WorldWideScience

Sample records for site characterization ground

  1. A new ground-penetrating radar system for remote site characterization

    International Nuclear Information System (INIS)

    Davis, K.C.; Sandness, G.A.

    1994-08-01

    The cleanup of waste burial sites and military bombing ranges involves the risk of exposing field personnel to toxic chemicals, radioactive materials, or unexploded munitions. Time-consuming and costly measures are required to provide protection from those hazards. Therefore, there is a growing interest in developing remotely controlled sensors and sensor platforms that can be employed in site characterization surveys. A specialized ground-penetrating radar has been developed to operate on a remotely controlled vehicle for the non-intrusive subsurface characterization of buried waste sites. Improved radar circuits provide enhanced performance, and an embedded microprocessor dynamically optimizes operation. The radar unit is packaged to survive chemical contamination and decontamination

  2. Initial site characterization and evaluation of radionuclide contaminated soil waste burial grounds

    International Nuclear Information System (INIS)

    Phillips, S.J.; Reisenauer, A.E.; Rickard, W.H.; Sandness, G.A.

    1977-02-01

    A survey of historical records and literature containing information on the contents of 300 Area and North Burial Grounds was completed. Existing records of radioactive waste location, type, and quantity within each burial ground facility were obtained and distributed to cooperating investigators. A study was then initiated to evaluate geophysical exploration techniques for mapping buried waste materials, waste containers, and trench boundaries. Results indicate that a combination of ground penetrating radar, magnetometer, metal detector, and acoustic measurements will be effective but will require further study, hardware development, and field testing. Drilling techniques for recovering radionuclide-contaminated materials and sediment cores were developed and tested. Laboratory sediment characterization and fluid transport and monitoring analyses were begun by installation of in situ transducers at the 300 North Burial Ground site. Biological transport mechanisms that control radionuclide movement at contaminated sites were also studied. Flora and fauna presently inhabiting specific burial ground areas were identified and analyzed. Future monitoring of specific mammal populations will permit determination of dose rate and pathways of contaminated materials contained in and adjacent to burial ground sites

  3. Enhanced Site Characterization of the 618-4 Burial Ground

    Energy Technology Data Exchange (ETDEWEB)

    Murray, Christopher J.; Last, George V.; Chien, Yi-Ju

    2001-09-25

    This report describes the results obtained from deployment of the Enhanced Site Characterization System (ESCS) at the Hanford Site's 618-4 Burial Ground. The objective of this deployment was to use advanced geostatistical methods to integrate and interpret geophysical and ground truth data, to map the physical types of waste materials present in unexcavated portions of the burial ground. One issue of particularly interest was the number of drums (containing depleted uranium metal shavings or uranium-oxide powder) remaining in the burial ground and still requiring removal.Fuzzy adaptive resonance theory (ART), a neural network classification method, was used to cluster the study area into 3 classes based on their geophysical signatures. Multivariate statistical analyses and discriminant function analysis (DFA) indicated that the drum area as well as a second area (the SW anomaly) had similar geophysical signatures that were different from the rest of the burial ground. Further analysis of the drum area suggested that as many as 770 drums to 850 drums may remain in that area. Similarities between the geophysical signatures of the drum area and the SW anomaly suggested that excavation of the SW anomaly area also proceed with caution.Deployment of the ESCS technology was successful in integrating multiple geophysical variables and grouping these observations into clusters that are relevant for planning further excavation of the buried ground. However, the success of the technology could not be fully evaluated because reliable ground truth data were not available to enable calibration of the different geophysical signatures against actual waste types.

  4. Ground-penetrating radar in characterizing and monitoring waste-burial sites

    International Nuclear Information System (INIS)

    Sandness, G.A.; Kimball, C.S.

    1982-02-01

    Potential environmental hazards are associated with buried chemical and nuclear wastes because of the possibilities of inadvertent excavation or migration of toxic chemicals or radionuclides into groundwater or surface water bodies. Concern is often related to the fact that many existing waste burial sites have been found to be inadequately designed and/or poorly documented. New technology and innovative applications of current technology are needed to locate, characterize, and monitor the wastes contained in such sites. The work described in this paper is focused on the use of ground-penetrating radar (GPR) for those purposes

  5. Interim site characterization report and ground-water monitoring program for the Hanford site solid waste landfill

    International Nuclear Information System (INIS)

    Fruland, R.M.; Hagan, R.A.; Cline, C.S.; Bates, D.J.; Evans, J.C.; Aaberg, R.L.

    1989-07-01

    Federal and state regulations governing the operation of landfills require utilization of ground-water monitoring systems to determine whether or not landfill operations impact ground water at the point of compliance (ground water beneath the perimeter of the facility). A detection-level ground-water monitoring system was designed, installed, and initiated at the Hanford Site Solid Waste Landfill (SWL). Chlorinated hydrocarbons were detected at the beginning of the ground-water monitoring program and continue to be detected more than 1 year later. The most probable source of the chlorinated hydrocarbons is washwater discharged to the SWL between 1985 and 1987. This is an interim report and includes data from the characterization work that was performed during well installation in 1987, such as field observations, sediment studies, and geophysical logging results, and data from analyses of ground-water samples collected in 1987 and 1988, such as field parameter measurements and chemical analyses. 38 refs., 27 figs., 8 tabs

  6. Hanford Site ground-water monitoring for 1994

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P.E.; Thorne, P.D.; Luttrell, S.P. [and others

    1995-08-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1994 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiologic and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1994 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1993 and June 1994. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal.

  7. Hanford Site ground-water monitoring for 1994

    International Nuclear Information System (INIS)

    Dresel, P.E.; Thorne, P.D.; Luttrell, S.P.

    1995-08-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1994 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiologic and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1994 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site's geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1993 and June 1994. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal

  8. Current plans to characterize the design basis ground motion at the Yucca Mountain, Nevada Site

    International Nuclear Information System (INIS)

    Simecka, W.B.; Grant, T.A.; Voegele, M.D.; Cline, K.M.

    1992-01-01

    A site at Yucca Mountain Nevada is currently being studied to assess its suitability as a potential host site for the nation's first commercial high level waste repository. The DOE has proposed a new methodology for determining design-basis ground motions that uses both deterministic and probabilistic methods. The role of the deterministic approach is primary. It provides the level of detail needed by design engineers in the characterization of ground motions. The probabilistic approach provides a logical structured procedure for integrating the range of possible earthquakes that contribute to the ground motion hazard at the site. In addition, probabilistic methods will be used as needed to provide input for the assessment of long-term repository performance. This paper discusses the local tectonic environment, potential seismic sources and their associated displacements and ground motions. It also discusses the approach to assessing the design basis earthquake for the surface and underground facilities, as well as selected examples of the use of this type of information in design activities

  9. Measurement of ground motion in various sites

    International Nuclear Information System (INIS)

    Bialowons, W.; Amirikas, R.; Bertolini, A.; Kruecker, D.

    2007-04-01

    Ground vibrations may affect low emittance beam transport in linear colliders, Free Electron Lasers (FEL) and synchrotron radiation facilities. This paper is an overview of a study program to measure ground vibrations in various sites which can be used for site characterization in relation to accelerator design. Commercial broadband seismometers have been used to measure ground vibrations and the resultant database is available to the scientific community. The methodology employed is to use the same equipment and data analysis tools for ease of comparison. This database of ground vibrations taken in 19 sites around the world is first of its kind. (orig.)

  10. Hanford Site ground-water monitoring for 1993

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P.E.; Luttrell, S.P.; Evans, J.C. [and others

    1994-09-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1993 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1993 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1992 and June 1993. The greatest declines occurred in the 200-West Area. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal. Water levels remained nearly constant in the vicinity of B Pond, as a result of continued disposal to the pond. Water levels measured from wells in the unconfined aquifer north and east of the Columbia River indicate that the primary source of recharge is irrigation practices.

  11. Hanford Site ground-water monitoring for 1993

    International Nuclear Information System (INIS)

    Dresel, P.E.; Luttrell, S.P.; Evans, J.C.

    1994-09-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1993 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1993 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site's geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1992 and June 1993. The greatest declines occurred in the 200-West Area. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal. Water levels remained nearly constant in the vicinity of B Pond, as a result of continued disposal to the pond. Water levels measured from wells in the unconfined aquifer north and east of the Columbia River indicate that the primary source of recharge is irrigation practices

  12. Seismic-reflection and ground penetrating radar for environmental site characterization. 1998 annual progress report

    International Nuclear Information System (INIS)

    Plumb, R.; Steeples, D.W.

    1998-01-01

    'The project''s goals are threefold: (1) to examine the complementary site-characterization capabilities of modern, three-component shallow-seismic techniques and ground-penetrating radar (GPR) methods at depths ranging from 2 to 8 m at an existing test site; (2) to demonstrate the usefulness of the two methods when used in concert to characterize, in three-dimensions, the cone of depression of a pumping well, which will serve as a proxy site for fluid-flow at an actual, polluted site; and (3) to use the site as an outdoor mesoscale laboratory to validate existing three-dimensional ground-penetrating radar and seismic-reflection computer models developed at the Univ. of Kansas. To do this, useful seismic and GPR data are being collected along the same line(s) and within the same depth range. The principal investigators selected a site in central Kansas as a primary location and, although the site itself is not environmentally sensitive, the location chosen offers particularly useful attributes for this research and will serve as a proxy site for areas that are contaminated. As part of an effort to evaluate the strengths of each method, the authors will repeat the seismic and GPR surveys on a seasonal basis to establish how the complementary information obtained varies over time. Because the water table fluctuates at this site on a seasonal basis, variations in the two types of data over time also can be observed. Such noninvasive in-situ methods of identifying and characterizing the hydrologic flow regimes at contaminated sites support the prospect of developing effective, cost-conscious cleanup strategies in the near future. As of the end of May 1998, the project is on schedule. The first field work was conducted using both of the geophysical survey methods in October of 1997, and the second field survey employed both methods in March of 1998. One of the stated tasks is to reoccupy the same survey line on a quarterly basis for two years to examine change in both

  13. Combining ground penetrating radar and electromagnetic induction for industrial site characterization

    Science.gov (United States)

    Van De Vijver, Ellen; Van Meirvenne, Marc; Saey, Timothy; De Smedt, Philippe; Delefortrie, Samuël; Seuntjens, Piet

    2014-05-01

    Industrial sites pose specific challenges to the conventional way of characterizing soil and groundwater properties through borehole drilling and well monitoring. The subsurface of old industrial sites typically exhibits a large heterogeneity resulting from various anthropogenic interventions, such as the dumping of construction and demolition debris and industrial waste. Also larger buried structures such as foundations, utility infrastructure and underground storage tanks are frequently present. Spills and leaks from industrial activities and leaching of buried waste may have caused additional soil and groundwater contamination. Trying to characterize such a spatially heterogeneous medium with a limited number of localized observations is often problematic. The deployment of mobile proximal soil sensors may be a useful tool to fill up the gaps in between the conventional observations, as these enable measuring soil properties in a non-destructive way. However, because the output of most soil sensors is affected by more than one soil property, the application of only one sensor is generally insufficient to discriminate between all contributing factors. To test a multi-sensor approach, we selected a study area which was part of a former manufactured gas plant site located in one of the seaport areas of Belgium. It has a surface area of 3400 m² and was the location of a phosphate production unit that was demolished at the end of the 1980s. Considering the long and complex history of the site we expected to find a typical "industrial" soil. Furthermore, the studied area was located between buildings of the present industry, entailing additional practical challenges such as the presence of active utilities and aboveground obstacles. The area was surveyed using two proximal soil sensors based on two different geophysical methods: ground penetrating radar (GPR), to image contrasts in dielectric permittivity, and electromagnetic induction (EMI), to measure the apparent

  14. Ground Characterization Studies in Canakkale Pilot Site of LIQUEFACT Project

    Science.gov (United States)

    Ozcep, F.; Oztoprak, S.; Aysal, N.; Bozbey, I.; Tezel, O.; Ozer, C.; Sargin, S.; Bekin, E.; Almasraf, M.; Cengiz Cinku, M.; Ozdemir, K.

    2017-12-01

    The our aim is to outline the ground characterisation studies in Canakkale test site. Study is based on the EU H2020 LIQUEFACT project entitled "Liquefact: Assessment and mitigation of liquefaction potential across Europe: a holistic approach to protect structures / infrastructures for improved resilience to earthquake-induced liquefaction disasters". Objectives and extent of ground characterization for Canakkale test site includes pre-existing soil investigation studies and complementary field studies. There were several SPT and geophysical tests carried out in the study area. Within the context of the complementary tests, six (6) study areas in the test site were chosen and complementary tests were carried out in these areas. In these areas, additional boreholes were opened and SPT tests were performed. It was decided that additional CPT (CPTU and SCPT) and Marchetti Dilatometer (DMT) tests should be carried out within the scope of the complementary testing. Seismic refraction, MASW and micro tremor measurements had been carried out in pre-existing studies. Shear wave velocities obtained from MASW measurements were evaluated to the most rigorous level. These tests were downhole seismic, PS-logging, seismic refraction, 2D-ReMi, MASW, micro tremor (H/V Nakamura method), 2D resistivity and resonance acoustic profiling (RAP). RAP is a new technique which will be explained briefly in the relevant section. Dynamic soil properties had not been measured in pre-existing studies, therefore these properties were investigated within the scope of the complementary tests. Selection of specific experimental tests of the complementary campaign was based on cost-benefit considerations Within the context of complementary field studies, dynamic soil properties were measured using resonant column and cyclic direct shear tests. Several sieve analyses and Atterberg Limits tests which were documented in the pre-existing studies were evaluated. In the complementary study carried out

  15. SITE-94. Geochemical characterization of Simpevarp ground waters near the Aespoe Hard Rock Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Glynn, P D; Voss, C I [US Geological Survey, Reston, VA (United States)

    1999-09-01

    evidence remains to be found to prove or to disprove that deep penetration of oxygenated ground waters occurred during the last Pleistocene glaciation. Amorphous Fe-oxyhydroxides and goethites have been observed at great depths at several SKB sites in Sweden. These phases may have formed as a result of the intrusion of oxygenated glacial melt waters. The recommendations for future geochemical characterization of potential nuclear waste disposal sites made by the present report generally complement recommendations made earlier by Andrews based on the international program of hydrochemical work at the Stripa mine. In addition to better sampling techniques and protocols, future characterization efforts should place greater emphasis on the measurement of conservative constituents (Cl, Br, {sup 2}H, {sup 18}O) that may provide information on the origin of ground waters and also on the hydrologic disturbances induced by sampling, testing and excavation activities. (abstract truncated)

  16. Site Selection for Hvdc Ground Electrodes

    Science.gov (United States)

    Freire, P. F.; Pereira, S. Y.

    2014-12-01

    High-Voltage Direct Current (HVDC) transmission systems are composed of a bipole transmission line with a converter substation at each end. Each substation may be equipped with a HVDC ground electrode, which is a wide area (up to 1 km Ø) and deep (from 3 to 100m) electrical grounding. When in normal operation, the ground electrode will dissipate in the soil the unbalance of the bipole (~1.5% of the rated current). When in monopolar operation with ground return, the HVDC electrode will inject in the soil the nominal pole continuous current, of about 2000 to 3000 Amperes, continuously for a period up to a few hours. HVDC ground electrodes site selection is a work based on extensive geophysical and geological surveys, in order to attend the desired design requirements established for the electrodes, considering both its operational conditions (maximum soil temperature, working life, local soil voltage gradients etc.) and the interference effects on the installations located up to 50 km away. This poster presents the geophysical investigations conducted primarily for the electrodes site selection, and subsequently for the development of the crust resistivity model, which will be used for the interference studies. A preliminary site selection is conducted, based on general geographical and geological criteria. Subsequently, the geology of each chosen area is surveyed in detail, by means of electromagnetic/electrical geophysical techniques, such as magnetotelluric (deep), TDEM (near-surface) and electroresistivity (shallow). Other complementary geologic and geotechnical surveys are conducted, such as wells drilling (for geotechnical characterization, measurement of the water table depth and water flow, and electromagnetic profiling), and soil and water sampling (for measurement of thermal parameters and evaluation of electrosmosis risk). The site evaluation is a dynamic process along the surveys, and some sites will be discarded. For the two or three final sites, the

  17. Ground water monitoring strategies at the Weldon Spring Site, Weldon Spring, Missouri

    International Nuclear Information System (INIS)

    Meyer, K.A. Jr.

    1988-01-01

    This paper presents ground water monitoring strategies at the Weldon Spring Site in east-central Missouri. The Weldon Spring Site is a former ordnance works and uranium processing facility. In 1987, elevated levels of inorganic anions and nitroaromatics were detected in ground water beneath the site. Studies are currently underway to characterize the hydrogeologic regime and to define ground water contamination. The complex hydrogeology at the Weldon Spring Site requires innovative monitoring strategies. Combinations of fracture and conduit flow exist in the limestone bedrock. Perched zones are also present near surface impoundments. Losing streams and springs surround the site. Solving this complex combination of hydrogeologic conditions is especially challenging

  18. SITE-94. Geochemical characterization of Simpevarp ground waters near the Aespoe Hard Rock Laboratory

    International Nuclear Information System (INIS)

    Glynn, P.D.; Voss, C.I.

    1999-09-01

    The present report analyzes the geochemical data in order to evaluate collection and interpretation techniques that will be used to site the repository and to assess its safety. Ground waters near the Aespoe Hard Rock Laboratory (HRL) may be grouped into five chemically and isotopically distinct water types, on the basis of their deuterium and chloride contents: 1) recent waters, 2) 5 g/L chloride waters, 3) deep waters, 4) seawater imprint waters, and 5) glacial melt waters. The sampled ground waters show a progressive change from a predominantly NaHCO 3 composition at shallow depth to a CaCl 2 -rich composition at depth. Despite the proximity of the Baltic, relatively few of the sampled ground waters contain any evidence of a seawater component. This finding, together with the rather shallow depths at which saline waters were found, indicates that Aespoe island is presently in a regional ground-water discharge area. The chemical and isotopic composition of the sampled waters also indicates that local recharge of dilute recent waters occurs only down to shallow depths (generally less than 100 in). The Aespoe ground waters are sulfidic and do not presently contain any dissolved oxygen. Measured E H values are generally near -300 mV, and on average are only about 50 mV lower than E H values calculated from the sulfide/sulfate couple. Maintenance of reducing conditions, such as presently found at the Aespoe HRL, is an important consideration in assessing the performance of nuclear waste disposal sites. Measurements of dissolved radon and of uranium concentrations in fracture-fill materials were used to calculate an average effective flow-wetted surface area of 3.1 m 2 per liter of water for the Aespoe site. Estimation of flow-wetted surface areas is essential in determining the importance of matrix diffusion and surface sorption processes for radionuclide release calculations. The Rn calculation technique shows promise in helping narrow the possible range of values

  19. Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado. Attachment 3, Ground water hydrology report: Preliminary final

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-04

    The US Environmental Protection Agency (EPA) has established health and environmental protection regulations to correct and prevent ground water contamination resulting from processing activities at inactive uranium milling sites (52 FR 36000 (1987)). According to the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, 42 USC {section}7901 et seq., the US Department of Energy (DOE) is responsible for assessing the inactive uranium processing sites. The DOE has determined that for Slick Rock, this assessment shall include hydrogeologic site characterization for two separate uranium processing sites, the Union Carbide (UC) site and the North Continent (NC) site, and for the proposed Burro Canyon disposal site. The water resources protection strategy that describes how the proposed action will comply with the EPA ground water protection standards is presented in Attachment 4. The following site characterization activities are discussed in this attachment: Characterization of the hydrogeologic environment, including hydrostratigraphy, ground water occurrence, aquifer parameters, and areas of recharge and discharge. Characterization of existing ground water quality by comparison with background water quality and the maximum concentration limits (MCL) of the proposed EPA ground water protection standards. Definition of physical and chemical characteristics of the potential contaminant source, including concentration and leachability of the source in relation to migration in ground water and hydraulically connected surface water. Description of local water resources, including current and future use, availability, and alternative supplies.

  20. Seismic Hazard Assessment in Site Evaluation for Nuclear Installations: Ground Motion Prediction Equations and Site Response

    International Nuclear Information System (INIS)

    2016-07-01

    The objective of this publication is to provide the state-of-the-art practice and detailed technical elements related to ground motion evaluation by ground motion prediction equations (GMPEs) and site response in the context of seismic hazard assessments as recommended in IAEA Safety Standards Series No. SSG-9, Seismic Hazards in Site Evaluation for Nuclear Installations. The publication includes the basics of GMPEs, ground motion simulation, selection and adjustment of GMPEs, site characterization, and modelling of site response in order to improve seismic hazard assessment. The text aims at delineating the most important aspects of these topics (including current practices, criticalities and open problems) within a coherent framework. In particular, attention has been devoted to filling conceptual gaps. It is written as a reference text for trained users who are responsible for planning preparatory seismic hazard analyses for siting of all nuclear installations and/or providing constraints for anti-seismic design and retrofitting of existing structures

  1. Environmental assessment of ground-water compliance activities at the Uranium Mill Tailings Site, Spook, Wyoming

    International Nuclear Information System (INIS)

    1997-02-01

    This report assesses the environmental impacts of the Uranium Mill Tailings Site at Spook, Wyoming on ground water. DOE previously characterized the site and monitoring data were collected during the surface remediation. The ground water compliance strategy is to perform no further remediation at the site since the ground water in the aquifer is neither a current nor potential source of drinking water. Under the no-action alternative, certain regulatory requirements would not be met

  2. Topographic gradient based site characterization in India complemented by strong ground-motion spectral attributes

    KAUST Repository

    Nath, Sankar Kumar; Thingbaijam, Kiran Kumar; Adhikari, M. D.; Nayak, Avinash; Devaraj, N.; Ghosh, Soumalya K.; Mahajan, Arun K.

    2013-01-01

    We appraise topographic-gradient approach for site classification that employs correlations between 30. m column averaged shear-wave velocity and topographic gradients. Assessments based on site classifications reported from cities across India indicate that the approach is reasonably viable at regional level. Additionally, we experiment three techniques for site classification based on strong ground-motion recordings, namely Horizontal-to-Vertical Spectral Ratio (HVSR), Response Spectra Shape (RSS), and Horizontal-to-Vertical Response Spectral Ratio (HVRSR) at the strong motion stations located across the Himalayas and northeast India. Statistical tests on the results indicate that these three techniques broadly differentiate soil and rock sites while RSS and HVRSR yield better signatures. The results also support the implemented site classification in the light of strong ground-motion spectral attributes observed in different parts of the globe. © 2013 Elsevier Ltd.

  3. Topographic gradient based site characterization in India complemented by strong ground-motion spectral attributes

    KAUST Repository

    Nath, Sankar Kumar

    2013-12-01

    We appraise topographic-gradient approach for site classification that employs correlations between 30. m column averaged shear-wave velocity and topographic gradients. Assessments based on site classifications reported from cities across India indicate that the approach is reasonably viable at regional level. Additionally, we experiment three techniques for site classification based on strong ground-motion recordings, namely Horizontal-to-Vertical Spectral Ratio (HVSR), Response Spectra Shape (RSS), and Horizontal-to-Vertical Response Spectral Ratio (HVRSR) at the strong motion stations located across the Himalayas and northeast India. Statistical tests on the results indicate that these three techniques broadly differentiate soil and rock sites while RSS and HVRSR yield better signatures. The results also support the implemented site classification in the light of strong ground-motion spectral attributes observed in different parts of the globe. © 2013 Elsevier Ltd.

  4. Assessment of remote sensing technologies to discover and characterize waste sites

    International Nuclear Information System (INIS)

    1992-01-01

    This report presents details about waste management practices that are being developed using remote sensing techniques to characterize DOE waste sites. Once the sites and problems have been located and characterized and an achievable restoration and remediation program have been established, efforts to reclaim the environment will begin. Special problems to be considered are: concentrated waste forms in tanks and pits; soil and ground water contamination; ground safety hazards for workers; and requirement for long-term monitoring

  5. Hanford Site ground-water monitoring for 1990

    International Nuclear Information System (INIS)

    Evans, J.C.; Bryce, R.W.; Bates, D.J.

    1992-06-01

    The Pacific Northwest Laboratory monitors ground-water quality across the Hanford Site for the US Department of Energy (DOE) to assess the impact of Site operations on the environment. Monitoring activities were conducted to determine the distribution of mobile radionuclides and identify chemicals present in ground water as a result of Site operations and whenever possible, relate the distribution of these constituents to Site operations. To comply with the Resource Conservation and Recovery Act, additional monitoring was conducted at individual waste sites by the Site Operating Contractor, Westinghouse Hanford Company (WHC), to assess the impact that specific facilities have had on ground-water quality. Six hundred and twenty-nine wells were sampled during 1990 by all Hanford ground-water monitoring activities

  6. Minimally invasive three-dimensional site characterization system

    International Nuclear Information System (INIS)

    Steedman, D.; Seusy, F.E.; Gibbons, J.; Bratton, J.L.

    1993-09-01

    This paper presents an improved for hazardous site characterization. The major components of the systems are: (1) an enhanced cone penetrometer test, (2) surface geophysical surveys and (3) a field database and visualization code. The objective of the effort was to develop a method of combining geophysical data with cone penetrometer data in the field to produce a synergistic effect. Various aspects of the method were tested at three sites. The results from each site are discussed and the data compared. This method allows the data to be interpreted more fully with greater certainty, is faster, cheaper and leads to a more accurate site characterization. Utilizing the cone penetrometer test rather than the standard drilling, sampling and laboratory testing reduces the workers exposure to hazardous materials and minimizes the hazardous material disposal problems. The technologies employed in this effort are, for the most part, state-of-the-art procedures. The approach of using data from various measurement systems to develop a synergistic effect was a unique contribution to environmental site characterization. The use of the cone penetrometer for providing ''ground truth'' data and as a platform for subsurface sensors in environmental site characterization represents a significant advancement in environmental site characterization

  7. Ground Truth Collections at the MTI Core Sites

    International Nuclear Information System (INIS)

    Garrett, A.J.

    2001-01-01

    The Savannah River Technology Center (SRTC) selected 13 sites across the continental US and one site in the western Pacific to serve as the primary or core site for collection of ground truth data for validation of MTI science algorithms. Imagery and ground truth data from several of these sites are presented in this paper. These sites are the Comanche Peak, Pilgrim and Turkey Point power plants, Ivanpah playas, Crater Lake, Stennis Space Center and the Tropical Western Pacific ARM site on the island of Nauru. Ground truth data includes water temperatures (bulk and skin), radiometric data, meteorological data and plant operating data. The organizations that manage these sites assist SRTC with its ground truth data collections and also give the MTI project a variety of ground truth measurements that they make for their own purposes. Collectively, the ground truth data from the 14 core sites constitute a comprehensive database for science algorithm validation

  8. Depleted uranium risk assessment for Jefferson Proving Ground using data from environmental monitoring and site characterization. Final report

    International Nuclear Information System (INIS)

    Ebinger, M.H.; Hansen, W.R.

    1996-10-01

    This report documents the third risk assessment completed for the depleted uranium (DU) munitions testing range at Jefferson Proving Ground (JPG), Indiana, for the U.S. Army Test and Evaluation command. Jefferson Proving Ground was closed in 1995 under the Base Realignment and Closure Act and the testing mission was moved to Yuma Proving Ground. As part of the closure of JPG, assessments of potential adverse health effects to humans and the ecosystem were conducted. This report integrates recent information obtained from site characterization surveys at JPG with environmental monitoring data collected from 1983 through 1994 during DU testing. Three exposure scenarios were evaluated for potential adverse effects to human health: an occasional use scenario and two farming scenarios. Human exposure was minimal from occasional use, but significant risk were predicted from the farming scenarios when contaminated groundwater was used by site occupants. The human health risk assessments do not consider the significant risk posed by accidents with unexploded ordnance. Exposures of white-tailed deer to DU were also estimated in this study, and exposure rates result in no significant increase in either toxicological or radiological risks. The results of this study indicate that remediation of the DU impact area would not substantially reduce already low risks to humans and the ecosystem, and that managed access to JPG is a reasonable model for future land use options

  9. Evaluation of site effects on ground motions based on equivalent linear site response analysis and liquefaction potential in Chennai, south India

    Science.gov (United States)

    Nampally, Subhadra; Padhy, Simanchal; Trupti, S.; Prabhakar Prasad, P.; Seshunarayana, T.

    2018-05-01

    We study local site effects with detailed geotechnical and geophysical site characterization to evaluate the site-specific seismic hazard for the seismic microzonation of the Chennai city in South India. A Maximum Credible Earthquake (MCE) of magnitude 6.0 is considered based on the available seismotectonic and geological information of the study area. We synthesized strong ground motion records for this target event using stochastic finite-fault technique, based on a dynamic corner frequency approach, at different sites in the city, with the model parameters for the source, site, and path (attenuation) most appropriately selected for this region. We tested the influence of several model parameters on the characteristics of ground motion through simulations and found that stress drop largely influences both the amplitude and frequency of ground motion. To minimize its influence, we estimated stress drop after finite bandwidth correction, as expected from an M6 earthquake in Indian peninsula shield for accurately predicting the level of ground motion. Estimates of shear wave velocity averaged over the top 30 m of soil (V S30) are obtained from multichannel analysis of surface wave (MASW) at 210 sites at depths of 30 to 60 m below the ground surface. Using these V S30 values, along with the available geotechnical information and synthetic ground motion database obtained, equivalent linear one-dimensional site response analysis that approximates the nonlinear soil behavior within the linear analysis framework was performed using the computer program SHAKE2000. Fundamental natural frequency, Peak Ground Acceleration (PGA) at surface and rock levels, response spectrum at surface level for different damping coefficients, and amplification factors are presented at different sites of the city. Liquefaction study was done based on the V S30 and PGA values obtained. The major findings suggest show that the northeast part of the city is characterized by (i) low V S30 values

  10. Coordinated site characterization and performance assessment - an iterative approach for the site evaluation

    International Nuclear Information System (INIS)

    Papp, T.; Ericsson, L.O.; Thegerstroem, C.; Almen, K.E.

    1995-01-01

    SKB planning for siting a deep repository involves feasibility studies in 5-10 municipalities surface based characterization and drilling on two candidate sites and detailed characterization of one site including a shaft to proposed repository depth. The selection of a site or the detailed layout of the repository defines characteristics that might influence safety in a broad sense. There is a strong ling between the safety, technical (engineering) and functional aspects. The site selection will be based on general geoscientific information, i.e. mechanical stability, ground-water chemistry, slow ground-water movements and complicating factors like high potential for mineralization. The general layout of the repository in the actual geological structure of the site must be done with regard to a number of guidelines, e.g. to hydraulically separate the parts of the repository containing the spent nuclear fuel from those for other types of long lived waste and to separate the two stages of the spent fuel repository so they can be handled separately in the licensing process. When the various parts of the repository have been tentatively located the consequence of the multiple barrier principle is that the layout of the various parts should be made with the aim to utilize the available natural barrier system at the site as well as possible. (authors). 2 refs., 3 figs., 2 tabs

  11. EPA True NO2 ground site measurements – multiple sites, TCEQ ground site measurements of meteorological and air pollution parameters – multiple sites ,GeoTASO NO2 Vertical Column

    Data.gov (United States)

    U.S. Environmental Protection Agency — EPA True NO2 ground site measurements – multiple sites - http://www-air.larc.nasa.gov/cgi-bin/ArcView/discover-aq.tx-2013; TCEQ ground site measurements of...

  12. Hanford site ground water protection management plan

    International Nuclear Information System (INIS)

    1994-10-01

    Ground water protection at the Hanford Site consists of preventative and remedial measures that are implemented in compliance with a variety of environmental regulations at local, state, and federal levels. These measures seek to ensure that the resource can sustain a broad range of beneficial uses. To effectively coordinate and ensure compliance with applicable regulations, the U.S. Department of Energy has issued DOE Order 5400.1 (DOE 1988a). This order requires all U.S. Department of Energy facilities to prepare separate ground water protection program descriptions and plans. This document describes the Ground Water Protection Management Plan (GPMP) for the Hanford Site located in the state of Washington. DOE Order 5400.1 specifies that the GPMP covers the following general topical areas: (1) documentation of the ground water regime; (2) design and implementation of a ground water monitoring program to support resource management and comply with applicable laws and regulations; (3) a management program for ground water protection and remediation; (4) a summary and identification of areas that may be contaminated with hazardous waste; (5) strategies for controlling hazardous waste sources; (6) a remedial action program; and (7) decontamination, decommissioning, and related remedial action requirements. Many of the above elements are currently covered by existing programs at the Hanford Site; thus, one of the primary purposes of this document is to provide a framework for coordination of existing ground water protection activities. The GPMP provides the ground water protection policy and strategies for ground water protection/management at the Hanford Site, as well as an implementation plan to improve coordination of site ground water activities

  13. Procedures for evaluation of vibratory ground motions of soil deposits at nuclear power plant sites

    International Nuclear Information System (INIS)

    1975-06-01

    According to USNRC requirements set forth in Appendix A, 10 CFR, Part 100, vibratory ground motion criteria for a nuclear plant must be based on local soil conditions, as well as on the seismicity, geology, and tectonics of the region. This report describes how such criteria can be developed by applying the latest technology associated with analytical predictions of site-dependent ground motions and with the use of composite spectra obtained from the current library of strong motion records. Recommended procedures for defining vibratory ground motion criteria contain the following steps: (1) geologic and seismologic studies; (2) site soils investigations; (3) site response sensitivity studies; (4) evaluation of local site response characteristics; (5) selection of site-matched records; and (6) appraisal and selection of seismic input criteria. An in-depth discussion of the engineering characteristics of earthquake ground motions including parameters used to characterize earthquakes and strong motion records, geologic factors that influence ground shaking, the current strong motion data base, and case histories of the effects of past earthquake events is presented. Next, geotechnical investigations of the seismologic, geologic, and site soil conditions required to develop vibratory motion criteria are briefly summarized. The current technology for establishing vibratory ground motion criteria at nuclear plant sites, including site-independent and site-dependent procedures that use data from strong motion records and from soil response analyses is described. (auth)

  14. Site characterization and site response in Port-au-Prince, Haiti

    Science.gov (United States)

    Hough, Susan E.; Yong, Alan K.; Altidor, Jean Robert; Anglade, Dieuseul; Given, Douglas D.; Mildor, Saint-Louis

    2011-01-01

    Waveform analysis of aftershocks of the Mw7.0 Haiti earthquake of 12 January 2010 reveals amplification of ground motions at sites within the Cul de Sac valley in which Port-au-Prince is situated. Relative to ground motions recorded at a hard-rock reference site, peak acceleration values are amplified by a factor of approximately 1.8 at sites on low-lying Mio-Pliocene deposits in central Port-au-Prince and by a factor of approximately 2.5–3 on a steep foothill ridge in the southern Port-au-Prince metropolitan region. The observed amplitude, predominant periods, variability, and polarization of amplification are consistent with predicted topographic amplification by a steep, narrow ridge. A swath of unusually high damage in this region corresponds with the extent of the ridge where high weak-motion amplifications are observed. We use ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) imagery to map local geomorphology, including characterization of both near-surface and of small-scale topographic structures that correspond to zones of inferred amplification.

  15. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Durango, Colorado. Revision 1

    International Nuclear Information System (INIS)

    1995-09-01

    For the UMTRA Project site located near Durango, Colorado (the Durango site), the Surface Project cleanup occurred from 1986 to 1991. An evaluation was made to determine whether exposure to ground water contaminated by uranium processing could affect people's health. Exposure could occur from drinking water pumped from a hypothetical well drilled in the contaminated ground water area. In addition, environmental risks may result if plants or animals are exposed to contaminated ground water, or surface water that has mixed with contaminated ground water. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Project at the Durango site. The results of this report and further site characterization of the Durango site will be used to determine what is necessary to protect public health and the environment, and to comply with the EPA standards

  16. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Durango, Colorado. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    For the UMTRA Project site located near Durango, Colorado (the Durango site), the Surface Project cleanup occurred from 1986 to 1991. An evaluation was made to determine whether exposure to ground water contaminated by uranium processing could affect people`s health. Exposure could occur from drinking water pumped from a hypothetical well drilled in the contaminated ground water area. In addition, environmental risks may result if plants or animals are exposed to contaminated ground water, or surface water that has mixed with contaminated ground water. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Project at the Durango site. The results of this report and further site characterization of the Durango site will be used to determine what is necessary to protect public health and the environment, and to comply with the EPA standards.

  17. Assessment of remote sensing technologies to discover and characterize waste sites

    International Nuclear Information System (INIS)

    1992-01-01

    This report presents details about waste management practices that are being developed using remote sensing techniques to characterize DOE waste sites. Once sites and problems have been located and an achievable restoration and remediation program have been established, efforts to reclaim the environment will begin. Special problems to be considered are: concentrated wastes in tanks and pits; soil and ground water contamination; ground safety hazards for workers; and requirements for long-term monitoring

  18. Hanford Site ground-water monitoring for 1991

    International Nuclear Information System (INIS)

    Evans, J.C.; Bryce, R.W.; Bates, D.J.

    1992-10-01

    The Pacific Northwest Laboratory (PNL) monitors the distribution of radionuclides and other hazardous materials in ground water at the Hanford Site for the US Department of Energy (DOE). This work is performed through the Ground-Water Surveillance Project and is designed to meet the requirements of DOE Order 5400.1 that apply to environmental surveillance and ground-water monitoring (DOE 1988). This annual report discusses results of ground-water monitoring at the Hanford Site during 1991. In addition to the general discussion, the following topics are discussed in detail: (1) carbon tetrachloride in the 200-West Area; (2) cyanide in and north of the 200-East and the 200-West areas; (3) hexavalent chromium contamination in the 100, 200, and 600 areas; (4) trichloroethylene in the vicinity of the Solid Waste Landfill, 100-F Area, and 300 Area; (5) nitrate across the Site; (6) tritium across the Site; and (7) other radionuclide contamination throughout the Site, including gross alpha, gross beta, cobalt-60, strontium-90, technetium-99, iodine-129, cesium-137, uranium, and plutonium

  19. Hanford Site ground-water surveillance for 1989

    International Nuclear Information System (INIS)

    Evans, J.C.; Bryce, R.W.; Bates, D.J.; Kemner, M.L.

    1990-06-01

    This annual report of ground-water surveillance activities provides discussions and listings of results for ground-water monitoring at the Hanford Site during 1989. The Pacific Northwest Laboratory (PNL) assesses the impacts of Hanford operations on the environment for the US Department of Energy (DOE). The impact Hanford operations has on ground water is evaluated through the Hanford Site Ground-Water Surveillance program. Five hundred and sixty-seven wells were sampled during 1989 for Hanford ground-water monitoring activities. This report contains a listing of analytical results for calendar year (CY) 1989 for species of importance as potential contaminants. 30 refs., 29 figs,. 4 tabs

  20. Draft site characterization analysis of the site characterization report for the Basalt Waste Isolation Project, Hanford, Washington site. Appendices E through W

    International Nuclear Information System (INIS)

    1983-03-01

    Volume 2 contains Appendices E through W: potential for large-scale pump tests in the Grande Ronde; review of hydrochemical characterization related to flow system interpretation in Hanford basalts; limitations of packer-testing for head evaluation in Hanford basalts; hydrogeologic data integration for conceptual groundwater flow models; drilling mud effects on hydrogeologic testing; site issue analyses related to the nature at the present groundwater system at the Hanford site, Washington; structural and stratigraphic characteristics related to groundwater flow at the Hanford site, Washington; seismic hazard and some examples of hazard studies at Hanford; earthquake swarms in the Columbia Plateau; seismic ground motion at depth; failure modes for the metallic waste package component; degradation mechanisms of borosilicate glass; transport and retardation of radionuclides in the waste package; determination and interpretation of redox conditions and changes in underground high-level repositories; determination and interpretation of sorption data applied to radionuclide migration in underground repositories; solubility of radionuclide compounds presented in the BWIP site characterization report; and release rate from engineered system

  1. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Salt Lake City, Utah. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of two phases: the first is the Surface Project, and the second is the Ground Water Project. For the UMTRA Project site known as the Vitro site, near Salt Lake City, Utah, Surface Project cleanup occurred from 1985 to 1987. The UMTRA Project`s second phase, the Ground Water Project, evaluates the nature and extent of ground water contamination resulting from uranium processing and determines a strategy for ground water compliance with the Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. A risk assessment is the process of describing a source of contamination and showing how that contamination may reach people and the environment. The amount of contamination people or the environment may be exposed to is calculated and used to characterize the possible health or environmental effects that may result from this exposure. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Project at the Vitro site. The results of this report and further site characterization of the Vitro site will be used to determine what is necessary, if anything, to protect human health and the environment while complying with EPA standards.

  2. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Salt Lake City, Utah. Revision 1

    International Nuclear Information System (INIS)

    1995-09-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of two phases: the first is the Surface Project, and the second is the Ground Water Project. For the UMTRA Project site known as the Vitro site, near Salt Lake City, Utah, Surface Project cleanup occurred from 1985 to 1987. The UMTRA Project's second phase, the Ground Water Project, evaluates the nature and extent of ground water contamination resulting from uranium processing and determines a strategy for ground water compliance with the Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. A risk assessment is the process of describing a source of contamination and showing how that contamination may reach people and the environment. The amount of contamination people or the environment may be exposed to is calculated and used to characterize the possible health or environmental effects that may result from this exposure. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Project at the Vitro site. The results of this report and further site characterization of the Vitro site will be used to determine what is necessary, if anything, to protect human health and the environment while complying with EPA standards

  3. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Canonsburg, Pennsylvania. Revision 1

    International Nuclear Information System (INIS)

    1995-11-01

    For the UMTRA Project site located near Canonsburg, Pennsylvania (the Canonsburg site), the Surface Project cleanup occurred from 1983 to 1985, and involved removing the uranium processing mill tailings and radioactively contaminated soils and materials from their original locations and placing them in a disposal cell located on the former Canonsburg uranium mill site. This disposal cell is designed to minimize radiation emissions and further contamination of ground water beneath the site. The Ground Water Project will evaluate the nature and the extent of ground water contamination resulting from uranium processing at the former Canonsburg uranium mill site, and will determine a ground water strategy for complying with the US Environmental Protection Agency's (EPA) ground water standards established for the UMTRA Project. For the Canonsburg site, an evaluation was made to determine whether exposure to ground water contaminated by uranium processing could affect people's health. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Project at the Canonsburg site. The results of this report and further site characterization of the Canonsburg site will be used to determine how to protect public health and the environment, and how to comply with the EPA standards

  4. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Canonsburg, Pennsylvania. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    For the UMTRA Project site located near Canonsburg, Pennsylvania (the Canonsburg site), the Surface Project cleanup occurred from 1983 to 1985, and involved removing the uranium processing mill tailings and radioactively contaminated soils and materials from their original locations and placing them in a disposal cell located on the former Canonsburg uranium mill site. This disposal cell is designed to minimize radiation emissions and further contamination of ground water beneath the site. The Ground Water Project will evaluate the nature and the extent of ground water contamination resulting from uranium processing at the former Canonsburg uranium mill site, and will determine a ground water strategy for complying with the US Environmental Protection Agency`s (EPA) ground water standards established for the UMTRA Project. For the Canonsburg site, an evaluation was made to determine whether exposure to ground water contaminated by uranium processing could affect people`s health. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Project at the Canonsburg site. The results of this report and further site characterization of the Canonsburg site will be used to determine how to protect public health and the environment, and how to comply with the EPA standards.

  5. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Naturita, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (phase I), and the Ground Water Project (phase II). For the UMTRA Project site located near Naturita, Colorado (the Naturita site), phase I involves the removal of radioactively contaminated soils and materials and their transportation to a disposal site at Union Carbide Corporation`s Upper Burbank Repository at Uravan, Colorado, about 13 road miles (mi) (21 kilometers [km]) to the northwest. No uranium mill tailings are involved because the tailings were removed from the Naturita site and placed at Coke Oven, Colorado, during 1977 to 1979. Phase II of the project will evaluate the nature and extent of ground water contamination resulting from uranium processing and its effect on human health or the environment; and will determine site-specific ground water compliance strategies in accordance with the US Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. Human health risks could occur from drinking water pumped from a hypothetical well drilled in the contaminated ground water area. Environmental risks may result if plants or animals are exposed to contaminated ground water, or surface water that has received contaminated ground water. Therefore, a risk assessment is conducted for the Naturita site. This risk assessment report is the first site-specific document prepared for the Ground Water Project at the Naturita site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine whether any action is needed to protect human health or the environment.

  6. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Naturita, Colorado

    International Nuclear Information System (INIS)

    1995-08-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (phase I), and the Ground Water Project (phase II). For the UMTRA Project site located near Naturita, Colorado (the Naturita site), phase I involves the removal of radioactively contaminated soils and materials and their transportation to a disposal site at Union Carbide Corporation's Upper Burbank Repository at Uravan, Colorado, about 13 road miles (mi) (21 kilometers [km]) to the northwest. No uranium mill tailings are involved because the tailings were removed from the Naturita site and placed at Coke Oven, Colorado, during 1977 to 1979. Phase II of the project will evaluate the nature and extent of ground water contamination resulting from uranium processing and its effect on human health or the environment; and will determine site-specific ground water compliance strategies in accordance with the US Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. Human health risks could occur from drinking water pumped from a hypothetical well drilled in the contaminated ground water area. Environmental risks may result if plants or animals are exposed to contaminated ground water, or surface water that has received contaminated ground water. Therefore, a risk assessment is conducted for the Naturita site. This risk assessment report is the first site-specific document prepared for the Ground Water Project at the Naturita site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine whether any action is needed to protect human health or the environment

  7. Ground-water monitoring and modeling at the Hanford Site

    International Nuclear Information System (INIS)

    Mitchell, P.J.; Freshley, M.D.

    1987-01-01

    The ground-water monitoring program at the Hanford Site in southeastern Washington State is continually evolving in response to changing operations at the site, changes in the ground-water flow system, movement of the constituents in the aquifers, and regulatory requirements. Sampling and analysis of ground water, along with ground-water flow and solute transport modeling are used to evaluate the movement and resulting distributions of radionuclides and hazardous chemical constituents in the unconfined aquifer. Evaluation of monitoring results, modeling, and information on waste management practices are being combined to continually improve the network of ground-water monitoring wells at the site

  8. Ground-water monitoring and modeling at the Hanford Site

    International Nuclear Information System (INIS)

    Mitchell, P.J.; Freshley, M.D.

    1987-01-01

    The ground-water monitoring program at the Hanford Site in southeastern Washington State is continually evolving in response to changing operations at the site, changes in the ground-water flow system, movement of the constituents in the aquifers, and regulatory requirements. Sampling and analysis of ground water, along with ground-water flow and solute transport modeling are used ito evaluate the movement and resulting distributions of radionuclides and hazardous chemical constituents in the unconfined aquifer. Evaluation of monitoring results, modeling, and information on waste management practices are being combined to continually improve the network of ground-water monitoring wells at the site

  9. Quaternary ground siting technology of nuclear power plants

    International Nuclear Information System (INIS)

    Nishi, K.; Kokusho, T.; Iwatate, Y.; Ishida, K.; Honsho, S.; Okamoto, T.; Tohma, J.; Tanaka, Y.; Kanatani, M.

    1992-01-01

    A seismic stability evaluation method for a nuclear power plant to be located on Quaternary sandy/gravelly ground is discussed herein in terms of a geological and geotechnical survey, a design earthquake motion evaluation and geotechnical seismic stability analyses. The geological and geotechnical exploration tunnel in the rock foundation siting will be difficult in the Quaternary ground siting. Boring, geophysical surveys and soil sampling will play a major role in this case. A design earthquake input spectrum for this siting is proposed to take in account the significant effect of longer period motion on ground stability. Equivalent and non-linear analyses demonstrate the seismic stability of the foundation ground so long as the soil density is high. (author)

  10. Session II-A. Site characterization

    International Nuclear Information System (INIS)

    McIntosh, W.

    1981-01-01

    Section II-A on Site Characterization consists of the following papers which describe the progress made during the past fiscal year toward identifying sites for high-level radioactive waste repositories in deep geologic formations: (1) progress in expanded studies for repository sites; (2) evaluation of geologic and hydrologic characteristics in the Basin and Range Province relative to high-level nuclear waste disposal; (3) siting progress: Permian region; (4) Paradox Basin site exploration: a progress report; (5) progress toward recommending a salt site for an exploratory shaft; (6) status of geologic investigations for nuclear waste disposal at the Nevada Test Site; (7) geohydrologic investigation of the Hanford Site, Washington: basalt waste isolation project. Highlights include: expanding studies in crystalline rocks, both in the Appalachian and Lake Superior regions; laying the ground work with the states in the Basin and Range Province to kick off a joint USGS-state province study; narrowing areas of the Permian and Paradox bedded salt regions to a few promising locations; issuing a Gulf Coast Salt Dome Evaluation report (ONWI-109) for public review and comment; narrowing the Nevada Test Site area and Hanford Site area to locations for detailed site investigations and exploratory shafts; progress in developing the subseabed and space disposals alternatives

  11. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Naturita, Colorado. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project, and the Ground Water Project. For the UMTRA Project site located near Naturita, Colorado, phase I involves the removal of radioactively contaminated soils and materials and their transportation to a disposal site at Union Carbide Corporation`s Upper Burbank Repository at Uravan, Colorado. The surface cleanup will reduce radon and other radiation emissions from the former uranium processing site and prevent further site-related contamination of ground water. Phase II of the project will evaluate the nature and extent of ground water contamination resulting from uranium processing and its effect on human health and the environment, and will determine site-specific ground water compliance strategies in accordance with the US Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. Human health risks could occur from drinking water pumped from a hypothetical well drilled in the contaminated ground water area. Environmental risks may result if plants or animals are exposed to contaminated ground water or surface water that has mixed with contaminated ground water. Therefore, a risk assessment was conducted for the Naturita site. This risk assessment report is the first site-specific document prepared for the Ground Water Project at the Naturita site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine whether any action is needed to protect human health or the environment.

  12. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Naturita, Colorado. Revision 1

    International Nuclear Information System (INIS)

    1995-11-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project, and the Ground Water Project. For the UMTRA Project site located near Naturita, Colorado, phase I involves the removal of radioactively contaminated soils and materials and their transportation to a disposal site at Union Carbide Corporation's Upper Burbank Repository at Uravan, Colorado. The surface cleanup will reduce radon and other radiation emissions from the former uranium processing site and prevent further site-related contamination of ground water. Phase II of the project will evaluate the nature and extent of ground water contamination resulting from uranium processing and its effect on human health and the environment, and will determine site-specific ground water compliance strategies in accordance with the US Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. Human health risks could occur from drinking water pumped from a hypothetical well drilled in the contaminated ground water area. Environmental risks may result if plants or animals are exposed to contaminated ground water or surface water that has mixed with contaminated ground water. Therefore, a risk assessment was conducted for the Naturita site. This risk assessment report is the first site-specific document prepared for the Ground Water Project at the Naturita site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine whether any action is needed to protect human health or the environment

  13. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Falls City, Texas: Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    This baseline risk assessment of ground water contamination of the uranium mill tailings site near Falls City, Texas, evaluates potential impact to public health and the environment resulting from ground water contamination at the former Susquehanna Western, Inc. (SWI), uranium mill processing site. This document fulfills the following objectives: determine if the site presents immediate or potential future health risks, determine the need for interim institutional controls, serve as a key input to project planning and prioritization, and recommend future data collection efforts to more fully characterize risk. The Uranium Mill Tailings Remedial Action (UMTRA) Project has begun its evaluation of ground water contamination at the Falls City site. This risk assessment is one of the first documents specific to this site for the Ground Water Project. The first step is to evaluate ground water data collected from monitor wells at or near the site. Evaluation of these data show the main contaminants in the Dilworth ground water are cadmium, cobalt, fluoride, iron, nickel, sulfate, and uranium. The data also show high levels of arsenic and manganese occur naturally in some areas.

  14. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Falls City, Texas: Revision 1

    International Nuclear Information System (INIS)

    1994-09-01

    This baseline risk assessment of ground water contamination of the uranium mill tailings site near Falls City, Texas, evaluates potential impact to public health and the environment resulting from ground water contamination at the former Susquehanna Western, Inc. (SWI), uranium mill processing site. This document fulfills the following objectives: determine if the site presents immediate or potential future health risks, determine the need for interim institutional controls, serve as a key input to project planning and prioritization, and recommend future data collection efforts to more fully characterize risk. The Uranium Mill Tailings Remedial Action (UMTRA) Project has begun its evaluation of ground water contamination at the Falls City site. This risk assessment is one of the first documents specific to this site for the Ground Water Project. The first step is to evaluate ground water data collected from monitor wells at or near the site. Evaluation of these data show the main contaminants in the Dilworth ground water are cadmium, cobalt, fluoride, iron, nickel, sulfate, and uranium. The data also show high levels of arsenic and manganese occur naturally in some areas

  15. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Green River, Utah. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (phase 1) and the Ground Water Project (phase 2). For the UMTRA Project site located near Green River, Utah, the Surface Project cleanup occurred from 1988 to 1989. The tailings and radioactively contaminated soils and materials were removed from their original locations and placed into a disposal cell on the site. The disposal cell is designed to minimize radiation emissions and minimize further contamination of ground water beneath the site. The UMTRA Project`s second phase, the Ground Water Project, evaluates the nature and extent of ground water contamination resulting from uranium processing and determines a strategy for ground water compliance with the Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. For the Green River site, the risk assessment helps determine whether human health risks result from exposure to ground water contaminated by uranium processing. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Project at the Green River site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine what is necessary, if anything, to protect human health and the environment while complying with EPA standards.

  16. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Green River, Utah. Revision 1

    International Nuclear Information System (INIS)

    1995-09-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (phase 1) and the Ground Water Project (phase 2). For the UMTRA Project site located near Green River, Utah, the Surface Project cleanup occurred from 1988 to 1989. The tailings and radioactively contaminated soils and materials were removed from their original locations and placed into a disposal cell on the site. The disposal cell is designed to minimize radiation emissions and minimize further contamination of ground water beneath the site. The UMTRA Project's second phase, the Ground Water Project, evaluates the nature and extent of ground water contamination resulting from uranium processing and determines a strategy for ground water compliance with the Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. For the Green River site, the risk assessment helps determine whether human health risks result from exposure to ground water contaminated by uranium processing. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Project at the Green River site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine what is necessary, if anything, to protect human health and the environment while complying with EPA standards

  17. Site characterization plan:

    International Nuclear Information System (INIS)

    1988-01-01

    The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in accordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site;to describe the conceptual designs for the repository and the waste package;and to present the plans for obtaining the geologic information necessary to demonstrate the suitability of the site for repository, to design the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and developing a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next;it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing principles, and organization of this site characterization plan are outlined, and compliance with applicable regulations is discussed

  18. Remedial action plan and site design for stabilization of the inactive Uranium Mill Tailing site Maybell, Colorado. Attachment 3, ground water hydrology report, Attachment 4, water resources protection strategy. Final report

    International Nuclear Information System (INIS)

    1994-06-01

    The U.S. Environmental Protection Agency (EPA) has established health and environmental regulations to correct and prevent ground water contamination resulting from former uranium processing activities at inactive uranium processing sites (40 CFR Part 192 (1993)) (52 FR 36000 (1978)). According to the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978 (42 USC section 7901 et seq.), the U.S. Department of Energy (DOE) is responsible for assessing the inactive uranium processing sites. The DOE has decided that each assessment will include information on hydrogeologic site characterization. The water resources protection strategy that describes the proposed action compliance with the EPA ground water protection standards is presented in Attachment 4, Water Resources Protection Strategy. Site characterization activities discussed in this section include the following: (1) Definition of the hydrogeologic characteristics of the environment, including hydrostratigraphy, aquifer parameters, areas of aquifer recharge and discharge, potentiometric surfaces, and ground water velocities. (2) Definition of background ground water quality and comparison with proposed EPA ground water protection standards. (3) Evaluation of the physical and chemical characteristics of the contaminant source and/or residual radioactive materials. (4) Definition of existing ground water contamination by comparison with the EPA ground water protection standards. (5) Description of the geochemical processes that affect the migration of the source contaminants at the processing site. (6) Description of water resource use, including availability, current and future use and value, and alternate water supplies

  19. Site characterization plan:

    International Nuclear Information System (INIS)

    1988-01-01

    The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in acordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site;to describe the conceptual designs for the repository and the waste package and to present the plans for obtaining the geologic information necessary to demonstrate the suitability of the site for a repository, to design the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and eveloping a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next;it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing prinicples, and organization of this site characterization plan are outlined, and compliance with applicable regulations is discussed. 880 refs., 130 figs., 25 tabs

  20. Baseline risk assessment of ground water contamination at the uranium mill tailings sites near Rifle, Colorado. Revision 1

    International Nuclear Information System (INIS)

    1995-08-01

    The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase 1) and the Ground Water Project (Phase 2). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further ground water contamination. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. Two UMTRA Project sites are near Rifle, Colorado: the Old Rifle site and the New Rifle site. Surface cleanup at the two sites is under way and is scheduled for completion in 1996. The Ground Water Project is in its beginning stages. A risk assessment identifies a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the environment may be exposed, and the health or environmental effects that could result from that exposure. This report is a site-specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. This evaluation and further site characterization will be used to determine if action is needed to protect human health or the environment

  1. Baseline risk assessment of ground water contamination at the uranium mill tailings sites near Rifle, Colorado. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase 1) and the Ground Water Project (Phase 2). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further ground water contamination. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. Two UMTRA Project sites are near Rifle, Colorado: the Old Rifle site and the New Rifle site. Surface cleanup at the two sites is under way and is scheduled for completion in 1996. The Ground Water Project is in its beginning stages. A risk assessment identifies a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the environment may be exposed, and the health or environmental effects that could result from that exposure. This report is a site-specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. This evaluation and further site characterization will be used to determine if action is needed to protect human health or the environment.

  2. Site investigation - equipment for geological, geophysical, hydrogeological and hydrochemical characterization

    International Nuclear Information System (INIS)

    Almen, K.E.; Fridh, B.; Johansson, B.E.; Sehlstedt, M.

    1986-11-01

    The investigations are performed within a site investigation program. In total about 60,000 m of cored 56 mm boreholes have been drilled and investigated at eight study sites. A summarized description of the main investigation methods is included. Instruments for geophysical investigations contains equipment for ground measurements as well as for borehole logging. The Geophysical investigations including the borehole radar measurements, are indirect methods for the geological and hydrogeological characterization of the rock formation. Great effort has been laid on the development of hydrogeological instruments for hydraulic tests and groundwater head measurements. In order to obtain hydrochemical investigations with high quality, a complete system for sampling and analysis of ground water has been developed. (orig./PW)

  3. TOMOGRAPHIC SITE CHARACTERIZATION USING CPT, ERT, AND GPR

    Energy Technology Data Exchange (ETDEWEB)

    Rexford M. Morey; Susanne M. Conklin; Stephen P. Farrington, P.E.; James D. Shinn II, P.E.

    1999-07-01

    The US Department of Energy (DOE) is responsible for the cleanup of inactive DOE sites and for bringing DOE sites and facilities into compliance with federal, state, and local laws and regulations. The DOE's Office of Environmental Management (EM) needs advanced technologies that can make environmental restoration and waste management operations more efficient and less costly. These techniques are required to better characterize the physical, hydrogeological, and chemical properties of the subsurface while minimizing and optimizing the use of boreholes and monitoring wells. Today the cone penetrometer technique (CPT) is demonstrating the value of a minimally invasive deployment system for site characterization. Applied Research Associates, Inc. is developing two new sensor packages for site characterization and monitoring. The two new methods are: (1) Electrical Resistivity Tomography (ERT); and (2) Ground Penetrating Radar (GPR) Tomography. These sensor systems are now integrated with the CPT. The results of this program now make it possible to install ERT and GPR units by CPT methods and thereby reduce installation costs and total costs for ERT and GPR surveys. These two techniques can complement each other in regions of low resistivity where ERT is more effective and regions of high resistivity where GPR is more effective. The results show that CPT-installed GeoWells can be used for both ERT and GPR borehole tomographic subsurface imaging. These two imaging techniques can be used for environmental site characterization and monitoring have numerous and diverse applications within site cleanup and waste management operations.

  4. Integrated ground-water monitoring strategy for NRC-licensed facilities and sites: Case study applications

    Science.gov (United States)

    Price, V.; Temples, T.; Hodges, R.; Dai, Z.; Watkins, D.; Imrich, J.

    2007-01-01

    This document discusses results of applying the Integrated Ground-Water Monitoring Strategy (the Strategy) to actual waste sites using existing field characterization and monitoring data. The Strategy is a systematic approach to dealing with complex sites. Application of such a systematic approach will reduce uncertainty associated with site analysis, and therefore uncertainty associated with management decisions about a site. The Strategy can be used to guide the development of a ground-water monitoring program or to review an existing one. The sites selected for study fall within a wide range of geologic and climatic settings, waste compositions, and site design characteristics and represent realistic cases that might be encountered by the NRC. No one case study illustrates a comprehensive application of the Strategy using all available site data. Rather, within each case study we focus on certain aspects of the Strategy, to illustrate concepts that can be applied generically to all sites. The test sites selected include:Charleston, South Carolina, Naval Weapons Station,Brookhaven National Laboratory on Long Island, New York,The USGS Amargosa Desert Research Site in Nevada,Rocky Flats in Colorado,C-Area at the Savannah River Site in South Carolina, andThe Hanford 300 Area.A Data Analysis section provides examples of detailed data analysis of monitoring data.

  5. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Sites near Rifle, Colorado. Revision 2

    International Nuclear Information System (INIS)

    1996-02-01

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further ground water contamination. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. Two UMTRA Project sites are near Rifle, Colorado: the Old Rifle site and the New Rifle site. Surface cleanup at the two sites is under way and is scheduled for completion in 1996. The Ground Water Project is in its beginning stages. A risk assessment identifies a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the environment may be exposed, and the health or environmental effects that could result from that exposure. This report is a site-specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. This evaluation and further site characterization will be used to determine if action is needed to protect human health or the environment. Human health risk may result from exposure to ground water contaminated from uranium ore processing. Exposure could occur from drinking water obtained from a well placed in the areas of contamination. Furthermore, environmental risk may result from plant or animal exposure to surface water and sediment that have received contaminated ground water

  6. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Sites near Rifle, Colorado. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further ground water contamination. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. Two UMTRA Project sites are near Rifle, Colorado: the Old Rifle site and the New Rifle site. Surface cleanup at the two sites is under way and is scheduled for completion in 1996. The Ground Water Project is in its beginning stages. A risk assessment identifies a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the environment may be exposed, and the health or environmental effects that could result from that exposure. This report is a site-specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. This evaluation and further site characterization will be used to determine if action is needed to protect human health or the environment. Human health risk may result from exposure to ground water contaminated from uranium ore processing. Exposure could occur from drinking water obtained from a well placed in the areas of contamination. Furthermore, environmental risk may result from plant or animal exposure to surface water and sediment that have received contaminated ground water.

  7. Site study plan for borehole search and characterization, Deaf Smith County Site, Texas: Revision 1

    International Nuclear Information System (INIS)

    1987-01-01

    This site study plan describes the Borehole Search and Characterization field activities to be conducted during the early stages of Site Characterization at the Deaf Smith County site, Texas. The field program has been designed to provide data useful in addressing information/data needs resulting from Federal/State/Local regulatory requirements and repository program requirements. Air and ground surveys, an extensive literature search, and landowner interviews will be conducted to locate wells within and adjacent to the proposed nuclear waste repository site in Deaf Smith County. Initially, the study will center around the planned Exploratory Shaft Facilities location and will expand outward from that location. Findings from this study may lead to preparation of a new site study plan to search suspected borehole locations, and excavate or reenter known boreholes for additional characterization or remedial action. The Salt Repository Project (SRP) Networks specify the schedule under which the program will operate. The Technical Field Services Contractor (TFSC) is responsible for conducting the field program. Data will be handled and reported in accordance with established SRP procedures. A quality assurance program will be utilized to assure that activities affecting quality are performed correctly and that appropriate documentation is maintained. 13 refs., 6 figs., 3 tabs

  8. Carbon-14 measurements and characterization of dissolved organic carbon in ground water

    International Nuclear Information System (INIS)

    Murphy, E.M.

    1987-01-01

    Carbon-14 was measured in the dissolved organic carbon (DOC) in ground water and compared with 14 C analyses of dissolved inorganic carbon (DIC). Two field sites were used for this study; the Stripa mine in central Sweden, and the Milk River Aquifer in southern Alberta, Canada. The Stripa mine consists of a Precambrian granite dominated by fracture flow, while the Milk River Aquifer is a Cretaceous sandstone aquifer characterized by porous flow. At both field sites, 14 C analyses of the DOC provide additional information on the ground-water age. Carbon-14 was measured on both the hydrophobic and hydrophilic organic fractions of the DOC. The organic compounds in the hydrophobic and hydrophilic fractions were also characterized. The DOC may originate from kerogen in the aquifer matrix, from soil organic matter in the recharge zone, of from a combination of these two sources. Carbon-14 analyses, along with characterization of the organics, were used to determine this origin. Carbon-14 analyses of the hydrophobic fraction in the Milk River Aquifer suggest a soil origin, while 14 C analyses of the hydrophilic fraction suggest an origin within the Cretaceous sediments (kerogen) or from the shale in contact with the aquifer

  9. Site Specific Ground Response Analysis for Quantifying Site Amplification at A Regolith Site

    Directory of Open Access Journals (Sweden)

    Bambang Setiawan

    2017-08-01

    Full Text Available DOI: 10.17014/ijog.4.3.159-167A numerical model has demonstrated that it can simulate reasonably well earthquake motions at the ground level during a seismic event. The most widely used model is an equivalent linear approach. The equivalent linear model was used to compute the free-field response of Adelaide regolith during the 1997 Burra earthquake. The aim of this study is to quantify the amplification at the investigated site. The model computed the ground response of horizontally layered soil deposits subjected to transient and vertically propagating shear waves through a one-dimensional-soil column. Each soil layer was assumed to be homogeneous, visco-elastic, and infinite in the horizontal extent. The results of this study were compared to other studies and forward computation of the geotechnical dynamic parameters of the investigated site. The amplification triggered by the 1997 Burra seismic event was deduced. This study reveals the amplification factor up to 3.6 at the studied site.

  10. Ground-water data for the Nevada Test Site and selected other areas in South-Central Nevada, 1992--1993

    International Nuclear Information System (INIS)

    1995-01-01

    The US Geological Survey, in support of the US Department of Energy Environmental Restoration and Hydrologic Resources Management Programs, collects and compiles hydrogeologic data to aid in characterizing the regional and local ground-water flow systems underlying the Nevada Test Site and vicinity. This report presents selected ground-water data collected from wells and test holes at and in the vicinity of the Nevada Test Site. Depth-to-water measurements were made during water year 1993 at 55 sites at the Nevada Test Site and 43 regional sites in the vicinity of the Nevada Test Site. Depth to water ranged from 87.7 to 674.6 meters below land surface at the Nevada Test Site and from 6.0 to 444.7 meters below land surface at sites in the vicinity of the Nevada Test Site. Depth-to-water measurements were obtained using the wire-line, electric-tape, air-line, and steel-tape devices. Total measured ground-water withdrawal from the Nevada Test Site during the 1993 calendar year was 1,888.04 million liters. Annual ground-water withdrawals from 14 wells ranged from 0.80 million to 417.20 million liters. Tritium concentrations from four samples at the Nevada Test Site and from three samples in the vicinity of the Nevada Test Site collected during water year 1993 ranged from near 0 to 27,676.0 becquerels per liter and from near 0 to 3.9 becquerels per liter, respectively

  11. Report of ground water monitoring for expansion of the golf course, Salt Lake City, Utah, vitro processing site

    International Nuclear Information System (INIS)

    1995-06-01

    To determine the potential impacts of the proposed golf course expansion on the south side of the Vitro site, ground water data from the UMTRA Vitro processing site were evaluated in response to the U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project Office request. Golf in the Round, Inc., has proposed an expansion of the present driving range to include a 9-hole golf course on the UMTRA Vitro processing site, which is owned by the Central Valley Water Reclamation Facility (CVWRF). An expanded golf course would increase irrigation and increase the amount of water that could infiltrate the soil, recharging the unconfined aquifer. Increased water levels in the aquifer could alter the ground water flow regime; contaminants in the shallow ground water could then migrate off the site or discharge to surface water in the area. Dewatering of the unconfined aquifer on CVWRF property could also impact site contaminant migration; a significant amount of ground water extraction at CVWRF could reduce the amount of contaminant migration off the site. Since 1978, data have been collected at the site to determine the distribution of tailings materials (removed from the site from 1985 to 1987) and to characterize the presence and migration of contaminants in sediments, soils, surface water, and ground water at the former Vitro processing site. Available data suggest that irrigating an expanded golf course may cause contamination to spread more rapidly within the unconfined aquifer. The public is not at risk from current Vitro processing site activities, nor is risk expected due to golf course expansion. However, ecological risk could increase with increased surface water contamination and the development of ground water seeps

  12. Study on Quaternary ground siting of nuclear power plant, (1)

    International Nuclear Information System (INIS)

    Kokusho, Takaji; Nishi, Koichi; Honsho, Shizumitsu

    1991-01-01

    A seismic stability evaluation method for a nuclear power plant to be located on a Quaternary sandy/gravelly ground is discussed herein in terms of the geological and geotechnical survey, design earthquake motion evaluation and geotechnical seismic stability analyses. The geological and geotechnical exploration tunnel in the rock-foundation siting will be difficult in the Quaternary ground siting. Boring, geophysical surveys and soil samplings will play a major role in this case. The design earthquake input spectrum for this siting is proposed so as to take account the significant effect of longer period motion on the ground stability. Equivalent and non-linear analyses demonstrate the seismic stability of the foundation ground so long as the soil density is high. (author)

  13. Expedited Site Characterization: A rapid, cost-effective process for preremedial site characterization

    International Nuclear Information System (INIS)

    Burton, J.C.; Walker, J.L.; Jennings, T.V.; Aggarwal, P.K.; Hastings, B.; Meyer, W.T.; Rose, C.M.; Rosignolo, C.L.

    1993-01-01

    Argonne National Laboratory has developed a unique, cost- and time-effective, technically innovative process for preremedial site characterization, referred to as Expedited Site Characterization (ESC). The cost of the ESC field sampling process ranges from 1/10 to 1/5 of the cost of traditional site characterization. The time required for this ESC field activity is approximately 1/30 of that for current methods. Argonne's preremedial site investigations based on this approach have been accepted by the appropriate regulatory agencies. The ESC process is flexible and neither site nor contaminant dependent. The process has been successfully tested and applied in site investigations of multiple contaminated landfills in New Mexico (for the US Department of the Interior's Bureau of Land Management [BLM]) and at former grain storage facilities in Nebraska and Kansas, contaminated with carbon tetrachloride (for the Department of Agriculture's Commodity Credit Corporation [CCC/USDA]). A working demonstration of this process was sponsored by the US Department of Energy (DOE) Office of Technology Development as a model of the methodology needed to accelerate site characterizations at DOE facilities. This report describes the application of the process in New Mexico, Nebraska and Kansas

  14. Ground-water quality beneath solid-waste disposal sites at anchorage, Alaska

    Science.gov (United States)

    Zenone, Chester; Donaldson, D.E.; Grunwaldt, J.J.

    1975-01-01

    Studies at three solid-waste disposal sites in the Anchorage area suggest that differences in local geohydrologic conditions influence ground-water quality. A leachate was detected in ground water within and beneath two sites where the water table is very near land surface and refuse is deposited either at or below the water table in some parts of the filled areas. No leachate was detected in ground water beneath a third site where waste disposal is well above the local water table.

  15. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Lakeview, Oregon. Revision 1

    International Nuclear Information System (INIS)

    1995-12-01

    Surface cleanup at the Uranium Mill Tailings Remedial Action (UMTRA) Project site near Lakeview, Oregon was completed in 1989. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Ecological risks to plants or animals may result from exposure to surface water and sediment that have received contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will determine whether any action is needed to protect human health or the ecological environment

  16. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Lakeview, Oregon. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    Surface cleanup at the Uranium Mill Tailings Remedial Action (UMTRA) Project site near Lakeview, Oregon was completed in 1989. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Ecological risks to plants or animals may result from exposure to surface water and sediment that have received contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will determine whether any action is needed to protect human health or the ecological environment.

  17. Implications of next generation attenuation ground motion prediction equations for site coefficients used in earthquake resistant design

    Science.gov (United States)

    Borcherdt, Roger D.

    2014-01-01

    Proposals are developed to update Tables 11.4-1 and 11.4-2 of Minimum Design Loads for Buildings and Other Structures published as American Society of Civil Engineers Structural Engineering Institute standard 7-10 (ASCE/SEI 7–10). The updates are mean next generation attenuation (NGA) site coefficients inferred directly from the four NGA ground motion prediction equations used to derive the maximum considered earthquake response maps adopted in ASCE/SEI 7–10. Proposals include the recommendation to use straight-line interpolation to infer site coefficients at intermediate values of (average shear velocity to 30-m depth). The NGA coefficients are shown to agree well with adopted site coefficients at low levels of input motion (0.1 g) and those observed from the Loma Prieta earthquake. For higher levels of input motion, the majority of the adopted values are within the 95% epistemic-uncertainty limits implied by the NGA estimates with the exceptions being the mid-period site coefficient, Fv, for site class D and the short-period coefficient, Fa, for site class C, both of which are slightly less than the corresponding 95% limit. The NGA data base shows that the median value  of 913 m/s for site class B is more typical than 760 m/s as a value to characterize firm to hard rock sites as the uniform ground condition for future maximum considered earthquake response ground motion estimates. Future updates of NGA ground motion prediction equations can be incorporated easily into future adjustments of adopted site coefficients using procedures presented herein. 

  18. Applicability of petroleum horizontal drilling technology to hazardous waste site characterization and remediation

    International Nuclear Information System (INIS)

    Goranson, C.

    1992-09-01

    Horizontal wells have the potential to become an important tool for use in characterization, remediation and monitoring operations at hazardous waste disposal, chemical manufacturing, refining and other sites where subsurface pollution may develop from operations or spills. Subsurface pollution of groundwater aquifers can occur at these sites by leakage of surface disposal ponds, surface storage tanks, underground storage tanks (UST), subsurface pipelines or leakage from surface operations. Characterization and remediation of aquifers at or near these sites requires drilling operations that are typically shallow, less than 500-feet in depth. Due to the shallow nature of polluted aquifers, waste site subsurface geologic formations frequently consist of unconsolidated materials. Fractured, jointed and/or layered high compressive strength formations or compacted caliche type formations can also be encountered. Some formations are unsaturated and have pore spaces that are only partially filled with water. Completely saturated underpressured aquifers may be encountered in areas where the static ground water levels are well below the ground surface. Each of these subsurface conditions can complicate the drilling and completion of wells needed for monitoring, characterization and remediation activities. This report describes some of the equipment that is available from petroleum drilling operations that has direct application to groundwater characterization and remediation activities. A brief discussion of petroleum directional and horizontal well drilling methodologies is given to allow the reader to gain an understanding of the equipment needed to drill and complete horizontal wells. Equipment used in river crossing drilling technology is also discussed. The final portion of this report is a description of the drilling equipment available and how it can be applied to groundwater characterization and remediation activities

  19. Characterizing the sponge grounds of Grays Canyon, Washington, USA

    Science.gov (United States)

    Powell, Abby N.; Clarke, M. Elizabeth; Fruh, Erica; Chaytor, Jason; Reiswig, Henry M.; Whitmire, Curt E.

    2018-01-01

    Deep-sea sponge grounds are relatively understudied ecosystems that may provide key habitats for a large number of fish and invertebrates including commercial species. Glass sponge grounds have been discovered from the tropics to polar regions but there are only a few places with high densities of dictyonine sponges. Dictyonine glass sponges have a fused skeleton, which stays intact when they die and in some areas the accumulation of successive generations of sponges leads to the formation of reefs. In 2010 and 2016, we surveyed an area near Grays Canyon in Washington, USA, where dense aggregations of glass sponges and potential sponge reefs were discovered in 2007. Our primary aims were to make a preliminary assessment of whether the glass sponges form reefs at this location, characterize the sponge assemblage present at this site and examine associations between the sponges and commercially important species. Multibeam mapping and sub-bottom profiling indicate that the glass sponges at this site do not form reefs and are mostly attached to hard substrates. Analysis of photographs collected by an autonomous underwater vehicle and samples collected by a remotely operated vehicle guided by telepresence revealed the presence of two abundant dictyonine sponge species at this site, Heterochone calyx and Aphrocallistes vastus (mean densities = 1.43 ± 0.057 per 10 m2, max = 24 per 10 m2). We also observed a large number of non-reef-building glass sponges and various demosponges including a potentially new species in the genus Acarnus. A diverse fish assemblage was recorded at this site including eight species of rockfish. Rockfish abundance was positively related to sponge abundance. Spot prawns (Pandalus platyceros) were also abundant and were strongly associated with sponges. Despite not finding sponge reefs, this is an ecologically significant area. Further research is necessary to determine the environmental factors that give rise to the abundance of large

  20. Site Classification using Multichannel Channel Analysis of Surface Wave (MASW) method on Soft and Hard Ground

    Science.gov (United States)

    Ashraf, M. A. M.; Kumar, N. S.; Yusoh, R.; Hazreek, Z. A. M.; Aziman, M.

    2018-04-01

    Site classification utilizing average shear wave velocity (Vs(30) up to 30 meters depth is a typical parameter. Numerous geophysical methods have been proposed for estimation of shear wave velocity by utilizing assortment of testing configuration, processing method, and inversion algorithm. Multichannel Analysis of Surface Wave (MASW) method is been rehearsed by numerous specialist and professional to geotechnical engineering for local site characterization and classification. This study aims to determine the site classification on soft and hard ground using MASW method. The subsurface classification was made utilizing National Earthquake Hazards Reduction Program (NERHP) and international Building Code (IBC) classification. Two sites are chosen to acquire the shear wave velocity which is in the state of Pulau Pinang for soft soil and Perlis for hard rock. Results recommend that MASW technique can be utilized to spatially calculate the distribution of shear wave velocity (Vs(30)) in soil and rock to characterize areas.

  1. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Lakeview, Oregon. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, contaminated soil, equipment, and materials associated with the former uranium ore processing at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to minimize further contamination of ground water. Surface cleanup at the UMTRA Project site near Lakeview, Oregon, was completed in 1989. The mill operated from February 1958 to November 1960. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Ecological risks to plants or animals may result from exposure to surface water and sediment that have received contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will determine whether any action is needed to protect human health or the ecological environment.

  2. Characterization of Site for Installing Open Loop Ground Source Heat Pump System

    Science.gov (United States)

    Yun, S. W.; Park, Y.; Lee, J. Y.; Yi, M. J.; Cha, J. H.

    2014-12-01

    This study was conducted to understand hydrogeological properties of site where open loop ground source heat pump system will be installed and operated. Groundwater level and water temperature were hourly measured at the well developed for usage of open loop ground source heat pump system from 11 October 2013 to 8 January 2014. Groundwater was sampled in January and August 2013 and its chemical and isotopic compositions were analyzed. The bedrock of study area is the Jurassic granodiorite that mainly consists of quartz (27.9 to 46.8%), plagioclase (26.0 to 45.5%), and alkali feldspar (9.5 to 18.7%). The groundwater level ranged from 68.30 to 68.94 m (above mean sea level). Recharge rate was estimated using modified watertable fluctuation method and the recharge ratios was 9.1%. The water temperature ranged from 14.8 to 15.0oC. The vertical Increase rates of water temperature were 1.91 to 1.94/100 m. The water temperature showed the significant seasonal variation above 50 m depth, but had constant value below 50 m depth. Therefore, heat energy of the groundwater can be used securely in open loop ground source heat pump system. Electrical conductivity ranged from 120 to 320 µS/cm in dry season and from 133 to 310 µS/cm in wet season. The electrical conductivity gradually decreased with depth. In particular, electrical conductivity in approximately 30 m depth decreased dramatically (287 to 249 µS/cm) in wet season. The groundwater was Ca-HCO3 type. The concentrations of dissolved components did not show the vertically significant variations from 0 to 250 m depth. The δ18O and δD ranged from -9.5 to -9.4‰ and from -69 to -68‰. This work is supported by the New and Renewable Energy of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy (No.20123040110010).

  3. Analyses of GPR signals for characterization of ground conditions in urban areas

    Science.gov (United States)

    Hong, Won-Taek; Kang, Seonghun; Lee, Sung Jin; Lee, Jong-Sub

    2018-05-01

    Ground penetrating radar (GPR) is applied for the characterization of the ground conditions in urban areas. In addition, time domain reflectometry (TDR) and dynamic cone penetrometer (DCP) tests are conducted for the accurate analyses of the GPR images. The GPR images are acquired near a ground excavation site, where a ground subsidence occurred and was repaired. Moreover, the relative permittivity and dynamic cone penetration index (DCPI) are profiled through the TDR and DCP tests, respectively. As the ground in the urban area is kept under a low-moisture condition, the relative permittivity, which is inversely related to the electromagnetic impedance, is mainly affected by the dry density and is inversely proportional to the DCPI value. Because the first strong signal in the GPR image is shifted 180° from the emitted signal, the polarity of the electromagnetic wave reflected at the dense layer, where the reflection coefficient is negative, is identical to that of the first strong signal. The temporal-scaled GPR images can be accurately converted into the spatial-scaled GPR images using the relative permittivity determined by the TDR test. The distribution of the loose layer can be accurately estimated by using the spatial-scaled GPR images and reflection characteristics of the electromagnetic wave. Note that the loose layer distribution estimated in this study matches well with the DCPI profile and is visually verified from the endoscopic images. This study demonstrates that the GPR survey complemented by the TDR and DCP tests, may be an effective method for the characterization of ground conditions in an urban area.

  4. Double tracks test site characterization report

    International Nuclear Information System (INIS)

    1996-05-01

    This report presents the results of site characterization activities performed at the Double Tracks Test Site, located on Range 71 North, of the Nellis Air Force Range (NAFR) in southern Nevada. Site characterization activities included reviewing historical data from the Double Tracks experiment, previous site investigation efforts, and recent site characterization data. The most recent site characterization activities were conducted in support of an interim corrective action to remediate the Double Tracks Test Site to an acceptable risk to human health and the environment. Site characterization was performed using a phased approach. First, previously collected data and historical records sere compiled and reviewed. Generalized scopes of work were then prepared to fill known data gaps. Field activities were conducted and the collected data were then reviewed to determine whether data gaps were filled and whether other areas needed to be investigated. Additional field efforts were then conducted, as required, to adequately characterize the site. Characterization of the Double Tracks Test Site was conducted in accordance with the US Department of Energy's (DOE) Streamlined Approach for Environmental Restoration (SAFER)

  5. UAS-Borne Photogrammetry for Surface Topographic Characterization: A Ground-Truth Baseline for Future Change Detection and Refinement of Scaled Remotely-Sensed Datasets

    Science.gov (United States)

    Coppersmith, R.; Schultz-Fellenz, E. S.; Sussman, A. J.; Vigil, S.; Dzur, R.; Norskog, K.; Kelley, R.; Miller, L.

    2015-12-01

    While long-term objectives of monitoring and verification regimes include remote characterization and discrimination of surficial geologic and topographic features at sites of interest, ground truth data is required to advance development of remote sensing techniques. Increasingly, it is desirable for these ground-based or ground-proximal characterization methodologies to be as nimble, efficient, non-invasive, and non-destructive as their higher-altitude airborne counterparts while ideally providing superior resolution. For this study, the area of interest is an alluvial site at the Nevada National Security Site intended for use in the Source Physics Experiment's (Snelson et al., 2013) second phase. Ground-truth surface topographic characterization was performed using a DJI Inspire 1 unmanned aerial system (UAS), at very low altitude (clouds. Within the area of interest, careful installation of surveyed ground control fiducial markers supplied necessary targets for field collection, and information for model georectification. The resulting model includes a Digital Elevation Model derived from 2D imagery. It is anticipated that this flexible and versatile characterization process will provide point cloud data resolution equivalent to a purely ground-based LiDAR scanning deployment (e.g., 1-2cm horizontal and vertical resolution; e.g., Sussman et al., 2012; Schultz-Fellenz et al., 2013). In addition to drastically increasing time efficiency in the field, the UAS method also allows for more complete coverage of the study area when compared to ground-based LiDAR. Comparison and integration of these data with conventionally-acquired airborne LiDAR data from a higher-altitude (~ 450m) platform will aid significantly in the refinement of technologies and detection capabilities of remote optical systems to identify and detect surface geologic and topographic signatures of interest. This work includes a preliminary comparison of surface signatures detected from varying

  6. Characterization and anion exchange removal of uranium from Hanford ground water

    International Nuclear Information System (INIS)

    Delegard, C.H.; Weiss, R.L.; Kimura, R.T.; Law, A.G.; Routson, R.C.

    1986-01-01

    In February 1985, uranium concentrations increased abruptly to 0.1 kgU/m/sup 3/ in ground waters underlying a retired liquid waste disposal facility in the United States Department of Energy-Richland Operations Hanford Site. Characterization tests showed the uranium was present as an anionic carbonate complex not sorbable by Hanford sediments. The uranium was mobilized by flow from a perched zone of water caused by recent nearby cooling water disposal above an impermeable sediment layer. In a unique demonstration of the concept of ''as low as reasonably achievable,'' efforts were immediately undertaken to minimize the spread of the plume and to reduce the amount of uranium in the ground water. An anion exchange-based uranium removal process flowsheet was rapidly developed and implemented. Operational for six months, the process has treated over 30,000 m/sup 3/ of ground water and collected 94% of the uranium while producing a treated effluent that meets criteria for discharge to the soil column

  7. High Resolution Geological Site Characterization Utilizing Ground Motion Data

    Science.gov (United States)

    1992-06-26

    rough near a service road, in low velocity, unsaturated, unconsolidated 7 sands. Other than native grass, there was no significant vegetation . Surface...literature, demonstrate slll kale field tests. Similar degrees of spatial variability in ground that these stochastic geologic effects pose a potentially

  8. Integration of CERCLA and RCRA requirements at the Radioactive Waste Burial Grounds, Savannah River Site, Aiken, South Carolina

    International Nuclear Information System (INIS)

    Hoffman, W.D.; Wyatt, D.E.

    1992-01-01

    The purpose of this paper to is present the comprehensive approach being taken at the Savannah River Site (SRS) to consolidate regulatory documents, characterization and assessment activities for 3 contiguous waste management facilities. These facilities cover 7.12 x 10 5 m 2 (194 acres) and include an Old Radioactive Waste Burial Ground, a Low Level Radioactive Waste Disposal Facility, and a closed Mixed Waste Management Facility. Each of these facilities include one or more operable units including solvent tanks, transuranic waste storage pads, research lysimeters and experimental confinement disposal vaults. All of these facilities have differing submittal dates for regulatory documents but similar and continuous environmental problems. The characterization and risk assessment require simultaneous efforts for all facilities to adequately define the nature and extent of past, present and future environmental impact. Current data indicates that contaminant plumes in both soil and water are comingled, interspersed and possibly exist internally within the contiguous facilities, requiring a combined investigative effort. This paper describes the combination of regulatory documents leading to this comprehensive and integrative approach for burial ground characterization at the Savannah River Site

  9. Bioremediation of ground water contaminants at a uranium mill tailings site

    International Nuclear Information System (INIS)

    Barton, L.L.; Nuttall, H.E.; Thomson, B.M.; Lutze, W.

    1995-01-01

    Ground water contaminated with uranium from milling operations must be remediated to reduce the migration of soluble toxic compounds. At the mill tailings site near Tuba City, Arizona (USA) the approach is to employ bioremediation for in situ immobilization of uranium by bacterial reduction of uranyl, U(VI), compounds to uraninite, U(IV). In this initial phase of remediation, details are provided to indicate the magnitude of the contamination problem and to present preliminary evidence supporting the proposition that bacterial immobilization of uranium is possible. Additionally, consideration is given to contaminating cations and anions that may be at toxic levels in ground water at this uranium mill tailing site and detoxification strategies using bacteria are addressed. A model concept is employed so that results obtained at the Tuba City site could contribute to bioremediation of ground water at other uranium mill tailings sites

  10. Ground motion measurements at the LBL Light Source site, the Bevatron and at SLAC

    International Nuclear Information System (INIS)

    Green, M.A.; Majer, E.I.; More, V.D.; O'Connell, D.R.; Shilling, R.C.

    1986-12-01

    This report describes the technique for measuring ground motion at the site of the 1.0 to 2.0 GeV Synchrotron Radiation Facility which was known as the Advanced Light Source (in 1983 when the measurements were taken). The results of ground motion measurements at the Light Source site at Building 6 at LBL are presented. As comparison, ground motion measurements were made at the Byerly Tunnel, the Bevatron, Blackberry Canyon, and SLAC at the Spear Ring. Ground Motion at the Light Source site was measured in a band from 4 to 100 Hz. The measured noise is primarily local in origin and is not easily transported through LBL soils. The background ground motion is for the most part less than 0.1 microns. Localized truck traffic near Building 6 and the operation of the cranes in the building can result in local ground motions of a micron or more for short periods of time. The background motion at Building 6 is between 1 and 2 orders of magnitude higher than ground motion in a quiet seismic tunnel, which is representative of quiet sites worldwide. The magnitude of the ground motions at SLAC and the Bevatron are comparable to ground motions measured at the Building 6 Light Source site. However, the frequency signature of each site is very different

  11. A teleoperated system for remote site characterization

    International Nuclear Information System (INIS)

    Sandness, G.A.; Richardson, B.S.; Pence, J.

    1993-08-01

    The detection and characterization of buried objects and materials is an important first step in the restoration of burial sites containing chemical and radioactive waste materials at Department of Energy (DOE) and Department of Defense (DOD) facilities. To address the need to minimize the exposure of on-site personnel to the hazards associated with such sites, the DOE Office of Technology Development and the US Army Environmental Center have jointly supported the development of the Remote Characterization System (RCS). One of the main components of the RCS is a small remotely driven survey vehicle that can transport various combinations of geophysical and radiological sensors. Currently implemented sensors include ground-penetrating radar, magnetometers, an electromagnetic induction sensor, and a sodium iodide radiation detector. The survey vehicle was constructed predominantly of non-metallic materials to minimize its effect on the operation of its geophysical sensors. The system operator controls the vehicle from a remote, truck-mounted, base station. Video images are transmitted to the base station by an radio link to give the operator necessary visual information. Vehicle control commands, tracking information, and sensor data are transmitted between the survey vehicle and the base station by means of a radio ethernet link. Precise vehicle tracking coordinates are provided by a differential Global Positioning System (GPS). The sensors are environmentally protected, internally cooled, and interchangeable based on mission requirements. To date, the RCS has been successfully tested at the Oak Ridge National Laboratory and the Idaho National Engineering Laboratory

  12. Definitive design status of the SP-100 Ground Engineering System Test Site

    International Nuclear Information System (INIS)

    Renkey, E.J. Jr.; Bazinet, G.D.; Bitten, E.J.; Brackenbury, P.J.; Carlson, W.F.; Irwin, J.J.; Edwards, P.A.; Shen, E.J.; Titzler, P.A.

    1989-05-01

    The SP-100 reactor will be ground tested at the SP-100 Ground Engineering System (GES) Test Site on the US Department of Energy (DOE) Hanford Site near Richland, Washington. Project direction and the flight system design evolution have resulted in a smaller reactor size and the consequential revision to Test Site features to accommodate the design changes and reduce Test Site costs. The significant design events since the completion of the Conceptual Design are discussed in this paper

  13. Definitive design status of the SP-100 Ground Engineering System Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Renkey, E.J. Jr.; Bazinet, G.D.; Bitten, E.J.; Brackenbury, P.J.; Carlson, W.F.; Irwin, J.J.; Edwards, P.A.; Shen, E.J.; Titzler, P.A.

    1989-05-01

    The SP-100 reactor will be ground tested at the SP-100 Ground Engineering System (GES) Test Site on the US Department of Energy (DOE) Hanford Site near Richland, Washington. Project direction and the flight system design evolution have resulted in a smaller reactor size and the consequential revision to Test Site features to accommodate the design changes and reduce Test Site costs. The significant design events since the completion of the Conceptual Design are discussed in this paper.

  14. Evaluation of ground deformations induced by the 1999 Kocaeli earthquake (Turkey) at selected sites on shorelines

    Science.gov (United States)

    Aydan, Ömer; Ulusay, Reşat; Atak, Veysel Okan

    2008-03-01

    The Kocaeli earthquake ( M w = 7.4) of 17 August 1999 occurred in the Eastern Marmara Region of Turkey along the North Anadolu Fault and resulted in a very serious loss of life and property. One of the most important geotechnical issues of this event was the permanent ground deformations because of both liquefaction and faulting. These deformations occurred particularly along the southern shores of İzmit Bay and Sapanca Lake between the cities of Yalova and Adapazarı in the west and east, respectively. In this study, three sites founded on delta fans, namely Değirmendere Nose, Yeniköy tea garden at Seymen on the coast of İzmit Bay, and Vakıf Hotel site on the coast of Sapanca Lake were selected as typical cases. The main causes of the ground deformations at these sites were then investigated. Geotechnical characterization of the ground, derivation of displacement vectors from the pre- and post-earthquake aerial photographs, liquefaction assessments based on field performance data, and analyses carried out using the sliding body method have been fundamental in this study. The displacement vectors determined from photogrammetric evaluations conducted at Değirmendere and Seymen showed a combined movement of faulting and liquefaction. But except the movements in the close vicinity of shorelines, the dominant factor in this movement was faulting. The results obtained from the analyses suggested that the ground failure at Değirmendere was a submarine landslide mainly because of earthquake shaking rather than liquefaction. On the other hand, the ground failures at the Yeniköy tea garden on the coast of Seymen and the hotel area in Sapanca town resulted from liquefaction-induced lateral spreading. It was also obtained that the ground deformations estimated from the sliding body method were quite close to those measured by aerial photogrammetry technique.

  15. Effect of site conditions on ground motion and damage

    Science.gov (United States)

    Borcherdt, R.; Glassmoyer, G.; Andrews, M.; Cranswick, E.

    1989-01-01

    Results of seismologic studies conducted by the U.S. reconnaissance team in conjunction with Soviet colleagues following the tragic earthquakes of December 7, 1988, suggest that site conditions may have been a major factor in contributing to increased damage levels in Leninakan. As the potential severity of these effects in Leninakan had not been previously identified, this chapter presents results intended to provide a preliminary quantification of these effects on both damage and levels of ground motion observed in Leninakan. The article describes the damage distribution geologic setting, ground motion amplification in Leninakan, including analog amplifications and spectral amplifications. Preliminary model estimates for site response are presented. It is concluded that ground motion amplification in the 0.5-2.5-second period range was a major contributing factor to increased damage in Leninakan as compared with Kirovakan. Leninakan is located on thick water saturated alluvial deposits.

  16. Preparatory research to develop an operational method to calibrate airborne sensor data using a network of ground calibration sites

    International Nuclear Information System (INIS)

    Milton, E.J.; Smith, G.M.; Lawless, K.P.

    1996-01-01

    The objective of the research is to develop an operational method to convert airborne spectral radiance data to reflectance using a number of well-characterized ground calibration sites located around the UK. The study is in three phases. First, a pilot study has been conducted at a disused airfield in southern England to test the feasibility of the open-quote empirical line close-quote method of sensor calibration. The second phase is developing methods to predict temporal changes in the bidirectional reflectance of ground calibration sites. The final phase of the project will look at methods to extend such calibrations spatially. This paper presents some results from the first phase of this study. The viability of the empirical line method of correction is shown to depend upon the use of ground targets whose in-band reflectance encompasses that of the targets of interest in the spectral band(s) concerned. The experimental design for the second phase of the study, in which methods to predict temporal trends in the bidirectional reflectance of these sites will be developed, is discussed. Finally, it is planned to develop an automated method of searching through Landsat TM data for the UK to identify a number of candidate ground calibration sites for which the model can be tested. 11 refs., 5 figs., 5 tabs

  17. Hanford site waste tank characterization

    International Nuclear Information System (INIS)

    De Lorenzo, D.S.; Simpson, B.C.

    1994-08-01

    This paper describes the on-going work in the characterization of the Hanford-Site high-level waste tanks. The waste in these tanks was produced as part of the nuclear weapons materials processing mission that occupied the Hanford Site for the first 40 years of its existence. Detailed and defensible characterization of the tank wastes is required to guide retrieval, pretreatment, and disposal technology development, to address waste stability and reactivity concerns, and to satisfy the compliance criteria for the various regulatory agencies overseeing activities at the Hanford Site. The resulting Tank Characterization Reports fulfill these needs, as well as satisfy the tank waste characterization milestones in the Hanford Federal Facility Agreement and Consent Order

  18. Site characterization at the Rabbit Valley Geophysical Performance Evaluation Range

    International Nuclear Information System (INIS)

    Koppenjan, S.; Martinez, M.

    1994-01-01

    The United States Department of Energy (US DOE) is developing a Geophysical Performance Evaluation Range (GPER) at Rabbit Valley located 30 miles west of Grand Junction, Colorado. The purpose of the range is to provide a test area for geophysical instruments and survey procedures. Assessment of equipment accuracy and resolution is accomplished through the use of static and dynamic physical models. These models include targets with fixed configurations and targets that can be re-configured to simulate specific specifications. Initial testing (1991) combined with the current tests at the Rabbit Valley GPER will establish baseline data and will provide performance criteria for the development of geophysical technologies and techniques. The US DOE's Special Technologies Laboratory (STL) staff has conducted a Ground Penetrating Radar (GPR) survey of the site with its stepped FM-CW GPR. Additionally, STL contracted several other geophysical tests. These include an airborne GPR survey incorporating a ''chirped'' FM-CW GPR system and a magnetic survey with a surfaced-towed magnetometer array unit Ground-based and aerial video and still frame pictures were also acquired. STL compiled and analyzed all of the geophysical maps and created a site characterization database. This paper discusses the results of the multi-sensor geophysical studies performed at Rabbit Valley and the future plans for the site

  19. Visibility Analysis of Domestic Satellites on Proposed Ground Sites for Optical Surveillance

    Directory of Open Access Journals (Sweden)

    Jung Hyun Jo1

    2011-12-01

    Full Text Available The objectives of this study are to analyze the satellite visibility at the randomly established ground sites, to determine the five optimal ground sites to perform the optical surveillance and tracking of domestic satellites, and to verify the acquisition of the optical observation time sufficient to maintain the precise ephemeris at optimal ground sites that have been already determined. In order to accomplish these objectives, we analyzed the visibility for sun-synchronous orbit satellites, low earth orbit satellites, middle earth orbit satellites and domestic satellites as well as the continuous visibility along with the fictitious satellite ground track, and calculate the effective visibility. For the analysis, we carried out a series of repetitive process using the satellite tool kit simulation software developed by Analytical Graphics Incorporated. The lighting states of the penumbra and direct sun were set as the key constraints of the optical observation. The minimum of the observation satellite elevation angle was set to be 20 degree, whereas the maximum of the sun elevation angle was set to be -10 degree which is within the range of the nautical twilight. To select the candidates for the optimal optical observation, the entire globe was divided into 84 sectors in a constant interval, the visibility characteristics of the individual sectors were analyzed, and 17 ground sites were arbitrarily selected and analyzed further. Finally, five optimal ground sites (Khurel Togoot Observatory, Assy-Turgen Observatory, Tubitak National Observatory, Bisdee Tier Optical Astronomy Observatory, and South Africa Astronomical Observatory were determined. The total observation period was decided as one year. To examine the seasonal variation, the simulation was performed for the period of three days or less with respect to spring, summer, fall and winter. In conclusion, we decided the optimal ground sites to perform the optical surveillance and tracking

  20. West Siberian Basin hydrogeology: Site characterization of Mayak, Tomsk-7, and Krasnoyarsk-26

    International Nuclear Information System (INIS)

    Hoover, K.A.; Foley, M.G.; Allen, E.A.; Alexander, L.J.; McKinley, M.I.

    1997-01-01

    The former Soviet Union has extensive defense-related nuclear production facilities that have released large amounts of hazardous and radioactive waste materials into the air, surface water, and ground water in areas surrounding the production sites. The key sites of concern are Mayak, Tomsk-7, and Krasnoyarsk-26, all located within the West siberian Basin. The Pacific Northwest National Laboratory (PNNL), in cooperation with the Russian Ministry of Atomic Energy (Minatom), has been conducted contaminant-migration studies of Mayak, Tomsk-7, and Krasnoyarsk-26 in Western Siberia since 1993. The intent of this program is to maximize use of US and Russian site characterization, contaminant transport modeling, and remediation technology for the benefit of DOE and Minatom site-cleanup activities. Site characterization activities conducted during FY 1996 comprised evaluating the existing database, developing methods for synthesizing missing data, and designing an effective means of data and technology transfer. Comparison of the database, most of the contents of which have been acquired remotely with contaminant transport modeling data requirements allowed the authors to evaluate the utility of data acquired remotely for modeling purposes, and to identify gaps in the characterization of Russian waste-disposal sites. Identifying these gaps led to the second activity, which was to develop methods for synthesizing missing data from an evaluation of existing data. The authors tested these methods by evaluating geologic fracturing at the Mayak site. The third activity was the development of an effective procedure for data and technology transfer. The goal was to provide the site characterization database to Russian modelers in such a way that the data were easily transported, viewed, and manipulated for use in their models. This report summarizes the results of the three site characterization activities performed during FY 1996

  1. Aespoe HRL - Geoscientific evaluation 1997/2. Results from pre-investigation and detailed site characterization. Summary report

    International Nuclear Information System (INIS)

    Rhen, I.; Baeckbom, G.; Stanfors, R.; Wikberg, P.

    1997-05-01

    The work at Aespoe Hard rock laboratory provides an important scientific and technical basis for implementing and operating a future deep repository in Sweden. A milestone has now been reached with the completion of the pre investigation and construction phases at Aespoe HRL. The present data base at Aespoe HRL is one of the most comprehensive data bases in the world for crystalline rock properties, containing data from a large number of investigation methods from the surface down to 1700 m below ground level. Site characterization in conjunction with construction work has basically confirmed the pre-construction models. The site characterization has been a realistic 'dress rehearsal' that is invaluable for planning and execution of surface and underground characterization of sites for the deep repository for spent nuclear fuel in Sweden

  2. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Canonsburg, Pennsylvania

    International Nuclear Information System (INIS)

    1994-09-01

    This baseline risk assessment evaluates potential impacts to public health and the environment resulting from ground water contamination from past activities at the former uranium processing site in Canonsburg, Pennsylvania. The US Department of Energy Uranium Mill Tailings Remedial Action (UMTRA) Project has placed contaminated material from this site in an on-site disposal cell. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment is the first document specific to this site for the UMTRA Ground Water Project. Currently, no domestic or drinking water well tap into contaminated ground water of the two distinct ground water units: the unconsolidated materials and the bedrock. Because there is no access, no current health or environmental risks are associated with the direct use of the contaminated ground water. However, humans and ecological organisms could be exposed to contaminated ground water if a domestic well were to be installed in the unconsolidated materials in that part of the site being considered for public use (Area C). The first step is evaluating ground water data collected from monitor wells at the site. For the Canonsburg site, this evaluation showed the contaminants in ground water exceeding background in the unconsolidated materials in Area C are ammonia, boron, calcium, manganese, molybdenum, potassium, strontium, and uranium

  3. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Canonsburg, Pennsylvania

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    This baseline risk assessment evaluates potential impacts to public health and the environment resulting from ground water contamination from past activities at the former uranium processing site in Canonsburg, Pennsylvania. The US Department of Energy Uranium Mill Tailings Remedial Action (UMTRA) Project has placed contaminated material from this site in an on-site disposal cell. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment is the first document specific to this site for the UMTRA Ground Water Project. Currently, no domestic or drinking water well tap into contaminated ground water of the two distinct ground water units: the unconsolidated materials and the bedrock. Because there is no access, no current health or environmental risks are associated with the direct use of the contaminated ground water. However, humans and ecological organisms could be exposed to contaminated ground water if a domestic well were to be installed in the unconsolidated materials in that part of the site being considered for public use (Area C). The first step is evaluating ground water data collected from monitor wells at the site. For the Canonsburg site, this evaluation showed the contaminants in ground water exceeding background in the unconsolidated materials in Area C are ammonia, boron, calcium, manganese, molybdenum, potassium, strontium, and uranium.

  4. NRC staff site characterization analysis of the Department of Energy's Site Characterization Plan, Yucca Mountain Site, Nevada

    International Nuclear Information System (INIS)

    1989-08-01

    This Site Characterization Analysis (SCA) documents the NRC staff's concerns resulting from its review of the US Department of Energy's (DOE's) Site Characterization Plan (SCP) for the Yucca Mountain site in southern Nevada, which is the candidate site selected for characterization as the nation's first geologic repository for high-level radioactive waste. DOE's SCP explains how DOE plans to obtain the information necessary to determine the suitability of the Yucca Mountain site for a repository. NRC's specific objections related to the SCP, and major comments and recommendations on the various parts of DOE's program, are presented in SCA Section 2, Director's Comments and Recommendations. Section 3 contains summaries of the NRC staff's concerns for each specific program, and Section 4 contains NRC staff point papers which set forth in greater detail particular staff concerns regarding DOE's program. Appendix A presents NRC staff evaluations of those NRC staff Consultation Draft SCP concerns that NRC considers resolved on the basis of the SCP. This SCA fulfills NRC's responsibilities with respect to DOE's SCP as specified by the Nuclear Waste Policy Act (NWPA) and 10 CFR 60.18. 192 refs., 2 tabs

  5. Site observational work plan for the UMTRA Project site at Spook, Wyoming

    International Nuclear Information System (INIS)

    1995-05-01

    The Spook, Wyoming, site observational work plan proposes site-specific activities to achieve compliance with Subpart B of 40 CFR Part 192 (1994) of the final US Environmental Protection Agency (EPA) ground water protection standards 60 FR 2854 (1995) at this Uranium Mill Tailing Remedial Action (UMTRA) Project site. This draft SOWP presents a comprehensive summary of existing site characterization data, a conceptual site model of the nature and extent of ground water contamination, exposure pathways, and potential impact to human health and the environment. Section 2.0 describes the requirements for meeting ground water standards at UMTRA Project sites. Section 3.0 defines past and current conditions, describes potential environmental and human health risks, and provides site-specific data that supports the selection of a proposed ground water compliance strategy. Section 4.0 provides the justification for selecting the proposed ground water compliance strategy based on the framework defined in the ground water programmatic environmental impact statement (PEIS)

  6. Analysis Methodology for Optimal Selection of Ground Station Site in Space Missions

    Science.gov (United States)

    Nieves-Chinchilla, J.; Farjas, M.; Martínez, R.

    2013-12-01

    Optimization of ground station sites is especially important in complex missions that include several small satellites (clusters or constellations) such as the QB50 project, where one ground station would be able to track several spatial vehicles, even simultaneously. In this regard the design of the communication system has to carefully take into account the ground station site and relevant signal phenomena, depending on the frequency band. To propose the optimal location of the ground station, these aspects become even more relevant to establish a trusted communication link due to the ground segment site in urban areas and/or selection of low orbits for the space segment. In addition, updated cartography with high resolution data of the location and its surroundings help to develop recommendations in the design of its location for spatial vehicles tracking and hence to improve effectiveness. The objectives of this analysis methodology are: completion of cartographic information, modelling the obstacles that hinder communication between the ground and space segment and representation in the generated 3D scene of the degree of impairment in the signal/noise of the phenomena that interferes with communication. The integration of new technologies of geographic data capture, such as 3D Laser Scan, determine that increased optimization of the antenna elevation mask, in its AOS and LOS azimuths along the horizon visible, maximizes visibility time with spatial vehicles. Furthermore, from the three-dimensional cloud of points captured, specific information is selected and, using 3D modeling techniques, the 3D scene of the antenna location site and surroundings is generated. The resulting 3D model evidences nearby obstacles related to the cartographic conditions such as mountain formations and buildings, and any additional obstacles that interfere with the operational quality of the antenna (other antennas and electronic devices that emit or receive in the same bandwidth

  7. Site characterization quality assurance for the California LLRW Disposal Site Project

    International Nuclear Information System (INIS)

    Hanrahan, T.P.; Ench, J.E.; Serlin, C.L.; Bennett, C.B.

    1988-01-01

    In December of 1985 US Ecology was chosen as the license designee for the State of California's low-level radioactive waste disposal facility. In early 1987, three candidate sites were selected for characterization studies in preparation for identifying the preferred site. The geotechnical characterization activities along with studies of the ecological and archaeological attributes, as well as assessments of the socio-economic impacts and cultural resources all provide input towards selection of the proposed site. These technical studies in conjunction with comments from local citizen committees and other interested parties are used as a basis for determining the proposed site for which full site characterization as required by California licensing requirements are undertaken. The purpose of this paper is to present an overview of the program for Quality Assurance and Quality Control for the site characterization activities on the California LLRW Disposal Site Project. The focus is on three major perspectives: The composite QA Program and two of the primary characterization activities, the geotechnical and the meteorological investigations

  8. Valuation of potential hazards to ground water from abandoned sites

    International Nuclear Information System (INIS)

    Kerndorff, H.; Schleyer, R.; Dieter, H.H.

    1993-01-01

    With a view to obtaining, for the large number of abandoned sites suspected of pollution, necessary information regarding the type and extent of possible ground water contamination with a minimum of effort and cost, a hierarchical investigation strategy was developed and successfully tested in more than 100 cases in Germany. As a decisive advantage, already the well-defined and simple investigation steps ''preliminary prospecting'' and ''screening'' permit to recognize polluted sites posing a hazard to ground water. The more specific and demanding investigation steps ''pollutant analysis'' and ''detailed investigations'' may be carried through if necessary. (orig./BBR). 27 figs., 36 tabs [de

  9. Radionuclide migration in ground water at a low-level waste disposal site: a comparison of predicted radionuclide transport modeling versus field observations

    International Nuclear Information System (INIS)

    Bergeron, M.P.; Robertson, D.E.; Champ, D.R.; Killey, R.W.D.; Moltyaner, G.L.

    1987-01-01

    At the Chalk River Nuclear Laboratories (CRNL), in Ontario, Canada, a number of LLW shallow-land burial facilities have existed for 25-30 years. These facilities are useful for testing the concept of site modelability. In 1984, CRNL and the Pacific Northwest Laboratory (PNL) established a cooperative research program to examine two disposal sites having plumes of slightly contaminated ground water for study. This report addresses the LLW Nitrate Disposal Pit site, which received liquid wastes containing approximately 1000-1500 curies of mixed fission products during 1953-54. The objective of this study is to test the regulatory requirement that a site be modeled and to use the Nitrate Disposal Pit site as a field site for testing the reliability of models in predicting radionuclide movement in ground water. The study plan was to approach this site as though it were to be licensed under the requirements of 10 CFR 61. Under the assumption that little was known about this site, a characterization plan was prepared describing the geologic, hydrologic, and geochemical information needed to assess site performance. After completion of the plan, site data generated by CRNL were selected to fill the plan data requirements. This paper describes the site hydrogeology, modeling of ground water flow, the comparison of observed and predicted radionuclide movement, and summarizes the conclusions and recommendations. 3 references, 10 figures

  10. Activation and characterization of waste coffee grounds as bio-sorbent

    Science.gov (United States)

    Mariana; Marwan; Mulana, F.; Yunardi; Ismail, T. A.; Hafdiansyah, M. F.

    2018-03-01

    As the city well known for its culture of coffee drinkers, modern and traditional coffee shops are found everywhere in Banda Aceh, Indonesia. High number of coffee shops in the city generates large quantities of spent coffee grounds as waste without any effort to convert them as other valuable products. In an attempt to reduce environmental problems caused by used coffee grounds, this research was conducted to utilize waste coffee grounds as an activated carbon bio-sorbent. The specific purpose of this research is to improve the performance of coffee grounds bio-sorbent through chemical and physical activation, and to characterize the produced bio-sorbent. Following physical activation by carbonization, a chemical activation was achieved by soaking the carbonized waste coffee grounds in HCl solvent and carbonization process. The activated bio-sorbent was characterized for its morphological properties using Scanning Electron Microscopy (SEM), its functional groups by Fourier Transform Infra-Red Spectrophotometer (FTIR), and its material characteristics using X-Ray Diffraction (XRD). Characterization of the activated carbon prepared from waste coffee grounds shows that it meets standard quality requirement in accordance with Indonesian National Standard, SNI 06-3730-1995. Activation process has modified the functional groups of the waste coffee grounds. Comparing to natural waste coffee grounds, the resulted bio-sorbent demonstrated a more porous surface morphology following activation process. Consequently, such bio-sorbent is a potential source to be used as an adsorbent for various applications.

  11. VS30 – A site-characterization parameter for use in building Codes, simplified earthquake resistant design, GMPEs, and ShakeMaps

    Science.gov (United States)

    Borcherdt, Roger D.

    2012-01-01

    VS30, defined as the average seismic shear-wave velocity from the surface to a depth of 30 meters, has found wide-spread use as a parameter to characterize site response for simplified earthquake resistant design as implemented in building codes worldwide. VS30 , as initially introduced by the author for the US 1994 NEHRP Building Code, provides unambiguous definitions of site classes and site coefficients for site-dependent response spectra based on correlations derived from extensive borehole logging and comparative ground-motion measurement programs in California. Subsequent use of VS30 for development of strong ground motion prediction equations (GMPEs) and measurement of extensive sets of VS borehole data have confirmed the previous empirical correlations and established correlations of SVS30 with VSZ at other depths. These correlations provide closed form expressions to predict S30 V at a large number of additional sites and further justify S30 V as a parameter to characterize site response for simplified building codes, GMPEs, ShakeMap, and seismic hazard mapping.

  12. Modeling Nonlinear Site Response Uncertainty in Broadband Ground Motion Simulations for the Los Angeles Basin

    Science.gov (United States)

    Assimaki, D.; Li, W.; Steidl, J. M.; Schmedes, J.

    2007-12-01

    The assessment of strong motion site response is of great significance, both for mitigating seismic hazard and for performing detailed analyses of earthquake source characteristics. There currently exists, however, large degree of uncertainty concerning the mathematical model to be employed for the computationally efficient evaluation of local site effects, and the site investigation program necessary to evaluate the nonlinear input model parameters and ensure cost-effective predictions; and while site response observations may provide critical constraints on interpretation methods, the lack of a statistically significant number of in-situ strong motion records prohibits statistical analyses to be conducted and uncertainties to be quantified based entirely on field data. In this paper, we combine downhole observations and broadband ground motion synthetics for characteristic site conditions the Los Angeles Basin, and investigate the variability in ground motion estimation introduced by the site response assessment methodology. In particular, site-specific regional velocity and attenuation structures are initially compiled using near-surface geotechnical data collected at downhole geotechnical arrays, inverse low-strain velocity and attenuation profiles at these sites obtained by inversion of weak motion records and the crustal velocity structure at the corresponding locations obtained from the Southern California Earthquake Centre Community Velocity Model. Successively, broadband ground motions are simulated by means of a hybrid low/high-frequency finite source model with correlated random parameters for rupture scenaria of weak, medium and large magnitude events (M =3.5-7.5). Observed estimates of site response at the stations of interest are first compared to the ensemble of approximate and incremental nonlinear site response models. Parametric studies are next conducted for each fixed magnitude (fault geometry) scenario by varying the source-to-site distance and

  13. Aespoe HRL - Geoscientific evaluation 1997/2. Results from pre-investigation and detailed site characterization. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    Rhen, I. [VBB Viak, Goeteborg (Sweden); Baeckbom, G. [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)] [eds.; Gustafsson, Gunnar [VBB Viak, Goeteborg (Sweden) and Chalmers Univ. of Technology, Goeteborg (Sweden); Stanfors, R. [RS Consulting, Lund (Sweden); Wikberg, P. [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    1997-05-01

    The work at Aespoe Hard rock laboratory provides an important scientific and technical basis for implementing and operating a future deep repository in Sweden. A milestone has now been reached with the completion of the pre investigation and construction phases at Aespoe HRL. The present data base at Aespoe HRL is one of the most comprehensive data bases in the world for crystalline rock properties, containing data from a large number of investigation methods from the surface down to 1700 m below ground level. Site characterization in conjunction with construction work has basically confirmed the pre-construction models. The site characterization has been a realistic `dress rehearsal` that is invaluable for planning and execution of surface and underground characterization of sites for the deep repository for spent nuclear fuel in Sweden. 502 refs, 114 figs, 30 tabs.

  14. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Shiprock, New Mexico

    International Nuclear Information System (INIS)

    1994-04-01

    This baseline risk assessment at the former uranium mill tailings site near Shiprock, New Mexico, evaluates the potential impact to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an on-site disposal cell in 1986 through the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project. There are no domestic or drinking water wells in the contaminated ground water of the two distinct ground water units: the contaminated ground water in the San Juan River floodplain alluvium below the site and the contaminated ground water in the terrace alluvium area where the disposal cell is located. Because no one is drinking the affected ground water, there are currently no health or environmental risks directly associated with the contaminated ground water. However, there is a potential for humans, domestic animals, and wildlife to the exposed to surface expressions of ground water in the seeps and pools in the area of the San Juan River floodplain below the site. For these reasons, this risk assessment evaluates potential exposure to contaminated surface water and seeps as well as potential future use of contaminated ground water

  15. Environmental assessment of SP-100 ground engineering system test site: Hanford Site, Richland, Washington

    Energy Technology Data Exchange (ETDEWEB)

    1988-12-01

    The US Department of Energy (DOE) proposes to modify an existing reactor containment building (decommissioned Plutonium Recycle Test Reactor (PRTR) 309 Building) to provide ground test capability for the prototype SP-100 reactor. The 309 Building (Figure 1.1) is located in the 300 Area on the Hanford Site in Washington State. The National Environmental Policy Act (NEPA) requires that Federal agencies assess the potential impacts that their actions may have on the environment. This Environmental Assessment describes the consideration given to environmental impacts during reactor concept and test site selection, examines the environmental effects of the DOE proposal to ground test the nuclear subsystem, describes alternatives to the proposed action, and examines radiological risks of potential SP-100 use in space. 73 refs., 19 figs., 7 tabs.

  16. Environmental Assessment of Ground Water Compliance at the Gunnison, Colorado, UMTRA Project Site

    International Nuclear Information System (INIS)

    2002-01-01

    The U.S. Department of Energy (DOE) is in the process of selecting a ground water compliance strategy for the Gunnison, Colorado, Uranium Mill Tailings Remedial Action (UMTRA) Project site. This Environmental Assessment (EA) discusses two alternatives and the effects associated with each. The two alternatives are (1) natural flushing coupled with institutional controls and continued monitoring and (2) no action. The compliance strategy must meet U.S. Environmental Protection Agency (EPA) ground water standards defined in Title 40 ''Code of Federal Regulations'' Part 192, Subpart B, in areas where ground water beneath and around the site is contaminated as a result of past milling operations. It has been determined that contamination in the ground water at the Gunnison site consists of soluble residual radioactive material (RRM) as defined in the Uranium Mill Tailings Radiation Control Act (UMTRCA)

  17. Characterization of polluted sites. Assessment of pollutant behaviour and transfer in mediums; Caracterisation des sites pollues. L`evaluation du comportement et du transfert des polluants dans les milieux

    Energy Technology Data Exchange (ETDEWEB)

    Goubier, R [Agence de l` Environnement et de la Maitrise de l` Energie, 75 - Paris (France); Chassagnac, T [CSD Azur (France); Schlegel, T [ATE, (France); Coste, B [ANTEA, (France)

    1997-12-31

    After a presentation of methods and tools for the basic and extensive characterization of polluted sites and the study of evolution and transfer of current organic pollutants in the ground, the example of the rehabilitation of an old Rhone-Poulenc site (at Chauny, France) polluted with metals and arsenic, is described: soil and aquifer diagnosis, risk analysis and determination of migration schemes

  18. Characterization of polluted sites. Assessment of pollutant behaviour and transfer in mediums; Caracterisation des sites pollues. L`evaluation du comportement et du transfert des polluants dans les milieux

    Energy Technology Data Exchange (ETDEWEB)

    Goubier, R. [Agence de l`Environnement et de la Maitrise de l`Energie, 75 - Paris (France); Chassagnac, T. [CSD Azur (France); Schlegel, T. [ATE, (France); Coste, B. [ANTEA, (France)

    1996-12-31

    After a presentation of methods and tools for the basic and extensive characterization of polluted sites and the study of evolution and transfer of current organic pollutants in the ground, the example of the rehabilitation of an old Rhone-Poulenc site (at Chauny, France) polluted with metals and arsenic, is described: soil and aquifer diagnosis, risk analysis and determination of migration schemes

  19. Repository site characterization

    International Nuclear Information System (INIS)

    Voss, J.W.; Pentz, D.L.

    1987-01-01

    The characterization of candidate repository sites has a number of programmatic objectives. Principal among these is the acquisition of data: a) to determine the suitability of a site relative to the DOE repository siting guidelines, b) to support model development and calculations to determine the suitability of a site relative to the post closure criteria of the NRC and EPA, c) to support the design of a disposal system, including the waste package and the engineered barrier system, as well as the shafts and underground openings of the repository. In meeting the gaols of site characterization, the authors have an obligation to conduct their investigations within an appropriate budget and schedule. This mandates that a well-constructed and systematic plan for field investigations be developed. Such a plan must fully account for the mechanisms which will control the radiologic performance in the repository. The plan must also flexibly and dynamically respond to the results of each step of field investigation, responding to the spatial variability of earth as well as to enhanced understandings of the performance of the disposal system. Such a plan must ensure that sufficient data are available to support the necessary probabilistic calculations of performance. This paper explores the planning for field data acquisition with specific reference to requirements for demonstrations of the acceptable performance for disposal systems

  20. Site characterization plan: Public Handbook, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    1989-01-01

    The Yucca Mountain site in Nevada has been designated by the Nuclear Waste Policy Act of 1982, as amended, for detailed study as the candidate site for the first US geologic repository for spent nuclear fuel and high-level radioactive waste. The detailed study --- called ''site characterization'' --- will be conducted by the Department of Energy (DOE) to determine the suitability of the site for a repository and, if the site is suitable, to obtain from the Nuclear Regulatory Commission authorization to construct the repository. As part of the site characterization study, DOE has prepared a Site Characterization Plan (SCP) for the Yucca Mountain site. The Site Characterization Plan is a nine-volume document, approximately 6300 pages in length, which describes the activities that will be conducted to characterize the geologic, hydrologic, and other conditions relevant to the suitability of the site for a repository. Part 1 of this Handbook explains what site characterization is and how the Site Characterization Plan (Plan) relates to it. Part 2 tells how to locate subjects covered in the Plan. Another major purpose of this Handbook is to identify opportunities for public involement in the review of the Site Characterization Plan. DOE wants to be sure that the public has adequate opportunities to learn about the Plan and review the results of the subsequent technical studies. 14 refs

  1. Site-Specific Seismic Site Response Model for the Waste Treatment Plant, Hanford, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Reidel, Steve P.

    2005-02-24

    This interim report documents the collection of site-specific geologic and geophysical data characterizing the Waste Treatment Plant site and the modeling of the site-specific structure response to earthquake ground motions.

  2. Baseline risk assessment of ground water contamination at the inactive uraniferous lignite ashing site near Bowman, North Dakota

    Energy Technology Data Exchange (ETDEWEB)

    1994-11-01

    This baseline risk assessment of ground water contamination at the inactive uraniferous lignite ashing site near Bowman, North Dakota, evaluates the potential impacts to public health or the environment from contaminated ground water at this site. This contamination is a result of the uraniferous lignite ashing process, when coal containing uranium was burned to produce uranium. Potential risk is quantified only for constituents introduced by the processing activities and not for the constituents naturally occurring in background ground water in the site vicinity. Background ground water, separate from any site-related contamination, imposes a percentage of the overall risk from ground water ingestion in the Bowman site vicinity. The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project is developing plans to address soil and ground water contamination at the site. The UMTRA Surface Project involves the determination of the extent of soil contamination and design of an engineered disposal cell for long-term storage of contaminated materials. The UMTRA Ground Water Project evaluates ground water contamination. Based on results from future site monitoring activities as defined in the site observational work plan and results from this risk assessment, the DOE will propose an approach for managing contaminated ground water at the Bowman site.

  3. Baseline risk assessment of ground water contamination at the inactive uraniferous lignite ashing site near Bowman, North Dakota

    International Nuclear Information System (INIS)

    1994-11-01

    This baseline risk assessment of ground water contamination at the inactive uraniferous lignite ashing site near Bowman, North Dakota, evaluates the potential impacts to public health or the environment from contaminated ground water at this site. This contamination is a result of the uraniferous lignite ashing process, when coal containing uranium was burned to produce uranium. Potential risk is quantified only for constituents introduced by the processing activities and not for the constituents naturally occurring in background ground water in the site vicinity. Background ground water, separate from any site-related contamination, imposes a percentage of the overall risk from ground water ingestion in the Bowman site vicinity. The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project is developing plans to address soil and ground water contamination at the site. The UMTRA Surface Project involves the determination of the extent of soil contamination and design of an engineered disposal cell for long-term storage of contaminated materials. The UMTRA Ground Water Project evaluates ground water contamination. Based on results from future site monitoring activities as defined in the site observational work plan and results from this risk assessment, the DOE will propose an approach for managing contaminated ground water at the Bowman site

  4. Early Site Permit Demonstration Program: Guidelines for determining design basis ground motions

    International Nuclear Information System (INIS)

    1993-01-01

    This report develops and applies a methodology for estimating strong earthquake ground motion. The motivation was to develop a much needed tool for use in developing the seismic requirements for structural designs. An earthquake's ground motion is a function of the earthquake's magnitude, and the physical properties of the earth through which the seismic waves travel from the earthquake fault to the site of interest. The emphasis of this study is on ground motion estimation in Eastern North America (east of the Rocky Mountains), with particular emphasis on the Eastern United States and southeastern Canada. Eastern North America is a stable continental region, having sparse earthquake activity with rare occurrences of large earthquakes. While large earthquakes are of interest for assessing seismic hazard, little data exists from the region to empirically quantify their effects. The focus of the report is on the attributes of ground motion in Eastern North America that are of interest for the design of facilities such as nuclear power plants. This document, Volume II, contains Appendices 2, 3, 5, 6, and 7 covering the following topics: Eastern North American Empirical Ground Motion Data; Examination of Variance of Seismographic Network Data; Soil Amplification and Vertical-to-Horizontal Ratios from Analysis of Strong Motion Data From Active Tectonic Regions; Revision and Calibration of Ou and Herrmann Method; Generalized Ray Procedure for Modeling Ground Motion Attenuation; Crustal Models for Velocity Regionalization; Depth Distribution Models; Development of Generic Site Effects Model; Validation and Comparison of One-Dimensional Site Response Methodologies; Plots of Amplification Factors; Assessment of Coupling Between Vertical ampersand Horizontal Motions in Nonlinear Site Response Analysis; and Modeling of Dynamic Soil Properties

  5. Air quality measurements for site characterization

    International Nuclear Information System (INIS)

    Carter, M.W.; Conklin, W.C.

    1982-01-01

    Effective and timely site characterization is an important part of selecting a site for low-level waste disposal. Parameters measured can be compared with pertinent regulatory requirements, used for a reference base, helpful in evaluating environmental impacts, utilized in documenting changes in control programs, of value in modeling studies and other data uses, and beneficial in providing relevant sampling and methodology training. This paper will focus on specific air quality measurements which should be an inherent part of the site characterization program. The program is designed to measure, quantify, and identify contributions from site uses (operational procedures), atmospheric fallout, natural radioactivity, and vicinity and regional applications of radionuclides. The recommended air quality measurements program will be described in association with a reference site developd by the US Nuclear Regulatory Commission. Particular attention will be devoted to the type and quality of information which is needed, the scope of sampling and measurements, the frequency of measurements, locations and numbers of sampling stations, the period of time needed for site characterization, and the proper uses of the information once it has been obtained. Adequate characterization of the site will be most important in final site selection and in the operation of the site as to periodically assessing environmental impacts and helping guide any remedial control efforts designed to meet regulatory requirements

  6. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Riverton, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    This Risk Assessment evaluated potential impacts to public health or the environment caused by ground water contamination at the former uranium mill processing site. In the first phase of the U.S. Department of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Project, the tailing and other contaminated material at this site were placed in a disposal cell near the Gas Hills Plant in 1990. The second phase of the UMTRA Project is to evaluate ground water contamination. This risk assessment is the first site-specific document to evaluate potential health and environmental risks for the Riverton site under the Ground Water Project; it will help determine whether remedial actions are needed for contaminated ground water at the site.

  7. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Riverton, Wyoming

    International Nuclear Information System (INIS)

    1994-09-01

    This Risk Assessment evaluated potential impacts to public health or the environment caused by ground water contamination at the former uranium mill processing site. In the first phase of the U.S. Department of Energy's Uranium Mill Tailings Remedial Action (UMTRA) Project, the tailing and other contaminated material at this site were placed in a disposal cell near the Gas Hills Plant in 1990. The second phase of the UMTRA Project is to evaluate ground water contamination. This risk assessment is the first site-specific document to evaluate potential health and environmental risks for the Riverton site under the Ground Water Project; it will help determine whether remedial actions are needed for contaminated ground water at the site

  8. NRC staff site characterization analysis of the Department of Energy`s Site Characterization Plan, Yucca Mountain Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-08-01

    This Site Characterization Analysis (SCA) documents the NRC staff`s concerns resulting from its review of the US Department of Energy`s (DOE`s) Site Characterization Plan (SCP) for the Yucca Mountain site in southern Nevada, which is the candidate site selected for characterization as the nation`s first geologic repository for high-level radioactive waste. DOE`s SCP explains how DOE plans to obtain the information necessary to determine the suitability of the Yucca Mountain site for a repository. NRC`s specific objections related to the SCP, and major comments and recommendations on the various parts of DOE`s program, are presented in SCA Section 2, Director`s Comments and Recommendations. Section 3 contains summaries of the NRC staff`s concerns for each specific program, and Section 4 contains NRC staff point papers which set forth in greater detail particular staff concerns regarding DOE`s program. Appendix A presents NRC staff evaluations of those NRC staff Consultation Draft SCP concerns that NRC considers resolved on the basis of the SCP. This SCA fulfills NRC`s responsibilities with respect to DOE`s SCP as specified by the Nuclear Waste Policy Act (NWPA) and 10 CFR 60.18. 192 refs., 2 tabs.

  9. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Grand Junction, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This Baseline Risk Assessment of Ground Water Contamination at the Uranium Mill Tailings Site Near Grand Junction, Colorado evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an off-site disposal cell by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The remedial activities at the site were conducted from 1989 to 1993. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project. This risk assessment evaluates the most contaminated ground water that flows beneath the processing site toward the Colorado River. The monitor wells that have consistently shown the highest concentrations of most contaminants are used to assess risk. This risk assessment will be used in conjunction with additional activities and documents to determine what remedial action may be needed for contaminated ground water at the site. This risk assessment follows an approach outlined by the EPA. the first step is to evaluate ground water data collected from monitor wells at the site. Evaluation of these data showed that the contaminants of potential concern in the ground water are arsenic, cadmium, cobalt, fluoride, iron, manganese, molybdenum, nickel, sulfate, uranium, vanadium, zinc, and radium-226. The next step in the risk assessment is to estimate how much of these contaminants people would be exposed to if they drank from a well installed in the contaminated ground water at the former processing site.

  10. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Grand Junction, Colorado

    International Nuclear Information System (INIS)

    1994-06-01

    This Baseline Risk Assessment of Ground Water Contamination at the Uranium Mill Tailings Site Near Grand Junction, Colorado evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an off-site disposal cell by the US Department of Energy's (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The remedial activities at the site were conducted from 1989 to 1993. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project. This risk assessment evaluates the most contaminated ground water that flows beneath the processing site toward the Colorado River. The monitor wells that have consistently shown the highest concentrations of most contaminants are used to assess risk. This risk assessment will be used in conjunction with additional activities and documents to determine what remedial action may be needed for contaminated ground water at the site. This risk assessment follows an approach outlined by the EPA. the first step is to evaluate ground water data collected from monitor wells at the site. Evaluation of these data showed that the contaminants of potential concern in the ground water are arsenic, cadmium, cobalt, fluoride, iron, manganese, molybdenum, nickel, sulfate, uranium, vanadium, zinc, and radium-226. The next step in the risk assessment is to estimate how much of these contaminants people would be exposed to if they drank from a well installed in the contaminated ground water at the former processing site

  11. Modelling of the ground motion at Russe site (NE Bulgaria) due to the Vrancea earthquakes

    International Nuclear Information System (INIS)

    Kouteva, Mihaela; Panza, Giuliano F.; Paskaleva, Ivanka; Romanelli, Fabio

    2001-11-01

    An approach, capable of synthesising strong ground motion from a basic understanding of fault mechanism and of seismic wave propagation in the Earth, is applied to model the seismic input at a set of 25 sites along a chosen profile at Russe, NE Bulgaria, due to two intermediate-depth Vrancea events (August 30, 1986, Mw=7.2, and May 30, 1990, Mw=6.9). According to our results, once a strong ground motion parameter has been selected to characterise the ground motion, it is necessary to investigate the relationships between its values and the features of the earthquake source, the path to the site and the nature of the site. Therefore, a proper seismic hazard assessment requires an appropriate parametric study to define the different ground shaking scenarios corresponding to the relevant seismogenic zones affecting the given site. Site response assessment is provided simultaneously in frequency and space domains, and thus the applied procedure differs from the traditional engineering approach that discusses the site as a single point. The applied procedure can be efficiently used to estimate the ground motion for different purposes like microzonation, urban planning, retrofitting or insurance of the built environment. (author)

  12. Ground-motion site effects from multimethod shear-wave velocity characterization at 16 seismograph stations deployed for aftershocks of the August 2011 Mineral, Virginia earthquake

    Science.gov (United States)

    Stephenson, William J.; Odum, Jackson K.; McNamara, Daniel E.; Williams, Robert A.; Angster, Stephen J

    2014-01-01

    We characterize shear-wave velocity versus depth (Vs profile) at 16 portable seismograph sites through the epicentral region of the 2011 Mw 5.8 Mineral (Virginia, USA) earthquake to investigate ground-motion site effects in the area. We used a multimethod acquisition and analysis approach, where active-source horizontal shear (SH) wave reflection and refraction as well as active-source multichannel analysis of surface waves (MASW) and passive-source refraction microtremor (ReMi) Rayleigh wave dispersion were interpreted separately. The time-averaged shear-wave velocity to a depth of 30 m (Vs30), interpreted bedrock depth, and site resonant frequency were estimated from the best-fit Vs profile of each method at each location for analysis. Using the median Vs30 value (270–715 m/s) as representative of a given site, we estimate that all 16 sites are National Earthquake Hazards Reduction Program (NEHRP) site class C or D. Based on a comparison of simplified mapped surface geology to median Vs30 at our sites, we do not see clear evidence for using surface geologic units as a proxy for Vs30 in the epicentral region, although this may primarily be because the units are similar in age (Paleozoic) and may have similar bulk seismic properties. We compare resonant frequencies calculated from ambient noise horizontal:vertical spectral ratios (HVSR) at available sites to predicted site frequencies (generally between 1.9 and 7.6 Hz) derived from the median bedrock depth and average Vs to bedrock. Robust linear regression of HVSR to both site frequency and Vs30 demonstrate moderate correlation to each, and thus both appear to be generally representative of site response in this region. Based on Kendall tau rank correlation testing, we find that Vs30 and the site frequency calculated from average Vs to median interpreted bedrock depth can both be considered reliable predictors of weak-motion site effects in the epicentral region.

  13. Preliminary assessment of using tree-tissue analysis and passive-diffusion samplers to evaluate trichloroethene contamination of ground water at Site SS-34N, McChord Air Force Base, Washington, 2001

    Science.gov (United States)

    Cox, S.E.

    2002-01-01

    Two low-cost innovative sampling procedures for characterizing trichloroethene (TCE) contamination in ground water were evaluated for use at McChord Air Force Base (AFB) by the U.S. Geological Survey, in cooperation with the U.S. Air Force McChord Air Force Base Installation Restoration Program, in 2001. Previous attempts to characterize the source of ground-water contamination in the heterogeneous glacial outwash aquifer at McChord site SS-34N using soil-gas surveys, direct-push exploration, and more than a dozen ground-water monitoring wells have had limited success. The procedures assessed in this study involved analysis of tree-tissue samples to map underlying ground-water contamination and deploying passive-diffusion samplers to measure TCE concentrations in existing monitoring wells. These procedures have been used successfully at other U.S. Department of Defense sites and have resulted in cost avoidance and accelerated site characterization. Despite the presence of TCE in ground water at site SS-34N, TCE was not detected in any of the 20 trees sampled at the site during either early spring or late summer sampling. The reason the tree tissue procedure was not successful at the McChord AFB site SS-34N may have been due to an inability of tree roots to extract moisture from a water table 30 feet below the land surface, or that concentrations of TCE in ground water were not large enough to be detectable in the tree tissue at the sampling point. Passive-diffusion samplers were placed near the top, middle, and bottom of screened intervals in three monitoring wells and TCE was observed in all samplers. Concentrations of TCE from the passive-diffusion samplers were generally similar to concentrations found in samples collected in the same wells using conventional pumping methods. In contrast to conventional pumping methods, the collection of ground-water samples using the passive-diffusion samples did not generate waste purge water that would require hazardous

  14. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Tuba City, Arizona

    International Nuclear Information System (INIS)

    1994-06-01

    This document evaluates potential public health or environmental impacts resulting from ground water contamination at the former uranium mill site. The tailings and other contaminated material at this site were placed in a disposal cell on the site in 1990 by the US Department of Energy's Uranium Mill Tailings Remedial Action (UMTRA) Project. The second phase of the UMTRA Project is to evaluate ground water contamination. This risk assessment is the first site-specific document under the Ground Water Project. It will help determine what remedial actions are necessary for contaminated ground water at the site

  15. Evaluation of vibratory ground motion at nuclear power plant sites

    International Nuclear Information System (INIS)

    Hofmann, R.B.; Greeves, J.T.

    1978-01-01

    The evaluation of vibratory ground motion at nuclear power plant sites requires the cooperative effort of scientists and engineers in several disciplines. These include seismology, geology, geotechnical engineering and structural engineering. The Geosciences Branch of the NRC Division of Site Safety and Environmental Analysis includes two sections, the Geology/Seismology Section and the Geotechnical Engineering Section

  16. Baseline risk assessment of ground water contamination at the uranium mill tailings site Salt Lake City, Utah

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    This baseline risk assessment of groundwater contamination at the uranium mill tailings site near Salt Lake City, Utah, evaluates potential public health or environmental impacts resulting from ground water contamination at the former uranium ore processing site. The tailings and other contaminated material at this site were placed in a disposal cell located at Clive, Utah, in 1987 by the US Department of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Project. The second phase of the UMTRA Project is to evaluate residual ground water contamination at the former uranium processing site, known as the Vitro processing site. This risk assessment is the first site-specific document under the Ground Water Project. It will help determine the appropriate remedial action for contaminated ground water at the site.

  17. Baseline risk assessment of ground water contamination at the uranium mill tailings site Salt Lake City, Utah

    International Nuclear Information System (INIS)

    1994-09-01

    This baseline risk assessment of groundwater contamination at the uranium mill tailings site near Salt Lake City, Utah, evaluates potential public health or environmental impacts resulting from ground water contamination at the former uranium ore processing site. The tailings and other contaminated material at this site were placed in a disposal cell located at Clive, Utah, in 1987 by the US Department of Energy's Uranium Mill Tailings Remedial Action (UMTRA) Project. The second phase of the UMTRA Project is to evaluate residual ground water contamination at the former uranium processing site, known as the Vitro processing site. This risk assessment is the first site-specific document under the Ground Water Project. It will help determine the appropriate remedial action for contaminated ground water at the site

  18. Site characterization criteria (DOE-STD-1022-94) for natural phenomena hazards at DOE sites

    International Nuclear Information System (INIS)

    Chen, J.C.; Ueng, T.S.; Boissonnade, A.C.

    1995-12-01

    This paper briefly summarizes requirements of site characterization for Natural Phenomena Hazards (NPH) at DOE sites. In order to comply with DOE Order 5480.28, site characterization criteria has been developed to provide site-specific information needed for development of NPH assessment criteria. Appropriate approaches are outlined to ensure that the current state-of-the-art methodologies and procedures are used in the site characterization. General and detailed site characterization requirements are provided in the areas of meteorology, hydrology, geology, seismology and geotechnical studies

  19. Hanford Site ground-water monitoring for 1995

    International Nuclear Information System (INIS)

    Dresel, P.E.; Rieger, J.T.; Webber, W.D.; Thorne, P.D.; Gillespie, B.M.; Luttrell, S.P.; Wurstner, S.K.; Liikala, T.L.

    1996-08-01

    This report presents the results of the Groundwater Surveillance Project monitoring for calendar year 1995 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that impacted groundwater quality on the site. Monitoring of water levels and groundwater chemistry is performed to track the extent of contamination, to note trends in contaminant concentrations,a nd to identify emerging groundwater quality problems. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of onsite groundwater quality. A three- dimensional, numerical, groundwater model is being developed to improve predictions of contaminant transport. The existing two- dimensional model was applied to predict contaminant flow paths and the impact of changes on site conditions. These activities were supported by limited hydrogeologic characterization. Water level monitoring was performed to evaluate groundwater flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Radiological monitoring results indicated that many radioactive contaminants were above US Environmental Protection Agency or State of Washington drinking water standards at the Hanford Site. Nitrate, fluoride, chromium, cyanide, carbon tetrachloride, chloroform, trichloroethylene, and cis-1,2-dichloroethylene were present in groundwater samples at levels above their US EPA or State of Washington maximum contaminant levels

  20. Baseline risk assessment of ground water contamination at the uranium mill tailings sites near Slick Rock, Colorado

    International Nuclear Information System (INIS)

    1994-11-01

    This baseline risk assessment of ground water contamination at the uranium mill tailings sites near Slick Rock, Colorado, evaluates potential public health and environmental impacts resulting from ground water contamination at the former North Continent (NC) and Union Carbide (UC) uranium mill processing sites. The tailings at these sites will be placed in a disposal cell at the proposed Burro Canyon, Colorado, site. The US Department of Energy (DOE) anticipates the start of the first phase remedial action by the spring of 1995 under the direction of the DOE's Uranium Mill Tailings Remedial Action (UMTRA) Project. The second phase of the UMTRA Project will evaluate ground water contamination. This baseline risk assessment is the first site-specific document for these sites under the Ground Water Project. It will help determine the compliance strategy for contaminated ground water at the site. In addition, surface water and sediment are qualitatively evaluated in this report

  1. Baseline risk assessment of ground water contamination at the uranium mill tailings sites near Slick Rock, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    1994-11-01

    This baseline risk assessment of ground water contamination at the uranium mill tailings sites near Slick Rock, Colorado, evaluates potential public health and environmental impacts resulting from ground water contamination at the former North Continent (NC) and Union Carbide (UC) uranium mill processing sites. The tailings at these sites will be placed in a disposal cell at the proposed Burro Canyon, Colorado, site. The US Department of Energy (DOE) anticipates the start of the first phase remedial action by the spring of 1995 under the direction of the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. The second phase of the UMTRA Project will evaluate ground water contamination. This baseline risk assessment is the first site-specific document for these sites under the Ground Water Project. It will help determine the compliance strategy for contaminated ground water at the site. In addition, surface water and sediment are qualitatively evaluated in this report.

  2. Initial source and site characterization studies for the U.C. Santa Barbara campus

    Energy Technology Data Exchange (ETDEWEB)

    Archuleta, R.; Nicholson, C.; Steidl, J.; Gurrola, L.; Alex, C.; Cochran, E.; Ely, G.; Tyler, T. [University of California, Santa Barbara (United States)

    1997-12-01

    The University of California Campus-Laboratory Collaboration (CLC) project is an integrated 3 year effort involving Lawrence Livermore National Laboratory (LLNL) and four UC campuses - Los Angeles (UCLA), Riverside (UCR), Santa Barbara (UCSB), and San Diego (UCSD) - plus additional collaborators at San Diego State University (SDSU), at Los Alamos National Laboratory and in industry. The primary purpose of the project is to estimate potential ground motions from large earthquakes and to predict site-specific ground motions for one critical structure on each campus. This project thus combines the disciplines of geology, seismology, geodesy, soil dynamics, and earthquake engineering into a fully integrated approach. Once completed, the CLC project will provide a template to evaluate other buildings at each of the four UC campuses, as well as provide a methodology for evaluating seismic hazards at other critical sites in California, including other UC locations at risk from large earthquakes. Another important objective of the CLC project is the education of students and other professional in the application of this integrated, multidisciplinary, state-of-the-art approach to the assessment of earthquake hazard. For each campus targeted by the CLC project, the seismic hazard study will consist of four phases: Phase I - Initial source and site characterization, Phase II - Drilling, logging, seismic monitoring, and laboratory dynamic soil testing, Phase III - Modeling of predicted site-specific earthquake ground motions, and Phase IV - Calculations of 3D building response. This report cover Phase I for the UCSB campus and incudes results up through March 1997.

  3. Small Scale Multisource Site – Hydrogeology Investigation

    Science.gov (United States)

    A site impacted by brackish water was evaluated using traditional hydrogeologic and geochemical site characterization techniques. No single, specific source of the brine impacted ground water was identified. However, the extent of the brine impacted ground water was found to be...

  4. Resolving superimposed ground-water contaminant plumes characterized by chromium, nitrate, uranium, and technetium--99

    International Nuclear Information System (INIS)

    Hall, S.H.

    1990-02-01

    Leakage from a liquid waste storage and solar evaporation basin at the Hanford Site in southeastern Washington State has resulted in a ground-water contaminant plume characterized by nitrate, hexavalent chromium, uranium, and technetium-99. The plume is superimposed on a larger, pre-existing plume extending from upgradient sites and having the same suite of contaminants. However, the relative abundance of contaminant species is quite different for each plume source. Thus, characteristic concentration ratios, rather than concentrations of individual species, are used as geochemical tracers, with emphasis on graphical analysis. Accordingly, it has been possible to resolve the boundaries of the smaller plume and to estimate the contribution of each plume to the observed contamination downgradient from the storage basin. 11 refs., 7 figs

  5. Ground water hydrology report: Revision 1, Attachment 3. Final

    International Nuclear Information System (INIS)

    1996-12-01

    This report presents ground water hydrogeologic activities for the Maybell, Colorado, Uranium Mill Tailings Remedial Action Project site. The Department of Energy has characterized the hydrogeology, water quality, and water resources at the site and determined that the proposed remedial action would comply with the requirements of the EPA ground water protection standards

  6. Draft reclamation program plan for site characterization

    International Nuclear Information System (INIS)

    1989-08-01

    As part of its obligations under the Nuclear Waste Policy Act, as amended, the US Department of Energy (DOE) has developed an environmental program that is to be implemented during site characterization at the Yucca Mountain site. This site is proposed for the location of the nation's first high-level radioactive waste repository. A program for the reclamation of areas disturbed by site characterization is part of the overall environmental program for that site. This Reclamation Program Plan (RPP) describes the reclamation policy of the DOE for the Yucca Mountain site and presents an overview of the reclamation program. The RPP also provides an overview of the reclamation needs relative to site characterization; a review of legislation and requirements pertinent to reclamation; and a review of previous commitments made by the DOE to certain types of reclamation activities. The objective of the DOE reclamation program at Yucca Mountain is to return land disturbed by site-characterization activities to a stable ecological state with a form and productivity similar to the predisturbance state. The DOE will take all reasonable and necessary steps to achieve this objective. 19 refs., 2 tabs

  7. Report of ground water monitoring for expansion of the golf course, Salt Lake City, Utah, Vitro Processing Site. Revision 0

    International Nuclear Information System (INIS)

    1996-03-01

    Ground water elevations of the shallow unconfined aquifer have been monitored at the Uranium Mill Tailings Remedial Action (UMTRA) Project, Vitro Processing site, Salt Lake City, Utah, for the purposes of characterizing ground water flow conditions and evaluating the effects of irrigation of the golf driving range. Data collected, to date, show that the water table reached its highest level for the year during March and April 1995. From May through July 1995, the water table elevations decreased in most monitor wells due to less precipitation and higher evapotranspiration. Review and evaluation of collected data suggest that irrigation of the golf driving range will have negligible effects on water levels and ground water flow patterns if rates of irrigation do not significantly exceed future rates of evapotranspiration

  8. Site observational work plan for the UMTRA project site at Grand Junction, Colorado

    International Nuclear Information System (INIS)

    1996-01-01

    This site observational work plan (SOWP) is one of the first Uranium Mill Tailings Remedial Action (UMTRA) Ground Water Project documents developed to select a compliance strategy that meets the UMTRA ground water standards for the Grand Junction site. This SOWP applies information about the Grand Junction site to the compliance strategy selection framework developed in the UMTRA Ground Water Project draft programmatic environmental impact statement. This risk-based, decision-making framework identifies the decision logic for selecting compliance strategies that could be used to meet the ground water standards. The US Department of Energy (DOE) goal is to implement a cost-effective site strategy that complies with the ground water standards and protects human health and the environment. Based on an evaluation of the site characterization and risk assessment data available for the preparation of this SOWP, DOE proposes that the most likely compliance strategy for the Grand Junction site is no remediation with the application of supplemental standards. This proposed strategy is based on a conceptual site model that indicates site-related contamination is confined to a limited-use aquifer as defined in the ground water standards. The conceptual model demonstrates that the uranium processing-related contamination at the site has affected the unconfined alluvial aquifer, but not the deeper confined aquifer

  9. Site characterization studies in the NWTS program

    International Nuclear Information System (INIS)

    Shipler, D.; Evans, G.

    1980-01-01

    The US Department of Energy (DOE) has the responsibility to identify sites and construct and operate facilities for the storage or isolation of spent fuel and/or reprocessing radioactive wastes from commercial nuclear power plants. The National Waste Terminal Storage (NWTS) Program has been initiated by the DOE to develop the technology and demonstrate the feasibility of burial and isolation of high level radioactive waste in deep geologic formations. The NTWS Program plan which sets forth the criteria, procedures, and other considerations required to characterize and select a site in a comprehensive stepwise manner is discussed. The plan is not specific to any given geologic medium but serves as a guide for site selection in any geohydrologic system deemed appropriate for consideration for a deep geologic repository. The plan will be used by all NWTS Project Offices in the conduct of their site characterization program. The plan will be updated, as warranted, to reflect technology development, National policies, rulemakings by regulatory agencies, and other changing political, social, and institutional considerations. Site characterization begins with the identification of regions believed to have suitable geologic, hydrologic, and environmental characteristics for repository siting. This is followed by an iterative process of data collection and analysis to identify areas and locations which appear most suitable for further investigations. In addition, screening studies of the DOE's nuclear complexes has led to the selection of the Nevada Test Site and the Hanford Site for further characterization studies. The site characterization process results in a number of candidate sites from which a site will be selected and proposed to the NRC for licensing

  10. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Shiprock, New Mexico. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    This baseline risk assessment at the former uranium mill tailings site near Shiprock, New Mexico, evaluates the potential impact to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an on-site disposal cell in 1986 through the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project. There are no domestic or drinking water wells in the contaminated ground water of the two distinct ground water units: the contaminated ground water in the San Juan River floodplain alluvium below the site and the contaminated ground water in the terrace alluvium area where the disposal cell is located. Because no one is drinking the affected ground water, there are currently no health or environmental risks directly associated with the contaminated ground water. However, there is a potential for humans, domestic animals, and wildlife to the exposed to surface expressions of ground water in the seeps and pools in the area of the San Juan River floodplain below the site. For these reasons, this risk assessment evaluates potential exposure to contaminated surface water and seeps as well as potential future use of contaminated ground water.

  11. Structuring a cost-effective site characterization

    International Nuclear Information System (INIS)

    Berven, B.A.; Little, C.A.; Swaja, R.E.

    1990-01-01

    Successful chemical and radiological site characterizations are complex activities which require meticulously detailed planning. Each layer of investigation is based upon previously generated information about the site. Baseline historical, physical, geological, and regulatory information is prerequisite for preliminary studies at a site. Preliminary studies then provide samples and measurements which define the identity of potential contaminants and define boundaries around the area to be investigated. The goal of a full site characterization is to accurately determine the extent and magnitude of contaminants and carefully define the site conditions such that the future movements of site contaminants can be assessed for potential exposure to human occupants and/or environmental impacts. Critical to this process is the selection of appropriate measurement and sampling methodology, selection and use of appropriate instrumentation and management/interpretation of site information. Site investigations require optimization between the need of information to maximize the understanding of site conditions and the cost of acquiring that information. 5 refs., 1 tab

  12. Characterization of 618-11 solid waste burial ground, disposed waste, and description of the waste generating facilities

    International Nuclear Information System (INIS)

    Hladek, K.L.

    1997-01-01

    The 618-11 (Wye or 318-11) burial ground received transuranic (TRTJ) and mixed fission solid waste from March 9, 1962, through October 2, 1962. It was then closed for 11 months so additional burial facilities could be added. The burial ground was reopened on September 16, 1963, and continued operating until it was closed permanently on December 31, 1967. The burial ground received wastes from all of the 300 Area radioactive material handling facilities. The purpose of this document is to characterize the 618-11 solid waste burial ground by describing the site, burial practices, the disposed wastes, and the waste generating facilities. This document provides information showing that kilogram quantities of plutonium were disposed to the drum storage units and caissons, making them transuranic (TRU). Also, kilogram quantities of plutonium and other TRU wastes were disposed to the three trenches, which were previously thought to contain non-TRU wastes. The site burial facilities (trenches, caissons, and drum storage units) should be classified as TRU and the site plutonium inventory maintained at five kilograms. Other fissile wastes were also disposed to the site. Additionally, thousands of curies of mixed fission products were also disposed to the trenches, caissons, and drum storage units. Most of the fission products have decayed over several half-lives, and are at more tolerable levels. Of greater concern, because of their release potential, are TRU radionuclides, Pu-238, Pu-240, and Np-237. TRU radionuclides also included slightly enriched 0.95 and 1.25% U-231 from N-Reactor fuel, which add to the fissile content. The 618-11 burial ground is located approximately 100 meters due west of Washington Nuclear Plant No. 2. The burial ground consists of three trenches, approximately 900 feet long, 25 feet deep, and 50 feet wide, running east-west. The trenches constitute 75% of the site area. There are 50 drum storage units (five 55-gallon steel drums welded together

  13. Characterization of 618-11 solid waste burial ground, disposed waste, and description of the waste generating facilities

    Energy Technology Data Exchange (ETDEWEB)

    Hladek, K.L.

    1997-10-07

    The 618-11 (Wye or 318-11) burial ground received transuranic (TRTJ) and mixed fission solid waste from March 9, 1962, through October 2, 1962. It was then closed for 11 months so additional burial facilities could be added. The burial ground was reopened on September 16, 1963, and continued operating until it was closed permanently on December 31, 1967. The burial ground received wastes from all of the 300 Area radioactive material handling facilities. The purpose of this document is to characterize the 618-11 solid waste burial ground by describing the site, burial practices, the disposed wastes, and the waste generating facilities. This document provides information showing that kilogram quantities of plutonium were disposed to the drum storage units and caissons, making them transuranic (TRU). Also, kilogram quantities of plutonium and other TRU wastes were disposed to the three trenches, which were previously thought to contain non-TRU wastes. The site burial facilities (trenches, caissons, and drum storage units) should be classified as TRU and the site plutonium inventory maintained at five kilograms. Other fissile wastes were also disposed to the site. Additionally, thousands of curies of mixed fission products were also disposed to the trenches, caissons, and drum storage units. Most of the fission products have decayed over several half-lives, and are at more tolerable levels. Of greater concern, because of their release potential, are TRU radionuclides, Pu-238, Pu-240, and Np-237. TRU radionuclides also included slightly enriched 0.95 and 1.25% U-231 from N-Reactor fuel, which add to the fissile content. The 618-11 burial ground is located approximately 100 meters due west of Washington Nuclear Plant No. 2. The burial ground consists of three trenches, approximately 900 feet long, 25 feet deep, and 50 feet wide, running east-west. The trenches constitute 75% of the site area. There are 50 drum storage units (five 55-gallon steel drums welded together

  14. Seismic hazard characterization of 69 nuclear plant sites east of the Rocky Mountains: Results and discussion for the Batch 4 sites

    International Nuclear Information System (INIS)

    Bernreuter, D.L.; Savy, J.B.; Mensing, R.W.; Chen, J.C.

    1989-01-01

    The EUS Seismic Hazard Characterization Project (SHC) is the outgrowth of an earlier study performed as part of the US Nuclear Regulatory Commission's (NRC) Systematic Evaluation Program (SEP). The objectives of the SHC were: (1) to develop a seismic hazard characterization methodology for the region east of the Rocky Mountains (EUS), and (2) the application of the methodology to 69 site locations, some of them with several local soil conditions. The method developed uses expert opinions to obtain the input to the analyses. An important aspect of the elicitation of the expert opinion process was the holding of two feedback meetings with all the experts in order to finalize the methodology and the input data bases. The hazard estimates are reported in terms of peak ground acceleration (PGA) and 5% damping velocity response spectra (PSV). A total of eight volumes make up this report which contains a thorough description of the methodology, the expert opinion's elicitation process, the input data base as well as a discussion, comparison and summary volume (Volume 6). Consistent with previous analyses, this study finds that there are large uncertainties associated with the estimates of seismic hazard in the EUS, and it identifies the ground motion modeling as the prime contributor to those uncertainties. This document, Volume 5, provides the seismic hazard estimates for the 17 sites in ''Batch 4''

  15. Baseline risk assessment of ground water contamination at the inactive uriniferous lignite ashing site near Belfield, North Dakota

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-08-01

    This Baseline Risk Assessment of Ground Water Contamination at the Inactive Uraniferous Lignite Ashing Site Near Belfield, North Dakota, evaluates potential impacts to public health or the environment resulting from ground water contamination at the site where coal containing uranium was burned to produce uranium. The US Department of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Project is evaluating plans to remedy soil and ground water contamination at the site. Phase I of the UMTRA Project consists of determining the extent of soil contamination. Phase II of the UMTRA Project consists of evaluating ground water contamination. Under Phase II, results of this risk assessment will help determine what remedial actions may be necessary for contaminated ground water at the site. This risk assessment evaluates the potential risks to human health and the environment resulting from exposure to contaminated ground water as it relates to historic processing activities at the site. Potential risk is quantified for constituents introduced from the processing activities, and not for those constituents naturally occurring in water quality in the site vicinity. Background ground water quality has the potential to cause adverse health effects from exposure through drinking. Any risks associated with contaminants attributable to site activities are incremental to these risks from background ground water quality. This incremental risk from site-related contaminants is quantified in this risk assessment. The baseline risk from background water quality is incorporated only into the assessment of potential chemical interactions and the definition of the overall site condition.

  16. Baseline risk assessment of ground water contamination at the inactive uraniferous lignite ashing site near Belfield, North Dakota

    International Nuclear Information System (INIS)

    1994-08-01

    This Baseline Risk Assessment of Ground Water Contamination at the Inactive Uraniferous Lignite Ashing Site Near Belfield, North Dakota, evaluates potential impacts to public health or the environment resulting from ground water contamination at the site where coal containing uranium was burned to produce uranium. The US Department of Energy's Uranium Mill Tailings Remedial Action (UMTRA) Project is evaluating plans to remedy soil and ground water contamination at the site. Phase I of the UMTRA Project consists of determining the extent of soil contamination. Phase II of the UMTRA Project consists of evaluating ground water contamination. Under Phase II, results of this risk assessment will help determine what remedial actions may be necessary for contaminated ground water at the site. This risk assessment evaluates the potential risks to human health and the environment resulting from exposure to contaminated ground water as it relates to historic processing activities at the site. Potential risk is quantified for constituents introduced from the processing activities, and not for those constituents naturally occurring in water quality in the site vicinity. Background ground water quality has the potential to cause adverse health effects from exposure through drinking. Any risks associated with contaminants attributable to site activities are incremental to these risks from background ground water quality. This incremental risk from site-related contaminants is quantified in this risk assessment. The baseline risk from background water quality is incorporated only into the assessment of potential chemical interactions and the definition of the overall site condition

  17. Environmental Regulatory Compliance Plan for site: Draft characterization of the Yucca Mountain site:Draft

    International Nuclear Information System (INIS)

    1988-01-01

    The objective of the EMMP is to document compliance with the NWPA. To do so, a summary description of site characterization activites is provided, based on the consultation draft of the SCP. Subsequent chpaters identify those technical areas having the potential to be impacted by site characterization activities and the monitoring plans proposed to identify whether those impacts acutally occur. Should monitoring confirm the potential for significant adverse impact, mitigative measures will be developed. In the context of site characterization, mitigation is defined as those changes in site characterization activities that serve to avoid or minimize, to the maximum extent practicle, any significant adverse environmental impacts. Although site characterization activies involve both surface and subsurface activities, it is the surface-based aspect of site characterization that is addressed in detailed by the EMMP. The schedule and duration of these activities is given in the consultation draft of the SCP. A breif summary of all proposed activities is given in the EMMP. 10 refs., 8 figs

  18. Ground-water hydrology and radioactive waste disposal at the Hanford Site

    International Nuclear Information System (INIS)

    Law, A.G.

    1979-02-01

    This paper is a summary of the hydrologic activities conducted at the Hanford Site as a part of the environmental protection effort. The Site encompasses 1,480 square kilometers in the arid, southeastern part of Washington State. Precipitation averages about 160 millimeters per year with a negligible amount, if any, recharging the water table, which is from 50 to 100 meters below the ground surface. An unconfined aquifer occurs in the upper and middle Ringold Formations. The lower Ringold Formation along with interbed and interflow zones in the Saddle Mountain and Wanapum basalts forms a confined aquifer system. A potential exists for the interconnection of the unconfined and confined aquifer systems, especially near Gable Mountain where the anticlinal ridge was eroded by the catastrophic floods of the ancestral Columbia River system. Liquid wastes from chemical processing operations have resulted in large quantities of processing and cooling water disposed to ground via ponds, cribs, and ditches. The ground-water hydrology program at Hanford is designed: (1) to define and quantify the ground-water flow systems, (2) to evaluate the impact of the liquid waste discharges on these flow systems, and (3) to predict the impact on the ground-water systems of changes in system inputs. This work is conducted through a drilling, sampling, testing, and modeling program

  19. Site characterization plan overview: Yucca Mountain Site, Nevada Research and Development Area, Nevada: Consultation Draft

    International Nuclear Information System (INIS)

    1988-01-01

    The consultation draft of the site characterization plan is a lengthy document that describes in considerable detail the program that will be conducted to characterize the geologic, hydrologic, and other conditions relevant to the suitability of the site for a repository. The overview presented here consists of brief summaries of important topics covered in the consultation draft of the site-characterization plan; it is not a substitute for the site-characterization plan. The arrangement of the overview is similar to that of the plan itself, with brief descriptions of the disposal system -- the site, the repository, and the waste package -- preceding the discussion of the characterization program to be carried out at the Yucca Mountain site. It is intended primarily for the management staff of organizations involved in the DOE's repository program -- staff who might wish to understand the general scope of the site-characterization program, the activities to be conducted, and the facilities to be constructed rather than the technical details of site characterization. 22 figs., 1 tab

  20. Plans for characterization of salt sites

    International Nuclear Information System (INIS)

    Heim, G.E.; Matthews, S.C.; Kircher, J.F.; Kennedy, R.K.

    1983-01-01

    This basic salt site characterization program has been designed to provide the data required to support the design, performance assessment, and licensing of each of the principal project elements: the repository, the shafts, and the surface facilities. The work has been sequenced to meet the design and licensing schedule. It is anticipated that additional characterization activities will be performed to address site-specific considerations and to provide additional information to address questions which arise during the evaluation of characterization data. 3 figures, 3 tables

  1. A detection-level hazardous waste ground-water monitoring compliance plan for the 200 areas low-level burial grounds and retrievable storage units

    International Nuclear Information System (INIS)

    1987-02-01

    This plan defines the actions needed to achieve detection-level monitoring compliance at the Hanford Site 200 Areas Low-Level Burial Grounds (LLBG) in accordance with the Resource Conservation and Recovery Act (RCRA). Compliance will be achieved through characterization of the hydrogeology and monitoring of the ground water beneath the LLBG located in the Hanford Site 200 Areas. 13 refs., 20 figs

  2. Ground-dwelling ant fauna of sites with high levels of copper.

    Science.gov (United States)

    Diehl, E; Sanhudo, C E; Diehl-Fleig, Ed

    2004-02-01

    Richness and diversity of ant species are related to environmental factors such as vegetation, soil, presence of heavy metals, and insecticides, which allow the use of the assemblage members as terrestrial indicators of environmental conservation status. This study presents the results of ground ants surveyed in Minas do Camaquã in the municipality of Cacapava do Sul (Camaquã Basin), State of Rio Grande do Sul. Collections were performed in four sites, which high levels of copper in the soil, three of which--a mine, a liquid reject, and a solid reject-, had sparse or no plant cover, and one site where Pinus has been used for rehabilitation. Parque das Guaritas was the control site, since it presented normal levels of copper and a dense savanna cover. For each site, three transect lines extending 100 m were draw, and at each 10 m sardine baits were distributed; after two hours the ants present were collected. Hand collections in all five sites were performed during one hour (capture effort). A total of 51 species belonging to 17 genera were collected. The control site was the richest in ant species (r = 45). Sites with high level of copper and poor plant cover presented the lowest richness: mine (r = 14), solid reject (r = 15), and liquid reject (r = 16). In contrast, the site planted with Pinus presented an increment in richness (r = 24) of ground-dwelling ants, suggesting a reahabilitation process.

  3. Ground-dwelling ant fauna of sites with high levels of copper

    Directory of Open Access Journals (Sweden)

    E. Diehl

    Full Text Available Richness and diversity of ant species are related to environmental factors such as vegetation, soil, presence of heavy metals, and insecticides, which allow the use of the assemblage members as terrestrial indicators of environmental conservation status. This study presents the results of ground ants surveyed in Minas do Camaquã in the municipality of Caçapava do Sul (Camaquã Basin, State of Rio Grande do Sul. Collections were performed in four sites, with high levels of copper in the soil, three of which - a mine, a liquid reject, and a solid reject -, had sparse or no plant cover, and one site where Pinus has been used for rehabilitation. Parque das Guaritas was the control site, since it presented normal levels of copper and a dense savanna cover. For each site, three transect lines extending 100 m were draw, and at each 10 m sardine baits were distributed; after two hours the ants present were collected. Hand collections in all five sites were performed during one hour (capture effort. A total of 51 species belonging to 17 genera were collected. The control site was the richest in ant species (r = 45. Sites with high level of copper and poor plant cover presented the lowest richness: mine (r = 14, solid reject (r = 15, and liquid reject (r = 16. In contrast, the site planted with Pinus presented an increment in richness (r = 24 of ground-dwelling ants, suggesting a reahabilitation process.

  4. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site in Lakeview, Oregon

    International Nuclear Information System (INIS)

    1994-10-01

    This Baseline Risk Assessment of Ground Water Contamination at the Uranium Mill Tailings Site in Lake view, Oregon evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site

  5. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site in Lakeview, Oregon

    Energy Technology Data Exchange (ETDEWEB)

    1994-10-01

    This Baseline Risk Assessment of Ground Water Contamination at the Uranium Mill Tailings Site in Lake view, Oregon evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site.

  6. Site observational work plan for the UMTRA Project Site at Grand Junction, Colorado

    International Nuclear Information System (INIS)

    1996-03-01

    The U.S. Department of Energy (DOE) has prepared this initial site observational work plan (SOWP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project site in Grand Junction, Colorado. This SOWP is one of the first UMTRA Ground Water Project documents developed to select a compliance strategy that meets the UMTRA ground water standards (40 CFR Part 192, as amended by 60 FR 2854) for the Grand Junction site. This SOWP applies information about the Grand Junction site to the compliance strategy selection framework developed in the UMTRA Ground Water Project draft programmatic environmental impact statement (PEIS). This risk-based, decision-making framework identifies the decision logic for selecting compliance strategies that could be used to meet the ground water standards. The DOE goal is to use the observational method to implement a cost-effective site strategy that complies with the ground water standards and protects human health and the environment. Based on an evaluation of the site characterization and risk assessment data available for the preparation of this SOWP, DOE proposes that the most likely compliance strategy for the Grand Junction site is no remediation based on the application of supplemental standards. This proposed strategy is based on a conceptual site model that indicates site-related contamination is confined to a limited-use aquifer as defined in the ground water standards

  7. Management strategy for site characterization at candidate HLW repository sites

    International Nuclear Information System (INIS)

    Bartlett, J.W.

    1988-01-01

    This paper describes a management strategy for HLW repository site characterization which is aimed at producing an optimal characterization trajectory for site suitability and licensing evaluations. The core feature of the strategy is a matrix of alternative performance targets and alternative information-level targets which can be used to allocate and justify program effort. Strategies for work concerning evaluation of expected and disrupted repository performance are distinguished, and the need for issue closure criteria is discussed

  8. Long-term ground-water monitoring program and performance-evaluation plan for the extraction system at the former Nike Missile Battery Site, Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Senus, Michael P.; Tenbus, Frederick J.

    2000-01-01

    This report presents lithologic and ground-water-quality data collected during April and May 2000 in the remote areas of the tidal wetland of West Branch Canal Creek, Aberdeen Proving Ground, Maryland. Contamination of the Canal Creek aquifer with volatile organic compounds has been documented in previous investigations of the area. This study was conducted to investigate areas that were previously inaccessible because of deep mud and shallow water, and to support ongoing investigations of the fate and transport of volatile organic compounds in the Canal Creek aquifer. A unique vibracore drill rig mounted on a hovercraft was used for drilling and ground-water sampling. Continuous cores of the wetland sediment and of the Canal Creek aquifer were collected at five sites. Attempts to sample ground water were made by use of a continuous profiler at 12 sites, without well installation, at a total of 81 depths within the aquifer. Of those 81 attempts, only 34 sampling depths produced enough water to collect samples. Ground-water samples from two sites had the highest concentrations of volatile organic compounds?with total volatile organic compound concentrations in the upper part of the aquifer ranging from about 15,000 to 50,000 micrograms per liter. Ground-water samples from five sites had much lower total volatile organic compound concentrations (95 to 2,100 micrograms per liter), whereas two sites were essentially not contaminated, with total volatile organic compound concentrations less than or equal to 5 micrograms per liter.

  9. SURFACE GEOPHYSICAL EXPLORATION OF TX-TY TANK FARMS AT THE HANFORD SITE: RESULTS OF BACKGROUND CHARACTERIZATION WITH GROUND PENETRATING RADAR

    International Nuclear Information System (INIS)

    MYERS DA; CUBBAGE R; BRAUCHLA R; O'BRIEN G

    2008-01-01

    Ground penetrating radar surveys of the TX and TY tank farms were performed to identify existing infrastructure in the near surface environment. These surveys were designed to provide background information supporting Surface-to-Surface and Well-to-Well resistivity surveys of Waste Management Area TX-TY. The objective of the preliminary investigation was to collect background characterization information with GPR to understand the spatial distribution of metallic objects that could potentially interfere with the results from high resolution resistivity(trademark) surveys. The results of the background characterization confirm the existence of documented infrastructure, as well as highlight locations of possible additional undocumented subsurface metallic objects

  10. Size Distributions and Characterization of Native and Ground Samples for Toxicology Studies

    Science.gov (United States)

    McKay, David S.; Cooper, Bonnie L.; Taylor, Larry A.

    2010-01-01

    This slide presentation shows charts and graphs that review the particle size distribution and characterization of natural and ground samples for toxicology studies. There are graphs which show the volume distribution versus the number distribution for natural occurring dust, jet mill ground dust, and ball mill ground dust.

  11. Empirical Ground Motion Characterization of Induced Seismicity in Alberta and Oklahoma

    Science.gov (United States)

    Novakovic, M.; Atkinson, G. M.; Assatourians, K.

    2017-12-01

    We develop empirical ground-motion prediction equations (GMPEs) for ground motions from induced earthquakes in Alberta and Oklahoma following the stochastic-model-based method of Atkinson et al. (2015 BSSA). The Oklahoma ground-motion database is compiled from over 13,000 small to moderate seismic events (M 1 to 5.8) recorded at 1600 seismic stations, at distances from 1 to 750 km. The Alberta database is compiled from over 200 small to moderate seismic events (M 1 to 4.2) recorded at 50 regional stations, at distances from 30 to 500 km. A generalized inversion is used to solve for regional source, attenuation and site parameters. The obtained parameters describe the regional attenuation, stress parameter and site amplification. Resolving these parameters allows for the derivation of regionally-calibrated GMPEs that can be used to compare ground motion observations between waste water injection (Oklahoma) and hydraulic fracture induced events (Alberta), and further compare induced observations with ground motions resulting from natural sources (California, NGAWest2). The derived GMPEs have applications for the evaluation of hazards from induced seismicity and can be used to track amplitudes across the regions in real time, which is useful for ground-motion-based alerting systems and traffic light protocols.

  12. Analysis of ground response data at Lotung large-scale soil- structure interaction experiment site

    International Nuclear Information System (INIS)

    Chang, C.Y.; Mok, C.M.; Power, M.S.

    1991-12-01

    The Electric Power Research Institute (EPRI), in cooperation with the Taiwan Power Company (TPC), constructed two models (1/4-scale and 1/2-scale) of a nuclear plant containment structure at a site in Lotung (Tang, 1987), a seismically active region in northeast Taiwan. The models were constructed to gather data for the evaluation and validation of soil-structure interaction (SSI) analysis methodologies. Extensive instrumentation was deployed to record both structural and ground responses at the site during earthquakes. The experiment is generally referred to as the Lotung Large-Scale Seismic Test (LSST). As part of the LSST, two downhole arrays were installed at the site to record ground motions at depths as well as at the ground surface. Structural response and ground response have been recorded for a number of earthquakes (i.e. a total of 18 earthquakes in the period of October 1985 through November 1986) at the LSST site since the completion of the installation of the downhole instruments in October 1985. These data include those from earthquakes having magnitudes ranging from M L 4.5 to M L 7.0 and epicentral distances range from 4.7 km to 77.7 km. Peak ground surface accelerations range from 0.03 g to 0.21 g for the horizontal component and from 0.01 g to 0.20 g for the vertical component. The objectives of the study were: (1) to obtain empirical data on variations of earthquake ground motion with depth; (2) to examine field evidence of nonlinear soil response due to earthquake shaking and to determine the degree of soil nonlinearity; (3) to assess the ability of ground response analysis techniques including techniques to approximate nonlinear soil response to estimate ground motions due to earthquake shaking; and (4) to analyze earth pressures recorded beneath the basemat and on the side wall of the 1/4 scale model structure during selected earthquakes

  13. Ground-penetrating radar and electromagnetic surveys at the Monroe Crossroads battlefield site, Fort Bragg, North Carolina

    Science.gov (United States)

    Kessler, Richard; Strain, R.E.; Marlowe, J. I.; Currin, K.B.

    1996-01-01

    A ground-penetrating radar survey was conducted at the Monroe Crossroads Battlefield site at Fort Bragg, North Carolina, to determine possible locations of subsurface archaeological features. An electromagnetic survey also was conducted at the site to verify and augment the ground-penetrating radar data. The surveys were conducted over a 67,200-square-foot grid with a grid point spacing of 20 feet. During the ground-penetrating radar survey, 87 subsurface anomalies were detected based on visual inspection of the field records. These anomalies were flagged in the field as they appeared on the ground-penetrating radar records and were located by a land survey. The electromagnetic survey produced two significant readings at ground-penetrating radar anomaly locations. The National Park Service excavated 44 of the 87 anomaly locations at the Civil War battlefield site. Four of these excavations produced significant archaeological features, including one at an abandoned well.

  14. Site Characterization Work Plan for Gasbuggy, New Mexico (Rev.1, Jan. 2002)

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office (NNSA/NV)

    2002-01-25

    Project Gasbuggy was the first of three joint government-industry experiments conducted to test the effectiveness of nuclear explosives to fracture deeply buried, low-permeability natural gas reservoirs to stimulate production. The scope of this work plan is to document the environmental objectives and the proposed technical site investigation strategies that will be utilized for the site characterization of the Project Gasbuggy Site. Its goal is the collection of data in sufficient quantity and quality to determine current site conditions, support a risk assessment for the site surfaces, and evaluate if further remedial action is required to achieve permanent closure of the site that is both protective of human health and the environment. The Gasbuggy Site is located approximately 55 air miles east of Farmington, New Mexico, in Rio Arriba County within the Carson National Forest in the northeast portion of the San Juan Basin. Historically, Project Gasbuggy consisted of the joint government-industry detonation of a nuclear device on December 10, 1967, followed by reentry drilling and gas production testing and project evaluation activities in post-detonation operations from 1967 to 1976. Based on historical documentation, no chemical release sites other than the mud pits were identified; additionally, there was no material buried at the Gasbuggy Site other than drilling fluids and construction debris. Although previous characterization and restoration activities including sensitive species surveys, cultural resources surveys, surface geophysical surveys, and limited soil sampling and analysis were performed in 1978 and again in 2000, no formal closure of the site was achieved. Also, these efforts did not adequately address the site's potential for chemical contamination at the surface/shallow subsurface ground levels or the subsurface hazards for potential migration outside of the current site subsurface intrusion restrictions. Additional investigation

  15. Site characterization criteria (DOE-STD-1022-94) for natural phenomena hazards at DOE sites. Revision 1

    International Nuclear Information System (INIS)

    Chen, J.C.; Ueng, Tzou-Shin; Boissonnade, A.C.

    1995-01-01

    This paper briefly summarizes requirements of site characterization for Natural Phenomena Hazards (NPH) at DOE sites. In order to comply with DOE Order 5480.28, site characterization criteria has been developed to provide site-specific information needed for development of NPH assessment criteria. Appropriate approaches are outlined to ensure that the current state-of-the-art methodologies and procedures are used in the site characterization. General and detailed site characterization requirements are provided in the areas of meteorology, hydrology, geology, seismology and geotechnical studies

  16. Investigation of ground water aquifer at Tlogorejo Site Karangawen District, Demak Regency, Central Java

    International Nuclear Information System (INIS)

    Lilik Subiantoro; Priyo Sularto; Slamet Sudarto

    2009-01-01

    Demak is one of regency are placed at north beach central Java. Some part of this area especially Tlogorejo site Karangawen have the problem of fresh water availability. Conditions of insufficient Standard Water have been recognized in some part of the region, those are Karangrowo area, Undaan District. The problem of clean water in this area is caused by sea water trapped in sedimentary material during sedimentation process, so the trapped ground water character is brine or brackish. One of the alternatives to overcome water problem is election or delineated of the prospect area for exploiting of ground water. Referring to those problems Pusbang Geologi Nuklir BATAN means to conduct investigation of ground water in some location which has problem of clean water. The ground investigation activity is to get information about the geology, hydrogeology and sub surface geophysical characteristic, which is needed to identification of ground water aquifer. To obtain those targets, conducted by topographic measurement in 1:5000 scale maps, measurement of soil radioactivity, geology and hydrogeology mapping, geo-electrical 2-D image measurement Base on observation, analysis, evaluation and discussion was identified the existence of potential confined aquifer that happened at the layer sand that is trapped in the in impermeable layer of clay, which is potential for confined aquifer. Potency of aquifer with the best condition from bad, there are placed on geophysical measurement is ''Sand Aquifer Layer-1'' are located at RB 1 (TLG-5), RB 2 (TLG-4) and RB 3 (TLG-22). Physical characterized of aquifer: resistivity 22-46 Ωm, the depth of surface water 110 to 146 meter. (author)

  17. Near surface geotechnical and geophysical data cross validated for site characterization applications. The cases of selected accelerometric stations in Crete island (Greece)

    Science.gov (United States)

    Loupasakis, Constantinos; Tsangaratos, Paraskevas; Rozos, Dimitrios; Rondoyianni, Theodora; Vafidis, Antonis; Steiakakis, Emanouil; Agioutantis, Zacharias; Savvaidis, Alexandros; Soupios, Pantelis; Papadopoulos, Ioannis; Papadopoulos, Nikos; Sarris, Apostolos; Mangriotis, Maria-Dafni; Dikmen, Unal

    2015-04-01

    The near surface ground conditions are highly important for the design of civil constructions. These conditions determine primarily the ability of the foundation formations to bear loads, the stress - strain relations and the corresponding deformations, as well as the soil amplification and corresponding peak ground motion in case of dynamic loading. The static and dynamic geotechnical parameters as well as the ground-type/soil-category can be determined by combining geotechnical and geophysical methods, such as engineering geological surface mapping, geotechnical drilling, in situ and laboratory testing and geophysical investigations. The above mentioned methods were combined for the site characterization in selected sites of the Hellenic Accelerometric Network (HAN) in the area of Crete Island. The combination of the geotechnical and geophysical methods in thirteen (13) sites provided sufficient information about their limitations, setting up the minimum tests requirements in relation to the type of the geological formations. The reduced accuracy of the surface mapping in urban sites, the uncertainties introduced by the geophysical survey in sites with complex geology and the 1-D data provided by the geotechnical drills are some of the causes affecting the right order and the quantity of the necessary investigation methods. Through this study the gradual improvement on the accuracy of the site characterization data in regards to the applied investigation techniques is presented by providing characteristic examples from the total number of thirteen sites. As an example of the gradual improvement of the knowledge about the ground conditions the case of AGN1 strong motion station, located at Agios Nikolaos city (Eastern Crete), is briefly presented. According to the medium scale geological map of IGME the station was supposed to be founded over limestone. The detailed geological mapping reveled that a few meters of loose alluvial deposits occupy the area, expected

  18. Dissolved oxygen mapping: A powerful tool for site assessments and ground water monitoring

    International Nuclear Information System (INIS)

    Newman, W.A.; Kimball, G.

    1992-01-01

    Dissolved oxygen concentration profiles often provide an excellent indication of the natural biological activity of microorganisms in ground water. The analysis of dissolved oxygen in ground water also provides a rapid, inexpensive method for determining the areal extent of contaminant plumes containing aerobically degraded compounds such as petroleum hydrocarbons. Indigenous hydrocarbon degrading organisms are present at most petroleum product spills giving this technique an almost universal application for dissolved hydrocarbons in ground water. Data from several sites will be presented to demonstrate the relationship between oxygen and dissolved contaminant concentrations. The inverse relationship between oxygen concentrations and dissolved contaminants can be used in many ways. During the initial site assessment, rapid on-site testing of ground water can provide real time data to direct drilling by identification of potentially contaminated locations. Several analytical techniques are available that allow field analysis to be performed in less than five minutes. Dissolved oxygen testing also provides an inexpensive way to monitor hydrocarbon migration without expensive gas chromatography. Often a plume of oxygen depleted ground water extends farther downgradient than the dissolved hydrocarbon plume. The depletion of oxygen in a well can provide an early warning system that detects upgradient contamination before the well is impacted by detectable levels of contaminants. Another application is the measurement of the natural degradation potential for aerobic remediation. If an aerobic in-situ remediation is used, dissolved oxygen monitoring provides an inexpensive method to monitor the progress of the remediation

  19. Technical know-how of site descriptive modeling for site characterization - 59089

    International Nuclear Information System (INIS)

    Saegusa, Hiromitsu; Onoe, Hironori; Doke, Ryosuke; Niizato, Tadafumi; Yasue, Ken-ichi

    2012-01-01

    The site descriptive model covering the current status of characteristics of geological environment and the site evolution model for estimation of the long-term evolution of site conditions are used to integrate multi-disciplinary investigation results. It is important to evaluate uncertainties in the models, to specify issues regarding the uncertainties and to prioritize the resolution of specified issues, for the planning of site characterization. There is a large quantity of technical know-how in the modeling process. It is important to record the technical know-how with transparency and traceability, since site characterization projects generally need long duration. The transfer of the technical know-how accumulated in the research and development (R and D) phase to the implementation phase is equally important. The aim of this study is to support the planning of initial surface-based site characterizations based on the technical know-how accumulated from the underground research laboratory projects. These projects are broad scientific studies of the deep geological environment and provide a technical basis for the geological disposal of high-level radioactive wastes. In this study, a comprehensive task flow from acquisition of existing data to planning of field investigations through the modeling has been specified. Specific task flow and decision-making process to perform the tasks have been specified. (authors)

  20. Environmental Assessment of Ground Water Compliance at the Naturita, Colorado, UMTRA Project Site

    Energy Technology Data Exchange (ETDEWEB)

    None

    2003-04-23

    This Environmental Assessment addresses the environmental effects of a proposed action and the no action alternative to comply with U.S. Environmental Protection Agency (EPA) ground water standards at the Naturita, Colorado, Uranium Mill Tailings Remedial Action Project site. In 1998, the U.S. Department of Energy (DOE) completed surface cleanup at the site and encapsulated the tailings in a disposal cell 15 miles northwest near the former town of Uravan, Colorado. Ground water contaminants of potential concern at the Naturita site are uranium and vanadium. Uranium concentrations exceed the maximum concentration limit (MCL) of 0.044 milligram per liter (mg/L). Vanadium has no MCL; however, vanadium concentrations exceed the EPA Region III residential risk-based concentration of 0.33 mg/L (EPA 2002). The proposed compliance strategy for uranium and vanadium at the Naturita site is no further remediation in conjunction with the application of alternate concentration limits. Institutional controls with ground water and surface water monitoring will be implemented for these constituents as part of the compliance strategy. This compliance strategy will be protective of human health and the environment. The proposed monitoring program will begin upon regulatory concurrence with the Ground Water Compliance Action Plan (DOE 2002a). Monitoring will consist of verifying that institutional controls remain in place, collecting ground water samples to verify that concentrations of uranium and vanadium are decreasing, and collecting surface water samples to verify that contaminant concentrations do not exceed a regulatory limit or risk-based concentration. If these criteria are not met, DOE would reevaluate the proposed action and determine the need for further National Environmental Policy Act documentation. No comments were received from the public during the public comment period. Two public meetings were held during this period. Minutes of these meetings are included as

  1. Environmental Assessment of Ground Water Compliance at the Naturita, Colorado, UMTRA Project Site

    International Nuclear Information System (INIS)

    2003-01-01

    This Environmental Assessment addresses the environmental effects of a proposed action and the no action alternative to comply with U.S. Environmental Protection Agency (EPA) ground water standards at the Naturita, Colorado, Uranium Mill Tailings Remedial Action Project site. In 1998, the U.S. Department of Energy (DOE) completed surface cleanup at the site and encapsulated the tailings in a disposal cell 15 miles northwest near the former town of Uravan, Colorado. Ground water contaminants of potential concern at the Naturita site are uranium and vanadium. Uranium concentrations exceed the maximum concentration limit (MCL) of 0.044 milligram per liter (mg/L). Vanadium has no MCL; however, vanadium concentrations exceed the EPA Region III residential risk-based concentration of 0.33 mg/L (EPA 2002). The proposed compliance strategy for uranium and vanadium at the Naturita site is no further remediation in conjunction with the application of alternate concentration limits. Institutional controls with ground water and surface water monitoring will be implemented for these constituents as part of the compliance strategy. This compliance strategy will be protective of human health and the environment. The proposed monitoring program will begin upon regulatory concurrence with the Ground Water Compliance Action Plan (DOE 2002a). Monitoring will consist of verifying that institutional controls remain in place, collecting ground water samples to verify that concentrations of uranium and vanadium are decreasing, and collecting surface water samples to verify that contaminant concentrations do not exceed a regulatory limit or risk-based concentration. If these criteria are not met, DOE would reevaluate the proposed action and determine the need for further National Environmental Policy Act documentation. No comments were received from the public during the public comment period. Two public meetings were held during this period. Minutes of these meetings are included as

  2. Ground beetles (Coleoptera, Carabidae of the Hanford Nuclear Site in south-central Washington State

    Directory of Open Access Journals (Sweden)

    Chris Looney

    2014-04-01

    Full Text Available In this paper we report on ground beetles (Coleoptera: Carabidae collected from the Hanford Nuclear Reservation and Hanford National Monument (together the Hanford Site, which is located in south-central Washington State. The Site is a relatively undisturbed relict of the shrub-steppe habitat present throughout much of the western Columbia Basin before the westward expansion of the United States. Species, localities, months of capture, and capture method are reported for field work conducted between 1994 and 2002. Most species were collected using pitfall traps, although other capture methods were employed. Trapping results indicate the Hanford Site supports a diverse ground beetle community, with over 90% of the 92 species captured native to North America. Four species collected during the study period are newly recorded for Washington State: Bembidion diligens Casey, Calosoma obsoletum Say, Pseudaptinus rufulus (LeConte, and Stenolophus lineola (Fabricius. Based on these data, the Site maintains a diverse ground beetle fauna and, due to its size and diversity of habitats, is an important repository of shrub-steppe biodiversity.

  3. PSP SAR interferometry monitoring of ground and structure deformations in the archeological site of Pompeii

    Science.gov (United States)

    Costantini, Mario; Francioni, Elena; Paglia, Luca; Minati, Federico; Margottini, Claudio; Spizzichino, Daniele; Trigila, Alessandro; Iadanza, Carla; De Nigris, Bruno

    2016-04-01

    The "Major Project Pompeii" (MPP) is a great collective commitment of different institututions and people to set about solving the serious problem of conservation of the largest archeological sites in the world. The ancient city of Pompeii with its 66 hectares, 44 of which are excaveted, is divided into 9 regiones (district), subdivided in 118 insulae (blocks) and almost 1500 domus (houses), and is Unesco site since 1996. The Italian Ministry for Heritage and Cultural Activities and Tourism (MiBACT) and Finmeccanica Group have sealed an agreement whereby the Finmeccanica Group will donate innovative technologies and services for monitoring and protecting the archaeological site of Pompeii. Moreover, the Italian Institute for Environment Protection and Research (ISPRA) - Geological Survey of Italy, was also involved to support the ground based analysis and interpretation of the measurements provided by the industrial team, in order to promote an interdisciplinary approach. In this work, we will focus on ground deformation measurements obtained by satellite SAR interferometry and on their interpretation. The satellite monitoring service is based on the processing of COSMO-SkyMed Himage data by the e-Geos proprietary Persistent Scatterer Pair (PSP) SAR interferometry technology. The PSP technique is a proven SAR interferometry method characterized by the fact of exploiting in the processing only the relative properties between close points (pairs) in order to overcome atmospheric artifacts (which are one of the main problems of SAR interferometry). Validations analyses showed that this technique applied to COSMO-SkyMed Himage data is able to retrieve very dense (except of course on vegetated or cultivated areas) millimetric deformation measurements with sub-metric localization. By means of the COSMO-SkyMed PSP SAR interferometry processing, a historical analysis of the ground and structure deformations occurred over the entire archaeological site of Pompeii in the

  4. Baseline risk assessment of ground water contamination at the inactive uraniferous lignite ashing site near Belfield, North Dakota. Revision 1

    International Nuclear Information System (INIS)

    1994-09-01

    This risk assessment evaluates the potential for impacts to public health or the environment from contaminated ground water at this site caused by the burning of coal containing uranium to produce uranium. Potential risk is quantified for constituents introduced from the processing activities and not for those constituents naturally occurring in background ground water in the site vicinity. Because background ground water quality has the potential to cause adverse health effects from exposure through drinking, any risks associated with contaminants attributable to site activities are incremental to these risks from background. The incremental risk from site-related contaminants is quantified in this risk assessment. The baseline risk from background water quality is incorporated only into the assessment of potential chemical interactions and the definition of the overall site condition. The US Department of Energy's (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project is developing plans to remedy soil and ground water contamination at the site. The UMTRA Surface Project consists of determining the extent of soil contamination and disposing of the contaminated soils in an engineered disposal cell. The UMTRA Ground Water Project consists of evaluating ground water contamination. Under the UMTRA Ground Water Project, results of this risk assessment will help determine what ground water compliance strategy may be applied at the site

  5. Impact of ground motion characterization on conservatism and variability in seismic risk estimates

    International Nuclear Information System (INIS)

    Sewell, R.T.; Toro, G.R.; McGuire, R.K.

    1996-07-01

    This study evaluates the impact, on estimates of seismic risk and its uncertainty, of alternative methods in treatment and characterization of earthquake ground motions. The objective of this study is to delineate specific procedures and characterizations that may lead to less biased and more precise seismic risk results. This report focuses on sources of conservatism and variability in risk that may be introduced through the analytical processes and ground-motion descriptions which are commonly implemented at the interface of seismic hazard and fragility assessments. In particular, implication of the common practice of using a single, composite spectral shape to characterize motions of different magnitudes is investigated. Also, the impact of parameterization of ground motion on fragility and hazard assessments is shown. Examination of these results demonstrates the following. (1) There exists significant conservatism in the review spectra (usually, spectra characteristic of western U.S. earthquakes) that have been used in conducting past seismic risk assessments and seismic margin assessments for eastern U.S. nuclear power plants. (2) There is a strong dependence of seismic fragility on earthquake magnitude when PGA is used as the ground-motion characterization. When, however, magnitude-dependent spectra are anchored to a common measure of elastic spectral acceleration averaged over the appropriate frequency range, seismic fragility shows no important nor consistent dependence on either magnitude or strong-motion duration. Use of inelastic spectral acceleration (at the proper frequency) as the ground spectrum anchor demonstrates a very similar result. This study concludes that a single, composite-magnitude spectrum can generally be used to characterize ground motion for fragility assessment without introducing significant bias or uncertainty in seismic risk estimates

  6. Impact of ground motion characterization on conservatism and variability in seismic risk estimates

    Energy Technology Data Exchange (ETDEWEB)

    Sewell, R.T.; Toro, G.R.; McGuire, R.K.

    1996-07-01

    This study evaluates the impact, on estimates of seismic risk and its uncertainty, of alternative methods in treatment and characterization of earthquake ground motions. The objective of this study is to delineate specific procedures and characterizations that may lead to less biased and more precise seismic risk results. This report focuses on sources of conservatism and variability in risk that may be introduced through the analytical processes and ground-motion descriptions which are commonly implemented at the interface of seismic hazard and fragility assessments. In particular, implication of the common practice of using a single, composite spectral shape to characterize motions of different magnitudes is investigated. Also, the impact of parameterization of ground motion on fragility and hazard assessments is shown. Examination of these results demonstrates the following. (1) There exists significant conservatism in the review spectra (usually, spectra characteristic of western U.S. earthquakes) that have been used in conducting past seismic risk assessments and seismic margin assessments for eastern U.S. nuclear power plants. (2) There is a strong dependence of seismic fragility on earthquake magnitude when PGA is used as the ground-motion characterization. When, however, magnitude-dependent spectra are anchored to a common measure of elastic spectral acceleration averaged over the appropriate frequency range, seismic fragility shows no important nor consistent dependence on either magnitude or strong-motion duration. Use of inelastic spectral acceleration (at the proper frequency) as the ground spectrum anchor demonstrates a very similar result. This study concludes that a single, composite-magnitude spectrum can generally be used to characterize ground motion for fragility assessment without introducing significant bias or uncertainty in seismic risk estimates.

  7. Ground-water surveillance at the Hanford Site for CY 1982

    International Nuclear Information System (INIS)

    Eddy, P.A.; Prater, L.S.; Rieger, J.T.

    1983-06-01

    Operations at the Hanford Site since 1944 have resulted in the discharge of large volumes of process cooling water and other waste waters to the ground. These effluents, which have reached the unconfined ground water, contain low levels of radioactive and chemical substances. The movement of these constituents in the unconfined ground water is monitored as part of the Ground-Water Surveillance Program. During 1982, 324 monitoring wells were sampled at various times for radioactive and chemical constituents. Tritium are the primary ones used to monitor the movement of the ground water. This report describes recent changes in the configuration of the tritium and nitrate plumes. The tritium plume continues to show increasing concentrations near the Columbia River. While it is mapped as having reached the Columbia River, its contribution to the river has not been distinguished from other sources at this time. The general plume configuration is much the same as in 1978, 1979, 1980, and 1981. The size of the nitrate plume appears stable. Concentrations of nitrate in the vicinity of the 100-H Area continue to be high as a result of past leaks from an evaporation facility

  8. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Durango, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    1995-02-01

    This risk assessment evaluates the possibility of health and environmental risks from contaminated ground water at the uranium mill tailings site near Durango, Colorado. The former uranium processing site`s contaminated soil and material were removed and placed at a disposal site located in Body Canyon, Colorado, during 1986--1991 by the US Departments of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating the nature and extent of ground water contamination at the site. This risk assessment follows an approach similar to that used by the US Environmental Protection Agency. The first step is to determine what site-related contaminants are found in ground water samples. The next step in the risk assessment is to determine how much of these contaminants people might ingest if they got their drinking water from a well on the site. In accordance with standard practice for this type of risk assessment, the highest contaminant concentrations from the most contaminated wells are used. The risk assessment then explains the possible health problems that could result from this amount of contamination.

  9. Site characterization report for the Basalt Waste Isolation Project

    International Nuclear Information System (INIS)

    1982-11-01

    This Site Characterization Report documents the results of the site screening process, the preliminary site characterization data, the technical issues that need to be addressed, and the plans for resolving these issues

  10. Area 5 Site characterization project report, FY 1994

    International Nuclear Information System (INIS)

    Albright, W.; Tyler, S.; Chapman, J.; Miller, M.; Estrella, R.

    1994-09-01

    The Area 5 Site Characterization Project is designed to determine the suitability of the Radioactive Waste Management Site (RWMS) for disposal of low-level waste (LLW), mixed waste (MW) and transuranic waste (TRU). The Desert Research institute (DRI) has conducted this study for the Area 5 Site Characterization Project for the US Department of Energy, Nevada Operations Office (DOE/NV), Waste Management Division (WMD). The purpose of DRI's Area 5 Site Characterization Project is to characterize important properties of the upper vadose zone which influence infiltration and redistribution of water and transport of solutes as well as to characterize the water quality and hydrologic conditions of the uppermost aquifer. This report describes methods and presents a summary of all data and results from laboratory physical and chemical testing from borehole samples through September 1994. DRI laboratories performed soil water content, soil water potential, soil bulk density, and soil water extract isotope analyses

  11. Ground water work breakdown structure dictionary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    This report contains the activities that are necessary to assess in ground water remediation as specified in the UMTRA Project. These activities include the following: site characterization; remedial action compliance and design documentation; environment, health, and safety program; technology assessment; property access and acquisition activities; site remedial actions; long term surveillance and licensing; and technical and management support.

  12. Ground water work breakdown structure dictionary

    International Nuclear Information System (INIS)

    1995-04-01

    This report contains the activities that are necessary to assess in ground water remediation as specified in the UMTRA Project. These activities include the following: site characterization; remedial action compliance and design documentation; environment, health, and safety program; technology assessment; property access and acquisition activities; site remedial actions; long term surveillance and licensing; and technical and management support

  13. Assessment of acid mine drainage remediation schemes on ground water flow regimes at a reclaimed mine site

    International Nuclear Information System (INIS)

    Gabr, M.A.; Bowders, J.J.

    1994-01-01

    Ground water modeling and a field monitoring program were conducted for a 35-acre reclaimed surface mine site that continues to produce acid mine drainage (AMD). The modeling effort was focused on predicting the effectiveness of various remedial measures implemented at the site for the abatement of AMD on predicting the effectiveness of various remedial measures implemented at the site for the abatement of AMD production. The field work included surface surveys and monitoring of ground water levels with time, seepage areas, and sedimentation ponds located on the site. The surveys provided the physical and topographic characteristics of the site. Pump tests conducted at the site provided general hydraulic conductivities (k) for two major areas of the site; undisturbed area (k ≅ 2.9 x 10 -5 ft/s) and disturbed area (k ≅ 3.3 x 10 -4 ft/s to 2.0 x 10 -3 ft/s). The monitored ground water data indicated rapid change in ground water levels during recharge events. Such behavior is indicative of flow regime that is dominated by fracture flow. Modeling of an approximately 700 ft by 1,500 ft area of the site was achieved using the US GS code MODFLOW, and ground water field measurements were used to calibrate the model. A hydraulic conductivity of about 1.15 x 10 -3 ft/s was estimated for the undisturbed area and 1.15 x 10 -2 ft/s for the reclaimed area. Remedial measures for diverting the ground water away from the areas of spoil included the use of a subsurface seepage cutoff wall and discrete sealing techniques. Modeling results indicated that the most effective remedial technique for this site is the use of a subsurface seepage cutoff wall installed at the interface (highwall) between the disturbed and undisturbed zones. Using this scheme caused a dewatering effect in the reclaimed area and therefore reduction in the volume of the AMD generated at the site

  14. Ames expedited site characterization demonstration at the former manufactured gas plant site, Marshalltown, Iowa

    International Nuclear Information System (INIS)

    Bevolo, A.J.; Kjartanson, B.H.; Wonder, J.D.

    1996-03-01

    The goal of the Ames Expedited Site Characterization (ESC) project is to evaluate and promote both innovative technologies (IT) and state-of-the-practice technologies (SOPT) for site characterization and monitoring. In April and May 1994, the ESC project conducted site characterization, technology comparison, and stakeholder demonstration activities at a former manufactured gas plant (FMGP) owned by Iowa Electric Services (IES) Utilities, Inc., in Marshalltown, Iowa. Three areas of technology were fielded at the Marshalltown FMGP site: geophysical, analytical and data integration. The geophysical technologies are designed to assess the subsurface geological conditions so that the location, fate and transport of the target contaminants may be assessed and forecasted. The analytical technologies/methods are designed to detect and quantify the target contaminants. The data integration technology area consists of hardware and software systems designed to integrate all the site information compiled and collected into a conceptual site model on a daily basis at the site; this conceptual model then becomes the decision-support tool. Simultaneous fielding of different methods within each of the three areas of technology provided data for direct comparison of the technologies fielded, both SOPT and IT. This document reports the results of the site characterization, technology comparison, and ESC demonstration activities associated with the Marshalltown FMGP site. 124 figs., 27 tabs

  15. Consultation draft: Site characterization plan overview, Deaf Smith County Site, Texas: Nuclear Waste Policy Act (Section 113)

    International Nuclear Information System (INIS)

    1988-01-01

    The Department of Energy (DOE) is preparing a site characterization plan for the candidate site in Deaf Smith County, Texas. The DOE has provided, for information and review, a consultation draft of the plan to the State of Texas and the US Nuclear Regulatory Commission. The site characterization plan is a lengthy document that describes in considerable detail the program that will be conducted to characterize the geologic, hydrologic, and other conditions relevant to the suitability of the site for a repository. The overview presented here consists of brief summaries of important topics covered in the consultation draft of the site characterization plan; it is not a substitute for the site characterization plan. The arrangement of the overview is similar to that of the plan itself, with brief descriptions of the repository system - the site, the repository, and the waste package - preceding the discussion of the characterization program to be carried out at the Deaf Smith County site. It is intended primarily for the management staff of organizations involved in the DOE's repository program or other persons who might wish to understand the general scope of the site-characterization program, the activities to be conducted, and the facilities to be constructed rather than the technical details of site characterization. 15 figs., 1 tab

  16. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Riverton, Wyoming. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of two phases: the Surface Project and the Ground Water Project. At the UMTRA Project site near Riverton, Wyoming, Surface Project cleanup occurred from 1988 to 1990. Tailings and radioactively contaminated soils and materials were taken from the Riverton site to a disposal cell in the Gas Hills area, about 60 road miles (100 kilometers) to the east. The surface cleanup reduces radon and other radiation emissions and minimizes further ground water contamination. The UMTRA Project`s second phase, the Ground Water Project, will evaluate the nature and extent of ground water contamination at the Riverton site that has resulted from the uranium ore processing activities. Such evaluations are used at each site to determine a strategy for complying with UMTRA ground water standards established by the US Environmental Protection Agency (EPA) and if human health risks could result from exposure to ground water contaminated by uranium ore processing. Exposure could hypothetically occur if drinking water were pumped from a well drilled in an area where ground water contamination might have occurred. Human health and environmental risks may also result if people, plants, or animals are exposed to surface water that has mixed with contaminated ground water.

  17. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Riverton, Wyoming. Revision 1

    International Nuclear Information System (INIS)

    1995-09-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of two phases: the Surface Project and the Ground Water Project. At the UMTRA Project site near Riverton, Wyoming, Surface Project cleanup occurred from 1988 to 1990. Tailings and radioactively contaminated soils and materials were taken from the Riverton site to a disposal cell in the Gas Hills area, about 60 road miles (100 kilometers) to the east. The surface cleanup reduces radon and other radiation emissions and minimizes further ground water contamination. The UMTRA Project's second phase, the Ground Water Project, will evaluate the nature and extent of ground water contamination at the Riverton site that has resulted from the uranium ore processing activities. Such evaluations are used at each site to determine a strategy for complying with UMTRA ground water standards established by the US Environmental Protection Agency (EPA) and if human health risks could result from exposure to ground water contaminated by uranium ore processing. Exposure could hypothetically occur if drinking water were pumped from a well drilled in an area where ground water contamination might have occurred. Human health and environmental risks may also result if people, plants, or animals are exposed to surface water that has mixed with contaminated ground water

  18. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Sites near Slick Rock, Colorado. Revision 1

    International Nuclear Information System (INIS)

    1995-09-01

    Two UMTRA (Uranium Mill Tailings Remedial Action) Project sites are near Slick Rock, Colorado: the North Continent site and the Union Carbide site. Currently, no one uses the contaminated ground water at either site for domestic or agricultural purposes. However, there may be future land development. This risk assessment evaluates possible future health problems associated with exposure to contaminated ground water. Since some health problems could occur, it is recommended that the contaminated ground water not be used as drinking water

  19. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Sites near Slick Rock, Colorado. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    Two UMTRA (Uranium Mill Tailings Remedial Action) Project sites are near Slick Rock, Colorado: the North Continent site and the Union Carbide site. Currently, no one uses the contaminated ground water at either site for domestic or agricultural purposes. However, there may be future land development. This risk assessment evaluates possible future health problems associated with exposure to contaminated ground water. Since some health problems could occur, it is recommended that the contaminated ground water not be used as drinking water.

  20. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site at Grand Junction, Colorado. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    This risk assessment evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an off-site disposal cell by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The remedial activities at the site were conducted from 1989 to 1993. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment evaluates the most contaminated ground water that flows beneath the processing site toward the Colorado River. The monitor wells that have consistently shown the highest concentrations of most contaminants are used to assess risk. This risk assessment will be used in conjunction with additional activities and documents to determine what remedial action may be needed for contaminated ground water at the site.

  1. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site at Grand Junction, Colorado. Revision 1

    International Nuclear Information System (INIS)

    1994-09-01

    This risk assessment evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an off-site disposal cell by the US Department of Energy's (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The remedial activities at the site were conducted from 1989 to 1993. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment evaluates the most contaminated ground water that flows beneath the processing site toward the Colorado River. The monitor wells that have consistently shown the highest concentrations of most contaminants are used to assess risk. This risk assessment will be used in conjunction with additional activities and documents to determine what remedial action may be needed for contaminated ground water at the site

  2. Interpretation of Ground Penetrating Radar data at the Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    Bergstrom, K.A.; Mitchell, T.H.; Kunk, J.R.

    1993-07-01

    Ground Penetrating Radar (GPR) is being used extensively during characterization and remediation of chemical and radioactive waste sites at the Hanford Site in Washington State. Time and money for GPR investigations are often not included during the planning and budgeting phase. Therefore GPR investigations must be inexpensive and quick to minimize impact on already established budgets and schedules. An approach to survey design, data collection, and interpretation has been developed which emphasizes speed and budget with minimal impact on the integrity of the interpretation or quality of the data. The following simple rules of thumb can be applied: (1) Assemble as much pre-survey information as possible, (2) Clearly define survey objectives prior to designing the survey and determine which combination of geophysical methods will best meet the objectives, (3) Continuously communicate with the client, before, during and after the investigation, (4) Only experienced GPR interpreters should acquire the field data, (5) Use real-time monitoring of the data to determine where and how much data to collect and assist in the interpretation, (6) Always ''error'' in favor of collecting too much data, (7) Surveys should have closely spaced (preferably 5 feet, no more than 10 feet), orthogonal profiles, (8) When possible, pull the antenna by hand

  3. Interpretation of Ground Penetrating Radar data at the Hanford Site, Richland, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Bergstrom, K.A.; Mitchell, T.H.; Kunk, J.R.

    1993-07-01

    Ground Penetrating Radar (GPR) is being used extensively during characterization and remediation of chemical and radioactive waste sites at the Hanford Site in Washington State. Time and money for GPR investigations are often not included during the planning and budgeting phase. Therefore GPR investigations must be inexpensive and quick to minimize impact on already established budgets and schedules. An approach to survey design, data collection, and interpretation has been developed which emphasizes speed and budget with minimal impact on the integrity of the interpretation or quality of the data. The following simple rules of thumb can be applied: (1) Assemble as much pre-survey information as possible, (2) Clearly define survey objectives prior to designing the survey and determine which combination of geophysical methods will best meet the objectives, (3) Continuously communicate with the client, before, during and after the investigation, (4) Only experienced GPR interpreters should acquire the field data, (5) Use real-time monitoring of the data to determine where and how much data to collect and assist in the interpretation, (6) Always ``error`` in favor of collecting too much data, (7) Surveys should have closely spaced (preferably 5 feet, no more than 10 feet), orthogonal profiles, (8) When possible, pull the antenna by hand.

  4. Ambient air monitoring to support HLW repository site characterization

    International Nuclear Information System (INIS)

    Fransioli, P.M.; Dixon, W.R.

    1993-01-01

    Site characterization at the Yucca Mountain site includes an ambient air quality and meteorological monitoring program to provide information for environmental and site characterization issues. The program is designed to provide data for four basic purposes: Atmospheric dispersion calculations to estimate impacts of possible airborne releases of radiological material; Engineering design and extreme weather event characterization; Local climate studies for environmental impact analyses and climate characterization; and, Air quality permits required for site characterization work. The program is compiling a database that will provide the basis for analyses and reporting related to the purposes of the program. Except for reporting particulate matter and limited meteorological data to the State of Nevada for an air quality permit condition, the data have yet to be formally analyzed and reported

  5. Socioeconomic monitoring and mitigation plan for site characterization: Revision 1

    International Nuclear Information System (INIS)

    1988-01-01

    The objective of the SMMP is to document compliance with the NWPA. In order to do so, a summary description of site characterization activities based on the consultation draft of the Site Characterization Plan and the final EA is provided. Subsequent chapters identify issues related to the potential for significant adverse impacts and the monitoring plans proposed to determine whether those impacts occur. Should monitoring confirm the potential for significant adverse impact, mitigative maesures will be developed. In the context of site characterization, mitigation is defined as those changes in site characterization activities that serve to avoid or minimize, to the maximum extent practicable, any significant adverse environmental impacts. Proposed site characterization activites involve a variety of surface and subsurface activities including site preparation, access road construction and improvment, exploratory drilling and testing, geophysical surveys, geological mapping, and construction of the exploratory shaft facility. It is not anticipated that any significant adverse socioeconomic impacts will result form any of the proposed site characterization activities. However, the assessment of impacts in the EA, especially impacts related to employment and population growth, was based on assumptions concerning activities and conditions during the site characterization phase

  6. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Durango, Colorado

    International Nuclear Information System (INIS)

    1995-02-01

    This risk assessment evaluates the possibility of health and environmental risks from contaminated ground water at the uranium mill tailings site near Durango, Colorado. The former uranium processing site's contaminated soil and material were removed and placed at a disposal site located in Body Canyon, Colorado, during 1986--1991 by the US Departments of Energy's Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating the nature and extent of ground water contamination at the site. This risk assessment follows an approach similar to that used by the US Environmental Protection Agency. The first step is to determine what site-related contaminants are found in ground water samples. The next step in the risk assessment is to determine how much of these contaminants people might ingest if they got their drinking water from a well on the site. In accordance with standard practice for this type of risk assessment, the highest contaminant concentrations from the most contaminated wells are used. The risk assessment then explains the possible health problems that could result from this amount of contamination

  7. Site characterization activities at Stripa and other Swedish projects

    International Nuclear Information System (INIS)

    Ahlstroehm, P.E.

    1991-01-01

    The Swedish research programme concerning spent nuclear fuel disposal aims for submitting a siting license application around the year 2000. An important step towards that goal will be the detailed characterization of at least two potential sites in late 1990s. In preparation for such characterization several research projects are conducted. One is the international Stripa Project that includes a site characterization and validation project for a small size granite rock body. The Stripa work also includes further development of instrumentation and measurement techniques. Another project is the Finnsjoen Fracture Zone Project, which is characterizing a subhorizontal zone at depths from 100 to 350 meters. The third project is the new Swedish Hard Rock Laboratory planned at the site of the Oskarshamn nuclear power plant. The preinvestigations and construction of this laboratory include major efforts in development, application and validation of site characterization methodology. (author) 6 figs., 9 refs

  8. Detailed Geophysical Fault Characterization in Yucca Flat, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Theodore H. Asch; Donald Sweetkind; Bethany L. Burton; Erin L. Wallin

    2009-02-10

    Yucca Flat is a topographic and structural basin in the northeastern part of the Nevada Test Site (NTS) in Nye County, Nevada. Between the years 1951 and 1992, 659 underground nuclear tests took place in Yucca Flat; most were conducted in large, vertical excavations that penetrated alluvium and the underlying Cenozoic volcanic rocks. Radioactive and other potential chemical contaminants at the NTS are the subject of a long-term program of investigation and remediation by the U.S. Department of Energy (DOE), National Nuclear Security Administration, Nevada Site Office, under its Environmental Restoration Program. As part of the program, the DOE seeks to assess the extent of contamination and to evaluate the potential risks to humans and the environment from byproducts of weapons testing. To accomplish this objective, the DOE Environmental Restoration Program is constructing and calibrating a ground-water flow model to predict hydrologic flow in Yucca Flat as part of an effort to quantify the subsurface hydrology of the Nevada Test Site. A necessary part of calibrating and evaluating a model of the flow system is an understanding of the location and characteristics of faults that may influence ground-water flow. In addition, knowledge of fault-zone architecture and physical properties is a fundamental component of the containment of the contamination from underground nuclear tests, should such testing ever resume at the Nevada Test Site. The goal of the present investigation is to develop a detailed understanding of the geometry and physical properties of fault zones in Yucca Flat. This study was designed to investigate faults in greater detail and to characterize fault geometry, the presence of fault splays, and the fault-zone width. Integrated geological and geophysical studies have been designed and implemented to work toward this goal. This report describes the geophysical surveys conducted near two drill holes in Yucca Flat, the data analyses performed, and the

  9. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Green River, Utah

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    This document evaluates potential impacts to public health and the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in a disposal cell on the site in 1989 by the US DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, UMTRA Project is evaluating ground water contamination in this risk assessment.

  10. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Green River, Utah

    International Nuclear Information System (INIS)

    1994-09-01

    This document evaluates potential impacts to public health and the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in a disposal cell on the site in 1989 by the US DOE's Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, UMTRA Project is evaluating ground water contamination in this risk assessment

  11. Status of the ground water flow model for the UMTRA Project, Shiprock, New Mexico, site

    International Nuclear Information System (INIS)

    1995-01-01

    A two-dimensional numerical model was constructed for the alluvial aquifer in the area of the Uranium Mill Tailings Remedial Action (UMTRA) Project Shiprock, New Mexico, site. This model was used to investigate the effects of various hydrologic parameters on the evolution of the ground water flow field. Results of the model are useful for defining uncertainties in the site conceptual model and suggesting data collection efforts to reduce these uncertainties. The computer code MODFLOW was used to simulate the two-dimensional flow of ground water in the alluvium. The escarpment was represented as a no-flow boundary. The San Juan River was represented with the MODFLOW river package. A uniform hydraulic conductivity distribution with the value estimated by the UMTRA Project Technical Assistance Contractor (TAC) and a uniform recharge distribution was used. Infiltration from the flowing artesian well was represented using the well package. The ground water flow model was calibrated to ground water levels observed in April 1993. Inspection of hydrographs shows that these levels are representative of typical conditions at the site

  12. Characterization and hydrogeological modelling of a site for disposal of medium- and low-level radioactive waste

    International Nuclear Information System (INIS)

    Lavie, J.; Peaudecerf, P.

    1993-01-01

    Characterization studies of the French low-and intermediate-level radwaste site in the Aube Department includes a significant hydrogeological appraisal element. These studies are based upon geological, hydrogeological, and hydrodynamic measurements. The data are compiled into a model of the ground water- body. Data collection is continuous. The hydrodynamic model and the transport model is regularly validated for ANDRA (French National Radioactive Waste Disposal Agency) with a reliable and up-dated tool

  13. Early Site Permit Demonstration Program: Guidelines for determining design basis ground motions. Volume 2, Appendices

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-18

    This report develops and applies a methodology for estimating strong earthquake ground motion. The motivation was to develop a much needed tool for use in developing the seismic requirements for structural designs. An earthquake`s ground motion is a function of the earthquake`s magnitude, and the physical properties of the earth through which the seismic waves travel from the earthquake fault to the site of interest. The emphasis of this study is on ground motion estimation in Eastern North America (east of the Rocky Mountains), with particular emphasis on the Eastern United States and southeastern Canada. Eastern North America is a stable continental region, having sparse earthquake activity with rare occurrences of large earthquakes. While large earthquakes are of interest for assessing seismic hazard, little data exists from the region to empirically quantify their effects. The focus of the report is on the attributes of ground motion in Eastern North America that are of interest for the design of facilities such as nuclear power plants. This document, Volume II, contains Appendices 2, 3, 5, 6, and 7 covering the following topics: Eastern North American Empirical Ground Motion Data; Examination of Variance of Seismographic Network Data; Soil Amplification and Vertical-to-Horizontal Ratios from Analysis of Strong Motion Data From Active Tectonic Regions; Revision and Calibration of Ou and Herrmann Method; Generalized Ray Procedure for Modeling Ground Motion Attenuation; Crustal Models for Velocity Regionalization; Depth Distribution Models; Development of Generic Site Effects Model; Validation and Comparison of One-Dimensional Site Response Methodologies; Plots of Amplification Factors; Assessment of Coupling Between Vertical & Horizontal Motions in Nonlinear Site Response Analysis; and Modeling of Dynamic Soil Properties.

  14. Expedited site characterization. Innovative technology summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    Expedited Site Characterization (ESC) has been developed, demonstrated, and deployed as a new time-saving, cost-effective approach for hazardous waste site investigations. ESC is an alternative approach that effectively shortens the length of the assessment period and may significantly reduce costs at many sites. It is not a specific technology or system but is a methodology for most effectively conducting a site characterization. The principal elements of ESC are: a field investigation conducted by an integrated team of experienced professionals working in the field at the same time, analysis, integration and initial validation of the characterization data as they are obtained in the field, and a dynamic work plan that enables the team to take advantage of new insights from recent data to adjust the work plan in the field. This report covers demonstrations that took place between 1989 and 1996. This paper gives a description of the technology and discusses its performance, applications, cost, regulatory and policy issues, and lessons learned.

  15. Expedited site characterization. Innovative technology summary report

    International Nuclear Information System (INIS)

    1998-12-01

    Expedited Site Characterization (ESC) has been developed, demonstrated, and deployed as a new time-saving, cost-effective approach for hazardous waste site investigations. ESC is an alternative approach that effectively shortens the length of the assessment period and may significantly reduce costs at many sites. It is not a specific technology or system but is a methodology for most effectively conducting a site characterization. The principal elements of ESC are: a field investigation conducted by an integrated team of experienced professionals working in the field at the same time, analysis, integration and initial validation of the characterization data as they are obtained in the field, and a dynamic work plan that enables the team to take advantage of new insights from recent data to adjust the work plan in the field. This report covers demonstrations that took place between 1989 and 1996. This paper gives a description of the technology and discusses its performance, applications, cost, regulatory and policy issues, and lessons learned

  16. Deriving a site characterization program from applicable regulations

    International Nuclear Information System (INIS)

    Voegele, M.D.; Younker, J.L.; Alexander, D.H.

    1988-01-01

    The process of deriving a site characterization program from the applicable regulations was approached by the DOE through the use of two basic organizing principles. One organizing principle is a hierarchical structure of questions about regulatory criteria related to the acquisition of site data. This set of questions is called an issues hierarchy, and it provides a topical organizing framework for developing a site characterization program. The second basic organizing principle used by the DOE and its contractors to develop a site characterization program is called performance allocation. For each issue in the issues hierarchy, a resolution strategy is developed. These strategies involve the identification of elements of the disposal system that are relevant to isolation and containment of waste or to radiological safety. It is then possible to identify performance measures and information needed from the site characterization program. This information, coupled with information about confidence in existing data and the confidence required in the data to be obtained, allows the development of testing strategies for field programs

  17. Biological tracer for waste site characterization

    International Nuclear Information System (INIS)

    Strong-Gunderson, J.

    1995-01-01

    Remediating hazardous waste sites requires detailed site characterization. In groundwater remediation, characterizing the flow paths and velocity is a major objective. Various tracers have been used for measuring groundwater velocity and transport of contaminants, colloidal particles, and bacteria and nutrients. The conventional techniques use dissolved solutes, dyes. and gases to estimate subsurface transport pathways. These tracers can provide information on transport and diffusion into the matrix, but their estimates for groundwater flow through fractured regions are very conservative. Also, they do not have the same transport characteristics as bacteria and suspended colloid tracers, both of which must be characterized for effective in-place remediation. Bioremediation requires understanding bacterial transport and nutrient distribution throughout the acquifer, knowledge of contaminants s mobile colloidal particles is just essential

  18. Determination of import process during Yucca Mountain Site characterization

    International Nuclear Information System (INIS)

    Hastings, P.S.; Gwyn, D.W.; Wemheuer, R.F.

    1996-01-01

    Construction of an underground Exploratory Studies Facility (ESF) for characterizing the Yucca Mountain site precedes the design of a potential repository, with site characterization testing and ESF construction conducted as parallel activities. As a result of this fact, a program is required to: (1) provide for inclusion of the underground excavation into a potential repository, (2) minimize the potential impact of ESF construction on site characterization test results, and (3) minimize the potential impact of ESF construction and site characterization testing on the waste isolation capabilities of the site. At Yucca Mountain, the Determination of Importance (DI) process fulfills these goals. This paper addresses the evolution of the DI process; describes how the DI process fits into design, testing, and construction programs: and discusses how the process is implemented through specification requirements

  19. Development of subsurface characterization method for decommissioning site remediation

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sang Bum; Nam, Jong Soo; Choi, Yong Suk; Seo, Bum Kyoung; Moon, Jei Kwon; Choi, Jong Won [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In situ measurement of peak to valley method based on the ratio of counting rate between the full energy peak and Compton region was applied to identify the depth distribution of 137Cs. The In situ measurement and sampling results were applied to evaluate a residual radioactivity before and after remediation in decommissioning KRR site. Spatial analysis based on the Geostatistics method provides a reliable estimating the volume of contaminated soil with a graphical analysis, which was applied to the site characterization in the decommissioning KRR site. The in situ measurement and spatial analysis results for characterization of subsurface contamination are presented. The objective of a remedial action is to reduce risks to human health to acceptable levels by removing the source of contamination. Site characterization of the subsurface contamination is an important factor for planning and implementation of site remediation. Radiological survey and evaluation technology are required to ensure the reliability of the results, and the process must be easily applied during field measurements. In situ gamma-ray spectrometry is a powerful method for site characterization that can be used to identify the depth distribution and quantify radionuclides directly at the measurement site. The in situ measurement and Geostatistics method was applied to the site characterization for remediation and final status survey in decommissioning KRR site.

  20. Site characterization plan overview: reference repository location, Hanford Site, Washington: Consultation draft: Nuclear Waste Policy Act (Section 113)

    International Nuclear Information System (INIS)

    1988-01-01

    As part of the process for siting the nation's first geologic repository for radioactive waste, the Department of Energy (DOE) is preparing a site characterization plan for the Hanford site in Benton County, Washington. As a step in the preparation of that plan, the DOE has provided, for information and review, a consultation draft of the plan to the State of Washington, the affected Indian Tribes - the Confederated Tribes of the Umatilla Indian Reservation, the Nez Perce Indian Tribe, and the Yakima Indian Nation - and the US Nuclear Regulatory Commission. The Hanford site is one of three sites that the DOE currently plans to characterize;the other sites are the Deaf Smith County site in Texas and the Yucca Mountain site in Nevada. After site characterization has been completed and its results evaluated, the DOE will identify from among the three characterized sites the site that is preferred for the repository. The overview presented here consists of brief summaries of important topics covered in the consulation draft of the site characterization plan;it is not a substitute for the site characterization plan. The arrangement of the overview is similar to that of the plan itself, with breif descriptions of the dispoal system - the site, the repository, and the waste package - preceding the discussion of the characterization program to be carried out at the Hanford site. It is intended primarily for the management staff of organizations involved in the DOE's repository program or other persons who might wish to understand the general scope of the site-characterization program, the activities to be conducted, and the facilities to be constructed rather than the technical details of site characterization

  1. Ground-water monitoring at the Hanford Site, January-December 1984

    Energy Technology Data Exchange (ETDEWEB)

    Cline, C.S.; Rieger, J.T.; Raymond, J.R.

    1985-09-01

    This program is designed to evaluate existing and potential pathways of exposure to radioactivity and hazardous chemicals from site operations. This document contains an evaluation of data collected during CY 1984. During 1984, 339 monitoring wells were sampled at various times for radioactive and nonradioactive constituents. Two of these constituents, specifically, tritium and nitrate, have been selected for detailed discussion in this report. Tritium and nitrate in the primary plumes originating from the 200 Areas continue to move generally eastward toward the Columbia River in the direction of ground-water flow. The movement within these plumes is indicated by changes in trends within the analytical data from the monitoring wells. No discernible impact on ground water has yet been observed from the start-up of the PUREX plant in December 1983. The shape of the present tritium plume is similar to those described in previous ground-water monitoring reports, although slight changes on the outer edges have been noted. Radiological impacts from two potential pathways for radionuclide transport in ground water to the environment are discussed in this report. The pathways are: (1) human consumption of ground water from onsite wells, and (2) seepage of ground water into the Columbia River. Concentrations of tritium in spring samples that were collected and analyzed in 1983, and in wells sampled adjacent to the Columbia River in 1984 confirmed that constituents in the ground water are entering the river via springs and subsurface flow. The primary areas where radionuclides enter the Columbia River via ground-water flow are the 100-N and 300 Areas and the shoreline adjacent to the Hanford Townsite. 44 refs., 25 figs., 11 tabs.

  2. Baseline risk assessment of ground water contamination at the Monument Valley Uranium Mill Tailings Site, Cane Valley, Arizona. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    This baseline risk assessment evaluates potential impact to public health or the environment from ground water contamination at the former uranium mill processing site in Cane Valley near Monument Valley, Arizona. The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project has relocated and stabilized this site`s tailings and other contaminated material in a disposal cell at Mexican Hat, Utah. The second phase of the UMTRA Project is to evaluate ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project that evaluates potential health and environmental risks. It will help determine the approach required to address contaminated ground water at the site.

  3. Phase 1 report on sensor technology, data fusion and data interpretation for site characterization

    International Nuclear Information System (INIS)

    Beckerman, M.

    1991-10-01

    In this report we discuss sensor technology, data fusion and data interpretation approaches of possible maximal usefulness for subsurface imaging and characterization of land-fill waste sites. Two sensor technologies, terrain conductivity using electromagnetic induction and ground penetrating radar, are described and the literature on the subject is reviewed. We identify the maximum entropy stochastic method as one providing a rigorously justifiable framework for fusing the sensor data, briefly summarize work done by us in this area, and examine some of the outstanding issues with regard to data fusion and interpretation. 25 refs., 17 figs

  4. Site characterization and petroleum hydrocarbon plume mapping

    Energy Technology Data Exchange (ETDEWEB)

    Ravishankar, K. [Harding Lawson Associates, Houston, TX (United States)

    1996-12-31

    This paper presents a case study of site characterization and hydrocarbon contamination plume mapping/delineation in a gas processing plant in southern Mexico. The paper describes innovative and cost-effective use of passive (non-intrusive) and active (intrusive) techniques, including the use of compound-specific analytical methods for site characterization. The techniques used, on a demonstrative basis, include geophysical, geochemical, and borehole drilling. Geochemical techniques used to delineate the horizontal extent of hydrocarbon contamination at the site include soil gas surveys. The borehole drilling technique used to assess the vertical extent of contamination and confirm geophysical and geochemical data combines conventional hollow-stem auguring with direct push-probe using Geoprobe. Compound-specific analytical methods, such as hydrocarbon fingerprinting and a modified method for gasoline range organics, demonstrate the inherent merit and need for such analyses to properly characterize a site, while revealing the limitations of noncompound-specific total petroleum hydrocarbon analysis. The results indicate that the techniques used in tandem can properly delineate the nature and extent of contamination at a site; often supplement or complement data, while reducing the risk of errors and omissions during the assessment phase; and provide data constructively to focus site-specific remediation efforts. 7 figs.

  5. Development of a three-dimensional ground-water model of the Hanford Site unconfined aquifer system: FY 1995 status report

    International Nuclear Information System (INIS)

    Wurstner, S.K.; Thorne, P.D.; Chamness, M.A.; Freshley, M.D.; Williams, M.D.

    1995-12-01

    A three-dimensional numerical model of ground-water flow was developed for the uppermost unconfined aquifer at the Hanford Site in south-central Washington. Development of the model is supported by the Hanford Site Ground-Water Surveillance Project, managed by the Pacific Northwest National Laboratory, which is responsible for monitoring the sitewide movement of contaminants in ground water beneath the Hanford Site. Two objectives of the Ground-Water Surveillance Project are to (1) identify and quantify existing, emerging, or potential ground-water quality problems, and (2) assess the potential for contaminants to migrate from the Hanford Site through the ground-water pathway. Numerical models of the ground-water flow system are important tools for estimating future aquifer conditions and predicting the movement of contaminants through ground water. The Ground-Water Surveillance Project has supported development and maintenance of a two-dimensional model of the unconfined aquifer. This report describes upgrade of the two-dimensional model to a three-dimensional model. The numerical model is based on a three-dimensional conceptual model that will be continually refined and updated as additional information becomes available. This report presents a description of the three-dimensional conceptual model of ground-water flow in the unconfined aquifer system and then discusses the cur-rent state of the three-dimensional numerical model

  6. Final work plan: Expedited Site Characterization of the IES Industries, Inc., Site at Marshalltown, Iowa. Ames Expedited Site Characterization Project, Version 1.0

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-04

    The overall goal of the Ames Laboratory Expedited Site Characterization (ESC) project is to evaluate and promote both innovative and state-of-the-practice site characterization and/or monitoring technologies. This will be accomplished by fielding both types of technologies together in the context of an expedited site characterization. The first site will be at a former manufactured gas plant (FMGP) in Marshalltown, Iowa. The project will field three areas of technology: geophysical, analytical, and data fusion. Geophysical technologies are designed to understand the subsurface geology to help predict fate and transport of the target contaminants. Analytical technologies/methods are designed to detect and quantify the target contaminants. Data fusion technology consists of software systems designed to rapidly integrate or fuse all site information into a conceptual site model that then becomes the decision making tool for the site team to plan subsequent sampling activity. Not all of the contaminants present can be located at the action level. Polynuclear aromatic hydrocarbons (PAHs) are the signature organics associated with the coal tar activities that took place at the site. As a result, PAHs were selected as the target compounds. Screening analytical instruments and nonintrusive geophysical techniques will be fielded to qualitatively map the spatial contaminant distribution. Soil gas surveys, immunoassay testing (IMA), innovative optical techniques, and passive organic sorbent sensors will be deployed along with the geophysical methods. Gas chromatography/mass spectrometry (GC/MS) instruments and a cone penetrometer system equipped with a laser-induced fluorescence (LIF) probe will quantitatively map the action level edges of the PAH plume(s). Samples will be taken both by the cone penetrometer test system (CPT) and the Geoprobe {reg_sign} sampler system.

  7. Noninvasive characterization of the Trecate (Italy) crude-oil contaminated site: links between contamination and geophysical signals.

    Science.gov (United States)

    Cassiani, Giorgio; Binley, Andrew; Kemna, Andreas; Wehrer, Markus; Orozco, Adrian Flores; Deiana, Rita; Boaga, Jacopo; Rossi, Matteo; Dietrich, Peter; Werban, Ulrike; Zschornack, Ludwig; Godio, Alberto; JafarGandomi, Arash; Deidda, Gian Piero

    2014-01-01

    The characterization of contaminated sites can benefit from the supplementation of direct investigations with a set of less invasive and more extensive measurements. A combination of geophysical methods and direct push techniques for contaminated land characterization has been proposed within the EU FP7 project ModelPROBE and the affiliated project SoilCAM. In this paper, we present results of the investigations conducted at the Trecate field site (NW Italy), which was affected in 1994 by crude oil contamination. The less invasive investigations include ground-penetrating radar (GPR), electrical resistivity tomography (ERT), and electromagnetic induction (EMI) surveys, together with direct push sampling and soil electrical conductivity (EC) logs. Many of the geophysical measurements were conducted in time-lapse mode in order to separate static and dynamic signals, the latter being linked to strong seasonal changes in water table elevations. The main challenge was to extract significant geophysical signals linked to contamination from the mix of geological and hydrological signals present at the site. The most significant aspects of this characterization are: (a) the geometrical link between the distribution of contamination and the site's heterogeneity, with particular regard to the presence of less permeable layers, as evidenced by the extensive surface geophysical measurements; and (b) the link between contamination and specific geophysical signals, particularly evident from cross-hole measurements. The extensive work conducted at the Trecate site shows how a combination of direct (e.g., chemical) and indirect (e.g., geophysical) investigations can lead to a comprehensive and solid understanding of a contaminated site's mechanisms.

  8. Performance Assessment Monitoring Plan for the Hanford Site Low-Level Burial Grounds

    International Nuclear Information System (INIS)

    2006-01-01

    The U.S. Department of Energy Order 435.1, Radioactive Waste Management, requires a disposal authorization statement authorizing operation (or continued operation) for low-level waste disposal facilities. In fulfillment of these requirements, a disposal authorization statement was issued on October 25, 1999, authorizing the Hanford Site to transfer, receive, possess, and dispose of low-level radioactive waste at the 200 East Area burial grounds and the 200 West Area burial grounds. One of the conditions is that monitoring plans for the 200 East Area and 200 West Area low-level burial grounds be written and approved by the Richland Operations Office. As a result of a record of decision for the Hanford Site Solid Waste Program and acceptance of the Hanford Site Solid Waste Environmental Impact Statement, the use of the low-level burial ground (LLBG) as a disposal facility for low-level and mixed low-level wastes has been restricted to lined trenches and the Navy reactor-compartment trench only. Hence, as of July 2004, only the two lined trenches in burial ground 218-W-5 (trenches 31 and 34, see Appendix A) and the Navy reactor-compartment trench in burial ground 218 E 12B (trench 94) are allowed to receive waste. When the two lined trenches are filled, the LLBG will cease to operate except for reactor compartment disposal at trench 94. Remaining operational lifetime of the LLBG is dependent on waste volume disposal rates. Existing programs for air sampling and analyses and subsidence monitoring are currently adequate for performance assessment at the LLBG. The waste disposal authorization for the Hanford Site is based (in part) on the post-closure performance assessments for the LLBG. In order to maintain a useful link between operational monitoring (e.g., Resource Conservation and Recovery Act [RCRA], Comprehensive Environmental Response, Compensation, and Liability Act, and State Waste Discharge Permits), constituents, monitoring frequencies, and boundaries require

  9. International Symposium on Site Characterization for CO2Geological Storage

    Energy Technology Data Exchange (ETDEWEB)

    Tsang, Chin-Fu

    2006-02-23

    Several technological options have been proposed to stabilize atmospheric concentrations of CO{sub 2}. One proposed remedy is to separate and capture CO{sub 2} from fossil-fuel power plants and other stationary industrial sources and to inject the CO{sub 2} into deep subsurface formations for long-term storage and sequestration. Characterization of geologic formations for sequestration of large quantities of CO{sub 2} needs to be carefully considered to ensure that sites are suitable for long-term storage and that there will be no adverse impacts to human health or the environment. The Intergovernmental Panel on Climate Change (IPCC) Special Report on Carbon Dioxide Capture and Storage (Final Draft, October 2005) states that ''Site characterization, selection and performance prediction are crucial for successful geological storage. Before selecting a site, the geological setting must be characterized to determine if the overlying cap rock will provide an effective seal, if there is a sufficiently voluminous and permeable storage formation, and whether any abandoned or active wells will compromise the integrity of the seal. Moreover, the availability of good site characterization data is critical for the reliability of models''. This International Symposium on Site Characterization for CO{sub 2} Geological Storage (CO2SC) addresses the particular issue of site characterization and site selection related to the geologic storage of carbon dioxide. Presentations and discussions cover the various aspects associated with characterization and selection of potential CO{sub 2} storage sites, with emphasis on advances in process understanding, development of measurement methods, identification of key site features and parameters, site characterization strategies, and case studies.

  10. Site characterization and validation - Final report

    International Nuclear Information System (INIS)

    Olsson, O.

    1992-04-01

    The central aims of the Site Characterization and Validation (SCV) project were to develop and apply; * an advanced site characterization methodology and * a methodology to validate the models used to describe groundwater flow and transport in fractured rock. The basic experiment within the SCV project was to predict the distribution of water flow and tracer transport through a volume of rock, before and after excavation of a sub-horizontal drift, and to compare these predictions with actual field measurements. A structured approach was developed to combine site characterization data into a geological and hydrogeological conceptual model of a site. The conceptual model was based on a binary description where the rock mass was divided into 'fracture zones' and 'averagely fractured rock'. This designation into categories was based on a Fracture Zone Index (FZI) derived from principal component analysis of single borehole data. The FZI was used to identify the location of fracture zones in the boreholes and the extent of the zones between the boreholes was obtained form remote sensing data (radar and seismics). The consistency of the geometric model thus defined, and its significance to the flow system, was verified by cross-hole hydraulic testing. The conceptual model of the SCV site contained three major and four minor fractures zones which were the principal hydraulic conduits at the site. The location and extent of the fracture zones were included explicitly in the flow and transport models. Four different numerical modelling approaches were pursued within the project; one porous medium approach, two discrete fracture approaches, and an equivalent discontinuum approach. A series of tracer tests was also included in the prediction-validation exercise. (120 refs.) (au)

  11. Rock characterization while drilling and application of roof bolter drilling data for evaluation of ground conditions

    Directory of Open Access Journals (Sweden)

    Jamal Rostami

    2015-06-01

    Full Text Available Despite recent advances in mine health and safety, roof collapse and instabilities are still the leading causes of injury and fatality in underground mining operations. Improving safety and optimum design of ground support requires good and reliable ground characterization. While many geophysical methods have been developed for ground characterizations, their accuracy is insufficient for customized ground support design of underground workings. The actual measurements on the samples of the roof and wall strata from the exploration boring are reliable but the related holes are far apart, thus unsuitable for design purposes. The best source of information could be the geological back mapping of the roof and walls, but this is disruptive to mining operations, and provided information is only from rock surface. Interpretation of the data obtained from roof bolt drilling can offer a good and reliable source of information that can be used for ground characterization and ground support design and evaluations. This paper offers a brief review of the mine roof characterization methods, followed by introduction and discussion of the roof characterization methods by instrumented roof bolters. A brief overview of the results of the preliminary study and initial testing on an instrumented drill and summary of the suggested improvements are also discussed.

  12. About condition of soil ground at locations of the former Azgir nuclear test site

    International Nuclear Information System (INIS)

    Akhmetov, E.Z.; Adymov, Zh.I.; Ermatov, A.S.

    2003-01-01

    Full text: Soil condition after underground nuclear explosions at locations of the test sites is considered. The region is situated in the zone of northern deserts and characterized by prevalence of greyish-brown soils in conditions of sharply continental climate and presence of salt in soil-formative complex including tertiary clays, loess-like loam, loam sands and sands. There are small quantity of humus in such soil. During investigation of soil characteristics and ability of soil particles to form conglomerates, possessing of different properties, it is necessary to know both element and phase composition, determining, in the most extent, such physical and mechanical macro-characteristics as: density, stickiness, air and water penetrability, solubility, chemical resistance, granulometric set and others. Phase composition of soil samples can be, to a sufficient extent, determined by the X-ray diffractometry methods using ordinary X-ray experimental facilities. Phase composition of soil includes gypsum, quartz, calcium, potash feldspar hematite, kaolin, peach and mica in different quantities. Data on element composition of soil samples were obtained from the territory of technological locations of test site using the method of X-ray-fluorescent analysis. Granulometric composition of soil ground has been investigated using the methods of dry sieving and wet sieving for determination of radionuclide distribution in different fractions of soil particles. By the method of the dry sieving of soil ground samples there are taken place a sticking the small together of fine fractions and an adhesion of stuck-together particles to more large ones. Therefore, fine fractions cannot be separate completely at dry sieving. As distinct from the dry sieving an use of water jet in the sieving allows to overcome defects of the dry method and, by a sufficiently effective separation of granulometric fractions, to obtain more precise results of investigations of granulometric

  13. Minimizing Characterization - Derived Waste at the Department of Energy Savannah River Site, Aiken, South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Van Pelt, R. S.; Amidon, M. B.; Reboul, S. H.

    2002-02-25

    Environmental restoration activities at the Department of Energy Savannah River Site (SRS) utilize innovative site characterization approaches and technologies that minimize waste generation. Characterization is typically conducted in phases, first by collecting large quantities of inexpensive data, followed by targeted minimally invasive drilling to collect depth-discrete soil/groundwater data, and concluded with the installation of permanent multi-level groundwater monitoring wells. Waste-reducing characterization methods utilize non-traditional drilling practices (sonic drilling), minimally intrusive (geoprobe, cone penetrometer) and non-intrusive (3-D seismic, ground penetration radar, aerial monitoring) investigative tools. Various types of sensor probes (moisture sensors, gamma spectroscopy, Raman spectroscopy, laser induced and X-ray fluorescence) and hydrophobic membranes (FLUTe) are used in conjunction with depth-discrete sampling techniques to obtain high-resolution 3-D plume profiles. Groundwater monitoring (short/long-term) approaches utilize multi-level sampling technologies (Strata-Sampler, Cone-Sipper, Solinst Waterloo, Westbay) and low-cost diffusion samplers for seepline/surface water sampling. Upon collection of soil and groundwater data, information is portrayed in a Geographic Information Systems (GIS) format for interpretation and planning purposes. At the SRS, the use of non-traditional drilling methods and minimally/non intrusive investigation approaches along with in-situ sampling methods has minimized waste generation and improved the effectiveness and efficiency of characterization activities.

  14. Minimizing Characterization - Derived Waste at the Department of Energy Savannah River Site, Aiken, South Carolina

    International Nuclear Information System (INIS)

    Van Pelt, R. S.; Amidon, M. B.; Reboul, S. H.

    2002-01-01

    Environmental restoration activities at the Department of Energy Savannah River Site (SRS) utilize innovative site characterization approaches and technologies that minimize waste generation. Characterization is typically conducted in phases, first by collecting large quantities of inexpensive data, followed by targeted minimally invasive drilling to collect depth-discrete soil/groundwater data, and concluded with the installation of permanent multi-level groundwater monitoring wells. Waste-reducing characterization methods utilize non-traditional drilling practices (sonic drilling), minimally intrusive (geoprobe, cone penetrometer) and non-intrusive (3-D seismic, ground penetration radar, aerial monitoring) investigative tools. Various types of sensor probes (moisture sensors, gamma spectroscopy, Raman spectroscopy, laser induced and X-ray fluorescence) and hydrophobic membranes (FLUTe) are used in conjunction with depth-discrete sampling techniques to obtain high-resolution 3-D plume profiles. Groundwater monitoring (short/long-term) approaches utilize multi-level sampling technologies (Strata-Sampler, Cone-Sipper, Solinst Waterloo, Westbay) and low-cost diffusion samplers for seepline/surface water sampling. Upon collection of soil and groundwater data, information is portrayed in a Geographic Information Systems (GIS) format for interpretation and planning purposes. At the SRS, the use of non-traditional drilling methods and minimally/non intrusive investigation approaches along with in-situ sampling methods has minimized waste generation and improved the effectiveness and efficiency of characterization activities

  15. Early Site Permit Demonstration Program: Guidelines for determining design basis ground motions

    International Nuclear Information System (INIS)

    1993-01-01

    This report develops and applies a methodology for estimating strong earthquake ground motion. The motivation was to develop a much needed tool for use in developing the seismic requirements for structural designs. An earthquake's ground motion is a function of the earthquake's magnitude, and the physical properties of the earth through which the seismic waves travel from the earthquake fault to the site of interest. The emphasis of this study is on ground motion estimation in Eastern North America (east of the Rocky Mountains), with particular emphasis on the Eastern United States and southeastern Canada. Eastern North America is a stable continental region, having sparse earthquake activity with rare occurrences of large earthquakes. While large earthquakes are of interest for assessing seismic hazard, little data exists from the region to empirically quantify their effects. Therefore, empirically based approaches that are used for other regions, such as Western North America, are not appropriate for Eastern North America. Moreover, recent advances in science and technology have now made it possible to combine theoretical and empirical methods to develop new procedures and models for estimating ground motion. The focus of the report is on the attributes of ground motion in Eastern North America that are of interest for the design of facilities such as nuclear power plants. Specifically considered are magnitudes M from 5 to 8, distances from 0 to 500 km, and frequencies from 1 to 35 Hz. This document, Volume IV, provides Appendix 8.B, Laboratory Investigations of Dynamic Properties of Reference Sites

  16. Evaluation of dynamic properties, local site effects and design ground motions: recent advances

    International Nuclear Information System (INIS)

    Sitharam, T.G.; Vipin, K.S.; James, Naveen

    2011-01-01

    Evidences from past earthquakes clearly shows that the damages due to an earthquake and its severity at a site are controlled mainly by three factors i.e., earthquake source and path characteristics, local geological and geotechnical characteristics, structural design and quality of the construction. Seismic ground response at a site is strongly influenced by local geological and soil conditions. The exact information of the geological, geomorphological and geotechnical data along with seismotectonic details are necessary to evaluate the ground response. The geometry of the subsoil structure, the soil type, the lateral discontinuities and the surface topography will also influence the site response at a particular location. In the case of a nuclear power plant, the details obtained from the site investigation will have multiple objectives: (i) for the effective design of the foundation (ii) assessment of site amplification (iii) for liquefaction potential evaluation. Since the seismic effects on the structure depend fully on the site conditions and assessment of site amplification. The first input required in evaluation of geotechnical aspect of seismic hazard is the rock level peak horizontal acceleration (PHA) values. The surface level acceleration values need to be calculated based on the site conditions and site amplification values. This paper discusses various methods for evaluating the site amplification values, dynamic soil properties, different field and laboratory tests required and various site classification schemes. In addition to these aspects, the evaluation of liquefaction potential of the site is also presented. The paper highlights on the latest testing methods to evaluate dynamic properties (shear modulus and damping ratio) of soils and techniques for estimating local site effects. (author)

  17. Management of Ground and Groundwater Contamination on a Compact Site Constrained by Ongoing Activities

    International Nuclear Information System (INIS)

    Eilbeck, K.E.; Reeve, P.

    2009-01-01

    Sellafield Site is a compact and complex site which since the 1940's has been home to a range of facilities associated with the production and reprocessing of fissile material. The site contains the UK equivalent of the Chicago Pile-1 reactor, Hanford B Reactor, Rocky Flats Buildings 771 and 774, West Valley Main Process Plant Building, Savannah River Vitrification Plant, Savannah River MOX Plant, Savannah River F Canyon, Hanford 222 Analytical Laboratory, Savannah River K-, L-, and P-Basins, and the Fort St. Vrain Reactor all in an area of approximately 1000 acres. Spent fuel reprocessing is still undertaken on site; however waste management and decommissioning activities are of increasing importance. These include the emptying and removal of fragile ponds and silos containing significant radioactive inventories, the decommissioning of reactors (including the world's first commercial reactor for power generation and the Windscale Piles, the site of a reactor fire in the late 1950's) and the construction of a new generation of vitrification and encapsulation plants. Leaks, spills and on-site disposals during the site's industrial lifetime have resulted in a legacy of fission products and other radionuclides in the ground and groundwater. Volumes of contaminated ground have been estimated as being as much as 18 million m 3 and an estimated below ground inventory of approximately 1.8 E16 Bq. These have all occurred within close proximity to a range of receptors including farm land and the sea. The cramped nature of the facilities on site, overlapping source terms and ongoing decommissioning, waste management and operating activities all raise significant challenges in the management and remediation of contaminated land and groundwater. The strategy to address these challenges includes: 1. Data collection, management and interpretation. The congested nature of the site and the age of some of the monitoring facilities has resulted in particular difficulties. For

  18. Baseline risk assessment of ground water contamination at the Monument Valley uranium mill tailings site Cane Valley, Arizona

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to minimize further contamination of ground water. Surface cleanup at the Monument Valley UMTRA Project site near Cane Valley, Arizona, was completed in 1994. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Adverse ecological and agricultural effects may also result from exposure to contaminated ground water. For example, livestock should not be watered with contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site investigations will be used to determine a compliance strategy to comply with the UMTRA ground water standards.

  19. Baseline risk assessment of ground water contamination at the Monument Valley uranium mill tailings site Cane Valley, Arizona

    International Nuclear Information System (INIS)

    1996-03-01

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to minimize further contamination of ground water. Surface cleanup at the Monument Valley UMTRA Project site near Cane Valley, Arizona, was completed in 1994. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Adverse ecological and agricultural effects may also result from exposure to contaminated ground water. For example, livestock should not be watered with contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site investigations will be used to determine a compliance strategy to comply with the UMTRA ground water standards

  20. Adaptive sampling program support for expedited site characterization

    International Nuclear Information System (INIS)

    Johnson, R.

    1993-01-01

    Expedited site characterizations offer substantial savings in time and money when assessing hazardous waste sites. Key to some of these savings is the ability to adapt a sampling program to the ''real-time'' data generated by an expedited site characterization. This paper presents a two-prong approach to supporting adaptive sampling programs: a specialized object-oriented database/geographical information system for data fusion, management and display; and combined Bayesian/geostatistical methods for contamination extent estimation and sample location selection

  1. Myth and Reality in Hydrogeological Site Characterization at DD and R Sites

    International Nuclear Information System (INIS)

    Rubin, Yoram

    2008-01-01

    The science of hydrogeological site characterization has made significant progress over the last twenty years. Progress has been made in modeling of flow and transport in the heterogeneous subsurface, in understanding of the complex patterns of geological heterogeneity and in measurement technologies. Modeling of uncertainty has also advanced significantly, in recognition of the inherent limitations of subsurface characterization. Much less progress has been made in transforming this progress into practice, where characterization is determined to a large extent by regulations. Environmental regulations have not progressed as much as the science, for example, in recognizing uncertainty. As such, practitioners are less inclined to adopt advanced, science-based solutions, this opening the door for myths and conflicts. Myths develop where the science base is perceived to be weak, whereas conflicts arise in the face of a disconnect between the science and the regulations. Myths translate to ad-hoc solutions and misplaced empiricism, as well as to unjustified reliance on field experience, to the detriment of D and DR. This paper explores the roots for this situation and identifies ideas that may help in bridging the gap between research and applications. A rational approach for DD and R is needed that will encourage innovation in site characterization, reduce costs and accelerate completion. Such an approach needs to include several elements. DD and R regulations need to recognize the various aspects of uncertainty inherent to site characterization, and as such, should be formulated using probabilistic concepts. One of the immediate benefits will be in allowing a gradual approach for data acquisition in DD and R sites: decisions can be made even under the most severe data limitations, and can be modified as additional data become available. The definition of risk is another major element. There is no universal definition of risk or of a methodology to define risk

  2. Site characterization report for the basalt waste isolation project. Volume III

    International Nuclear Information System (INIS)

    1982-11-01

    The reference location for a repository in basalt for the terminal storage of nuclear wastes on the Hanford Site and the candidate horizons within this reference repository location have been identified and the preliminary characterization work in support of the site screening process has been completed. Fifteen technical questions regarding the qualification of the site were identified to be addressed during the detailed site characterization phase of the US Department of Energy-National Waste Terminal Storage Program site selection process. Resolution of these questions will be provided in the final site characterization progress report, currently planned to be issued in 1987, and in the safety analysis report to be submitted with the License Application. The additional information needed to resolve these questions and the plans for obtaining the information have been identified. This Site Characterization Report documents the results of the site screening process, the preliminary site characterization data, the technical issues that need to be addressed, and the plans for resolving these issues. Volume 3 contains chapters 13 through 19: site issues and plans; geoengineering and repository design issues and plans; waste package and site geochemistry issues and plans; performance-assessment issues and plans; site characterization program; quality assurance; and identification of alternate sites

  3. Draft site characterization analysis of the site characterization report for the Basalt Waste Isolation Project, Hanford, Washington Site. Main report and Appendices A through D

    International Nuclear Information System (INIS)

    1983-03-01

    On November 12, 1982, the US Department of Energy submitted to the US Nuclear Regulatory Commission the Site Characterization Report for the Basalt Waste Isolation Project (DOE/RL 82-3). The Basalt Waste Isolation Project is located on DOE's Hanford Reservation in the State of Washington. NUREG-0960 contains the detailed analysis, by the NRC staff, of the site characterization report. Supporting technical material is contained in Appendices A through W

  4. Characterization Plan for L/ILW Repository Candidate Sites in Croatia

    International Nuclear Information System (INIS)

    Schaller, A.; Lokner, V.; Kucar-Dragicevic, S.; Subasic, D.

    1998-01-01

    There have been four preferred sites for L/ILW repository selected in the siting program in Croatia so far. According to the accepted and verified site selection procedure, these sites are suitable for a more detailed characterization, including also site specific field investigations. The aim of these investigations is to measure and calculate all needed site specific parameters important for performance of safety assessment, aiming eventually with selection of the final disposal site. Both Croatian and IAEA regulations referring to radwaste repository siting procedure have been briefly discussed. Detailed site investigations foreseen to be done in order to perform a successful site characterization, refer to the following main topics: geomorphology, lithostratigraphy, tectonics, seismicity, rock mechanics, surface-water hydrology, aquifer features and groundwater hydrology, rock and groundwater chemistry, and radionuclide transport modeling. All these issues are listed in suggested site characterization format. (author)

  5. Baseline risk assessment of ground water contamination at the Monument Valley Uranium Mill Tailings Site, Cane Valley, Arizona. Revision 1

    International Nuclear Information System (INIS)

    1994-08-01

    This baseline risk assessment evaluates potential impact to public health or the environment from ground water contamination at the former uranium mill processing site in Cane Valley near Monument Valley, Arizona. The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project has relocated and stabilized this site's tailings and other contaminated material in a disposal cell at Mexican Hat, Utah. The second phase of the UMTRA Project is to evaluate ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project that evaluates potential health and environmental risks. It will help determine the approach required to address contaminated ground water at the site

  6. Area Completion Strategies at Savannah River Site: Characterization for Closure and Beyond

    International Nuclear Information System (INIS)

    Bagwell, Laura; O'Quinn, Sadika; Amidon, Mark

    2008-01-01

    During the first four decades of its 56 year existence, the Savannah River Site (SRS) was a key supplier of nuclear material for national defense. During the 1990's, the site's primary missions became waste site closure, environmental restoration, and deactivation and decommissioning (D and D) of remnant cold war apparatus. Since 1989, with the approval of State and Federal regulatory agencies and with the participation of interested stakeholders, SRS has implemented a final remedy for a majority of the more than 500 individual waste sites at the former nuclear materials complex. These waste sites range from small, inert rubble pits to large, heavy industrial areas and radioactive waste disposal grounds. The closure and final remediation of these waste sites mark significant progress toward achieving SRS's overarching goal of reducing or eliminating future environmental damage and human health threats. However, larger challenges remain. For example, what are appropriate and achievable end-states for decommissioned nuclear facilities? What environmental and human health risks are associated with these end-states? To answer these questions within the strictures of smaller budgets and accelerated schedules, SRS is implementing an 'area completion' strategy that: - unites several discrete waste units into one conceptual model, - integrates historically disparate environmental characterization and D and D activities - reduces the number of required regulatory documents, - and, in some cases, compresses schedules for achieving a stakeholder-approved end-state. The area completion approaches being implemented at SRS reflect an evolution of the traditional RCRA/ CERCLA remedial process. Area completion strategies: - group waste units and/or D and D facilities together for characterization, remediation, and possible reuse; - identify data needs and integrate data collection activities for D and D, characterization, and remediation; - identify problems that require action

  7. Site characterization and validation

    International Nuclear Information System (INIS)

    Olsson, O.; Eriksson, J.; Falk, L.; Sandberg, E.

    1988-04-01

    The borehole radar investigation program of the SCV-site (Site Characterization and Validation) has comprised single hole reflection measurements with centre frequencies of 22, 45, and 60 MHz. The radar range obtained in the single hole reflection measurements was approximately 100 m for the lower frequency (22 MHz) and about 60 m for the centre frequency 45 MHz. In the crosshole measurements transmitter-receiver separations from 60 to 200 m have been used. The radar investigations have given a three dimensional description of the structure at the SCV-site. A generalized model of the site has been produced which includes three major zones, four minor zones and a circular feature. These features are considered to be the most significant at the site. Smaller features than the ones included in the generalized model certainly exist but no additional features comparable to the three major zones are thought to exist. The results indicate that the zones are not homogeneous but rather that they are highly irregular containing parts of considerably increased fracturing and parts where their contrast to the background rock is quite small. The zones appear to be approximately planar at least at the scale of the site. At a smaller scale the zones can appear quite irregular. (authors)

  8. Utility of Characterizing and Monitoring Suspected Underground Nuclear Sites with VideoSAR

    Science.gov (United States)

    Dauphin, S. M.; Yocky, D. A.; Riley, R.; Calloway, T. M.; Wahl, D. E.

    2016-12-01

    Sandia National Laboratories proposed using airborne synthetic aperture RADAR (SAR) collected in VideoSAR mode to characterize the Underground Nuclear Explosion Signature Experiment (UNESE) test bed site at the Nevada National Security Site (NNSS). The SNL SAR collected airborne, Ku-band (16.8 GHz center frequency), 0.2032 meter ground resolution over NNSS in August 2014 and X-band (9.6 GHz), 0.1016 meter ground resolution fully-polarimetric SAR in April 2015. This paper reports the findings of processing and exploiting VideoSAR for creating digital elevation maps, detecting cultural artifacts and exploiting full-circle polarimetric signatures. VideoSAR collects a continuous circle of phase history data, therefore, imagery can be formed over the 360-degrees of the site. Since the Ku-band VideoSAR had two antennas suitable for interferometric digital elevation mapping (DEM), DEMs could be generated over numerous aspect angles, filling in holes created by targets with height by imaging from all sides. Also, since the X-band VideoSAR was fully-polarimetric, scattering signatures could be gleaned from all angles also. Both of these collections can be used to find man-made objects and changes in elevation that might indicate testing activities. VideoSAR provides a unique, coherent measure of ground objects allowing one to create accurate DEMS, locate man-made objects, and identify scattering signatures via polarimetric exploitation. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. The authors would like to thank the National Nuclear Security Administration, Defense Nuclear Nonproliferation Research and Development, for sponsoring this work. We would also like to thank the Underground Nuclear Explosion Signatures Experiment team, a multi

  9. Site characterization in fractured crystalline rock

    International Nuclear Information System (INIS)

    Andersson, Peter; Andersson, J.E.; Gustafsson, E.; Nordqvist, R.; Voss, C.

    1993-03-01

    This report concerns a study which is part of the SKI performance assessment project SITE-94. SITE-94 is a performance assessment of a hypothetical repository at a real site. The main objective of the project is to determine how site specific data should be assimilated into the performance assessment process and to evaluate how uncertainties inherent in site characterization will influence performance assessment results. Other important elements of SITE-94 are the development of a practical and defensible methodology for defining, constructing and analyzing scenarios, the development of approaches for treatment of uncertainties, evaluation of canister integrity, and the development and application of an appropriate Quality Assurance plan for Performance Assessments. (111 refs.)

  10. Ground beetles (Coleoptera, Carabidae) of the Hanford Nuclear Site in south-central Washington State.

    Science.gov (United States)

    Looney, Chris; Zack, Richard S; Labonte, James R

    2014-01-01

    Carabidae) collected from the Hanford Nuclear Reservation and Hanford National Monument (together the Hanford Site), which is located in south-central Washington State. The Site is a relatively undisturbed relict of the shrub-steppe habitat present throughout much of the western Columbia Basin before the westward expansion of the United States. Species, localities, months of capture, and capture method are reported for field work conducted between 1994 and 2002. Most species were collected using pitfall traps, although other capture methods were employed. Trapping results indicate the Hanford Site supports a diverse ground beetle community, with over 90% of the 92 species captured native to North America. Four species collected during the study period are newly recorded for Washington State: Bembidion diligens Casey, Calosoma obsoletum Say, Pseudaptinus rufulus (LeConte), and Stenolophus lineola (Fabricius). Based on these data, the Site maintains a diverse ground beetle fauna and, due to its size and diversity of habitats, is an important repository of shrub-steppe biodiversity.

  11. Mitigative techniques and analysis of generic site conditions for ground-water contamination associated with severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Shafer, J.M.; Oberlander, P.L.; Skaggs, R.L.

    1984-04-01

    The purpose of this study is to evaluate the feasibility of using ground-water contaminant mitigation techniques to control radionuclide migration following a severe commercial nuclear power reactor accident. The two types of severe commercial reactor accidents investigated are: (1) containment basemat penetration of core melt debris which slowly cools and leaches radionuclides to the subsurface environment, and (2) containment basemat penetration of sump water without full penetration of the core mass. Six generic hydrogeologic site classifications are developed from an evaluation of reported data pertaining to the hydrogeologic properties of all existing and proposed commercial reactor sites. One-dimensional radionuclide transport analyses are conducted on each of the individual reactor sites to determine the generic characteristics of a radionuclide discharge to an accessible environment. Ground-water contaminant mitigation techniques that may be suitable, depending on specific site and accident conditions, for severe power plant accidents are identified and evaluated. Feasible mitigative techniques and associated constraints on feasibility are determined for each of the six hydrogeologic site classifications. The first of three case studies is conducted on a site located on the Texas Gulf Coastal Plain. Mitigative strategies are evaluated for their impact on contaminant transport and results show that the techniques evaluated significantly increased ground-water travel times. 31 references, 118 figures, 62 tables.

  12. Mitigative techniques and analysis of generic site conditions for ground-water contamination associated with severe accidents

    International Nuclear Information System (INIS)

    Shafer, J.M.; Oberlander, P.L.; Skaggs, R.L.

    1984-04-01

    The purpose of this study is to evaluate the feasibility of using ground-water contaminant mitigation techniques to control radionuclide migration following a severe commercial nuclear power reactor accident. The two types of severe commercial reactor accidents investigated are: (1) containment basemat penetration of core melt debris which slowly cools and leaches radionuclides to the subsurface environment, and (2) containment basemat penetration of sump water without full penetration of the core mass. Six generic hydrogeologic site classifications are developed from an evaluation of reported data pertaining to the hydrogeologic properties of all existing and proposed commercial reactor sites. One-dimensional radionuclide transport analyses are conducted on each of the individual reactor sites to determine the generic characteristics of a radionuclide discharge to an accessible environment. Ground-water contaminant mitigation techniques that may be suitable, depending on specific site and accident conditions, for severe power plant accidents are identified and evaluated. Feasible mitigative techniques and associated constraints on feasibility are determined for each of the six hydrogeologic site classifications. The first of three case studies is conducted on a site located on the Texas Gulf Coastal Plain. Mitigative strategies are evaluated for their impact on contaminant transport and results show that the techniques evaluated significantly increased ground-water travel times. 31 references, 118 figures, 62 tables

  13. Ground motion for the design basis earthquake at the Savannah River Site, South Carolina based on a deterministic approach

    International Nuclear Information System (INIS)

    Youngs, R.R.; Coppersmith, K.J.; Silva, W.J.; Stephenson, D.E.

    1991-01-01

    Ground motion assessments are presented for evaluation of the seismic safety of K-Reactor at the Savannah River Site. Two earthquake sources were identified as the most significant to seismic hazard at the site, a M 7.5 earthquake occurring at Charleston, South Carolina, and a M 5 event occurring in the site vicinity. These events control the low frequency and high frequency portions of the spectrum, respectively. Three major issues were identified in the assessment of ground motions for the Savannah River site; specification of the appropriate stress drop for the Charleston source earthquake, specification of the appropriate levels of soil damping at large depths for site response analyses, and the appropriateness of western US recordings for specification of ground motions in the eastern US

  14. Complete characterization of the ground-space structure of two-body frustration-free Hamiltonians for qubits

    International Nuclear Information System (INIS)

    Ji Zhengfeng; Wei Zhaohui; Zeng Bei

    2011-01-01

    The problem of finding the ground state of a frustration-free Hamiltonian carrying only two-body interactions between qubits is known to be solvable in polynomial time. It is also shown recently that, for any such Hamiltonian, there is always a ground state that is a product of single- or two-qubit states. However, it remains unclear whether the whole ground space is of any succinct structure. Here, we give a complete characterization of the ground space of any two-body frustration-free Hamiltonian of qubits. Namely, it is a span of tree tensor network states of the same tree structure. This characterization allows us to show that the problem of determining the ground-state degeneracy is as hard as, but no harder than, its classical analog.

  15. The site-characterization plan and its role in resolving siting and licensing issues

    International Nuclear Information System (INIS)

    Hanlon, C.L.

    1986-01-01

    As required by the Nuclear Waste Policy Act and the Nuclear Regulatory Commission (NRC) in 10 CFR Part 60, the Department of Energy is preparing plans for conducting site characterization at three candidate sites. Prepared according to a detailed annotated outline that is based on the NRC's Regulatory Guide 4.17, these plans will present the information collected to date about the geologic, hydrologic, geochemical, geoengineering, and climatic conditions of each site; describe the design of the repository and the waste package; and discuss the site-characterization program. The most important portions of the plan will be the strategy for resolving siting and licensing issues and the description of the testing and analysis program to be followed in resolving these issues. The issues-resolution strategy consists of identifying issues and the associated information needs; allocating performance goals for various components of the repository system; developing a testing plan to gather the necessary information; gathering and analyzing the information; and documenting the results for use in site selection and licensing. The issues-resolution strategy will allow the Department to define all of the issues that must be resolved in order to demonstrate compliance with applicable regulations and to specify the information needed to resolve these issues. It will provide a consistent framework and establish priorities for the Department's site-characterization effort for the next several years

  16. Effects of Permafrost and Seasonally Frozen Ground on the Seismic Response of Transportation Infrastructure Sites

    Science.gov (United States)

    2010-02-01

    This interdisciplinary project combined seismic data recorded at bridge sites with computer models to identify how highway bridges built on permanently and seasonally frozen ground behave during an earthquake. Two sites one in Anchorage and one in...

  17. Site-characterization data needs for hydrogeological evaluation

    International Nuclear Information System (INIS)

    Geier, J.

    1997-12-01

    A review of data utilization and data sufficiency for the multiple lines of hydrological analysis in the SITE-94 study yields insight regarding how site characterization relates to key uncertainties in geologic-barrier performance for performance assessment (PA). Significant uncertainties arise from (1) lack of data regarding interrelationships between hydraulic and transport properties in water-conducting features, (2) insufficient data to discriminate between different conceptual models for large-scale spatial correlation of hydraulic properties, and (3) inadequate determination of effective boundary conditions for site-scale models. For future site characterization in support of hydrological modelling for PA, recommendations that can be offered includes: (1) to develop methods for the evaluation of site-specific transport properties, particularly flow porosity, flow wetted surface, matrix diffusion coefficients, and possibly effective sorption coefficients, (2) to emphasize the use of multiple tracers and multiple scales of observation in pumping and tracer tests, in order to allow evaluation of the effects of scale and heterogeneity in hydrologic and transport properties, (3) to develop a structured, systematic approach to borehole investigations, sampling, and core logging, in order to ensure that the data thus gathered will support meaningful statistical analysis, and to ensure that the development of alternative conceptual models is supported, and finally (4) to improve documentation and checking of site-characterization data in order to avoid unnecessary introduction of uncertainty in PA. A full list of recommendations is given in Chapter 4 of this report

  18. Site-characterization data needs for hydrogeological evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Geier, J. [Clearwater Hardrock Consulting, Monmouth, ON (United States)

    1997-12-01

    A review of data utilization and data sufficiency for the multiple lines of hydrological analysis in the SITE-94 study yields insight regarding how site characterization relates to key uncertainties in geologic-barrier performance for performance assessment (PA). Significant uncertainties arise from (1) lack of data regarding interrelationships between hydraulic and transport properties in water-conducting features, (2) insufficient data to discriminate between different conceptual models for large-scale spatial correlation of hydraulic properties, and (3) inadequate determination of effective boundary conditions for site-scale models. For future site characterization in support of hydrological modelling for PA, recommendations that can be offered includes: (1) to develop methods for the evaluation of site-specific transport properties, particularly flow porosity, flow wetted surface, matrix diffusion coefficients, and possibly effective sorption coefficients, (2) to emphasize the use of multiple tracers and multiple scales of observation in pumping and tracer tests, in order to allow evaluation of the effects of scale and heterogeneity in hydrologic and transport properties, (3) to develop a structured, systematic approach to borehole investigations, sampling, and core logging, in order to ensure that the data thus gathered will support meaningful statistical analysis, and to ensure that the development of alternative conceptual models is supported, and finally (4) to improve documentation and checking of site-characterization data in order to avoid unnecessary introduction of uncertainty in PA. A full list of recommendations is given in Chapter 4 of this report. 31 refs.

  19. The Steksovo II burial ground

    Directory of Open Access Journals (Sweden)

    Martianov Vladimir N.

    2014-12-01

    Full Text Available The article is dedicated to the results of many-years’ (1990-2010 excavations on the ancient Mordovian Steksovo II burial ground site. The burial ground had functioned in the 3rd to 13th centuries AD. The investigations revealed hundreds of burials, which enabled the researchers to judge upon the wealth of material items found and the variety of burial rites of the population that had formed the burial ground. The 1st millennium AD is characterized by bi-ritualism, while inhumation is characteristic of the 11-13th-century period; horses’ burials were also discovered. The data of the burial ground make it possible to modify the concept of the stages in ancient Mordovians ethnogenesis. It is generally attributed to the Erzya Mordvins, but in early burials the combination of the Erzya and Moksha ancientries is traced. Complexes of the items of crucial importance for the chronology of the burial are discussed in the article with a representation of statistical data characterizing funeral rites and traditions.

  20. State of Nevada comments on the US Department of Energy site characterization plan, Yucca Mountain site, Nevada

    International Nuclear Information System (INIS)

    1989-09-01

    In December 1988, the US Department of Energy issued a Site Characterization Plan (SCP) for the Yucca Mountain site, as required by Section 113 of the Nuclear Waste Policy Act of 1982 (NWPA). The purpose of site characterization is to develop sufficient information to support a determination of the suitability, or lack of suitability of the site to safely isolate high-level radioactive waste with reasonable certainty for thousands of years. The purpose of the Site Characterization Plan is to describe plans for obtaining sufficient information about the site, plans for mitigation of any adverse impacts occurring from site characterization activities, and plans for decontamination and decommissioning of the site if it is determined not to be suitable for a repository. Part I presents an overview of the State's comments. The overview takes the form of general concerns and comments organized by specific areas of concern. The overview does not follow the format of the SCP

  1. Site Characterization Work Plan for Gnome-Coach Site, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    DOE/NV

    2001-02-13

    Project Gnome was the first nuclear experiment conducted under the U.S. Atomic Energy Commission (AEC), predecessor to the U.S. Department of Energy (DOE), Plowshare Program. Gnome was part of a joint government-industry experiment focused on developing nuclear devices exclusively for peaceful purposes. The intent of the Gnome experiment was to evaluate the effects of a nuclear detonation in a salt medium. Historically, Project Gnome consisted of a single detonation of a nuclear device on December 10, 1961. Since the Gnome detonation, the AEC/DOE has conducted surface restoration, site reconnaissance, and decontamination and decommissioning activities at the site. In addition, annual groundwater sampling is performed under a long-term hydrological monitoring program begun in 1980. Coach, an experiment to be located near the Gnome project, was initially scheduled for 1963. Although construction and rehabilitation were completed for Coach, the experiment was canceled and never executed. Known collectively as Project Gnome-Coach, the site is situated within the Salado Formation approximately 25 miles east of Carlsbad, New Mexico, in Eddy County, and is comprised of nearly 680 acres, of which 60 acres are disturbed from the combined AEC/DOE operations. The scope of this work plan is to document the environmental objectives and the proposed technical site investigation strategies that will be utilized for the site characterization of the project. The subsurface at the Gnome-Coach site has two contaminant sources that are fundamentally different in terms of both their stratigraphic location and release mechanism. The goal of this characterization is to collect data of sufficient quantity and quality to establish current site conditions and to use the data to identify and evaluate if further action is required to protect human health and the environment and achieve permanent closure of the site. The results of these activities will be presented in a subsequent corrective

  2. Subsurface characterization by the ground penetrating radar WISDOM/ExoMars 2020

    Science.gov (United States)

    Hervé, Y.; Ciarletti, V.; Le Gall, A. A.; Oudart, N.; Loizeau, D.; Guiffaut, C.; Dorizon, S.

    2017-12-01

    The main objective of the ExoMars 2020 mission is to search for signs of past and/or present life on Mars. Toward this goal, a rover was designed to investigate the shallow subsurface which is the most likely place where signs of life may be preserved, beneath the hostile surface of Mars. The rover of the ExoMars 2020 mission has on board a polarimetric ground penetrating radar called WISDOM (Water Ice Subsurface Deposits Observation on Mars). Thanks to its large frequency bandwidth of 2.5 GHz, WISDOM is able to probe down to a depth of approximately 3 m on sedimentary rock with a vertical resolution of a few centimeters.The main scientific objectives of WISDOM are to characterize the shallow subsurface of Mars, to help understand the local geological context and to identify the most promising location for drilling. The WISDOM team is currently working on the preparation of the scientific return of the ExoMars 2020 mission. In particular, tools are developed to interpret WISDOM experimental data and, more specifically, to extract information from the radar signatures of expected buried reflectors. Insights into the composition of the ground (through the retrieval of its permittivity) and the geological context of the site can be inferred from the radar signature of buried rocks since the shape and the density of rocks in the subsurface is related to the geological processes that have shaped and placed them there (impact, fluvial processes, volcanism). This paper presents results obtained by automatic detection of structures of interest on a radargram, especially radar signature of buried rocks. The algorithm we developed uses a neural network to identify the position of buried rocks/blocs and then a Hough transform to characterize each signature and to estimate the local permittivity of the medium. Firstly, we will test the performances of the algorithm on simulated data constructed with a 3D FDTD code. This code allows us to simulate radar operation in realistic

  3. Microzonation and site-specific ground motion modelling for Delhi city

    International Nuclear Information System (INIS)

    Parvez, Imtiyaz A.; Vaccari, F.; Panza, G.F.

    2002-11-01

    Delhi - the capital of India - lies on a severe earthquake hazard threats not only from the local earthquakes but also from Himalayan events just 200-250 km apart. The seismic ground motion in a part of Delhi City is computed with a hybrid technique based (on the based) on the modal summation and the finite difference scheme for site-specific strong ground motion modelling. Complete realistic SH and P-SV wave seismograms are computed along two geological cross-sections, (1) North-South, from Inter State Bus Terminal (ISBT) to Sewanagar and (2) East- West, from Tilak Bridge to Punjabi Bagh. Two real earthquake sources of July 15, 1720 (MMI=IX, M=7.4) and August 27, 1960 (M=6.0) have been used in the modelling. The response spectra ratio (RSR), i.e. the response spectra computed from the signals synthesized along the laterally varying section normalized by the response spectra computed from the corresponding signals, synthesized for the bedrock reference regional model, have been determined. As expected, the sedimentary cover causes an increase of the signal amplitude particularly in the radial and transverse components. To further check the site-effects, we reversed the source location to the other side of the cross-section and re-computed the site amplifications. There are only a few sites where a large amplification is invariant with respect to the two source locations considered. The RSR ranges between 5 to 10 in the frequency range from 2.8 to 3.7 Hz, for the radial and transverse components of motion along the NS cross-section. Along the EW cross-section RSR varies between 3.5 to 7.5 in the frequency range from 3.5 to 4.1 Hz. The amplification of the vertical component is large at high frequency (>4 Hz) whereas it is negligible in lower frequency range. (author)

  4. Siting and constructing very deep monitoring wells on the US Department of Energy's Nevada Test Site

    International Nuclear Information System (INIS)

    Cullen, J.J.; Jacobson, R.L.; Russell, C.E.

    1991-01-01

    Many aspects of the Nevada Test Site's (NTS) hydrogeologic setting restrict the use of traditional methods for the siting and construction of ground-water characterization and monitoring wells. The size of the NTS precludes establishing high-density networks of characterization wells, as are typically used at smaller sites. The geologic complexity and variability of the NTS requires that the wells be criticality situated. The hydrogeologic complexity requires that each well provide access to many aquifers. Depths to ground water on the NTS require the construction of wells averaging approximately 1000 meters in depth. Wells meeting these criteria are uncommon in the ground-water industry, therefore techniques used by petroleum engineers are being employed to solve certain siting-, design- and installation-related problems. To date, one focus has been on developing completion strings that facilitate routine and efficient ground-water sampling from multiple intervals in a single well. The method currently advocated employs a new design of sliding side door sleeve that is actuated by an electrically operated hydraulic shifting tool. Stemming of the wells is being accomplished with standard materials (cement based grouts and sands); however, new stemming methods are being developed, to accommodate the greater depths, to minimize pH-related problems caused by the use of cements, to enhance the integrity of the inter-zone seals, and to improve the representativeness of radionuclide analyses performed on ground-water samples. Bench-scale experiments have been used to investigate the properties of more than a dozen epoxy-aggregate grout mixtures -- materials that are commonly used in underwater sealing applications

  5. Second ILAW Site Borehole Characterization Plan

    International Nuclear Information System (INIS)

    Reidel, S.P.

    2000-01-01

    The US Department of Energy's Hanford Site has the most diverse and largest amounts of radioactive tank waste in the US. High-level radioactive waste has been stored at Hanford since 1944. Approximately 209,000 m 3 (54 Mgal) of waste are currently stored in 177 tanks. Vitrification and onsite disposal of low-activity tank waste (LAW) are embodied in the strategy described in the Tri-Party Agreement. The tank waste is to be retrieved, separated into low- and high-level fractions, and then immobilized. The low-activity vitrified waste will be disposed of in the 200 East Area of the Hanford Site. This report is a plan to drill and characterize the second borehole for the Performance Assessment. The first characterization borehole was drilled in 1998. The plan describes data collection activities for determining physical and chemical properties of the vadose zone and saturated zone on the northeast side of the proposed disposal site. These data will then be used in the 2005 Performance Assessment

  6. Site Characterization and Preliminary Performance Assessment Calculation Applied To JAEA-Horonobe URL Site of Japan

    International Nuclear Information System (INIS)

    Lim, Doo Hyun; Hatanaka, Koichiro; Ishii, Eiichi

    2010-01-01

    JAEA-Horonobe Underground Research Laboratory (URL) is designed for research and development on high-level radioactive waste (HLW) repository in sedimentary rock. For a potential HLW repository, understanding and implementing fracturing and faulting system, with data from the site characterization, into the performance assessment is essential because fracture and fault will be the major conductors or barriers for the groundwater flow and radionuclide release. The objectives are i) quantitative derivation of characteristics and correlation of fracturing/faulting system with geologic and geophysics data obtained from the site characterization, and ii) preliminary performance assessment calculation with characterized site information

  7. Site Characterization and Preliminary Performance Assessment Calculation Applied To JAEA-Horonobe URL Site of Japan

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Doo Hyun [NE Union Hill Road, Suite 200, WA 98052 (United States); Hatanaka, Koichiro; Ishii, Eiichi [Japan Atomic Energy Agency, Hokkaido (Japan)

    2010-10-15

    JAEA-Horonobe Underground Research Laboratory (URL) is designed for research and development on high-level radioactive waste (HLW) repository in sedimentary rock. For a potential HLW repository, understanding and implementing fracturing and faulting system, with data from the site characterization, into the performance assessment is essential because fracture and fault will be the major conductors or barriers for the groundwater flow and radionuclide release. The objectives are i) quantitative derivation of characteristics and correlation of fracturing/faulting system with geologic and geophysics data obtained from the site characterization, and ii) preliminary performance assessment calculation with characterized site information

  8. PEER NGA-East Overview: Development of a Ground Motion Characterization Model (Ground Motion Prediction Equations) for Central and Eastern North America

    Science.gov (United States)

    Goulet, C. A.; Abrahamson, N. A.; Al Atik, L.; Atkinson, G. M.; Bozorgnia, Y.; Graves, R. W.; Kuehn, N. M.; Youngs, R. R.

    2017-12-01

    The Next Generation Attenuation project for Central and Eastern North America (CENA), NGA-East, is a major multi-disciplinary project coordinated by the Pacific Earthquake Engineering Research Center (PEER). The project was co-sponsored by the U.S. Nuclear Regulatory Commission (NRC), the U.S. Department of Energy (DOE), the Electric Power Research Institute (EPRI) and the U.S. Geological Survey (USGS). NGA-East involved a large number of participating researchers from various organizations in academia, industry and government and was carried-out as a combination of 1) a scientific research project and 2) a model-building component following the NRC Seismic Senior Hazard Analysis Committee (SSHAC) Level 3 process. The science part of the project led to several data products and technical reports while the SSHAC component aggregated the various results into a ground motion characterization (GMC) model. The GMC model consists in a set of ground motion models (GMMs) for median and standard deviation of ground motions and their associated weights, combined into logic-trees for use in probabilistic seismic hazard analyses (PSHA). NGA-East addressed many technical challenges, most of them related to the relatively small number of earthquake recordings available for CENA. To resolve this shortcoming, the project relied on ground motion simulations to supplement the available data. Other important scientific issues were addressed through research projects on topics such as the regionalization of seismic source, path and attenuation of motions, the treatment of variability and uncertainties and on the evaluation of site effects. Seven working groups were formed to cover the complexity and breadth of topics in the NGA-East project, each focused on a specific technical area. This presentation provides an overview of the NGA-East research project and its key products.

  9. AREA COMPLETION STRATEGIES AT SAVANNAH RIVER SITE: CHARACTERIZATION FOR CLOSURE AND BEYOND

    International Nuclear Information System (INIS)

    Bagwell, L; Mark Amidon, M; Sadika Baladi, S

    2007-01-01

    During the first four decades of its 56 year existence, the Savannah River Site (SRS) was a key supplier of nuclear material for national defense. During the 1990s, the site's primary missions became waste site closure, environmental restoration, and deactivation and decommissioning (D and D) of remnant cold war apparatus. Since 1989, with the approval of State and Federal regulatory agencies and with the participation of interested stakeholders, SRS has implemented a final remedy for a majority of the more than 500 individual waste sites at the former nuclear materials complex. These waste sites range from small, inert rubble pits to large, heavy industrial areas and radioactive waste disposal grounds. The closure and final remediation of these waste sites mark significant progress toward achieving SRS's overarching goal of reducing or eliminating future environmental damage and human health threats. However, larger challenges remain. For example, what are appropriate and achievable end-states for decommissioned nuclear facilities? What environmental and human health risks are associated with these end-states? To answer these questions within the strictures of smaller budgets and accelerated schedules, SRS is implementing an ''area completion'' strategy that: (1) unites several discrete waste units into one conceptual model, (2) integrates historically disparate environmental characterization and D and D activities, (3) reduces the number of required regulatory documents, and (4) in some cases, compresses schedules for achieving a stakeholder-approved end-state

  10. AREA COMPLETION STRATEGIES AT SAVANNAH RIVER SITE: CHARACTERIZATION FOR CLOSURE AND BEYOND

    Energy Technology Data Exchange (ETDEWEB)

    Bagwell, L; Mark Amidon, M; Sadika Baladi, S

    2007-06-11

    During the first four decades of its 56 year existence, the Savannah River Site (SRS) was a key supplier of nuclear material for national defense. During the 1990s, the site's primary missions became waste site closure, environmental restoration, and deactivation and decommissioning (D&D) of remnant cold war apparatus. Since 1989, with the approval of State and Federal regulatory agencies and with the participation of interested stakeholders, SRS has implemented a final remedy for a majority of the more than 500 individual waste sites at the former nuclear materials complex. These waste sites range from small, inert rubble pits to large, heavy industrial areas and radioactive waste disposal grounds. The closure and final remediation of these waste sites mark significant progress toward achieving SRS's overarching goal of reducing or eliminating future environmental damage and human health threats. However, larger challenges remain. For example, what are appropriate and achievable end-states for decommissioned nuclear facilities? What environmental and human health risks are associated with these end-states? To answer these questions within the strictures of smaller budgets and accelerated schedules, SRS is implementing an ''area completion'' strategy that: (1) unites several discrete waste units into one conceptual model, (2) integrates historically disparate environmental characterization and D&D activities, (3) reduces the number of required regulatory documents, and (4) in some cases, compresses schedules for achieving a stakeholder-approved end-state.

  11. Site investigations for repositories for solid radioactive wastes in shallow ground

    International Nuclear Information System (INIS)

    1982-01-01

    This report provides an overview and technical guidelines for investigations on a national level for the selection and confirmation of a repository site that will provide adequately safe performance for disposal of solid radioactive wastes that are low- or intermediate-level and short-lived. It also provides basic information on technical activities to be undertaken and on techniques that are available for such investigations in the various steps in selecting suitable sites. The report supplements the information given in Shallow Ground Disposal of Radioactive Wastes: A Guidebook, IAEA Safety Series No. 53 (1981). This report focuses mainly on different aspects of earth sciences and the various investigative techniques relative to earth sciences that may be necessary for site investigations. Some major related studies in other fields are discussed briefly. It is assumed that no previous investigations have been undertaken, and the report proceeds through area site selection to the stage when the site is confirmed as suitable for a waste repository

  12. Site investigations for repositories for solid radioactive wastes in shallow ground

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    This report provides an overview and technical guidelines for investigations on a national level for the selection and confirmation of a repository site that will provide adequately safe performance for disposal of solid radioactive wastes that are low- or intermediate-level and short-lived. It also provides basic information on technical activities to be undertaken and on techniques that are available for such investigations in the various steps in selecting suitable sites. The report supplements the information given in Shallow Ground Disposal of Radioactive Wastes: A Guidebook, IAEA Safety Series No. 53 (1981). This report focuses mainly on different aspects of earth sciences and the various investigative techniques relative to earth sciences that may be necessary for site investigations. Some major related studies in other fields are discussed briefly. It is assumed that no previous investigations have been undertaken, and the report proceeds through area site selection to the stage when the site is confirmed as suitable for a waste repository.

  13. Site characterization techniques used in environmental remediation activities

    International Nuclear Information System (INIS)

    Kostelnik, K.M.

    2000-01-01

    As a result of decades of nuclear energy research, weapons production, as well as ongoing operations, a significant amount of radioactive contamination has occurred throughout the United States Department of Energy (DOE) complex. DOE facility are in the process of assessing and potentially remediating various sites according to the regulations imposed by a Federal Facility Agreement and Consent order (FFA/CO) between DOE, the state in which the facility is located, and the U.S. Environmental Protection Agency (EPA). In support of these active site remediation efforts, the DOE has devoted considerable resources towards the development of innovative site characterization techniques that support environmental restoration activities. These resources and efforts have focused on various aspects of this complex problem. Research and technology development conducted at the Idaho National Engineering and Environmental Laboratory (INEEL) has resulted in the ability and state-of-the-art equipment required to obtain real-time, densely spaced, in situ characterization data (i.e. detection, speciation, and location) of various radionuclides and contaminants. The Remedial Action Monitoring System (RAMS), developed by the INEEL, consists of enhanced sensor technology, measurement modeling and interpretation techniques, and a suite of deployment platforms which can be interchanged to directly support remedial cleanup and site verification operations. In situ characterization techniques have advanced to the point where they are being actively deployed in support of remedial operations. The INEEL has deployed its system at various DOE and international sites. The deployment of in situ characterization systems during environmental restoration operations has shown that this approach results in several significant benefits versus conventional sampling techniques. A flexible characterization system permits rapid modification to satisfy physical site conditions, available site resources

  14. V S30, slope, H 800 and f 0: performance of various site-condition proxies in reducing ground-motion aleatory variability and predicting nonlinear site response

    Science.gov (United States)

    Derras, Boumédiène; Bard, Pierre-Yves; Cotton, Fabrice

    2017-09-01

    The aim of this paper is to investigate the ability of various site-condition proxies (SCPs) to reduce ground-motion aleatory variability and evaluate how SCPs capture nonlinearity site effects. The SCPs used here are time-averaged shear-wave velocity in the top 30 m ( V S30), the topographical slope (slope), the fundamental resonance frequency ( f 0) and the depth beyond which V s exceeds 800 m/s ( H 800). We considered first the performance of each SCP taken alone and then the combined performance of the 6 SCP pairs [ V S30- f 0], [ V S30- H 800], [ f 0-slope], [ H 800-slope], [ V S30-slope] and [ f 0- H 800]. This analysis is performed using a neural network approach including a random effect applied on a KiK-net subset for derivation of ground-motion prediction equations setting the relationship between various ground-motion parameters such as peak ground acceleration, peak ground velocity and pseudo-spectral acceleration PSA ( T), and M w, R JB, focal depth and SCPs. While the choice of SCP is found to have almost no impact on the median ground-motion prediction, it does impact the level of aleatory uncertainty. V S30 is found to perform the best of single proxies at short periods ( T < 0.6 s), while f 0 and H 800 perform better at longer periods; considering SCP pairs leads to significant improvements, with particular emphasis on [ V S30- H 800] and [ f 0-slope] pairs. The results also indicate significant nonlinearity on the site terms for soft sites and that the most relevant loading parameter for characterising nonlinear site response is the "stiff" spectral ordinate at the considered period.[Figure not available: see fulltext.

  15. Selected ground-water data for Yucca Mountain Region, southern Nevada and eastern California, through December 22

    International Nuclear Information System (INIS)

    La Camera, R.J.; Westenburg, C.L.

    1994-01-01

    The U.S. Geological Survey, in support of the U.S. Department of Energy, Yucca Mountain Site-Characterization Project, collects, compiles, and summarizes hydrologic data in the Yucca Mountain region. The data are collected to allow assessments of ground-water resources during studies to determine the potential suitability of Yucca Mountain for storing high-level nuclear waste. Data on ground-water levels at 36 sites, ground-water discharge at 6 sites, ground-water quality at 19 sites, and ground-water withdrawals within Crater Flat, Jackass Flats, Mercury Valley, and the Amargosa Desert are presented. Data on ground-water levels, discharges, and withdrawals collected by other agencies (or as part of other programs) are included to further indicate variations through time at selected monitoring locations. Data are included in this report from 1910 through 1992

  16. Site characterization report for the basalt waste isolation project. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-11-01

    The reference location for a repository in basalt for the terminal storage of nuclear wastes on the Hanford Site and the candidate horizons within this reference repository location have been identified and the preliminary characterization work in support of the site screening process has been completed. Fifteen technical questions regarding the qualification of the site were identified to be addressed during the detailed site characterization phase of the US Department of Energy-National Waste Terminal Storage Program site selection process. Resolution of these questions will be provided in the final site characterization progress report, currently planned to be issued in 1987, and in the safety analysis report to be submitted with the License Application. The additional information needed to resolve these questions and the plans for obtaining the information have been identified. This Site Characterization Report documents the results of the site screening process, the preliminary site characterization data, the technical issues that need to be addressed, and the plans for resolving these issues. Volume 2 contains chapters 6 through 12: geochemistry; surface hydrology; climatology, meteorology, and air quality; environmental, land-use, and socioeconomic characteristics; repository design; waste package; and performance assessment.

  17. Site characterization report for the basalt waste isolation project. Volume II

    International Nuclear Information System (INIS)

    1982-11-01

    The reference location for a repository in basalt for the terminal storage of nuclear wastes on the Hanford Site and the candidate horizons within this reference repository location have been identified and the preliminary characterization work in support of the site screening process has been completed. Fifteen technical questions regarding the qualification of the site were identified to be addressed during the detailed site characterization phase of the US Department of Energy-National Waste Terminal Storage Program site selection process. Resolution of these questions will be provided in the final site characterization progress report, currently planned to be issued in 1987, and in the safety analysis report to be submitted with the License Application. The additional information needed to resolve these questions and the plans for obtaining the information have been identified. This Site Characterization Report documents the results of the site screening process, the preliminary site characterization data, the technical issues that need to be addressed, and the plans for resolving these issues. Volume 2 contains chapters 6 through 12: geochemistry; surface hydrology; climatology, meteorology, and air quality; environmental, land-use, and socioeconomic characteristics; repository design; waste package; and performance assessment

  18. A system to test the ground surface conditions of construction sites--for safe and efficient work without physical strain.

    Science.gov (United States)

    Koningsveld, Ernst; van der Grinten, Maarten; van der Molen, Henk; Krause, Frank

    2005-07-01

    Ground surface conditions on construction sites have an important influence on the health and safety of workers and their productivity. The development of an expert-based "working conditions evaluation" system is described, intended to assist site managers in recognising unsatisfactory ground conditions and remedying these. The system was evaluated in the period 2002-2003. The evaluation shows that companies recognize poor soil/ground conditions as problematic, but are not aware of the specific physical workload hazards. The developed methods allow assessment of the ground surface quality and selection of appropriate measures for improvement. However, barriers exist at present to wide implementation of the system across the industry. Most significant of these is that responsibility for a site's condition is not clearly located within contracting arrangements, nor is it a topic of serious negotiation.

  19. Soil characterization methods for unsaturated low-level waste sites

    International Nuclear Information System (INIS)

    Wierenga, P.J.; Young, M.H.; Hills, R.G.

    1993-01-01

    To support a license application for the disposal of low-level radioactive waste (LLW), applicants must characterize the unsaturated zone and demonstrate that waste will not migrate from the facility boundary. This document provides a strategy for developing this characterization plan. It describes principles of contaminant flow and transport, site characterization and monitoring strategies, and data management. It also discusses methods and practices that are currently used to monitor properties and conditions in the soil profile, how these properties influence water and waste migration, and why they are important to the license application. The methods part of the document is divided into sections on laboratory and field-based properties, then further subdivided into the description of methods for determining 18 physical, flow, and transport properties. Because of the availability of detailed procedures in many texts and journal articles, the reader is often directed for details to the available literature. References are made to experiments performed at the Las Cruces Trench site, New Mexico, that support LLW site characterization activities. A major contribution from the Las Cruces study is the experience gained in handling data sets for site characterization and the subsequent use of these data sets in modeling studies

  20. Characterization of aquifer heterogeneity in a complex fluvial hydrogeologic system to evaluate migration in ground water

    International Nuclear Information System (INIS)

    Baker, F.G.; Pavlik, H.F.

    1990-01-01

    The hydrogeology and extent of ground water contamination were characterized at a site in northern California. Wood preserving compounds, primarily pentachlorophenol (PCP) and creosote, have been detected in the soil and ground water. A plume of dissolved PCP up to 1.5 miles long has been identified south of the plant. The aquifer consists of a complex multizonal system of permeable gravels and sands composed of units from four geologic formations deposited by the ancestral Feather River. Fluvial channel gravels form the principal aquifer zones and contain overbank clay and silt deposits which locally form clay lenses or more continuous aquitards. The geometric mean horizontal hydraulic conductivities for channel gravels range between 120 to 530 feet/day. Mean vertical aquitard hydraulic conductivity is 0.07 feet/day. Ground water flow is generally southward with a velocity ranging from 470 to 1000 feet/year. The spatial distribution of dissolved PCP in the aquifer documents the interactions between major permeable zones. Hydrostratigraphic evidence pointing to the separation of aquifer zones is supported by the major ion chemistry of ground water. The sodium and calcium-magnesium bicarbonate-rich water present in the upper aquifer zones is significantly different in chemical composition from the predominantly sodium chloride-rich water present in the deeper permeable zone. This indicates that hydrodynamic separation exists between the upper and lower zones of the aquifer, limiting the vertical movement of the PCP plume. A numerical ground water model, based on this conceptual hydrogeologic model, was developed to evaluate groundwater transport pathways and for use in the design of a ground water extraction and treatment system. (9 refs., 7 figs., tab.)

  1. Report of early site suitability evaluation of the potential repository site at Yucca Mountain, Nevada; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Younker, J.L.; Andrews, W.B.; Fasano, G.A.; Herrington, C.C.; Mattson, S.R.; Murray, R.C. [Science Applications International Corp., Las Vegas, NV (United States); Ballou, L.B.; Revelli, M.A. [Lawrence Livermore National Lab., CA (United States); Ducharme, A.R.; Shephard, L.E. [Sandia National Labs., Albuquerque, NM (United States); Dudley, W.W.; Hoxie, D.T. [Geological Survey, Denver, CO (United States); Herbst, R.J.; Patera, E.A. [Los Alamos National Lab., NM (United States); Judd, B.R. [Decision Analysis Co., Portola Valley, CA (United States); Docka, J.A.; Rickertsen, L.D. [Weston Technical Associates, Washington, DC (United States)

    1992-01-01

    This study evaluated the technical suitability of Yucca Mountain, Nevada, as a potential site for a mined geologic repository for the permanent disposal of radioactive waste. The evaluation was conducted primarily to determine early in the site characterization program if there are any features or conditions at the site that indicate it is unsuitable for repository development. A secondary purpose was to determine the status of knowledge in the major technical areas that affect the suitability of the site. This early site suitability evaluation (ESSE) was conducted by a team of technical personnel at the request of the Associate Director of the US Department of Energy (DOE) Office of Geologic Disposal, a unit within the DOE`s Office of Civilian Radioactive Waste Management. The Yucca Mountain site has been the subject of such evaluations for over a decade. In 1983, the site was evaluated as part of a screening process to identify potentially acceptable sites. The site was evaluated in greater detail and found suitable for site characterization as part of the Environmental Assessment (EA) (DOE, 1986) required by the Nuclear Waste Policy Act of 1982 (NWPA). Additional site data were compiled during the preparation of the Site Characterization Plan (SCP) (DOE, 1988a). This early site suitability evaluation has considered information that was used in preparing both-documents, along with recent information obtained since the EA and SCP were published. This body of information is referred to in this report as ``current information`` or ``available evidence.``

  2. Ground-Penetrating Radar Prospecting in the Peinan Archaeological Site, Taiwan

    Directory of Open Access Journals (Sweden)

    Lun-Tao Tong

    2013-01-01

    Full Text Available The Peinan archaeological site is the largest prehistoric village in Taiwan. Only small-scale pits are allowed for research purposes because the Peinan site is protected by the Cultural Heritage Preservation Act. Careful selection of the pit locations is crucial for future archaeological research at this site. In this study, a ground-penetrating radar (GPR survey was applied near the stone pillar to understand the GPR signatures of the subsurface remains. Seven GPR signatures were categorized based on the radar characters shown on the GPR image. A detailed GPR survey with dense parallel survey lines was subsequently conducted in the area of northern extent of the onsite exhibition to map the subsurface ancient buildings. The results were verified by two test pits, which indicate that the distribution of the subsurface building structures can be well recognized from GPR depth slices. It will be very helpful for setting proper pits priorities for future archaeological research, and for making proper design of the new onsite exhibition.

  3. 618-11 Burial Ground USRADS radiological surveys

    International Nuclear Information System (INIS)

    Wendling, M.A.

    1994-01-01

    This report summarizes and documents the results of the radiological surveys conducted from February 4 through February 10, 1993 over the 618-11 Burial Ground, Hanford Site, Richland, Washington. In addition, this report explains the survey methodology using the Ultrasonic Ranging and Data System (USRADS). The 618-11 Burial Ground radiological survey field task consisted of two activities: characterization of the specific background conditions and the radiological survey of the area. The radiological survey of the 618-11 Burial Ground, along with the background study, were conducted by Site Investigative Surveys Environmental Restoration Health Physics Organization of the Westinghouse Hanford Company. The survey methodology was based on utilization of the Ultrasonic Ranging and Data System (USRADS) for automated recording of the gross gamma radiation levels at or near six (6) inches and at three (3) feet from the surface soil

  4. CHEMISTRY OF PLANTS AND RECLAIMED GROUNDS ON SODA WASTE SITE AT JANIKOWO

    Directory of Open Access Journals (Sweden)

    Jan Siuta

    2014-10-01

    Full Text Available The paper presents the state of soda waste dumping site prior to reclamation, including the initial vegetation and properties of local grounds, the chemistry of plants colonizing the alkaline grounds in 2013 as well as the comparison of mineral element contents in leaves of trees spontaneously growing on the soda waste site in the years 2000 and 2013. The paper consists an integral part of a wider work concerning the effectiveness of sewage sludge application for bioremediation of highly saline and alkaline waste at the Janikowo Soda Plant. The spontaneous vegetation on soda waste in 2000 was scarce and patchy, its development conditioned by local microrelief where depressions provided water for plant establishment. The main species entering the site included grasses (Lolium perenne, Calamagrostis epigeios and herbs (Reseda lutea, Tussilago farfara and Picris hieracioides. The physico-chemical properties of waste grounds varied widely both horizontally and spatially. In 2013, the reclaimed dumping site was covered by a well-established meadow-likevegetation and the soil top layer (0–5 cm contained 9.2–13.9% Ca and 15–161 mg Cl/kg, at pH 7.6–7.8. The underlying 10–20 cm layer contained 21.1–63.3% Ca and 204–3110 mg Cl/kg, at pH 7.93–9.04. In the deeper 40-60 cm layer there was found 30.0-37.5% Ca and 9 920-16 320 mg Cl/kg, at pH 11.5–12.1. The vegetation growing in the vicinity of soil profiles contained: 1.65–3.36% N; 0.25–0.43% P; 1.38–2.95% K; 0.33–1.10 % Ca and 0.13–0.54% Mg. The contents of heavy metals in plants approximated the average amounts found in meadow clippings in Poland. The contents of main nutrients in leaves of trees spontaneously growing on the waste site were significantly higher in 2013 (2.70–3.21% N; 0.25–0.34% P and 0.98–1.75% K than in the year 2000 (1.70–2.04% N; 0.11–0.21% P and 0.54–0.80% K. The application of sewage sludge and subsequent fertilization of vegetation on waste

  5. Characterization of Preferential Ground-Water Seepage From a Chlorinated Hydrocarbon-Contaminated Aquifer to West Branch Canal Creek, Aberdeen Proving Ground, Maryland, 2002-04

    Science.gov (United States)

    Majcher, Emily H.; Phelan, Daniel J.; Lorah, Michelle M.; McGinty, Angela L.

    2007-01-01

    Wetlands act as natural transition zones between ground water and surface water, characterized by the complex interdependency of hydrology, chemical and physical properties, and biotic effects. Although field and laboratory demonstrations have shown efficient natural attenuation processes in the non-seep wetland areas and stream bottom sediments of West Branch Canal Creek, chlorinated volatile organic compounds are present in a freshwater tidal creek at Aberdeen Proving Ground, Maryland. Volatile organic compound concentrations in surface water indicate that in some areas of the wetland, preferential flow paths or seeps allow transport of organic compounds from the contaminated sand aquifer to the overlying surface water without undergoing natural attenuation. From 2002 through 2004, the U.S. Geological Survey, in cooperation with the Environmental Conservation and Restoration Division of the U.S. Army Garrison, Aberdeen Proving Ground, characterized preferential ground-water seepage as part of an ongoing investigation of contaminant distribution and natural attenuation processes in wetlands at this site. Seep areas were discrete and spatially consistent during thermal infrared surveys in 2002, 2003, and 2004 throughout West Branch Canal Creek wetlands. In these seep areas, temperature measurements in shallow pore water and sediment more closely resembled those in ground water than those in nearby surface water. Generally, pore water in seep areas contaminated with chlorinated volatile organic compounds had lower methane and greater volatile organic compound concentrations than pore water in non-seep wetland sediments. The volatile organic compounds detected in shallow pore water in seeps were spatially similar to the dominant volatile organic compounds in the underlying Canal Creek aquifer, with both parent and anaerobic daughter compounds detected. Seep locations characterized as focused seeps contained the highest concentrations of chlorinated parent compounds

  6. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act

    International Nuclear Information System (INIS)

    1988-01-01

    The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended by the Secretary of Energy and approved by the President for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared by the US Department of Energy (DOE) in accordance with the requirements of the Nulcear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site;to describe the conceptual designs for the repository and the waste package;and to present the plans for obtaining the geologic information necessary to demonstrate the suitability of the site for a repository, to design the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and developing a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next;it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing principles, and organization of the site characterization plan are oulined, and compliance with applicable regulations is discussed

  7. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-01-01

    The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended by the Secretary of Energy and approved by the President for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared by the US Department of Energy (DOE) in accordance with the requirements of the Nulcear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site;to describe the conceptual designs for the repository and the waste package;and to present the plans for obtaining the geologic information necessary to demonstrate the suitability of the site for a repository, to design the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and developing a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next;it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing principles, and organization of the site characterization plan are oulined, and compliance with applicable regulations is discussed.

  8. Geoscientific Characterization of the Bruce Site, Tiverton, Ontario

    Science.gov (United States)

    Raven, K.; Jackson, R.; Avis, J.; Clark, I.; Jensen, M.

    2009-05-01

    Ontario Power Generation is proposing a Deep Geologic Repository (DGR) for the long-term management of its Low and Intermediate Level Radioactive Waste (L&ILW) within a Paleozoic-age sedimentary sequence beneath the Bruce site near Tiverton, Ontario, Canada. The concept envisions that the DGR would be excavated at a depth of approximately 680 m within the Ordovician Cobourg Formation, a massive, dense, low- permeability, argillaceous limestone. Characterization of the Bruce site for waste disposal is being conducted in accordance with a four year multi-phase Geoscientific Site Characterization Plan (GSCP). The GSCP, initially developed in 2006 and later revised in 2008 to account for acquired site knowledge based on successful completion of Phase I investigations, describes the tools and methods selected for geological, hydrogeological and geomechanical site characterization. The GSCP was developed, in part, on an assessment of geoscience data needs and collection methods, review of the results of detailed geoscientific studies completed in the same bedrock formations found off the Bruce site, and recent international experience in geoscientific characterization of similar sedimentary rocks for long-term radioactive waste management purposes. Field and laboratory work related to Phase 1 and Phase 2A are nearing completion and have focused on the drilling, testing and monitoring of four continuously cored vertical boreholes through Devonian, Silurian, Ordovician and Cambrian bedrock to depths of about 860 mBGS. Work in 2009 will focus on drilling and testing of inclined boreholes to assess presence of vertical structure. The available geological, hydrogeological and hydrogeochemical data indicate the presence of remarkably uniform and predictable geology, physical hydrogeologic and geochemical properties over well separation distances exceeding 1 km. The current data set including 2-D seismic reflection surveys, field and lab hydraulic testing, lab petrophysical and

  9. Comparison of equivalent linear and non linear methods on ground response analysis: case study at West Bangka site

    International Nuclear Information System (INIS)

    Eko Rudi Iswanto; Eric Yee

    2016-01-01

    Within the framework of identifying NPP sites, site surveys are performed in West Bangka (WB), Bangka-Belitung Island Province. Ground response analysis of a potential site has been carried out using peak strain profiles and peak ground acceleration. The objective of this research is to compare Equivalent Linear (EQL) and Non Linear (NL) methods of ground response analysis on the selected NPP site (West Bangka) using Deep Soil software. Equivalent linear method is widely used because requires soil data in simple way and short time of computational process. On the other hand, non linear method is capable of representing the actual soil behaviour by considering non linear soil parameter. The results showed that EQL method has similar trends to NL method. At surface layer, the acceleration values for EQL and NL methods are resulted as 0.425 g and 0.375 g respectively. NL method is more reliable in capturing higher frequencies of spectral acceleration compared to EQL method. (author)

  10. Guide to ground water remediation at CERCLA response action and RCRA corrective action sites

    International Nuclear Information System (INIS)

    1995-10-01

    This Guide contains the regulatory and policy requirements governing remediation of ground water contaminated with hazardous waste [including radioactive mixed waste (RMW)], hazardous substances, or pollutants/contaminants that present (or may present) an imminent and substantial danger. It was prepared by the Office of Environmental Policy and Assistance, RCRA/CERCLA Division (EH-413), to assist Environmental Program Managers (ERPMs) who often encounter contaminated ground water during the performance of either response actions under CERCLA or corrective actions under Subtitle C of RCRA. The Guide begins with coverage of the regulatory and technical issues that are encountered by ERPM's after a CERCLA Preliminary Assessment/Site Investigation (PA/SI) or the RCRA Facility Assessment (RFA) have been completed and releases into the environment have been confirmed. It is based on the assumption that ground water contamination is present at the site, operable unit, solid waste management unit, or facility. The Guide's scope concludes with completion of the final RAs/corrective measures and a determination by the appropriate regulatory agencies that no further response action is necessary

  11. Earth modeling and estimation of the local seismic ground motion due to site geology in complex volcanoclastic areas

    Directory of Open Access Journals (Sweden)

    V. Di Fiore

    2002-06-01

    Full Text Available Volcanic areas often show complex behaviour as far as seismic waves propagation and seismic motion at surface are concerned. In fact, the finite lateral extent of surface layers such as lava flows, blocks, differential welding and/or zeolitization within pyroclastic deposits, introduces in the propagation of seismic waves effects such as the generation of surface waves at the edge, resonance in lateral direction, diffractions and scattering of energy, which tend to modify the amplitude as well as the duration of the ground motion. The irregular topographic surface, typical of volcanic areas, also strongly influences the seismic site response. Despite this heterogeneity, it is unfortunately a common geophysical and engineering practice to evaluate even in volcanic environments the subsurface velocity field with monodimensional investigation method (i.e. geognostic soundings, refraction survey, down-hole, etc. prior to the seismic site response computation which in a such cases is obviously also made with 1D algorithms. This approach often leads to highly inaccurate results. In this paper we use a different approach, i.e. a fully 2D P-wave Çturning rayÈ tomographic survey followed by 2D seismic site response modeling. We report here the results of this approach in three sites located at short distance from Mt. Vesuvius and Campi Flegrei and characterized by overburdens constituted by volcanoclastic deposits with large lateral and vertical variations of their elastic properties. Comparison between 1D and 2D Dynamic Amplification Factor shows in all reported cases entirely different results, both in terms of peak period and spectral contents, as expected from the clear bidimensionality of the geological section. Therefore, these studies suggest evaluating carefully the subsoil geological structures in areas characterized by possible large lateral and vertical variations of the elastic properties in order to reach correct seismic site response

  12. Analysis of the portfolio of sites to characterize for selecting a nuclear repository

    International Nuclear Information System (INIS)

    Keeney, R.L.

    1987-01-01

    The US Department of Energy has selected three sites, from five nominated, to characterize for a nuclear repository to permanently dispose of nuclear waste. This decision was made without the benefit of an analysis of this portfolio problem. This paper analyzes different portfolios of three sites for simultaneous characterization and strategies for sequential characterization. Characterization of each site, which involves significant subsurface excavation, is now estimated to cost $1 billion. Mainly because of the high characterization costs, sequential characterization strategies are identified which are the equivalent of $1.7-2.0 billion less expensive than the selected DOE simultaneous characterization of the three sites. If three sites are simultaneously characterized, one portfolio is estimated to be the equivalent of $100-400 million better than the selected DOE portfolio. Because of these potential savings and several other complicating factors that may influence the relative desirability of characterization strategies, a thorough analysis of characterization strategies that addresses the likelihood of finding disqualifying conditions during site characterization, uncertainties, and dependencies in forecast site repository costs, preclosure and postclosure health and safety impacts, potential delays of both sequential and simultaneous characterization strategies, and the environmental, socioeconomic, and health and safety impacts of characterization activities is recommended

  13. Savannah River Site disaggregated seismic spectra

    International Nuclear Information System (INIS)

    Stephenson, D.E.

    1993-02-01

    The objective of this technical note is to characterize seismic ground motion at the Savannah River Site (SRS) by postulated earthquakes that may impact facilities at the site. This task is accomplished by reviewing the deterministic and probabilistic assessments of the seismic hazard to establish the earthquakes that control the hazard to establish the earthquakes that control the hazard at the site and then evaluate the associated seismic ground motions in terms of response spectra. For engineering design criteria of earthquake-resistant structures, response spectra serve the function of characterizing ground motions as a function of period or frequency. These motions then provide the input parameters that are used in the analysis of structural response. Because they use the maximum response, the response spectra are an inherently conservative design tool. Response spectra are described in terms of amplitude, duration, and frequency content, and these are related to source parameters, travel path, and site conditions. Studies by a number of investigators have shown by statistical analysis that for different magnitudes the response spectrum values are different for differing periods. These facts support Jennings' position that using different shapes of design spectra for earthquakes of different magnitudes and travel paths is a better practice than employing a single, general-purpose shape. All seismic ground motion characterization results indicate that the PGA is controlled by a local event with M w < 6 and R < 30km. The results also show that lower frequencies are controlled by a larger, more distant event, typically the Charleston source. The PGA of 0.2 g, based originally on the Blume study, is consistent with LLNL report UCRL-15910 (1990) and with the DOE position on LLNL/EPRI

  14. Successful characterization of radioactive waste at the Savannah River Site

    International Nuclear Information System (INIS)

    Hughes, M.B.; Miles, G.M.

    1995-01-01

    Characterization of the low-level radioactive waste generated by forty five independent operating facilities at The Savannah River Site (SRS) experienced a slow start. However, the site effectively accelerated waste characterization based on findings of an independent assessment that recommended several changes to the existing process. The new approach included the development of a generic waste characterization protocol and methodology and the formulation of a technical board to approve waste characterization. As a result, consistent, detailed characterization of waste streams from SRS facilities was achieved in six months

  15. Preoperational baseline and site characterization report for the Environmental Restoration Disposal Facility

    International Nuclear Information System (INIS)

    Weekes, D.C.; Ford, B.H.; Jaeger, G.K.

    1996-09-01

    This document Volume 2 in a two-volume series that comprise the site characterization report for the Environmental Restoration Disposal Facility. Volume 1 contains data interpretation and information supporting the conclusions in the main text. This document presents original data in support of Volume 1 of the report. The following types of data are presented: well construction reports; borehole logs; borehole geophysical data; well development and pump installation; survey reports; and preoperational baseline chemical data and aquifer test data. This does not represent the entire body of data available. Other types of information are archived at BHI Document Control. Five ground water monitoring wells were drilled at the Environmental Restoration Disposal Facility site to directly investigate site- specific hydrogeologic conditions. Well and borehole activity summaries are presented in Volume 1. Field borehole logs and geophysical data from the drilling are presented in this document. Well development and pump installation sheets are presented for the groundwater monitoring wells. Other data presented in this document include borehole geophysical logs from existing wells; chemical data from the sampling of soil, vegetation, and mammals from the ERDF to support the preoperational baseline; ERDF surface radiation surveys;a nd aquifer testing data for well 699-32-72B

  16. Summary of ground motion prediction results for Nevada Test Site underground nuclear explosions related to the Yucca Mountain project

    International Nuclear Information System (INIS)

    Walck, M.C.

    1996-10-01

    This report summarizes available data on ground motions from underground nuclear explosions recorded on and near the Nevada Test Site, with emphasis on the ground motions recorded at stations on Yucca Mountain, the site of a potential high-level radioactive waste repository. Sandia National Laboratories, through the Weapons Test Seismic Investigations project, collected and analyzed ground motion data from NTS explosions over a 14-year period, from 1977 through 1990. By combining these data with available data from earlier, larger explosions, prediction equations for several ground motion parameters have been developed for the Test Site area for underground nuclear explosion sources. Also presented are available analyses of the relationship between surface and downhole motions and spectra and relevant crustal velocity structure information for Yucca Mountain derived from the explosion data. The data and associated analyses demonstrate that ground motions at Yucca Mountain from nuclear tests have been at levels lower than would be expected from moderate to large earthquakes in the region; thus nuclear explosions, while located relatively close, would not control seismic design criteria for the potential repository

  17. Summary of ground motion prediction results for Nevada Test Site underground nuclear explosions related to the Yucca Mountain project

    Energy Technology Data Exchange (ETDEWEB)

    Walck, M.C.

    1996-10-01

    This report summarizes available data on ground motions from underground nuclear explosions recorded on and near the Nevada Test Site, with emphasis on the ground motions recorded at stations on Yucca Mountain, the site of a potential high-level radioactive waste repository. Sandia National Laboratories, through the Weapons Test Seismic Investigations project, collected and analyzed ground motion data from NTS explosions over a 14-year period, from 1977 through 1990. By combining these data with available data from earlier, larger explosions, prediction equations for several ground motion parameters have been developed for the Test Site area for underground nuclear explosion sources. Also presented are available analyses of the relationship between surface and downhole motions and spectra and relevant crustal velocity structure information for Yucca Mountain derived from the explosion data. The data and associated analyses demonstrate that ground motions at Yucca Mountain from nuclear tests have been at levels lower than would be expected from moderate to large earthquakes in the region; thus nuclear explosions, while located relatively close, would not control seismic design criteria for the potential repository.

  18. Site characterization plan overview: Yucca Mountain site, Nevada Research and Development Area, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-12-01

    To help the public better understand both the SCP and the site characterization program, the DOE has prepared this overview and the SCP Public Handbook. The overview presents summaries of selected topics covered in the SCP; it is not a substitute for the SCP. The organization of the overview is similar to that of the SCP itself, with brief descriptions of the Yucca Mountain site, the repository, and the containers in which the waste would be packaged, followed by a discussion of the characterization program to be carried out at the Yucca Mountain site. This overview is intended primarily for those persons who want to understand the general scope and basis of the site-characterization program, the activities to be conducted, and the facilities to be constructed without spending the time necessary to become familiar with all of the technical details presented in the SCP. For the readers of the SCP, the overview will be useful as a general guide to the plan. The SCP Public Handbook is a short document that contains brief descriptions of the SCP process and the contents of the SCP. It also explains how the public can submit comments on the SCP and lists the libraries and reading rooms at which the SCP is available. 9 refs., 18 tabs.

  19. Site characterization plan overview: Yucca Mountain site, Nevada Reserch and Development Area, Nevada

    International Nuclear Information System (INIS)

    1988-12-01

    To help the public better understand both the SCP and the site characterization program, the DOE has prepared this overview and the SCP Public Handbook. The overview presents summaries of selected topics covered in the SCP; it is not a substitute for the SCP. The organization of the overview is similar to that of the SCP itself, with brief descriptions of the Yucca Mountain site, the repository, and the containers in which the waste would be packaged, followed by a discussion of the characterization program to be carried out at the Yucca Mountain site. This overview is intended primarily for those persons who want to understand the general scope and basis of the site-characterization program, the activities to be conducted, and the facilities to be constructed without spending the time necessary to become familiar with all of the technical details presented in the SCP. For the readers of the SCP, the overview will be useful as a general guide to the plan. The SCP Public Handbook is a short document that contains brief descriptions of the SCP process and the contents of the SCP. It also explains how the public can submit comments on the SCP and lists the libraries and reading rooms at which the SCP is available. 9 refs., 18 tabs

  20. Quantification of uncertain outcomes from site characterization: Insights from the ESF-AS

    International Nuclear Information System (INIS)

    Boyle, W.J.; Parrish, D.K.; Beccue, P.C.

    1992-01-01

    As part of the Exploratory Studies Facility Alternatives Study (ESF-AS) the uncertain outcomes from site characterization were quantified using a probabilistic tree known as ''Nature's Tree.'' Nature's Tree distinguished the true characteristics of the Yucca Mountain site from the perceived characteristics deduced from testing. Bayesian probabilistic calculations converted probabilities in Nature's Tree to the probabilistic estimates required for the comparative analysis of Exploratory Studies Facility-repository options. Experts on characterization testing explicitly addressed several site characterization issues that are considered implicitly in many site characterization programs

  1. Generation of Earthquake Ground Motion Considering Local Site Effects and Soil-Structure Interaction Analysis of Ancient Structures

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Kwan; Lee, J. S.; Yang, T. S.; Cho, J. R.; R, H. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-09-01

    In order to establish a correct correlation between them, mechanical characteristics of the ancient structures need to be investigated. Since sedimentary basins are preferred dwelling sites in ancient times, it is necessary to perform SSI analysis to derive correct correlation between the damage and ground motion intensity. Contents of Project are as follows: (1) Generation of stochastic earthquake ground motion considering source mechanism and site effects. (2) Analysis of seismic response of sedimentary basin. (3) Soil-structure interaction analysis of ancient structures (4) Investigation of dynamic response characteristics of ancient structure considering soil-structure interaction effects. A procedure is presented for generation of stochastic earthquake ground motion considering source mechanism and site effects. The simulation method proposed by Boore is used to generate the outcropping rock motion. The free field motion at the soil site is obtained by a convolution analysis. And for the study of wood structures, a nonlinear SDOF model is developed. The effects of soil-structure interaction on the behavior of the wood structures are found to be very minor. But the response can be significantly affected due to the intensity and frequency contents of the input motion. 13 refs., 6 tabs., 31 figs. (author)

  2. Construction management at the SP-100 ground engineering system test site

    International Nuclear Information System (INIS)

    Burchell, G.P.; Wilson, L.R.

    1991-01-01

    Contractors under the U.S. Department of Energy management have implemented a comprehensive approach to the management of design and construction of the complex facility modifications at the SP-100 Ground Engineering System Test Site on the Hanford Reservation. The SP-100 Test Site employs a multi-organizational integrated management approach with clearly defined responsibilities to assure success. This approach allows for thorough planning and analysis before the project kick off, thus minimizing the number and magnitude of problems which arise during the course of the project. When combined with a comprehensive cost and schedule/project management reporting system the problems which do occur are recognized early enough to assure timely intervention and resolution

  3. Ground water elevation monitoring at the Uranium Mill Tailings Remedial Action Salt Lake City, Utah, Vitro processing site

    International Nuclear Information System (INIS)

    1995-04-01

    In February 1994, a ground water level monitoring program was begun at the Vitro processing site. The purpose of the program was to evaluate how irrigating the new golf driving range affected ground water elevations in the unconfined aquifer. The program also evaluated potential impacts of a 9-hole golf course planned as an expansion of the driving range. The planned golf course expansion would increase the area to be irrigated and, thus, the water that could infiltrate the processing site soil to recharge the unconfined aquifer. Increased water levels in the aquifer could alter the ground water flow regime; contaminants in ground water could migrate off the site or could discharge to bodies of surface water in the area. The potential effects of expanding the golf course have been evaluated, and a report is being prepared. Water level data obtained during this monitoring program indicate that minor seasonal mounding may be occurring in response to irrigation of the driving range. However, the effects of irrigation appear small in comparison to the effects of precipitation. There are no monitor wells in the area that irrigation would affect most; that data limitation makes interpretations of water levels and the possibility of ground water mounding uncertain. Limitations of available data are discussed in the conclusion

  4. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Sites near Rifle, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    The ground water project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. This report is a site specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. Currently, no one is using the ground water and therefore, no one is at risk. However, the land will probably be developed in the future and so the possibility of people using the ground water does exist. This report examines the future possibility of health hazards resulting from the ingestion of contaminated drinking water, skin contact, fish ingestion, or contact with surface waters and sediments.

  5. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Sites near Rifle, Colorado

    International Nuclear Information System (INIS)

    1995-05-01

    The ground water project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. This report is a site specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. Currently, no one is using the ground water and therefore, no one is at risk. However, the land will probably be developed in the future and so the possibility of people using the ground water does exist. This report examines the future possibility of health hazards resulting from the ingestion of contaminated drinking water, skin contact, fish ingestion, or contact with surface waters and sediments

  6. Large scale seismic test research at Hualien site in Taiwan. Results of site investigation and characterization of the foundation ground

    International Nuclear Information System (INIS)

    Okamoto, Toshiro; Kokusho, Takeharu; Nishi, Koichi

    1998-01-01

    An international joint research program called ''HLSST'' is under way. Large-Scale Seismic Test (LSST) is to be conducted to investigate Soil-Structure Interaction (SSI) during large earthquakes in the field in Hualien, a high seismic region in Taiwan. A 1/4-scale model building was constructed on the excavated gravelly ground, and the backfill material of crushed stones was placed around the model plant. The model building and the foundation ground were extensively instrumented to monitor structure and ground response. To accurately evaluate SSI during earthquakes, geotechnical investigation and forced vibration test were performed during construction process namely before/after the base excavation, after the structure construction and after the backfilling. Main results are as follows. (1) The distribution of the mechanical properties of the gravelly soil are measured by various techniques including penetration tests and PS-logging and it found that the shear wave velocities (Vs) change clearly and it depends on changing overburden pressures during the construction process. (2) Measuring Vs in the surrounding soils, it found that the Vs is smaller than that at almost same depth in the farther location. Discussion is made further on the numerical soil model for SSI analysis. (author)

  7. Advances in characterizing ubiquitylation sites by mass spectrometry

    DEFF Research Database (Denmark)

    Sylvestersen, K.B.; Young, C.; Nielsen, M.L.

    2013-01-01

    of ubiquitylation is a two-fold challenge that involves the mapping of ubiquitylation sites and the determination of ubiquitin chain topology. This review focuses on the technical advances in the mass spectrometry-based characterization of ubiquitylation sites, which have recently involved the large...

  8. Field demonstration of improved shallow land burial practices for low-level radioactive solid wastes: preliminary site characterization and progress report

    International Nuclear Information System (INIS)

    Vaughan, N.D.; Haase, C.S.; Huff, D.D.; Lee, S.Y.; Walls, E.C.

    1982-12-01

    A 5-year field demonstration (ETF) of improved shallow land burial practices for low-level radioactive solid wastes in a humid environment evaluates the use of a trench liner and grout as alternate trench treatments for improving shallow land burial site performance in the humid East. The ETF is located within the Copper Creek thrust block of the Valley and Ridge Province of east Tennessee and is underlain by strata of the Middle to Late Cambrian Conasauga Group. The Maryville Limestone formation, which is composed of ribbon-bedded and interclastic limestones and dark grey shales and mudstones, comprises the bedrock immediately beneath the site. The bedrock and residuum structure are characterized by anticlinal folds with numerous joints and fractures, some of which are filled with calcite. Seismic and electrical resistivity geophysical methods were useful in characterizing the thickness of residuum and presence of structural features. Soils are illitic and range from podzolic to lithosols to alluvial in the vicinity of the ETF, but the original soil solum was removed in 1975 when the mixed hardwood forest was cleared and the site was planted in grasses. The remaining residuum consists of acidic soil aggregate and extensively weathered siltstone and sandstone which exhibit the original rock structure. Mean annual precipitation at the site is 1500 mm, although during the initial study period (10-1-80 to 9-30-81) the annual total was 939 mm. Runoff was estimated to be about 50% of the precipitation total, based on observations at two Parshall flumes installed at the site. Storm runoff is quite responsive to rainfall, and the lag time between peak rainfall and runoff is less than 15 min during winter storms. Tracer studies of the ground-water system, suggest that ground-water flow has two distinct components, one associated with fracture flow and the other with intergranular flow

  9. Earthquake Strong Ground Motion Scenario at the 2008 Olympic Games Sites, Beijing, China

    Science.gov (United States)

    Liu, L.; Rohrbach, E. A.; Chen, Q.; Chen, Y.

    2006-12-01

    Historic earthquake record indicates mediate to strong earthquakes have been frequently hit greater Beijing metropolitan area where is going to host the 2008 summer Olympic Games. For the readiness preparation of emergency response to the earthquake shaking for a mega event in a mega city like Beijing in summer 2008, this paper tries to construct the strong ground motion scenario at a number of gymnasium sites for the 2008 Olympic Games. During the last 500 years (the Ming and Qing Dynasties) in which the historic earthquake record are thorough and complete, there are at least 12 earthquake events with the maximum intensity of VI or greater occurred within 100 km radius centered at the Tiananmen Square, the center of Beijing City. Numerical simulation of the seismic wave propagation and surface strong ground motion is carried out by the pseudospectral time domain methods with viscoelastic material properties. To improve the modeling efficiency and accuracy, a multi-scale approach is adapted: the seismic wave propagation originated from an earthquake rupture source is first simulated by a model with larger physical domain with coarser grids. Then the wavefield at a given plane is taken as the source input for the small-scale, fine grid model for the strong ground motion study at the sites. The earthquake source rupture scenario is based on two particular historic earthquake events: One is the Great 1679 Sanhe-Pinggu Earthquake (M~8, Maximum Intensity XI at the epicenter and Intensity VIII in city center)) whose epicenter is about 60 km ENE of the city center. The other one is the 1730 Haidian Earthquake (M~6, Maximum Intensity IX at the epicenter and Intensity VIII in city center) with the epicentral distance less than 20 km away from the city center in the NW Haidian District. The exist of the thick Tertiary-Quaternary sediments (maximum thickness ~ 2 km) in Beijing area plays a critical role on estimating the surface ground motion at the Olympic Games sites, which

  10. The practical use of computer graphics techniques for site characterization

    International Nuclear Information System (INIS)

    Tencer, B.; Newell, J.C.

    1982-01-01

    In this paper the authors describe the approach utilized by Roy F. Weston, Inc. (WESTON) to analyze and characterize data relative to a specific site and the computerized graphical techniques developed to display site characterization data. These techniques reduce massive amounts of tabular data to a limited number of graphics easily understood by both the public and policy level decision makers. First, they describe the general design of the system; then the application of this system to a low level rad site followed by a description of an application to an uncontrolled hazardous waste site

  11. Nuclear waste: Status of DOE's nuclear waste site characterization activities

    International Nuclear Information System (INIS)

    1987-01-01

    Three potential nuclear waste repository sites have been selected to carry out characterization activities-the detailed geological testing to determine the suitability of each site as a repository. The sites are Hanford in south-central Washington State, Yucca Mountain in southern Nevada, and Deaf Smith in the Texas Panhandle. Two key issues affecting the total program are the estimations of the site characterization completion data and costs and DOE's relationship with the Nuclear Regulatory Commission which has been limited and its relations with affected states and Indian tribes which continue to be difficult

  12. Prediction of Pseudo relative velocity response spectra at Yucca Mountain for underground nuclear explosions conducted in the Pahute Mesa testing area at the Nevada testing site; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, J.S.

    1991-12-01

    The Yucca Mountain Site Characterization Project (YMP), managed by the Office of Geologic Disposal of the Office of Civilian Radioactive Waste Management of the US Department of Energy, is examining the feasibility of siting a repository for commercial, high-level nuclear wastes at Yucca Mountain on and adjacent to the Nevada Test Site (NTS). This work, intended to extend our understanding of the ground motion at Yucca Mountain resulting from testing of nuclear weapons on the NTS, was funded by the Yucca Mountain project and the Military Applications Weapons Test Program. This report summarizes one aspect of the weapons test seismic investigations conducted in FY88. Pseudo relative velocity response spectra (PSRV) have been calculated for a large body of surface ground motions generated by underground nuclear explosions. These spectra have been analyzed and fit using multiple linear regression techniques to develop a credible prediction technique for surface PSRVs. In addition, a technique for estimating downhole PSRVs at specific stations is included. A data summary, data analysis, prediction development, prediction evaluation, software summary and FORTRAN listing of the prediction technique are included in this report.

  13. Site study plan for Upper Aquifer Hydrology Clusters, Deaf Smith County Site, Texas: Surface-based geotechnical field program: Preliminary draft

    International Nuclear Information System (INIS)

    1988-01-01

    As part of site characterization studies, at the Deaf Smith County site, Texas, 15 wells at 5 locations will be completed in the Ogallala Formation and Dockum Group. The purposes of the wells, which are called Upper Aquifer (2) establish background hydrologic and water quality conditions, (3) provide analysis, (4) monitor responses of the shallow hydrologic system to site activities and nearby pumpage for irrigation, (5) collect water samples from both saturated and unsaturated materials to help define recharge rates and ground-water flow patterns, (6) monitor variations on water quality, and (7) define ground-water resources near the site. The test wells will be installed during a 14-month period starting about 1-1/2 years after site characterization activities begin. The Technical Field Services Contractor is responsible for conducting the field program of drilling and testing. Samples and data will be handled and reported in accordance with established Salt Repository Project procedures. A quality assurance program will assure that activities affecting quality are performed correctly and that the appropriate documentation is maintained. 44 refs., 19 figs., 5 tabs

  14. Paradox Basin site characterization report: preparation papers, Gibson Dome location

    International Nuclear Information System (INIS)

    1982-11-01

    This document contains Part C, Identification of Pertinent Issues, of the site characterization report. The site characterization report, preparation papers, includes a description of detailed field studies and efforts to collect data to resolve key geologic and environmental issues in the Gibson Dome location within the Paradox Basin Region of Utah

  15. Salt repository project site study plan for water resources: Revision 1

    International Nuclear Information System (INIS)

    1987-12-01

    The Site Study Plan for Water Resources describes a field program consisting of surface-water and ground-water characterization. The surface-water studies will determine the drainage basin characteristics (i.e., topography, soils, land use), hydrometeorology, runoff to streams and playas, and surface-water quality (i.e., offsite pollution sources in playa lakes and in streams). The environmental ground-water studies will focus on ground-water quality characterization. The site study plan describes for each study the need for the study, study design, data management and use, schedule of proposed activities, and quality assurance. These studies will provide data needed to satisfy requirements contained in, or derived from, the Salt Repository Projects Requirements Document. 78 refs., 8 figs., 5 tabs

  16. Designing chemical soil characterization programs for mixed waste sites

    International Nuclear Information System (INIS)

    Meyers, K.A. Jr.

    1989-01-01

    The Weldon Spring Site Remedial Action Project is a remedial action effort funded by the U.S. Department of Energy. The Weldon Spring Site, a former uranium processing facility, is located in east-central Missouri on a portion of a former ordnance works facility which produced trinitrotoluene during World War II. As a result of both uranium and ordnance production, the soils have become both radiologically and chemically contaminated. As a part of site characterization efforts in support of the environmental documentation process, a chemical soil characterization program was developed. This program consisted of biased and unbiased sampling program which maximized areal coverage, provided a statistically sound data base and maintained cost effectiveness. This paper discusses how the general rationale and processes used at the Weldon Spring Site can be applied to other mixed and hazardous waste sites

  17. Characterization of radioactively contaminated sites for remediation purposes

    International Nuclear Information System (INIS)

    1998-05-01

    Characterization of the contaminated site is essential before embarking on a programme for its remediation and ultimate restoration. Reliable and suitable data must be obtained regarding the distribution and physical, chemical and nuclear properties of all radioactive contaminants. Characterization data is necessary for assessing the associated radiation risks and is used in support of the required engineering design and project planning for the environmental restoration. In addition, continuing characterization can provide information regarding efficiency of the cleanup methods and influence possible redirection of work efforts. Similarly, at the end of the remediation phase, characterization and ongoing monitoring can be used to demonstrate completion and success of the cleanup process. The suggested methodology represents a contribution attempting to solve the issue of preremediation characterization in a general manner. However, a number of difficulties might make this methodology unsuitable for general application across the diverse social, environmental and political systems in the IAEA Member States. This TECDOC covers the methodologies used to characterize radioactively contaminated sites for the purpose of remediating the potential sources of radiation exposure and assessing the hazards to human health and the environment

  18. CERCLA site assessment workbook

    International Nuclear Information System (INIS)

    1994-08-01

    This contains comments for each chapter of exercises (in Vol. 1) which illustrate how to conduct site assessments for CERCLA regulation. A through analysis of the exercises is provided so that work and solutions from Vol 1 can be critiqued and comments are also included on the strategy of site assessment whereas the exercises illustrate the principles involved. Covered exercises include the following: A preliminary assessment of a ground water site; waste characteristics and characterization of sources; documentation of observed releases and actual contamination of targets; the strategy of an SI at a surface water site; the soil exposure pathway; the air pathway

  19. Yucca Mountain Site Characterization Project Technical Data Catalog

    International Nuclear Information System (INIS)

    1992-01-01

    The June 1, 1985, Department of Energy (DOE)/Nuclear, Regulatory Commission (NRC) Site-Specific Procedural Agreement for Geologic Repository Site Investigation and Characterization Program requires the DOE to develop and maintain a catalog of data which will be updated and provided to the NRC at least quarterly. This catalog is to include a description of the data; the time (date), place, and method of acquisition; and where it may be examined. The Yucca Mountain Site Characterization Project (YMP) Technical Data Catalog is published and distributed in accordance with the requirements of the Site-Specific Agreement. The YMP Technical Data Catalog is a report based on reference information contained in the YMP Automated Technical Data Tracking System (ATDT). The reference information is provided by Participants for data acquired or developed in support of the YMP. The Technical Data Catalog is updated quarterly and published in the month following the end of each quarter. Each new publication of the Technical Data Catalog supersedes the previous edition

  20. Yucca Mountain Site Characterization Project technical data catalog

    International Nuclear Information System (INIS)

    1992-01-01

    The June 1, 1985, Department of Energy (DOE)/Nuclear Regulatory Commission (NRC) Site-Specific Procedural Agreement for Geologic Repository Site Investigation and Characterization Program requires the DOE to develop and maintain a catalog of data which will be updated and provided to the NRC at least quarterly. This catalog is to include a description of the data; the time (date), place, and method of acquisition; and where it may be examined. The Yucca Mountain Site Characterization Project (YMP) Technical Data Catalog is published and distributed in accordance with the requirements of the Site-Specific Agreement. The YMP Technical Data Catalog is a report based on reference information contained in the YMP Automated Technical Data Tracking System (ATDT). The reference information is provided by Participants for data acquired or developed in support of the YMP. The Technical Data Catalog is updated quarterly and published in the month following the end of each quarter. Each new publication of the Technical Data Catalog supersedes the previous edition

  1. 618-10 Burial Ground Trench Remediation and 618-10 and 618-11 Burial Ground Nonintrusive Characterization of Vertical Pipe Units Lessons Learned

    Energy Technology Data Exchange (ETDEWEB)

    Darby, J. W.

    2012-06-28

    A “lessons learned” is a noteworthy practice or innovative approach that is captured and shared to promote repeat application, or an adverse work practice/experience that is captured and shared to avoid reoccurrence. This document provides the lessons learned identified by the 618-10 Burial Ground trench remediation and the 618-10 and 618-11 Burial Ground nonintrusive characterization of the vertical pipe units (VPUs).

  2. Characterization recommendations for waste sites at the Savannah River Plant

    International Nuclear Information System (INIS)

    Carlton, W.H.; Gordon, D.E.; Johnson, W.F.; Kaback, D.S.; Looney, B.B.; Nichols, R.L.; Shedrow, C.B.

    1987-11-01

    One hundred and sixty six disposal facilities that received or may have received waste materials resulting from operations at the Savannah River Plant (SRP) have been identified. These waste range from innocuous solid and liquid materials (e.g., wood piles) to process effluents that contain hazardous and/or radioactive constituents. The waste sites have been grouped into 45 categories according the the type of waste materials they received. Waste sites are located with SRP coordinates, a local Department of Energy (DOE) grid system whose grid north is 36 degrees 22 minutes west of true north. DOE policy is to close all waste sites at SRP in a manner consistent with protecting human health and environment and complying with applicable environmental regulations (DOE 1984). A uniform, explicit characterization program for SRP waste sites will provide a sound technical basis for developing closure plans. Several elements are summarized in the following individual sections including (1) a review of the history, geohydrology, and available characterization data for each waste site and (2) recommendations for additional characterization necessary to prepare a reasonable closure plan. Many waste sites have been fully characterized, while others have not been investigated at all. The approach used in this report is to evaluate available groundwater quality and site history data. For example, groundwater data are compared to review criteria to help determine what additional information is required. The review criteria are based on regulatory and DOE guidelines for acceptable concentrations of constituents in groundwater and soil

  3. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 6

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-01-01

    The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in accordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site;to describe the conceptual designs for the repository and the waste package;and to present the plans for obtaining the geologic information necessary to demonstrate the suitability of the site for repository, to design the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and developing a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next;it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing principles, and organization of this site characterization plan are outlined, and compliance with applicable regulations is discussed.

  4. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 7

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-01-01

    The Yucca Mountain site in Neavada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended and approved for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in accordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site;to describe the conceptual designs for the repository and the waste package;and to present the plans for obtaining hte geologic information necessary to demonstrate the suitability of the site for a repository, to design the repository and the waste package, to prepare and environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and developing a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next;it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing principles, and organization of this site characterization plan are outlined, and compliance with applicable regulations is discussed.

  5. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 7

    International Nuclear Information System (INIS)

    1988-01-01

    The Yucca Mountain site in Neavada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended and approved for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in accordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site;to describe the conceptual designs for the repository and the waste package;and to present the plans for obtaining hte geologic information necessary to demonstrate the suitability of the site for a repository, to design the repository and the waste package, to prepare and environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and developing a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next;it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing principles, and organization of this site characterization plan are outlined, and compliance with applicable regulations is discussed

  6. Site characterization investigations at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Ketelle, R.H.

    1985-01-01

    The geologic and geohydrologic characterization and assessment techniques currently used at ORNL are integrated into a systematic approach. The investigations are multi-faceted, and involve investigators with a variety of expertise. Characterization studies are designed to obtain the data requirements of pathways analysis and facility design in addition to the detailed site description. The approach effectively minimizes the redundancy and lack of coordination which often arise when the study is broken down into totally independent tasks. The geologic environment of the Oak Ridge Reservation is one of structural and stratigraphic complexity which requires a comprehensive and systematic approach to characterize. Recent characterization studies have included state-of-the-science techniques in the areas of unsaturated zone testing, geochemical tests to determine attenuation properties of soils, and numerical analyses of site performance. The results of these studies and analyses are changing the technology of shallow land burial by indicating that chemically stable waste forms are required to limit radionuclide migration to acceptable levels. 11 refs., 1 tab

  7. Engineering characterization of ground motion. Task II: Soil structure interaction effects on structural response

    Energy Technology Data Exchange (ETDEWEB)

    Luco, J E; Wong, H L [Structural and Earthquake Engineering Consultants, Inc., Sierra Madre, CA (United States); Chang, C -Y; Power, M S; Idriss, I M [Woodward-Clyde Consultants, Walnut Creek, CA (United States)

    1986-08-01

    This report presents the results of part of a two-task study on the engineering characterization of earthquake ground motion for nuclear power plant design. The overall objective of this research program sponsored by the U.S. Nuclear Regulatory Commission (USNRC) is to develop recommendations for methods for selecting design response spectra or acceleration time histories to be used to characterize motion at the foundation level of nuclear power plants. Task I of the study, which is presented in Vol. 1 of NUREG/CR-3805, developed a basis for selecting design response spectra taking into account the characteristics of free-field ground motion found to be significant in causing structural damage. Task II incorporates additional considerations of effects of spatial variations of ground motions and soil-structure interaction on foundation motions and structural response. The results of Task II are presented in Vols. 2 through of NUREG/CR-3805 as follows: Vol. 2 effects of ground motion characteristics on structural response considering localized structural nonlinearities and soil-structure interaction effects; Vol. 3 observational data on spatial variations of earthquake ground motions; Vol. 4 soil-structure interaction effects on structural response; and Vol. 5, summary based on Tasks I and II studies. This report presents the results of the Vol. 4 studies.

  8. Source, propagation and site effects: impact on mapping strong ground motion in Bucharest area

    International Nuclear Information System (INIS)

    Radulian, R.; Kuznetsov, I.; Panza, G.F.

    2004-01-01

    Achievements in the framework of the NATO SfP project 972266 focused on the impact of Vrancea earthquakes on the security of Bucharest urban area are presented. The problem of Bucharest city security to Vrancea earthquakes is discussed in terms of numerical modelling of seismic motion and intermediate term earthquake prediction. A hybrid numerical scheme developed by Faeh et al. (1990; 1993) for frequencies up to 1 Hz is applied for the realistic modelling of the seismic ground motion in Bucharest. The method combines the modal summation for the 1D bedrock model and the finite differences for the 2D local structure model. All the factors controlling the ground motion at the site are considered: source, propagation and site effects, respectively. The input data includes the recent records provided by the digital accelerometer network developed within the Romanian-German CRC461 cooperation programme and CALIXTO'99, VRANCEA'99, VRANCEA2001 experiments. The numerical simulation proves to be a powerful tool in mapping the strong ground motion for realistic structures, reproducing acceptably from engineering point of view the observations. A new model of the Vrancea earthquake scaling is obtained and implications for the determination of the seismic motion parameters are analyzed. The role of the focal mechanism and attenuation properties upon the amplitude and spectral content of the ground motion are outlined. CN algorithm is applied for predicting Vrancea earthquakes. Finally, implications for the disaster management strategy are discussed. (authors)

  9. Characterization Report for the 92-Acre Area of the Area 5 Radioactive Waste Management Site, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Bechtel Nevada; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2006-01-01

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office manages two low-level Radioactive Waste Management Sites at the Nevada Test Site. The Area 5 RWMS uses engineered shallow-land burial cells to dispose of packaged waste. This report summarizes characterization and monitoring work pertinent to the 92-Acre Area in the southeast part of the Area 5 Radioactive Waste Management Sites. The decades of characterization and assessment work at the Area 5 RWMS indicate that the access controls, waste operation practices, site design, final cover design, site setting, and arid natural environment contribute to a containment system that meets regulatory requirements and performance objectives for the short- and long-term protection of the environment and public. The available characterization and Performance Assessment information is adequate to support design of the final cover and development of closure plans. No further characterization is warranted to demonstrate regulatory compliance. U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office is proceeding with the development of closure plans for the six closure units of the 92-Acre Area

  10. Characterization Report for the 92-Acre Area of the Area 5 Radioactive Waste Management Site, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel Nevada; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2006-06-01

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office manages two low-level Radioactive Waste Management Sites at the Nevada Test Site. The Area 5 RWMS uses engineered shallow-land burial cells to dispose of packaged waste. This report summarizes characterization and monitoring work pertinent to the 92-Acre Area in the southeast part of the Area 5 Radioactive Waste Management Sites. The decades of characterization and assessment work at the Area 5 RWMS indicate that the access controls, waste operation practices, site design, final cover design, site setting, and arid natural environment contribute to a containment system that meets regulatory requirements and performance objectives for the short- and long-term protection of the environment and public. The available characterization and Performance Assessment information is adequate to support design of the final cover and development of closure plans. No further characterization is warranted to demonstrate regulatory compliance. U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office is proceeding with the development of closure plans for the six closure units of the 92-Acre Area.

  11. Recent Experience Using Active Love Wave Techniques to Characterize Seismographic Station Sites

    Science.gov (United States)

    Martin, A. J.; Yong, A.; Salomone, L.

    2014-12-01

    Active-source Love waves recorded by the multi-channel analysis of surface wave (MASLW) technique were recently analyzed in two site characterization projects. Between 2010 and 2011, the 2009 American Recovery and Reinvestment Act (ARRA) funded GEOVision to conduct geophysical investigations at 189 seismographic stations—185 in California and 4 in the Central Eastern U.S. (CEUS). The original project plan was to utilize active and passive Rayleigh wave-based techniques to obtain shear-wave velocity (VS) profiles to a minimum depth of 30 m and the time-averaged VS of the upper 30 meters (VS30). Early in the investigation it became evident that Rayleigh wave techniques, such as multi-channel analysis of surface waves (MASRW), were not effective at characterizing all sites. Shear-wave seismic refraction and MASLW techniques were therefore applied. The MASLW technique was deployed at a total of 38 sites, in addition to other methods, and used as the primary technique to characterize 22 sites, 5 of which were also characterized using Rayleigh wave techniques. In 2012, the Electric Power Research Institute funded characterization of 33 CEUS station sites. Based on experience from the ARRA investigation, both MASRW and MASLW data were acquired by GEOVision at 24 CEUS sites—the remaining 9 sites and 2 overlapping sites were characterized by University of Texas, Austin. Of the 24 sites characterized by GEOVision, 16 were characterized using MASLW data, 4 using both MASLW and MASRW data and 4 using MASRW data. Love wave techniques were often found to perform better, or at least yield phase velocity data that could be more readily modeled using the fundamental mode assumption, at shallow rock sites, sites with steep velocity gradients, and, sites with a thin, low velocity, surficial soil layer overlying stiffer sediments. These types of velocity structure often excite dominant higher modes in Rayleigh wave data, but not in Love wave data. At such sites, it may be possible

  12. Environmental site characterization and remediation at Lawrence Livermore National Laboratory Site 300

    International Nuclear Information System (INIS)

    Lamarre, A.L.; Ferry, R.A.

    1992-04-01

    Lawrence Livermore National Laboratory (LLNL) is a research and development laboratory owned by the US Department of Energy (DOE) and operated by the University of California. The Laboratory operates its Site 300 test facility in support of DOE's national defense programs. In support of activities, at the 300 Site numerous industrial fluids are used and various process or rinse waters and solid wastes are produced. Some of these materials are hazardous by current standards. HE rinse waters were previously discharged to inlined lagoons; they now are discharged to a permitted Class II surface impoundment Solid wastes have been deposited in nine landfills. Waste HE compounds are destroyed by open burning at a burn pit facility. As a result of these practices, environmental contaminants have been released to the soil and ground water

  13. Site characterization plan: Yucca Mountain Site, Nevada Research and Development Area, Nevada: Volume 9, Index

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-12-01

    This site characterization plan (SCP) has been developed for the candidate repository site at Yucca Mountain in the State of Nevada. The SCP includes a description of the Yucca Mountain site (Chapters 1-5), a conceptual design for the repository (Chapter 6), a description of the packaging to be used for the waste to be emplaced in the repository (Chapter 7), and a description of the planned site characterization activities (Chapter 8). The schedules and milestones presented in Sections 8.3 and 8.5 of the SCP were developed to be consistent with the June 1988 draft Amendment to the DOE`s Mission Plan for the Civilian Radioactive Waste Management Program. The five month delay in the scheduled start of exploratory shaft construction that was announced recently is not reflected in these schedules.

  14. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 4

    International Nuclear Information System (INIS)

    1988-01-01

    The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended and approved by the President for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in accordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site; to describe the conceptual designs for the repository and the waste package; and to present the plans for obtaining the geologic information necessary to demonstate the suitability of the site for a repository, to desin the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and developing a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next; it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing principles, and organization of this site characterization plan are outlined, and compliance with applicable regulations is discussed

  15. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 4

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-01-01

    The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended and approved by the President for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in accordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site; to describe the conceptual designs for the repository and the waste package; and to present the plans for obtaining the geologic information necessary to demonstate the suitability of the site for a repository, to desin the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and developing a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next; it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing principles, and organization of this site characterization plan are outlined, and compliance with applicable regulations is discussed.

  16. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-01-01

    The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in acordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site;to describe the conceptual designs for the repository and the waste package and to present the plans for obtaining the geologic information necessary to demonstrate the suitability of the site for a repository, to design the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and eveloping a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next;it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing prinicples, and organization of this site characterization plan are outlined, and compliance with applicable regulations is discussed. 880 refs., 130 figs., 25 tabs.

  17. Work plan for preliminary investigation of organic constituents in ground water at the New Rifle site, Rifle, Colorado. Revision 2

    International Nuclear Information System (INIS)

    1996-01-01

    A special study screening for Appendix 9 (40 CFR Part 264) analytes identified the New Rifle site as a target for additional screening for organic constituents. Because of this recommendation and the findings in a recent independent technical review, the US Department of Energy (DOE) has requested that the Technical Assistance Contractor (TAC) perform a preliminary investigation of the potential presence of organic compounds in the ground water at the New Rifle Uranium Mill Tailings Remedial Action (UMTRA) Project site, Rifle, Colorado. From 1958 to 1972, organic chemicals were used in large quantities during ore processing at the New Rifle site, and it is possible that some fraction was released to the environment. Therefore, the primary objective of this investigation is to determine whether organic chemicals used at the milling facility are present in the ground water. The purpose of this document is to describe the work that will be performed and the procedures that will be followed during installation of ground water well points at the New Rifle site. The selection of analytes and the procedures for collecting ground water samples for analysis of organic constituents are also described

  18. Early Site Permit Demonstration Program: Guidelines for determining design basis ground motions

    International Nuclear Information System (INIS)

    1993-01-01

    This report develops and applies a methodology for estimating strong earthquake ground motion. The motivation was to develop a much needed tool for use in developing the seismic requirements for structural designs. An earthquake's ground motion is a function of the earthquake's magnitude, and the physical properties of the earth through which the seismic waves travel from the earthquake fault to the site of interest. The emphasis of this study is on ground motion estimation in Eastern North America (east of the Rocky Mountains), with particular emphasis on the Eastern United States and southeastern Canada. Eastern North America is a stable continental region, having sparse earthquake activity with rare occurrences of large earthquakes. While large earthquakes are of interest for assessing seismic hazard, little data exists from the region to empirically quantify their effects. Therefore, empirically based approaches that are used for other regions, such as Western North America, are not appropriate for Eastern North America. Moreover, recent advances in science and technology have now made it possible to combine theoretical and empirical methods to develop new procedures and models for estimating ground motion. The focus of the report is on the attributes of ground motion in Eastern North America that are of interest for the design of facilities such as nuclear power plants. Specifically considered are magnitudes M from 5 to 8, distances from 0 to 500 km, and frequencies from 1 to 35 Hz

  19. Yucca Mountain Site characterization project bibliography, January--June 1991

    International Nuclear Information System (INIS)

    1992-06-01

    Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy's Science and Technology Database from January 1, 1990, through December 31, 1991

  20. Vadose zone characterization of highly radioactive contaminated soil at the Hanford Site

    International Nuclear Information System (INIS)

    Buckmaster, M.A.

    1993-05-01

    The Hanford Site in south-central Washington State contains over 1500 identified waste sites and numerous groundwater plumes that will be characterized and remediated over the next 30 years. As a result of the Hanford Federal Facility Agreement and Consent Order, the US Department of Energy has initiated a remedial investigation/feasibility study at the 200-BP-1 operable unit. The 200-BP-1 remedial investigation is the first Comprehensive Environmental Response, Compensation, and Liability Act of 1980 investigation on the Hanford Site that involves drilling into highly radioactive and chemically contaminated soils. The initial phase of site characterization was designed to assess the nature and extent of contamination associated with the source waste site within the 200-BP-1 operable unit. Characterization activities consisted of drilling and sampling the waste site, chemical and physical analysis of samples, and development of a conceptual vadose zone model. Predicted modeling concentrations compared favorably to analytical data collected during the initial characterization activities

  1. Ground state properties of a spin chain within Heisenberg model with a single lacking spin site

    International Nuclear Information System (INIS)

    Mebrouki, M.

    2011-01-01

    The ground state and first excited state energies of an antiferromagnetic spin-1/2 chain with and without a single lacking spin site are computed using exact diagonalization method, within the Heisenberg model. In order to keep both parts of a spin chain with a lacking site connected, next nearest neighbors interactions are then introduced. Also, the Density Matrix Renormalization Group (DMRG) method is used, to investigate ground state energies of large system sizes; which permits us to inquire about the effect of large system sizes on energies. Other quantum quantities such as fidelity and correlation functions are also studied and compared in both cases. - Research highlights: → In this paper we compute ground state and first excited state energies of a spin chain with and without a lacking spin site. The next nearest neighbors are introduced with the antiferromagnetic Heisenberg spin-half. → Exact diagonalization is used for small systems, where DMRG method is used to compute energies for large systems. Other quantities like quantum fidelity and correlation are also computed. → Results are presented in figures with comments. → E 0 /N is computed in a function of N for several values of J 2 and for both systems. First excited energies are also investigated.

  2. Site characterization plan: Gulf Coast salt domes

    International Nuclear Information System (INIS)

    1983-12-01

    The National Waste Terminal Storage (NWTS) program of the US Department of Energy (DOE) is responsible for developing technology and providing facilities for safe, environmentally acceptable, permanent disposal of high-level nuclear waste. The Office of Nuclear Waste Isolation has been intensively investigating Gulf Coast Salt Dome Basin salt domes and bedded salt in Texas and Utah since 1978. In the Gulf Coast, the application of screening criteria in the region phase led to selection of eight domes for further study in the location phase. Further screening in the area phase identified four domes for more intensive study in the location phase: Oakwood Dome, Texas; Vacherie Dome, Louisiana; and Richton Dome and Cypress Creek Dome, Mississippi. For each dome, this Site Characterization Plan identifies specific hydrologic, geologic, tectonic, geochemical, and environmental key issues that are related to the DOE/NWTS screening criteria or affect the feasibility of constructing an exploratory shaft. The Site Characterization Plan outlines studies need to: (1) resolve issues sufficiently to allow one or more salt domes to be selected and compared to bedded salt sites in order to determine a prime salt site for an exploratory shaft; (2) conduct issue-related studies to provide a higher level of confidence that the preferred salt dome site is viable for construction of an exploratory shaft; and (3) provide a vehicle for state input to issues. Extensive references, 7 figures, 20 tables

  3. Plans for characterization of salt sites in the United States of America

    International Nuclear Information System (INIS)

    Heim, G.E.; Matthews, S.C.; Kircher, J.F.; Kennedy, R.K.

    1984-02-01

    The characterization plans presented in this paper are considered to be basic in nature and are the minimum program that meets project needs. The proposed basic program can be applied to any of the salt sites under consideration. It has been designed to provide the data required to support the design, performance assessment, and licensing of each of the principal project elements: the repository, the shafts, and the surface facilities. The work has been sequenced to meet the design and licensing schedule. It is anticipated that additional characterization activities will be performed to address site-specific considerations and to provide additional information to address questions which arise during the evaluation of characterization data. The information obtained during the characterization program will be incorporated into: the site characterization plan, the site recommendation report, the environmental impact statement, and the construction authorization application

  4. Strong ground motion in the Kathmandu Valley during the 2015 Gorkha, Nepal, earthquake

    Science.gov (United States)

    Takai, Nobuo; Shigefuji, Michiko; Rajaure, Sudhir; Bijukchhen, Subeg; Ichiyanagi, Masayoshi; Dhital, Megh Raj; Sasatani, Tsutomu

    2016-01-01

    On 25 April 2015, a large earthquake of Mw 7.8 occurred along the Main Himalayan Thrust fault in central Nepal. It was caused by a collision of the Indian Plate beneath the Eurasian Plate. The epicenter was near the Gorkha region, 80 km northwest of Kathmandu, and the rupture propagated toward east from the epicentral region passing through the sediment-filled Kathmandu Valley. This event resulted in over 8000 fatalities, mostly in Kathmandu and the adjacent districts. We succeeded in observing strong ground motions at our four observation sites (one rock site and three sedimentary sites) in the Kathmandu Valley during this devastating earthquake. While the observed peak ground acceleration values were smaller than the predicted ones that were derived from the use of a ground motion prediction equation, the observed peak ground velocity values were slightly larger than the predicted ones. The ground velocities observed at the rock site (KTP) showed a simple velocity pulse, resulting in monotonic-step displacements associated with the permanent tectonic offset. The vertical ground velocities observed at the sedimentary sites had the same pulse motions that were observed at the rock site. In contrast, the horizontal ground velocities as well as accelerations observed at three sedimentary sites showed long duration with conspicuous long-period oscillations, due to the valley response. The horizontal valley response was characterized by large amplification (about 10) and prolonged oscillations. However, the predominant period and envelope shape of their oscillations differed from site to site, indicating a complicated basin structure. Finally, on the basis of the velocity response spectra, we show that the horizontal long-period oscillations on the sedimentary sites had enough destructive power to damage high-rise buildings with natural periods of 3 to 5 s.

  5. Environmental waste site characterization utilizing aerial photographs and satellite imagery: Three sites in New Mexico, USA

    International Nuclear Information System (INIS)

    Van Eeckhout, E.; Pope, P.; Becker, N.; Wells, B.; Lewis, A.; David, N.

    1996-01-01

    The proper handling and characterization of past hazardous waste sites is becoming more and more important as world population extends into areas previously deemed undesirable. Historical photographs, past records, current aerial satellite imagery can play an important role in characterizing these sites. These data provide clear insight into defining problem areas which can be surface samples for further detail. Three such areas are discussed in this paper: (1) nuclear wastes buried in trenches at Los Alamos National Laboratory, (2) surface dumping at one site at Los Alamos National Laboratory, and (3) the historical development of a municipal landfill near Las Cruces, New Mexico

  6. Importance of geologic characterization of potential low-level radioactive waste disposal sites

    Science.gov (United States)

    Weibel, C.P.; Berg, R.C.

    1991-01-01

    Using the example of the Geff Alternative Site in Wayne County, Illinois, for the disposal of low-level radioactive waste, this paper demonstrates, from a policy and public opinion perspective, the importance of accurately determining site stratigraphy. Complete and accurate characterization of geologic materials and determination of site stratigraphy at potential low-level waste disposal sites provides the frame-work for subsequent hydrologic and geochemical investigations. Proper geologic characterization is critical to determine the long-term site stability and the extent of interactions of groundwater between the site and its surroundings. Failure to adequately characterize site stratigraphy can lead to the incorrect evaluation of the geology of a site, which in turn may result in a lack of public confidence. A potential problem of lack of public confidence was alleviated as a result of the resolution and proper definition of the Geff Alternative Site stratigraphy. The integrity of the investigation was not questioned and public perception was not compromised. ?? 1991 Springer-Verlag New York Inc.

  7. Characterization of VOCs Emissions from Industrial Facilities and Natural Gas Production Sites: A Mobile Sensing Approach

    Science.gov (United States)

    Zhou, X.; Gu, J.; Trask, B.; Lyon, D. R.; Albertson, J. D.

    2017-12-01

    With the recent expansion of U.S. oil and gas (O&G) production, many studies have focused on the quantification of fugitive methane emissions. However, only a few studies have explored the emissions of volatile organic compounds (VOCs) from O&G production sites that affect human health in adjacent communities, both directly through exposure to toxic chemical compounds and indirectly via formation of ground-level ozone. In this study, we seek to quantify emissions of VOCs from O&G production sites and petrochemical facilities using a mobile sensing approach, with both high-end analyzers and relatively low-cost sensors. A probabilistic source characterization approach is used to estimate emission rates of VOCs, directly taking into account quantitative measure of sensor accuracy. This work will provide data with proper spatiotemporal resolution and coverage, so as to improve the understanding of VOCs emission from O&G production sites, VOCs-exposure of local communities, and explore the feasibility of low-cost sensors for VOCs monitoring. The project will provide an important foundational step to enable large scale studies.

  8. Classification of matrix-product ground states corresponding to one-dimensional chains of two-state sites of nearest neighbor interactions

    International Nuclear Information System (INIS)

    Fatollahi, Amir H.; Khorrami, Mohammad; Shariati, Ahmad; Aghamohammadi, Amir

    2011-01-01

    A complete classification is given for one-dimensional chains with nearest-neighbor interactions having two states in each site, for which a matrix product ground state exists. The Hamiltonians and their corresponding matrix product ground states are explicitly obtained.

  9. Site Effect Assessment of Earthquake Ground Motion Based on Advanced Data Processing of Microtremor Array Measurements

    Science.gov (United States)

    Liu, L.; He, K.; Mehl, R.; Wang, W.; Chen, Q.

    2008-12-01

    High-resolution near-surface geologic information is essential for earthquake ground motion prediction. The near-surface geology forms the critical constituent to influence seismic wave propagation, which is known as the local site effects. We have collected microtremor data over 1000 sites in Beijing area for extracting the much needed earthquake engineering parameters (primarily sediment thickness, with the shear wave velocity profiling at a few important control points) in this heavily populated urban area. Advanced data processing algorithms are employed in various stages in assessing the local site effect on earthquake ground motion. First, we used the empirical mode decomposition (EMD), also known as the Hilbert-Huang transform (HHT), to enhance the microtremor data analysis by excluding the local transients and continuous monochromic industrial noises. With this enhancement we have significantly increased the number of data points to be useful in delineating sediment thickness in this area. Second, we have used the cross-correlation of microtremor data acquired for the pairs of two adjacent sites to generate a 'pseudo-reflection' record, which can be treated as the Green function of the 1D layered earth model at the site. The sediment thickness information obtained this way is also consistent with the results obtained by the horizontal to vertical spectral ratio method (HVSR). For most sites in this area, we can achieve 'self consistent' results among different processing skechems regarding to the sediment thickness - the fundamental information to be used in assessing the local site effect. Finally, the pseudo-spectral time domain method was used to simulate the seismic wave propagation caused by a scenario earthquake in this area - the 1679 M8 Sanhe-pinggu earthquake. The characteristics of the simulated earthquake ground motion have found a general correlation with the thickness of the sediments in this area. And more importantly, it is also in agreement

  10. A review and assessment of variable density ground water flow effects on plume formation at UMTRA project sites

    International Nuclear Information System (INIS)

    1995-01-01

    A standard assumption when evaluating the migration of plumes in ground water is that the impacted ground water has the same density as the native ground water. Thus density is assumed to be constant, and does not influence plume migration. This assumption is valid only for water with relatively low total dissolved solids (TDS) or a low difference in TDS between water introduced from milling processes and native ground water. Analyses in the literature suggest that relatively minor density differences can significantly affect plume migration. Density differences as small as 0.3 percent are known to cause noticeable effects on the plume migration path. The primary effect of density on plume migration is deeper migration than would be expected in the arid environments typically present at Uranium Mill Tailings Remedial Action (UMTRA) Project sites, where little or no natural recharge is available to drive the plume into the aquifer. It is also possible that at some UMTRA Project sites, a synergistic affect occurred during milling operations, where the mounding created by tailings drainage (which created a downward vertical gradient) and the density contrast between the process water and native ground water acted together, driving constituents deeper into the aquifer than either process would alone. Numerical experiments were performed with the U.S. Geological Survey saturated unsaturated transport (SUTRA) model. This is a finite-element model capable of simulating the effects of variable fluid density on ground water flow and solute transport. The simulated aquifer parameters generally are representative of the Shiprock, New Mexico, UMTRA Project site where some of the highest TDS water from processing has been observed

  11. Measurement techniques for radiological characterization of contaminated sites

    Energy Technology Data Exchange (ETDEWEB)

    Loos, M

    1996-09-18

    Once the decision is taken to characterize a contaminated site, appropriate measurement techniques must be selected. The choice will depend on the available information, on the nature and extent of the contamination, as well as on available resources (staff and budget). Some techniques are described on the basis of examples of characterization projects (e.g. Olen area in Belgium).

  12. Protecting subcontractor personnel during hazardous waste site characterization

    Energy Technology Data Exchange (ETDEWEB)

    Lankford, B.R.

    1987-01-01

    This paper covers Industrial Hygiene involvement in the Site Characterization Program, focusing on the field oversight responsibilities. It discusses the different types and levels of protective equipment, gives an example of the type of situation that can arise from field characterization efforts, and gives a brief summary of health protection program elements. 3 figs., 3 tabs.

  13. Protecting subcontractor personnel during hazardous waste site characterization

    International Nuclear Information System (INIS)

    Lankford, B.R.

    1987-01-01

    This paper covers Industrial Hygiene involvement in the Site Characterization Program, focusing on the field oversight responsibilities. It discusses the different types and levels of protective equipment, gives an example of the type of situation that can arise from field characterization efforts, and gives a brief summary of health protection program elements. 3 figs., 3 tabs

  14. Seismic site-response characterization of high-velocity sites using advanced geophysical techniques: application to the NAGRA-Net

    Czech Academy of Sciences Publication Activity Database

    Poggi, V.; Burjánek, Jan; Michel, C.; Fäh, D.

    2017-01-01

    Roč. 210, č. 2 (2017), s. 645-659 ISSN 0956-540X Institutional support: RVO:67985530 Keywords : joint inversion * earthquake ground motions * seismic noise * site effects Subject RIV: DC - Siesmology, Volcanology, Earth Structure OBOR OECD: Volcanology Impact factor: 2.414, year: 2016

  15. Probabilistic approaches for geotechnical site characterization and slope stability analysis

    CERN Document Server

    Cao, Zijun; Li, Dianqing

    2017-01-01

    This is the first book to revisit geotechnical site characterization from a probabilistic point of view and provide rational tools to probabilistically characterize geotechnical properties and underground stratigraphy using limited information obtained from a specific site. This book not only provides new probabilistic approaches for geotechnical site characterization and slope stability analysis, but also tackles the difficulties in practical implementation of these approaches. In addition, this book also develops efficient Monte Carlo simulation approaches for slope stability analysis and implements these approaches in a commonly available spreadsheet environment. These approaches and the software package are readily available to geotechnical practitioners and alleviate them from reliability computational algorithms. The readers will find useful information for a non-specialist to determine project-specific statistics of geotechnical properties and to perform probabilistic analysis of slope stability.

  16. Ground-water travel time calculations for the potential nuclear repository site at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Younker, J.L.; Wilson, W.E.; Sinnock, S.

    1986-01-01

    In support of the US Department of Energy Nevada Nuclear Waste Storage Investigations Project, ground-water travel times were calculated for flow paths in both the saturated and unsaturated zones at Yucca Mountain, a potential site for a high-level radioactive waste repository in southern Nevada. The calculations were made through a combined effort by Science Applications International Corporation, Sandia National Laboratories, and the US Geological Survey. Travel times in the unsaturated zone were estimated by dividing the flow path length by the ground-water velocity, where velocities were obtained by dividing the vertical flux by the effective porosity of the rock types along assumed vertical flow paths. Saturated zone velocities were obtained by dividing the product of the bulk hydraulic conductivity and hydraulic gradient by the effective porosity. Total travel time over an EPA-established 5-km flow path was then calculated to be the sum of the travel times in the two parts of the flow path. Estimates of ground water fluxes and travel times are critical for evaluating the favorability of the Yucca Mountain site because they provide the basis for estimating the potential for radionuclides to reach the accessible environment within certain time limits

  17. GES [Ground Engineering System] test site preparation

    International Nuclear Information System (INIS)

    Cox, C.M.; Mahaffey, M.K.; Miller, W.C.; Schade, A.R.; Toyoda, K.G.

    1987-10-01

    Activities are under way at Hanford to convert the 309 containment building and its associated service wing to a nuclear test facility for the Ground Engineering System (GES) test. Conceptual design is about 80% complete, encompassing facility modifications, a secondary heat transport system, a large vacuum system, a test article cell and handing system, control and data handling systems, and safety andl auxiliary systems. The design makes extensive use of existing equipment to minimize technical risk and cost. Refurbishment of this equipment is 25% complete. Cleanout of some 1000 m 3 of equipment from the earlier reactor test in the facility is 85% complete. An Environmental Assessment was prepared and revised to incorporate Department of Energy (DOE) comments. It is now in the DOE approval chain, where a Finding of No Significant Impact is expected. During the next year, definite design will be well advanced, long-lead procurements will be initiated, construction planning will be completed, an operator training plan will be prepared, and the site (preliminary) safety analysis report will be drafted

  18. Overview of Boundary Layer Clouds Using Satellite and Ground-Based Measurements

    Science.gov (United States)

    Xi, B.; Dong, X.; Wu, P.; Qiu, S.

    2017-12-01

    A comprehensive summary of boundary layer clouds properties based on our few recently studies will be presented. The analyses include the global cloud fractions and cloud macro/micro- physical properties based on satellite measurements using both CERES-MODIS and CloudSat/Caliposo data products,; the annual/seasonal/diurnal variations of stratocumulus clouds over different climate regions (mid-latitude land, mid-latitude ocean, and Arctic region) using DOE ARM ground-based measurements over Southern great plain (SGP), Azores (GRW), and North slope of Alaska (NSA) sites; the impact of environmental conditions to the formation and dissipation process of marine boundary layer clouds over Azores site; characterizing Arctice mixed-phase cloud structure and favorable environmental conditions for the formation/maintainess of mixed-phase clouds over NSA site. Though the presentation has widely spread topics, we will focus on the representation of the ground-based measurements over different climate regions; evaluation of satellite retrieved cloud properties using these ground-based measurements, and understanding the uncertainties of both satellite and ground-based retrievals and measurements.

  19. Site characterization and monitoring data from Area 5 Pilot Wells, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    1994-02-01

    The Special Projects Section (SPS) of Reynolds Electrical ampersand Engineering Co., Inc. (REECO) is responsible for characterizing the subsurface geology and hydrology of the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS) for the US Department of Energy, Nevada Operations Office (DOE/NV), Environmental Restoration and Waste Management Division, Waste Operations Branch. The three Pilot Wells that comprise the Pilot Well Project are an important part of the Area 5 Site Characterization Program designed to determine the suitability of the Area 5 RWMS for disposal of low-level waste (LLW), mixed waste (MW), and transuranic waste (TRU). The primary purpose of the Pilot Well Project is two-fold: first, to characterize important water quality and hydrologic properties of the uppermost aquifer; and second, to characterize the lithologic, stratigraphic, and hydrologic conditions which influence infiltration, redistribution, and percolation, and chemical transport through the thick vadose zone in the vicinity of the Area 5 RWMS. This report describes Pilot Well drilling and coring, geophysical logging, instrumentation and stemming, laboratory testing, and in situ testing and monitoring activities

  20. Studies on site characterization methodologies for high level radioactive waste disposal

    International Nuclear Information System (INIS)

    Wang Ju; Guo Yonghai; Chen Weiming

    2008-01-01

    This paper presents the final achievement of the project 'Studies of Site-specific Geological Environment for High Level Waste Disposal and Performance Assessment Methodology, Part Ⅰ: Studies on Site Characterization Methodologies for High Level Radioactive Waste Disposal', which is a 'Key Scientific and Technological Pre-Research Project for National Defense' during 2001-2005. The study area is Beishan area, Gansu Province, NW China--the most potential site for China's underground research laboratory and high level radioactive waste repository. The boreholes BS01, BS2, BS03 and BS04 drilled in fractured granite media in Beishan are used to conduct comprehensive studies on site characterization methodologies, including: bore hole drilling method, in situ measurement methods of hydrogeological parameters, underground water sampling technology, hydrogeochemical logging method, geo-stress measurement method, acoustic borehole televiewer measurement method, borehole radar measurement method, fault stability evaluation methods and rock joint evaluation method. The execution of the project has resulted in the establishment of an 'Integrated Methodological System for Site Characterization in Granite Site for High Level Radioactive Waste Repository' and the 8 key methodologies for site characterization: bore hole drilling method with minimum disturbance to rock mass, measurement method for hydrogeological parameters of fracture granite mass, in situ groundwater sampling methods from bore holes in fractured granite mass, fracture measurement methods by borehole televiewer and bore radar system, hydrogeochemical logging, low permeability measurement methods, geophysical methods for rock mass evaluation, modeling methods for rock joints. Those methods are comprehensive, advanced, innovative, practical, reliable and of high accuracy. The comprehensive utilization of those methods in granite mass will help to obtain systematic parameters of

  1. Investigation of ground water aquifer at Karangrowo Site, Undaan District, Kudus Sub Province Central Java

    International Nuclear Information System (INIS)

    Lilik Subiantoro; Priyo Sularto; Slamet Sudarto

    2009-01-01

    Kudus is one of sub province in central Java with have the fresh water availability problem Condition of insufficiency 'Standard Water has been recognized in some part of regional area, those are Karangrowo area, Undaan District The problem of clean water in this area is caused by sea water trapped in sedimentary material during sedimentation process; due the ground water trapped character is briny or brackish. One of the alternatives to overcome water problem is election or delineated of prospect area fur exploiting of ground water. Referring to that problem ''Pusbang Geologi Nuklir BATAN'' means to conduct investigation of ground water in some location problem of clean water. The ground investigation activity is to get information about the geology, geohydrology and sub surface geophysical characterize, which is needed to identification of ground water aquifer. To obtain that target, conducted by topographic measurement in 1:5000 scale maps, measurement of soil radioactivity, geology and hydrogeology mapping, geo electrical 2-D image measurement Base on the result of analyze, evaluation and discussion was identified the existence of potential aquifer that happened at layer of sand sedimentary, in form of lens trapped in impermeable layer of clay sediment The layer of aquifer pattern follows of Old River in North-South and East-West direction. Potency of aquifer with the best condition from bad, there are placed on geophysical measurement GF. A 4-14, AB 4-11 and B4. Physical characterized of aquifer, resistivity 9-19 Ωm with charge ability 13-53 milliseconds. (author)

  2. Seismic Data for Evaluation of Ground Motion Hazards in Las Vegas in Support of Test Site Readiness Ground Motion

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, A

    2008-01-16

    In this report we describe the data sets used to evaluate ground motion hazards in Las Vegas from nuclear tests at the Nevada Test Site. This analysis is presented in Rodgers et al. (2005, 2006) and includes 13 nuclear explosions recorded at the John Blume and Associates network, the Little Skull Mountain earthquake and a temporary deployment of broadband station in Las Vegas. The data are available in SAC format on CD-ROM as an appendix to this report.

  3. Subsurface characterization and geohydrologic site evaluation West Chestnut Ridge site

    International Nuclear Information System (INIS)

    1984-01-01

    The West Chestnut Ridge Site at the Oak Ridge National Laboratory is being considered for use as a repository for low-level radioactive waste. The purposes of this study were to provide a geohydrological characterization of the site for use in pathways analysis, and to provide preliminary geotechnical recommendations that would be used for development of a site utilization plan. Subsurface conditions were investigated at twenty locations and observation wells were installed. Field testing at each location included the Standard Penetration Test and permeability tests in soil and rock. A well pumping test was ocmpleted at one site. Laboratory testing included permeability, deformability, strength and compaction tests, as well as index and physical property tests. The field investigations showed that the subsurface conditions include residual soil overlying a weathered zone of dolomite which grades into relatively unweathered dolomite at depth. The thickness of residual soil is typically 80 ft (24 m) on the ridges, but can be as little as 10 ft (3 m) in the valleys. Trench excavations to depths of 30 ft (9 m) should not present serious slope stability problems above the water table. On-site soils can be used for liners or trench backfill but these soils may require moisture conditioning to achieve required densities. 19 figures, 8 tables

  4. The SKI SITE-94 project approach to analyzing confidence in site-specific data

    International Nuclear Information System (INIS)

    Dverstorp, B.; Andersson, J.

    1995-01-01

    The ongoing SKI SITE-94 project is a fully integrated performance assessment based on a hypothetical repository at 500 m depth in crystalline rock. One main objective of the project is to develop a methodology for incorporating data from a site characterization into the performance assessment. The hypothetical repository is located at SKB's Hard Rock Laboratory at Aspo in south-eastern Sweden. The site evaluation in SITE-94 uses data from the pre-excavation phase that comprised measurements performed on the ground and in boreholes, including cross-hole hydraulic and tracer experiments. Uncertainties related to measurement technique, equipment and methods for interpretation were evaluated through a critical review of geohydraulic measurement methods and a complete re-evaluation of the hydraulic packer tests using the generalised radial flow (GRF) theory. Groundwater chemistry samples were analyzed for representativeness and sampling errors. A wide range of site models within geology, hydrogeology, geochemistry and rock mechanics has been developed and tested with the site characterization data. (authors). 10 refs., 3 figs., 2 tabs

  5. Preliminary site characterization radiological monitoring plan for the Nevada Nuclear Waste Storage Investigations Project, Yucca Mountain Site

    International Nuclear Information System (INIS)

    1987-03-01

    The activities described in this plan occur in the early phases of site characterization. This document presents the Preliminary Site Characterization Radiological Monitoring Plan (PSCRMP) for collecting and evaluating data in support of the NNWSI Project. The PSCRMP defines and identifies control procedures for the monitoring activities. The PSCRMP activity will utilize integrating radon monitoring devices, a continuous radon monitor, and a particulate air sampler. These instruments will be used to establish the baseline radioactivity and/or radioactivity released due to early site characterization activities. The sections that follow provide a general project description, the specifics of the monitoring program, and the practices that will be employed to ensure the validity of the collected data by integrating quality assurance into all activities. Section 2 of this document describes the regulatory base of this document. Section 3 describes the site characterization activities which may lead to release of radioactivity. Section 4 provides a description of the potential sources of radioactivity that site characterization could generate. Section 5 summarizes the sampling and monitoring methodology, which will be used to monitor the potential sources of radioactivity. The network of sampling and monitoring equipment is described in Section 6, and Section 7 summarizes the systems operation activities. The data reporting activities are described in Section 8. Finally, a description of the Quality Assurance (QA) and Quality Control (QC) activities is provided in Section 9. Appendix A contains a summary of the procedures to be used in this program, and Appendix B contains technical specification on equipment and services. 20 refs., 11 figs., 2 tabs

  6. Assessment of ground-water flow and chemical transport in a tidally influenced aquifer using geostatistical filtering and hydrocarbon fingerprinting

    International Nuclear Information System (INIS)

    Marquis, S.A. Jr.; Smith, E.A.

    1994-01-01

    Traditional environmental investigations at tidally influenced hazardous waste sites such as marine fuel storage terminals have generally failed to characterize ground-water flow and chemical transport because they have been based on only a cursory knowledge of plume geometry, chemicals encountered, and hydrogeologic setting and synoptic ground-water level measurement. Single-time observations cannot be used to accurately determine flow direction and gradient in tidally fluctuating aquifers since these measurements delineate hydraulic head at only one point in time during a tidal cycle, not the net effect of the fluctuations. In this study, a more rigorous approach was used to characterize flow and chemical transport in a tidally influenced aquifer at a marine fuel storage terminal using: (1) ground-water-level monitoring over three tidal cycles (72 hours), (2) geostatistical filtering of ground-water-level data using 25-hour and 71-hour filtering methods, and (3) hydrocarbon fingerprinting analysis. The results from the study indicate that naphtha released from one of the on-site naphtha tanks has been the predominant contributor to the hydrocarbon plume both on-site and downgradient off-site and that net ground-water and hydrocarbon movement has been to the southeast away from the tank since 1989

  7. A Remote Characterization System for subsurface mapping of buried waste sites

    International Nuclear Information System (INIS)

    Sandness, G.A.; Bennett, D.W.; Martinson, L.

    1992-06-01

    This paper describes a development project that will provide new technology for characterizing hazardous waste burial sites. The project is a collaborative effort by five of the national laboratories, involving the development and demonstration of a remotely controlled site characterization system. The Remote Characterization System (RCS) includes a unique low-signature survey vehicle, a base station, radio telemetry data links, satellite-based vehicle tracking, stereo vision, and sensors for non-invasive inspection of the surface and subsurface

  8. 1994 Characterization report for the state approved land disposal site

    International Nuclear Information System (INIS)

    Swanson, L.C.

    1994-01-01

    This report summarizes the results of characterization activities at the proposed state-approved land disposal site (SALDS); it updates the original characterization report with studies completed since the first characterization report. The initial characterization report discusses studies from two characterization boreholes, 699-48-77A and 699-48-77B. This revision includes data from implementation of the Groundwater Monitoring Plan and the Aquifer Test Plan. The primary sources of data are two down-gradient groundwater monitoring wells, 699-48-77C and 699-48-77D, and aquifer testing of three zones in well 699-48-77C. The SALDS is located on the Hanford Site, approximately 183 m north of the 200 West Area on the north side of the 200 Areas Plateau. The SALDS is an infiltration basin proposed for disposal of treated effluents from the 200 Areas of Hanford

  9. An object-oriented approach to site characterization decision support

    International Nuclear Information System (INIS)

    Johnson, R.

    1995-01-01

    Effective decision support for site characterization is key to determining the nature and extent of contamination and the associated human and environmental risks. Site characterization data, however, present particular problems to technical analysts and decision-makers. Such data are four dimensional, incorporating temporal and spatial components. Their sheer volume can be daunting -- sites with hundreds of monitoring wells and thousands of samples sent for laboratory analyses are not uncommon. Data are derived from a variety of sources including laboratory analyses, non-intrusive geophysical surveys, historical information, bore logs, in-field estimates of key physical parameters such as aquifer transmissivity, soil moisture content, depth-to-water table, etc. Ultimately, decisions have to be made based on data that are always incomplete, often confusing, inaccurate, or inappropriate, and occasionally wrong. In response to this challenge, two approaches to environmental decision support have arisen, Data Quality Objectives (DQOS) and the Observational Approach (OA). DQOs establish criteria for data collection by clearly defining the decisions that need to be made, the uncertainty that can be tolerated, and the type and amount of data that needs to be collected to satisfy the uncertainty requirements. In practice, DQOs are typically based on statistical measures. The OA accepts the fact that the process of characterizing and remediating contaminated sites is always uncertain. Decision-making with the OA is based on what is known about a site, with contingencies developed for potential future deviations from the original assumptions about contamination nature, extent, and risks posed

  10. RATES OF IRON OXIDATION AND ARSENIC SORPTION DURING GROUND WATER-SURFACE WATER MIXING AT A HAZARDOUS WASTE SITE

    Science.gov (United States)

    The fate of arsenic discharged from contaminated ground water to a pond at a hazardous waste site is controlled, in part, by the rate of ferrous iron oxidation-precipitation and arsenic sorption. Laboratory experiments were conducted using site-derived water to assess the impact...

  11. Revised analysis of in-migrating workers during site characterization

    International Nuclear Information System (INIS)

    1987-10-01

    The Deaf Smith Environmental Assessment's analysis of in-migrating workers and community service impacts was predicated on the assumption that a peak of approximately 480 workers would be needed on location to conduct site characterization activities. This analysis assumed that DOE's prime contractor(s) would have a limited staff in the area; the majority of the workers would be on site for the construction of the exploratory shaft and to conduct geologic and environmental studies. Since the time when the Environmental Assessment was prepared, the prime contractors [Battelle-ISSC and the Technical Field Service Contractor (TFSC)] were requested to move their offices to the site area. Therefore, many more administrative and technical workers would be expected to relocate in the Deaf Smith County regions. A change in the expected number of in-migrants could also change the expected nature of community service impacts. It is the purpose of this analysis to evaluate the site characterization workforce and thresholds for local community services. 22 refs., 24 tabs

  12. Seismic site-response characterization of high-velocity sites using advanced geophysical techniques: application to the NAGRA-Net

    Science.gov (United States)

    Poggi, V.; Burjanek, J.; Michel, C.; Fäh, D.

    2017-08-01

    The Swiss Seismological Service (SED) has recently finalised the installation of ten new seismological broadband stations in northern Switzerland. The project was led in cooperation with the National Cooperative for the Disposal of Radioactive Waste (Nagra) and Swissnuclear to monitor micro seismicity at potential locations of nuclear-waste repositories. To further improve the quality and usability of the seismic recordings, an extensive characterization of the sites surrounding the installation area was performed following a standardised investigation protocol. State-of-the-art geophysical techniques have been used, including advanced active and passive seismic methods. The results of all analyses converged to the definition of a set of best-representative 1-D velocity profiles for each site, which are the input for the computation of engineering soil proxies (traveltime averaged velocity and quarter-wavelength parameters) and numerical amplification models. Computed site response is then validated through comparison with empirical site amplification, which is currently available for any station connected to the Swiss seismic networks. With the goal of a high-sensitivity network, most of the NAGRA stations have been installed on stiff-soil sites of rather high seismic velocity. Seismic characterization of such sites has always been considered challenging, due to lack of relevant velocity contrast and the large wavelengths required to investigate the frequency range of engineering interest. We describe how ambient vibration techniques can successfully be applied in these particular conditions, providing practical recommendations for best practice in seismic site characterization of high-velocity sites.

  13. External quality control in ground-water sampling and analysis at the Hanford Site

    International Nuclear Information System (INIS)

    Hall, S.H.; Juracich, S.P.

    1991-11-01

    At the US Department of Energy's Hanford Site, external Quality Control (QC) for ground-water monitoring is extensive and has included routine submittal of intra- and interlaboratory duplicate samples, blind samples, and several kinds of blank samples. Examination of the resulting QC data for nine of the constituents found in ground water at the Hanford Site shows that the quality of analysis has generally been within the expectations of precision and accuracy that have been established by the US Environmental Protection Agency (EPA). The constituents subjected to review were nitrate, chromium, sodium, fluoride, carbon tetrachloride, tritium, ammonium, trichloroethylene, and cyanide. Of these, the fluoride measurements were notable exceptions and were poor by EPA standards. The review has shown that interlaboratory analysis of duplicate samples yields the most useful QC data for evaluating laboratory performance in determining commonly encountered constituents. For rarely encountered constituents, interlaboratory comparisons may be augmented with blind samples (synthetic samples of known composition). Intralaboratory comparisons, blanks, and spikes should be generally restricted to studies of suspected or known sample contamination and to studies of the adequacy of sampling and analytical procedures

  14. Site characterization progress report: Yucca Mountain, Nevada, April 1, 1992--September 30, 1992, Number 7

    International Nuclear Information System (INIS)

    1992-12-01

    In accordance with section 113(b)(3) of the Nuclear Waste Policy Act of 1982, as amended (NWPA), the Department has prepared the seventh in a series of reports on the progress of site characterization at the Yucca Mountain candidate site. The Civilian Radioactive Waste Management Program made significant progress during the reporting period at the Yucca Mountain Site Characterization Project. Several important advances were made in the surface-based testing program including: initiation of borehole drilling utilizing the new, state-of-the-art LM-300 drill rig which employs dry drilling and coring techniques; neutron access borehole drilling to evaluate infiltration processes; excavations to aid geologic mapping; and trenching in Midway Valley to study Quaternary faulting. A Floodplain Assessment and Statement of Findings was published in the Federal Register which concluded there would be no significant impact nor cumulative impacts on floodplains resulting from Exploratory Studies Facility activities. The National Academy of Sciences' National Research Council released its report entitled ''Ground Water at Yucca Mountain: How High Can It Rise?'' which concluded that none of the evidence cited as proof of groundwater upwelling in and around Yucca Mountain could be reasonably attributed to that process and that significant water table excursions to the repository design level are not shown by the geologic record. The June 29, 1992, earthquake near Yucca Mountain provided scientists with a wealth of information relevant to understanding the neotectonics of the area and the geometry of faults at depth. Early findings suggest that accelerations recorded were well within proposed design limits for the surface waste handling facilities

  15. Site characterization progress report: Yucca Mountain, Nevada, April 1, 1992--September 30, 1992, Number 7

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-12-01

    In accordance with section 113(b)(3) of the Nuclear Waste Policy Act of 1982, as amended (NWPA), the Department has prepared the seventh in a series of reports on the progress of site characterization at the Yucca Mountain candidate site. The Civilian Radioactive Waste Management Program made significant progress during the reporting period at the Yucca Mountain Site Characterization Project. Several important advances were made in the surface-based testing program including: initiation of borehole drilling utilizing the new, state-of-the-art LM-300 drill rig which employs dry drilling and coring techniques; neutron access borehole drilling to evaluate infiltration processes; excavations to aid geologic mapping; and trenching in Midway Valley to study Quaternary faulting. A Floodplain Assessment and Statement of Findings was published in the Federal Register which concluded there would be no significant impact nor cumulative impacts on floodplains resulting from Exploratory Studies Facility activities. The National Academy of Sciences` National Research Council released its report entitled ``Ground Water at Yucca Mountain: How High Can It Rise?`` which concluded that none of the evidence cited as proof of groundwater upwelling in and around Yucca Mountain could be reasonably attributed to that process and that significant water table excursions to the repository design level are not shown by the geologic record. The June 29, 1992, earthquake near Yucca Mountain provided scientists with a wealth of information relevant to understanding the neotectonics of the area and the geometry of faults at depth. Early findings suggest that accelerations recorded were well within proposed design limits for the surface waste handling facilities.

  16. Baseline and premining geochemical characterization of mined sites

    Science.gov (United States)

    Nordstrom, D. Kirk

    2015-01-01

    A rational goal for environmental restoration of new, active, or inactive mine sites would be ‘natural background’ or the environmental conditions that existed before any mining activities or other related anthropogenic activities. In a strictly technical sense, there is no such thing as natural background (or entirely non-anthropogenic) existing today because there is no part of the planet earth that has not had at least some chemical disturbance from anthropogenic activities. Hence, the terms ‘baseline’ and ‘pre-mining’ are preferred to describe these conditions. Baseline conditions are those that existed at the time of the characterization which could be pre-mining, during mining, or post-mining. Protocols for geochemically characterizing pre-mining conditions are not well-documented for sites already mined but there are two approaches that seem most direct and least ambiguous. One is characterization of analog sites along with judicious application of geochemical modeling. The other is reactive-transport modeling (based on careful synoptic sampling with tracer-injection) and subtracting inputs from known mining and mineral processing. Several examples of acidic drainage are described from around the world documenting the range of water compositions produced from pyrite oxidation in the absence of mining. These analog sites provide insight to the processes forming mineralized waters in areas untouched by mining. Natural analog water-chemistry data is compared with the higher metal concentrations, metal fluxes, and weathering rates found in mined areas in the few places where comparisons are possible. The differences are generally 1–3 orders of magnitude higher for acid mine drainage.

  17. Methods for prediction of strong earthquake ground motion. Final technical report, October 1, 1976--September 30, 1977

    International Nuclear Information System (INIS)

    Trifunac, M.D.

    1977-09-01

    The purpose of this report is to summarize the results of the work on characterization of strong earthquake ground motion. The objective of this effort has been to initiate presentation of simple yet detailed methodology for characterization of strong earthquake ground motion for use in licensing and evaluation of operating Nuclear Power Plants. This report will emphasize the simplicity of the methodology by presenting only the end results in a format that may be useful for the development of the site specific criteria in seismic risk analysis, for work on the development of modern standards and regulatory guides, and for re-evaluation of the existing power plant sites

  18. Characterization and remediation of soil prior to construction of an on-site disposal facility at Fernald

    International Nuclear Information System (INIS)

    Hunt, A.; Jones, G.; Nelson, K.

    1998-03-01

    During the production years at the Feed Materials Production Center (FMPC), the soil of the site and the surrounding areas was surficially impacted by airborne contamination. The volume of impacted soil is estimated at 2.2 million cubic yards. During site remediation, this contamination will be excavated, characterized, and disposed of. In 1986 the US Environmental Protection Agency (EPA) and the Department of Energy (DOE) entered into a Federal Facility Compliance Agreement (FFCA) covering environmental impacts associated with the FMPC. A site wide Remedial Investigation/Feasibility Study (RI/FS) was initiated pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act, as amended by the Superfund Amendments and Reauthorization Act (CERCLA). The DOE has completed the RI/FS process and has received approval of the final Records of Decision. The name of the facility was changed to the Fernald Environmental Management Project (FEMP) to emphasize the change in mission to environmental restoration. Remedial actions which address similar scopes of work or types of contaminated media have been grouped into remedial projects for the purpose of managing the remediation of the FEMP. The Soil Characterization and Excavation Project (SCEP) will address the remediation of FEMP soils, certain waste units, at- and below-grade material, and will certify attainment of the final remedial limits (FRLs) for the FEMP. The FEMP will be using an on-site facility for low level radioactive waste disposal. The facility will be an above-ground engineered structure constructed of geological material. The area designated for construction of the base of the on-site disposal facility (OSDF) is referred to as the footprint. Contaminated soil within the footprint must be identified and remediated. Excavation of Phase 1, the first of seven remediation areas, is complete

  19. Subterranean ground motion studies for the Einstein Telescope

    International Nuclear Information System (INIS)

    Beker, M G; Brand, J F J van den; Rabeling, D S

    2015-01-01

    Seismic motion limits the low-frequency sensitivity of ground-based gravitational wave detectors. A conceptual design study into the feasibility of a future-generation gravitational wave observatory, coined the Einstein Telescope, has been completed. As part of this design phase, we performed a ground motion study to determine the seismic noise characteristics at various sites across the globe. This investigation focused on underground sites and encompassed a variety of geologies, including clay, salt, and hard rock, at 15 locations in nine European countries, the USA, and Japan. In addition, we analyzed data from the Virtual European Broadband Seismograph Network to characterize European seismic motion. We show that, in the region of interest for future-generation gravitational wave detectors (1–10 Hz), seismic motion is dominated by activity from anthropogenic sources. A number of sites were found that exhibited a reduction in seismic power of several orders of magnitude with respect to current detector sites, thus making it possible to set requirements for the Einstein Telescope seismic noise environment. (paper)

  20. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 2

    International Nuclear Information System (INIS)

    1988-01-01

    The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in accordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site; to describe the conceptual designs for the repository and the waste package and to present the plans for obtaining the geologic information necessary to demonstrate the suitability of the site for a repository, to design the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. Chapter 3 summarizes present knowledge of the regional and site hydrologic systems. The purpose of the information presented is to (1) describe the hydrology based on available literature and preliminary site-exploration activities that have been or are being performed and (2) provide information to be used to develop the hydrologic aspects of the planned site characterization program. Chapter 4 contains geochemical information about the Yucca Mountain site. The chapter references plan for continued collection of geochemical data as a part of the site characterization program. Chapter 4 describes and evaluates data on the existing climate and site meterology, and outlines the suggested procedures to be used in developing and validating methods to predict future climatic variation. 534 refs., 100 figs., 72 tabs

  1. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-01-01

    The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in accordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site; to describe the conceptual designs for the repository and the waste package and to present the plans for obtaining the geologic information necessary to demonstrate the suitability of the site for a repository, to design the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. Chapter 3 summarizes present knowledge of the regional and site hydrologic systems. The purpose of the information presented is to (1) describe the hydrology based on available literature and preliminary site-exploration activities that have been or are being performed and (2) provide information to be used to develop the hydrologic aspects of the planned site characterization program. Chapter 4 contains geochemical information about the Yucca Mountain site. The chapter references plan for continued collection of geochemical data as a part of the site characterization program. Chapter 4 describes and evaluates data on the existing climate and site meterology, and outlines the suggested procedures to be used in developing and validating methods to predict future climatic variation. 534 refs., 100 figs., 72 tabs.

  2. How to characterize a potential site for CO2 storage with sparse data coverage - a Danish onshore site case

    International Nuclear Information System (INIS)

    Nielsen, Carsten Moller; Frykman, Peter; Dalhoff, Finn

    2015-01-01

    The paper demonstrates how a potential site for CO 2 storage can be evaluated up to a sufficient level of characterization for compiling a storage permit application, even if the site is only sparsely explored. The focus of the paper is on a risk driven characterization procedure. In the initial state of a site characterization process with sparse data coverage, the regional geological and stratigraphic understanding of the area of interest can help strengthen a first model construction for predictive modeling. Static and dynamic modeling in combination with a comprehensive risk assessment can guide the different elements needed to be evaluated for fulfilling a permit application. Several essential parameters must be evaluated; the storage capacity for the site must be acceptable for the project life of the operation, the trap configuration must be efficient to secure long term containment, the injectivity must be sufficient to secure a longstanding stable operation and finally a satisfactory and operational measuring strategy must be designed. The characterization procedure is demonstrated for a deep onshore aquifer in the northern part of Denmark, the Vedsted site. The site is an anticlinal structural closure in an Upper Triassic - Lower Jurassic sandstone formation at 1 800-1 900 m depth. (authors)

  3. Peak Ground Velocities for Seismic Events at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    K. Coppersmith; R. Quittmeyer

    2005-01-01

    This report describes a scientific analysis to bound credible horizontal peak ground velocities (PGV) for the repository waste emplacement level at Yucca Mountain. Results are presented as a probability distribution for horizontal PGV to represent uncertainties in the analysis. The analysis also combines the bound to horizontal PGV with results of ground motion site-response modeling (BSC 2004 [DIRS 170027]) to develop a composite hazard curve for horizontal PGV at the waste emplacement level. This result provides input to an abstraction of seismic consequences (BSC 2004 [DIRS 169183]). The seismic consequence abstraction, in turn, defines the input data and computational algorithms for the seismic scenario class of the total system performance assessment (TSPA). Planning for the analysis is documented in Technical Work Plan TWP-MGR-GS-000001 (BSC 2004 [DIRS 171850]). The bound on horizontal PGV at the repository waste emplacement level developed in this analysis complements ground motions developed on the basis of PSHA results. In the PSHA, ground motion experts characterized the epistemic uncertainty and aleatory variability in their ground motion interpretations. To characterize the aleatory variability they used unbounded lognormal distributions. As a consequence of these characterizations, as seismic hazard calculations are extended to lower and lower annual frequencies of being exceeded, the ground motion level increases without bound, eventually reaching levels that are not credible (Corradini 2003 [DIRS 171191]). To provide credible seismic inputs for TSPA, in accordance with 10 Code of Federal Regulations (CFR) 63.102(j) [DIRS 156605], this complementary analysis is carried out to determine reasonable bounding values of horizontal PGV at the waste emplacement level for annual frequencies of exceedance as low as 10 -8 . For each realization of the TSPA seismic scenario, the results of this analysis provide a constraint on the values sampled from the

  4. Variations in radon-222 in soil and ground water at the Nevada Test Site

    International Nuclear Information System (INIS)

    Wollenberg, H.; Straume, T.; Smith, A.; King, C.Y.

    1977-01-01

    To help evaluate the applicability of variations of radon-222 in ground water and soil gas as a possible earthquake predictor, measurements were conducted in conjunction with underground explosions at the Nevada Test Site (NTS). Radon fluctuations in ground water have been observed during a sequence of aftershocks following the Oroville, California earthquake of 1 August 1975. The NTS measurements were designed to show if these fluctuations were in response to ground shaking; if not, they could be attributed to changes in earth strain prior to the aftershocks. Well waters were periodically sampled and soil-gas 222 Rn monitored prior to and following seven underground explosions of varying strength and distance from sampling and detector locations. Soil-gas 222 Rn contents were measured by the alpha-track method; well water 222 Rn by gamma-ray spectrometry. There was no clearly identifiable correlation between well-water radon fluctuations and individual underground tests. One prominent variation in soil-gas radon corresponded to ground shaking from a pair of underground tests in alluvium; otherwise, there was no apparent correlation between radon emanation and other explosions. Markedly lower soil-gas radon contents following the tests were probably caused by consolidation of alluvium in response to ground shaking

  5. A remote characterization system for subsurface mapping of buried waste sites

    International Nuclear Information System (INIS)

    Sandness, G.A.; Bennett, D.W.

    1992-10-01

    Mapping of buried objects and regions of chemical and radiological contamination is required at US Department of Energy (DOE) buried waste sites. The DOE Office of Technology Development Robotics Integrated Program has initiated a project to develop and demonstrate a remotely controlled subsurface sensing system, called the Remote Characterization System (RCS). This project, a collaborative effort by five of the National Laboratories, involves the development of a unique low-signature survey vehicle, a base station, radio telemetry data links, satellite-based vehicle tracking, stereo vision, and sensors for non-invasive inspection of the surface and subsurface. To minimize interference with on-board sensors, the survey vehicle has been constructed predominatantly of non-metallic materials. The vehicle is self-propelled and will be guided by an operator located at a remote base station. The RCS sensors will be environmentally sealed and internally cooled to preclude contamination during use. Ground-penetrating radar, magnetometers, and conductivity devices are planned for geophysical surveys. Chemical and radiological sensors will be provided to locate hot spots and to provide isotopic concentration data

  6. Air cleaning issues with contaminated sites

    Energy Technology Data Exchange (ETDEWEB)

    Bellamy, R.R. [Nuclear Regulatory Commission, King of Prussia, PA (United States)

    1997-08-01

    The US Nuclear Regulatory Commission has developed a list of contaminated sites that warrant special USNRC attention because they pose unique or complex decommissioning issues. This list of radiologically contaminated sites is termed the Site Decommissioning Management Plan (SDMP), and was first issued in 1990. A site is placed on the SDMP list if it has; (1) Problems with the viability of the responsible organization (e.g., the licensee for the site is unable or unwilling to pay for the decommissioning); (2) Large amounts of soil contamination or unused settling ponds or burial grounds that may make the waste difficult to dispose of; (3) The long-term presence of contaminated, unused buildings; (4) A previously terminated license; or (5) Contaminated or potential contamination of the ground water from on-site wastes. In deciding whether to add a site to the SDMP list, the NRC also considers the projected length of time for decommissioning and the willingness of the responsible organization to complete the decommissioning in a timely manner. Since the list was established, 9 sites have been removed from the list, and the current SDMP list contains 47 sites in 11 states. The USNRC annually publishes NUREG-1444, {open_quotes}Site Decommissioning Management Plan{close_quotes}, which updates the status of each site. This paper will discuss the philosophical goals of the SDMP, then will concentrate on the regulatory requirements associated with air cleaning issues at the SDMP sites during characterization and remediation. Both effluent and worker protection issues will be discussed. For effluents, the source terms at sites will be characterized, and measurement techniques will be presented. Off-site dose impacts will be included. For worker protection issues, air sampling analyses will be presented in order to show how the workers are adequately protected and their doses measured to satisfy regulatory criteria during decontamination operations. 1 tab.

  7. Methods for the performance enhancement and the error characterization of large diameter ground-based diffractive telescopes.

    Science.gov (United States)

    Zhang, Haolin; Liu, Hua; Lizana, Angel; Xu, Wenbin; Caompos, Juan; Lu, Zhenwu

    2017-10-30

    This paper is devoted to the improvement of ground-based telescopes based on diffractive primary lenses, which provide larger aperture and relaxed surface tolerance compared to non-diffractive telescopes. We performed two different studies devised to thoroughly characterize and improve the performance of ground-based diffractive telescopes. On the one hand, we experimentally validated the suitability of the stitching error theory, useful to characterize the error performance of subaperture diffractive telescopes. On the other hand, we proposed a novel ground-based telescope incorporated in a Cassegrain architecture, leading to a telescope with enhanced performance. To test the stitching error theory, a 300 mm diameter, 2000 mm focal length transmissive stitching diffractive telescope, based on a three-belt subaperture primary lens, was designed and implemented. The telescope achieves a 78 cy/mm resolution within 0.15 degree field of view while the working wavelength ranges from 582.8 nm to 682.8 nm without any stitching error. However, the long optical track (35.49 m) introduces air turbulence that reduces the final images contrast in the ground-based test. To enhance this result, a same diameter compacted Cassegrain ground-based diffractive (CGD) telescope with the total track distance of 1.267 m, was implemented within the same wavelength. The ground-based CGD telescope provides higher resolution and better contrast than the transmissive configuration. Star and resolution tests were experimentally performed to compare the CGD and the transmissive configurations, providing the suitability of the proposed ground-based CGD telescope.

  8. Survey of geophysical techniques for site characterization in basalt, salt and tuff

    International Nuclear Information System (INIS)

    Jones, G.M.; Blackey, M.E.; Rice, J.E.; Murphy, V.J.; Levine, E.N.; Fisk, P.S.; Bromery, R.W.

    1987-07-01

    Geophysical techniques may help determine the nature and extent of faulting in the target areas, along with structural information that would be relevant to questions concerning the future integrity of a high-level-waste repository. Chapters focus on particular geophysical applications to four rock types - basalt, bedded salt, domal salt and tuff - characteristic of the sites originally proposed for site characterization. No one geophysical method can adequately characterize the geological structure beneath any site. The seismic reflection method, which is generally considered to be the most incisive of the geophysical techniques, has to date provided only marginal information on structure at the depth of the proposed repository at the Hanford, Washington, site, and no useful results at all at the Yucca Mountain, Nevada, site. This result is partially due to geological complexity beneath these sites, but may also be partially attributed to the use of inappropriate acquisition and processing parameters. To adequately characterize a site using geophysics, modifications will have to be made to standard techniques to emphasize structural details at the depths of interest. 137 refs., 43 figs., 4 tabs

  9. Characterization of biogas bibliography measures on sites; Caracterisation des Biogaz bibliographie mesures sur sites

    Energy Technology Data Exchange (ETDEWEB)

    Poulleau, J.

    2002-10-15

    The aim of this study is to define the pollutants emissions related to the combustion of biogas of different sources: motors, furnaces, flares...The project is presented in three parts: a bibliographic study on the chemical characterization of the biogas, a first series of measures on production sites and a second series of measures on a site of valorization and destruction of biogas. (A.L.B.)

  10. Hanford Site National Environmental Policy Act (NEPA) Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Cushing, C.E. (ed.)

    1992-12-01

    This fifth revision of the Hanford Site National Environmental Policy (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Site-related NEPA documentation. Information is presented on climate and meteorology, geology and hydrology, ecology, history and archaeology, socioeconomics, land use, and noise levels, prepared by Pacific Northwest Laboratory (PNL) staff. Models are described that are to be used in simulating realized or potential impacts from nuclear materials at the Hanford Site. Included are models of radionuclide transport in groundwater and atmospheric pathways, and of radiation dose to populations via all known pathways from known initial conditions. Federal and state regulations, DOE orders and permits, and environmental standards directly applicable for the NEPA documents at the Hanford Site, are provided.

  11. Hanford Site National Environmental Policy Act (NEPA) Characterization

    International Nuclear Information System (INIS)

    Cushing, C.E.

    1992-12-01

    This fifth revision of the Hanford Site National Environmental Policy (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Site-related NEPA documentation. Information is presented on climate and meteorology, geology and hydrology, ecology, history and archaeology, socioeconomics, land use, and noise levels, prepared by Pacific Northwest Laboratory (PNL) staff. Models are described that are to be used in simulating realized or potential impacts from nuclear materials at the Hanford Site. Included are models of radionuclide transport in groundwater and atmospheric pathways, and of radiation dose to populations via all known pathways from known initial conditions. Federal and state regulations, DOE orders and permits, and environmental standards directly applicable for the NEPA documents at the Hanford Site, are provided

  12. Bayesian Markov-Chain-Monte-Carlo inversion of time-lapse crosshole GPR data to characterize the vadose zone at the Arrenaes Site, Denmark

    DEFF Research Database (Denmark)

    Scholer, Marie; Irving, James; Zibar, Majken Caroline Looms

    2012-01-01

    We examined to what extent time-lapse crosshole ground-penetrating radar traveltimes, measured during a forced infiltration experiment at the Arreneas field site in Denmark, could help to quantify vadose zone hydraulic properties and their corresponding uncertainties using a Bayesian Markov...... distributions compared with the corresponding priors, which in turn significantly improves knowledge of soil hydraulic properties. Overall, the results obtained clearly demonstrate the value of the information contained in time-lapse GPR data for characterizing vadose zone dynamics.......-chain-Monte-Carlo inversion approach with different priors. The ground-penetrating radar (GPR) geophysical method has the potential to provide valuable information on the hydraulic properties of the vadose zone because of its strong sensitivity to soil water content. In particular, recent evidence has suggested...

  13. A Guide to On-line Geological Information and Publications for Use in GSHP Site Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Rafferty, K

    2000-03-01

    One of the first steps in the consideration of a GSHP system is a characterization of the site in terms of geology and groundwater availability. Information concerning aquifer (or aquifers) available at the site, their ability to produce water, depth to water, geology, depth to bedrock and the nature of the soil and rock (hydraulic and thermal properties) are key issues. This information guides the designer in the selection of the type of GSHP system to be used and in the design of the system. The ground source industry has not taken full advantage of available geological information resources in the past. This document is an effort to introduce GSHP designers to some of these information sources and the nature of the data that is available. A special emphasis has been placed on Internet based resources operated by government agencies--primarily the USGS and state geological surveys. The following section provides some background information on the maps and other information sources in general. This is followed by summaries of information available for the most active GSHP states.

  14. Ground-water data for the Nevada Test Site 1992, and for selected other areas in South-Central Nevada, 1952--1992

    International Nuclear Information System (INIS)

    1992-01-01

    Ground-water data collected from wells and test holes at and in the vicinity of the Nevada Test Site have been compiled in a recently released report. These data were collected by the US Geological Survey, Department of the Interior, in support of the US Department of Energy, Environmental Restoration and Hydrologic Resources Management Programs. Depth-to-water measurements were made at 53 sites at the Nevada Test Site from October 1, 1991, to September 30, 1992, and at 60 sites in the vicinity of the Nevada Test Site from 1952 to September 30, 1992. For water year 1992, depth to water ranged from 288 to 2,213 feet below land surface at the Nevada Test Site and from 22 to 1,460 feet below land surface at sites in the vicinity of the Nevada Test Site. Total ground-water withdrawal data compiled for 12 wells at the Nevada Test Site during calendar year 1992 was more than 400 million gallons. Tritium concentrations in water samples collected from five test holes at the Nevada Test Site in water year 1992 did not exceed the US Environmental Protection Agency drinking, water limit

  15. Electrical Ground System Design of PEFP

    International Nuclear Information System (INIS)

    Mun, Kyeong Jun; Jeon, Gye Po; Park, Sung Sik; Min, Yi Sub; Nam, Jung Min; Cho, Jang Hyung; Kim, Jun Yeon

    2010-01-01

    Since host site host site was selected Gyeong-ju city in January, 2006. we need design revision of Proton Accelerator research center to reflect on host site characteristics and several conditions. In this paper, electrical grounding and lightning protection design scheme is introduced. In electrical grounding system design of PEFP, we classified electrical facilities into 4 groups; equipment grounding (type A), instrument grounding (Type A), high frequency instrument grounding (Type C) and lightning arrestor grounding (Type D). Lightning protection system is designed in all buildings of proton accelerator research center of PEFP, including switchyard

  16. Electrical Ground System Design of PEFP

    Energy Technology Data Exchange (ETDEWEB)

    Mun, Kyeong Jun; Jeon, Gye Po; Park, Sung Sik; Min, Yi Sub; Nam, Jung Min; Cho, Jang Hyung; Kim, Jun Yeon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    Since host site host site was selected Gyeong-ju city in January, 2006. we need design revision of Proton Accelerator research center to reflect on host site characteristics and several conditions. In this paper, electrical grounding and lightning protection design scheme is introduced. In electrical grounding system design of PEFP, we classified electrical facilities into 4 groups; equipment grounding (type A), instrument grounding (Type A), high frequency instrument grounding (Type C) and lightning arrestor grounding (Type D). Lightning protection system is designed in all buildings of proton accelerator research center of PEFP, including switchyard

  17. Proposed ground water protection strategy for the Uranium Mill Tailings Site at Green River, Utah. Final report

    International Nuclear Information System (INIS)

    1994-11-01

    This document presents the US DOE water resources protection strategy for the Green River, Utah mill tailings disposal site. The modifications in the original plan are based on new information, including ground water quality data collected after remedial action was completed, and on a revised assessment of disposal cell design features, surface conditions, and site hydrogeology. All aspects are discussed in this report

  18. The use of high vacuum soil vapor extraction to improve contaminant recovery from ground water zones of low transmissivity

    International Nuclear Information System (INIS)

    Brown, A.; Farrow, J.R.C.; Burgess, W.

    1996-01-01

    This study examines the potential for enhancing hydrocarbon contaminant mass recovery from ground water using high vacuum soil vapor extraction (SVE). The effectiveness of this form of remediation is compared with the effectiveness of conventional pump-and-treat. This study focuses on the performance of a high vacuum SVE system at two ground water monitoring wells (MW-17 and MW-65b) at a site in Santa Barbara, California, US. The site is a highly characterized site with vadose zone and ground water petroleum hydrocarbon contamination (gasoline). The ground water wells are located beyond a defined area of vadose zone soil contamination. Ground water hydrocarbon contamination [light non-aqueous phase liquid (LNAPL) and dissolved phase] is present at each of the wells. the ground water wells have been part of a low-flow, pump-and-treat, ground water treatment system (GWTS) since August, 1986. The low transmissivity of the aquifer sediments prevent flow rates above approximately 0.02 gpm (0.01 l/min) per well

  19. Environmental restoration at the Lawrence Livermore National Laboratory Livermore Site

    International Nuclear Information System (INIS)

    Ziagos, J.P.; Bainer, R.W.; Dresen, M.D.; Hoffman, J.D.

    1992-04-01

    Ground water beneath Lawrence Livermore National Laboratory (LLNL) near Livermore California, contains 19 compounds in concentrations exceeding regulatory standards. These include volatile organic compounds (VOCs), dissolved fuel hydrocarbons, free product gasoline, cadmium, chromium, lead, and tritium. VOCs are the most widespread hazardous materials in the ground water, covering an area of about 1.4 square miles. The other compounds occur sporadically around the site. The LLNL site was added to the National Priorities (Superfund) List in 1987. This paper describes the technology developed at LLNL to remediate soil and ground water contamination. Included in this paper are methods in which site characterization has been aided by using a drilling technique developed at LLNL to evaluate the vertical distribution of VOCs in multiple water-bearing zones in single borehole. The paper also describes the development and implementation of a comprehensive three-step program to investigate and evaluate potential sources of hazardous materials in soil and ground water

  20. Guidelines for selecting codes for ground-water transport modeling of low-level waste burial sites. Executive summary

    International Nuclear Information System (INIS)

    Simmons, C.S.; Cole, C.R.

    1985-05-01

    This document was written to provide guidance to managers and site operators on how ground-water transport codes should be selected for assessing burial site performance. There is a need for a formal approach to selecting appropriate codes from the multitude of potentially useful ground-water transport codes that are currently available. Code selection is a problem that requires more than merely considering mathematical equation-solving methods. These guidelines are very general and flexible and are also meant for developing systems simulation models to be used to assess the environmental safety of low-level waste burial facilities. Code selection is only a single aspect of the overall objective of developing a systems simulation model for a burial site. The guidance given here is mainly directed toward applications-oriented users, but managers and site operators need to be familiar with this information to direct the development of scientifically credible and defensible transport assessment models. Some specific advice for managers and site operators on how to direct a modeling exercise is based on the following five steps: identify specific questions and study objectives; establish costs and schedules for achieving answers; enlist the aid of professional model applications group; decide on approach with applications group and guide code selection; and facilitate the availability of site-specific data. These five steps for managers/site operators are discussed in detail following an explanation of the nine systems model development steps, which are presented first to clarify what code selection entails

  1. Criteria and evaluation of shallow land burial sites

    International Nuclear Information System (INIS)

    Chandra, U.

    1986-01-01

    The criteria for shallow ground disposal of radioactive wastes as developed by Nuclear Regulatory Commission-US and International Atomic Energy Agency are discussed. Emphasis has been given to: elaboration of various basic components of a national Strategy for radioactive waste disposal; development of technical requirements; environmental standards, consensus among scientific community and public confidence. Aspects of site selection, evaluation/characterization and site suitability are dealt with. Some results of characterization of a site for tempory storage of low level solid radioactive wastes in Instituto de Pesquisas Energeticas e Nucleares-IPEN-CNEN/Sao Paulo are described. The methods used for hydrological characterization include use of artificial tritium for unsaturated zone and radioactive tracers like I-131, Cr 51 Cl 3 , Cr 51 EDTA, Br 82 for the saturated zone. (Author) [pt

  2. Criteria and evaluation of shallow land burial sites

    International Nuclear Information System (INIS)

    Chandra, U.

    1987-01-01

    The criteria for shallow ground disposal of radioactive wastes as developed by Nuclear Regulatory Comission-US and International Atomic Energy Agency are discussed. Emphasis has been given to: elaboration of various basic components of a national strategy for radioactive waste disposal; development of technical requirements; environmental standards, consensus among scientific community and public confidence. Aspects of site selection, evaluation/characterization and site suitability are dealt with. Some results of characterization of a site for temporary storage of low level solid radioactive wastes in Instituto de Pesquisas Energeticas e Nucleares - IPEN - CNEN/Sao Paulo are described. The methods used for hydrological characterization include use of artificial tritium for unsaturated zone and radioactive tracers like I - 131, Cr 51 Cl 3 , Cr 51 EDTA, Br 82 for the saturated zone. (Author) [pt

  3. Post-decontamination and dismantlement (D ampersand D) characterization report for CFA-669 site

    International Nuclear Information System (INIS)

    Smith, D.L.

    1995-01-01

    This report presents results of post-decontamination and dismantling (D ampersand D) characterization surveys performed by EG ampersand G Idaho, Inc. (EG ampersand G Idaho), at Central Facilities Area (CFA)-669, which was the Hot Laundry Facility. The site was characterized to determine and document the radiological and chemical conditions of the site following D ampersand D and to determine if the site satisfies the release criteria. Constructed in 1950, CFA-669 served as the ''hot'' and ''cold'' laundry for Idaho National Engineering Laboratory site contractors until the boiler exploded in 1981. The building was shut down at that time. Before D ampersand D activities began in 1992, the facility was characterized and the results documented. D ampersand D activities were completed in July 1994. The post-D ampersand D radiological characterization consisted of radiation measurements and analyses of soil samples to identify man-made radionuclides and determine the specific activity of each sample. The chemical characterization consisted of toxicity characterization leaching procedure (TCLP) analysis for metals and for volatile and semivolatile organic contamination

  4. Engineering characterization of ground motion. Task I. Effects of characteristics of free-field motion on structural response

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, R.P.; Short, S.A.; Merz, K.L.; Tokarz, F.J.; Idriss, I.M.; Power, M.S.; Sadigh, K.

    1984-05-01

    This report presents the results of the first task of a two-task study on the engineering characterization of earthquake ground motion for nuclear power plant design. The overall objective of this study is to develop recommendations for methods for selecting design response spectra or acceleration time histories to be used to characterize motion at the foundation level of nuclear power plants. Task I of the study develops a basis for selecting design response spectra, taking into account the characteristics of free-field ground motion found to be significant in causing structural damage.

  5. Engineering characterization of ground motion. Task I. Effects of characteristics of free-field motion on structural response

    International Nuclear Information System (INIS)

    Kennedy, R.P.; Short, S.A.; Merz, K.L.; Tokarz, F.J.; Idriss, I.M.; Power, M.S.; Sadigh, K.

    1984-05-01

    This report presents the results of the first task of a two-task study on the engineering characterization of earthquake ground motion for nuclear power plant design. The overall objective of this study is to develop recommendations for methods for selecting design response spectra or acceleration time histories to be used to characterize motion at the foundation level of nuclear power plants. Task I of the study develops a basis for selecting design response spectra, taking into account the characteristics of free-field ground motion found to be significant in causing structural damage

  6. Comprehensive Characterization a Tidal Energy Site (Invited)

    Science.gov (United States)

    Polagye, B. L.; Thomson, J. M.; Bassett, C. S.; Epler, J.; Northwest National Marine Renewable Energy Center

    2010-12-01

    Northern Admiralty Inlet, Puget Sound, Washington is the proposed location of a pilot tidal energy project. Site-specific characterization of the physical and biological environment is required for device engineering and environmental analysis. However, the deep water and strong currents which make the site attractive for tidal energy development also pose unique challenges to collecting comprehensive information. This talk focuses on efforts to optimally site hydrokinetic turbines and estimate their acoustic impact, based on 18 months of field data collected to date. Additional characterization efforts being undertaken by the University of Washington branch of the Northwest National Marine Renewable Energy Center and its partners include marine mammal presence and behavior, water quality, seabed geology, and biofouling potential. Because kinetic power density varies with the cube of horizontal current velocity, an accurate map of spatial current variations is required to optimally site hydrokinetic turbines. Acoustic Doppler profilers deployed on the seabed show operationally meaningful variations in flow characteristics (e.g., power density, directionality, vertical shear) and tidal harmonic constituents over length scales of less than 100m. This is, in part, attributed to the proximity of this site to a headland. Because of these variations, interpolation between stationary measurement locations introduces potentially high uncertainty. The use of shipboard acoustic Doppler profilers is shown to be an effective tool for mapping peak currents and, combined with information from seabed profilers, may be able to resolve power density variations in the project area. Because noise levels from operating turbines are expected to exceed regulatory thresholds for incidental harassment of marine mammals known to be present in the project area, an estimate of the acoustic footprint is required to permit the pilot project. This requires site-specific descriptions of pre

  7. Site characterization and validation. Stage 2 - Preliminary predictions

    International Nuclear Information System (INIS)

    Olsson, O.; Black, J.H.; Gale, J.E.; Holmes, D.C.

    1989-05-01

    The Site Characterization and Validation (SCV) project is designed to assess how well we can characterize a volume of rock prior to using it as a repository. The programme of work focuses on the validation of the techniques used in site characterization. The SCV project contains 5 stages of work arranged in two 'cycles' of data-gathering, prediction, and validation. The first stage of work has included drilling of 6 boreholes (N2, N3, N4, W1, W2 and V3) and measurements of geology, fracture characteristics, stess, single borehole geophysical logging, radar, seismics and hydrogeology. The rock at the SCV site is granite with small lithological variations. Based essentially on radar and seismic results 5 'fracture zones' have been identified, named GA, GB, GC, GH and GI. They all extend acroos the entire SCV site. They aer basically in in two groups (GA, GB, GC and GH, GI). The first group are aligned N40 degree E with a dip of 35 degree to the south. The second group are aligned approximately N10 degree W dipping 60 degree E. From the stochastic analysis of the joint data it was possible to identify three main fracture orientation clusters. The orientation of two of these clusters agree roughly with orientation of the main features. Cluster B has roughly the same orientation as GH and GI, while features GA, GB and GC have an orientation similar to the more loosely defined cluster C. The orientation of the third cluster (A) is northwest with a dip to northeast. It is found that 94% of all measured hydraulic transmissivity is accounted for by 4% of the tested rock, not all of this 'concentrated' transmissivity is with the major features defined by geophysics. When the hydraulic connections across the site are examied they show that there are several welldefined zones which permit rapid transmission of hydraulic signals. These are essentially from the northeast to the southwest. (66 figs., 21 tabs., 33 refs.)

  8. Characterization of the Hanford 300 area burial grounds. Decontamination and decommissioning regulatory issues

    International Nuclear Information System (INIS)

    Morris, F.A.; Smith, R.F.; Phillips, S.J.

    1979-03-01

    The Hanford 300 Area Burial Grounds characterization project has identified four management alternatives for disposition of the burial grounds. These alternatives are: (1) abandonment, (2) entombment, (3) perpetual care, and (4) exhumation and translocation. Major Federal statutes and regulations that could apply to management alternatives are identified along with the constraints that applicable laws could impose. This analysis includes explicit attention to the uncertainty surrounding various legal constraints. Also specified are legislative developments as well as trends in other agencies and the courts, obtained by review of legislative proceedings, statutes and regulations, that could result in legislation or policies posing additional constraints

  9. Transport processes investigation: A necessary first step in site scale characterization plans

    International Nuclear Information System (INIS)

    Roepke, C.; Glass, R.J.; Brainard, J.; Mann, M.; Kriel, K.; Holt, R.; Schwing, J.

    1995-01-01

    We propose an approach, which we call the Transport Processes Investigation or TPI, to identify and verify site-scale transport processes and their controls. The TPI aids in the formulation of an accurate conceptual model of flow and transport, an essential first step in the development of a cost effective site characterization strategy. The TPI is demonstrated in the highly complex vadose zone of glacial tills that underlie the Fernald Environmental Remediation Project (FEMP) in Fernald, Ohio. As a result of the TPI, we identify and verify the pertinent flow processes and their controls, such as extensive macropore and fracture flow through layered clays, which must be included in an accurate conceptual model of site-scale contaminant transport. We are able to conclude that the classical modeling and sampling methods employed in some site characterization programs will be insufficient to characterize contaminant concentrations or distributions at contaminated or hazardous waste facilities sited in such media

  10. Site Release Report for C-Well Pipeline, UE-25 Large Rocks Test Site, and 29 GSF Test Pits

    International Nuclear Information System (INIS)

    K.E. Rasmuson

    2002-01-01

    The U.S. Department of Energy has implemented a program to reclaim lands disturbed by site characterization at Yucca Mountain. Long term goals of the program are to re-establish processes on disturbed sites that will lead to self-sustaining plant communities. The Biological Opinion for Yucca Mountain Site Characterization Studies required that the U.S. Department of Energy develop a Reclamation Standards and Monitoring Plan to evaluate the success of reclamation efforts. According to the Reclamation Standards and Monitoring Plan, reclaimed sites will be monitored periodically, remediated if necessary, and eventually compared to an appropriate reference area to determine whether reclamation goals have been achieved and the site can be released from further monitoring. Plant cover, density, and species richness (success parameters) on reclaimed sites are compared to 60 percent of the values (success criteria) for the same parameters on the reference area. Small sites (less than 0.1 ha) are evaluated for release using qualitative methods while large sites (greater than 0.1 ha) are evaluated using quantitative methods. In the summer of 2000, 31 small sites reclaimed in 1993 and 1994 were evaluated for reclamation success and potential release from further monitoring. Plant density, cover, and species richness were estimated on the C-Well Pipeline, UE-25 Large Rocks test site, and 29 ground surface facility test pits. Evidence of erosion, reproduction and natural recruitment, exotic species abundance, and animal use (key attributes) also were recorded for each site and used in success evaluations. The C-Well Pipeline and ground surface facility test pits were located in a ''Larrea tridentata - Ephedra nevadensis'' vegetation association while the UE-25 Large Rocks test site was located in an area dominated by ''Coleogyne ramosissima and Ephedra nevadensis''. Reference areas in the same vegetation associations with similar slope and aspect were chosen for comparison to

  11. Site Release Reports for C-Well Pipeline, UE-25 Large Rocks Test Site, and 29 GSF Test Pits

    Energy Technology Data Exchange (ETDEWEB)

    K.E. Rasmuson

    2002-04-02

    The U.S. Department of Energy has implemented a program to reclaim lands disturbed by site characterization at Yucca Mountain. Long term goals of the program are to re-establish processes on disturbed sites that will lead to self-sustaining plant communities. The Biological Opinion for Yucca Mountain Site Characterization Studies required that the U.S. Department of Energy develop a Reclamation Standards and Monitoring Plan to evaluate the success of reclamation efforts. According to the Reclamation Standards and Monitoring Plan, reclaimed sites will be monitored periodically, remediated if necessary, and eventually compared to an appropriate reference area to determine whether reclamation goals have been achieved and the site can be released from further monitoring. Plant cover, density, and species richness (success parameters) on reclaimed sites are compared to 60 percent of the values (success criteria) for the same parameters on the reference area. Small sites (less than 0.1 ha) are evaluated for release using qualitative methods while large sites (greater than 0.1 ha) are evaluated using quantitative methods. In the summer of 2000, 31 small sites reclaimed in 1993 and 1994 were evaluated for reclamation success and potential release from further monitoring. Plant density, cover, and species richness were estimated on the C-Well Pipeline, UE-25 Large Rocks test site, and 29 ground surface facility test pits. Evidence of erosion, reproduction and natural recruitment, exotic species abundance, and animal use (key attributes) also were recorded for each site and used in success evaluations. The C-Well Pipeline and ground surface facility test pits were located in a ''Larrea tridentata - Ephedra nevadensis'' vegetation association while the UE-25 Large Rocks test site was located in an area dominated by ''Coleogyne ramosissima and Ephedra nevadensis''. Reference areas in the same vegetation associations with similar slope

  12. Site characterization information needs for a high-level waste geologic repository

    International Nuclear Information System (INIS)

    Gupta, D.C.; Nataraja, M.S.; Justus, P.S.

    1987-01-01

    At each of the three candidate sites recommended for site characterization for High-Level Waste Geologic Repository development, the DOE has proposed to conduct both surface-based testing and in situ exploration and testing at the depths that wastes would be emplaced. The basic information needs and consequently the planned surface-based and in situ testing program will be governed to a large extent by the amount of credit taken for individual components of the geologic repository in meeting the performance objectives and siting criteria. Therefore, identified information to be acquired from site characterization activities should be commensurate with DOE's assigned performance goals for the repository system components on a site-specific basis. Because of the uncertainties that are likely to be associated with initial assignment of performance goals, the information needs should be both reasonably and conservatively identified

  13. Restructured site characterization program at Yucca Mountain

    International Nuclear Information System (INIS)

    Dyer, J.R.; Vawter, R.G.

    1995-01-01

    During 1994 and the early part of 1995, the US Department of Energy's Yucca Mountain Site Characterization Office (YMSCO) and its parent organization, the Office of Civilian Radioactive Waste Management (OCRWM) underwent a significant restructuring. Senior Department officials provided the leadership to reorient the management, technical, programmatic, and public interaction approach to the US High Level Radioactive Waste Disposal Program. The restructuring involved reorganizing the federal staff, conducting meaningful strategic planning, improving the management system, rationalizing contractor responsibilities, focusing upon major products, and increasing stakeholder involvement. The restructured program has prioritized technical and scientific activities toward meeting major regulatory milestones in a timely and cost-effective manner. This approach has raised concern among elements of technical, scientific, and oversight bodies that suitability and licensing decisions could be made without obtaining sufficient technical information for this first-of-its-kind endeavor. Other organizations, such as congressional committees, industrial groups, and rate payers believe characterization goals can be met in a timely manner and within the limitation of available funds. To balance these contrasting views in its decision making process, OCRWM management has made a special effort to communicate its strategy to oversight bodies, the scientific community and other stakeholders and to use external independent peer review as a key means of demonstrating scientific credibility. Site characterization of Yucca Mountain in Nevada is one of the key elements of the restructured program

  14. Characterization of subsurface sediments at a site of gasoline contamination

    International Nuclear Information System (INIS)

    Bishop, D.J.; Krauter, P.W.; Jovanovich, M.C.; Lee, K.; Nelson, S.C.; Noyes, C.

    1992-02-01

    The Dynamic Underground Stripping Project combines monitored steam injection and electrical heating to treat in situ a gasoline plume resulting from leakage of an underground storage tank. A preliminary field demonstration of this system was performed at an uncontaminated site (Clean Site) a few hundred feet away with similar geology to that at the Gasoline Spill (GS) area. This paper describes characterization efforts at both sites and highlights what we rearmed at the Clean Site that helped us plan our operations more effectively at the GS. To validate the success of the Dynamic Underground Stripping Project, we require a detailed understanding of the physical, geological, hydrological, chemical, and biological nature of the demonstration sites and how these parameters change as a result of the Dynamic Stripping processes. The characterization process should also provide data to estimate the masses of contaminants present and their spatial distribution before and after the remedial process to (1) aid in the planning for placement of injection and extraction wells, (2) provide physical data to develop conceptual models, (3) validate subsurface imaging techniques, and (4) confirm regulatory compliance

  15. U.S. Department of Energy's site screening, site selection, and initial characterization for storage of CO2 in deep geological formations

    Science.gov (United States)

    Rodosta, T.D.; Litynski, J.T.; Plasynski, S.I.; Hickman, S.; Frailey, S.; Myer, L.

    2011-01-01

    The U.S. Department of Energy (DOE) is the lead Federal agency for the development and deployment of carbon sequestration technologies. As part of its mission to facilitate technology transfer and develop guidelines from lessons learned, DOE is developing a series of best practice manuals (BPMs) for carbon capture and storage (CCS). The "Site Screening, Site Selection, and Initial Characterization for Storage of CO2 in Deep Geological Formations" BPM is a compilation of best practices and includes flowchart diagrams illustrating the general decision making process for Site Screening, Site Selection, and Initial Characterization. The BPM integrates the knowledge gained from various programmatic efforts, with particular emphasis on the Characterization Phase through pilot-scale CO2 injection testing of the Validation Phase of the Regional Carbon Sequestration Partnership (RCSP) Initiative. Key geologic and surface elements that suitable candidate storage sites should possess are identified, along with example Site Screening, Site Selection, and Initial Characterization protocols for large-scale geologic storage projects located across diverse geologic and regional settings. This manual has been written as a working document, establishing a framework and methodology for proper site selection for CO2 geologic storage. This will be useful for future CO2 emitters, transporters, and storage providers. It will also be of use in informing local, regional, state, and national governmental agencies of best practices in proper sequestration site selection. Furthermore, it will educate the inquisitive general public on options and processes for geologic CO2 storage. In addition to providing best practices, the manual presents a geologic storage resource and capacity classification system. The system provides a "standard" to communicate storage and capacity estimates, uncertainty and project development risk, data guidelines and analyses for adequate site characterization, and

  16. Site-specific strong ground motion prediction using 2.5-D modelling

    Science.gov (United States)

    Narayan, J. P.

    2001-08-01

    An algorithm was developed using the 2.5-D elastodynamic wave equation, based on the displacement-stress relation. One of the most significant advantages of the 2.5-D simulation is that the 3-D radiation pattern can be generated using double-couple point shear-dislocation sources in the 2-D numerical grid. A parsimonious staggered grid scheme was adopted instead of the standard staggered grid scheme, since this is the only scheme suitable for computing the dislocation. This new 2.5-D numerical modelling avoids the extensive computational cost of 3-D modelling. The significance of this exercise is that it makes it possible to simulate the strong ground motion (SGM), taking into account the energy released, 3-D radiation pattern, path effects and local site conditions at any location around the epicentre. The slowness vector (py) was used in the supersonic region for each layer, so that all the components of the inertia coefficient are positive. The double-couple point shear-dislocation source was implemented in the numerical grid using the moment tensor components as the body-force couples. The moment per unit volume was used in both the 3-D and 2.5-D modelling. A good agreement in the 3-D and 2.5-D responses for different grid sizes was obtained when the moment per unit volume was further reduced by a factor equal to the finite-difference grid size in the case of the 2.5-D modelling. The components of the radiation pattern were computed in the xz-plane using 3-D and 2.5-D algorithms for various focal mechanisms, and the results were in good agreement. A comparative study of the amplitude behaviour of the 3-D and 2.5-D wavefronts in a layered medium reveals the spatial and temporal damped nature of the 2.5-D elastodynamic wave equation. 3-D and 2.5-D simulated responses at a site using a different strike direction reveal that strong ground motion (SGM) can be predicted just by rotating the strike of the fault counter-clockwise by the same amount as the azimuth of

  17. Resource Conservation and Recovery Act industrial site environmental restoration site characterization plan. Area 6 Decontamination Pond Facility. Revision 1

    International Nuclear Information System (INIS)

    1996-08-01

    This plan presents the strategy for the characterization of the Area 6 Decontamination Pond Facility at the Nevada Test Site which will be conducted for the US Department of Energy, Nevada Operations Office, Environmental Restoration Division. The objectives of the planned activities are to: obtain sufficient, sample analytical data from which further assessment, remediation, and/or closure strategies may be developed for the site; obtain sufficient, sample analytical data for management of investigation-derived waste. The scope of the characterization may include surface radiation survey(s), surface soil sampling, subsurface soil boring (i.e., drilling), and sampling of soil in and around the pond; in situ sampling of the soil within subsurface soil borings; and sample analysis for both site characterization and waste management purposes

  18. Simultaneous Ka-Band Site Characterization: Goldstone, CA, White Sands, NM, and Guam, USA

    Science.gov (United States)

    Acosta, Roberto; Morse, Jacquelynne; Zemba, Michael; Nessel, James; Morabito, David; Caroglanian, Armen

    2011-01-01

    To statistically characterize atmospheric effects on Ka-band links at NASA operational sites, NASA has constructed site test interferometers (STI s) which directly measure the tropospheric phase stability and rain attenuation. These instruments observe an unmodulated beacon signal broadcast from a geostationary satellite (e.g., Anik F2) and measure the phase difference between the signals received by the two antennas and its signal attenuation. Three STI s have been deployed so far: the first one at the NASA Deep Space Network Tracking Complex in Goldstone, California (May 2007); the second at the NASA White Sands Complex, in Las Cruses, New Mexico (February 2009); and the third at the NASA Tracking and Data Relay Satellite (TDRS) Remote Ground Terminal (GRGT) complex in Guam (May 2010). Two station-years of simultaneous atmospheric phase fluctuation data have been collected at Goldstone and White Sands, while one year of data has been collected in Guam. With identical instruments operating simultaneously, we can directly compare the phase stability and rain attenuation at the three sites. Phase stability is analyzed statistically in terms of the root-mean-square (rms) of the tropospheric induced time delay fluctuations over 10 minute blocks. For two years, the time delay fluctuations at the DSN site in Goldstone, CA, have been better than 2.5 picoseconds (ps) for 90% of the time (with reference to zenith), meanwhile at the White Sands, New Mexico site, the time delay fluctuations have been better than 2.2 ps with reference to zenith) for 90% of time. For Guam, the time delay fluctuations have been better than 12 ps (reference to zenith) at 90% of the time, the higher fluctuations are as expected from a high humidity tropical rain zone. This type of data analysis, as well as many other site quality characteristics (e.g., rain attenuation, infrastructure, etc.) will be used to determine the suitability of all the sites for NASA s future communication services at Ka-band.

  19. Continuous, environmental radon monitoring program at the Yucca Mountain Site Characterization Project

    International Nuclear Information System (INIS)

    Liu, N.; Sorensen, C.D.; Tung, C.H.; Orchard, C.R.

    1995-01-01

    A continuous, environmental radon monitoring program has been established in support of the Department of Energy's (DOE) Yucca Mountain Site Characterization Project (YMP). The monitoring program is to characterize the natural radon emissions at the YMP site, to understand the existing radon concentrations in the environmental background, and to assess and control the potential work exposure. Based upon a study of the monitoring results, this paper presents a preliminary understanding of the magnitudes, characteristics, and exposure levels of radon at the YMP site

  20. A proposed descriptive methodology for environmental geologic (envirogeologic) site characterization

    International Nuclear Information System (INIS)

    Schwarz, D.L.; Snyder, W.S.

    1994-01-01

    We propose a descriptive methodology for use in environmental geologic (envirogeologic) site characterization. The method uses traditional sedimentologic descriptions augmented by environmental data needs, and facies analysis. Most other environmental methodologies for soil and sediment characterization use soil engineering and engineering geology techniques that classify by texture and engineering properties. This technique is inadequate for envirogeologic characterization of sediments. In part, this inadequacy is due to differences in the grain-size between the Unified soil Classification and the Udden-Wentworth scales. Use of the soil grain-size classification could easily cause confusion when attempting to relate descriptions based on this classification to our basic understanding of sedimentary depositional systems. The proposed envirogeologic method uses descriptive parameters to characterize a sediment sample, suggests specific tests on samples for adequate characterization, and provides a guidelines for subsurface facies analysis, based on data retrieved from shallow boreholes, that will allow better predictive models to be developed. This methodology should allow for both a more complete site assessment, and provide sufficient data for selection of the appropriate remediation technology, including bioremediation. 50 refs

  1. Yucca Mountain Site Characterization Project: Technical data catalog,(quarterly supplement)

    International Nuclear Information System (INIS)

    1993-01-01

    The June 1, 1985, Department of Energy (DOE)/Nuclear Regulatory Commission (NRC) Site-Specific Procedural Agreement for Geologic Repository Site Investigation and Characterization Program requires the DOE to develop and maintain a catalog of data which will be updated and provided to the NRC at least quarterly. This catalog is to include a description of the data; the time (date), place, and method of acquisition; and where it may be examined. The Yucca Mountain Site Characterization Project (YMP) Technical Data Catalog is published and distributed in accordance with the requirements of the Site-Specific Agreement. The YMP Technical Data Catalog is a report based on reference information contained in the YMP Automated Technical Data Tracking System (ATDT). The reference information is provided by Participants for data acquired or developed in support of the YMP. The Technical Data Catalog is updated quarterly and published in the month following the end of each quarter. A complete revision to the Catalog is published at the end of each fiscal year

  2. Detecting and characterizing unroofed caves by ground penetrating radar

    Science.gov (United States)

    Čeru, Teja; Šegina, Ela; Knez, Martin; Benac, Čedomir; Gosar, Andrej

    2018-02-01

    The bare karst surface in the southeastern part of Krk Island (Croatia) is characterized by different surface karst features, such as valley-like shallow linear depressions and partially or fully sediment-filled depressions of various shapes and sizes. They were noticed due to locally increased thickness of sediment and enhanced vegetation but had not yet been systematically studied and defined. Considering only the geometry of the investigated surface features and the rare traces of cave environments detected by field surveys, it was unclear which processes (surface karstification and/or speleogenesis) contributed most to their formation. The low-frequency ground penetrating radar (GPR) method using a special 50 MHz RTA antenna was applied to study and describe these karst features. Three study sites were chosen and 5 km of GPR profiles were positioned to include various surface features. The results obtained from the GPR investigation lead to the following conclusions: (1) an increased thickness of sediment was detected in all the investigated depressions indicating their considerable depth; (2) areas between different depressions expressed as attenuated zones in GPR images reveal their interconnection; (3) transitions between surface and underground features are characterized by a collapsed passage visible in the GPR data; and (4) an underground continuation of surface valley-like depressions was detected, proving the speleogenetic origin of such features. Subsurface information obtained using GPR indicates that the valley-like depressions, irregular depressions completely or partially filled with sediment, and some dolines are associated with a nearly 4 km-long unroofed cave and developed as a result of karst denudation. In the regional context, these results suggest long-lasting karstification processes in the area, in contrast to the pre-karstic fluvial phase previously assumed to have occurred here. This research is the first application of the GPR method to

  3. Extraction and textural characterization of above-ground areas from aerial stereo pairs: a quality assessment

    Science.gov (United States)

    Baillard, C.; Dissard, O.; Jamet, O.; Maître, H.

    Above-ground analysis is a key point to the reconstruction of urban scenes, but it is a difficult task because of the diversity of the involved objects. We propose a new method to above-ground extraction from an aerial stereo pair, which does not require any assumption about object shape or nature. A Digital Surface Model is first produced by a stereoscopic matching stage preserving discontinuities, and then processed by a region-based Markovian classification algorithm. The produced above-ground areas are finally characterized as man-made or natural according to the grey level information. The quality of the results is assessed and discussed.

  4. Expeditious Methods for Site Characterization and Risk Assessment at Department of Defense Hazardous Waste Sites in the Republic of Korea

    National Research Council Canada - National Science Library

    Hartman, Dean

    1999-01-01

    ...) with preferred innovative site characterization technologies and risk assessment methods to meet their needs in obtaining hazardous waste site data and then prioritizing those sites for remediation based upon risk...

  5. Nevada Test Site Perspective on Characterization and Loading of Legacy Transuranic Drums Utilizing the Central Characterization Project

    International Nuclear Information System (INIS)

    R.G. Lahoud; J. F. Norton; I. L. Siddoway; L. W. Griswold

    2006-01-01

    The Nevada Test Site (NTS) has successfully completed a multi-year effort to characterize and ship 1860 legacy transuranic (TRU) waste drums for disposal at the Waste Isolation Pilot Plant (WIPP), a permanent TRU disposal site. This has been a cooperative effort among the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO), the U.S. Department of Energy, Carlsbad Field Office (DOE/CBFO), the NTS Management and Operations (M and O) contractor Bechtel Nevada (BN), and various contractors under the Central Characterization Project (CCP) umbrella. The success is due primarily to the diligence, perseverance, and hard work of each of the contractors, the DOE/CBFO, and NNSA/NSO, along with the support of the U.S. Department of Energy, Headquarters (DOE/HQ). This paper presents, from an NTS perspective, the challenges and successes of utilizing the CCP for obtaining a certified characterization program, sharing responsibilities for characterization, data validation, and loading of TRU waste with BN to achieve disposal at WIPP from a Small Quantity Site (SQS) such as the NTS. The challenges in this effort arose from two general sources. First, the arrangement of DOE/CBFO contractors under the CCP performing work and certifying waste at the NTS within a Hazard Category 2 (HazCat 2) non-reactor nuclear facility operated by BN, presented difficult challenges. The nuclear safety authorization basis, safety liability and responsibility, conduct of operations, allocation and scheduling of resources, and other issues were particularly demanding. The program-level and field coordination needed for the closely interrelated characterization tasks was extensive and required considerable effort by all parties. The second source of challenge was the legacy waste itself. None of the waste was generated at the NTS. The waste was generated at Lawrence Livermore National Laboratory (LLNL), Lawrence Berkeley Laboratory (LBL), Lynchburg, Rocky

  6. Bayesian hierarchical model for variations in earthquake peak ground acceleration within small-aperture arrays

    KAUST Repository

    Rahpeyma, Sahar

    2018-04-17

    Knowledge of the characteristics of earthquake ground motion is fundamental for earthquake hazard assessments. Over small distances, relative to the source–site distance, where uniform site conditions are expected, the ground motion variability is also expected to be insignificant. However, despite being located on what has been characterized as a uniform lava‐rock site condition, considerable peak ground acceleration (PGA) variations were observed on stations of a small‐aperture array (covering approximately 1 km2) of accelerographs in Southwest Iceland during the Ölfus earthquake of magnitude 6.3 on May 29, 2008 and its sequence of aftershocks. We propose a novel Bayesian hierarchical model for the PGA variations accounting separately for earthquake event effects, station effects, and event‐station effects. An efficient posterior inference scheme based on Markov chain Monte Carlo (MCMC) simulations is proposed for the new model. The variance of the station effect is certainly different from zero according to the posterior density, indicating that individual station effects are different from one another. The Bayesian hierarchical model thus captures the observed PGA variations and quantifies to what extent the source and recording sites contribute to the overall variation in ground motions over relatively small distances on the lava‐rock site condition.

  7. Bayesian hierarchical model for variations in earthquake peak ground acceleration within small-aperture arrays

    KAUST Repository

    Rahpeyma, Sahar; Halldorsson, Benedikt; Hrafnkelsson, Birgir; Jonsson, Sigurjon

    2018-01-01

    Knowledge of the characteristics of earthquake ground motion is fundamental for earthquake hazard assessments. Over small distances, relative to the source–site distance, where uniform site conditions are expected, the ground motion variability is also expected to be insignificant. However, despite being located on what has been characterized as a uniform lava‐rock site condition, considerable peak ground acceleration (PGA) variations were observed on stations of a small‐aperture array (covering approximately 1 km2) of accelerographs in Southwest Iceland during the Ölfus earthquake of magnitude 6.3 on May 29, 2008 and its sequence of aftershocks. We propose a novel Bayesian hierarchical model for the PGA variations accounting separately for earthquake event effects, station effects, and event‐station effects. An efficient posterior inference scheme based on Markov chain Monte Carlo (MCMC) simulations is proposed for the new model. The variance of the station effect is certainly different from zero according to the posterior density, indicating that individual station effects are different from one another. The Bayesian hierarchical model thus captures the observed PGA variations and quantifies to what extent the source and recording sites contribute to the overall variation in ground motions over relatively small distances on the lava‐rock site condition.

  8. Field Biogeochemical Measurements in Support of Remote Sensing Signatures and Characterization of Permafrost Terrain: Integrated Technologies for Delineating Permafrost and Ground-State Conditions

    Science.gov (United States)

    2015-03-01

    Characterization of Permafrost Terrain Integrated Technologies for Delineating Permafrost and Ground-State Conditions En gi ne er R es ea rc h an d...Signatures and Characterization of Permafrost Terrain Integrated Technologies for Delineating Permafrost and Ground-State Conditions Robyn A. Barbato...Center-Directed Research Project, “Integrated Technologies for Delineating Permafrost and Ground-State Conditions” ERDC TR-15-1 ii Abstract This

  9. Site characterization

    Energy Technology Data Exchange (ETDEWEB)

    Brown, W.S.; Green, S.J.; Hustrulid, W.A. (comps.)

    1976-01-01

    The papers presented at the Conference discussed the topics of modelling and analysis, coal recovery, oil and gas applications, surface structures and slope stability, underground opening design, geothermal energy recovery, in-situ methods, near surface underground opening design, blasting design, rock mechanics, and ground support. Abstracts were prepared for selected papers. (JSR)

  10. Geologic, geochemical, microbiologic, and hydrologic characterization at the In Situ Redox Manipulation Test Site

    International Nuclear Information System (INIS)

    Vermeul, V.R.; Teel, S.S.; Amonette, J.E.

    1995-07-01

    This report documents results from characterization activities at the In Situ Redox Manipulation (ISRM) Field Test Site which is located within the 100-HR-3 Operable Unit of the US Department of Energy's (DOE's) Hanford Site in Richland, Washington. Information obtained during hydrogeologic characterization of the site included sediment physical properties, geochemical properties, microbiologic population data, and aquifer hydraulic properties. The purpose of obtaining this information was to improve the conceptual understanding of the hydrogeology beneath the ISRM test site and provide detailed, site specific hydrogeologic parameter estimates. The resulting characterization data will be incorporated into a numerical model developed to simulate the physical and chemical processes associated with the field experiment and aid in experiment design and interpretation

  11. Site characterization progress report: Yucca Mountain, Nevada, October 1, 1990--March 31, 1991

    International Nuclear Information System (INIS)

    1991-10-01

    In accordance with the requirements of Section 113 (b) (3) of the Nuclear Waste Policy Act of 1982, as amended (NWPA), the US Department of Energy (DOE) has prepared this report on the progress of site characterization activities at Yucca Mountain, Nevada, for the period October 1, 1990, through March 31, 1991. This report is the fourth in a series of reports that are issued at intervals of approximately six months during site characterization. The report covers a number of initiatives to improve the effectiveness of the site characterization program, and covers continued efforts related to preparatory activities, Study Plans, and performance assessment

  12. Colloid Detection in Natural Ground Water from Ruprechtov by Laser-Induced Breakdown Detection

    Energy Technology Data Exchange (ETDEWEB)

    Hauser, W.; Geckeis, H.; Goetz, R. [FZK - Inst. fuer Nukleare Entsorgung, Ka rlsruhe (Germany)]. e-mail: hauser@ine.fzk.de; Noseck, U. [Gesellschaft fuer Anlagen- und Reaktorsicherheit, D-38122 Braunschweig (Germany); Laciok, A. [Nuclear Research Inst. Rez plc, Waste and Environmental Management Dept., Husinec-Rez, PSC 250 68 (Czech Republic)

    2007-06-15

    A borehole ground water sampling system and a mobile laser-induced breakdown detection (LIBD) equipment for colloid detection combined with a geomonitoring unit have been applied to characterize the natural background colloid concentration in ground waters of the Ruprechtov natural analogue site (Czech Republic). Ground water has been sampled using steel cylinders. To minimize artifacts during ground water sampling the contact to atmospheric oxygen has been excluded. The ground water samples collected in this way are transported to the laboratory where they have been connected to a series of flow-through detection cells. Argon gas is used to press the ground water through these detection cells for colloid analysis (LIBD), pH, Eh, electrical conductivity and oxygen content. After the above mentioned analysis additional samples are taken for chemical analysis by ICP-AES, ICP-MS, IC- and DOC-detection. Our data obtained by in-situ- and laboratory- measurements point out that the natural colloid concentration found at the Ruprechtov site is a strong function of the ground water ionic strength. The LIBD determined natural background colloid concentrations found at Ruprechtov are compared with data of studies performed in Aespoe (Sweden) and Grimsel (Switzerland)

  13. Guidelines for selecting codes for ground-water transport modeling of low-level waste burial sites. Volume 2. Special test cases

    International Nuclear Information System (INIS)

    Simmons, C.S.; Cole, C.R.

    1985-08-01

    This document was written for the National Low-Level Waste Management Program to provide guidance for managers and site operators who need to select ground-water transport codes for assessing shallow-land burial site performance. The guidance given in this report also serves the needs of applications-oriented users who work under the direction of a manager or site operator. The guidelines are published in two volumes designed to support the needs of users having different technical backgrounds. An executive summary, published separately, gives managers and site operators an overview of the main guideline report. Volume 1, titled ''Guideline Approach,'' consists of Chapters 1 through 5 and a glossary. Chapters 2 through 5 provide the more detailed discussions about the code selection approach. This volume, Volume 2, consists of four appendices reporting on the technical evaluation test cases designed to help verify the accuracy of ground-water transport codes. 20 refs

  14. Evaluation of health risks associated with proposed ground water standards at selected inactive uranium mill-tailings sites

    International Nuclear Information System (INIS)

    Hamilton, L.D.; Medeiros, W.H.; Meinhold, A.; Morris, S.C.; Moskowitz, P.D.; Nagy, J.; Lackey, K.

    1989-04-01

    The US Environmental Protection Agency (EPA) has proposed ground water standards applicable to all inactive uranium mill-tailings sites. The proposed standards include maximum concentration limits (MCL) for currently regulated drinking water contaminants, as well as the addition of standards for molybdenum, uranium, nitrate, and radium-226 plus radium-228. The proposed standards define the point of compliance to be everywhere downgradient of the tailings pile, and require ground water remediation to drinking water standards if MCLs are exceeded. This document presents a preliminary description of the Phase 2 efforts. The potential risks and hazards at Gunnison, Colorado and Lakeview, Oregon were estimated to demonstrate the need for a risk assessment and the usefulness of a cost-benefit approach in setting supplemental standards and determining the need for and level of restoration at UMTRA sites. 8 refs., 12 tabs

  15. Evaluation of health risks associated with proposed ground water standards at selected inactive uranium mill-tailings sites

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, L.D.; Medeiros, W.H.; Meinhold, A.; Morris, S.C.; Moskowitz, P.D.; Nagy, J.; Lackey, K.

    1989-04-01

    The US Environmental Protection Agency (EPA) has proposed ground water standards applicable to all inactive uranium mill-tailings sites. The proposed standards include maximum concentration limits (MCL) for currently regulated drinking water contaminants, as well as the addition of standards for molybdenum, uranium, nitrate, and radium-226 plus radium-228. The proposed standards define the point of compliance to be everywhere downgradient of the tailings pile, and require ground water remediation to drinking water standards if MCLs are exceeded. This document presents a preliminary description of the Phase 2 efforts. The potential risks and hazards at Gunnison, Colorado and Lakeview, Oregon were estimated to demonstrate the need for a risk assessment and the usefulness of a cost-benefit approach in setting supplemental standards and determining the need for and level of restoration at UMTRA sites. 8 refs., 12 tabs.

  16. Hanford Site National Evnironmental Policy Act (NEPA) characterization

    Energy Technology Data Exchange (ETDEWEB)

    Cushing, C.E. (ed.)

    1991-12-01

    This fourth revision of the Hanford Site National Environmental Policy (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Site-related NEPA documentation. In Chapter 4.0 are presented summations of up-to-date information about climate and meteorology, geology and hydrology, ecology, history and archaeology, socioeconomics, land use, and noise levels. Chapter 5.0 describes models, including their principal assumptions, that are to be used in simulating realized or potential impacts from nuclear materials at the Hanford Site. Included are models of radionuclides transport in groundwater and atmospheric pathways, and of radiation dose to populations via all known pathways from known initial conditions. Chapter 6.0 provides the preparer with the federal and state regulations, DOE orders and permits, and environmental standards directly applicable for environmental impact statements for the Hanford Site, following the structure Chapter 4.0. NO conclusions or recommendations are given in this report.

  17. Surveillance of Site A and Plot M report for 1989

    International Nuclear Information System (INIS)

    Golchert, N.W.

    1990-04-01

    The results of the environmental monitoring program conducted at Site A/Plot M in the Palos Park Forest Preserve area for CY 1989 are presented. The monitoring program is the ongoing remedial action that resulted from the 1976--1978 radiological characterization of the site. That study had determined that very low levels of hydrogen-3 migrated from the burial ground and was present in two nearby hand-pumped picnic wells. The current program consists of sample collection and analysis of air, surface and subsurface water, and bottom sediment. The results of the analyses are used to determine the migration pathway of water from the burial ground to the hand-pumped picnic wells, establish if buried radionuclides other than hydrogen-3 have migrated, and generally characterize the radiological environment of the area. 16 refs., 6 figs., 15 tabs

  18. Final Hanford Site Transuranic (TRU) Waste Characterization Quality Assurance Project Plan

    International Nuclear Information System (INIS)

    GREAGER, T.M.

    1999-01-01

    The Transuranic Waste Characterization Quality Assurance Program Plan required each US Department of Energy (DOE) site that characterizes transuranic waste to be sent the Waste Isolation Pilot Plan that addresses applicable requirements specified in the QAPP

  19. Site Characterization Work Plan for the Gnome-Coach Site, New Mexico (Rev. 1, January 2002)

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office (NNSA/NV)

    2002-01-14

    Project Gnome was the first nuclear experiment conducted under the U.S. Atomic Energy Commission (AEC), predecessor to the U.S. Department of Energy (DOE), Plowshare Program. The Plowshare Program focused on developing nuclear devices exclusively for peaceful purposes. The intent of the Gnome experiment was to evaluate the effects of a nuclear detonation in a salt medium. Historically, Project Gnome consisted of a single detonation of a nuclear device on December 10, 1961 with the Salado Formation. Since the Gnome detonation, the AEC/DOE has conducted surface restoration, site reconnaissance, and decontamination and decommissioning activities at the site. In addition, annual groundwater sampling is performed under a long-term hydrological monitoring program begun in 1972. Coach, an experiment to be located near the Gnome project, was initially scheduled for 1963. Although construction and rehabilitation were completed for Coach, the experiment was canceled and never executed. Known collectively as Project Gnome-Coach, the site is located approximately 25 miles east of Carlsbad, New Mexico, in Eddy County, and is comprised of nearly 680 acres, of which approximately 60 acres are disturbed from the combined AEC/DOE operations. The scope of this work plan is to document the environmental objectives and the proposed technical site investigation strategies that will be utilized for the site characterization of the project. The subsurface at the Gnome-Coach site has two contaminant sources that are fundamentally different in terms of both their stratigraphic location and release mechanism. The goal of this characterization is to collect data of sufficient quantity and quality to establish current site conditions and to use the data to identify and evaluate if further action is required to protect human health and the environment and achieve permanent closure of the site. The results of these activities will be presented in a subsequent corrective action decision document.

  20. Final Hanford Site Transuranic (TRU) Waste Characterization QA Project Plan

    International Nuclear Information System (INIS)

    GREAGER, T.M.

    2000-01-01

    The Quality Assurance Project Plan (QAPjP) has been prepared for waste characterization activities to be conducted by the Transuranic (TRU) Project at the Hanford Site to meet requirements set forth in the Waste Isolation Pilot Plan (WIPP) Hazardous Waste Facility Permit, 4890139088-TSDF, Attachment B, including Attachments B1 through B6 (WAP) (DOE, 1999a). The QAPjP describes the waste characterization requirements and includes test methods, details of planned waste sampling and analysis, and a description of the waste characterization and verification process. In addition, the QAPjP includes a description of the quality assurance/quality control (QA/QC) requirements for the waste characterization program. Before TRU waste is shipped to the WIPP site by the TRU Project, all applicable requirements of the QAPjP shall be implemented. Additional requirements necessary for transportation to waste disposal at WIPP can be found in the ''Quality Assurance Program Document'' (DOE 1999b) and HNF-2600, ''Hanford Site Transuranic Waste Certification Plan.'' TRU mixed waste contains both TRU radioactive and hazardous components, as defined in the WLPP-WAP. The waste is designated and separately packaged as either contact-handled (CH) or remote-handled (RH), based on the radiological dose rate at the surface of the waste container. RH TRU wastes are not currently shipped to the WIPP facility

  1. Site characterization design and techniques used at the Southern Shipbuilding Corporation site

    International Nuclear Information System (INIS)

    Mueller, J.P.; Geraghty, C.A.; Moore, G.W.; Mullins, J.R.

    1995-01-01

    The Southern Shipbuilding Corporation (SSC) site is an inactive barge/ship manufacturing and repair facility situated on approximately 54 acres in Slidell, St. Tammany Parish, Louisiana. Two unlined surface impoundments (North and South impoundments) are situated on the northwest portion of the site and are surrounded on three sides by Bayou Bonfouca. These impoundments are the sources of carcinogenic polynuclear aromatic hydrocarbon (CPAH) contamination at the site. Inadequate containment has resulted in the release of impoundment wastes into the bayou. To evaluate potential response alternatives for the site, an Engineering Evaluation/Cost Analysis (EE/CA) field investigation was conducted from July through October 1994. A two phase sampling approach was used in combination with innovative and traditional sampling techniques, field screening technologies, and exploitation of the visual characteristics of the waste to determine the extent of waste migration with limited off-site laboratory confirmation. A skid-mounted mobile drilling unit, secured to a specialized sampling platform designed for multiple applications, was used for collection of sediment cores from the bayou as well as tarry sludge cores from the impoundments. Field screening of core samples was accomplished on site using an organic vapor analyzer and a total petroleum hydrocarbon (TPH) field analyzer. Pollutants of concern include metals, cyanide, dioxin, and organic compounds. This paper presents details on the sampling design and characterization techniques used to accomplish the EE/CA field investigation

  2. Site characterization and validation - geophysical single hole logging

    International Nuclear Information System (INIS)

    Andersson, Per

    1989-05-01

    A total of 15 boreholes have been drilled for preliminary characterization of a previously unexplored site at the 360 and 385 m level in the Stripa mine. To adequately described the rock mass in the vicinity of these boreholes, a comprehensive program utilizing a large number of geophysical borehole methods has been carried out in 10 of these boreholes. The specific geophysical character of the rock mass and the major deformed units distinguished in the vicinity of the boreholes are recognized, and in certain cases also correlated between the boreholes. A general conclusion based on the geophysical logging results, made in this report, is that the preliminary predictions made in stage 2, of the site characterization and validation project (Olsson et.al, 1988), are adequate. The results from the geophysical logging can support the four predicted fracture/ fracture zones GHa, GHb, GA and GB whereas the predicted zones GC and GI are hard to confirm from the logging results. (author)

  3. Ground-water monitoring compliance projects for Hanford Site facilities: Annual progress report for 1987

    International Nuclear Information System (INIS)

    Hall, S.H.

    1988-09-01

    This report describes progress during 1987 of five Hanford Site ground water monitoring projects. Four of these projects are being conducted according to regulations based on the federal Resource Conservation and Recovery Act of 1976 and the state Hazardous Waste Management Act. The fifth project is being conducted according to regulations based on the state Solid Waste Management Act. The five projects discussed herein are: 300 Area Process Trenches; 183-H Solar Evaporation Basins; 200 Areas Low-Level Burial Grounds; Nonradioactive Dangerous Waste Landfill; Solid Waste Landfill. For each of the projects, there are included, as applicable, discussions of monitoring well installations, water-table measurements, background and/or downgradient water quality and results of chemical analysis, and extent and rate of movement of contaminant plumes. 14 refs., 30 figs., 13 tabs

  4. Ground-penetrating radar investigations conducted in the 100 areas, Hanford Site: Fiscal Year 1992

    International Nuclear Information System (INIS)

    Bergstrom, K.A.

    1994-01-01

    During Fiscal Year 1992, the Geophysics Group conducted forty- five Ground-Penetrating Radar (GPR) surveys in the 100 Areas (Figure 1) - Objectives for the investigations varied, from locating cribs, trenches and septic systems to helping site boreholes. The results of each investigation were delivered to clients in the form of a map that summarized the interpretation of a given site. No formal reports were prepared. The purpose of this document is to show where and why each of the surveys was conducted. The data and interpretation of each survey are available by contacting the Westinghouse Hanford Company, Geophysics Group. A map showing the location and basic parameters of each survey can be found in the Appendices of this report

  5. Soil Characterization at the Linde FUSRAP Site and the Impact on Soil Volume Estimates

    International Nuclear Information System (INIS)

    Boyle, J.; Kenna, T.; Pilon, R.

    2002-01-01

    The former Linde site in Tonawanda, New York is currently undergoing active remediation of Manhattan Engineering District's radiological contamination. This remediation is authorized under the Formerly Utilized Sites Remedial Action Program (FUSRAP). The focus of this paper will be to describe the impact of soil characterization efforts as they relate to soil volume estimates and project cost estimates. An additional objective is to stimulate discussion about other characterization and modeling technologies, and to provide a ''Lessons Learned'' scenario to assist in future volume estimating at other FUSRAP sites. Initial soil characterization efforts at the Linde FUSRAP site in areas known to be contaminated or suspected to be contaminated were presented in the Remedial Investigation Report for the Tonawanda Site, dated February 1993. Results of those initial characterization efforts were the basis for soil volume estimates that were used to estimate and negotiate the current remediation contract. During the course of remediation, previously unidentified areas of contamination were discovered, and additional characterization was initiated. Additional test pit and geoprobe samples were obtained at over 500 locations, bringing the total to over 800 sample locations at the 135-acre site. New data continues to be collected on a routine basis during ongoing remedial actions

  6. Initial Characterization of the Wave Resource at Several High Energy U.S. Sites

    OpenAIRE

    Dallman, Ann; Neary, Vincent S.

    2014-01-01

    Wave energy resource characterization efforts are critical for developing knowledge of the physical conditions experienced by wave energy converter (WEC) devices and arrays. Developers are lacking a consistent characterization of possible wave energy test sites, and therefore Sandia National Laboratories (SNL) has been tasked with developing a catalogue characterizing three high energy U.S. test sites. The initial results and framework for the catalogue are discussed in this paper. U.S. De...

  7. Technical data management at the Yucca Mountain Site Characterization Project

    International Nuclear Information System (INIS)

    Statler, J.; Newbury, C.M.; Heitland, G.W.

    1992-01-01

    The Department of Energy/Office of Civilian Radioactive waste Management (DOE/OCRWM) is responsible for the characterization of Yucca Mountain, Nevada, to determine its potential as a site of a high-level radioactive waste repository. The characterization of Yucca Mountain encompasses many diverse investigations, both onsite and in laboratories across the country. Investigations are being conducted of the geology, hydrology, mineralogy, paleoclimate, geotechnical properties, and archeology of the area, to name a few. Effective program management requires that data from site investigations be processed, interpreted and disseminated in a timely manner to support model development and validation, repository design, and performance assessment. The Program must also meet regulatory requirements for making the technical data accessible to a variety of external users throughout the life of the Project. Finally, the DOE/OCRWM must make available the data or its description and access location available for use in support of the license application and supporting documentation. To accomplish these objectives, scientific and engineering data, generated by site characterization activities, and technical data, generated by environmental and socioeconomic impact assessment activities, must be systematically identified, cataloged, stored and disseminated in a controlled manner

  8. Predicted impacts of future water level decline on monitoring wells using a ground-water model of the Hanford Site

    International Nuclear Information System (INIS)

    Wurstner, S.K.; Freshley, M.D.

    1994-12-01

    A ground-water flow model was used to predict water level decline in selected wells in the operating areas (100, 200, 300, and 400 Areas) and the 600 Area. To predict future water levels, the unconfined aquifer system was stimulated with the two-dimensional version of a ground-water model of the Hanford Site, which is based on the Coupled Fluid, Energy, and Solute Transport (CFEST) Code in conjunction with the Geographic Information Systems (GIS) software package. The model was developed using the assumption that artificial recharge to the unconfined aquifer system from Site operations was much greater than any natural recharge from precipitation or from the basalt aquifers below. However, artificial recharge is presently decreasing and projected to decrease even more in the future. Wells currently used for monitoring at the Hanford Site are beginning to go dry or are difficult to sample, and as the water table declines over the next 5 to 10 years, a larger number of wells is expected to be impacted. The water levels predicted by the ground-water model were compared with monitoring well completion intervals to determine which wells will become dry in the future. Predictions of wells that will go dry within the next 5 years have less uncertainty than predictions for wells that will become dry within 5 to 10 years. Each prediction is an estimate based on assumed future Hanford Site operating conditions and model assumptions

  9. Detailed site characterization for final disposal of spent fuel in Finland - Case study Loviisa

    International Nuclear Information System (INIS)

    Anttila, P.; Ahokas, H.; Ruotsalainen, P.; Cosma, C.; Keskinen, J.; Hinkkanen, H.; Rouhiainen, P.; Oehberg, A.

    1998-01-01

    The spent fuel from the Finnish nuclear power plants will be disposed of in the Finnish bedrock. Pos iva Oy is responsible for the site selection programme carried out in accordance with the governmental decisions. Preliminary site investigations were made in five areas in 1987-1992. Based on the results, three areas, Romuvaara in Kuhmo, Kivetty in Aeaenekoski and Olkiluoto in Eurajoki, were selected for the detailed site characterization in 1993-2000. The final site will be selected by the end of the year 2000. The interim reporting of the detailed studies of the three areas was made in 1996. In 1997, the island of Haestholmen, as the host to the Loviisa NPP, was included as a fourth candidate site in the programme for the detailed site investigations. The goal is to characterize this site also in detail by the end of 2000 to attain the same level of knowledge as available from the three other sites. The background information existing from the studies made for the construction of the repository for the low-and intermediate-level wastes will create a good basis to reach the target. The research programme for the detailed site characterization has mainly been focused on groundwater flow and geochemistry due to their importance in terms of long-term safety of the repository. Equipment and methodology development by Posiva has introduced new tools that provide more accurate data on relevant parameters than the ones used in previous stages of site characterization. The programme also contains studies for additional information of the structural and geological properties of the bedrock towards the depth. Also predictive modelling has been made for evaluating the relevance of the assumptions made. The methods applied in the site characterization have comprised, e.g., geological mapping, deep core drilling, groundwater sampling and analyzing, hydraulic testing and geophysical measurements

  10. Detailed site characterization for final disposal of spent fuel in Finland - Case study Loviisa

    Energy Technology Data Exchange (ETDEWEB)

    Anttila, P. [IVO Power Engineering Ltd. (Finland); Ahokas, H.; Ruotsalainen, P. [Fintact Oy (Finland); Cosma, C.; Keskinen, J. [Vibrometric Oy (Finland); Hinkkanen, H. [Posiva Oy (Finland); Rouhiainen, P. [PRG-Tec Oy (Finland); Oehberg, A. [Saanio and Riekkola Consulting Engineers (Finland)

    1998-09-01

    The spent fuel from the Finnish nuclear power plants will be disposed of in the Finnish bedrock. Pos iva Oy is responsible for the site selection programme carried out in accordance with the governmental decisions. Preliminary site investigations were made in five areas in 1987-1992. Based on the results, three areas, Romuvaara in Kuhmo, Kivetty in Aeaenekoski and Olkiluoto in Eurajoki, were selected for the detailed site characterization in 1993-2000. The final site will be selected by the end of the year 2000. The interim reporting of the detailed studies of the three areas was made in 1996. In 1997, the island of Haestholmen, as the host to the Loviisa NPP, was included as a fourth candidate site in the programme for the detailed site investigations. The goal is to characterize this site also in detail by the end of 2000 to attain the same level of knowledge as available from the three other sites. The background information existing from the studies made for the construction of the repository for the low-and intermediate-level wastes will create a good basis to reach the target. The research programme for the detailed site characterization has mainly been focused on groundwater flow and geochemistry due to their importance in terms of long-term safety of the repository. Equipment and methodology development by Posiva has introduced new tools that provide more accurate data on relevant parameters than the ones used in previous stages of site characterization. The programme also contains studies for additional information of the structural and geological properties of the bedrock towards the depth. Also predictive modelling has been made for evaluating the relevance of the assumptions made. The methods applied in the site characterization have comprised, e.g., geological mapping, deep core drilling, groundwater sampling and analyzing, hydraulic testing and geophysical measurements 23 refs, 4 figs

  11. Site characterization and construction of a controlled shallow test site in central Mexico for archaeological and engineering applications

    Science.gov (United States)

    Rosado-Fuentes, A.; Arango-Galvan, C.; Arciniega-Ceballos, A.; Hernández-Quintero, J. E.; Mendo-Perez, G.

    2017-12-01

    A controlled shallow test site (CSTS) has been constructed at the UNAM Geomagnetic Observatory in Teoloyucan, central Mexico. The objective of the CSTS is to have a controlled place to test new developments and arrays that can be used for archaeological and engineering exploration, as well as to calibrate instruments, train students and for future research. The CSTS was built far enough not to influence the geomagnetic sensors and not be affected by noise sources. Special attention was given to the distribution and geometry of buried materials as well as the instruments used. Before the CSTS was built, a combination of near-surface, non-invasive geophysical techniques was performed to characterize the area of 20 by 32 meters. The methods include magnetometry, electromagnetic induction, ground penetrating radar (GPR), electrical resistivity tomography (ERT) and seismic refraction tomography (SRT). The GPR, SRT and ERT results show relatively flat interfaces. In general, the vertical gradient of the total magnetic field and the electric conductivity have very small variations, showing only one strong magnetic dipole associated to a shallow anomaly. These results indicate that the area is ideal for the construction of the test site. The CSTS consists on buried structures made with different materials and geometries (cubes, cylinders and tubes) commonly used as construction materials in Mexico since Pre-Hispanic times. These materials include concrete, reinforced concrete, wood, brick, adobe, basalt, tezontle and also empty space for controlling responses. The CSTS is versatile enough to be reshaped considering new geometries or materials and to conduct further investigations.

  12. Site observational work plan for the UMTRA Project site at Falls City, Texas

    International Nuclear Information System (INIS)

    1995-06-01

    Produced by the US Department of Energy (DOE), this site observational work plan (SOWP) will be used to determine site-specific activities to comply with the US Environmental Protection Agency (EPA) ground water standards at this Uranium Mill Tailings Remedial Action (UMTRA) Project site. The purpose of the SOWP is to recommend a site-specific ground water compliance strategy at the Falls City UMTRA Project site. The Falls City SOWP presents a comprehensive summary of site hydrogeological data, delineates a conceptual model of the aquifer system, and discusses the origins of milling-related ground water contamination. It also defines the magnitude of ground water contamination, potential environmental and health risks associated with ground water contamination and data gaps, and targets a proposed compliance strategy

  13. Sensitivity of ground motion parameters to local site effects for areas characterised by a thick buried low-velocity layer.

    Science.gov (United States)

    Farrugia, Daniela; Galea, Pauline; D'Amico, Sebastiano; Paolucci, Enrico

    2016-04-01

    It is well known that earthquake damage at a particular site depends on the source, the path that the waves travel through and the local geology. The latter is capable of amplifying and changing the frequency content of the incoming seismic waves. In regions of sparse or no strong ground motion records, like Malta (Central Mediterranean), ground motion simulations are used to obtain parameters for purposes of seismic design and analysis. As an input to ground motion simulations, amplification functions related to the shallow subsurface are required. Shear-wave velocity profiles of several sites on the Maltese islands were obtained using the Horizontal-to-Vertical Spectral Ratio (H/V), the Extended Spatial Auto-Correlation (ESAC) technique and the Genetic Algorithm. The sites chosen were all characterised by a layer of Blue Clay, which can be up to 75 m thick, underlying the Upper Coralline Limestone, a fossiliferous coarse grained limestone. This situation gives rise to a velocity inversion. Available borehole data generally extends down till the top of the Blue Clay layer therefore the only way to check the validity of the modelled shear-wave velocity profile is through the thickness of the topmost layer. Surface wave methods are characterised by uncertainties related to the measurements and the model used for interpretation. Moreover the inversion procedure is also highly non-unique. Such uncertainties are not commonly included in site response analysis. Yet, the propagation of uncertainties from the extracted dispersion curves to inversion solutions can lead to significant differences in the simulations (Boaga et al., 2011). In this study, a series of sensitivity analyses will be presented with the aim of better identifying those stratigraphic properties which can perturb the ground motion simulation results. The stochastic one-dimensional site response analysis algorithm, Extended Source Simulation (EXSIM; Motazedian and Atkinson, 2005), was used to perform

  14. Work plan for ground water elevation data recorder/monitor well installation at the New Rifle Site, Rifle, Colorado

    International Nuclear Information System (INIS)

    1994-01-01

    The purpose of this document is to describe the work that will be performed and the procedures that will be followed during installation of ground water monitor wells and ground water elevation data recorders (data loggers) at the New Rifle Uranium Mill Tailings Remedial Action (UMTRA) Project site, Rifle, Colorado. The monitor wells and data loggers will be used to gather required time-dependent data to investigate the interaction between the shallow aquifer and the Colorado River

  15. Yucca Mountain Site characterization project bibliography, January--June 1991

    International Nuclear Information System (INIS)

    Lorenz, J.J.; Stephan, P.M.

    1991-09-01

    Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy's Energy Science and Technology Database from January 1991 through June 1991. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers, and articles are included in the sponsoring organization's list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it

  16. Yucca Mountain Site Characterization Project bibliography, January--June 1992

    International Nuclear Information System (INIS)

    1992-01-01

    Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy's Energy Science and Technology Database from January 1, 1993, through June 30, 1993. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers, and articles are included in the sponsoring organization's list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it

  17. Yucca Mountain Site Characterization Project Bibliography, July--December 1990

    International Nuclear Information System (INIS)

    1991-05-01

    Following a reorganization of the Office of Civilian Radioactive Waste Management, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountains Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy's Energy Science and Technology Database from July 1990 through December 1990. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers and articles are included in the sponsoring organizations list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it

  18. Yucca Mountain Site characterization project bibliography, January--June 1992

    International Nuclear Information System (INIS)

    1992-09-01

    Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy's Energy Science and Technology Database from January 1, 1992, through June 30, 1992. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor resorts, papers, and articles are included in the sponsoring organization's list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it

  19. Surveillance of Site A and Plot M

    International Nuclear Information System (INIS)

    Golchert, N.W.

    1991-05-01

    The results of the environmental surveillance program conducted at Site A/Plot M in the Palos Forest Preserve area for CY 1990 are presented. The surveillance program is the ongoing remedial action that resulted from the 1976-1978 radiological characterization of the site. That study determined that very low levels of hydrogen-3 (as tritiated water) had migrated from the burial ground and were present in two nearby hand-pumped picnic wells. The current program consists of sample collection and analysis of air, surface and subsurface water, and bottom sediment. The results of the analyses are used to determine the migration pathway of water from the burial ground (plot M) to the hand-pumped picnic wells, establish if buries radionuclides other than hydrogen-3 have migrated, and generally characterize the radiological environment of the area. Tritiated water continues to be detected in a number of wells, boreholes, dolomite holes, and a surface stream. Analyses since 1984 have indicated the presence of low levels of strontium-90 in water from a number of boreholes next to Plot M. The results of the surveillance program continues to indicate that the radioactivity remaining at Site A/Plot M does not endanger the health or safety of the public visiting the site or those living in the vicinity. 20 refs., 7 figs., 15 tabs

  20. Test Area for Remedial Actions (TARA) site characterization and dynamic compaction of low-level radioactive waste trenches. FY 1988 progress report

    Energy Technology Data Exchange (ETDEWEB)

    Davis, E. C.; Spalding, B. P.; Lee, S. Y.; Hyder, L. K.

    1989-01-01

    As part of a low-level radioactive waste burial ground stabilization and closure technology demonstration project, a group of five burial trenches in Oak Ridge National Laboratory (ORNL) Solid Waste Storage Area (SWSA) 6 was selected as a demonstration site for testing trench compaction, trench grouting, and trench cap installation and performance. This report focuses on site characterization, trench compaction, and grout-trench leachate compatibility. Trench grouting and cap design and construction will be the subject of future reports. The five trenches, known as the Test Area for Remedial Actions (TARA) site, are contained within a hydrologically isolated area of SWSA 6; for that reason, any effects of stabilization activities on site performance and groundwater quality will be separable from the influence of other waste disposal units in SWSA 6. To obviate the chronic problem of burial trench subsidence and to provide support for an infiltration barrier cap, these five trenches were dynamically compacted by repeated dropping of a 4-ton weight onto each trench from heights of approximately 7 m.

  1. TWRS phase I privatization site environmental baseline and characterization plan

    International Nuclear Information System (INIS)

    Shade, J.W.

    1997-01-01

    This document provides a plan to characterize and develop an environmental baseline for the TWRS Phase I Privatization Site before construction begins. A site evaluation study selected the former Grout Disposal Area of the Grout Treatment Facility in the 200 East Area as the TWRS Phase I Demonstration Site. The site is generally clean and has not been used for previous activities other than the GTF. A DQO process was used to develop a Sampling and Analysis Plan that would allow comparison of site conditions during operations and after Phase I ends to the presently existing conditions and provide data for the development of a preoperational monitoring plan

  2. The ground water chemical characteristics of Beishan area-the China's potential high level radioactive waste repository

    International Nuclear Information System (INIS)

    Yang Tianxiao; Guo Yonghai

    2004-01-01

    The ground water chemical characteristics have impact on nuclide migration in high level waste repository, so the study on the ground water chemical characteristics is an important aspect in site screening and characterization. The geochemical modeling of the reaction trend between ground water and solid phase, the water-rock interaction modeling of the formation and evolution of ground water chemistry, the modeling of the reaction between ground water and nuclear waste are all carried out in this paper to study the ground water chemical characteristics in Beishan area. The study illustrates that the ground water chemical characteristics in Beishan area is favorable to the disposal of high level nuclear waste and to prevent the nuclides migration. (author)

  3. Threatened and endangered wildlife species of the Hanford Site related to CERCLA characterization activities

    Energy Technology Data Exchange (ETDEWEB)

    Fitzner, R.E. [Pacific Northwest Lab., Richland, WA (United States); Weiss, S.G.; Stegen, J.A. [Westinghouse Hanford Co., Richland, WA (United States)

    1994-06-01

    The US Department of Energy`s (DOE) Hanford Site has been placed on the National Priorities List, which requires that it be remediated under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) or Superfund. Potentially contaminated areas of the Hanford Site were grouped into operable units, and detailed characterization and investigation plans were formulated. The DOE Richland Operations Office requested Westinghouse Hanford Company (WHC) to conduct a biological assessment of the potential impact of these characterization activities on the threatened, endangered, and sensitive wildlife species of the Hanford Site. Additional direction for WHC compliances with wildlife protection can be found in the Environmental Compliance Manual. This document is intended to meet these requirements, in part, for the CERCLA characterization activities, as well as for other work comparable in scope. This report documents the biological assessment and describes the pertinent components of the Hanford Site as well as the planned characterization activities. Also provided are accounts of endangered, threatened, and federal candidate wildlife species on the Hanford Site and information as to how human disturbances can affect these species. Potential effects of the characterization activities are described with recommendations for mitigation measures.

  4. Final Hanford Site Transuranic (TRU) Waste Characterization Qualit Assurance Project Plan

    International Nuclear Information System (INIS)

    GREAGER, T.M.

    1999-01-01

    The Transuranic Waste Characterization Quality Assurance Program Plan required each U.S. Department of Energy (DOE) site that characterizes transuranic waste to be sent the Waste Isolation Pilot Plan that addresses applicable requirements specified in the quality assurance project plan (QAPP)

  5. Prototype Environmental Assessment of the impacts of siting and construction of an SPS ground receiving station

    Science.gov (United States)

    Hill, J.

    1980-01-01

    A prototype assessment of the environmental impacts of siting and constructing a Satellite Power System (SPS) Ground Receiving Station (GRS) is reported. The objectives of the study were: (1) to develop an assessment of the nonmicrowave related impacts of the reference system SPS GRS on the natural environment; (2) to assess the impacts of GRS construction and operations in the context of actual baseline data for a site in the California desert; and (3) to identify critical GRS characteristics or parameters that are most significant in terms of the natural environment.

  6. Grounding of SNS Accelerator Structure

    CERN Document Server

    Holik, Paul S

    2005-01-01

    Description of site general grounding network. RF grounding network enhancement underneath the klystron gallery building. Grounding network of the Ring Systems with ground breaks in the Ring Tunnel. Grounding and Bonding of R&D accelerator equipment. SNS Building lightning protection.

  7. Site selection and characterization processes for deep geologic disposal of high level nuclear waste

    International Nuclear Information System (INIS)

    Costin, L.S.

    1997-10-01

    In this paper, the major elements of the site selection and characterization processes used in the US high level waste program are discussed. While much of the evolution of the site selection and characterization processes have been driven by the unique nature of the US program, these processes, which are well defined and documented, could be used as an initial basis for developing site screening, selection, and characterization programs in other countries. Thus, this paper focuses more on the process elements than the specific details of the US program

  8. Assessment of trace ground-water contaminants release from south Texas in-situ uranium solution-mining sites

    Energy Technology Data Exchange (ETDEWEB)

    Kidwell, J.R.; Humenick, M.J.

    1981-01-01

    The future of uranium solution mining in south Texas depends heavily on the industry's ability to restore production zone ground water to acceptable standards. This study investigated the extent of trace contaminant solubilization during mining and subsequent restoration attempts, first through a literature search centered on uranium control mechanisms, and then by laboratory experiments simulating the mining process. The literature search indicated the complexity of the situation. The number of possible interactions between indigenous elements and materials pointed on the site specificity of the problem. The column studies evaluated three different production area ores. Uranium, molybdenum, arsenic, vanadium, and selenium were analyzed in column effluents. After simulated mining operations were completed, uranium was found to be the most persistent trace element. However, subsequent ground water flushing of the columns could restore in-situ water to EPA recommended drinking water concentrations. Limited data indicated that ground water flowing through mined areas may solubilize molybdenum present in down gradient areas adjacent to the production zone due to increased oxidation potential of ground water if adequate restoration procedures are not followed.

  9. Characterization and Monitoring of Natural Attenuation of Chlorinated Solvents in Ground Water: A Systems Approach

    Science.gov (United States)

    Cutshall, N. H.; Gilmore, T.; Looney, B. B.; Vangelas, K. M.; Adams, K. M.; Sink, C. H.

    2006-05-01

    Like many US industries and businesses, the Department of Energy (DOE) is responsible for remediation and restoration of soils and ground water contaminated with chlorinated ethenes. Monitored Natural Attenuation (MNA) is an attractive remediation approach and is probably the universal end-stage technology for removing such contamination. Since 2003 we have carried out a multifaceted program at the Savannah River Site designed to advance the state of the art for MNA of chlorinated ethenes in soils and groundwater. Three lines of effort were originally planned: 1) Improving the fundamental science for MNA, 2) Promoting better characterization and monitoring (CM) techniques, and 3) Advancing the regulatory aspects of MNA management. A fourth line, developing enhanced attenuation methods based on sustainable natural processes, was added in order to deal with sites where the initial natural attenuation capacity cannot offset contaminant loading rates. These four lines have been pursued in an integrated and mutually supportive fashion. Many DOE site-cleanup program managers view CM as major expenses, especially for natural attenuation where measuring attenuation is complex and the most critical attenuation mechanisms cannot be determined directly. We have reviewed new and developing approaches to CM for potential application in support of natural attenuation of chlorinated hydrocarbons in ground water at DOE sites (Gilmore, Tyler, et al., 2006 WSRC-TR- 2005-00199). Although our project is focused on chlorinated ethenes, many of the concepts and strategies are also applicable to a wider range of contaminants including radionuclides and metals. The greatest savings in CM are likely to come from new management approaches. New approaches can be based, for example, on conceptual models of attenuation capacity, the ability of a formation to reduce risks caused by contaminants. Using the mass balance concept as a guide, the integrated mass flux of contaminant is compared to

  10. Fast-turnaround RCRA site characterization of former TA-42 at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Pratt, A.R.; Gainer, G.M.; Thomson, C.N.; Hutton, R.D.

    1994-01-01

    This report describes the results of an accelerated characterization to evaluate contamination at the site of former Technical Area (TA)-42. This characterization supported the construction validation for the Nuclear Safeguards Technology Laboratory (NSTL), which will be constructed at the site

  11. Evaluation of ground freezing for environmental restoration at waste area grouping 5, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Gates, D.D.

    1995-09-01

    A study to evaluate the feasibility of using ground freezing technology to immobilize tritium contaminants was performed as part of the Waste Area Grouping (WAG) 6 Technology Demonstrations initiated by the WAG 6 Record of Agreement. The study included a review of ground freezing technology, evaluation of this technology for environmental restoration, and identification of key technical issues. A proposed ground freezing demonstration for containment of tritium at a candidate Oak Ridge National Laboratory site was developed. The planning requirements for the demonstration were organized into seven tasks including site selection, site characterization, conceptual design, laboratory evaluation, demonstration design, field implementation, and monitoring design. A brief discussion of each of these tasks is provided. Additional effort beyond the scope of this study is currently being directed to the selection of a demonstration site and the identification of funding

  12. Use of geostatistics in high level radioactive waste repository site characterization

    Energy Technology Data Exchange (ETDEWEB)

    Doctor, P G [Pacific Northwest Laboratory, Richland, WA (USA)

    1980-09-01

    In evaluating and characterizing sites that are candidates for use as repositories for high-level radioactive waste, there is an increasing need to estimate the uncertainty in hydrogeologic data and in the quantities calculated from them. This paper discusses the use of geostatistical techniques to estimate hydrogeologic surfaces, such as the top of a basalt formation, and to provide a measure of the uncertainty in that estimate. Maps of the uncertainty estimate, called the kriging error, can be used to evaluate where new data should be taken to affect the greatest reduction in uncertainty in the estimated surface. The methods are illustrated on a set of site-characterization data; the top-of-basalt elevations at the Hanford Site near Richland, Washington.

  13. SISMA (Site of Italian Strong Motion Accelerograms): a Web-Database of Ground Motion Recordings for Engineering Applications

    International Nuclear Information System (INIS)

    Scasserra, Giuseppe; Lanzo, Giuseppe; D'Elia, Beniamino; Stewart, Jonathan P.

    2008-01-01

    The paper describes a new website called SISMA, i.e. Site of Italian Strong Motion Accelerograms, which is an Internet portal intended to provide natural records for use in engineering applications for dynamic analyses of structural and geotechnical systems. SISMA contains 247 three-component corrected motions recorded at 101 stations from 89 earthquakes that occurred in Italy in the period 1972-2002. The database of strong motion accelerograms was developed in the framework of a joint project between Sapienza University of Rome and University of California at Los Angeles (USA) and is described elsewhere. Acceleration histories and pseudo-acceleration response spectra (5% damping) are available for download from the website. Recordings can be located using simple search parameters related to seismic source and the recording station (e.g., magnitude, V s30 , etc) as well as ground motion characteristics (e.g. peak ground acceleration, peak ground velocity, peak ground displacement, Arias intensity, etc.)

  14. Geological characterization of contaminated sites near the city of Horsens, Denmark

    DEFF Research Database (Denmark)

    Andersen, Theis Raaschou; Poulsen, Søren Erbs; Thomsen, Peter

    characterization of three contaminated sites situated in urban and semi-urban areas around the city of Horsens in corporation with authorities. The existing data from the three field sites include lithological profiles from boreholes. In order to increase the data density, Electrical Resistivity Tomography (ERT...

  15. The status of Yucca Mountain site characterization activities

    International Nuclear Information System (INIS)

    Gertz, Carl P.; Larkin, Erin L.; Hamner, Melissa

    1992-01-01

    The U.S. Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is continuing its studies to determine if Yucca Mountain, Nevada, can safely isolate high-level nuclear waste for the next ten thousand years. As mandated by Congress in 1987, DOE is studying the rocks, the climate, and the water table at Yucca Mountain to ensure that the site is suitable before building a repository adopt 305 meters below the surface. Yucca Mountain, located 160.9 kilometers northwest of Las Vegas, lies on the western edge of the Nevada Test Site. Nevada and DOE have been in litigation over environmental permits needed to conduct studies, but recent court decisions have allowed limited new work to begin. This paper will examine progress made on the Yucca Mountain Site Characterization Project (YMP) during 1991 and continuing into 1992, discuss the complex legal issues and describe new site drilling work. Design work on the underground exploratory studies facility (ESF) will also be discussed. (author)

  16. ANAEROBIC DEGRADATION OF MTBE TO TBA IN GROUND WATER AT GASOLINE SPILL SITES IN ORANGE COUNTY, CALIFORNIA

    Science.gov (United States)

    Although tert-Butyl Alcohol (TBA) has not been used as a fuel oxygenate in Orange County, California, the concentrations of TBA in ground water at gasoline spill sites are high compared to the concentrations of the conventional fuel oxygenate Methyl tert-Butyl Ether (MTBE). In t...

  17. High-level wastes: DOE names three sites for characterization

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    DOE announced in May 1986 that there will be there site characterization studies made to determine suitability for a high-level radioactive waste repository. The studies will include several test drillings to the proposed disposal depths. Yucca Mountain, Nevada; Deaf Smith Country, Texas, and Hanford, Washington were identified as the study sites, and further studies for a second repository site in the East were postponed. The affected states all filed suits in federal circuit courts because they were given no advance warning of the announcement of their selection or the decision to suspend work on a second repository. Criticisms of the selection process include the narrowing or DOE options

  18. Site characterization progress report: Yucca Mountain, Nevada. October 1, 1996--March 31, 1997

    International Nuclear Information System (INIS)

    1997-10-01

    The report is the sixteenth in a series issued approximately every six months to report progress and results of site characterization activities being conducted to evaluate Yucca Mountain as a possible geologic repository for the disposal of spent nuclear fuel and high-level radioactive waste. This report highlights work started, in progress, and completed during the reporting period. In addition, this report documents and discusses changes to the Office of Civilian Radioactive Waste Management (OCRWM) Site Characterization Program (Program) resulting from the ongoing collection and evaluation of site information, systems analyses, development of repository and waste package designs, and results of performance assessment activities. Details on the activities summarized can be found in the numerous technical reports cited throughout the progress report. Yucca Mountain Site Characterization Project (Project) activities this period focused on implementing the near-term objectives of the revised Program Plan issued last period. Near-term objectives of the revised Program Plan include updating the US Department of Energy's (DOE) repository siting guidelines to be consistent with a more focused performance-driven program; supporting an assessment in 1998 of the viability of continuing with actions leading to the licensing of a repository; and if the site is suitable, submittal of a Secretarial site recommendation to the President in 2001 and license application the US Nuclear Regulatory Commission (NRC) in 2002. During this reporting period, the Project developed and baselined its long-range plan in December 1996. That revision reflected the detailed fiscal year (FY) 1997 work scope and funding plan previously baselined at the end of FY 1996. Site characterization activities have been focused to answer the major open technical issues and to support the viability assessment

  19. Monitoring of active layer dynamics at a permafrost site on Svalbard using multi-channel ground-penetrating radar

    Directory of Open Access Journals (Sweden)

    S. Westermann

    2010-11-01

    Full Text Available Multi-channel ground-penetrating radar is used to investigate the late-summer evolution of the thaw depth and the average soil water content of the thawed active layer at a high-arctic continuous permafrost site on Svalbard, Norway. Between mid of August and mid of September 2008, five surveys have been conducted in gravelly soil over transect lengths of 130 and 175 m each. The maximum thaw depths range from 1.6 m to 2.0 m, so that they are among the deepest thaw depths recorded in sediments on Svalbard so far. The thaw depths increase by approximately 0.2 m between mid of August and beginning of September and subsequently remain constant until mid of September. The thaw rates are approximately constant over the entire length of the transects within the measurement accuracy of about 5 to 10 cm. The average volumetric soil water content of the thawed soil varies between 0.18 and 0.27 along the investigated transects. While the measurements do not show significant changes in soil water content over the first four weeks of the study, strong precipitation causes an increase in average soil water content of up to 0.04 during the last week. These values are in good agreement with evapotranspiration and precipitation rates measured in the vicinity of the the study site. While we cannot provide conclusive reasons for the detected spatial variability of the thaw depth at the study site, our measurements show that thaw depth and average soil water content are not directly correlated.

    The study demonstrates the potential of multi-channel ground-penetrating radar for mapping thaw depth in permafrost areas. The novel non-invasive technique is particularly useful when the thaw depth exceeds 1.5 m, so that it is hardly accessible by manual probing. In addition, multi-channel ground-penetrating radar holds potential for mapping the latent heat content of the active layer and for estimating weekly to monthly averages of the ground heat flux during the

  20. Site selection and characterization processes for deep geologic disposal of high level nuclear waste

    International Nuclear Information System (INIS)

    Costin, L.S.

    1997-01-01

    In this paper, the major elements of the site selection and characterization processes used in the U. S. high level waste program are discussed. While much of the evolution of the site selection and characterization processes have been driven by the unique nature of the U. S. program, these processes, which are well-defined and documented, could be used as an initial basis for developing site screening, selection, and characterization programs in other countries. Thus, this paper focuses more on the process elements than the specific details of the U. S. program. (author). 3 refs., 2 tabs., 5 figs

  1. Site selection and characterization processes for deep geologic disposal of high level nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Costin, L.S. [Sandia National Labs., Albuquerque, NM (United States)

    1997-12-31

    In this paper, the major elements of the site selection and characterization processes used in the U. S. high level waste program are discussed. While much of the evolution of the site selection and characterization processes have been driven by the unique nature of the U. S. program, these processes, which are well-defined and documented, could be used as an initial basis for developing site screening, selection, and characterization programs in other countries. Thus, this paper focuses more on the process elements than the specific details of the U. S. program. (author). 3 refs., 2 tabs., 5 figs.

  2. Environmental monitoring and mitigation plan for site characterization: Revision 1

    International Nuclear Information System (INIS)

    1988-01-01

    The purpose of the EMMP is: to identify, in consultation with the affected states and Indian tribes, potentially significant adverse environmental impacts that could result from site characterization activities, to describe data collection methods that will be used to monitor any such identified impacts, and procedures for mitigating them. Chapter 2 of the EMMP provides an overview of the background and scope of the document. Chapter 3 of the EMMP provides a description of site characterization phase activities planned to assess the geologic condition of the site and construct the exploratory shafts and surface support facilities. The rationale for developing environmental monitoring studies is presented in Chapeter 4. Chapter 5 contains descriptions of the environmental monitoring and mitigation procedures whenever they are applicable. Additionally, in Chapter 6, the EMMP includes a procedure for modifying the monitoring and mitigation program and an approach for reporting monitoring results to interested parties. 21 figs., 10 tabs

  3. Characterization of soil and plant-associated bacteria on a metal contaminated site

    International Nuclear Information System (INIS)

    Boulet, J.; Weyens, N.; Barac, T.; Dupae, J.; Lelie, D. van der; Taghavi, S.; Vaqngronsveld, J.

    2009-01-01

    Conventional methods for the remediation of heavy metal contaminated soils and ground water are very expensive and often damaging to the environment. Complementary to these traditional methods, especially for sites with a diffuse contamination in relatively low concentrations, phyto extraction is proposed as a promising technology for effective and inexpensive radiation. (Author)

  4. Monitoring ground deformation of cultural heritage sites using UAVs and geodetic techniques: the case study of Choirokoitia, JPI PROTHEGO project

    Science.gov (United States)

    Themistocleous, Kyriacos; Danezis, Chris; Mendonidis, Evangelos; Lymperopoulou, Efstathia

    2017-10-01

    This paper presents the integrated methods using UAVs and geodetic techniques to monitor ground deformation within the Choirokoitia UNESCO World Heritage Site in Cyprus. The Neolithic settlement of Choirokoitia, occupied from the 7th to the 4th millennium B.C., is one of the most important prehistoric sites in the eastern Mediterranean. The study is conducted under the PROTHEGO (PROTection of European Cultural HEritage from GeO-hazards) project, which is a collaborative research project funded in the framework of the Joint Programming Initiative on Cultural Heritage and Global Change (JPICH) - Heritage Plus in 2015-2018 (www.prothego.eu) and through the Cyprus Research Promotion Foundation. PROTHEGO aims to make an innovative contribution towards the analysis of geo-hazards in areas of cultural heritage, and uses novel space technology based on radar interferometry to retrieve information on ground stability and motion in the 400+ UNESCO's World Heritage List monuments and sites of Europe. The field measurements collected at the Choirokoitia site will be later compared with SAR data to verify micro-movements in the area to monitor potential geo-hazards. The site is located on a steep hill, which makes it vulnerable to rock falls and landslides.

  5. Characterization of porosity in a 19th century painting ground by synchrotron radiation X-ray tomography

    Energy Technology Data Exchange (ETDEWEB)

    Gervais, Claire [Swiss Institute for Art Research (SIK-ISEA), Zuerich (Switzerland); Bern University of the Arts, Bern (Switzerland); Boon, Jaap J. [Swiss Institute for Art Research (SIK-ISEA), Zuerich (Switzerland); JAAP Enterprise for MOLART Advice, Amsterdam (Netherlands); Marone, Federica [Paul Scherrer Institute, Swiss Light Source (SLS), Villigen (Switzerland); Ferreira, Ester S.B. [Swiss Institute for Art Research (SIK-ISEA), Zuerich (Switzerland)

    2013-04-15

    The study of the early oeuvre of the Swiss painter Cuno Amiet (1868-1961) has revealed that, up to 1907, many of his grounds were hand applied and are mainly composed of chalk, bound in protein. These grounds are not only lean and absorbent, but also, as Synchrotron radiation X-ray microtomography has shown, porous. Our approach to the characterization of pore structure and quantity, their connectivity, and homogeneity is based on image segmentation and application of a clustering algorithm to high-resolution X-ray tomographic data. The issues associated with the segmentation of the different components of a ground sample based on X-ray imaging data are discussed. The approach applied to a sample taken from ''Portrait of Max Leu'' (1899) by Amiet revealed the presence of three sublayers within the ground with distinct porosity features, which had not been observed optically in cross-section. The upper and lower layers are highly porous with important connectivity and thus prone to water uptake/storage. The middle layer however shows low and nonconnected porosity at the resolution level of the X-ray tomography images, so that few direct water absorption paths through the entire sample exist. The potential of the method to characterize porosity and to understand moisture-related issues in paint layer degradation are discussed. (orig.)

  6. Characterization of porosity in a 19th century painting ground by synchrotron radiation X-ray tomography

    International Nuclear Information System (INIS)

    Gervais, Claire; Boon, Jaap J.; Marone, Federica; Ferreira, Ester S.B.

    2013-01-01

    The study of the early oeuvre of the Swiss painter Cuno Amiet (1868-1961) has revealed that, up to 1907, many of his grounds were hand applied and are mainly composed of chalk, bound in protein. These grounds are not only lean and absorbent, but also, as Synchrotron radiation X-ray microtomography has shown, porous. Our approach to the characterization of pore structure and quantity, their connectivity, and homogeneity is based on image segmentation and application of a clustering algorithm to high-resolution X-ray tomographic data. The issues associated with the segmentation of the different components of a ground sample based on X-ray imaging data are discussed. The approach applied to a sample taken from ''Portrait of Max Leu'' (1899) by Amiet revealed the presence of three sublayers within the ground with distinct porosity features, which had not been observed optically in cross-section. The upper and lower layers are highly porous with important connectivity and thus prone to water uptake/storage. The middle layer however shows low and nonconnected porosity at the resolution level of the X-ray tomography images, so that few direct water absorption paths through the entire sample exist. The potential of the method to characterize porosity and to understand moisture-related issues in paint layer degradation are discussed. (orig.)

  7. Site Characterization Work Plan for the Gnome-Coach Site, New Mexico (Rev. 1, January 2002); FINAL

    International Nuclear Information System (INIS)

    2002-01-01

    Project Gnome was the first nuclear experiment conducted under the U.S. Atomic Energy Commission (AEC), predecessor to the U.S. Department of Energy (DOE), Plowshare Program. The Plowshare Program focused on developing nuclear devices exclusively for peaceful purposes. The intent of the Gnome experiment was to evaluate the effects of a nuclear detonation in a salt medium. Historically, Project Gnome consisted of a single detonation of a nuclear device on December 10, 1961 with the Salado Formation. Since the Gnome detonation, the AEC/DOE has conducted surface restoration, site reconnaissance, and decontamination and decommissioning activities at the site. In addition, annual groundwater sampling is performed under a long-term hydrological monitoring program begun in 1972. Coach, an experiment to be located near the Gnome project, was initially scheduled for 1963. Although construction and rehabilitation were completed for Coach, the experiment was canceled and never executed. Known collectively as Project Gnome-Coach, the site is located approximately 25 miles east of Carlsbad, New Mexico, in Eddy County, and is comprised of nearly 680 acres, of which approximately 60 acres are disturbed from the combined AEC/DOE operations. The scope of this work plan is to document the environmental objectives and the proposed technical site investigation strategies that will be utilized for the site characterization of the project. The subsurface at the Gnome-Coach site has two contaminant sources that are fundamentally different in terms of both their stratigraphic location and release mechanism. The goal of this characterization is to collect data of sufficient quantity and quality to establish current site conditions and to use the data to identify and evaluate if further action is required to protect human health and the environment and achieve permanent closure of the site. The results of these activities will be presented in a subsequent corrective action decision document

  8. Coupling Fine-Scale Root and Canopy Structure Using Ground-Based Remote Sensing

    Directory of Open Access Journals (Sweden)

    Brady S. Hardiman

    2017-02-01

    Full Text Available Ecosystem physical structure, defined by the quantity and spatial distribution of biomass, influences a range of ecosystem functions. Remote sensing tools permit the non-destructive characterization of canopy and root features, potentially providing opportunities to link above- and belowground structure at fine spatial resolution in functionally meaningful ways. To test this possibility, we employed ground-based portable canopy LiDAR (PCL and ground penetrating radar (GPR along co-located transects in forested sites spanning multiple stages of ecosystem development and, consequently, of structural complexity. We examined canopy and root structural data for coherence (i.e., correlation in the frequency of spatial variation at multiple spatial scales ≤10 m within each site using wavelet analysis. Forest sites varied substantially in vertical canopy and root structure, with leaf area index and root mass more becoming even vertically as forests aged. In all sites, above- and belowground structure, characterized as mean maximum canopy height and root mass, exhibited significant coherence at a scale of 3.5–4 m, and results suggest that the scale of coherence may increase with stand age. Our findings demonstrate that canopy and root structure are linked at characteristic spatial scales, which provides the basis to optimize scales of observation. Our study highlights the potential, and limitations, for fusing LiDAR and radar technologies to quantitatively couple above- and belowground ecosystem structure.

  9. Characterization of Rous sarcoma virus polyadenylation site use in vitro

    International Nuclear Information System (INIS)

    Maciolek, Nicole L.; McNally, Mark T.

    2008-01-01

    Polyadenylation of Rous sarcoma virus (RSV) RNA is inefficient, as approximately 15% of RSV RNAs represent read-through transcripts that use a downstream cellular polyadenylation site (poly(A) site). Read-through transcription has implications for the virus and the host since it is associated with oncogene capture and tumor induction. To explore the basis of inefficient RSV RNA 3'-end formation, we characterized RSV polyadenylation in vitro using HeLa cell nuclear extracts and HEK293 whole cell extracts. RSV polyadenylation substrates composed of the natural 3' end of viral RNA and various lengths of upstream sequence showed little or no polyadenylation, indicating that the RSV poly(A) site is suboptimal. Efficiently used poly(A) sites often have identifiable upstream and downstream elements (USEs and DSEs) in close proximity to the conserved AAUAAA signal. The sequences upstream and downstream of the RSV poly(A) site deviate from those found in efficiently used poly(A) sites, which may explain inefficient RSV polyadenylation. To assess the quality of the RSV USEs and DSEs, the well-characterized SV40 late USEs and/or DSEs were substituted for the RSV elements and vice versa, which showed that the USEs and DSEs from RSV are suboptimal but functional. CstF interacted poorly with the RSV polyadenylation substrate, and the inactivity of the RSV poly(A) site was at least in part due to poor CstF binding since tethering CstF to the RSV substrate activated polyadenylation. Our data are consistent with poor polyadenylation factor binding sites in both the USE and DSE as the basis for inefficient use of the RSV poly(A) site and point to the importance of additional elements within RSV RNA in promoting 3' end formation

  10. The CarboCount CH sites: characterization of a dense greenhouse gas observation network

    Directory of Open Access Journals (Sweden)

    B. Oney

    2015-10-01

    Full Text Available We describe a new rural network of four densely placed (2, CH4, and CO measurement sites in north-central Switzerland and analyze its suitability for regional-scale (~ 100–500 km carbon flux studies. We characterize each site for the period from March 2013 to February 2014 by analyzing surrounding land cover, observed local meteorology, and sensitivity to surface fluxes, as simulated with the Lagrangian particle dispersion model FLEXPART-COSMO (FLEXible PARTicle dispersion model-Consortium for Small-Scale Modeling. The Beromünster measurements are made on a tall tower (212 m located on a gentle hill. At Beromünster, regional CO2 signals (measurement minus background vary diurnally from −4 to +4 ppmv, on average, and are simulated to come from nearly the entire Swiss Plateau, where 50 % of surface influence is simulated to be within 130–260 km distance. The Früebüel site measurements are made 4 m above ground on the flank of a gently sloping mountain. Nearby (2 signals varying diurnally from −5 to +12 ppmv and elevated summer daytime CH4 signals (+30 ppbv above other sites. The Gimmiz site measurements are made on a small tower (32 m in flat terrain. Here, strong summertime regional signals (−5 to +60 ppmv CO2 stem from large, nearby (2. Here, considerable anthropogenic influence from the nearby industrialized region near Zurich causes the average wintertime regional CO2 signals to be 5 ppmv above the regional signals simultaneously measured at the Früebüel site. We find that the suitability of the data sets from our current observation network for regional carbon budgeting studies largely depends on the ability of the high-resolution (2 km atmospheric transport model to correctly capture the temporal dynamics of the stratification of the lower atmosphere at the different sites. The current version of the atmospheric transport model captures these dynamics well, but it clearly reaches its limits at the sites in steep topography

  11. Characterizing of a Mid-Latitude Ice-Rich Landing Site on Mars to Enable in Situ Habitability Studies

    Science.gov (United States)

    Heldmann, J.; Schurmeier, L. R.; Wilhelm, M.; Stoker, C.; McKay, C.; Davila, A.; Marinova, M.; Karcz, J.; Smith, H.

    2012-01-01

    We suggest an ice-rich landing site at 188.5E 46.16N within Amazonis Planitia as a candidate location to support a Mars lander mission equipped to study past habitability and regions capable of preserving the physical and chemical signs of life and organic matter. Studies of the ice-rich subsurface on Mars are critical for several reasons. The subsurface environment provides protection from radiation to shield organic and biologic compounds from destruction. The ice-rich substrate is also ideal for preserving organic and biologic molecules and provides a source of H2O for biologic activity. Examination of martian ground ice can test several hypotheses such as: 1) whether ground ice supports habitable conditions, 2) that ground ice can preserve and accumulate organic compounds, and 3) that ice contains biomolecules evident of past or present biological activity on Mars. This Amazonis site, located near the successful Viking Lander 2, shows indirect evidence of subsurface ice (ubiquitous defined polygonal ground, gamma ray spectrometer hydrogen signature, and numerical modeling of ice stability) and direct evidence of exposed subsurface ice. This site also provides surface conditions favorable to a safe landing including no boulders, low rock density, minimal rough topography, and few craters.

  12. Guidelines for determining design basis ground motions

    International Nuclear Information System (INIS)

    1993-11-01

    This report develops and applies a method for estimating strong earthquake ground motion. The emphasis of this study is on ground motion estimation in Eastern North America (east of the Rocky Mountains), with particular emphasis on the Eastern United States and southeastern Canada. Specifically considered are ground motions resulting from earthquakes with magnitudes from 5 to 8, fault distances from 0 to 500 km, and frequencies from 1 to 35 Hz. The two main objectives were: (1) to develop generic relations for estimating ground motion appropriate for site screening; and (2) to develop a guideline for conducting a thorough site investigation needed to define the seismic design basis. For the first objective, an engineering model was developed to predict the expected ground motion on rock sites, with an additional set of amplification factors to account for the response of the soil column over rock at soil sites. The results incorporate best estimates of ground motion as well as the randomness and uncertainty associated with those estimates. For the second objective, guidelines were developed for gathering geotechnical information at a site and using this information in calculating site response. As a part of this development, an extensive set of geotechnical and seismic investigations was conducted at three reference sites. Together, the engineering model and guidelines provide the means to select and assess the seismic suitability of a site

  13. Evaluation of chemical sensors for in situ ground-water monitoring at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, E.M.; Hostetler, D.D.

    1989-03-01

    This report documents a preliminary review and evaluation of instrument systems and sensors that may be used to detect ground-water contaminants in situ at the Hanford Site. Three topics are covered in this report: (1) identification of a group of priority contaminants at Hanford that could be monitored in situ, (2) a review of current instrument systems and sensors for environmental monitoring, and (3) an evaluation of instrument systems that could be used to monitor Hanford contaminants. Thirteen priority contaminants were identified in Hanford ground water, including carbon tetrachloride and six related chlorinated hydrocarbons, cyanide, methyl ethyl ketone, chromium (VI), fluoride, nitrate, and uranium. Based on transduction principles, chemical sensors were divided into four classes, ten specific types of instrument systems were considered: fluorescence spectroscopy, surface-enhanced Raman spectroscopy (SERS), spark excitation-fiber optic spectrochemical emission sensor (FOSES), chemical optrodes, stripping voltammetry, catalytic surface-modified ion electrode immunoassay sensors, resistance/capacitance, quartz piezobalance and surface acoustic wave devices. Because the flow of heat is difficult to control, there are currently no environmental chemical sensors based on thermal transduction. The ability of these ten instrument systems to detect the thirteen priority contaminants at the Hanford Site at the required sensitivity was evaluated. In addition, all ten instrument systems were qualitatively evaluated for general selectivity, response time, reliability, and field operability. 45 refs., 23 figs., 7 tabs.

  14. Evaluation of chemical sensors for in situ ground-water monitoring at the Hanford Site

    International Nuclear Information System (INIS)

    Murphy, E.M.; Hostetler, D.D.

    1989-03-01

    This report documents a preliminary review and evaluation of instrument systems and sensors that may be used to detect ground-water contaminants in situ at the Hanford Site. Three topics are covered in this report: (1) identification of a group of priority contaminants at Hanford that could be monitored in situ, (2) a review of current instrument systems and sensors for environmental monitoring, and (3) an evaluation of instrument systems that could be used to monitor Hanford contaminants. Thirteen priority contaminants were identified in Hanford ground water, including carbon tetrachloride and six related chlorinated hydrocarbons, cyanide, methyl ethyl ketone, chromium (VI), fluoride, nitrate, and uranium. Based on transduction principles, chemical sensors were divided into four classes, ten specific types of instrument systems were considered: fluorescence spectroscopy, surface-enhanced Raman spectroscopy (SERS), spark excitation-fiber optic spectrochemical emission sensor (FOSES), chemical optrodes, stripping voltammetry, catalytic surface-modified ion electrode immunoassay sensors, resistance/capacitance, quartz piezobalance and surface acoustic wave devices. Because the flow of heat is difficult to control, there are currently no environmental chemical sensors based on thermal transduction. The ability of these ten instrument systems to detect the thirteen priority contaminants at the Hanford Site at the required sensitivity was evaluated. In addition, all ten instrument systems were qualitatively evaluated for general selectivity, response time, reliability, and field operability. 45 refs., 23 figs., 7 tabs

  15. A Tracer Test to Characterize Treatment of TCE in a Permeable Reactive Barrier

    Science.gov (United States)

    A tracer test was conducted to characterize the flow of ground water surrounding a permeable reactive barrier constructed with plant mulch (a biowall) at the OU-1 site on Altus Air Force Base, Oklahoma. This biowall is intended to intercept and treat ground water contaminated by ...

  16. Acoustic-Seismic Coupling in Porous Ground - Measurements and Analysis for On-Site-Inspection Support

    Science.gov (United States)

    Liebsch, Mattes; Gorschlüter, Felix; Altmann, Jürgen

    2014-05-01

    During on-site inspections (OSI) of the Comprehensive Nuclear Test Ban Treaty Organisation (CTBTO) a local seismic network can be installed to measure seismic aftershock signals of an assumed underground nuclear explosion. These signals are caused by relaxation processes in and near the cavity created by the explosion and when detected can lead to a localisation of the cavity. This localisation is necessary to take gas samples from the ground which are analysed for radioactive noble gas isotopes to confirm or dismiss the suspicion of a nuclear test. The aftershock signals are of very low magnitude so they can be masked by different sources, in particular periodic disturbances caused by vehicles and aircraft in the inspection area. Vehicles and aircraft (mainly helicopters) will be used for the inspection activities themselves, e.g. for overhead imagery or magnetic-anomaly sensing. While vehicles in contact with the ground can excite soil vibrations directly, aircraft and vehicles alike emit acoustic waves which excite soil vibrations when hitting the ground. These disturbing signals are of periodic nature while the seismic aftershock signals are pulse-shaped, so their separation is possible. The understanding of the coupling of acoustic waves to the ground is yet incomplete, a better understanding is necessary to improve the performance of an OSI, e.g. to address potential consequences for the sensor placement, the helicopter trajectories etc. In a project funded by the Young Scientist Research Award of the CTBTO to one of us (ML), we investigated the acoustic-seismic coupling of airborne signals of jet aircraft and artificially induced ones by a speaker. During a measurement campaign several acoustic and seismic sensors were placed below the take-off trajectory of an airport at 4 km distance. Therefore taking off and landing jet aircraft passed nearly straightly above the setup. Microphones were placed close to the ground to record the sound pressure of incident

  17. Applicability of slug interference testing of hydraulic characterization of contaminated aquifer sites

    International Nuclear Information System (INIS)

    Spane, F.A.; Swanson, L.C.

    1993-10-01

    Aquifer test methods available for characterizing hazardous waste sites are sometimes restricted because of problems with disposal of contaminated groundwater. These problems, in part, have made slug tests a more desirable method of determining hydraulic properties at such sites. However, in higher permeability formations (i.e., transmissivities ≥ 1 x 10 -3 m 2 /s), slug test results often cannot be analyzed and give, at best, only a lower limit for transmissivity. A need clearly exists to develop test methods that can be used to characterize higher permeability aquifers without removing large amounts of contaminated groundwater. One hydrologic test method that appears to hold promise for characterizing such sites is the slug interference test. To assess the applicability of this test method for use in shallow alluvial aquifer systems, slug interference tests have been conducted, along with more traditional aquifer testing methods, at several Hanford multiple-well sites. Transmissivity values estimated from the slug interference tests were comparable (within a factor of 2 to 3) to values calculated using traditional testing methods, and made it possible to calculate the storativity or specific yield for the intervening test formation. The corroboration of test results indicates that slug interference testing is a viable hydraulic characterization method in transmissive alluvial aquifers, and may represent one of the few test methods that can be used in sensitive areas where groundwater is contaminated

  18. Information needs for characterization of high-level waste repository sites in six geologic media. Volume 2. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1985-05-01

    Volume II contains appendices for the following: (1) remote sensing and surface mapping techniques; (2) subsurface mapping methods for site characterization; (3) gravity technique; (4) audio-frequency magnetotelluric technique; (5) seismic refraction technique; (6) direct-current electrical resistivity method; (7) magnetic technique; (8) seismic reflection technique; (9) seismic crosshole method; (10) mechanical downhole seismic velocity survey method; (11) borehole geophysical logging techniques; (12) drilling and coring methods for precharacterization studies; (13) subsurface drilling methods for site characterization; (14) geomechanical/thermomechanical techniques for precharacterization studies; (15)geomechanical/thermal techniques for site characterization studies; (16) exploratory geochemical techniques for precharacterization studies; (17) geochemical techniques for site characterization; (18) hydrologic techniques for precharacterization studies; (19) hydrologic techniques for site characterization; and (20) seismological techniques.

  19. Information needs for characterization of high-level waste repository sites in six geologic media. Volume 2. Appendices

    International Nuclear Information System (INIS)

    1985-05-01

    Volume II contains appendices for the following: (1) remote sensing and surface mapping techniques; (2) subsurface mapping methods for site characterization; (3) gravity technique; (4) audio-frequency magnetotelluric technique; (5) seismic refraction technique; (6) direct-current electrical resistivity method; (7) magnetic technique; (8) seismic reflection technique; (9) seismic crosshole method; (10) mechanical downhole seismic velocity survey method; (11) borehole geophysical logging techniques; (12) drilling and coring methods for precharacterization studies; (13) subsurface drilling methods for site characterization; (14) geomechanical/thermomechanical techniques for precharacterization studies; (15)geomechanical/thermal techniques for site characterization studies; (16) exploratory geochemical techniques for precharacterization studies; (17) geochemical techniques for site characterization; (18) hydrologic techniques for precharacterization studies; (19) hydrologic techniques for site characterization; and (20) seismological techniques

  20. Characterization of large instabilities displacements using Ground-Based InSAR

    Science.gov (United States)

    Rouyet, L.; Kristensen, L.; Derron, M.-H.; Michoud, C.; Blikra, L. H.; Jaboyedoff, M.

    2012-04-01

    A master thesis in progress at the Lausanne University (IGAR) in cooperation with the Åknes/Tafjord Early Warning Centre in Norway aims to characterize various instabilities displacements using Ground-Based Interferometric Synthetic Aperture Radar system (GB-InSAR). The main goal is to evaluate the potential of GB-InSAR to determine displacement velocities and mechanical behaviours of several large rock instabilities in Norway. GB-InSAR data are processed and interpreted for three case studies. The first test site is the unstable complex area of Mannen located in the Romsdalen valley (Møre og Romsdal county), threatening infrastructures and potentially able to cause a debacle event downstream. Its total volume is estimated to 15-25 mill m3. Mannen instability is monitored permanently with GB-InSAR since February 2010 and shows displacements towards the radar up to -8 mm per month during the most sensitive period. Børa area located on the southwest side of Mannen instability shows also some signs of activity. It monitored temporarily between August and October 2011 and could help to understand the behaviour of Mannen site. The second, Indre Nordnes rockslide in Lyngenfjord (Troms county), is directly located above an important fjord in North Norway causing a significant risk of tsunami. The volume is estimated to be around 10-15 mill m3. The site was monitored temporarily between June and August 2011. The data show displacements towards the radar up to -12 mm in 2 weeks. The third case concerns rock falls along the road between Oppdølsstranda and Sunndalsøra (Møre og Romsdal county). Even if the volume of rock is less important than the first two cases, rock falls are an important problem for the road 70 underneath. Several campaigns are done between beginning of 2010 and end of 2011. In June 2011 an important rock fall occurs in an area where significant movements were previously detected by GB-InSAR. In order to understand the behaviour of these