenase of complex I and at the interface between coenzyme Q and complex III. Inhibitors of complex III should thus upregulate ROS from both sites; inhibitors of complex I should upregulate ROS from the first but not the second site, while uncouplers of oxidative phosphorylation should downregulate ROS from both sites. To investigate the possibility of such redox signaling, perturbations of colony growth and development were carried out using the hydroid Podocoryna carnea. Oxygen uptake of colonies was measured to determine comparable physiological doses of antimycin A(1) (an inhibitor of complex III), rotenone (an inhibitor of complex I) and carbonyl cyanide m-chlorophenylhydrazone (CCCP; an uncoupler of oxidative phosphorylation). Using these doses, clear effects on colony growth and development were obtained. Treatment with antimycin A(1) results in 'runner-like' colony growth, with widely spaced polyps and stolon branches, while treatment with CCCP results in 'sheet-like' growth, with closely spaced polyps and stolon branches. Parallel results have been obtained previously with azide, an inhibitor of complex IV, and dinitrophenol, another uncoupler of oxidative phosphorylation. Perhaps surprisingly, rotenone produced effects on colony development similar to those of CCCP. Assays of peroxides using 2',7'-dichlorofluorescin diacetate and fluorescent microscopy suggest a moderate difference in ROS formation between the antimycin and rotenone treatments. The second site of ROS formation (the interface between coenzyme Q and complex III) may thus

  15. Bioelectrochemical probing of intracellular redox processes in living yeast cells—application of redox polymer wiring in a microfluidic environment

    DEFF Research Database (Denmark)

    Heiskanen, Arto; Coman, Vasile; Kostesha, Natalie

    2013-01-01

    utilizing a new double mediator system to map redox metabolism and screen for genetic modifications in Saccharomyces cerevisiae cells. The function of this new double mediator system based on menadione and osmium redox polymer (PVI-Os) is demonstrated. “Wiring” of S. cerevisiae cells using PVI-Os shows...... that microfluidic bioelectrochemical assays employing the menadione–PVI-Os double mediator system provides an effective means to conduct automated microbial assays. FigureMicrofluidic platform for bioelectrochemical assays using osmium redox polymer “wired” living yeast cells...

  16. Differential alkylation-based redox proteomics--Lessons learnt.

    Science.gov (United States)

    Wojdyla, Katarzyna; Rogowska-Wrzesinska, Adelina

    2015-12-01

    Cysteine is one of the most reactive amino acids. This is due to the electronegativity of sulphur atom in the side chain of thiolate group. It results in cysteine being present in several distinct redox forms inside the cell. Amongst these, reversible oxidations, S-nitrosylation and S-sulfenylation are crucial mediators of intracellular redox signalling, with known associations to health and disease. Study of their functionalities has intensified thanks to the development of various analytical strategies, with particular contribution from differential alkylation-based proteomics methods. Presented here is a critical evaluation of differential alkylation-based strategies for the analysis of S-nitrosylation and S-sulfenylation. The aim is to assess the current status and to provide insights for future directions in the dynamically evolving field of redox proteomics. To achieve that we collected 35 original research articles published since 2010 and analysed them considering the following parameters, (i) resolution of modification site, (ii) quantitative information, including correction of modification levels by protein abundance changes and determination of modification site occupancy, (iii) throughput, including the amount of starting material required for analysis. The results of this meta-analysis are the core of this review, complemented by issues related to biological models and sample preparation in redox proteomics, including conditions for free thiol blocking and labelling of target cysteine oxoforms. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Discharging a Li-S battery with ultra-high sulphur content cathode using a redox mediator.

    Science.gov (United States)

    Kim, Kwi Ryong; Lee, Kug-Seung; Ahn, Chi-Yeong; Yu, Seung-Ho; Sung, Yung-Eun

    2016-08-30

    Lithium-sulphur batteries are under intense research due to the high specific capacity and low cost. However, several problems limit their commercialization. One of them is the insulating nature of sulphur, which necessitates a large amount of conductive agent and binder in the cathode, reducing the effective sulphur load as well as the energy density. Here we introduce a redox mediator, cobaltocene, which acts as an electron transfer agent between the conductive surface and the polysulphides in the electrolyte. We confirmed that cobaltocene could effectively convert polysulphides to Li2S using scanning electron microscope, X-ray absorption near-edge structure and in-situ X-ray diffraction studies. This redox mediator enabled excellent electrochemical performance in a cathode with ultra-high sulphur content (80 wt%). It delivered 400 mAh g(-1)cathode capacity after 50 cycles, which is equivalent to 800 mAh g(-1)S in a typical cathode with 50 wt% sulphur. Furthermore, the volumetric capacity was also dramatically improved.

  18. The ABA-INSENSITIVE-4 (ABI4) transcription factor links redox, hormone and sugar signaling pathways.

    Science.gov (United States)

    Foyer, Christine H; Kerchev, Pavel I; Hancock, Robert D

    2012-02-01

    The cellular reduction-oxidation (redox) hub processes information from metabolism and the environment and so regulates plant growth and defense through integration with the hormone signaling network. One key pathway of redox control involves interactions with ABSCISIC ACID (ABA). Accumulating evidence suggests that the ABA-INSENSITIVE-4 (ABI4) transcription factor plays a key role in transmitting information concerning the abundance of ascorbate and hence the ability of cells to buffer oxidative challenges. ABI4 is required for the ascorbate-dependent control of growth, a process that involves enhancement of salicylic acid (SA) signaling and inhibition of jasmonic acid (JA) signaling pathways. Low redox buffering capacity reinforces SA- JA- interactions through the mediation of ABA and ABI4 to fine-tune plant growth and defense in relation to metabolic cues and environmental challenges. Moreover, ABI4-mediated pathways of sugar sensitivity are also responsive to the abundance of ascorbate, providing evidence of overlap between redox and sugar signaling pathways.

  19. Redox-assisted Li+-storage in lithium-ion batteries

    International Nuclear Information System (INIS)

    Huang Qizhao; Wang Qing

    2016-01-01

    Interfacial charge transfer is the key kinetic process dictating the operation of lithium-ion battery. Redox-mediated charge propagations of the electronic (e − and h + ) and ionic species (Li + ) at the electrode–electrolyte interface have recently gained increasing attention for better exploitation of battery materials. This article briefly summarises the energetic and kinetic aspects of lithium-ion batteries, and reviews the recent progress on various redox-assisted Li + storage approaches. From molecular wiring to polymer wiring and from redox targeting to redox flow lithium battery, the role of redox mediators and the way of the redox species functioning in lithium-ion batteries are discussed. (topical review)

  20. Modeling seasonal redox dynamics and the corresponding fate of the pharmaceutical residue phenazone during artificial recharge of groundwater.

    Science.gov (United States)

    Greskowiak, Janek; Prommer, Henning; Massmann, Gudrun; Nützmann, Gunnar

    2006-11-01

    Reactive multicomponent transport modeling was used to investigate and quantify the factors that affect redox zonation and the fate of the pharmaceutical residue phenazone during artificial recharge of groundwater at an infiltration site in Berlin, Germany. The calibrated model and the corresponding sensitivity analysis demonstrated thattemporal and spatial redox zonation at the study site was driven by seasonally changing, temperature-dependent organic matter degradation rates. Breakthrough of phenazone at monitoring wells occurred primarily during the warmer summer months, when anaerobic conditions developed. Assuming a redox-sensitive phenazone degradation behavior the model results provided an excellent agreement between simulated and measured phenazone concentrations. Therefore, the fate of phenazone was shown to be indirectly controlled by the infiltration water temperature through its effect on the aquifer's redox conditions. Other factors such as variable residence times appeared to be of less importance.

  1. Chemistry of the redox sensitive elements. Literature review

    International Nuclear Information System (INIS)

    Suter, D.

    1991-10-01

    As a part of the safety assessment for a nuclear waste repository, the migration of the radioactive elements from the waste matrix to the biosphere has to be modelled. The geosphere is an important barrier and a consideration of the retention of the radioactive isotopes needs knowledge of sorption coefficients and solubilities. Important long-lived isotopes in the high level radioactive waste are the fission products selenium, technetium, palladium and tin, and the actinide neptunium, which are all redox sensitive elements. A transport model using conservative sorption values predicts mainly doses from these five elements. Since the individual oxidation states of the redox sensitive elements have different and largely unknown sorption properties and solubilities, the realistic doses might be far less. The relevant literature about the chemistry of the five elements is summarized and is planned to serve as the basis for an experimental programme. For every element, the literature about the general chemistry, selected sorption studies, geochemistry, and analytical methods is reviewed. It was found that the knowledge about some of these points is very limited. Even the general chemistry of some of the elements is not well known, because they have only limited applications and research concentrates only on certain aspects. Most of the sorption studies in the context of nuclear waste concentrate on a few of the relevant elements and others have been neglected up to now. The simulation of a realistic system in the laboratory poses some problems, which have to be solved as well. The literature about this subject is also critically reviewed. The elements which are most mobile under realistic far-field conditions are identified and it is recommended to concentrate research on these at the beginning. (author)

  2. Chemistry of the redox sensitive elements. Literature review

    International Nuclear Information System (INIS)

    Suter, D.

    1991-10-01

    As a part of the safety assessment for a nuclear waste repository, the migration of the radioactive elements from the waste matrix to the biosphere has to be modelled. The geosphere is an important barrier and a consideration of the retention of the radioactive isotopes needs knowledge of sorption coefficients and solubilities. Important long-lived isotopes in the high level radioactive waste are the fission products selenium, technetium, palladium and tin, and the actinide neptunium, which are all redox sensitive elements. A transport model using conservative sorption values predicts mainly doses from these five elements. Since the individual oxidation states of the redox sensitive elements have different and largely unknown sorption properties and solubilities, the realistic doses might be far less. The relevant literature about the chemistry of the five elements is summarized and is planned to serve as the basis for an experimental programme. For every element, the literature about the general chemistry, selected sorption studies, geochemistry, and analytical methods is reviewed. It was found that the knowledge about some of these points is very limited. Even the general chemistry of some of the elements in not well known, because they have only limited applications and research concentrates only on certain aspects. Most of the sorption studies in the context of nuclear waste concentrate on a few of the relevant elements and others have been neglected up to now. The simulation of a realistic system in the laboratory poses some problems, which have to be solved as well. The literature about this subject is also critically reviewed. The elements which are most mobile under realistic far-field conditions are identified and it is recommended to concentrate research on these at the beginning. (author) 9 figs., 192 refs

  3. Improving the performance of electrochemical microsensors based on enzymes entrapped in a redox hydrogel

    International Nuclear Information System (INIS)

    Mitala, J.J.; Michael, A.C.

    2006-01-01

    Microsensors based on carbon fiber microelectrodes coated with enzyme-entrapping redox hydrogels facilitate the in vivo detection of substances of interest within the central nervous system, including hydrogen peroxide, glucose, choline and glutamate. The hydrogel, formed by cross-linking a redox polymer, entraps the enzymes and mediates electron transfer between the enzymes and the electrode. It is important that the enzymes are entrapped in their enzymatically active state. Should entrapment cause enzyme denaturation, the sensitivity and the selectivity of the sensor may be compromised. Synthesis of the redox polymer according to published procedures may yield a product that precipitates when added to aqueous enzyme solutions. Casting hydrogels from solutions that contain the precipitate produces microsensors with low sensitivity and selectivity, suggesting that the precipitation disrupts the structure of the enzymes. Herein, we show that a surfactant, sodium dodecyl sulfate (SDS), can prevent the precipitation and improve the sensitivity and selectivity of the sensors

  4. On the activation of Pt/Al2O3 catalysts in HC-SCR by sintering. Determination of redox-active sites using Multitrack

    International Nuclear Information System (INIS)

    Vaccaro, A.R.; Mul, G.; Moulijn, J.A.; Perez-Ramirez, J.

    2003-01-01

    A highly dispersed Pt/Al 2 O 3 catalyst was used for the selective catalytic reduction of NO x using propene (HC-SCR). Contact with the reaction gas mixture led to a significant activation of the catalyst at temperatures above 523K. According to CO chemisorption data and HRTEM analysis, Pt particles on the activated catalyst had sintered. The redox behavior of the fresh and sintered catalysts was investigated using Multitrack, a TAP-like pulse reactor. If Pt particles on the catalyst are highly dispersed (average size below =2nm), only a small part (=10%) of the total number of Pt surface sites as determined by CO chemisorption (Pt surf ) participates in H 2 /O 2 redox cycles (Pt surf,redox ) in Multitrack conditions. For a sintered catalyst, with an average particle size of 2.7nm, the number of Pt surf and Pt surf,redox sites are in good agreement. Similar results were obtained for both catalysts using NO as the oxidant. The low number of Pt surf,redox sites on highly dispersed Pt/Al 2 O 3 is explained by the presence of a kinetically more stable-probably ionic-form of Pt-O bonds on all surface sites of the smaller Pt particles, including corner, edge and terrace sites. When the average particle size shifts to =2.7nm, the kinetic stability of all Pt-O bonds is collectively decreased, enabling the participation of all Pt surface sites in the redox cycles. A linear correlation between the NO x conversion in HC-SCR, and the amount of Pt surf,redox was found. This suggests that redox-active Pt sites are necessary for catalytic activity. In addition, the correlation could be significantly improved by assuming that Pt surf,terrace sites of the particles larger than 2.7nm are mainly responsible for HC-SCR activity in steady state conditions. Implications of these results for the pathway of HC-SCR over Pt catalysts are discussed

  5. Effective immobilization of redox mediators in a poly (vinyl alcohol) matrix by using gamma-irradiation cross-linking

    International Nuclear Information System (INIS)

    Galiatsatos, C.; Mark, J.E.; Heineman, W.R.

    1987-01-01

    The development of electrodes with specific chemical properties by coating them with polymeric networks is the long-range goal of this research. Polymeric networks result from inserting chemical bonds between segments of different poly (vinyl alcohol) (PVAL) chains using gamma irradiation. The resulting three dimensional network adheres to the surface of graphite electrodes and therefore can be used as a convenient polymer matrix for the attachment and immobilization of electroactive redox molecules such as mediators. Two mediators, methyl viologen (MV) and 2,6-dichlorophenolindophenol (DCIP) were dissolved in aqueous solutions of PVAL and applied on electrode surfaces. The resulting electrodes were subjected to different irradiation doses. The irradiated PVAL/MV and PVAL/DCIP electrodes were evaluated for the following features: 1) effect of irradiation dose, 2) film thickness, 3) polymer/mediator ratio and 4) lifetime. For the radiation dose range 0-80 Mrad the PVAL/MV electrode exhibited a % BE varying between 14.3 (0 Mrads) and Mrads) and 52.0 (40 Mrads) while the PVAL/DCIP electrode varied between 5.3 (80 Mrads) and 31.3 (20 Mrads). This study suggests a way of immobilizing redox mediators in a PVAL matrix on surfaces of graphite electrodes

  6. The met axial ligand determines the redox potential in Cu-A sites

    DEFF Research Database (Denmark)

    Ledesma, G.N.; Murgida, D.H.; Ly, H.K.

    2007-01-01

    The replacement of the axial methionine ligand in a native Cu-A protein rendered a series of stable mutants with spectroscopic features of a mixed valence center. The mutations resulted in minor perturbations of the electronic structure of this site but led to significant changes in the redox pot...

  7. Mechanistic insight provided by glutaredoxin within a fusion to redox-sensitive yellow fluorescent protein

    DEFF Research Database (Denmark)

    Björnberg, Olof; Østergaard, Henrik; Winther, Jakob R

    2006-01-01

    Redox-sensitive yellow fluorescent protein (rxYFP) contains a dithiol disulfide pair that is thermodynamically suitable for monitoring intracellular glutathione redox potential. Glutaredoxin 1 (Grx1p) from yeast is known to catalyze the redox equilibrium between rxYFP and glutathione, and here, we...... have generated a fusion of the two proteins, rxYFP-Grx1p. In comparison to isolated subunits, intramolecular transfer of reducing equivalents made the fusion protein kinetically superior in reactions with glutathione. The rate of GSSG oxidation was thus improved by a factor of 3300. The reaction...... separately and in the fusion. This could not be ascribed to the lack of an unproductive side reaction to glutaredoxin disulfide. Instead, slower alkylation kinetics with iodoacetamide indicates a better leaving-group capability of the remaining cysteine residue, which can explain the increased activity....

  8. Chloroplast Redox Poise

    DEFF Research Database (Denmark)

    Steccanella, Verdiana

    the redox status of the plastoquinone pool and chlorophyll biosynthesis. Furthermore, in the plant cell, the equilibrium between redox reactions and ROS signals is also maintained by various balancing mechanisms among which the thioredoxin reductase-thioredoxin system (TR-Trx) stands out as a mediator......The redox state of the chloroplast is maintained by a delicate balance between energy production and consumption and is affected by the need to avoid increased production of reactive oxygen species (ROS). Redox power and ROS generated in the chloroplast are essential for maintaining physiological...... metabolic pathways and for optimizing chloroplast functions. The redox poise of photosynthetic electron transport components like plastoquinone is crucial to initiate signaling cascades and might also be involved in key biosynthetic pathways such as chlorophyll biosynthesis. We, therefore, explored...

  9. A novel redox-sensitive system based on single-walled carbon nanotubes for chemo-photothermal therapy and magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Hou L

    2016-02-01

    Full Text Available Lin Hou,1,2 Xiaomin Yang,1 Junxiao Ren,1 Yongchao Wang,1 Huijuan Zhang,1 Qianhua Feng,1 Yuyang Shi,1 Xiaoning Shan,1 Yujie Yuan,1 Zhenzhong Zhang1,21School of Pharmaceutical Sciences, Zhengzhou University, Henan Province, Zhengzhou, People’s Republic of China; 2Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou, People’s Republic of ChinaAbstract: Recently, nanomaterials with multiple functions, such as drug carrier, magnetic resonance imaging (MRI and optical imaging, and photothermal therapy, have become more and more popular in cancer research. In this work, a novel redox-sensitive system constructed from hyaluronic acid (HA, single-walled carbon nanotubes (SWCNTs, doxorubicin (DOX, and gadolinium (Gd was successfully developed. Herein, HA-modified SWCNTs (SWCNTs-HA was first synthesized, and then DOX was conjugated with HA by disulfide bond (SWCNTs-HA-ss-DOX. Finally, MRI contrast agents, Gd3+-ion loading occurred through the sidewall defects of SWCNTs, whose cytotoxicity could be sequestered within the SWCNTs. In vitro release of DOX showed that this system accomplished much faster drug release under reducing condition. Confocal microscopy analysis confirmed that Gd/SWCNTs-HA-ss-DOX were capable of simultaneously delivering DOX and SWCNTs into Michigan Cancer Foundation-7 cells via HA receptor-mediated endocytosis followed by rapid transport of cargoes into the cytosol. Enhanced cytotoxicity of Gd/SWCNTs-HA-ss-DOX further proved that the sensitive system was more potent for intracellular drug delivery as compared with the insensitive control. Meanwhile, tumor cell killing potency was improved when Gd/SWCNTs-HA-ss-DOX were combined with near-infrared irradiation, with IC50 of 0.61 µg/mL at 48 hours. In vivo investigation demonstrated that Gd/SWCNTs-HA-ss-DOX could effectively accumulate in tumor sites and possessed the greatest synergistic antitumor efficacy, especially under the 808 nm

  10. Differential alkylation-based redox proteomics – Lessons learnt

    Science.gov (United States)

    Wojdyla, Katarzyna; Rogowska-Wrzesinska, Adelina

    2015-01-01

    Cysteine is one of the most reactive amino acids. This is due to the electronegativity of sulphur atom in the side chain of thiolate group. It results in cysteine being present in several distinct redox forms inside the cell. Amongst these, reversible oxidations, S-nitrosylation and S-sulfenylation are crucial mediators of intracellular redox signalling, with known associations to health and disease. Study of their functionalities has intensified thanks to the development of various analytical strategies, with particular contribution from differential alkylation-based proteomics methods. Presented here is a critical evaluation of differential alkylation-based strategies for the analysis of S-nitrosylation and S-sulfenylation. The aim is to assess the current status and to provide insights for future directions in the dynamically evolving field of redox proteomics. To achieve that we collected 35 original research articles published since 2010 and analysed them considering the following parameters, (i) resolution of modification site, (ii) quantitative information, including correction of modification levels by protein abundance changes and determination of modification site occupancy, (iii) throughput, including the amount of starting material required for analysis. The results of this meta-analysis are the core of this review, complemented by issues related to biological models and sample preparation in redox proteomics, including conditions for free thiol blocking and labelling of target cysteine oxoforms. PMID:26282677

  11. High performance, flexible, poly(3,4-ethylenedioxythiophene) supercapacitors achieved by doping redox mediators in organogel electrolytes

    Science.gov (United States)

    Zhang, Huanhuan; Li, Jinyu; Gu, Cheng; Yao, Mingming; Yang, Bing; Lu, Ping; Ma, Yuguang

    2016-11-01

    The relatively low energy density is now a central issue hindering the development of supercapacitors as energy storage devices. Various approaches are thus developed to enhance the energy density, mainly centering on the fabrication of electrode materials or optimization of cell configurations. Compared with these approaches, modifications in electrolytes are much simple and versatile. Herein, we integrate the wide voltages endowed by organic electrolytes and the additional capacitances brought by redox mediators, to fabricate high energy density supercapacitors. On the basis of this idea, supercapacitors with poly(3,4-ethylenedioxythiophene) (PEDOT) as electrode material exhibit extended operating voltage of 1.5 V, extraordinary capacitance of 363 F g-1 and high energy density of 27.4 Wh kg-1. The redox mediators reported here, ferrocene and 4-oxo-2,2,6,6-tetramethylpiperidinooxy, are the first time being applied in supercapacitors, especially in the gel state. While providing additional faradaic capacitances, they also exhibit synergistic interaction with PEDOT and improve the cycling stability of supercapacitors.

  12. Effects of PPARγ Agonist Pioglitazone on Redox-Sensitive Cellular Signaling in Young Spontaneously Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    Ima Dovinová

    2013-01-01

    Full Text Available PPARγ receptor plays an important role in oxidative stress response. Its agonists can influence vascular contractility in experimental hypertension. Our study was focused on the effects of a PPARγ agonist pioglitazone (PIO on blood pressure regulation, vasoactivity of vessels, and redox-sensitive signaling at the central (brainstem, BS and peripheral (left ventricle, LV levels in young prehypertensive rats. 5-week-old SHR were treated either with PIO (10 mg/kg/day, 2 weeks or with saline using gastric gavage. Administration of PIO significantly slowed down blood pressure increase and improved lipid profile and aortic relaxation after insulin stimulation. A significant increase in PPARγ expression was found only in BS, not in LV. PIO treatment did not influence NOS changes, but had tissue-dependent effect on SOD regulation and increased SOD activity, observed in LV. The treatment with PIO differentially affected also the levels of other intracellular signaling components: Akt kinase increased in the the BS, while β-catenin level was down-regulated in the BS and up-regulated in the LV. We found that the lowering of blood pressure in young SHR can be connected with insulin sensitivity of vessels and that β-catenin and SOD levels are important agents mediating PIO effects in the BS and LV.

  13. Pathophysiology of neutrophil-mediated extracellular redox reactions.

    Science.gov (United States)

    Jaganjac, Morana; Cipak, Ana; Schaur, Rudolf Joerg; Zarkovic, Neven

    2016-01-01

    Neutrophil granulocyte leukocytes (neutrophils) play fundamental role in the innate immune response. In the presence of adequate stimuli, neutrophils release excessive amount of reactive oxygen species (ROS) that may induce cell and tissue injury. Oxidative burst of neutrophils acts as a double-edged sword. It may contribute to the pathology of atherosclerosis and brain injury but is also necessary in resolving infections. Moreover, neutrophil-derived ROS may also have both a tumor promoting and tumor suppressing role. ROS have a specific activities and diffusion distance, which is related to their short lifetime. Therefore, the manner in which ROS will act depends on the cells targeted and the intra- and extracellular levels of individual ROS, which can further cause production of reactive aldehydes like 4-hydroxynonenal (HNE) that act as a second messengers of ROS. In this review we discuss the influence of neutrophil mediated extracellular redox reactions in ischemia reperfusion injury, transplant rejection and chronic diseases (atherosclerosis, inflammatory bowel diseases and cancer). At the end a brief overview of cellular mechanisms to maintain ROS homeostasis is given.

  14. Redox-sensitive GFP fusions for monitoring the catalytic mechanism and inactivation of peroxiredoxins in living cells

    Directory of Open Access Journals (Sweden)

    Verena Staudacher

    2018-04-01

    Full Text Available Redox-sensitive green fluorescent protein 2 (roGFP2 is a valuable tool for redox measurements in living cells. Here, we demonstrate that roGFP2 can also be used to gain mechanistic insights into redox catalysis in vivo. In vitro enzyme properties such as the rate-limiting reduction of wild type and mutant forms of the model peroxiredoxin PfAOP are shown to correlate with the ratiometrically measured degree of oxidation of corresponding roGFP2 fusion proteins. Furthermore, stopped-flow kinetic measurements of the oxidative half-reaction of PfAOP support the interpretation that changes in the roGFP2 signal can be used to map hyperoxidation-based inactivation of the attached peroxidase. Potential future applications of our system include the improvement of redox sensors, the estimation of absolute intracellular peroxide concentrations and the in vivo assessment of protein structure-function relationships that cannot easily be addressed with recombinant enzymes, for example, the effect of post-translational protein modifications on enzyme catalysis. Keywords: Peroxiredoxin, Redox sensor, roGFP2, H2O2, Plasmodium falciparum

  15. Sorption of redox-sensitive elements: critical analysis

    International Nuclear Information System (INIS)

    Strickert, R.G.

    1980-12-01

    The redox-sensitive elements (Tc, U, Np, Pu) discussed in this report are of interest to nuclear waste management due to their long-lived isotopes which have a potential radiotoxic effect on man. In their lower oxidation states these elements have been shown to be highly adsorbed by geologic materials occurring under reducing conditions. Experimental research conducted in recent years, especially through the Waste Isolation Safety Assessment Program (WISAP) and Waste/Rock Interaction Technology (WRIT) program, has provided extensive information on the mechanisms of retardation. In general, ion-exchange probably plays a minor role in the sorption behavior of cations of the above three actinide elements. Formation of anionic complexes of the oxidized states with common ligands (OH - , CO -- 3 ) is expected to reduce adsorption by ion exchange further. Pertechnetate also exhibits little ion-exchange sorption by geologic media. In the reduced (IV) state, all of the elements are highly charged and it appears that they form a very insoluble compound (oxide, hydroxide, etc.) or undergo coprecipitation or are incorporated into minerals. The exact nature of the insoluble compounds and the effect of temperature, pH, pe, other chemical species, and other parameters are currently being investigated. Oxidation states other than Tc (IV,VII), U(IV,VI), Np(IV,V), and Pu(IV,V) are probably not important for the geologic repository environment expected, but should be considered especially when extreme conditions exist (radiation, temperature, etc.). Various experimental techniques such as oxidation-state analysis of tracer-level isotopes, redox potential measurement and control, pH measurement, and solid phase identification have been used to categorize the behavior of the various valence states

  16. Sorption of redox-sensitive elements: critical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Strickert, R.G.

    1980-12-01

    The redox-sensitive elements (Tc, U, Np, Pu) discussed in this report are of interest to nuclear waste management due to their long-lived isotopes which have a potential radiotoxic effect on man. In their lower oxidation states these elements have been shown to be highly adsorbed by geologic materials occurring under reducing conditions. Experimental research conducted in recent years, especially through the Waste Isolation Safety Assessment Program (WISAP) and Waste/Rock Interaction Technology (WRIT) program, has provided extensive information on the mechanisms of retardation. In general, ion-exchange probably plays a minor role in the sorption behavior of cations of the above three actinide elements. Formation of anionic complexes of the oxidized states with common ligands (OH/sup -/, CO/sup - -//sub 3/) is expected to reduce adsorption by ion exchange further. Pertechnetate also exhibits little ion-exchange sorption by geologic media. In the reduced (IV) state, all of the elements are highly charged and it appears that they form a very insoluble compound (oxide, hydroxide, etc.) or undergo coprecipitation or are incorporated into minerals. The exact nature of the insoluble compounds and the effect of temperature, pH, pe, other chemical species, and other parameters are currently being investigated. Oxidation states other than Tc (IV,VII), U(IV,VI), Np(IV,V), and Pu(IV,V) are probably not important for the geologic repository environment expected, but should be considered especially when extreme conditions exist (radiation, temperature, etc.). Various experimental techniques such as oxidation-state analysis of tracer-level isotopes, redox potential measurement and control, pH measurement, and solid phase identification have been used to categorize the behavior of the various valence states.

  17. Phenolic acids potentiate colistin-mediated killing of Acinetobacter baumannii by inducing redox imbalance.

    Science.gov (United States)

    Ajiboye, Taofeek O; Skiebe, Evelyn; Wilharm, Gottfried

    2018-05-01

    Phenolic acids with catechol groups are good prooxidants because of their low redox potential. In this study, we provided data showing that phenolic acids, caffeic acid, gallic acid and protocatechuic acid, enhanced colistin-mediated bacterial death by inducing redox imbalance. The minimum inhibitory concentrations of these phenolic acids against Acinetobacter baumannii AB5075 were considerably lowered for ΔsodB and ΔkatG mutants. Checkerboard assay shows synergistic interactions between colistin and phenolic acids. The phenolic acids exacerbated colistin-induced oxidative stress in A. baumannii AB5075 through increased superoxide anion generation, NAD + /NADH and ADP/ATP ratio. In parallel, the level of reduced glutathione was significantly lowered. We conclude that phenolic acids potentiate colistin-induced oxidative stress in A. baumannii AB5075 by increasing ROS generation, energy metabolism and electron transport chain activity with a concomitant decrease in glutathione. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  18. Lipid peroxidation regulates podocyte migration and cytoskeletal structure through redox sensitive RhoA signaling

    Directory of Open Access Journals (Sweden)

    Claudia Kruger

    2018-06-01

    Full Text Available Early podocyte loss is characteristic of chronic kidney diseases (CKD in obesity and diabetes. Since treatments for hyperglycemia and hypertension do not prevent podocyte loss, there must be additional factors causing podocyte depletion. The role of oxidative stress has been implicated in CKD but it is not known how exactly free radicals affect podocyte physiology. To assess this relationship, we investigated the effects of lipid radicals on podocytes, as lipid peroxidation is a major form of oxidative stress in diabetes. We found that lipid radicals govern changes in podocyte homeostasis through redox sensitive RhoA signaling: lipid radicals inhibit migration and cause loss of F-actin fibers. These effects were prevented by mutating the redox sensitive cysteines of RhoA. We therefore suggest that in diseases associated with increased lipid peroxidation, lipid radicals can determine podocyte function with potentially pathogenic consequences for kidney physiology. Keywords: Lipid peroxidation, Reactive lipids, Podocyte, RhoA, Cysteine, Chronic kidney disease

  19. Redox-mediated dissolution of paramagnetic nanolids to achieve a smart theranostic system

    Science.gov (United States)

    Wang, Aifei; Guo, Mingyi; Wang, Nan; Zhao, Jianyun; Qi, Wenxiu; Muhammad, Faheem; Chen, Liang; Guo, Yingjie; Nguyen, Nam-Trung; Zhu, Guangshan

    2014-04-01

    Manganese oxide (Mn3O4) nanoparticles have recently emerged as a promising T1 contrast agent. In this study, for the first time, we demonstrated an interaction of Mn3O4 with a biological system, and found redox sensitive behavior of these paramagnetic nanoparticles in intracellular reducing environment. Inspired by these findings, we for the first time used this interaction for some therapeutic advantages and designed a versatile mesoporous silica based nanotheranostic system to realize redox-activated enhanced magnetic resonance imaging and responsive anticancer drug delivery. Contrary to previous reports, we firstly prepared high quality amine terminated hydrophilic Mn3O4 nanolids, without using multistep ligand exchange strategies. The resulting water stable and small-sized Mn3O4 nanolids were subsequently used as nanolids to cap drug loaded nanochannels of a porous carrier. Exposure to highly prevalent intracellular reducing environment resulted in the steady-state dissolution of these nanolids and attained an intelligent drug release. Furthermore, the redox receptive dissolution of paramagnetic Mn3O4 nanolids into Mn2+ in turn increases the T1 signal to twofold, providing an added opportunity to even track the feedback of therapy. This study, in addition to simultaneously realizing drug delivery and imaging, also provides a new insight into the fate and interaction of manganese oxide nanoparticles with components of biological systems.Manganese oxide (Mn3O4) nanoparticles have recently emerged as a promising T1 contrast agent. In this study, for the first time, we demonstrated an interaction of Mn3O4 with a biological system, and found redox sensitive behavior of these paramagnetic nanoparticles in intracellular reducing environment. Inspired by these findings, we for the first time used this interaction for some therapeutic advantages and designed a versatile mesoporous silica based nanotheranostic system to realize redox-activated enhanced magnetic resonance

  20. Targeted Quantitation of Site-Specific Cysteine Oxidation in Endogenous Proteins Using a Differential Alkylation and Multiple Reaction Monitoring Mass Spectrometry Approach

    Science.gov (United States)

    Held, Jason M.; Danielson, Steven R.; Behring, Jessica B.; Atsriku, Christian; Britton, David J.; Puckett, Rachel L.; Schilling, Birgit; Campisi, Judith; Benz, Christopher C.; Gibson, Bradford W.

    2010-01-01

    Reactive oxygen species (ROS) are both physiological intermediates in cellular signaling and mediators of oxidative stress. The cysteine-specific redox-sensitivity of proteins can shed light on how ROS are regulated and function, but low sensitivity has limited quantification of the redox state of many fundamental cellular regulators in a cellular context. Here we describe a highly sensitive and reproducible oxidation analysis approach (OxMRM) that combines protein purification, differential alkylation with stable isotopes, and multiple reaction monitoring mass spectrometry that can be applied in a targeted manner to virtually any cysteine or protein. Using this approach, we quantified the site-specific cysteine oxidation status of endogenous p53 for the first time and found that Cys182 at the dimerization interface of the DNA binding domain is particularly susceptible to diamide oxidation intracellularly. OxMRM enables analysis of sulfinic and sulfonic acid oxidation levels, which we validate by assessing the oxidation of the catalytic Cys215 of protein tyrosine phosphatase-1B under numerous oxidant conditions. OxMRM also complements unbiased redox proteomics discovery studies as a verification tool through its high sensitivity, accuracy, precision, and throughput. PMID:20233844

  1. Redox interplay between mitochondria and peroxisomes

    Directory of Open Access Journals (Sweden)

    Celien eLismont

    2015-05-01

    Full Text Available Reduction-oxidation or ‘redox’ reactions are an integral part of a broad range of cellular processes such as gene expression, energy metabolism, protein import and folding, and autophagy. As many of these processes are intimately linked with cell fate decisions, transient or chronic changes in cellular redox equilibrium are likely to contribute to the initiation and progression of a plethora of human diseases. Since a long time, it is known that mitochondria are major players in redox regulation and signaling. More recently, it has become clear that also peroxisomes have the capacity to impact redox-linked physiological processes. To serve this function, peroxisomes cooperate with other organelles, including mitochondria. This review provides a comprehensive picture of what is currently known about the redox interplay between mitochondria and peroxisomes in mammals. We first outline the pro- and antioxidant systems of both organelles and how they may function as redox signaling nodes. Next, we critically review and discuss emerging evidence that peroxisomes and mitochondria share an intricate redox-sensitive relationship and cooperate in cell fate decisions. Key issues include possible physiological roles, messengers, and mechanisms. We also provide examples of how data mining of publicly-available datasets from ‘omics’ technologies can be a powerful means to gain additional insights into potential redox signaling pathways between peroxisomes and mitochondria. Finally, we highlight the need for more studies that seek to clarify the mechanisms of how mitochondria may act as dynamic receivers, integrators, and transmitters of peroxisome-derived mediators of oxidative stress. The outcome of such studies may open up exciting new avenues for the community of researchers working on cellular responses to organelle-derived oxidative stress, a research field in which the role of peroxisomes is currently highly underestimated and an issue of

  2. A new estimate of detrital redox-sensitive metal concentrations and variability in fluxes to marine sediments

    Science.gov (United States)

    Cole, Devon B.; Zhang, Shuang; Planavsky, Noah J.

    2017-10-01

    The enrichment and depletion of redox sensitive trace metals in marine sediments have been used extensively as paleoredox proxies. The trace metals in shale are comprised of both detrital (transported or particulate) and authigenic (precipitated, redox-driven) constituents, potentially complicating the use of this suite of proxies. Untangling the influence of these components is vital for the interpretation of enrichments, depletions, and isotopic signals of iron (Fe), chromium (Cr), uranium (U), and vanadium (V) observed in the rock record. Traditionally, a single crustal average is used as a cutoff for detrital input, and concentrations above or below this value are interpreted as redox derived authigenic enrichment or depletion, while authigenic isotopic signals are frequently corrected for an assumed detrital contribution. Building from an extensive study of soils across the continental United States - which upon transport will become marine sediments - and their elemental concentrations, we find large deviations from accepted crustal averages in redox-sensitive metals (Fe, Cr, U, V) compared to typical detrital tracers (Al, Ti, Sc, Th) and provide new estimates for detrital contributions to the ocean. The variability in these elemental ratios is present over large areas, comparable to the catchment-size of major rivers around the globe. This heterogeneity in detrital flux highlights the need for a reevaluation of how the detrital contribution is assessed in trace metal studies, and the use of confidence intervals rather than single average values, especially in local studies or in the case of small authigenic enrichments.

  3. TEMPO/viologen electrochemical heterojunction for diffusion-controlled redox mediation: a highly rectifying bilayer-sandwiched device based on cross-reaction at the interface between dissimilar redox polymers.

    Science.gov (United States)

    Tokue, Hiroshi; Oyaizu, Kenichi; Sukegawa, Takashi; Nishide, Hiroyuki

    2014-03-26

    A couple of totally reversible redox-active molecules, which are different in redox potentials, 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) and viologen (V(2+)), were employed to give rise to a rectified redox conduction effect. Single-layer and bilayer devices were fabricated using polymers containing these sites as pendant groups per repeating unit. The devices were obtained by sandwiching the redox polymer layer(s) with indium tin oxide (ITO)/glass and Pt foil electrodes. Electrochemical measurements of the single-layer device composed of polynorbornene-bearing TEMPO (PTNB) exhibited a diffusion-limited current-voltage response based on the TEMPO(+)/TEMPO exchange reaction, which was almost equivalent to a redox gradient through the PTNB layer depending upon the thickness. The bilayer device gave rise to the current rectification because of the thermodynamically favored cross-reaction between TEMPO(+) and V(+) at the polymer/polymer interface. A current-voltage response obtained for the bilayer device demonstrated a two-step diffusion-limited current behavior as a result of the concurrent V(2+)/V(+) and V(+)/V(0) exchange reactions according to the voltage and suggested that the charge transport process through the device was most likely to be rate-determined by a redox gradient in the polymer layer. Current collection experiments revealed a charge transport balance throughout the device, as a result of the electrochemical stability and robustness of the polymers in both redox states.

  4. Production of cellobionate from cellulose using an engineered Neurospora crassa strain with laccase and redox mediator addition

    Science.gov (United States)

    We report a novel production process for cellobionic acid from cellulose using an engineered fungal strain with the exogenous addition of laccase and a redox mediator. A previously engineered strain of Neurospora crassa (F5'ace-1'cre-1'ndvB) was shown to produce cellobionate directly from cellulose ...

  5. Amplified and in situ detection of redox-active metabolite using a biobased redox capacitor.

    Science.gov (United States)

    Kim, Eunkyoung; Gordonov, Tanya; Bentley, William E; Payne, Gregory F

    2013-02-19

    Redox cycling provides a mechanism to amplify electrochemical signals for analyte detection. Previous studies have shown that diverse mediators/shuttles can engage in redox-cycling reactions with a biobased redox capacitor that is fabricated by grafting redox-active catechols onto a chitosan film. Here, we report that redox cycling with this catechol-chitosan redox capacitor can amplify electrochemical signals for detecting a redox-active bacterial metabolite. Specifically, we studied the redox-active bacterial metabolite pyocyanin that is reported to be a virulence factor and signaling molecule for the opportunistic pathogen P. aeruginosa. We demonstrate that redox cycling can amplify outputs from various electrochemical methods (cyclic voltammetry, chronocoulometry, and differential pulse voltammetry) and can lower the detection limit of pyocyanin to 50 nM. Further, the compatibility of this biobased redox capacitor allows the in situ monitoring of the production of redox-active metabolites (e.g., pyocyanin) during the course of P. aeruginosa cultivation. We anticipate that the amplified output of redox-active virulence factors should permit an earlier detection of life-threatening infections by the opportunistic pathogen P. aeruginosa while the "bio-compatibility" of this measurement approach should facilitate in situ study of the spatiotemporal dynamics of bacterial redox signaling.

  6. Redox behaviors of iron by absorption spectroscopy and redox potential measurement

    International Nuclear Information System (INIS)

    Oh, Jae Yong

    2010-02-01

    This work is performed to study the redox (reduction/oxidation) behaviors of iron in aqueous system by a combination of absorption spectroscopy and redox potential measurements. There are many doubts on redox potential measurements generally showing low accuracies and high uncertainties. In the present study, redox potentials are measured by utilizing various redox electrodes such as Pt, Au, Ag, and glassy carbon (GC) electrodes. Measured redox potentials are compared with calculated redox potentials based on the chemical oxidation speciation of iron and thermodynamic data by absorption spectroscopy, which provides one of the sensitive and selective spectroscopic methods for the chemical speciation of Fe(II/III). From the comparison analyses, redox potential values measured by the Ag redox electrode are fairly consistent with those calculated by the chemical aqueous speciation of iron in the whole system. In summary, the uncertainties of measured redox potentials are closely related with the total Fe concentration and affected by the formation of mixed potentials due to Fe(III) precipitates in the pH range of 6 ∼ 9 beyond the solubility of Fe(III), whilst being independent of the initially prepared concentration ratios between Fe(II) and Fe(III)

  7. A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds.

    Science.gov (United States)

    Lipton, S A; Choi, Y B; Pan, Z H; Lei, S Z; Chen, H S; Sucher, N J; Loscalzo, J; Singel, D J; Stamler, J S

    1993-08-12

    Congeners of nitrogen monoxide (NO) are neuroprotective and neurodestructive. To address this apparent paradox, we considered the effects on neurons of compounds characterized by alternative redox states of NO: nitric oxide (NO.) and nitrosonium ion (NO+). Nitric oxide, generated from NO. donors or synthesized endogenously after NMDA (N-methyl-D-aspartate) receptor activation, can lead to neurotoxicity. Here, we report that NO.- mediated neurotoxicity is engendered, at least in part, by reaction with superoxide anion (O2.-), apparently leading to formation of peroxynitrite (ONOO-), and not by NO. alone. In contrast, the neuroprotective effects of NO result from downregulation of NMDA-receptor activity by reaction with thiol group(s) of the receptor's redox modulatory site. This reaction is not mediated by NO. itself, but occurs under conditions supporting S-nitrosylation of NMDA receptor thiol (reaction or transfer of NO+). Moreover, the redox versatility of NO allows for its interconversion from neuroprotective to neurotoxic species by a change in the ambient redox milieu. The details of this complex redox chemistry of NO may provide a mechanism for harnessing neuroprotective effects and avoiding neurotoxicity in the central nervous system.

  8. Redox-active on-surface polymerization of single-site divalent cations from pure metals by a ketone-functionalized phenanthroline

    Energy Technology Data Exchange (ETDEWEB)

    Skomski, Daniel; Tempas, Christopher D.; Bukowski, Gregory S.; Smith, Kevin A.; Tait, Steven L., E-mail: tait@indiana.edu [Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, Indiana 47405 (United States)

    2015-03-14

    Metallic iron, chromium, or platinum mixing with a ketone-functionalized phenanthroline ligand on a single crystal gold surface demonstrates redox activity to a well-defined oxidation state and assembly into thermally stable, one dimensional, polymeric chains. The diverging ligand geometry incorporates redox-active sub-units and bi-dentate binding sites. The gold surface provides a stable adsorption environment and directs growth of the polymeric chains, but is inert with regard to the redox chemistry. These systems are characterized by scanning tunnelling microscopy, non-contact atomic force microscopy, and X-ray photoelectron spectroscopy under ultra-high vacuum conditions. The relative propensity of the metals to interact with the ketone group is examined, and it is found that Fe and Cr more readily complex the ligand than Pt. The formation and stabilization of well-defined transition metal single-sites at surfaces may open new routes to achieve higher selectivity in heterogeneous catalysts.

  9. Integrating a redox-coupled dye-sensitized photoelectrode into a lithium-oxygen battery for photoassisted charging.

    Science.gov (United States)

    Yu, Mingzhe; Ren, Xiaodi; Ma, Lu; Wu, Yiying

    2014-10-03

    With a high theoretical specific energy, the non-aqueous rechargeable lithium-oxygen battery is a promising next-generation energy storage technique. However, the large charging overpotential remains a challenge due to the difficulty in electrochemically oxidizing the insulating lithium peroxide. Recently, a redox shuttle has been introduced into the electrolyte to chemically oxidize lithium peroxide. Here, we report the use of a triiodide/iodide redox shuttle to couple a built-in dye-sensitized titanium dioxide photoelectrode with the oxygen electrode for the photoassisted charging of a lithium-oxygen battery. On charging under illumination, triiodide ions are generated on the photoelectrode, and subsequently oxidize lithium peroxide. Due to the contribution of the photovoltage, the charging overpotential is greatly reduced. The use of a redox shuttle to couple a photoelectrode and an oxygen electrode offers a unique strategy to address the overpotential issue of non-aqueous lithium-oxygen batteries and also a distinct approach for integrating solar cells and batteries.

  10. Drought-induced legacy effects in wood growth across the Eastern and Midwestern U.S. are mediated by site climate, tree age, and drought sensitivity

    Science.gov (United States)

    Kannenberg, S.; Maxwell, J. T.; Pederson, N.; D'Orangeville, L.; Phillips, R.

    2017-12-01

    While it is widely known that drought reduces carbon (C) uptake in temperate forests, tree growth can also remain stagnant post-drought despite favorable climatic conditions. While such "legacy effects" are well established, the degree to which these effects depend on species identity or variability in site conditions is poorly quantified. We sought to uncover how site, species, climate, and tree age interact to affect the presence and magnitude of legacy effects in temperate trees following drought. To do this, we assembled dendrochronological records of 18 common species across 94 sites in Eastern and Midwestern U.S. forests and quantified drought-induced changes in wood growth in the year of the drought (hereafter "drought sensitivity") and the years after the drought (i.e., legacy effects). We predicted that species particularly prone to hydraulic damage (e.g., oaks) would have the least drought sensitivity yet experience larger legacy effects, and that this effect would be exacerbated at arid sites. Across all species and sites, wood growth was reduced by 14% in the year of the drought and by 7% post-drought. Surprisingly, legacy effects were smaller for oak species and larger across species known to be more drought sensitive (e.g. tulip poplar, maple, birch). As a result, we observed a positive relationship between a species' drought sensitivity and that species' legacy effect. These legacy effects were similar in size across a range of drought severities. Surprisingly, legacy effects were smaller in more arid sites - contrary to previous investigations in dryland ecosystems - perhaps indicating the role of adaptation in mediating a tree's recovery from drought. In addition, many species actually decreased the size of their legacy effects as they aged, despite no change in drought responses. Our results run contrary to our predictions, as species with the greatest drought sensitivity had the least ability to recover, and that younger mesic forests- not arid

  11. Geologic, geochemical, microbiologic, and hydrologic characterization at the In Situ Redox Manipulation Test Site

    International Nuclear Information System (INIS)

    Vermeul, V.R.; Teel, S.S.; Amonette, J.E.

    1995-07-01

    This report documents results from characterization activities at the In Situ Redox Manipulation (ISRM) Field Test Site which is located within the 100-HR-3 Operable Unit of the US Department of Energy's (DOE's) Hanford Site in Richland, Washington. Information obtained during hydrogeologic characterization of the site included sediment physical properties, geochemical properties, microbiologic population data, and aquifer hydraulic properties. The purpose of obtaining this information was to improve the conceptual understanding of the hydrogeology beneath the ISRM test site and provide detailed, site specific hydrogeologic parameter estimates. The resulting characterization data will be incorporated into a numerical model developed to simulate the physical and chemical processes associated with the field experiment and aid in experiment design and interpretation

  12. The intriguing enhancement of chloroperoxidase mediated one-electron oxidations by azide, a known active-site ligand

    International Nuclear Information System (INIS)

    Andrew, Daniel; Hager, Lowell; Manoj, Kelath Murali

    2011-01-01

    Highlights: ► Azide is a well known heme–enzyme active site ligand and inhibitor. ► Herein, azide is reported to enhance a set of heme–enzyme mediated reactions. ► This effect is disconnected from native enzyme–azide binding. ► Azide could enhance heme–enzyme reactions via a newly proposed mechanism. ► Azide contained in reagents could impact reaction outcomes in redox biochemistry. -- Abstract: Azide is a well-known inhibitor of heme–enzymes. Herein, we report the counter-intuitive observation that at some concentration regimes, incorporation of azide in the reaction medium enhances chloroperoxidase (CPO, a heme–enzyme) mediated one-electron abstractions from several substrates. A diffusible azidyl radical based mechanism is proposed for explaining the phenomenon. Further, it is projected that the finding could have significant impact on routine in situ or in vitro biochemistry studies involving heme–enzyme systems and azide.

  13. Enhancing the open-circuit voltage of dye-sensitized solar cells: coadsorbents and alternative redox couples[Dissertation 4066

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z.

    2008-04-15

    this effect. The voltage shift was interpreted as the effect of a negative shift in conduction band and a decrease in the back electron transfer of photoinjected electrons in TiO{sub 2} to the triiodide species in the electrolyte, the former being the main reason for the large photovoltage increase. The specificity in the structure of the coadsorbents and its implication were also discussed. In Chapters 8 and 9, we studied the possibility to use some one-electron transfer couples as the replacement of the iodide-based electrolyte. Mainly, 2,2,6,6-Tetramethyl-1-piperidinyloxy (TEMPO), phenoxazine derivatives and tetrathiafulvalene were selected as the candidates and their device performances were evaluated by electrochemical, photochemical and phototransient measurements. The redox potentials of these couples were 100 to 400 mV more positive than that of I{sup -} / I{sub 3}{sup -} couple, mitigating the potential mismatch between the Nernst potential of the dye cation and that of the redox mediator. TEMPO/TEMPO{sup +} based devices showed the best conversion efficiency of more than 5 % under AM 1.5 illumination at 100 mWcm{sup -2}, a new record at this light intensity for non-iodine and non-pseudohologen electrolytes. On the other hand, the fast recapture of electrons in TiO{sub 2} by the oxidized species of the couple was accounted for the lower observed increase in V{sub oc} of the devices with these electrolytes than the simple shift in the redox potentials. We drew some final conclusions in Chapter 10 together with our outlooks in the future research and development of coadsorbents and electrolytes for dye-sensitized solar cells. (author)

  14. Redox functionality mediated by adsorbed oxygen on a Pd oxide film over a Pd(100) thin structure: a first-principles study

    International Nuclear Information System (INIS)

    Kusakabe, K; Ikuno, Y k; Nagara, H; Harada, K

    2009-01-01

    Stable oxygen sites on a PdO film over a Pd(100) thin structure with a (√5x√5)R27 o surface unit cell are determined using the first-principles electronic structure calculations with the generalized gradient approximation. The adsorbed monatomic oxygen goes to a site bridging two twofold-coordinated Pd atoms or to a site bridging a twofold-coordinated Pd atom and a fourfold-coordinated Pd atom. Estimated reaction energies of CO oxidation by reduction of the oxidized PdO film and N 2 O reduction mediated by oxidation of the PdO film are both exothermic. Motion of the adsorbed oxygen atom between the two stable sites is evaluated using the nudged elastic band method, where an energy barrier for a translational motion of the adsorbed oxygen may become ∼0.45 eV, which is low enough to allow fluxionality of the surface oxygen at high temperatures. The oxygen fluxionality is allowed by the existence of twofold-coordinated Pd atoms on the PdO film, whose local structure has a similarity to that of Pd catalysts for the Suzuki-Miyaura cross-coupling. Although NO x (including NO 2 and NO) reduction is not always catalyzed by the PdO film only, we conclude that continual redox reactions may happen mediated by oxygen-adsorbed PdO films over a Pd surface structure, when the influx of NO x and CO continues, and when the reaction cycle is kept on a well-designed oxygen surface.

  15. Breast Cancer Redox Heterogeneity Detectable with Chemical Exchange Satruation Transfer (CEST) MRI

    Science.gov (United States)

    Cai, Kejia; Xu, He N.; Singh, Anup; Moon, Lily; Haris, Mohammad; Reddy, Ravinder; Li, Lin

    2014-01-01

    Purpose Tissue redox state is an important mediator of various biological processes in health and diseases such as cancer. Previously, we discovered that the mitochondrial redox state of ex vivo tissues detected by redox scanning (an optical imaging method) revealed interesting tumor redox state heterogeneity that could differentiate tumor aggressiveness. Because the noninvasive chemical exchange saturation transfer (CEST) MRI can probe the proton transfer and generate contrasts from endogenous metabolites, we aim to investigate if the in vivo CEST contrast is sensitive to proton transfer of the redox reactions so as to reveal the tissue redox states in breast cancer animal models. Procedures CEST MRI has been employed to characterize tumor metabolic heterogeneity and correlated with the redox states measured by the redox scanning in two human breast cancer mouse xenograft models, MDA-MB-231 and MCF-7. The possible biological mechanism on the correlation between the two imaging modalities was further investigated by phantom studies where the reductants and the oxidants of the representative redox reactions were measured. Results The CEST contrast is found linearly correlated with NADH concentration and the NADH redox ratio with high statistical significance, where NADH is the reduced form of nicotinamide adenine dinucleotide. The phantom studies showed that the reductants of the redox reactions have more CEST contrast than the corresponding oxidants, indicating that higher CEST effect corresponds to the more reduced redox state. Conclusions This preliminary study suggests that CEST MRI, once calibrated, might provide a novel noninvasive imaging surrogate for the tissue redox state and a possible diagnostic biomarker for breast cancer in the clinic. PMID:24811957

  16. Understanding controls on redox processes in floodplain sediments of the Upper Colorado River Basin

    Energy Technology Data Exchange (ETDEWEB)

    Noël, Vincent; Boye, Kristin; Kukkadapu, Ravi K.; Bone, Sharon; Lezama Pacheco, Juan S.; Cardarelli, Emily; Janot, Noémie; Fendorf, Scott; Williams, Kenneth H.; Bargar, John R.

    2017-12-15

    River floodplains, heavily used for water supplies, housing, agriculture, mining, and industry, may have water quality jeopardized by native or exogenous metals. Redox processes mediate the accumulation and release of these species in groundwater. Understanding the physicochemical, hydrological, and biogeochemical controls on the distribution and variability and variability of redox conditions is therefore critical to developing conceptual and numerical models of contaminants transport within floodplains. The distribution and intensity of redox activity at the Rifle, CO, site within the Upper Colorado River Basin (UCRB), are believed to be controlled by textural and compositional heterogeneities. Regionally, the UCRB is impacted by former uranium and vanadium ore processing, resulting in contaminations by U, Mo, V, As, Se, and Mn. Floodplains throughout the UCRB share sediment and groundwater characteristics, making redox activity regionally important to metal and radionuclide mobility. In this study, Fe and S speciation were used to track the distribution and stability of redox processes in sediment cores from three floodplain sites covering a 250 km range in the central portion of the UCRB. The results of the present study support the hypothesis that Fe(III) and sulfate reducing sediments are regionally important in the UCRB. The presence of organic carbon together with pore saturation were the key requirements for reducing conditions, dominated by sulfate-reduction. Sediment texture moderated the response of the system to external forcing, such as oxidant infusion, making fine-grain sediments resistant to change in comparison to coarser-grained sediments. Exposure to O2 and NO3- mediates the reactivity and longevity of freshly precipitated sulfides creating the potential for release of sequestered radionuclides and metals. The physical and chemical parameters of reducing zones evidenced in this study are thus thought to be key parameters on the dynamic exchange

  17. Caenorhabditis elegans as Model System in Pharmacology and Toxicology: Effects of Flavonoids on Redox-Sensitive Signalling Pathways and Ageing

    Directory of Open Access Journals (Sweden)

    Karoline Koch

    2014-01-01

    Full Text Available Flavonoids are secondary plant compounds that mediate diverse biological activities, for example, by scavenging free radicals and modulating intracellular signalling pathways. It has been shown in various studies that distinct flavonoid compounds enhance stress resistance and even prolong the life span of organisms. In the last years the model organism C. elegans has gained increasing importance in pharmacological and toxicological sciences due to the availability of various genetically modified nematode strains, the simplicity of modulating genes by RNAi, and the relatively short life span. Several studies have been performed demonstrating that secondary plant compounds influence ageing, stress resistance, and distinct signalling pathways in the nematode. Here we present an overview of the modulating effects of different flavonoids on oxidative stress, redox-sensitive signalling pathways, and life span in C. elegans introducing the usability of this model system for pharmacological and toxicological research.

  18. Caenorhabditis elegans as Model System in Pharmacology and Toxicology: Effects of Flavonoids on Redox-Sensitive Signalling Pathways and Ageing

    Science.gov (United States)

    Koch, Karoline; Havermann, Susannah; Büchter, Christian

    2014-01-01

    Flavonoids are secondary plant compounds that mediate diverse biological activities, for example, by scavenging free radicals and modulating intracellular signalling pathways. It has been shown in various studies that distinct flavonoid compounds enhance stress resistance and even prolong the life span of organisms. In the last years the model organism C. elegans has gained increasing importance in pharmacological and toxicological sciences due to the availability of various genetically modified nematode strains, the simplicity of modulating genes by RNAi, and the relatively short life span. Several studies have been performed demonstrating that secondary plant compounds influence ageing, stress resistance, and distinct signalling pathways in the nematode. Here we present an overview of the modulating effects of different flavonoids on oxidative stress, redox-sensitive signalling pathways, and life span in C. elegans introducing the usability of this model system for pharmacological and toxicological research. PMID:24895670

  19. Redox activity of airborne particulate matter at different sites in the Los Angeles Basin

    International Nuclear Information System (INIS)

    Cho, Arthur K.; Sioutas, Constantinos; Miguel, Antonio H.; Kumagai, Yoshito; Schmitz, Debra A.; Singh, Manisha; Eiguren-Fernandez, Arantza; Froines, John R.

    2005-01-01

    Epidemiologic studies have shown associations between ambient particulate matter (PM) and adverse health outcomes including increased mortality, emergency room visits, and time lost from school and work. The mechanisms of PM-related health effects are still incompletely understood, but a hypothesis under investigation is that many of the adverse health effects may derive from oxidative stress, initiated by the formation of reactive oxygen species (ROS) within affected cells. While the adverse effects from PM have historically been associated with the airborne concentration of PM and more recently fine-particle PM, we considered it relevant to develop an assay to quantitatively measure the ability of PM to catalyze ROS generation as the initial step in the induction of oxidative stress. This ability of PM could then be related to different sources, chemical composition, and physical and spatial/temporal characteristics in the ambient environment. The measurement of ROS-forming ability in relation to sources and other factors will have potential relevance to control of redox-active PM. If oxidative stress represents a relevant mechanism of toxicity from PM, the measurement of redox activity represents a first step in the elucidation of the subsequent downstream processes. We have developed an assay for PM redox activity, utilizing the reduction of oxygen by dithiothreitol which serves as an electron source. We have found that PM will catalyze the reduction of oxygen and have examined the distribution and chemical characteristics of the redox activity of PM fractions collected in different sites in the Los Angeles Basin. Samples of concentrated coarse, fine, and ultrafine PM, obtained with aerosol concentrators, were studied with regard to their chemical properties and redox activity. Redox activity was highest in the ultrafine fraction, in agreement with results indicating ultrafines were the most potent toward inducing that heme oxygenase expression and depleting

  20. Vitamin K3 (menadione) redox cycling inhibits cytochrome P450-mediated metabolism and inhibits parathion intoxication.

    Science.gov (United States)

    Jan, Yi-Hua; Richardson, Jason R; Baker, Angela A; Mishin, Vladimir; Heck, Diane E; Laskin, Debra L; Laskin, Jeffrey D

    2015-10-01

    Parathion, a widely used organophosphate insecticide, is considered a high priority chemical threat. Parathion toxicity is dependent on its metabolism by the cytochrome P450 system to paraoxon (diethyl 4-nitrophenyl phosphate), a cytotoxic metabolite. As an effective inhibitor of cholinesterases, paraoxon causes the accumulation of acetylcholine in synapses and overstimulation of nicotinic and muscarinic cholinergic receptors, leading to characteristic signs of organophosphate poisoning. Inhibition of parathion metabolism to paraoxon represents a potential approach to counter parathion toxicity. Herein, we demonstrate that menadione (methyl-1,4-naphthoquinone, vitamin K3) is a potent inhibitor of cytochrome P450-mediated metabolism of parathion. Menadione is active in redox cycling, a reaction mediated by NADPH-cytochrome P450 reductase that preferentially uses electrons from NADPH at the expense of their supply to the P450s. Using human recombinant CYP 1A2, 2B6, 3A4 and human liver microsomes, menadione was found to inhibit the formation of paraoxon from parathion. Administration of menadione bisulfite (40mg/kg, ip) to rats also reduced parathion-induced inhibition of brain cholinesterase activity, as well as parathion-induced tremors and the progression of other signs and symptoms of parathion poisoning. These data suggest that redox cycling compounds, such as menadione, have the potential to effectively mitigate the toxicity of organophosphorus pesticides including parathion which require cytochrome P450-mediated activation. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Evaluation of a loop-mediated isothermal amplification (LAMP) method for rapid on-site detection of horse meat

    NARCIS (Netherlands)

    Aartse, Aafke; Scholtens-Toma, Ingrid; A, van der Hans J.G.; Boersma-Greve, Monique M.; Prins, Theo W.; Ginkel, van Leen A.; Kok, Esther J.; Bovee, Toine F.H.

    2017-01-01

    Detection of horse DNA by loop-mediated isothermal amplification (LAMP) seems one of the most promising methods to meet the criteria of fast, robust, cost efficient, specific, and sensitive on-site detection. In the present study an assessment of the specificity and sensitivity of the LAMP horse

  2. S-Glutathionylation and Redox Protein Signaling in Drug Addiction.

    Science.gov (United States)

    Womersley, Jacqueline S; Uys, Joachim D

    2016-01-01

    Drug addiction is a chronic relapsing disorder that comes at a high cost to individuals and society. Therefore understanding the mechanisms by which drugs exert their effects is of prime importance. Drugs of abuse increase the production of reactive oxygen and nitrogen species resulting in oxidative stress. This change in redox homeostasis increases the conjugation of glutathione to protein cysteine residues; a process called S-glutathionylation. Although traditionally regarded as a protective mechanism against irreversible protein oxidation, accumulated evidence suggests a more nuanced role for S-glutathionylation, namely as a mediator in redox-sensitive protein signaling. The reversible modification of protein thiols leading to alteration in function under different physiologic/pathologic conditions provides a mechanism whereby change in redox status can be translated into a functional response. As such, S-glutathionylation represents an understudied means of post-translational protein modification that may be important in the mechanisms underlying drug addiction. This review will discuss the evidence for S-glutathionylation as a redox-sensing mechanism and how this may be involved in the response to drug-induced oxidative stress. The function of S-glutathionylated proteins involved in neurotransmission, dendritic spine structure, and drug-induced behavioral outputs will be reviewed with specific reference to alcohol, cocaine, and heroin. Copyright © 2016. Published by Elsevier Inc.

  3. Charge transfer mediator based systems for electrocatalytic oxygen reduction

    Science.gov (United States)

    Stahl, Shannon S.; Gerken, James B.; Anson, Colin W.

    2017-07-18

    Disclosed are systems for the electrocatalytic reduction of oxygen, having redox mediator/redox catalyst pairs and an electrolyte solution in contact with an electrode. The redox mediator is included in the electrolyte solution, and the redox catalyst may be included in the electrolyte solution, or alternatively, may be in contact with the electrolyte solution. In one form a cobalt redox catalyst is used with a quinone redox mediator. In another form a nitrogen oxide redox catalyst is used with a nitroxyl type redox mediator. The systems can be used in electrochemical cells wherein neither the anode nor the cathode comprise an expensive metal such as platinum.

  4. Charge transfer mediator based systems for electrocatalytic oxygen reduction

    Energy Technology Data Exchange (ETDEWEB)

    Stahl, Shannon S.; Gerken, James B.; Anson, Colin W.

    2017-11-07

    Disclosed are systems for the electrocatalytic reduction of oxygen, having redox mediator/redox catalyst pairs and an electrolyte solution in contact with an electrode. The redox mediator is included in the electrolyte solution, and the redox catalyst may be included in the electrolyte solution, or alternatively, may be in contact with the electrolyte solution. In one form a cobalt redox catalyst is used with a quinone redox mediator. In another form a nitrogen oxide redox catalyst is used with a nitroxyl type redox mediator. The systems can be used in electrochemical cells wherein neither the anode nor the cathode comprise an expensive metal such as platinum.

  5. Redox-flexible NADH oxidase biosensor: A platform for various dehydrogenase bioassays and biosensors

    International Nuclear Information System (INIS)

    Serban, Simona; El Murr, Nabil

    2006-01-01

    A generic amperometric bioassay based on the enzymatic oxidation catalysed by the stable NADH oxidase (NAox) from Thermus thermophilus has been developed for NADH measurements. The NAox uses O 2 as its natural electron acceptor and produces H 2 O 2 in a two-electron process. Electrochemical and spectrophotometric experiments showed that the NAox used in this work, presents a very good activity towards its substrate and, in contrary to previously mentioned NADH oxidases, does not require the addition of any exogenous flavin cofactor neither to promote nor to maintain its activity. In addition, the NAox used also works with artificial electron acceptors like ferrocene derivatives. O 2 was successfully replaced by redox mediators such as hydroxymethyl ferrocene (FcCH 2 OH) for the regeneration of the active enzyme. Combining the NAox with the mediator and the horseradish peroxidase we developed an original, high sensitive 'redox-flexible' NADH amperometric bioassay working in a large window of applied potentials in both oxidation and reduction modes. The biosensor has a continuous and complementary linearity range permitting to measure NADH concentrations starting from 5 x 10 -6 M in reduction until 2 x 10 3 M in oxidation. This redox-flexibility allows choosing the applied potential in order to avoid electrochemical interferences. The association of the 'redox-flexible' concept with NADH dependent enzymes opens a novel strategy for dehydrogenases based bioassays and biosensors. The great number of dehydrogenases available makes the concept applicable for numerous substrates to analyse. Moreover it allows the development of a wide range of biosensors on the basis of a generic platform. This gives several advantages over the previous manufacturing techniques and offers a general and flexible scheme for the fabrication of biosensors presenting high sensitivities, wide calibration ranges and less affected by electrochemical interferences

  6. Biogeochemical Barriers: Redox Behavior of Metals and Metalloids

    Science.gov (United States)

    Redox conditions and pH are arguably the most important geochemical parameters that control contaminant transport and fate in groundwater systems. Oxidation-reduction (redox) reactions mediate the chemical behavior of both inorganic and organic chemical constituents by affecting...

  7. Metabolic Control of Redox and Redox Control of Metabolism in Plants

    Science.gov (United States)

    Fernie, Alisdair R.

    2014-01-01

    characterizing signaling features thereof. We propose that such information will enable us to dissect the regulatory hierarchies that mediate the strict coupling of metabolism and redox status which, ultimately, determine plant growth and development. Antioxid. Redox Signal. 21, 1389–1421. PMID:24960279

  8. Redox Behavior of Fe2+/Fe3+ Redox Couple by Absorption Spectroscopy and Measurement

    International Nuclear Information System (INIS)

    Oh, J. Y.; Park, S.; Yun, J. I.

    2010-01-01

    Redox behavior has influences on speciation and other geochemical reactions of radionuclides such as sorption, solubility, and colloid formation, etc. It is one of the factors for evaluation of long-term safety assessment under high-level radioactive waste (HLW) disposal conditions. Accordingly, redox potential (Eh) measurement in aquatic system is important to investigate the redox conditions. Eh is usually measured with redox active electrodes (Pt, Au, glassy carbon, etc.). Nevertheless, Eh measurements by general methods using electrodes provide low accuracy and high uncertainty problem. Therefore, Eh calculated from the concentration of redox active elements with a proper complexing reagent by using UV-Vis absorption spectroscopy is progressed. Iron exists mostly as spent nuclear waste container material and in hydro-geologic minerals. In this system, iron controls the redox condition in near-field area and influences chemical behavior and speciation of radionuclides including redox sensitive actinides such as U, Np, and Pu. In the present work, we present the investigation on redox phenomena of iron in aquatic system by a combination of absorption spectroscopy and redox potential measurements

  9. Geochemistry of Natural Redox Fronts

    International Nuclear Information System (INIS)

    Hofmann, B.A.

    1999-05-01

    Redox fronts are important geochemical boundaries which need to be considered in safety assessment of deep repositories for radioactive waste. In most cases, selected host-rock formations will be reducing due to the presence of ferrous minerals, sulphides, etc. During construction and operation of the repository, air will be introduced into the formation. After repository closure, oxidising conditions may persist locally until all oxygen is consumed. In the case of high-level waste, radiolysis of water may provide an additional source of oxidants. Oxidising conditions within a repository are thus possible and potentially have a strong influence on the mobility of many elements. The rate of movement of redox fronts, the boundary between oxidising and reducing environments, and their influence on migrating radionuclides are thus important factors influencing repository performance. The present report is a review of elemental behaviour at natural redox fronts, based on published information and work of the author. Redox fronts are geochemically and geometrically variable manifestations of a global interface between generally oxidising geochemical milieux in contact with the atmosphere and generally reducing milieux in contact with rocks containing ferrous iron, sulphide and/or organic carbon. A classification of redox fronts based on a subdivision into continental near-surface, marine near-surface, and deep environments is proposed. The global redox interface is often located close to the surface of rocks and sediments and, sometimes, within bodies of water. Temperature conditions are close to ambient. A deeper penetration of the global redox front to depths of several kilometres is found in basins containing oxidised sediments (red beds) and in some hydrothermal circulation systems. Temperatures at such deep redox fronts may reach 200 o C. Both near-surface and deep redox fronts are sites of formation of economic deposits of redox-sensitive elements, particularly of

  10. Expression, purification, crystallization and X-ray crystallographic studies of different redox states of the active site of thioredoxin 1 from the whiteleg shrimp Litopenaeus vannamei

    International Nuclear Information System (INIS)

    Campos-Acevedo, Adam A.; Garcia-Orozco, Karina D.; Sotelo-Mundo, Rogerio R.; Rudiño-Piñera, Enrique

    2013-01-01

    Analysis of the different redox states of the catalytic cysteines in four crystallographic structures of thioredoxin 1 from the Pacific whiteleg shrimp L. vannamei highlights their reactivity and corroborates the existence of a structural dimer mediated by an interface of 12 residues which includes a disulfide bridge between the Cys73 residues of each monomer. Thioredoxin (Trx) is a 12 kDa cellular redox protein that belongs to a family of small redox proteins which undergo reversible oxidation to produce a cystine disulfide bond through the transfer of reducing equivalents from the catalytic site cysteine residues (Cys32 and Cys35) to a disulfide substrate. In this study, crystals of thioredoxin 1 from the Pacific whiteleg shrimp Litopenaeus vannamei (LvTrx) were successfully obtained. One data set was collected from each of four crystals at 100 K and the three-dimensional structures of the catalytic cysteines in different redox states were determined: reduced and oxidized forms at 2.00 Å resolution using data collected at a synchrotron-radiation source and two partially reduced structures at 1.54 and 1.88 Å resolution using data collected using an in-house source. All of the crystals belonged to space group P3 2 12, with unit-cell parameters a = 57.5 (4), b = 57.5 (4), c = 118.1 (8) Å. The asymmetric unit contains two subunits of LvTrx, with a Matthews coefficient (V M ) of 2.31 Å 3 Da −1 and a solvent content of 46%. Initial phases were determined by molecular replacement using the crystallographic model of Trx from Drosophila melanogaster as a template. In the present work, LvTrx was overexpressed in Escherichia coli, purified and crystallized. Structural analysis of the different redox states at the Trx active site highlights its reactivity and corroborates the existence of a dimer in the crystal. In the crystallographic structures the dimer is stabilized by several interactions, including a disulfide bridge between Cys73 of each LvTrx monomer, a

  11. Age-Associated Impairments in Mitochondrial ADP Sensitivity Contribute to Redox Stress in Senescent Human Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Graham P. Holloway

    2018-03-01

    Full Text Available Summary: It remains unknown if mitochondrial bioenergetics are altered with aging in humans. We established an in vitro method to simultaneously determine mitochondrial respiration and H2O2 emission in skeletal muscle tissue across a range of biologically relevant ADP concentrations. Using this approach, we provide evidence that, although the capacity for mitochondrial H2O2 emission is not increased with aging, mitochondrial ADP sensitivity is impaired. This resulted in an increase in mitochondrial H2O2 and the fraction of electron leak to H2O2, in the presence of virtually all ADP concentrations examined. Moreover, although prolonged resistance training in older individuals increased muscle mass, strength, and maximal mitochondrial respiration, exercise training did not alter H2O2 emission rates in the presence of ADP, the fraction of electron leak to H2O2, or the redox state of the muscle. These data establish that a reduction in mitochondrial ADP sensitivity increases mitochondrial H2O2 emission and contributes to age-associated redox stress. : Holloway et al. show that an inability of ADP to decrease mitochondrial reactive oxygen species emission contributes to redox stress in skeletal muscle tissue of older individuals and that this process is not recovered following prolonged resistance-type exercise training, despite the general benefits of resistance training for muscle health. Keywords: mitochondria, aging, muscle, ROS, H2O2, ADP, respiration, bioenergetics, exercise, resistance training

  12. Evidence that cytochrome b5 acts as a redox donor in CYP17A1 mediated androgen synthesis

    International Nuclear Information System (INIS)

    Duggal, Ruchia; Liu, Yilin; Gregory, Michael C.; Denisov, Ilia G.; Kincaid, James R.; Sligar, Stephen G.

    2016-01-01

    to CYP17A1, it is unable to enhance the lyase reaction, strongly suggesting that cyt b 5 has a redox effector role in enhancement of the CYP17A1 mediated lyase reaction necessary for androgen synthesis. - Highlights: • Cyt b 5 role in human CYP17A1 mediated androgen synthesis was probed in Nanodiscs. • Native cyt b 5 enhances androgen synthesis by CYP17A1. • Redox inactive Mn cyt b 5 does not enhance androgen synthesis by CYP17A1. • Interactions with Cyt b 5 perturb Fe−S and heme Raman modes of CYP17A1. • Cyt b 5 acts as a redox donor for CYP17A1 mediated androgen synthesis.

  13. A Bacterial Biosensor for Oxidative Stress Using the Constitutively Expressed Redox-Sensitive Protein roGFP2

    Directory of Open Access Journals (Sweden)

    Carlos R. Arias-Barreiro

    2010-06-01

    Full Text Available A highly specific, high throughput-amenable bacterial biosensor for chemically induced cellular oxidation was developed using constitutively expressed redox-sensitive green fluorescent protein roGFP2 in E. coli (E. coli-roGFP2. Disulfide formation between two key cysteine residues of roGFP2 was assessed using a double-wavelength ratiometric approach. This study demonstrates that only a few minutes were required to detect oxidation using E. coli-roGFP2, in contrast to conventional bacterial oxidative stress sensors. Cellular oxidation induced by hydrogen peroxide, menadione, sodium selenite, zinc pyrithione, triphenyltin and naphthalene became detectable after 10 seconds and reached the maxima between 80 to 210 seconds, contrary to Cd2+, Cu2+, Pb2+, Zn2+ and sodium arsenite, which induced the oxidation maximum immediately. The lowest observable effect concentrations (in ppm were determined as 1.0 x 10−7 (arsenite, 1.0 x 10−4 (naphthalene, 1.0 x 10−4 (Cu2+, 3.8 x 10−4 (H2O2, 1.0 x 10−3 (Cd2+, 1.0 x 10−3 (Zn2+, 1.0 x 10−2 (menadione, 1.0 (triphenyltin, 1.56 (zinc pyrithione, 3.1 (selenite and 6.3 (Pb2+, respectively. Heavy metal-induced oxidation showed unclear response patterns, whereas concentration-dependent sigmoid curves were observed for other compounds. In vivo GSH content and in vitro roGFP2 oxidation assays together with E. coli-roGFP2 results suggest that roGFP2 is sensitive to redox potential change and thiol modification induced by environmental stressors. Based on redox-sensitive technology, E. coli-roGFP2 provides a fast comprehensive detection system for toxicants that induce cellular oxidation.

  14. Redox potential distribution of an organic-rich contaminated site obtained by the inversion of self-potential data

    Science.gov (United States)

    Abbas, M.; Jardani, A.; Soueid Ahmed, A.; Revil, A.; Brigaud, L.; Bégassat, Ph.; Dupont, J. P.

    2017-11-01

    Mapping the redox potential of shallow aquifers impacted by hydrocarbon contaminant plumes is important for the characterization and remediation of such contaminated sites. The redox potential of groundwater is indicative of the biodegradation of hydrocarbons and is important in delineating the shapes of contaminant plumes. The self-potential method was used to reconstruct the redox potential of groundwater associated with an organic-rich contaminant plume in northern France. The self-potential technique is a passive technique consisting in recording the electrical potential distribution at the surface of the Earth. A self-potential map is essentially the sum of two contributions, one associated with groundwater flow referred to as the electrokinetic component, and one associated with redox potential anomalies referred to as the electroredox component (thermoelectric and diffusion potentials are generally negligible). A groundwater flow model was first used to remove the electrokinetic component from the observed self-potential data. Then, a residual self-potential map was obtained. The source current density generating the residual self-potential signals is assumed to be associated with the position of the water table, an interface characterized by a change in both the electrical conductivity and the redox potential. The source current density was obtained through an inverse problem by minimizing a cost function including a data misfit contribution and a regularizer. This inversion algorithm allows the determination of the vertical and horizontal components of the source current density taking into account the electrical conductivity distribution of the saturated and non-saturated zones obtained independently by electrical resistivity tomography. The redox potential distribution was finally determined from the inverted residual source current density. A redox map was successfully built and the estimated redox potential values correlated well with in

  15. A novel strategy for global analysis of the dynamic thiol redox proteome.

    Science.gov (United States)

    Martínez-Acedo, Pablo; Núñez, Estefanía; Gómez, Francisco J Sánchez; Moreno, Margoth; Ramos, Elena; Izquierdo-Álvarez, Alicia; Miró-Casas, Elisabet; Mesa, Raquel; Rodriguez, Patricia; Martínez-Ruiz, Antonio; Dorado, David Garcia; Lamas, Santiago; Vázquez, Jesús

    2012-09-01

    Nitroxidative stress in cells occurs mainly through the action of reactive nitrogen and oxygen species (RNOS) on protein thiol groups. Reactive nitrogen and oxygen species-mediated protein modifications are associated with pathophysiological states, but can also convey physiological signals. Identification of Cys residues that are modified by oxidative stimuli still poses technical challenges and these changes have never been statistically analyzed from a proteome-wide perspective. Here we show that GELSILOX, a method that combines a robust proteomics protocol with a new computational approach that analyzes variance at the peptide level, allows a simultaneous analysis of dynamic alterations in the redox state of Cys sites and of protein abundance. GELSILOX permits the characterization of the major endothelial redox targets of hydrogen peroxide in endothelial cells and reveals that hypoxia induces a significant increase in the status of oxidized thiols. GELSILOX also detected thiols that are redox-modified by ischemia-reperfusion in heart mitochondria and demonstrated that these alterations are abolished in ischemia-preconditioned animals.

  16. Current rectification by mediating electroactive polymers

    Energy Technology Data Exchange (ETDEWEB)

    Ybarra, Gabriel; Moina, Carlos [Centro de Investigacion sobre Electrodeposicion y Procesos Superficiales, Instituto Nacional de Tecnologia Industrial, CC 157, (1650) San Martin (Argentina); Florit, M. Ines [INIFTA, Facultad de Ciencias Exactas, UNLP, Suc. 4, CC 16, (1900) La Plata (Argentina); Posadas, Dionisio [INIFTA, Facultad de Ciencias Exactas, UNLP, Suc. 4, CC 16, (1900) La Plata (Argentina)], E-mail: dposadas@inifta.unlp.edu.ar

    2008-04-20

    In this work we briefly review the theoretical basis for the electrochemical rectification in mediated redox reactions at redox polymer modified electrodes. Electrochemical rectification may have two distinct origins. It is either caused by a slow kinetics of the reaction between the external redox couple and the mediator or it is originated by a slow electronic transport within the film under an unfavorable thermodynamic condition. We show experimental results for the redox mediation reaction of poly(o-aminophenol) (POAP) on the Fe{sup 2+/3+} and on the Fe(CN){sub 6}{sup 3-/4-} redox couples in solution that prove the proposed mechanisms of electrochemical rectification.

  17. Current rectification by mediating electroactive polymers

    International Nuclear Information System (INIS)

    Ybarra, Gabriel; Moina, Carlos; Florit, M. Ines; Posadas, Dionisio

    2008-01-01

    In this work we briefly review the theoretical basis for the electrochemical rectification in mediated redox reactions at redox polymer modified electrodes. Electrochemical rectification may have two distinct origins. It is either caused by a slow kinetics of the reaction between the external redox couple and the mediator or it is originated by a slow electronic transport within the film under an unfavorable thermodynamic condition. We show experimental results for the redox mediation reaction of poly(o-aminophenol) (POAP) on the Fe 2+/3+ and on the Fe(CN) 6 3-/4- redox couples in solution that prove the proposed mechanisms of electrochemical rectification

  18. Bottom water oxygenation history in southeastern Arabian Sea during the past 140 ka: Results from redox-sensitive elements

    Digital Repository Service at National Institute of Oceanography (India)

    Pattan, J.N; Pearce, N

    The concentrations of multiple redox-sensitive elements such as Re, U, Mo, Cd, V, Sb, and Tl were determined in sediments from the southeastern Arabian Sea (9 degrees 21 minutes N: 71 degrees 59 minutes E) to understand the bottom water oxygenation...

  19. Examination and Mitigation of Electron Interception Processes in Dye-sensitized Solar Cells through Redox Shuttle and Photoelectrode Modification

    Science.gov (United States)

    Hoffeditz, William Lawrence

    With the dual challenges of meeting global energy demand and mitigating anthropogenic climate change, significant effort is being applied to generating power from renewable sources. The dye-sensitized solar cell (DSC) is a photovoltaic technology capable of generating electricity from sunlight, but suffers losses in efficiency due to deleterious electron transfer processes. Controlling these processes is essential if DSCs are to continue to advance, and this dissertation focuses on isolation, interrogation, and mitigation of these processes via controllable inorganic redox/coordination chemistry and atomic layer deposition (ALD). The redox shuttle is often the subject of innovation in DSCs, the goal being to increase obtainable photovoltage without sacrificing photocurrent. A copper redox shuttle with a favorable (II/I) redox potential for DSC use and intriguing inner-sphere reorganization energy was investigated. The shuttle completely replaces its tetradentate coordinating ligand upon oxidation with multiple pyridine molecules. This new species displays markedly slower electron interception, necessitating fabrication of a new counter electrode in order for the shuttle to function. Upon reduction, the tetradentate ligand re-coordinates, creating a dual-species shuttle that outperforms either species as a Cu(II/I) shuttle in isolation. Photoelectrode modification is also the subject of innovation in DSCs. ALD is ideally suited for this type of innovation as it can coat high aspect surfaces with metal-oxide films of uniform thickness. The ALD post-treatment technique is described and used to deposit Al2O3 around a TiO2 adsorbed zinc-porphyrin dye. This technique is shown to prevent dye degradation from ambient air and/or light. Additionally, the architecture allows the study of dye-influenced electron interception processes. It was found that the presence of dye increased interception, which was attributed to dye-mediated electron hopping and/or superexchange

  20. The nitric oxide-sensitive p21Ras-ERK pathway mediates S-nitrosoglutathione-induced apoptosis

    International Nuclear Information System (INIS)

    Tsujita, Maristela; Batista, Wagner L.; Ogata, Fernando T.; Stern, Arnold; Monteiro, Hugo P.; Arai, Roberto J.

    2008-01-01

    p21Ras protein plays a critical role in cellular signaling that induces either cell cycle progression or apoptosis. Nitric oxide (NO) has been consistently reported to activate p21Ras through the redox sensitive cysteine residue (118). In this study, we demonstrated that the p21Ras-ERK pathway regulates THP-1 monocyte/macrophage apoptosis induced by S-nitrosoglutathione (SNOG). This was apparent from studies in THP-1 cells expressing NO-insensitive p21Ras (p21Ras C118S ) where the pro-apoptotic action of SNOG was almost abrogated. Three major MAP kinase pathways (ERK, JNK, and p38) that are downstream to p21Ras were investigated. It was observed that only the activation of ERK1/2 MAP kinases by SNOG in THP-1 cells was attributable to p21Ras. The inhibition of the ERK pathway by PD98059 markedly attenuated apoptosis in SNOG-treated THP-1 cells, but had a marginal effect on SNOG-treated THP-1 cells expressing NO-insensitive p21Ras. The inhibition of the JNK and p38 pathways by selective inhibitors had no marked effects on the percentage of apoptosis. The induction of p21Waf1 expression by SNOG was observed in THP-1 cells harboring mutant and wild-type p21Ras, however in cells expressing mutant Ras, the expression of p21Waf1 was significantly attenuated. The treatment of THP-1 cells expressing wild-type p21Ras with PD98059 resulted in significant attenuation of p21Waf1 expression. These results indicate that the redox sensitive p21Ras-ERK pathway plays a critical role in sensing and delivering the pro-apoptotic signaling mediated by SNOG

  1. Photoinduced electron transfer from organic semiconductors onto redox mediators for CO2

    International Nuclear Information System (INIS)

    Portenkirchner, E.

    2014-01-01

    In this work the photoinduced electron transfer from organic semiconductors onto redox mediator catalysts for CO 2 reduction has been investigated. In the beginning, the work focuses on the identication, characterization and test of suitable catalyst materials. For this purpose, rhenium compounds with 2,2'-bipyridine bis(arylimino) acenaphthene ligands and pyridinium were tested for molecular homogenous catalysis. Infrared, ultraviolet-visible (UV-Vis) and nuclear magnetic resonance (NMR) spectroscopy were used for initial characterization of the catalyst substances. Since the interpretation of infrared spectra was difficult for large molecules based on measured data only, additionally infrared absorption spectra obtained by quantum mechanical density functional theory(DFT) calculations were successfully used to correlate characteristic features in the measured spectra to their molecular origin. It was found that experimentally observed data and quantum chemical predictions for the infrared spectra of the novel compounds are in good agreement. Additionally, quantum mechanical calculations were carried out for the determination of molecular orbital frontier energy levels and correlated to UV-Vis absorption and cyclic voltammetry measurements. Extensive cyclic voltammetry measurements and bulk controlled-potential electrolysis experiments were performed using a N 2 - and CO 2 -saturated electrolyte solution. Together with a detailed product analysis via infrared spectroscopy, gas and ion chromatography the results allowed electrochemical characterizations of the novel catalysts regarding their suitability for electrochemical CO 2 reduction. Once suitable catalysts were identied, the materials were immobilized on the electrode surface by electro-polymerization of the catalyst (5,5'bisphenylethynyl-2,2'-bipyridyl)Re(CO) 3 Cl itself or by incorporation of (2,2'-bipyridyl)Re(CO) 3 Cl into a polypyrrole matrix, thereby changing from homogeneous to

  2. Localized redox relays as a privileged mode of cytoplasmic hydrogen peroxide signaling.

    Science.gov (United States)

    Travasso, Rui D M; Sampaio Dos Aidos, Fernando; Bayani, Anahita; Abranches, Pedro; Salvador, Armindo

    2017-08-01

    Hydrogen peroxide (H 2 O 2 ) is a key signaling agent. Its best characterized signaling actions in mammalian cells involve the early oxidation of thiols in cytoplasmic phosphatases, kinases and transcription factors. However, these redox targets are orders of magnitude less H 2 O 2 -reactive and abundant than cytoplasmic peroxiredoxins. How can they be oxidized in a signaling time frame? Here we investigate this question using computational reaction-diffusion models of H 2 O 2 signaling. The results show that at H 2 O 2 supply rates commensurate with mitogenic signaling a H 2 O 2 concentration gradient with a length scale of a few tenths of μm is established. Even near the supply sites H 2 O 2 concentrations are far too low to oxidize typical targets in an early mitogenic signaling time frame. Furthermore, any inhibition of the peroxiredoxin or increase in H 2 O 2 supply able to drastically increase the local H 2 O 2 concentration would collapse the concentration gradient and/or cause an extensive oxidation of the peroxiredoxins I and II, inconsistent with experimental observations. In turn, the local concentrations of peroxiredoxin sulfenate and disulfide forms exceed those of H 2 O 2 by several orders of magnitude. Redox targets reacting with these forms at rate constants much lower than that for, say, thioredoxin could be oxidized within seconds. Moreover, the spatial distribution of the concentrations of these peroxiredoxin forms allows them to reach targets within 1 μm from the H 2 O 2 sites while maintaining signaling localized. The recruitment of peroxiredoxins to specific sites such as caveolae can dramatically increase the local concentrations of the sulfenic and disulfide forms, thus further helping these species to outcompete H 2 O 2 for the oxidation of redox targets. Altogether, these results suggest that H 2 O 2 signaling is mediated by localized redox relays whereby peroxiredoxins are oxidized to sulfenate and disulfide forms at H 2 O 2 supply

  3. Regulatory redox state in tree seeds

    Directory of Open Access Journals (Sweden)

    Ewelina Ratajczak

    2017-12-01

    Full Text Available Peroxiredoxins (Prx are important regulators of the redox status of tree seeds during maturation and long-term storage. Thioredoxins (Trx are redox transmitters and thereby regulate Prx activity. Current research is focused on the association of Trx with Prx in tree seeds differing in the tolerance to desiccation. The results will allow for better understanding the regulation of the redox status in orthodox, recalcitrant, and intermediate seeds. The findings will also elucidate the role of the redox status during the loss of viability of sensitive seeds during drying and long-term storage.

  4. Redox-responsive theranostic nanoplatforms based on inorganic nanomaterials.

    Science.gov (United States)

    Han, Lu; Zhang, Xiao-Yong; Wang, Yu-Long; Li, Xi; Yang, Xiao-Hong; Huang, Min; Hu, Kun; Li, Lu-Hai; Wei, Yen

    2017-08-10

    Spurred on by advances in materials chemistry and nanotechnology, scientists have developed many novel nanopreparations for cancer diagnosis and therapy. To treat complex malignant tumors effectively, multifunctional nanomedicines with targeting ability, imaging properties and controlled drug release behavior should be designed and exploited. The therapeutic efficiency of loaded drugs can be dramatically improved using redox-responsive nanoplatforms which can sense the differences in the redox status of tumor tissues and healthy ones. Redox-sensitive nanocarriers can be constructed from both organic and inorganic nanomaterials; however, at present, drug delivery nanovectors progressively lean towards inorganic nanomaterials because of their facile synthesis/modification and their unique physicochemical properties. In this review, we focus specifically on the preparation and application of redox-sensitive nanosystems based on mesoporous silica nanoparticles (MSNs), carbon nanomaterials, magnetic nanoparticles, gold nanomaterials and other inorganic nanomaterials. We discuss relevant examples of redox-sensitive nanosystems in each category. Finally, we discuss current challenges and future strategies from the aspect of material design and practical application. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Reversible assembly of protein-DNA nanostructures triggered by mediated electron transfer

    International Nuclear Information System (INIS)

    Vogt, Stephan; Wenderhold-Reeb, Sabine; Nöll, Gilbert

    2017-01-01

    Stable protein-DNA nanostructures have been assembled by reconstitution of the multi-ligand binding flavoprotein dodecin on top of flavin-terminated dsDNA monolayers on gold electrodes. These structures could be disassembled by electrochemical flavin reduction via mediated electron transfer. For this purpose a negative potential was applied at the Au working electrode in the presence of the redox mediator bis-(ammoniumethyl)-4,4′-bipyridinium tetrabromide. The stepwise formation of the flavin-terminated dsDNA monolayers as well as the binding and electrochemically triggered release of apododecin were monitored by surface plasmon resonance (SPR) and quartz crystal microbalance (QCM) measurements. The assembly and disassembly of the protein-DNA nanostructures were fully reversible processes, which could be carried out multiple times at the same flavin-dsDNA modified surface. When a negative potential was applied in the absence of a redox mediator apododecin could not be released, i.e. direct electron transfer was not possible. As alternative redox mediators also methylene blue and phenosafranine were studied, but in the presence of these molecules apododecin was released without applying a potential, probably because the tricyclic aromatic compounds are able to replace the flavins at the binding sites.

  6. Evidence that cytochrome b{sub 5} acts as a redox donor in CYP17A1 mediated androgen synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Duggal, Ruchia [Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL (United States); Liu, Yilin [Department of Chemistry, Marquette University, Milwaukee, WI (United States); Gregory, Michael C.; Denisov, Ilia G. [Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL (United States); Kincaid, James R. [Department of Chemistry, Marquette University, Milwaukee, WI (United States); Sligar, Stephen G., E-mail: s-sligar@illinois.edu [Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL (United States); Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL (United States)

    2016-08-19

    Fe−S vibrational frequency. Thus, although Mn-b{sub 5} binds to CYP17A1, it is unable to enhance the lyase reaction, strongly suggesting that cyt b{sub 5} has a redox effector role in enhancement of the CYP17A1 mediated lyase reaction necessary for androgen synthesis. - Highlights: • Cyt b{sub 5} role in human CYP17A1 mediated androgen synthesis was probed in Nanodiscs. • Native cyt b{sub 5} enhances androgen synthesis by CYP17A1. • Redox inactive Mn cyt b{sub 5} does not enhance androgen synthesis by CYP17A1. • Interactions with Cyt b{sub 5} perturb Fe−S and heme Raman modes of CYP17A1. • Cyt b{sub 5} acts as a redox donor for CYP17A1 mediated androgen synthesis.

  7. High Electrocatalytic Activity of Vertically Aligned Single-Walled Carbon Nanotubes towards Sulfide Redox Shuttles.

    Science.gov (United States)

    Hao, Feng; Dong, Pei; Zhang, Jing; Zhang, Yongchang; Loya, Phillip E; Hauge, Robert H; Li, Jianbao; Lou, Jun; Lin, Hong

    2012-01-01

    Vertically aligned single-walled carbon nanotubes (VASWCNTs) have been successfully transferred onto transparent conducting oxide glass and implemented as efficient low-cost, platinum-free counter electrode in sulfide -mediated dye-sensitized solar cells (DSCs), featuring notably improved electrocatalytic activity toward thiolate/disulfide redox shuttle over conventional Pt counter electrodes. Impressively, device with VASWCNTs counter electrode demonstrates a high fill factor of 0.68 and power conversion efficiency up to 5.25%, which is significantly higher than 0.56 and 3.49% for that with a conventional Pt electrode. Moreover, VASWCNTs counter electrode produces a charge transfer resistance of only 21.22 Ω towards aqueous polysulfide electrolyte commonly applied in quantum dots-sensitized solar cells (QDSCs), which is several orders of magnitude lower than that of a typical Pt electrode. Therefore, VASWCNTs counter electrodes are believed to be a versatile candidate for further improvement of the power conversion efficiency of other iodine-free redox couple based DSCs and polysulfide electrolyte based QDSCs.

  8. Vitamins C and K3: A Powerful Redox System for Sensitizing Leukemia Lymphocytes to Everolimus and Barasertib.

    Science.gov (United States)

    Ivanova, Donika; Zhelev, Zhivko; Lazarova, Dessislava; Getsov, Plamen; Bakalova, Rumiana; Aoki, Ichio

    2018-03-01

    Recent studies provided convincing evidence for the anticancer activity of combined application of vitamin C and pro-vitamin K3 (menadione). The molecular pathways underlying this process are still not well established. The present study aimed to investigate the effect of the combination of vitamin C plus pro-vitamin K3 on the redox status of leukemia and normal lymphocytes, as well as their sensitizing effect for a variety of anticancer drugs. Cytotoxicity of the substances was analyzed by trypan blue staining and automated counting of live and dead cells. Apoptosis was analyzed by fluorescein isothiocyanate-annexin V test. Oxidative stress was evaluated by the intracellular levels of reactive oxygen and nitrogen species and protein-carbonyl products. Combined administration of 300 μM vitamin C plus 3 μM pro-vitamin K3 reduced the viability of leukemia lymphocytes by ~20%, but did not influence the viability of normal lymphocytes. All combinations of anticancer drug plus vitamins C and K3 were characterized by synergistic cytotoxicity towards Jurkat cells, compared to cells treated with drug alone for 24 h. In the case of barasertib and everolimus, this synergistic cytotoxicity increased within 72 hours. It was accompanied by strong induction of apoptosis, but a reduction of level of hydroperoxides and moderately increased protein-carbonyl products in leukemia cells. Leukemia lymphocytes were more sensitive to combined administration of anticancer drug (everolimus or barasertib) plus vitamins C and K3, compared to normal lymphocytes. The combination of vitamin C plus K3 seems to be a powerful redox system that could specifically influence redox homeostasis of leukemia cells and sensitize them to conventional chemotherapy. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  9. pH/redox dual-sensitive dextran nanogels for enhanced intracellular drug delivery.

    Science.gov (United States)

    Curcio, Manuela; Diaz-Gomez, Luis; Cirillo, Giuseppe; Concheiro, Angel; Iemma, Francesca; Alvarez-Lorenzo, Carmen

    2017-08-01

    pH/redox dual-responsive nanogels (DEX-SS) were prepared by precipitation polymerization of methacrylated dextran (DEXMA), 2-aminoethylmethacrylate (AEMA) and N,N'-bis(acryloyl)cystamine (BAC), and then loaded with methotrexate (MTX). Nanogels were spherical and exhibited homogeneous size distribution (460nm, PDI<0.30) as observed using dynamic light scattering (DLS) and scanning electron microscopy (SEM). DEX-SS were sensitive to the variations of pH and redox environment. Nanogels incubated in buffer pH 5.0 containing 10mM glutathione (GSH) synergistically increased the mean diameter and the PDI to 750nm and 0.42, respectively. In vitro release experiments were performed at pH 7.4 and 5.0 with and without GSH. The cumulative release of MTX in pH 5.0 medium with 10mMGSH was 5-fold higher than that recorded at pH 7.4 without GSH. Fibroblasts and tumor cells were used to tests the effects of blank DEX-SS and MTX@DEX-SS nanogels on cell viability. Remarkable influence of pH on nanogels internalization into HeLa cells was evidenced by means of confocal microscopy and flow cytometry. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Effect of dye structure and redox mediators on anaerobic azo and anthraquinone dye reduction

    Directory of Open Access Journals (Sweden)

    Mayara Carantino Costa

    2012-01-01

    Full Text Available We investigated the biological decolourisation of dyes with different molecular structures. The kinetic constant values (k1 achieved with azo dye Reactive Red 120 were 7.6 and 10.1 times higher in the presence of RM (redox mediators AQDS and riboflavin, respectively, than the assays lacking RM. The kinetic constant achieved with the azo dye Congo Red was 42 times higher than that obtained with the anthraquinone dye Reactive Blue 4. The effect of RM on dye reduction was more evident for azo dyes resistant to reductive processes, and ineffective for anthraquinone dyes because of the structural stability of the latter.

  11. Electronically Induced Redox Barriers for Treatment of Groundwater

    National Research Council Canada - National Science Library

    Sale, Tom; Gilbert, David

    2006-01-01

    ...) and Colorado State University (CSU). The focus is an innovative electrolytic approach for managing redox-sensitive contaminants in groundwater, referred to as electrically induced redox barrier (e-barriers...

  12. MICROSCALE METABOLIC, REDOX AND ABIOTIC REACTIONS IN HANFORD 300 AREA SUBSURFACE SEDIMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Beyenal, Haluk [WSU; McLEan, Jeff [JCVI; Majors, Paul [PNNL; Fredrickson, Jim [PNNL

    2013-11-14

    The Hanford 300 Area is a unique site due to periodic hydrologic influence of river water resulting in changes in groundwater elevation and flow direction. This area is also highly subject to uranium remobilization, the source of which is currently believed to be the region at the base of the vadose zone that is subject to period saturation due to the changes in the water levels in the Columbia River. We found that microbial processes and redox and abiotic reactions which operate at the microscale were critical to understanding factors controlling the macroscopic fate and transport of contaminants in the subsurface. The combined laboratory and field research showed how microscale conditions control uranium mobility and how biotic, abiotic and redox reactions relate to each other. Our findings extended the current knowledge to examine U(VI) reduction and immobilization using natural 300 Area communities as well as selected model organisms on redox-sensitive and redox-insensitive minerals. Using innovative techniques developed specifically to probe biogeochemical processes at the microscale, our research expanded our current understanding of the roles played by mineral surfaces, bacterial competition, and local biotic, abiotic and redox reaction rates on the reduction and immobilization of uranium.

  13. Electron flow in multicenter enzymes: theory, applications, and consequences on the natural design of redox chains.

    Science.gov (United States)

    Léger, Christophe; Lederer, Florence; Guigliarelli, Bruno; Bertrand, Patrick

    2006-01-11

    In protein film voltammetry, a redox enzyme is directly connected to an electrode; in the presence of substrate and when the driving force provided by the electrode is appropriate, a current flow reveals the steady-state turnover. We show that, in the case of a multicenter enzyme, this signal reports on the energetics and kinetics of electron transfer (ET) along the redox chain that wires the active site to the electrode, and this provides a new strategy for studying intramolecular ET. We propose a model which takes into account all the enzyme's redox microstates, and we prove it useful to interpret data for various enzymes. Several general ideas emerge from this analysis. Considering the reversibility of ET is a requirement: the usual picture, where ET is depicted as a series of irreversible steps, is oversimplified and lacks the important features that we emphasize. We give justification to the concept of apparent reduction potential on the time scale of turnover and we explain how the value of this potential relates to the thermodynamic and kinetic properties of the system. When intramolecular ET does not limit turnover, the redox chain merely mediates the driving force provided by the electrode or the soluble redox partner, whereas when intramolecular ET is slow, the enzyme behaves as if its active active site had apparent redox properties which depend on the reduction potentials of the relays. This suggests an alternative to the idea that redox chains are optimized in terms of speed: evolutionary pressure may have resulted in slowing down intramolecular ET in order to tune the enzyme's "operating potential".

  14. Determination of the topology of endoplasmic reticulum membrane proteins using redox-sensitive green-fluorescence protein fusions.

    Science.gov (United States)

    Tsachaki, Maria; Birk, Julia; Egert, Aurélie; Odermatt, Alex

    2015-07-01

    Membrane proteins of the endoplasmic reticulum (ER) are involved in a wide array of essential cellular functions. Identification of the topology of membrane proteins can provide significant insight into their mechanisms of action and biological roles. This is particularly important for membrane enzymes, since their topology determines the subcellular site where a biochemical reaction takes place and the dependence on luminal or cytosolic co-factor pools and substrates. The methods currently available for the determination of topology of proteins are rather laborious and require post-lysis or post-fixation manipulation of cells. In this work, we have developed a simple method for defining intracellular localization and topology of ER membrane proteins in living cells, based on the fusion of the respective protein with redox-sensitive green-fluorescent protein (roGFP). We validated the method and demonstrated that roGFP fusion proteins constitute a reliable tool for the study of ER membrane protein topology, using as control microsomal 11β-hydroxysteroid dehydrogenase (11β-HSD) proteins whose topology has been resolved, and comparing with an independent approach. We then implemented this method to determine the membrane topology of six microsomal members of the 17β-hydroxysteroid dehydrogenase (17β-HSD) family. The results revealed a luminal orientation of the catalytic site for three enzymes, i.e. 17β-HSD6, 7 and 12. Knowledge of the intracellular location of the catalytic site of these enzymes will enable future studies on their biological functions and on the role of the luminal co-factor pool. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Redox active molecules cytochrome c and vitamin C enhance heme-enzyme peroxidations by serving as non-specific agents for redox relay

    International Nuclear Information System (INIS)

    Gade, Sudeep Kumar; Bhattacharya, Subarna; Manoj, Kelath Murali

    2012-01-01

    Highlights: ► At low concentrations, cytochrome c/vitamin C do not catalyze peroxidations. ► But low levels of cytochrome c/vitamin C enhance diverse heme peroxidase activities. ► Enhancement positively correlates to the concentration of peroxide in reaction. ► Reducible additives serve as non-specific agents for redox relay in the system. ► Insight into electron transfer processes in routine and oxidative-stress states. -- Abstract: We report that incorporation of very low concentrations of redox protein cytochrome c and redox active small molecule vitamin C impacted the outcome of one-electron oxidations mediated by structurally distinct plant/fungal heme peroxidases. Evidence suggests that cytochrome c and vitamin C function as a redox relay for diffusible reduced oxygen species in the reaction system, without invoking specific or affinity-based molecular interactions for electron transfers. The findings provide novel perspectives to understanding – (1) the promiscuous role of cytochrome b 5 in the metabolism mediated by liver microsomal xenobiotic metabolizing systems and (2) the roles of antioxidant molecules in affording relief from oxidative stress.

  16. Redox responses are preserved across muscle fibres with differential susceptibility to aging.

    Science.gov (United States)

    Smith, Neil T; Soriano-Arroquia, Ana; Goljanek-Whysall, Katarzyna; Jackson, Malcolm J; McDonagh, Brian

    2018-04-15

    Age-related loss of muscle mass and function is associated with increased frailty and loss of independence. The mechanisms underlying the susceptibility of different muscle types to age-related atrophy are not fully understood. Reactive oxygen species (ROS) are recognised as important signalling molecules in healthy muscle and redox sensitive proteins can respond to intracellular changes in ROS concentrations modifying reactive thiol groups on Cysteine (Cys) residues. Conserved Cys residues tend to occur in functionally important locations and can have a direct impact on protein function through modifications at the active site or determining protein conformation. The aim of this work was to determine age-related changes in the redox proteome of two metabolically distinct murine skeletal muscles, the quadriceps a predominantly glycolytic muscle and the soleus which contains a higher proportion of mitochondria. To examine the effects of aging on the global proteome and the oxidation state of individual redox sensitive Cys residues, we employed a label free proteomics approach including a differential labelling of reduced and reversibly oxidised Cys residues. Our results indicate the proteomic response to aging is dependent on muscle type but redox changes that occur primarily in metabolic and cytoskeletal proteins are generally preserved between metabolically distinct tissues. Skeletal muscle containing fast twitch glycolytic fibres are more susceptible to age related atrophy compared to muscles with higher proportions of oxidative slow twitch fibres. Contracting skeletal muscle generates reactive oxygen species that are required for correct signalling and adaptation to exercise and it is also known that the intracellular redox environment changes with age. To identify potential mechanisms for the distinct response to age, this article combines a global proteomic approach and a differential labelling of reduced and reversibly oxidised Cysteine residues in two

  17. In Situ Magnetic Susceptibility Variations at Two Contaminated Sites: Brandywine, MD and Bemidji, MN

    Science.gov (United States)

    Donaldson, Y. Y.; Kessouri, P.; Ntarlagiannis, D.; Johnson, T. C.; Day-Lewis, F. D.; Johnson, C. D.; Bekins, B. A.; Slater, L. D.

    2017-12-01

    Geophysical methods are widely used monitoring tools for investigating subsurface processes. Compared to more traditional methods, they are low cost and minimally invasive. Magnetic susceptibility (MS) is a geophysical technique particularly sensitive to the presence of ferri/ ferro-magnetic particles such as iron oxides (e.g., magnetite, hematite and goethite). These oxides can be formed through microbially mediated redox reactions, inducing changes in the soil properties that can be observed by MS measurements. Monitoring MS changes over time provides indications of iron mineral transformations in the ground. These transformations are of particular interest for the characterization of contaminated sites. We acquired borehole MS measurements from two contaminated sites: Brandywine, MD and Bemidji, MN. Active remediation was applied at Brandywine, whereas natural attenuation has been geophysically monitored at Bemidji since 2011 using MS log measurements. High MS values were observed at both sites within the contaminated area only. We hypothesize that this is due to iron reducing bacteria reducing Fe-(III) to Fe-(II) and utilizing contaminants and/or amendments injected as a carbon source. At Bemidji, elevated MS readings were observed in the smear zone and correlate to the presence of magnetite. Furthermore, time-lapse MS observations at Bemidji indicate a decay in signal amplitude over time suggesting further redox transformation into less magnetic particles. For both field examples presented here, we observe variations in magnetic susceptibility within the contaminated areas that can be linked with redox reactions and mineral transformations occurring during the degradation of organic contaminants.

  18. The effects of redox controls mediated by glutathione peroxidases on root architecture in Arabidopsis thaliana.

    Science.gov (United States)

    Passaia, Gisele; Queval, Guillaume; Bai, Juan; Margis-Pinheiro, Marcia; Foyer, Christine H

    2014-03-01

    Glutathione peroxidases (GPXs) fulfil important functions in oxidative signalling and protect against the adverse effects of excessive oxidation. However, there has been no systematic characterization of the functions of the different GPX isoforms in plants. The roles of the different members of the Arabidopsis thaliana GPX gene (AtGPX) family were therefore investigated using gpx1, gpx2, gpx3, gpx4, gpx6, gpx7, and gpx8 T-DNA insertion mutant lines. The shoot phenotypes were largely similar in all genotypes, with small differences from the wild type observed only in the gpx2, gpx3, gpx7, and gpx8 mutants. In contrast, all the mutants showed altered root phenotypes compared with the wild type. The gpx1, gpx4, gpx6, gpx7, and gpx8 mutants had a significantly greater lateral root density (LRD) than the wild type. Conversely, the gpx2 and gpx3 mutants had significantly lower LRD values than the wild type. Auxin increased the LRD in all genotypes, but the effect of auxin was significantly greater in the gpx1, gpx4, and gpx7 mutants than in the wild type. The application of auxin increased GPX4 and GPX7 transcripts, but not GPX1 mRNAs in the roots of wild-type plants. The synthetic strigolactone GR24 and abscisic acid (ABA) decreased LRD to a similar extent in all genotypes, except gpx6, which showed increased sensitivity to ABA. These data not only demonstrate the importance of redox controls mediated by AtGPXs in the control of root architecture but they also show that the plastid-localized GPX1 and GPX7 isoforms are required for the hormone-mediated control of lateral root development.

  19. Molecularly Engineered Ru(II) Sensitizers Compatible with Cobalt(II/III) Redox Mediators for Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Wu, Kuan-Lin; Huckaba, Aron J; Clifford, John N; Yang, Ya-Wen; Yella, Aswani; Palomares, Emilio; Grätzel, Michael; Chi, Yun; Nazeeruddin, Mohammad Khaja

    2016-08-01

    Thiocyanate-free isoquinazolylpyrazolate Ru(II) complexes were synthesized and applied as sensitizers in dye-sensitized solar cells (DSCs). Unlike most other successful Ru sensitizers, Co-based electrolytes were used, and resulting record efficiency of 9.53% was obtained under simulated sunlight with an intensity of 100 mW cm(-2). Specifically, dye 51-57dht.1 and an electrolyte based on Co(phen)3 led to measurement of a JSC of 13.89 mA cm(-2), VOC of 900 mV, and FF of 0.762 to yield 9.53% efficiency. The improved device performances were achieved by the inclusion of 2-hexylthiophene units onto the isoquinoline subunits, in addition to lengthening the perfluoroalkyl chain on the pyrazolate chelating group, which worked to increase light absorption and decrease recombination effects when using the Co-based electrolyte. As this study shows, Ru(II) sensitizers bearing sterically demanding ligands can allow successful utilization of important Co electrolytes and high performance.

  20. Charge and energy transfer interplay in hybrid sensitized solar cells mediated by graphene quantum dots

    International Nuclear Information System (INIS)

    Mihalache, Iuliana; Radoi, Antonio; Mihaila, Mihai; Munteanu, Cornel; Marin, Alexandru; Danila, Mihai; Kusko, Mihaela; Kusko, Cristian

    2015-01-01

    Highlights: • We report a one pot synthesis metod of GQD with controlled size and optoelectronic properties. • An improvement of common N3-DSSC characteristics is achieved when GQDs are used as co-sensitiser. • The role of GQD as cosensitisers in hybrid DSSC was investigated and the interplay between charge and energy transfer phenomena mediated by GQDs was demonstrated. • The GQDs presence determines an inhibition of the recombination processes at the TiO 2 /electrolyte interface. - Abstract: We explored the role of graphene quantum dots (GQDs) as co-sensitizers in hybrid dye sensitized solar cell (DSSC) architectures, focusing on various concurring mechanisms, such as: charge transfer, energy transfer and recombination rate, towards light harvesting improvement. GQDs were prepared by the hydrothermal method that allows the tuning of electronic levels and optical properties by employing appropriate precursors and synthesis conditions. The aim was to realize a type II alignment for TiO 2 /GQD/dye hybrid configuration, using standard N3 Ru-dye in order to improve charge transfer. When GQDs were used as co-sensitizers together with N3 Ru-dye, an improvement in power conversion efficiency was achieved, as shown by electrical measurements. The experimental analysis indicates that this improvement arises from the interplay of various mechanisms mediated by GQDs: (i) enhancement of charge separation and collection due to the cascaded alignment of the energy levels; (ii) energy transfer from GQDs to N3 Ru-dye due to the overlap between GQD photoluminescence and N3 Ru-dye absorption spectra; and (iii) reduction of the electron recombination to the redox couple due to the inhibition of the back electron transfer to the electrolyte by the GQDs

  1. Site-specific incorporation of redox active amino acids into proteins

    Science.gov (United States)

    Alfonta, Lital [San Diego, CA; Schultz, Peter G [La Jolla, CA; Zhang, Zhiwen [San Diego, CA

    2009-02-24

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  2. Site-specific incorporation of redox active amino acids into proteins

    Energy Technology Data Exchange (ETDEWEB)

    Alfonta, Lital; Schultz, Peter G.; Zhang, Zhiwen

    2017-10-10

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  3. XenoSite: accurately predicting CYP-mediated sites of metabolism with neural networks.

    Science.gov (United States)

    Zaretzki, Jed; Matlock, Matthew; Swamidass, S Joshua

    2013-12-23

    Understanding how xenobiotic molecules are metabolized is important because it influences the safety, efficacy, and dose of medicines and how they can be modified to improve these properties. The cytochrome P450s (CYPs) are proteins responsible for metabolizing 90% of drugs on the market, and many computational methods can predict which atomic sites of a molecule--sites of metabolism (SOMs)--are modified during CYP-mediated metabolism. This study improves on prior methods of predicting CYP-mediated SOMs by using new descriptors and machine learning based on neural networks. The new method, XenoSite, is faster to train and more accurate by as much as 4% or 5% for some isozymes. Furthermore, some "incorrect" predictions made by XenoSite were subsequently validated as correct predictions by revaluation of the source literature. Moreover, XenoSite output is interpretable as a probability, which reflects both the confidence of the model that a particular atom is metabolized and the statistical likelihood that its prediction for that atom is correct.

  4. Apatite/Melt Partitioning Experiments Reveal Redox Sensitivity to Cr, V, Mn, Ni, Eu, W, Th, and U

    Science.gov (United States)

    Righter, K.; Yang, S.; Humayun, M.

    2016-01-01

    Apatite is a common mineral in terrestrial, planetary, and asteroidal materials. It is commonly used for geochronology (U-Pb), sensing volatiles (H, F, Cl, S), and can concentrate rare earth elements (REE) during magmatic fractionation and in general. Some recent studies have shown that some kinds of phosphate may fractionate Hf and W and that Mn may be redox sensitive. Experimental studies have focused on REE and other lithophile elements and at simplified or not specified oxygen fugacities. There is a dearth of partitioning data for chalcophile, siderophile and other elements between apatite and melt. Here we carry out several experiments at variable fO2 to study the partitioning of a broad range of trace elements. We compare to existing data and then focus on several elements that exhibit redox dependent partitioning behavior.

  5. Dissecting Redox Biology Using Fluorescent Protein Sensors.

    Science.gov (United States)

    Schwarzländer, Markus; Dick, Tobias P; Meyer, Andreas J; Morgan, Bruce

    2016-05-01

    Fluorescent protein sensors have revitalized the field of redox biology by revolutionizing the study of redox processes in living cells and organisms. Within one decade, a set of fundamental new insights has been gained, driven by the rapid technical development of in vivo redox sensing. Redox-sensitive yellow and green fluorescent protein variants (rxYFP and roGFPs) have been the central players. Although widely used as an established standard tool, important questions remain surrounding their meaningful use in vivo. We review the growing range of thiol redox sensor variants and their application in different cells, tissues, and organisms. We highlight five key findings where in vivo sensing has been instrumental in changing our understanding of redox biology, critically assess the interpretation of in vivo redox data, and discuss technical and biological limitations of current redox sensors and sensing approaches. We explore how novel sensor variants may further add to the current momentum toward a novel mechanistic and integrated understanding of redox biology in vivo. Antioxid. Redox Signal. 24, 680-712.

  6. Acute High-intensity Interval Exercise-induced Redox Signaling is Associated with Enhanced Insulin Sensitivity in Obese Middle-aged Men.

    Directory of Open Access Journals (Sweden)

    Lewan Parker

    2016-09-01

    Full Text Available Background. Obesity and ageing are associated with increased oxidative stress, activation of stress and mitogen activated protein kinases (SAPK, and the development of insulin resistance and metabolic disease. In contrast, acute exercise also increases oxidative stress and SAPK signaling, yet is reported to enhance insulin sensitivity and reduce the risk of metabolic disease. This study explored this paradox by investigating the effect of a single session of high-intensity interval-exercise (HIIE on redox status, muscle SAPK and insulin protein signaling in eleven middle-aged obese men. Methods. Participants completed a 2 hour hyperinsulinaemic-euglycaemic clamp at rest, and 60 minutes after HIIE (4x4 mins at 95% HRpeak; 2 min recovery periods, separated by 1-3 weeks. Results. Irrespective of exercise-induced changes to redox status, insulin stimulation both at rest and after HIIE similarly increased plasma superoxide dismutase activity, plasma catalase activity, and skeletal muscle 4-HNE; and significantly decreased plasma TBARS and hydrogen peroxide. The SAPK signaling pathways of p38 MAPK, NF-κB p65, and JNK, and the distal insulin signaling protein AS160Ser588, were activated with insulin stimulation at rest and to a greater extent with insulin stimulation after a prior bout of HIIE. Higher insulin sensitivity after HIIE was associated with higher insulin-stimulated SAPK phosphorylation (JNK, p38 MAPK and NF-κB and SOD activity (p<0.05. Conclusion. These findings support a role for redox homeostasis and SAPK signaling in insulin-stimulated glucose uptake which may contribute to the enhancement of insulin sensitivity in obese men 3 hours after HIIE.

  7. Glutathione redox potential in the mitochondrial intermembrane space is linked to the cytosol and impacts the Mia40 redox state

    Science.gov (United States)

    Kojer, Kerstin; Bien, Melanie; Gangel, Heike; Morgan, Bruce; Dick, Tobias P; Riemer, Jan

    2012-01-01

    Glutathione is an important mediator and regulator of cellular redox processes. Detailed knowledge of local glutathione redox potential (EGSH) dynamics is critical to understand the network of redox processes and their influence on cellular function. Using dynamic oxidant recovery assays together with EGSH-specific fluorescent reporters, we investigate the glutathione pools of the cytosol, mitochondrial matrix and intermembrane space (IMS). We demonstrate that the glutathione pools of IMS and cytosol are dynamically interconnected via porins. In contrast, no appreciable communication was observed between the glutathione pools of the IMS and matrix. By modulating redox pathways in the cytosol and IMS, we find that the cytosolic glutathione reductase system is the major determinant of EGSH in the IMS, thus explaining a steady-state EGSH in the IMS which is similar to the cytosol. Moreover, we show that the local EGSH contributes to the partially reduced redox state of the IMS oxidoreductase Mia40 in vivo. Taken together, we provide a comprehensive mechanistic picture of the IMS redox milieu and define the redox influences on Mia40 in living cells. PMID:22705944

  8. Considering a Threshold Energy in Reactive Transport Modeling of Microbially Mediated Redox Reactions in an Arsenic-Affected Aquifer

    Directory of Open Access Journals (Sweden)

    Marco Rotiroti

    2018-01-01

    Full Text Available The reductive dissolution of Fe-oxide driven by organic matter oxidation is the primary mechanism accepted for As mobilization in several alluvial aquifers. These processes are often mediated by microorganisms that require a minimum Gibbs energy available to conduct the reaction in order to sustain their life functions. Implementing this threshold energy in reactive transport modeling is rarely used in the existing literature. This work presents a 1D reactive transport modeling of As mobilization by the reductive dissolution of Fe-oxide and subsequent immobilization by co-precipitation in iron sulfides considering a threshold energy for the following terminal electron accepting processes: (a Fe-oxide reduction, (b sulfate reduction, and (c methanogenesis. The model is then extended by implementing a threshold energy on both reaction directions for the redox reaction pairs Fe(III reduction/Fe(II oxidation and methanogenesis/methane oxidation. The optimal threshold energy fitted in 4.50, 3.76, and 1.60 kJ/mol e− for sulfate reduction, Fe(III reduction/Fe(II oxidation, and methanogenesis/methane oxidation, respectively. The use of models implementing bidirectional threshold energy is needed when a redox reaction pair can be transported between domains with different redox potentials. This may often occur in 2D or 3D simulations.

  9. Graphene Nanoplatelet Cathode for Co(III)/(II) Mediated Dye-Sensitized Solar Cells

    Czech Academy of Sciences Publication Activity Database

    Kavan, Ladislav; Yum, J. H.; Nazeeruddin, M. K.; Grätzel, M.

    2011-01-01

    Roč. 5, č. 11 (2011), s. 9171-9178 ISSN 1936-0851 R&D Projects: GA MŠk LC510; GA AV ČR IAA400400804; GA AV ČR KAN200100801 Institutional research plan: CEZ:AV0Z40400503 Keywords : graphene * dye sensitized solar cell * cobalt redox shuttle Subject RIV: CG - Electrochemistry Impact factor: 10.774, year: 2011

  10. Redox active molecules cytochrome c and vitamin C enhance heme-enzyme peroxidations by serving as non-specific agents for redox relay

    Energy Technology Data Exchange (ETDEWEB)

    Gade, Sudeep Kumar; Bhattacharya, Subarna [Heme and Flavo Proteins Laboratory, 204, Center for Biomedical Research, VIT University, Vellore, Tamil Nadu 632014 (India); Manoj, Kelath Murali, E-mail: satyamjayatu@yahoo.com [Heme and Flavo Proteins Laboratory, 204, Center for Biomedical Research, VIT University, Vellore, Tamil Nadu 632014 (India)

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer At low concentrations, cytochrome c/vitamin C do not catalyze peroxidations. Black-Right-Pointing-Pointer But low levels of cytochrome c/vitamin C enhance diverse heme peroxidase activities. Black-Right-Pointing-Pointer Enhancement positively correlates to the concentration of peroxide in reaction. Black-Right-Pointing-Pointer Reducible additives serve as non-specific agents for redox relay in the system. Black-Right-Pointing-Pointer Insight into electron transfer processes in routine and oxidative-stress states. -- Abstract: We report that incorporation of very low concentrations of redox protein cytochrome c and redox active small molecule vitamin C impacted the outcome of one-electron oxidations mediated by structurally distinct plant/fungal heme peroxidases. Evidence suggests that cytochrome c and vitamin C function as a redox relay for diffusible reduced oxygen species in the reaction system, without invoking specific or affinity-based molecular interactions for electron transfers. The findings provide novel perspectives to understanding - (1) the promiscuous role of cytochrome b{sub 5} in the metabolism mediated by liver microsomal xenobiotic metabolizing systems and (2) the roles of antioxidant molecules in affording relief from oxidative stress.

  11. Zinc and the modulation of redox homeostasis

    Science.gov (United States)

    Oteiza, Patricia I.

    2012-01-01

    Zinc, a redox inactive metal, has been long viewed as a component of the antioxidant network, and growing evidence points to its involvement in redox-regulated signaling. These actions are exerted through several mechanisms based on the unique chemical and functional properties of zinc. Overall, zinc contributes to maintain the cell redox balance through different mechanisms including: i) the regulation of oxidant production and metal-induced oxidative damage; ii) the dynamic association of zinc with sulfur in protein cysteine clusters, from which the metal can be released by nitric oxide, peroxides, oxidized glutathione and other thiol oxidant species; iii) zinc-mediated induction of the zinc-binding protein metallothionein, which releases the metal under oxidative conditions and act per se scavenging oxidants; iv) the involvement of zinc in the regulation of glutathione metabolism and of the overall protein thiol redox status; and v) a direct or indirect regulation of redox signaling. Findings of oxidative stress, altered redox signaling, and associated cell/tissue disfunction in cell and animal models of zinc deficiency, stress the relevant role of zinc in the preservation of cell redox homeostasis. However, while the participation of zinc in antioxidant protection, redox sensing, and redox-regulated signaling is accepted, the involved molecules, targets and mechanisms are still partially known and the subject of active research. PMID:22960578

  12. The behaviour of long-lived redox sensitive radionuclides in soil-plant system during the process of climate change

    Energy Technology Data Exchange (ETDEWEB)

    Semioshkina, N.; Staudt, C.; Kaiser, C. [Helmhotz Zetrum Muenchen (Germany); Proehl, G. [International Atomic Energy Agency - IAEA (International Atomic Energy Agency (IAEA)); Noseck, U.; Fahrenholz, C. [Gesellschaft fuer Anlagen- und Reaktorsicherheit - GRS (Germany)

    2014-07-01

    One important aspect of climate changes for the long-term safety assessment of radioactive waste repositories is its impact on exposure pathways for humans in the future, which are dependent on the environmental characteristics mentioned. It is conceivable that effects or processes occurring during climate changes lead to an increased accumulation and/or release of radionuclides in the biosphere resulting in higher doses compared to that calculated for discrete climate states. In order to shed light on this question key processes are identified which might lead to such an increased accumulation and/or release of radionuclides. The transition from one climate to another can cause changes in the physicochemical composition of radionuclides: some of them may become more available for plant uptake and due to this, their activity concentration in the plants increases. Other radionuclides maybe stronger bound to soil and their activity concentration in plants decreases. Such changes might also cause remobilization of radionuclides from localised areas with contaminated sediments, their re-suspension and transfer to the surrounding areas. A suitable illustration of the processes related to the changes of the redox potential is the examination of a dry lake or fen bed for agricultural purposes as pasture or ameliorated pasture. In these cases the accumulation of radionuclides in the lake or fen sediment is followed by their release and increasing mobility after agricultural processing of the dry bed of lake or fen. Ploughing of the soil leads to increased supply of oxygen to previous anoxic soil layers causing an increase in redox potential. The presented model describes a scenario, where the land is initially very humid and very low Eh-values cause high sorption and accumulation of radionuclides in soil particles. Then this land is dried out, the redox potential increases and redox sensitive radionuclides change their speciation and their behaviour. Such processes might

  13. Site specific health and safety plan for drilling in support of in situ redox manipulation

    International Nuclear Information System (INIS)

    Tuttle, B.G.

    1997-02-01

    This document contains the Site Specific Health and Safety Plan for Drilling in support of the In Situ REDOX Manipulation in the 100-HR-3 Operable Unit. Approximately eight wells will be drilled in the 100-D/DR Area using rotary, sonic, or cable tool drilling methods. Split-spoon sampling will be done in conjunction with the drilling. The drilling may be spread out over several months. Included in this document are checklists for health and safety procedures

  14. Redox-active media for permeable reactive barriers

    International Nuclear Information System (INIS)

    Sivavec, T.M.; Mackenzie, P.D.; Horney, D.P.; Baghel, S.S.

    1997-01-01

    In this paper, three classes of redox-active media are described and evaluated in terms of their long-term effectiveness in treating TCE-contaminated groundwater in permeable reactive zones. Zero-valent iron, in the form of recycled cast iron filings, the first class, has received considerable attention as a reactive media and has been used in about a dozen pilot- and full-scale subsurface wall installations. Criteria used in selecting commercial sources of granular iron, will be discussed. Two other classes of redox-active media that have not yet seen wide use in pilot- or full-scale installations will also be described: Fe(II) minerals and bimetallic systems. Fe(II) minerals, including magnetite (Fe 3 O 4 ), and ferrous sulfide (troilite, FeS), are redox-active and afford TCE reduction rates and product distributions that suggest that they react via a reductive mechanism similar to that which operates in the FeO system. Fe(II) species within the passive oxide layer coating the iron metal may act as electron transfer mediators, with FeO serving as the bulk reductant. Bimetallic systems, the third class of redox-active media, are commonly prepared by plating a second metal onto zero-valent iron (e.g., Ni/Fe and Pd/Fe) and have been shown to accelerate solvent degradation rates relative to untreated iron metal. The long-term effectiveness of this approach, however, has not yet been determined in groundwater treatability tests. The results of a Ni-plated iron column study using site groundwater indicate that a change in reduction mechanism (to catalytic dehydrohalogenation/hydrogenation) accounts for the observed rate enhancement. A significant loss in media reactivity was observed over time, attributable to Ni catalyst deactivation or poisoning. Zero-valent iron systems have not shown similar losses in reactivity in long-term laboratory, pilot or field investigations

  15. Ediacaran Redox Fluctuations

    Science.gov (United States)

    Sahoo, S. K.; Jiang, G.; Planavsky, N. J.; Kendall, B.; Owens, J. D.; Anbar, A. D.; Lyons, T. W.

    2013-12-01

    Evidence for pervasive oxic conditions, and likely even deep ocean oxygenation has been documented at three intervals in the lower (ca. 632 Ma), middle (ca. 580 Ma) and upper (ca. 551 Ma) Ediacaran. The Doushantuo Formation in South China hosts large enrichments of redox-sensitive trace element (e.g., molybdenum, vanadium and uranium) in anoxic shales, which are indicative of a globally oxic ocean-atmosphere system. However, ocean redox conditions between these periods continue to be a topic of debate and remain elusive. We have found evidence for widespread anoxic conditions through much of the Ediacaran in the deep-water Wuhe section in South China. During most of the Ediacaran-early Cambrian in basinal sections is characterized by Fe speciation data and pyrite morphologies that indicate deposition under euxinic conditions with near-crustal enrichments of redox-sensitive element and positive pyrite-sulfur isotope values, which suggest low levels of marine sulfate and widespread euxinia. Our work reinforces an emerging view that the early Earth, including the Ediacaran, underwent numerous rises and falls in surface oxidation state, rather than a unidirectional rise as originally imagined. The Ediacaran ocean thus experienced repetitive expansion and contraction of marine chalcophilic trace-metal levels that may have had fundamental impact on the slow evolution of early animals and ecosystems. Further, this framework forces us to re-examine the relationship between Neoproterozoic oxygenation and metazoan diversification. Varying redox conditions through the Cryogenian and Ediacaran may help explain molecular clock and biomarker evidence for an early appearance and initial diversification of metazoans but with a delay in the appearance of most major metazoan crown groups until close to Ediacaran-Cambrian boundary.

  16. Copper Bipyridyl Redox Mediators for Dye-Sensitized Solar Cells with High Photovoltage

    Czech Academy of Sciences Publication Activity Database

    Saygili, Y.; Söderberg, M.; Pellet, N.; Giordano, F.; Cao, Y.; Munoz-García, A. B.; Zakeeruddin, S. M.; Vlachopoulos, N.; Pavone, M.; Boschloo, G.; Kavan, Ladislav; Moser, J. E.; Grätzel, M.; Hagfeldt, A.; Freitag, M.

    2016-01-01

    Roč. 138, č. 45 (2016), s. 15087-15096 ISSN 0002-7863 R&D Projects: GA ČR GA13-07724S Institutional support: RVO:61388955 Keywords : Conversion efficiency * Copper * Dye-sensitized solar cells Subject RIV: CG - Electrochemistry Impact factor: 13.858, year: 2016

  17. The redox biology network in cancer pathophysiology and therapeutics

    Directory of Open Access Journals (Sweden)

    Gina Manda

    2015-08-01

    Full Text Available The review pinpoints operational concepts related to the redox biology network applied to the pathophysiology and therapeutics of solid tumors. A sophisticated network of intrinsic and extrinsic cues, integrated in the tumor niche, drives tumorigenesis and tumor progression. Critical mutations and distorted redox signaling pathways orchestrate pathologic events inside cancer cells, resulting in resistance to stress and death signals, aberrant proliferation and efficient repair mechanisms. Additionally, the complex inter-cellular crosstalk within the tumor niche, mediated by cytokines, redox-sensitive danger signals (HMGB1 and exosomes, under the pressure of multiple stresses (oxidative, inflammatory, metabolic, greatly contributes to the malignant phenotype. The tumor-associated inflammatory stress and its suppressive action on the anti-tumor immune response are highlighted. We further emphasize that ROS may act either as supporter or enemy of cancer cells, depending on the context. Oxidative stress-based therapies, such as radiotherapy and photodynamic therapy, take advantage of the cytotoxic face of ROS for killing tumor cells by a non-physiologically sudden, localized and intense oxidative burst. The type of tumor cell death elicited by these therapies is discussed. Therapy outcome depends on the differential sensitivity to oxidative stress of particular tumor cells, such as cancer stem cells, and therefore co-therapies that transiently down-regulate their intrinsic antioxidant system hold great promise. We draw attention on the consequences of the damage signals delivered by oxidative stress-injured cells to neighboring and distant cells, and emphasize the benefits of therapeutically triggered immunologic cell death in metastatic cancer. An integrative approach should be applied when designing therapeutic strategies in cancer, taking into consideration the mutational, metabolic, inflammatory and oxidative status of tumor cells, cellular

  18. Imaging dynamic redox processes with genetically encoded probes.

    Science.gov (United States)

    Ezeriņa, Daria; Morgan, Bruce; Dick, Tobias P

    2014-08-01

    Redox signalling plays an important role in many aspects of physiology, including that of the cardiovascular system. Perturbed redox regulation has been associated with numerous pathological conditions; nevertheless, the causal relationships between redox changes and pathology often remain unclear. Redox signalling involves the production of specific redox species at specific times in specific locations. However, until recently, the study of these processes has been impeded by a lack of appropriate tools and methodologies that afford the necessary redox species specificity and spatiotemporal resolution. Recently developed genetically encoded fluorescent redox probes now allow dynamic real-time measurements, of defined redox species, with subcellular compartment resolution, in intact living cells. Here we discuss the available genetically encoded redox probes in terms of their sensitivity and specificity and highlight where uncertainties or controversies currently exist. Furthermore, we outline major goals for future probe development and describe how progress in imaging methodologies will improve our ability to employ genetically encoded redox probes in a wide range of situations. This article is part of a special issue entitled "Redox Signalling in the Cardiovascular System." Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Nrf2 mediates redox adaptation in NOX4-overexpressed non-small cell lung cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qipeng; Yao, Bei; Li, Ning; Ma, Lei; Deng, Yanchao; Yang, Yang; Zeng, Cheng; Yang, Zhicheng [Department of Clinical Pharmacy, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006 (China); Liu, Bing, E-mail: liubing520@gdpu.edu.cn [Department of Clinical Pharmacy, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006 (China); Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006 (China)

    2017-03-15

    The redox adaptation mechanisms in cancer cells are very complex and remain largely unclear. Our previous studies have confirmed that NADPH oxidase 4 (NOX4) is abundantly expressed in non-small cell lung cancer (NSCLC) and confers apoptosis resistance on NSCLC cells. However, the comprehensive mechanisms for NOX4-mediated oxidative resistance of cancer cells remain still undentified. The present study found that NOX4-derived H{sub 2}O{sub 2} enhanced the nuclear factor erythroid 2-related factor 2 (Nrf2) stability via disruption of redox-dependent proteasomal degradation and stimulated its activity through activation of PI3K signaling. Specifically, the results showed that ectopic NOX4 expression did not induce apoptosis of A549 cells; however, inhibition of Nrf2 resulted in obvious apoptotic death of NOX4-overexpressed A549 cells, accompanied by a significant increase in H{sub 2}O{sub 2} level and decrease in GSH content. Besides, inhibition of Nrf2 could suppress cell growth and efficiently reverse the enhancement effect of NOX4 on cell growth. The in vivo data confirmed that inhibition of Nrf2 could interfere apoptosis resistance in NOX4-overexpressed A549 tumors and led to cell growth inhibition. In conclusion, these results reveal that Nrf2 is critically involved in redox adaptation regulation in NOX4-overexpressed NSCLC cells. Therefore, NOX4 and Nrf2 may be promising combination targets against malignant progression of NSCLC. - Highlights: • NOX4-derived H{sub 2}O{sub 2} upregulates Nrf2 expression and activity in NSCLC. • Nrf2 confers apoptosis resistance in NOX4-overexpressed NSCLC cells. • Inhibition of Nrf2 reverses the enhancement effect of NOX4 on cell growth.

  20. Molecular Controls of the Oxygenation and Redox Reactions of Hemoglobin

    Science.gov (United States)

    Henkens, Robert; Alayash, Abdu I.; Banerjee, Sambuddha; Crumbliss, Alvin L.

    2013-01-01

    Abstract Significance: The broad classes of O2-binding proteins known as hemoglobins (Hbs) carry out oxygenation and redox functions that allow organisms with significantly different physiological demands to exist in a wide range of environments. This is aided by allosteric controls that modulate the protein's redox reactions as well as its O2-binding functions. Recent Advances: The controls of Hb's redox reactions can differ appreciably from the molecular controls for Hb oxygenation and come into play in elegant mechanisms for dealing with nitrosative stress, in the malarial resistance conferred by sickle cell Hb, and in the as-yet unsuccessful designs for safe and effective blood substitutes. Critical Issues: An important basic principle in consideration of Hb's redox reactions is the distinction between kinetic and thermodynamic reaction control. Clarification of these modes of control is critical to gaining an increased understanding of Hb-mediated oxidative processes and oxidative toxicity in vivo. Future Directions: This review addresses emerging concepts and some unresolved questions regarding the interplay between the oxygenation and oxidation reactions of structurally diverse Hbs, both within red blood cells and under acellular conditions. Developing methods that control Hb-mediated oxidative toxicity will be critical to the future development of Hb-based blood substitutes. Antioxid. Redox Signal. 18, 2298–2313. PMID:23198874

  1. A simple, fast and accurate in-situ method to measure the rate of transport of redox species through membranes for lithium batteries

    Science.gov (United States)

    Meddings, Nina; Owen, John R.; Garcia-Araez, Nuria

    2017-10-01

    Lithium ion conducting membranes are important to protect the lithium metal electrode and act as a barrier to crossover species such as polysulphides in Li-S systems, redox mediators in Li-O2 cells or dissolved cathode species or electrolyte oxidation products in high voltage Li-ion batteries. We present an in-situ method for measuring permeability of membranes to crossover redox species. The method employs a 'Swagelok' cell design equipped with a glassy carbon working electrode, in which redox species are placed initially in the counter electrode compartment only. Permeability through the membrane, which separates working and counter electrodes, is determined using a square wave voltammetry technique that allows the concentration of crossover redox species to be evaluated over time with very high precision. We test the method using a model and well-behaved electrochemical system to demonstrate its sensitivity, reproducibility and reliability relative to alternative approaches. This new method offers advantages in terms of small electrolyte volume, and simple, fast, quantitative and in-situ measurement.

  2. Redox Conditions and Related Color Change in Eastern Equatorial Pacific Sediments: IODP Site U1334

    Science.gov (United States)

    Kordesch, W. E.; Gussone, N. C.; Hathorne, E. C.; Kimoto, K.; Delaney, M. L.

    2011-12-01

    This study was prompted by a 65 m thick brown-green color change in deep-sea sediments of IODP Site U1334 (0-38 Ma, 4799 m water depth) that corresponds to its equatorial crossing (caused by the Northward movement of the pacific plate). Green sediment is a visual indicator of reducing conditions in sediment due to enhanced organic matter deposition and burial. Here we use geochemical redox indicators to characterize the effect of equatorial upwelling on bottom water. The modern redox signal is captured in porewater profiles (nitrate, manganese, iron, sulfate) while trace metal Enrichment Factors (EF) in bulk sediment (manganese, uranium, molybdenum, rhenium) normalized to the detrital component (titanium) record redox state at burial. To measure export productivity we also measure biogenic barium. Porewater profiles reveal suboxic diagenesis; profiles follow the expected sequence of nitrate, manganese oxide, and iron oxide reduction with increasing depth. Constant sulfate (~28 μM) implies anoxia has not occurred. Bulk sediment Mn EF are enriched (EF > 1) throughout the record (Mn EF = 15-200) while U and Mo enrichment corresponds to green color and equatorial proximity (U EF = 4-19; Mo EF = 0-7). Constant Mn enrichment implies continuous oxygenation. Uranium and Mo enrichment near the equator represents suboxic conditions also seen in the porewater. Low Re concentrations (below detection) provide additional evidence against anoxia. A comparison of Mn EF from total digestions to samples treated with an additional reductive cleaning step distinguishes between Mn-oxides and Mn-carbonates, indicating oxygenated and reducing conditions respectively. Mn-carbonate occurrence agrees with U and Mo EF; conditions were more reducing near the equator. Bio-Ba shows significant variability over this interval (22-99 mmol g-1). Our geochemical results indicate that bottom waters became suboxic at the equator as a result of equatorial upwelling-influenced increases in organic

  3. Subcellular Redox Targeting: Bridging in Vitro and in Vivo Chemical Biology.

    Science.gov (United States)

    Long, Marcus J C; Poganik, Jesse R; Ghosh, Souradyuti; Aye, Yimon

    2017-03-17

    Networks of redox sensor proteins within discrete microdomains regulate the flow of redox signaling. Yet, the inherent reactivity of redox signals complicates the study of specific redox events and pathways by traditional methods. Herein, we review designer chemistries capable of measuring flux and/or mimicking subcellular redox signaling at the cellular and organismal level. Such efforts have begun to decipher the logic underlying organelle-, site-, and target-specific redox signaling in vitro and in vivo. These data highlight chemical biology as a perfect gateway to interrogate how nature choreographs subcellular redox chemistry to drive precision redox biology.

  4. Brassinosteroid-induced CO2 assimilation is associated with increased stability of redox-sensitive photosynthetic enzymes in the chloroplasts in cucumber plants

    International Nuclear Information System (INIS)

    Jiang, Yu Ping; Cheng, Fei; Zhou, Yan Hong; Xia, Xiao Jian; Mao, Wei Hua; Shi, Kai; Chen, Zhi Xiang; Yu, Jing Quan

    2012-01-01

    Highlights: ► Activity of certain Calvin cycle enzymes and CO 2 assimilation are induced by BRs. ► BRs upregulate the activity of the ascorbate–glutathione cycle in the chloroplasts. ► BRs increase the chloroplast thiol reduction state. ► A BR-induced reducing environment increases the stability of photosynthetic enzymes. -- Abstract: Brassinosteroids (BRs) play important roles in plant growth, development, photosynthesis and stress tolerance; however, the mechanism underlying BR-enhanced photosynthesis is currently unclear. Here, we provide evidence that an increase in the BR level increased the quantum yield of PSII, activities of Rubisco activase (RCA) and fructose-1,6-bisphosphatase (FBPase), and CO 2 assimilation. BRs upregulated the transcript levels of genes and activity of enzymes involved in the ascorbate–glutathione cycle in the chloroplasts, leading to an increased ratio of reduced (GSH) to oxidized (GSSG) glutathione in the chloroplasts. An increased GSH/GSSG ratio protected RCA from proteolytic digestion and increased the stability of redox-sensitive enzymes in the chloroplasts. These results strongly suggest that BRs are capable of regulating the glutathione redox state in the chloroplasts through the activation of the ascorbate–glutathione cycle. The resulting increase in the chloroplast thiol reduction state promotes CO 2 assimilation, at least in part, by enhancing the stability and activity of redox-sensitive photosynthetic enzymes through post-translational modifications.

  5. Evaluation of fall chinook salmon spawning adjacent to the In-Situ Redox Manipulation treatability test site, Hanford Site, Washington

    International Nuclear Information System (INIS)

    Mueller, R.P.; Geist, D.R.

    1998-10-01

    The In Situ Redox Manipulation (ISRM) experiment is being evaluated as a potential method to remove contaminants from groundwater adjacent to the Columbia River near the 100-D Area. The ISRM experiment involves using sodium dithionate (Na 2 O 6 S 2 ) to precipitate chromate from the groundwater. The treatment will likely create anoxic conditions in the groundwater down-gradient of the ISRM treatability test site; however, the spatial extent of this anoxic plume is not exactly known. Surveys were conducted in November 1997, following the peak spawning of fall chinook salmon. Aerial surveys documented 210 redds (spawning nests) near the downstream island in locations consistent with previous surveys. Neither aerial nor underwater surveys documented fall chinook spawning in the vicinity of the ISRM treatability test site. Based on measurements of depth, velocity, and substrate, less than 1% of the study area contained suitable fall chinook salmon spawning habitat, indicating low potential for fall chinook salmon to spawn in the vicinity of the ISRM experiment

  6. Two oxidation sites for low redox potential substrates: a directed mutagenesis, kinetic, and crystallographic study on Pleurotus eryngii versatile peroxidase.

    Science.gov (United States)

    Morales, María; Mate, María J; Romero, Antonio; Martínez, María Jesús; Martínez, Ángel T; Ruiz-Dueñas, Francisco J

    2012-11-30

    Versatile peroxidase shares with manganese peroxidase and lignin peroxidase the ability to oxidize Mn(2+) and high redox potential aromatic compounds, respectively. Moreover, it is also able to oxidize phenols (and low redox potential dyes) at two catalytic sites, as shown by biphasic kinetics. A high efficiency site (with 2,6-dimethoxyphenol and p-hydroquinone catalytic efficiencies of ∼70 and ∼700 s(-1) mM(-1), respectively) was localized at the same exposed Trp-164 responsible for high redox potential substrate oxidation (as shown by activity loss in the W164S variant). The second site, characterized by low catalytic efficiency (∼3 and ∼50 s(-1) mM(-1) for 2,6-dimethoxyphenol and p-hydroquinone, respectively) was localized at the main heme access channel. Steady-state and transient-state kinetics for oxidation of phenols and dyes at the latter site were improved when side chains of residues forming the heme channel edge were removed in single and multiple variants. Among them, the E140G/K176G, E140G/P141G/K176G, and E140G/W164S/K176G variants attained catalytic efficiencies for oxidation of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) at the heme channel similar to those of the exposed tryptophan site. The heme channel enlargement shown by x-ray diffraction of the E140G, P141G, K176G, and E140G/K176G variants would allow a better substrate accommodation near the heme, as revealed by the up to 26-fold lower K(m) values (compared with native VP). The resulting interactions were shown by the x-ray structure of the E140G-guaiacol complex, which includes two H-bonds of the substrate with Arg-43 and Pro-139 in the distal heme pocket (at the end of the heme channel) and several hydrophobic interactions with other residues and the heme cofactor.

  7. Engineered Proteins: Redox Properties and Their Applications

    Science.gov (United States)

    Prabhulkar, Shradha; Tian, Hui; Wang, Xiaotang; Zhu, Jun-Jie

    2012-01-01

    Abstract Oxidoreductases and metalloproteins, representing more than one third of all known proteins, serve as significant catalysts for numerous biological processes that involve electron transfers such as photosynthesis, respiration, metabolism, and molecular signaling. The functional properties of the oxidoreductases/metalloproteins are determined by the nature of their redox centers. Protein engineering is a powerful approach that is used to incorporate biological and abiological redox cofactors as well as novel enzymes and redox proteins with predictable structures and desirable functions for important biological and chemical applications. The methods of protein engineering, mainly rational design, directed evolution, protein surface modifications, and domain shuffling, have allowed the creation and study of a number of redox proteins. This review presents a selection of engineered redox proteins achieved through these methods, resulting in a manipulation in redox potentials, an increase in electron-transfer efficiency, and an expansion of native proteins by de novo design. Such engineered/modified redox proteins with desired properties have led to a broad spectrum of practical applications, ranging from biosensors, biofuel cells, to pharmaceuticals and hybrid catalysis. Glucose biosensors are one of the most successful products in enzyme electrochemistry, with reconstituted glucose oxidase achieving effective electrical communication with the sensor electrode; direct electron-transfer-type biofuel cells are developed to avoid thermodynamic loss and mediator leakage; and fusion proteins of P450s and redox partners make the biocatalytic generation of drug metabolites possible. In summary, this review includes the properties and applications of the engineered redox proteins as well as their significance and great potential in the exploration of bioelectrochemical sensing devices. Antioxid. Redox Signal. 17, 1796–1822. PMID:22435347

  8. Resilience and rejection sensitivity mediate long-term outcomes of parental divorce.

    Science.gov (United States)

    Schaan, Violetta K; Vögele, Claus

    2016-11-01

    Increasing divorce rates leave more and more children to deal with the separation of their parents. Recent research suggests that children of divorced parents more often experience psychological and physical symptoms than children of non-divorced parents. The processes that mediate the relationship between parental divorce and ill-health, however, are still elusive. This study investigated the mediating role of psychological factors such as resilience and rejection sensitivity on the long-term consequences of parental divorce in young adults. One hundred and ninety-nine participants (mean age 22.3 years) completed an online survey, including measures of mental health, childhood trauma, resilience, and rejection sensitivity. Participants with divorced parents (33 %) reported increased levels of psychological symptoms, childhood trauma, rejection sensitivity, and lower levels of resilience. The association between parental divorce and mental health was fully mediated by resilience, rejection sensitivity, and childhood trauma. The mediation model explained up to 44 % of the total variance in mental health symptoms. Resilience and rejection sensitivity are crucial factors for successful coping with the experience of parental separation. Prevention programs that help to boost children's resilience might help to reduce the long-term effects of parental divorce on their attachment style (e.g., rejection sensitivity), thereby improving their mental health on the long run. Furthermore, the results call for parental awareness and counseling to target and reduce the observed increased level of childhood trauma. Limitations concern the cross-sectional and retrospective design of the study.

  9. Time resolved XANES illustrates a substrate-mediated redox process in Prussian blue cultural heritage materials

    International Nuclear Information System (INIS)

    Gervais, Claire; Moretti, Giulia; Lanquille, Marie-Angélique; Réguer, Solenn

    2016-01-01

    The pigment Prussian blue is studied in heritage science because of its capricious fading behavior under light exposure. We show here that XANES can be used to study the photosensitivity of Prussian blue heritage materials despite X-ray radiation damage. We used an original approach based on X-ray photochemistry to investigate in depth the redox process of Prussian blue when it is associated with a cellulosic substrate, as in cyanotypes and watercolors. By modifying cation and proton contents of the paper substrate, we could tune both rate and extent of Prussian blue reduction. These results demonstrate that the photoreduction and fading of Prussian blue is principally mediated by the substrate and its interaction with the oxygen of the environment. (paper)

  10. Surface Redox Chemistry of Immobilized Nanodiamond: Effects of Particle Size and Electrochemical Environment

    Science.gov (United States)

    Gupta, S.; McDonald, B.; Carrizosa, S. B.

    2017-07-01

    The size of the diamond particle is tailored to nanoscale (nanodiamond, ND), and the ND surface is engineered targeting specific (electrochemical and biological) applications. In this work, we investigated the complex surface redox chemistry of immobilized ND layer on conductive boron-doped diamond electrode with a broad experimental parameter space such as particle size (nano versus micron), scan rate, pH (cationic/acidic versus anionic/basic), electrolyte KCl concentration (four orders of magnitude), and redox agents (neutral and ionic). We reported on the significant enhancement of ionic currents while recording reversible oxidation of neutral ferrocene methanol (FcMeOH) by almost one order of magnitude than traditional potassium ferricyanide (K3Fe(CN)6) redox agent. The current enhancement is inversely related to ND particle diameter in the following order: 1 μm << 1000 nm < 100 nm < 10 nm ≤ 5 nm < 2 nm. We attribute the current enhancement to concurrent electrocatalytic processes, i.e. the electron transfer between redox probes and electroactive surface functional (e.g. hydroxyl, carboxyl, epoxy) moieties and the electron transfer mediated by adsorbed FcMeOH+ (or Fe(CN) 6 3+ ) ions onto ND surface. The first process is pH dependent since it depends upon ND surface functionalities for which the electron transfer is coupled to proton transfer. The adsorption mediated process is observed most apparently at slower scan rates owing to self-exchange between adsorbed FcMeOH+ ions and FcMeOH redox agent molecules in diffusion-limited bulk electrolyte solution. Alternatively, it is hypothesized that the surface functionality and defect sites ( sp 2-bonded C shell and unsaturated bonds) give rise to surface electronic states with energies within the band gap (midgap states) in undoped ND. These surface states serve as electron donors (and acceptors) depending upon their bonding (and antibonding) character and, therefore, they can support electrocatalytic redox

  11. Characterization of redox conditions in groundwater contaminant plumes

    Science.gov (United States)

    Christensen, Thomas H.; Bjerg, Poul L.; Banwart, Steven A.; Jakobsen, Rasmus; Heron, Gorm; Albrechtsen, Hans-Jørgen

    2000-10-01

    Evaluation of redox conditions in groundwater pollution plumes is often a prerequisite for understanding the behaviour of the pollutants in the plume and for selecting remediation approaches. Measuring of redox conditions in pollution plumes is, however, a fairly recent issue and yet relative few cases have been reported. No standardised or generally accepted approach exists. Slow electrode kinetics and the common lack of internal equilibrium of redox processes in pollution plumes make, with a few exceptions, direct electrochemical measurement and rigorous interpretation of redox potentials dubious, if not erroneous. Several other approaches have been used in addressing redox conditions in pollution plumes: redox-sensitive compounds in groundwater samples, hydrogen concentrations in groundwater, concentrations of volatile fatty acids in groundwater, sediment characteristics and microbial tools, such as MPN counts, PLFA biomarkers and redox bioassays. This paper reviews the principles behind the different approaches, summarizes methods used and evaluates the approaches based on the experience from the reported applications.

  12. Fluid-mediated redox transfer in subduction zones: Measuring the intrinsic fO2 of slab fluids in the lab

    Science.gov (United States)

    Iacovino, K.; Till, C. B.

    2017-12-01

    It is widely observed that arc magmas are the most oxidized magmas on Earth. One frequently cited explanation calls on the flux of aqueous fluid from the highly oxidized down-going slab to catalyze sub-arc mantle melting and impose a highly oxidized redox signature on the mantle wedge. Fluid inclusions from sub-arc mantle xenoliths provide evidence that "slab fluids" may be highly oxidizing (fO2 QFM+1.5; Brandon & Draper, 1996; Frost and Ballhaus, 1998), but for decades, determination of the precise reactive mechanism potentially responsible for the transfer of O2 from slab to mantle has been elusive. Pure H2O has been shown to have insufficient oxidizing capacity to affect mantle redox, but H2O-rich fluids may facilitate the mobilization of Fe3+ or other multivalent cations and/or O2 transfer via the reduction of sulfate, particularly if such fluids are hypersaline. Here we present the first results from experiments designed to investigate fluid-mediated element transfer, including redox reactions, at the slab-mantle interface. These data include the first direct measurements of the intrinsic oxygen fugacity of fluids released during slab dehydration using sliding binary alloy redox sensors. Experiments were performed on natural Fe3+-bearing antigorite serpentinite at 1-2 GPa and 800°C in a piston cylinder at Arizona State University, analogous to conditions in a subducting slab and sufficient to cause the breakdown of starting material into forsteritic olivine, Mg-rich clinopyroxene, magnetite, and aqueous fluid. Experimental time series allow for the detection of (and correction for) any buffering effect on the sample by the experimental assembly. Initial results indicate that the dehydration of sulfur-free antigorite serpentinite can generate fluids with fO2 several orders of magnitude above that of MORB mantle and similar to those observed in natural sub-arc fluid inclusions. Careful measurements of the chemistry of fluid and solid run products will elucidate

  13. Tuning of redox regulatory mechanisms, reactive oxygen species and redox homeostasis under salinity stress

    Directory of Open Access Journals (Sweden)

    Hossain eSazzad

    2016-05-01

    Full Text Available Soil salinity is a crucial environmental constraint which limits biomass production at many sites on a global scale. Saline growth conditions cause osmotic and ionic imbalances, oxidative stress and perturb metabolism, e.g. the photosynthetic electron flow. The plant ability to tolerate salinity is determined by multiple biochemical and physiological mechanisms protecting cell functions, in particular by regulating proper water relations and maintaining ion homeostasis. Redox homeostasis is a fundamental cell property. Its regulation includes control of reactive oxygen species (ROS generation, sensing deviation from and readjustment of the cellular redox state. All these redox related functions have been recognized as decisive factors in salinity acclimation and adaptation. This review focuses on the core response of plants to overcome the challenges of salinity stress through regulation of ROS generation and detoxification systems and to maintain redox homeostasis. Emphasis is given to the role of NADH oxidase (RBOH, alternative oxidase (AOX, the plastid terminal oxidase (PTOX and the malate valve with the malate dehydrogenase isoforms under salt stress. Overwhelming evidence assigns an essential auxiliary function of ROS and redox homeostasis to salinity acclimation of plants.

  14. Continuous glucose monitoring microsensor with a nanoscale conducting matrix and redox mediator

    Science.gov (United States)

    Pesantez, Daniel

    vitro testing for glucose shows increasing current with increasing analyte concentration. Testing the glucose microsensor with known concentrations of glucose over a period of 48 hours demonstrated both the potential durability and sensitivity of the device. Unknown/blind in vitro glucose experiments showed the reproducibility and accuracy of the microsensor to detect various glucose levels. Thinner polymer matrix films lead to better sensing performance during in vitro tests (0.6nA/mM lower limit sensitivity and 0.2nA/mM upper limit sensitivity). In vitro experiments using electroactive ascorbic acid (AA) and uric acid (UA) showed the selectivity of the sensor for glucose. In an effort to reduce the sensor's oxidation potential (0.7V) and noise, a second generation electron transfer approach was developed by incorporating into a modified Platinum WE with a nanoscale PPy and GOx matrix, a redox mediator. Ferrocene (Fc) was selected as the artificial electron carrier, substituting molecular oxygen in the enzymatic reaction. The incorporation of Fc into the polymer matrix is done by a simple electrochemical synthesis. Modifications in the microsensor design, materials and fabrication process are presented. Experiments with the new sensor generation resulted in higher sensitivity values (22.8nA/mM lower limit sensitivity and 12.5nA/mM upper limit sensitivity) for glucose and noise was further eliminated by operating the sensor at a lower oxidation potential (0.3V). The final experimental work consisted of preliminary ex vivo tests with the MetaSense microdevice on bovine kidney samples, which showed a qualitatively correlation between glucose consumption trend profile during preservation and viability histology outcome.

  15. Cost-driven materials selection criteria for redox flow battery electrolytes

    Science.gov (United States)

    Dmello, Rylan; Milshtein, Jarrod D.; Brushett, Fikile R.; Smith, Kyle C.

    2016-10-01

    Redox flow batteries show promise for grid-scale energy storage applications but are presently too expensive for widespread adoption. Electrolyte material costs constitute a sizeable fraction of the redox flow battery price. As such, this work develops a techno-economic model for redox flow batteries that accounts for redox-active material, salt, and solvent contributions to the electrolyte cost. Benchmark values for electrolyte constituent costs guide identification of design constraints. Nonaqueous battery design is sensitive to all electrolyte component costs, cell voltage, and area-specific resistance. Design challenges for nonaqueous batteries include minimizing salt content and dropping redox-active species concentration requirements. Aqueous battery design is sensitive to only redox-active material cost and cell voltage, due to low area-specific resistance and supporting electrolyte costs. Increasing cell voltage and decreasing redox-active material cost present major materials selection challenges for aqueous batteries. This work minimizes cost-constraining variables by mapping the battery design space with the techno-economic model, through which we highlight pathways towards low price and moderate concentration. Furthermore, the techno-economic model calculates quantitative iterations of battery designs to achieve the Department of Energy battery price target of 100 per kWh and highlights cost cutting strategies to drive battery prices down further.

  16. A cell for extended x-ray absorption fine structure studies of oxygen sensitive products of redox reactions

    International Nuclear Information System (INIS)

    Furenlid, L.R.; Renner, M.W.; Fajer, J.

    1990-01-01

    We describe a cell suitable for extended x-ray absorption fine structure (EXAFS) studies of oxygen and/or water sensitive products of redox reactions. The cell utilizes aluminized Mylar windows that are transparent to x rays, provide low gas permeability, and allow vacuum to be maintained in the cell. The windows are attached to the glassware with an epoxy that resists attack by common organic solvents. Additional side arms allow multiple spectroscopic probes of the same sample under anaerobic and anhydrous conditions

  17. Probing the redox metabolism in the strictly anaerobic, extremely thermophilic, hydrogen-producing Caldicellulosiruptor saccharolyticus using amperometry

    DEFF Research Database (Denmark)

    Kostesha, Natalie; Willquist, Karin; Emnéus, Jenny

    2011-01-01

    Changes in the redox metabolism in the anaerobic, extremely thermophilic, hydrogen-forming bacterium Caldicellulosiruptor saccharolyticus were probed for the first time in vivo using mediated amperometry with ferricyanide as a thermotolerant external mediator. Clear differences in the intracellul...... in the intracellular electron flow and to probe redox enzyme properties of a strictly anaerobic thermophile in vivo.......Changes in the redox metabolism in the anaerobic, extremely thermophilic, hydrogen-forming bacterium Caldicellulosiruptor saccharolyticus were probed for the first time in vivo using mediated amperometry with ferricyanide as a thermotolerant external mediator. Clear differences in the intracellular...... the NADH-dependent lactate dehydrogenase, upon which more NADH was directed to membrane-associated enzymes for ferricyanide reduction, leading to a higher electrochemical signal. The method is noninvasive and the results presented here demonstrate that this method can be used to accurately detect changes...

  18. Molecular controls of the oxygenation and redox reactions of hemoglobin.

    Science.gov (United States)

    Bonaventura, Celia; Henkens, Robert; Alayash, Abdu I; Banerjee, Sambuddha; Crumbliss, Alvin L

    2013-06-10

    The broad classes of O(2)-binding proteins known as hemoglobins (Hbs) carry out oxygenation and redox functions that allow organisms with significantly different physiological demands to exist in a wide range of environments. This is aided by allosteric controls that modulate the protein's redox reactions as well as its O(2)-binding functions. The controls of Hb's redox reactions can differ appreciably from the molecular controls for Hb oxygenation and come into play in elegant mechanisms for dealing with nitrosative stress, in the malarial resistance conferred by sickle cell Hb, and in the as-yet unsuccessful designs for safe and effective blood substitutes. An important basic principle in consideration of Hb's redox reactions is the distinction between kinetic and thermodynamic reaction control. Clarification of these modes of control is critical to gaining an increased understanding of Hb-mediated oxidative processes and oxidative toxicity in vivo. This review addresses emerging concepts and some unresolved questions regarding the interplay between the oxygenation and oxidation reactions of structurally diverse Hbs, both within red blood cells and under acellular conditions. Developing methods that control Hb-mediated oxidative toxicity will be critical to the future development of Hb-based blood substitutes.

  19. Rejection Sensitivity Mediates the Relationship between Social Anxiety and Body Dysmorphic Concerns

    Science.gov (United States)

    Fang, Angela; Asnaani, Anu; Gutner, Cassidy; Cook, Courtney; Wilhelm, Sabine; Hofmann, Stefan G.

    2011-01-01

    The goal of this study was to examine the role of rejection sensitivity in the relationship between social anxiety and body dysmorphic concerns. To test our hypothesis that rejection sensitivity mediates the link between social anxiety and body dysmorphic concerns, we administered self-report questionnaires to 209 student volunteers. Consistent with our prediction, rejection sensitivity partially mediated the relationship between social anxiety symptoms and body dysmorphic concerns. The implications of the overlap between these constructs are discussed. PMID:21741203

  20. Tc(VII) and Cr(VI) Interaction with Naturally Reduced Ferruginous Smectite from a Redox Transition Zone.

    Science.gov (United States)

    Qafoku, Odeta; Pearce, Carolyn I; Neumann, Anke; Kovarik, Libor; Zhu, Mengqiang; Ilton, Eugene S; Bowden, Mark E; Resch, Charles T; Arey, Bruce W; Arenholz, Elke; Felmy, Andrew R; Rosso, Kevin M

    2017-08-15

    Fe(II)-rich clay minerals found in subsurface redox transition zones (RTZs) can serve as important sources of electron equivalents limiting the transport of redox-active contaminants. While most laboratory reactivity studies are based on reduced model clays, the reactivity of naturally reduced field samples remains poorly explored. Characterization of the clay size fraction of a fine-grained unit from the RTZ interface at the Hanford site, Washington, including mineralogy, crystal chemistry, and Fe(II)/(III) content, indicates that ferruginous montmorillonite is the dominant mineralogical component. Oxic and anoxic fractions differ significantly in Fe(II) natural content, but Fe TOTAL remains constant, demonstrating no Fe loss during its reduction-oxidation cyclings. At native pH of 8.6, the anoxic fraction, despite its significant Fe(II), ∼23% of Fe TOTAL , exhibits minimal reactivity with TcO 4 - and CrO 4 2- and much slower reaction kinetics than those measured in studies with biologically/chemically reduced model clays. Reduction capacity is enhanced by added/sorbed Fe(II) (if Fe(II) SORBED > 8% clay Fe(II) LABILE ); however, the kinetics of this conceptually surface-mediated reaction remain sluggish. Surface-sensitive Fe L-edge X-ray absorption spectroscopy shows that Fe(II) SORBED and the resulting reducing equivalents are not available in the outermost few nanometers of clay surfaces. Slow kinetics thus appear related to diffusion-limited access to electron equivalents retained within the clay mineral structure.

  1. Redox chemistry and natural organic matter (NOM): Geochemists' dream, analytical chemists' nightmare

    Science.gov (United States)

    Macalady, Donald L.; Walton-Day, Katherine

    2011-01-01

    Natural organic matter (NOM) is an inherently complex mixture of polyfunctional organic molecules. Because of their universality and chemical reversibility, oxidation/reductions (redox) reactions of NOM have an especially interesting and important role in geochemistry. Variabilities in NOM composition and chemistry make studies of its redox chemistry particularly challenging, and details of NOM-mediated redox reactions are only partially understood. This is in large part due to the analytical difficulties associated with NOM characterization and the wide range of reagents and experimental systems used to study NOM redox reactions. This chapter provides a summary of the ongoing efforts to provide a coherent comprehension of aqueous redox chemistry involving NOM and of techniques for chemical characterization of NOM. It also describes some attempts to confirm the roles of different structural moieties in redox reactions. In addition, we discuss some of the operational parameters used to describe NOM redox capacities and redox states, and describe nomenclature of NOM redox chemistry. Several relatively facile experimental methods applicable to predictions of the NOM redox activity and redox states of NOM samples are discussed, with special attention to the proposed use of fluorescence spectroscopy to predict relevant redox characteristics of NOM samples.

  2. Redox properties of structural Fe in clay minerals: 3. Relationships between smectite redox and structural properties.

    Science.gov (United States)

    Gorski, Christopher A; Klüpfel, Laura E; Voegelin, Andreas; Sander, Michael; Hofstetter, Thomas B

    2013-01-01

    Structural Fe in clay minerals is an important redox-active species in many pristine and contaminated environments as well as in engineered systems. Understanding the extent and kinetics of redox reactions involving Fe-bearing clay minerals has been challenging due to the inability to relate structural Fe(2+)/Fe(total) fractions to fundamental redox properties, such as reduction potentials (EH). Here, we overcame this challenge by using mediated electrochemical reduction (MER) and oxidation (MEO) to characterize the fraction of redox-active structural Fe (Fe(2+)/Fe(total)) in smectites over a wide range of applied EH-values (-0.6 V to +0.6 V). We examined Fe(2+)/Fe(total )- EH relationships of four natural Fe-bearing smectites (SWy-2, SWa-1, NAu-1, NAu-2) in their native, reduced, and reoxidized states and compared our measurements with spectroscopic observations and a suite of mineralogical properties. All smectites exhibited unique Fe(2+)/Fe(total) - EH relationships, were redox active over wide EH ranges, and underwent irreversible electron transfer induced structural changes that were observable with X-ray absorption spectroscopy. Variations among the smectite Fe(2+)/Fe(total) - EH relationships correlated well with both bulk and molecular-scale properties, including Fe(total) content, layer charge, and quadrupole splitting values, suggesting that multiple structural parameters determined the redox properties of smectites. The Fe(2+)/Fe(total) - EH relationships developed for these four commonly studied clay minerals may be applied to future studies interested in relating the extent of structural Fe reduction or oxidation to EH-values.

  3. Measuring site occupancy

    DEFF Research Database (Denmark)

    Rogowska-Wrzesinska, Adelina; Wojdyla, Katarzyna; Williamson, James

    2014-01-01

    occupancy of the modification site. We show that, on one hand, heavily modified cysteines are not necessarily involved in the response to oxidative stress. On the other hand residues with low modification level can be dramatically affected by mild oxidative imbalance. We make use of high resolution mass...... peptides corresponding to 90 proteins. Only 6 modified peptides changed significantly under mild oxidative stress. Quantitative information allowed us to determine relative modification site occupancy of each identified modified residue and pin point heavily modified ones. The method proved to be precise...... and sensitive enough to detect and quantify endogenous levels of oxidative stress on proteome-wide scale and brings a new perspective on the role of the modification site occupancy in cellular redox response....

  4. Catechol-chitosan redox capacitor for added amplification in electrochemical immunoanalysis.

    Science.gov (United States)

    Yan, Kun; Liu, Yi; Guan, Yongguang; Bhokisham, Narendranath; Tsao, Chen-Yu; Kim, Eunkyoung; Shi, Xiao-Wen; Wang, Qin; Bentley, William E; Payne, Gregory F

    2018-05-22

    Antibodies are common recognition elements for molecular detection but often the signals generated by their stoichiometric binding must be amplified to enhance sensitivity. Here, we report that an electrode coated with a catechol-chitosan redox capacitor can amplify the electrochemical signal generated from an alkaline phosphatase (AP) linked immunoassay. Specifically, the AP product p-aminophenol (PAP) undergoes redox-cycling in the redox capacitor to generate amplified oxidation currents. We estimate an 8-fold amplification associated with this redox-cycling in the capacitor (compared to detection by a bare electrode). Importantly, this capacitor-based amplification is generic and can be coupled to existing amplification approaches based on enzyme-linked catalysis or magnetic nanoparticle-based collection/concentration. Thus, the capacitor should enhance sensitivities in conventional immunoassays and also provide chemical to electrical signal transduction for emerging applications in molecular communication. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Sensitivity of wetland methane emissions to model assumptions: application and model testing against site observations

    Directory of Open Access Journals (Sweden)

    L. Meng

    2012-07-01

    Full Text Available Methane emissions from natural wetlands and rice paddies constitute a large proportion of atmospheric methane, but the magnitude and year-to-year variation of these methane sources are still unpredictable. Here we describe and evaluate the integration of a methane biogeochemical model (CLM4Me; Riley et al., 2011 into the Community Land Model 4.0 (CLM4CN in order to better explain spatial and temporal variations in methane emissions. We test new functions for soil pH and redox potential that impact microbial methane production in soils. We also constrain aerenchyma in plants in always-inundated areas in order to better represent wetland vegetation. Satellite inundated fraction is explicitly prescribed in the model, because there are large differences between simulated fractional inundation and satellite observations, and thus we do not use CLM4-simulated hydrology to predict inundated areas. A rice paddy module is also incorporated into the model, where the fraction of land used for rice production is explicitly prescribed. The model is evaluated at the site level with vegetation cover and water table prescribed from measurements. Explicit site level evaluations of simulated methane emissions are quite different than evaluating the grid-cell averaged emissions against available measurements. Using a baseline set of parameter values, our model-estimated average global wetland emissions for the period 1993–2004 were 256 Tg CH4 yr−1 (including the soil sink and rice paddy emissions in the year 2000 were 42 Tg CH4 yr−1. Tropical wetlands contributed 201 Tg CH4 yr−1, or 78% of the global wetland flux. Northern latitude (>50 N systems contributed 12 Tg CH4 yr−1. However, sensitivity studies show a large range (150–346 Tg CH4 yr−1 in predicted global methane emissions (excluding emissions from rice paddies. The large range is

  6. Electronic Connection Between the Quinone and Cytochrome c Redox Pools and Its Role in Regulation of Mitochondrial Electron Transport and Redox Signaling

    Science.gov (United States)

    Sarewicz, Marcin; Osyczka, Artur

    2015-01-01

    Mitochondrial respiration, an important bioenergetic process, relies on operation of four membranous enzymatic complexes linked functionally by mobile, freely diffusible elements: quinone molecules in the membrane and water-soluble cytochromes c in the intermembrane space. One of the mitochondrial complexes, complex III (cytochrome bc1 or ubiquinol:cytochrome c oxidoreductase), provides an electronic connection between these two diffusible redox pools linking in a fully reversible manner two-electron quinone oxidation/reduction with one-electron cytochrome c reduction/oxidation. Several features of this homodimeric enzyme implicate that in addition to its well-defined function of contributing to generation of proton-motive force, cytochrome bc1 may be a physiologically important point of regulation of electron flow acting as a sensor of the redox state of mitochondria that actively responds to changes in bioenergetic conditions. These features include the following: the opposing redox reactions at quinone catalytic sites located on the opposite sides of the membrane, the inter-monomer electronic connection that functionally links four quinone binding sites of a dimer into an H-shaped electron transfer system, as well as the potential to generate superoxide and release it to the intermembrane space where it can be engaged in redox signaling pathways. Here we highlight recent advances in understanding how cytochrome bc1 may accomplish this regulatory physiological function, what is known and remains unknown about catalytic and side reactions within the quinone binding sites and electron transfers through the cofactor chains connecting those sites with the substrate redox pools. We also discuss the developed molecular mechanisms in the context of physiology of mitochondria. PMID:25540143

  7. Separate effects of flooding and anaerobiosis on soil greenhouse gas emissions and redox sensitive biogeochemistry

    Science.gov (United States)

    Gavin McNicol; Whendee L. Silver

    2014-01-01

    Soils are large sources of atmospheric greenhouse gases, and both the magnitude and composition of soil gas emissions are strongly controlled by redox conditions. Though the effect of redox dynamics on greenhouse gas emissions has been well studied in flooded soils, less research has focused on redox dynamics without total soil inundation. For the latter, all that is...

  8. Normalization of NAD+ Redox Balance as a Therapy for Heart Failure.

    Science.gov (United States)

    Lee, Chi Fung; Chavez, Juan D; Garcia-Menendez, Lorena; Choi, Yongseon; Roe, Nathan D; Chiao, Ying Ann; Edgar, John S; Goo, Young Ah; Goodlett, David R; Bruce, James E; Tian, Rong

    2016-09-20

    Impairments of mitochondrial function in the heart are linked intricately to the development of heart failure, but there is no therapy for mitochondrial dysfunction. We assessed the reduced/oxidized ratio of nicotinamide adenine dinucleotide (NADH/NAD(+) ratio) and protein acetylation in the failing heart. Proteome and acetylome analyses were followed by docking calculation, mutagenesis, and mitochondrial calcium uptake assays to determine the functional role of specific acetylation sites. The therapeutic effects of normalizing mitochondrial protein acetylation by expanding the NAD(+) pool also were tested. Increased NADH/NAD(+) and protein hyperacetylation, previously observed in genetic models of defective mitochondrial function, also are present in human failing hearts as well as in mouse hearts with pathologic hypertrophy. Elevation of NAD(+) levels by stimulating the NAD(+) salvage pathway suppressed mitochondrial protein hyperacetylation and cardiac hypertrophy, and improved cardiac function in responses to stresses. Acetylome analysis identified a subpopulation of mitochondrial proteins that was sensitive to changes in the NADH/NAD(+) ratio. Hyperacetylation of mitochondrial malate-aspartate shuttle proteins impaired the transport and oxidation of cytosolic NADH in the mitochondria, resulting in altered cytosolic redox state and energy deficiency. Furthermore, acetylation of oligomycin-sensitive conferring protein at lysine-70 in adenosine triphosphate synthase complex promoted its interaction with cyclophilin D, and sensitized the opening of mitochondrial permeability transition pore. Both could be alleviated by normalizing the NAD(+) redox balance either genetically or pharmacologically. We show that mitochondrial protein hyperacetylation due to NAD(+) redox imbalance contributes to the pathologic remodeling of the heart via 2 distinct mechanisms. Our preclinical data demonstrate a clear benefit of normalizing NADH/NAD(+) imbalance in the failing hearts

  9. The effects of chromium(VI) on the thioredoxin system: Implications for redox regulation

    Science.gov (United States)

    Myers, Charles R.

    2014-01-01

    Hexavalent chromium [Cr(VI)] compounds are highly redox active and have long been recognized as potent cytotoxins and carcinogens. The intracellular reduction of Cr(VI) generates reactive Cr intermediates, which are themselves strong oxidants, as well as superoxide, hydrogen peroxide, and hydroxyl radical. These probably contribute to the oxidative damage and effects on redox-sensitive transcription factors that have been reported. However, the identification of events that initiate these signaling changes has been elusive. More recent studies show that Cr(VI) causes irreversible inhibition of thioredoxin reductase (TrxR) and oxidation of thioredoxin (Trx) and peroxiredoxin (Prx). Mitochondrial Trx2/Prx3 are more sensitive to Cr(VI) treatment than cytosolic Trx1/Prx1, although both compartments show thiol oxidation with higher doses or longer treatments. Thiol redox proteomics demonstrate that Trx2, Prx3, and Trx1 are among the most sensitive proteins in cells to Cr(VI) treatment. Their oxidation could therefore represent initiating events that have widespread implications for protein thiol redox control and for multiple aspects of redox signaling. This review summarizes the effects of Cr(VI) on the TrxR/Trx system and how these events could influence a number of downstream redox signaling systems that are influenced by Cr(VI) exposure. Some of the signaling events discussed include the activation of apoptosis signal regulating kinase and MAP kinases (p38 and JNK) and the modulation of a number of redox-sensitive transcription factors including AP-1, NF-κB, p53, and Nrf2. PMID:22542445

  10. Electrochemical Detection of Circadian Redox Rhythm in Cyanobacterial Cells via Extracellular Electron Transfer.

    Science.gov (United States)

    Nishio, Koichi; Pornpitra, Tunanunkul; Izawa, Seiichiro; Nishiwaki-Ohkawa, Taeko; Kato, Souichiro; Hashimoto, Kazuhito; Nakanishi, Shuji

    2015-06-01

    Recent research on cellular circadian rhythms suggests that the coupling of transcription-translation feedback loops and intracellular redox oscillations is essential for robust circadian timekeeping. For clarification of the molecular mechanism underlying the circadian rhythm, methods that allow for the dynamic and simultaneous detection of transcription/translation and redox oscillations in living cells are needed. Herein, we report that the cyanobacterial circadian redox rhythm can be electrochemically detected based on extracellular electron transfer (EET), a process in which intracellular electrons are exchanged with an extracellular electrode. As the EET-based method is non-destructive, concurrent detection with transcription/translation rhythm using bioluminescent reporter strains becomes possible. An EET pathway that electrochemically connected the intracellular region of cyanobacterial cells with an extracellular electrode was constructed via a newly synthesized electron mediator with cell membrane permeability. In the presence of the mediator, the open circuit potential of the culture medium exhibited temperature-compensated rhythm with approximately 24 h periodicity. Importantly, such circadian rhythm of the open circuit potential was not observed in the absence of the electron mediator, indicating that the EET process conveys the dynamic information regarding the intracellular redox state to the extracellular electrode. These findings represent the first direct demonstration of the intracellular circadian redox rhythm of cyanobacterial cells. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  11. Phosphorus recycling and burial in Baltic Sea sediments with contrasting redox conditions

    DEFF Research Database (Denmark)

    Mort, Haydon P; Slomp, Caroline P; Gustafson, Bo G

    2010-01-01

    . Most burial of P takes place as organic P. We find no evidence for significant authigenic Ca–P formation or biogenic Ca–P burial. The lack of major inorganic P burial sinks makes the Baltic Sea very sensitive to the feedback loop between increased hypoxia, enhanced regeneration of P and increased......In this study, redox-dependent phosphorus (P) recycling and burial at 6 sites in the Baltic Sea is investigated using a combination of porewater and sediment analyses and sediment age dating (210Pb and 137Cs). We focus on sites in the Kattegat, Danish Straits and Baltic Proper where present...... be accounted for in budgets and models for the Baltic Sea....

  12. Differential alkylation-based redox proteomics - Lessons learnt

    DEFF Research Database (Denmark)

    Wojdyla, Katarzyna; Rogowska-Wrzesinska, Adelina

    2015-01-01

    Cysteine is one of the most reactive amino acids. This is due to the electronegativity of sulphur atom in the side chain of thiolate group. It results in cysteine being present in several distinct redox forms inside the cell. Amongst these, reversible oxidations, S-nitrosylation and S-sulfenylati......Cysteine is one of the most reactive amino acids. This is due to the electronegativity of sulphur atom in the side chain of thiolate group. It results in cysteine being present in several distinct redox forms inside the cell. Amongst these, reversible oxidations, S-nitrosylation and S......-sulfenylation are crucial mediators of intracellular redox signalling, with known associations to health and disease. Study of their functionalities has intensified thanks to the development of various analytical strategies, with particular contribution from differential alkylation-based proteomics methods. Presented here...... is a critical evaluation of differential alkylation-based strategies for the analysis of S-nitrosylation and S-sulfenylation. The aim is to assess the current status and to provide insights for future directions in the dynamically evolving field of redox proteomics. To achieve that we collected 35 original...

  13. Utility decay rates of T1-weighted magnetic resonance imaging contrast based on redox-sensitive paramagnetic nitroxyl contrast agents

    International Nuclear Information System (INIS)

    Matsumoto, Ken-ichiro

    2009-01-01

    The availability and applicability of the combination of paramagnetic nitroxyl contrast agent and T 1 -weighted gradient echo (GE)-based dynamic magnetic resonance imaging (MRI) measurement for redox imaging are described. The time courses of T 1 -weighted GE MRI signal intensities according to first-order paramagnetic loss of a nitroxyl contrast agent were simulated for several experimental conditions. The apparent decay rate calculated based on decreasing T 1 -weighted MRI contrast (k MRI ) can show an approximate value of the original decay rate (k true ) discretionarily given for simulation with suitable experimental parameters. The difference between k MRI and k true can be sufficiently small under T 1 -weighted spoiled gradient echo (SPGR) scan conditions (repetition time=75 ms, echo time=3 ms, and flip angle=45deg), with a conventional redox-sensitive nitroxyl contrast agent, such as 4-hydroxy-2,2,6,6,-tetramethylpiperidine-N-oxyl (TEMPOL) and/or 3-carbamoyl-2,2,5,5-tetramethylpyrrolidine-N-oxyl (carbamoyl-PROXYL), and with intravenous (i.v.) doses of below 1.5 γmol/g body weight (b.w.) for mice. The results of this simulation suggest that the k MRI of nitroxyl contrast agents can be the primary index of redox status under biological conditions. (author)

  14. A systems biology perspective on Nrf2-mediated antioxidant response

    International Nuclear Information System (INIS)

    Zhang Qiang; Pi Jingbo; Woods, Courtney G.; Andersen, Melvin E.

    2010-01-01

    Cells in vivo are constantly exposed to reactive oxygen species (ROS) generated endogenously and exogenously. To defend against the deleterious consequences of ROS, cells contain multiple antioxidant enzymes expressed in various cellular compartments to scavenge these toxic species. Under oxidative stresses, these antioxidant enzymes are upregulated to restore redox homeostasis. Such an adaptive response results from the activation of a redox-sensitive gene regulatory network mediated by nuclear factor E2-related factor 2. To more completely understand how the redox control system is designed by nature to meet homeostatic goals, we have examined the network from a systems perspective using engineering approaches. As with man-made control devices, the redox control system can be decomposed into distinct functional modules, including transducer, controller, actuator, and plant. Cells achieve specific performance objectives by utilizing nested feedback loops, feedforward control, and ultrasensitive signaling motifs, etc. Given that endogenously generated ROS are also used as signaling molecules, our analysis suggests a novel mode of action to explain oxidative stress-induced pathological conditions and diseases. Specifically, by adaptively upregulating antioxidant enzymes, oxidative stress may inadvertently attenuate ROS signals that mediate physiological processes, resulting in aberrations of cellular functions and adverse consequences. Lastly, by simultaneously considering the two competing cellular tasks-adaptive antioxidant defense and ROS signaling-we re-examine the premise that dietary antioxidant supplements is generally beneficial to human health. Our analysis highlights some possible adverse effects of these widely consumed antioxidants.

  15. Nitric oxide-mediated maintenance of redox homeostasis contributes to NPR1-dependent plant innate immunity triggered by lipopolysaccharides.

    Science.gov (United States)

    Sun, Aizhen; Nie, Shengjun; Xing, Da

    2012-10-01

    The perception of lipopolysaccharides (LPS) by plant cells can lead to nitric oxide (NO) production and defense gene induction. However, the signaling cascades underlying these cellular responses have not yet been resolved. This work investigated the biosynthetic origin of NO and the role of NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 (NPR1) to gain insight into the mechanism involved in LPS-induced resistance of Arabidopsis (Arabidopsis thaliana). Analysis of inhibitors and mutants showed that LPS-induced NO synthesis was mainly mediated by an arginine-utilizing source of NO generation. Furthermore, LPS-induced NO caused transcript accumulation of alternative oxidase genes and increased antioxidant enzyme activity, which enhanced antioxidant capacity and modulated redox state. We also analyzed the subcellular localization of NPR1 to identify the mechanism for protein-modulated plant innate immunity triggered by LPS. LPS-activated defense responses, including callose deposition and defense-related gene expression, were found to be regulated through an NPR1-dependent pathway. In summary, a significant NO synthesis induced by LPS contributes to the LPS-induced defense responses by up-regulation of defense genes and modulation of cellular redox state. Moreover, NPR1 plays an important role in LPS-triggered plant innate immunity.

  16. Probing Fe (III)/Fe (II) redox potential in a clayey material

    International Nuclear Information System (INIS)

    Tournassat, Christophe; Chainet, Fabien; Betelu, Stephanie; Hadi, Jebril; Gaucher, Eric C.; Ignatiadis, Ioannis; Greneche, Jean-Marc; Charlet, Laurent

    2010-01-01

    Document available in extended abstract form only. Redox is one of the main factors affecting the migration of redox-sensitive radionuclides. As a consequence reducing conditions are considered of strategic importance for the confinement properties of a clayey formation towards nuclear waste. A representative redox potential of clay formation such as Callovian- Oxfordian (COx) can be derived from thermodynamic calculations considering equilibrium between observed redox phases such as pyrite and siderite. However, there is little information on the reactivity of the different reservoirs of redox constituents in this type of complex material. The present study aims at investigating the reactivity of the Fe(III)/Fe(II) redox couple in the structure of clay minerals using different investigation methods: electrochemistry and O 2 reduction kinetic experiments. Clay modified electrodes were specifically designed to probe Fe(III)/Fe(II) redox potential in the structure of clay minerals. The clay fraction of a Callovian-Oxfordian argillite sample originating from the same level than ANDRA underground research laboratory was used after pre-treatment to remove organic matter and accessory minerals such as pyrite that could influence redox potential measurements. These electrodes were used to verify the validity of the model of Favre et al. (2006) that links the redox potential (E clay ) to the the Fe(II)/Fe tot ratio in the structure (m rel ), the pH and the sodium concentration in solution: equation 1. The good agreement between direct potential measurements and model prediction provides a strong evidence of the relevance of this model in our experimental conditions although the clay composition and its too low Fe content do not a priori fulfil the conditions set by Drits and Manceau (2000) for the calculation of K 0 parameter. Following the verification of the model, we tried to apply it to the specific case of a Callovian-Oxfordian sample that had been very well preserved

  17. Redox Impact on Starch Biosynthetic Enzymes in Arabidopsis thaliana

    DEFF Research Database (Denmark)

    Skryhan, Katsiaryna

    Summary The thesis provides new insight into the influence of the plant cell redox state on the transient starch metabolism in Arabidopsis thaliana with a focus on starch biosynthetic enzymes. Two main hypotheses forms the basis of this thesis: 1) photosynthesis and starch metabolism are coordina......Summary The thesis provides new insight into the influence of the plant cell redox state on the transient starch metabolism in Arabidopsis thaliana with a focus on starch biosynthetic enzymes. Two main hypotheses forms the basis of this thesis: 1) photosynthesis and starch metabolism...... are coordinated by the redox state of the cell via post-translational modification of the starch metabolic enzymes containing redox active cysteine residues and these cysteine residues became cross-linked upon oxidation providing a conformational change leading to activity loss; 2) cysteine residues...... of chloroplast enzymes can play a role not only in enzyme activity and redox sensitivity but also in protein folding and stability upon oxidation. Several redox sensitive enzymes identified in this study can serve as potential targets to control the carbon flux to and from starch during the day and night...

  18. Highly Sensitive Electrochemical Sensor for the Detection of Anions in Water Based on a Redox-Active Monolayer Incorporating an Anion Receptor.

    Science.gov (United States)

    Kaur, Balwinder; Erdmann, Cristiane Andreia; Daniëls, Mathias; Dehaen, Wim; Rafiński, Zbigniew; Radecka, Hanna; Radecki, Jerzy

    2017-12-05

    In the present work, gold electrodes were modified using a redox-active layer based on dipyrromethene complexes with Cu(II) or Co(II) and a dipodal anion receptor functionalized with dipyrromethene. These modified gold electrodes were then applied for the electrochemical detection of anions (Cl - , SO 4 2- , and Br - ) in a highly diluted water solution (in the picomolar range). The results showed that both systems, incorporating Cu(II) as well as Co(II) redox centers, exhibited highest sensitivity toward Cl - . The selectivity sequence found for both systems was Cl - > SO 4 2- > Br - . The high selectivity of Cl - anions can be attributed to the higher binding constant of Cl - with the anion receptor and the stronger electronic effect between the central metal and anion in the complex. The detection limit for the determination of Cl - was found at the 1.0 pM level for both sensing systems. The electrodes based on Co(II) redox centers displayed better selectivity toward Cl - anion detection than those based on Cu(II) centers which can be attributed to the stronger electronic interaction between the receptor-target anion complex and the Co(II)/Co(III) redox centers in comparison to the Cu(II)/Cu(I) system. Applicability of gold electrodes modified with DPM-Co(II)-DPM-AR for the electrochemical determination of Cl - anions was demonstrated using the artificial matrix mimicking human serum.

  19. Experiential Avoidance as a Mediator between Rejection Sensitivity and Social Interaction Anxiety

    Directory of Open Access Journals (Sweden)

    Marcella L. Sintos

    2017-12-01

    Full Text Available Due to the overarching and related concepts involved in interpersonal sensitivity, this study aimed to look at the differences between, and relationships of, some of its concepts by explaining the mediating effect of experiential avoidance on rejection sensitivity and social interaction anxiety. One hundred fifty-nine undergraduates within the National Capital Region, aged 16 to 40 (M = 19.29, SD = 2.89, and comprising 89 females and 70 males participated in the study. Results show that both rejection sensitivity and experiential avoidance significantly affect social interaction anxiety. Also, a full mediation occurs when experiential avoidance serves as a mediator. This is explained through the occurrence of habitual coping, whereby the cognitive aspect of behavior (in this case, rejection sensitivity becomes dormant and unnecessary. Some variables which may have possibly accounted for the relationship between these concepts may be considered for future research to validate and better understand the findings of this study.

  20. Determining Li+-Coupled Redox Targeting Reaction Kinetics of Battery Materials with Scanning Electrochemical Microscopy.

    Science.gov (United States)

    Yan, Ruiting; Ghilane, Jalal; Phuah, Kia Chai; Pham Truong, Thuan Nguyen; Adams, Stefan; Randriamahazaka, Hyacinthe; Wang, Qing

    2018-02-01

    The redox targeting reaction of Li + -storage materials with redox mediators is the key process in redox flow lithium batteries, a promising technology for next-generation large-scale energy storage. The kinetics of the Li + -coupled heterogeneous charge transfer between the energy storage material and redox mediator dictates the performance of the device, while as a new type of charge transfer process it has been rarely studied. Here, scanning electrochemical microscopy (SECM) was employed for the first time to determine the interfacial charge transfer kinetics of LiFePO 4 /FePO 4 upon delithiation and lithiation by a pair of redox shuttle molecules FcBr 2 + and Fc. The effective rate constant k eff was determined to be around 3.70-6.57 × 10 -3 cm/s for the two-way pseudo-first-order reactions, which feature a linear dependence on the composition of LiFePO 4 , validating the kinetic process of interfacial charge transfer rather than bulk solid diffusion. In addition, in conjunction with chronoamperometry measurement, the SECM study disproves the conventional "shrinking-core" model for the delithiation of LiFePO 4 and presents an intriguing way of probing the phase boundary propagations induced by interfacial redox reactions. This study demonstrates a reliable method for the kinetics of redox targeting reactions, and the results provide useful guidance for the optimization of redox targeting systems for large-scale energy storage.

  1. Redox Species of Redox Flow Batteries: A Review.

    Science.gov (United States)

    Pan, Feng; Wang, Qing

    2015-11-18

    Due to the capricious nature of renewable energy resources, such as wind and solar, large-scale energy storage devices are increasingly required to make the best use of the renewable power. The redox flow battery is considered suitable for large-scale applications due to its modular design, good scalability and flexible operation. The biggest challenge of the redox flow battery is the low energy density. The redox active species is the most important component in redox flow batteries, and the redox potential and solubility of redox species dictate the system energy density. This review is focused on the recent development of redox species. Different categories of redox species, including simple inorganic ions, metal complexes, metal-free organic compounds, polysulfide/sulfur and lithium storage active materials, are reviewed. The future development of redox species towards higher energy density is also suggested.

  2. Redox Species of Redox Flow Batteries: A Review

    Directory of Open Access Journals (Sweden)

    Feng Pan

    2015-11-01

    Full Text Available Due to the capricious nature of renewable energy resources, such as wind and solar, large-scale energy storage devices are increasingly required to make the best use of the renewable power. The redox flow battery is considered suitable for large-scale applications due to its modular design, good scalability and flexible operation. The biggest challenge of the redox flow battery is the low energy density. The redox active species is the most important component in redox flow batteries, and the redox potential and solubility of redox species dictate the system energy density. This review is focused on the recent development of redox species. Different categories of redox species, including simple inorganic ions, metal complexes, metal-free organic compounds, polysulfide/sulfur and lithium storage active materials, are reviewed. The future development of redox species towards higher energy density is also suggested.

  3. A synthetic redox biofilm made from metalloprotein-prion domain chimera nanowires

    Science.gov (United States)

    Altamura, Lucie; Horvath, Christophe; Rengaraj, Saravanan; Rongier, Anaëlle; Elouarzaki, Kamal; Gondran, Chantal; Maçon, Anthony L. B.; Vendrely, Charlotte; Bouchiat, Vincent; Fontecave, Marc; Mariolle, Denis; Rannou, Patrice; Le Goff, Alan; Duraffourg, Nicolas; Holzinger, Michael; Forge, Vincent

    2017-02-01

    Engineering bioelectronic components and set-ups that mimic natural systems is extremely challenging. Here we report the design of a protein-only redox film inspired by the architecture of bacterial electroactive biofilms. The nanowire scaffold is formed using a chimeric protein that results from the attachment of a prion domain to a rubredoxin (Rd) that acts as an electron carrier. The prion domain self-assembles into stable fibres and provides a suitable arrangement of redox metal centres in Rd to permit electron transport. This results in highly organized films, able to transport electrons over several micrometres through a network of bionanowires. We demonstrate that our bionanowires can be used as electron-transfer mediators to build a bioelectrode for the electrocatalytic oxygen reduction by laccase. This approach opens opportunities for the engineering of protein-only electron mediators (with tunable redox potentials and optimized interactions with enzymes) and applications in the field of protein-only bioelectrodes.

  4. Thiol/disulfide redox states in signaling and sensing

    Science.gov (United States)

    Go, Young-Mi; Jones, Dean P.

    2015-01-01

    Rapid advances in redox systems biology are creating new opportunities to understand complexities of human disease and contributions of environmental exposures. New understanding of thiol-disulfide systems have occurred during the past decade as a consequence of the discoveries that thiol and disulfide systems are maintained in kinetically controlled steady-states displaced from thermodynamic equilibrium, that a widely distributed family of NADPH oxidases produces oxidants that function in cell signaling, and that a family of peroxiredoxins utilize thioredoxin as a reductant to complement the well-studied glutathione antioxidant system for peroxide elimination and redox regulation. This review focuses on thiol/disulfide redox state in biologic systems and the knowledge base available to support development of integrated redox systems biology models to better understand the function and dysfunction of thiol-disulfide redox systems. In particular, central principles have emerged concerning redox compartmentalization and utility of thiol/disulfide redox measures as indicators of physiologic function. Advances in redox proteomics show that, in addition to functioning in protein active sites and cell signaling, cysteine residues also serve as redox sensors to integrate biologic functions. These advances provide a framework for translation of redox systems biology concepts to practical use in understanding and treating human disease. Biological responses to cadmium, a widespread environmental agent, are used to illustrate the utility of these advances to the understanding of complex pleiotropic toxicities. PMID:23356510

  5. Brassinosteroid-induced CO{sub 2} assimilation is associated with increased stability of redox-sensitive photosynthetic enzymes in the chloroplasts in cucumber plants

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yu Ping; Cheng, Fei; Zhou, Yan Hong; Xia, Xiao Jian; Mao, Wei Hua; Shi, Kai [Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058 (China); Chen, Zhi Xiang [Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058 (China); Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907-2054 (United States); Yu, Jing Quan, E-mail: jqyu@zju.edu.cn [Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058 (China); Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Ministry of Agriculture of China, Yuhangtang Road 866, Hangzhou 310058 (China)

    2012-09-28

    Highlights: Black-Right-Pointing-Pointer Activity of certain Calvin cycle enzymes and CO{sub 2} assimilation are induced by BRs. Black-Right-Pointing-Pointer BRs upregulate the activity of the ascorbate-glutathione cycle in the chloroplasts. Black-Right-Pointing-Pointer BRs increase the chloroplast thiol reduction state. Black-Right-Pointing-Pointer A BR-induced reducing environment increases the stability of photosynthetic enzymes. -- Abstract: Brassinosteroids (BRs) play important roles in plant growth, development, photosynthesis and stress tolerance; however, the mechanism underlying BR-enhanced photosynthesis is currently unclear. Here, we provide evidence that an increase in the BR level increased the quantum yield of PSII, activities of Rubisco activase (RCA) and fructose-1,6-bisphosphatase (FBPase), and CO{sub 2} assimilation. BRs upregulated the transcript levels of genes and activity of enzymes involved in the ascorbate-glutathione cycle in the chloroplasts, leading to an increased ratio of reduced (GSH) to oxidized (GSSG) glutathione in the chloroplasts. An increased GSH/GSSG ratio protected RCA from proteolytic digestion and increased the stability of redox-sensitive enzymes in the chloroplasts. These results strongly suggest that BRs are capable of regulating the glutathione redox state in the chloroplasts through the activation of the ascorbate-glutathione cycle. The resulting increase in the chloroplast thiol reduction state promotes CO{sub 2} assimilation, at least in part, by enhancing the stability and activity of redox-sensitive photosynthetic enzymes through post-translational modifications.

  6. Graphene Nanoplatelets Outperforming Platinum as the Electrocatalyst in Co-Bipyridine-Mediated Dye-Sensitized Solar Cells

    Czech Academy of Sciences Publication Activity Database

    Kavan, Ladislav; Yum, J. H.; Grätzel, M.

    2011-01-01

    Roč. 11, č. 12 (2011), s. 5501-5506 ISSN 1530-6984 R&D Projects: GA MŠk LC510; GA AV ČR IAA400400804; GA AV ČR KAN200100801 Institutional research plan: CEZ:AV0Z40400503 Keywords : graphene * dye sensitized solar cell * cobalt redox shuttle Subject RIV: CG - Electrochemistry Impact factor: 13.198, year: 2011

  7. Redox-mediated bypass of restriction point via skipping of G1pm

    Directory of Open Access Journals (Sweden)

    Greene James J

    2006-07-01

    Full Text Available Abstract Background It is well known that cancer cells bypass the restriction point, R, and undergo uncontrolled cell proliferation. Hypothesis and evidence We suggest here that fibrosarcoma cells enter G1ps directly from M, skipping G1pm, hence bypassing R, in response to redox modulation. Evidence is presented from the published literature that demonstrate a shortening of the cycle period of transformed fibroblasts (SV-3T3 compared to the nontransformed 3T3 fibroblasts, corresponding to the duration of G1pm in the 3T3 fibroblasts. Evidence is also presented that demonstrate that redox modulation can induce the CUA-4 fibroblasts to bypass R, resulting in a cycle period closely corresponding to the cycle period of fibrosarcoma cells (HT1080. Conclusion The evidence supports our hypothesis that a low internal redox potential can cause fibrosarcoma cells to skip the G1pm phase of the cell cycle.

  8. Plant cytoplasmic GAPDH: redox post-translational modifications and moonlighting properties

    Directory of Open Access Journals (Sweden)

    Mirko eZaffagnini

    2013-11-01

    Full Text Available Glyceraldehyde-3-phosphate dehydrogenase (GAPDH is a ubiquitous enzyme involved in glycolysis and shown, particularly in animal cells, to play additional roles in several unrelated non-metabolic processes such as control of gene expression and apoptosis. This functional versatility is regulated, in part at least, by redox post-translational modifications that alter GAPDH catalytic activity and influence the subcellular localization of the enzyme. In spite of the well established moonlighting (multifunctional properties of animal GAPDH, little is known about non-metabolic roles of GAPDH in plants. Plant cells contain several GAPDH isoforms with different catalytic and regulatory properties, located both in the cytoplasm and in plastids, and participating in glycolysis and the Calvin-Benson cycle. A general feature of all GAPDH proteins is the presence of an acidic catalytic cysteine in the active site that is overly sensitive to oxidative modifications, including glutathionylation and S-nitrosylation. In Arabidopsis, oxidatively-modified cytoplasmic GAPDH has been successfully used as a tool to investigate the role of reduced glutathione, thioredoxins and glutaredoxins in the control of different types of redox post-translational modifications. Oxidative modifications inhibit GAPDH activity, but might enable additional functions in plant cells. Mounting evidence support the concept that plant cytoplasmic GAPDH may fulfill alternative, non-metabolic functions that are triggered by redox post-translational modifications of the protein under stress conditions. The aim of this review is to detail the molecular mechanisms underlying the redox regulation of plant cytoplasmic GAPDH in the light of its crystal structure, and to provide a brief inventory of the well known redox-dependent multi-facetted properties of animal GAPDH, together with the emerging roles of oxidatively-modified GAPDH in stress signaling pathways in plants.

  9. Redox regulation of fertilisation and the spermatogenic process

    Institute of Scientific and Technical Information of China (English)

    Junichi Fujii; Satoshi Tsunoda

    2011-01-01

    Oxidative stress is one of the major causes of male infertility; it damages spermatogenic cells, the spermatogenic process and sperm function. Recent advances in redox biology have revealed the signalling role of reactive oxygen species (ROS) that are generated by cells. While highly reactive oxidants, such as the hydroxyl radical, exert largely deleterious effects, hydrogen peroxide can feasibly serve as a signal mediator because it is moderately reactive and membrane permeable and because it can oxidize only limited numbers of functional groups of biological molecules. The amino acid side chain most sensitive to oxidation is cysteine sulphydryl, which is commonly involved in the catalysis of some enzymes. Although the reactivity of cysteine sulphhydryl is not very high in ordinary proteins, some phosphatases possess a highly reactive sulphydryl group at their catalytic centre and are thereby oxidatively inactivated by transiently elevated hydrogen peroxide levels after extracellular stimuli and under certain environmental conditions. Peroxiredoxins, in turn, show moderate hydrogen peroxide-reducing activity, and their role in the modulation of ROS-mediated signal transduction in ordinary cells, mediated by protecting phosphatases from oxidative inactivation, has attracted much attention. Although knowledge of the signalling role of ROS in the male reproductive system is limited at present, its significance is becoming a focal issue. Here, we present a review of the emerging signalling role of hydrogen peroxide in testes.

  10. Hexamethoxylated Monocarbonyl Analogues of Curcumin Cause G2/M Cell Cycle Arrest in NCI-H460 Cells via Michael Acceptor-Dependent Redox Intervention.

    Science.gov (United States)

    Li, Yan; Zhang, Li-Ping; Dai, Fang; Yan, Wen-Jing; Wang, Hai-Bo; Tu, Zhi-Shan; Zhou, Bo

    2015-09-09

    Curcumin, derived from the dietary spice turmeric, holds promise for cancer prevention. This prompts much interest in investigating the action mechanisms of curcumin and its analogues. Two symmetrical hexamethoxy-diarylpentadienones (1 and 2) as cucumin analogues were reported to possess significantly enhanced cytotoxicity compared with the parent molecule. However, the detailed mechanisms remain unclear. In this study, compounds 1 and 2 were identified as the G2/M cell cycle arrest agents to mediate the cytotoxicity toward NCI-H460 cells via Michael acceptor-dependent redox intervention. Compared with curcumin, they could more easily induce a burst of reactive oxygen species (ROS) and collapse of the redox buffering system. One possible reason is that they could more effectively target intracellular TrxR to convert this antioxidant enzyme into a ROS promoter. Additionally, they caused up-regulation of p53 and p21 and down-regulation of redox-sensitive Cdc25C along with cyclin B1/Cdk1 in a Michael acceptor- and ROS-dependent fashion. Interestingly, in comparison with compound 2, compound 1 displayed a relatively weak ability to generate ROS but increased cell cycle arrest activity and cytotoxicity probably due to its Michael acceptor-dependent microtubule-destabilizing effect and greater GST-inhibitory activity, as well as its enhanced cellular uptake. This work provides useful information for understanding Michael acceptor-dependent and redox-mediated cytotoxic mechanisms of curcumin and its active analogues.

  11. Effect of organic additives on positive electrolyte for vanadium redox battery

    International Nuclear Information System (INIS)

    Li Sha; Huang Kelong; Liu Suqin; Fang Dong; Wu Xiongwei; Lu Dan; Wu Tao

    2011-01-01

    Highlights: → Four organics as electrolyte additives of vanadium redox battery. → Changes are examined in the electrochemical properties of vanadium redox battery. → D-sorbitol is a suitable additive to the electrolyte for the vanadium redox battery. → The mechanism of improvement is discussed in detail. - Abstract: Fructose, mannitol, glucose, D-sorbitol are explored as additives in electrolyte for vanadium redox battery (VRB), respectively. The effects of additives on electrolyte are studied by cyclic voltammetry (CV), charge-discharge technique, electrochemical impedance spectroscopy (EIS) and Raman spectroscopy. The results indicate that the vanadium redox cell using the electrolyte with the additive of D-sorbitol exhibits the best electrochemical performance (the energy efficiency 81.8%). The EIS results indicate that the electrochemical activity of the electrolyte is improved by adding D-sorbitol, which can be interpreted as the increase of available (-OH) groups providing active sites for electron transfer. The Raman spectra show that VO 2+ ions take part in forming a complex with the D-sorbitol, which not only improve solubility of V(V) electrolyte, but also provide more activity sites for the V(IV)/V(V) redox reaction.

  12. Effect of organic additives on positive electrolyte for vanadium redox battery

    Energy Technology Data Exchange (ETDEWEB)

    Li Sha [Department of Functional Materials and Chemistry, School of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Huang Kelong, E-mail: lisha_csu@163.com [Department of Functional Materials and Chemistry, School of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Liu Suqin; Fang Dong; Wu Xiongwei; Lu Dan; Wu Tao [Department of Functional Materials and Chemistry, School of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China)

    2011-06-30

    Highlights: > Four organics as electrolyte additives of vanadium redox battery. > Changes are examined in the electrochemical properties of vanadium redox battery. > D-sorbitol is a suitable additive to the electrolyte for the vanadium redox battery. > The mechanism of improvement is discussed in detail. - Abstract: Fructose, mannitol, glucose, D-sorbitol are explored as additives in electrolyte for vanadium redox battery (VRB), respectively. The effects of additives on electrolyte are studied by cyclic voltammetry (CV), charge-discharge technique, electrochemical impedance spectroscopy (EIS) and Raman spectroscopy. The results indicate that the vanadium redox cell using the electrolyte with the additive of D-sorbitol exhibits the best electrochemical performance (the energy efficiency 81.8%). The EIS results indicate that the electrochemical activity of the electrolyte is improved by adding D-sorbitol, which can be interpreted as the increase of available (-OH) groups providing active sites for electron transfer. The Raman spectra show that VO{sup 2+} ions take part in forming a complex with the D-sorbitol, which not only improve solubility of V(V) electrolyte, but also provide more activity sites for the V(IV)/V(V) redox reaction.

  13. Pain sensitivity mediates the relationship between stress and headache intensity in chronic tension-type headache.

    Science.gov (United States)

    Cathcart, Stuart; Bhullar, Navjot; Immink, Maarten; Della Vedova, Chris; Hayball, John

    2012-01-01

    A central model for chronic tension-type headache (CTH) posits that stress contributes to headache, in part, by aggravating existing hyperalgesia in CTH sufferers. The prediction from this model that pain sensitivity mediates the relationship between stress and headache activity has not yet been examined. To determine whether pain sensitivity mediates the relationship between stress and prospective headache activity in CTH sufferers. Self-reported stress, pain sensitivity and prospective headache activity were measured in 53 CTH sufferers recruited from the general population. Pain sensitivity was modelled as a mediator between stress and headache activity, and tested using a nonparametric bootstrap analysis. Pain sensitivity significantly mediated the relationship between stress and headache intensity. The results of the present study support the central model for CTH, which posits that stress contributes to headache, in part, by aggravating existing hyperalgesia in CTH sufferers. Implications for the mechanisms and treatment of CTH are discussed.

  14. Arteriovenous oscillations of the redox potential: Is the redox state influencing blood flow?

    Science.gov (United States)

    Poznanski, Jaroslaw; Szczesny, Pawel; Pawlinski, Bartosz; Mazurek, Tomasz; Zielenkiewicz, Piotr; Gajewski, Zdzislaw; Paczek, Leszek

    2017-09-01

    Studies on the regulation of human blood flow revealed several modes of oscillations with frequencies ranging from 0.005 to 1 Hz. Several mechanisms were proposed that might influence these oscillations, such as the activity of vascular endothelium, the neurogenic activity of vessel wall, the intrinsic activity of vascular smooth muscle, respiration, and heartbeat. These studies relied typically on non-invasive techniques, for example, laser Doppler flowmetry. Oscillations of biochemical markers were rarely coupled to blood flow. The redox potential difference between the artery and the vein was measured by platinum electrodes placed in the parallel homonymous femoral artery and the femoral vein of ventilated anesthetized pigs. Continuous measurement at 5 Hz sampling rate using a digital nanovoltmeter revealed fluctuating signals with three basic modes of oscillations: ∼ 1, ∼ 0.1 and ∼ 0.01 Hz. These signals clearly overlap with reported modes of oscillations in blood flow, suggesting coupling of the redox potential and blood flow. The amplitude of the oscillations associated with heart action was significantly smaller than for the other two modes, despite the fact that heart action has the greatest influence on blood flow. This finding suggests that redox potential in blood might be not a derivative but either a mediator or an effector of the blood flow control system.

  15. Activator Protein-1: redox switch controlling structure and DNA-binding

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Zhou; Machius, Mischa; Nestler, Eric J.; Rudenko, Gabby (Texas-MED); (Icahn)

    2017-09-07

    The transcription factor, activator protein-1 (AP-1), binds to cognate DNA under redox control; yet, the underlying mechanism has remained enigmatic. A series of crystal structures of the AP-1 FosB/JunD bZIP domains reveal ordered DNA-binding regions in both FosB and JunD even in absence DNA. However, while JunD is competent to bind DNA, the FosB bZIP domain must undergo a large conformational rearrangement that is controlled by a ‘redox switch’ centered on an inter-molecular disulfide bond. Solution studies confirm that FosB/JunD cannot undergo structural transition and bind DNA when the redox-switch is in the ‘OFF’ state, and show that the mid-point redox potential of the redox switch affords it sensitivity to cellular redox homeostasis. The molecular and structural studies presented here thus reveal the mechanism underlying redox-regulation of AP-1 Fos/Jun transcription factors and provide structural insight for therapeutic interventions targeting AP-1 proteins.

  16. The bacterial response regulator ArcA uses a diverse binding site architecture to regulate carbon oxidation globally.

    Directory of Open Access Journals (Sweden)

    Dan M Park

    Full Text Available Despite the importance of maintaining redox homeostasis for cellular viability, how cells control redox balance globally is poorly understood. Here we provide new mechanistic insight into how the balance between reduced and oxidized electron carriers is regulated at the level of gene expression by mapping the regulon of the response regulator ArcA from Escherichia coli, which responds to the quinone/quinol redox couple via its membrane-bound sensor kinase, ArcB. Our genome-wide analysis reveals that ArcA reprograms metabolism under anaerobic conditions such that carbon oxidation pathways that recycle redox carriers via respiration are transcriptionally repressed by ArcA. We propose that this strategy favors use of catabolic pathways that recycle redox carriers via fermentation akin to lactate production in mammalian cells. Unexpectedly, bioinformatic analysis of the sequences bound by ArcA in ChIP-seq revealed that most ArcA binding sites contain additional direct repeat elements beyond the two required for binding an ArcA dimer. DNase I footprinting assays suggest that non-canonical arrangements of cis-regulatory modules dictate both the length and concentration-sensitive occupancy of DNA sites. We propose that this plasticity in ArcA binding site architecture provides both an efficient means of encoding binding sites for ArcA, σ(70-RNAP and perhaps other transcription factors within the same narrow sequence space and an effective mechanism for global control of carbon metabolism to maintain redox homeostasis.

  17. THE THIOREDOXIN SYSTEM IN REGULATING MCF-7 CELL PROLIFERATION UNDER REDOX STATUS MODULATION

    Directory of Open Access Journals (Sweden)

    E. A. Stepovaya

    2016-01-01

    Full Text Available Introduction. Despite the available data on tumor cell functioning under the conditions of free radical-mediated oxidation, the mechanisms of redox regulation, cell proliferation management and apoptosis avoidance remain understudied.The objective of the study was to identify the role of the thioredoxin system in regulating MCF-7 breast cancer cell proliferation under redox status modulation with 1.4-dithioerythritol.Material and methods. The studies were conducted on the MCF-7 breast cancer cell line, grown in adherent cell culture. Cell redox status was modulated with5 mM N-ethylmaleimide – an SH group and peptide inhibitor and5 mM 1.4-dithioerythritol – a thiol group protector. The cell cycle was evaluated by flow cytometry, the same technique was used to measure the reactive oxygen species concentration. The levels of reduced and oxidized glutathione and the activity of thioredoxin reductase were identified by spectrophotometry. The intracellular concentrations of thioredoxin, cyclin E and cyclin-dependent kinase 2 were determined by Western blot analysis.Results and discussion. The essential role of the thioredoxin system in regulating MCF-7 breast cancer cell proliferation was exhibited. S-phase arrest under the effect of N-ethylmaleimide and G0/G1-phase arrest under the effect of 1.4-dithioerythritol are associated with the changes in the activity of redox-sensitive protein complexes (cyclins and cyclin-dependent kinases that regulate cell proliferation.Conclusion. Redoxdependent modulation of proliferation regulating intracellular protein activity occurs due to the thioredoxin system. This is a promising research area for seeking molecular targets of breast cell malignization. 

  18. Organic cofactors participated more frequently than transition metals in redox reactions of primitive proteins.

    Science.gov (United States)

    Ji, Hong-Fang; Chen, Lei; Zhang, Hong-Yu

    2008-08-01

    Protein redox reactions are one of the most basic and important biochemical actions. As amino acids are weak redox mediators, most protein redox functions are undertaken by protein cofactors, which include organic ligands and transition metal ions. Since both kinds of redox cofactors were available in the pre-protein RNA world, it is challenging to explore which one was more involved in redox processes of primitive proteins? In this paper, using an examination of the redox cofactor usage of putative ancient proteins, we infer that organic ligands participated more frequently than transition metals in redox reactions of primitive proteins, at least as protein cofactors. This is further supported by the relative abundance of amino acids in the primordial world. Supplementary material for this article can be found on the BioEssays website. (c) 2008 Wiley Periodicals, Inc.

  19. Geomicrobiological redox cycling of the transuranic element neptunium.

    Science.gov (United States)

    Law, Gareth T W; Geissler, Andrea; Lloyd, Jonathan R; Livens, Francis R; Boothman, Christopher; Begg, James D C; Denecke, Melissa A; Rothe, Jörg; Dardenne, Kathy; Burke, Ian T; Charnock, John M; Morris, Katherine

    2010-12-01

    Microbial processes can affect the environmental behavior of redox sensitive radionuclides, and understanding these reactions is essential for the safe management of radioactive wastes. Neptunium, an alpha-emitting transuranic element, is of particular importance because of its long half-life, high radiotoxicity, and relatively high solubility as Np(V)O(2)(+) under oxic conditions. Here, we describe experiments to explore the biogeochemistry of Np where Np(V) was added to oxic sediment microcosms with indigenous microorganisms and anaerobically incubated. Enhanced Np removal to sediments occurred during microbially mediated metal reduction, and X-ray absorption spectroscopy showed this was due to reduction to poorly soluble Np(IV) on solids. In subsequent reoxidation experiments, sediment-associated Np(IV) was somewhat resistant to oxidative remobilization. These results demonstrate the influence of microbial processes on Np solubility and highlight the critical importance of radionuclide biogeochemistry in nuclear legacy management.

  20. Development of a Sensitive Electrochemical Enzymatic Reaction-Based Cholesterol Biosensor Using Nano-Sized Carbon Interdigitated Electrodes Decorated with Gold Nanoparticles.

    Science.gov (United States)

    Sharma, Deepti; Lee, Jongmin; Seo, Junyoung; Shin, Heungjoo

    2017-09-15

    We developed a versatile and highly sensitive biosensor platform. The platform is based on electrochemical-enzymatic redox cycling induced by selective enzyme immobilization on nano-sized carbon interdigitated electrodes (IDEs) decorated with gold nanoparticles (AuNPs). Without resorting to sophisticated nanofabrication technologies, we used batch wafer-level carbon microelectromechanical systems (C-MEMS) processes to fabricate 3D carbon IDEs reproducibly, simply, and cost effectively. In addition, AuNPs were selectively electrodeposited on specific carbon nanoelectrodes; the high surface-to-volume ratio and fast electron transfer ability of AuNPs enhanced the electrochemical signal across these carbon IDEs. Gold nanoparticle characteristics such as size and morphology were reproducibly controlled by modulating the step-potential and time period in the electrodeposition processes. To detect cholesterol selectively using AuNP/carbon IDEs, cholesterol oxidase (ChOx) was selectively immobilized via the electrochemical reduction of the diazonium cation. The sensitivity of the AuNP/carbon IDE-based biosensor was ensured by efficient amplification of the redox mediators, ferricyanide and ferrocyanide, between selectively immobilized enzyme sites and both of the combs of AuNP/carbon IDEs. The presented AuNP/carbon IDE-based cholesterol biosensor exhibited a wide sensing range (0.005-10 mM) and high sensitivity (~993.91 µA mM -1 cm -2 ; limit of detection (LOD) ~1.28 µM). In addition, the proposed cholesterol biosensor was found to be highly selective for the cholesterol detection.

  1. The role of Nrf1 and Nrf2 in the regulation of glutathione and redox dynamics in the developing zebrafish embryo

    Directory of Open Access Journals (Sweden)

    Karilyn E. Sant

    2017-10-01

    Full Text Available Redox signaling is important for embryogenesis, guiding pathways that govern processes crucial for embryo patterning, including cell polarization, proliferation, and apoptosis. Exposure to pro-oxidants during this period can be deleterious, resulting in altered physiology, teratogenesis, later-life diseases, or lethality. We previously reported that the glutathione antioxidant defense system becomes increasingly robust, including a doubling of total glutathione and dynamic shifts in the glutathione redox potential at specific stages during embryonic development in the zebrafish, Danio rerio. However, the mechanisms underlying these changes are unclear, as is the effectiveness of the glutathione system in ameliorating oxidative insults to the embryo at different stages. Here, we examine how the glutathione system responds to the model pro-oxidants tert-butylhydroperoxide and tert-butylhydroquinone at different developmental stages, and the role of Nuclear factor erythroid 2-related factor (Nrf proteins in regulating developmental glutathione redox status. Embryos became increasingly sensitive to pro-oxidants after 72 h post-fertilization (hpf, after which the duration of the recovery period for the glutathione redox potential was increased. To determine whether the doubling of glutathione or the dynamic changes in glutathione redox potential are mediated by zebrafish paralogs of Nrf transcription factors, morpholino oligonucleotides were used to knock down translation of Nrf1 and Nrf2 (nrf1a, nrf1b, nrf2a, nrf2b. Knockdown of Nrf1a or Nrf1b perturbed glutathione redox state until 72 hpf. Knockdown of Nrf2 paralogs also perturbed glutathione redox state but did not significantly affect the response of glutathione to pro-oxidants. Nrf1b morphants had decreased gene expression of glutathione synthesis enzymes, while hsp70 increased in Nrf2b morphants. This work demonstrates that despite having a more robust glutathione system, embryos become more

  2. Cobalt-Based Electrolytes for Dye-Sensitized Solar Cells: Recent Advances towards Stable Devices

    Directory of Open Access Journals (Sweden)

    Federico Bella

    2016-05-01

    Full Text Available Redox mediators based on cobalt complexes allowed dye-sensitized solar cells (DSCs to achieve efficiencies exceeding 14%, thus challenging the emerging class of perovskite solar cells. Unfortunately, cobalt-based electrolytes demonstrate much lower long-term stability trends if compared to the traditional iodide/triiodide redox couple. In view of the large-scale commercialization of cobalt-based DSCs, the scientific community has recently proposed various approaches and materials to increase the stability of these devices, which comprise gelling agents, crosslinked polymeric matrices and mixtures of solvents (including water. This review summarizes the most significant advances recently focused towards this direction, also suggesting some intriguing way to fabricate third-generation cobalt-based photoelectrochemical devices stable over time.

  3. Binding of histone H1 to DNA is differentially modulated by redox state of HMGB1.

    Directory of Open Access Journals (Sweden)

    Eva Polanská

    Full Text Available HMGB1 is an architectural protein in chromatin, acting also as a signaling molecule outside the cell. Recent reports from several laboratories provided evidence that a number of both the intracellular and extracellular functions of HMGB1 may depend on redox-sensitive cysteine residues of the protein. In this study we demonstrate that redox state of HMGB1 can significantly modulate the ability of the protein to bind and bend DNA, as well as to promote DNA end-joining. We also report a high affinity binding of histone H1 to hemicatenated DNA loops and DNA minicircles. Finally, we show that reduced HMGB1 can readily displace histone H1 from DNA, while oxidized HMGB1 has limited capacity for H1 displacement. Our results suggested a novel mechanism for the HMGB1-mediated modulation of histone H1 binding to DNA. Possible biological consequences of linker histones H1 replacement by HMGB1 for the functioning of chromatin are discussed.

  4. Unusual thiol-based redox metabolism of parasitic flukes.

    Science.gov (United States)

    Tripathi, Timir; Suttiprapa, Sutas; Sripa, Banchob

    2017-08-01

    Parasitic flukes are exposed to free radicals and, to a greater extent, reactive oxygen species (ROS) during their life cycle. Despite being relentlessly exposed to ROS released by activated immune cells, these parasites can survive for many years in the host. Cellular thiol-based redox metabolism plays a crucial role in parasite survival within their hosts. Evidence shows that oxidative stress and redox homeostasis maintenance are important clinical and pathobiochemical as well as effective therapeutic principles in various diseases. The characterization of redox and antioxidant enzymes is likely to yield good target candidates for novel drugs and vaccines. The absence of active catalase in fluke parasites offers great potential for the development of chemotherapeutic agents that act by perturbing the redox equilibrium of the cell. One of the redox-sensitive enzymes, thioredoxin glutathione reductase (TGR), has been accepted as a drug target against blood fluke infections, and related clinical trials are in progress. TGR is the sole enzyme responsible for Trx and GSH reduction in parasitic flukes. The availability of helminth genomes has accelerated the research on redox metabolism of flukes; however, significant achievements have yet to be attained. The present review summarizes current knowledge on the redox and antioxidant system of the parasitic flukes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Redox-Dependent Inflammation in Islet Transplantation Rejection

    Directory of Open Access Journals (Sweden)

    Jessie M. Barra

    2018-04-01

    Full Text Available Type 1 diabetes is an autoimmune disease that results in the progressive destruction of insulin-producing pancreatic β-cells inside the islets of Langerhans. The loss of this vital population leaves patients with a lifelong dependency on exogenous insulin and puts them at risk for life-threatening complications. One method being investigated to help restore insulin independence in these patients is islet cell transplantation. However, challenges associated with transplant rejection and islet viability have prevented long-term β-cell function. Redox signaling and the production of reactive oxygen species (ROS by recipient immune cells and transplanted islets themselves are key players in graft rejection. Therefore, dissipation of ROS generation is a viable intervention that can protect transplanted islets from immune-mediated destruction. Here, we will discuss the newly appreciated role of redox signaling and ROS synthesis during graft rejection as well as new strategies being tested for their efficacy in redox modulation during islet cell transplantation.

  6. Redox-Dependent Inflammation in Islet Transplantation Rejection

    Science.gov (United States)

    Barra, Jessie M.; Tse, Hubert M.

    2018-01-01

    Type 1 diabetes is an autoimmune disease that results in the progressive destruction of insulin-producing pancreatic β-cells inside the islets of Langerhans. The loss of this vital population leaves patients with a lifelong dependency on exogenous insulin and puts them at risk for life-threatening complications. One method being investigated to help restore insulin independence in these patients is islet cell transplantation. However, challenges associated with transplant rejection and islet viability have prevented long-term β-cell function. Redox signaling and the production of reactive oxygen species (ROS) by recipient immune cells and transplanted islets themselves are key players in graft rejection. Therefore, dissipation of ROS generation is a viable intervention that can protect transplanted islets from immune-mediated destruction. Here, we will discuss the newly appreciated role of redox signaling and ROS synthesis during graft rejection as well as new strategies being tested for their efficacy in redox modulation during islet cell transplantation. PMID:29740396

  7. How Reducing was the Late Devonian Ocean? The Role of Extensive Expansion of Anoxia in Marine Biogeochemical Cycles of Redox Sensitive Metals.

    Science.gov (United States)

    Sahoo, S. K.; Jin, H.

    2017-12-01

    The evolution of Earth's biogeochemical cycles is intimately linked to the oxygenation of the oceans and atmosphere. The Late Devonian is no exception as its characterized with mass extinction and severe euxinia. Here we use concentrations of Molybdenum (Mo), Vanadium (V), Uranium (U) and Chromium (Cr) in organic rich black shales from the Lower Bakken Formation of the Williston Basin, to explore the relationship between extensive anoxia vs. euxinia and it's relation with massive release of oxygen in the ocean atmosphere system. XRF data from 4 core across the basin shows that modern ocean style Mo, U and Cr enrichments are observed throughout the Lower Bakken Formation, yet V is not enriched until later part of the formation. Given the coupling between redox-sensitive-trace element cycles and ocean redox, various models for Late Devonian ocean chemistry imply different effects on the biogeochemical cycling of major and trace nutrients. Here, we examine the differing redox behavior of molybdenum and vanadium under an extreme anoxia and relatively low extent of euxinia. The model suggests that Late Devonian was perhaps extensively anoxic- 40-50% compared to modern seafloor area, and a very little euxinia. Mo enrichments extend up to 500 p.p.m. throughout the section, representative of a modern reducing ocean. However, coeval low V enrichments only support towards anoxia, where anoxia is a source of V, and a sink for Mo. Our model suggests that the oceanic V reservoir is extremely sensitive to perturbations in the extent of anoxic condition, particularly during post glacial times.

  8. Techno-Economic Modeling and Analysis of Redox Flow Battery Systems

    Directory of Open Access Journals (Sweden)

    Jens Noack

    2016-08-01

    Full Text Available A techno-economic model was developed to investigate the influence of components on the system costs of redox flow batteries. Sensitivity analyses were carried out based on an example of a 10 kW/120 kWh vanadium redox flow battery system, and the costs of the individual components were analyzed. Particular consideration was given to the influence of the material costs and resistances of bipolar plates and energy storage media as well as voltages and electric currents. Based on the developed model, it was possible to formulate statements about the targeted optimization of a developed non-commercial vanadium redox flow battery system and general aspects for future developments of redox flow batteries.

  9. Gamma oscillations and spontaneous network activity in the hippocampus are highly sensitive to decreases in pO2 and concomitant changes in mitochondrial redox state.

    Science.gov (United States)

    Huchzermeyer, Christine; Albus, Klaus; Gabriel, Hans-Jürgen; Otáhal, Jakub; Taubenberger, Nando; Heinemann, Uwe; Kovács, Richard; Kann, Oliver

    2008-01-30

    Gamma oscillations have been implicated in higher cognitive processes and might critically depend on proper mitochondrial function. Using electrophysiology, oxygen sensor microelectrode, and imaging techniques, we investigated the interactions of neuronal activity, interstitial pO2, and mitochondrial redox state [NAD(P)H and FAD (flavin adenine dinucleotide) fluorescence] in the CA3 subfield of organotypic hippocampal slice cultures. We find that gamma oscillations and spontaneous network activity decrease significantly at pO2 levels that do not affect neuronal population responses as elicited by moderate electrical stimuli. Moreover, pO2 and mitochondrial redox states are tightly coupled, and electrical stimuli reveal transient alterations of redox responses when pO2 decreases within the normoxic range. Finally, evoked redox responses are distinct in somatic and synaptic neuronal compartments and show different sensitivity to changes in pO2. We conclude that the threshold of interstitial pO2 for robust CA3 network activities and required mitochondrial function is clearly above the "critical" value, which causes spreading depression as a result of generalized energy failure. Our study highlights the importance of a functional understanding of mitochondria and their implications on activities of individual neurons and neuronal networks.

  10. Improved efficiency of CdS quantum dot sensitized solar cell with an organic redox couple and a polymer counter electrode

    International Nuclear Information System (INIS)

    Shu, Ting; Li, Xiong; Ku, Zhi-Liang; Wang, Shi; Wu, Shi; Jin, Xiao-Hong; Hu, Chun-Di

    2014-01-01

    Highlights: • The organic AT - /BAT and T - /T 2 redox couples were used in CdS QDSSCs. • The AT - /BAT and PEDOT are better than polysulfide electrolyte and Pt and CoS CEs. • An improved η of 1.53% was obtained with the AT - /BAT electrolyte and the PEDOT CE. • PEDOT CE deposited at high deposition charge has better electrochemical activity. • The AT - /BAT outperformed T - /T 2 electrolyte due to suppressed charge recombination. - Abstract: Quantum dot sensitized solar cells (QDSSCs) based on an organic thiolate/disulfide redox couple (C 7 H 5 N 4 S - /C 14 H 10 N 8 S 2 or C 2 H 3 N 4 S - /C 4 H 6 N 8 S 2 ) and a polymer counter electrode [poly (3, 4-ethylenedioxythiophene), PEDOT] were fabricated and their photovoltaic performance were investigated. In CdS QDSSC, the organic C 7 H 5 N 4 S - /C 14 H 10 N 8 S 2 electrolyte shows better performance than the polysulfide electrolyte, and the PEDOT counter electrode exhibits higher efficiency than that of the Pt counter electrode and the CoS counter electrode. An efficiency of 1.53% was achieved in this QDSSC. The influences of the morphology and the deposition charge of the PEDOT counter electrodes on the cell performance were also studied. Furthermore, it was found that the C 7 H 5 N 4 S - /C 14 H 10 N 8 S 2 redox couple outperformed the C 2 H 3 N 4 S - /C 4 H 6 N 8 S 2 redox couple due to reduced electron recombination

  11. Riboflavin-mediated photosensitization of Vinca alkaloids distorts drug sensitivity assays.

    Science.gov (United States)

    Granzow, C; Kopun, M; Kröber, T

    1995-11-01

    Poor reproducibility of cytotoxicity tests with Vinca alkaloids has frequently been reported. A commonly presumed light sensitivity of the drugs could not be confirmed. However, we found that they are photosensitized by riboflavin (vitamin B2), an obligatory component of cell culture media. Light of wavelengths below 500 nm triggered rapid photoreactions of riboflavin with vinblastine, vincristine, and vindesine in aqueous solutions. The photoreactions altered the absorption spectra of these alkaloids and yielded degradation products that could be separated by TLC. In cell cultures, both immediate and persisting, riboflavin-mediated photoreactivity could be distinguished. They preclude reliable determinations of sensitivity and resistance to Vinca alkaloids, as exemplified on chemosensitive and multidrug-resistant mouse ascites cells. In experiments involving photosensitization, the 50% inhibitory concentration values of sensitive and resistant cells were overlapping and fluctuated in the ranges from 3 to 30 nM and 15 to 360 nM vinblastine, respectively. Corresponding values from series of experiments protected from photosensitization were 1.02 +/- 0.22 nM and 18.5 +/- 3.42 nM. Hence, riboflavin-mediated photoreactions must be fully prevented in assays of cellular drug sensitivity. Procedures for eliminating immediate as well as persisting photoreactivity were established.

  12. A self-cleaning Li-S battery enabled by a bifunctional redox mediator

    Science.gov (United States)

    Ren, Y. X.; Zhao, T. S.; Liu, M.; Zeng, Y. K.; Jiang, H. R.

    2017-09-01

    The polysulfide shuttle effect and lithium dendrite growth in lithium-sulfur (Li-S) batteries can repeatedly breach the anodic solid electrolyte interphase (SEI) over cycling. As a result, irreversible short-chain sulfide side products (Li2Sx, x = 1, 2) keep depositing on the Li anode, leading to the active material loss, increasing the Li+ transport resistance, and thereby reducing the cycle life. In this work, indium iodide (InI3) is investigated as a bifunctional electrolyte additive for Li-S batteries to protect the Li anode and decompose the side products spontaneously. On the one hand, Indium (In) is electrodeposited onto the Li anode prior to Li plating during the initial charging process, forming a chemically and mechanically stable SEI to prevent the Li anode from reacting with soluble polysulfide species to form Li2Sx (x = 1, 2) side products. On the other hand, by adequately overcharging the battery, the triiodide/iodide redox mediator is capable of chemically transforming side products deposited on the Li anode and separator into soluble polysulfides, which can be recycled by the cathode. It is shown that the battery with the InI3 additive exhibits a prolonged cycle life, and is capable of retrieving its capacity by a facile overcharging process.

  13. Activator Protein-1: redox switch controlling structure and DNA-binding.

    Science.gov (United States)

    Yin, Zhou; Machius, Mischa; Nestler, Eric J; Rudenko, Gabby

    2017-11-02

    The transcription factor, activator protein-1 (AP-1), binds to cognate DNA under redox control; yet, the underlying mechanism has remained enigmatic. A series of crystal structures of the AP-1 FosB/JunD bZIP domains reveal ordered DNA-binding regions in both FosB and JunD even in absence DNA. However, while JunD is competent to bind DNA, the FosB bZIP domain must undergo a large conformational rearrangement that is controlled by a 'redox switch' centered on an inter-molecular disulfide bond. Solution studies confirm that FosB/JunD cannot undergo structural transition and bind DNA when the redox-switch is in the 'OFF' state, and show that the mid-point redox potential of the redox switch affords it sensitivity to cellular redox homeostasis. The molecular and structural studies presented here thus reveal the mechanism underlying redox-regulation of AP-1 Fos/Jun transcription factors and provide structural insight for therapeutic interventions targeting AP-1 proteins. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. An assessment of the role of redox cycling in mediating the toxicity of paraquat and nitrofurantoin

    Energy Technology Data Exchange (ETDEWEB)

    Adam, A.; Cohen, G.M. (Univ. of London (England)); Smith, L.L. (Imperial Chemical Industries plc, Cheshire (England))

    1990-04-01

    The abilities of paraquat, diquat, and nitrofurantoin to undergo cyclic oxidation and reduction with rat microsomal systems have been assessed and compared to that of the potent redox cycler, menadione. Diquat and menadione were found to be potent redox cyclers with comparable abilities to elicit a nonstoichiometric increase in both the consumption of O{sub 2} and the oxidation of NADPH, compared to the amounts of substrate added. In contrast, paraquat and nitrofurantoin redox cycled poorly, being an order of magnitude less potent than either diquat or menadione. This was reflected in kinetic studies using lung and liver microsomes. In order to assess redox cycling of the substrates in an intact lung system, the O{sub 2} consumption of rat lung slices was measured in the presence of all four compounds. A small increase in lung slice O{sub 2} uptake was observed with paraquat in the first 2.5 hr of incubation, possibly because of redox cycling of a high intracellular concentration of paraquat resulting from active accumulation into target cells. This stimulation in O{sub 2} uptake was no longer observed when slices were incubated for a longer period or with higher paraquat concentrations (10{sup {minus}4}M), possibly because of toxic effects in target cells. These results together with the poor ability to redox cycle with microsomes and the absence of a specific uptake system highlight the problem of associating redox cycling and oxidative stress in the mechanism of nitrofurantoin toxicity.

  15. Immobilization of metal-humic acid complexes in anaerobic granular sludge for their application as solid-phase redox mediators in the biotransformation of iopromide in UASB reactors.

    Science.gov (United States)

    Cruz-Zavala, Aracely S; Pat-Espadas, Aurora M; Rangel-Mendez, J Rene; Chazaro-Ruiz, Luis F; Ascacio-Valdes, Juan A; Aguilar, Cristobal N; Cervantes, Francisco J

    2016-05-01

    Metal-humic acid complexes were synthesized and immobilized by a granulation process in anaerobic sludge for their application as solid-phase redox mediators (RM) in the biotransformation of iopromide. Characterization of Ca- and Fe-humic acid complexes revealed electron accepting capacities of 0.472 and 0.556milli-equivalentsg(-1), respectively. Once immobilized, metal-humic acid complexes significantly increased the biotransformation of iopromide in upflow anaerobic sludge blanket (UASB) reactors. Control UASB reactor (without humic material) achieved 31.6% of iopromide removal, while 80% was removed in UASB reactors supplied with each metal-humic acid complex. Further analyses indicated multiple transformation reactions taking place in iopromide including deiodination, N-dealkylation, decarboxylation and deacetylation. This is the first successful application of immobilized RM, which does not require a supporting material to maintain the solid-phase RM in long term operation of bioreactors. The proposed redox catalyst could be suitable for enhancing the redox conversion of different recalcitrant pollutants present in industrial effluents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Redox regulation of peroxiredoxin and proteinases by ascorbate and thiols during pea root nodule senescence.

    Science.gov (United States)

    Groten, Karin; Dutilleul, Christelle; van Heerden, Philippus D R; Vanacker, Hélène; Bernard, Stéphanie; Finkemeier, Iris; Dietz, Karl-Josef; Foyer, Christine H

    2006-02-20

    Redox factors contributing to nodule senescence were studied in pea. The abundance of the nodule cytosolic peroxiredoxin but not the mitochondrial peroxiredoxin protein was modulated by ascorbate. In contrast to redox-active antioxidants such as ascorbate and cytosolic peroxiredoxin that decreased during nodule development, maximal extractable nodule proteinase activity increased progressively as the nodules aged. Cathepsin-like activities were constant throughout development but serine and cysteine proteinase activities increased during senescence. Senescence-induced cysteine proteinase activity was inhibited by cysteine, dithiotreitol, or E-64. Senescence-dependent decreases in redox-active factors, particularly ascorbate and peroxiredoxin favour decreased redox-mediated inactivation of cysteine proteinases.

  17. Emotion Dysregulation Mediates the Relation between Mindfulness and Rejection Sensitivity.

    Science.gov (United States)

    Velotti, Patrizia; Garofalo, Carlo; Bizzi, Fabiola

    2015-09-01

    The role of rejection sensitivity (RS; the tendency to anxiously expect, readily perceive, and overreact to implied or overt interpersonal rejection) in psychopathology has mainly been studied with regard to borderline personality disorder (BPD). In the present study, we first sought to extend previous evidence of heightened RS in a clinical group with psychiatric disorders other than BPD, when compared with a community sample. Then, we tested whether emotion dysregulation and mindfulness were associated with RS in both sample, further hypothesizing that emotion dysregulation would mediate the relation between mindfulness deficits and RS. We adopted a cross-sectional design involving 191 psychiatric patients and 277 community participants (total N=468). All participants completed the Rejection Sensitivity Questionnaire, the Five Facet Mindfulness Questionnaire, and the Difficulties in Emotion Regulation Scale. Our hypotheses were supported, with psychiatric patients reporting greater levels of rejection sensitivity and emotion dysregulation, and lower level of mindfulness. Mindfulness deficits and emotion dysregulation explained a significant amount of variance in RS, in both samples. Finally, bootstrap analyses revealed that mindfulness deficits played an indirect effect on RS through the mediating role of emotion dysregulation. In particular, two different patterns emerged. Among psychiatric patients, an impairment in the ability to assume a non-judgmental stance towards own thoughts and feelings was related to RS through the mediation of limited access to emotion regulation strategies. Conversely, in the community sample, overall emotion dysregulation mediated the effect of lack of attention and awareness for present activities and experience on RS. Longitudinal studies could help in delineating etiological models of RS, and the joint role of deficits in mindfulness and emotion regulation should inform treatment programs.

  18. Highly catalytic carbon nanotube counter electrode on plastic for dye solar cells utilizing cobalt-based redox mediator

    International Nuclear Information System (INIS)

    Aitola, Kerttu; Halme, Janne; Feldt, Sandra; Lohse, Peter; Borghei, Maryam; Kaskela, Antti; Nasibulin, Albert G.; Kauppinen, Esko I.; Lund, Peter D.; Boschloo, Gerrit; Hagfeldt, Anders

    2013-01-01

    A flexible, slightly transparent and metal-free random network of single-walled carbon nanotubes (SWCNTs) on plain polyethylene terephthalate (PET) plastic substrate outperformed platinum on conductive glass and on plastic as the counter electrode (CE) of a dye solar cell employing a Co(II/III)tris(2,2′-bipyridyl) complex redox mediator in 3-methoxypropionitrile solvent. The CE charge-transfer resistance of the SWCNT film was 0.60 Ω cm 2 , 4.0 Ω cm 2 for sputtered platinum on indium tin oxide-PET substrate and 1.7 Ω cm 2 for thermally deposited Pt on fluorine-doped tin oxide glass, respectively. The solar cell efficiencies were in the same range, thus proving that an entirely carbon-based SWCNT film on plastic is as good CE candidate for the Co electrolyte

  19. Modern and ancient geochemical constraints on Proterozoic atmosphere-ocean redox evolution

    Science.gov (United States)

    Hardisty, D. S.; Horner, T. J.; Wankel, S. D.; Lu, Z.; Lyons, T.; Nielsen, S.

    2017-12-01

    A detailed understanding of the spatiotemporal oxygenation of Earth's atmosphere-ocean system through the Precambrian has important implications for the environments capable of sustaining early eukaryotic life and the evolving oxidant budget of subducted sediments. Proxy records suggest an anoxic Fe-rich deep ocean through much of the Precambrian and atmospheric and surface-ocean oxygenation that started in earnest at the Paleoproterozoic Great Oxidation Event (GOE). The marine photic zone represented the initial site of oxygen production and accumulation via cyanobacteria, yet our understanding of surface-ocean oxygen contents and the extent and timing of oxygen propagation and exchange between the atmosphere and deeper ocean are limited. Here, we present an updated perspective of the constraints on atmospheric, surface-ocean, and deep-ocean oxygen contents starting at the GOE. Our research uses the iodine content of Proterozoic carbonates as a tracer of dissolved iodate in the shallow ocean, a redox-sensitive species quantitatively reduced in modern oxygen minimum zones. We supplement our understanding of the ancient record with novel experiments examining the rates of iodate production from oxygenated marine environments based on seawater incubations. Combining new data from iodine with published shallow marine (Ce anomaly, N isotopes) and atmospheric redox proxies, we provide an integrated view of the vertical redox structure of the atmosphere and ocean across the Proterozoic.

  20. A novel redox-based switch: LMW-PTP oxidation enhances Grb2 binding and leads to ERK activation

    International Nuclear Information System (INIS)

    Giannoni, Elisa; Raugei, Giovanni; Chiarugi, Paola; Ramponi, Giampietro

    2006-01-01

    Low molecular weight-PTP has been reported as a redox-sensitive protein during both platelet-derived growth factor and integrin signalling. In response to oxidation the phosphatase undergoes a reversible inactivation, which in turn leads to the increase in tyrosine phosphorylation of its substrates and the properly executed anchorage-dependent proliferation program. Here, we report that an exogenous oxidative stress enhances LMW-PTP tyrosine phosphorylation, through oxidation/inactivation of the enzyme, thus preventing its auto-dephosphorylation activity. In particular, we observed a selective hyper-phosphorylation of Tyr132, that acts as a docking site for the adaptor protein Grb2. The redox-dependent enhancement of Grb2 recruitment to LMW-PTP ultimately leads to an improvement of ERK activation, likely triggering a prosurvival signal against the oxidant environment

  1. Heme oxygenase-1 mediates BAY 11-7085 induced ferroptosis.

    Science.gov (United States)

    Chang, Ling-Chu; Chiang, Shih-Kai; Chen, Shuen-Ei; Yu, Yung-Luen; Chou, Ruey-Hwang; Chang, Wei-Chao

    2018-03-01

    Ferroptosis is a form of oxidative cell death and has become a chemotherapeutic target for cancer treatment. BAY 11-7085 (BAY), which is a well-known IκBα inhibitor, suppressed viability in cancer cells via induction of ferroptotic death in an NF-κB-independent manner. Reactive oxygen species scavenging, relief of lipid peroxidation, replenishment of glutathione and thiol-containing agents, as well as iron chelation, rescued BAY-induced cell death. BAY upregulated a variety of Nrf2 target genes related to redox regulation, particularly heme oxygenase-1 (HO-1). Studies with specific inhibitors and shRNA interventions suggested that the hierarchy of induction is Nrf2-SLC7A11-HO-1. SLC7A11 inhibition by erastin, sulfasalazine, or shRNA interference sensitizes BAY-induced cell death. Overexperession of SLC7A11 attenuated BAY-inhibited cell viability. The ferroptotic process induced by hHO-1 overexpression further indicated that HO-1 is a key mediator of BAY-induced ferroptosis that operates through cellular redox regulation and iron accumulation. BAY causes compartmentalization of HO-1 into the nucleus and mitochondrion, and followed mitochondrial dysfunctions, leading to lysosome targeting for mitophagy. In this study, we first discovered that BAY induced ferroptosis via Nrf2-SLC7A11-HO-1 pathway and HO-1 is a key mediator by responding to the cellular redox status. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Seasonal profiles of leaf ascorbic acid content and redox state in ozone-sensitive wildflowers

    International Nuclear Information System (INIS)

    Burkey, Kent O.; Neufeld, Howard S.; Souza, Lara; Chappelka, Arthur H.; Davison, Alan W.

    2006-01-01

    Cutleaf coneflower (Rudbeckia laciniata L.), crown-beard (Verbesina occidentalis Walt.), and tall milkweed (Asclepias exaltata L.) are wildflower species native to Great Smoky Mountains National Park (U.S.A.). Natural populations of each species were analyzed for leaf ascorbic acid (AA) and dehydroascorbic acid (DHA) to assess the role of ascorbate in protecting the plants from ozone stress. Tall milkweed contained greater quantities of AA (7-10 μmol g -1 fresh weight) than crown-beard (2-4 μmol g -1 fresh weight) or cutleaf coneflower (0.5-2 μmol g -1 fresh weight). DHA was elevated in crown-beard and cutleaf coneflower relative to tall milkweed suggesting a diminished capacity for converting DHA into AA. Tall milkweed accumulated AA in the leaf apoplast (30-100 nmol g -1 fresh weight) with individuals expressing ozone foliar injury symptoms late in the season having less apoplast AA. In contrast, AA was not present in the leaf apoplast of either crown-beard or cutleaf coneflower. Unidentified antioxidant compounds were present in the leaf apoplast of all three species. Overall, distinct differences in antioxidant metabolism were found in the wildflower species that corresponded with differences in ozone sensitivity. - Wildflower species exhibit differences in ascorbic acid content and redox status that affect ozone sensitivity

  3. The mediating role of disgust sensitivity and thought-action fusion between religiosity and obsessive compulsive symptoms.

    Science.gov (United States)

    Inozu, Mujgan; Ulukut, Fulya Ozcanli; Ergun, Gokce; Alcolado, Gillian M

    2014-10-01

    Psychological theories of obsessions and compulsions have long recognised that strict religious codes and moral standards might promote thought-action fusion (TAF) appraisals. These appraisals have been implicated in the transformation of normally occurring intrusions into clinically distressing obsessions. Furthermore, increased disgust sensitivity has also been reported to be associated with obsessive compulsive (OC) symptoms. No research, however, has investigated the mediating roles of TAF and disgust sensitivity between religiosity and OC symptoms. This study was composed of 244 undergraduate students who completed measures of OC symptoms, TAF, disgust sensitivity, religiosity and negative effect. Analyses revealed that the relationship between religiosity and OC symptoms was mediated by TAF and disgust sensitivity. More importantly, the mediating role of TAF was not different across OC symptom subtypes, whereas the mediating role of disgust sensitivity showed different patterns across OC symptom subtypes. These findings indicate that the tendency for highly religious Muslims to experience greater OC symptoms is related to their heightened beliefs about disgust sensitivity and the importance of thoughts. © 2014 International Union of Psychological Science.

  4. Redox properties of iron-bearing clays and MX-80 bentonite – Electrochemical and spectroscopic characterization

    International Nuclear Information System (INIS)

    Hofstetter, Th. B.; Sosedova, Y.; Gorski, C.; Voegelin, A.; Sander, M.

    2014-03-01

    The characterization of the redox properties of Fe-bearing minerals in the presence and absence of dissolved Fe"2"+ is of major relevance for the assessment of redox reactions in natural and engineered environments such as radioactive waste repositories. In this study, we developed an electrochemical approach based on the use of soluble organic electron transfer mediators, which enabled us to quantify the redox properties of Fe-bearing clay minerals, MX- 80 bentonite and combinations of clay minerals, Fe oxides and dissolved Fe"2"+. Using mediated electrochemical oxidation and reduction, we quantified the electron accepting and donating capacities of ferrous smectite SWa-1, Wyoming montmorillonite SWy-2 and MX-80 bentonite at pH 7.5. All structural Fe in clay minerals was redox-active in contrast to that present in other, not further defined phases of MX-80. The materials investigated were redoxactive over a very wide range of Eh-values, that is the Fe"2"+/Fe_t_o_t_a_l ratio of the minerals changed from 0 to 100 % between +600 and -600 mV (vs. SHE). Redox properties were highly path-dependent due to structural changes of the minerals as revealed from the study of native and redox-cycled clay minerals after repeated reduction and re-oxidation cycles. Irreversible alteration of the mineral structure, however, was less obvious for materials with lower total Fe content such as MX-80 bentonite and SWy-2. Systems containing native montmorillonites (SWy-2 or MX-80), goethite and dissolved Fe"2"+ were also able to buffer the reduction potential E_H between 0 and -300 mV. Regardless of their Fe oxidation state, Fe-bearing minerals are redox-active over a wide potential range and therefore very relevant as redox buffers determining the fate of redox-active radionuclides and metals in waste repositories. (authors)

  5. Redox properties of iron-bearing clays and MX-80 bentonite – Electrochemical and spectroscopic characterization

    Energy Technology Data Exchange (ETDEWEB)

    Hofstetter, Th. B.; Sosedova, Y.; Gorski, C.; Voegelin, A.; Sander, M.

    2014-03-15

    The characterization of the redox properties of Fe-bearing minerals in the presence and absence of dissolved Fe{sup 2+} is of major relevance for the assessment of redox reactions in natural and engineered environments such as radioactive waste repositories. In this study, we developed an electrochemical approach based on the use of soluble organic electron transfer mediators, which enabled us to quantify the redox properties of Fe-bearing clay minerals, MX- 80 bentonite and combinations of clay minerals, Fe oxides and dissolved Fe{sup 2+}. Using mediated electrochemical oxidation and reduction, we quantified the electron accepting and donating capacities of ferrous smectite SWa-1, Wyoming montmorillonite SWy-2 and MX-80 bentonite at pH 7.5. All structural Fe in clay minerals was redox-active in contrast to that present in other, not further defined phases of MX-80. The materials investigated were redoxactive over a very wide range of Eh-values, that is the Fe{sup 2+}/Fe{sub total} ratio of the minerals changed from 0 to 100 % between +600 and -600 mV (vs. SHE). Redox properties were highly path-dependent due to structural changes of the minerals as revealed from the study of native and redox-cycled clay minerals after repeated reduction and re-oxidation cycles. Irreversible alteration of the mineral structure, however, was less obvious for materials with lower total Fe content such as MX-80 bentonite and SWy-2. Systems containing native montmorillonites (SWy-2 or MX-80), goethite and dissolved Fe{sup 2+} were also able to buffer the reduction potential E{sub H} between 0 and -300 mV. Regardless of their Fe oxidation state, Fe-bearing minerals are redox-active over a wide potential range and therefore very relevant as redox buffers determining the fate of redox-active radionuclides and metals in waste repositories. (authors)

  6. Electrochemical Properties of Cu(II/I)-Based Redox Mediators for Dye-Sensitized Solar Cells

    Czech Academy of Sciences Publication Activity Database

    Kavan, Ladislav; Saygili, Y.; Freitag, M.; Zakeeruddin, S. M.; Hagfeldt, A.; Grätzel, M.

    2017-01-01

    Roč. 227, FEB 2017 (2017), s. 194-202 ISSN 0013-4686 R&D Projects: GA ČR GA13-07724S Institutional support: RVO:61388955 Keywords : Graphene * Dye sensitized solar cell * Cu-complexes Subject RIV: CG - Electrochemistry OBOR OECD: Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis) Impact factor: 4.798, year: 2016

  7. Extending roGFP Emission via Förster-Type Resonance Energy Transfer Relay Enables Simultaneous Dual Compartment Ratiometric Redox Imaging in Live Cells.

    Science.gov (United States)

    Norcross, Stevie; Trull, Keelan J; Snaider, Jordan; Doan, Sara; Tat, Kiet; Huang, Libai; Tantama, Mathew

    2017-11-22

    Reactive oxygen species (ROS) mediate both intercellular and intraorganellar signaling, and ROS propagate oxidative stress between cellular compartments such as mitochondria and the cytosol. Each cellular compartment contains its own sources of ROS as well as antioxidant mechanisms, which contribute to dynamic fluctuations in ROS levels that occur during signaling, metabolism, and stress. However, the coupling of redox dynamics between cellular compartments has not been well studied because of the lack of available sensors to simultaneously measure more than one subcellular compartment in the same cell. Currently, the redox-sensitive green fluorescent protein, roGFP, has been used extensively to study compartment-specific redox dynamics because it provides a quantitative ratiometric readout and it is amenable to subcellular targeting as a genetically encoded sensor. Here, we report a new family of genetically encoded fluorescent protein sensors that extend the fluorescence emission of roGFP via Förster-type resonance energy transfer to an acceptor red fluorescent protein for dual-color live-cell microscopy. We characterize the redox and optical properties of the sensor proteins, and we demonstrate that they can be used to simultaneously measure cytosolic and mitochondrial ROS in living cells. Furthermore, we use these sensors to reveal cell-to-cell heterogeneity in redox coupling between the cytosol and mitochondria when neuroblastoma cells are exposed to reductive and metabolic stresses.

  8. A catalytic approach to estimate the redox potential of heme-peroxidases

    International Nuclear Information System (INIS)

    Ayala, Marcela; Roman, Rosa; Vazquez-Duhalt, Rafael

    2007-01-01

    The redox potential of heme-peroxidases varies according to a combination of structural components within the active site and its vicinities. For each peroxidase, this redox potential imposes a thermodynamic threshold to the range of oxidizable substrates. However, the instability of enzymatic intermediates during the catalytic cycle precludes the use of direct voltammetry to measure the redox potential of most peroxidases. Here we describe a novel approach to estimate the redox potential of peroxidases, which directly depends on the catalytic performance of the activated enzyme. Selected p-substituted phenols are used as substrates for the estimations. The results obtained with this catalytic approach correlate well with the oxidative capacity predicted by the redox potential of the Fe(III)/Fe(II) couple

  9. Redox processes in radiation biology and cancer

    International Nuclear Information System (INIS)

    Greenstock, C.L.

    1981-01-01

    Free-radical intermediates, particularly the activated oxygen species OH, O - 2 , and 1 O 2 , are implicated in many types of radiation damage to biological systems. In addition, these same species may be formed, either directly or indirectly through biochemical redox reactions, in both essential and aberrant metabolic processes. Cell survival and adaptation to an environment containing ionizing radiation and other physical and chemical carcinogens ultimately depend upon the cell's ability to maintain optimal function in response to free-radical damage at the chemical level. Many of these feedback control mechanisms are redox controlled. Radiation chemical techniques using selective radical scavengers, such as product analysis and pulse radiolysis, enable us to generate, observe, and characterize individually the nature and reactivity of potentially damaging free radicals. From an analysis of the chemical kinetics of free-radical involvement in biological damage, redox mechanisms are proposed to describe the early processes of radiation damage, redox mechanisms are proposed to describe the early processes of radiation damage, its protection and sensitization, and the role of free radicals in radiation and chemical carcinogenesis

  10. Disgust sensitivity as a mediator of the sex differences in contamination fears

    NARCIS (Netherlands)

    Olatunji, BO; Sawchuk, CN; Arrindell, WA; Lohr, JM

    Previous research has shown a relationship between disgust sensitivity and OCD-related contamination fear. Review of these findings suggests that females generally report higher levels of contamination fear and disgust sensitivity than males. Using a mediational model, the present study sought to

  11. The Redox Code.

    Science.gov (United States)

    Jones, Dean P; Sies, Helmut

    2015-09-20

    The redox code is a set of principles that defines the positioning of the nicotinamide adenine dinucleotide (NAD, NADP) and thiol/disulfide and other redox systems as well as the thiol redox proteome in space and time in biological systems. The code is richly elaborated in an oxygen-dependent life, where activation/deactivation cycles involving O₂ and H₂O₂ contribute to spatiotemporal organization for differentiation, development, and adaptation to the environment. Disruption of this organizational structure during oxidative stress represents a fundamental mechanism in system failure and disease. Methodology in assessing components of the redox code under physiological conditions has progressed, permitting insight into spatiotemporal organization and allowing for identification of redox partners in redox proteomics and redox metabolomics. Complexity of redox networks and redox regulation is being revealed step by step, yet much still needs to be learned. Detailed knowledge of the molecular patterns generated from the principles of the redox code under defined physiological or pathological conditions in cells and organs will contribute to understanding the redox component in health and disease. Ultimately, there will be a scientific basis to a modern redox medicine.

  12. Protein redox regulation in the thylakoid lumen: the importance of disulfide bonds for violaxanthin de-epoxidase.

    Science.gov (United States)

    Simionato, Diana; Basso, Stefania; Zaffagnini, Mirko; Lana, Tobia; Marzotto, Francesco; Trost, Paolo; Morosinotto, Tomas

    2015-04-02

    When exposed to saturating light conditions photosynthetic eukaryotes activate the xanthophyll cycle where the carotenoid violaxanthin is converted into zeaxanthin by the enzyme violaxanthin de-epoxidase (VDE). VDE protein sequence includes 13 cysteine residues, 12 of which are strongly conserved in both land plants and algae. Site directed mutagenesis of Arabidopsis thaliana VDE showed that all these 12 conserved cysteines have a major role in protein function and their mutation leads to a strong reduction of activity. VDE is also shown to be active in its completely oxidized form presenting six disulfide bonds. Redox titration showed that VDE activity is sensitive to variation in redox potential, suggesting the possibility that dithiol/disulfide exchange reactions may represent a mechanism for VDE regulation. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  13. Copper Complexes with Tetradentate Ligands for Enhanced Charge Transport in Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Hannes Michaels

    2018-05-01

    Full Text Available In dye-sensitized solar cells (DSCs, the redox mediator is responsible for the regeneration of the oxidized dye and for the hole transport towards the cathode. Here, we introduce new copper complexes with tetradentate 6,6′-bis(4-(S-isopropyl-2-oxazolinyl-2,2′-bipyridine ligands, Cu(oxabpy, as redox mediators. Copper coordination complexes with a square-planar geometry show low reorganization energies and thus introduce smaller losses in photovoltage. Slow recombination kinetics of excited electrons between the TiO2 and CuII(oxabpy species lead to an exceptionally long electron lifetime, a high Fermi level in the TiO2, and a high photovoltage of 920 mV with photocurrents of 10 mA∙cm−2 and 6.2% power conversion efficiency. Meanwhile, a large driving force remains for the dye regeneration of the Y123 dye with high efficiencies. The square-planar Cu(oxabpy complexes yield viscous gel-like solutions. The unique charge transport characteristics are attributed to a superposition of diffusion and electronic conduction. An enhancement in charge transport performance of 70% despite the higher viscosity is observed upon comparison of Cu(oxabpy to the previously reported Cu(tmby2 redox electrolyte.

  14. The emphysematous lung is abnormally sensitive to TRAIL-mediated apoptosis

    Directory of Open Access Journals (Sweden)

    Milot Julie

    2011-08-01

    Full Text Available Abstract Background Alveolar apoptosis is increased in the emphysematous lung. However, mechanisms involved are not fully understood. Recently, we demonstrated that levels of TRAIL receptor 1 and 2, levels of p53, and Bax/Bcl-xL ratio were elevated in the lung of subjects with emphysema, despite smoking cessation. Thus, we postulate that due to chronic pulmonary oxidative stress, the emphysematous lung would be abnormally sensitive to TRAIL-mediated apoptosis. Methodology A549 cells were exposed to rTRAIL, cigarette smoke extract, and/or H2O2 prior to caspase-3 activity measurement and annexin V staining assessment. In addition, freshly resected lung samples were obtained from non-emphysematous and emphysematous subjects and exposed ex vivo to rTRAIL for up to 18 hours. Lung samples were harvested and levels of active caspase-3 and caspase-8 were measured from tissue lysates. Results Both cigarette smoke extract and H2O2 were able to sensitize A549 cells to TRAIL-mediated apoptosis. Moreover, following exposure to rTRAIL, caspase-3 and -8 were activated in lung explants from emphysematous subjects while being decreased in lung explants from non-emphysematous subjects. Significance of the study Alveolar sensitivity to TRAIL-mediated apoptosis is strongly increased in the emphysematous lung due to the presence of oxidative stress. This might be a new mechanism leading to increased alveolar apoptosis and persistent alveolar destruction following smoking cessation.

  15. Immobilization of horseradish peroxidase on self-assembled (3-mercaptopropyl)trimethoxysilane film: Characterization, direct electrochemistry, redox thermodynamics and biosensing

    International Nuclear Information System (INIS)

    Wu Fanghua; Hu Zhichao; Xu Jingjing; Tian Yuan; Wang Liwei; Xian Yuezhong; Jin Litong

    2008-01-01

    Highly organized (3-mercaptopropyl)trimethoxysilane (3-MPT) films have been prepared via self-assembled coupled with sol-gel linking technology. Horseradish peroxidase (HRP) is successfully immobilized onto the densely packed three-dimensional (3D) 3-MPT network and the direct electrochemistry of HRP is achieved without any electron mediators or promoters. Redox thermodynamics of HRP on the 3-MPT films, which is obtained from the temperature dependence of the reduction potential, suggests that the positive shift of redox potentials of HRP at the interface of 3-MPT originates from the solvent reorganization effects and conformational change of the polypeptide chain of HRP. Based on the direct electrochemistry and electrocatalytic ability of HRP, a sensitive third-generation amperometric H 2 O 2 biosensor is developed with two linear dependence ranges of 5.0 x 10 -7 to 1.0 x 10 -4 and 1.0 x 10 -4 to 2.0 x 10 -2 mol L -1

  16. Spectroscopic investigation of the redox properties of CoAPO molecular sieves

    NARCIS (Netherlands)

    Peeters, M.P.J.; Hooff, van J.H.C.; Sheldon, R.A.; Zholobenko, V.L.; Kustov, L.M.; Kazansky, V.B.; Balmoos, von R.; Higgins, J.B.; Treacy, M.M.J

    1993-01-01

    Acid sites in CoAPO-5 and CoAPO-11 and redox properties of these Co-substituted aluminophosphates have been investigated using UV- and IR-spectroscopy. The data obtained show that CoAPO exhibits quite unusual acidic and redox properties. The absence of the bridged OH-group seems to be a common

  17. Redox proteomics of tomato in response to Pseudomonas syringae infection

    Science.gov (United States)

    Balmant, Kelly Mayrink; Parker, Jennifer; Yoo, Mi-Jeong; Zhu, Ning; Dufresne, Craig; Chen, Sixue

    2015-01-01

    Unlike mammals with adaptive immunity, plants rely on their innate immunity based on pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) for pathogen defense. Reactive oxygen species, known to play crucial roles in PTI and ETI, can perturb cellular redox homeostasis and lead to changes of redox-sensitive proteins through modification of cysteine sulfhydryl groups. Although redox regulation of protein functions has emerged as an important mechanism in several biological processes, little is known about redox proteins and how they function in PTI and ETI. In this study, cysTMT proteomics technology was used to identify similarities and differences of protein redox modifications in tomato resistant (PtoR) and susceptible (prf3) genotypes in response to Pseudomonas syringae pv tomato (Pst) infection. In addition, the results of the redox changes were compared and corrected with the protein level changes. A total of 90 potential redox-regulated proteins were identified with functions in carbohydrate and energy metabolism, biosynthesis of cysteine, sucrose and brassinosteroid, cell wall biogenesis, polysaccharide/starch biosynthesis, cuticle development, lipid metabolism, proteolysis, tricarboxylic acid cycle, protein targeting to vacuole, and oxidation–reduction. This inventory of previously unknown protein redox switches in tomato pathogen defense lays a foundation for future research toward understanding the biological significance of protein redox modifications in plant defense responses. PMID:26504582

  18. Redox fronts

    International Nuclear Information System (INIS)

    Chapman, N.; McKinley, I.; Shea, M.; Smellie, J.

    1993-01-01

    This article describes the investigations of redox fronts performed at the Osamu Utsumi mine. Results obtained by modelling groups on the rate of movement of the redox fronts and on the chemical reactions involved are discussed. Some of the most important rockwater interactions which occur at redox fronts can be modelled reasonably well but the complex redox chemistry of elements like sulphur is poorly simulated. The observed enrichment of many trace elements close to the redox fronts could be of significance for high-level waste repositories, but cannot be quantified by existing models. (author) 6 figs., 1 tab

  19. Peroxynitrite efficiently mediates the interconversion of redox intermediates of myeloperoxidase

    International Nuclear Information System (INIS)

    Furtmueller, Paul Georg; Jantschko, Walter; Zederbauer, Martina; Schwanninger, Manfred; Jakopitsch, Christa; Herold, Susanna; Koppenol, Willem H.; Obinger, Christian

    2005-01-01

    Nitric oxide-derived oxidants (e.g., peroxynitrite) are believed to participate in antimicrobial activities as part of normal host defenses but also in oxidative tissue injury in inflammatory disorders. A similar role is ascribed to the heme enzyme myeloperoxidase (MPO), the most abundant protein of polymorphonuclear leukocytes, which are the terminal phagocytosing effector cells of the innate immune system. Concomitant production of peroxynitrite and release of millimolar MPO are characteristic events during phagocytosis. In order to understand the mode of interaction between MPO and peroxynitrite, we have performed a comprehensive stopped-flow investigation of the reaction between all physiological relevant redox intermediates of MPO and peroxynitrite. Both iron(III) MPO and iron(II) MPO are rapidly converted to compound II by peroxynitrite in monophasic reactions with calculated rate constants of (6.8 ± 0.1) x 10 6 M -1 s -1 and (1.3 ± 0.2) x 10 6 M -1 s -1 , respectively (pH 7.0 and 25 deg C). Besides these one- and two-electron reduction reactions of peroxynitrite, which produce nitrogen dioxide and nitrite, a one-electron oxidation to the oxoperoxonitrogen radical must occur in the fast monophasic transition of compound I to compound II mediated by peroxynitrite at pH 7.0 [(7.6 ± 0.1) x 10 6 M -1 s -1 ]. In addition, peroxynitrite induced a steady-state transition from compound III to compound II with a rate of (1.0 ± 0.3) x 10 4 M -1 s -1 . Thus, the interconversion among the various oxidation states of MPO that is prompted by peroxynitrite is remarkable. Reaction mechanisms are proposed and the physiological relevance is discussed

  20. Geomicrobial and Geochemical Redox Processes in a Landfill-Polluted Aquifer

    DEFF Research Database (Denmark)

    Ludvigsen, Liselotte; Heron, Gorm; Albrechtsen, Hans-Jørgen

    1995-01-01

    The distribution of different dominant microbial-mediated redox processes in a landfill leachate-polluted aquifer (Grindsted, Denmark) was investigated. The most probable number method was utilized for detecting bacteria able to use each of the electron acceptors, and unamended incubations were u...

  1. Electrochemical redox processes involving soluble cerium species

    International Nuclear Information System (INIS)

    Arenas, L.F.; Ponce de León, C.; Walsh, F.C.

    2016-01-01

    Highlights: • The relevance of cerium in laboratory and industrial electrochemistry is considered. • The history of fundamental electrochemical studies and applications is considered. • The chemistry, redox thermodynamics and electrode kinetics of cerium are summarised. • The uses of cerium ions in synthesis, energy storage, analysis and environmental treatment are illustrated. • Research needs and development perspectives are discussed. - Abstract: Anodic oxidation of cerous ions and cathodic reduction of ceric ions, in aqueous acidic solutions, play an important role in electrochemical processes at laboratory and industrial scale. Ceric ions, which have been used for oxidation of organic wastes and off-gases in environmental treatment, are a well-established oxidant for indirect organic synthesis and specialised cleaning processes, including oxide film removal from tanks and process pipework in nuclear decontamination. They also provide a classical reagent for chemical analysis in the laboratory. The reversible oxidation of cerous ions is an important reaction in the positive compartment of various redox flow batteries during charge and discharge cycling. A knowledge of the thermodynamics and kinetics of the redox reaction is critical to an understanding of the role of cerium redox species in these applications. Suitable choices of electrode material (metal or ceramic; coated or uncoated), geometry/structure (2-or 3-dimensional) and electrolyte flow conditions (hence an acceptable mass transport rate) are critical to achieving effective electrocatalysis, a high performance and a long lifetime. This review considers the electrochemistry of soluble cerium species and their diverse uses in electrochemical technology, especially for redox flow batteries and mediated electrochemical oxidation.

  2. Creation of a subsurface permeable treatment barrier using in situ redox manipulation

    International Nuclear Information System (INIS)

    Fruchter, J.S.; Cole, C.R.; Williams, M.D.

    1997-01-01

    The goal of in situ redox manipulation is to create a permeable treatment zone in the subsurface for remediating redox-sensitive contaminants in groundwater. The permeable treatment zone is created just downstream of the contaminant plume or contaminant source through the injection of reagents and/or microbial nutrients to alter the redox potential of the aquifer fluids and sediments. Contaminant plumes migrating through this manipulated zone can then be destroyed or immobilized. In a field test at the Hanford Site, ∼77,000 L of buffered sodium dithionite solution were successfully injected into the unconfined aquifer at the 100-H Area in September 1995. The target contaminant was chromate. No significant plugging of the well screen or the formation was detected during any phase of the test. Dithionite was detected in monitoring wells at least 7.5 m from the injection point. Data were obtained from all three phases of the test (i.e., injection, reaction, withdrawal). Preliminary core data show that from 60% to 100% of the available reactive iron in the targeted aquifer sediments was reduced by the injected dithionite. One year after the injection, groundwater in the treatment zone remains anoxic. Total and hexavalent chromium levels in groundwater have been reduced from a preexperiment concentration of ∼60 μg/L to below the detection limit of the analytical methods

  3. Regulation of Cellular Redox Signaling by Matricellular Proteins in Vascular Biology, Immunology, and Cancer.

    Science.gov (United States)

    Roberts, David D; Kaur, Sukhbir; Isenberg, Jeffrey S

    2017-10-20

    In contrast to structural elements of the extracellular matrix, matricellular proteins appear transiently during development and injury responses, but their sustained expression can contribute to chronic disease. Through interactions with other matrix components and specific cell surface receptors, matricellular proteins regulate multiple signaling pathways, including those mediated by reactive oxygen and nitrogen species and H 2 S. Dysregulation of matricellular proteins contributes to the pathogenesis of vascular diseases and cancer. Defining the molecular mechanisms and receptors involved is revealing new therapeutic opportunities. Recent Advances: Thrombospondin-1 (TSP1) regulates NO, H 2 S, and superoxide production and signaling in several cell types. The TSP1 receptor CD47 plays a central role in inhibition of NO signaling, but other TSP1 receptors also modulate redox signaling. The matricellular protein CCN1 engages some of the same receptors to regulate redox signaling, and ADAMTS1 regulates NO signaling in Marfan syndrome. In addition to mediating matricellular protein signaling, redox signaling is emerging as an important pathway that controls the expression of several matricellular proteins. Redox signaling remains unexplored for many matricellular proteins. Their interactions with multiple cellular receptors remains an obstacle to defining signaling mechanisms, but improved transgenic models could overcome this barrier. Therapeutics targeting the TSP1 receptor CD47 may have beneficial effects for treating cardiovascular disease and cancer and have recently entered clinical trials. Biomarkers are needed to assess their effects on redox signaling in patients and to evaluate how these contribute to their therapeutic efficacy and potential side effects. Antioxid. Redox Signal. 27, 874-911.

  4. Kynurenine pathway metabolites and enzymes involved in redox reactions.

    Science.gov (United States)

    González Esquivel, D; Ramírez-Ortega, D; Pineda, B; Castro, N; Ríos, C; Pérez de la Cruz, V

    2017-01-01

    Oxido-reduction reactions are a fundamental part of the life due to support many vital biological processes as cellular respiration and glucose oxidation. In the redox reactions, one substance transfers one or more electrons to another substance. An important electron carrier is the coenzyme NAD + , which is involved in many metabolic pathways. De novo biosynthesis of NAD + is through the kynurenine pathway, the major route of tryptophan catabolism, which is sensitive to redox environment and produces metabolites with redox capacity, able to alter biological functions that are controlled by redox-responsive signaling pathways. Kynurenine pathway metabolites have been implicated in the physiology process and in the physiopathology of many diseases; processes that also share others factors as dysregulation of calcium homeostasis, mitochondrial dysfunction, oxidative stress, inflammation and cell death, which impact the redox environment. This review examines in detail the available evidence in which kynurenine pathway metabolites participate in redox reactions and their effect on cellular redox homeostasis, since the knowledge of the main factors and mechanisms that lead to cell death in many neurodegenative disorders and other pathologies, such as mitochondrial dysfunction, oxidative stress and kynurenines imbalance, will allow to develop therapies using them as targets. This article is part of the Special Issue entitled 'The Kynurenine Pathway in Health and Disease'. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Hourly and daily variation of sediment redox potential in tidal wetland sediments

    Science.gov (United States)

    Catallo, W. James

    1999-01-01

    Variation of electrochemical oxidation-reduction (redox) potential was examined in surface salt march sediments under conditions of flooding and tidal simulation in mesocosms and field sites. Time series were generated of redox potential measured in sediment profiles at 2-10 cm depth using combination Pt-Ag/AgCl (ORP) electrodes. Redox potential data were acquired at rapid rates (1-55 samples/h) over extended periods (3-104 days) along with similar times series of temperature (water, air, soil) and pH. It was found that redox potential vaired as a result of water level changes and was unrelated to diurnal changes in temperature or pH, the latter of which changed by 370 mV redox potential decrease in under 48 hours). Attenuatoin of microbial activity by [gamma] y-radiation and toxic chemicals elimintated this response. In tidal salt marsh mesocosms where the sediment-plant assemblages were exposed to a simulated diurnal tide, redox potenial oscillations of 40-300 mV amplitude were recoded that has the same periodicity as the flood-drain cycle. Periodic redoc potential time series were observed repeatedly in sediments receiving tidal pulsing but not in those sediments exposed to static hydrological conditions. Data collected over 12 days from a coastal marsh site experiencing diurnal tides showed similar fluctuations in redox potential. Data from the experimentents indicated that (a) redox potential can be a dynamic, nonlinear variable in coastal and estuarine wetland sediments over hourly and daily scales, and the designs of biogeochemical experiments should reflect this, (b) redox potential can change rapidly and signigicantly in coastal wetland sediments in response of flooding and draining, (c) microbial community processes are primarily determinants of the time course of redox potential in wetland sediments, and elimination of inhibition of microbial activity (e.g. by pollutants) can significantly alter that behavior, and (d) fast redox potential dynamics appear

  6. Remodulating effect of doxorubicin on the state of iron-containing proteins, and redox characteristics of tumor with allowance for its sensitivity to cytostatic agents.

    Science.gov (United States)

    Chekhun, V F; Lozovska, Yu V; Burlaka, A P; Ganusevich, L I; Shvets, Yu V; Lukyanova, N Yu; Todor, I M; Tregubova, N A; Naleskina, L A

    2016-01-01

    The study was aimed at determining the changes of metal-containing proteins in blood serum and tumor tissue of animals with parental and doxorubicin-resistant strains of Walker-256 carcinosarcoma before and after the cytostatic administration. It has been shown that upon doxorubicin action the levels of total iron and transferrin in the tissues from the both groups of animals decreased while that of ferritine simultaneously increased with more pronounced pattern in the group of animals with resistant tumor strain. It has been shown that upon the action of doxorubicin in tumor tissue of animals with different sensitivity to the cytostatic there could be observed oppositely directed changes in the redox state of these cells that in turn determined the content of “ free iron” complexes, RO S generation and concentration of active forms of matrix metaloproteinase- 2 and matrix metaloproteinase-9, namely, the increase of these indexes in animals with parental strain and their decrease in animals with the resistant one. So, our study has demonstrated the remodulating effect of doxorubicin on the state of metal-containing proteins and redox characteristics of tumor dependent on its sensitivity to cytostatic, at the levels of the tumor and an organism. These data may serve as a criterion for the development of programs for the correction of malfunction of iron metabolism aimed at elevating tumor sensitivity to cytostatic agents.

  7. Regulatory Role of Redox Balance in Determination of Neural Precursor Cell Fate

    Directory of Open Access Journals (Sweden)

    Mohamed Ariff Iqbal

    2017-01-01

    Full Text Available In 1990s, reports of discovery of a small group of cells capable of proliferation and contribution to formation of new neurons in the central nervous system (CNS reversed a century-old concept on lack of neurogenesis in the adult mammalian brain. These cells are found in all stages of human life and contribute to normal cellular turnover of the CNS. Therefore, the identity of regulating factors that affect their proliferation and differentiation is a highly noteworthy issue for basic scientists and their clinician counterparts for therapeutic purposes. The cues for such control are embedded in developmental and environmental signaling through a highly regulated tempo-spatial expression of specific transcription factors. Novel findings indicate the importance of reactive oxygen species (ROS in the regulation of this signaling system. The elusive nature of ROS signaling in many vital processes from cell proliferation to cell death creates a complex literature in this field. Here, we discuss the emerging thoughts on the importance of redox regulation of proliferation and maintenance in mammalian neural stem and progenitor cells under physiological and pathological conditions. The current knowledge on ROS-mediated changes in redox-sensitive proteins that govern the molecular mechanisms in proliferation and differentiation of these cells is reviewed.

  8. Seasonal profiles of leaf ascorbic acid content and redox state in ozone-sensitive wildflowers

    Energy Technology Data Exchange (ETDEWEB)

    Burkey, Kent O. [Plant Science Research Unit, USDA-ARS and North Carolina State University, 3127 Ligon Street, Raleigh, NC 27607 (United States)]. E-mail: koburkey@unity.ncsu.edu; Neufeld, Howard S. [Appalachian State University, Boone, NC (United States); Souza, Lara [Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN (United States); Chappelka, Arthur H. [Auburn University, Auburn, AL (United States); Davison, Alan W. [University of Newcastle, Newcastle, England (United Kingdom)

    2006-10-15

    Cutleaf coneflower (Rudbeckia laciniata L.), crown-beard (Verbesina occidentalis Walt.), and tall milkweed (Asclepias exaltata L.) are wildflower species native to Great Smoky Mountains National Park (U.S.A.). Natural populations of each species were analyzed for leaf ascorbic acid (AA) and dehydroascorbic acid (DHA) to assess the role of ascorbate in protecting the plants from ozone stress. Tall milkweed contained greater quantities of AA (7-10 {mu}mol g{sup -1} fresh weight) than crown-beard (2-4 {mu}mol g{sup -1} fresh weight) or cutleaf coneflower (0.5-2 {mu}mol g{sup -1} fresh weight). DHA was elevated in crown-beard and cutleaf coneflower relative to tall milkweed suggesting a diminished capacity for converting DHA into AA. Tall milkweed accumulated AA in the leaf apoplast (30-100 nmol g{sup -1} fresh weight) with individuals expressing ozone foliar injury symptoms late in the season having less apoplast AA. In contrast, AA was not present in the leaf apoplast of either crown-beard or cutleaf coneflower. Unidentified antioxidant compounds were present in the leaf apoplast of all three species. Overall, distinct differences in antioxidant metabolism were found in the wildflower species that corresponded with differences in ozone sensitivity. - Wildflower species exhibit differences in ascorbic acid content and redox status that affect ozone sensitivity.

  9. Redox regulation of stress signals: possible roles of dendritic stellate TRX producer cells (DST cell types).

    Science.gov (United States)

    Yodoi, Junji; Nakamura, Hajime; Masutani, Hiroshi

    2002-01-01

    Thioredoxin (TRX) is a 12 kDa protein with redox-active dithiol (Cys-Gly-Pro-Cys) in the active site. TRX is induced by a variety of stresses including viral infection and inflammation. The promoter sequences of the TRX gene contain a series of stress-responsive elements including ORE, ARE, XRE, CRE and SP-1. TRX promotes DNA binding of transcription factors such as NF-kappaB, AP-1 and p53. TRX interacts with target proteins modulating the activity of those proteins. We have identified TRX binding protein-2 (TBP-2), which was identical to vitamin D3 up-regulated protein 1 (VDUP1). Potential action of TBP-2/VDUP1 as a redox-sensitive tumor suppressor will be discussed. There is accumulating evidence for the involvement of TRX in the protection against infectious and inflammatory disorders. We will discuss the role of TRX-dependent redox regulation of the host defense mechanism, in particular its relation to the emerging concept of constitutive and/or inducible TRX on special cell types with dendritic and stellate morphology in the immune, endocrine and nervous systems, which we provisionally designate as dendritic stellate TRX producer cells (DST cell types).

  10. Mediating Effect of School Nurses' Self Efficacy between Multicultural Attitude and Cultural Sensitivity in Korean Elementary Schools.

    Science.gov (United States)

    Suk, Min Hyun; Oh, Won Oak; Im, Yeo Jin; Cho, Hun Ha

    2015-09-01

    This study examined the mediating effect of school nurses' self efficacy, which is one of the significant cognitive factors influencing cultural sensitivity, on the mutual relationships between multicultural attitude and cultural sensitivity in Korean elementary schools. A cross-sectional descriptive survey design was used. Participants were 157 school nurses in elementary schools located in Gyeonggi-do, South Korea. The survey instruments included Teacher Multicultural Attitude Survey, Teacher Efficacy Scale, and Multicultural Sensitivity Scale. Data were analyzed using three regression equations to test the mediation model. The mean score of the school nurses' cultural sensitivity was relatively low. A positive correlation among multicultural attitude, self efficacy, and cultural sensitivity was noted. Self efficacy of school nurses showed a significant mediating effect on the relationships between multicultural attitude and cultural sensitivity. Given the meaningful influence of positive multicultural attitude on cultural sensitivity and significant mediator effect of self efficacy as a school nurse between the two variables, the strategies to cultivate a positive multicultural attitude and enhance school nurses' self efficacy in their unique role should be considered in a training program. School nurses' health care services will benefit from the improvement of cultural sensitivity toward young children from multicultural families. Copyright © 2015. Published by Elsevier B.V.

  11. Arabidopsis Glutaredoxin S17 Contributes to Vegetative Growth, Mineral Accumulation, and Redox Balance during Iron Deficiency

    Directory of Open Access Journals (Sweden)

    Han Yu

    2017-06-01

    Full Text Available Iron (Fe is an essential mineral nutrient and a metal cofactor required for many proteins and enzymes involved in the processes of DNA synthesis, respiration, and photosynthesis. Iron limitation can have detrimental effects on plant growth and development. Such effects are mediated, at least in part, through the generation of reactive oxygen species (ROS. Thus, plants have evolved a complex regulatory network to respond to conditions of iron limitations. However, the mechanisms that couple iron deficiency and oxidative stress responses are not fully understood. Here, we report the discovery that an Arabidopsis thaliana monothiol glutaredoxin S17 (AtGRXS17 plays a critical role in the plants ability to respond to iron deficiency stress and maintain redox homeostasis. In a yeast expression assay, AtGRXS17 was able to suppress the iron accumulation in yeast ScGrx3/ScGrx4 mutant cells. Genetic analysis indicated that plants with reduced AtGRXS17 expression were hypersensitive to iron deficiency and showed increased iron concentrations in mature seeds. Disruption of AtGRXS17 caused plant sensitivity to exogenous oxidants and increased ROS production under iron deficiency. Addition of reduced glutathione rescued the growth and alleviates the sensitivity of atgrxs17 mutants to iron deficiency. These findings suggest AtGRXS17 helps integrate redox homeostasis and iron deficiency responses.

  12. Linking mitochondrial bioenergetics to insulin resistance via redox biology

    Science.gov (United States)

    Fisher-Wellman, Kelsey H.; Neufer, P. Darrell

    2012-01-01

    Chronic overnutrition and physical inactivity are major risk factors for insulin resistance and type 2 diabetes. Recent research indicates that overnutrition generates an increase in hydrogen peroxide (H2O2) emission from mitochondria, serving as a release valve to relieve the reducing pressure created by fuel overload, as well as a primary signal to ultimately decrease insulin sensitivity. H2O2 is a major input to cellular redox circuits that link to cysteine residues throughout the entire proteome to regulate cell function. Here we review the principles of mitochondrial bioenergetics and redox systems biology and offer new insight as to how H2O2 emission may be linked via redox biology to the etiology of insulin resistance. PMID:22305519

  13. Plant redox proteomics

    DEFF Research Database (Denmark)

    Navrot, Nicolas; Finnie, Christine; Svensson, Birte

    2011-01-01

    PTMs in regulating enzymatic activities and controlling biological processes in plants. Notably, proteins controlling the cellular redox state, e.g. thioredoxin and glutaredoxin, appear to play dual roles to maintain oxidative stress resistance and regulate signal transduction pathways via redox PTMs......In common with other aerobic organisms, plants are exposed to reactive oxygen species resulting in formation of post-translational modifications related to protein oxidoreduction (redox PTMs) that may inflict oxidative protein damage. Accumulating evidence also underscores the importance of redox....... To get a comprehensive overview of these types of redox-regulated pathways there is therefore an emerging interest to monitor changes in redox PTMs on a proteome scale. Compared to some other PTMs, e.g. protein phosphorylation, redox PTMs have received less attention in plant proteome analysis, possibly...

  14. Protein Redox Dynamics During Light-to-Dark Transitions in Cyanobacteria and Impacts Due to Nutrient Limitation

    Directory of Open Access Journals (Sweden)

    Aaron T Wright

    2014-07-01

    Full Text Available Protein redox chemistry constitutes a major void in knowledge pertaining to photoautotrophic system regulation and signaling processes. We have employed a chemical biology approach to analyze redox sensitive proteins in live Synechococcus sp. PCC 7002 cells in both light and dark periods, and to understand how cellular redox balance is disrupted during nutrient perturbation. The present work identified 300 putative redox-sensitive proteins that are involved in the generation of reductant, macromolecule synthesis, and carbon flux through central metabolic pathways, and may be involved in cell signaling and response mechanisms. Furthermore, our research suggests that dynamic redox changes in response to specific nutrient limitations, including carbon and nitrogen limitations, contribute to the regulatory changes driven by a shift from light to dark. Taken together, these results contribute to a high-level understanding of post-translational mechanisms regulating flux distributions and suggest potential metabolic engineering targets for redirecting carbon towards biofuel precursors.

  15. Synthesis and characterization of redox-active ferric nontronite

    Energy Technology Data Exchange (ETDEWEB)

    Ilgen, A. G.; Kukkadapu, R. K.; Dunphy, D. R.; Artyushkova, K.; Cerrato, J. M.; Kruichak, J. N.; Janish, M. T.; Sun, C. J.; Argo, J. M.; Washington, R. E.

    2017-10-01

    Heterogeneous redox reactions on clay mineral surfaces control mobility and bioavailability of redox-sensitive nutrients and contaminants. Iron (Fe) residing in clay mineral structures can either catalyze or directly participate in redox reactions; however, chemical controls over its reactivity are not fully understood. In our previous work we demonstrated that converting a minor portion of Fe(III) to Fe(II) (partial reduction) in the octahedral sheet of natural Fe-rich clay mineral nontronite (NAu-1) activates its surface, making it redox-active. In this study we produced and characterized synthetic ferric nontronite (SIP), highlighting structural and chemical similarities and differences between this synthetic nontronite and its natural counterpart NAu-1, and probed whether mineral surface is redox-active by reacting it with arsenic As(III) under oxic and anoxic conditions. We demonstrate that synthetic nontronite SIP undergoes the same activation as natural nontronite NAu-1 following the partial reduction treatment. Similar to NAu-1, SIP oxidized As(III) to As(V) under both oxic (catalytic pathway) and anoxic (direct oxidation) conditions. The similar reactivity trends observed for synthetic nontronite and its natural counterpart make SIP an appropriate analog for laboratory studies. The development of chemically pure analogs for ubiquitous soil minerals will allow for systematic research of the fundamental properties of these minerals.

  16. Assessing the Sensitivity of Mountain Forests to Site Degradation in the Northern Limestone Alps, Europe

    Directory of Open Access Journals (Sweden)

    Birgit Reger

    2015-05-01

    Full Text Available Because of some land-use practices (such as overstocking with wild ungulates, historical clear-cuts for mining, and locally persisting forest pasture, protective forests in the montane vegetation belt of the Northern Limestone Alps are now frequently overaged and poorly structured over large areas. Windthrow and bark beetle infestations have generated disturbance areas in which forests have lost their protective functions. Where unfavorable site conditions hamper regeneration for decades, severe soil loss may ensue. To help prioritize management interventions, we developed a geographic information system-based model for assessing sensitivity to site degradation and applied it to 4 test areas in the Northern Limestone Alps of Austria and Bavaria. The model consists of (1 analysis of site conditions and forest stand structures that could increase sensitivity to degradation, (2 evaluation of the sensitivity of sites and stands, and (3 evaluation and mapping of mountain forests' sensitivity to degradation. Site conditions were modeled using regression algorithms with data on site parameters from pointwise soil and vegetation surveys as responses and areawide geodata on climate, relief, and substrate as predictors. The resulting predictor–response relationships were applied to test areas. Stand structure was detected from airborne laser scanning data. Site and stand parameters were evaluated according to their sensitivity to site degradation. Sensitivities of sites and stands were summarized in intermediate-scale sensitivity maps. High sensitivity was identified in 3 test areas with pure limestone and dolomite as the prevailing sensitivity level. Moderately sensitive forests dominate in the final test area, Grünstein, where the bedrock in some strata contains larger amounts of siliceous components (marl, mudstone, and moraines; degraded and slightly sensitive forests were rare or nonexistent in all 4 test areas. Providing a comprehensive overview

  17. In-Situ Generated Graphene as the Catalytic Site for Visible-Light Mediated Ethylene Epoxidation on AG Nanocatalysts

    Science.gov (United States)

    Zhang, Xueqiang Alex; Jain, Prashant

    2017-06-01

    Despite the harsh conditions for chemical conversion, ethylene oxide produced from ethylene epoxidation on Ag-based heterogeneous catalyst constitutes one of the largest volume chemicals in chemical industry. Recently, photocatalytic epoxidation of ethylene over plasmonic Ag nanoparticles enables the chemical conversion under significantly decreased temperature and ambient pressure conditions. Yet a detailed understanding of the photocatalytic process at the reactant/catalyst interface is under debate. Surface enhanced Raman spectroscopy (SERS) is a powerful vibrational spectroscopy technique that enables the localized detection of rare and/or transient chemical species with high sensitivity under in situ and ambient conditions. Using SERS, we are able to monitor at individual sites of an Ag nanocatalyst the visible-light-mediated adsorption and epoxidation of ethylene. From detected intermediates, we find that the primary step in the photoepoxidation is the transient formation of graphene catalyzed by the Ag surface. Density functional theory (DFT) simulations that model the observed SERS spectra suggest that the defective edge sites of the graphene formed on Ag constitute the active site for C2H4 adsorption and epoxidation. Further studies with pre-formed graphene/Ag catalyst composites confirm the indispensable role of graphene in visible-light-mediated ethylene epoxidation. Carbon is often thought to be either an innocent support or a poison for metallic catalysts; however our studies reveal a surprising role for crystalline carbon layers as potential co-catalysts.

  18. Biofabricated film with enzymatic and redox-capacitor functionalities to harvest and store electrons

    International Nuclear Information System (INIS)

    Liba, Benjamin D; Kim, Eunkyoung; Martin, Alexandra N; Liu Yi; Bentley, William E; Payne, Gregory F

    2013-01-01

    Exciting opportunities in bioelectronics will be facilitated by materials that can bridge the chemical logic of biology and the digital logic of electronics. Here we report the fabrication of a dual functional hydrogel film that can harvest electrons from its chemical environment and store these electrons by switching the film's redox-state. The hydrogel scaffold was formed by the anodic deposition of the aminopolysaccharide chitosan. Electron-harvesting function was conferred by co-depositing the enzyme glucose dehydrogenase (GDH) with chitosan. GDH catalyzes the transfer of electrons from glucose to the soluble redox-shuttle NADP + . Electron-storage function was conferred by the redox-active food phenolic chlorogenic acid (CA) that was enzymatically grafted to the chitosan scaffold using tyrosinase. The grafted CA undergoes redox-cycling reactions with NADPH resulting in the net transfer of electrons to the film where they are stored in the reduced state of CA. The individual and dual functionalities of these films were demonstrated experimentally. There are three general conclusions from this proof-of-concept study. First, enzymatically-grafted catecholic moieties confer redox-capacitor function to the chitosan scaffold. Second, biological materials (i.e. chitosan and CA) and mechanisms (i.e. tyrosinase-mediated grafting) allow the reagentless fabrication of functional films that should be environmentally-friendly, safe and potentially even edible. Finally, the film's ability to mediate the transfer of electrons from a biological metabolite to an electrode suggests an approach to bridge the chemical logic of biology with the digital logic of electronics. (paper)

  19. Redox properties of structural Fe in clay minerals. 2. Electrochemical and spectroscopic characterization of electron transfer irreversibility in ferruginous smectite, SWa-1.

    Science.gov (United States)

    Gorski, Christopher A; Klüpfel, Laura; Voegelin, Andreas; Sander, Michael; Hofstetter, Thomas B

    2012-09-04

    Structural Fe in clay minerals is an important, albeit poorly characterized, redox-active phase found in many natural and engineered environments. This work develops an experimental approach to directly assess the redox properties of a natural Fe-bearing smectite (ferruginous smectite, SWa-1, 12.6 wt % Fe) with mediated electrochemical reduction (MER) and oxidation (MEO). By utilizing a suite of one-electron-transfer mediating compounds to facilitate electron transfer between structural Fe in SWa-1 and a working electrode, we show that the Fe2+/Fe3+ couple in SWa-1 is redox-active over a large range of potentials (from E(H) = -0.63 V to +0.61 V vs SHE). Electrochemical and spectroscopic analyses of SWa-1 samples that were subject to reduction and re-oxidation cycling revealed both reversible and irreversible structural Fe rearrangements that altered the observed apparent standard reduction potential (E(H)(ø)) of structural Fe. E(H)(ø)-values vary by as much as 0.56 V between SWa-1 samples with different redox histories. The wide range of E(H)-values over which SWa-1 is redox-active and redox history-dependent E(H)(ø)-values underscore the importance of Fe-bearing clay minerals as redox-active phases in a wide range of redox regimes.

  20. Investigation of the redox-dependent modulation of structure and dynamics in human cytochrome c

    Energy Technology Data Exchange (ETDEWEB)

    Imai, Mizue [Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810 (Japan); Saio, Tomohide [Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810 (Japan); Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810 (Japan); Kumeta, Hiroyuki [Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021 (Japan); Uchida, Takeshi [Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810 (Japan); Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810 (Japan); Inagaki, Fuyuhiko [Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021 (Japan); Ishimori, Koichiro, E-mail: koichiro@sci.hokudai.ac.jp [Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810 (Japan); Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810 (Japan)

    2016-01-22

    Redox-dependent changes in the structure and dynamics of human cytochrome c (Cyt c) were investigated by solution NMR. We found significant structural changes in several regions, including residues 23–28 (loop 3), which were further corroborated by chemical shift differences between the reduced and oxidized states of Cyt c. These differences are essential for discriminating redox states in Cyt c by cytochrome c oxidase (CcO) during electron transfer reactions. Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion experiments identified that the region around His33 undergoes conformational exchanges on the μs-ms timescale, indicating significant redox-dependent structural changes. Because His33 is not part of the interaction site for CcO, our data suggest that the dynamic properties of the region, which is far from the interaction site for CcO, contribute to conformational changes during electron transfer to CcO. - Highlights: • Solution structure and dynamics analysis for human Cyt c by NMR. • Structural changes responsible for the discrimination of the redox state in Cyt c. • Conformational exchange in the region outside of the interaction site for CcO. • Less flexibility and rigid structure of the interaction site on Cyt c for CcO.

  1. TIC/TOC and Redox Sensitive Trace Element (RSTEs) Signals Indicating Redox Conditions of the Lower Part of the Cabo Formation Near Organya (Organya Basin), Catalunya, Spain

    Science.gov (United States)

    Herdocia, C.; Maurrasse, F. J.

    2017-12-01

    The thick (> 4.5 km) sedimentary succession of the Organya Basin includes the Cabo Formation [1] which is well exposed in the Cabo valley area and is characteristically composed of black to dark gray marlstones and limestones that accumulated during the greenhouse climate and contain variable amount of organic matter [2-4]. Here we present geochemical results to assess redox conditions of 35.6 m of the Cabo Formation near the Barremian / Aptian boundary, along Catalunya Route C-14, immediately north of the town of Organya. TOC values range between 1 wt% and 5.8 wt%, and peak in all black limestones (0.43 m, 4.38 m, 14.85 m, 29.95 m, and 35.6 m). These TOC values average about 2.0 wt %, except at a height of 0.43 m, where the TOC has a strong peak (5.78 wt%). TIC values oscillated between 86.7 wt% and 96.8 wt%, and averaged at 92.7 wt% and show a strong negative correlation with TOC (r = -0.78). Measured carbon isotope on the organic carbon fraction (δ13Corg) showed fluctuations that ranged from -24.41‰ to -22.15‰. The TOC and δ13Corg curves show a positive correlation (r = 0.58), suggesting that carbon sequestration in the basin followed the overall global signature. Redox sensitive trace elements (V, Ni, Cu, and Mo) correlate with TOC values (r > 0.6), suggesting that dysoxic conditions were responsible for the preservation of organic matter. Biolimiting trace elements (Fe, P) also correlate positively with redox trace elements, and both have highest concentrations at 14.85 m, in concurrence with a high TOC value (2.93 wt%) indicating high primary productivity at that level. Major elements (Al, Si, and Ti) also correlates slightly with TOC (Al: r = 0.39; Si: r = 0.36; Ti: r = 0.43). References: [1] García-Senz, J., 2002, PhD Thesis, University of Barcelona, 310 pp. [2] Bernaus, J.M., et al., 2003. Sedimentary Geology 159 (3-4), 177-201. [3] Caus, E., et al., 1990. Cret. Research 11, 313-320. [4] Sanchez-Hernandez, Y., Maurrasse, F.J-M.R. 2014. Chem

  2. Optical imaging the redox status change during cell apoptosis

    Science.gov (United States)

    Su, Ting; Zhang, Zhihong; Lin, Juqiang; Luo, Qingming

    2007-02-01

    Many cellular events involve the alteration in redox equilibrium, globally or locally. In many cases, excessive reactive oxygen species (ROS) production is the underlying cause. Several green fluoresecence protein based indicators are constructed to measure redox status in cells, e.g, rxYFP and roGFPs, which allow real time detection. reduction and oxidization-sensitive GFP (RoGFPs) are more useful due to ratiometric variation by excitation, making the measurement more accurate. Utilizing one of those roGFPs called roGFP1, we establish a mitochondrial redox state probing platform in HeLa cells with laser scan confocal microscopy (LSCM) as detection system. Control experiments confirmed that our platform could produce stable ratiometric values, which made the data more accurately reflect the real environmental changes of redox status that roGFP1 probed. Using exogenous H IIO II and DTT, we evaluated the reactivity and reversibility of roGFP1. The minimal hydrogen peroxide concentration that roGFP1 could show detectable ratiometric changes in our system was about 200μM. Preliminarily applying our platform to exploring the redox status during apoptosis, we observed an increase in ratiometric, suggesting an excessive ROS production.

  3. Attenuation of LDHA expression in cancer cells leads to redox-dependent alterations in cytoskeletal structure and cell migration.

    Science.gov (United States)

    Arseneault, Robert; Chien, Andrew; Newington, Jordan T; Rappon, Tim; Harris, Richard; Cumming, Robert C

    2013-09-28

    Aerobic glycolysis, the preferential use of glycolysis even in the presence of oxygen to meet cellular metabolic demands, is a near universal feature of cancer. This unique type of metabolism is thought to protect cancer cells from damaging reactive oxygen species (ROS) produced in the mitochondria. Using the cancer cell line MDA-MB-435 it is shown that shRNA mediated knockdown of lactate dehydrogenase A (LDHA), a key mediator of aerobic glycolysis, results in elevated mitochondrial ROS production and a concomitant decrease in cell proliferation and motility. Redox-sensitive proteins affected by oxidative stress associated with LDHA knockdown were identified by Redox 2D-PAGE and mass spectrometry. In particular, tropomyosin (Tm) isoforms Tm4, Tm5NM1 and Tm5NM5, proteins involved in cell migration and cytoskeletal dynamics, exhibited changes in disulfide bonding and co-localized with peri-nuclear actin aggregates in LDHA knockdown cells. In contrast, treatment with the thiol-based antioxidant N-acetylcysteine promoted the relocalization of Tms to cortical actin microfilaments and partially rescued the migration defects associated with attenuated LDHA expression. These results suggest that aerobic glycolysis and reduced mitochondrial ROS production create an environment conducive to cytoskeletal remodeling; key events linked to the high cell motility associated with cancer. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. Sensitization of TRPA1 by Protein Kinase A.

    Directory of Open Access Journals (Sweden)

    Jannis E Meents

    Full Text Available The TRPA1 ion channel is expressed in nociceptive (pain-sensitive somatosensory neurons and is activated by a wide variety of chemical irritants, such as acrolein in smoke or isothiocyanates in mustard. Here, we investigate the enhancement of TRPA1 function caused by inflammatory mediators, which is thought to be important in lung conditions such as asthma and COPD. Protein kinase A is an important kinase acting downstream of inflammatory mediators to cause sensitization of TRPA1. By using site-directed mutagenesis, patch-clamp electrophysiology and calcium imaging we identify four amino acid residues, S86, S317, S428, and S972, as the principal targets of PKA-mediated phosphorylation and sensitization of TRPA1.

  5. Enhanced muscle insulin sensitivity after contraction/exercise is mediated by AMPK

    DEFF Research Database (Denmark)

    Kjøbsted, Rasmus; Munk-Hansen, Nanna; Birk, Jesper Bratz

    2017-01-01

    muscle and whole body insulin sensitivity in wild type (WT) mice, respectively. These effects were not found in AMPKα1α2 muscle-specific knockout mice. Prior in situ contraction did not increase insulin sensitivity in m. soleus from either genotype. Improvement in muscle insulin sensitivity....... Collectively, our data suggest that the AMPK-TBC1D4 signaling axis is likely mediating the improved muscle insulin sensitivity after contraction/exercise and illuminates an important and physiological relevant role of AMPK in skeletal muscle.......Earlier studies have demonstrated that muscle insulin sensitivity to stimulate glucose uptake is enhanced several hours after an acute bout of exercise. Using 5-aminoimidazole-4-carboxamide-ribonucleotide (AICAR), we recently demonstrated that prior activation of AMPK is sufficient to increase...

  6. Pain Sensitivity Mediates The Relationship between Stress and Headache Intensity in Chronic Tension-Type Headache

    OpenAIRE

    Stuart Cathcart; Navjot Bhullar; Maarten Immink; Chris Della Vedova; John Hayball

    2012-01-01

    BACKGROUND: A central model for chronic tension-type headache (CTH) posits that stress contributes to headache, in part, by aggravating existing hyperalgesia in CTH sufferers. The prediction from this model that pain sensitivity mediates the relationship between stress and headache activity has not yet been examined.OBJECTIVE: To determine whether pain sensitivity mediates the relationship between stress and prospective headache activity in CTH sufferers.METHOD: Self-reported stress, pain sen...

  7. Determining redox properties of clay-rich sedimentary deposits in the context of performance assessment of radioactive waste repositories : Conceptual and practical aspects

    NARCIS (Netherlands)

    Behrends, T.; Bruggeman, Christophe

    Redox reactions play a key factor controlling the mobility of redox sensitive radionuclides in clay-rich sediments which might serve as host formations for radioactive waste repositories. Assessing the redox speciation of radionuclides requires information about the redox conditions in the formation

  8. Atypical profiles and modulations of heme-enzymes catalyzed outcomes by low amounts of diverse additives suggest diffusible radicals' obligatory involvement in such redox reactions.

    Science.gov (United States)

    Manoj, Kelath Murali; Parashar, Abhinav; Venkatachalam, Avanthika; Goyal, Sahil; Satyalipsu; Singh, Preeti Gunjan; Gade, Sudeep K; Periyasami, Kalaiselvi; Jacob, Reeba Susan; Sardar, Debosmita; Singh, Shanikant; Kumar, Rajan; Gideon, Daniel A

    2016-06-01

    Peroxidations mediated by heme-enzymes have been traditionally studied under a single-site (heme distal pocket), non-sequential (ping-pong), two-substrates binding scheme of Michaelis-Menten paradigm. We had reported unusual modulations of peroxidase and P450 reaction outcomes and explained it invoking diffusible reactive species [Manoj, 2006; Manoj et al., 2010; Andrew et al., 2011, Parashar et al., 2014 & Venkatachalam et al., 2016]. A systematic investigation of specific product formation rates was undertaken to probe the hypothesis that involvement of diffusible reactive species could explain undefined substrate specificities and maverick modulations (sponsored by additives) of heme-enzymes. When the rate of specific product formation was studied as a function of reactants' concentration or environmental conditions, we noted marked deviations from normal profiles. We report that heme-enzyme mediated peroxidations of various substrates are inhibited (or activated) by sub-equivalent concentrations of diverse redox-active additives and this is owing to multiple redox equilibriums in the milieu. At low enzyme and peroxide concentrations, the enzyme is seen to recycle via a one-electron (oxidase) cycle, which does not require the substrate to access the heme centre. Schemes are provided that explain the complex mechanistic cycle, kinetics & stoichiometry. It is not obligatory for an inhibitor or substrate to interact with the heme centre for influencing overall catalysis. Roles of diffusible reactive species explain catalytic outcomes at low enzyme and reactant concentrations. The current work highlights the scope/importance of redox enzyme reactions that could occur "out of the active site" in biological or in situ systems. Copyright © 2016 Elsevier B.V. and Société française de biochimie et biologie Moléculaire (SFBBM). All rights reserved.

  9. A solar rechargeable flow battery based on photoregeneration of two soluble redox couples.

    Science.gov (United States)

    Liu, Ping; Cao, Yu-liang; Li, Guo-Ran; Gao, Xue-Ping; Ai, Xin-Ping; Yang, Han-Xi

    2013-05-01

    Storable sunshine, reusable rays: A solar rechargeable redox flow battery is proposed based on the photoregeneration of I(3)(-)/I(-) and [Fe(C(10)H(15))(2)](+)/Fe(C(10)H(15))(2) soluble redox couples, which can be regenerated by flowing from a discharged redox flow battery (RFB) into a dye-sensitized solar cell (DSSC) and then stored in tanks for subsequent RFB applications This technology enables effective solar-to-chemical energy conversion. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Redox oscillation impact on natural and engineered biogeochemical systems: chemical resilience and implications for contaminant mobility

    Energy Technology Data Exchange (ETDEWEB)

    Charlet, Laurent [ISTerre, University of Grenoble, B.P. 53X, 38041 Grenoble (France); Institut Universitaire de France, Paris (France); Markelova, Ekaterina [ISTerre, University of Grenoble, B.P. 53X, 38041 Grenoble (France); Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON N2L3G1 4 (Canada); Parsons, Chris; Couture, Raoul-Marie [Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON N2L3G1 4 (Canada); Made, Benoit [Andra / DRD-TR, Direction Recherche et Developpement, 1-7 rue Jean Monnet, 92298 Chatenay-Malabry cedex (France)

    2013-07-01

    Many geochemical systems fluctuate regularly from oxic to anoxic conditions (flooded soils and nuclear waste surface repositories, for instance). In these conditions many inorganic contaminants including Sb, Se, Cr, As, and U are highly sensitive to changes in redox conditions. These oscillations may result in changes to their speciation, toxicity, and mobility. We demonstrate through the combination of redox-stat batch-reactor experiments that periodic and cumulative changes to matrix mineralogy, contaminant speciation, and mineral surface properties occur following periodic cycles of reduction and oxidation. These changes result in both short-term (intra-cycle) and long-term (inter-cycle) changes to K{sub d} values for a range of redox sensitive contaminants. These results demonstrate that naturally occurring redox oscillations may result in long-term immobilization of contaminants in the solid phase in addition to short-term variations in mobility. (authors)

  11. Conductivity in redox modified conducting polymers. In-situ conductivity of poly(cyclopentadithiophenes) bearing p-nitrophenyl and 4-N-methylpyridinium groups

    Energy Technology Data Exchange (ETDEWEB)

    Zotti, G. [Consiglio Nazionale delle Ricerche, (Italy). Istituto di Polarografia ed Elettrochimica Preparativa; Berlin, A. [Milan Univ. (Italy). Dipartimento di Chimica Organica e Industriale; Pagani, G. [Milan Univ. (Italy). Dipartimento di Chimica Organica e Industriale; Schiavon, G. [Consiglio Nazionale delle Ricerche, (Italy). Istituto di Polarografia ed Elettrochimica Preparativa; Zecchin, S. [Consiglio Nazionale delle Ricerche, (Italy). Istituto di Polarografia ed Elettrochimica Preparativa

    1995-01-01

    Redox-modified polythiophenes exhibiting the highest mixed-valence conductivities of any polymer containing a pendant redox group are reported. The ordering of the polymer, in which the backbone has been oxidized to a bipolaron conducting state and the redox sites have been reduced to a mixed-valence conducting state, encourages inter-site hopping and results in the high conductivities. Electron interactions are shown not have an influence on the conduction. (orig.)

  12. Thiol Redox Transitions in Cell Signaling: a Lesson from N-Acetylcysteine

    Directory of Open Access Journals (Sweden)

    Tiziana Parasassi

    2010-01-01

    Full Text Available The functional status of cells is under the control of external stimuli affecting the function of critical proteins and eventually gene expression. Signal sensing and transduction by messengers to specific effectors operate by post-translational modification of proteins, among which thiol redox switches play a fundamental role that is just beginning to be understood. The maintenance of the redox status is, indeed, crucial for cellular homeostasis and its dysregulation towards a more oxidized intracellular environment is associated with aberrant proliferation, ultimately related to diseases such as cancer, cardiovascular disease, and diabetes. Redox transitions occur in sensitive cysteine residues of regulatory proteins relevant to signaling, their evolution to metastable disulfides accounting for the functional redox switch. N-acetylcysteine (NAC is a thiol-containing compound that is able to interfere with redox transitions of thiols and, thus, in principle, able to modulate redox signaling. We here review the redox chemistry of NAC, then screen possible mechanisms to explain the effects observed in NAC-treated normal and cancer cells; such effects involve a modification of global gene expression, thus of functions and morphology, with a leitmotif of a switch from proliferation to terminal differentiation. The regulation of thiol redox transitions in cell signaling is, therefore, proposed as a new tool, holding promise not only for a deeper explanation of mechanisms, but indeed for innovative pharmacological interventions.

  13. A Long-Life Lithium-Air Battery in Ambient Air with a Polymer Electrolyte Containing a Redox Mediator.

    Science.gov (United States)

    Guo, Ziyang; Li, Chao; Liu, Jingyuan; Wang, Yonggang; Xia, Yongyao

    2017-06-19

    Lithium-air batteries when operated in ambient air generally exhibit poor reversibility and cyclability, because of the Li passivation and Li 2 O 2 /LiOH/Li 2 CO 3 accumulation in the air electrode. Herein, we present a Li-air battery supported by a polymer electrolyte containing 0.05 m LiI, in which the polymer electrolyte efficiently alleviates the Li passivation induced by attacking air. Furthermore, it is demonstrated that I - /I 2 conversion in polymer electrolyte acts as a redox mediator that facilitates electrochemical decomposition of the discharge products during recharge process. As a result, the Li-air battery can be stably cycled 400 times in ambient air (relative humidity of 15 %), which is much better than previous reports. The achievement offers a hope to develop the Li-air battery that can be operated in ambient air. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Organic Redox Species in Aqueous Flow Batteries: Redox Potentials, Chemical Stability and Solubility

    Science.gov (United States)

    Wedege, Kristina; Dražević, Emil; Konya, Denes; Bentien, Anders

    2016-01-01

    Organic molecules are currently investigated as redox species for aqueous low-cost redox flow batteries (RFBs). The envisioned features of using organic redox species are low cost and increased flexibility with respect to tailoring redox potential and solubility from molecular engineering of side groups on the organic redox-active species. In this paper 33, mainly quinone-based, compounds are studied experimentially in terms of pH dependent redox potential, solubility and stability, combined with single cell battery RFB tests on selected redox pairs. Data shows that both the solubility and redox potential are determined by the position of the side groups and only to a small extent by the number of side groups. Additionally, the chemical stability and possible degradation mechanisms leading to capacity loss over time are discussed. The main challenge for the development of all-organic RFBs is to identify a redox pair for the positive side with sufficiently high stability and redox potential that enables battery cell potentials above 1 V. PMID:27966605

  15. Organic Redox Species in Aqueous Flow Batteries: Redox Potentials, Chemical Stability and Solubility

    Science.gov (United States)

    Wedege, Kristina; Dražević, Emil; Konya, Denes; Bentien, Anders

    2016-12-01

    Organic molecules are currently investigated as redox species for aqueous low-cost redox flow batteries (RFBs). The envisioned features of using organic redox species are low cost and increased flexibility with respect to tailoring redox potential and solubility from molecular engineering of side groups on the organic redox-active species. In this paper 33, mainly quinone-based, compounds are studied experimentially in terms of pH dependent redox potential, solubility and stability, combined with single cell battery RFB tests on selected redox pairs. Data shows that both the solubility and redox potential are determined by the position of the side groups and only to a small extent by the number of side groups. Additionally, the chemical stability and possible degradation mechanisms leading to capacity loss over time are discussed. The main challenge for the development of all-organic RFBs is to identify a redox pair for the positive side with sufficiently high stability and redox potential that enables battery cell potentials above 1 V.

  16. New function of aldoxime dehydratase: Redox catalysis and the formation of an unexpected product.

    Science.gov (United States)

    Yamada, Masatoshi; Hashimoto, Yoshiteru; Kumano, Takuto; Tsujimura, Seiya; Kobayashi, Michihiko

    2017-01-01

    In general, hemoproteins are capable of catalyzing redox reactions. Aldoxime dehydratase (OxdA), which is a unique heme-containing enzyme, catalyzes the dehydration of aldoximes to the corresponding nitriles. Its reaction is a rare example of heme directly activating an organic substrate, unlike the utilization of H2O2 or O2 as a mediator of catalysis by other heme-containing enzymes. While it is unknown whether OxdA catalyzes redox reactions or not, we here for the first time detected catalase activity (which is one of the redox activities) of wild-type OxdA, OxdA(WT). Furthermore, we constructed a His320 → Asp mutant of OxdA [OxdA(H320D)], and found it exhibits catalase activity. Determination of the kinetic parameters of OxdA(WT) and OxdA(H320D) revealed that their Km values for H2O2 were similar to each other, but the kcat value of OxdA(H320D) was 30 times higher than that of OxdA(WT). Next, we examined another redox activity and found it was the peroxidase activity of OxdAs. While both OxdA(WT) and OxdA(H320D) showed the activity, the activity of OxdA(H320D) was dozens of times higher than that of OxdA(WT). These findings demonstrated that the H320D mutation enhances the peroxidase activity of OxdA. OxdAs (WT and H320D) were found to catalyze another redox reaction, a peroxygenase reaction. During this reaction of OxdA(H320D) with 1-methoxynaphthalene as a substrate, surprisingly, the reaction mixture changed to a color different from that with OxdA(WT), which was due to the known product, Russig's blue. We purified and identified the new product as 1-methoxy-2-naphthalenol, which has never been reported as a product of the peroxygenase reaction, to the best of our knowledge. These findings indicated that the H320D mutation not only enhanced redox activities, but also significantly altered the hydroxylation site of the substrate.

  17. New function of aldoxime dehydratase: Redox catalysis and the formation of an unexpected product.

    Directory of Open Access Journals (Sweden)

    Masatoshi Yamada

    Full Text Available In general, hemoproteins are capable of catalyzing redox reactions. Aldoxime dehydratase (OxdA, which is a unique heme-containing enzyme, catalyzes the dehydration of aldoximes to the corresponding nitriles. Its reaction is a rare example of heme directly activating an organic substrate, unlike the utilization of H2O2 or O2 as a mediator of catalysis by other heme-containing enzymes. While it is unknown whether OxdA catalyzes redox reactions or not, we here for the first time detected catalase activity (which is one of the redox activities of wild-type OxdA, OxdA(WT. Furthermore, we constructed a His320 → Asp mutant of OxdA [OxdA(H320D], and found it exhibits catalase activity. Determination of the kinetic parameters of OxdA(WT and OxdA(H320D revealed that their Km values for H2O2 were similar to each other, but the kcat value of OxdA(H320D was 30 times higher than that of OxdA(WT. Next, we examined another redox activity and found it was the peroxidase activity of OxdAs. While both OxdA(WT and OxdA(H320D showed the activity, the activity of OxdA(H320D was dozens of times higher than that of OxdA(WT. These findings demonstrated that the H320D mutation enhances the peroxidase activity of OxdA. OxdAs (WT and H320D were found to catalyze another redox reaction, a peroxygenase reaction. During this reaction of OxdA(H320D with 1-methoxynaphthalene as a substrate, surprisingly, the reaction mixture changed to a color different from that with OxdA(WT, which was due to the known product, Russig's blue. We purified and identified the new product as 1-methoxy-2-naphthalenol, which has never been reported as a product of the peroxygenase reaction, to the best of our knowledge. These findings indicated that the H320D mutation not only enhanced redox activities, but also significantly altered the hydroxylation site of the substrate.

  18. New function of aldoxime dehydratase: Redox catalysis and the formation of an expected product

    Science.gov (United States)

    Kumano, Takuto; Tsujimura, Seiya; Kobayashi, Michihiko

    2017-01-01

    In general, hemoproteins are capable of catalyzing redox reactions. Aldoxime dehydratase (OxdA), which is a unique heme-containing enzyme, catalyzes the dehydration of aldoximes to the corresponding nitriles. Its reaction is a rare example of heme directly activating an organic substrate, unlike the utilization of H2O2 or O2 as a mediator of catalysis by other heme-containing enzymes. While it is unknown whether OxdA catalyzes redox reactions or not, we here for the first time detected catalase activity (which is one of the redox activities) of wild-type OxdA, OxdA(WT). Furthermore, we constructed a His320 → Asp mutant of OxdA [OxdA(H320D)], and found it exhibits catalase activity. Determination of the kinetic parameters of OxdA(WT) and OxdA(H320D) revealed that their Km values for H2O2 were similar to each other, but the kcat value of OxdA(H320D) was 30 times higher than that of OxdA(WT). Next, we examined another redox activity and found it was the peroxidase activity of OxdAs. While both OxdA(WT) and OxdA(H320D) showed the activity, the activity of OxdA(H320D) was dozens of times higher than that of OxdA(WT). These findings demonstrated that the H320D mutation enhances the peroxidase activity of OxdA. OxdAs (WT and H320D) were found to catalyze another redox reaction, a peroxygenase reaction. During this reaction of OxdA(H320D) with 1-methoxynaphthalene as a substrate, surprisingly, the reaction mixture changed to a color different from that with OxdA(WT), which was due to the known product, Russig’s blue. We purified and identified the new product as 1-methoxy-2-naphthalenol, which has never been reported as a product of the peroxygenase reaction, to the best of our knowledge. These findings indicated that the H320D mutation not only enhanced redox activities, but also significantly altered the hydroxylation site of the substrate. PMID:28410434

  19. NNT reverse mode of operation mediates glucose control of mitochondrial NADPH and glutathione redox state in mouse pancreatic β-cells

    Directory of Open Access Journals (Sweden)

    Laila R.B. Santos

    2017-06-01

    Full Text Available Objective: The glucose stimulation of insulin secretion (GSIS by pancreatic β-cells critically depends on increased production of metabolic coupling factors, including NADPH. Nicotinamide nucleotide transhydrogenase (NNT typically produces NADPH at the expense of NADH and ΔpH in energized mitochondria. Its spontaneous inactivation in C57BL/6J mice was previously shown to alter ATP production, Ca2+ influx, and GSIS, thereby leading to glucose intolerance. Here, we tested the role of NNT in the glucose regulation of mitochondrial NADPH and glutathione redox state and reinvestigated its role in GSIS coupling events in mouse pancreatic islets. Methods: Islets were isolated from female C57BL/6J mice (J-islets, which lack functional NNT, and genetically close C57BL/6N mice (N-islets. Wild-type mouse NNT was expressed in J-islets by adenoviral infection. Mitochondrial and cytosolic glutathione oxidation was measured with glutaredoxin 1-fused roGFP2 probes targeted or not to the mitochondrial matrix. NADPH and NADH redox state was measured biochemically. Insulin secretion and upstream coupling events were measured under dynamic or static conditions by standard procedures. Results: NNT is largely responsible for the acute glucose-induced rise in islet NADPH/NADP+ ratio and decrease in mitochondrial glutathione oxidation, with a small impact on cytosolic glutathione. However, contrary to current views on NNT in β-cells, these effects resulted from a glucose-dependent reduction in NADPH consumption by NNT reverse mode of operation, rather than from a stimulation of its forward mode of operation. Accordingly, the lack of NNT in J-islets decreased their sensitivity to exogenous H2O2 at non-stimulating glucose. Surprisingly, the lack of NNT did not alter the glucose-stimulation of Ca2+ influx and upstream mitochondrial events, but it markedly reduced both phases of GSIS by altering Ca2+-induced exocytosis and its metabolic amplification. Conclusion: These

  20. Advanced oxidation protein products induce chondrocyte apoptosis via receptor for advanced glycation end products-mediated, redox-dependent intrinsic apoptosis pathway.

    Science.gov (United States)

    Wu, Qian; Zhong, Zhao-Ming; Zhu, Si-Yuan; Liao, Cong-Rui; Pan, Ying; Zeng, Ji-Huan; Zheng, Shuai; Ding, Ruo-Ting; Lin, Qing-Song; Ye, Qing; Ye, Wen-Bin; Li, Wei; Chen, Jian-Ting

    2016-01-01

    Pro-inflammatory cytokine-induced chondrocyte apoptosis is a primary cause of cartilage destruction in the progression of rheumatoid arthritis (RA). Advanced oxidation protein products (AOPPs), a novel pro-inflammatory mediator, have been confirmed to accumulate in patients with RA. However, the effect of AOPPs accumulation on chondrocyte apoptosis and the associated cellular mechanisms remains unclear. The present study demonstrated that the plasma formation of AOPPs was enhanced in RA rats compared with normal. Then, chondrocyte were treated with AOPPs-modified rat serum albumin (AOPPs-RSA) in vitro. Exposure of chondrocyte to AOPPs activated nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and increased expression of NADPH oxidase subunits, which was mediated by receptor for advanced glycation end products (RAGE), but not scavenger receptor CD36. Moreover, AOPPs challenge triggered NADPH oxidase-dependent ROS generation which induced mitochondrial dysfunction and endoplasmic reticulum stress resulted in activation of caspase family that eventually lead to apoptosis. Lastly, blockade of RAGE, instead of CD36, largely attenuated these signals. Our study demonstrated first time that AOPPs induce chondrocyte apoptosis via RAGE-mediated and redox-dependent intrinsic apoptosis pathway in vitro. These data implicates that AOPPs may represent a novel pathogenic factor that contributes to RA progression. Targeting AOPPs-triggered cellular mechanisms might emerge as a promising therapeutic option for patients with RA.

  1. Thermodynamic Characterization of Iron Oxide-Aqueous Fe(2+) Redox Couples.

    Science.gov (United States)

    Gorski, Christopher A; Edwards, Rebecca; Sander, Michael; Hofstetter, Thomas B; Stewart, Sydney M

    2016-08-16

    Iron is present in virtually all terrestrial and aquatic environments, where it participates in redox reactions with surrounding metals, organic compounds, contaminants, and microorganisms. The rates and extent of these redox reactions strongly depend on the speciation of the Fe2+ and Fe3+ phases, although the underlying reasons remain unclear. In particular, numerous studies have observed that Fe2+ associated with iron oxide surfaces (i.e., oxide-associated Fe2+) often reduces oxidized contaminants much faster than aqueous Fe2+ alone. Here, we tested two hypotheses related to this observation by determining if solutions containing two commonly studied iron oxides—hematite and goethite—and aqueous Fe2+ reached thermodynamic equilibrium over the course of a day. We measured reduction potential (EH) values in solutions containing these oxides at different pH values and aqueous Fe2+ concentrations using mediated potentiometry. This analysis yielded standard reduction potential (EH0) values of 768 ± 1 mV for the aqueous Fe2+–goethite redox couple and 769 ± 2 mV for the aqueous Fe2+–hematite redox couple. These values were in excellent agreement with those calculated from existing thermodynamic data, and the data could be explained by the presence of an iron oxide lowering EH values of aqueous Fe3+/Fe2+ redox couples.

  2. Organic Redox Species in Aqueous Flow Batteries: Redox Potentials, Chemical Stability and Solubility

    OpenAIRE

    Kristina Wedege; Emil Dražević; Denes Konya; Anders Bentien

    2016-01-01

    Organic molecules are currently investigated as redox species for aqueous low-cost redox flow batteries (RFBs). The envisioned features of using organic redox species are low cost and increased flexibility with respect to tailoring redox potential and solubility from molecular engineering of side groups on the organic redox-active species. In this paper 33, mainly quinone-based, compounds are studied experimentially in terms of pH dependent redox potential, solubility and stability, combined ...

  3. Fully glutathione degradable waterborne polyurethane nanocarriers: Preparation, redox-sensitivity, and triggered intracellular drug release

    Energy Technology Data Exchange (ETDEWEB)

    Omrani, Ismail; Babanejad, Niloofar; Shendi, Hasan Kashef; Nabid, Mohammad Reza, E-mail: m-nabid@sbu.ac.ir

    2017-01-01

    Polyurethanes are important class of biomaterials that are extensively used in medical devices. In spite of their easy synthesis, polyurethanes that are fully degradable in response to the intracellular reducing environment are less explored for controlled drug delivery. Herein, a novel glutathione degradable waterborne polyurethane (WPU) nanocarrier for redox triggered intracellular delivery of a model lipophilic anticancer drug, doxorubicin (DOX) is reported. The WPU was prepared from polyaddition reaction of isophorone diisocyanate (IPDI) and a novel linear polyester polyol involving disulfide linkage, disulfide labeled chain extender, dimethylolpropionic acid (DMPA) using dibutyltin dilaurate (DBTDL) as a catalyst. The resulting polyurethane self-assembles into nanocarrier in water. The dynamic light scattering (DLS) measurements and scanning electron microscope (SEM) revealed fast swelling and disruption of nanocarriers under an intracellular reduction-mimicking environment. The in vitro release studies showed that DOX was released in a controlled and redox-dependent manner. MTT assays showed that DOX-loaded WPU had a high in vitro antitumor activity in both HDF noncancer cells and MCF- 7 cancer cells. In addition, it is found that the blank WPU nanocarriers are nontoxic to HDF and MCF-7 cells even at a high concentration of 2 mg/mL. Hence, nanocarriers based on disulfide labeled WPU have appeared as a new class of biocompatible and redox-degradable nanovehicle for efficient intracellular drug delivery. - Highlights: • A novel fully glutathione degradable waterborne polyurethane was developed. • The waterborne nanocarrier with disulfide bonds in both hard and soft segment were developed for redox-triggered intracellular delivery of DOX. • The polyester diol bearing disulfide bonds in the backbone was prepared by a polycondensation polymerization reaction.

  4. Mycobacterium tuberculosis has diminished capacity to counteract redox stress induced by elevated levels of endogenous superoxide.

    Science.gov (United States)

    Tyagi, Priyanka; Dharmaraja, Allimuthu T; Bhaskar, Ashima; Chakrapani, Harinath; Singh, Amit

    2015-07-01

    Mycobacterium tuberculosis (Mtb) has evolved protective and detoxification mechanisms to maintain cytoplasmic redox balance in response to exogenous oxidative stress encountered inside host phagocytes. In contrast, little is known about the dynamic response of this pathogen to endogenous oxidative stress generated within Mtb. Using a noninvasive and specific biosensor of cytoplasmic redox state of Mtb, we for first time discovered a surprisingly high sensitivity of this pathogen to perturbation in redox homeostasis induced by elevated endogenous reactive oxygen species (ROS). We synthesized a series of hydroquinone-based small molecule ROS generators and found that ATD-3169 permeated mycobacteria to reliably enhance endogenous ROS including superoxide radicals. When Mtb strains including multidrug-resistant (MDR) and extensively drug-resistant (XDR) patient isolates were exposed to this compound, a dose-dependent, long-lasting, and irreversible oxidative shift in intramycobacterial redox potential was detected. Dynamic redox potential measurements revealed that Mtb had diminished capacity to restore cytoplasmic redox balance in comparison with Mycobacterium smegmatis (Msm), a fast growing nonpathogenic mycobacterial species. Accordingly, Mtb strains were extremely susceptible to inhibition by ATD-3169 but not Msm, suggesting a functional linkage between dynamic redox changes and survival. Microarray analysis showed major realignment of pathways involved in redox homeostasis, central metabolism, DNA repair, and cell wall lipid biosynthesis in response to ATD-3169, all consistent with enhanced endogenous ROS contributing to lethality induced by this compound. This work provides empirical evidence that the cytoplasmic redox poise of Mtb is uniquely sensitive to manipulation in steady-state endogenous ROS levels, thus revealing the importance of targeting intramycobacterial redox metabolism for controlling TB infection. Copyright © 2015 The Authors. Published by

  5. In Situ Redox Manipulation Field Injection Test Report - Hanford 100-H Area

    International Nuclear Information System (INIS)

    Fruchter, J.S.; Amonette, J.E.; Cole, C.R.

    1996-11-01

    This report presents results of an In Situ Redox Manipulation (ISRM) Field Injection Withdrawal Test performed at the 100-H Area of the US. Department of Energy's (DOE's) Hanford Site in Washington State in Fiscal Year 1996 by researchers at Pacific Northwest National Laboratory (PNNL). The test is part of the overall ISRM project, the purpose of which is to determine the potential for remediating contaminated groundwater with a technology based on in situ manipulation of subsurface reduction-oxidation (redox) conditions. The ISRM technology would be used to treat subsurface contaminants in groundwater zones at DOE sites

  6. Is Oxidized Thioredoxin a Major Trigger for Cysteine Oxidation? Clues from a Redox Proteomics Approach

    OpenAIRE

    García-Santamarina, Sarela; Boronat, Susanna; Calvo, Isabel A.; Rodríguez-Gabriel, Miguel; Ayté, José; Molina, Henrik; Hidalgo, Elena

    2013-01-01

    This is a copy of an article published in the Antioxidants & Redox Signaling © Mary Ann Liebert, Inc. Antioxidants & Redox Signaling is available online at http://online.liebertpub.com Cysteine oxidation mediates oxidative stress toxicity and signaling. It has been long proposed that the thioredoxin (Trx) system, which consists of Trx and thioredoxin reductase (Trr), is not only involved in recycling classical Trx substrates, such as ribonucleotide reductase, but it also regulates g...

  7. Apoptosis inducing factor (AIF) mediates lethal redox stress induced by menadione.

    Science.gov (United States)

    Wiraswati, Hesti Lina; Hangen, Emilie; Sanz, Ana Belén; Lam, Ngoc-Vy; Reinhardt, Camille; Sauvat, Allan; Mogha, Ariane; Ortiz, Alberto; Kroemer, Guido; Modjtahedi, Nazanine

    2016-11-22

    Mitochondrial apoptosis inducing factor (AIF) is a redox-active enzyme that participates to the biogenesis/maintenance of complex I of the respiratory chain, yet also contributes to catabolic reactions in the context of regulated cell death when AIF translocates to the cytosol and to the nucleus. Here we explore the contribution of AIF to cell death induced by menadione (2-methyl-1,4-naphtoquinone; also called vitamin K3) in conditions in which this pro-oxidant does not cause the mitochondrial release of AIF, yet causes caspase-independent cell killing. Depletion of AIF from human cancer cells reduced the cytotoxicity of menadione. This cytoprotective effect was accompanied by the maintenance of high levels of reduced glutathione (GSH), which are normally depleted by menadione. In addition, AIF depletion reduced the arylation of cellular proteins induced by menadione. This menadione-triggered arylation, which can be measured by a fluorescence assay, is completely suppressed by addition of exogenous glutathione or N-acetyl cysteine. Complex I inhibition by Rotenone did not mimic the cytoprotective action of AIF depletion. Altogether, these results are compatible with the hypothesis that mitochondrion-sessile AIF facilitates lethal redox cycling of menadione, thereby precipitating protein arylation and glutathione depletion.

  8. Activation of the Arabidopsis membrane-bound transcription factor bZIP28 is mediated by site-2 protease, but not site-1 protease.

    Science.gov (United States)

    Iwata, Yuji; Ashida, Makoto; Hasegawa, Chisa; Tabara, Kazuki; Mishiba, Kei-Ichiro; Koizumi, Nozomu

    2017-08-01

    The unfolded protein response (UPR) is a homeostatic cellular response conserved in eukaryotic cells to alleviate the accumulation of unfolded proteins in the endoplasmic reticulum (ER). Arabidopsis bZIP28 is a membrane-bound transcription factor activated by proteolytic cleavage in response to ER stress, thereby releasing its cytosolic portion containing the bZIP domain from the membrane to translocate into the nucleus where it induces the transcription of genes encoding ER-resident molecular chaperones and folding enzymes. It has been widely recognized that the proteolytic activation of bZIP28 is mediated by the sequential cleavage of site-1 protease (S1P) and site-2 protease (S2P). In the present study we provide evidence that bZIP28 protein is cleaved by S2P, but not by S1P. We demonstrated that wild-type and s1p mutant plants produce the active, nuclear form of bZIP28 in response to the ER stress inducer tunicamycin. In contrast, tunicamycin-treated s2p mutants do not accumulate the active, nuclear form of bZIP28. Consistent with these observations, s2p mutants, but not s1p mutants, exhibited a defective transcriptional response of ER stress-responsive genes and significantly higher sensitivity to tunicamycin. Interestingly, s2p mutants accumulate two membrane-bound bZIP28 fragments with a shorter ER lumen-facing C-terminal domain. Importantly, the predicted cleavage sites are located far from the canonical S1P recognition motif previously described. We propose that ER stress-induced proteolytic activation of bZIP28 is mediated by the sequential actions of as-yet-unidentified protease(s) and S2P, and does not require S1P. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  9. Parental acceptance, postpartum depression, and maternal sensitivity: mediating and moderating processes.

    Science.gov (United States)

    Crockenberg, Susan C; Leerkes, Esther M

    2003-03-01

    Mothers (n = 92), fathers (n = 84), and their infants (60% male) participated in a longitudinal study of postpartum depression and maternal sensitivity. Mothers completed questionnaire measures of remembered parental acceptance, depressive symptoms, and infant distress to novelty and limits. Mothers and partners reported on marital aggression and avoidance. Maternal sensitivity was observed in the laboratory at 6 months. Characteristics of mothers, partners, and infants combined to predict postpartum depression and maternal sensitivity. Remembered parental rejection predicted postpartum depressive symptoms with prenatal depression controlled; self-esteem mediated this effect. Paternal acceptance buffered against postpartum depression when infants were highly reactive and when partners were aggressive. Paternal acceptance reduced the impact of postpartum depression on maternal sensitivity; having an aggressive marital partner exacerbated the effect.

  10. Role of nitric oxide synthase uncoupling at rostral ventrolateral medulla in redox-sensitive hypertension associated with metabolic syndrome.

    Science.gov (United States)

    Wu, Kay L H; Chao, Yung-Mei; Tsay, Shiow-Jen; Chen, Chen Hsiu; Chan, Samuel H H; Dovinova, Ima; Chan, Julie Y H

    2014-10-01

    Metabolic syndrome (MetS), which is rapidly becoming prevalent worldwide, is long known to be associated with hypertension and recently with oxidative stress. Of note is that oxidative stress in the rostral ventrolateral medulla (RVLM), where sympathetic premotor neurons reside, contributes to sympathoexcitation and hypertension. This study sought to identify the source of tissue oxidative stress in RVLM and their roles in neural mechanism of hypertension associated with MetS. Adult normotensive rats subjected to a high-fructose diet for 8 weeks developed metabolic traits of MetS, alongside increases in sympathetic vasomotor activity and blood pressure. In RVLM of these MetS rats, the tissue level of reactive oxygen species was increased, nitric oxide (NO) was decreased, and mitochondrial electron transport capacity was reduced. Whereas the protein expression of neuronal NO synthase (nNOS) or protein inhibitor of nNOS was increased, the ratio of nNOS dimer/monomer was significantly decreased. Oral intake of pioglitazone or intracisternal infusion of tempol or coenzyme Q10 significantly abrogated all those molecular events in high-fructose diet-fed rats and ameliorated sympathoexcitation and hypertension. Gene silencing of protein inhibitor of nNOS mRNA in RVLM using lentivirus carrying small hairpin RNA inhibited protein inhibitor of nNOS expression, increased the ratio of nNOS dimer/monomer, restored NO content, and alleviated oxidative stress in RVLM of high-fructose diet-fed rats, alongside significantly reduced sympathoexcitation and hypertension. These results suggest that redox-sensitive and protein inhibitor of nNOS-mediated nNOS uncoupling is engaged in a vicious cycle that sustains the production of reactive oxygen species in RVLM, resulting in sympathoexcitation and hypertension associated with MetS. © 2014 American Heart Association, Inc.

  11. Redox rhythm reinforces the circadian clock to gate immune response.

    Science.gov (United States)

    Zhou, Mian; Wang, Wei; Karapetyan, Sargis; Mwimba, Musoki; Marqués, Jorge; Buchler, Nicolas E; Dong, Xinnian

    2015-07-23

    Recent studies have shown that in addition to the transcriptional circadian clock, many organisms, including Arabidopsis, have a circadian redox rhythm driven by the organism's metabolic activities. It has been hypothesized that the redox rhythm is linked to the circadian clock, but the mechanism and the biological significance of this link have only begun to be investigated. Here we report that the master immune regulator NPR1 (non-expressor of pathogenesis-related gene 1) of Arabidopsis is a sensor of the plant's redox state and regulates transcription of core circadian clock genes even in the absence of pathogen challenge. Surprisingly, acute perturbation in the redox status triggered by the immune signal salicylic acid does not compromise the circadian clock but rather leads to its reinforcement. Mathematical modelling and subsequent experiments show that NPR1 reinforces the circadian clock without changing the period by regulating both the morning and the evening clock genes. This balanced network architecture helps plants gate their immune responses towards the morning and minimize costs on growth at night. Our study demonstrates how a sensitive redox rhythm interacts with a robust circadian clock to ensure proper responsiveness to environmental stimuli without compromising fitness of the organism.

  12. Glutathione Redox Control of Asthma: From Molecular Mechanisms to Therapeutic Opportunities

    Science.gov (United States)

    Jones, Dean P.; Brown, Lou Ann S.

    2012-01-01

    Abstract Asthma is a chronic inflammatory disorder of the airways associated with airway hyper-responsiveness and airflow limitation in response to specific triggers. Whereas inflammation is important for tissue regeneration and wound healing, the profound and sustained inflammatory response associated with asthma may result in airway remodeling that involves smooth muscle hypertrophy, epithelial goblet-cell hyperplasia, and permanent deposition of airway extracellular matrix proteins. Although the specific mechanisms responsible for asthma are still being unraveled, free radicals such as reactive oxygen species and reactive nitrogen species are important mediators of airway tissue damage that are increased in subjects with asthma. There is also a growing body of literature implicating disturbances in oxidation/reduction (redox) reactions and impaired antioxidant defenses as a risk factor for asthma development and asthma severity. Ultimately, these redox-related perturbations result in a vicious cycle of airway inflammation and injury that is not always amenable to current asthma therapy, particularly in cases of severe asthma. This review will discuss disruptions of redox signaling and control in asthma with a focus on the thiol, glutathione, and reduced (thiol) form (GSH). First, GSH synthesis, GSH distribution, and GSH function and homeostasis are discussed. We then review the literature related to GSH redox balance in health and asthma, with an emphasis on human studies. Finally, therapeutic opportunities to restore the GSH redox balance in subjects with asthma are discussed. Antioxid. Redox Signal. 17, 375–408. PMID:22304503

  13. S1-sensitive sites in DNA after γ-irradiation

    International Nuclear Information System (INIS)

    Martin-Bertram, H.

    1981-01-01

    DNA from γ-irradiated T 1 bacteriophages was analyzed for 'single-stranded' sites by cleavage with S1 nuclease from Aspergillus oryzae as lesion probe. The ratio of 'S1-sensitive sites' to the amount of radiation-induced single-strand breaks was about one. Presumably these 'denatured' sites were associated with single-strand breaks. The subsequent check for the persistence of 'single-stranded' sites within the DNA molecule by thermokinetics demonstrated a strong affinity of the nuclease to its substrate, the single-stranded lesion, and a perfect excision. It is assumed that the direct absorption of radiation energy in the DNA gives rise to the formation of such bulky lesions. (Auth.)

  14. Redox zone II. Coupled modeling of groundwater flow, solute transport, chemical reactions and microbial processes in the Aespoe island

    International Nuclear Information System (INIS)

    Samper, Javier; Molinero, Jorge; Changbing Yang; Guoxiang Zhang

    2003-12-01

    The Redox Zone Experiment was carried out at the Aespoe HRL in order to study the redox behaviour and the hydrochemistry of an isolated vertical fracture zone disturbed by the excavation of an access tunnel. Overall results and interpretation of the Redox Zone Project were reported by Banwart et al. Later, Banwart presented a summary of the hydrochemistry of the Redox Zone Experiment. Coupled groundwater flow and reactive transport models of this experiment were carried out by Molinero who proposed a revised conceptual model for the hydrogeology of the Redox Zone Experiment which could explain simultaneously measured drawdown and salinity data. The numerical model was found useful to understand the natural system. Several conclusions were drawn about the redox conditions of recharge waters, cation exchange capacity of the fracture zone and the role of mineral phases such as pyrite, calcite, hematite and goethite. This model could reproduce the measured trends of dissolved species, except for bicarbonate and sulphate which are affected by microbially-mediated processes. In order to explore the role of microbial processes, a coupled numerical model has been constructed which accounts for water flow, reactive transport and microbial processes. The results of this model is presented in this report. This model accounts for groundwater flow and reactive transport in a manner similar to that of Molinero and extends the preliminary microbial model of Zhang by accounting for microbially-driven organic matter fermentation and organic matter oxidation. This updated microbial model considers simultaneously the fermentation of particulate organic matter by yeast and the oxidation of dissolved organic matter, a product of fermentation. Dissolved organic matter is produced by yeast and serves also as a substrate for iron-reducing bacteria. Model results reproduce the observed increase in bicarbonate and sulfaphe concentration, thus adding additional evidence for the possibility

  15. Redox zone II. Coupled modeling of groundwater flow, solute transport, chemical reactions and microbial processes in the Aespoe island

    Energy Technology Data Exchange (ETDEWEB)

    Samper, Javier; Molinero, Jorge; Changbing Yang; Guoxiang Zhang [Univ. Da Coruna (Spain)

    2003-12-01

    The Redox Zone Experiment was carried out at the Aespoe HRL in order to study the redox behaviour and the hydrochemistry of an isolated vertical fracture zone disturbed by the excavation of an access tunnel. Overall results and interpretation of the Redox Zone Project were reported by Banwart et al. Later, Banwart presented a summary of the hydrochemistry of the Redox Zone Experiment. Coupled groundwater flow and reactive transport models of this experiment were carried out by Molinero who proposed a revised conceptual model for the hydrogeology of the Redox Zone Experiment which could explain simultaneously measured drawdown and salinity data. The numerical model was found useful to understand the natural system. Several conclusions were drawn about the redox conditions of recharge waters, cation exchange capacity of the fracture zone and the role of mineral phases such as pyrite, calcite, hematite and goethite. This model could reproduce the measured trends of dissolved species, except for bicarbonate and sulphate which are affected by microbially-mediated processes. In order to explore the role of microbial processes, a coupled numerical model has been constructed which accounts for water flow, reactive transport and microbial processes. The results of this model is presented in this report. This model accounts for groundwater flow and reactive transport in a manner similar to that of Molinero and extends the preliminary microbial model of Zhang by accounting for microbially-driven organic matter fermentation and organic matter oxidation. This updated microbial model considers simultaneously the fermentation of particulate organic matter by yeast and the oxidation of dissolved organic matter, a product of fermentation. Dissolved organic matter is produced by yeast and serves also as a substrate for iron-reducing bacteria. Model results reproduce the observed increase in bicarbonate and sulfaphe concentration, thus adding additional evidence for the possibility

  16. The redox properties of the natural iron-bearing clay mineral ferruginous smectite SWA-1: a combined electrochemical and spectroscopic study

    International Nuclear Information System (INIS)

    Gorski, Christopher A.; Voegelin, Andreas; Sander, Michael; Hofstetter, Thomas B.

    2012-01-01

    . Our results indicate that the reduction and oxidation of SWa-1 is complex and partly irreversible, implying that classically used thermodynamic relationships (i.e., the Nernst equation and Gibbs free energy) cannot be used to describe SWa-1 redox reactions. SWa-1 is redox active over a much wider potential range (approx. 1.0 V) than would be expected for a single electron transferring species (i.e., Fe 2+ /Fe 3+ ) in Nernstian system, which is attributed to redox interdependence between octahedral Fe sites. SWa-1 reduction and oxidation is also shown to be inherently thermodynamically irreversible based on oxidation and reduction paths following different Fe 2+ /Fe 3+ versus applied potential (E H ) curves depending on the initial redox state of the SWa-1. By modeling the Fe 2+ /Fe 3+ versus applied potential curves, we were able to fit apparent standard reduction potential values for native and dithionite-reduced SWa-1 that can be used in future studies. Current work is underway to determine the effect of pH on the redox properties of Fe-bearing clay minerals. Spectroscopic observations indicate that the reduction and subsequent re-oxidation of all the clay minerals studied was chemically irreversible, as indicated by the native and re-oxidized samples exhibiting differences in Moessbauer and XAS spectra. Further characterization of the Moessbauer spectra suggest that certain spectral features are indicative of the reduction potential (Eh) at which structural Fe 3+ reduction occurs. Our results point out that the complex redox behavior of Fe-bearing clay minerals must be taken into account to understand and predict the fate of radionuclides in matrices containing Fe-bearing clay minerals. The spectroscopic and electrochemical characterization of Fe-bearing clay minerals in this study also provides a means to account for these factors in future studies. Finally, we show that mediated electrochemistry offers new avenues to assess the redox properties of other redox

  17. Cytotoxicity from coupled redox cycling of autoxidizing xenobiotics and metals: a selective critical review and commentary on work-in-progress

    Energy Technology Data Exchange (ETDEWEB)

    Borg, D C; Schaich, K M

    1984-01-01

    A comprehensive reaction schema for oxidative cytotoxicity is presented, integrating known chemical mechanisms of oxygen radical reactions and observed pathophysiology. The key features of the schema are the coupling of (1) redox cycling of autoxidizable substrates to form the equilibrium pair of superoxide anion (O/sub 2//sup -/)/and its conjugate acid, perhydroxyl radical (HO/sub 2/.); (2) hydrogen peroxide (H/sub 2/O/sub 2/) generation via O/sub 2//sup -/ dimutation; (3) catalytic redox cycling of metals reducing H/sub 2/O/sub 2/ to reactive hydroxyl radicals (OH.); (4) direct reaction of OH. with target molecules, including critical cell macromolecules and polyunsaturated lipids in membranes; (5) transfer of oxidative potential from initial to distant sites via H/sub 2/O/sub 2/ and O/sub 2/-/HO/sub 2/ diffusion, lipid free radical chain peroxidations in membranes, and migration of non-radical lipid oxidation products; and (6) cytotoxic damage at those distant sites mediated by reaction of lipid radical species and other lipid oxidation products with critical target molecules (proteins, DNA, etc.). Although there is a broad consensus of agreement within the cognizant research community concerning many aspects of this schema, there exists considerable controversy and/or misconception about several important issues. Critical analyses of four presently controversial points are presented.

  18. Redox front penetration in the fractured Toki Granite, central Japan: An analogue for redox reactions and redox buffering in fractured crystalline host rocks for repositories of long-lived radioactive waste

    International Nuclear Information System (INIS)

    Yamamoto, Koshi; Yoshida, Hidekazu; Akagawa, Fuminori; Nishimoto, Shoji; Metcalfe, Richard

    2013-01-01

    Highlights: • Deep redox front developed in orogenic granitic rock have been studied. • The process was controlled by the buffering capacity of minerals. • This is an analogue of redox front penetration into HLW repositories in Japan. - Abstract: Redox buffering is one important factor to be considered when assessing the barrier function of potential host rocks for a deep geological repository for long-lived radioactive waste. If such a repository is to be sited in fractured crystalline host rock it must be demonstrated that waste will be emplaced deeper than the maximum depth to which oxidizing waters can penetrate from the earth’s surface via fractures, during the assessment timeframe (typically 1 Ma). An analogue for penetration of such oxidizing water occurs in the Cretaceous Toki Granite of central Japan. Here, a deep redox front is developed along water-conducting fractures at a depth of 210 m below the ground surface. Detailed petrographical studies and geochemical analyses were carried out on drill core specimens of this redox front. The aim was to determine the buffering processes and behavior of major and minor elements, including rare earth elements (REEs), during redox front development. The results are compared with analytical data from an oxidized zone found along shallow fractures (up to 20 m from the surface) in the same granitic rock, in order to understand differences in elemental migration according to the depth below the ground surface of redox-front formation. Geochemical analyses by XRF and ICP-MS of the oxidized zone at 210 m depth reveal clear changes in Fe(III)/Fe(II) ratios and Ca depletion across the front, while Fe concentrations vary little. In contrast, the redox front identified along shallow fractures shows strong enrichments of Fe, Mn and trace elements in the oxidized zone compared with the fresh rock matrix. The difference can be ascribed to the changing Eh and pH of groundwater as it flows downwards in the granite, due to

  19. Redox-sensitive structural change in the A-domain of HMGB1 and its implication for the binding to cisplatin modified DNA

    International Nuclear Information System (INIS)

    Wang, Jing; Tochio, Naoya; Takeuchi, Aya; Uewaki, Jun-ichi; Kobayashi, Naohiro; Tate, Shin-ichi

    2013-01-01

    Highlights: •The structure of the oxidized A-domain of human HMGB1 was solved. •Phe38 ring was flipped in the oxidized structure from that in the reduced form. •The flipped ring disables the intercalation into the cisplatinated lesions. •The functionally relevant redox-dependent structural change was described. -- Abstract: HMGB1 (high-mobility group B1) is a ubiquitously expressed bifunctional protein that acts as a nuclear protein in cells and also as an inflammatory mediator in the extracellular space. HMGB1 changes its functions according to the redox states in both intra- and extra-cellular environments. Two cysteines, Cys23 and Cys45, in the A-domain of HMGB1 form a disulfide bond under oxidative conditions. The A-domain with the disulfide bond shows reduced affinity to cisplatin modified DNA. We have solved the oxidized A-domain structure by NMR. In the structure, Phe38 has a flipped ring orientation from that found in the reduced form; the phenyl ring in the reduced form intercalates into the platinated lesion in DNA. The phenyl ring orientation in the oxidized form is stabilized through intramolecular hydrophobic contacts. The reorientation of the Phe38 ring by the disulfide bond in the A-domain may explain the reduced HMGB1 binding affinity towards cisplatinated DNA

  20. [Effect of the medium redox potential on the growth and metabolism of anaerobic bacteria].

    Science.gov (United States)

    Vasilian, A; Trchunian, A

    2008-01-01

    Based on the available literature data on a decrease in the redox potential of medium to low negative values and a decrease in pH during the growth of sugar-fermenting anaerobic bacteria, it was concluded that these processes cannot be described by the theory of redox potential. A theory was developed according to which the regulation of bacterial metabolism is accomplished through changes in the redox potential. The theory considers the redox potential as a factor determining the growth of anaerobic bacteria, which is regulated by oxidizers and reducers. The assumption is put forward that, under anaerobic conditions, bacteria are sensitive to changes in the redox potential and have a redox taxis. The effect of the redox potential on the transport of protons and other substances through membranes and the activity of membrane-bound enzymes, including the proton F1-F0-ATPase, whose mechanisms of action involve changes in the proton conductance of the membrane, the generation of proton-driving force, and dithiol-disulfide transitions in proteins was studied.

  1. Anti-inflammatory polymersomes of redox-responsive polyprodrug amphiphiles with inflammation-triggered indomethacin release characteristics.

    Science.gov (United States)

    Tan, Jiajia; Deng, Zhengyu; Liu, Guhuan; Hu, Jinming; Liu, Shiyong

    2018-03-21

    Inflammation serves as a natural defense mechanism to protect living organisms from infectious diseases. Nonsteroidal anti-inflammatory drugs (NSAIDs) can help relieve inflammatory reactions and are clinically used to treat pain, fever, and inflammation, whereas long-term use of NSAIDs may lead to severe side effects including gastrointestinal damage and cardiovascular toxicity. Therefore, it is of increasing importance to configure new dosing strategies and alleviate the side effects of NSAIDs. Towards this goal, glutathione (GSH)-responsive disulfide bonds and hydrogen peroxide (H 2 O 2 )-reactive phenylboronic ester linkages were utilized as triggering moieties in this work to design redox-responsive prodrug monomers and polyprodrug amphiphiles based on indomethacin (IND) drug. Note that IND is a widely prescribed NSAID in the clinic. Starting from three types of redox-reactive IND prodrug monomers, redox-responsive polyprodrug amphiphiles were synthesized through reversible addition-fragmentation chain transfer (RAFT) polymerizations of prodrug monomers using poly(ethylene oxide) (PEO)-based macroRAFT agent. The resultant polyprodrug amphiphiles with high IND loading contents (>33 wt%) could self-assemble into polymersomes with PEO shielding coronas and redox-responsive bilayer membranes composed of IND prodrugs. Upon incubation with GSH or H 2 O 2 , controlled release of intact IND in the active form from polyprodrug polymersomes was actuated by GSH-mediated disulfide cleavage reaction and H 2 O 2 -mediated oxidation of phenylboronic ester moieties, respectively, followed by self-immolative degradation events. Furthermore, in vitro studies at the cellular level revealed that redox-responsive polymersomes could efficiently relieve inflammatory responses induced by lipopolysaccharide (LPS) in RAW264.7 macrophage cells. Copyright © 2018. Published by Elsevier Ltd.

  2. Probing individual redox PEGylated gold nanoparticles by electrochemical--atomic force microscopy.

    Science.gov (United States)

    Huang, Kai; Anne, Agnès; Bahri, Mohamed Ali; Demaille, Christophe

    2013-05-28

    Electrochemical-atomic force microscopy (AFM-SECM) was used to simultaneously probe the physical and electrochemical properties of individual ~20 nm sized gold nanoparticles functionalized by redox-labeled PEG chains. The redox PEGylated nanoparticles were assembled onto a gold electrode surface, forming a random nanoarray, and interrogated in situ by a combined AFM-SECM nanoelectrode probe. We show that, in this so-called mediator-tethered (Mt) mode, AFM-SECM affords the nanometer resolution required for resolving the position of individual nanoparticles and measuring their size, while simultaneously electrochemically directly contacting the redox-PEG chains they bear. The dual measurement of the size and current response of single nanoparticles uniquely allows the statistical distribution in grafting density of PEG on the nanoparticles to be determined and correlated to the nanoparticle diameter. Moreover, because of its high spatial resolution, Mt/AFM-SECM allows "visualizing" simultaneously but independently the PEG corona and the gold core of individual nanoparticles. Beyond demonstrating the achievement of single-nanoparticle resolution using an electrochemical microscopy technique, the results reported here also pave the way toward using Mt/AFM-SECM for imaging nano-objects bearing any kind of suitably redox-labeled (bio)macromolecules.

  3. Conductance Through a Redox System in the Coulomb Blockade Regime: Many-Particle Effects and Influence of Electronic Correlations

    OpenAIRE

    Tornow, Sabine; Zwicknagl, Gertrud

    2009-01-01

    We investigate the transport characteristics of a redox system weakly coupled to leads in the Coulomb blockade regime. The redox system comprises a donor and acceptor separated by an insulating bridge in a solution. It is modeled by a two-site extended Hubbard model which includes on-site and inter-site Coulomb interactions and the coupling to a bosonic bath. The current voltage characteristics is calculated at high temperatures using a rate equation approach. For high voltages exceeding the ...

  4. Preservation of organic matter in nontronite against iron redox cycling.

    Science.gov (United States)

    Zeng, Q.

    2015-12-01

    It is generally believed that clay minerals can protect organic matter from degradation in redox active environments, but both biotic and abiotic factors can influence the redox process and thus potentially change the clay-organic associations. However, the specific mechanisms involved in this process remain poorly understood. In this study, a model organic compound, 12-Aminolauric acid (ALA) was selected to intercalate into the structural interlayer of nontronite (an iron-rich smectite, NAu-2) to form an ALA-intercalated NAu-2 composite (ALA-NAu-2). Shawanella putrefaciens CN32 and sodium dithionite were used to reduce structural Fe(III) to Fe(II) in NAu-2 and ALA-NAu-2. The bioreduced ALA-NAu-2 was subsequently re-oxidized by air. The rates and extents of bioreduction and air re-oxidation were determined with wet chemistry methods. ALA release from ALA-NAu-2 via redox process was monitored. Mineralogical changes after iron redox cycle were investigated with X-ray diffraction, infrared spectroscopy, and scanning and transmission electron microscopy. At the beginning stage of bioreduction, S. putrefaciens CN32 reduced Fe(III) from the edges of nontronite and preferentially reduced and dissolved small and poorly crystalline particles, and released ALA, resulting a positive correlation between ALA release and iron reduction extent (80%). Because bacteria are the principal agent for mediating redox process in natural environments, our results demonstrated that the structural interlayer of smectite can serve as a potential shelter to protect organic matter from oxidation.

  5. Sensitivity of Electron Transfer Mediated Decay to Ion Pairing.

    Science.gov (United States)

    Pohl, Marvin N; Richter, Clemens; Lugovoy, Evgeny; Seidel, Robert; Slavíček, Petr; Aziz, Emad F; Abel, Bernd; Winter, Bernd; Hergenhahn, Uwe

    2017-08-17

    Ion pairing in electrolyte solutions remains a topic of discussion despite a long history of research. Very recently, nearest-neighbor mediated electronic de-excitation processes of core hole vacancies (electron transfer mediated decay, ETMD) were proposed to carry a spectral fingerprint of local solvation structure and in particular of contact ion pairs. Here, for the first time, we apply electron-electron coincidence detection to a liquid microjet, and record ETMD spectra of Li 1s vacancies in aqueous solutions of lithium chloride (LiCl) in direct comparison to lithium acetate (LiOAc). A change in the ETMD spectrum dependent on the electrolyte anion identity is observed for 4.5 M salt concentration. We discuss these findings within the framework of the formation and presence of contact ion pairs and the unique sensitivity of ETMD spectroscopy to ion pairing.

  6. The effect of salinity, redox mediators and temperature on anaerobic biodegradation of petroleum hydrocarbons in microbial fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Adelaja, Oluwaseun, E-mail: o.adelaja@my.westminster.ac.uk; Keshavarz, Tajalli, E-mail: t.keshavarz@westminster.ac.uk; Kyazze, Godfrey, E-mail: g.kyazze@westminster.ac.uk

    2015-02-11

    Highlights: • Effective degradation of petroleum hydrocarbon mixtures was achieved using MFC. • Adapted anaerobic microbial consortium was used as inoculum. • Bio-electricity generation was enhanced by 30-fold when riboflavin, was added. • Optimum MFC performance was obtained at mesophilic and moderately saline conditions. • Stable MFC performance was obtained during prolonged fed-batch MFC operation. - Abstract: Microbial fuel cells (MFCs) need to be robust if they are to be applied in the field for bioremediation. This study investigated the effect of temperature (20–50 °C), salinity (0.5–2.5% (w/v) as sodium chloride), the use of redox mediators (riboflavin and anthraquinone-2-sulphonate, AQS) and prolonged fed-batch operation (60 days) on biodegradation of a petroleum hydrocarbon mix (i.e. phenanthrene and benzene) in MFCs. The performance criteria were degradation efficiency, % COD removal and electrochemical performance. Good electrochemical and degradation performance were maintained up to a salinity of 1.5% (w/v) but deteriorated by 35-fold and 4-fold respectively as salinity was raised to 2.5%w/v. Degradation rates and maximum power density were both improved by approximately 2-fold at 40 °C compared to MFC performance at 30 °C but decreased sharply by 4-fold when operating temperature was raised to 50 °C. The optimum reactor performance obtained at 40 °C was 1.15 mW/m{sup 2} maximum power density, 89.1% COD removal and a degradation efficiency of 97.10%; at moderately saline (1% w/v) conditions the maximum power density was 1.06 mW/m{sup 2}, 79.1% COD removal and 91.6% degradation efficiency. This work suggests the possible application of MFC technology in the effective treatment of petroleum hydrocarbons contaminated site and refinery effluents.

  7. The effect of salinity, redox mediators and temperature on anaerobic biodegradation of petroleum hydrocarbons in microbial fuel cells

    International Nuclear Information System (INIS)

    Adelaja, Oluwaseun; Keshavarz, Tajalli; Kyazze, Godfrey

    2015-01-01

    Highlights: • Effective degradation of petroleum hydrocarbon mixtures was achieved using MFC. • Adapted anaerobic microbial consortium was used as inoculum. • Bio-electricity generation was enhanced by 30-fold when riboflavin, was added. • Optimum MFC performance was obtained at mesophilic and moderately saline conditions. • Stable MFC performance was obtained during prolonged fed-batch MFC operation. - Abstract: Microbial fuel cells (MFCs) need to be robust if they are to be applied in the field for bioremediation. This study investigated the effect of temperature (20–50 °C), salinity (0.5–2.5% (w/v) as sodium chloride), the use of redox mediators (riboflavin and anthraquinone-2-sulphonate, AQS) and prolonged fed-batch operation (60 days) on biodegradation of a petroleum hydrocarbon mix (i.e. phenanthrene and benzene) in MFCs. The performance criteria were degradation efficiency, % COD removal and electrochemical performance. Good electrochemical and degradation performance were maintained up to a salinity of 1.5% (w/v) but deteriorated by 35-fold and 4-fold respectively as salinity was raised to 2.5%w/v. Degradation rates and maximum power density were both improved by approximately 2-fold at 40 °C compared to MFC performance at 30 °C but decreased sharply by 4-fold when operating temperature was raised to 50 °C. The optimum reactor performance obtained at 40 °C was 1.15 mW/m 2 maximum power density, 89.1% COD removal and a degradation efficiency of 97.10%; at moderately saline (1% w/v) conditions the maximum power density was 1.06 mW/m 2 , 79.1% COD removal and 91.6% degradation efficiency. This work suggests the possible application of MFC technology in the effective treatment of petroleum hydrocarbons contaminated site and refinery effluents

  8. The Redox Proteome*

    Science.gov (United States)

    Go, Young-Mi; Jones, Dean P.

    2013-01-01

    The redox proteome consists of reversible and irreversible covalent modifications that link redox metabolism to biologic structure and function. These modifications, especially of Cys, function at the molecular level in protein folding and maturation, catalytic activity, signaling, and macromolecular interactions and at the macroscopic level in control of secretion and cell shape. Interaction of the redox proteome with redox-active chemicals is central to macromolecular structure, regulation, and signaling during the life cycle and has a central role in the tolerance and adaptability to diet and environmental challenges. PMID:23861437

  9. Biogeochemistry of Redox at Repository Depth and Implications for the Canister

    Energy Technology Data Exchange (ETDEWEB)

    Bath, Adrian; Hermansson, Hans-Peter

    2009-08-15

    The present groundwater chemical conditions at the candidate sites for a spent nuclear fuel repository in Sweden (the Forsmark and Laxemar sites) and processes affecting its future evolution comprise essential conditions for the evaluation of barrier performance and long-term safety. This report reviews available chemical sampling information from the site investigations at the candidate sites, with a particular emphasis on redox active groundwater components and microbial populations that influence redox affecting components. Corrosion of copper canister material is the main barrier performance influence of redox conditions that is elaborated in the report. One section addresses native copper as a reasonable analogue for canister materials and another addresses the feasibility of methane hydrate ice accumulation during permafrost conditions. Such an accumulation could increase organic carbon availability in scenarios involving microbial sulphate reduction. The purpose of the project is to evaluate and describe the available knowledge and data for interpretation of geochemistry, microbiology and corrosion in safety assessment. A conclusive assessment of the sufficiency of information can, however, only be done in the future context of a full safety assessment. The authors conclude that SKB's data and models for chemical and microbial processes are adequate and reasonably coherent. The redox conditions in the repository horizon are predominantly established through the SO{sub 4}2-/HS- and Fe3+/Fe2+ redox couples. The former may exhibit a more significant buffering effect as suggested by measured Eh values, while the latter is associated with a lager capacity due to abundant Fe(II) minerals in the bedrock. Among a large numbers of groundwater features considered in geochemical equilibrium modelling, Eh, pH, temperature and concentration of dissolved sulphide comprise the most essential canister corrosion influences. Groundwater sulphide may originate from

  10. Biogeochemistry of Redox at Repository Depth and Implications for the Canister

    International Nuclear Information System (INIS)

    Bath, Adrian; Hermansson, Hans-Peter

    2009-08-01

    The present groundwater chemical conditions at the candidate sites for a spent nuclear fuel repository in Sweden (the Forsmark and Laxemar sites) and processes affecting its future evolution comprise essential conditions for the evaluation of barrier performance and long-term safety. This report reviews available chemical sampling information from the site investigations at the candidate sites, with a particular emphasis on redox active groundwater components and microbial populations that influence redox affecting components. Corrosion of copper canister material is the main barrier performance influence of redox conditions that is elaborated in the report. One section addresses native copper as a reasonable analogue for canister materials and another addresses the feasibility of methane hydrate ice accumulation during permafrost conditions. Such an accumulation could increase organic carbon availability in scenarios involving microbial sulphate reduction. The purpose of the project is to evaluate and describe the available knowledge and data for interpretation of geochemistry, microbiology and corrosion in safety assessment. A conclusive assessment of the sufficiency of information can, however, only be done in the future context of a full safety assessment. The authors conclude that SKB's data and models for chemical and microbial processes are adequate and reasonably coherent. The redox conditions in the repository horizon are predominantly established through the SO 4 2- /HS - and Fe 3+ /Fe 2+ redox couples. The former may exhibit a more significant buffering effect as suggested by measured Eh values, while the latter is associated with a lager capacity due to abundant Fe(II) minerals in the bedrock. Among a large numbers of groundwater features considered in geochemical equilibrium modelling, Eh, pH, temperature and concentration of dissolved sulphide comprise the most essential canister corrosion influences. Groundwater sulphide may originate from sulphide

  11. Melatonin confers plant tolerance against cadmium stress via the decrease of cadmium accumulation and reestablishment of microRNA-mediated redox homeostasis.

    Science.gov (United States)

    Gu, Quan; Chen, Ziping; Yu, Xiuli; Cui, Weiti; Pan, Jincheng; Zhao, Gan; Xu, Sheng; Wang, Ren; Shen, Wenbiao

    2017-08-01

    Although melatonin-alleviated cadmium (Cd) toxicity both in animals and plants have been well studied, little is known about its regulatory mechanisms in plants. Here, we discovered that Cd stress stimulated the production of endogenous melatonin in alfalfa seedling root tissues. The pretreatment with exogenous melatonin not only increased melatonin content, but also alleviated Cd-induced seedling growth inhibition. The melatonin-rich transgenic Arabidopsis plants overexpressing alfalfa SNAT (a melatonin synthetic gene) exhibited more tolerance than wild-type plants under Cd conditions. Cd content was also reduced in root tissues. In comparison with Cd stress alone, ABC transporter and PCR2 transcripts in alfalfa seedlings, PDR8 and HMA4 in Arabidopsis, were up-regulated by melatonin. By contrast, Nramp6 transcripts were down-regulated. Changes in above transporters were correlated with the less accumulation of Cd. Additionally Cd-triggered redox imbalance was improved by melatonin. These could be supported by the changes of the Cu/Zn Superoxide Dismutase gene regulated by miR398a and miR398b. Histochemical staining, laser scanning confocal microscope, and H 2 O 2 contents analyses showed the similar tendencies. Taking together, we clearly suggested that melatonin enhanced Cd tolerance via decreasing cadmium accumulation and reestablishing the microRNAs-mediated redox homeostasis. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Redox homeostasis: the linchpin in stem cell self-renewal and differentiation.

    Science.gov (United States)

    Wang, Kui; Zhang, Tao; Dong, Qiang; Nice, Edouard Collins; Huang, Canhua; Wei, Yuquan

    2013-03-14

    Stem cells are characterized by their unique ability of self-renewal to maintain the so-called stem cell pool. Over the past decades, reactive oxygen species (ROS) have been recognized as toxic aerobic metabolism byproducts that are harmful to stem cells, leading to DNA damage, senescence or cell death. Recently, a growing body of literature has shown that stem cells reside in redox niches with low ROS levels. The balance of Redox homeostasis facilitates stem cell self-renewal by an intricate network. Thus, to fully decipher the underlying molecular mechanisms involved in the maintenance of stem cell self-renewal, it is critical to address the important role of redox homeostasis in the regulation of self-renewal and differentiation of stem cells. In this regard, we will discuss the regulatory mechanisms involved in the subtly orchestrated balance of redox status in stem cells by scavenger antioxidant enzyme systems that are well monitored by the hypoxia niches and crucial redox regulators including forkhead homeobox type O family (FoxOs), apurinic/apyrimidinic (AP) endonuclease1/redox factor-1 (APE1/Ref-1), nuclear factor erythroid-2-related factor 2 (Nrf2) and ataxia telangiectasia mutated (ATM). We will also introduce several pivotal ROS-sensitive molecules, such as hypoxia-inducible factors, p38 mitogen-activated protein kinase (p38) and p53, involved in the redox-regulated stem cell self-renewal. Specifically, all the aforementioned molecules can act as 'redox sensors' by virtue of redox modifications of their cysteine residues, which are critically important in the control of protein function. Given the importance of redox homeostasis in the regulation of stem cell self-renewal, understanding the underlying molecular mechanisms involved will provide important new insights into stem cell biology.

  13. Quantitative redox imaging biomarkers for studying tissue metabolic state and its heterogeneity

    Directory of Open Access Journals (Sweden)

    He N. Xu

    2014-03-01

    Full Text Available NAD+/NADH redox state has been implicated in many diseases such as cancer and diabetes as well as in the regulation of embryonic development and aging. To fluorimetrically assess the mitochondrial redox state, Dr. Chance and co-workers measured the fluorescence of NADH and oxidized flavoproteins (Fp including flavin–adenine–dinucleotide (FAD and demonstrated their ratio (i.e. the redox ratio is a sensitive indicator of the mitochondrial redox states. The Chance redox scanner was built to simultaneously measure NADH and Fp in tissue at submillimeter scale in 3D using the freeze-trap protocol. This paper summarizes our recent research experience, development and new applications of the redox scanning technique in collaboration with Dr. Chance beginning in 2005. Dr. Chance initiated or actively involved in many of the projects during the last several years of his life. We advanced the redox scanning technique by measuring the nominal concentrations (in reference to the frozen solution standards of the endogenous fluorescent analytes, i.e., [NADH] and [Fp] to quantify the redox ratios in various biological tissues. The advancement has enabled us to identify an array of the redox indices as quantitative imaging biomarkers (including [NADH], [Fp], [Fp]/([NADH]+[Fp], [NADH]/[Fp], and their standard deviations for studying some important biological questions on cancer and normal tissue metabolism. We found that the redox indices were associated or changed with (1 tumorigenesis (cancer versus non-cancer of human breast tissue biopsies; (2 tumor metastatic potential; (3 tumor glucose uptake; (4 tumor p53 status; (5 PI3K pathway activation in pre-malignant tissue; (6 therapeutic effects on tumors; (7 embryonic stem cell differentiation; (8 the heart under fasting. Together, our work demonstrated that the tissue redox indices obtained from the redox scanning technique may provide useful information about tissue metabolism and physiology status in normal

  14. Energize Electrochemical Double Layer Capacitor by Introducing an Ambipolar Organic Redox Radical in Electrolyte.

    Science.gov (United States)

    Wang, Yonggang; Hu, Lintong; Zhang, Yue; Shi, Chao; Guo, Kai; Zhai, Tianyou; Li, Huiqiao

    2018-05-24

    Carbon based electrochemical double layer capacitors (EDLCs) generally exhibit high power and long life, but low energy density/capacitance. Pore/morphology optimization and pseudocapacitive materials modification of carbon materials have been used to improve electrode capacitance, but leading to the consumption of tap density, conductivity and stability. Introducing soluble redox mediators into electrolyte is a promising alternative to improve the capacitance of electrode. However, it is difficult to find one redox mediator that can provide additional capacitance for both positive and negative electrodes simultaneously. Here, an ambipolar organic radical, 2, 2, 6, 6-tetramethylpiperidinyloxyl (TEMPO) is first introduced to the electrolyte, which can substantially contribute additional pseudocapacitance by oxidation at the positive electrode and reduction at the negative electrode simultaneously. The EDLC with TEMPO mediator delivers an energy density as high as 51 Wh kg-1, 2.4 times of the capacitor without TEMPO, and a long cycle stability over 4000 cycles. The achieved results potentially point a new way to improve the energy density of EDLCs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Al and Fe co-doped transparent conducting ZnO thin film for mediator-less biosensing application

    Directory of Open Access Journals (Sweden)

    Shibu Saha

    2011-12-01

    Full Text Available Highly c-axis oriented Al and Fe co-doped ZnO (ZAF thin film is prepared by pulsed laser deposition. Fe introduces redox centre along with shallow donor level while Al doping enhances conductivity of ZnO, thus removing the requirement of both mediator and bottom conducting layer in bioelectrode. Model enzyme (glucose oxidase, was immobilized on surface of ZAF matrix. Cyclic voltammetry and photometric assay show that prepared bio-electrode is sensitive to glucose concentration with enhanced response of 0.18 μAmM-1cm-2 and low Km ∼ 2.01 mM. The results illustrate that ZAF is an attractive matrix for realization of miniaturized mediator-less solid state biosensor.

  16. The Mediating Effect of Body Mass Index on the Relationship between Cigarette Smoking and Atopic Sensitization in Chinese Adults

    Directory of Open Access Journals (Sweden)

    Xiao Luo

    2015-03-01

    Full Text Available Background: It is unclear whether the relationship between cigarette smoking and atopy is mediated by body fat mass, such as the Body Mass Index (BMI. We assessed the mediating role of BMI on the relationship between smoking and atopy in Chinese adults. Methods: A hospital-based case-control study of 786 atopic cases and 2771 controls was conducted in adults aged 18 years or older from March 2010 to September 2014 in Harbin, China. Mediation models were used to estimate the indirect effects of smoking on atopic sensitization through BMI. Results: Compared to non-smokers, light smokers and moderate smokers had a lower risk of inhalant allergen sensitization. The indirect effect of smoking and sensitization to aeroallergens were only observed in light smokers (point estimate, −0.026; 95% CI, −0.062 to −0.004. The mediating roles of BMI on the relationships between smoking and other types of allergic sensitization were not statistically significant. Conclusion: BMI appeared to partially mediate the effect of light smoking on sensitization to aeroallergens. However, considering the other harmful health effects of cigarette smoking, the effective method to lower the incidence of atopy would be to decrease body fat mass by physical exercise and employing other more healthy ways of living rather than smoking.

  17. A general approach toward enhancement of pseudocapacitive performance of conducting polymers by redox-active electrolytes

    KAUST Repository

    Chen, Wei

    2014-12-01

    A general approach is demonstrated where the pseudocapacitive performance of different conducting polymers is enhanced in redox-active electrolytes. The concept is demonstrated using several electroactive conducting polymers, including polyaniline, polypyrrole, and poly(3,4-ethylenedioxythiophene). As compared to conventional electrolytes, the redox-active electrolytes, prepared by simply adding a redox mediator to the conventional electrolyte, can significantly improve the energy storage capacity of pseudocapacitors with different conducting polymers. The results show that the specific capacitance of conducting polymer based pseudocapacitors can be increased by a factor of two by utilization of the redox-active electrolytes. In fact, this approach gives some of the highest reported specific capacitance values for electroactive conducting polymers. Moreover, our findings present a general and effective approach for the enhancement of energy storage performance of pseudocapacitors using a variety of polymeric electrode materials. © 2014 Elsevier B.V. All rights reserved.

  18. Interaction between heavy metals and thiol-linked redox reactions in germination.

    Science.gov (United States)

    Smiri, M; Chaoui, A; Ferjani, E E

    2010-09-15

    Thioredoxin (TRX) proteins perform important biological functions in cells by changing the redox state of proteins via dithiol disulfide exchange. Several systems are able to control the activity, stability, and correct folding of enzymes through dithiol/disulfide isomerization reactions including the enzyme protein disulfide-isomerase, the glutathione-dependent glutaredoxin system, and the thioredoxin systems. Plants have devised sophisticated mechanisms to cope with biotic and abiotic stresses imposed by their environment. Among these mechanisms, those collectively referred to as redox reactions induced by endogenous systems. This is of agronomical importance since a better knowledge of the involved mechanisms can offer novel means for crop protection. In the plant life cycle, the seed and seedling stages are key developmental stages conditioning the final yield of crops. Both are very sensitive to heavy metal stress. Plant redox reactions are principally studied on adult plant organs and there is only very scarce informations about the onset of redox regulation at the level of seed germination. In the here presented study, we discussed the importance of redox proteins in plant cell metabolism and defence. Special focus is given to TRX, which are involved in detoxification of ROS and also to their targets.

  19. Optical redox imaging indices discriminate human breast cancer from normal tissues

    Science.gov (United States)

    Xu, He N.; Tchou, Julia; Feng, Min; Zhao, Huaqing; Li, Lin Z.

    2016-01-01

    Abstract. Our long-term goal was to investigate the potential of incorporating redox imaging technique as a breast cancer (BC) diagnosis component to increase the positive predictive value of suspicious imaging finding and to reduce unnecessary biopsies and overdiagnosis. We previously found that precancer and cancer tissues in animal models displayed abnormal mitochondrial redox state. We also revealed abnormal mitochondrial redox state in cancerous specimens from three BC patients. Here, we extend our study to include biopsies of 16 patients. Tissue aliquots were collected from both apparently normal and cancerous tissues from the affected cancer-bearing breasts shortly after surgical resection. All specimens were snap-frozen and scanned with the Chance redox scanner, i.e., the three-dimensional cryogenic NADH/Fp (reduced nicotinamide adenine dinucleotide/oxidized flavoproteins) fluorescence imager. We found both Fp and NADH in the cancerous tissues roughly tripled that in the normal tissues (predox ratio Fp/(NADH + Fp) was ∼27% higher in the cancerous tissues (predox ratio alone could predict cancer with reasonable sensitivity and specificity. Our findings suggest that the optical redox imaging technique can provide parameters independent of clinical factors for discriminating cancer from noncancer breast tissues in human patients. PMID:27896360

  20. Shedding light on disulfide bond formation: engineering a redox switch in green fluorescent protein

    DEFF Research Database (Denmark)

    Østergaard, H.; Henriksen, A.; Hansen, Flemming G.

    2001-01-01

    To visualize the formation of disulfide bonds in living cells, a pair of redox-active cysteines was introduced into the yellow fluorescent variant of green fluorescent protein. Formation of a disulfide bond between the two cysteines was fully reversible and resulted in a >2-fold decrease...... in the intrinsic fluorescence. Inter conversion between the two redox states could thus be followed in vitro as well as in vivoby non- invasive fluorimetric measurements. The 1.5 Angstrom crystal structure of the oxidized protein revealed a disulfide bond- induced distortion of the beta -barrel, as well...... the physiological range for redox-active cysteines. In the cytoplasm of Escherichia coli, the protein was a sensitive probe for the redox changes that occur upon disruption of the thioredoxin reductive pathway....

  1. Direct voltammetric determination of redox-active iron in carbon nanotubes.

    Science.gov (United States)

    Teo, Wei Zhe; Pumera, Martin

    2014-12-01

    With the advances in nanotechnology over the past decade, consumer products are increasingly being incorporated with carbon nanotubes (CNTs). As the harmful effects of CNTs are suggested to be primarily due to the bioavailable amounts of metallic impurities, it is vital to detect and quantify these species using sensitive and facile methods. Therefore, in this study, we investigated the possibility of quantifying the amount of redox-available iron-containing impurities in CNTs with voltammetric techniques such as cyclic voltammetry. We examined the electrochemistry of Fe3 O4 nanoparticles in phosphate buffer solution and discovered that its electrochemical behavior could be affected by pH of the electrolyte. By utilizing the unique redox reaction between the iron and phosphate species, the redox available iron content in CNTs was determined successfully using voltammetry. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Toehold-mediated strand displacement reaction-dependent fluorescent strategy for sensitive detection of uracil-DNA glycosylase activity.

    Science.gov (United States)

    Wu, Yushu; Wang, Lei; Jiang, Wei

    2017-03-15

    Sensitive detection of uracil-DNA glycosylase (UDG) activity is beneficial for evaluating the repairing process of DNA lesions. Here, toehold-mediated strand displacement reaction (TSDR)-dependent fluorescent strategy was constructed for sensitive detection of UDG activity. A single-stranded DNA (ssDNA) probe with two uracil bases and a trigger sequence were designed. A hairpin probe with toehold domain was designed, and a reporter probe was also designed. Under the action of UDG, two uracil bases were removed from ssDNA probe, generating apurinic/apyrimidinic (AP) sites. Then, the AP sites could inhibit the TSDR between ssDNA probe and hairpin probe, leaving the trigger sequence in ssDNA probe still free. Subsequently, the trigger sequence was annealed with the reporter probe, initiating the polymerization and nicking amplification reaction. As a result, numerous G-quadruplex (G4) structures were formed, which could bind with N-methyl-mesoporphyrin IX (NMM) to generate enhanced fluorescent signal. In the absence of UDG, the ssDNA probe could hybridize with the toehold domain of the hairpin probe to initiate TSDR, blocking the trigger sequence, and then the subsequent amplification reaction would not occur. The proposed strategy was successfully implemented for detecting UDG activity with a detection limit of 2.7×10 -5 U/mL. Moreover, the strategy could distinguish UDG well from other interference enzymes. Furthermore, the strategy was also applied for detecting UDG activity in HeLa cells lysate with low effect of cellular components. These results indicated that the proposed strategy offered a promising tool for sensitive quantification of UDG activity in UDG-related function study and disease prognosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Redox potential dynamics in a grassed swale used for storage and treatment

    Science.gov (United States)

    Vorenhout, Michel; Boogaard, Floris Cornelis

    2016-04-01

    Treatment wetlands are used to remove pollutants from water. Most swales are designed to infiltrate stormwater into the subsurface. A combination of both functions can help to enhance water quality and reduce flooding risks in urban areas. The chemical forms and possible removal of pollutants such as nitrate and heavy metals in wetlands are highly dependent on the redox conditions. The redox conditions are expected to be highly dynamic and dependent on water levels and flow. We studied the correlation between these factors in an urban grassed swale system, and show that more factors play a role in these systems than water levels alone. The study system is located in the World Heritage site "Bryggen" in the city of Bergen, Norway. It consists of a series of SUDS, a socalled treatment train. The system is fed by storm water, which is at first stored in a rain garden then led to grassed swales. Water infiltrates into the subsurface in the swales. The reason for implementation of the system at this site is the protection of the highly organic archaeological layers at the site, which requires reduced conditions. Swales 1 and 2 were equipped with pressure loggers and multi-level redox and temperature probes (-2, -5, -10 and -20cm from surface). Redox and temperature probes were connected to a HYPNOS system. Measurements were taken for more than 1 year at 15 minute interval. A weather station supplemented the dataset with precipitation measurements. The redox potential in the swales show a strong correlation with water level. The regularly flooded swale 2 shows frequent anoxic events (Eh < 200mV) where as swale 1 shows oxic conditions (Eh = 650mV) throughout the same measurement period. Swale 1 has fewer flooding events than Swale 2 and a more coarse soil with less organic matter than swale 2. These redox results are as expected given the local conditions, and show that redox conditions are localised phenomena that depend on local soil conditions. Analysis of the redox

  4. Subsurface Conditions Controlling Uranium Incorporation in Iron Oxides: A Redox Stable Sink

    International Nuclear Information System (INIS)

    Fendorf, Scott

    2016-01-01

    Toxic metals and radionuclides throughout the U.S. Department of Energy Complex pose a serious threat to ecosystems and to human health. Of particular concern is the redox-sensitive radionuclide uranium, which is classified as a priority pollutant in soils and groundwaters at most DOE sites owing to its large inventory, its health risks, and its mobility with respect to primary waste sources. The goal of this research was to contribute to the long-term mission of the Subsurface Biogeochemistry Program by determining reactions of uranium with iron (hydr)oxides that lead to long-term stabilization of this pervasive contaminant. The research objectives of this project were thus to (1) identify the (bio)geochemical conditions, including those of the solid-phase, promoting uranium incorporation in Fe (hydr)oxides, (2) determine the magnitude of uranium incorporation under a variety of relevant subsurface conditions in order to quantify the importance of this pathway when in competition with reduction or adsorption; (3) identify the mechanism(s) of U(VI/V) incorporation in Fe (hydr)oxides; and (4) determine the stability of these phases under different biogeochemical (inclusive of redox) conditions. Our research demonstrates that redox transformations are capable of achieving U incorporation into goethite at ambient temperatures, and that this transformation occurs within days at U and Fe(II) concentrations that are common in subsurface geochemical environments with natural ferrihydrites - inclusive of those with natural impurities. Increasing Fe(II) or U concentration, or initial pH, made U(VI) reduction to U(IV) a more competitive sequestration pathway in this system, presumably by increasing the relative rate of U reduction. Uranium concentrations commonly found in contaminated subsurface environments are often on the order of 1-10 μM, and groundwater Fe(II) concentrations can reach exceed 1 mM in reduced zones of the subsurface. The redox-driven U(V) incorporation

  5. Subsurface Conditions Controlling Uranium Incorporation in Iron Oxides: A Redox Stable Sink

    Energy Technology Data Exchange (ETDEWEB)

    Fendorf, Scott [Stanford Univ., CA (United States)

    2016-04-05

    Toxic metals and radionuclides throughout the U.S. Department of Energy Complex pose a serious threat to ecosystems and to human health. Of particular concern is the redox-sensitive radionuclide uranium, which is classified as a priority pollutant in soils and groundwaters at most DOE sites owing to its large inventory, its health risks, and its mobility with respect to primary waste sources. The goal of this research was to contribute to the long-term mission of the Subsurface Biogeochemistry Program by determining reactions of uranium with iron (hydr)oxides that lead to long-term stabilization of this pervasive contaminant. The research objectives of this project were thus to (1) identify the (bio)geochemical conditions, including those of the solid-phase, promoting uranium incorporation in Fe (hydr)oxides, (2) determine the magnitude of uranium incorporation under a variety of relevant subsurface conditions in order to quantify the importance of this pathway when in competition with reduction or adsorption; (3) identify the mechanism(s) of U(VI/V) incorporation in Fe (hydr)oxides; and (4) determine the stability of these phases under different biogeochemical (inclusive of redox) conditions. Our research demonstrates that redox transformations are capable of achieving U incorporation into goethite at ambient temperatures, and that this transformation occurs within days at U and Fe(II) concentrations that are common in subsurface geochemical environments with natural ferrihydrites—inclusive of those with natural impurities. Increasing Fe(II) or U concentration, or initial pH, made U(VI) reduction to U(IV) a more competitive sequestration pathway in this system, presumably by increasing the relative rate of U reduction. Uranium concentrations commonly found in contaminated subsurface environments are often on the order of 1-10 μM, and groundwater Fe(II) concentrations can reach exceed 1 mM in reduced zones of the subsurface. The redox-driven U(V) incorporation

  6. Greater temperature sensitivity of plant phenology at colder sites

    DEFF Research Database (Denmark)

    Prevey, Janet; Vellend, Mark; Ruger, Nadja

    2017-01-01

    Warmer temperatures are accelerating the phenology of organisms around the world. Temperature sensitivity of phenology might be greater in colder, higher latitude sites than in warmer regions, in part because small changes in temperature constitute greater relative changes in thermal balance...

  7. Functionalized Nanostructures: Redox-Active Porphyrin Anchors for Supramolecular DNA Assemblies

    KAUST Repository

    Börjesson, Karl; Wiberg, Joanna; El-Sagheer, Afaf H.; Ljungdahl, Thomas; Må rtensson, Jerker; Brown, Tom; Nordén, Bengt; Albinsson, Bo

    2010-01-01

    , such as orientation, strength, homogeneity, and binding site size, was determined, suggesting that the porphyrin is well suited as a photophysical and redox-active lipid anchor, in comparison to the inert cholesterol anchor commonly used today. Furthermore

  8. Attachment Style and Rejection Sensitivity: The Mediating Effect of Self-Esteem and Worry Among Iranian College Students

    Directory of Open Access Journals (Sweden)

    Samira Khoshkam

    2012-08-01

    Full Text Available The present study evaluated the relations between anxious attachment styles and rejection sensitivity, and the potential mediating role of self-esteem and worry. A sample of 125 Iranian college students completed surveys assessing rejection sensitivity, attachment style, worry and self-esteem. Structural Equation Modeling (SEM analyses were conducted. Results show that there is a significant positive relationship between anxious attachment styles and rejection sensitivity. The study suggests that a higher score in anxious attachment styles is associated with a higher level of worry and lower level of self-esteem and it is also associated with higher level of rejection sensitivity. Furthermore, there is a positive significant relationship between worry and rejection sensitivity and there is a negative significant relationship between self-esteem and rejection sensitivity. Results indicate that self-esteem and worry mediate the relationship between anxious attachment styles and rejection sensitivity.

  9. Redox imbalance mediates entomotoxic effects of the conifer Araucaria angustifolia in Anticarsia gemmatalis velvetbean caterpillar

    Directory of Open Access Journals (Sweden)

    Cátia dos Santos Branco

    2016-12-01

    Full Text Available The velvetbean caterpillar, Anticarsia gemmatalis is one of the most important pests of soybean crops in tropical America. By feeding on leaves, significant defoliation occurs resulting in reduced photosynthetic capacity required for plants’ maintenance and growth, which subsequently can lead to crop losses and reduced agricultural productivity. Many studies have sought to look for compounds that have insecticidal effects. One class of compounds is phenolics, which are produced by plants and have been found to influence the behavior and development of defoliators, representing an important alternative approach to many synthetic insecticides. Particularly, Araucaria angustifolia is a plant rich in polyphenols, which are compounds able to alter cellular dynamics through modulating redox status. In this study, A. angustifolia extract (AAE was added to the artificial diet of A. gemmatalis. The results demonstrated that AAE was able to reduce larval viability by inducing morphological changes and a delay in the insect’s development. In addition, AAE was found to induce oxidative damage to lipids and proteins, as well as increased nitric oxide levels in A. gemmatalis larvae. AAE treatments also decreased the antioxidant defense systems, leading to a redox imbalance. The reduction in viability in A. gemmatalis was positively correlated with oxidative markers, suggesting that redox imbalance can lead to larvae’s death. These results suggest that AAE possess insecticidal potential through the mechanisms of action of altering cellular redox state. Though further studies are required to confirm this, our study nevertheless contributes to a better understanding of AAE’s mechanisms of action as potential biopesticides in pest management, opening new perspectives on the development of compounds with insecticidal action.

  10. Effects Of Social Networking Sites (SNSs) On Hyper Media Computer Mediated Environments (HCMEs)

    OpenAIRE

    Yoon C. Cho

    2011-01-01

    Social Networking Sites (SNSs) are known as tools to interact and build relationships between users/customers in Hyper Media Computer Mediated Environments (HCMEs). This study explored how social networking sites play a significant role in communication between users. While numerous researchers examined the effectiveness of social networking websites, few studies investigated which factors affected customers attitudes and behavior toward social networking sites. In this paper, the authors inv...

  11. Differentiating cancerous from normal breast tissue by redox imaging

    Science.gov (United States)

    Xu, He N.; Tchou, Julia; Feng, Min; Zhao, Huaqing; Li, Lin Z.

    2015-02-01

    Abnormal metabolism can be a hallmark of cancer occurring early before detectable histological changes and may serve as an early detection biomarker. The current gold standard to establish breast cancer (BC) diagnosis is histological examination of biopsy. Previously we have found that pre-cancer and cancer tissues in animal models displayed abnormal mitochondrial redox state. Our technique of quantitatively measuring the mitochondrial redox state has the potential to be implemented as an early detection tool for cancer and may provide prognostic value. We therefore in this present study, investigated the feasibility of quantifying the redox state of tumor samples from 16 BC patients. Tumor tissue aliquots were collected from both normal and cancerous tissue from the affected cancer-bearing breasts of 16 female patients (5 TNBC, 9 ER+, 2 ER+/Her2+) shortly after surgical resection. All specimens were snap-frozen with liquid nitrogen on site and scanned later with the Chance redox scanner, i.e., the 3D cryogenic NADH/oxidized flavoprotein (Fp) fluorescence imager. Our preliminary results showed that both NADH and Fp (including FAD, i.e., flavin adenine dinucleotide) signals in the cancerous tissues roughly tripled to quadrupled those in the normal tissues (pcancerous tissues than in the normal ones (pcancer and non-cancer breast tissues in human patients and this novel redox scanning procedure may assist in tissue diagnosis in freshly procured biopsy samples prior to tissue fixation. We are in the process of evaluating the prognostic value of the redox imaging indices for BC.

  12. Victimization, social anxiety, and body dysmorphic concerns: appearance-based rejection sensitivity as a mediator.

    Science.gov (United States)

    Lavell, Cassie H; Zimmer-Gembeck, Melanie J; Farrell, Lara J; Webb, Haley

    2014-09-01

    Body dysmorphic disorder (BDD) is characterized by extreme preoccupation with perceived deficits in physical appearance, and sufferers experience severe impairment in functioning. Previous research has indicated that individuals with BDD are high in social anxiety, and often report being the victims of appearance-based teasing. However, there is little research into the possible mechanisms that might explain these relationships. The current study examined appearance-based rejection sensitivity as a mediator between perceived appearance-based victimization, social anxiety, and body dysmorphic symptoms in a sample of 237 Australian undergraduate psychology students. Appearance-based rejection sensitivity fully mediated the relationship between appearance-based victimization and body dysmorphic symptoms, and partially mediated the relationship between social anxiety and body dysmorphic symptoms. Findings suggest that individuals high in social anxiety or those who have a history of more appearance-based victimization may have a bias towards interpreting further appearance-based rejection, which may contribute to extreme appearance concerns such as BDD. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Postnatal exposure to trichloroethylene alters glutathione redox homeostasis, methylation potential, and neurotrophin expression in the mouse hippocampus

    Science.gov (United States)

    Blossom, Sarah J.; Melnyk, Stepan; Cooney, Craig A.; Gilbert, Kathleen M.; James, S. Jill

    2012-01-01

    Previous studies have shown that continuous exposure throughout gestation until the juvenile period to environmentally-relevant doses of trichloroethylene (TCE) in the drinking water of MRL+/+ mice promoted adverse behavior associated with glutathione depletion in the cerebellum indicating increased sensitivity to oxidative stress. The purpose of this study was to extend our findings and further characterize the impact of TCE exposure on redox homeostasis and biomarkers of oxidative stress in the hippocampus, a brain region prone to oxidative stress. Instead of a continuous exposure, the mice were exposed to water only or two environmentally relevant doses of TCE in the drinking water postnatally from birth until 6 weeks of age. Biomarkers of plasma metabolites in the transsulfuration pathway and the transmethylation pathway of the methionine cycle were also examined. Gene expression of neurotrophins was examined to investigate a possible relationship between oxidative stress, redox imbalance and neurotrophic factor expression with TCE exposure. Our results show that hippocampi isolated from male mice exposed to TCE showed altered glutathione redox homeostasis indicating a more oxidized state. Also observed was a significant, dose dependent increase in glutathione precursors. Plasma from the TCE treated mice showed alterations in metabolites in the transsulfuration and transmethylation pathways indicating redox imbalance and altered methylation capacity. 3-Nitrotyrosine, a biomarker of protein oxidative stress, was also significantly higher in plasma and hippocampus of TCE-exposed mice compared to controls. In contrast, expression of key neurotrophic factors in the hippocampus (BDNF, NGF, and NT-3) was significantly reduced compared to controls. Our results demonstrate that low-level postnatal and early life TCE exposure modulates neurotrophin gene expression in the mouse hippocampus and may provide a mechanism for TCE-mediated neurotoxicity. PMID:22421312

  14. Utilizing redox-mediated Bergman cyclization toward the development of dual-action metalloenediyne therapeutics.

    Science.gov (United States)

    Lindahl, Sarah E; Park, Hyunsoo; Pink, Maren; Zaleski, Jeffrey M

    2013-03-13

    Reaction of 2 equiv of 1,2-bis((diphenylphosphino)ethynyl)benzene (dppeb, 1) with Pt(cod)Cl2 followed by treatment with N2H4 yields the reduced Pt(0) metalloenediyne, Pt(dppeb)2, 2. This complex is stable to both air oxidation and metal-mediated Bergman cyclization under ambient conditions due to the nearly idealized tetrahedral geometry. Reaction of 2 with 1 equiv of I2 in the presence of excess 1,4-cyclohexadiene (1,4-CHD) radical trap rapidly and near-quantitatively generates the cis-Bergman-cyclized, diiodo product 3 ((31)P: δ = 41 ppm, J(Pt-P) = 3346 Hz) with concomitant loss of 1 equiv of uncyclized phosphine chelate ((31)P: δ = -33 ppm). In contrast, addition of 2 equiv of I2 in the absence of additional radical trap instantaneously forms a metastable Pt(dppeb)2(2+) intermediate species, 4, that is characterized by δ = 51 ppm in the (31)P NMR (J(Pt-P) = 3171 Hz) and ν(C≡C) = 2169 cm(-1) in the Raman profile, indicating that it is an uncyclized, bis-ligated complex. Over 24 h, 4 undergoes ligand exchange to form a neutral, square planar complex that spontaneously Bergman cyclizes at ambient temperature to give the crystalline product Pt(dppnap-I2)I2 (dppnap-I2 = (1,4-diiodonaphthalene-2,3-diyl)bis(diphenylphosphine)), 5, in 52% isolated yield. Computational analysis of the oxidation reaction proposes two plausible flattened tetrahedral structures for intermediate 4: one where the phosphine core has migrated to a trans-spanning chelate geometry, and a second, higher energy structure (3.3 kcal/mol) with two cis-chelating phosphine ligands (41° dihedral angle) via a restricted alkyne-terminal starting point. While the energies are disparate, the common theme in both structures is the elongated Pt-P bond lengths (>2.4 Å), indicating that nucleophilic ligand substitution by I(-) is on the reaction trajectory to the cyclized product 5. The efficiency of the redox-mediated Bergman cyclization reaction of this stable Pt(0) metalloenediyne prodrug and

  15. Changes in sedimentary redox associated with mussel (Mytilus edulis L. farms on the west-coast of Scotland.

    Directory of Open Access Journals (Sweden)

    Thomas A Wilding

    Full Text Available Aquaculture is growing rapidly in response to an increasing demand for protein and the over-exploitation of wild fisheries. Mussel (family Mytilidae production has doubled over the last decade and currently stands at 1.5 million tones production per annum. Mussels produce organic biodeposits which are dispersed around the production site and, potentially, impact the receiving environment in a number of inter-linked ways. The reported benthic impacts that occur, primarily through the accumulation of these biodeposits and associated organic enrichment, vary widely between studies. The objectives of this research were to determine the nature of the relationship between sediment redox (a proxy for oxygenation and farm-proximity and covariables whilst accounting for, and quantifying, differences in redox between sites. Sediment cores (N = 159 were taken remotely around a random sample of mussel farms, redox was measured at 10 mm sediment depth and linked to farm-distance and sediment organic/shell content and particle size, using an additive, mixed, weighted regression model. Redox varied considerably between sites and there was a highly significant reduction (50 mV in redox adjacent to the mussel lines. Redox increased non-linearly with distance, rising rapidly at >7 m from the farm edge. The modest reduction in sediment oxygenation in close proximity to mussel farms reported here suggests that farms located over sediments characterised by pre-existing oxygen stress are likely to exacerbate benthic species impoverishment associated with reducing sedimentary conditions whilst those located over highly oxygenated sediments are likely to increase benthic productivity.

  16. Roles of the redox-active disulfide and histidine residues forming a catalytic dyad in reactions catalyzed by 2-ketopropyl coenzyme M oxidoreductase/carboxylase.

    Science.gov (United States)

    Kofoed, Melissa A; Wampler, David A; Pandey, Arti S; Peters, John W; Ensign, Scott A

    2011-09-01

    NADPH:2-ketopropyl-coenzyme M oxidoreductase/carboxylase (2-KPCC), an atypical member of the disulfide oxidoreductase (DSOR) family of enzymes, catalyzes the reductive cleavage and carboxylation of 2-ketopropyl-coenzyme M [2-(2-ketopropylthio)ethanesulfonate; 2-KPC] to form acetoacetate and coenzyme M (CoM) in the bacterial pathway of propylene metabolism. Structural studies of 2-KPCC from Xanthobacter autotrophicus strain Py2 have revealed a distinctive active-site architecture that includes a putative catalytic triad consisting of two histidine residues that are hydrogen bonded to an ordered water molecule proposed to stabilize enolacetone formed from dithiol-mediated 2-KPC thioether bond cleavage. Site-directed mutants of 2-KPCC were constructed to test the tenets of the mechanism proposed from studies of the native enzyme. Mutagenesis of the interchange thiol of 2-KPCC (C82A) abolished all redox-dependent reactions of 2-KPCC (2-KPC carboxylation or protonation). The air-oxidized C82A mutant, as well as wild-type 2-KPCC, exhibited the characteristic charge transfer absorbance seen in site-directed variants of other DSOR enzymes but with a pK(a) value for C87 (8.8) four units higher (i.e., four orders of magnitude less acidic) than that for the flavin thiol of canonical DSOR enzymes. The same higher pK(a) value was observed in native 2-KPCC when the interchange thiol was alkylated by the CoM analog 2-bromoethanesulfonate. Mutagenesis of the flavin thiol (C87A) also resulted in an inactive enzyme for steady-state redox-dependent reactions, but this variant catalyzed a single-turnover reaction producing a 0.8:1 ratio of product to enzyme. Mutagenesis of the histidine proximal to the ordered water (H137A) led to nearly complete loss of redox-dependent 2-KPCC reactions, while mutagenesis of the distal histidine (H84A) reduced these activities by 58 to 76%. A redox-independent reaction of 2-KPCC (acetoacetate decarboxylation) was not decreased for any of the

  17. Parental Interpersonal Sensitivity and Youth Social Problems: A Mediational Role for Child Emotion Dysregulation

    Science.gov (United States)

    Suveg, Cynthia; Jacob, Marni L.; Payne, Mary

    2010-01-01

    We examined the relations between parental interpersonal sensitivity and youth social problems and explored the mediational role of child emotion dysregulation. Mothers (N = 42; M age = 39.38) and fathers (N = 41; M age = 39.38) of youth aged 7-12 (N = 42; M age = 9.12) completed measures of their own interpersonal sensitivity and reported on…

  18. Integration of the thiol redox status with cytokine response to physical training in professional basketball players.

    Science.gov (United States)

    Zembron-Lacny, A; Slowinska-Lisowska, M; Ziemba, A

    2010-01-01

    The present study was designed to evaluate the plasma markers of reactive oxygen species (ROS) activity and cytokines, and their relationship with thiol redox status of basketball players during training. Sixteen professional players of the Polish Basketball Extraleague participated in the study. The study was performed during the preparatory period and the play-off round. Markers of ROS activity (lipid peroxidation TBARS, protein carbonylation PC) and reduced glutathione (GSH) demonstrated regularity over time, i.e. TBARS, PC and GSH were elevated at the beginning and decreased at the end of training periods. Oxidized glutathione (GSSG) was not affected by exercise training. Thiol redox status (GSH(total)-2GSSG/GSSG) correlated with TBARS and PC in both training periods. The level of interleukin-6 (IL-6) was increased and positively correlated with thiol redox (r=0.423) in the preparatory period, whereas tumor necrosis factor alpha (TNFalpha) was increased and inversely correlated with thiol redox (r= 0.509) in the play-off round. The present study showed significant shifts in markers of ROS activity, thiol redox status and inflammatory mediators (IL-6, TNFalpha) following professional sport training as well as correlation between changes in thiol redox and cytokine response.

  19. Strategies for "wiring" redox-active proteins to electrodes and applications in biosensors, biofuel cells, and nanotechnology.

    Science.gov (United States)

    Nöll, Tanja; Nöll, Gilbert

    2011-07-01

    In this tutorial review the basic approaches to establish electrochemical communication between redox-active proteins and electrodes are elucidated and examples for applications in electrochemical biosensors, biofuel cells and nanotechnology are presented. The early stage of protein electrochemistry is described giving a short overview over electron transfer (ET) between electrodes and proteins, followed by a brief introduction into experimental procedures for studying proteins at electrodes and possible applications arising thereof. The article starts with discussing the electrochemistry of cytochrome c, the first redox-active protein, for which direct reversible ET was obtained, under diffusion controlled conditions and after adsorption to electrodes. Next, examples for the electrochemical study of redox enzymes adsorbed on electrodes and modes of immobilization are discussed. Shortly the experimental approach for investigating redox-active proteins adsorbed on electrodes is outlined. Possible applications of redox enzymes in electrochemical biosensors and biofuel cells working by direct ET (DET) and mediated ET (MET) are presented. Furthermore, the reconstitution of redox active proteins at electrodes using molecular wire-like units in order to "wire" the proteins to the electrode surface and possible applications in nanotechnology are discussed.

  20. Aptamer-mediated colorimetric method for rapid and sensitive detection of chloramphenicol in food.

    Science.gov (United States)

    Yan, Chao; Zhang, Jing; Yao, Li; Xue, Feng; Lu, Jianfeng; Li, Baoguang; Chen, Wei

    2018-09-15

    We report an aptamer-mediated colorimetric method for sensitive detection of chloramphenicol (CAP). The aptamer of CAP is immobilized by the hybridization with pre-immobilized capture probe in the microtiter plate. The horseradish peroxidase (HRP) is covalently attached to the aptamer by the biotin-streptavidin system for signal production. CAP will preferably bind with aptamer due to the high binding affinity, which attributes to the release of aptamer and HRP and thus, affects the optical signal intensity. Quantitative determination of CAP is successfully achieved in the wide range from 0.001 to 1000 ng/mL with detection limit of 0.0031 ng/mL, which is more sensitive than traditional immunoassays. This method is further validated by measuring the recovery of CAP spiked in two different food matrices (honey and fish). The aptamer-mediated colorimetric method can be a useful protocol for rapid and sensitive screening of CAP, and may be used as an alternative means for traditional immunoassays. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. THE REDOX PATHWAY OF Pseudomonas aeruginosa CYTOCHROME C BIOGENESIS

    Directory of Open Access Journals (Sweden)

    Eva Di Silvio

    2012-06-01

    Full Text Available Cytochrome c contains heme covalently bound to the polypeptide chain through two thioether bonds between the heme vinyl groups and the two cysteines of the conserved heme- binding motif of the apoprotein. Surprisingly, the biochemical events leading to the synthesis of the functional holoprotein in the cell are largely unknown. In the human pathogen Pseudomonas aeruginosa, the biogenesis of Cytc is mediated by a group of membrane or membrane-anchored proteins (CcmABCDEFGHI, exposing their active site to the periplasm. The Ccm proteins involved in the necessary reduction of apoCyt disulfide bond are CcmG and CcmH. Here we present the structural and functional characterization of these two redox-active proteins. We determined the crystal structure of CcmG, both in the oxidized and the reduced state. CcmG is a membrane-anchored thioredoxinlike protein acting as a mild reductant in the redox pathway of Cytc biogenesis. The 3D structure of the soluble periplasmic domain of CcmH revealed that it adopts a peculiar three-helix bundle fold that is different from that of canonical thiol-oxidoreductases. Moreover, we present protein-protein interaction experiments aiming at elucidating the molecular mechanism of the reduction of apoCyt disulfide bond for heme attachment in vivo. On the basis of the structural and functional data on CcmG, CcmH and their interactions, we propose an assembly line for Cytc biogenesis in P. aeruginosa in which reduced CcmH specifically recognizes, binds and reduces oxidized apoCyt via the formation of a mixed disulfide complex, which is subsequently resolved by CcmG.

  2. Iterative absolute electroanalytical approach to characterization of bulk redox conducting systems.

    Science.gov (United States)

    Lewera, Adam; Miecznikowski, Krzysztof; Chojak, Malgorzata; Makowski, Oktawian; Golimowski, Jerzy; Kulesza, Pawel J

    2004-05-15

    A novel electroanalytical approach is proposed here, and it is demonstrated with the direct and simultaneous determination of two unknowns: the concentration of redox sites and the apparent diffusion coefficient for charge propagation in a single crystal of dodecatungstophosphoric acid. This Keggin-type polyoxometalate serves as a model bulk redox conducting inorganic material for solid-state voltammetry. The system has been investigated using an ultramicrodisk working electrode in the absence of external liquid supporting electrolyte. The analytical method requires numerical solution of the combination of two equations in which the first one describes current (or charge) in a well-defined (either spherical or linear) diffusional regime and the second general equation describes chronoamperometric (or normal pulse voltammetric current) under mixed (linear-spherical) conditions. The iterative approach is based on successive approximations through calculation and minimizing the least-squares error function. The method is fairly universal, and in principle, it can be extended to the investigation of other bulk systems including sol-gel processed materials, redox melts, and solutions on condition that they are electroactive and well behaved, they contain redox centers at sufficiently high level, and a number of electrons for the redox reaction considered is known.

  3. Redox regulation of mitochondrial function with emphasis on cysteine oxidation reactions.

    Science.gov (United States)

    Mailloux, Ryan J; Jin, Xiaolei; Willmore, William G

    2014-01-01

    Mitochondria have a myriad of essential functions including metabolism and apoptosis. These chief functions are reliant on electron transfer reactions and the production of ATP and reactive oxygen species (ROS). The production of ATP and ROS are intimately linked to the electron transport chain (ETC). Electrons from nutrients are passed through the ETC via a series of acceptor and donor molecules to the terminal electron acceptor molecular oxygen (O2) which ultimately drives the synthesis of ATP. Electron transfer through the respiratory chain and nutrient oxidation also produces ROS. At high enough concentrations ROS can activate mitochondrial apoptotic machinery which ultimately leads to cell death. However, if maintained at low enough concentrations ROS can serve as important signaling molecules. Various regulatory mechanisms converge upon mitochondria to modulate ATP synthesis and ROS production. Given that mitochondrial function depends on redox reactions, it is important to consider how redox signals modulate mitochondrial processes. Here, we provide the first comprehensive review on how redox signals mediated through cysteine oxidation, namely S-oxidation (sulfenylation, sulfinylation), S-glutathionylation, and S-nitrosylation, regulate key mitochondrial functions including nutrient oxidation, oxidative phosphorylation, ROS production, mitochondrial permeability transition (MPT), apoptosis, and mitochondrial fission and fusion. We also consider the chemistry behind these reactions and how they are modulated in mitochondria. In addition, we also discuss emerging knowledge on disorders and disease states that are associated with deregulated redox signaling in mitochondria and how mitochondria-targeted medicines can be utilized to restore mitochondrial redox signaling.

  4. Determination of extinction coefficients of human hemoglobin in various redox states.

    Science.gov (United States)

    Meng, Fantao; Alayash, Abdu I

    2017-03-15

    The role of hemoglobin (Hb) redox forms in tissue and organ toxicities remain ambiguous despite the well-documented contribution of Hb redox reactivity to cellular and subcellular oxidative changes. Moreover, several recent studies, in which Hb toxicity were investigated, have shown conflicting outcomes. Uncertainties over the potential role of these species may in part be due to the protein preparation method of choice, the use of published extinction coefficients and the lack of suitable controls for Hb oxidation and heme loss. Highly purified and well characterized redox forms of human Hb were used in this study and the extinction coefficients of each Hb species (ferrous/oxy, ferric/met and ferryl) were determined. A new set of equations were established to improve accuracy in determining the transient ferryl Hb species. Additionally, heme concentrations in solutions and in human plasma were determined using a novel reversed phase HPLC method in conjugation with our photometric measurements. The use of more accurate redox-specific extinction coefficients and method calculations will be an invaluable tool for both in vitro and in vivo experiments aimed at determining the role of Hb-mediated vascular pathology in hemolytic anemias and when Hb is used as oxygen therapeutics. Published by Elsevier Inc.

  5. Differential active site loop conformations mediate promiscuous activities in the lactonase SsoPox.

    Directory of Open Access Journals (Sweden)

    Julien Hiblot

    Full Text Available Enzymes are proficient catalysts that enable fast rates of Michaelis-complex formation, the chemical step and products release. These different steps may require different conformational states of the active site that have distinct binding properties. Moreover, the conformational flexibility of the active site mediates alternative, promiscuous functions. Here we focused on the lactonase SsoPox from Sulfolobus solfataricus. SsoPox is a native lactonase endowed with promiscuous phosphotriesterase activity. We identified a position in the active site loop (W263 that governs its flexibility, and thereby affects the substrate specificity of the enzyme. We isolated two different sets of substitutions at position 263 that induce two distinct conformational sampling of the active loop and characterized the structural and kinetic effects of these substitutions. These sets of mutations selectively and distinctly mediate the improvement of the promiscuous phosphotriesterase and oxo-lactonase activities of SsoPox by increasing active-site loop flexibility. These observations corroborate the idea that conformational diversity governs enzymatic promiscuity and is a key feature of protein evolvability.

  6. Noise sensitivity and diminished health: Testing moderators and mediators of the relationship

    Directory of Open Access Journals (Sweden)

    Erin M Hill

    2014-01-01

    Full Text Available The concept of noise sensitivity emerged in public health and psychoacoustic research to help explain individual differences in reactions to noise. Noise sensitivity has been associated with health problems, but the mechanisms underlying this relationship have yet to be fully examined. Participants (n = 1102 were residents of Auckland, New Zealand, who completed questionnaires and returned them through the post. Models of noise sensitivity and health were tested in the analyses using bootstrapping methods to examine indirect effects. Results indicated that gender and noise exposure were not significant moderators in the model. Perceived stress and sleep problems were significant mediators of the relationship between noise sensitivity and subjective health complaints, even after controlling for the influence of neuroticism. However, the relationship between noise sensitivity and mental health complaints (anxiety and depression was accounted for by the variance explained by neuroticism. Overall, this study provides considerable understanding of the relationship between noise sensitivity and health problems and identifies areas for further research in the field.

  7. The Use of Redox Mediators for Enhancing Utilization of Li2S Cathodes for Advanced Li-S Battery Systems.

    Science.gov (United States)

    Meini, Stefano; Elazari, Ran; Rosenman, Ariel; Garsuch, Arnd; Aurbach, Doron

    2014-03-06

    The development of Li2S electrodes is a crucial step toward industrial manufacturing of Li-S batteries, a promising alternative to Li-ion batteries due to their projected two times higher specific capacity. However, the high voltages needed to activate Li2S electrodes, and the consequent electrolyte solution degradation, represent the main challenge. We present a novel concept that could make feasible the widespread application of Li2S electrodes for Li-S cell assembly. In this concept, the addition of redox mediators as additives to the standard electrolyte solution allows us to recover most of Li2S theoretical capacity in the activation cycle at potentials as low as 2.9 VLi, substantially lower than the typical potentials >4 VLi needed with standard electrolyte solution. Those novel additives permit us to preserve the electrolyte solution from being degraded, allowing us to achieve capacity as high as 500 mAhg(-1)Li2S after 150 cycles with no major structural optimization of the electrodes.

  8. Sorption of redox-sensitive radionuclides to deep-sea sediments in the absence of oxygen

    International Nuclear Information System (INIS)

    Higgo, J.J.W.; Rees, L.V.C.; Cronan, D.S.; Cole, T.G.

    1986-03-01

    Sediments were recovered from the GME area of the mid-Atlantic and stored in an inert atmosphere from the time of collection Pore-water analysis showed them to be post-oxic. Sorption tests in an inert atmosphere showed that they were not sufficiently reducing to affect the distribution ratios of the redox-sensitive elements, technetium and neptunium. This may mean that previous results obtained under oxic conditions can be used in modelling. Ferrous iron was strongly sorbed onto the sediments but this iron had no effect on technetium sorption, which was negligible. Only if a large excess of Fe ++ was added so that the concentration of Fe ++ in solution exceeded 100um (Eh probably < -0.2V) was the technetium reduced and adsorption appreciable. The indications are, therefore, that ferrous iron from dissolved canisters will not increase the sorption of technetium to deep-sea sediments. Moessbauer analysis showed that a high proportion (up to 15%) of the iron in the high-carbonate turbidites was in the ferrous state but that all the iron in the clay-rich layer, containing less carbonate, was in the ferric state. This may explain the fact that, in general, neptunium is more strongly adsorbed by high-carbonate than by other types of sediment. (author)

  9. Redox signaling in plants.

    Science.gov (United States)

    Foyer, Christine H; Noctor, Graham

    2013-06-01

    Our aim is to deliver an authoritative and challenging perspective of current concepts in plant redox signaling, focusing particularly on the complex interface between the redox and hormone-signaling pathways that allow precise control of plant growth and defense in response to metabolic triggers and environmental constraints and cues. Plants produce significant amounts of singlet oxygen and other reactive oxygen species (ROS) as a result of photosynthetic electron transport and metabolism. Such pathways contribute to the compartment-specific redox-regulated signaling systems in plant cells that convey information to the nucleus to regulate gene expression. Like the chloroplasts and mitochondria, the apoplast-cell wall compartment makes a significant contribution to the redox signaling network, but unlike these organelles, the apoplast has a low antioxidant-buffering capacity. The respective roles of ROS, low-molecular antioxidants, redox-active proteins, and antioxidant enzymes are considered in relation to the functions of plant hormones such as salicylic acid, jasmonic acid, and auxin, in the composite control of plant growth and defense. Regulation of redox gradients between key compartments in plant cells such as those across the plasma membrane facilitates flexible and multiple faceted opportunities for redox signaling that spans the intracellular and extracellular environments. In conclusion, plants are recognized as masters of the art of redox regulation that use oxidants and antioxidants as flexible integrators of signals from metabolism and the environment.

  10. The Deep Thioredoxome in Chlamydomonas reinhardtii: New Insights into Redox Regulation.

    Science.gov (United States)

    Pérez-Pérez, María Esther; Mauriès, Adeline; Maes, Alexandre; Tourasse, Nicolas J; Hamon, Marion; Lemaire, Stéphane D; Marchand, Christophe H

    2017-08-07

    Thiol-based redox post-translational modifications have emerged as important mechanisms of signaling and regulation in all organisms, and thioredoxin plays a key role by controlling the thiol-disulfide status of target proteins. Recent redox proteomic studies revealed hundreds of proteins regulated by glutathionylation and nitrosylation in the unicellular green alga Chlamydomonas reinhardtii, while much less is known about the thioredoxin interactome in this organism. By combining qualitative and quantitative proteomic analyses, we have comprehensively investigated the Chlamydomonas thioredoxome and 1188 targets have been identified. They participate in a wide range of metabolic pathways and cellular processes. This study broadens not only the redox regulation to new enzymes involved in well-known thioredoxin-regulated metabolic pathways but also sheds light on cellular processes for which data supporting redox regulation are scarce (aromatic amino acid biosynthesis, nuclear transport, etc). Moreover, we characterized 1052 thioredoxin-dependent regulatory sites and showed that these data constitute a valuable resource for future functional studies in Chlamydomonas. By comparing this thioredoxome with proteomic data for glutathionylation and nitrosylation at the protein and cysteine levels, this work confirms the existence of a complex redox regulation network in Chlamydomonas and provides evidence of a tremendous selectivity of redox post-translational modifications for specific cysteine residues. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  11. Tuning the redox potential of vitamin K3 derivatives by oxidative functionalization using a Ag(i)/GO catalyst.

    Science.gov (United States)

    El-Hout, S I; Suzuki, H; El-Sheikh, S M; Hassan, H M A; Harraz, F A; Ibrahim, I A; El-Sharkawy, E A; Tsujimura, S; Holzinger, M; Nishina, Y

    2017-08-03

    We propose herein initial results to develop optimum redox mediators by the combination of computational simulation and catalytic functionalization of the core structure of vitamin K 3 . We aim to correlate the calculated energy value of the LUMO of different vitamin K 3 derivatives with their actual redox potential. For this, we optimized the catalytic alkylation of 1,4-naphthoquinones with a designed Ag(i)/GO catalyst and synthesized a series of molecules.

  12. pH and redox responsive polymer for antifouling surface coating

    International Nuclear Information System (INIS)

    Lee, Kang Seok; In, Insik; Park, Sung Young

    2014-01-01

    Graphical abstract: Dual responsive surface with highly fouling resistance with the formation of a pH-dependent benzoic imine and redox-sensitive disulfide bond has been developed using a catechol/benzoic acid conjugated polymer and disulfide containing amine end-capped Pluronic. - Highlights: • Stimuli-responsive antifouling surface was prepared by layer-by-layer method. • The surface contact angle showed responsive behavior via pH and redox environments. • Simply coated polymer completely prevented cell adhesion onto surfaces. - Abstract: A dual environmentally responsive polymer with a highly fouling-resistant surface has been developed using poly[(hydroxyethyl methacrylate-g-benzoic acid)-co-(dimethylaminoethyl methacrylate-g-2-chloro-3′, 4′-dihydroxyacetophenone)] [poly[(HEMA-BA)-co-(DMAEMA-CCDP)], P1] as a coating material. The redox-sensitive disulfide containing amine end-capped Pluronic [(Plu-S-S-NH 2 ), P2] was then introduced over the P1 surface via the formation of a pH-dependent benzoic imine bond, where the polyethylene glycol (PEG) acts as an antifouling agent. The successful adhesion of P1 and the deposition of P2 onto the P1-coated substrate were ascertained with X-ray photoelectron spectroscopy (XPS). In vitro cell adhesion followed by scanning electron microscopy (SEM) indicated an excellent antifouling nature of the P2 layer. Consequently, the reattachment of Hela cells was strongly observed when P2 layered on P1-coated substrates (P1–P2) was pretreated at lower pH and high redox conditions. The P1–P2 bilayer-coated substrate has exhibited a great advantage in its effective antifouling behaviors with well-tuned cell attachment and detachment

  13. pH and redox responsive polymer for antifouling surface coating

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang Seok [Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju, 380-702 (Korea, Republic of); In, Insik, E-mail: in1@ut.ac.kr [Department of Polymer Science and Engineering, Korea National University of Transportation, Chungju, 380-702 (Korea, Republic of); Department of IT Convergence, Korea National University of Transportation, Chungju, 380-702 (Korea, Republic of); Park, Sung Young, E-mail: parkchem@ut.ac.kr [Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju, 380-702 (Korea, Republic of); Department of IT Convergence, Korea National University of Transportation, Chungju, 380-702 (Korea, Republic of)

    2014-09-15

    Graphical abstract: Dual responsive surface with highly fouling resistance with the formation of a pH-dependent benzoic imine and redox-sensitive disulfide bond has been developed using a catechol/benzoic acid conjugated polymer and disulfide containing amine end-capped Pluronic. - Highlights: • Stimuli-responsive antifouling surface was prepared by layer-by-layer method. • The surface contact angle showed responsive behavior via pH and redox environments. • Simply coated polymer completely prevented cell adhesion onto surfaces. - Abstract: A dual environmentally responsive polymer with a highly fouling-resistant surface has been developed using poly[(hydroxyethyl methacrylate-g-benzoic acid)-co-(dimethylaminoethyl methacrylate-g-2-chloro-3′, 4′-dihydroxyacetophenone)] [poly[(HEMA-BA)-co-(DMAEMA-CCDP)], P1] as a coating material. The redox-sensitive disulfide containing amine end-capped Pluronic [(Plu-S-S-NH{sub 2}), P2] was then introduced over the P1 surface via the formation of a pH-dependent benzoic imine bond, where the polyethylene glycol (PEG) acts as an antifouling agent. The successful adhesion of P1 and the deposition of P2 onto the P1-coated substrate were ascertained with X-ray photoelectron spectroscopy (XPS). In vitro cell adhesion followed by scanning electron microscopy (SEM) indicated an excellent antifouling nature of the P2 layer. Consequently, the reattachment of Hela cells was strongly observed when P2 layered on P1-coated substrates (P1–P2) was pretreated at lower pH and high redox conditions. The P1–P2 bilayer-coated substrate has exhibited a great advantage in its effective antifouling behaviors with well-tuned cell attachment and detachment.

  14. Nitric oxide activation by distal redox modulation in tetranuclear iron nitrosyl complexes.

    Science.gov (United States)

    de Ruiter, Graham; Thompson, Niklas B; Lionetti, Davide; Agapie, Theodor

    2015-11-11

    A series of tetranuclear iron complexes displaying a site-differentiated metal center was synthesized. Three of the metal centers are coordinated to our previously reported ligand, based on a 1,3,5-triarylbenzene motif with nitrogen and oxygen donors. The fourth (apical) iron center is coordinatively unsaturated and appended to the trinuclear core through three bridging pyrazolates and an interstitial μ4-oxide moiety. Electrochemical studies of complex [LFe3(PhPz)3OFe][OTf]2 revealed three reversible redox events assigned to the Fe(II)4/Fe(II)3Fe(III) (-1.733 V), Fe(II)3Fe(III)/Fe(II)2Fe(III)2 (-0.727 V), and Fe(II)2Fe(III)2/Fe(II)Fe(III)3 (0.018 V) redox couples. Combined Mössbauer and crystallographic studies indicate that the change in oxidation state is exclusively localized at the triiron core, without changing the oxidation state of the apical metal center. This phenomenon is assigned to differences in the coordination environment of the two metal sites and provides a strategy for storing electron and hole equivalents without affecting the oxidation state of the coordinatively unsaturated metal. The presence of a ligand-binding site allowed the effect of redox modulation on nitric oxide activation by an Fe(II) metal center to be studied. Treatment of the clusters with nitric oxide resulted in binding of NO to the apical iron center, generating a {FeNO}(7) moiety. As with the NO-free precursors, the three reversible redox events are localized at the iron centers distal from the NO ligand. Altering the redox state of the triiron core resulted in significant change in the NO stretching frequency, by as much as 100 cm(-1). The increased activation of NO is attributed to structural changes within the clusters, in particular, those related to the interaction of the metal centers with the interstitial atom. The differences in NO activation were further shown to lead to differential reactivity, with NO disproportionation and N2O formation performed by the more

  15. Functional K(ATP) channels in the rat retinal microvasculature: topographical distribution, redox regulation, spermine modulation and diabetic alteration.

    Science.gov (United States)

    Ishizaki, Eisuke; Fukumoto, Masanori; Puro, Donald G

    2009-05-15

    The essential task of the circulatory system is to match blood flow to local metabolic demand. However, much remains to be learned about this process. To better understand how local perfusion is regulated, we focused on the functional organization of the retinal microvasculature, which is particularly well adapted for the local control of perfusion. Here, we assessed the distribution and regulation of functional K(ATP) channels whose activation mediates the hyperpolarization induced by adenosine. Using microvascular complexes freshly isolated from the rat retina, we found a topographical heterogeneity in the distribution of functional K(ATP) channels; capillaries generate most of the K(ATP) current. The initiation of K(ATP)-induced responses in the capillaries supports the concept that the regulation of retinal perfusion is highly decentralized. Additional study revealed that microvascular K(ATP) channels are redox sensitive, with oxidants increasing their activity. Furthermore, the oxidant-mediated activation of these channels is driven by the polyamine spermine, whose catabolism produces oxidants. In addition, our observation that spermine-dependent oxidation occurs predominately in the capillaries accounts for why they generate most of the K(ATP) current detected in retinal microvascular complexes. Here, we also analysed retinal microvessels of streptozotocin-injected rats. We found that soon after the onset of diabetes, an increase in spermine-dependent oxidation at proximal microvascular sites boosts their K(ATP) current and thereby virtually eliminates the topographical heterogeneity of functional K(ATP) channels. We conclude that spermine-dependent oxidation is a previously unrecognized mechanism by which this polyamine modulates ion channels; in addition to a physiological role, spermine-dependent oxidation may also contribute to microvascular dysfunction in the diabetic retina.

  16. Visualization of Nicotine Adenine Dinucleotide Redox Homeostasis with Genetically Encoded Fluorescent Sensors.

    Science.gov (United States)

    Zhao, Yuzheng; Zhang, Zhuo; Zou, Yejun; Yang, Yi

    2018-01-20

    Beyond their roles as redox currency in living organisms, pyridine dinucleotides (NAD + /NADH and NADP + /NADPH) are also precursors or cosubstrates of great significance in various physiologic and pathologic processes. Recent Advances: For many years, it was challenging to develop methodologies for monitoring pyridine dinucleotides in situ or in vivo. Recent advances in fluorescent protein-based sensors provide a rapid, sensitive, specific, and real-time readout of pyridine dinucleotide dynamics in single cells or in vivo, thereby opening a new era of pyridine dinucleotide bioimaging. In this article, we summarize the developments in genetically encoded fluorescent sensors for NAD + /NADH and NADP + /NADPH redox states, as well as their applications in life sciences and drug discovery. The strengths and weaknesses of individual sensors are also discussed. These sensors have the advantages of being specific and organelle targetable, enabling real-time monitoring and subcellular-level quantification of targeted molecules in living cells and in vivo. NAD + /NADH and NADP + /NADPH have distinct functions in metabolic and redox regulation, and thus, a comprehensive evaluation of metabolic and redox states must be multiplexed with a combination of various metabolite sensors in a single cell. Antioxid. Redox Signal. 28, 213-229.

  17. An unexplored role for Peroxiredoxin in exercise-induced redox signalling?

    Directory of Open Access Journals (Sweden)

    Alex J. Wadley

    2016-08-01

    Full Text Available Peroxiredoxin (PRDX is a ubiquitous oxidoreductase protein with a conserved ionised thiol that permits catalysis of hydrogen peroxide (H2O2 up to a million times faster than any thiol-containing signalling protein. The increased production of H2O2 within active tissues during exercise is thought to oxidise conserved cysteine thiols, which may in turn facilitate a wide variety of physiological adaptations. The precise mechanisms linking H2O2 with the oxidation of signalling thiol proteins (phosphates, kinases and transcription factors are unclear due to these proteins' low reactivity with H2O2 relative to abundant thiol peroxidases such as PRDX. Recent work has shown that following exposure to H2O2 in vitro, the sulfenic acid of the PRDX cysteine can form mixed disulphides with transcription factors associated with cell survival. This implicates PRDX as an ‘active’ redox relay in transmitting the oxidising equivalent of H2O2 to downstream proteins. Furthermore, under oxidative stress, PRDX can form stable oxidised dimers that can be secreted into the extracellular space, potentially acting as an extracellular ‘stress’ signal. There is extensive literature assessing non-specific markers of oxidative stress in response to exercise, however the PRDX catalytic cycle may offer a more robust approach for measuring changes in redox balance following exercise. This review discusses studies assessing PRDX-mediated cellular signalling and integrates the recent advances in redox biology with investigations that have examined the role of PRDX during exercise in humans and animals. Future studies should explore the role of PRDX as a key regulator of peroxide mediated-signal transduction during exercise in humans.

  18. Bias and Bias Correction in Multi-Site Instrumental Variables Analysis of Heterogeneous Mediator Effects

    Science.gov (United States)

    Reardon, Sean F.; Unlu, Faith; Zhu, Pei; Bloom, Howard

    2013-01-01

    We explore the use of instrumental variables (IV) analysis with a multi-site randomized trial to estimate the effect of a mediating variable on an outcome in cases where it can be assumed that the observed mediator is the only mechanism linking treatment assignment to outcomes, as assumption known in the instrumental variables literature as the…

  19. Transient light-induced intracellular oxidation revealed by redox biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Kolossov, Vladimir L., E-mail: viadimer@illinois.edu [Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL 61801 (United States); Beaudoin, Jessica N. [Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL 61801 (United States); Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1207 W. Gregory Drive, Urbana, IL 61801 (United States); Hanafin, William P. [Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL 61801 (United States); DiLiberto, Stephen J. [Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL 61801 (United States); Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1207 W. Gregory Drive, Urbana, IL 61801 (United States); Kenis, Paul J.A. [Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL 61801 (United States); Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801 (United States); Rex Gaskins, H. [Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL 61801 (United States); Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1207 W. Gregory Drive, Urbana, IL 61801 (United States); Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 S. Lincoln Avenue, Urbana, IL 61801 (United States); Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 905 S. Goodwin Avenue, Urbana, IL 61801 (United States)

    2013-10-04

    Highlights: •Time-resolved live cell imaging revealed light-induced oxidation. •Only the roGFP probe fused with glutaredoxin reveals photooxidation. •The transient oxidation is rapidly reduced by the cytosolic antioxidant system. •Intracellular photooxidation is media-dependent. •Oxidation is triggered exclusively by exposure to short wavelength excitation. -- Abstract: We have implemented a ratiometric, genetically encoded redox-sensitive green fluorescent protein fused to human glutaredoxin (Grx1-roGFP2) to monitor real time intracellular glutathione redox potentials of mammalian cells. This probe enabled detection of media-dependent oxidation of the cytosol triggered by short wavelength excitation. The transient nature of light-induced oxidation was revealed by time-lapse live cell imaging when time intervals of less than 30 s were implemented. In contrast, transient ROS generation was not observed with the parental roGFP2 probe without Grx1, which exhibits slower thiol-disulfide exchange. These data demonstrate that the enhanced sensitivity of the Grx1-roGFP2 fusion protein enables the detection of short-lived ROS in living cells. The superior sensitivity of Grx1-roGFP2, however, also enhances responsiveness to environmental cues introducing a greater likelihood of false positive results during image acquisition.

  20. Transient light-induced intracellular oxidation revealed by redox biosensor

    International Nuclear Information System (INIS)

    Kolossov, Vladimir L.; Beaudoin, Jessica N.; Hanafin, William P.; DiLiberto, Stephen J.; Kenis, Paul J.A.; Rex Gaskins, H.

    2013-01-01

    Highlights: •Time-resolved live cell imaging revealed light-induced oxidation. •Only the roGFP probe fused with glutaredoxin reveals photooxidation. •The transient oxidation is rapidly reduced by the cytosolic antioxidant system. •Intracellular photooxidation is media-dependent. •Oxidation is triggered exclusively by exposure to short wavelength excitation. -- Abstract: We have implemented a ratiometric, genetically encoded redox-sensitive green fluorescent protein fused to human glutaredoxin (Grx1-roGFP2) to monitor real time intracellular glutathione redox potentials of mammalian cells. This probe enabled detection of media-dependent oxidation of the cytosol triggered by short wavelength excitation. The transient nature of light-induced oxidation was revealed by time-lapse live cell imaging when time intervals of less than 30 s were implemented. In contrast, transient ROS generation was not observed with the parental roGFP2 probe without Grx1, which exhibits slower thiol-disulfide exchange. These data demonstrate that the enhanced sensitivity of the Grx1-roGFP2 fusion protein enables the detection of short-lived ROS in living cells. The superior sensitivity of Grx1-roGFP2, however, also enhances responsiveness to environmental cues introducing a greater likelihood of false positive results during image acquisition

  1. Redox Fluctuations Increase the Contribution of Lignin to Soil Respiration

    Science.gov (United States)

    Hall, S. J.; Silver, W. L.; Timokhin, V.; Hammel, K.

    2014-12-01

    Lignin mineralization represents a critical flux in the terrestrial carbon (C) cycle, yet little is known about mechanisms and environmental factors controlling lignin breakdown in mineral soils. Hypoxia has long been thought to suppress lignin decomposition, yet variation in oxygen (O2) availability in surface soils accompanying moisture fluctuations could potentially stimulate this process by generating reactive oxygen species via coupled biotic and abiotic iron (Fe) redox cycling. Here, we tested the impact of redox fluctuations on lignin breakdown in humid tropical forest soils during ten-week laboratory incubations. We used synthetic lignins labeled with 13C in either of two positions (aromatic methoxyl and propyl Cβ) to provide highly sensitive and specific measures of lignin mineralization not previously employed in soils. Four-day redox fluctuations increased the percent contribution of methoxyl C to soil respiration, and cumulative methoxyl C mineralization was equivalent under static aerobic and fluctuating redox conditions despite lower total C mineralization in the latter treatment. Contributions of the highly stable Cβ to mineralization were also equivalent in static aerobic and fluctuating redox treatments during periods of O2 exposure, and nearly doubled in the fluctuating treatment after normalizing to cumulative O2 exposure. Oxygen fluctuations drove substantial net Fe reduction and oxidation, implying that reactive oxygen species generated during abiotic Fe oxidation likely contributed to the elevated contribution of lignin to C mineralization. Iron redox cycling provides a mechanism for lignin breakdown in soils that experience conditions unfavorable for canonical lignin-degrading organisms, and provides a potential mechanism for lignin depletion in soil organic matter during late-stage decomposition. Thus, close couplings between soil moisture, redox fluctuations, and lignin breakdown provide potential a link between climate variability and

  2. Interpersonal sensitivity mediates the effects of child abuse and affective temperaments on depressive symptoms in the general adult population

    Directory of Open Access Journals (Sweden)

    Otsuka A

    2017-10-01

    Full Text Available Ayano Otsuka,1 Yoshikazu Takaesu,1 Mitsuhiko Sato,1 Jiro Masuya,1 Masahiko Ichiki,1 Ichiro Kusumi,2 Takeshi Inoue1 1Department of Psychiatry, Tokyo Medical University, Tokyo, 2Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo, Japan Background: Recent studies have suggested that multiple factors interact with the onset and prognosis of major depressive disorders. In this study, we investigated how child abuse, affective temperaments, and interpersonal sensitivity are interrelated, and how they affect depressive symptoms in the general adult population. Subjects and methods: A total of 415 volunteers from the general adult population completed the Patient Health Questionnaire-9, the Temperament Evaluation of Memphis, Pisa, Paris, and San Diego-Autoquestionnaire version, the Child Abuse and Trauma Scale, and the Interpersonal Sensitivity Measure, which are all self-administered questionnaires. Data were subjected to structural equation modeling (Mplus, and single and multiple regression analyses. Results: The effect of child abuse on depressive symptoms was mediated by interpersonal sensitivity and 4 affective temperaments, including depressive, cyclothymic, anxious, and irritable temperaments. In addition, the effect of these temperaments on depressive symptoms was mediated by interpersonal sensitivity, indicating the indirect enhancement of depressive symptoms. In contrast to these 4 temperaments, the hyperthymic temperament did not mediate the effect of child abuse on depressive symptoms; its effect was not mediated by interpersonal sensitivity. However, a greater hyperthymic temperament predicted decreased depressive symptoms and interpersonal sensitivity, independent of any mediation effect. Limitations: Because this is a cross-sectional study, long-term prospective studies are necessary to confirm its findings. Therefore, recall bias should be considered when interpreting the results. As the subjects were

  3. Mutagenesis of the redox-active disulfide in mercuric ion reductase: Catalysis by mutant enzymes restricted to flavin redox chemistry

    International Nuclear Information System (INIS)

    Distefano, M.D.; Au, K.G.; Walsh, C.T.

    1989-01-01

    Mercuric reductase, a flavoenzyme that possesses a redox-active cystine, Cys 135 Cys 140 , catalyzes the reduction of Hg(II) to Hg(0) by NADPH. As a probe of mechanism, the authors have constructed mutants lacking a redox-active disulfide by eliminating Cys 135 (Ala 135 Cys 140 ), Cys 14 (Cys 135 Ala 140 ), or both (Ala 135 Ala 140 ). Additionally, they have made double mutants that lack Cys 135 (Ala 135 Cys 139 Cys 140 ) or Cys 140 (Cys 135 Cys 139 Ala 140 ) but introduce a new Cys in place of Gly 139 with the aim of constructing dithiol pairs in the active site that do not form a redox-active disulfide. The resulting mutant enzymes all lack redox-active disulfides and are hence restricted to FAD/FADH 2 redox chemistry. Each mutant enzyme possesses unique physical and spectroscopic properties that reflect subtle differences in the FAD microenvironment. Preliminary evidence for the Ala 135 Cys 139 Cys 14 mutant enzyme suggests that this protein forms a disulfide between the two adjacent Cys residues. Hg(II) titration experiments that correlate the extent of charge-transfer quenching with Hg(II) binding indicate that the Ala 135 Cys 140 protein binds Hg(II) with substantially less avidity than does the wild-type enzyme. All mutant mercuric reductases catalyze transhydrogenation and oxygen reduction reactions through obligatory reduced flavin intermediates at rates comparable to or greater than that of the wild-type enzyme. In multiple-turnover assays which monitored the production of Hg(0), two of the mutant enzymes were observed to proceed through at least 30 turnovers at rates ca. 1000-fold slower than that of wild-type mercuric reductase. They conclude that the Cys 135 and Cys 140 thiols serve as Hg(II) ligands that orient the Hg(II) for subsequent reduction by a reduced flavin intermediate

  4. Synthesis of a novel imidazolium-based electrolytes and application for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Dong-Wan [Department of Applied Chemistry, Konkuk University, 322 Danwol-dong, 380-701 Chungju (Korea, Republic of); Sarker, Subrata; Nath, Narayan Chandra Deb [Department of Advanced Technology Fusion, Konkuk University, Seoul (Korea, Republic of); Choi, Seung-Woo [Department of Applied Chemistry, Konkuk University, 322 Danwol-dong, 380-701 Chungju (Korea, Republic of); Ahammad, A.J. Saleh [Department of Advanced Technology Fusion, Konkuk University, Seoul (Korea, Republic of); Lee, Jae-Joon, E-mail: jjlee@kku.ac.k [Department of Applied Chemistry, Konkuk University, 322 Danwol-dong, 380-701 Chungju (Korea, Republic of); Department of Advanced Technology Fusion, Konkuk University, Seoul (Korea, Republic of); Kim, Whan-Gi, E-mail: wgkim@kku.ac.k [Department of Applied Chemistry, Konkuk University, 322 Danwol-dong, 380-701 Chungju (Korea, Republic of)

    2010-01-25

    A series of new imidazolium-based oligomers with different length of a poly(ethylene glycol) moiety as a linker were synthesized and studied as electrolytes for dye-sensitized solar cell (DSSC). These oligomeric molecules are expected to have an intra- or inter-molecular hydrogen bonding interaction through its urethane and urea bonds. They can be used to prepare the liquid-type electrolytes for DSSC by dissolving them into conventional solvent system or to develop solvent-free electrolytes by incorporating an extra redox mediator and other functional materials together as additives. It was found that these oligomers could replace the cationic component of the conventional electrolytes and became the source of redox species when iodine is added. The photocurrent-voltage characteristics of DSSCs with the electrolytes containing these oligomers demonstrated that they can successfully replace the conventional ionic liquid-type electrolytes such as 1-methyl-3-propyl imidazolium iodide (PMII) in 3-methoxypropionitrile (MPN) if the length of the linker is optimized.

  5. Synthesis of a novel imidazolium-based electrolytes and application for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Seo, Dong-Wan; Sarker, Subrata; Nath, Narayan Chandra Deb; Choi, Seung-Woo; Ahammad, A.J. Saleh; Lee, Jae-Joon; Kim, Whan-Gi

    2010-01-01

    A series of new imidazolium-based oligomers with different length of a poly(ethylene glycol) moiety as a linker were synthesized and studied as electrolytes for dye-sensitized solar cell (DSSC). These oligomeric molecules are expected to have an intra- or inter-molecular hydrogen bonding interaction through its urethane and urea bonds. They can be used to prepare the liquid-type electrolytes for DSSC by dissolving them into conventional solvent system or to develop solvent-free electrolytes by incorporating an extra redox mediator and other functional materials together as additives. It was found that these oligomers could replace the cationic component of the conventional electrolytes and became the source of redox species when iodine is added. The photocurrent-voltage characteristics of DSSCs with the electrolytes containing these oligomers demonstrated that they can successfully replace the conventional ionic liquid-type electrolytes such as 1-methyl-3-propyl imidazolium iodide (PMII) in 3-methoxypropionitrile (MPN) if the length of the linker is optimized.

  6. Investigation of the redox-dependent modulation of structure and dynamics in human cytochrome c.

    Science.gov (United States)

    Imai, Mizue; Saio, Tomohide; Kumeta, Hiroyuki; Uchida, Takeshi; Inagaki, Fuyuhiko; Ishimori, Koichiro

    2016-01-22

    Redox-dependent changes in the structure and dynamics of human cytochrome c (Cyt c) were investigated by solution NMR. We found significant structural changes in several regions, including residues 23-28 (loop 3), which were further corroborated by chemical shift differences between the reduced and oxidized states of Cyt c. These differences are essential for discriminating redox states in Cyt c by cytochrome c oxidase (CcO) during electron transfer reactions. Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion experiments identified that the region around His33 undergoes conformational exchanges on the μs-ms timescale, indicating significant redox-dependent structural changes. Because His33 is not part of the interaction site for CcO, our data suggest that the dynamic properties of the region, which is far from the interaction site for CcO, contribute to conformational changes during electron transfer to CcO. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Transport and fate of ammonium and its impact on uranium and other trace elements at a former uranium mill tailing site

    International Nuclear Information System (INIS)

    Miao, Ziheng; Akyol, Hakan N.; McMillan, Andrew L.; Brusseau, Mark L.

    2013-01-01

    Highlights: • Nitrification of ammonium evidenced by stable isotopes of nitrate at a mining site. • Concentrations of uranium and other trace elements related to ammonium conc. • Observed impact of ammonium on redox, pH, and possibly complexation. • Proposed impact of transformation of NO 3 and NH 4 on trace elements. - Abstract: The remediation of ammonium-containing groundwater discharged from uranium mill tailing sites is a difficult problem facing the mining industry. The Monument Valley site is a former uranium mining site in the southwest US with both ammonium and nitrate contamination of groundwater. In this study, samples collected from 14 selected wells were analyzed for major cations and anions, trace elements, and isotopic composition of ammonium and nitrate. In addition, geochemical data from the U.S. Department of Energy (DOE) database were analyzed. Results showing oxic redox conditions and correspondence of isotopic compositions of ammonium and nitrate confirmed the natural attenuation of ammonium via nitrification. Moreover, it was observed that ammonium concentration within the plume area is closely related to concentrations of uranium and a series of other trace elements including chromium, selenium, vanadium, iron, and manganese. It is hypothesized that ammonium–nitrate transformation processes influence the disposition of the trace elements through mediation of redox potential, pH, and possibly aqueous complexation and solid-phase sorption. Despite the generally relatively low concentrations of trace elements present in groundwater, their transport and fate may be influenced by remediation of ammonium or nitrate at the site

  8. Mineralogy, geochemistry, porosity and redox properties of rocks from Forsmark. Compilation of data from the regional model volume for SR-Site

    Energy Technology Data Exchange (ETDEWEB)

    Sandstroem, Bjoern (WSP Sverige AB, Stockholm (Sweden)); Stephens, Michael B. (Geological Survey of Sweden, Uppsala (Sweden))

    2009-11-15

    This report is a compilation of the data acquired during the Forsmark site investigation programme on the mineralogy, geochemistry, redox properties and porosity of different rock types at Forsmark. The aim is to provide a final summary of the available data for use during the SR-Site modelling work. Data presented in this report represent the regional model volume and have previously been published in various SKB reports. The data have been extracted from the SKB database Sicada and are presented as calculated median values, data range and lower/upper quartile. The representativity of all samples used for the calculations have been evaluated and data from samples where there is insufficient control on the rock type have been omitted. Rock samples affected by alteration have been omitted from the unaltered samples and are presented separately based on type of alteration (e.g. oxidised or albitized rock)

  9. The intracellular redox stress caused by hexavalent chromium is selective for proteins that have key roles in cell survival and thiol redox control

    International Nuclear Information System (INIS)

    Myers, Judith M.; Antholine, William E.; Myers, Charles R.

    2011-01-01

    Hexavalent chromium [Cr(VI)] compounds (e.g. chromates) are strong oxidants that readily enter cells where they are reduced to reactive Cr intermediates that can directly oxidize some cell components and can promote the generation of reactive oxygen and nitrogen species. Inhalation is a major route of exposure which directly exposes the bronchial epithelium. Previous studies with non-cancerous human bronchial epithelial cells (BEAS-2B) demonstrated that Cr(VI) treatment results in the irreversible inhibition of thioredoxin reductase (TrxR) and the oxidation of thioredoxins (Trx) and peroxiredoxins (Prx). The mitochondrial Trx/Prx system is somewhat more sensitive to Cr(VI) than the cytosolic Trx/Prx system, and other redox-sensitive mitochondrial functions are subsequently affected including electron transport complexes I and II. Studies reported here show that Cr(VI) does not cause indiscriminant thiol oxidation, and that the Trx/Prx system is among the most sensitive of cellular protein thiols. Trx/Prx oxidation is not unique to BEAS-2B cells, as it was also observed in primary human bronchial epithelial cells. Increasing the intracellular levels of ascorbate, an endogenous Cr(VI) reductant, did not alter the effects on TrxR, Trx, or Prx. The peroxynitrite scavenger MnTBAP did not protect TrxR, Trx, Prx, or the electron transport chain from the effects of Cr(VI), implying that peroxynitrite is not required for these effects. Nitration of tyrosine residues of TrxR was not observed following Cr(VI) treatment, further ruling out peroxynitrite as a significant contributor to the irreversible inhibition of TrxR. Cr(VI) treatments that disrupt the TrxR/Trx/Prx system did not cause detectable mitochondrial DNA damage. Overall, the redox stress that results from Cr(VI) exposure shows selectivity for key proteins which are known to be important for redox signaling, antioxidant defense, and cell survival.

  10. Redox regulation of mitochondrial function with emphasis on cysteine oxidation reactions☆

    Science.gov (United States)

    Mailloux, Ryan J.; Jin, Xiaolei; Willmore, William G.

    2013-01-01

    Mitochondria have a myriad of essential functions including metabolism and apoptosis. These chief functions are reliant on electron transfer reactions and the production of ATP and reactive oxygen species (ROS). The production of ATP and ROS are intimately linked to the electron transport chain (ETC). Electrons from nutrients are passed through the ETC via a series of acceptor and donor molecules to the terminal electron acceptor molecular oxygen (O2) which ultimately drives the synthesis of ATP. Electron transfer through the respiratory chain and nutrient oxidation also produces ROS. At high enough concentrations ROS can activate mitochondrial apoptotic machinery which ultimately leads to cell death. However, if maintained at low enough concentrations ROS can serve as important signaling molecules. Various regulatory mechanisms converge upon mitochondria to modulate ATP synthesis and ROS production. Given that mitochondrial function depends on redox reactions, it is important to consider how redox signals modulate mitochondrial processes. Here, we provide the first comprehensive review on how redox signals mediated through cysteine oxidation, namely S-oxidation (sulfenylation, sulfinylation), S-glutathionylation, and S-nitrosylation, regulate key mitochondrial functions including nutrient oxidation, oxidative phosphorylation, ROS production, mitochondrial permeability transition (MPT), apoptosis, and mitochondrial fission and fusion. We also consider the chemistry behind these reactions and how they are modulated in mitochondria. In addition, we also discuss emerging knowledge on disorders and disease states that are associated with deregulated redox signaling in mitochondria and how mitochondria-targeted medicines can be utilized to restore mitochondrial redox signaling. PMID:24455476

  11. Numerical modeling of an all vanadium redox flow battery.

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, Jonathan R.; Brunini, Victor E.; Moffat, Harry K.; Martinez, Mario J.

    2014-01-01

    We develop a capability to simulate reduction-oxidation (redox) flow batteries in the Sierra Multi-Mechanics code base. Specifically, we focus on all-vanadium redox flow batteries; however, the capability is general in implementation and could be adopted to other chemistries. The electrochemical and porous flow models follow those developed in the recent publication by [28]. We review the model implemented in this work and its assumptions, and we show several verification cases including a binary electrolyte, and a battery half-cell. Then, we compare our model implementation with the experimental results shown in [28], with good agreement seen. Next, a sensitivity study is conducted for the major model parameters, which is beneficial in targeting specific features of the redox flow cell for improvement. Lastly, we simulate a three-dimensional version of the flow cell to determine the impact of plenum channels on the performance of the cell. Such channels are frequently seen in experimental designs where the current collector plates are borrowed from fuel cell designs. These designs use a serpentine channel etched into a solid collector plate.

  12. Intracellular Redox Compartmentation and ROS-Related Communication in Regulation and Signaling.

    Science.gov (United States)

    Noctor, Graham; Foyer, Christine H

    2016-07-01

    Recent years have witnessed enormous progress in understanding redox signaling related to reactive oxygen species (ROS) in plants. The consensus view is that such signaling is intrinsic to many developmental processes and responses to the environment. ROS-related redox signaling is tightly wedded to compartmentation. Because membranes function as barriers, highly redox-active powerhouses such as chloroplasts, peroxisomes, and mitochondria may elicit specific signaling responses. However, transporter functions allow membranes also to act as bridges between compartments, and so regulated capacity to transmit redox changes across membranes influences the outcome of triggers produced at different locations. As well as ROS and other oxidizing species, antioxidants are key players that determine the extent of ROS accumulation at different sites and that may themselves act as signal transmitters. Like ROS, antioxidants can be transported across membranes. In addition, the intracellular distribution of antioxidative enzymes may be modulated to regulate or facilitate redox signaling appropriate to the conditions. Finally, there is substantial plasticity in organellar shape, with extensions such as stromules, peroxules, and matrixules playing potentially crucial roles in organelle-organelle communication. We provide an overview of the advances in subcellular compartmentation, identifying the gaps in our knowledge and discussing future developments in the area. © 2016 American Society of Plant Biologists. All Rights Reserved.

  13. Antioxidant mediated response of Scoparia dulcis in noise-induced redox imbalance and immunohistochemical changes in rat brain.

    Science.gov (United States)

    Wankhar, Wankupar; Srinivasan, Sakthivel; Rajan, Ravindran; Sheeladevi, Rathinasamy

    2017-01-19

    Noise has been regarded as an environmental/occupational stressor that causes damages to both auditory and non-auditory organs. Prolonged exposure to these mediators of stress has often resulted in detrimental effect, where oxidative/nitrosative stress plays a major role. Hence, it would be appropriate to examine the possible role of free radicals in brain discrete regions and the "antioxidants" mediated response of S. dulcis. Animals were subjected to noise stress for 15 days (100 dB/4 hours/day) and estimation of endogenous free radical and antioxidant activity were carried out on brain discrete regions (the cerebral cortex, cerebellum, brainstem, striatum, hippocampus and hypothalamus). The result showed that exposure to noise could alleviate endogenous free radical generation and altered antioxidant status in brain discrete regions when compared to that of the control groups. This alleviated free radical generation (H 2 O 2 and NO) is well supported by an upregulated protein expression on immunohistochemistry of both iNOS and nNOS in the cerebral cortex on exposure to noise stress. These findings suggest that increased free radical generation and altered anti-oxidative status can cause redox imbalance in the brain discrete regions. However, free radical scavenging activity of the plant was evident as the noise exposed group treated with S. dulcis[200 mg/(kg·b·w)] displayed a therapeutic effect by decreasing the free radical level and regulate the anti-oxidative status to that of control animals. Hence, it can be concluded that the efficacy of S. dulcis could be attributed to its free radical scavenging activity and anti-oxidative property.

  14. Lycopene Inhibits NF-kB-Mediated IL-8 Expression and Changes Redox and PPARγ Signalling in Cigarette Smoke–Stimulated Macrophages

    Science.gov (United States)

    Simone, Rossella E.; Russo, Marco; Catalano, Assunta; Monego, Giovanni; Froehlich, Kati; Boehm, Volker; Palozza, Paola

    2011-01-01

    Increasing evidence suggests that lycopene, the major carotenoid present in tomato, may be preventive against smoke-induced cell damage. However, the mechanisms of such a prevention are still unclear. The aim of this study was to investigate the role of lycopene on the production of the pro-inflammatory cytokine IL-8 induced by cigarette smoke and the possible mechanisms implicated. Therefore, human THP-1 macrophages were exposed to cigarette smoke extract (CSE), alone and following a 6-h pre-treatment with lycopene (0.5–2 µM). CSE enhanced IL-8 production in a time- and a dose-dependent manner. Lycopene pre-treatment resulted in a significant inhibition of CSE-induced IL-8 expression at both mRNA and protein levels. NF-kB controlled the transcription of IL-8 induced by CSE, since PDTC prevented such a production. Lycopene suppressed CSE-induced NF-kB DNA binding, NF-kB/p65 nuclear translocation and phosphorylation of IKKα and IkBα. Such an inhibition was accompanied by a decrease in CSE-induced ROS production and NOX-4 expression. Lycopene further inhibited CSE-induced phosphorylation of the redox-sensitive ERK1/2, JNK and p38 MAPKs. Moreover, the carotenoid increased PPARγ levels which, in turn, enhanced PTEN expression and decreased pAKT levels in CSE-exposed cells. Such effects were abolished by the PPARγ inhibitor GW9662. Taken together, our data indicate that lycopene prevented CSE-induced IL-8 production through a mechanism involving an inactivation of NF-kB. NF-kB inactivation was accompanied by an inhibition of redox signalling and an activation of PPARγ signalling. The ability of lycopene in inhibiting IL-8 production, NF-kB/p65 nuclear translocation, and redox signalling and in increasing PPARγ expression was also found in isolated rat alveolar macrophages exposed to CSE. These findings provide novel data on new molecular mechanisms by which lycopene regulates cigarette smoke-driven inflammation in human macrophages. PMID:21625550

  15. Aqueous dye-sensitized solar cell electrolytes based on the ferricyanide-ferrocyanide redox couple

    Energy Technology Data Exchange (ETDEWEB)

    Daeneke, Torben; Spiccia, Leone [School of Chemistry and ARC Centre of Excellence for Electromaterials Science, Monash University, Victoria (Australia); Uemura, Yu.; Koumura, Nagatoshi [Research Institute for Photovoltaic Technology, National Institute of Advanced Industrial Science and Technology AIST, Ibaraki (Japan); Graduate School of Pure and Applied Sciences, University of Tsukuba, Ibaraki (Japan); Duffy, Noel W. [CSIRO Energy Technology, Clayton, VIC (Australia); Mozer, Attila J. [School of Chemistry and ARC Centre of Excellence for Electromaterials Science, University of Wollongong, NSW (Australia); Bach, Udo [Department of Materials Engineering, Monash University, Victoria (Australia)

    2012-03-02

    Solar energy conversion efficiencies of over 4% have been achieved in DSCs constructed with aqueous electrolytes based on the ferricyanide-ferrocyanide redox couple, thereby avoiding the use of expensive, flammable and toxic solvents. This paradigm shift was made possible by the use of a hydrophobic organic carbazole dye. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Ergothioneine Maintains Redox and Bioenergetic Homeostasis Essential for Drug Susceptibility and Virulence of Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Vikram Saini

    2016-01-01

    Full Text Available The mechanisms by which Mycobacterium tuberculosis (Mtb maintains metabolic equilibrium to survive during infection and upon exposure to antimycobacterial drugs are poorly characterized. Ergothioneine (EGT and mycothiol (MSH are the major redox buffers present in Mtb, but the contribution of EGT to Mtb redox homeostasis and virulence remains unknown. We report that Mtb WhiB3, a 4Fe-4S redox sensor protein, regulates EGT production and maintains bioenergetic homeostasis. We show that central carbon metabolism and lipid precursors regulate EGT production and that EGT modulates drug sensitivity. Notably, EGT and MSH are both essential for redox and bioenergetic homeostasis. Transcriptomic analyses of EGT and MSH mutants indicate overlapping but distinct functions of EGT and MSH. Last, we show that EGT is critical for Mtb survival in both macrophages and mice. This study has uncovered a dynamic balance between Mtb redox and bioenergetic homeostasis, which critically influences Mtb drug susceptibility and pathogenicity.

  17. Transition Metal Polypyridine Complexes: Studies of Mediation in Dye-Sensitized Solar Cells and Charge Separation

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, C. Michael [Colorado State Univ., Fort Collins, CO (United States). Dept. of Chemistry; Prieto, Amy L. [Colorado State Univ., Fort Collins, CO (United States). Dept. of Chemistry

    2017-02-08

    The Elliott group has long been supported by DOE for studies of cobalt(II/III) trisbypiridine (DTB) mediator complexes in dye sensitized solar cells. Previous work demonstrated that Co(II/III) chemistry is sensitive to the environment, showing unprecedented electrode-surface and electrolyte dependant voltammetry. In electrolytes that have large lipophilic cations, voltammetry of the [Co(DTB)3]2+/3+ couple is nearly Nernstian in appearance on nominally oxide-free metal surfaces. In contrast, on semiconductor electrodes in electrolytes with small, hard cations such as Li+, the electron transfer rates are so slow that it is difficult to measure any Faradaic current even at overpotentials of ±1 V. These studies are of direct relevance to the operation of cobalt-based mediators in solar cells. The research has also shown that these mediators are compatible with copper phenantroline based dyes, in contrast to I- due to the insolubility of CuI.

  18. Inflammatory Mediator Profiling of n-butanol Exposed Upper Airways in Individuals with Multiple Chemical Sensitivity

    DEFF Research Database (Denmark)

    Dantoft, Thomas Meinertz; Skovbjerg, Sine; Andersson, Linus

    2015-01-01

    Multiple Chemical Sensitivity (MCS) is a chronic condition characterized by reports of recurrent symptoms in response to low level exposure to various chemical substances. Recent findings suggests that dysregulation of the immune system may play a role in MCS pathophysiology. The aim of this study...... inflammatory mediator profiles (P>0.05) at baseline. Likewise, direct comparison of mediator levels in the MCS group and controls after n-butanol exposure revealed no significant group differences. We demonstrate no abnormal upper airway inflammatory mediator levels in MCS subjects before or after a symptom...

  19. Adaptive Management Plan for Sensitive Plant Species on the Nevada Test Site

    International Nuclear Information System (INIS)

    Wills, C. A.

    2001-01-01

    The Nevada Test Site supports numerous plant species considered sensitive because of their past or present status under the Endangered Species Act and with federal and state agencies. In 1998, the U.S. Department of Energy, Nevada Operation Office (DOE/NV) prepared a Resource Management Plan which commits to protects and conserve these sensitive plant species and to minimize accumulative impacts to them. This document presents the procedures of a long-term adaptive management plan which is meant to ensure that these goals are met. It identifies the parameters that are measured for all sensitive plant populations during long-term monitoring and the adaptive management actions which may be taken if significant threats to these populations are detected. This plan does not, however, identify the current list of sensitive plant species know to occur on the Nevada Test Site. The current species list and progress on their monitoring is reported annually by DOE/NV in the Resource Management Plan

  20. Protective effects of lichen metabolites evernic and usnic acids against redox impairment-mediated cytotoxicity in central nervous system-like cells.

    Science.gov (United States)

    Fernández-Moriano, Carlos; Divakar, Pradeep Kumar; Crespo, Ana; Gómez-Serranillos, M Pilar

    2017-07-01

    Lichens species produce unique secondary metabolites that attract increasing pharmacological interest, including their redox modulatory activities. Current work evaluated for the first time the in vitro cytoprotective properties, based on the antioxidant activities, of the Parmeliaceae lichens Evernia prunastri and Usnea ghattensis and the mechanism of action of their major phenolic constituents: the evernic and usnic acids, respectively. In two models of central nervous system-like cells (U373-MG and SH-SY5Y cell lines), exogenous H 2 O 2 induced oxidative stress-mediated cytotoxicity. We first assessed their radical scavenging capacities (ORAC and DPPH tests) and the phenolic content of the extracts. At the optimal concentrations, pretreatments with evernic acid displayed significant protection against H 2 O 2 -induced cytotoxic damage in both models. It reversed the alterations in oxidative stress markers (including ROS generation, glutathione system and lipid peroxidation levels) and cellular apoptosis (caspase-3 activity). Such effects were in part mediated by a notable enhancement of the expression of intracellular phase-II antioxidant enzymes; a plausible involvement of the Nrf2 cytoprotective pathway is suggested. Usnic acid exerted similar effects, to some extent more moderate. Results suggest that lichen polyketides evernic and usnic acids merit further research as promising antioxidant candidates in the therapy of oxidative stress-related diseases, including the neurodegenerative disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. In-situ investigation of hydrogen evolution behavior in vanadium redox flow batteries

    International Nuclear Information System (INIS)

    Wei, L.; Zhao, T.S.; Xu, Q.; Zhou, X.L.; Zhang, Z.H.

    2017-01-01

    Highlights: • An in-situ method to investigate hydrogen evolution in VRFBs is developed. • The rate of hydrogen evolution during battery operation is quantified. • The gas evolution behaviors in the charge process of VRFBs are observed. - Abstract: In this work, we conceived and fabricated a three-electrode electrochemical cell and transparent vanadium redox flow battery to in-situ investigate the hydrogen evolution reaction during battery operation. Experimental results show that operating temperature has a strong influence on the HER rate. In particular, compared with V"3"+ reduction reaction, HER is more sensitive to temperature variation. It is also found that, contrary to the conventional wisdom that side reactions occur at the late stage of the charge process, H_2 evolves at a relatively low SOC. About 0.26 and 1.94 mL H_2 were collected at an early (SOC lower than 20%) and end of the charge process, respectively, suggesting that attention to the hydrogen formation at the negative electrode in the early charge process should also be paid to during long-term battery operations. Moreover, the produced hydrogen gas at the negative side prefers to form macroscopically observable bubbles onto the electrode surface, covering the active sites for vanadium redox reactions, while oxygen evolution (including CO_2 production) at the positive side corrodes electrode surface and introduces certain oxygen-containing functional groups.

  2. Efficient Self-Assembly of mPEG End-Capped Porous Silica as a Redox-Sensitive Nanocarrier for Controlled Doxorubicin Delivery

    Directory of Open Access Journals (Sweden)

    Anh Khoa Nguyen

    2018-01-01

    Full Text Available Porous nanosilica (PNS has been regarded as a promising candidate for controlled delivery of anticancer drugs. Unmodified PNS-based nanocarriers, however, showed a burst release of encapsulated drugs, which may limit their clinical uses. In this report, PNS was surface conjugated with adamantylamine (ADA via disulfide bridges (-SS-, PNS-SS-ADA, which was further modified with cyclodextrin-poly(ethylene glycol methyl ether conjugate (CD-mPEG to form a core@shell structure PNS-SS-ADA@CD-mPEG for redox triggered delivery of doxorubicin (DOX, DOX/PNS-SS-ADA@CD-mPEG. The prepared PNS-SS-ADA@CD-mPEG nanoparticles were spherical in shape with an average diameter of 55.5 ± 3.05 nm, a little larger than their parentally PNS nanocarriers, at 49.6 ± 2.56 nm. In addition, these nanoparticles possessed high drug loading capacity, at 79.2 ± 3.2%, for controlled release. The release of DOX from DOX/PNS-SS-ADA@CD-mPEG nanoparticles was controlled and prolonged up to 120 h in PBS medium (pH 7.4, compared to less than 40 h under reducing condition of 5 mM DTT. Notably, the PNS-SS-ADA@CD-mPEG was a biocompatible nanocarrier, and the toxicity of DOX was dramatically reduced after loading drugs into the porous core. This redox-sensitive PNS-SS-ADA@CD-mPEG nanoparticle could be considered a potential candidate with high drug loading capacity and a lower risk of systemic toxicity.

  3. Effects of TiO2 and TiC Nanofillers on the Performance of Dye Sensitized Solar Cells Based on the Polymer Gel Electrolyte of a Cobalt Redox System.

    Science.gov (United States)

    Venkatesan, Shanmuganathan; Liu, I-Ping; Chen, Li-Tung; Hou, Yi-Chen; Li, Chiao-Wei; Lee, Yuh-Lang

    2016-09-21

    Polymer gel electrolytes (PGEs) of cobalt redox system are prepared for dye sensitized solar cell (DSSC) applications. Poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) is used as a gelator of an acetonitrile (ACN) liquid electrolyte containing tris(2,2'-bipyridine)cobalt(II/III) redox couple. Titanium dioxide (TiO2) and titanium carbide (TiC) nanoparticles are utilized as nanofillers (NFs) of this PGE, and the effects of the two NFs on the conductivity of the PGEs, charge-transfer resistances at the electrode/PGE interface, and the performance of the gel-state DSSCs are studied and compared. The results show that the presence of TiC NFs significantly increases the conductivity of the PGE and decreases the charge-transfer resistance at the Pt counter-electrode (CE)/PGE interface. Therefore, the gel-state DSSC utilizing TiC NFs can achieve a conversion efficiency (6.29%) comparable to its liquid counterpart (6.30%), and, furthermore, the cell efficiency can retain 94% of its initial value after a 1000 h stability test at 50 °C. On the contrary, introduction of TiO2 NFs in the PGE causes a decrease of cell performances. It shows that the presence of TiO2 NFs increases the charge-transfer resistance at the Pt CE/PGE interface, induces the charge recombination at the photoanode/PGE interface, and, furthermore, causes a dye desorption in a long-term-stability test. These results are different from those reported for the iodide redox system and are ascribed to a specific attractive interaction between TiO2 and cobalt redox ions.

  4. Conductance through a redox system in the Coulomb blockade regime: Many-particle effects and influence of electronic correlations

    Energy Technology Data Exchange (ETDEWEB)

    Tornow, Sabine; Zwicknagl, Gertrud [Institut fuer Mathematische Physik, TU Braunschweig (Germany)

    2010-02-15

    We investigate the transport characteristics of a redox system weakly coupled to leads in the Coulomb blockade regime. The redox system comprises a donor and acceptor separated by an insulating bridge in a solution. It is modeled by a two-site extended Hubbard model which includes on-site and inter-site Coulomb interactions and the coupling to a bosonic bath. The current-voltage characteristics is calculated at high temperatures using a rate equation approach. For high voltages exceeding the Coulomb repulsion at the donor site the calculated transport characteristics exhibit pronounced deviations from the behavior expected from single-electron transport. Depending on the relative sizes of the effective on-site and inter-site Coulomb interactions on one side and the reorganization energy on the other side we find either negative differential resistance or current enhancement. Schematic view of the redox system with donor (D) and acceptor (A) coupled to the leads L and R. The electronic degrees of freedom of the DA system are coupled to the environment comprising internal vibrations and the solvent dynamics. The current is calculated as a function of the bias voltage V{sub b} and gate voltage V{sub g}. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Highly sensitive and label-free electrochemical detection of microRNAs based on triple signal amplification of multifunctional gold nanoparticles, enzymes and redox-cycling reaction.

    Science.gov (United States)

    Liu, Lin; Xia, Ning; Liu, Huiping; Kang, Xiaojing; Liu, Xiaoshuan; Xue, Chan; He, Xiaoling

    2014-03-15

    MicroRNAs (miRNAs) are believed to be important for cancer diagnosis and prognosis, serving as reliable molecular biomarkers. In this work, we presented a label-free and highly sensitive electrochemical genosensor for miRNAs detection with the triple signal amplification of gold nanoparticles (AuNPs), alkaline phosphatase (ALP) and p-aminophenol (p-AP) redox cycling. The label-free strategy is based on the difference in the structures of RNA and DNA. Specifically, miRNAs were first captured by the pre-immobilized DNA probes on a gold electrode. Next, the cis-diol group of ribose sugar at the end of the miRNAs chain allowed 3-aminophenylboronic acid (APBA)/biotin-modified multifunctional AuNPs (denoted as APBA-biotin-AuNPs) to be attached through the formation of a boronate ester covalent bond, which facilitated the capture of streptavidin-conjugated alkaline phosphatase (SA-ALP) via the biotin-streptavidin interaction. After the addition of the 4-aminophenylphosphate (p-APP) substrate, the enzymatic conversion from p-APP to p-AP occurred. The resulting p-AP could be cycled by a chemical reducing reagent after its electro-oxidization on the electrode (known as p-AP redox cycling), thus enabling an increase in the anodic current. As a result, the current increased linearly with the miRNAs concentration over a range of 10 fM-5 pM, and a detection limit of 3 fM was achieved. We believe that this work will be valuable for the design of new types of label-free and sensitive electrochemical biosensors. © 2013 Published by Elsevier B.V.

  6. FLP recombinase-mediated site-specific recombination in silkworm, Bombyx mori.

    Directory of Open Access Journals (Sweden)

    Ding-Pei Long

    Full Text Available A comprehensive understanding of gene function and the production of site-specific genetically modified mutants are two major goals of genetic engineering in the post-genomic era. Although site-specific recombination systems have been powerful tools for genome manipulation of many organisms, they have not yet been established for use in the manipulation of the silkworm Bombyx mori genome. In this study, we achieved site-specific excision of a target gene at predefined chromosomal sites in the silkworm using a FLP/FRT site-specific recombination system. We first constructed two stable transgenic target silkworm strains that both contain a single copy of the transgene construct comprising a target gene expression cassette flanked by FRT sites. Using pre-blastoderm microinjection of a FLP recombinase helper expression vector, 32 G3 site-specific recombinant transgenic individuals were isolated from five of 143 broods. The average frequency of FLP recombinase-mediated site-specific excision in the two target strains genome was approximately 3.5%. This study shows that it is feasible to achieve site-specific recombination in silkworms using the FLP/FRT system. We conclude that the FLP/FRT system is a useful tool for genome manipulation in the silkworm. Furthermore, this is the first reported use of the FLP/FRT system for the genetic manipulation of a lepidopteran genome and thus provides a useful reference for the establishment of genome manipulation technologies in other lepidopteran species.

  7. Groundwater redox conditions and conductivity in a contaminant plume from geoelectrical investigations

    Directory of Open Access Journals (Sweden)

    V. Naudet

    2004-01-01

    Full Text Available Accurate mapping of the electrical conductivity and of the redox potential of the groundwater is important in delineating the shape of a contaminant plume. A map of redox potential in an aquifer is indicative of biodegradation of organic matter and of concentrations of redox-active components; a map of electrical conductivity provides information on the mineralisation of the groundwater. Both maps can be used to optimise the position of pumping wells for remediation. The self-potential method (SP and electrical resistivity tomography (ERT have been applied to the contaminant plume associated with the Entressen landfill in south-east France. The self-potential depends on groundwater flow (electrokinetic contribution and redox conditions ('electro-redox' contribution. Using the variation of the piezometric head in the aquifer, the electrokinetic contribution is removed from the SP signals. A good linear correlation (R2=0.85 is obtained between the residual SP data and the redox potential values measured in monitoring wells. This relationship is used to draw a redox potential map of the overall contaminated site. The electrical conductivity of the subsoil is obtained from 3D-ERT analysis. A good linear correlation (R2=0.91 is observed between the electrical conductivity of the aquifer determined from the 3D-ERT image and the conductivity of the groundwater measured in boreholes. This indicates that the formation factor is nearly homogeneous in the shallow aquifer at the scale of the ERT. From this correlation, a map of the pore water conductivity of the aquifer is obtained. Keywords: self-potential, redox potential, electrical resistivity tomography, fluid conductivity, contaminant plume

  8. REDOX IMAGING OF THE p53-DEPENDENT MITOCHONDRIAL REDOX STATE IN COLON CANCER EX VIVO

    Science.gov (United States)

    XU, HE N.; FENG, MIN; MOON, LILY; DOLLOFF, NATHAN; EL-DEIRY, WAFIK; LI, LIN Z.

    2015-01-01

    The mitochondrial redox state and its heterogeneity of colon cancer at tissue level have not been previously reported. Nor has how p53 regulates mitochondrial respiration been measured at (deep) tissue level, presumably due to the unavailability of the technology that has sufficient spatial resolution and tissue penetration depth. Our prior work demonstrated that the mitochondrial redox state and its intratumor heterogeneity is associated with cancer aggressiveness in human melanoma and breast cancer in mouse models, with the more metastatic tumors exhibiting localized regions of more oxidized redox state. Using the Chance redox scanner with an in-plane spatial resolution of 200 μm, we imaged the mitochondrial redox state of the wild-type p53 colon tumors (HCT116 p53 wt) and the p53-deleted colon tumors (HCT116 p53−/−) by collecting the fluorescence signals of nicotinamide adenine dinucleotide (NADH) and oxidized flavoproteins [Fp, including flavin adenine dinucleotide (FAD)] from the mouse xenografts snap-frozen at low temperature. Our results show that: (1) both tumor lines have significant degree of intratumor heterogeneity of the redox state, typically exhibiting a distinct bi-modal distribution that either correlates with the spatial core–rim pattern or the “hot/cold” oxidation-reduction patches; (2) the p53−/− group is significantly more heterogeneous in the mitochondrial redox state and has a more oxidized tumor core compared to the p53 wt group when the tumor sizes of the two groups are matched; (3) the tumor size dependence of the redox indices (such as Fp and Fp redox ratio) is significant in the p53−/− group with the larger ones being more oxidized and more heterogeneous in their redox state, particularly more oxidized in the tumor central regions; (4) the H&E staining images of tumor sections grossly correlate with the redox images. The present work is the first to reveal at the submillimeter scale the intratumor heterogeneity pattern

  9. Hemoglobin redox reactions and red blood cell aging.

    Science.gov (United States)

    Rifkind, Joseph M; Nagababu, Enika

    2013-06-10

    The physiological mechanism(s) for recognition and removal of red blood cells (RBCs) from circulation after 120 days of its lifespan is not fully understood. Many of the processes thought to be associated with the removal of RBCs involve oxidative stress. We have focused on hemoglobin (Hb) redox reactions, which is the major source of RBC oxidative stress. The importance of Hb redox reactions have been shown to originate in large parts from the continuous slow autoxidation of Hb producing superoxide and its dramatic increase under hypoxic conditions. In addition, oxidative stress has been shown to be associated with redox reactions that originate from Hb reactions with nitrite and nitric oxide (NO) and the resultant formation of highly toxic peroxynitrite when NO reacts with superoxide released during Hb autoxidation. The interaction of Hb, particularly under hypoxic conditions with band 3 of the RBC membrane is critical for the generating the RBC membrane changes that trigger the removal of cells from circulation. These changes include exposure of antigenic sites, increased calcium leakage into the RBC, and the resultant leakage of potassium out of the RBC causing cell shrinkage and impaired deformability. The need to understand the oxidative damage to specific membrane proteins that result from redox reactions occurring when Hb is bound to the membrane. Proteomic studies that can pinpoint the specific proteins damaged under different conditions will help elucidate the cellular aging processes that result in cells being removed from circulation.

  10. Mouse allergen exposure and immunologic responses: IgE-mediated mouse sensitization and mouse specific IgG and IgG4 levels

    NARCIS (Netherlands)

    Matsui, Elizabeth C.; Krop, Esmeralda J. M.; Diette, Gregory B.; Aalberse, Rob C.; Smith, Abigail L.; Eggleston, Peyton A.

    2004-01-01

    Although there is evidence that contact with mice is associated with IgE-mediated mouse sensitization and mouse specific antibody responses, the exposure-response relationships remain unclear. To determine whether IgE-mediated mouse sensitization and mouse specific IgG (mIgG) and mIgG4 levels

  11. Fe-phyllosilicate redox cycling organisms from a redox transition zone in Hanford 300 Area sediments

    Directory of Open Access Journals (Sweden)

    Jason eBenzine

    2013-12-01

    Full Text Available Microorganisms capable of reducing or oxidizing structural iron (Fe in Fe-bearing phyllosilicate minerals were enriched and isolated from a subsurface redox transition zone at the Hanford 300 Area site in eastern Washington, USA. Both conventional and in situ i-chip enrichment strategies were employed. One Fe(III-reducing Geobacter (G. bremensis strain R1, Deltaproteobacteria and six Fe(II phyllosilicate-oxidizing isolates from the Alphaproteobacteria (Bradyrhizobium japonicum strains 22, is5, and in8p8, Betaproteobacteria (Cupriavidus necator strain A5-1, Dechloromonas agitata strain is5, and Actinobacteria (Nocardioides sp. strain in31 were recovered. The G. bremensis isolate grew by oxidizing acetate with the oxidized form of NAu-2 smectite as the electron acceptor. The Fe(II-oxidizers grew by oxidation of chemically reduced smectite as the energy source with nitrate as the electron acceptor. The Bradyrhizobium isolates could also carry out aerobic oxidation of biotite. This is the first report of the recovery of a Fe(II-oxidizing Nocardioides, and to date only one other Fe(II-oxidizing Bradyrhizobium is known. The 16S rRNA gene sequences of the isolates were similar to ones found in clone libraries from Hanford 300 sediments and groundwater, suggesting that such organisms may be present and active in situ. Whole genome sequencing of the isolates is underway, the results of which will enable comparative genomic analysis of mechanisms of extracellular phyllosilicate Fe redox metabolism, and facilitate development of techniques to detect the presence and expression of genes associated with microbial phyllosilicate Fe redox cycling in sediments.

  12. First-principles study of adsorption-desorption kinetics of aqueous V2+/V3+ redox species on graphite in a vanadium redox flow battery.

    Science.gov (United States)

    Jiang, Zhen; Klyukin, Konstantin; Alexandrov, Vitaly

    2017-06-14

    Vanadium redox flow batteries (VRFBs) represent a promising solution to grid-scale energy storage, and understanding the reactivity of electrode materials is crucial for improving the power density of VRFBs. However, atomistic details about the interactions between vanadium ions and electrode surfaces in aqueous electrolytes are still lacking. Here, we examine the reactivity of the basal (0001) and edge (112[combining macron]0) graphite facets with water and aqueous V 2+ /V 3+ redox species at 300 K employing Car-Parrinello molecular dynamics (CPMD) coupled with metadynamics simulations. The results suggest that the edge surface is characterized by the formation of ketonic C[double bond, length as m-dash]O functional groups due to complete water dissociation into the H/O/H configuration with surface O atoms serving as active sites for adsorption of V 2+ /V 3+ species. The formation of V-O bonds at the surface should significantly improve the kinetics of electron transfer at the edge sites, which is not the case for the basal surface, in agreement with the experimentally hypothesized mechanism.

  13. Novel fiber optic-based needle redox imager for cancer diagnosis

    Science.gov (United States)

    Kanniyappan, Udayakumar; Xu, He N.; Tang, Qinggong; Gaitan, Brandon; Liu, Yi; Li, Lin Z.; Chen, Yu

    2018-02-01

    Despite various technological advancements in cancer diagnosis, the mortality rates were not decreased significantly. We aim to develop a novel optical imaging tool to assist cancer diagnosis effectively. Fluorescence spectroscopy/imaging is a fast, rapid, and minimally invasive technique which has been successfully applied to diagnosing cancerous cells/tissues. Recently, the ratiometric imaging of intrinsic fluorescence of reduced nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD), as pioneered by Britton Chance and the co-workers in 1950-70's, has gained much attention to quantify the physiological parameters of living cells/tissues. The redox ratio, i.e., FAD/(FAD+NADH) or FAD/NADH, has been shown to be sensitive to various metabolic changes in in vivo and in vitro cells/tissues. Optical redox imaging has also been investigated for providing potential imaging biomarkers for cancer transformation, aggressiveness, and treatment response. Towards this goal, we have designed and developed a novel fiberoptic-based needle redox imager (NRI) that can fit into an 11G clinical coaxial biopsy needle for real time imaging during clinical cancer surgery. In the present study, the device is calibrated with tissue mimicking phantoms of FAD and NADH along with various technical parameters such as sensitivity, dynamic range, linearity, and spatial resolution of the system. We also conducted preliminary imaging of tissues ex vivo for validation. We plan to test the NRI on clinical breast cancer patients. Once validated this device may provide an effective tool for clinical cancer diagnosis.

  14. Redox Pioneer: Professor Vadim N. Gladyshev.

    Science.gov (United States)

    Hatfield, Dolph L

    2016-07-01

    Professor Vadim N. Gladyshev is recognized here as a Redox Pioneer, because he has published an article on antioxidant/redox biology that has been cited more than 1000 times and 29 articles that have been cited more than 100 times. Gladyshev is world renowned for his characterization of the human selenoproteome encoded by 25 genes, identification of the majority of known selenoprotein genes in the three domains of life, and discoveries related to thiol oxidoreductases and mechanisms of redox control. Gladyshev's first faculty position was in the Department of Biochemistry, the University of Nebraska. There, he was a Charles Bessey Professor and Director of the Redox Biology Center. He then moved to the Department of Medicine at Brigham and Women's Hospital, Harvard Medical School, where he is Professor of Medicine and Director of the Center for Redox Medicine. His discoveries in redox biology relate to selenoenzymes, such as methionine sulfoxide reductases and thioredoxin reductases, and various thiol oxidoreductases. He is responsible for the genome-wide identification of catalytic redox-active cysteines and for advancing our understanding of the general use of cysteines by proteins. In addition, Gladyshev has characterized hydrogen peroxide metabolism and signaling and regulation of protein function by methionine-R-sulfoxidation. He has also made important contributions in the areas of aging and lifespan control and pioneered applications of comparative genomics in redox biology, selenium biology, and aging. Gladyshev's discoveries have had a profound impact on redox biology and the role of redox control in health and disease. He is a true Redox Pioneer. Antioxid. Redox Signal. 25, 1-9.

  15. Reactive oxygen species via redox signaling to PI3K/AKT pathway contribute to the malignant growth of 4-hydroxy estradiol-transformed mammary epithelial cells.

    Directory of Open Access Journals (Sweden)

    Victor O Okoh

    Full Text Available The purpose of this study was to investigate the effects of 17-β-estradiol (E2-induced reactive oxygen species (ROS on the induction of mammary tumorigenesis. We found that ROS-induced by repeated exposures to 4-hydroxy-estradiol (4-OH-E2, a predominant catechol metabolite of E2, caused transformation of normal human mammary epithelial MCF-10A cells with malignant growth in nude mice. This was evident from inhibition of estrogen-induced breast tumor formation in the xenograft model by both overexpression of catalase as well as by co-treatment with Ebselen. To understand how 4-OH-E2 induces this malignant phenotype through ROS, we investigated the effects of 4-OH-E2 on redox-sensitive signal transduction pathways. During the malignant transformation process we observed that 4-OH-E2 treatment increased AKT phosphorylation through PI3K activation. The PI3K-mediated phosphorylation of AKT in 4-OH-E2-treated cells was inhibited by ROS modifiers as well as by silencing of AKT expression. RNA interference of AKT markedly inhibited 4-OH-E2-induced in vitro tumor formation. The expression of cell cycle genes, cdc2, PRC1 and PCNA and one of transcription factors that control the expression of these genes - nuclear respiratory factor-1 (NRF-1 was significantly up-regulated during the 4-OH-E2-mediated malignant transformation process. The increased expression of these genes was inhibited by ROS modifiers as well as by silencing of AKT expression. These results indicate that 4-OH-E2-induced cell transformation may be mediated, in part, through redox-sensitive AKT signal transduction pathways by up-regulating the expression of cell cycle genes cdc2, PRC1 and PCNA, and the transcription factor - NRF-1. In summary, our study has demonstrated that: (i 4-OH-E2 is one of the main estrogen metabolites that induce mammary tumorigenesis and (ii ROS-mediated signaling leading to the activation of PI3K/AKT pathway plays an important role in the generation of 4-OH-E2

  16. Diffusivities of Redox-Sensitive Elements in Basalt vs. Oxygen Fugacity Determined by LA-ICP-MS

    Science.gov (United States)

    Szumila, Ian; Danielson, Lisa; Trail, Dustin

    2017-01-01

    Several diffusion experiments were conducted in a piston cylinder device across a range of oxygen fugacities (FMQ-3 FMQ-1.2, FMQ+6) at 1 GPa and 1300 C. This was done to explore the effects of oxygen fugacity (fO2) on diffusivity of redox sensitive trace elements. This allows investigation of how these elements diffuse across the fO2 range encountered in different reservoirs on planets and moons in our solar system. The University of Rochester LA-ICP-MS system was used for analysis of samples. Analyses were conducted using an Agilent 7900 quadrupole mass spectrometer connected to a Photon Machines 193 nm G2 laser ablation (LA) system equipped with a HelEx 2-volume sample chamber. Spots used were 35 micrometers circles spaced at 65 micrometers intervals. Laser fluence was 7.81 J/cm^2 with a rep rate of 10 Hz. The iolite software package was used to reduce data collected from laser ablation analysis of experiments with Si-29 used as the internal standard isotope. Iolite's global fit module was used to simultaneously fit elements' diffusivities in each experiment while keeping the Matano interface constant. Elements analysed include V, Nb, W, Mo, La, Ce, Pr, Sm, Eu, Gd, Ta, and W. Figures

  17. Redox-Active Star Molecules Incorporating the 4-Benzoylpyridinium Cation - Implications for the Charge Transfer Along Branches vs. Across the Perimeter in Dendrimer

    Science.gov (United States)

    Leventis, Nicholas; Yang, Jinua; Fabrizio,Even F.; Rawashdeh, Abdel-Monem M.; Oh, Woon Su; Sotiriou-Leventis, Chariklia

    2004-01-01

    Dendrimers are self-repeating globular branched star molecules, whose fractal structure continues to fascinate, challenge, and inspire. Functional dendrimers may incorporate redox centers, and potential applications include antennae molecules for light harvesting, sensors, mediators, and artificial biomolecules. We report the synthesis and redox properties of four star systems incorporating the 4-benzoyl-N-alkylpyridinium cation; the redox potential varies along the branches but remains constant at fixed radii. Bulk electrolysis shows that at a semi-infinite time scale all redox centers are electrochemically accessible. However, voltammetric analysis (cyclic voltammetry and differential pulse voltammetry) shows that on1y two of the three redox-active centers in the perimeter are electrochemically accessible during potential sweeps as slow as 20 mV/s and as fast as 10 V/s. On the contrary, both redox centers along branches are accessible electrochemically within the same time frame. These results are explained in terms of slow through-space charge transfer and the globular 3-D folding of the molecules and are discussed in terms of their implications on the design of efficient redox functional dendrimers.

  18. Platinum decorated carbon nanotubes for highly sensitive amperometric glucose sensing

    International Nuclear Information System (INIS)

    Xie Jining; Wang Shouyan; Aryasomayajula, L; Varadan, V K

    2007-01-01

    Fine platinum nanoparticles (1-5 nm in diameter) were deposited on functionalized multi-walled carbon nanotubes (MWNTs) through a decoration technique. A novel type of enzymatic Pt/MWNTs paste-based mediated glucose sensor was fabricated. Electrochemical measurements revealed a significantly improved sensitivity (around 52.7 μA mM -1 cm -2 ) for glucose sensing without using any picoampere booster or Faraday cage. In addition, the calibration curve exhibited a good linearity in the range of 1-28 mM of glucose concentration. Transmission electron microscopy (TEM) and x-ray photoelectron spectroscopy (XPS) were performed to investigate the nanoscale structure and the chemical bonding information of the Pt/MWNTs paste-based sensing material, respectively. The improved sensitivity of this novel glucose sensor could be ascribed to its higher electroactive surface area, enhanced electron transfer, efficient enzyme immobilization, unique interaction in nanoscale and a synergistic effect on the current signal from possible multi-redox reactions

  19. Development of an investigation method for redox condition of rocks by self potential (SP) method

    International Nuclear Information System (INIS)

    Kubota, Kenji; Inohara, Yoshiki; Oyama, Takahiro

    2012-01-01

    One of the major issues in subsurface disposal of low level radioactive wastes is that long term behaviors of sedimentary rocks can be affected by geochemical factors. Redox conditions can affect to corrosion of metal included in artificial barrier or wastes and adsorption characteristics of a nuclide. Therefore, it is necessary to develop a method for evaluating the redox conditions around natural barrier at waste facilities. In general, geochemical properties are acquired by rock samples or water sampling at a borehole. However, there is a possibility not to acquire data we want to evaluate. If geophysical methods are applied, redox conditions can be evaluated widely and briefly. There is a possibility that self potential (SP) and redox conditions have a correlation. So we have conducted self potential method around test caverns where redox front can be observed at the Rokkasho site. The results demonstrated that self potential decreased around redox front. There was a positive correlation between self potential and pH. One of the factors of self potential change is difference of elevation, however, self potential change around redox front was larger than that expected from elevation difference. Zeta potential is one of the important factors for determination of self potential, and it had a correlation with self potential or pH. Therefore, there is a possibility that self potential change occurs by geochemical condition changes around redox front, and redox condition can be detected by self potential method. (author)

  20. Metabolic impact of redox cofactor perturbations in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Hou, Jin; Lages, Nuno; Oldiges, M.

    2009-01-01

    to induce widespread changes in metabolism. We present a detailed analysis of the impact of perturbations in redox cofactors in the cytosol or mitochondria on glucose and energy metabolism in Saccharomyces cerevisiae to aid metabolic engineering decisions that involve cofactor engineering. We enhanced NADH...... oxidation by introducing NADH oxidase or alternative oxidase, its ATP-mediated conversion to NADPH using NADH kinase as well as the interconversion of NADH and NADPH independent of ATP by the soluble, non-proton-translocating bacterial transhydrogenase. Decreasing cytosolic NADH level lowered glycerol...

  1. Systems and methods for rebalancing redox flow battery electrolytes

    Science.gov (United States)

    Pham, Ai Quoc; Chang, On Kok

    2015-03-17

    Various methods of rebalancing electrolytes in a redox flow battery system include various systems using a catalyzed hydrogen rebalance cell configured to minimize the risk of dissolved catalyst negatively affecting flow battery performance. Some systems described herein reduce the chance of catalyst contamination of RFB electrolytes by employing a mediator solution to eliminate direct contact between the catalyzed membrane and the RFB electrolyte. Other methods use a rebalance cell chemistry that maintains the catalyzed electrode at a potential low enough to prevent the catalyst from dissolving.

  2. Sulphonated metal phthalocyanine complexes as redox indicators in micro titrations with cerium(IV) sulphate

    Energy Technology Data Exchange (ETDEWEB)

    Gowda, H S; Achar, B N [Mysore Univ. (India). Dept. of Chemistry

    1980-01-01

    Tetrasodium salts of copper(II) 4,4', 4'', 4'''-tetrasulphophthalocyanine 2-hydrate, nickel(II) 4,4', 4'', 4'''-tetrasulphophthalocyanine, nickel(II) 3,3', 3'', 3'''-tetrasulphophthalocyanine and cobalt(II) 4,4', 4'', 4'''-tetrasulphophthalocyanine 2-hydrate, and copper phthalocyanine trisulphonic acid are prepared in pure state. The molar absorptivity and formal redox potentials of the complexes are determined. The complexes are proposed as sensitive redox indicators in the micro determination of iron(II), arsenic(III), molybdenum(V), uranium(IV) and hydroquinone with 0.001-0.0005N cerium(IV) sulphate in sulphuric, hydrochloric and acetic acid media. They give sharp colour change from light turquoise blue to pale purple colour at the equivalence point. They have advantages over a few existing redox indicators.

  3. Powering Lithium-Sulfur Battery Performance by Propelling Polysulfide Redox at Sulfiphilic Hosts.

    Science.gov (United States)

    Yuan, Zhe; Peng, Hong-Jie; Hou, Ting-Zheng; Huang, Jia-Qi; Chen, Cheng-Meng; Wang, Dai-Wei; Cheng, Xin-Bing; Wei, Fei; Zhang, Qiang

    2016-01-13

    Lithium-sulfur (Li-S) battery system is endowed with tremendous energy density, resulting from the complex sulfur electrochemistry involving multielectron redox reactions and phase transformations. Originated from the slow redox kinetics of polysulfide intermediates, the flood of polysulfides in the batteries during cycling induced low sulfur utilization, severe polarization, low energy efficiency, deteriorated polysulfide shuttle, and short cycling life. Herein, sulfiphilic cobalt disulfide (CoS2) was incorporated into carbon/sulfur cathodes, introducing strong interaction between lithium polysulfides and CoS2 under working conditions. The interfaces between CoS2 and electrolyte served as strong adsorption and activation sites for polar polysulfides and therefore accelerated redox reactions of polysulfides. The high polysulfide reactivity not only guaranteed effective polarization mitigation and promoted energy efficiency by 10% but also promised high discharge capacity and stable cycling performance during 2000 cycles. A slow capacity decay rate of 0.034%/cycle at 2.0 C and a high initial capacity of 1368 mAh g(-1) at 0.5 C were achieved. Since the propelling redox reaction is not limited to Li-S system, we foresee the reported strategy herein can be applied in other high-power devices through the systems with controllable redox reactions.

  4. The effects of natalizumab on inflammatory mediators in multiple sclerosis: prospects for treatment-sensitive biomarkers

    DEFF Research Database (Denmark)

    Khademi, M.; Bornsen, L.; Rafatnia, F.

    2009-01-01

    BACKGROUND: Natalizumab affects systemic cytokine expressions and clinical course in relapsing-remitting multiple sclerosis (RRMS). We analyzed levels of inflammatory cytokines in cerebrospinal fluid (CSF) cells and peripheral blood mononuclear cells (PBMCs), levels of matrix metalloproteinase (MMP...... showed the same deviations of mediators as those in relapse after natalizumab treatment. The open label clinical outcome measures were either stable or improved during therapy. CONCLUSIONS: Natalizumab attenuates pro-inflammatory mediators intrathecally and the reduced pro-inflammatory milieu may allow...... increased production of the anti-inflammatory mediator IL-10. The increased systemic cytokines may impede the improvement of certain clinical measures like fatigue. The affected mediators seem to be sensitive to an immune-modifying treatment which could be used as biomarkers for this therapy Udgivelsesdato...

  5. Improving the electrocatalytic performance of carbon nanotubes for VO"2"+/VO_2"+ redox reaction by KOH activation

    International Nuclear Information System (INIS)

    Dai, Lei; Jiang, Yingqiao; Meng, Wei; Zhou, Huizhu; Wang, Ling; He, Zhangxing

    2017-01-01

    Highlights: • KOH-activated carbon nanotubes (CNTs) was investigated as superior catalyst for VO"2"+/VO_2"+ redox reaction for vanadium redox flow battery (VRFB) for the first time. • KOH activation for CNTs can result in the chemical etching of surface and improved wettability, accelerating the mass transfer of vanadium ions. • KOH activation can introduce many oxygen-containing groups as active sites on the surface of CNTs. • KOH-activated CNTs as positive catalyst could increase the comprehensive energy storage performance of VRFB. - Abstract: In this paper, carbon nanotubes (CNTs) was activated by KOH treatment at high temperature and investigated as catalyst for VO"2"+/VO_2"+ redox reaction for vanadium redox flow battery (VRFB). X-ray photoelectron spectroscopy results suggest that the oxygen-containing groups can be introduced on CNTs by KOH activation. The mass transfer of vanadium ions can be accelerated by chemical etching by KOH activation and improved wettability due to the introduction of hydrophilic groups. The electrochemical properties of VO"2"+/VO_2"+ redox reaction can be enhanced by introduced oxygen-containing groups as active sites. The sample treated at 900 °C with KOH/CNTs mass ratio of 3:1 (CNTs-3) exhibits the highest electrocatalytic activity for VO"2"+/VO_2"+ redox reaction. The cell using CNTs-3 as positive catalyst demonstrates the smallest electrochemical polarization, the highest capacity and efficiency among the samples. Using KOH-activated CNTs-3 can increase the average energy efficiency of the cell by 4.4%. This work suggests that KOH-activated CNTs is a low-cost, efficient and promising catalyst for VO"2"+/VO_2"+ redox reaction for VRFB system.

  6. Identification and Sensitivity Analysis for Average Causal Mediation Effects with Time-Varying Treatments and Mediators: Investigating the Underlying Mechanisms of Kindergarten Retention Policy.

    Science.gov (United States)

    Park, Soojin; Steiner, Peter M; Kaplan, David

    2018-06-01

    Considering that causal mechanisms unfold over time, it is important to investigate the mechanisms over time, taking into account the time-varying features of treatments and mediators. However, identification of the average causal mediation effect in the presence of time-varying treatments and mediators is often complicated by time-varying confounding. This article aims to provide a novel approach to uncovering causal mechanisms in time-varying treatments and mediators in the presence of time-varying confounding. We provide different strategies for identification and sensitivity analysis under homogeneous and heterogeneous effects. Homogeneous effects are those in which each individual experiences the same effect, and heterogeneous effects are those in which the effects vary over individuals. Most importantly, we provide an alternative definition of average causal mediation effects that evaluates a partial mediation effect; the effect that is mediated by paths other than through an intermediate confounding variable. We argue that this alternative definition allows us to better assess at least a part of the mediated effect and provides meaningful and unique interpretations. A case study using ECLS-K data that evaluates kindergarten retention policy is offered to illustrate our proposed approach.

  7. Computational design of molecules for dye sensitized solar cells and nano electronics

    DEFF Research Database (Denmark)

    Ørnsø, Kristian Baruël

    sensitized solar cell (DSSC) in terms of a loss-less level alignment quality. This scoring only takes into account a simplified absorption spectrum of the dye in combination with the alignment between the molecular levels, the semi-conductor conduction band edge and the redox mediator. To improve on this...... a molecular junction, is by controlling the junction geometry. This is achieved by designing a molecule with two sets of anchor groups, which bind to gold with significantly different strengths. Hence, it is proposed that the geometry can be controlled by chemical passivisation of one type of anchor group....... Using a simple computational model, this experimental hypothesis is verified and the change in conductance upon changing junction geometry is reproduced....

  8. The level of menadione redox-cycling in pancreatic β-cells is proportional to the glucose concentration: Role of NADH and consequences for insulin secretion

    Energy Technology Data Exchange (ETDEWEB)

    Heart, Emma [Cellular Dynamics Program, Marine Biological Laboratory, Woods Hole, MA, 02543 (United States); Palo, Meridith; Womack, Trayce [Department of Science, United States Coast Guard Academy, New London, CT, 06320 (United States); Smith, Peter J.S. [Cellular Dynamics Program, Marine Biological Laboratory, Woods Hole, MA, 02543 (United States); Institute for Life Sciences, University of Southampton (United Kingdom); Gray, Joshua P., E-mail: Joshua.p.gray@uscga.edu [Cellular Dynamics Program, Marine Biological Laboratory, Woods Hole, MA, 02543 (United States); Department of Science, United States Coast Guard Academy, New London, CT, 06320 (United States)

    2012-01-15

    Pancreatic β-cells release insulin in response to elevation of glucose from basal (4–7 mM) to stimulatory (8–16 mM) levels. Metabolism of glucose by the β-cell results in the production of low levels of reactive oxygen intermediates (ROI), such as hydrogen peroxide (H{sub 2}O{sub 2}), a newly recognized coupling factor linking glucose metabolism to insulin secretion. However, high and toxic levels of H{sub 2}O{sub 2} inhibit insulin secretion. Menadione, which produces H{sub 2}O{sub 2} via redox cycling mechanism in a dose-dependent manner, was investigated for its effect on β-cell metabolism and insulin secretion in INS-1 832/13, a rat β-cell insulinoma cell line, and primary rodent islets. Menadione-dependent redox cycling and resulting H{sub 2}O{sub 2} production under stimulatory glucose exceeded several-fold those reached at basal glucose. This was paralleled by a differential effect of menadione (0.1–10 μM) on insulin secretion, which was enhanced at basal, but inhibited at stimulatory glucose. Redox cycling of menadione and H{sub 2}O{sub 2} formation was dependent on glycolytically-derived NADH, as inhibition of glycolysis and application of non-glycogenic insulin secretagogues did not support redox cycling. In addition, activity of plasma membrane electron transport, a system dependent in part on glycolytically-derived NADH, was also inhibited by menadione. Menadione-dependent redox cycling was sensitive to the NQO1 inhibitor dicoumarol and the flavoprotein inhibitor diphenylene iodonium, suggesting a role for NQO1 and other oxidoreductases in this process. These data may explain the apparent dichotomy between the stimulatory and inhibitory effects of H{sub 2}O{sub 2} and menadione on insulin secretion. -- Highlights: ► Menadione stimulation or inhibition of insulin secretion is dependent upon applied glucose levels. ► Menadione-dependent H{sub 2}O{sub 2} production is proportional to applied glucose levels. ► Quinone-mediated redox cycling

  9. The level of menadione redox-cycling in pancreatic β-cells is proportional to the glucose concentration: Role of NADH and consequences for insulin secretion

    International Nuclear Information System (INIS)

    Heart, Emma; Palo, Meridith; Womack, Trayce; Smith, Peter J.S.; Gray, Joshua P.

    2012-01-01

    Pancreatic β-cells release insulin in response to elevation of glucose from basal (4–7 mM) to stimulatory (8–16 mM) levels. Metabolism of glucose by the β-cell results in the production of low levels of reactive oxygen intermediates (ROI), such as hydrogen peroxide (H 2 O 2 ), a newly recognized coupling factor linking glucose metabolism to insulin secretion. However, high and toxic levels of H 2 O 2 inhibit insulin secretion. Menadione, which produces H 2 O 2 via redox cycling mechanism in a dose-dependent manner, was investigated for its effect on β-cell metabolism and insulin secretion in INS-1 832/13, a rat β-cell insulinoma cell line, and primary rodent islets. Menadione-dependent redox cycling and resulting H 2 O 2 production under stimulatory glucose exceeded several-fold those reached at basal glucose. This was paralleled by a differential effect of menadione (0.1–10 μM) on insulin secretion, which was enhanced at basal, but inhibited at stimulatory glucose. Redox cycling of menadione and H 2 O 2 formation was dependent on glycolytically-derived NADH, as inhibition of glycolysis and application of non-glycogenic insulin secretagogues did not support redox cycling. In addition, activity of plasma membrane electron transport, a system dependent in part on glycolytically-derived NADH, was also inhibited by menadione. Menadione-dependent redox cycling was sensitive to the NQO1 inhibitor dicoumarol and the flavoprotein inhibitor diphenylene iodonium, suggesting a role for NQO1 and other oxidoreductases in this process. These data may explain the apparent dichotomy between the stimulatory and inhibitory effects of H 2 O 2 and menadione on insulin secretion. -- Highlights: ► Menadione stimulation or inhibition of insulin secretion is dependent upon applied glucose levels. ► Menadione-dependent H 2 O 2 production is proportional to applied glucose levels. ► Quinone-mediated redox cycling is dependent on glycolysis

  10. Compromised redox homeostasis, altered nitroso-redox balance, and therapeutic possibilities in atrial fibrillation.

    Science.gov (United States)

    Simon, Jillian N; Ziberna, Klemen; Casadei, Barbara

    2016-04-01

    Although the initiation, development, and maintenance of atrial fibrillation (AF) have been linked to alterations in myocyte redox state, the field lacks a complete understanding of the impact these changes may have on cellular signalling, atrial electrophysiology, and disease progression. Recent studies demonstrate spatiotemporal changes in reactive oxygen species production shortly after the induction of AF in animal models with an uncoupling of nitric oxide synthase activity ensuing in the presence of long-standing persistent AF, ultimately leading to a major shift in nitroso-redox balance. However, it remains unclear which radical or non-radical species are primarily involved in the underlying mechanisms of AF or which proteins are targeted for redox modification. In most instances, only free radical oxygen species have been assessed; yet evidence from the redox signalling field suggests that non-radical species are more likely to regulate cellular processes. A wider appreciation for the distinction of these species and how both species may be involved in the development and maintenance of AF could impact treatment strategies. In this review, we summarize how redox second-messenger systems are regulated and discuss the recent evidence for alterations in redox regulation in the atrial myocardium in the presence of AF, while identifying some critical missing links. We also examine studies looking at antioxidants for the prevention and treatment of AF and propose alternative redox targets that may serve as superior therapeutic options for the treatment of AF. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Cardiology.

  11. Engineering redox balance through cofactor systems.

    Science.gov (United States)

    Chen, Xiulai; Li, Shubo; Liu, Liming

    2014-06-01

    Redox balance plays an important role in the production of enzymes, pharmaceuticals, and chemicals. To meet the demands of industrial production, it is desirable that microbes maintain a maximal carbon flux towards target metabolites with no fluctuations in redox. This requires functional cofactor systems that support dynamic homeostasis between different redox states or functional stability in a given redox state. Redox balance can be achieved by improving the self-balance of a cofactor system, regulating the substrate balance of a cofactor system, and engineering the synthetic balance of a cofactor system. This review summarizes how cofactor systems can be manipulated to improve redox balance in microbes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Touch perceptions across skin sites: differences between sensitivity, direction discrimination and pleasantness

    Directory of Open Access Journals (Sweden)

    Rochelle eAckerley

    2014-02-01

    Full Text Available Human skin is innervated with different tactile afferents over the body, which are found at varying densities. We investigate how the relationships between tactile pleasantness, sensitivity and discrimination differ across the skin. Tactile pleasantness was assessed by stroking a soft brush over the skin, using five velocities (0.3, 1, 3, 10, 30 cm s-1, known to differentiate hedonic touch, and pleasantness ratings were gained. The ratings velocity-profile is known to correlate with firing in unmyelinated C-tactile afferents. Tactile sensitivity thresholds were determined using monofilament force detection and the tactile discrimination level was obtained in the direction discrimination of a moving probe; both tasks readily activate myelinated touch receptors. Perceptions were measured over five skin sites: forehead, arm, palm, thigh and shin. The assessment of tactile pleasantness over the skin resulted in a preference for the middle velocities (1-10 cm s-1, where higher ratings were gained compared to the slowest and fastest velocities. This preference in tactile pleasantness was found across all the skin sites, apart from at the palm, where no decrease in pleasantness for the faster stroking velocities was seen. We find that tactile sensitivity and discrimination vary across the skin, where the forehead and palm show increased acuity. Tactile sensitivity and discrimination levels also correlated significantly, although the tactile acuity did not relate to the perceived pleasantness of touch. Tactile pleasantness varied in a subtle way across skin sites, where the middle velocities were always rated as the most pleasant, but the ratings at hairy skin sites were more receptive to changes in stroking velocity. We postulate that although the mechanoreceptive afferent physiology may be different over the skin, the perception of pleasant touch can be interpreted using all of the available incoming somatosensory information in combination with

  13. Descoloração redutiva de corantes azo e o efeito de mediadores redox na presença do aceptor de elétrons sulfato Reductive decolourisation of azo dyes and the effect of redox mediators in the presence of the electron acceptor sulfate

    Directory of Open Access Journals (Sweden)

    Mayara Carantino Costa

    2010-01-01

    Full Text Available We investigated the impact of sulphate and the redox mediator Anthraquinone-2,6-disulfonate (AQDS on the decolorization of the azo dyes Congo Red (CR and Reactive Black 5 (RB5. In anaerobic reactors free of extra sulphate dosage, the color removal efficiency decreased drastically when the external electron donor ethanol was removed. In presence of an extra dosage of sulphate, CR decolourisations were 47.8% (free of AQDS and 96.5% (supplemented with AQDS. The decolourisations achieved in both reactors with RB5 were lower than the ones found with CR. Finally, the biogenic sulphide contribution on azo dye reduction was negligiable.

  14. Investigations involving oxidation-reduction (REDOX) pretreatment in conjunction with biological remediation of contaminated soils

    International Nuclear Information System (INIS)

    Montemagno, C.D.; Peters, R.W.; Tyree, A.

    1991-01-01

    Oxidation-reduction (REDOX) reactions are among the most important reactions involved in the environmental engineering field. Oxidation is a reaction in which the oxidation state of the treated compound is increased, i.e., the material loses electrons. Reduction involves the addition of a chemical (reducing) agent which lowers the oxidation state of a substance, i.e., the material gains electrons. Both processes of oxidation and reduction occur together. All REDOX reactions are thermodynamically based. There are a number of oxidizing agents which have been reported in the technical literature for treatment of refractory organic compounds. Common oxidizing agents include: hydrogen peroxide, ozone, ultraviolet (UV) irradiation, and combinations thereof, such as UV/ozone and UV/peroxide. A gradient of REDOX reactions is possible, depending on such factors as the oxidation-reduction reaction conditions, the availability of electron donors and acceptors, and the nature of the organic compounds involved. A review of the technical literature revealed that the majority of the oxidation-reduction applications have been in the areas of wastewater treatment and groundwater remediation, with very little attention devoted to the potential of using REDOX technologies for remediation of hydrocarbon contaminated soils. In this particular study, feasibility studies were performed on gasoline- contaminated soil. These studies focused on three major phases: 1) containment of the contamination by addition of tailoring agents to the soil, 2) biological remediation either performed in situ or on-site (using a slurry reactor system), and 3) pretreatment of the contaminated soils using REDOX systems, prior to biological remediation. This particular paper focuses on the third phase of the project, aimed at ''softening'' the refractory organics resulting in the formation of organic compounds which are more amenable to biological degradation. This paper focuses its attention on the use of

  15. Investigations involving oxidation-reduction (REDOX) pretreatment in conjunction with biological remediation of contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Montemagno, C. D. [Argonne National Laboratory, Argonne, IL (United States); Peters, R. W.; Tyree, A.

    1991-07-01

    Oxidation-reduction (REDOX) reactions are among the most important reactions involved in the environmental engineering field. Oxidation is a reaction in which the oxidation state of the treated compound is increased, i.e., the material loses electrons. Reduction involves the addition of a chemical (reducing) agent which lowers the oxidation state of a substance, i.e., the material gains electrons. Both processes of oxidation and reduction occur together. All REDOX reactions are thermodynamically based. There are a number of oxidizing agents which have been reported in the technical literature for treatment of refractory organic compounds. Common oxidizing agents include: hydrogen peroxide, ozone, ultraviolet (UV) irradiation, and combinations thereof, such as UV/ozone and UV/peroxide. A gradient of REDOX reactions is possible, depending on such factors as the oxidation-reduction reaction conditions, the availability of electron donors and acceptors, and the nature of the organic compounds involved. A review of the technical literature revealed that the majority of the oxidation-reduction applications have been in the areas of wastewater treatment and groundwater remediation, with very little attention devoted to the potential of using REDOX technologies for remediation of hydrocarbon contaminated soils. In this particular study, feasibility studies were performed on gasoline- contaminated soil. These studies focused on three major phases: 1) containment of the contamination by addition of tailoring agents to the soil, 2) biological remediation either performed in situ or on-site (using a slurry reactor system), and 3) pretreatment of the contaminated soils using REDOX systems, prior to biological remediation. This particular paper focuses on the third phase of the project, aimed at ''softening'' the refractory organics resulting in the formation of organic compounds which are more amenable to biological degradation. This paper focuses its attention on the use of

  16. DNA repair enzyme APE1 from evolutionarily ancient Hydra reveals redox activity exclusively found in mammalian APE1.

    Science.gov (United States)

    Pekhale, Komal; Haval, Gauri; Perween, Nusrat; Antoniali, Giulia; Tell, Gianluca; Ghaskadbi, Surendra; Ghaskadbi, Saroj

    2017-11-01

    Only mammalian apurinic/apyrimidinic endonuclease1 (APE1) has been reported to possess both DNA repair and redox activities. C terminal of the protein is required for base excision repair, while the redox activity resides in the N terminal due to cysteine residues at specific positions. APE1s from other organisms studied so far lack the redox activity in spite of having the N terminal domain. We find that APE1 from the Cnidarian Hydra exhibits both endonuclease and redox activities similar to mammalian APE1. We further show the presence of the three indispensable cysteines in Hydra APE1 for redox activity by site directed mutagenesis. Importance of redox domain but not the repair domain of APE1 in regeneration has been demonstrated by using domain-specific inhibitors. Our findings clearly demonstrate that the redox function of APE1 evolved very early in metazoan evolution and is not a recent acquisition in mammalian APE1 as believed so far. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Redox Buffer Strength

    Science.gov (United States)

    de Levie, Robert

    1999-04-01

    The proper functioning of enzymes in bodily fluids requires that the pH be maintained within rather narrow limits. The first line of defense against large pH fluctuations in such fluids is the passive control provided by the presence of pH buffers. The ability of pH buffers to stabilize the pH is indicated by the buffer value b introduced in 1922 by van Slyke. It is equally important for many enzymes that the redox potential is kept within a narrow range. In that case, stability of the potential is most readily achieved with a redox buffer. In this communication we define the redox buffer strength by analogy with acid-base buffer strength.

  18. Micromolar-Affinity Benzodiazepine Receptors Regulate Voltage-Sensitive Calcium Channels in Nerve Terminal Preparations

    Science.gov (United States)

    Taft, William C.; Delorenzo, Robert J.

    1984-05-01

    Benzodiazepines in micromolar concentrations significantly inhibit depolarization-sensitive Ca2+ uptake in intact nerve-terminal preparations. Benzodiazepine inhibition of Ca2+ uptake is concentration dependent and stereospecific. Micromolar-affinity benzodiazepine receptors have been identified and characterized in brain membrane and shown to be distinct from nanomolar-affinity benzodiazepine receptors. Evidence is presented that micromolar, and not nanomolar, benzodiazepine binding sites mediate benzodiazepine inhibition of Ca2+ uptake. Irreversible binding to micromolar benzodiazepine binding sites also irreversibly blocked depolarization-dependent Ca2+ uptake in synaptosomes, indicating that these compounds may represent a useful marker for identifying the molecular components of Ca2+ channels in brain. Characterization of benzodiazepine inhibition of Ca2+ uptake demonstrates that these drugs function as Ca2+ channel antagonists, because benzodiazepines effectively blocked voltage-sensitive Ca2+ uptake inhibited by Mn2+, Co2+, verapamil, nitrendipine, and nimodipine. These results indicate that micromolar benzodiazepine binding sites regulate voltage-sensitive Ca2+ channels in brain membrane and suggest that some of the neuronal stabilizing effects of micromolar benzodiazepine receptors may be mediated by the regulation of Ca2+ conductance.

  19. Inhibitors of nuclease and redox activity of apurinic/apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref-1).

    Science.gov (United States)

    Laev, Sergey S; Salakhutdinov, Nariman F; Lavrik, Olga I

    2017-05-01

    Human apurinic/apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref-1) is a multifunctional protein which is essential in the base excision repair (BER) pathway of DNA lesions caused by oxidation and alkylation. This protein hydrolyzes DNA adjacent to the 5'-end of an apurinic/apyrimidinic (AP) site to produce a nick with a 3'-hydroxyl group and a 5'-deoxyribose phosphate moiety or activates the DNA-binding activity of certain transcription factors through its redox function. Studies have indicated a role for APE1/Ref-1 in the pathogenesis of cancer and in resistance to DNA-interactive drugs. Thus, this protein has potential as a target in cancer treatment. As a result, major efforts have been directed to identify small molecule inhibitors against APE1/Ref-1 activities. These agents have the potential to become anticancer drugs. The aim of this review is to present recent progress in studies of all published small molecule APE1/Ref-1 inhibitors. The structures and activities of APE1/Ref-1 inhibitors, that target both DNA repair and redox activities, are presented and discussed. To date, there is an urgent need for further development of the design and synthesis of APE1/Ref-1 inhibitors due to high importance of this protein target. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Highly sensitive electrochemical immunoassay for human IgG using double-encoded magnetic redox-active nanoparticles

    International Nuclear Information System (INIS)

    Tang, D.; Tang, J.; Su, B.; Chen, H.; Chen, G.; Huang, J.

    2010-01-01

    A new sandwich-type electrochemical immunoassay was developed for the detection of human IgG using doubly-encoded and magnetic redox-active nanoparticles as recognition elements on the surface of a glassy carbon electrode modified with anti-IgG on nanogold particles. The recognition elements were synthesized by coating magnetic Fe3O4 nanoparticles with Prussian blue nanoparticles and then covered with peroxidase-labeled anti-IgG antibodies (POx-anti-IgG) on Prussian blue nanoparticles. The immunoelectrode displays very good electrochemical properties towards detection of IgG via using double-encoded magnetic redox-active nanoparticles as trace and hydrogen peroxide as enzyme substrate. Its limit of detection (10 pmol.L -1 ) is 10-fold better than that of using plain POx-anti-IgG secondary antibodies. The method was applied to the detection of IgG in serum samples, and an excellent correspondence with the reference values was found. (author)

  1. Sensitivity analysis for direct and indirect effects in the presence of exposure-induced mediator-outcome confounders

    Science.gov (United States)

    Chiba, Yasutaka

    2014-01-01

    Questions of mediation are often of interest in reasoning about mechanisms, and methods have been developed to address these questions. However, these methods make strong assumptions about the absence of confounding. Even if exposure is randomized, there may be mediator-outcome confounding variables. Inference about direct and indirect effects is particularly challenging if these mediator-outcome confounders are affected by the exposure because in this case these effects are not identified irrespective of whether data is available on these exposure-induced mediator-outcome confounders. In this paper, we provide a sensitivity analysis technique for natural direct and indirect effects that is applicable even if there are mediator-outcome confounders affected by the exposure. We give techniques for both the difference and risk ratio scales and compare the technique to other possible approaches. PMID:25580387

  2. Defining a conformational consensus motif in cotransin-sensitive signal sequences: a proteomic and site-directed mutagenesis study.

    Directory of Open Access Journals (Sweden)

    Wolfgang Klein

    Full Text Available The cyclodepsipeptide cotransin was described to inhibit the biosynthesis of a small subset of proteins by a signal sequence-discriminatory mechanism at the Sec61 protein-conducting channel. However, it was not clear how selective cotransin is, i.e. how many proteins are sensitive. Moreover, a consensus motif in signal sequences mediating cotransin sensitivity has yet not been described. To address these questions, we performed a proteomic study using cotransin-treated human hepatocellular carcinoma cells and the stable isotope labelling by amino acids in cell culture technique in combination with quantitative mass spectrometry. We used a saturating concentration of cotransin (30 micromolar to identify also less-sensitive proteins and to discriminate the latter from completely resistant proteins. We found that the biosynthesis of almost all secreted proteins was cotransin-sensitive under these conditions. In contrast, biosynthesis of the majority of the integral membrane proteins was cotransin-resistant. Cotransin sensitivity of signal sequences was neither related to their length nor to their hydrophobicity. Instead, in the case of signal anchor sequences, we identified for the first time a conformational consensus motif mediating cotransin sensitivity.

  3. Defining a Conformational Consensus Motif in Cotransin-Sensitive Signal Sequences: A Proteomic and Site-Directed Mutagenesis Study

    Science.gov (United States)

    Klein, Wolfgang; Westendorf, Carolin; Schmidt, Antje; Conill-Cortés, Mercè; Rutz, Claudia; Blohs, Marcus; Beyermann, Michael; Protze, Jonas; Krause, Gerd; Krause, Eberhard; Schülein, Ralf

    2015-01-01

    The cyclodepsipeptide cotransin was described to inhibit the biosynthesis of a small subset of proteins by a signal sequence-discriminatory mechanism at the Sec61 protein-conducting channel. However, it was not clear how selective cotransin is, i.e. how many proteins are sensitive. Moreover, a consensus motif in signal sequences mediating cotransin sensitivity has yet not been described. To address these questions, we performed a proteomic study using cotransin-treated human hepatocellular carcinoma cells and the stable isotope labelling by amino acids in cell culture technique in combination with quantitative mass spectrometry. We used a saturating concentration of cotransin (30 micromolar) to identify also less-sensitive proteins and to discriminate the latter from completely resistant proteins. We found that the biosynthesis of almost all secreted proteins was cotransin-sensitive under these conditions. In contrast, biosynthesis of the majority of the integral membrane proteins was cotransin-resistant. Cotransin sensitivity of signal sequences was neither related to their length nor to their hydrophobicity. Instead, in the case of signal anchor sequences, we identified for the first time a conformational consensus motif mediating cotransin sensitivity. PMID:25806945

  4. Redox Flow Batteries, a Review

    Energy Technology Data Exchange (ETDEWEB)

    Knoxville, U. Tennessee; U. Texas Austin; U, McGill; Weber, Adam Z.; Mench, Matthew M.; Meyers, Jeremy P.; Ross, Philip N.; Gostick, Jeffrey T.; Liu, Qinghua

    2011-07-15

    Redox flow batteries are enjoying a renaissance due to their ability to store large amounts of electrical energy relatively cheaply and efficiently. In this review, we examine the components of redox flow batteries with a focus on understanding the underlying physical processes. The various transport and kinetic phenomena are discussed along with the most common redox couples.

  5. Unravelling ``off-target'' effects of redox-active polymers and polymer multilayered capsules in prostate cancer cells

    Science.gov (United States)

    Beretta, Giovanni L.; Folini, Marco; Cavalieri, Francesca; Yan, Yan; Fresch, Enrico; Kaliappan, Subramanian; Hasenöhrl, Christoph; Richardson, Joseph J.; Tinelli, Stella; Fery, Andreas; Caruso, Frank; Zaffaroni, Nadia

    2015-03-01

    Redox-active polymers and carriers are oxidizing nanoagents that can potentially trigger intracellular off-target effects. In the present study, we investigated the occurrence of off-target effects in prostate cancer cells following exposure to redox-active polymer and thin multilayer capsules with different chemical properties. We show that, depending on the intracellular antioxidant capacity, thiol-functionalized poly(methacrylic acid), PMASH triggers cell defense responses/perturbations that result in off-target effects (i.e., induction of autophagy and down-regulation of survivin). Importantly, the conversion of the carboxyl groups of PMASH into the neutral amides of poly(hydroxypropylmetacrylamide) (pHPMASH) nullified the off-target effects and cytotoxicity in tested cell lines. This suggests that the simultaneous action of carboxyl and disulfide groups in PMASH polymer or capsules may play a role in mediating the intracellular off-target effects. Our work provides evidence that the rational design of redox-active carriers for therapeutic-related application should be guided by a careful investigation on potential disturbance of the cellular machineries related to the carrier association.Redox-active polymers and carriers are oxidizing nanoagents that can potentially trigger intracellular off-target effects. In the present study, we investigated the occurrence of off-target effects in prostate cancer cells following exposure to redox-active polymer and thin multilayer capsules with different chemical properties. We show that, depending on the intracellular antioxidant capacity, thiol-functionalized poly(methacrylic acid), PMASH triggers cell defense responses/perturbations that result in off-target effects (i.e., induction of autophagy and down-regulation of survivin). Importantly, the conversion of the carboxyl groups of PMASH into the neutral amides of poly(hydroxypropylmetacrylamide) (pHPMASH) nullified the off-target effects and cytotoxicity in tested cell

  6. Heme biomolecule as redox mediator and oxygen shuttle for efficient charging of lithium-oxygen batteries

    Science.gov (United States)

    Ryu, Won-Hee; Gittleson, Forrest S.; Thomsen, Julianne M.; Li, Jinyang; Schwab, Mark J.; Brudvig, Gary W.; Taylor, André D.

    2016-01-01

    One of the greatest challenges with lithium-oxygen batteries involves identifying catalysts that facilitate the growth and evolution of cathode species on an oxygen electrode. Heterogeneous solid catalysts cannot adequately address the problematic overpotentials when the surfaces become passivated. However, there exists a class of biomolecules which have been designed by nature to guide complex solution-based oxygen chemistries. Here, we show that the heme molecule, a common porphyrin cofactor in blood, can function as a soluble redox catalyst and oxygen shuttle for efficient oxygen evolution in non-aqueous Li-O2 batteries. The heme's oxygen binding capability facilitates battery recharge by accepting and releasing dissociated oxygen species while benefiting charge transfer with the cathode. We reveal the chemical change of heme redox molecules where synergy exists with the electrolyte species. This study brings focus to the rational design of solution-based catalysts and suggests a sustainable cross-link between biomolecules and advanced energy storage. PMID:27759005

  7. Placebo-mediated, Naloxone-sensitive suggestibility of short-term memory performance.

    Science.gov (United States)

    Stern, Jair; Candia, Victor; Porchet, Roseline I; Krummenacher, Peter; Folkers, Gerd; Schedlowski, Manfred; Ettlin, Dominik A; Schönbächler, Georg

    2011-03-01

    Physiological studies of placebo-mediated suggestion have been recently performed beyond their traditional clinical context of pain and analgesia. Various neurotransmitter systems and immunological modulators have been used in successful placebo suggestions, including Dopamine, Cholecystokinin and, most extensively, opioids. We adhered to an established conceptual framework of placebo research and used the μ-opioid-antagonist Naloxone to test the applicability of this framework within a cognitive domain (e.g. memory) in healthy volunteers. Healthy men (n=62, age 29, SD=9) were required to perform a task-battery, including standardized and custom-designed memory tasks, to test short-term recall and delayed recognition. Tasks were performed twice, before and after intravenous injection of either NaCl (0.9%) or Naloxone (both 0.15 mg/kg), in a double-blind setting. While one group was given neutral information (S-), the other was told that it might receive a drug with suspected memory-boosting properties (S+). Objective and subjective indexes of memory performance and salivary cortisol (as a stress marker) were recorded during both runs and differences between groups were assessed. Short-term memory recall, but not delayed recognition, was objectively increased after placebo-mediated suggestion in the NaCl-group. Naloxone specifically blocked the suggestion effect without interfering with memory performance. These results were not affected when changes in salivary cortisol levels were considered. No reaction time changes, recorded to uncover unspecific attentional impairment, were seen. Placebo-mediated suggestion produced a training-independent, objective and Naloxone-sensitive increase in memory performance. These results indicate an opioid-mediated placebo effect within a circumscribed cognitive domain in healthy volunteers. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Redox reaction characteristics of riboflavin: a fluorescence spectroelectrochemical analysis and density functional theory calculation.

    Science.gov (United States)

    Chen, Wei; Chen, Jie-Jie; Lu, Rui; Qian, Chen; Li, Wen-Wei; Yu, Han-Qing

    2014-08-01

    Riboflavin (RF), the primary redox active component of flavin, is involved in many redox processes in biogeochemical systems. Despite of its wide distribution and important roles in environmental remediation, its redox behaviors and reaction mechanisms in hydrophobic sites remain unclear yet. In this study, spectroelectrochemical analysis and density functional theory (DFT) calculation were integrated to explore the redox behaviors of RF in dimethyl sulfoxide (DMSO), which was used to create a hydrophobic environment. Specifically, cyclic voltafluorometry (CVF) and derivative cyclic voltafluorometry (DCVF) were employed to track the RF concentration changing profiles. It was found that the reduction contained a series of proton-coupled electron transfers dependent of potential driving force. In addition to the electron transfer-chemical reaction-electron transfer process, a disproportionation (DISP1) process was also identified to be involved in the reduction. The redox potential and free energy of each step obtained from the DFT calculations further confirmed the mechanisms proposed based on the experimental results. The combination of experimental and theoretical approaches yields a deep insight into the characteristics of RF in environmental remediation and better understanding about the proton-coupled electron transfer mechanisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Redox Pioneer: Professor Stuart A. Lipton

    Science.gov (United States)

    2013-01-01

    Abstract Professor Stuart A. Lipton Stuart A. Lipton, M.D., Ph.D. is recognized here as a Redox Pioneer because of his publication of four articles that have been cited more than 1000 times, and 96 reports which have been cited more than 100 times. In the redox field, Dr. Lipton is best known for his work on the regulation by S-nitrosylation of the NMDA-subtype of neuronal glutamate receptor, which provided early evidence for in situ regulation of protein activity by S-nitrosylation and a prototypic model of allosteric control by this post-translational modification. Over the past several years, Lipton's group has pioneered the discovery of aberrant protein nitrosylation that may contribute to a number of neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis (Lou Gehrig's disease). In particular, the phenotypic effects of rare genetic mutations may be understood to be enhanced or mimicked by nitrosative (and oxidative) modifications of cysteines and thereby help explain common sporadic forms of disease. Thus, Lipton has contributed in a major way to the understanding that nitrosative stress may result from modifications of specific proteins and may operate in conjunction with genetic mutation to create disease phenotype. Lipton (collaborating with Jonathan S. Stamler) has also employed the concept of targeted S-nitrosylation to produce novel neuroprotective drugs that act at allosteric sites in the NMDA receptor. Lipton has won a number of awards, including the Ernst Jung Prize in Medicine, and is an elected fellow of the AAAS. Antioxid. Redox Signal. 19, 757–764. PMID:23815466

  10. Arabidopsis redox status in response to caterpillar herbivory

    Directory of Open Access Journals (Sweden)

    Jamuna ePaudel

    2013-05-01

    Full Text Available Plant responses to insect herbivory are regulated through complex, hormone-mediated interactions. Some caterpillar species have evolved strategies to manipulate this system by inducing specific pathways that suppress plant defense responses. Effectors in the labial saliva (LS secretions of Spodoptera exigua caterpillars are believed to induce the salicylic acid (SA pathway to interfere with the jasmonic acid (JA defense pathway; however, the mechanism underlying this subversion is unknown. Since Noctuid caterpillar LS contains enzymes that may affect cellular redox balance, this study investigated rapid changes in cellular redox metabolites within 45 min after herbivory. Caterpillar LS is involved in suppressing the increase in oxidative stress that was observed in plants fed upon by caterpillars with impaired LS secretions. To further understand the link between cellular redox balance and plant defense responses, marker genes of SA, JA and ethylene (ET pathways were compared in wildtype, the glutathione-compromised pad2-1 mutant and the tga2/5/6 triple mutant plants. AtPR1 and AtPDF1.2 showed LS-dependent expression that was alleviated in the pad2-1 and tga2/5/6 triple mutants. In comparison, the ET-dependent genes ERF1 expression showed LS-associated changes in both wildtype and pad2-1 mutant plants and the ORA 59 marker AtHEL had increased expression in response to herbivory, but a LS-dependent difference was not noted. These data support the model that there are SA/NPR1-, glutathione-dependent and ET-, glutathione-independent mechanisms leading to LS-associated suppression of plant induced defences.

  11. Repair of 3-methyladenine and abasic sites by base excision repair mediates glioblastoma resistance to temozolomide

    Energy Technology Data Exchange (ETDEWEB)

    Bobola, Michael S.; Kolstoe, Douglas D.; Blank, A. [Department of Neurological Surgery, University of Washington Medical Center, Seattle, WA (United States); Chamberlain, Marc C. [Department of Neurological Surgery, University of Washington Medical Center, Seattle, WA (United States); Department of Neurology, University of Washington Medical Center, Seattle, WA (United States); Silber, John R., E-mail: jrsilber@u.washington.edu [Department of Neurological Surgery, University of Washington Medical Center, Seattle, WA (United States)

    2012-11-30

    Alkylating agents have long played a central role in the adjuvant therapy of glioblastoma (GBM). More recently, inclusion of temozolomide (TMZ), an orally administered methylating agent with low systemic toxicity, during and after radiotherapy has markedly improved survival. Extensive in vitro and in vivo evidence has shown that TMZ-induced O{sup 6}-methylguanine (O{sup 6}-meG) mediates GBM cell killing. Moreover, low or absent expression of O{sup 6}-methylguanine-DNA methyltransferase (MGMT), the sole human repair protein that removes O{sup 6}-meG from DNA, is frequently associated with longer survival in GBMs treated with TMZ, promoting interest in developing inhibitors of MGMT to counter resistance. However, the clinical efficacy of TMZ is unlikely to be due solely to O{sup 6}-meG, as the agent produces approximately a dozen additional DNA adducts, including cytotoxic N3-methyladenine (3-meA) and abasic sites. Repair of 3-meA and abasic sites, both of which are produced in greater abundance than O{sup 6}-meG, is mediated by the base excision repair (BER) pathway, and occurs independently of removal of O{sup 6}-meG. These observations indicate that BER activities are also potential targets for strategies to potentiate TMZ cytotoxicity. Here we review the evidence that 3-meA and abasic sites mediate killing of GBM cells. We also present in vitro and in vivo evidence that alkyladenine-DNA glycosylase, the sole repair activity that excises 3-meA from DNA, and Ape1, the major human abasic site endonuclease, mediate TMZ resistance in GBMs and represent potential anti-resistance targets.

  12. A3 adenosine receptor agonist prevents the development of paclitaxel-induced neuropathic pain by modulating spinal glial-restricted redox-dependent signaling pathways.

    Science.gov (United States)

    Janes, Kali; Esposito, Emanuela; Doyle, Timothy; Cuzzocrea, Salvatore; Tosh, Dillip K; Jacobson, Kenneth A; Salvemini, Daniela

    2014-12-01

    Chemotherapy-induced peripheral neuropathy accompanied by chronic neuropathic pain is the major dose-limiting toxicity of several anticancer agents including the taxane paclitaxel (Taxol). A critical mechanism underlying paclitaxel-induced neuropathic pain is the increased production of peroxynitrite in spinal cord generated in response to activation of the superoxide-generating enzyme, NADPH oxidase. Peroxynitrite in turn contributes to the development of neuropathic pain by modulating several redox-dependent events in spinal cord. We recently reported that activation of the Gi/Gq-coupled A3 adenosine receptor (A3AR) with selective A3AR agonists (ie, IB-MECA) blocked the development of chemotherapy induced-neuropathic pain evoked by distinct agents, including paclitaxel, without interfering with anticancer effects. The mechanism or mechanisms of action underlying these beneficial effects has yet to be explored. We now demonstrate that IB-MECA attenuates the development of paclitaxel-induced neuropathic pain by inhibiting the activation of spinal NADPH oxidase and two downstream redox-dependent systems. The first relies on inhibition of the redox-sensitive transcription factor (NFκB) and mitogen activated protein kinases (ERK and p38) resulting in decreased production of neuroexcitatory/proinflammatory cytokines (TNF-α, IL-1β) and increased formation of the neuroprotective/anti-inflammatory IL-10. The second involves inhibition of redox-mediated posttranslational tyrosine nitration and modification (inactivation) of glia-restricted proteins known to play key roles in regulating synaptic glutamate homeostasis: the glutamate transporter GLT-1 and glutamine synthetase. Our results unravel a mechanistic link into biomolecular signaling pathways employed by A3AR activation in neuropathic pain while providing the foundation to consider use of A3AR agonists as therapeutic agents in patients with chemotherapy-induced peripheral neuropathy. Copyright © 2014

  13. Grasshopper populations inhabiting the B-C Cribs and REDOX Pond Sites, 200 Area Plateau, United States Energy Research and Development Administration's Hanford Reservation

    International Nuclear Information System (INIS)

    Sheldon, J.K.; Rogers, L.E.

    1976-02-01

    The purpose of this study was to determine the taxonomic composition, abundance, and food habits of grasshopper populations inhabiting the 200 Area plateau. Two sites were selected for detailed study, one near the B-C Cribs control zone and the other near the former REDOX Pond. A total of 14 grasshopper species were collected from the B-C Cribs study area and 16 species from the REDOX Pond area. Thirteen of these species occurred at both locations. Population density was low throughout most of the spring, increased in late May, and reached a peak of about 4 grasshoppers per square meter in early July. A dietary analysis showed that 7 of the 28 species of vascular plants recorded from the area were major components in grasshopper diets. These included needle-and-thread grass (Stipa comata), turpentine cymopterus (Cymopterus terebinthinus), Carey's balsamroot (Balsamorhiza careyana), western tansymustard (Descurainia pinnata), Jim Hill mustard (Sisymbrium altissimum), big sagebrush (Artemisia tridentata) and green rabbitbrush (Chrysothamnus viscidiflorus). The plant most heavily utilized was big sagebrush, followed by turpentine cymopterus, green rabbitbrush, and Carey's balsamroot. Other species were less frequently eaten. Several plants were present in the diet at a much higher frequency than they occurred in the environment, indicating that they were preferred food items.

  14. The hydrogen peroxide-sensitive proteome of the chloroplast in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Meenakumari eMuthuramalingam

    2013-03-01

    Full Text Available Hydrogen peroxide (H2O2 evolves during cellular metabolism and accumulates under various stresses causing serious redox imbalances. Many proteomics studies aiming to identify proteins sensitive to H2O2 used concentrations that were above the physiological range. Here the chloroplast proteins were subjected to partial oxidation by exogenous addition of H2O2 equivalent to 10% of available protein thiols which allowed for the identification of the primary targets of oxidation. The chosen redox proteomic approach employed differential labeling of non-oxidized and oxidized thiols using sequential alkylation with NEM and biotin maleimide. The in vitro identified proteins are involved in carbohydrate metabolism, photosynthesis, redox homeostasis and nitrogen assimilation. By using methyl viologen that induces oxidative stress in vivo, mostly the same primary targets of oxidation were identified and several oxidation sites were annotated. RubisCO was a primary oxidation target. Due to its high abundance, RubisCO is suggested to act as a chloroplast redox buffer to maintain a suitable redox state, even in the presence of increased ROS release. 2-Cys Prxs undergo redox-dependent modifications and play important roles in antioxidant defense and signaling. The identification of 2-Cys Prx was expected based on its high affinity to H2O2 and is considered as a proof of concept for the approach. Targets of Trx, such as phosphoribulokinase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH, transketolase and sedoheptulose-1,7-bisphosphatase have at least one regulatory disulfide bridge which supports the conclusion that the identified proteins undergo reversible thiol oxidation. In conclusion, the presented approach enabled the identification of early targets of H2O2 oxidation within the cellular proteome under physiological experimental conditions.

  15. Paleo-Productivity across the Paleocene-Eocene Thermal Maximum, Walvis Ridge Transect (ODP Sites 1262, 1263, and 1266)

    Science.gov (United States)

    Chun, C. O.; Delaney, M. L.; Zachos, J. C.

    2005-12-01

    Walvis Ridge transect (Ocean Drilling Program (ODP) Leg 208) provides the first high-resolution depth-transect of deep-sea sediments recovered from the south Atlantic across the P/E boundary. A geographically restricted depth transect (~ 2.2 km, water depths between 2500 and 4770 m) allows us to constrain the surface waters by assuming marine productivity conditions in the overlying water column are similar across all sites. The sediment record will reveal variations for processes that are water-depth dependent. We use the geochemical tracers; biogenic barium, phosphorus, calcium carbonate, and the redox sensitive trace elements manganese and uranium, to reconstruct nutrient burial, paleoproductivity, and bottom water redox chemistry across the Paleocene-Eocene Thermal Maximum (PETM). We calculate our concentrations on a calcium carbonate-free basis to account for dilution by non-carbonate sediments. Trace metal enrichment factors (EFs) are calculated relative to bulk crustal averages. We chose three sites from the depth transect: the shallowest (Site 1263, 2717 m water depth), an intermediate site (Site 1266, 3798 m water depth), and the deepest site (Site 1262, 4755 m water depth). We sampled each site at a sample resolution of ~ 1-2 kyr for 5 m.y. centered at 55 Ma. Uranium EFs at the shallow site exhibits values ~ 5 pre-event and drop to values near crustal averages during and after the carbon isotope excursion (CIE). No dramatic changes in U EFs across the P/E boundary are recorded at the deep and intermediate sites. Mn EFs range between 2.9 -8.6 prior to the event across all three sites, suggesting an oxygenated depositional environment. At the boundary, Mn EFs drop to crustal averages at all sites, then gradually return to pre-event values, indicating more reducing environments during the CIE, a possible explanation for the benthic extinction event (BEE) observed across this transect. Ba excess and reactive phosphorus exhibit decreased concentrations during

  16. Protein redox chemistry: post-translational cysteine modifications that regulate signal transduction and drug pharmacology

    Directory of Open Access Journals (Sweden)

    Revati eWani

    2014-10-01

    Full Text Available The perception of reactive oxygen species (ROS has evolved over the past decade from agents of cellular damage to secondary messengers which modify signaling proteins in physiology and the disease state (e.g. cancer. New protein targets of specific oxidation are rapidly being identified. One emerging class of redox modification occurs to the thiol side chain of cysteine residues which can produce multiple chemically-distinct alterations to the protein (e.g. sulfenic/sulfinic/sulfonic acid, disulfides. These post-translational modifications (PTM are shown to affect the protein structure and function. Because redox-sensitive proteins can traffic between subcellular compartments that have different redox environments, cysteine oxidation enables a spatio-temporal control to signaling. Understanding ramifications of these oxidative modifications to the functions of signaling proteins is crucial for understanding cellular regulation as well as for informed-drug discovery process. The effects of EGFR oxidation of Cys797 on inhibitor pharmacology are presented to illustrate the principle. Taken together, cysteine redox PTM can impact both cell biology and drug pharmacology.

  17. Redox Regulation in Cancer: A Double-edged Sword with Therapeutic Potential

    Directory of Open Access Journals (Sweden)

    Asha Acharya

    2010-01-01

    Full Text Available Oxidative stress, implicated in the etiology of cancer, results from an imbalance in the production of reactive oxygen species (ROS and cell’s own antioxidant defenses. ROS deregulate the redox homeostasis and promote tumor formation by initiating an aberrant induction of signaling networks that cause tumorigenesis. Ultraviolet (UV exposures, γ-radiation and other environmental carcinogens generate ROS in the cells, which can exert apoptosis in the tumors, thereby killing the malignant cells or induce the progression of the cancer growth by blocking cellular defense system. Cancer stem cells take the advantage of the aberrant redox system and spontaneously proliferate. Oxidative stress and gene-environment interactions play a significant role in the development of breast, prostate, pancreatic and colon cancer. Prolonged lifetime exposure to estrogen is associated with several kinds of DNA damage. Oxidative stress and estrogen receptor-associated proliferative changes are suggested to play important roles in estrogen-induced breast carcinogenesis. BRCA1, a tumor suppressor against hormone responsive cancers such as breast and prostate cancer, plays a significant role in inhibiting ROS and estrogen mediated DNA damage; thereby regulate the redox homeostasis of the cells. Several transcription factors and tumor suppressors are involved during stress response such as Nrf2, NFκB and BRCA1. A promising strategy for targeting redox status of the cells is to use readily available natural substances from vegetables, fruits, herbs and spices. Many of the phytochemicals have already been identified to have chemopreventive potential, capable of intervening in carcinogenesis.

  18. Redox electrode materials for supercapatteries

    OpenAIRE

    Yu, Linpo; Chen, George Z.

    2016-01-01

    Redox electrode materials, including transition metal oxides and electronically conducting polymers, are capable of faradaic charge transfer reactions, and play important roles in most electrochemical energy storage devices, such as supercapacitor, battery and supercapattery. Batteries are often based on redox materials with low power capability and safety concerns in some cases. Supercapacitors, particularly those based on redox inactive materials, e.g. activated carbon, can offer high power...

  19. A sensitivity analysis of hazardous waste disposal site climatic and soil design parameters using HELP3

    International Nuclear Information System (INIS)

    Adelman, D.D.; Stansbury, J.

    1997-01-01

    The Resource Conservation and Recovery Act (RCRA) Subtitle C, Comprehensive Environmental Response, Compensation, And Liability Act (CERCLA), and subsequent amendments have formed a comprehensive framework to deal with hazardous wastes on the national level. Key to this waste management is guidance on design (e.g., cover and bottom leachate control systems) of hazardous waste landfills. The objective of this research was to investigate the sensitivity of leachate volume at hazardous waste disposal sites to climatic, soil cover, and vegetative cover (Leaf Area Index) conditions. The computer model HELP3 which has the capability to simulate double bottom liner systems as called for in hazardous waste disposal sites was used in the analysis. HELP3 was used to model 54 combinations of climatic conditions, disposal site soil surface curve numbers, and leaf area index values to investigate how sensitive disposal site leachate volume was to these three variables. Results showed that leachate volume from the bottom double liner system was not sensitive to these parameters. However, the cover liner system leachate volume was quite sensitive to climatic conditions and less sensitive to Leaf Area Index and curve number values. Since humid locations had considerably more cover liner system leachate volume than and locations, different design standards may be appropriate for humid conditions than for and conditions

  20. Comparison of the sensitivity of surface downward longwave radiation to changes in water vapor at two high elevation sites

    International Nuclear Information System (INIS)

    Chen, Yonghua; Naud, Catherine M; Rangwala, Imtiaz; Landry, Christopher C; Miller, James R

    2014-01-01

    Among the potential reasons for enhanced warming rates in many high elevation regions is the nonlinear relationship between surface downward longwave radiation (DLR) and specific humidity (q). In this study we use ground-based observations at two neighboring high elevation sites in Southwestern Colorado that have different local topography and are 1.3 km apart horizontally and 348 m vertically. We examine the spatial consistency of the sensitivities (partial derivatives) of DLR with respect to changes in q, and the sensitivities are obtained from the Jacobian matrix of a neural network analysis. Although the relationship between DLR and q is the same at both sites, the sensitivities are higher when q is smaller, which occurs more frequently at the higher elevation site. There is a distinct hourly distribution in the sensitivities at both sites especially for high sensitivity cases, although the range is greater at the lower elevation site. The hourly distribution of the sensitivities relates to that of q. Under clear skies during daytime, q is similar between the two sites, however under cloudy skies or at night, it is not. This means that the DLR–q sensitivities are similar at the two sites during daytime but not at night, and care must be exercised when using data from one site to infer the impact of water vapor feedbacks at another site, particularly at night. Our analysis suggests that care should be exercised when using the lapse rate adjustment to infill high frequency data in a complex topographical region, particularly when one of the stations is subject to cold air pooling as found here. (letter)

  1. Comparison of the Sensitivity of Surface Downward Longwave Radiation to Changes in Water Vapor at Two High Elevation Sites

    Science.gov (United States)

    Chen, Yonghua; Naud, Catherine M.; Rangwala, Imtiaz; Landry, Christopher C.; Miller, James R.

    2014-01-01

    Among the potential reasons for enhanced warming rates in many high elevation regions is the nonlinear relationship between surface downward longwave radiation (DLR) and specific humidity (q). In this study we use ground-based observations at two neighboring high elevation sites in Southwestern Colorado that have different local topography and are 1.3 kilometers apart horizontally and 348 meters vertically. We examine the spatial consistency of the sensitivities (partial derivatives) of DLR with respect to changes in q, and the sensitivities are obtained from the Jacobian matrix of a neural network analysis. Although the relationship between DLR and q is the same at both sites, the sensitivities are higher when q is smaller, which occurs more frequently at the higher elevation site. There is a distinct hourly distribution in the sensitivities at both sites especially for high sensitivity cases, although the range is greater at the lower elevation site. The hourly distribution of the sensitivities relates to that of q. Under clear skies during daytime, q is similar between the two sites, however under cloudy skies or at night, it is not. This means that the DLR-q sensitivities are similar at the two sites during daytime but not at night, and care must be exercised when using data from one site to infer the impact of water vapor feedbacks at another site, particularly at night. Our analysis suggests that care should be exercised when using the lapse rate adjustment to infill high frequency data in a complex topographical region, particularly when one of the stations is subject to cold air pooling as found here.

  2. A robust and versatile mass spectrometry platform for comprehensive assessment of the thiol redox metabolome

    Directory of Open Access Journals (Sweden)

    T.R. Sutton

    2018-06-01

    Full Text Available Several diseases are associated with perturbations in redox signaling and aberrant hydrogen sulfide metabolism, and numerous analytical methods exist for the measurement of the sulfur-containing species affected. However, uncertainty remains about their concentrations and speciation in cells/biofluids, perhaps in part due to differences in sample processing and detection principles. Using ultrahigh-performance liquid chromatography in combination with electrospray-ionization tandem mass spectrometry we here outline a specific and sensitive platform for the simultaneous measurement of 12 analytes, including total and free thiols, their disulfides and sulfide in complex biological matrices such as blood, saliva and urine. Total assay run time is < 10 min, enabling high-throughput analysis. Enhanced sensitivity and avoidance of artifactual thiol oxidation is achieved by taking advantage of the rapid reaction of sulfhydryl groups with N-ethylmaleimide. We optimized the analytical procedure for detection and separation conditions, linearity and precision including three stable isotope labelled standards. Its versatility for future more comprehensive coverage of the thiol redox metabolome was demonstrated by implementing additional analytes such as methanethiol, N-acetylcysteine, and coenzyme A. Apparent plasma sulfide concentrations were found to vary substantially with sample pretreatment and nature of the alkylating agent. In addition to protein binding in the form of mixed disulfides (S-thiolation a significant fraction of aminothiols and sulfide appears to be also non-covalently associated with proteins. Methodological accuracy was tested by comparing the plasma redox status of 10 healthy human volunteers to a well-established protocol optimized for reduced/oxidized glutathione. In a proof-of-principle study a deeper analysis of the thiol redox metabolome including free reduced/oxidized as well as bound thiols and sulfide was performed

  3. Geographical variations in the prevalence of atopic sensitization in six study sites across Canada

    DEFF Research Database (Denmark)

    Chan-Yeung, M; Anthonisen, N R; Becklake, M R

    2010-01-01

    Geographical variations in atopic sensitization in Canada have not been described previously. This study used the standardized protocol of the European Community Respiratory Health Survey-1 (ECRHS-1) to investigate the distribution and predictors of atopic sensitization in six sites across Canada...

  4. Thermodynamic and redox properties of graphene oxides for lithium-ion battery applications: a first principles density functional theory modeling approach.

    Science.gov (United States)

    Kim, Sunghee; Kim, Ki Chul; Lee, Seung Woo; Jang, Seung Soon

    2016-07-27

    Understanding the thermodynamic stability and redox properties of oxygen functional groups on graphene is critical to systematically design stable graphene-based positive electrode materials with high potential for lithium-ion battery applications. In this work, we study the thermodynamic and redox properties of graphene functionalized with carbonyl and hydroxyl groups, and the evolution of these properties with the number, types and distribution of functional groups by employing the density functional theory method. It is found that the redox potential of the functionalized graphene is sensitive to the types, number, and distribution of oxygen functional groups. First, the carbonyl group induces higher redox potential than the hydroxyl group. Second, more carbonyl groups would result in higher redox potential. Lastly, the locally concentrated distribution of the carbonyl group is more beneficial to have higher redox potential compared to the uniformly dispersed distribution. In contrast, the distribution of the hydroxyl group does not affect the redox potential significantly. Thermodynamic investigation demonstrates that the incorporation of carbonyl groups at the edge of graphene is a promising strategy for designing thermodynamically stable positive electrode materials with high redox potentials.

  5. Redox speciation of final repository relevant elements using separation methods in combination with ICP mass spectrometry

    International Nuclear Information System (INIS)

    Graser, Carl-Heinrich

    2015-01-01

    The long-term safety assessment for nuclear waste repositories requires a detailed understanding of the chemistry of actinide elements in the geosphere. The development of advanced analytical tools is required to gain detailed insights into actinide redox speciation in a given system. The mobility of radionuclides is mostly determined by the geochemical conditions which control the redox state of radionuclides. Besides the longlived radionuclides plutonium (Pu) and neptunium (Np), which are key elements in high level nuclear waste, iron (Fe) represents a main component in natural systems controlling redox related geochemical processes. Analytical techniques for determining oxidation state distribution for redox sensitive radionuclides and other metal ions often have a lack of sensitivity. The detection limits of these methods (i.e. UV/vis, TRLFS, XANES) are in general in the range of ≥ 10 -6 mol.L -1 . As a consequence ultrasensitive new analytical techniques are required. Capillary electrophoresis (CE) and ion chromatography (IC) are powerful separation methods for metal ions. In the course of this thesis different speciation method for iron, neptunium and plutonium were optimized. With the optimized setup redox speciation analysis of these elements in different samples were done. Furthermore CE hyphenated to inductively coupled plasma sector field mass spectrometry (CE - ICP - SF - MS) was used to measure the redox speciation of Pu (III, IV, V, VI), Np (IV, V, VI) and Fe (II, III) at concentrations lower than 10 -7 mol.L -1 . CE coupling and separation parameters such as sample gas pressure, make up flow rate, capillary position, auxiliary gas flow, as well as the electrolyte system were optimized to obtain the maximum sensitivity. The methodes detection limits are 10 -12 mol.L -1 for Np and Pu. The various oxidation state species of Pu and Np in different samples were separated by application of an acetate based electrolyte system. The separation of Fe (II

  6. Microbial Mineral Colonization Across a Subsurface Redox Transition Zone

    Directory of Open Access Journals (Sweden)

    Brandon eConverse

    2015-08-01

    Full Text Available This study employed 16S rRNA gene amplicon pyrosequencing to examine the hypothesis that chemolithotrophic Fe(II-oxidizing bacteria (FeOB would preferentially colonize the Fe(II-bearing mineral biotite compared to quartz sand when the minerals were incubated in situ within a subsurface redox transition zone (RTZ at the Hanford 300 Area site in Richland, WA, USA. The work was motivated by the recently documented presence of neutral-pH chemolithotrophic FeOB capable of oxidizing structural Fe(II in primary silicate and secondary phyllosilicate minerals in 300 Area sediments and groundwater (Benzine et al., 2013. Sterilized portions of sand+biotite or sand alone were incubated in situ for five months within a multilevel sampling (MLS apparatus that spanned a ca. 2-m interval across the RTZ in two separate groundwater wells. Parallel MLS measurements of aqueous geochemical species were performed prior to deployment of the minerals. Contrary to expectations, the 16S rRNA gene libraries showed no significant difference in microbial communities that colonized the sand+biotite versus sand-only deployments. Both mineral-associated and groundwater communities were dominated by heterotrophic taxa, with organisms from the Pseudomonaceae accounting for up to 70% of all reads from the colonized minerals. These results are consistent with previous results indicating the capacity for heterotrophic metabolism (including anaerobic metabolism below the RTZ as well as the predominance of heterotrophic taxa within 300 Area sediments and groundwater. Although heterotrophic organisms clearly dominated the colonized minerals, several putative lithotrophic (NH4+, H2, Fe(II, and HS- oxidizing taxa were detected in significant abundance above and within the RTZ. Such organisms may play a role in the coupling of anaerobic microbial metabolism to oxidative pathways with attendant impacts on elemental cycling and redox-sensitive contaminant behavior in the vicinity of the

  7. Social networking sites and mental health problems in adolescents: The mediating role of cyberbullying victimization.

    Science.gov (United States)

    Sampasa-Kanyinga, H; Hamilton, H A

    2015-11-01

    Previous research has suggested an association between the use of social networking sites (SNSs) and mental health problems such as psychological distress, suicidal ideation and attempts in adolescents. However, little is known about the factors that might mediate these relationships. The present study examined the link between the use of social networking sites and psychological distress, suicidal ideation and suicide attempts, and tested the mediating role of cyberbullying victimization on these associations in adolescents. The sample consisted of a group of 11-to-20-year-old individuals (n=5126, 48% females; mean±SD age: 15.2±1.9 years) who completed the mental health portion of the Ontario Student Drug Use and Health Survey (OSDUHS) in 2013. Multiple logistic regression analyses were used to test the mediation models. After adjustment for age, sex, ethnicity, subjective socioeconomic status (SES), and parental education, use of SNSs was associated with psychological distress (adjusted odds ratio, 95% confidence interval=2.03, 1.22-3.37), suicidal ideation (3.44, 1.54-7.66) and attempts (5.10, 1.45-17.88). Cyberbullying victimization was found to fully mediate the relationships between the use of SNSs with psychological distress and attempts; whereas, it partially mediated the link between the use of SNSs and suicidal ideation. Findings provide supporting evidence that addressing cyberbullying victimization and the use of SNSs among adolescents may help reduce the risk of mental health problems. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  8. Polyhydroquinone-graphene composite as new redox species for sensitive electrochemical detection of cytokeratins antigen 21-1

    Science.gov (United States)

    Wang, Huiqiang; Rong, Qinfeng; Ma, Zhanfang

    2016-07-01

    Polyhydroquinone-graphene composite as a new redox species was synthesized simply by a microwave-assisted one-pot method through oxidative polymerization of hydroquinone by graphene oxide, which exhibited excellent electrochemical redox activity at 0.124 V and can remarkably promote electron transfer. The as-prepared composite was used as immunosensing substrate in a label-free electrochemical immunosensor for the detection of cytokeratins antigen 21-1, a kind of biomarker of lung cancer. The proposed immunosensor showed wide liner range from 10 pg mL-1 to 200 ng mL-1 with a detection limit 2.3 pg mL-1, and displayed a good stability and selectivity. In addition, this method has been used for the analysis of human serum sample, and the detection results showed good consistence with those of ELISA. The present substrate can be easily extended to other polymer-based nanocomposites.

  9. Redox reaction studies by nanosecond pulse radiolysis

    International Nuclear Information System (INIS)

    Moorthy, P.N.

    1979-01-01

    Free radicals are formed as intermediates in many chemical and biochemical reactions. An important type of reaction which they can undergo is a one electron or redox process. The direction and rate of such electron transfer reactions is governed by the relative redox potentials of the participating species. Because of the generally short lived nature of free radicals, evaluation of their redox potentials poses a number of problems. Two techniques are described for the experimental determination of the redox potentials of short lived species generated by either a nanosecond electron pulse or laser flash. In the first method, redox titration of the short lived species with stable molecules of known redox potential is carried out, employing the technique of fast kinetic spectrophotometry. Conversely, by the same method it is also possible to evaluate the one electron redox potentials of stable molecules by redox titration with free radicals of known redox potential produced as above. In the second method, electrochemical reduction or oxidation of the short lived species at an appropriate electrode (generally a mercury drop) is carried out at different fixed potentials, and the redox potential evaluated from the current-potential curves (polarograms). Full description of the experimental set up and theoretical considerations for interpretation of the raw data are given. The relative merits of the two methods and their practical applicability are discussed. (auth.)

  10. Caveolin-1-mediated apolipoprotein A-I membrane binding sites are not required for cholesterol efflux.

    Directory of Open Access Journals (Sweden)

    Soazig Le Lay

    Full Text Available Caveolin-1 (Cav1, a structural protein required for the formation of invaginated membrane domains known as caveolae, has been implicated in cholesterol trafficking and homeostasis. Here we investigated the contribution of Cav1 to apolipoprotein A-I (apoA-I cell surface binding and intracellular processing using mouse embryonic fibroblasts (MEFs derived from wild type (WT or Cav1-deficient (Cav1(-/- animals. We found that cells expressing Cav1 have 2.6-fold more apoA-I binding sites than Cav1(-/- cells although these additional binding sites are not associated with detergent-free lipid rafts. Further, Cav1-mediated binding targets apoA-I for internalization and degradation and these processes are not correlated to cholesterol efflux. Despite lower apoA-I binding, cholesterol efflux from Cav1(-/- MEFs is 1.7-fold higher than from WT MEFs. Stimulation of ABCA1 expression with an LXR agonist enhances cholesterol efflux from both WT and Cav1(-/- cells without increasing apoA-I surface binding or affecting apoA-I processing. Our results indicate that there are at least two independent lipid binding sites for apoA-I; Cav1-mediated apoA-I surface binding and uptake is not linked to cholesterol efflux, indicating that membrane domains other than caveolae regulate ABCA1-mediated cholesterol efflux.

  11. Degree of glutathione deficiency and redox imbalance depend on subtype of mitochondrial disease and clinical status.

    Directory of Open Access Journals (Sweden)

    Gregory M Enns

    Full Text Available Mitochondrial disorders are associated with decreased energy production and redox imbalance. Glutathione plays a central role in redox signaling and protecting cells from oxidative damage. In order to understand the consequences of mitochondrial dysfunction on in vivo redox status, and to determine how this varies by mitochondrial disease subtype and clinical severity, we used a sensitive tandem mass spectrometry assay to precisely quantify whole blood reduced (GSH and oxidized (GSSG glutathione levels in a large cohort of mitochondrial disorder patients. Glutathione redox potential was calculated using the Nernst equation. Compared to healthy controls (n = 59, mitochondrial disease patients (n = 58 as a group showed significant redox imbalance (redox potential -251 mV ± 9.7, p<0.0001 with an increased level of oxidation by ∼ 9 mV compared to controls (-260 mV ± 6.4. Underlying this abnormality were significantly lower whole blood GSH levels (p = 0.0008 and GSH/GSSG ratio (p = 0.0002, and significantly higher GSSG levels (p<0.0001 in mitochondrial disease patients compared to controls. Redox potential was significantly more oxidized in all mitochondrial disease subgroups including Leigh syndrome (n = 15, electron transport chain abnormalities (n = 10, mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (n = 8, mtDNA deletion syndrome (n = 7, mtDNA depletion syndrome (n = 7, and miscellaneous other mitochondrial disorders (n = 11. Patients hospitalized in metabolic crisis (n = 7 showed the greatest degree of redox imbalance at -242 mV ± 7. Peripheral whole blood GSH and GSSG levels are promising biomarkers of mitochondrial dysfunction, and may give insights into the contribution of oxidative stress to the pathophysiology of the various mitochondrial disorders. In particular, evaluation of redox potential may be useful in monitoring of clinical status or response to redox-modulating therapies in clinical trials.

  12. REDOX DISRUPTING POTENTIAL OF TOXCAST CHEMICALS RANKED BY ACTIVITY IN MOUSE EMBRYONIC STEM CELLS

    Science.gov (United States)

    To gain insight regarding the adverse outcome pathways leading to developmental toxicity following exposure to chemicals, we evaluated ToxCast™ Phase I chemicals in an adherent mouse embryonic stem cell (mESC) assay and identified a redox sensitive pathway that correlated with al...

  13. Adaptive changes in renal mitochondrial redox status in diabetic nephropathy

    Energy Technology Data Exchange (ETDEWEB)

    Putt, David A.; Zhong, Qing; Lash, Lawrence H., E-mail: l.h.lash@wayne.edu

    2012-01-15

    Nephropathy is a serious and common complication of diabetes. In the streptozotocin (STZ)-treated rat model of diabetes, nephropathy does not typically develop until 30 to 45 days post-injection, although hyperglycemia occurs within 24 h. We tested the hypothesis that chronic hyperglycemia results in a modest degree of oxidative stress that is accompanied by compensatory changes in certain antioxidants and mitochondrial redox status. We propose that as kidneys progress to a state of diabetic nephropathy, further adaptations occur in mitochondrial redox status. Basic parameters of renal function in vivo and several parameters of mitochondrial function and glutathione (GSH) and redox status in isolated renal cortical mitochondria from STZ-treated and age-matched control rats were examined at 30 days and 90 days post-injection. While there was no effect of diabetes on blood urea nitrogen, measurement of other, more sensitive parameters, such as urinary albumin and protein, and histopathology showed significant and progressive worsening in diabetic rats. Thus, renal function is compromised even prior to the onset of frank nephropathy. Changes in mitochondrial respiration and enzyme activities indicated existence of a hypermetabolic state. Higher mitochondrial GSH content and rates of GSH transport into mitochondria in kidneys from diabetic rats were only partially due to changes in expression of mitochondrial GSH carriers and were mostly due to higher substrate supply. Although there are few clear indicators of oxidative stress, there are several redox changes that occur early and change further as nephropathy progresses, highlighting the complexity of the disease. Highlights: ►Adaptive changes in renal mitochondrial and redox status in diabetic rats. ►Modest renal dysfunction even prior to onset of nephropathy. ►Elevated concentrations of mitochondrial GSH in diabetic kidneys. ►Change in GSH due partly to increased protein expression of transporter.

  14. Adaptive changes in renal mitochondrial redox status in diabetic nephropathy

    International Nuclear Information System (INIS)

    Putt, David A.; Zhong, Qing; Lash, Lawrence H.

    2012-01-01

    Nephropathy is a serious and common complication of diabetes. In the streptozotocin (STZ)-treated rat model of diabetes, nephropathy does not typically develop until 30 to 45 days post-injection, although hyperglycemia occurs within 24 h. We tested the hypothesis that chronic hyperglycemia results in a modest degree of oxidative stress that is accompanied by compensatory changes in certain antioxidants and mitochondrial redox status. We propose that as kidneys progress to a state of diabetic nephropathy, further adaptations occur in mitochondrial redox status. Basic parameters of renal function in vivo and several parameters of mitochondrial function and glutathione (GSH) and redox status in isolated renal cortical mitochondria from STZ-treated and age-matched control rats were examined at 30 days and 90 days post-injection. While there was no effect of diabetes on blood urea nitrogen, measurement of other, more sensitive parameters, such as urinary albumin and protein, and histopathology showed significant and progressive worsening in diabetic rats. Thus, renal function is compromised even prior to the onset of frank nephropathy. Changes in mitochondrial respiration and enzyme activities indicated existence of a hypermetabolic state. Higher mitochondrial GSH content and rates of GSH transport into mitochondria in kidneys from diabetic rats were only partially due to changes in expression of mitochondrial GSH carriers and were mostly due to higher substrate supply. Although there are few clear indicators of oxidative stress, there are several redox changes that occur early and change further as nephropathy progresses, highlighting the complexity of the disease. Highlights: ►Adaptive changes in renal mitochondrial and redox status in diabetic rats. ►Modest renal dysfunction even prior to onset of nephropathy. ►Elevated concentrations of mitochondrial GSH in diabetic kidneys. ►Change in GSH due partly to increased protein expression of transporter.

  15. Feasibility of assessing health state by detecting redox state of human body based on Chinese medicine constitution.

    Science.gov (United States)

    Li, Ling-Ru; Wang, Qi; Wang, Ji; Wang, Qian-Fei; Yang, Ling-Ling; Zheng, Lu-Yu; Zhang, Yan

    2016-08-01

    This article discussed the feasibility of assessing health state by detecting redox state of human body. Firstly, the balance of redox state is the basis of homeostasis, and the balance ability of redox can reflflect health state of human body. Secondly, the redox state of human body is a sensitive index of multiple risk factors of health such as age, external environment and psychological factors. It participates in the occurrence and development of multiple diseases involving metabolic diseases and nervous system diseases, and can serve as a cut-in point for treatment of these diseases. Detecting the redox state of high risk people is signifificantly important for early detection and treatment of disease. The blood plasma and urine could be selected to detect, which is convenient. It is pointed that the indexes not only involve oxidation product and antioxidant enzyme but also redox couple. Chinese medicine constitution reflflects the state of body itself and the ability of adapting to external environment, which is consistent with the connotation of health. It is found that there are nine basic types of constitution in Chinese population, which provides a theoretical basis of health preservation, preventive treatment of disease and personalized treatment. With the combination of redox state detection and the Chinese medicine constitution theory, the heath state can be systemically assessed by conducting large-scale epidemiological survey with classifified detection on redox state of human body.

  16. Redox modification of caveolar proteins in the cardiovascular system- role in cellular signalling and disease.

    Science.gov (United States)

    Bubb, Kristen J; Birgisdottir, Asa Birna; Tang, Owen; Hansen, Thomas; Figtree, Gemma A

    2017-08-01

    Rapid and coordinated release of a variety of reactive oxygen species (ROS) such as superoxide (O 2 .- ), hydrogen peroxide (H 2 O 2 ) and peroxynitrite, in specific microdomains, play a crucial role in cell signalling in the cardiovascular system. These reactions are mediated by reversible and functional modifications of a wide variety of key proteins. Dysregulation of this oxidative signalling occurs in almost all forms of cardiovascular disease (CVD), including at the very early phases. Despite the heavily publicized failure of "antioxidants" to improve CVD progression, pharmacotherapies such as those targeting the renin-angiotensin system, or statins, exert at least part of their large clinical benefit via modulating cellular redox signalling. Over 250 proteins, including receptors, ion channels and pumps, and signalling proteins are found in the caveolae. An increasing proportion of these are being recognized as redox regulated-proteins, that reside in the immediate vicinity of the two major cellular sources of ROS, nicotinamide adenine dinucleotide phosphate oxidase (Nox) and uncoupled endothelial nitric oxide synthase (eNOS). This review focuses on what is known about redox signalling within the caveolae, as well as endogenous protective mechanisms utilized by the cell, and new approaches to targeting dysregulated redox signalling in the caveolae as a therapeutic strategy in CVD. Copyright © 2017. Published by Elsevier Inc.

  17. Flexible strategy for immobilizing redox-active compounds using in situ generation of diazonium salts. Investigations of the blocking and catalytic properties of the layers.

    Science.gov (United States)

    Noël, Jean-Marc; Sjöberg, Béatrice; Marsac, Rémi; Zigah, Dodzi; Bergamini, Jean-François; Wang, Aifang; Rigaut, Stéphane; Hapiot, Philippe; Lagrost, Corinne

    2009-11-03

    A versatile two-step method is developed to covalently immobilize redox-active molecules onto carbon surfaces. First, a robust anchoring platform is grafted onto surfaces by electrochemical reduction of aryl diazonium salts in situ generated. Depending on the nature of the layer termini, -COOH or -NH(2), a further chemical coupling involving ferrocenemethylamine or ferrocene carboxylic acid derivatives leads to the covalent binding of ferrocene centers. The chemical strategy using acyl chloride activation is efficient and flexible, since it can be applied either to surface-reactive end groups or to reactive species in solution. Cyclic voltammetry analyses point to the covalent binding of ferrocene units restricted to the upper layers of the underlying aryl films, while AFM measurements show a lost of compactness of the layers after the chemical attachment of ferrocene centers. The preparation conditions of the anchoring layers were found to determine the interfacial properties of the resulted ferrocenyl-modified electrodes. The ferrocene units promoted effective redox mediation providing that the free redox probes are adequately chosen (i.e., vs size/formal potential) and the underlying layers exhibit strong blocking properties. For anchoring films with weaker blocking effect, the coexistence of two distinct phenomena, redox mediation and ET at pinholes could be evidenced.

  18. A Membrane‐Free Redox Flow Battery with Two Immiscible Redox Electrolytes

    OpenAIRE

    Navalpotro, Paula; Palma, Jesus; Anderson, Marc; Marcilla, Rebeca

    2017-01-01

    Abstract Flexible and scalable energy storage solutions are necessary for mitigating fluctuations of renewable energy sources. The main advantage of redox flow batteries is their ability to decouple power and energy. However, they present some limitations including poor performance, short‐lifetimes, and expensive ion‐selective membranes as well as high price, toxicity, and scarcity of vanadium compounds. We report a membrane‐free battery that relies on the immiscibility of redox electrolytes ...

  19. Efficient site-specific integration in Plasmodium falciparum chromosomes mediated by mycobacteriophage Bxb1 integrase.

    Science.gov (United States)

    Nkrumah, Louis J; Muhle, Rebecca A; Moura, Pedro A; Ghosh, Pallavi; Hatfull, Graham F; Jacobs, William R; Fidock, David A

    2006-08-01

    Here we report an efficient, site-specific system of genetic integration into Plasmodium falciparum malaria parasite chromosomes. This is mediated by mycobacteriophage Bxb1 integrase, which catalyzes recombination between an incoming attP and a chromosomal attB site. We developed P. falciparum lines with the attB site integrated into the glutaredoxin-like cg6 gene. Transfection of these attB(+) lines with a dual-plasmid system, expressing a transgene on an attP-containing plasmid together with a drug resistance gene and the integrase on a separate plasmid, produced recombinant parasites within 2 to 4 weeks that were genetically uniform for single-copy plasmid integration. Integrase-mediated recombination resulted in proper targeting of parasite proteins to intra-erythrocytic compartments, including the apicoplast, a plastid-like organelle. Recombinant attB x attP parasites were genetically stable in the absence of drug and were phenotypically homogeneous. This system can be exploited for rapid genetic integration and complementation analyses at any stage of the P. falciparum life cycle, and it illustrates the utility of Bxb1-based integrative recombination for genetic studies of intracellular eukaryotic organisms.

  20. Characterization of self-assembled redox polymer and antibody molecules on thiolated gold electrodes.

    Science.gov (United States)

    Calvo, E J; Danilowicz, C; Lagier, C M; Manrique, J; Otero, M

    2004-05-15

    Multilayer immobilization of antibody and redox polymer molecules on a gold electrode was achieved, as a strategy for the potential development of an amperometric immunosensor. The step-by-step assembly of antibiotin IgG on Os(bpy)(2)ClPyCH(2)NH poly(allylamine) redox polymer (PAH-Os) adsorbed on thiolated gold electrodes was proved by quartz crystal microbalance (QCM) and atomic force microscopy (AFM) experiments, confirming the electrochemical evidence. The increase of redox charge during the layer-by-layer deposition demonstrated that charge propagation within the layers is feasible. The multilayer structure proved to be effective for the molecular recognition of horseradish peroxidase-biotin conjugate (HRP-biotin), as confirmed by the QCM measurements and the electrocatalytic reduction current obtained upon H(2)O(2) addition. The catalytic current resulting from PAH-Os mediation was shown to increase with the number of assembled layers. Furthermore, the inventory of IgG molecules on the supramolecular self-assembled structure and the specific and non-specific binding of HRP-biotin conjugate were confirmed by the QCM transient studies, giving information on the kinetics of IgG deposition and HRP-biotin conjugate binding to the IgG.