WorldWideScience

Sample records for sirna-mediated bk channel

  1. Molecular Mechanisms Underlying Renin-Angiotensin-Aldosterone System Mediated Regulation of BK Channels

    Directory of Open Access Journals (Sweden)

    Zhen-Ye Zhang

    2017-09-01

    Full Text Available Large-conductance calcium-activated potassium channels (BK channels belong to a family of Ca2+-sensitive voltage-dependent potassium channels and play a vital role in various physiological activities in the human body. The renin-angiotensin-aldosterone system is acknowledged as being vital in the body's hormone system and plays a fundamental role in the maintenance of water and electrolyte balance and blood pressure regulation. There is growing evidence that the renin-angiotensin-aldosterone system has profound influences on the expression and bioactivity of BK channels. In this review, we focus on the molecular mechanisms underlying the regulation of BK channels mediated by the renin-angiotensin-aldosterone system and its potential as a target for clinical drugs.

  2. KCNMA1 encoded cardiac BK channels afford protection against ischemia-reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Ewa Soltysinska

    Full Text Available Mitochondrial potassium channels have been implicated in myocardial protection mediated through pre-/postconditioning. Compounds that open the Ca2+- and voltage-activated potassium channel of big-conductance (BK have a pre-conditioning-like effect on survival of cardiomyocytes after ischemia/reperfusion injury. Recently, mitochondrial BK channels (mitoBKs in cardiomyocytes were implicated as infarct-limiting factors that derive directly from the KCNMA1 gene encoding for canonical BKs usually present at the plasma membrane of cells. However, some studies challenged these cardio-protective roles of mitoBKs. Herein, we present electrophysiological evidence for paxilline- and NS11021-sensitive BK-mediated currents of 190 pS conductance in mitoplasts from wild-type but not BK-/- cardiomyocytes. Transmission electron microscopy of BK-/- ventricular muscles fibres showed normal ultra-structures and matrix dimension, but oxidative phosphorylation capacities at normoxia and upon re-oxygenation after anoxia were significantly attenuated in BK-/- permeabilized cardiomyocytes. In the absence of BK, post-anoxic reactive oxygen species (ROS production from cardiomyocyte mitochondria was elevated indicating that mitoBK fine-tune the oxidative state at hypoxia and re-oxygenation. Because ROS and the capacity of the myocardium for oxidative metabolism are important determinants of cellular survival, we tested BK-/- hearts for their response in an ex-vivo model of ischemia/reperfusion (I/R injury. Infarct areas, coronary flow and heart rates were not different between wild-type and BK-/- hearts upon I/R injury in the absence of ischemic pre-conditioning (IP, but differed upon IP. While the area of infarction comprised 28±3% of the area at risk in wild-type, it was increased to 58±5% in BK-/- hearts suggesting that BK mediates the beneficial effects of IP. These findings suggest that cardiac BK channels are important for proper oxidative energy supply of

  3. Coronary arterial BK channel dysfunction exacerbates ischemia/reperfusion-induced myocardial injury in diabetic mice.

    Science.gov (United States)

    Lu, Tong; Jiang, Bin; Wang, Xiao-Li; Lee, Hon-Chi

    2016-09-01

    The large conductance Ca(2+)-activated K(+) (BK) channels, abundantly expressed in coronary artery smooth muscle cells (SMCs), play a pivotal role in regulating coronary circulation. A large body of evidence indicates that coronary arterial BK channel function is diminished in both type 1 and type 2 diabetes. However, the consequence of coronary BK channel dysfunction in diabetes is not clear. We hypothesized that impaired coronary BK channel function exacerbates myocardial ischemia/reperfusion (I/R) injury in streptozotocin-induced diabetic mice. Combining patch-clamp techniques and cellular biological approaches, we found that diabetes facilitated the colocalization of angiotensin II (Ang II) type 1 receptors and BK channel α-subunits (BK-α), but not BK channel β1-subunits (BK-β1), in the caveolae of coronary SMCs. This caveolar compartmentation in vascular SMCs not only enhanced Ang II-mediated inhibition of BK-α but also produced a physical disassociation between BK-α and BK-β1, leading to increased infarct size in diabetic hearts. Most importantly, genetic ablation of caveolae integrity or pharmacological activation of coronary BK channels protected the cardiac function of diabetic mice from experimental I/R injury in both in vivo and ex vivo preparations. Our results demonstrate a vascular ionic mechanism underlying the poor outcome of myocardial injury in diabetes. Hence, activation of coronary BK channels may serve as a therapeutic target for cardiovascular complications of diabetes.

  4. BK channel modulators: a comprehensive overview

    DEFF Research Database (Denmark)

    Nardi, Antonio; Olesen, Søren-Peter

    2008-01-01

    channels as a potentially attractive target, the design and synthesis of potent and selective BK modulators continue based on novel chemical ideas. A comprehensive overview of BK channel modulators is therefore timely and important to the current medicinal chemist for review, summary, and classification...

  5. KCNMA1 encoded cardiac BK channels afford protection against ischemia-reperfusion injury

    DEFF Research Database (Denmark)

    Soltysinska, Ewa; Bentzen, Bo Hjorth; Barthmes, Maria

    2014-01-01

    Mitochondrial potassium channels have been implicated in myocardial protection mediated through pre-/postconditioning. Compounds that open the Ca2+- and voltage-activated potassium channel of big-conductance (BK) have a pre-conditioning-like effect on survival of cardiomyocytes after ischemia/rep...

  6. The BK(Ca) channels deficiency as a possible reason for radiation-induced vascular hypercontractility.

    Science.gov (United States)

    Kyrychenko, Sergii; Tishkin, Sergey; Dosenko, Victor; Ivanova, Irina; Novokhatska, Tatiana; Soloviev, Anatoly

    2012-01-01

    It is likely that large-conductance Ca²⁺-activated K⁺ (BK(Ca)) channels channelopathy tightly involved in vascular malfunctions and arterial hypertension development. In the present study, we compared the results of siRNAs-induced α-BK(Ca) gene silencing and vascular abnormalities produced by whole-body ionized irradiation in rats. The experimental design comprised RT-PCR and patch clamp technique, thoracic aorta smooth muscle (SM) contractile recordings and arterial blood pressure (BP) measurements on the 30th day after whole body irradiation (6Gy) and following siRNAs KCNMA1 gene silencing in vivo. The expression profile of BK(Ca) mRNA transcripts in SM was significantly decreased in siRNAs-treated rats in a manner similar to irradiated SM. In contrast, the mRNA levels of K(v) and K(ATP) were significantly increased while L-type calcium channels mRNA transcripts demonstrated tendency to increment. The SMCs obtained from irradiated animals and after KCNMA1 gene silencing showed a significant decrease in total K⁺ current density amplitude. Paxilline (500 nM)-sensitive components of outward current were significantly decreased in both irradiated and gene silencing SMCs. KCNMA1 gene silencing increased SM sensitivity to norepinephrine while Ach-induced relaxation had decreased. The silencing of KCNMA1 had no significant effect on BP while radiation produced sustained arterial hypertension. Therefore, radiation alters the form and function of the BK(Ca) channel and this type of channelopathy may contribute to related vascular abnormalities. Nevertheless, it is unlikely that BK(Ca) can operate as a crucial factor for radiation-induced arterial hypertension. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Single-channel kinetics of BK (Slo1 channels

    Directory of Open Access Journals (Sweden)

    Yanyan eGeng

    2015-01-01

    Full Text Available Single-channel kinetics has proven a powerful tool to reveal information about the gating mechanisms that control the opening and closing of ion channels. This introductory review focuses on the gating of large conductance Ca2+- and voltage-activated K+ (BK or Slo1 channels at the single-channel level. It starts with single-channel current records and progresses to presentation and analysis of single-channel data and the development of gating mechanisms in terms of discrete state Markov (DSM models. The DSM models are formulated in terms of the tetrameric modular structure of BK channels, consisting of a central transmembrane pore-gate domain (PGD attached to four surrounding transmembrane voltage sensing domains (VSD and a large intracellular cytosolic domain (CTD, also referred to as the gating ring. The modular structure and data analysis shows that the Ca2+ and voltage dependent gating considered separately can each be approximated by 10-state two-tiered models with 5 closed states on the upper tier and 5 open states on the lower tier. The modular structure and joint Ca2+ and voltage dependent gating are consistent with a 50 state two-tiered model with 25 closed states on the upper tier and 25 open states on the lower tier. Adding an additional tier of brief closed (flicker states to the 10-state or 50-state models improved the description of the gating. For fixed experimental conditions a channel would gate in only a subset of the potential number of states. The detected number of states and the correlations between adjacent interval durations are consistent with the tiered models. The examined models can account for the single-channel kinetics and the bursting behavior of gating. Ca2+ and voltage activate BK channels by predominantly increasing the effective opening rate of the channel with a smaller decrease in the effective closing rate. Ca2+ and depolarization thus activate by mainly destabilizing the closed states.

  8. BK channels regulate spontaneous action potential rhythmicity in the suprachiasmatic nucleus.

    Directory of Open Access Journals (Sweden)

    Jack Kent

    Full Text Available BACKGROUND: Circadian ( approximately 24 hr rhythms are generated by the central pacemaker localized to the suprachiasmatic nucleus (SCN of the hypothalamus. Although the basis for intrinsic rhythmicity is generally understood to rely on transcription factors encoded by "clock genes", less is known about the daily regulation of SCN neuronal activity patterns that communicate a circadian time signal to downstream behaviors and physiological systems. Action potentials in the SCN are necessary for the circadian timing of behavior, and individual SCN neurons modulate their spontaneous firing rate (SFR over the daily cycle, suggesting that the circadian patterning of neuronal activity is necessary for normal behavioral rhythm expression. The BK K(+ channel plays an important role in suppressing spontaneous firing at night in SCN neurons. Deletion of the Kcnma1 gene, encoding the BK channel, causes degradation of circadian behavioral and physiological rhythms. METHODOLOGY/PRINCIPAL FINDINGS: To test the hypothesis that loss of robust behavioral rhythmicity in Kcnma1(-/- mice is due to the disruption of SFR rhythms in the SCN, we used multi-electrode arrays to record extracellular action potentials from acute wild-type (WT and Kcnma1(-/- slices. Patterns of activity in the SCN were tracked simultaneously for up to 3 days, and the phase, period, and synchronization of SFR rhythms were examined. Loss of BK channels increased arrhythmicity but also altered the amplitude and period of rhythmic activity. Unexpectedly, Kcnma1(-/- SCNs showed increased variability in the timing of the daily SFR peak. CONCLUSIONS/SIGNIFICANCE: These results suggest that BK channels regulate multiple aspects of the circadian patterning of neuronal activity in the SCN. In addition, these data illustrate the characteristics of a disrupted SCN rhythm downstream of clock gene-mediated timekeeping and its relationship to behavioral rhythms.

  9. Chronic Prenatal Hypoxia Down-Regulated BK Channel Β1 Subunits in Mesenteric Artery Smooth Muscle Cells of the Offspring

    Directory of Open Access Journals (Sweden)

    Bailin Liu

    2018-02-01

    Full Text Available Background/Aims: Chronic hypoxia in utero could impair vascular functions in the offspring, underlying mechanisms are unclear. This study investigated functional alteration in large-conductance Ca2+-activated K+ (BK channels in offspring mesenteric arteries following prenatal hypoxia. Methods: Pregnant rats were exposed to normoxic control (21% O2, Con or hypoxic (10.5% O2, Hy conditions from gestational day 5 to 21, their 7-month-old adult male offspring were tested for blood pressure, vascular BK channel functions and expression using patch clamp and wire myograh technique, western blotting, and qRT-PCR. Results: Prenatal hypoxia increased pressor responses and vasoconstrictions to phenylephrine in the offspring. Whole-cell currents density of BK channels and amplitude of spontaneous transient outward currents (STOCs, not the frequency, were significantly reduced in Hy vascular myocytes. The sensitivity of BK channels to voltage, Ca2+, and tamoxifen were reduced in Hy myocytes, whereas the number of channels per patch and the single-channel conductance were unchanged. Prenatal hypoxia impaired NS1102- and tamoxifen-mediated relaxation in mesenteric arteries precontracted with phenylephrine in the presence of Nω-nitro-L-arginine methyl ester. The mRNA and protein expression of BK channel β1, not the α-subunit, was decreased in Hy mesenteric arteries. Conclusions: Impaired BK channel β1-subunits in vascular smooth muscle cells contributed to vascular dysfunction in the offspring exposed to prenatal hypoxia.

  10. Large conductance Ca2+-activated K+ (BK channel: Activation by Ca2+ and voltage

    Directory of Open Access Journals (Sweden)

    RAMÓN LATORRE

    2006-01-01

    Full Text Available Large conductance Ca2+-activated K+ (BK channels belong to the S4 superfamily of K+ channels that include voltage-dependent K+ (Kv channels characterized by having six (S1-S6 transmembrane domains and a positively charged S4 domain. As Kv channels, BK channels contain a S4 domain, but they have an extra (S0 transmembrane domain that leads to an external NH2-terminus. The BK channel is activated by internal Ca2+, and using chimeric channels and mutagenesis, three distinct Ca2+-dependent regulatory mechanisms with different divalent cation selectivity have been identified in its large COOH-terminus. Two of these putative Ca2+-binding domains activate the BK channel when cytoplasmic Ca2+ reaches micromolar concentrations, and a low Ca2+ affinity mechanism may be involved in the physiological regulation by Mg2+. The presence in the BK channel of multiple Ca2+-binding sites explains the huge Ca2+ concentration range (0.1 μM-100 μM in which the divalent cation influences channel gating. BK channels are also voltage-dependent, and all the experimental evidence points toward the S4 domain as the domain in charge of sensing the voltage. Calcium can open BK channels when all the voltage sensors are in their resting configuration, and voltage is able to activate channels in the complete absence of Ca2+. Therefore, Ca2+ and voltage act independently to enhance channel opening, and this behavior can be explained using a two-tiered allosteric gating mechanism.

  11. Pharmacological consequences of the coexpression of BK channel α and auxiliary β subunits

    Directory of Open Access Journals (Sweden)

    Yolima P. Torres

    2014-10-01

    Full Text Available Coded by a single gene (Slo1, KCM and activated by depolarizing potentials and by a rise in intracellular Ca2+ concentration, the large conductance voltage- and Ca+2-activated K+ channel (BK is unique among the superfamily of K+ channels. BK channels are tetramers characterized by a pore-forming α subunit containing seven transmembrane segments (instead of the six found in voltage-dependent K+ channels and a large C terminus composed of two regulators of K+ conductance domains (RCK domains, where the Ca2+-binding sites reside. BK channels can be associated with accessory β subunits and, although different BK modulatory mechanisms have been described, greater interest has recently been placed on the role that the β subunits may play in the modulation of BK channel gating due to its physiological importance. Four β subunits have currently been identified (i.e., β1, β2, β3 & β4 and despite the fact that they all share the same topology, it has been shown that every β subunit has a specific tissue distribution and that they modify channel kinetics as well as their pharmacological properties and the apparent Ca+2 sensitivity of the α subunit in different ways. Additionally, different studies have shown that natural, endogenous and synthetic compounds can modulate BK channels through β subunits. Considering the importance of these channels in different pathological conditions, such as hypertension and neurological disorders, this review focuses on the mechanisms by which these compounds modulate the biophysical properties of BK channels through the regulation of β subunits, as well as their potential therapeutic uses for diseases such as those mentioned above.

  12. Pharmacological consequences of the coexpression of BK channel α and auxiliary β subunits.

    Science.gov (United States)

    Torres, Yolima P; Granados, Sara T; Latorre, Ramón

    2014-01-01

    Coded by a single gene (Slo1, KCM) and activated by depolarizing potentials and by a rise in intracellular Ca(2+) concentration, the large conductance voltage- and Ca(2+)-activated K(+) channel (BK) is unique among the superfamily of K(+) channels. BK channels are tetramers characterized by a pore-forming α subunit containing seven transmembrane segments (instead of the six found in voltage-dependent K(+) channels) and a large C terminus composed of two regulators of K(+) conductance domains (RCK domains), where the Ca(2+)-binding sites reside. BK channels can be associated with accessory β subunits and, although different BK modulatory mechanisms have been described, greater interest has recently been placed on the role that the β subunits may play in the modulation of BK channel gating due to its physiological importance. Four β subunits have currently been identified (i.e., β1, β2, β3, and β4) and despite the fact that they all share the same topology, it has been shown that every β subunit has a specific tissue distribution and that they modify channel kinetics as well as their pharmacological properties and the apparent Ca(2+) sensitivity of the α subunit in different ways. Additionally, different studies have shown that natural, endogenous, and synthetic compounds can modulate BK channels through β subunits. Considering the importance of these channels in different pathological conditions, such as hypertension and neurological disorders, this review focuses on the mechanisms by which these compounds modulate the biophysical properties of BK channels through the regulation of β subunits, as well as their potential therapeutic uses for diseases such as those mentioned above.

  13. Pharmacological consequences of the coexpression of BK channel α and auxiliary β subunits

    Science.gov (United States)

    Torres, Yolima P.; Granados, Sara T.; Latorre, Ramón

    2014-01-01

    Coded by a single gene (Slo1, KCM) and activated by depolarizing potentials and by a rise in intracellular Ca2+ concentration, the large conductance voltage- and Ca2+-activated K+ channel (BK) is unique among the superfamily of K+ channels. BK channels are tetramers characterized by a pore-forming α subunit containing seven transmembrane segments (instead of the six found in voltage-dependent K+ channels) and a large C terminus composed of two regulators of K+ conductance domains (RCK domains), where the Ca2+-binding sites reside. BK channels can be associated with accessory β subunits and, although different BK modulatory mechanisms have been described, greater interest has recently been placed on the role that the β subunits may play in the modulation of BK channel gating due to its physiological importance. Four β subunits have currently been identified (i.e., β1, β2, β3, and β4) and despite the fact that they all share the same topology, it has been shown that every β subunit has a specific tissue distribution and that they modify channel kinetics as well as their pharmacological properties and the apparent Ca2+ sensitivity of the α subunit in different ways. Additionally, different studies have shown that natural, endogenous, and synthetic compounds can modulate BK channels through β subunits. Considering the importance of these channels in different pathological conditions, such as hypertension and neurological disorders, this review focuses on the mechanisms by which these compounds modulate the biophysical properties of BK channels through the regulation of β subunits, as well as their potential therapeutic uses for diseases such as those mentioned above. PMID:25346693

  14. Cholesterol Down-Regulates BK Channels Stably Expressed in HEK 293 Cells

    Science.gov (United States)

    Deng, Xiu-Ling; Sun, Hai-Ying; Li, Gui-Rong

    2013-01-01

    Cholesterol is one of the major lipid components of the plasma membrane in mammalian cells and is involved in the regulation of a number of ion channels. The present study investigates how large conductance Ca2+-activated K+ (BK) channels are regulated by membrane cholesterol in BK-HEK 293 cells expressing both the α-subunit hKCa1.1 and the auxiliary β1-subunit or in hKCa1.1-HEK 293 cells expressing only the α-subunit hKCa1.1 using approaches of electrophysiology, molecular biology, and immunocytochemistry. Membrane cholesterol was depleted in these cells with methyl-β-cyclodextrin (MβCD), and enriched with cholesterol-saturated MβCD (MβCD-cholesterol) or low-density lipoprotein (LDL). We found that BK current density was decreased by cholesterol enrichment in BK-HEK 293 cells, with a reduced expression of KCa1.1 protein, but not the β1-subunit protein. This effect was fully countered by the proteasome inhibitor lactacystin or the lysosome function inhibitor bafilomycin A1. Interestingly, in hKCa1.1-HEK 293 cells, the current density was not affected by cholesterol enrichment, but directly decreased by MβCD, suggesting that the down-regulation of BK channels by cholesterol depends on the auxiliary β1-subunit. The reduced KCa1.1 channel protein expression was also observed in cultured human coronary artery smooth muscle cells with cholesterol enrichment using MβCD-cholesterol or LDL. These results demonstrate the novel information that cholesterol down-regulates BK channels by reducing KCa1.1 protein expression via increasing the channel protein degradation, and the effect is dependent on the auxiliary β1-subunit. PMID:24260325

  15. Differential contribution of Ca2+ sources to day and night BK current activation in the circadian clock.

    Science.gov (United States)

    Whitt, Joshua P; McNally, Beth A; Meredith, Andrea L

    2018-02-05

    Large conductance K + (BK) channels are expressed widely in neurons, where their activation is regulated by membrane depolarization and intracellular Ca 2+ (Ca 2+ i ). To enable this regulation, BK channels functionally couple to both voltage-gated Ca 2+ channels (VGCCs) and channels mediating Ca 2+ release from intracellular stores. However, the relationship between BK channels and their specific Ca 2+ source for particular patterns of excitability is not well understood. In neurons within the suprachiasmatic nucleus (SCN)-the brain's circadian clock-BK current, VGCC current, and Ca 2+ i are diurnally regulated, but paradoxically, BK current is greatest at night when VGCC current and Ca 2+ i are reduced. Here, to determine whether diurnal regulation of Ca 2+ is relevant for BK channel activation, we combine pharmacology with day and night patch-clamp recordings in acute slices of SCN. We find that activation of BK current depends primarily on three types of channels but that the relative contribution changes between day and night. BK current can be abrogated with nimodipine during the day but not at night, establishing that L-type Ca 2+ channels (LTCCs) are the primary daytime Ca 2+ source for BK activation. In contrast, dantrolene causes a significant decrease in BK current at night, suggesting that nighttime BK activation is driven by ryanodine receptor (RyR)-mediated Ca 2+ i release. The N- and P/Q-type Ca 2+ channel blocker ω-conotoxin MVIIC causes a smaller reduction of BK current that does not differ between day and night. Finally, inhibition of LTCCs, but not RyRs, eliminates BK inactivation, but the BK β2 subunit was not required for activation of BK current by LTCCs. These data reveal a dynamic coupling strategy between BK channels and their Ca 2+ sources in the SCN, contributing to diurnal regulation of SCN excitability. © 2018 Whitt et al.

  16. Renovascular BK(Ca) channels are not activated in vivo under resting conditions and during agonist stimulation

    DEFF Research Database (Denmark)

    Magnusson, Linda; Sørensen, Charlotte Mehlin; Braunstein, Thomas Hartig

    2006-01-01

    We investigated the role of large-conductance Ca(2+)-activated K(+) (BK(Ca)) channels for the basal renal vascular tone in vivo. Furthermore, the possible buffering by BK(Ca) of the vasoconstriction elicited by angiotensin II (ANG II) or norepinephrine (NE) was investigated. The possible activation.......3 nmol/min) did not have any effect. Renal injection of ANG II (1-4 ng) or NE (10-40 ng) produced a transient decrease in RBF. These responses were not affected by preinfusion of TEA or IBT. Renal infusion of the BK(Ca) opener NS-1619 (90.0 nmol/min) did not affect basal RBF or the response to NE......, there is no indication for a major role for BK(Ca) channels in the control of basal renal tone in vivo. Furthermore, BK(Ca) channels do not have a buffering effect on the rat renal vascular responses to ANG II and NE. The fact that NS-1619 attenuates the ANG II response indicates that the renal vascular BK(Ca) channels...

  17. Cholesterol influences voltage-gated calcium channels and BK-type potassium channels in auditory hair cells.

    Directory of Open Access Journals (Sweden)

    Erin K Purcell

    Full Text Available The influence of membrane cholesterol content on a variety of ion channel conductances in numerous cell models has been shown, but studies exploring its role in auditory hair cell physiology are scarce. Recent evidence shows that cholesterol depletion affects outer hair cell electromotility and the voltage-gated potassium currents underlying tall hair cell development, but the effects of cholesterol on the major ionic currents governing auditory hair cell excitability are unknown. We investigated the effects of a cholesterol-depleting agent (methyl beta cyclodextrin, MβCD on ion channels necessary for the early stages of sound processing. Large-conductance BK-type potassium channels underlie temporal processing and open in a voltage- and calcium-dependent manner. Voltage-gated calcium channels (VGCCs are responsible for calcium-dependent exocytosis and synaptic transmission to the auditory nerve. Our results demonstrate that cholesterol depletion reduced peak steady-state calcium-sensitive (BK-type potassium current by 50% in chick cochlear hair cells. In contrast, MβCD treatment increased peak inward calcium current (~30%, ruling out loss of calcium channel expression or function as a cause of reduced calcium-sensitive outward current. Changes in maximal conductance indicated a direct impact of cholesterol on channel number or unitary conductance. Immunoblotting following sucrose-gradient ultracentrifugation revealed BK expression in cholesterol-enriched microdomains. Both direct impacts of cholesterol on channel biophysics, as well as channel localization in the membrane, may contribute to the influence of cholesterol on hair cell physiology. Our results reveal a new role for cholesterol in the regulation of auditory calcium and calcium-activated potassium channels and add to the growing evidence that cholesterol is a key determinant in auditory physiology.

  18. Role of BK channels in the apoptotic volume decrease in native eel intestinal cells

    DEFF Research Database (Denmark)

    Lionetto, Maria Giulia; Giordano, Maria Elena; Calisi, Antonio

    2010-01-01

    High conductance Ca(+)-activated K(+) channels (BK channels) have previously been demonstrated in the eel intestine. They are specifically activated following a hypotonic stress and sustain Regulatory Volume Decrease (RVD). The aim of the present work was to address the possible role...... enterocytes that BK channels, which are involved in RVD in these cells, plays also a crucial role in the AVD process and in the progression of apoptosis....

  19. Molecular investigations of BK(Ca) channels and the modulatory beta-subunits in porcine basilar and middle cerebral arteries

    DEFF Research Database (Denmark)

    Johansson, Helle Wulf; Hay-Schmidt, Anders; Poulsen, Asser Nyander

    2009-01-01

    arteries using reverse transcription polymerase chain reaction (RT-PCR) and quantitative real-time PCR. Western blotting was used to detect immunoreactivity for the porcine BK(Ca) channel alpha-subunit and beta-subunit proteins. The BK(Ca) channel alpha-subunit RNA and protein distribution patterns were......Large conductance calcium-activated potassium (BK(Ca)) channels are fundamental in the regulation of cerebral vascular basal tone. We investigated the expression of the mRNA transcripts for the BK(Ca) channel and its modulatory beta-subunits (beta1-beta4) in porcine basilar and middle cerebral...... visualized using in situ hybridization and immunofluorescence studies, respectively. The study verified that the BK(Ca) channel alpha-subunit is located to smooth muscle cells of porcine basilar and middle cerebral arteries. The mRNA transcript for beta1-, beta2- and beta4-subunit were shown by RT...

  20. The RCK1 high-affinity Ca2+ sensor confers carbon monoxide sensitivity to Slo1 BK channels.

    Science.gov (United States)

    Hou, Shangwei; Xu, Rong; Heinemann, Stefan H; Hoshi, Toshinori

    2008-03-11

    Carbon monoxide (CO) is a lethal gas, but it is also increasingly recognized as a physiological signaling molecule capable of regulating a variety of proteins. Among them, large-conductance Ca(2+)- and voltage-gated K(+) (Slo1 BK) channels, important in vasodilation and neuronal firing, have been suggested to be directly stimulated by CO. However, the molecular mechanism of the stimulatory action of CO on the Slo1 BK channel has not been clearly elucidated. We report here that CO reliably and repeatedly activates Slo1 BK channels in excised membrane patches in the absence of Ca(2+) in a voltage-sensor-independent manner. The stimulatory action of CO on the Slo1 BK channel requires an aspartic acid and two histidine residues located in the cytoplasmic RCK1 domain, and the effect persists under the conditions known to inhibit the conventional interaction between CO and heme in other proteins. We propose that CO acts as a partial agonist for the high-affinity divalent cation sensor in the RCK1 domain of the Slo1 BK channel.

  1. A non-cardiomyocyte autonomous mechanism of cardioprotection involving the SLO1 BK channel

    Directory of Open Access Journals (Sweden)

    Andrew P. Wojtovich

    2013-03-01

    Full Text Available Opening of BK-type Ca2+ activated K+ channels protects the heart against ischemia-reperfusion (IR injury. However, the location of BK channels responsible for cardioprotection is debated. Herein we confirmed that openers of the SLO1 BK channel, NS1619 and NS11021, were protective in a mouse perfused heart model of IR injury. As anticipated, deletion of the Slo1 gene blocked this protection. However, in an isolated cardiomyocyte model of IR injury, protection by NS1619 and NS11021 was insensitive to Slo1 deletion. These data suggest that protection in intact hearts occurs by a non-cardiomyocyte autonomous, SLO1-dependent, mechanism. In this regard, an in-situ assay of intrinsic cardiac neuronal function (tachycardic response to nicotine revealed that NS1619 preserved cardiac neurons following IR injury. Furthermore, blockade of synaptic transmission by hexamethonium suppressed cardioprotection by NS1619 in intact hearts. These results suggest that opening SLO1 protects the heart during IR injury, via a mechanism that involves intrinsic cardiac neurons. Cardiac neuronal ion channels may be useful therapeutic targets for eliciting cardioprotection.

  2. Ethanol modulation of mammalian BK channels in excitable tissues: molecular targets and their possible contribution to alcohol-induced altered behavior

    Directory of Open Access Journals (Sweden)

    Alex M. Dopico

    2014-12-01

    Full Text Available In most tissues, the function of calcium- and voltage-gated potassium (BK channels is modified in response to ethanol concentrations reached in human blood during alcohol intoxication. In general, modification of BK current from ethanol-naïve preparations in response to brief ethanol exposure results from changes in channel open probability without modification of unitary conductance or change in BK protein levels in the membrane. Protracted and/or repeated ethanol exposure, however, may evoke changes in BK expression. The final ethanol effect on BK open probability leading to either BK current potentiation or BK current reduction is determined by an orchestration of molecular factors, including levels of activating ligand (cytosolic calcium, BK subunit composition and posttranslational modifications, and the channel’s lipid microenvironment. These factors seem to allosterically regulate a direct interaction between ethanol and a recognition pocket of discrete dimensions recently mapped to the channel-forming (slo1 subunit. Type of ethanol exposure also plays a role in the final BK response to the drug: in several central nervous system regions (e.g., striatum, primary sensory neurons, and supraoptic nucleus, acute exposure to ethanol reduces neuronal excitability by enhancing BK activity. In contrast, protracted or repetitive ethanol administration may alter BK subunit composition and membrane expression, rendering the BK complex insensitive to further ethanol exposure. In neurohypophysial axon terminals, ethanol potentiation of BK channel activity leads to a reduction in neuropeptide release. In vascular smooth muscle, however, ethanol inhibition of BK current leads to cell contraction and vascular constriction.

  3. The temperature dependence of the BK channel activity - kinetics, thermodynamics, and long-range correlations.

    Science.gov (United States)

    Wawrzkiewicz-Jałowiecka, Agata; Dworakowska, Beata; Grzywna, Zbigniew J

    2017-10-01

    Large-conductance, voltage dependent, Ca 2+ -activated potassium channels (BK) are transmembrane proteins that regulate many biological processes by controlling potassium flow across cell membranes. Here, we investigate to what extent temperature (in the range of 17-37°C with ΔT=5°C step) is a regulating parameter of kinetic properties of the channel gating and memory effect in the series of dwell-time series of subsequent channel's states, at membrane depolarization and hyperpolarization. The obtained results indicate that temperature affects strongly the BK channels' gating, but, counterintuitively, it exerts no effect on the long-range correlations, as measured by the Hurst coefficient. Quantitative differences between dependencies of appropriate channel's characteristics on temperature are evident for different regimes of voltage. Examining the characteristics of BK channel activity as a function of temperature allows to estimate the net activation energy (E act ) and changes of thermodynamic parameters (ΔH, ΔS, ΔG) by channel opening. Larger E act corresponds to the channel activity at membrane hyperpolarization. The analysis of entropy and enthalpy changes of closed to open channel's transition suggest the entropy-driven nature of the increase of open state probability during voltage activation and supports the hypothesis about the voltage-dependent geometry of the channel vestibule. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Differential Regulation of Action Potential Shape and Burst-Frequency Firing by BK and Kv2 Channels in Substantia Nigra Dopaminergic Neurons.

    Science.gov (United States)

    Kimm, Tilia; Khaliq, Zayd M; Bean, Bruce P

    2015-12-16

    Little is known about the voltage-dependent potassium currents underlying spike repolarization in midbrain dopaminergic neurons. Studying mouse substantia nigra pars compacta dopaminergic neurons both in brain slice and after acute dissociation, we found that BK calcium-activated potassium channels and Kv2 channels both make major contributions to the depolarization-activated potassium current. Inhibiting Kv2 or BK channels had very different effects on spike shape and evoked firing. Inhibiting Kv2 channels increased spike width and decreased the afterhyperpolarization, as expected for loss of an action potential-activated potassium conductance. BK inhibition also increased spike width but paradoxically increased the afterhyperpolarization. Kv2 channel inhibition steeply increased the slope of the frequency-current (f-I) relationship, whereas BK channel inhibition had little effect on the f-I slope or decreased it, sometimes resulting in slowed firing. Action potential clamp experiments showed that both BK and Kv2 current flow during spike repolarization but with very different kinetics, with Kv2 current activating later and deactivating more slowly. Further experiments revealed that inhibiting either BK or Kv2 alone leads to recruitment of additional current through the other channel type during the action potential as a consequence of changes in spike shape. Enhancement of slowly deactivating Kv2 current can account for the increased afterhyperpolarization produced by BK inhibition and likely underlies the very different effects on the f-I relationship. The cross-regulation of BK and Kv2 activation illustrates that the functional role of a channel cannot be defined in isolation but depends critically on the context of the other conductances in the cell. This work shows that BK calcium-activated potassium channels and Kv2 voltage-activated potassium channels both regulate action potentials in dopamine neurons of the substantia nigra pars compacta. Although both

  5. Functional validation of Ca2+-binding residues from the crystal structure of the BK ion channel.

    Science.gov (United States)

    Kshatri, Aravind S; Gonzalez-Hernandez, Alberto J; Giraldez, Teresa

    2018-04-01

    BK channels are dually regulated by voltage and Ca 2+ , providing a cellular mechanism to couple electrical and chemical signalling. Intracellular Ca 2+ concentration is sensed by a large cytoplasmic region in the channel known as "gating ring", which is formed by four tandems of regulator of conductance for K + (RCK1 and RCK2) domains. The recent crystal structure of the full-length BK channel from Aplysia californica has provided new information about the residues involved in Ca 2+ coordination at the high-affinity binding sites located in the RCK1 and RCK2 domains, as well as their cooperativity. Some of these residues have not been previously studied in the human BK channel. In this work we have investigated, through site directed mutagenesis and electrophysiology, the effects of these residues on channel activation by voltage and Ca 2+ . Our results demonstrate that the side chains of two non-conserved residues proposed to coordinate Ca 2+ in the A. californica structure (G523 and E591) have no apparent functional role in the human BK Ca 2+ sensing mechanism. Consistent with the crystal structure, our data indicate that in the human channel the conserved residue R514 participates in Ca 2+ coordination in the RCK1 binding site. Additionally, this study provides functional evidence indicating that R514 also interacts with residues E902 and Y904 connected to the Ca 2+ binding site in RCK2. Interestingly, it has been proposed that this interaction may constitute a structural correlate underlying the cooperative interactions between the two high-affinity Ca 2+ binding sites regulating the Ca 2+ dependent gating of the BK channel. This article is part of a Special Issue entitled: Beyond the Structure-Function Horizon of Membrane Proteins edited by Ute Hellmich, Rupak Doshi and Benjamin McIlwain. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Statin therapy exacerbates alcohol-induced constriction of cerebral arteries via modulation of ethanol-induced BK channel inhibition in vascular smooth muscle.

    Science.gov (United States)

    Simakova, Maria N; Bisen, Shivantika; Dopico, Alex M; Bukiya, Anna N

    2017-12-01

    Statins constitute the most commonly prescribed drugs to decrease cholesterol (CLR). CLR is an important modulator of alcohol-induced cerebral artery constriction (AICAC). Using rats on a high CLR diet (2% CLR) we set to determine whether atorvastatin administration (10mg/kg daily for 18-23weeks) modified AICAC. Middle cerebral arteries were pressurized in vitro at 60mmHg and AICAC was evoked by 50mM ethanol, that is within the range of blood alcohol detected in humans following moderate-to-heavy drinking. AICAC was evident in high CLR+atorvastatin group but not in high CLR diet+placebo. Statin exacerbation of AICAC persisted in de-endothelialized arteries, and was blunted by CLR enrichment in vitro. Fluorescence imaging of filipin-stained arteries showed that atorvastatin decreased vascular smooth muscle (VSM) CLR when compared to placebo, this difference being reduced by CLR enrichment in vitro. Voltage- and calcium-gated potassium channels of large conductance (BK) are known VSM targets of ethanol, with their beta1 subunit being necessary for ethanol-induced channel inhibition and resulting AICAC. Ethanol-induced BK inhibition in excised membrane patches from freshly isolated myocytes was exacerbated in the high CLR diet+atorvastatin group when compared to high CLR diet+placebo. Unexpectedly, atorvastatin decreased the amount and function of BK beta1 subunit as documented by immunofluorescence imaging and functional patch-clamp studies. Atorvastatin exacerbation of ethanol-induced BK inhibition disappeared upon artery CLR enrichment in vitro. Our study demonstrates for the first time statin's ability to exacerbate the vascular effect of a widely consumed drug of abuse, this exacerbation being driven by statin modulation of ethanol-induced BK channel inhibition in the VSM via CLR-mediated mechanism. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Double-Nanodomain Coupling of Calcium Channels, Ryanodine Receptors, and BK Channels Controls the Generation of Burst Firing.

    Science.gov (United States)

    Irie, Tomohiko; Trussell, Laurence O

    2017-11-15

    Action potentials clustered into high-frequency bursts play distinct roles in neural computations. However, little is known about ionic currents that control the duration and probability of these bursts. We found that, in cartwheel inhibitory interneurons of the dorsal cochlear nucleus, the likelihood of bursts and the interval between their spikelets were controlled by Ca 2+ acting across two nanodomains, one between plasma membrane P/Q Ca 2+ channels and endoplasmic reticulum (ER) ryanodine receptors and another between ryanodine receptors and large-conductance, voltage- and Ca 2+ -activated K + (BK) channels. Each spike triggered Ca 2+ -induced Ca 2+ release (CICR) from the ER immediately beneath somatic, but not axonal or dendritic, plasma membrane. Moreover, immunolabeling demonstrated close apposition of ryanodine receptors and BK channels. Double-nanodomain coupling between somatic plasma membrane and hypolemmal ER cisterns provides a unique mechanism for rapid control of action potentials on the millisecond timescale. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Relative transmembrane segment rearrangements during BK channel activation resolved by structurally assigned fluorophore–quencher pairing

    Science.gov (United States)

    Pantazis, Antonios

    2012-01-01

    Voltage-activated proteins can sense, and respond to, changes in the electric field pervading the cell membrane by virtue of a transmembrane helix bundle, the voltage-sensing domain (VSD). Canonical VSDs consist of four transmembrane helices (S1–S4) of which S4 is considered a principal component because it possesses charged residues immersed in the electric field. Membrane depolarization compels the charges, and by extension S4, to rearrange with respect to the field. The VSD of large-conductance voltage- and Ca-activated K+ (BK) channels exhibits two salient inconsistencies from the canonical VSD model: (1) the BK channel VSD possesses an additional nonconserved transmembrane helix (S0); and (2) it exhibits a “decentralized” distribution of voltage-sensing charges, in helices S2 and S3, in addition to S4. Considering these unique features, the voltage-dependent rearrangements of the BK VSD could differ significantly from the standard model of VSD operation. To understand the mode of operation of this unique VSD, we have optically tracked the relative motions of the BK VSD transmembrane helices during activation, by manipulating the quenching environment of site-directed fluorescent labels with native and introduced Trp residues. Having previously reported that S0 and S4 diverge during activation, in this work we demonstrate that S4 also diverges from S1 and S2, whereas S2, compelled by its voltage-sensing charged residues, moves closer to S1. This information contributes spatial constraints for understanding the BK channel voltage-sensing process, revealing the structural rearrangements in a non-canonical VSD. PMID:22802360

  9. Cell volume and membrane stretch independently control K+ channel activity

    DEFF Research Database (Denmark)

    Bomholtz, Sofia Hammami; Willumsen, Niels J; Olsen, Hervør L

    2009-01-01

    A number of potassium channels including members of the KCNQ family and the Ca(2+) activated IK and SK, but not BK, are strongly and reversibly regulated by small changes in cell volume. It has been argued that this general regulation is mediated through sensitivity to changes in membrane stretch...... was not affected by membrane stretch. The results indicate that (1) activation of BK channels by local membrane stretch is not mimicked by membrane stress induced by cell swelling, and (2) activation of KCNQ1 channels by cell volume increase is not mediated by local tension in the cell membrane. We conclude....... To test this hypothesis we have studied the regulation of KCNQ1 and BK channels after expression in Xenopus oocytes. Results from cell-attached patch clamp studies (approximately 50 microm(2) macropatches) in oocytes expressing BK channels demonstrate that the macroscopic volume-insensitive BK current...

  10. Local calcium signalling is mediated by mechanosensitive ion channels in mesenchymal stem cells

    International Nuclear Information System (INIS)

    Chubinskiy-Nadezhdin, Vladislav I.; Vasileva, Valeria Y.; Pugovkina, Natalia A.; Vassilieva, Irina O.; Morachevskaya, Elena A.; Nikolsky, Nikolay N.; Negulyaev, Yuri A.

    2017-01-01

    Mechanical forces are implicated in key physiological processes in stem cells, including proliferation, differentiation and lineage switching. To date, there is an evident lack of understanding of how external mechanical cues are coupled with calcium signalling in stem cells. Mechanical reactions are of particular interest in adult mesenchymal stem cells because of their promising potential for use in tissue remodelling and clinical therapy. Here, single channel patch-clamp technique was employed to search for cation channels involved in mechanosensitivity in mesenchymal endometrial-derived stem cells (hMESCs). Functional expression of native mechanosensitive stretch-activated channels (SACs) and calcium-sensitive potassium channels of different conductances in hMESCs was shown. Single current analysis of stretch-induced channel activity revealed functional coupling of SACs and BK channels in plasma membrane. The combination of cell-attached and inside-out experiments have indicated that highly localized Ca 2+ entry via SACs triggers BK channel activity. At the same time, SK channels are not coupled with SACs despite of high calcium sensitivity as compared to BK. Our data demonstrate novel mechanism controlling BK channel activity in native cells. We conclude that SACs and BK channels are clusterized in functional mechanosensitive domains in the plasma membrane of hMESCs. Co-clustering of ion channels may significantly contribute to mechano-dependent calcium signalling in stem cells. - Highlights: • Stretch-induced channel activity in human mesenchymal stem cells was analyzed. • Functional expression of SACs and Ca 2+ -sensitive BK and SK channels was shown. • Local Ca 2+ influx via stretch-activated channels triggers BK channel activity. • SK channels are not coupled with SACs despite higher sensitivity to [Ca 2+ ] i . • Functional clustering of SACs and BK channels in stem cell membrane is proposed.

  11. Differential expression of BK channel isoforms and beta-subunits in rat neuro-vascular tissues

    DEFF Research Database (Denmark)

    Poulsen, Asser Nyander; Wulf, Helle; Hay-Schmidt, Anders

    2009-01-01

    We investigated the expression of splice variants and beta-subunits of the BK channel (big conductance Ca(2+)-activated K(+) channel, Slo1, MaxiK, K(Ca)1.1) in rat cerebral blood vessels, meninges, trigeminal ganglion among other tissues. An alpha-subunit splice variant X1(+24) was found expresse...

  12. Probing the Geometry of the Inner Vestibule of BK Channels with Sugars

    Science.gov (United States)

    Brelidze, Tinatin I.; Magleby, Karl L.

    2005-01-01

    The geometry of the inner vestibule of BK channels was probed by examining the effects of different sugars in the intracellular solution on single-channel current amplitude (unitary current). Glycerol, glucose, and sucrose decreased unitary current through BK channels in a concentration- and size-dependent manner, in the order sucrose > glucose > glycerol, with outward currents being reduced more than inward currents. The fractional decrease of outward current was more directly related to the fractional hydrodynamic volume occupied by the sugars than to changes in osmolality. For concentrations of sugars ≤1 M, the i/V plots for outward currents in the presence and absence of sugar superimposed after scaling, and increasing K+ i from 150 mM to 2 M increased the magnitudes of the i/V plots with little effect on the shape of the scaled curves. These observations suggest that sugars ≤1 M reduce outward currents mainly by entering the inner vestibule and reducing the movement of K+ through the vestibule, rather than by limiting diffusion-controlled access of K+ to the vestibule. With 2 M sucrose, the movement of K+ into the inner vestibule became diffusion limited for 150 mM K+ i and voltages >+100 mV. Increasing K+ i then relieved the diffusion limitation. An estimate of the capture radius based on the 5 pA diffusion-limited current for channels without the ring of negative charge at the entrance to the inner vestibule was 2.2 Å. Adding the radius of a hydrated K+ (6–8 Å) then gave an effective radius for the entrance to the inner vestibule of 8–10 Å. Such a functionally wide entrance to the inner vestibule together with our observation that even small concentrations of sugar in the inner vestibule reduce unitary current suggest that a wide inner vestibule is required for the large conductance of BK channels. PMID:16043773

  13. Overexpression of the Large-Conductance, Ca2+-Activated K+ (BK) Channel Shortens Action Potential Duration in HL-1 Cardiomyocytes.

    Science.gov (United States)

    Stimers, Joseph R; Song, Li; Rusch, Nancy J; Rhee, Sung W

    2015-01-01

    Long QT syndrome is characterized by a prolongation of the interval between the Q wave and the T wave on the electrocardiogram. This abnormality reflects a prolongation of the ventricular action potential caused by a number of genetic mutations or a variety of drugs. Since effective treatments are unavailable, we explored the possibility of using cardiac expression of the large-conductance, Ca2+-activated K+ (BK) channel to shorten action potential duration (APD). We hypothesized that expression of the pore-forming α subunit of human BK channels (hBKα) in HL-1 cells would shorten action potential duration in this mouse atrial cell line. Expression of hBKα had minimal effects on expression levels of other ion channels with the exception of a small but significant reduction in Kv11.1. Patch-clamped hBKα expressing HL-1 cells exhibited an outward voltage- and Ca2+-sensitive K+ current, which was inhibited by the BK channel blocker iberiotoxin (100 nM). This BK current phenotype was not detected in untransfected HL-1 cells or in HL-1 null cells sham-transfected with an empty vector. Importantly, APD in hBKα-expressing HL-1 cells averaged 14.3 ± 2.8 ms (n = 10), which represented a 53% reduction in APD compared to HL-1 null cells lacking BKα expression. APD in the latter cells averaged 31.0 ± 5.1 ms (n = 13). The shortened APD in hBKα-expressing cells was restored to normal duration by 100 nM iberiotoxin, suggesting that a repolarizing K+ current attributed to BK channels accounted for action potential shortening. These findings provide initial proof-of-concept that the introduction of hBKα channels into a cardiac cell line can shorten APD, and raise the possibility that gene-based interventions to increase hBKα channels in cardiac cells may hold promise as a therapeutic strategy for long QT syndrome.

  14. Neuronal fast activating and meningeal silent modulatory BK channel splice variants cloned from rat

    DEFF Research Database (Denmark)

    Poulsen, Asser Nyander; Jansen-Olesen, Inger; Olesen, Jes

    2011-01-01

    The big conductance calcium-activated K(+) channel (BK) is involved in regulating neuron and smooth muscle cell excitability. Functional diversity of BK is generated by alpha-subunit splice variation and co-expression with beta subunits. Here, we present six different splice combinations cloned...... and RCK2 (4 aa at SS1) and upstream of the calcium "bowl" (27 aa at SS4). Two other truncated variants, X2(92) and X2(188), lacking the intracellular C-terminal (stop downstream of S6), were cloned from cerebral vascular/meningeal tissue. They appear non-functional as no current expression was observed...

  15. Inflammatory mediator bradykinin increases population of sensory neurons expressing functional T-type Ca(2+) channels.

    Science.gov (United States)

    Huang, Dongyang; Liang, Ce; Zhang, Fan; Men, Hongchao; Du, Xiaona; Gamper, Nikita; Zhang, Hailin

    2016-04-29

    T-type Ca(2+) channels are important regulators of peripheral sensory neuron excitability. Accordingly, T-type Ca(2+) currents are often increased in various pathological pain conditions, such as inflammation or nerve injury. Here we investigated effects of inflammation on functional expression of T-type Ca(2+) channels in small-diameter cultured dorsal root ganglion (DRG) neurons. We found that overnight treatment of DRG cultures with a cocktail of inflammatory mediators bradykinin (BK), adenosine triphosphate (ATP), norepinephrine (NE) and prostaglandin E2 (PGE2) strongly increased the population size of the small-diameter neurons displaying low-voltage activated (LVA, T-type) Ca(2+) currents while having no effect on the peak LVA current amplitude. When applied individually, BK and ATP also increased the population size of LVA-positive neurons while NE and PGE2 had no effect. The PLC inhibitor U-73122 and B2 receptor antagonist, Hoe-140, both abolished the increase of the population of LVA-positive DRG neurons. Inflammatory treatment did not affect CaV3.2 mRNA or protein levels in DRG cultures. Furthermore, an ubiquitination inhibitor, MG132, did not increase the population of LVA-positive neurons. Our data suggest that inflammatory mediators BK and ATP increase the abundance of LVA-positive DRG neurons in total neuronal population by stimulating the recruitment of a 'reserve pool' of CaV3.2 channels, particularly in neurons that do not display measurable LVA currents under control conditions. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Mechanism of the modulation of BK potassium channel complexes with different auxiliary subunit compositions by the omega-3 fatty acid DHA.

    Science.gov (United States)

    Hoshi, Toshinori; Tian, Yutao; Xu, Rong; Heinemann, Stefan H; Hou, Shangwei

    2013-03-19

    Large-conductance Ca(2+)- and voltage-activated K(+) (BK) channels are well known for their functional versatility, which is bestowed in part by their rich modulatory repertoire. We recently showed that long-chain omega-3 polyunsaturated fatty acids such as docosahexaenoic acid (DHA) found in oily fish lower blood pressure by activating vascular BK channels made of Slo1+β1 subunits. Here we examined the action of DHA on BK channels with different auxiliary subunit compositions. Neuronal Slo1+β4 channels were just as well activated by DHA as vascular Slo1+β1 channels. In contrast, the stimulatory effect of DHA was much smaller in Slo1+β2, Slo1+LRRC26 (γ1), and Slo1 channels without auxiliary subunits. Mutagenesis of β1, β2, and β4 showed that the large effect of DHA in Slo1+β1 and Slo1+β4 is conferred by the presence of two residues, one in the N terminus and the other in the first transmembrane segment of the β1 and β4 subunits. Transfer of this amino acid pair from β1 or β4 to β2 introduces a large response to DHA in Slo1+β2. The presence of a pair of oppositely charged residues at the aforementioned positions in β subunits is associated with a large response to DHA. The Slo1 auxiliary subunits are expressed in a highly tissue-dependent fashion. Thus, the subunit composition-dependent stimulation by DHA demonstrates that BK channels are effectors of omega-3 fatty acids with marked tissue specificity.

  17. Agnoprotein Is an Essential Egress Factor during BK Polyomavirus Infection

    Directory of Open Access Journals (Sweden)

    Margarita-Maria Panou

    2018-03-01

    Full Text Available BK polyomavirus (BKPyV; hereafter referred to as BK causes a lifelong chronic infection and is associated with debilitating disease in kidney transplant recipients. Despite its importance, aspects of the virus life cycle remain poorly understood. In addition to the structural proteins, the late region of the BK genome encodes for an auxiliary protein called agnoprotein. Studies on other polyomavirus agnoproteins have suggested that the protein may contribute to virion infectivity. Here, we demonstrate an essential role for agnoprotein in BK virus release. Viruses lacking agnoprotein fail to release from host cells and do not propagate to wild-type levels. Despite this, agnoprotein is not essential for virion infectivity or morphogenesis. Instead, agnoprotein expression correlates with nuclear egress of BK virions. We demonstrate that the agnoprotein binding partner α-soluble N-ethylmaleimide sensitive fusion (NSF attachment protein (α-SNAP is necessary for BK virion release, and siRNA knockdown of α-SNAP prevents nuclear release of wild-type BK virions. These data highlight a novel role for agnoprotein and begin to reveal the mechanism by which polyomaviruses leave an infected cell.

  18. The Role of Ca2+ and BK Channels of Locus Coeruleus (LC) Neurons as a Brake to the CO2 Chemosensitivity Response of Rats.

    Science.gov (United States)

    Imber, Ann N; Patrone, Luis G A; Li, Ke-Yong; Gargaglioni, Luciane H; Putnam, Robert W

    2018-06-15

    The cellular mechanisms by which LC neurons respond to hypercapnia are usually attributed to an "accelerator" whereby hypercapnic acidosis causes an inhibition of K + channels or activation of Na + and Ca +2 channels to depolarize CO 2 -sensitive neurons. Nevertheless, it is still unknown if this "accelerator" mechanism could be controlled by a brake phenomenon. Whole-cell patch clamping, fluorescence imaging microscopy and plethysmography were used to study the chemosensitive response of the LC neurons. Hypercapnic acidosis activates L-type Ca 2+ channels and large conductance Ca-activated K + (BK) channels, which function as a "brake" on the chemosensitive response of LC neurons. Our findings indicate that both Ca 2+ and BK currents develop over the first 2 weeks of postnatal life in rat LC slices and that this brake pathway may cause the developmental decrease in the chemosensitive firing rate response of LC neurons to hypercapnic acidosis. Inhibition of this brake by paxilline (BK channel inhibitor) returns the magnitude of the chemosensitive firing rate response from LC neurons in rats older than P10 to high values similar to those in LC neurons from younger rats. Inhibition of BK channels in LC neurons by bilateral injections of paxilline into the LC results in a significant increase in the hypercapnic ventilatory response of adult rats. Our findings indicate that a BK channel-based braking system helps to determine the chemosensitive respiratory drive of LC neurons and contributes to the hypercapnic ventilatory response. Perhaps, abnormalities of this braking system could result in hypercapnia-induced respiratory disorders and panic responses. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. Melatonin mediates vasodilation through both direct and indirect activation of BKCa channels.

    Science.gov (United States)

    Zhao, T; Zhang, H; Jin, C; Qiu, F; Wu, Y; Shi, L

    2017-10-01

    Melatonin, synthesized primarily by the pineal gland, is a neuroendocrine hormone with high membrane permeability. The vascular effects of melatonin, including vasoconstriction and vasodilation, have been demonstrated in numerous studies. However, the mechanisms underlying these effects are not fully understood. Large-conductance Ca 2+ -activated K + (BK Ca ) channels are expressed broadly on smooth muscle cells and play an important role in vascular tone regulation. This study explored the mechanisms of myocyte BK Ca channels and endothelial factors underlying the action of melatonin on the mesenteric arteries (MAs). Vascular contractility and patch-clamp studies were performed on myocytes of MAs from Wistar rats. Melatonin induced significant vasodilation on MAs. In the presence of N ω -nitro-l-arginine methyl ester (l-NAME), a potent endothelial oxide synthase (eNOS) inhibitor, melatonin elicited concentration-dependent relaxation, with lowered pIC 50 The effect of melatonin was significantly attenuated in the presence of BK Ca channel blocker iberiotoxin or MT1/MT2 receptor antagonist luzindole in both (+) l-NAME and (-) l-NAME groups. In the (+) l-NAME group, iberiotoxin caused a parallel rightward shift of the melatonin concentration-relaxation curve, with pIC 50 lower than that of luzindole. Both inside-out and cell-attached patch-clamp recordings showed that melatonin significantly increased the open probability, mean open time and voltage sensitivity of BK Ca channels. In a cell-attached patch-clamp configuration, the melatonin-induced enhancement of BK Ca channel activity was significantly suppressed by luzindole. These findings indicate that in addition to the activation of eNOS, melatonin-induced vasorelaxation of MAs is partially attributable to its direct (passing through the cell membrane) and indirect (via MT1/MT2 receptors) activation of the BK Ca channels on mesenteric arterial myocytes. © 2017 Society for Endocrinology.

  20. Up-Regulatory Effects of Curcumin on Large Conductance Ca2+-Activated K+ Channels

    Science.gov (United States)

    Hei, Hongya; Li, Fangping; Wang, Yunman; Peng, Wen; Zhang, Xuemei

    2015-01-01

    Large conductance Ca2+-activated potassium channels (BK) are targets for research that explores therapeutic means to various diseases, owing to the roles of the channels in mediating multiple physiological processes in various cells and tissues. We investigated the pharmacological effects of curcumin, a compound isolated from the herb Curcuma longa, on BK channels. As recorded by whole-cell patch-clamp, curcumin increased BK (α) and BK (α+β1) currents in transfected HEK293 cells as well as the current density of BK in A7r5 smooth muscle cells in a dose-dependent manner. By incubating with curcumin for 24 hours, the current density of exogenous BK (α) in HEK293 cells and the endogenous BK in A7r5 cells were both enhanced notably, though the steady-state activation of the channels did not shift significantly, except for BK (α+β1). Curcumin up-regulated the BK protein expression without changing its mRNA level in A7r5 cells. The surface expression and the half-life of BK channels were also increased by curcumin in HEK293 cells. These effects of curcumin were abolished by MG-132, a proteasome inhibitor. Curcumin also increased ERK 1/2 phosphorylation, while inhibiting ERK by U0126 attenuated the curcumin-induced up-regulation of BK protein expression. We also observed that the curcumin-induced relaxation in the isolated rat aortic rings was significantly attenuated by paxilline, a BK channel specific blocker. These results show that curcumin enhances the activity of the BK channels by interacting with BK directly as well as enhancing BK protein expression through inhibiting proteasomal degradation and activating ERK signaling pathway. The findings suggest that curcumin is a potential BK channel activator and provide novel insight into its complicated pharmacological effects and the underlying mechanisms. PMID:26672753

  1. Up-Regulatory Effects of Curcumin on Large Conductance Ca2+-Activated K+ Channels.

    Directory of Open Access Journals (Sweden)

    Qijing Chen

    Full Text Available Large conductance Ca2+-activated potassium channels (BK are targets for research that explores therapeutic means to various diseases, owing to the roles of the channels in mediating multiple physiological processes in various cells and tissues. We investigated the pharmacological effects of curcumin, a compound isolated from the herb Curcuma longa, on BK channels. As recorded by whole-cell patch-clamp, curcumin increased BK (α and BK (α+β1 currents in transfected HEK293 cells as well as the current density of BK in A7r5 smooth muscle cells in a dose-dependent manner. By incubating with curcumin for 24 hours, the current density of exogenous BK (α in HEK293 cells and the endogenous BK in A7r5 cells were both enhanced notably, though the steady-state activation of the channels did not shift significantly, except for BK (α+β1. Curcumin up-regulated the BK protein expression without changing its mRNA level in A7r5 cells. The surface expression and the half-life of BK channels were also increased by curcumin in HEK293 cells. These effects of curcumin were abolished by MG-132, a proteasome inhibitor. Curcumin also increased ERK 1/2 phosphorylation, while inhibiting ERK by U0126 attenuated the curcumin-induced up-regulation of BK protein expression. We also observed that the curcumin-induced relaxation in the isolated rat aortic rings was significantly attenuated by paxilline, a BK channel specific blocker. These results show that curcumin enhances the activity of the BK channels by interacting with BK directly as well as enhancing BK protein expression through inhibiting proteasomal degradation and activating ERK signaling pathway. The findings suggest that curcumin is a potential BK channel activator and provide novel insight into its complicated pharmacological effects and the underlying mechanisms.

  2. Thermal Stability of siRNA Modulates Aptamer- conjugated siRNA Inhibition

    Directory of Open Access Journals (Sweden)

    Alexey Berezhnoy

    2012-01-01

    Full Text Available Oligonucleotide aptamer-mediated in vivo cell targeting of small interfering RNAs (siRNAs is emerging as a useful approach to enhance the efficacy and reduce the adverse effects resulting from siRNA-mediated genetic interference. A current main impediment in aptamer-mediated siRNA targeting is that the activity of the siRNA is often compromised when conjugated to an aptamer, often requiring labor intensive and time consuming design and testing of multiple configurations to identify a conjugate in which the siRNA activity has not been significantly reduced. Here, we show that the thermal stability of the siRNA is an important parameter of siRNA activity in its conjugated form, and that siRNAs with lower melting temperature (Tm are not or are minimally affected when conjugated to the 3′ end of 2′F-pyrimidine-modified aptamers. In addition, the configuration of the aptamer-siRNA conjugate retains activity comparable with the free siRNA duplex when the passenger strand is co-transcribed with the aptamer and 3′ overhangs on the passenger strand are removed. The approach described in this paper significantly reduces the time and effort necessary to screening siRNA sequences that retain biological activity upon aptamer conjugation, facilitating the process of identifying candidate aptamer-siRNA conjugates suitable for in vivo testing.

  3. Hydralazine-induced vasodilation involves opening of high conductance Ca2+-activated K+ channels

    DEFF Research Database (Denmark)

    Bang, Lone; Nielsen-Kudsk, J E; Gruhn, N

    1998-01-01

    The purpose of this study was to investigate whether high conductance Ca2+-activated K+ channels (BK(Ca)) are mediating the vasodilator action of hydralazine. In isolated porcine coronary arteries, hydralazine (1-300 microM), like the K+ channel opener levcromakalim, preferentially relaxed......M) suppressed this response by 82% (P opening of BK(Ca) takes part in the mechanism whereby...

  4. Potassium channels in brain mitochondria.

    Science.gov (United States)

    Bednarczyk, Piotr

    2009-01-01

    Potassium channels are the most widely distributed class of ion channels. These channels are transmembrane proteins known to play important roles in both normal and pathophysiological functions in all cell types. Various potassium channels are recognised as potential therapeutic targets in the treatment of Parkinson's disease, Alzheimer's disease, brain/spinal cord ischaemia and sepsis. In addition to their importance as therapeutic targets, certain potassium channels are known for their beneficial roles in anaesthesia, cardioprotection and neuroprotection. Some types of potassium channels present in the plasma membrane of various cells have been found in the inner mitochondrial membrane as well. Potassium channels have been proposed to regulate mitochondrial membrane potential, respiration, matrix volume and Ca(+) ion homeostasis. It has been proposed that mitochondrial potassium channels mediate ischaemic preconditioning in various tissues. However, the specificity of a pharmacological agents and the mechanisms underlying their effects on ischaemic preconditioning remain controversial. The following potassium channels from various tissues have been identified in the inner mitochondrial membrane: ATP-regulated (mitoK(ATP)) channel, large conductance Ca(2+)-regulated (mitoBK(Ca)) channel, intermediate conductance Ca(2+)-regulated (mitoIK(Ca)) channel, voltage-gated (mitoKv1.3 type) channel, and twin-pore domain (mitoTASK-3) channel. It has been shown that increased potassium flux into brain mitochondria induced by either the mitoK(ATP) channel or mitoBK(Ca) channel affects the beneficial effects on neuronal cell survival under pathological conditions. Recently, differential distribution of mitoBK(Ca) channels has been observed in neuronal mitochondria. These findings may suggest a neuroprotective role for the mitoBK(Ca) channel in specific brain structures. This minireview summarises current data on brain mitochondrial potassium channels and the efforts to identify

  5. Expression of BKCa channels and the modulatory ß-subunits in the rat and porcine trigeminal ganglion

    DEFF Research Database (Denmark)

    Wulf-Johansson, Helle; Hay-Schmidt, Anders; Poulsen, Asser Nyander

    2009-01-01

    Large conductance calcium-activated potassium (BK(Ca)) channels contribute to electrical impulses, proper signal transmission of information and regulation of neurotransmitter release. Migraine has been proposed to be a trigeminovascular disease involving the sensory trigeminal pathways and the c...

  6. Adrenaline-induced colonic K+ secretion is mediated by KCa1.1 (BK) channels

    DEFF Research Database (Denmark)

    Sørensen, Mads Vaarby; Sausbier, Matthias; Ruth, Peter

    2010-01-01

    . However, the secretory K(+) channel responsible for cAMP-induced K(+) secretion remains to be defined. In this study we used the Ussing chamber to identify adrenaline-induced electrogenic K(+) secretion. We found that the adrenaline-induced electrogenic ion secretion is a compound effect dominated...... variants in colonic enterocytes (STREX and ZERO). Importantly, the ZERO variant known to be activated by cAMP is differentially up-regulated in enterocytes from animals on a high K(+) diet. In summary, these results strongly suggest that the adrenaline-induced distal colonic K(+) secretion is mediated...

  7. Dual peptide-mediated targeted delivery of bioactive siRNAs to oral cancer cells in vivo.

    Science.gov (United States)

    Alexander-Bryant, Angela A; Zhang, Haiwen; Attaway, Christopher C; Pugh, William; Eggart, Laurence; Sansevere, Robert M; Andino, Lourdes M; Dinh, Lu; Cantini, Liliana P; Jakymiw, Andrew

    2017-09-01

    Despite significant advances in cancer treatment, the prognosis for oral cancer remains poor in comparison to other cancer types, including breast, skin, and prostate. As a result, more effective therapeutic modalities are needed for the treatment of oral cancer. Consequently, in the present study, we examined the feasibility of using a dual peptide carrier approach, combining an epidermal growth factor receptor (EGFR)-targeting peptide with an endosome-disruptive peptide, to mediate targeted delivery of small interfering RNAs (siRNAs) into EGFR-overexpressing oral cancer cells and induce silencing of the targeted oncogene, cancerous inhibitor of protein phosphatase 2A (CIP2A). Fluorescence microscopy, real-time PCR, Western blot analysis, and in vivo bioimaging of mice containing orthotopic xenograft tumors were used to examine the ability of the dual peptide carrier to mediate specific delivery of bioactive siRNAs into EGFR-overexpressing oral cancer cells/tissues. Co-complexation of the EGFR-targeting peptide, GE11R9, with the endosome-disruptive 599 peptide facilitated the specific uptake of siRNAs into oral cancer cells overexpressing EGFR in vitro with optimal gene silencing observed at a 60:30:1 (GE11R9:599:siRNA) molar ratio. Furthermore, when administered systemically to mice bearing xenograft oral tumors, this dual peptide complex mediated increased targeted delivery of siRNAs into tumor tissues in comparison to the 599 peptide alone and significantly enhanced CIP2A silencing. Herein we provide the first report demonstrating the clinical potential of a dual peptide strategy for siRNA-based therapeutics by synergistically mediating the effective targeting and delivery of bioactive siRNAs into EGFR-overexpressing oral cancer cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Inefficient cationic lipid-mediated siRNA and antisense oligonucleotide transfer to airway epithelial cells in vivo

    Directory of Open Access Journals (Sweden)

    Hu Jim

    2006-02-01

    Full Text Available Abstract Background The cationic lipid Genzyme lipid (GL 67 is the current "gold-standard" for in vivo lung gene transfer. Here, we assessed, if GL67 mediated uptake of siRNAs and asODNs into airway epithelium in vivo. Methods Anti-lacZ and ENaC (epithelial sodium channel siRNA and asODN were complexed to GL67 and administered to the mouse airway epithelium in vivo Transfection efficiency and efficacy were assessed using real-time RT-PCR as well as through protein expression and functional studies. In parallel in vitro experiments were carried out to select the most efficient oligonucleotides. Results In vitro, GL67 efficiently complexed asODNs and siRNAs, and both were stable in exhaled breath condensate. Importantly, during in vitro selection of functional siRNA and asODN we noted that asODNs accumulated rapidly in the nuclei of transfected cells, whereas siRNAs remained in the cytoplasm, a pattern consistent with their presumed site of action. Following in vivo lung transfection siRNAs were only visible in alveolar macrophages, whereas asODN also transfected alveolar epithelial cells, but no significant uptake into conducting airway epithelial cells was seen. SiRNAs and asODNs targeted to β-galactosidase reduced βgal mRNA levels in the airway epithelium of K18-lacZ mice by 30% and 60%, respectively. However, this was insufficient to reduce protein expression. In an attempt to increase transfection efficiency of the airway epithelium, we increased contact time of siRNA and asODN using the in vivo mouse nose model. Although highly variable and inefficient, transfection of airway epithelium with asODN, but not siRNA, was now seen. As asODNs more effectively transfected nasal airway epithelial cells, we assessed the effect of asODN against ENaC, a potential therapeutic target in cystic fibrosis; no decrease in ENaC mRNA levels or function was detected. Conclusion This study suggests that although siRNAs and asODNs can be developed to inhibit

  9. The first transmembrane domain (TM1) of β2-subunit binds to the transmembrane domain S1 of α-subunit in BK potassium channels

    Science.gov (United States)

    Morera, Francisco J.; Alioua, Abderrahmane; Kundu, Pallob; Salazar, Marcelo; Gonzalez, Carlos; Martinez, Agustin D.; Stefani, Enrico; Toro, Ligia; Latorre, Ramon

    2012-01-01

    The BK channel is one of the most broadly expressed ion channels in mammals. In many tissues, the BK channel pore-forming α-subunit is associated to an auxiliary β-subunit that modulates the voltage- and Ca2+-dependent activation of the channel. Structural components present in β-subunits that are important for the physical association with the α-subunit are yet unknown. Here, we show through co-immunoprecipitation that the intracellular C-terminus, the second transmembrane domain (TM2) and the extracellular loop of the β2-subunit are dispensable for association with the α-subunit pointing transmembrane domain 1 (TM1) as responsible for the interaction. Indeed, the TOXCAT assay for transmembrane protein–protein interactions demonstrated for the first time that TM1 of the β2-subunit physically binds to the transmembrane S1 domain of the α-subunit. PMID:22710124

  10. Evaluation of carrier-mediated siRNA delivery

    DEFF Research Database (Denmark)

    Colombo, Stefano; Nielsen, Hanne Mørck; Foged, Camilla

    2013-01-01

    RNA delivery. An in vitro cell culture model system expressing enhanced green fluorescent protein (EGFP) was used to develop the assay, which was based on the intracellular quantification of a full-length double-stranded Dicer substrate siRNA by stem-loop RT qPCR. The result is a well-documented protocol......RNA delivered by use of carriers remains an analytical challenge. The purpose of the present study was to optimize and validate an analytical protocol based on stem-loop reverse transcription quantitative polymerase chain reaction (RT qPCR) to quantitatively monitor the carrier-mediated intracellular si...

  11. Gold nanoparticle mediated laser transfection for efficient siRNA mediated gene knock down.

    Directory of Open Access Journals (Sweden)

    Dag Heinemann

    Full Text Available Laser based transfection methods have proven to be an efficient and gentle alternative to established molecule delivery methods like lipofection or electroporation. Among the laser based methods, gold nanoparticle mediated laser transfection bears the major advantage of high throughput and easy usability. This approach uses plasmon resonances on gold nanoparticles unspecifically attached to the cell membrane to evoke transient and spatially defined cell membrane permeabilization. In this study, we explore the parameter regime for gold nanoparticle mediated laser transfection for the delivery of molecules into cell lines and prove its suitability for siRNA mediated gene knock down. The developed setup allows easy usage and safe laser operation in a normal lab environment. We applied a 532 nm Nd:YAG microchip laser emitting 850 ps pulses at a repetition rate of 20.25 kHz. Scanning velocities of the laser spot over the sample of up to 200 mm/s were tested without a decline in perforation efficiency. This velocity leads to a process speed of ∼8 s per well of a 96 well plate. The optimal particle density was determined to be ∼6 particles per cell using environmental scanning electron microscopy. Applying the optimized parameters transfection efficiencies of 88% were achieved in canine pleomorphic adenoma ZMTH3 cells using a fluorescent labeled siRNA while maintaining a high cell viability of >90%. Gene knock down of d2-EGFP was demonstrated and validated by fluorescence repression and western blot analysis. On basis of our findings and established mathematical models we suppose a mixed transfection mechanism consisting of thermal and multiphoton near field effects. Our findings emphasize that gold nanoparticle mediated laser transfection provides an excellent tool for molecular delivery for both, high throughput purposes and the transfection of sensitive cells types.

  12. Gold nanoparticle mediated laser transfection for efficient siRNA mediated gene knock down.

    Science.gov (United States)

    Heinemann, Dag; Schomaker, Markus; Kalies, Stefan; Schieck, Maximilian; Carlson, Regina; Murua Escobar, Hugo; Ripken, Tammo; Meyer, Heiko; Heisterkamp, Alexander

    2013-01-01

    Laser based transfection methods have proven to be an efficient and gentle alternative to established molecule delivery methods like lipofection or electroporation. Among the laser based methods, gold nanoparticle mediated laser transfection bears the major advantage of high throughput and easy usability. This approach uses plasmon resonances on gold nanoparticles unspecifically attached to the cell membrane to evoke transient and spatially defined cell membrane permeabilization. In this study, we explore the parameter regime for gold nanoparticle mediated laser transfection for the delivery of molecules into cell lines and prove its suitability for siRNA mediated gene knock down. The developed setup allows easy usage and safe laser operation in a normal lab environment. We applied a 532 nm Nd:YAG microchip laser emitting 850 ps pulses at a repetition rate of 20.25 kHz. Scanning velocities of the laser spot over the sample of up to 200 mm/s were tested without a decline in perforation efficiency. This velocity leads to a process speed of ∼8 s per well of a 96 well plate. The optimal particle density was determined to be ∼6 particles per cell using environmental scanning electron microscopy. Applying the optimized parameters transfection efficiencies of 88% were achieved in canine pleomorphic adenoma ZMTH3 cells using a fluorescent labeled siRNA while maintaining a high cell viability of >90%. Gene knock down of d2-EGFP was demonstrated and validated by fluorescence repression and western blot analysis. On basis of our findings and established mathematical models we suppose a mixed transfection mechanism consisting of thermal and multiphoton near field effects. Our findings emphasize that gold nanoparticle mediated laser transfection provides an excellent tool for molecular delivery for both, high throughput purposes and the transfection of sensitive cells types.

  13. Gold Nanoparticle Mediated Laser Transfection for Efficient siRNA Mediated Gene Knock Down

    Science.gov (United States)

    Heinemann, Dag; Schomaker, Markus; Kalies, Stefan; Schieck, Maximilian; Carlson, Regina; Escobar, Hugo Murua; Ripken, Tammo; Meyer, Heiko; Heisterkamp, Alexander

    2013-01-01

    Laser based transfection methods have proven to be an efficient and gentle alternative to established molecule delivery methods like lipofection or electroporation. Among the laser based methods, gold nanoparticle mediated laser transfection bears the major advantage of high throughput and easy usability. This approach uses plasmon resonances on gold nanoparticles unspecifically attached to the cell membrane to evoke transient and spatially defined cell membrane permeabilization. In this study, we explore the parameter regime for gold nanoparticle mediated laser transfection for the delivery of molecules into cell lines and prove its suitability for siRNA mediated gene knock down. The developed setup allows easy usage and safe laser operation in a normal lab environment. We applied a 532 nm Nd:YAG microchip laser emitting 850 ps pulses at a repetition rate of 20.25 kHz. Scanning velocities of the laser spot over the sample of up to 200 mm/s were tested without a decline in perforation efficiency. This velocity leads to a process speed of ∼8 s per well of a 96 well plate. The optimal particle density was determined to be ∼6 particles per cell using environmental scanning electron microscopy. Applying the optimized parameters transfection efficiencies of 88% were achieved in canine pleomorphic adenoma ZMTH3 cells using a fluorescent labeled siRNA while maintaining a high cell viability of >90%. Gene knock down of d2-EGFP was demonstrated and validated by fluorescence repression and western blot analysis. On basis of our findings and established mathematical models we suppose a mixed transfection mechanism consisting of thermal and multiphoton near field effects. Our findings emphasize that gold nanoparticle mediated laser transfection provides an excellent tool for molecular delivery for both, high throughput purposes and the transfection of sensitive cells types. PMID:23536802

  14. Down-regulation of viral replication by adenoviral-mediated expression of siRNA against cellular cofactors for hepatitis C virus

    International Nuclear Information System (INIS)

    Zhang Jing; Yamada, Osamu; Sakamoto, Takashi; Yoshida, Hiroshi; Iwai, Takahiro; Matsushita, Yoshihisa; Shimamura, Hideo; Araki, Hiromasa; Shimotohno, Kunitada

    2004-01-01

    Small interfering RNA (siRNA) is currently being evaluated not only as a powerful tool for functional genomics, but also as a potentially promising therapeutic agent for cancer and infectious diseases. Inhibitory effect of siRNA on viral replication has been demonstrated in multiple pathogenic viruses. However, because of the high sequence specificity of siRNA-mediated RNA degradation, antiviral efficacy of siRNA directed to viral genome will be largely limited by emergence of escape variants resistant to siRNA due to high mutation rates of virus, especially RNA viruses such as poliovirus and hepatitis C virus (HCV). To investigate the therapeutic feasibility of siRNAs specific for the putative cellular cofactors for HCV, we constructed adenovirus vectors expressing siRNAs against La, polypyrimidine tract-binding protein (PTB), subunit gamma of human eukaryotic initiation factors 2B (eIF2Bγ), and human VAMP-associated protein of 33 kDa (hVAP-33). Adenoviral-mediated expression of siRNAs markedly diminished expression of the endogenous genes, and silencing of La, PTB, and hVAP-33 by siRNAs substantially blocked HCV replication in Huh-7 cells. Thus, our studies demonstrate the feasibility and potential of adenoviral-delivered siRNAs specific for cellular cofactors in combating HCV infection, which can be used either alone or in combination with siRNA against viral genome to prevent the escape of mutant variants and provide additive or synergistic anti-HCV effects

  15. Cholesterol tuning of BK ethanol response is enantioselective, and is a function of accompanying lipids.

    Directory of Open Access Journals (Sweden)

    Chunbo Yuan

    Full Text Available In the search to uncover ethanol's molecular mechanisms, the calcium and voltage activated, large conductance potassium channel (BK has emerged as an important molecule. We examine how cholesterol content in bilayers of 1,2-dioleoyl-3-phosphatidylethanolamine (DOPE/sphingomyelin (SPM and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylethanolamine (POPE/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylserine (POPS affect the function and ethanol sensitivity of BK. In addition, we examine how manipulation of cholesterol in biological membranes modulates ethanol's actions on BK. We report that cholesterol levels regulate the change in BK channel open probability elicited by 50 mM ethanol. Low levels of cholesterol (<20%, molar ratio supports ethanol activation, while high levels of cholesterol leads to ethanol inhibition of BK. To determine if cholesterol affects BK and its sensitivity to ethanol through a direct cholesterol-protein interaction or via an indirect action on the lipid bilayer, we used the synthetic enantiomer of cholesterol (ent-CHS. We found that 20% and 40% ent-CHS had little effect on the ethanol sensitivity of BK, when compared with the same concentration of nat-CHS. We accessed the effects of ent-CHS and nat-CHS on the molecular organization of DOPE/SPM monolayers at the air/water interface. The isotherm data showed that ent-CHS condensed DOPE/SPM monolayer equivalently to nat-CHS at a 20% concentration, but slightly less at a 40% concentration. Atomic force microscopy (AFM images of DOPE/SPM membranes in the presence of ent-CHS or nat-CHS prepared with LB technique or vesicle deposition showed no significant difference in topographies, supporting the interpretation that the differences in actions of nat-CHS and ent-CHS on BK channel are not likely from a generalized action on bilayers. We conclude that membrane cholesterol influences ethanol's modulation of BK in a complex manner, including an interaction with the channel protein

  16. Astaxanthin and Docosahexaenoic Acid Reverse the Toxicity of the Maxi-K (BK Channel Antagonist Mycotoxin Penitrem A

    Directory of Open Access Journals (Sweden)

    Amira A. Goda

    2016-11-01

    Full Text Available Penitrem A (PA is a food mycotoxin produced by several terrestrial and few marine Penicillium species. PA is a potent tremorgen through selective antagonism of the calcium-dependent potassium BK (Maxi-K channels. Discovery of natural products that can prevent the toxic effects of PA is important for food safety. Astaxanthin (AST is a marine natural xanthophyll carotenoid with documented antioxidant activity. Unlike other common antioxidants, AST can cross blood brain barriers (BBBs, inducing neuroprotective effects. Docosahexaenoic acid (DHA is polyunsaturated ω-3 fatty acid naturally occurring in fish and algae. DHA is essential for normal neurological and cellular development. This study evaluated the protective activity of AST and DHA against PA-induced toxicity, in vitro on Schwann cells CRL-2765 and in vivo in the worm Caenorhbitidis elegans and Sprague Dawley rat models. PA inhibited the viability of Schwann cells, with an IC50 of 22.6 μM. Dose-dependent treatments with 10–100 μM DHA significantly reversed the PA toxicity at its IC50 dose, and improved the survival of Schwann cells to 70.5%–98.8%. Similarly, dose-dependent treatments with 10–20 μM AST reversed the PA toxicity at its IC50 dose and raised these cells’ survival to 61.7%–70.5%. BK channel inhibition in the nematode C. elegans is associated with abnormal reversal locomotion. DHA and AST counteracted the in vivo PA BK channel antagonistic activity in the C. elegans model. Rats fed a PA-contaminated diet showed high levels of glutamate (GLU, aspartate (ASP, and gamma amino butyric acid (GABA, with observed necrosis or absence of Purkinjie neurons, typical of PA-induced neurotoxicity. Dopamine (DA, serotonin (5-HT, and norepinephrine (NE levels were abnormal, Nitric Oxide (NO and Malondialdehyde (MDA levels were significantly increased, and total antioxidant capacity (TAC level in serum and brain homogenates was significantly decreased in PA-treated rats. DHA and AST

  17. siRNA and innate immunity.

    Science.gov (United States)

    Robbins, Marjorie; Judge, Adam; MacLachlan, Ian

    2009-06-01

    Canonical small interfering RNA (siRNA) duplexes are potent activators of the mammalian innate immune system. The induction of innate immunity by siRNA is dependent on siRNA structure and sequence, method of delivery, and cell type. Synthetic siRNA in delivery vehicles that facilitate cellular uptake can induce high levels of inflammatory cytokines and interferons after systemic administration in mammals and in primary human blood cell cultures. This activation is predominantly mediated by immune cells, normally via a Toll-like receptor (TLR) pathway. The siRNA sequence dependency of these pathways varies with the type and location of the TLR involved. Alternatively nonimmune cell activation may also occur, typically resulting from siRNA interaction with cytoplasmic RNA sensors such as RIG1. As immune activation by siRNA-based drugs represents an undesirable side effect due to the considerable toxicities associated with excessive cytokine release in humans, understanding and abrogating this activity will be a critical component in the development of safe and effective therapeutics. This review describes the intracellular mechanisms of innate immune activation by siRNA, the design of appropriate sequences and chemical modification approaches, and suitable experimental methods for studying their effects, with a view toward reducing siRNA-mediated off-target effects.

  18. [β-estradiol activates BK(Ca) in mesenteric artery smooth muscle cells of post-menopause women].

    Science.gov (United States)

    Cheng, Jun; Zeng, Xiao-Rong; Li, Peng-Yun; Lu, Ting-Ting; Tan, Xiao-Qiu; Wen, Jing; Yang, Yan

    2012-04-25

    The aim of the present study was to study the effect of β-estradiol (β-E(2)) on the large-conductance Ca(2+)-activated potassium (BK(Ca)) channel in mesenteric artery smooth muscle cells (SMCs). The mesenteric arteries were obtained from post-menopause female patients with abdominal surgery, and the SMCs were isolated from the arteries using an enzymatic disassociation. According to the sources, the SMCs were divided into non-hypertension (NH) and essential hypertension (EH) groups. Single channel patch clamp technique was used to investigate the effect of β-E(2) and ICI 182780 (a specific blocker of estrogen receptor) on BK(Ca) in the SMCs. The results showed the opening of BK(Ca) in the SMCs was voltage and calcium dependent, and could be blocked by IbTX. β-E(2) (100 μmol/L) significantly increased open probability (Po) of BK(Ca) in both NH and EH groups. After β-E(2) treatment, NH group showed higher Po of BK(Ca) compared with EH group. ICI 182780 could inhibit the activating effect of β-E(2) on BK(Ca) in no matter NH or EH groups. These results suggest β-E(2) activates BK(Ca) in mesenteric artery SMCs from post-menopause women via estrogen receptor, but hypertension may decline the activating effect of β-E(2) on BK(Ca).

  19. Antibody-mediated platelet phagocytosis by human macrophages is inhibited by siRNA specific for sequences in the SH2 tyrosine kinase, Syk.

    Science.gov (United States)

    Lu, Ying; Wang, Weiming; Mao, Huiming; Hu, Hai; Wu, Yanling; Chen, Bing-Guan; Liu, Zhongmin

    2011-01-01

    Immune thrombocytopenia depends upon Fc receptor-mediated phagocytosis that involves signaling through the SH2 tyrosine kinase, Syk. We designed small interfering (siRNA) sequences complementary to Syk coding regions to decrease the expression of Syk in the human macrophage cell line, THP-1. To evaluate the functional effect of siRNA on phagocytosis, we developed a new in vitro assay for antibody-mediated platelet ingestion by THP-1 cells. Incubation of THP-1 cells at 37°C with fluorescence-labeled platelets and anti-platelet antibody promoted ingestion of platelets that could be quantitated by flow cytometry. Transfection of THP-1 cells with Syk-specific siRNA resulted in a reduction in the amount of FcγRII-associated Syk protein. Coincident with decreased Syk expression, we observed inhibition of antibody-mediated platelet ingestion. These results confirm a key role for Syk in antibody-mediated phagocytosis and suggest Syk-specific siRNA as a possible therapeutic candidate for immune thrombocytopenia. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. PEGylated carboxymethyl chitosan/calcium phosphate hybrid anionic nanoparticles mediated hTERT siRNA delivery for anticancer therapy.

    Science.gov (United States)

    Xie, Ying; Qiao, Hongzhi; Su, Zhigui; Chen, Minglei; Ping, Qineng; Sun, Minjie

    2014-09-01

    Lack of safe and effective delivery vehicle is the main obstacle for siRNA mediated cancer therapy. In this study, we synthesized a pH-sensitive polymer of PEG grafted carboxymethyl chitosan (PEG-CMCS) and developed anionic-charged hybrid nanoparticles of PEG-CMCS and calcium phosphate (CaP) for siRNA delivery through a single-step self-assembly method in aqueous condition. The formed nanoparticles with charge of around -8.25 mv and average diameter of 102.1 nm exhibited efficient siRNA encapsulation and enhanced colloidal and serum stability. The test in vitro indicated that the nanoparticles entered into HepG2 cells by endocytosis, and achieved endosomal escape of siRNA effectively due to the pH-responsive disassembly of nanoparticles and dissolution of CaP in the endosome. Reporter gene silencing assay showed that luciferase siRNA delivered by the anionic nanoparticles could achieve gene silencing efficacy comparable to that of conventional Lipofectamine 2000. Additionally, dramatic hTERT knockdown mediated by the anionic nanoparticles transfection induced significant apoptosis of HepG2 cells in vitro. After intravenous injection in tumor-bearing BALB/c nude mice, the nanoparticles specifically accumulated into tumor regions by EPR effect, leading to efficient and specific gene silencing sequentially. Most importantly, the nanoparticles carrying hTERT siRNA inhibited tumor growth significantly via silencing hTERT expression and inducing cells apoptosis in HepG2 tumor xenograft. Moreover, comprehensive safety studies of the nanoparticles confirmed their superior safety both in vitro and in vivo. We concluded that the PEG-CMCS/CaP hybrid anionic nanoparticles possessed potential as a safe and effective siRNA delivery system for anticancer therapy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Albumin-mediated delivery of siRNA

    DEFF Research Database (Denmark)

    Bienk, Konrad

    2015-01-01

    . The human body, however, possesses several natural transport mechanisms for active transport of molecules. Amongst these is albumin, which is the most abundant plasma protein and has a circulatory half-life of ~21 days, partially due to engagement and recycling by the neonatal Fc receptor (FcRn). Albumin...... vehicle. This proof of concept silencing showed that siRNA can be used for therapeutic purposes without the use of non-biocompatible polymer or lipid materials. This work, therefore, provides a novel technology platform for the safe delivery of siRNA therapeutics....

  2. Neuroprotection by biodegradable PAMAM ester (e-PAM-R)-mediated HMGB1 siRNA delivery in primary cortical cultures and in the postischemic brain.

    Science.gov (United States)

    Kim, Il-Doo; Lim, Chae-Moon; Kim, Jung-Bin; Nam, Hye Yeong; Nam, Kihoon; Kim, Seung-Woo; Park, Jong-Sang; Lee, Ja-Kyeong

    2010-03-19

    Although RNA interference (RNAi)-mediated gene silencing provides a powerful strategy for modulating specific gene functions, difficulties associated with siRNA delivery have impeded the development of efficient therapeutic applications. In particular, the efficacy of siRNA delivery into neurons has been limited by extremely low transfection efficiencies. e-PAM-R is a biodegradable arginine ester of PAMAM dendrimer, which is readily degradable under physiological conditions (pH 7.4, 37 degrees C). In the present study, we investigated the efficiency of siRNA delivery by e-PAM-R in primary cortical cultures and in rat brain. e-PAM-R/siRNA complexes showed high transfection efficiencies and low cytotoxicities in primary cortical cultures. Localization of fluorescence-tagged siRNA revealed that siRNA was delivered not only into the nucleus and cytoplasm, but also along the processes of the neuron. e-PAM-R/siRNA complex-mediated target gene reduction was observed in over 40% of cells and it was persistent for over 48 h. The potential use of e-PAM-R was demonstrated by gene knockdown after transfecting High mobility group box-1 (HMGB1, a novel cytokine-like molecule) siRNA into H(2)O(2)- or NMDA-treated primary cortical cultures. In these cells, HMGB1 siRNA delivery successfully reduced both basal and H(2)O(2)- or NMDA-induced HMGB1 levels, and as a result of that, neuronal cell death was significantly suppressed in both cases. Furthermore, we showed that e-PAM-R successfully delivered HMGB1 siRNA into the rat brain, wherein HMGB1 expression was depleted in over 40% of neurons and astrocytes of the normal brain. Moreover, e-PAM-R-mediated HMGB1 siRNA delivery notably reduced infarct volume in the postischemic rat brain, which is generated by occluding the middle cerebral artery for 60 min. These results indicate that e-PAM-R, a novel biodegradable nonviral gene carrier, offers an efficient means of transfecting siRNA into primary neuronal cells and in the brain and of

  3. Quantification and distribution of big conductance Ca2+-activated K+ channels in kidney epithelia

    DEFF Research Database (Denmark)

    Grunnet, Morten; Hay-Schmidt, Anders; Klaerke, Dan A

    2005-01-01

    and immunohistochemical studies. In cortical collecting ducts, BK channels were exclusively located in principal cells while no channels could be found in intercalated cells. The abundant and distinct distribution in kidney epithelia talks in favor for BK channels being important contributors in maintaining salt......Big conductance Ca2+ activated K+ channels (BK channels) is an abundant channel present in almost all kind of tissue. The accurate quantity and especially the precise distribution of this channel in kidney epithelia are, however, still debated. The aim of the present study has therefore been...... to examine the presence of BK channels in kidney epithelia and determine the actual number and distribution of these channels. For this purpose, a selective peptidyl ligand for BK channels called iberiotoxin or the radiolabeled double mutant analog 125I-IbTX-D19Y/Y36F has been employed. The presence of BK...

  4. Structure of the (0+,1+) mesons Bs0 and Bs1, and the strong coupling constant gBs0BK and gBs1B*K

    International Nuclear Information System (INIS)

    Wang, Z. G.

    2008-01-01

    In this article, we take the point of view that the bottomed (0 + ,1 + ) mesons B s0 and B s1 are the conventional bs meson and calculate the strong coupling constants g B s0 BK and g B s1 B*K with the light-cone QCD sum rules. The numerical values of strong coupling constants g B s1 B*K and g B s0 BK are very large and support the hadronic dressing mechanism. Just like the scalar mesons f 0 (980), a 0 (980), D s0 and axial-vector meson D s1 , the (0 + ,1 + ) bottomed mesons B s0 and B s1 may have small bs kernels of the typical bs meson size. The strong couplings to the hadronic channels (or the virtual mesons loops) may result in smaller masses than the conventional bs mesons in the potential quark models and enrich the pure bs states with other components.

  5. Large-conductance Ca2+-activated K+ channel β1-subunit knockout mice are not hypertensive

    Science.gov (United States)

    Garver, Hannah; Galligan, James J.; Fink, Gregory D.

    2011-01-01

    Large-conductance Ca2+-activated K+ (BK) channels are composed of pore-forming α-subunits and accessory β1-subunits that modulate Ca2+ sensitivity. BK channels regulate arterial myogenic tone and renal Na+ clearance/K+ reabsorption. Previous studies using indirect or short-term blood pressure measurements found that BK channel β1-subunit knockout (BK β1-KO) mice were hypertensive. We evaluated 24-h mean arterial pressure (MAP) and heart rate in BK β1-KO mice using radiotelemetry. BK β1-KO mice did not have a higher 24-h average MAP when compared with wild-type (WT) mice, although MAP was ∼10 mmHg higher at night. The dose-dependent peak declines in MAP by nifedipine were only slightly larger in BK β1-KO mice. In BK β1-KO mice, giving 1% NaCl to mice to drink for 7 days caused a transient (5 days) elevation of MAP (∼5 mmHg); MAP returned to pre-saline levels by day 6. BK β1-KO mesenteric arteries in vitro demonstrated diminished contractile responses to paxilline, increased reactivity to Bay K 8644 and norepinephrine (NE), and maintained relaxation to isoproterenol. Paxilline and Bay K 8644 did not constrict WT or BK β1-KO mesenteric veins (MV). BK β1-subunits are not expressed in MV. The results indicate that BK β1-KO mice are not hypertensive on normal or high-salt intake. BK channel deficiency increases arterial reactivity to NE and L-type Ca2+ channel function in vitro, but the L-type Ca2+ channel modulation of MAP is not altered in BK β1-KO mice. BK and L-type Ca2+ channels do not modulate murine venous tone. It appears that selective loss of BK channel function in arteries only is not sufficient to cause sustained hypertension. PMID:21131476

  6. An albumin-mediated cholesterol design-based strategy for tuning siRNA pharmacokinetics and gene silencing.

    Science.gov (United States)

    Bienk, Konrad; Hvam, Michael Lykke; Pakula, Malgorzata Maria; Dagnæs-Hansen, Frederik; Wengel, Jesper; Malle, Birgitte Mølholm; Kragh-Hansen, Ulrich; Cameron, Jason; Bukrinski, Jens Thostrup; Howard, Kenneth A

    2016-06-28

    Major challenges for the clinical translation of small interfering RNA (siRNA) include overcoming the poor plasma half-life, site-specific delivery and modulation of gene silencing. In this work, we exploit the intrinsic transport properties of human serum albumin to tune the blood circulatory half-life, hepatic accumulation and gene silencing; based on the number of siRNA cholesteryl modifications. We demonstrate by a gel shift assay a strong and specific affinity of recombinant human serum albumin (rHSA) towards cholesteryl-modified siRNA (Kd>1×10(-7)M) dependent on number of modifications. The rHSA/siRNA complex exhibited reduced nuclease degradation and reduced induction of TNF-α production by human peripheral blood mononuclear cells. The increased solubility of heavily cholesteryl modified siRNA in the presence of rHSA facilitated duplex annealing and consequent interaction that allowed in vivo studies using multiple cholesteryl modifications. A structural-activity-based screen of in vitro EGFP-silencing was used to select optimal siRNA designs containing cholesteryl modifications within the sense strand that were used for in vivo studies. We demonstrate plasma half-life extension in NMRI mice from t1/2 12min (naked) to t1/2 45min (single cholesteryl) and t1/2 71min (double cholesteryl) using fluorescent live bioimaging. The biodistribution showed increased accumulation in the liver for the double cholesteryl modified siRNA that correlated with an increase in hepatic Factor VII gene silencing of 28% (rHSA/siRNA) compared to 4% (naked siRNA) 6days post-injection. This work presents a novel albumin-mediated cholesteryl design-based strategy for tuning pharmacokinetics and systemic gene silencing. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Connexin43 Mediated Delivery of ADAMTS5 Targeting siRNAs from Mesenchymal Stem Cells to Synovial Fibroblasts.

    Directory of Open Access Journals (Sweden)

    Shuo Liu

    Full Text Available Osteoarthritis is a joint-destructive disease that has no effective cure. Human mesenchymal stem cells (hMSCs could offer therapeutic benefit in the treatment of arthritic diseases by suppressing inflammation and permitting tissue regeneration, but first these cells must overcome the catabolic environment of the diseased joint. Likewise, gene therapy also offers therapeutic promise given its ability to directly modulate key catabolic factors that mediate joint deterioration, although it too has limitations. In the current study, we explore an approach that combines hMSCs and gene therapy. Specifically, we test the use of hMSC as a vehicle to deliver ADAMTS5 (an aggrecanase with a key role in osteoarthritis-targeting siRNAs to SW982 synovial fibroblast-like cells via connexin43 containing gap junctions. Accordingly, we transduced hMSCs with ADAMTS5-targeting shRNA or non-targeted shRNA, and co-cultured them with synovial fibroblasts to allow delivery of siRNAs from hMSC to synovial fibroblasts. We found that co-culture of hMSCs-shRNA-ADAMTS5 and synovial fibroblasts reduced ADAMTS5 expression relative to co-culture of hMSCs-shRNA-control and synovial fibroblasts. Furthermore, ADAMTS5 was specifically reduced in the synovial fibroblasts populations as determined by fluorescence-activated cell sorting, suggesting transfer of the siRNA between cells. To test if Cx43-containing gap junctions are involved in the transfer of siRNA, we co-cultured hMSCs-shRNA-ADAMTS5 cells with synovial fibroblasts in which connexin43 was knocked down. Under these conditions, ADAMTS5 levels were not inhibited by co-culture, indicating that connexin43 mediates the delivery of siRNA from hMSCs to synovial fibroblasts. In total, our findings demonstrate that hMSCs can function as donor cells to host and deliver siRNAs to synovial fibroblasts via connexin43 gap junction in vitro. These data may have implications in the combination of hMSCs and gene therapy to treat diseases

  8. Connexin43 Mediated Delivery of ADAMTS5 Targeting siRNAs from Mesenchymal Stem Cells to Synovial Fibroblasts.

    Science.gov (United States)

    Liu, Shuo; Niger, Corinne; Koh, Eugene Y; Stains, Joseph P

    2015-01-01

    Osteoarthritis is a joint-destructive disease that has no effective cure. Human mesenchymal stem cells (hMSCs) could offer therapeutic benefit in the treatment of arthritic diseases by suppressing inflammation and permitting tissue regeneration, but first these cells must overcome the catabolic environment of the diseased joint. Likewise, gene therapy also offers therapeutic promise given its ability to directly modulate key catabolic factors that mediate joint deterioration, although it too has limitations. In the current study, we explore an approach that combines hMSCs and gene therapy. Specifically, we test the use of hMSC as a vehicle to deliver ADAMTS5 (an aggrecanase with a key role in osteoarthritis)-targeting siRNAs to SW982 synovial fibroblast-like cells via connexin43 containing gap junctions. Accordingly, we transduced hMSCs with ADAMTS5-targeting shRNA or non-targeted shRNA, and co-cultured them with synovial fibroblasts to allow delivery of siRNAs from hMSC to synovial fibroblasts. We found that co-culture of hMSCs-shRNA-ADAMTS5 and synovial fibroblasts reduced ADAMTS5 expression relative to co-culture of hMSCs-shRNA-control and synovial fibroblasts. Furthermore, ADAMTS5 was specifically reduced in the synovial fibroblasts populations as determined by fluorescence-activated cell sorting, suggesting transfer of the siRNA between cells. To test if Cx43-containing gap junctions are involved in the transfer of siRNA, we co-cultured hMSCs-shRNA-ADAMTS5 cells with synovial fibroblasts in which connexin43 was knocked down. Under these conditions, ADAMTS5 levels were not inhibited by co-culture, indicating that connexin43 mediates the delivery of siRNA from hMSCs to synovial fibroblasts. In total, our findings demonstrate that hMSCs can function as donor cells to host and deliver siRNAs to synovial fibroblasts via connexin43 gap junction in vitro. These data may have implications in the combination of hMSCs and gene therapy to treat diseases like

  9. A surface-mediated siRNA delivery system developed with chitosan/hyaluronic acid-siRNA multilayer films through layer-by-layer self-assembly

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Lijuan [Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062 (China); Suzhou Novovita Bio-products Co., Ltd., Suzhou 215300 (China); Wu, Changlin, E-mail: Ph.Dclwu1314@sina.cn [Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062 (China); Suzhou Novovita Bio-products Co., Ltd., Suzhou 215300 (China); Liu, Guangwan [Suzhou Novovita Bio-products Co., Ltd., Suzhou 215300 (China); Liao, Nannan [Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062 (China); Suzhou Novovita Bio-products Co., Ltd., Suzhou 215300 (China); Zhao, Fang; Yang, Xuxia; Qu, Hongyuan [Suzhou Novovita Bio-products Co., Ltd., Suzhou 215300 (China); Peng, Bo [Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062 (China); Chen, Li [Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062 (China); Suzhou Novovita Bio-products Co., Ltd., Suzhou 215300 (China); Yang, Guang [Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062 (China)

    2016-12-15

    Highlights: • We prepared Chitosan/Hyaluronic acid-siRNA multilayer as carrier to effectively load and protect siRNAs. • The stability and integrity of the siRNA was verified in the siRNA-loaded films. • The siRNA-loaded films showed good cells adhesion and gene silencing effect in eGFP-HEK 293T cells. • This is a new type of surface-mediated non-viral multilayer films. - Abstract: siRNA delivery remains highly challenging because of its hydrophilic and anionic nature and its sensitivity to nuclease degradation. Effective siRNA loading and improved transfection efficiency into cells represents a key problem. In our study, we prepared Chitosan/Hyaluronic acid-siRNA multilayer films through layer-by-layer self-assembly, in which siRNAs can be effectively loaded and protected. The construction process was characterized by FTIR, {sup 13}C NMR (CP/MAS), UV–vis spectroscopy, and atomic force microscopy (AFM). We presented the controlled-release performance of the films during incubation in 1 M NaCl solution for several days through UV–vis spectroscopy and polyacrylamide gel electrophoresis (PAGE). Additionally, we verified the stability and integrity of the siRNA loaded on multilayer films. Finally, the biological efficacy of the siRNA delivery system was evaluated via cells adhesion and gene silencing analyses in eGFP-HEK 293T cells. This new type of surface-mediated non-viral multilayer films may have considerable potential in the localized and controlled-release delivery of siRNA in mucosal tissues, and tissue engineering application.

  10. Apelin-13 inhibits large-conductance Ca2+-activated K+ channels in cerebral artery smooth muscle cells via a PI3-kinase dependent mechanism.

    Directory of Open Access Journals (Sweden)

    Amit Modgil

    Full Text Available Apelin-13 causes vasoconstriction by acting directly on APJ receptors in vascular smooth muscle (VSM cells; however, the ionic mechanisms underlying this action at the cellular level remain unclear. Large-conductance Ca(2+-activated K(+ (BKCa channels in VSM cells are critical regulators of membrane potential and vascular tone. In the present study, we examined the effect of apelin-13 on BK(Ca channel activity in VSM cells, freshly isolated from rat middle cerebral arteries. In whole-cell patch clamp mode, apelin-13 (0.001-1 μM caused concentration-dependent inhibition of BK(Ca in VSM cells. Apelin-13 (0.1 µM significantly decreased BK(Ca current density from 71.25 ± 8.14 pA/pF to 44.52 ± 7.10 pA/pF (n=14 cells, P<0.05. This inhibitory effect of apelin-13 was confirmed by single channel recording in cell-attached patches, in which extracellular application of apelin-13 (0.1 µM decreased the open-state probability (NPo of BK(Ca channels in freshly isolated VSM cells. However, in inside-out patches, extracellular application of apelin-13 (0.1 µM did not alter the NPo of BK(Ca channels, suggesting that the inhibitory effect of apelin-13 on BKCa is not mediated by a direct action on BK(Ca. In whole cell patches, pretreatment of VSM cells with LY-294002, a PI3-kinase inhibitor, markedly attenuated the apelin-13-induced decrease in BK(Ca current density. In addition, treatment of arteries with apelin-13 (0.1 µM significantly increased the ratio of phosphorylated-Akt/total Akt, indicating that apelin-13 significantly increases PI3-kinase activity. Taken together, the data suggest that apelin-13 inhibits BK(Ca channel via a PI3-kinase-dependent signaling pathway in cerebral artery VSM cells, which may contribute to its regulatory action in the control of vascular tone.

  11. Low-Dose Ethanol Preconditioning Protects Against Oxygen-Glucose Deprivation/Reoxygenation-Induced Neuronal Injury By Activating Large Conductance, Ca2+-Activated K+ Channels In Vitro.

    Science.gov (United States)

    Su, Fang; Guo, An-Chen; Li, Wei-Wei; Zhao, Yi-Long; Qu, Zheng-Yi; Wang, Yong-Jun; Wang, Qun; Zhu, Yu-Lan

    2017-02-01

    Increasing evidence suggests that low to moderate ethanol ingestion protects against the deleterious effects of subsequent ischemia/reperfusion; however, the underlying mechanism has not been elucidated. In the present study, we showed that expression of the neuronal large-conductance, Ca 2+ -activated K + channel (BK Ca ) α-subunit was upregulated in cultured neurons exposed to oxygen-glucose deprivation/reoxygenation (OGD/R) compared with controls. Preconditioning with low-dose ethanol (10 mmol/L) increased cell survival rate in neurons subjected to OGD/R, attenuated the OGD/R-induced elevation of cytosolic Ca 2+ levels, and reduced the number of apoptotic neurons. Western blots revealed that ethanol preconditioning upregulated expression of the anti-apoptotic protein Bcl-2 and downregulated the pro-apoptotic protein Bax. The protective effect of ethanol preconditioning was antagonized by a BK Ca channel inhibitor, paxilline. Inside-out patches in primary neurons also demonstrated the direct activation of the BK Ca channel by 10 mmol/L ethanol. The above results indicated that low-dose ethanol preconditioning exerts its neuroprotective effects by attenuating the elevation of cytosolic Ca 2+ and preventing neuronal apoptosis, and this is mediated by BK Ca channel activation.

  12. Molecular and functional expression of high conductance Ca 2+ activated K+ channels in the eel intestinal epithelium

    DEFF Research Database (Denmark)

    Lionetto, Maria G; Rizzello, Antonia; Giordano, Maria E

    2008-01-01

    Several types of K(+) channels have been identified in epithelial cells. Among them high conductance Ca(2+)-activated K(+) channels (BK channels) are of relevant importance for their involvement in regulatory volume decrease (RVD) response following hypotonic stress. The aim of the present work...... was to investigate the functional and molecular expression of BK in the eel intestine, which is a useful experimental model for cell volume regulation research. In the present paper using rat BK channel-specific primer, a RT-PCR signal of 696 pb cDNA was detected in eel intestine, whole nucleotide sequence showed...... high similarity (83%) to the alpha subunit of BK channel family. BK channel protein expression was verified by immunoblotting and confocal microscopy, while the functional role of BK channels in epithelial ion transport mechanisms and cell volume regulation was examined by electrophysiological...

  13. Pokemon siRNA Delivery Mediated by RGD-Modified HBV Core Protein Suppressed the Growth of Hepatocellular Carcinoma.

    Science.gov (United States)

    Kong, Jing; Liu, Xiaoping; Jia, Jianbo; Wu, Jinsheng; Wu, Ning; Chen, Jun; Fang, Fang

    2015-10-01

    Hepatocellular carcinoma (HCC) is a deadly human malignant tumor that is among the most common cancers in the world, especially in Asia. Hepatitis B virus (HBV) infection has been well established as a high risk factor for hepatic malignance. Studies have shown that Pokemon is a master oncogene for HCC growth, suggesting it as an ideal therapeutic target. However, efficient delivery system is still lacking for Pokemon targeting treatment. In this study, we used core proteins of HBV, which is modified with RGD peptides, to construct a biomimetic vector for the delivery of Pokemon siRNAs (namely, RGD-HBc-Pokemon siRNA). Quantitative PCR and Western blot assays revealed that RGD-HBc-Pokemon siRNA possessed the highest efficiency of Pokemon suppression in HCC cells. In vitro experiments further indicated that RGD-HBc-Pokemon-siRNA exerted a higher tumor suppressor activity on HCC cell lines, evidenced by reduced proliferation and attenuated invasiveness, than Pokemon-siRNA or RGD-HBc alone. Finally, animal studies demonstrated that RGD-HBc-Pokemon siRNA suppressed the growth of HCC xenografts in mice by a greater extent than Pokemon-siRNA or RGD-HBc alone. Based on the above results, Pokemon siRNA delivery mediated by RGD-modified HBV core protein was shown to be an effective strategy of HCC gene therapy.

  14. Nanocapsule-mediated cytosolic siRNA delivery for anti-inflammatory treatment.

    Science.gov (United States)

    Jiang, Ying; Hardie, Joseph; Liu, Yuanchang; Ray, Moumita; Luo, Xiang; Das, Riddha; Landis, Ryan F; Farkas, Michelle E; Rotello, Vincent M

    2018-06-05

    The use of nanoparticle-stabilized nanocapsules for cytosolic siRNA delivery for immunomodulation in vitro and in vivo is reported. These NPSCs deliver siRNA directly to the cytosol of macrophages in vitro with concomitant knockdown of gene expression. In vivo studies showed directed delivery of NPSCs to the spleen, enabling gene silencing of macrophages, with preliminary studies showing 70% gene knockdown at a siRNA dose of 0.28 mg/kg. Significantly, the delivery of siRNA targeting tumor necrosis factor-α efficiently silenced TNF-α expression in LPS-challenged mice, demonstrating efficacy in modulating immune response in an organ-selective manner. This research highlights the potential of the NPSC platform for targeted immunotherapy and further manipulation of the immune system. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Large-conductance calcium-dependent potassium channels prevent dendritic excitability in neocortical pyramidal neurons.

    Science.gov (United States)

    Benhassine, Narimane; Berger, Thomas

    2009-03-01

    Large-conductance calcium-dependent potassium channels (BK channels) are homogeneously distributed along the somatodendritic axis of layer 5 pyramidal neurons of the rat somatosensory cortex. The relevance of this conductance for dendritic calcium electrogenesis was studied in acute brain slices using somatodendritic patch clamp recordings and calcium imaging. BK channel activation reduces the occurrence of dendritic calcium spikes. This is reflected in an increased critical frequency of somatic spikes necessary to activate the distal initiation zone. Whilst BK channels repolarise the somatic spike, they dampen it only in the distal dendrite. Their activation reduces dendritic calcium influx via glutamate receptors. Furthermore, they prevent dendritic calcium electrogenesis and subsequent somatic burst discharges. However, the time window for coincident somatic action potential and dendritic input to elicit dendritic calcium events is not influenced by BK channels. Thus, BK channel activation in layer 5 pyramidal neurons affects cellular excitability primarily by establishing a high threshold at the distal action potential initiation zone.

  16. Homogeneous distribution of large-conductance calcium-dependent potassium channels on soma and apical dendrite of rat neocortical layer 5 pyramidal neurons.

    Science.gov (United States)

    Benhassine, Narimane; Berger, Thomas

    2005-02-01

    Voltage-gated conductances on dendrites of layer 5 pyramidal neurons participate in synaptic integration and output generation. We investigated the properties and the distribution of large-conductance calcium-activated potassium channels (BK channels) in this cell type using excised patches in acute slice preparations of rat somatosensory cortex. BK channels were characterized by their large conductance and sensitivity to the specific blockers paxilline and iberiotoxin. BK channels showed a pronounced calcium-dependence with a maximal opening probability of 0.69 at 10 microm and 0.42 at 3 microm free calcium. Their opening probability and transition time constants between open and closed states are voltage-dependent. At depolarized potentials, BK channel gating is described by two open and one closed states. Depolarization increases the opening probability due to a prolongation of the open time constant and a shortening of the closed time constant. Calcium-dependence and biophysical properties of somatic and dendritic BK channels were identical. The presence of BK channels on the apical dendrite of layer 5 pyramidal neurons was shown by immunofluorescence. Patch-clamp recordings revealed a homogeneous density of BK channels on the soma and along the apical dendrite up to 850 microm with a mean density of 1.9 channels per microm(2). BK channels are expressed either isolated or in clusters containing up to four channels. This study shows the presence of BK channels on dendrites. Their activation might modulate the shape of sodium and calcium action potentials, their propagation along the dendrite, and thereby the electrotonic distance between the somatic and dendritic action potential initiation zones.

  17. Surveillance of siRNA integrity by FRET imaging

    Science.gov (United States)

    Järve, Anne; Müller, Julius; Kim, Il-Han; Rohr, Karl; MacLean, Caroline; Fricker, Gert; Massing, Ulrich; Eberle, Florian; Dalpke, Alexander; Fischer, Roger; Trendelenburg, Michael F.; Helm, Mark

    2007-01-01

    Techniques for investigation of exogenous small interfering RNA (siRNA) after penetration of the cell are of substantial interest to the development of efficient transfection methods as well as to potential medical formulations of siRNA. A FRET-based visualization method including the commonplace dye labels fluorescein and tetramethylrhodamin (TMR) on opposing strands of siRNA was found compatible with RNA interference (RNAi). Investigation of spectral properties of three labelled siRNAs with differential FRET efficiencies in the cuvette, including pH dependence and FRET efficiency in lipophilic environments, identified the ratio of red and green fluorescence (R/G-ratio) as a sensitive parameter, which reliably identifies samples containing >90% un-degraded siRNA. Spectral imaging of siRNAs microinjected into cells showed emission spectra indistinguishable from those measured in the cuvette. These were used to establish a calibration curve for assessing the degradation state of siRNA in volume elements inside cells. An algorithm, applied to fluorescence images recorded in standard green and red fluorescence channels, produces R/G-ratio images of high spatial resolution, identifying volume elements in the cell with high populations of intact siRNA with high fidelity. To demonstrate the usefulness of this technique, the movement of intact siRNA molecules are observed after introduction into the cytosol by microinjection, standard transfection and lipofection with liposomes. PMID:17890733

  18. Bioreducible poly(amido amine)s for siRNA delivery

    NARCIS (Netherlands)

    van der Aa, L.J.

    2011-01-01

    Successes in RNA interference based therapies are still limited due to the lack of efficient delivery of the mediator, small interfering RNA (siRNA), to the targeted site. The key to success can be the delivery of the siRNA molecules by polymer-based carrier systems, since they can be chemically

  19. Membrane potential and cation channels in rat juxtaglomerular cells

    DEFF Research Database (Denmark)

    Friis, U G; Jørgensen, F; Andreasen, D

    2004-01-01

    The relationship between membrane potential and cation channels in juxtaglomerular (JG) cells is not well understood. Here we review electrophysiological and molecular studies of JG cells demonstrating the presence of large voltage-sensitive, calcium-activated potassium channels (BK(Ca)) of the Z......The relationship between membrane potential and cation channels in juxtaglomerular (JG) cells is not well understood. Here we review electrophysiological and molecular studies of JG cells demonstrating the presence of large voltage-sensitive, calcium-activated potassium channels (BK...

  20. SKI2 mediates degradation of RISC 5'-cleavage fragments and prevents secondary siRNA production from miRNA targets in Arabidopsis.

    Science.gov (United States)

    Branscheid, Anja; Marchais, Antonin; Schott, Gregory; Lange, Heike; Gagliardi, Dominique; Andersen, Stig Uggerhøj; Voinnet, Olivier; Brodersen, Peter

    2015-12-15

    Small regulatory RNAs are fundamental in eukaryotic and prokaryotic gene regulation. In plants, an important element of post-transcriptional control is effected by 20-24 nt microRNAs (miRNAs) and short interfering RNAs (siRNAs) bound to the ARGONAUTE1 (AGO1) protein in an RNA induced silencing complex (RISC). AGO1 may cleave target mRNAs with small RNA complementarity, but the fate of the resulting cleavage fragments remains incompletely understood. Here, we show that SKI2, SKI3 and SKI8, subunits of a cytoplasmic cofactor of the RNA exosome, are required for degradation of RISC 5', but not 3'-cleavage fragments in Arabidopsis. In the absence of SKI2 activity, many miRNA targets produce siRNAs via the RNA-dependent RNA polymerase 6 (RDR6) pathway. These siRNAs are low-abundant, and map close to the cleavage site. In most cases, siRNAs were produced 5' to the cleavage site, but several examples of 3'-spreading were also identified. These observations suggest that siRNAs do not simply derive from RDR6 action on stable 5'-cleavage fragments and hence that SKI2 has a direct role in limiting secondary siRNA production in addition to its function in mediating degradation of 5'-cleavage fragments. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. Localization of Ca2+ -activated big-conductance K+ channels in rabbit distal colon

    DEFF Research Database (Denmark)

    Hay-Schmidt, Anders; Grunnet, Morten; Abrahamse, Salomon L

    2003-01-01

    Big-conductance Ca(2+)-activated K(+) channels (BK channels) may play an important role in the regulation of epithelial salt and water transport, but little is known about the expression level and the precise localization of BK channels in epithelia. The aim of the present study was to quantify a...

  2. Development of a loop-mediated isothermal amplification assay for rapid detection of BK virus.

    Science.gov (United States)

    Bista, Bipin Raj; Ishwad, Chandra; Wadowsky, Robert M; Manna, Pradip; Randhawa, Parmjeet Singh; Gupta, Gaurav; Adhikari, Meena; Tyagi, Rakhi; Gasper, Gina; Vats, Abhay

    2007-05-01

    Loop-mediated isothermal amplification (LAMP) is a novel method for rapid amplification of DNA. Its advantages include rapidity and minimal equipment requirement. The LAMP assay was developed for BK virus (BKV), which is a leading cause of morbidity in renal transplant recipients. The characteristics of the assay, including its specificity and sensitivity, were evaluated. BKV LAMP was performed using various incubation times with a variety of specimens, including unprocessed urine and plasma samples. A ladder pattern on gel electrophoresis, typical of successful LAMP reactions, was observed specifically only for BKV and not for other viruses. The sensitivity of the assay with 1 h of incubation was 100 copies/tube of a cloned BKV fragment. Additionally, a positive reaction was visually ascertained by a simple color reaction using SYBR green dye. BKV LAMP was also successful for urine and plasma specimens without the need for DNA extraction. Due to its simplicity and specificity, the LAMP assay can potentially be developed for "point of care" screening of BKV.

  3. Regulation of cloned, Ca2+-activated K+ channels by cell volume changes

    DEFF Research Database (Denmark)

    Grunnet, Morten; MacAulay, Nanna; Jorgensen, Nanna K

    2002-01-01

    Ca2+-activated K+ channels of big (hBK), intermediate (hIK) or small (rSK3) conductance were co-expressed with aquaporin 1 (AQP1) in Xenopus laevis oocytes. hBK channels were activated by depolarization, whereas hIK and rSK3 channels were activated by direct injection of Ca2+ or Cd2+ into the ooc...

  4. Molecular studies of BKCa channels in intracranial arteries

    DEFF Research Database (Denmark)

    Wulf, Helle; Hay-Schmidt, Anders; Poulsen, Asser Nyander

    2008-01-01

    expression of the BK(Ca) channel in rat basilar, middle cerebral, and middle meningeal arteries by reverse transcription polymerase chain reaction (RT-PCR), quantitative real-time PCR, and Western blotting. Distribution patterns were investigated using in situ hybridization and immunofluorescence studies. RT......  Large conductance calcium-activated potassium channels (BK(ca)) are crucial for the regulation of cerebral vascular basal tone and might be involved in cerebral vasodilation relevant to migraine and stroke. We studied the differential gene expression of mRNA transcript levels and protein......-PCR and quantitative real-time PCR detected the expression of the BK(Ca) channel mRNA transcript in rat basilar, middle cerebral, and middle meningeal arteries, with the transcript being expressed more abundantly in rat basilar arteries than in middle cerebral and middle meningeal arteries. Western blotting detected...

  5. Polyomavirus specific cellular immunity: from BK-virus-specific cellular immunity to BK-virus-associated nephropathy ?

    Directory of Open Access Journals (Sweden)

    manon edekeyser

    2015-06-01

    Full Text Available In renal transplantation, BK-virus-associated nephropathy has emerged as a major complication, with a prevalence of 5–10% and graft loss in >50% of cases. BK-virus is a member of the Polyomavirus family and rarely induces apparent clinical disease in the general population. However, replication of polyomaviruses, associated with significant organ disease, is observed in patients with acquired immunosuppression, which suggests a critical role for virus-specific cellular immunity to control virus replication and prevent chronic disease. Monitoring of specific immunity combined with viral load could be used to individually assess the risk of viral reactivation and virus control. We review the current knowledge on BK-virus specific cellular immunity and, more specifically, in immunocompromised patients. In the future, immune-based therapies could allow us to treat and prevent BK-virus-associated nephropathy.

  6. Levels of 250Cf populated in the decay of 250Bk

    International Nuclear Information System (INIS)

    Uecke, J.W.

    1975-06-01

    The nuclide 250 Bk undergoes β-decay with a half-life of 3.2 h to 13.1 y 250 Cf. A study is undertaken of the excited states in 250 Cf populated by 250 Bk decay which results from the α-decay of 276d 254 Es. The general features of published level schemes for these nuclei are consistent with predictions of the Nilsson and collective models; however, there remain many undiscovered transitions and ambiguous or uncertain level assignments. In an attempt to confirm predictions of current theoretical models which account for nuclear level assignments in this nucleus, these gamma transitions and their levels have been studied. Twenty-eight new γ-rays were determined. The decay of 250 Bk is investigated primarily by high resolution gamma-ray singles spectrometry and supported in part by two-parameter gamma-gamma coincidence spectrometry. The equipment, comprised of a Ge(HP) and a large volume Ge(Li) detector, a 4096-channel two-parameter analyzer, and a PDP-8/e computer system, permitted significant improvement in sensitivity and accuracy over previous investigations on this nucleus. (11 figures, 2 tables) (U.S.)

  7. SKI2 mediates degradation of RISC 5′-cleavage fragments and prevents secondary siRNA production from miRNA targets in Arabidopsis

    Science.gov (United States)

    Branscheid, Anja; Marchais, Antonin; Schott, Gregory; Lange, Heike; Gagliardi, Dominique; Andersen, Stig Uggerhøj; Voinnet, Olivier; Brodersen, Peter

    2015-01-01

    Small regulatory RNAs are fundamental in eukaryotic and prokaryotic gene regulation. In plants, an important element of post-transcriptional control is effected by 20–24 nt microRNAs (miRNAs) and short interfering RNAs (siRNAs) bound to the ARGONAUTE1 (AGO1) protein in an RNA induced silencing complex (RISC). AGO1 may cleave target mRNAs with small RNA complementarity, but the fate of the resulting cleavage fragments remains incompletely understood. Here, we show that SKI2, SKI3 and SKI8, subunits of a cytoplasmic cofactor of the RNA exosome, are required for degradation of RISC 5′, but not 3′-cleavage fragments in Arabidopsis. In the absence of SKI2 activity, many miRNA targets produce siRNAs via the RNA-dependent RNA polymerase 6 (RDR6) pathway. These siRNAs are low-abundant, and map close to the cleavage site. In most cases, siRNAs were produced 5′ to the cleavage site, but several examples of 3′-spreading were also identified. These observations suggest that siRNAs do not simply derive from RDR6 action on stable 5′-cleavage fragments and hence that SKI2 has a direct role in limiting secondary siRNA production in addition to its function in mediating degradation of 5′-cleavage fragments. PMID:26464441

  8. FcepsilonRI-alpha siRNA inhibits the antigen-induced activation of mast cells.

    Science.gov (United States)

    Safaralizadeh, Reza; Soheili, Zahra-Soheila; Deezagi, Abdolkhaleg; Pourpak, Zahra; Samiei, Shahram; Moin, Mostafa

    2009-12-01

    FcepsilonRI, The high affinity receptor for IgE plays a critical role in triggering the allergic reactions. It is responsible for inducing mast cell degranulation and deliberation of allergy mediators when it is aggregated by allergen and IgE complexes. FcepsilonRI on the mast cells consists of three subunits; alpha chain directly binds IgE, beta chain and dimmer of gamma chains together mediate intracellular signaling. Cross-linking of IgE-bound FcepsilonRI on the surface of mast cells and basophils by the multivalent antigen induces release of chemical mediators. The present in vitro study was designed to investigate the effect of synthetic FcepsilonRI-alpha siRNA on the antigen-induced activation of MC/9 cells. MC/9 cells which are murine mast cells were transfected by FcepsilonRI-alpha siRNA and negative control siRNA. After 6 h, anti-DNP (Dinitrophenyl) IgE was used for the cells sensitization. Then the cells were challenged with Dinitrophenyl-Human Serum Albumin (DNP-HSA) for mast cell degranulation induction before collection of supernatants. The amount of mRNA and protein expression was measured by Real Time PCR and western blot analysis, respectively. Determination of the expression rate of FcepsilonRI-alpha on cell surface was achieved by flow cytometry. ELISA and spectrophotometry methods were used subsequently for measuring the effects of FcepsilonRI-alpha siRNA on antigen-induced histamine and beta-hexosaminidase release. FcepsilonRI-alpha siRNA treated cells showed significant decrease in FcepsilonRI-alpha mRNA and protein expression in comparison to control cells. FcepsilonRI-mediated mast cell release of beta-hexosaminidase and histamine were also inhibited. In this study it was shown that FcepsilonRI-alpha siRNA could suppress FcepsilonRI-alpha expression and inhibited degranulation and histamine release in antigen-stimulated MC/9 cells. In conclusion, knock-down of FcepsilonRI-alpha by siRNA could be a promising method for inhibition of the mast

  9. Effective silencing of ENaC by siRNA delivered with epithelial-targeted nanocomplexes in human cystic fibrosis cells and in mouse lung.

    Science.gov (United States)

    Tagalakis, Aristides D; Munye, Mustafa M; Ivanova, Rositsa; Chen, Hanpeng; Smith, Claire M; Aldossary, Ahmad M; Rosa, Luca Z; Moulding, Dale; Barnes, Josephine L; Kafetzis, Konstantinos N; Jones, Stuart A; Baines, Deborah L; Moss, Guy W J; O'Callaghan, Christopher; McAnulty, Robin J; Hart, Stephen L

    2018-05-10

    Loss of the cystic fibrosis transmembrane conductance regulator in cystic fibrosis (CF) leads to hyperabsorption of sodium and fluid from the airway due to upregulation of the epithelial sodium channel (ENaC). Thickened mucus and depleted airway surface liquid (ASL) then lead to impaired mucociliary clearance. ENaC regulation is thus a promising target for CF therapy. Our aim was to develop siRNA nanocomplexes that mediate effective silencing of airway epithelial ENaC in vitro and in vivo with functional correction of epithelial ion and fluid transport. We investigated translocation of nanocomplexes through mucus and their transfection efficiency in primary CF epithelial cells grown at air-liquid interface (ALI).Short interfering RNA (SiRNA)-mediated silencing was examined by quantitative RT-PCR and western analysis of ENaC. Transepithelial potential (V t ), short circuit current (I sc ), ASL depth and ciliary beat frequency (CBF) were measured for functional analysis. Inflammation was analysed by histological analysis of normal mouse lung tissue sections. Nanocomplexes translocated more rapidly than siRNA alone through mucus. Transfections of primary CF epithelial cells with nanocomplexes targeting αENaC siRNA, reduced αENaC and βENaC mRNA by 30%. Transfections reduced V t , the amiloride-sensitive I sc and mucus protein concentration while increasing ASL depth and CBF to normal levels. A single dose of siRNA in mouse lung silenced ENaC by approximately 30%, which persisted for at least 7 days. Three doses of siRNA increased silencing to approximately 50%. Nanoparticle-mediated delivery of ENaCsiRNA to ALI cultures corrected aspects of the mucociliary defect in human CF cells and offers effective delivery and silencing in vivo. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  10. Efficient inhibition of fibroblast proliferation and collagen expression by ERK2 siRNAs

    International Nuclear Information System (INIS)

    Li, Fengfeng; Fan, Cunyi; Cheng, Tao; Jiang, Chaoyin; Zeng, Bingfang

    2009-01-01

    Transforming growth factor-β1 and fibroblast growth factor-2 play very important roles in fibroblast proliferation and collagen expression. These processes lead to the formation of joint adhesions through the SMAD and MAPK pathways, in which ERK2 is supposed to be crucial. Based on these assumptions, lentivirus (LV)-mediated small interfering RNAs (siRNAs) targeting ERK2 were used to suppress the proliferation and collagen expression of rat joint adhesion tissue fibroblasts (RJATFs). Among four siRNAs examined, siRNA1 caused an 84% reduction in ERK2 expression (p < 0.01) and was selected as the most efficient siRNA for use in this study. In subsequent experiments, significant downregulation of types I and III collagen were observed by quantitative RT-PCR and Western blot analyses. MTT assays and flow cytometry revealed marked inhibition of RJATF proliferation, but no apoptosis. In conclusion, LV-mediated ERK2 siRNAs may represent novel therapies or drug targets for preventing joint adhesion formation.

  11. Efficient construction of an inverted minimal H1 promoter driven siRNA expression cassette: facilitation of promoter and siRNA sequence exchange.

    Directory of Open Access Journals (Sweden)

    Hoorig Nassanian

    2007-08-01

    Full Text Available RNA interference (RNAi, mediated by small interfering RNA (siRNA, is an effective method used to silence gene expression at the post-transcriptional level. Upon introduction into target cells, siRNAs incorporate into the RNA-induced silencing complex (RISC. The antisense strand of the siRNA duplex then "guides" the RISC to the homologous mRNA, leading to target degradation and gene silencing. In recent years, various vector-based siRNA expression systems have been developed which utilize opposing polymerase III promoters to independently drive expression of the sense and antisense strands of the siRNA duplex from the same template.We show here the use of a ligase chain reaction (LCR to develop a new vector system called pInv-H1 in which a DNA sequence encoding a specific siRNA is placed between two inverted minimal human H1 promoters (approximately 100 bp each. Expression of functional siRNAs from this construct has led to efficient silencing of both reporter and endogenous genes. Furthermore, the inverted H1 promoter-siRNA expression cassette was used to generate a retrovirus vector capable of transducing and silencing expression of the targeted protein by>80% in target cells.The unique design of this construct allows for the efficient exchange of siRNA sequences by the directional cloning of short oligonucleotides via asymmetric restriction sites. This provides a convenient way to test the functionality of different siRNA sequences. Delivery of the siRNA cassette by retroviral transduction suggests that a single copy of the siRNA expression cassette efficiently knocks down gene expression at the protein level. We note that this vector system can potentially be used to generate a random siRNA library. The flexibility of the ligase chain reaction suggests that additional control elements can easily be introduced into this siRNA expression cassette.

  12. Development of a Loop-Mediated Isothermal Amplification Assay for Rapid Detection of BK Virus▿

    Science.gov (United States)

    Bista, Bipin Raj; Ishwad, Chandra; Wadowsky, Robert M.; Manna, Pradip; Randhawa, Parmjeet Singh; Gupta, Gaurav; Adhikari, Meena; Tyagi, Rakhi; Gasper, Gina; Vats, Abhay

    2007-01-01

    Loop-mediated isothermal amplification (LAMP) is a novel method for rapid amplification of DNA. Its advantages include rapidity and minimal equipment requirement. The LAMP assay was developed for BK virus (BKV), which is a leading cause of morbidity in renal transplant recipients. The characteristics of the assay, including its specificity and sensitivity, were evaluated. BKV LAMP was performed using various incubation times with a variety of specimens, including unprocessed urine and plasma samples. A ladder pattern on gel electrophoresis, typical of successful LAMP reactions, was observed specifically only for BKV and not for other viruses. The sensitivity of the assay with 1 h of incubation was 100 copies/tube of a cloned BKV fragment. Additionally, a positive reaction was visually ascertained by a simple color reaction using SYBR green dye. BKV LAMP was also successful for urine and plasma specimens without the need for DNA extraction. Due to its simplicity and specificity, the LAMP assay can potentially be developed for “point of care” screening of BKV. PMID:17314224

  13. Neurogenic detrusor overactivity is associated with decreased expression and function of the large conductance voltage- and Ca(2+-activated K(+ channels.

    Directory of Open Access Journals (Sweden)

    Kiril L Hristov

    Full Text Available Patients suffering from a variety of neurological diseases such as spinal cord injury, Parkinson's disease, and multiple sclerosis often develop neurogenic detrusor overactivity (NDO, which currently lacks a universally effective therapy. Here, we tested the hypothesis that NDO is associated with changes in detrusor smooth muscle (DSM large conductance Ca(2+-activated K(+ (BK channel expression and function. DSM tissue samples from 33 patients were obtained during open bladder surgeries. NDO patients were clinically characterized preoperatively with pressure-flow urodynamics demonstrating detrusor overactivity, in the setting of a clinically relevant neurological condition. Control patients did not have overactive bladder and did not have a clinically relevant neurological disease. We conducted quantitative polymerase chain reactions (qPCR, perforated patch-clamp electrophysiology on freshly-isolated DSM cells, and functional studies on DSM contractility. qPCR experiments revealed that DSM samples from NDO patients showed decreased BK channel mRNA expression in comparison to controls. Patch-clamp experiments demonstrated reduced whole cell and transient BK currents (TBKCs in freshly-isolated DSM cells from NDO patients. Functional studies on DSM contractility showed that spontaneous phasic contractions had a decreased sensitivity to iberiotoxin, a selective BK channel inhibitor, in DSM strips isolated from NDO patients. These results reveal the novel finding that NDO is associated with decreased DSM BK channel expression and function leading to increased DSM excitability and contractility. BK channel openers or BK channel gene transfer could be an alternative strategy to control NDO. Future clinical trials are needed to evaluate the value of BK channel opening drugs or gene therapies for NDO treatment and to identify any possible adverse effects.

  14. BK virus has tropism for human salivary gland cells in vitro: Implications for transmission

    International Nuclear Information System (INIS)

    Jeffers, Liesl K.; Madden, Vicki; Webster-Cyriaque, Jennifer

    2009-01-01

    Background: In this study, it was determined that BKV is shed in saliva and an in vitro model system was developed whereby BKV can productively infect both submandibular (HSG) and parotid (HSY) salivary gland cell lines. Results: BKV was detected in oral fluids using quantitative real-time PCR (QRTPCR). BKV infection was determined using quantitative RT-PCR, immunofluorescence and immunoblotting assays. The infectivity of BKV was inhibited by pre-incubation of the virus with gangliosides that saturated the major capsid protein, VP1, halting receptor mediated BKV entry into salivary gland cells. Examination of infected cultures by transmission electron microscopy revealed 45-50 nm BK virions clearly visible within the cells. Subsequent to infection, encapsidated BK virus was detected in the supernatant. Conclusion: We thus demonstrated that BKV was detected in oral fluids and that BK infection and replication occur in vitro in salivary gland cells. These data collectively suggest the potential for BKV oral route of transmission and oral pathogenesis.

  15. Hydrophobic interaction between contiguous residues in the S6 transmembrane segment acts as a stimuli integration node in the BK channel

    Science.gov (United States)

    Carrasquel-Ursulaez, Willy; Contreras, Gustavo F.; Sepúlveda, Romina V.; Aguayo, Daniel; González-Nilo, Fernando

    2015-01-01

    Large-conductance Ca2+- and voltage-activated K+ channel (BK) open probability is enhanced by depolarization, increasing Ca2+ concentration, or both. These stimuli activate modular voltage and Ca2+ sensors that are allosterically coupled to channel gating. Here, we report a point mutation of a phenylalanine (F380A) in the S6 transmembrane helix that, in the absence of internal Ca2+, profoundly hinders channel opening while showing only minor effects on the voltage sensor active–resting equilibrium. Interpretation of these results using an allosteric model suggests that the F380A mutation greatly increases the free energy difference between open and closed states and uncouples Ca2+ binding from voltage sensor activation and voltage sensor activation from channel opening. However, the presence of a bulky and more hydrophobic amino acid in the F380 position (F380W) increases the intrinsic open–closed equilibrium, weakening the coupling between both sensors with the pore domain. Based on these functional experiments and molecular dynamics simulations, we propose that F380 interacts with another S6 hydrophobic residue (L377) in contiguous subunits. This pair forms a hydrophobic ring important in determining the open–closed equilibrium and, like an integration node, participates in the communication between sensors and between the sensors and pore. Moreover, because of its effects on open probabilities, the F380A mutant can be used for detailed voltage sensor experiments in the presence of permeant cations. PMID:25548136

  16. The role of voltage-gated potassium channels in the regulation of mouse uterine contractility

    Directory of Open Access Journals (Sweden)

    Abel Peter W

    2007-11-01

    Full Text Available Abstract Background Uterine smooth muscle cells exhibit ionic currents that appear to be important in the control of uterine contractility, but how these currents might produce the changes in contractile activity seen in pregnant myometrium has not been established. There are conflicting reports concerning the role of voltage-gated potassium (Kv channels and large-conductance, calcium-activated potassium (BK channels in the regulation of uterine contractility. In this study we provide molecular and functional evidence for a role for Kv channels in the regulation of spontaneous contractile activity in mouse myometrium, and also demonstrate a change in Kv channel regulation of contractility in pregnant mouse myometrium. Methods Functional assays which evaluated the effects of channel blockers and various contractile agonists were accomplished by quantifying contractility of isolated uterine smooth muscle obtained from nonpregnant mice as well as mice at various stages of pregnancy. Expression of Kv channel proteins in isolated uterine smooth muscle was evaluated by Western blots. Results The Kv channel blocker 4-aminopyridine (4-AP caused contractions in nonpregnant mouse myometrium (EC50 = 54 micromolar, maximal effect at 300 micromolar but this effect disappeared in pregnant mice; similarly, the Kv4.2/Kv4.3 blocker phrixotoxin-2 caused contractions in nonpregnant, but not pregnant, myometrium. Contractile responses to 4-AP were not dependent upon nerves, as neither tetrodotoxin nor storage of tissues at room temperature significantly altered these responses, nor were responses dependent upon the presence of the endometrium. Spontaneous contractions and contractions in response to 4-AP did not appear to be mediated by BK, as the BK channel-selective blockers iberiotoxin, verruculogen, or tetraethylammonium failed to affect either spontaneous contractions or 4-AP-elicited responses. A number of different Kv channel alpha subunit proteins were

  17. Molecular studies of BKCa channels in intracranial arteries: presence and localization

    DEFF Research Database (Denmark)

    Johansson, Helle Wulf; Hay-Schmidt, Anders; Poulsen, Asser Nyander

    2008-01-01

    of the BK(Ca) channel in rat basilar, middle cerebral, and middle meningeal arteries by reverse transcription polymerase chain reaction (RT-PCR), quantitative real-time PCR, and Western blotting. Distribution patterns were investigated using in situ hybridization and immunofluorescence studies. RT......Large conductance calcium-activated potassium channels (BK(ca)) are crucial for the regulation of cerebral vascular basal tone and might be involved in cerebral vasodilation relevant to migraine and stroke. We studied the differential gene expression of mRNA transcript levels and protein expression......-PCR and quantitative real-time PCR detected the expression of the BK(Ca) channel mRNA transcript in rat basilar, middle cerebral, and middle meningeal arteries, with the transcript being expressed more abundantly in rat basilar arteries than in middle cerebral and middle meningeal arteries. Western blotting detected...

  18. NS19504

    DEFF Research Database (Denmark)

    Nausch, Bernhard; Rode, Frederik; Jørgensen, Susanne

    2014-01-01

    channel activators and identified a small-molecule positive modulator, NS19504 (5-[(4-bromophenyl)methyl]-1,3-thiazol-2-amine), which activated the BK channel with an EC50 value of 11.0 ± 1.4 µM. Hit validation was performed using high-throughput electrophysiology (QPatch), and further characterization......19504 activated BK channels in native smooth muscle cells from guinea pig urinary bladder. In guinea pig urinary bladder strips, NS19504 (1 µM) reduced spontaneous phasic contractions, an effect that was significantly inhibited by the specific BK channel blocker iberiotoxin. In contrast, NS19504 (1 µ......M) only modestly inhibited nerve-evoked contractions and had no effect on contractions induced by a high K(+) concentration consistent with a K(+) channel-mediated action. Collectively, these results show that NS19504 is a positive modulator of BK channels and provide support for the role of BK channels...

  19. Pathways of cellular internalisation of liposomes delivered siRNA and effects on siRNA engagement with target mRNA and silencing in cancer cells.

    Science.gov (United States)

    Alshehri, Abdullah; Grabowska, Anna; Stolnik, Snow

    2018-02-28

    Design of an efficient delivery system is a generally recognised bottleneck in translation of siRNA technology into clinic. Despite research efforts, cellular processes that determine efficiency of siRNA silencing achieved by different delivery formulations remain unclear. Here, we investigated the mechanism(s) of cellular internalisation of a model siRNA-loaded liposome system in a correlation to the engagement of delivered siRNA with its target and consequent silencing by adopting siRNA molecular beacon technology. Probing of cellular internalisation pathways by a panel of pharmacological inhibitors indicated that clathrin-mediated (dynamin-dependent) endocytosis, macropinocytosis (dynamine independent), and cell membrane cholesterol dependent process(es) (clathrin and caveolea-independent) all play a role in the siRNA-liposomes internalization. The inhibition of either of these entry routes was, in general, mirrored by a reduction in the level of siRNA engagement with its target mRNA, as well as in a reduction of the target gene silencing. A dramatic increase in siRNA engagement with its target RNA was observed on disruption of endosomal membrane (by chloroquine), accompanied with an increased silencing. The work thus illustrates that employing molecular beacon siRNA technology one can start to assess the target RNA engagement - a stage between initial cellular internalization and final gene silencing of siRNA delivery systems.

  20. Calcium Activated K+ Channels in The Electroreceptor of the Skate Confirmed by Cloning. Details of Subunits and Splicing

    Science.gov (United States)

    King, Benjamin L.; Shi, Ling Fang; Kao, Peter; Clusin, William T.

    2015-01-01

    Elasmobranchs detect small potentials using excitable cells of the ampulla of Lorenzini which have calcium-activated K+ channels, first described in l974. A distinctive feature of the outward current in voltage clamped ampullae is its apparent insensitivity to voltage. The sequence of a BK channel α isoform expressed in the ampulla of the skate was characterized. A signal peptide is present at the beginning of the gene. When compared to human isoform 1 (the canonical sequence), the largest difference was absence of a 59 amino acid region from the S8-S9 intracellular linker that contains the strex regulatory domain. The ampulla isoform was also compared with the isoform predicted˜ in late skate embryos where strex was also absent. The BK voltage sensors were conserved in both skate isoforms. Differences between the skate and human BK channel included alternative splicing. Alternative splicing occurs at seven previously defined sites that are characteristic for BK channels in general and hair cells in particular. Skate BK sequences were highly similar to the Australian ghost shark and several other vertebrate species. Based on alignment of known BK sequences with the skate genome and transcriptome, there are at least two isoforms of Kcnma1α expressed in the skate. One of the β subunits (β4), which is known to decrease voltage sensitivity, was also identified in the skate genome and transcriptome and in the ampulla. These studies advance our knowledge of BK channels and suggest further studies in the ampulla and other excitable tissues. PMID:26687710

  1. Distribution, expression and functional effects of small conductance Ca-activated potassium (SK) channels in rat myometrium.

    Science.gov (United States)

    Noble, Karen; Floyd, Rachel; Shmygol, Andre; Shmygol, Anatoly; Mobasheri, A; Wray, Susan

    2010-01-01

    Calcium-activated potassium channels are important in a variety of smooth muscles, contributing to excitability and contractility. In the myometrium previous work has focussed on the large conductance channels (BK), and the role of small conductance channels (SK) has received scant attention, despite the finding that over-expression of an SK channel isoform (SK3) results in uterine dysfunction and delayed parturition. This study therefore characterises the expression of the three SK channel isoforms (SK1-3) in rat myometrium throughout pregnancy and investigates their effect on cytosolic [Ca] and force and compares this with that of BK channels. Consistent expression of all SK isoform transcripts and clear immunostaining of SK1-3 was found. Inhibition of SK1-3 channels (apamin, scyllatoxin) significantly inhibited outward current, caused membrane depolarisation and elicited action potentials in previously quiescent cells. Apamin or scyllatoxin increased the amplitude of [Ca] and force in spontaneously contracting myometrial strips throughout gestation. The functional effect of SK inhibition was larger than that of BK channel inhibition. Thus we show for the first time that SK1-3 channels are expressed and translated throughout pregnancy and contribute to outward current, regulate membrane potential and hence Ca signals in pregnant rat myometrium. They contribute more to quiescence that BK channels. 2009 Elsevier Ltd. All rights reserved.

  2. SiRNA Crosslinked Nanoparticles for the Treatment of Inflammation-induced Liver Injury.

    Science.gov (United States)

    Tang, Yaqin; Zeng, Ziying; He, Xiao; Wang, Tingting; Ning, Xinghai; Feng, Xuli

    2017-02-01

    RNA interference mediated by small interfering RNA (siRNA) provides a powerful tool for gene regulation, and has a broad potential as a promising therapeutic strategy. However, therapeutics based on siRNA have had limited clinical success due to their undesirable pharmacokinetic properties. This study presents pH-sensitive nanoparticles-based siRNA delivery systems (PNSDS), which are positive-charge-free nanocarriers, composed of siRNA chemically crosslinked with multi-armed poly(ethylene glycol) carriers via acid-labile acetal linkers. The unique siRNA crosslinked structure of PNSDS allows it to have minimal cytotoxicity, high siRNA loading efficiency, and a stimulus-responsive property that enables the selective intracellular release of siRNA in response to pH conditions. This study demonstrates that PNSDS can deliver tumor necrosis factor alpha (TNF-α) siRNA into macrophages and induce the efficient down regulation of the targeted gene in complete cell culture media. Moreover, PNSDS with mannose targeting moieties can selectively accumulate in mice liver, induce specific inhibition of macrophage TNF-α expression in vivo, and consequently protect mice from inflammation-induced liver damages. Therefore, this novel siRNA delivering platform would greatly improve the therapeutic potential of RNAi based therapies.

  3. The Voltage-dependent Anion Channel 1 Mediates Amyloid β Toxicity and Represents a Potential Target for Alzheimer Disease Therapy.

    Science.gov (United States)

    Smilansky, Angela; Dangoor, Liron; Nakdimon, Itay; Ben-Hail, Danya; Mizrachi, Dario; Shoshan-Barmatz, Varda

    2015-12-25

    The voltage-dependent anion channel 1 (VDAC1), found in the mitochondrial outer membrane, forms the main interface between mitochondrial and cellular metabolisms, mediates the passage of a variety of molecules across the mitochondrial outer membrane, and is central to mitochondria-mediated apoptosis. VDAC1 is overexpressed in post-mortem brains of Alzheimer disease (AD) patients. The development and progress of AD are associated with mitochondrial dysfunction resulting from the cytotoxic effects of accumulated amyloid β (Aβ). In this study we demonstrate the involvement of VDAC1 and a VDAC1 N-terminal peptide (VDAC1-N-Ter) in Aβ cell penetration and cell death induction. Aβ directly interacted with VDAC1 and VDAC1-N-Ter, as monitored by VDAC1 channel conductance, surface plasmon resonance, and microscale thermophoresis. Preincubated Aβ interacted with bilayer-reconstituted VDAC1 and increased its conductance ∼ 2-fold. Incubation of cells with Aβ resulted in mitochondria-mediated apoptotic cell death. However, the presence of non-cell-penetrating VDAC1-N-Ter peptide prevented Aβ cellular entry and Aβ-induced mitochondria-mediated apoptosis. Likewise, silencing VDAC1 expression by specific siRNA prevented Aβ entry into the cytosol as well as Aβ-induced toxicity. Finally, the mode of Aβ-mediated action involves detachment of mitochondria-bound hexokinase, induction of VDAC1 oligomerization, and cytochrome c release, a sequence of events leading to apoptosis. As such, we suggest that Aβ-mediated toxicity involves mitochondrial and plasma membrane VDAC1, leading to mitochondrial dysfunction and apoptosis induction. The VDAC1-N-Ter peptide targeting Aβ cytotoxicity is thus a potential new therapeutic strategy for AD treatment. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Calcium activated K⁺ channels in the electroreceptor of the skate confirmed by cloning. Details of subunits and splicing.

    Science.gov (United States)

    King, Benjamin L; Shi, Ling Fang; Kao, Peter; Clusin, William T

    2016-03-01

    Elasmobranchs detect small potentials using excitable cells of the ampulla of Lorenzini which have calcium-activated K(+) channels, first described in 1974. A distinctive feature of the outward current in voltage clamped ampullae is its apparent insensitivity to voltage. The sequence of a BK channel α isoform expressed in the ampulla of the skate was characterized. A signal peptide is present at the beginning of the gene. When compared to human isoform 1 (the canonical sequence), the largest difference was absence of a 59 amino acid region from the S8-S9 intra-cellular linker that contains the strex regulatory domain. The ampulla isoform was also compared with the isoform predicted in late skate embryos where strex was also absent. The BK voltage sensors were conserved in both skate isoforms. Differences between the skate and human BK channel included alternative splicing. Alternative splicing occurs at seven previously defined sites that are characteristic for BK channels in general and hair cells in particular. Skate BK sequences were highly similar to the Australian ghost shark and several other vertebrate species. Based on alignment of known BK sequences with the skate genome and transcriptome, there are at least two isoforms of Kcnma1α expressed in the skate. One of the β subunits (β4), which is known to decrease voltage sensitivity, was also identified in the skate genome and transcriptome and in the ampulla. These studies advance our knowledge of BK channels and suggest further studies in the ampulla and other excitable tissues. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. SiRNAs conjugated with aromatic compounds induce RISC-mediated antisense strand selection and strong gene-silencing activity

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, Takanori, E-mail: kubo-t@yasuda-u.ac.jp [Faculty of Pharmacy, Yasuda Women' s University, 6-13-1 Yasuhigashi, Asaminami-ku, Hiroshima 731-0153 (Japan); Yanagihara, Kazuyoshi [Faculty of Pharmacy, Yasuda Women' s University, 6-13-1 Yasuhigashi, Asaminami-ku, Hiroshima 731-0153 (Japan); Division of Genetics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Takei, Yoshifumi [Department of Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumi-cho, Showa-ku, Nagoya 466-8550 (Japan); Mihara, Keichiro [Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553 (Japan); Sato, Yuichiro; Seyama, Toshio [Faculty of Pharmacy, Yasuda Women' s University, 6-13-1 Yasuhigashi, Asaminami-ku, Hiroshima 731-0153 (Japan)

    2012-10-05

    Highlights: Black-Right-Pointing-Pointer SiRNAs conjugated with aromatic compounds (Ar-siRNAs) at 5 Prime -sense strand were synthesized. Black-Right-Pointing-Pointer Ar-siRNAs increased resistance against nuclease degradation. Black-Right-Pointing-Pointer Ar-siRNAs were thermodynamically stable compared with the unmodified siRNA. Black-Right-Pointing-Pointer High levels of cellular uptake and cytoplasmic localization were found. Black-Right-Pointing-Pointer Strong gene-silencing efficacy was exhibited in the Ar-siRNAs. -- Abstract: Short interference RNA (siRNA) is a powerful tool for suppressing gene expression in mammalian cells. In this study, we focused on the development of siRNAs conjugated with aromatic compounds in order to improve the potency of RNAi and thus to overcome several problems with siRNAs, such as cellular delivery and nuclease stability. The siRNAs conjugated with phenyl, hydroxyphenyl, naphthyl, and pyrenyl derivatives showed strong resistance to nuclease degradation, and were thermodynamically stable compared with unmodified siRNA. A high level of membrane permeability in HeLa cells was also observed. Moreover, these siRNAs exhibited enhanced RNAi efficacy, which exceeded that of locked nucleic acid (LNA)-modified siRNAs, against exogenous Renilla luciferase in HeLa cells. In particular, abundant cytoplasmic localization and strong gene-silencing efficacy were found in the siRNAs conjugated with phenyl and hydroxyphenyl derivatives. The novel siRNAs conjugated with aromatic compounds are promising candidates for a new generation of modified siRNAs that can solve many of the problems associated with RNAi technology.

  6. A dominant mutation in mediator of paramutation2, one of three second-largest subunits of a plant-specific RNA polymerase, disrupts multiple siRNA silencing processes.

    Science.gov (United States)

    Sidorenko, Lyudmila; Dorweiler, Jane E; Cigan, A Mark; Arteaga-Vazquez, Mario; Vyas, Meenal; Kermicle, Jerry; Jurcin, Diane; Brzeski, Jan; Cai, Yu; Chandler, Vicki L

    2009-11-01

    Paramutation involves homologous sequence communication that leads to meiotically heritable transcriptional silencing. We demonstrate that mop2 (mediator of paramutation2), which alters paramutation at multiple loci, encodes a gene similar to Arabidopsis NRPD2/E2, the second-largest subunit of plant-specific RNA polymerases IV and V. In Arabidopsis, Pol-IV and Pol-V play major roles in RNA-mediated silencing and a single second-largest subunit is shared between Pol-IV and Pol-V. Maize encodes three second-largest subunit genes: all three genes potentially encode full length proteins with highly conserved polymerase domains, and each are expressed in multiple overlapping tissues. The isolation of a recessive paramutation mutation in mop2 from a forward genetic screen suggests limited or no functional redundancy of these three genes. Potential alternative Pol-IV/Pol-V-like complexes could provide maize with a greater diversification of RNA-mediated transcriptional silencing machinery relative to Arabidopsis. Mop2-1 disrupts paramutation at multiple loci when heterozygous, whereas previously silenced alleles are only up-regulated when Mop2-1 is homozygous. The dramatic reduction in b1 tandem repeat siRNAs, but no disruption of silencing in Mop2-1 heterozygotes, suggests the major role for tandem repeat siRNAs is not to maintain silencing. Instead, we hypothesize the tandem repeat siRNAs mediate the establishment of the heritable silent state-a process fully disrupted in Mop2-1 heterozygotes. The dominant Mop2-1 mutation, which has a single nucleotide change in a domain highly conserved among all polymerases (E. coli to eukaryotes), disrupts both siRNA biogenesis (Pol-IV-like) and potentially processes downstream (Pol-V-like). These results suggest either the wild-type protein is a subunit in both complexes or the dominant mutant protein disrupts both complexes. Dominant mutations in the same domain in E. coli RNA polymerase suggest a model for Mop2-1 dominance

  7. Smart Inulin-Based Polycationic Nanodevices for siRNA Delivery.

    Science.gov (United States)

    Cavallaro, G; Sardo, C; Scialabba, C; Licciardi, M; Giammona, G

    2017-01-01

    The advances of short interfering RNA (siRNA) mediated therapy provide a powerful option for the treatment of many diseases by silencing the expression of targeted genes including cancer development and progression. Inulin is a very simple and biocompatible polysaccharide proposed by our groups to produce interesting delivery systems for Nucleic Acid Based Drugs (NABDs), such as siRNA, either as polycations able to give polyplexes and polymeric coatings for nanosystems having a metallic core. In this research field, different functionalizing groups were linked to the inulin backbone with specific aims including oligoamine such as Ethylendiammine (EDA), Diethylediamine (DETA), Spermine, (SPM) etc. In this contribution the main Inulin-based nanodevices for the delivery of siRNA have been reported, analysed and compared with particular reference to their chemical design and structure, biocompatibility, siRNA complexing ability, silencing ability. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Targeted siRNA Delivery and mRNA Knockdown Mediated by Bispecific Digoxigenin-binding Antibodies

    Directory of Open Access Journals (Sweden)

    Britta Schneider

    2012-01-01

    Full Text Available Bispecific antibodies (bsAbs that bind to cell surface antigens and to digoxigenin (Dig were used for targeted small interfering RNA (siRNA delivery. They are derivatives of immunoglobulins G (IgGs that bind tumor antigens, such as Her2, IGF1-R, CD22, and LeY, with stabilized Dig-binding variable domains fused to the C-terminal ends of the heavy chains. siRNA that was digoxigeninylated at its 3′end was bound in a 2:1 ratio to the bsAbs. These bsAb–siRNA complexes delivered siRNAs specifically to cells that express the corresponding antigen as demonstrated by flow cytometry and confocal microscopy. The complexes internalized into endosomes and Dig-siRNAs separated from bsAbs, but Dig-siRNA was not released into the cytoplasm; bsAb-targeting alone was thus not sufficient for effective mRNA knockdown. This limitation was overcome by formulating the Dig-siRNA into nanoparticles consisting of dynamic polyconjugates (DPCs or into lipid-based nanoparticles (LNPs. The resulting complexes enabled bsAb-targeted siRNA-specific messenger RNA (mRNA knockdown with IC50 siRNA values in the low nanomolar range for a variety of bsAbs, siRNAs, and target cells. Furthermore, pilot studies in mice bearing tumor xenografts indicated mRNA knockdown in endothelial cells following systemic co-administration of bsAbs and siRNA formulated in LNPs that were targeted to the tumor vasculature.

  9. Absorption of 249Bk from the gastrointestinal tract

    International Nuclear Information System (INIS)

    Zalikin, G.A.; Nisimov, P.G.

    1988-01-01

    In experimets with albino mongrel female rats a study was made of the absorption of 249 Bk from the gastrointestinal tract after a single per os administration. The bulk of 249 Bk (96 per cent) administered either intravenously or per os was mainly deposited in the skeleton and liver. The value of 249 Bk absorption from the gastrointestinal trat by days 4 and 8 following administration was 0.05 per cent

  10. Nonviral pulmonary delivery of siRNA.

    Science.gov (United States)

    Merkel, Olivia M; Kissel, Thomas

    2012-07-17

    RNA interference (RNAi) is an important part of the cell's defenses against viruses and other foreign genes. Moreover, the biotechnological exploitation of RNAi offers therapeutic potential for a range of diseases for which drugs are currently unavailable. Unfortunately, the small interfering RNAs (siRNAs) that are central to RNAi in the cytoplasm are readily degradable by ubiquitous nucleases, are inefficiently targeted to desired organs and cell types, and are excreted quickly upon systemic injection. As a result, local administration techniques have been favored over the past few years, resulting in great success in the treatment of viral infections and other respiratory disorders. Because there are several advantages of pulmonary delivery over systemic administration, two of the four siRNA drugs currently in phase II clinical trials are delivered intranasally or by inhalation. The air-blood barrier, however, has only limited permeability toward large, hydrophilic biopharmaceuticals such as nucleic acids; in addition, the lung imposes intrinsic hurdles to efficient siRNA delivery. Thus, appropriate formulations and delivery devices are very much needed. Although many different formulations have been optimized for in vitro siRNA delivery to lung cells, only a few have been reported successful in vivo. In this Account, we discuss both obstacles to pulmonary siRNA delivery and the success stories that have been achieved thus far. The optimal pulmonary delivery vehicle should be neither cytotoxic nor immunogenic, should protect the payload from degradation by nucleases during the delivery process, and should mediate the intracellular uptake of siRNA. Further requirements include the improvement of the pharmacokinetics and lung distribution profiles of siRNA, the extension of lung retention times (through reduced recognition by macrophages), and the incorporation of reversible or stimuli-responsive binding of siRNA to allow for efficient release of the siRNAs at the

  11. Dynamics of Db isotopes formed in reactions induced by 238U, 248Cm, and 249Bk across the Coulomb barrier

    Science.gov (United States)

    Kaur, Gurjit; Sandhu, Kirandeep; Kaur, Amandeep; Sharma, Manoj K.

    2018-05-01

    The dynamical cluster decay model is employed to investigate the decay of *265Db and *267Db nuclei, formed in the 27Al+238U , 18O+249Bk , and 19F+248Cm hot fusion reactions at energies around the Coulomb barrier. First, the fission dynamics of the 27Al+238U reaction is explored by investigating the fragmentation and preformation yield of the reaction. The symmetric mass distribution of the fission fragments is observed for *265Db nucleus, when static β2 i deformations are used within hot optimum orientation approach. However, the mass split gets broaden for the use of β2 i-dynamical hot configuration of the fragments and becomes clearly asymmetric for the cold-static-deformed approach. Within the application of cold orientations of fragments, a new fission channel is observed at mass asymmetry η =0.29 . In addition to 238U-induced reaction, the work is carried out to address the fission and neutron evaporation cross sections of *267Db nucleus formed via 19F+248Cm and 18O+249Bk reactions, besides a comprehensive analysis of fusion and capture processes. Higher fusion cross sections and compound nucleus formation probabilities (PCN) are obtained for the 18O+249Bk reaction, as larger mass asymmetry in the entrance channel leads to reduced Coulomb factor. Finally, the role of sticking (IS) and nonsticking (INS) moments of inertia is analyzed for the 4 n and 5 n channels of *267Db nuclear system.

  12. [Construction of lentiviral mediated CyPA siRNA and its functions in non-small cell lung cancer].

    Science.gov (United States)

    FENG, Yan-ming; WU, Yi-ming; TU, Xin-ming; XU, Zheng-shun; WU, Wei-dong

    2010-02-01

    To construct a lentiviral-vector-mediated CyPA small interference RNA (siRNA) and study its function in non-small cell lung cancer. First, four target sequences were selected according to CyPA mRNA sequence, the complementary DNA contained both sense and antisense oligonucleotides were designed, synthesized and cloned into the pGCL-GFP vector, which contained U6 promoter and green fluorescent protein (GFP). The resulting lentiviral vector containing CyPA shRNA was named Lv-shCyPA, and it was confirmed by PCR and sequencing. Next, it was cotransfected by Lipofectamine 2000 along with pHelper1.0 and pHelper 2.0 into 293T cells to package lentivirus particles. At the same time, the packed virus infected non-small cell lung cancer cell (A549), the level of CyPA protein at 5 d after infection was detected by Western Blot to screen the target of CyPA. A549 were infected with Lv-shCyPA and grown as xenografts in severe combined immunodeficient mice. Cell cycle and apoptosis were measured by FCM. It was confirmed by PCR and DNA sequencing that lentiviral-vector-mediated CyPA siRNA (Lv-shCyPA) producing CyPA shRNA was constructed successfully. The titer of concentrated virus were 1 x 10(7) TU/ml. Flow cytometric analysis demonstrated G2-M phase (11.40% +/- 0.68%) was decreased relatively in A549/LvshCyPA compared with control groups (14.52% +/- 1.19%) (Ppathways may lead to new targeted therapies for non-small cell lung cancer.

  13. Two sensory channels mediate perception of fingertip force.

    Science.gov (United States)

    Brothers, Trevor; Hollins, Mark

    2014-01-01

    In two experiments we examined the ability of humans to exert forces accurately with the fingertips, and to perceive those forces. In experiment 1 participants used visual feedback to apply a range of fingertip forces with the distal pad of the thumb. Participants made magnitude discriminations regarding these forces, and their just noticeable differences were calculated at a series of standards by means of a two-interval, forced-choice tracking paradigm. As the standard increased, participants demonstrated a relative improvement in force discrimination; and the presence of a possible inflection point, at approximately 400 g, suggested that two sensory channels may contribute to performance. If this is the case, the operative channel at low forces is almost certainly the slowly adapting type I (SA-I) channel, while another mechanoreceptor class, the SA-II nail unit, is a plausible mediator of the more accurate performance seen at high force levels. To test this two-channel hypothesis in experiment 2, we hydrated participants' thumbnails in order to reduce nail rigidity and thus prevent stimulation of underlying SA-II mechanoreceptors. This technique was found to reduce sensory accuracy in a force-matching task at high forces (1000 g) while leaving low force matching (100 g) unimpaired. Taken together, these results suggest that two sensory channels mediate the perception of fingertip forces in humans: one channel predominating at low forces (below approximately 400 g) and another responsible for perceiving high forces which is likely mediated by the SA-II nail unit.

  14. Chimeric peptide-mediated siRNA transduction to inhibit HIV-1 infection.

    Science.gov (United States)

    Bivalkar-Mehla, Shalmali; Mehla, Rajeev; Chauhan, Ashok

    2017-04-01

    Persistent human immunodeficiency virus 1 (HIV-1) infection provokes immune activation and depletes CD4 +  lymphocytes, leading to acquired immunodeficiency syndrome. Uninterrupted administration of combination antiretroviral therapy (cART) in HIV-infected patients suppresses viral replication to below the detectable level and partially restores the immune system. However, cART-unresponsive residual HIV-1 infection and elusive transcriptionally silent but reactivatable viral reservoirs maintain a permanent viral DNA blue print. The virus rebounds within a few weeks after interruption of suppressive therapy. Adjunct gene therapy to control viral replication by ribonucleic acid interference (RNAi) is a post-transcriptional gene silencing strategy that could suppress residual HIV-1 burden and overcome viral resistance. Small interfering ribonucleic acids (siRNAs) are efficient transcriptional inhibitors, but need delivery systems to reach inside target cells. We investigated the potential of chimeric peptide (FP-PTD) to deliver specific siRNAs to HIV-1-susceptible and permissive cells. Chimeric FP-PTD peptide was designed with an RNA binding domain (PTD) to bind siRNA and a cell fusion peptide domain (FP) to enter cells. FP-PTD-siRNA complex entered and inhibited HIV-1 replication in susceptible cells, and could be a candidate for in vivo testing.

  15. Localization of large conductance calcium-activated potassium channels and their effect on calcitonin gene-related peptide release in the rat trigemino-neuronal pathway

    DEFF Research Database (Denmark)

    Wulf-Johansson, H.; Amrutkar, D.V.; Hay-Schmidt, Anders

    2010-01-01

    Large conductance calcium-activated potassium (BK(Ca)) channels are membrane proteins contributing to electrical propagation through neurons. Calcitonin gene-related peptide (CGRP) is a neuropeptide found in the trigeminovascular system (TGVS). Both BK(Ca) channels and CGRP are involved in migrai...

  16. Functional characterization of endogenous siRNA target genes in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Heikkinen Liisa

    2008-06-01

    Full Text Available Abstract Background Small interfering RNA (siRNA molecules mediate sequence specific silencing in RNA interference (RNAi, a gene regulatory phenomenon observed in almost all organisms. Large scale sequencing of small RNA libraries obtained from C. elegans has revealed that a broad spectrum of siRNAs is endogenously transcribed from genomic sequences. The biological role and molecular diversity of C. elegans endogenous siRNA (endo-siRNA molecules, nonetheless, remain poorly understood. In order to gain insight into their biological function, we annotated two large libraries of endo-siRNA sequences, identified their cognate targets, and performed gene ontology analysis to identify enriched functional categories. Results Systematic trends in categorization of target genes according to the specific length of siRNA sequences were observed: 18- to 22-mer siRNAs were associated with genes required for embryonic development; 23-mers were associated uniquely with post-embryonic development; 24–26-mers were associated with phosphorus metabolism or protein modification. Moreover, we observe that some argonaute related genes associate with siRNAs with multiple reads. Sequence frequency graphs suggest that different lengths of siRNAs share similarities in overall sequence structure: the 5' end begins with G, while the body predominates with U and C. Conclusion These results suggest that the lengths of endogenous siRNA molecules are consequential to their biological functions since the gene ontology categories for their cognate mRNA targets vary depending upon their lengths.

  17. BK Virus-Associated Nephropathy without Viremia in an Adolescent Kidney Transplant Recipient

    Directory of Open Access Journals (Sweden)

    Kraisoon Lomjansook, M.D.

    2017-09-01

    Full Text Available BK virus can reactivate in kidney transplant recipients leading to BK virus-associated nephropathy (BKVAN and allograft dysfunction. Pathogenesis begins with viral replication, follows by viruria, viremia and nephropathy. Screening tools recommended for viral detection are urine and blood BK viral load. Viremia has higher positive predictive value than viruria, thus several guidelines recommend using viremia to determine whether renal biopsy, a gold standard for diagnosis of BKVAN is needed. We present a 16-year-old boy who developed BKVAN five months after deceased donor kidney transplantation. He had increased serum creatinine with negative blood BK viral load. BK nephropathy was diagnosed in kidney graft biopsy. The urine showed BK viruria. Immunosuppressant was reduced and ciprofloxacin given. Viruria disappeared and repeated graft biopsy was normal 4 months later. BK viremia was negative through 1 year follow up. We conclude that BKVAN may occur even without viremia and BK viruria may be considered for screening tool.

  18. Thermo-sensitive nanoparticles for triggered release of siRNA.

    Science.gov (United States)

    Yang, Zheng; Cheng, Qiang; Jiang, Qian; Deng, Liandong; Liang, Zicai; Dong, Anjie

    2015-01-01

    Efficient delivery of small interfering RNA (siRNA) is crucially required for cancer gene therapy. Herein, a thermo-sensitive copolymer with a simple structure, poly (ethylene glycol) methyl ether acrylate-b-poly (N-isopropylacrylamide) (mPEG-b-PNIPAM) was developed. A novel kind of thermo-sensitive nanoparticles (DENPs) was constructed for the cold-shock triggered release of siRNA by double emulsion-solvent evaporation method using mPEG-b-PNIPAM and a cationic lipid, 3β [N-(N', N'-dimethylaminoethane)-carbamoyl] cholesterol [DC-Chol]. DENPs were observed by transmission electron microscopy and dynamical light scattering before and after 'cold shock' treatment. The encapsulation efficiency (EE) of siRNA in DENPs, which was measured by fluorescence spectrophotometer was 96.8% while it was significantly reduced to be 23.2% when DC-Chol was absent. DENPs/siRNA NPs exhibited a thermo-sensitive siRNA release character that the cumulatively released amount of siRNA from cold shock was approximately 2.2 folds higher after 7 days. In vitro luciferase silencing experiments indicated that DENPs showed potent gene silencing efficacy in HeLa-Luc cells (HeLa cells steadily expressed luciferase), which was further enhanced by a cold shock. Furthermore, MTT assay showed that cell viability with DENPs/siRNA up to 200 nM remained above 80%. We also observed that most of siRNA was accumulated in kidney mediated by DENPs instead of liver and spleen in vivo experiments. Thus, DENPs as a cold shock responsive quick release model for siRNA or hydrophilic macromolecules delivery provide a new way to nanocarrier design and clinic therapy.

  19. Reactivation of BK polyomavirus in patients with multiple sclerosis receiving natalizumab therapy.

    LENUS (Irish Health Repository)

    Lonergan, Roisin M

    2012-02-01

    Natalizumab therapy in multiple sclerosis has been associated with JC polyomavirus-induced progressive multifocal leucoencephalopathy. We hypothesized that natalizumab may also lead to reactivation of BK, a related human polyomavirus capable of causing morbidity in immunosuppressed groups. Patients with relapsing remitting multiple sclerosis treated with natalizumab were prospectively monitored for reactivation of BK virus in blood and urine samples, and for evidence of associated renal dysfunction. In this cohort, JC and BK DNA in blood and urine; cytomegalovirus (CMV) DNA in blood and urine; CD4 and CD8 T-lymphocyte counts and ratios in peripheral blood; and renal function were monitored at regular intervals. BK subtyping and noncoding control region sequencing was performed on samples demonstrating reactivation. Prior to commencement of natalizumab therapy, 3 of 36 patients with multiple sclerosis (8.3%) had BK viruria and BK reactivation occurred in 12 of 54 patients (22.2%). BK viruria was transient in 7, continuous in 2 patients, and persistent viruria was associated with transient viremia. Concomitant JC and CMV viral loads were undetectable. CD4:CD8 ratios fluctuated, but absolute CD4 counts did not fall below normal limits. In four of seven patients with BK virus reactivation, transient reductions in CD4 counts were observed at onset of BK viruria: these resolved in three of four patients on resuppression of BK replication. No renal dysfunction was observed in the cohort. BK virus reactivation can occur during natalizumab therapy; however, the significance in the absence of renal dysfunction is unclear. We propose regular monitoring for BK reactivation or at least for evidence of renal dysfunction in patients receiving natalizumab.

  20. Tungstate-targeting of BKαβ1 channels tunes ERK phosphorylation and cell proliferation in human vascular smooth muscle.

    Directory of Open Access Journals (Sweden)

    Ana Isabel Fernández-Mariño

    Full Text Available Despite the substantial knowledge on the antidiabetic, antiobesity and antihypertensive actions of tungstate, information on its primary target/s is scarce. Tungstate activates both the ERK1/2 pathway and the vascular voltage- and Ca2+-dependent large-conductance BKαβ1 potassium channel, which modulates vascular smooth muscle cell (VSMC proliferation and function, respectively. Here, we have assessed the possible involvement of BKαβ1 channels in the tungstate-induced ERK phosphorylation and its relevance for VSMC proliferation. Western blot analysis in HEK cell lines showed that expression of vascular BKαβ1 channels potentiates the tungstate-induced ERK1/2 phosphorylation in a Gi/o protein-dependent manner. Tungstate activated BKαβ1 channels upstream of G proteins as channel activation was not altered by the inhibition of G proteins with GDPβS or pertussis toxin. Moreover, analysis of Gi/o protein activation measuring the FRET among heterologously expressed Gi protein subunits suggested that tungstate-targeting of BKαβ1 channels promotes G protein activation. Single channel recordings on VSMCs from wild-type and β1-knockout mice indicated that the presence of the regulatory β1 subunit was essential for the tungstate-mediated activation of BK channels in VSMCs. Moreover, the specific BK channel blocker iberiotoxin lowered tungstate-induced ERK phosphorylation by 55% and partially reverted (by 51% the tungstate-produced reduction of platelet-derived growth factor (PDGF-induced proliferation in human VSMCs. Our observations indicate that tungstate-targeting of BKαβ1 channels promotes activation of PTX-sensitive Gi proteins to enhance the tungstate-induced phosphorylation of ERK, and inhibits PDGF-stimulated cell proliferation in human vascular smooth muscle.

  1. Vasoinhibins Prevent Bradykinin-Stimulated Endothelial Cell Proliferation by Inactivating eNOS via Reduction of both Intracellular Ca2+ Levels and eNOS Phosphorylation at Ser1179

    Directory of Open Access Journals (Sweden)

    Carmen Clapp

    2011-07-01

    Full Text Available Vasoinhibins, a family of antiangiogenic peptides derived from prolactin proteolysis, inhibit the vascular effects of several proangiogenic factors, including bradykinin (BK. Here, we report that vasoinhibins block the BK-induced proliferation of bovine umbilical vein endothelial cells. This effect is mediated by the inactivation of endothelial nitric oxide synthase (eNOS, as the NO donor DETA-NONOate reverted vasoinhibin action. It is an experimentally proven fact that the elevation of intracellular Ca2+ levels ([Ca2+]i upon BK stimulation activates eNOS, and vasoinhibins blocked the BK-mediated activation of phospholipase C and the formation of inositol 1,4,5-triphosphate leading to a reduced release of Ca2+ from intracellular stores. The [Ca2+]i rise evoked by BK also involves the influx of extracellular Ca2+ via canonical transient receptor potential (TRPC channels. Vasoinhibins likely interfere with TRPC-mediated Ca2+ entry since La3+, which is an enhancer of TRPC4 and TRPC5 channel activity, prevented vasoinhibins from blocking the stimulation by BK of endothelial cell NO production and proliferation, and vasoinhibins reduced the BK-induced increase of TRPC5 mRNA expression. Finally, vasoinhibins prevented the BK-induced phosphorylation of eNOS at Ser1179, a post-translational modification that facilitates Ca2+-calmodulin activation of eNOS. Together, our data show that vasoinhibins, by lowering NO production through the inhibition of both [Ca2+]i mobilization and eNOS phosphorylation, prevent the BK-induced stimulation of endothelial cell proliferation. Thus, vasoinhibins help to regulate BK effects on angiogenesis and vascular homeostasis.

  2. In vivo therapeutic potential of Dicer-hunting siRNAs targeting infectious hepatitis C virus.

    Science.gov (United States)

    Watanabe, Tsunamasa; Hatakeyama, Hiroto; Matsuda-Yasui, Chiho; Sato, Yusuke; Sudoh, Masayuki; Takagi, Asako; Hirata, Yuichi; Ohtsuki, Takahiro; Arai, Masaaki; Inoue, Kazuaki; Harashima, Hideyoshi; Kohara, Michinori

    2014-04-23

    The development of RNA interference (RNAi)-based therapy faces two major obstacles: selecting small interfering RNA (siRNA) sequences with strong activity, and identifying a carrier that allows efficient delivery to target organs. Additionally, conservative region at nucleotide level must be targeted for RNAi in applying to virus because hepatitis C virus (HCV) could escape from therapeutic pressure with genome mutations. In vitro preparation of Dicer-generated siRNAs targeting a conserved, highly ordered HCV 5' untranslated region are capable of inducing strong RNAi activity. By dissecting the 5'-end of an RNAi-mediated cleavage site in the HCV genome, we identified potent siRNA sequences, which we designate as Dicer-hunting siRNAs (dh-siRNAs). Furthermore, formulation of the dh-siRNAs in an optimized multifunctional envelope-type nano device inhibited ongoing infectious HCV replication in human hepatocytes in vivo. Our efforts using both identification of optimal siRNA sequences and delivery to human hepatocytes suggest therapeutic potential of siRNA for a virus.

  3. Perbedaan Pemahaman Guru BK Tentang Konseling Kelompok antara Alumni Unnes dan Non-Unnes

    Directory of Open Access Journals (Sweden)

    Desta Rizky Budiarti

    2014-10-01

    Full Text Available Tujuan penelitian ini untuk mengetahui gambaran pemahaman guru BK alumni Unnes dan guru BK alumni non-Unnes tentang konseling kelompok, dan perbedaan pemahaman diantara keduanya. Jenis penelitian adalah penelitian survey komparatif. Populasi penelitian ini yaitu guru BK di SMP Negeri se-Kota Semarang. Teknik sampling yang digunakan adalah Cluster Proportional Random Sampling. Metode pengumpulan data menggunakan tes tentang pemahaman konseling kelompok. Analisis datanya menggunakan analisis kuantitatif yang mencakup deskriptif prosentase dan uji beda t-test polled varian. Hasil penelitian menunjukkan bahwa ada perbedaan yang signifikan, dimana pemahaman guru BK alumni Unnes tentang konseling kelompok berada pada kategori sangat tinggi dengan persentase 84,26% dibandingkan dengan guru BK alumni non-Unnes yang memiliki persentase 63,9% berada pada kategori sedang. Simpulan dari penelitian ini, pemahaman guru BK tentang konseling kelompok antara alumni Unnes lebih tinggi daripada guru BK alumni non-Unnes. The purpose of this study to describe the understanding of BK teacher Unnes graduate and BK teacher non - Unnes graduates about group counseling, and understanding the differences between them . This type of research is a comparative survey research. The population of this study are in Junior High School teacher BK as the city of Semarang. The sampling technique used is proportional cluster random sampling. Methods of data collection using test on understanding group counseling. Analysis of the data using descriptive quantitative analysis that includes the percentage and t - test different test variants polled. The results showed that there were significant differences, where the understanding of BK teacher Unnes graduate  abaout  the counseling group in the category with a very high percentage of 84.26 % compared to a BK teacher non - Unnes graduates who have a percentage only 63.9 % are in the medium category. The conclusions of this study

  4. Evaluation of fluoroquinolones for the prevention of BK viremia after renal transplantation.

    Science.gov (United States)

    Gabardi, Steven; Waikar, Sushrut S; Martin, Spencer; Roberts, Keri; Chen, Jie; Borgi, Lea; Sheashaa, Hussein; Dyer, Christine; Malek, Sayeed K; Tullius, Stefan G; Vadivel, Nidyanandh; Grafals, Monica; Abdi, Reza; Najafian, Nader; Milford, Edgar; Chandraker, Anil

    2010-07-01

    Nearly 30% of renal transplant recipients develops BK viremia, a prerequisite for BK nephropathy. Case reports have evaluated treatment options for BK virus, but no controlled studies have assessed prophylactic therapies. Fluoroquinolone antibiotics were studied for prevention of BK viremia after renal transplantation. This retrospective analysis evaluated adult renal transplant recipients with at least one BK viral load (blood) between 90 and 400 days after transplantation. Six to 12 months of co-trimoxazole was used for Pneumocystis prophylaxis. In sulfa-allergic/-intolerant patients, 6 to 12 months of atovaquone with 1 month of a fluoroquinolone was used. Fluoroquinolones can inhibit BK DNA topoisomerase. The two groups studied were those that received 30 days of levofloxacin or ciprofloxacin after transplantation and those that did not. The primary endpoint was BK viremia rates at 1 year. Of note, of the 160 patients not receiving fluoroquinolone prophylaxis, 40 received a fluoroquinolone for treatment of a bacterial infection within 3 months after transplantation. Subgroup analysis evaluating these 40 patients against the 120 who had no exposure to fluoroquinolones was completed. A 1-month fluoroquinolone course after transplantation was associated with significantly lower rates of BK viremia at 1 year compared with those with no fluoroquinolone. In the subgroup analysis, exposure to fluoroquinolone for treatment of bacterial infections within 3 months after transplantation was associated with significantly lower 1-year rates of BK viremia. This analysis demonstrates that fluoroquinolones are effective at preventing BK viremia after renal transplantation.

  5. CDE-1 affects chromosome segregation through uridylation of CSR-1-bound siRNAs.

    Science.gov (United States)

    van Wolfswinkel, Josien C; Claycomb, Julie M; Batista, Pedro J; Mello, Craig C; Berezikov, Eugene; Ketting, René F

    2009-10-02

    We have studied the function of a conserved germline-specific nucleotidyltransferase protein, CDE-1, in RNAi and chromosome segregation in C. elegans. CDE-1 localizes specifically to mitotic chromosomes in embryos. This localization requires the RdRP EGO-1, which physically interacts with CDE-1, and the Argonaute protein CSR-1. We found that CDE-1 is required for the uridylation of CSR-1 bound siRNAs, and that in the absence of CDE-1 these siRNAs accumulate to inappropriate levels, accompanied by defects in both meiotic and mitotic chromosome segregation. Elevated siRNA levels are associated with erroneous gene silencing, most likely through the inappropriate loading of CSR-1 siRNAs into other Argonaute proteins. We propose a model in which CDE-1 restricts specific EGO-1-generated siRNAs to the CSR-1 mediated, chromosome associated RNAi pathway, thus separating it from other endogenous RNAi pathways. The conserved nature of CDE-1 suggests that similar sorting mechanisms may operate in other animals, including mammals.

  6. The role and mechanism of KCa3.1 channels in human monocyte migration induced by palmitic acid.

    Science.gov (United States)

    Ma, Xiao-Zhen; Pang, Zheng-Da; Wang, Jun-Hong; Song, Zheng; Zhao, Li-Mei; Du, Xiao-Jun; Deng, Xiu-Ling

    2018-05-21

    Monocyte migration into diseased tissues contributes to the pathogenesis of diseases. Intermediate-conductance Ca 2+ -activated K + (K Ca 3.1) channels play an important role in cell migration. However, the role of K Ca 3.1 channels in mediating monocyte migration induced by palmitic acid (PA) is still unclear. Using cultured THP-1 cells and peripheral blood mononuclear cells from healthy subjects, we investigated the role and signaling mechanisms of K Ca 3.1 channels in mediating the migration induced by PA. Using methods of Western blotting analysis, RNA interference, cell migration assay and ELISA, we found that PA-treated monocytes exhibited increment of the protein levels of K Ca 3.1 channel and monocyte chemoattractant protein-1 (MCP-1), and the effects were reversed by co-incubation of PA with anti-TLR2/4 antibodies or by specific inhibitors of p38-MAPK, or NF-κB. In addition, PA increased monocyte migration, which was abolished by a specific K Ca 3.1 channel blocker, TRAM-34, or K Ca 3.1 small interfering RNA (siRNA). The expression and secretion of MCP-1 induced by PA was also similarly prevented by TRAM-34 and K Ca 3.1 siRNA. These results demonstrate for the first time that PA upregulates K Ca 3.1 channels through TLR2/4, p38-MAPK and NF-κB pathway to promote the expression of MCP-1, and then induce the trans-endothelial migration of monocytes. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. BK channel activators and their therapeutic perspectives

    DEFF Research Database (Denmark)

    Bentzen, Bo Hjorth; Olesen, Søren-Peter; Rønn, Lars C B

    2014-01-01

    in intracellular calcium to outward hyperpolarizing potassium currents. Consequently, the channel has many important physiological roles including regulation of smooth muscle tone, neurotransmitter release and neuronal excitability. Additionally, cardioprotective roles have been revealed in recent years. After...

  8. Pharmacological investigation of the role of ion channels in salivary secretion

    DEFF Research Database (Denmark)

    Stummann, Tina C; Poulsen, Jørgen H; Hay-Schmidt, Anders

    2003-01-01

    The role of K+ and Cl- channels in salivary secretion was investigated, with emphasis on the potential role of Ca2+ -activated K+ channels. Ligand saturation kinetic assays and autoradiography showed large-conductance (BK) K+ channels to be highly expressed in rat submandibular and parotid glands...

  9. Inhibition of CUG-binding protein 1 and activation of caspases are critically involved in piperazine derivative BK10007S induced apoptosis in hepatocellular carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Ju-Ha Kim

    Full Text Available Though piperazine derivative BK10007S was known to induce apoptosis in pancreatic cancer xenograft model as a T-type CaV3.1 a1G isoform calcium channel blocker, its underlying antitumor mechanism still remains unclear so far. Thus, in the present study, the antitumor mechanism of BK10007S was elucidated in hepatocellular carcinoma cells (HCCs. Herein, BK10007S showed significant cytotoxicity by 3-[4,5-2-yl]-2,5-diphenyltetra-zolium bromide (MTT assay and anti-proliferative effects by colony formation assay in HepG2 and SK-Hep1 cells. Also, apoptotic bodies and terminal deoxynucleotidyl transferase (TdT dUTP Nick End Labeling (TUNEL positive cells were observed in BK10007S treated HepG2 and SK-Hep1 cells by 4',6-diamidino-2-phenylinodole (DAPI staining and TUNEL assay, respectively. Consistently, BK10007S increased sub G1 population in HepG2 and SK-Hep1 cells by cell cycle analysis. Furthermore, Western blotting revealed that BK10007S activated the caspase cascades (caspase 8, 9 and 3, cleaved poly (ADP-ribose polymerase (PARP, and downregulated the expression of cyclin D1, survivin and for CUG-binding protein 1 (CUGBP1 or CELF1 in HepG2 and SK-Hep1 cells. Conversely, overexpression of CUGBP1 reduced cleavages of PARP and caspase 3, cytotoxicity and subG1 population in BK10007S treated HepG2 cells. Overall, these findings provide scientific evidences that BK10007S induces apoptosis via inhibition of CUGBP1 and activation of caspases in hepatocellular carcinomas as a potent anticancer candidate.

  10. Exosomes as nanocarriers for siRNA delivery: paradigms and challenges.

    Science.gov (United States)

    Shahabipour, Fahimeh; Banach, Maciej; Sahebkar, Amirhossein

    2016-12-01

    Exosomes are nano-sized vesicles that facilitate intercellular communications through carrying genetic materials and functional biomolecules. Owing to their unique size and structure, exosomes have emerged as a useful tool to overcome the limitations of siRNA delivery. The use of exosomes as siRNA delivery vehicles lacks certain disadvantages of the existing foreign delivery systems such as viruses, polycationic polymers and liposomes, and introduces several advantages including inherent capacity to pass through biological barriers and escape from phagocytosis by the reticuloendothelial system, as well as being biocompatible, non-toxic, and immunologically inert. Different strategies have been employed to harness exosome-based delivery systems, including surface modification with targeting ligands, and using exosome-display technology, virus-modified exosomes, and exosome-mimetic vesicles. The present review provides a capsule summary of the recent advances and current challenges in the field of exosome-mediated siRNA delivery.

  11. Combination siRNA therapy against feline coronavirus can delay the emergence of antiviral resistance in vitro.

    Science.gov (United States)

    McDonagh, Phillip; Sheehy, Paul A; Norris, Jacqueline M

    2015-03-23

    Virulent biotypes of feline coronavirus (FCoV), commonly referred to as feline infectious peritonitis virus (FIPV), can result in the development of feline infectious peritonitis (FIP), a typically fatal immune mediated disease for which there is currently no effective antiviral treatment. We previously reported the successful in vitro inhibition of FIPV replication by synthetic siRNA mediated RNA interference (RNAi) in an immortalised cell line (McDonagh et al., 2011). A major challenge facing the development of any antiviral strategy is that of resistance, a problem which is particularly acute for RNAi based therapeutics due to the exquisite sequence specificity of the targeting mechanism. The development of resistance during treatment can be minimised using combination therapy to raise the genetic barrier or using highly potent compounds which result in a more rapid and pronounced reduction in the viral replication rate, thereby reducing the formation of mutant, and potentially resistant viruses. This study investigated the efficacy of combination siRNA therapy and its ability to delay or prevent viral escape. Virus serially passaged through cells treated with a single or dual siRNAs rapidly acquired resistance, with mutations identified in the siRNA target sites. Combination therapy with three siRNA prevented viral escape over the course of five passages. To identify more potent silencing molecules we also compared the efficacy, in terms of potency and duration of action, of canonical versus Dicer-substrate siRNAs for two previously identified effective viral motifs. Dicer-substrate siRNAs showed equivalent or better potency than canonical siRNAs for the target sites investigated, and may be a more appropriate molecule for in vivo use. Combined, these data inform the potential therapeutic application of antiviral RNAi against FIPV. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Study of the properties of the superheavy nuclei Z=117 produced in the 249Bk + 48Ca reaction

    International Nuclear Information System (INIS)

    Oganessian, Y.T.; Abdullin, F.S.; Dmitriev, S.N.; Itkis, M.G.; Polyakov, A.N.; Sagaidak, R.N.; Shirokovsky, I.V.; Shumeiko, M.V.; Subbotin, V.G.; Sukhov, A.M.; Tsyganov, Y.S.; Utyonkov, V.K.; Voinov, A.A.; Vostokin, G.K.; Alexander, C.; Binder, J.; Boll, R.A.; Ezold, J.; Felker, K.; Miernik, K.; Roberto, J.B.; Rykaczewski, K.P.; Gostic, J.M.; Henderson, R.A.; Moody, K.J.; Shaughnessy, D.H.; Stoyer, M.A.; Stoyer, N.J.; Grzywacz, R.K.; Miller, D.; Hamilton, J.H.; Ramayya, A.V.; Ryabinin, M.A.

    2014-01-01

    The reaction of 249 Bk with 48 Ca have been reinvestigated to provide new evidence for the discovery of element 117 on a larger number of events. The experiments were performed at five projectile energies and with a total beam dose of 48 Ca of about 4.6*10 19 . Two isotopes 293,294 117 were synthesized in the 249 Bk+ 48 Ca reaction, providing excitation functions and α-decay spectra of the produced isotopes that establishes these nuclei to be the products of the 4n- and 3n-evaporation channels, respectively. Decay properties of 293,294 117 and of all the daughter products agree with the data of the experiment in which these nuclei were synthesized for the first time in 2010. The new 289 115 events, populated by a decay of 293 117, demonstrate the same decay properties as those observed for 289 115 produced in the 243 Am( 48 Ca,2n) reaction thus providing cross-bombardment evidence. In addition, a single decay of 294 118 was observed from the reaction with 249 Cf - a result of the in-growth of 249 Cf in the 249 Bk target. (authors)

  13. Compartmentalized beta subunit distribution determines characteristics and ethanol sensitivity of somatic, dendritic, and terminal large-conductance calcium-activated potassium channels in the rat central nervous system.

    Science.gov (United States)

    Wynne, P M; Puig, S I; Martin, G E; Treistman, S N

    2009-06-01

    Neurons are highly differentiated and polarized cells, whose various functions depend upon the compartmentalization of ion channels. The rat hypothalamic-neurohypophysial system (HNS), in which cell bodies and dendrites reside in the hypothalamus, physically separated from their nerve terminals in the neurohypophysis, provides a particularly powerful preparation in which to study the distribution and regional properties of ion channel proteins. Using electrophysiological and immunohistochemical techniques, we characterized the large-conductance calcium-activated potassium (BK) channel in each of the three primary compartments (soma, dendrite, and terminal) of HNS neurons. We found that dendritic BK channels, in common with somatic channels but in contrast to nerve terminal channels, are insensitive to iberiotoxin. Furthermore, analysis of dendritic BK channel gating kinetics indicates that they, like somatic channels, have fast activation kinetics, in contrast to the slow gating of terminal channels. Dendritic and somatic channels are also more sensitive to calcium and have a greater conductance than terminal channels. Finally, although terminal BK channels are highly potentiated by ethanol, somatic and dendritic channels are insensitive to the drug. The biophysical and pharmacological properties of somatic and dendritic versus nerve terminal channels are consistent with the characteristics of exogenously expressed alphabeta1 versus alphabeta4 channels, respectively. Therefore, one possible explanation for our findings is a selective distribution of auxiliary beta1 subunits to the somatic and dendritic compartments and beta4 to the terminal compartment. This hypothesis is supported immunohistochemically by the appearance of distinct punctate beta1 or beta4 channel clusters in the membrane of somatic and dendritic or nerve terminal compartments, respectively.

  14. Infección por virus BK en paciente pediátrico trasplantado renal BK virus infection in a pediatric renal transplant recipient

    Directory of Open Access Journals (Sweden)

    R. Bonaventura

    2005-09-01

    Full Text Available El poliomavirus humano BK causa infección primaria asintomática en la niñez, estableciendo latencia principalmente en el tracto urinario. En individuos con alteración en la inmunidad celular se puede producir su reactivación desencadenando patología a nivel renal. Por estas razones es particularmente importante en la población pediátrica trasplantada renal, en la que puede producir la infección primaria cuando el paciente está inmunosuprimido. En nuestro trabajo se realizó el seguimiento de un paciente de 5 años trasplantado renal en octubre de 2003 que 45 días post-trasplante sufrió un deterioro del órgano injertado. Desde la fecha del trasplante hasta junio de 2004 se produjeron 3 episodios de alteración en la función renal, durante los cuales se analizaron muestras de sangre, orina, biopsia renal y líquido de linfocele. Para el diagnóstico difererencial entre rechazo agudo versus causa infecciosa se emplearon técnicas de detección para los virus BK, CMV y ADV, además del estudio citológico del tejido renal. Los resultados obtenidos junto con la clínica del paciente indican un probable caso de infección por BK. La importancia de realizar el diagnóstico diferencial entre rechazo agudo y la infección por BK radica en que la conducta en cuanto a la terapia inmunosupresora es opuesta en cada caso.BK Human Polyomavirus causes an asymptomatic primary infection in children, then establishing latency mainly in the urinary tract. Viral reactivation can lead to renal pathology in individuals with impaired cellular immune response. This is particularly important in pediatric transplant recipients, who can suffer a primary infection when immunosupressed. We followed up the case of a 5 years old patient who received a renal transplant in October 2003, and presented damaged graft 45 days after the intervention. The patient suffered 3 episodes of renal function failure between October 2003 and June 2004. Blood, urine, renal biopsy

  15. Angiotensin-2-mediated Ca2+ signaling in the retinal pigment epithelium: role of angiotensin-receptor-associated-protein and TRPV2 channel.

    Directory of Open Access Journals (Sweden)

    Rene Barro-Soria

    Full Text Available Angiotensin II (AngII receptor (ATR is involved in pathologic local events such as neovascularisation and inflammation including in the brain and retina. The retinal pigment epithelium (RPE expresses ATR in its AT1R form, angiotensin-receptor-associated protein (Atrap, and transient-receptor-potential channel-V2 (TRPV2. AT1R and Atrap co-localize to the basolateral membrane of the RPE, as shown by immunostaining. Stimulation of porcine RPE (pRPE cells by AngII results in biphasic increases in intracellular free Ca(2+inhibited by losartan. Xestospongin C (xest C and U-73122, blockers of IP3R and PLC respectively, reduced AngII-evoked Ca(2+response. RPE cells from Atrap(-/- mice showed smaller AngII-evoked Ca(2+peak (by 22% and loss of sustained Ca(2+elevation compared to wild-type. The TRPV channel activator cannabidiol (CBD at 15 µM stimulates intracellular Ca(2+-rise suggesting that porcine RPE cells express TRPV2 channels. Further evidence supporting the functional expression of TRPV2 channels comes from experiments in which 100 µM SKF96365 (a TRPV channel inhibitor reduced the cannabidiol-induced Ca(2+-rise. Application of SKF96365 or reduction of TRPV2 expression by siRNA reduced the sustained phase of AngII-mediated Ca(2+transients by 53%. Thus systemic AngII, an effector of the local renin-angiotensin system stimulates biphasic Ca(2+transients in the RPE by releasing Ca(2+from cytosolic IP3-dependent stores and activating ATR/Atrap and TRPV2 channels to generate a sustained Ca(2+elevation.

  16. Role of KCNMA1 gene in breast cancer invasion and metastasis to brain

    International Nuclear Information System (INIS)

    Khaitan, Divya; Sankpal, Umesh T; Weksler, Babette; Meister, Edward A; Romero, Ignacio A; Couraud, Pierre-Olivier; Ningaraj, Nagendra S

    2009-01-01

    The prognosis for patients with breast tumor metastases to brain is extremely poor. Identification of prognostic molecular markers of the metastatic process is critical for designing therapeutic modalities for reducing the occurrence of metastasis. Although ubiquitously present in most human organs, large-conductance calcium- and voltage-activated potassium channel (BK Ca ) channels are significantly upregulated in breast cancer cells. In this study we investigated the role of KCNMA1 gene that encodes for the pore-forming α-subunit of BK Ca channels in breast cancer metastasis and invasion. We performed Global exon array to study the expression of KCNMA1 in metastatic breast cancer to brain, compared its expression in primary breast cancer and breast cancers metastatic to other organs, and validated the findings by RT-PCR. Immunohistochemistry was performed to study the expression and localization of BK Ca channel protein in primary and metastatic breast cancer tissues and breast cancer cell lines. We performed matrigel invasion, transendothelial migration and membrane potential assays in established lines of normal breast cells (MCF-10A), non-metastatic breast cancer (MCF-7), non-brain metastatic breast cancer cells (MDA-MB-231), and brain-specific metastatic breast cancer cells (MDA-MB-361) to study whether BK Ca channel inhibition attenuates breast tumor invasion and metastasis using KCNMA1 knockdown with siRNA and biochemical inhibition with Iberiotoxin (IBTX). The Global exon array and RT-PCR showed higher KCNMA1 expression in metastatic breast cancer in brain compared to metastatic breast cancers in other organs. Our results clearly show that metastatic breast cancer cells exhibit increased BK Ca channel activity, leading to greater invasiveness and transendothelial migration, both of which could be attenuated by blocking KCNMA1. Determining the relative abundance of BK Ca channel expression in breast cancer metastatic to brain and the mechanism of its

  17. Novel targets for sensitizing breast cancer cells to TRAIL-induced apoptosis with siRNA delivery.

    Science.gov (United States)

    Thapa, Bindu; Bahadur Kc, Remant; Uludağ, Hasan

    2018-02-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in variety of cancer cells without affecting most normal cells, which makes it a promising agent for cancer therapy. However, TRAIL therapy is clinically not effective due to resistance induction. To identify novel regulators of TRAIL that can aid in therapy, protein targets whose silencing sensitized breast cancer cells against TRAIL were screened with an siRNA library against 446 human apoptosis-related proteins in MDA-231 cells. Using a cationic lipopolymer (PEI-αLA) for delivery of library members, 16 siRNAs were identified that sensitized the TRAIL-induced death in MDA-231 cells. The siRNAs targeting BCL2L12 and SOD1 were further evaluated based on the novelty and their ability to sensitize TRAIL induced cell death. Silencing both targets sensitized TRAIL-mediated cell death in MDA-231 cells as well as TRAIL resistant breast cancer cells, MCF-7. Combination of TRAIL and siRNA silencing BCL2L12 had no effect in normal human umbilical vein cells and human bone marrow stromal cell. The silencing of BCL2L12 and SOD1 enhanced TRAIL-mediated apoptosis in MDA-231 cells via synergistically activating capsase-3 activity. Hence, here we report siRNAs targeting BCL2L12 and SOD1 as a novel regulator of TRAIL-induced cell death in breast cancer cells, providing a new approach for enhancing TRAIL therapy for breast cancer. The combination of siRNA targeting BCL2L12 and TRAIL can be a highly effective synergistic pair in breast cancer cells with minimal effect on the non-transformed cells. © 2017 UICC.

  18. Emerging RNA-based drugs: siRNAs, microRNAs and derivates.

    Science.gov (United States)

    Pereira, Tiago Campos; Lopes-Cendes, Iscia

    2012-09-01

    An emerging new category of therapeutic agents based on ribonucleic acid has emerged and shown very promising in vitro, animal and pre-clinical results, known as small interfering RNAs (siRNAs), microRNAs mimics (miRNA mimics) and their derivates. siRNAs are small RNA molecules that promote potent and specific silencing of mutant, exogenous or aberrant genes through a mechanism known as RNA interference. These agents have called special attention to medicine since they have been used to experimentally treat a series of neurological conditions with distinct etiologies such as prion, viral, bacterial, fungal, genetic disorders and others. siRNAs have also been tested in other scenarios such as: control of anxiety, alcohol consumption, drug-receptor blockage and inhibition of pain signaling. Although in a much earlier stage, miRNAs mimics, anti-miRs and small activating RNAs (saRNAs) also promise novel therapeutic approaches to control gene expression. In this review we intend to introduce clinicians and medical researchers to the most recent advances in the world of siRNA- and miRNA-mediated gene control, its history, applications in cells, animals and humans, delivery methods (an yet unsolved hurdle), current status and possible applications in future clinical practice.

  19. Intermittent losartan administration triggers cardiac post-conditioning in isolated rat hearts: role of BK2 receptors.

    Directory of Open Access Journals (Sweden)

    Luca Sgarra

    Full Text Available The angiotensin (Ang and bradykinin (BK tissue-system plays a pivotal role in post-conditioning, but the efficacy of angiotensin type 1 receptor (AT1R blockers (ARBs in post-ischemic strategies is still under investigation. We evaluated functional and morphological outcomes, together with activation of cytosolic RISK pathway kinases, in rat hearts subjected to losartan (LOS or irbesartan (IRB post-ischemic administration.Isolated rat hearts underwent 30 min ischemia and 120 min reperfusion. Post-conditioning was obtained by intermittent (10 s/each or continuous drug infusion during the first 3 min of reperfusion. Left ventricular end-diastolic pressure (LVEDP, left ventricular developed pressure (dLVP, coronary flow (CF, and left ventricular infarct mass (IM were measured together with the activation status of RISK kinases Akt, p42/44 MAPK and GSK3β.When compared to hearts subjected to ischemia/reperfusion (iI/R alone, continuous IRB or LOS administration did not significantly reduce total infarct mass (cIRB or cLOS vs. iI/R, p = 0.2. Similarly, intermittent IRB (iIRB was not able to enhance cardioprotection. Conversely, intermittent LOS administration (iLOS significantly ameliorated cardiac recovery (iLOS vs iI/R, p<0.01. Differences between iLOS and iIRB persisted under continuous blockade of AT2R (iLOS+cPD vs. iIRB+cPD, p<0.05. Interestingly, iLOS cardioprotection was lost when BK2R was simultaneously blocked (iLOS+cHOE vs. iI/R, p = 0.6, whereas concurrent administration of iBK and iIRB replicated iLOS effects (iIRB+iBK vs. iLOS, p = 0.7. At the molecular level, iIRB treatment did not significantly activate RISK kinases, whereas both iLOS and iBK treatments were associated with activation of the Akt/GSK3β branch of the RISK pathways (p<0.05 vs. iI/R, for both.Our results suggest that intermittent losartan is effective in mediating post-conditioning cardioprotection, whereas irbesartan is not. The infarct mass reduction by intermittent

  20. 2'-OMe-phosphorodithioate-modified siRNAs show increased loading into the RISC complex and enhanced anti-tumour activity.

    Science.gov (United States)

    Wu, Sherry Y; Yang, Xianbin; Gharpure, Kshipra M; Hatakeyama, Hiroto; Egli, Martin; McGuire, Michael H; Nagaraja, Archana S; Miyake, Takahito M; Rupaimoole, Rajesha; Pecot, Chad V; Taylor, Morgan; Pradeep, Sunila; Sierant, Malgorzata; Rodriguez-Aguayo, Cristian; Choi, Hyun J; Previs, Rebecca A; Armaiz-Pena, Guillermo N; Huang, Li; Martinez, Carlos; Hassell, Tom; Ivan, Cristina; Sehgal, Vasudha; Singhania, Richa; Han, Hee-Dong; Su, Chang; Kim, Ji Hoon; Dalton, Heather J; Kovvali, Chandra; Keyomarsi, Khandan; McMillan, Nigel A J; Overwijk, Willem W; Liu, Jinsong; Lee, Ju-Seog; Baggerly, Keith A; Lopez-Berestein, Gabriel; Ram, Prahlad T; Nawrot, Barbara; Sood, Anil K

    2014-03-12

    Improving small interfering RNA (siRNA) efficacy in target cell populations remains a challenge to its clinical implementation. Here, we report a chemical modification, consisting of phosphorodithioate (PS2) and 2'-O-Methyl (2'-OMe) MePS2 on one nucleotide that significantly enhances potency and resistance to degradation for various siRNAs. We find enhanced potency stems from an unforeseen increase in siRNA loading to the RNA-induced silencing complex, likely due to the unique interaction mediated by 2'-OMe and PS2. We demonstrate the therapeutic utility of MePS2 siRNAs in chemoresistant ovarian cancer mouse models via targeting GRAM domain containing 1B (GRAMD1B), a protein involved in chemoresistance. GRAMD1B silencing is achieved in tumours following MePS2-modified siRNA treatment, leading to a synergistic anti-tumour effect in combination with paclitaxel. Given the previously limited success in enhancing siRNA potency with chemically modified siRNAs, our findings represent an important advance in siRNA design with the potential for application in numerous cancer types.

  1. Targeted delivery of siRNA to macrophages for anti-inflammatory treatment.

    Science.gov (United States)

    Kim, Sang-Soo; Ye, Chunting; Kumar, Priti; Chiu, Isaac; Subramanya, Sandesh; Wu, Haoquan; Shankar, Premlata; Manjunath, N

    2010-05-01

    Inflammation mediated by tumor necrosis factor-alpha (TNF-alpha) and the associated neuronal apoptosis characterizes a number of neurologic disorders. Macrophages and microglial cells are believed to be the major source of TNF-alpha in the central nervous system (CNS). Here, we show that suppression of TNF-alpha by targeted delivery of small interfering RNA (siRNA) to macrophage/microglial cells dramatically reduces lipopolysaccharide (LPS)-induced neuroinflammation and neuronal apoptosis in vivo. Because macrophage/microglia express the nicotinic acetylcholine receptor (AchR) on their surface, we used a short AchR-binding peptide derived from the rabies virus glycoprotein (RVG) as a targeting ligand. This peptide was fused to nona-D-arginine residues (RVG-9dR) to enable siRNA binding. RVG-9dR was able to deliver siRNA to induce gene silencing in macrophages and microglia cells from wild type, but not AchR-deficient mice, confirming targeting specificity. Treatment with anti-TNF-alpha siRNA complexed to RVG-9dR achieved efficient silencing of LPS-induced TNF-alpha production by primary macrophages and microglia cells in vitro. Moreover, intravenous injection with RVG-9dR-complexed siRNA in mice reduced the LPS-induced TNF-alpha levels in blood as well as in the brain, leading to a significant reduction in neuronal apoptosis. These results demonstrate that RVG-9dR provides a tool for siRNA delivery to macrophages and microglia and that suppression of TNF-alpha can potentially be used to suppress neuroinflammation in vivo.

  2. siRNA - Mediated LRP/LR knock-down reduces cellular viability of malignant melanoma cells through the activation of apoptotic caspases.

    Science.gov (United States)

    Rebelo, Thalia M; Vania, Leila; Ferreira, Eloise; Weiss, Stefan F T

    2018-07-01

    The 37 kDa/67 kDa laminin receptor (LRP/LR) is over-expressed in tumor cells and has been implicated in several tumourigenic processes such as metastasis and telomerase activation, however, more importantly the focus of the present study is on the maintenance of cellular viability and the evasion of apoptosis. The aim of the study was to investigate the role of LRP/LR on the cellular viability of early (A375) and late stage (A375SM) malignant melanoma cells. Flow cytometry and western blot analysis revealed that A375SM cells contain more cell-surface and total LRP/LR levels in comparison to the A375 cells, respectively. In order to determine the effect of LRP/LR on cell viability and apoptosis, LRP was down-regulated via siRNA technology. MTT assays revealed that LRP knock-down led to significant reductions in the viability of A375 and A375SM cells. Confocal microscopy indicated nuclear morphological changes suggestive of apoptotic induction in both cell lines and Annexin-V FITC/PI assays confirmed this observation. Additionally, caspase-3 activity assays revealed that apoptosis was induced in both cell lines after siRNA-mediated down-regulation of LRP. Caspase-8 and -9 activity assays suggested that post LRP knock-down; A375 cells undergo apoptosis solely via the extrinsic pathway, while A375SM cells undergo apoptosis via the intrinsic pathway. siRNAs mediated LRP knock-down might represent a powerful alternative therapeutic strategy for the treatment of malignant melanoma through the induction of apoptosis. Copyright © 2018. Published by Elsevier Inc.

  3. CFTR mediates noradrenaline-induced ATP efflux from DRG neurons.

    Science.gov (United States)

    Kanno, Takeshi; Nishizaki, Tomoyuki

    2011-09-24

    In our earlier study, noradrenaline (NA) stimulated ATP release from dorsal root ganglion (DRG) neurons as mediated via β(3) adrenoceptors linked to G(s) protein involving protein kinase A (PKA) activation, to cause allodynia. The present study was conducted to understand how ATP is released from DRG neurons. In an outside-out patch-clamp configuration from acutely dissociated rat DRG neurons, single-channel currents, sensitive to the P2X receptor inhibitor PPADS, were evoked by approaching the patch-electrode tip close to a neuron, indicating that ATP is released from DRG neurons, to activate P2X receptor. NA increased the frequency of the single-channel events, but such NA effect was not found for DRG neurons transfected with the siRNA to silence the cystic fibrosis transmembrane conductance regulator (CFTR) gene. In the immunocytochemical study using acutely dissociated rat DRG cells, CFTR was expressed in neurons alone, but not satellite cells, fibroblasts, or Schwann cells. It is concluded from these results that CFTR mediates NA-induced ATP efflux from DRG neurons as an ATP channel.

  4. Outcomes of renal transplant recipients with BK virus infection and BK virus surveillance in the Auckland region from 2006 to 2012.

    Science.gov (United States)

    Hsiao, Chun-Yuan; Pilmore, Helen L; Zhou, Lifeng; de Zoysa, Janak R

    2016-11-06

    To evaluate incidence, risk factors and treatment outcome of BK polyomavirus nephropathy (BKVN) in a cohort of renal transplant recipients in the Auckland region without a formal BK polyomavirus (BKV) surveillance programme. A cohort of 226 patients who received their renal transplants from 2006 to 2012 was retrospectively reviewed. Seventy-six recipients (33.6%) had a BK viral load (BKVL) test and 9 patients (3.9%) developed BKVN. Cold ischaemia time (HR = 1.18, 95%CI: 1.04-1.35) was found to be a risk factor for BKVN. Four recipients with BKVN had complete resolution of their BKV infection; 1 recipient had BKVL less than 625 copies/mL; 3 recipients had BKVL more than 1000 copies/mL and 1 had graft failure from BKVN. BKVN has a negative impact on graft function [median estimated glomerular filtration rate (eGFR) 22.5 (IQR 18.5-53.0) mL/min per 1.73 m 2 , P = 0.015), but no statistically significant difference ( P = 0.374) in renal allograft function was found among negative BK viraemia group [median eGFR 60.0 (IQR 48.5-74.2) mL/min per 1.73 m 2 ), positive BK viraemia without BKVN group [median eGFR 55.0 (IQR 47.0-76.0) mL/min per 1.73 m 2 ] and unknown BKV status group [median eGFR 54.0 (IQR 43.8-71.0) mL/min per 1.73 m 2 ]. The incidence and treatment outcomes of BKVN were similar to some centres with BKV surveillance programmes. Recipients with BVKN have poorer graft function. Although active surveillance for BKV has been shown to be effective in reducing incidence of BKVN, it should be tailored specifically to that transplant centre based on its epidemiology and outcomes of BKVN, particularly in centres with limited resources.

  5. Improved nucleic acid descriptors for siRNA efficacy prediction.

    Science.gov (United States)

    Sciabola, Simone; Cao, Qing; Orozco, Modesto; Faustino, Ignacio; Stanton, Robert V

    2013-02-01

    Although considerable progress has been made recently in understanding how gene silencing is mediated by the RNAi pathway, the rational design of effective sequences is still a challenging task. In this article, we demonstrate that including three-dimensional descriptors improved the discrimination between active and inactive small interfering RNAs (siRNAs) in a statistical model. Five descriptor types were used: (i) nucleotide position along the siRNA sequence, (ii) nucleotide composition in terms of presence/absence of specific combinations of di- and trinucleotides, (iii) nucleotide interactions by means of a modified auto- and cross-covariance function, (iv) nucleotide thermodynamic stability derived by the nearest neighbor model representation and (v) nucleic acid structure flexibility. The duplex flexibility descriptors are derived from extended molecular dynamics simulations, which are able to describe the sequence-dependent elastic properties of RNA duplexes, even for non-standard oligonucleotides. The matrix of descriptors was analysed using three statistical packages in R (partial least squares, random forest, and support vector machine), and the most predictive model was implemented in a modeling tool we have made publicly available through SourceForge. Our implementation of new RNA descriptors coupled with appropriate statistical algorithms resulted in improved model performance for the selection of siRNA candidates when compared with publicly available siRNA prediction tools and previously published test sets. Additional validation studies based on in-house RNA interference projects confirmed the robustness of the scoring procedure in prospective studies.

  6. Numerical solution of incompressible flow through branched channels

    Czech Academy of Sciences Publication Activity Database

    Louda, Petr; Kozel, K.; Příhoda, Jaromír; Beneš, L.; Kopáček, T.

    2011-01-01

    Roč. 46, č. 1 (2011), s. 318-324 ISSN 0045-7930 R&D Projects: GA ČR GA103/09/0977; GA ČR GAP101/10/1230 Institutional research plan: CEZ:AV0Z20760514 Keywords : channel flow * branched channel * EARSM turbulence model Subject RIV: BK - Fluid Dynamics Impact factor: 1.810, year: 2011 http://www.sciencedirect.com/science/article/pii/S0045793010003506

  7. siRNAs targeted to certain polyadenylation sites promote specific, RISC-independent degradation of messenger RNAs.

    Science.gov (United States)

    Vickers, Timothy A; Crooke, Stanley T

    2012-07-01

    While most siRNAs induce sequence-specific target mRNA cleavage and degradation in a process mediated by Ago2/RNA-induced silencing complex (RISC), certain siRNAs have also been demonstrated to direct target RNA reduction through deadenylation and subsequent degradation of target transcripts in a process which involves Ago1/RISC and P-bodies. In the current study, we present data suggesting that a third class of siRNA exist, which are capable of promoting target RNA reduction that is independent of both Ago and RISC. These siRNAs bind the target messenger RNA at the polyA signal and are capable of redirecting a small amount of polyadenylation to downstream polyA sites when present, however, the majority of the activity appears to be due to inhibition of polyadenylation or deadenylation of the transcript, followed by exosomal degradation of the immature mRNA.

  8. Intranasal delivery of antiviral siRNA.

    Science.gov (United States)

    Barik, Sailen

    2011-01-01

    Intranasal administration of synthetic siRNA is an effective modality of RNAi delivery for the prevention and therapy of respiratory diseases, including pulmonary infections. Vehicles used for nasal siRNA delivery include established as well as novel reagents, many of which have been recently optimized. In general, they all promote significant uptake of siRNA into the lower respiratory tract, including the lung. When properly designed and optimized, these siRNAs offer significant protection against respiratory viruses such as influenza virus, parainfluenza virus and respiratory syncytial virus (RSV). Nasally administered siRNA remains within the lung and does not access systemic blood flow, as judged by its absence in other major organs such as liver, heart, kidney, and skeletal muscle. Adverse immune reaction is generally not encountered, especially when immunogenic and/or off-target siRNA sequences and toxic vehicles are avoided. In fact, siRNA against RSV has entered Phase II clinical trials in human with promising results. Here, we provide a standardized procedure for using the nose as a specific route for siRNA delivery into the lung of laboratory animals. It should be clear that this simple and efficient system has enormous potential for therapeutics.

  9. Nitric oxide inhibits the bradykinin B2 receptor-mediated adrenomedullary catecholamine release but has no effect on adrenal blood flow response in vivo.

    Science.gov (United States)

    Bouallegue, Ali; Yamaguchi, Nobuharu

    2005-06-01

    The role of nitric oxide (NO) in bradykinin (BK)-induced adrenal catecholamine secretion still remains obscure. The present study was to investigate whether an inhibition of NO synthase with N(omega)-nitro-L-arginine methyl ester (L-NAME) would modulate BK-induced adrenal catecholamine secretion (ACS) and adrenal vasodilating response (AVR) in anesthetized dogs. Plasma catecholamine concentrations were determined with an HPLC coupled with an electrochemical detector. All drugs were locally administered to the left adrenal gland via intra-arterial infusion. BK dose-dependently increased both ACS and AVR. Hoe-140, a selective B(2) antagonist, significantly blocked the BK-induced increases in both ACS and AVR. In the presence of L-NAME, the BK-induced ACS was significantly enhanced, while the simultaneous AVR remained unaffected. These results suggest that the both BK-induced ACS and AVR are primarily mediated by B(2) receptors in the canine adrenal gland. Our results also suggest that the enhanced ACS in response to BK in the presence of L-NAME may have resulted from a specific inhibition of NO formation in the adrenal gland. It is concluded that the BK-induced NO may play an inhibitory role in the B(2)-receptor-mediated mechanisms regulating ACS, while it may not be implicated in the B(2)-receptor-mediated AVR under in vivo conditions.

  10. Pelaksanaan Asas-Asas BK dalam Pelayanan BK (Ditinjau dari Persepsi Siswa

    Directory of Open Access Journals (Sweden)

    Yasinta Nur Miftakhul Jannah

    2015-09-01

    Full Text Available Penelitian ini didasarkan pada data dan fenomena yang ditemukan di lapangan yang menunjukkan rendahnya pelaksanaan asas-asas bimbingan dan konseling oleh konselor di sekolah. Penelitian ini bertujuan untuk mengetahui gambaran pelaksanaan asas-asas BK dalam pelayanan BK di SMA Negeri se-Kabupaten Pati (ditinjau dari persepsi siswa kelas XI Tahun Ajaran 2014/2015. Populasi penelitian ini adalah siswa kelas XI di SMA Negeri se-Kabupaten Pati. Pengambilan sampel penelitian dilakukan dengan menggunakan teknik proportionale homogen random sampling dengan sampel sebesar 307 siswa kelas XI. Metode pengumpulan data menggunakan skala psikologis dalam bentuk skala persepsi. Metode analisis data menggunakan statistik deskriptif persentase. Hasil dari penelitian menunjukkan, gambaran pelaksanaan asas-asas BK secara umum sudah masuk pada kategori baik dengan persentase sebesar 73,45%. Asas yang paling tinggi pelaksanaannya yaitu asas kegiatan dengan persentase sebesar 79,80%. Asas yang masih tergolong rendah persentase pelaksanaannya yaitu asas kekinian dengan persentase sebesar 68,80% dan asas alih tangan dengan persentase sebesar 69,10%. This research is based on data and phenomena found in a field that shows low  implementation of guidance and counseling principles by counselor at school. This research aims to find out the implementation of guidance and counseling principles in counseling services toward public senior high school throughout Pati Regency (reviewed from grade XI students’ perceptions Academic Year 2014/2015. Population of this research are grade XI public senior high school students throughout Pati Regency. Sampling in this research is done by using proportionale homogen random sampling technique with the number of samples 307 of grade IX. Collecting data method using psychological scale in the form of scale perception. Data analysis method which used is descriptive percentage. The result shows description of the implementation of

  11. 2’f-OMe-phosphorodithioate modified siRNAs show increased loading into the RISC complex and enhanced anti-tumour activity

    Science.gov (United States)

    Wu, Sherry Y.; Yang, Xianbin; Gharpure, Kshipra M.; Hatakeyama, Hiroto; Egli, Martin; McGuire, Michael H.; Nagaraja, Archana S.; Miyake, Takahito M.; Rupaimoole, Rajesha; Pecot, Chad V.; Taylor, Morgan; Pradeep, Sunila; Sierant, Malgorzata; Rodriguez-Aguayo, Cristian; Choi, Hyun J.; Previs, Rebecca A.; Armaiz-Pena, Guillermo N.; Huang, Li; Martinez, Carlos; Hassell, Tom; Ivan, Cristina; Sehgal, Vasudha; Singhania, Richa; Han, Hee-Dong; Su, Chang; Kim, Ji Hoon; Dalton, Heather J.; Kowali, Chandra; Keyomarsi, Khandan; McMillan, Nigel A.J.; Overwijk, Willem W.; Liu, Jinsong; Lee, Ju-Seog; Baggerly, Keith A.; Lopez-Berestein, Gabriel; Ram, Prahlad T.; Nawrot, Barbara; Sood, Anil K.

    2014-01-01

    Improving small interfering RNA (siRNA) efficacy in target cell populations remains a challenge to its clinical implementation. Here, we report a chemical modification, consisting of phosphorodithioate (PS2) and 2’-O-Methyl (2’-OMe) MePS2 on one nucleotide that significantly enhances potency and resistance to degradation for various siRNAs. We find enhanced potency stems from an unforeseen increase in siRNA loading to the RNA-induced silencing complex, likely due to the unique interaction mediated by 2’-OMe and PS2. We demonstrate the therapeutic utility of MePS2 siRNAs in chemoresistant ovarian cancer mouse models via targeting GRAM Domain Containing 1B (GRAMD1B), a protein involved in chemoresistance. GRAMD1B silencing is achieved in tumors following MePS2-modified siRNA treatment, leading to a synergistic anti-tumor effect in combination with paclitaxel. Given the previously limited success in enhancing siRNA potency with chemically modified siRNAs, our findings represent an important advance in siRNA design with the potential for application in numerous cancer types. PMID:24619206

  12. Targeted knockout of TNF-α by injection of lentivirus-mediated siRNA into the subacromial bursa for the treatment of subacromial bursitis in rats.

    Science.gov (United States)

    Wang, Yi; Li, Quan; Wei, Xianzhao; Xu, Jie; Chen, Qi; Song, Shuang; Lu, Zhe; Wang, Zimin

    2015-09-01

    Subacromial bursitis (SAB) is the major source of pain in rotator cuff disease. Although multiple investigations have provided support for the role of inflammatory cytokines in SAB, few have focussed on the use these cytokines in the treatment of SAB. The aim of the present study was to observe the therapeutic efficacy of lentivirus‑mediated RNA interference (RNAi) on carrageenan‑induced SAB by injecting lentivirus‑tumor necrosis factor (TNF)‑α‑RNAi expressing TNF‑α small interfering (si)RNA. Using screened siRNA segments, an siRNA was designed. A lentivirus vector expressing siRNA was established and packed as lentivirus particles. A lentivirus that expressed the negative sequence was used as a lentivirus‑negative control (NC). The carrageenan‑induced SAB model was established in 32 male Sprague‑Dawley rats. The modeled rats were randomly assigned to four groups: Lentivirus‑RNAi treatment group, lentivirus‑NC group, SAB group and phosphate‑buffered saline (PBS) blank control group. The lentivirus was injected (1x10(7) transducing units) into the subacromial bursa of the rats in the lentivirus‑RNAi group and lentivirus‑NC group, whereas 100 µl PBS was injected at the same site in the SAB group and the PBS blank control group. At 5 weeks following injection, the animals were sacrificed and venous blood was obtained. The effect of TNF‑α interference and the expression of inflammatory cytokines were determined by reverse transcription‑quantitative polymerase chain reaction, western blotting, hematoxylin and eosin staining, Van Gieson's staining and immunofluorescence. The expression of TNF‑α was decreased in the lentivirus‑TNF‑α‑RNAi group compared with that in the SAB group. Morphological observations revealed that the number of inflammatory cells were reduced and damage to tendon fibers was attenuated in this group, suggesting that the downregulation of the protein expression levels of TNF‑α‑associated nuclear

  13. An albumin-mediated cholesterol design-based strategy for tuning siRNA pharmacokinetics and gene silencing

    DEFF Research Database (Denmark)

    Bienk, Konrad; Hvam, Michael Lykke; Pakula, Malgorzata Maria

    2016-01-01

    /2 12 min (naked) to t1/2 45 min (single cholesteryl) and t1/2 71 min (double cholesteryl) using fluorescent live bioimaging. The biodistribution showed increased accumulation in the liver for the double cholesteryl modified siRNA that correlated with an increase in hepatic Factor VII gene silencing......HSA/siRNA complex exhibited reduced nuclease degradation and reduced induction of TNF-α production by human peripheral blood mononuclear cells. The increased solubility of heavily cholesteryl modified siRNA in the presence of rHSA facilitated duplex annealing and consequent interaction that allowed in vivo studies...

  14. Bk and Cf chromatographic separation and 249Bk/248Cm and 249Cf/248Cm elemental ratios determination by inductively coupled plasma quadrupole mass spectrometry

    International Nuclear Information System (INIS)

    Gourgiotis, A.; Isnard, H.; Nonell, A.; Aubert, M.; Stadelmann, G.; Dupont, E.; AlMahamid, I.; Tiang, G.; Rao, L.; Lukens, W.; Cassette, P.; Panebianco, S.; Letourneau, A.; Chartier, F.

    2013-01-01

    The French Atomic Energy Commission has carried out several experiments for the study of minor-actinide transmutation processes in high intensity thermal neutron flux. In this context a Cm sample enriched in 248 Cm (97%) was irradiated in a thermal neutron flux at the High Flux Reactor (HFR) of the Laue-Langevin Institute (ILL). The precise and accurate determination of Cf isotope ratios and of 249 Bk/ 248 Cm and 249 Cf/ 248 Cm elemental ratios in the 248 Cm irradiated sample is crucial for the calculation of actinide neutron capture cross-sections.This work describes an analytical procedure for the separation and the isotope ratio measurement of Bk and Cf in the irradiated sample.The Bk and Cf separation is based on a lanthanides separation protocol previously developed by the laboratory. Well-defined retention times for Bk and Cf were obtained by coupling the Ionic Chromatography (IC) with an ICP-QMS. All conditions of element separation by IC and the different steps of the analytical protocol in order to obtain the isotopic and elemental ratios are presented. Relative uncertainties of Cf isotopic ratios range from 0.3% to 0.5% and the uncertainty of the 249 Bk/ 248 Cm and 249 Cf/ 248 Cm elemental ratios are respectively 6.1% and 3.2%.This level of uncertainty for both isotopic and elemental ratios is in perfect agreement with the requirement for transmutation studies. (authors)

  15. Urinary BK virus excretion in children newly diagnosed with acute lymphoblastic leukemia

    Directory of Open Access Journals (Sweden)

    Nahid Raeesi

    2012-01-01

    Conclusion: To demonstrate the role of BK virus in inducing ALL or increasing the number of relapses, prospective studies on larger scale of population and evaluating both serum and urine for BK virus are recommended.

  16. Channel-mediated and carrier-mediated uptake of K+ into cultured ovine oligodendrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Hertz, L.; Soliven, B.; Hertz, E.; Szuchet, S.; Nelson, D.J. (Univ. of Saskatchewan, Saskatoon (Canada))

    1990-01-01

    Uptake of radioactive K+ by mature ovine oligodendrocytes (OLGs) maintained in primary culture was measured under steady-state conditions, i.e., in cells maintained in a normal tissue culture medium (5.4 mM K+), and in cells after depletion of intracellular K+ to less than 15% of its normal value by pre-incubation in K(+)-free medium. The latter value is dominated by an active, carrier-mediated uptake (although it may include some diffusional uptake), whereas the former, in addition to active uptake, also reflects passive K+ diffusion through ion selective channels and possible self-exchange between extracellular and intracellular K+, which may be carrier-mediated. The total uptake rate was 144 +/- 10 nmol/min/mg protein, and the uptake after K+ depletion was 60 +/- 2 nmol/min/mg protein, much lower rates than previously observed in astrocytes. The uptake into K(+)-depleted cells was inhibited by about 80% in the presence of ouabain (1 mM) and about 30% in the presence of furosemide (2 mM). Activators of protein kinase C (phorbol esters) and cAMP-dependent protein kinase (forskolin) have been shown to alter the myelinogenic metabolism as well as outward K+ current in cultured OLGs. The present study demonstrates that K+ homeostasis in OLGs is modulated through similar second messenger pathways. Active uptake was inhibited by about 60% in the presence of active phorbol esters (100 nM) but was not affected by forskolin (100 nM). Forskolin likewise had no effect on total uptake, whereas phorbol esters caused a much larger inhibition than expected from their effect on carrier-mediated uptake alone, suggesting that channel-mediated uptake was also reduced.

  17. Molecular mapping of qBK1 WD , a major QTL for bakanae disease resistance in rice.

    Science.gov (United States)

    Lee, Sais-Beul; Hur, Yeon-Jae; Cho, Jun-Hyeon; Lee, Jong-Hee; Kim, Tae-Heon; Cho, Soo-Min; Song, You-Chun; Seo, Young-Su; Lee, Jungkwan; Kim, Tae-Sung; Park, Yong-Jin; Oh, Myung-Kyu; Park, Dong-Soo

    2018-01-10

    Bakanae or foot rot disease is a prominent disease of rice caused by Gibberella fujikuroi. This disease may infect rice plants from the pre-emergence stage to the mature stage. In recent years, raising rice seedlings in seed boxes for mechanical transplanting has increased the incidence of many seedling diseases; only a few rice varieties have been reported to exhibit resistance to bakanae disease. In this study, we attempted to identify quantitative trait loci (QTLs) conferring bakanae disease resistance from the highly resistant japonica variety Wonseadaesoo. A primary QTL study using the genotypes/phenotypes of the recombinant inbred lines (RILs) indicated that the locus qBK1 WD conferring resistance to bakanae disease from Wonseadaesoo was located in a 1.59 Mb interval delimited on the physical map between chr01_13542347 (13.54 Mb) and chr01_15132528 (15.13 Mb). The log of odds (LOD) score of qBK1 WD was 8.29, accounting for 20.2% of the total phenotypic variation. We further identified a gene pyramiding effect of two QTLs, qBK WD and previously developed qBK1. The mean proportion of healthy plant for 31 F 4 RILs that had no resistance genes was 35.3%, which was similar to that of the susceptible check variety Ilpum. The proportion of healthy plants for the lines with only qBK WD or qBK1 was 66.1% and 55.5%, respectively, which was significantly higher than that of the lines without resistance genes and that of Ilpum. The mean proportion of the healthy plant for 15 F 4 RILs harboring both qBK WD and qBK1 was 80.2%, which was significantly higher than that of the lines with only qBK WD or qBK1. Introducing qBK WD or pyramiding the QTLs qBK WD and qBK1 could provide effective tools for breeding rice with bakanae disease resistance. To our knowledge, this is the first report on a gene pyramiding effect that provides higher resistance against bakanae disease.

  18. Vascular ATP-sensitive potassium channels are over-expressed and partially regulated by nitric oxide in experimental septic shock.

    Science.gov (United States)

    Collin, Solène; Sennoun, Nacira; Dron, Anne-Gaëlle; de la Bourdonnaye, Mathilde; Montemont, Chantal; Asfar, Pierre; Lacolley, Patrick; Meziani, Ferhat; Levy, Bruno

    2011-05-01

    To study the activation and expression of vascular (aorta and small mesenteric arteries) potassium channels during septic shock with or without modulation of the NO pathway. Septic shock was induced in rats by peritonitis. Selective inhibitors of vascular K(ATP) (PNU-37883A) or BK(Ca) [iberiotoxin (IbTX)] channels were used to demonstrate their involvement in vascular hyporeactivity. Vascular response to phenylephrine was measured on aorta and small mesenteric arteries mounted on a wire myograph. Vascular expression of potassium channels was studied by PCR and Western blot, in the presence or absence of 1400W, an inducible NO synthase (iNOS) inhibitor. Aortic activation of the transcriptional factor nuclear factor-kappaB (NF-κB) was assessed by electrophoretic mobility shift assay. Arterial pressure as well as in vivo and ex vivo vascular reactivity were reduced by sepsis and improved by PNU-37883A but not by IbTX. Sepsis was associated with an up-regulation of mRNA and protein expression of vascular K(ATP) channels, while expression of vascular BK(Ca) channels remained unchanged. Selective iNOS inhibition blunted the sepsis-induced increase in aortic NO, decreased NF-κB activation, and down-regulated vascular K(ATP) channel expression. Vascular K(ATP) but not BK(Ca) channels are activated, over-expressed, and partially regulated by NO via NF-κB activation during septic shock. Their selective inhibition restores arterial pressure and vascular reactivity and decreases lactate concentration. The present data suggest that selective vascular K(ATP) channel inhibitors offer potential therapeutic perspectives for septic shock.

  19. Killing Effect of Ad5/F35-APE1 siRNA Recombinant Adenovirus in Combination with Hematoporphrphyrin Derivative-Mediated Photodynamic Therapy on Human Nonsmall Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Lei Xia

    2013-01-01

    Full Text Available The main goal of this work is to investigate the killing effects and molecular mechanism of photodynamic therapy (PDT mediated by the Ad5/F35-APE1 siRNA recombinant adenovirus in combination with a hematoporphrphyrin derivative (HpD in the A549 human lung adenocarcinoma cell line in vitro to provide a theoretical reference for treating lung cancer by HpD-PDT. By using the technologies of MTT, flow cytometry, ELISA, and western blot, we observed that the proliferation inhibition and apoptosis of the A549 cells were significantly higher than the control group ( after HpD-PDT was performed. The inhibitory efficiency is dependent on the HpD concentration and laser intensity dose. The inhibitory effect on the proliferation of A549 cells of Ad5/F35-APE1 siRNA is more significant after combining with PDT, as indicated by a significant elevation of the intracellular ROS level and the expression of inflammatory factors (. The HpD-PDT-induced expression of the APE1 protein reached the peak after 24 h in A549 cells. The inhibition of APE1 expression in A549 cells was most significant after 48 hours of infection by Ad5/F35-APE1 siRNA recombinant adenovirus (10 MOI. In conclusion, the Ad5/F35-APE1 siRNA recombinant adenovirus could efficiently inhibit the HpD-PDT-induced APE1 expression hence could significantly enhance the killing effect of HpD-PDT in lung cancer cells.

  20. Impact of two different commercial DNA extraction methods on BK virus viral load

    Directory of Open Access Journals (Sweden)

    Massimiliano Bergallo

    2016-03-01

    Full Text Available Background and aim: BK virus, a member of human polyomavirus family, is a worldwide distributed virus characterized by a seroprevalence rate of 70-90% in adult population. Monitoring of viral replication is made by evaluation of BK DNA by quantitative polymerase chain reaction. Many different methods can be applied for extraction of nucleic acid from several specimens. The aim of this study was to assess the impact of two different DNA extraction procedure on BK viral load. Materials and methods: DNA extraction procedure including the Nuclisens easyMAG platform (bioMerieux, Marcy l’Etoile, France and manual QIAGEN extraction (QIAGEN Hilden, Germany. BK DNA quantification was performed by Real Time TaqMan PCR using a commercial kit. Result and discussion: The samples capacity, cost and time spent were compared for both systems. In conclusion our results demonstrate that automated nucleic acid extraction method using Nuclisense easyMAG was superior to manual protocol (QIAGEN Blood Mini kit, for the extraction of BK virus from serum and urine specimens.

  1. Mediating Global Filipinos: The Filipino Channel and the Filipino Diaspora

    OpenAIRE

    Lu, Ethel Regis

    2013-01-01

    Mediating Global Filipinos: The Filipino Channel and the Filipino Diaspora examines the notion of the "global Filipino" as imagined and constructed vis-à-vis television programs on The Filipino Channel (TFC). This study contends that transnational Philippine media broadly construct the notion of "global Filipinos" as diverse, productive, multicultural citizens, which in effect establishes a unified overseas Filipino citizenry for Philippine economic welfare and global cultural capital. Desp...

  2. Chitosan-based nanoparticles for survivin targeted siRNA delivery in breast tumor therapy and preventing its metastasis.

    Science.gov (United States)

    Sun, Ping; Huang, Wei; Jin, Mingji; Wang, Qiming; Fan, Bo; Kang, Lin; Gao, Zhonggao

    Nanoparticle-mediated small interfering RNA (siRNA) delivery is a promising therapeutic strategy in various cancers. However, it is difficult to deliver degradative siRNA to tumor tissue, and thus a safe and efficient vector for siRNA delivery is essential for cancer therapy. In this study, poly(ethylene glycol)-modified chitosan (PEG-CS) was synthesized successfully for delivering nucleic acid drug. We deemed that PEGylated CS could improve its solubility by forming a stable siRNA loaded in nanoparticles, and enhancing transfection efficiency of siRNA-loaded CS nanoparticles in cancer cell line. The research results showed that siRNA loaded in PEGylated CS (PEG-CS/siRNA) nanoparticles with smaller particle size had superior structural stability in the physical environment compared to CS nanoparticles. The data of in vitro antitumor activity revealed that 4T1 tumor cell growth was significantly inhibited and cellular uptake of PEG-CS/siRNA nanoparticles in 4T1 cells was dramatically enhanced compared to naked siRNA groups. The results from flow cytometry and confocal laser scanning microscopy showed that PEG-CS/siRNA nanoparticles were more easily taken up than naked siRNA. Importantly, PEG-CS/siRNA nanoparticles significantly reduced the growth of xenograft tumors of 4T1 cells in vivo. It has been demonstrated that the PEG-CS is a safe and efficient vector for siRNA delivery, and it can effectively reduce tumor growth and prevent metastasis.

  3. Inhibition of Inwardly Rectifying Potassium (Kir 4.1 Channels Facilitates Brain-Derived Neurotrophic Factor (BDNF Expression in Astrocytes

    Directory of Open Access Journals (Sweden)

    Masato Kinboshi

    2017-12-01

    Full Text Available Inwardly rectifying potassium (Kir 4.1 channels in astrocytes regulate neuronal excitability by mediating spatial potassium buffering. Although dysfunction of astrocytic Kir4.1 channels is implicated in the development of epileptic seizures, the functional mechanisms of Kir4.1 channels in modulating epileptogenesis remain unknown. We herein evaluated the effects of Kir4.1 inhibition (blockade and knockdown on expression of brain-derived neurotrophic factor (BDNF, a key modulator of epileptogenesis, in the primary cultures of mouse astrocytes. For blockade of Kir4.1 channels, we tested several antidepressant agents which reportedly bound to and blocked Kir4.1 channels in a subunit-specific manner. Treatment of astrocytes with fluoxetine enhanced BDNF mRNA expression in a concentration-dependent manner and increased the BDNF protein level. Other antidepressants (e.g., sertraline and imipramine also increased the expression of BDNF mRNA with relative potencies similar to those for inhibition of Kir4.1 channels. In addition, suppression of Kir4.1 expression by the transfection of small interfering RNA (siRNA targeting Kir4.1 significantly increased the mRNA and protein levels of BDNF. The BDNF induction by Kir4.1 siRNA transfection was suppressed by the MEK1/2 inhibitor U0126, but not by the p38 MAPK inhibitor SB202190 or the JNK inhibitor SP600125. The present results demonstrated that inhibition of Kir4.1 channels facilitates BDNF expression in astrocytes primarily by activating the Ras/Raf/MEK/ERK pathway, which may be linked to the development of epilepsy and other neuropsychiatric disorders.

  4. Targeted transfection increases siRNA uptake and gene silencing of primary endothelial cells in vitro--a quantitative study.

    Science.gov (United States)

    Asgeirsdóttir, Sigridur A; Talman, Eduard G; de Graaf, Inge A; Kamps, Jan A A M; Satchell, Simon C; Mathieson, Peter W; Ruiters, Marcel H J; Molema, Grietje

    2010-01-25

    Applications of small-interfering RNA (siRNA) call for specific and efficient delivery of siRNA into particular cell types. We developed a novel, non-viral targeting system to deliver siRNA specifically into inflammation-activated endothelial cells. This was achieved by conjugating the cationic amphiphilic lipid SAINT to antibodies recognizing the inflammatory cell adhesion molecule E-selectin. These anti-E-selectin-SAINT lipoplexes (SAINTarg) maintained antigen recognition capacity of the parental antibody in vitro, and ex vivo in human kidney tissue slices subjected to inflammatory conditions. Regular SAINT mediated transfection resulted in efficient gene silencing in human microvascular endothelial cells (HMEC-1) and conditionally immortalized glomerular endothelial cells (ciGEnC). However, primary human umbilical vein endothelial cells (HUVEC) transfected poorly, a phenomenon that we could quantitatively correlate with a cell-type specific capacity to facilitate siRNA uptake. Importantly, SAINTarg increased siRNA uptake and transfection specificity for activated endothelial cells. Transfection with SAINTarg delivered significantly more siRNA into activated HUVEC, compared to transfection with non-targeted SAINT. The enhanced uptake of siRNA was corroborated by improved silencing of both gene- and protein expression of VE-cadherin in activated HUVEC, indicating that SAINTarg delivered functionally active siRNA into endothelial cells. The obtained results demonstrate a successful design of a small nucleotide carrier system with improved and specific siRNA delivery into otherwise difficult-to-transfect primary endothelial cells, which in addition reduced considerably the amount of siRNA needed for gene silencing. Copyright 2009 Elsevier B.V. All rights reserved.

  5. Low-weight polyethylenimine cross-linked 2-hydroxypopyl-ß-cyclodextrin and folic acid as an efficient and nontoxic siRNA carrier for gene silencing and tumor inhibition by VEGF siRNA

    Directory of Open Access Journals (Sweden)

    Li JM

    2013-06-01

    Full Text Available Jin-Ming Li, Yuan-Yuan Wang, Wei Zhang, Hua Su, Liang-Nian Ji, Zong-Wan Mao MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, People's Republic of China Background: Targeted delivery of small interfering RNA (siRNA has been regarded as one of the most important technologies for the development of siRNA therapeutics. However, the need for safe and efficient delivery systems is a barrier to further development of RNA interference therapeutics. In this work, a nontoxic and efficient siRNA carrier delivery system of low molecular weight polyethyleneimine (PEI-600 Da cross-linked with 2-hydroxypopyl-β-cyclodextrin (HP-β-CD and folic acid (FA was synthesized for biomedical application. Methods: The siRNA carrier was prepared using a simple method and characterized by nuclear magnetic resonance and Fourier transform infrared spectroscopy. The siRNA carrier nanoparticles were characterized in terms of morphology, size and zeta potential, stability, efficiency of delivery, and gene silencing efficiency in vitro and in vivo. Results: The siRNA carrier was synthesized successfully. It showed good siRNA binding capacity and ability to protect siRNA. Further, the toxicity of the carrier measured in vitro and in vivo appeared to be negligible, probably because of degradation of the low molecular weight PEI and HP-β-CD in the cytosol. Flow cytometry and confocal microscopy confirmed that the FA receptor-mediated endocytosis of the FA-HP-β-CD-PEI/siRNA complexes was greater than that of the HP-β-CD-PEI/siRNA complexes in FA receptor-enriched HeLa cells. The FA-HP-β-CD-PEI/siRNA complexes also demonstrated excellent gene silencing efficiency in vitro (in the range of 90%, and reduced vascular endothelial growth factor (VEGF protein expression in the presence of 20% serum. FA-HP-β-CD-PEI/siRNA complexes administered via tail vein injection resulted in marked

  6. Efficient Inhibition of wear debris-induced inflammation by locally delivered siRNA

    International Nuclear Information System (INIS)

    Peng Xiaochun; Tao Kun; Cheng Tao; Zhu Junfeng; Zhang Xianlong

    2008-01-01

    Aseptic loosening is the most common long-term complication of total joint replacement, which is associated with the generation of wear debris. The purpose of this study was to investigate the inhibitory effect of small interfering RNA (siRNA) targeting tumor necrosis factor-α (TNF-α) on wear debris-induced inflammation. A local delivery of lentivirus-mediated TNF-α siRNA into the modified murine air pouch, which was stimulated by polymethylmethacrylate (PMMA) particles, resulted in significant blockage of TNF-α both in mRNA and protein levels for up to 4 weeks. In addition, significant down-regulation of interleukin-1 (IL-1) and interleukin-6 (IL-6) was observed in TNF-α siRNA-treated pouches. The safety profile of gene therapy was proven by Bioluminescent assay and quantitative fluorescent flux. Histological analysis revealed less inflammatory responses (thinner pouch membrane and decreased cellular infiltration) in TNF-α siRNA-treated pouches. These findings suggest that local delivery of TNF-α siRNA might be an excellent therapeutic candidate to inhibit particle-induced inflammation.

  7. Identification of the new isotope sup 2 sup 4 sup 1 Bk

    CERN Document Server

    Asai, M; Ichikawa, S; Nagame, Y; Nishinaka, I; Akiyama, K; Toyoshima, A; Kaneko, T; Sakama, M; Haba, H; Oura, Y; Kojima, Y; Shibata, M

    2003-01-01

    A new neutron-deficient berkelium isotope sup 2 sup 4 sup 1 Bk produced in the sup 2 sup 3 sup 9 Pu( sup 6 Li, 4n) reaction has been identified using a gas-jet coupled on-line isotope separator. Cm K and L X-rays associated with the EC decay of sup 2 sup 4 sup 1 Bk were observed in the mass-241 fraction, and three gamma transitions were attributed to the EC decay of sup 2 sup 4 sup 1 Bk through X-gamma coincidences. The half-life of sup 2 sup 4 sup 1 Bk was determined to be 4.6+-0.4 min which is 1/2-1/4 of that of theoretical predictions. The half-life value and the observed gamma transitions can be consistently explained as a consequence of the allowed EC transition of pi 7/2 sup + [633] -> nu 7/2 sup + [624]. (orig.)

  8. Bifurcating channels supplying "numbered-up" microreactors

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav

    2011-01-01

    Roč. 89, č. 12A (2011), s. 2507-2020 ISSN 0263-8762 R&D Projects: GA ČR(CZ) GCP101/11/J019 Institutional research plan: CEZ:AV0Z20760514 Keywords : microfluidics * branched channels * geometric self-similarity Subject RIV: BK - Fluid Dynamics Impact factor: 1.968, year: 2011 http://www.sciencedirect.com/science/article/pii/S0263876211001821

  9. Mitochondrial BK Channel Openers CGS7181 and CGS7184 Exhibit Cytotoxic Properties

    Directory of Open Access Journals (Sweden)

    Bartłomiej Augustynek

    2018-01-01

    Full Text Available Potassium channel openers (KCOs have been shown to play a role in cytoprotection through the activation of mitochondrial potassium channels. Recently, in several reports, a number of data has been described as off-target actions for KCOs. In the present study, we investigated the effects of BKCa channel openers CGS7181, CGS7184, NS1619, and NS004 in neuronal cells. For the purpose of this research, we used a rat brain, the mouse hippocampal HT22 cells, and the human astrocytoma U-87 MG cell line. We showed that CGS7184 activated the mitochondrial BKCa (mitoBKCa channel in single-channel recordings performed on astrocytoma mitoplasts. Moreover, when applied to the rat brain homogenate or isolated rat brain mitochondria, CGS7184 increased the oxygen consumption rate, and can thus be considered a potentially cytoprotective agent. However, experiments on intact neuronal HT22 cells revealed that both CGS7181 and CGS7184 induced HT22 cell death in a concentration- and time-dependent manner. By contrast, we did not observe cell death when NS1619 or NS004 was applied. CGS7184 toxicity was not abolished by BKCa channel inhibitors, suggesting that the observed effects were independent of a BKCa-type channel activity. CGS7184 treatment resulted in an increase of cytoplasmic Ca2+ concentration that likely involved efflux from internal calcium stores and the activation of calpains (calcium-dependent proteases. The cytotoxic effect of the channel opener was partially reversed by a calpain inhibitor. Our data show that KCOs under study not only activate mitoBKCa channels from brain tissue, but also induce cell death when used in cellular models.

  10. Targeted delivery of siRNA to activated T cells via transferrin-polyethylenimine (Tf-PEI) as a potential therapy of asthma.

    Science.gov (United States)

    Xie, Yuran; Kim, Na Hyung; Nadithe, Venkatareddy; Schalk, Dana; Thakur, Archana; Kılıç, Ayşe; Lum, Lawrence G; Bassett, David J P; Merkel, Olivia M

    2016-05-10

    Asthma is a worldwide health problem. Activated T cells (ATCs) in the lung, particularly T helper 2 cells (Th2), are strongly associated with inducing airway inflammatory responses and chemoattraction of inflammatory cells in asthma. Small interfering RNA (siRNA) as a promising anti-sense molecule can specifically silence inflammation related genes in ATCs, however, lack of safe and efficient siRNA delivery systems limits the application of siRNA as a therapeutic molecule in asthma. Here, we designed a novel pulmonary delivery system of siRNA, transferrin-polyethylenimine (Tf-PEI), to selectively deliver siRNA to ATCs in the lung. Tf-PEI polyplexes demonstrated optimal physicochemical properties such as size, distribution, zeta-potential, and siRNA condensation efficiency. Moreover, in vitro studies showed significantly enhanced cellular uptake and gene knockdown mediated by Tf-PEI polyplexes in human primary ATCs. Biodistribution of polyplexes in a murine asthmatic model confirmed that Tf-PEI polyplexes can efficiently and selectively deliver siRNA to ATCs. In conclusion, the present work proves the feasibility to target ATCs in asthma via Tf receptor. This strategy could potentially be used to design an efficient siRNA delivery system for asthma therapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Multifunctional Cationic Lipid-Based Nanoparticles Facilitate Endosomal Escape and Reduction-Triggered Cytosolic siRNA Release

    Science.gov (United States)

    Gujrati, Maneesh; Malamas, Anthony; Shin, Tesia; Jin, Erlei; Sun, Lulu; Lu, Zheng-Rong

    2015-01-01

    Small interfering RNA (siRNA) has garnered much attention in recent years as a promising avenue for cancer gene therapy due to its ability to silence disease-related genes. Effective gene silencing is contingent upon the delivery of siRNA into the cytosol of target cells and requires the implementation of delivery systems possessing multiple functionalities to overcome delivery barriers. The present work explores the multifunctional properties and biological activity of a recently developed cationic lipid carrier, (1-aminoethyl)iminobis[N-(oleicylcysteinyl-1-amino-ethyl)propionamide]) (ECO). The physicochemical properties and biological activity of ECO/siRNA nanoparticles were assessed over a range of N/P ratios to optimize the formulation. Potent and sustained luciferase silencing in a U87 glioblastoma cell line was observed, even in the presence of serum proteins. ECO/siRNA nanoparticles exhibited pH-dependent membrane disruption at pH levels corresponding to various stages of the intracellular trafficking pathway. It was found that disulfide linkages created during nanoparticle formation enhanced the protection of siRNA from degradation and facilitated site-specific siRNA release in the cytosol by glutathione-mediated reduction. Confocal microscopy confirmed that ECO/siRNA nanoparticles readily escaped from late endosomes prior to cytosolic release of the siRNA cargo. These results demonstrate that the rationally designed multifunctionality of ECO/siRNA nanoparticles is critical for intracellular siRNA delivery and the continuing development of safe and effective delivery systems. PMID:25020033

  12. siRNA as an alternative therapy against viral infections

    Directory of Open Access Journals (Sweden)

    Hana A. Pawestri

    2012-07-01

    Full Text Available siRNA (small interfering ribonucleic acid adalah sebuah metode yang dapat digunakan untuk mengatasi infeksi virus yang prinsip kerjanya berdasarkan metode komplementer dsRNA (double stranded RNA pada RNA virus sehingga menyebabkan kegagalan proses transkripsi (silencing.  Untuk lebih memahami bagaimana proses kerja dan ulasan penelitian siRNA yang terkini, di dalam tulisan ini ditinjau siRNA sebagai metoda yang dikembangkan untuk mengatasi infeksi dan meneliti efeknya pada replikasi beberapa virus seperti Hepatitis C, Influenza, Polio, dan HIV. Kami menemukan bahwa urutan basa nukleotida dari target siRNA sangat penting. Hal tersebut harus homolog dengan target RNA virus dan tidak menganggu RNA sel inang. Untuk mengurangi kegagalan terapi siRNA oleh adanya mutasi, digunakan beberapa siRNA yang sekaligus menjadi target RNA virus yang berbeda. Namun demikian, terapi siRNA masih menghadapi beberapa kesulitan seperti pengiriman (transfer khusus ke jaringan yang terinfeksi dan perlindungan siRNA dari perusakan oleh nuklease. Berdasarkan beberapa penelitian yang telah dilakukan, siRNA dapat digunakan sebagai alternatif untuk mengobati infeksi yang disebabkan oleh virus. Terapi tersebut direkomendasikan untuk dilakukan uji klinis dengan memperhatikan beberapa aspek seperti desain siRNA dan mekanisme transfer. (Health Science Indones 2010; 1: 58 - 65 Kata kunci: siRNA, infeksi virus, target virus, alternatif terapi Abstract SiRNA is a promising method to deal with viral infections. The principle of siRNA is based on the complementarily of (synthetic dsRNA to an RNA virus which, in consequence, will be silenced. Many studies are currently examining the effects of siRNA on replication of diverse virus types like Hepatitis C, polio and HIV. The choice of the siRNA target sequence is crucial. It has to be very homologous to the target RNA, but it cannot target RNA of the host cell. To reduce the possibility for the virus to escape from the siRNA therapy by

  13. Development of Gold Nanoparticle towards Radioenhancement Therapy, Renal Clearance, siRNA Delivery and Light-Controlled Gene Silencing

    Science.gov (United States)

    Wang, Jianxin

    Gold nanoparticles (GNPs) have been widely studied and used in research for diagnostic, prophylactic or therapeutic purposes. However, they still face many technical challenges before they can be used to effectively address unmet biomedical needs. The theme of this dissertation is focused on addressing challenges of GNPs in clinical translation, and to improve their potential for application in radioenhancement therapy and siRNA delivery. We demonstrate the facile self-assembly of micellar gold nanocapsules using zwitterionic surfactants, with hydrodynamic diameters below 10 nm, which holds promise for good renal clearance to promote the excretion of GNPs in human body. We also prepared PEI- and PEG-coated GNPs and demonstrated their uptake into HeLa cells with exposure to soft X-rays (120 kVp), based on the consideration that the proximity of GNPs to nuclear DNA may be beneficial for enhancing low-energy ionizing radiotherapy. GNP-mediated siRNA delivery may be challenged by nonspecific siRNA desorption during circulation, which can cause off-target effects and immunogenicity. The use of gold nanorods (GNRs) for siRNA delivery also faces challenges like reduced dispersion stability during siRNA functionalization. We developed an effective way to load siRNA onto GNRs at high density, using oleylsulfobetaine (OSB) as an intermediate surfactant and dithiocarbamates (DTCs) as desorption-resistant anchors for siRNA. The GNR?siRNA complexes provided excellent control for laser-triggered gene silencing.

  14. Antigen-Specificity of T Cell Infiltrates in Biopsies With T Cell-Mediated Rejection and BK Polyomavirus Viremia: Analysis by Next Generation Sequencing.

    Science.gov (United States)

    Zeng, G; Huang, Y; Huang, Y; Lyu, Z; Lesniak, D; Randhawa, P

    2016-11-01

    This study interrogates the antigen-specificity of inflammatory infiltrates in renal biopsies with BK polyomavirus (BKPyV) viremia (BKPyVM) with or without allograft nephropathy (BKPyVN). Peripheral blood mononuclear cells (PBMC) from five healthy HLA-A0101 subjects were stimulated by peptides derived from the BKPYV proteome or polymorphic regions of HLA. Next generation sequencing of the T cell-receptor complementary DNA was performed on peptide-stimulated PBMC and 23 biopsies with T cell-mediated rejection (TCMR) or BKPyVN. Biopsies from patients with BKPyVM or BKVPyVN contained 7.7732 times more alloreactive than virus-reactive clones. Biopsies with TCMR also contained BKPyV-specific clones, presumably a manifestation of heterologous immunity. The mean cumulative T cell clonal frequency was 0.1378 for alloreactive clones and 0.0375 for BKPyV-reactive clones. Samples with BKPyVN and TCMR clustered separately in dendrograms of V-family and J-gene utilization patterns. Dendrograms also revealed that V-gene, J-gene, and D-gene usage patterns were a function of HLA type. In conclusion, biopsies with BKPyVN contain abundant allospecific clones that exceed the number of virus-reactive clones. The T cell component of tissue injury in viral nephropathy appears to be mediated primarily by an "innocent bystander" mechanism in which the principal element is secondary T cell influx triggered by both antiviral and anti-HLA immunity. © Copyright 2016 The American Society of Transplantation and the American Society of Transplant Surgeons.

  15. Efficacy of levofloxacin in the treatment of BK viremia: a multicenter, double-blinded, randomized, placebo-controlled trial.

    Science.gov (United States)

    Lee, Belinda T; Gabardi, Steven; Grafals, Monica; Hofmann, R Michael; Akalin, Enver; Aljanabi, Aws; Mandelbrot, Didier A; Adey, Deborah B; Heher, Eliot; Fan, Pang-Yen; Conte, Sarah; Dyer-Ward, Christine; Chandraker, Anil

    2014-03-01

    BK virus reactivation in kidney transplant recipients can lead to progressive allograft injury. Reduction of immunosuppression remains the cornerstone of treatment for active BK infection. Fluoroquinolone antibiotics are known to have in vitro antiviral properties, but the evidence for their use in patients with BK viremia is inconclusive. The objective of the study was to determine the efficacy of levofloxacin in the treatment of BK viremia. Enrollment in this prospective, multicenter, double-blinded, placebo-controlled trial occurred from July 2009 to March 2012. Thirty-nine kidney transplant recipients with BK viremia were randomly assigned to receive levofloxacin, 500 mg daily, or placebo for 30 days. Immunosuppression in all patients was adjusted on the basis of standard clinical practices at each institution. Plasma BK viral load and serum creatinine were measured monthly for 3 months and at 6 months. At the 3-month follow-up, the percentage reductions in BK viral load were 70.3% and 69.1% in the levofloxacin group and the placebo group, respectively (P=0.93). The percentage reductions in BK viral load were also equivalent at 1 month (58% versus and 67.1%; P=0.47) and 6 months (82.1% versus 90.5%; P=0.38). Linear regression analysis of serum creatinine versus time showed no difference in allograft function between the two study groups during the follow-up period. A 30-day course of levofloxacin does not significantly improve BK viral load reduction or allograft function when used in addition to overall reduction of immunosuppression.

  16. Rapid detection of urinary polyomavirus BK by heterodyne-based surface plasmon resonance biosensor

    Science.gov (United States)

    Su, Li-Chen; Tian, Ya-Chung; Chang, Ying-Feng; Chou, Chien; Lai, Chao-Sung

    2014-01-01

    In renal transplant patients, immunosuppressive therapy may result in the reactivation of polyomavirus BK (BKV), leading to polyomavirus-associated nephropathy (PVAN), which inevitably causes allograft failure. Since the treatment outcomes of PVAN remain unsatisfactory, early identification and continuous monitoring of BKV reactivation and reduction of immunosuppressants are essential to prevent PVAN development. The present study demonstrated that the developed dual-channel heterodyne-based surface plasmon resonance (SPR) biosensor is applicable for the rapid detection of urinary BKV. The use of a symmetrical reference channel integrated with the poly(ethylene glycol)-based low-fouling self-assembled monolayer to reduce the environmental variations and the nonspecific noise was proven to enhance the sensitivity in urinary BKV detection. Experimentally, the detection limit of the biosensor for BKV detection was estimated to be around 8500 copies/mL. In addition, urine samples from five renal transplant patients were tested to rapidly distinguish PVAN-positive and PVAN-negative renal transplant patients. By virtue of its simplicity, rapidity, and applicability, the SPR biosensor is a remarkable potential to be used for continuous clinical monitoring of BKV reactivation.

  17. An ERG channel inhibitor from the scorpion Buthus eupeus

    DEFF Research Database (Denmark)

    Korolkova, Y.V.; Kozlov, S.A.; Lipkin, A.V.

    2001-01-01

    and the three mutants partly inhibited the native M-like current in NG108-15 at 100 nm. The effect of the recombinant BeKm-1 on different K(+) channels was also studied. BeKm-1 inhibited hERG1 channels with an IC(50) of 3.3 nm, but had no effect at 100 nm on hEAG, hSK1, rSK2, hIK, hBK, KCNQ1/KCNE1, KCNQ2/KCNQ3......, KCNQ4 channels, and minimal effect on rELK1. Thus, BeKm-1 was shown to be a novel specific blocker of hERG1 potassium channels....

  18. Diagnosis of BK viral nephropathy in the renal allograft biopsy: role of fluorescence in situ hybridization.

    Science.gov (United States)

    Wang, Zhen; Portier, Bryce P; Hu, Bo; Chiesa-Vottero, Andres; Myles, Jonathan; Procop, Gary W; Tubbs, Raymond R

    2012-09-01

    Early recognition of BK viral nephropathy is essential for successful management. Our aim in this study was to evaluate a novel fluorescence in situ hybridization (FISH) assay for detection of BK virus in renal transplant biopsies in the context of standard detection methods. Renal allograft biopsies (n = 108) were analyzed via H&E, immunohistochemistry (IHC) for simian virus 40, and FISH for BK virus. BK virus was detected in 16 (14.8%) cases by H&E, 13 (12%) cases by IHC, 18 (16.6%) cases by FISH, and 19 (17.6%) cases by real-time PCR; 24 of 108 showed a discrepancy in ≥1 testing modalities. Comparison of H&E, IHC, and FISH showed no statistical difference in detection of BK virus. However, performing comparisons between the different tissue-based assays in the context of plasma or urine real-time PCR results showed significant improvement in detection of BK by FISH over H&E (P = 0.02) but not IHC (P = 0.07). This novel FISH-based approach for BK virus identification in renal allograft biopsy tissue mirrored real-time PCR results and showed superior performance to detection of inclusions by H&E. Therefore, use of FISH for BK virus detection in the setting of renal allograft biopsy is a useful and sensitive detection method and could be adopted in any laboratory that currently performs FISH analysis. Copyright © 2012 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  19. Identification of pyrolysis products of the new psychoactive substance 2-amino-1-(4-bromo-2,5-dimethoxyphenyl)ethanone hydrochloride (bk-2C-B) and its iodo analogue bk-2C-I.

    Science.gov (United States)

    Texter, Kelly B; Waymach, Rachel; Kavanagh, Pierce V; O'Brien, John E; Talbot, Brian; Brandt, Simon D; Gardner, Elizabeth A

    2018-01-01

    2-Amino-1-(4-bromo-2,5-dimethoxyphenyl)ethanone hydrochloride (bk-2C-B) has recently emerged as a new psychoactive substance (NPS). It is most commonly consumed orally, although there are indications that it might also be ingested by inhalation or 'smoking'. Information about the stability of bk-2C-B when exposed to heat is unavailable and the potential for pyrolytic degradation and formation of unknown substances available for inhalation prompted an investigation using a simulated 'meth pipe' scenario. Twelve products following pyrolysis of bk-2C-B were detected and verified by organic synthesis of the corresponding standards. In addition, 2-amino-1-(4-iodo-2,5-dimethoxyphenyl)ethanone hydrochloride (bk-2C-I) was characterized for the first time and subjected to pyrolysis as well. Similar products were formed, which indicated that the replacement of the bromo with the iodo substituent did not affect the pyrolysis pattern under the conditions used. Two additional products were detected in the bk-2C-I pyrolates, namely 1-(2,5-dimethoxyphenyl)-ethanone and 1-iodo-4-ethenyl-5-methoxyphenol. The potential ingestion of pyrolysis products with unknown toxicity adds an element of concern. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  20. Effective gene silencing activity of prodrug-type 2'-O-methyldithiomethyl siRNA compared with non-prodrug-type 2'-O-methyl siRNA.

    Science.gov (United States)

    Hayashi, Junsuke; Nishigaki, Misa; Ochi, Yosuke; Wada, Shun-Ichi; Wada, Fumito; Nakagawa, Osamu; Obika, Satoshi; Harada-Shiba, Mariko; Urata, Hidehito

    2018-07-01

    Small interfering RNAs (siRNAs) are an active agent to induce gene silencing and they have been studied for becoming a biological and therapeutic tool. Various 2'-O-modified RNAs have been extensively studied to improve the nuclease resistance. However, the 2'-O-modified siRNA activities were often decreased by modification, since the bulky 2'-O-modifications inhibit to form a RNA-induced silencing complex (RISC). We developed novel prodrug-type 2'-O-methyldithiomethyl (MDTM) siRNA, which is converted into natural siRNA in an intracellular reducing environment. Prodrug-type 2'-O-MDTM siRNAs modified at the 5'-end side including 5'-end nucleotide and the seed region of the antisense strand exhibited much stronger gene silencing effect than non-prodrug-type 2'-O-methyl (2'-O-Me) siRNAs. Furthermore, the resistances for nuclease digestion of siRNAs were actually enhanced by 2'-O-MDTM modifications. Our results indicate that 2'-O-MDTM modifications improve the stability of siRNA in serum and they are able to be introduced at any positions of siRNA. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Knock-down of ELMO1 in Paediatric Rhabdomyosarcoma Cells by Nanoparticle Mediated siRNA Delivery

    Directory of Open Access Journals (Sweden)

    Xinyue Huang

    2016-03-01

    Full Text Available Rhabdomyosarcoma (RMS is the most common soft tissue sarcoma that is found in children and has a poor outcome for those with metastatic disease. Two histological groups have been distinguished - embryonal (ERMS and alveolar (ARMS forms. The ARMS subtype has higher rates of metastasis, as well as higher levels of ELMO1, which is thought to be involved in cell migration. Therefore, the knock-down of ELMO1 by targeted siRNA could provide a mechanism to prevent the metastatic behaviour of ARMS cells. However, challenges still lie in the delivery of nucleotides to a tumour site. Herein, we have described the use of a variety of mesoporous silica nanoparticles as a delivery system for siRNA that is specific for ELMO1 and shown the effective reduction in cell invasive behaviour in these cells.

  2. Deep Sequencing Insights in Therapeutic shRNA Processing and siRNA Target Cleavage Precision.

    Science.gov (United States)

    Denise, Hubert; Moschos, Sterghios A; Sidders, Benjamin; Burden, Frances; Perkins, Hannah; Carter, Nikki; Stroud, Tim; Kennedy, Michael; Fancy, Sally-Ann; Lapthorn, Cris; Lavender, Helen; Kinloch, Ross; Suhy, David; Corbau, Romu

    2014-02-04

    TT-034 (PF-05095808) is a recombinant adeno-associated virus serotype 8 (AAV8) agent expressing three short hairpin RNA (shRNA) pro-drugs that target the hepatitis C virus (HCV) RNA genome. The cytosolic enzyme Dicer cleaves each shRNA into multiple, potentially active small interfering RNA (siRNA) drugs. Using next-generation sequencing (NGS) to identify and characterize active shRNAs maturation products, we observed that each TT-034-encoded shRNA could be processed into as many as 95 separate siRNA strands. Few of these appeared active as determined by Sanger 5' RNA Ligase-Mediated Rapid Amplification of cDNA Ends (5-RACE) and through synthetic shRNA and siRNA analogue studies. Moreover, NGS scrutiny applied on 5-RACE products (RACE-seq) suggested that synthetic siRNAs could direct cleavage in not one, but up to five separate positions on targeted RNA, in a sequence-dependent manner. These data support an on-target mechanism of action for TT-034 without cytotoxicity and question the accepted precision of substrate processing by the key RNA interference (RNAi) enzymes Dicer and siRNA-induced silencing complex (siRISC).Molecular Therapy-Nucleic Acids (2014) 3, e145; doi:10.1038/mtna.2013.73; published online 4 February 2014.

  3. Production and decay of the heaviest odd-Z nuclei in the 249Bk + 48Ca reaction

    International Nuclear Information System (INIS)

    Oganessian, Yu Ts; Abdullin, F Sh; Dmitriev, S N; Itkis, M G; Polyakov, A N; Alexander, C; Binder, J; Boll, R A; Ezold, J; Felker, K; Grzywacz, R K; Miernik, K; Roberto, J B; Gostic, J M; Henderson, R A; Moody, K J; Hamilton, J H; Ramayya, A V; Miller, D; Ryabinin, M A

    2015-01-01

    The reaction of 249 Bk with 48 Ca has been investigated with an aim of synthesizing and studying the decay properties of isotopes of the new element 117. The experiments were performed at five projectile energies (in two runs, in 2009-2010 and 2012) and with a total beam dose of 48 Ca ions of about 9x10 19 The experiments yielded data on a-decay characteristics and excitation functions of the produced nuclei that establish these to be 293 117 and 294 117 – the products of the 4n- and 3n-evaporation channels, respectively. In total, we have observed 20 decay chains of Z=117 nuclides. The cross sections were measured to be 1.1 pb for the 3n and 2.4 pb for the 4n-reaction channel. The new 289 115 events, populated by α decay of 117, demonstrate the same decay properties as those observed for 115 produced in the 243 Am( 48 Ca,2n) reaction thus providing cross-bombardment evidence. In addition, a single decay of 294 118 was observed from the reaction with 249 Cf – a result of the in-growth of 249 Cf in the 249 Bk target. The observed decay chain of 294 118 is in good agreement with decay properties obtained in 2002-2005 in the experiments with the reaction 249 Cf( 48 Ca,3n) 294 118. The energies and half-lives of the odd-Z isotopes observed in the 117 decay chains together with the results obtained for lower-Z superheavy nuclei demonstrate enhancement of nuclear stability with increasing neutron number towards the predicted new magic number N=184

  4. Time-resolved resonance Raman spectroscopy of intermediates of bacteriorhodopsin: The bK(590) intermediate.

    Science.gov (United States)

    Terner, J; Hsieh, C L; Burns, A R; El-Sayed, M A

    1979-07-01

    We have combined microbeam and flow techniques with computer subtraction methods to obtain the resonance Raman spectrum of the short lived batho-intermediate (bK(590)) of bacteriorhodopsin. Comparison of the spectra obtained in (1)H(2)O and (2)H(2)O, as well as the fact that the bK(590) intermediate shows large optical red shifts, suggests that the Schiff base linkage of this intermediate is protonated. The fingerprint region of the spectrum of bK(590), sensitive to the isomeric configuration of the retinal chromophore, does not resemble the corresponding region of the parent bR(570) form. The resonance Raman spectrum of bK(590) as well as the spectra of all of the other main intermediates in the photoreaction cycle of bacteriorhodopsin are discussed and compared with resonance Raman spectra of published model compounds.

  5. siRNA for Influenza Therapy

    Directory of Open Access Journals (Sweden)

    Sailen Barik

    2010-07-01

    Full Text Available Influenza virus is one of the most prevalent and ancient infections in humans. About a fifth of world's population is infected by influenza virus annually, leading to high morbidity and mortality, particularly in infants, the elderly and the immunocompromised. In the US alone, influenza outbreaks lead to roughly 30,000 deaths each year. Current vaccines and anti-influenza drugs are of limited use due to high mutation rate of the virus and side effects. In recent years, RNA interference, triggered by synthetic short interfering RNA (siRNA, has rapidly evolved as a potent antiviral regimen. Properly designed siRNAs have been shown to function as potent inhibitors of influenza virus replication. The siRNAs outperform traditional small molecule antivirals in a number of areas, such as ease of design, modest cost, and fast turnaround. Although specificity and tissue delivery remain major bottlenecks in the clinical applications of RNAi in general, intranasal application of siRNA against respiratory viruses including, but not limited to influenza virus, has experienced significant success and optimism, which is reviewed here.

  6. siRNA for Influenza Therapy.

    Science.gov (United States)

    Barik, Sailen

    2010-07-01

    Influenza virus is one of the most prevalent and ancient infections in humans. About a fifth of world's population is infected by influenza virus annually, leading to high morbidity and mortality, particularly in infants, the elderly and the immunocompromised. In the US alone, influenza outbreaks lead to roughly 30,000 deaths each year. Current vaccines and anti-influenza drugs are of limited use due to high mutation rate of the virus and side effects. In recent years, RNA interference, triggered by synthetic short interfering RNA (siRNA), has rapidly evolved as a potent antiviral regimen. Properly designed siRNAs have been shown to function as potent inhibitors of influenza virus replication. The siRNAs outperform traditional small molecule antivirals in a number of areas, such as ease of design, modest cost, and fast turnaround. Although specificity and tissue delivery remain major bottlenecks in the clinical applications of RNAi in general, intranasal application of siRNA against respiratory viruses including, but not limited to influenza virus, has experienced significant success and optimism, which is reviewed here.

  7. The modification of siRNA with 3' cholesterol to increase nuclease protection and suppression of native mRNA by select siRNA polyplexes.

    Science.gov (United States)

    Ambardekar, Vishakha V; Han, Huai-Yun; Varney, Michelle L; Vinogradov, Serguei V; Singh, Rakesh K; Vetro, Joseph A

    2011-02-01

    Polymer-siRNA complexes (siRNA polyplexes) are being actively developed to improve the therapeutic application of siRNA. A major limitation for many siRNA polyplexes, however, is insufficient mRNA suppression. Given that modifying the sense strand of siRNA with 3' cholesterol (chol-siRNA) increases the activity of free nuclease-resistant siRNA in vitro and in vivo, we hypothesized that complexation of chol-siRNA can increase mRNA suppression by siRNA polyplexes. In this study, the characteristics and siRNA activity of self assembled polyplexes formed with chol-siRNA or unmodified siRNA were compared using three types of conventional, positively charged polymers: (i) biodegradable, cross-linked nanogels (BDNG) (ii) graft copolymers (PEI-PEG), and (iii) linear block copolymers (PLL10-PEG, and PLL50-PEG). Chol-siRNA did not alter complex formation or the resistance of polyplexes to siRNA displacement by heparin but increased nuclease protection by BDNG, PLL10-PEG, and PLL50-PEG polyplexes over polyplexes with unmodified siRNA. Chol-CYPB siRNA increased suppression of native CYPB mRNA in mammary microvascular endothelial cells (MVEC) by BDNG polyplexes (35%) and PLL10-PEG polyplexes (69%) over comparable CYPB siRNA polyplexes but had no effect on PEI-PEG or PLL50-PEG polyplexes. Overall, these results indicate that complexation of chol-siRNA increases nuclease protection and mRNA suppression by select siRNA polyplexes. These results also suggest that polycationic block length is an important factor in increasing mRNA suppression by PLL-PEG chol-siRNA polyplexes in mammary MVEC. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Targeted Delivery of siRNA to Macrophages for Anti-inflammatory Treatment

    OpenAIRE

    Kim, Sang-Soo; Ye, Chunting; Kumar, Priti; Chiu, Isaac; Subramanya, Sandesh; Wu, Haoquan; Shankar, Premlata; Manjunath, N

    2010-01-01

    Inflammation mediated by tumor necrosis factor-α (TNF-α) and the associated neuronal apoptosis characterizes a number of neurologic disorders. Macrophages and microglial cells are believed to be the major source of TNF-α in the central nervous system (CNS). Here, we show that suppression of TNF-α by targeted delivery of small interfering RNA (siRNA) to macrophage/microglial cells dramatically reduces lipopolysaccharide (LPS)-induced neuroinflammation and neuronal apoptosis in vivo. Because ma...

  9. Surveillance of polyomavirus BK in relation to immunosuppressive therapy in kidney transplantation

    Directory of Open Access Journals (Sweden)

    Cristina Costa

    2012-03-01

    Full Text Available Introduction. Reactivation of polyomavirus BK in kidney transplant recipients has been associated to the development of nephropathy (polyomavirus-associated nephropathy, PVAN, possibly leading to the loss of the transplanted organ. Immunosuppression is the condicio sine qua non for the onset of PVAN; however, a lower incidence of BK viremia has been reported with low-level tacrolimus based immunosuppressive protocols in comparison to cyclosporine A.Aim of this study was to compare the two immunosuppressive protocols. Methods. Virological monitoring of BK was performed in 468 consecutive renal transplant patients over a period of 3 years (2370 urine e 2370 serum specimens: in particular, 1780 specimens from 362 patients treated with tacrolimus and 590 from 106 treated with cyclosporine A. Results. BK viremia was evidenced in 124 (7.0% and 12 (2.0% specimens from 40 (11.0% and 11 (10.4% patients treated with tacrolimus and cyclosporine A, respectively; similarly, BK viruria in 289 (16.2% and 58 (9.8% specimens from 67 (18.5% and 27 (25.5% patients, being the difference of incidence highly significant (p <0.0001 for both viremia and viruria at comparison between specimens and not significant for patients. No case of PVAN was diagnosed at histophatology evaluation. Conclusions. The incidence of viremia and viruria was similar to that previously reported. Our results evidenced that with low-level tacrolimus-based protocols the overall incidence of reactivation in renal transplant patients is not significantly different and there is no increased risk of PVAN, nevertheless the higher incidence of episodes of reactivation.

  10. Characterization of rice black-streaked dwarf virus- and rice stripe virus-derived siRNAs in singly and doubly infected insect vector Laodelphax striatellus.

    Directory of Open Access Journals (Sweden)

    Junmin Li

    Full Text Available Replication of RNA viruses in insect cells triggers an antiviral defense that is mediated by RNA interference (RNAi which generates viral-derived small interfering RNAs (siRNAs. However, it is not known whether an antiviral RNAi response is also induced in insects by reoviruses, whose double-stranded RNA genome replication is thought to occur within core particles. Deep sequencing of small RNAs showed that when the small brown planthopper (Laodelphax striatellus was infected by Rice black-streaked dwarf virus (RBSDV (Reoviridae; Fijivirus, more viral-derived siRNAs accumulated than when the vector insect was infected by Rice stripe virus (RSV, a negative single-stranded RNA virus. RBSDV siRNAs were predominantly 21 and 22 nucleotides long and there were almost equal numbers of positive and negative sense. RBSDV siRNAs were frequently generated from hotspots in the 5'- and 3'-terminal regions of viral genome segments but these hotspots were not associated with any predicted RNA secondary structures. Under laboratory condition, L. striatellus can be infected simultaneously with RBSDV and RSV. Double infection enhanced the accumulation of particular genome segments but not viral coat protein of RBSDV and correlated with an increase in the abundance of siRNAs derived from RBSDV. The results of this study suggest that reovirus replication in its insect vector potentially induces an RNAi-mediated antiviral response.

  11. Exosomes serve as nanoparticles to suppress tumor growth and angiogenesis in gastric cancer by delivering hepatocyte growth factor siRNA.

    Science.gov (United States)

    Zhang, Haiyang; Wang, Yi; Bai, Ming; Wang, Junyi; Zhu, Kegan; Liu, Rui; Ge, Shaohua; Li, JiaLu; Ning, Tao; Deng, Ting; Fan, Qian; Li, Hongli; Sun, Wu; Ying, Guoguang; Ba, Yi

    2018-03-01

    Exosomes derived from cells have been found to mediate signal transduction between cells and to act as efficient carriers to deliver drugs and small RNA. Hepatocyte growth factor (HGF) is known to promote the growth of both cancer cells and vascular cells, and the HGF-cMET pathway is a potential clinical target. Here, we characterized the inhibitory effect of HGF siRNA on tumor growth and angiogenesis in gastric cancer. In addition, we showed that HGF siRNA packed in exosomes can be transported into cancer cells, where it dramatically downregulates HGF expression. A cell co-culture model was used to show that exosomes loaded with HGF siRNA suppress proliferation and migration of both cancer cells and vascular cells. Moreover, exosomes were able to transfer HGF siRNA in vivo, decreasing the growth rates of tumors and blood vessels. The results of our study demonstrate that exosomes have potential for use in targeted cancer therapy by delivering siRNA. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  12. Screening nylon-3 polymers, a new class of cationic amphiphiles, for siRNA delivery.

    Science.gov (United States)

    Nadithe, Venkatareddy; Liu, Runhui; Killinger, Bryan A; Movassaghian, Sara; Kim, Na Hyung; Moszczynska, Anna B; Masters, Kristyn S; Gellman, Samuel H; Merkel, Olivia M

    2015-02-02

    Amphiphilic nucleic acid carriers have attracted strong interest. Three groups of nylon-3 copolymers (poly-β-peptides) possessing different cationic/hydrophobic content were evaluated as siRNA delivery agents in this study. Their ability to condense siRNA was determined in SYBR Gold assays. Their cytotoxicity was tested by MTT assays, their efficiency of delivering Alexa Fluor-488-labeled siRNA intracellularly in the presence and absence of uptake inhibitors was assessed by flow cytometry, and their transfection efficacies were studied by luciferase knockdown in a cell line stably expressing luciferase (H1299/Luc). Endosomal release was determined by confocal laser scanning microscopy and colocalization with lysotracker. All polymers efficiently condensed siRNA at nitrogen-to-phosphate (N/P) ratios of 5 or lower, as reflected in hydrodynamic diameters smaller than that at N/P 1. Although several formulations had negative zeta potentials at N/P 1, G2C and G2D polyplexes yielded >80% uptake in H1299/Luc cells, as determined by flow cytometry. Luciferase knockdown (20-65%) was observed after transfection with polyplexes made of the high molecular weight polymers that were the most hydrophobic. The ability of nylon-3 polymers to deliver siRNA intracellularly even at negative zeta potential implies that they mediate transport across cell membranes based on their amphiphilicity. The cellular uptake route was determined to strongly depend on the presence of cholesterol in the cell membrane. These polymers are, therefore, very promising for siRNA delivery at reduced surface charge and toxicity. Our study identified nylon-3 formulations at low N/P ratios for effective gene knockdown, indicating that nylon-3 polymers are a new, promising type of gene delivery agent.

  13. Screening Nylon-3 Polymers, a New Class of Cationic Amphiphiles, for siRNA Delivery

    Science.gov (United States)

    2015-01-01

    Amphiphilic nucleic acid carriers have attracted strong interest. Three groups of nylon-3 copolymers (poly-β-peptides) possessing different cationic/hydrophobic content were evaluated as siRNA delivery agents in this study. Their ability to condense siRNA was determined in SYBR Gold assays. Their cytotoxicity was tested by MTT assays, their efficiency of delivering Alexa Fluor-488-labeled siRNA intracellularly in the presence and absence of uptake inhibitors was assessed by flow cytometry, and their transfection efficacies were studied by luciferase knockdown in a cell line stably expressing luciferase (H1299/Luc). Endosomal release was determined by confocal laser scanning microscopy and colocalization with lysotracker. All polymers efficiently condensed siRNA at nitrogen-to-phosphate (N/P) ratios of 5 or lower, as reflected in hydrodynamic diameters smaller than that at N/P 1. Although several formulations had negative zeta potentials at N/P 1, G2C and G2D polyplexes yielded >80% uptake in H1299/Luc cells, as determined by flow cytometry. Luciferase knockdown (20–65%) was observed after transfection with polyplexes made of the high molecular weight polymers that were the most hydrophobic. The ability of nylon-3 polymers to deliver siRNA intracellularly even at negative zeta potential implies that they mediate transport across cell membranes based on their amphiphilicity. The cellular uptake route was determined to strongly depend on the presence of cholesterol in the cell membrane. These polymers are, therefore, very promising for siRNA delivery at reduced surface charge and toxicity. Our study identified nylon-3 formulations at low N/P ratios for effective gene knockdown, indicating that nylon-3 polymers are a new, promising type of gene delivery agent. PMID:25437915

  14. (AAV)-mediated expression of small interfering RNA

    African Journals Online (AJOL)

    Effective inhibition of specific gene by adenoassociated virus (AAV)-mediated expression of small interfering RNA. ... To perform functional tests on siRNA, which was expressed by the viral vector, recombinant AAVs, coding for siRNA against exogenous gene, EGFP, and endogenous gene, p53, were established and ...

  15. Modelling of supercritical turbulent flow over transversal ribs in an open channel

    Czech Academy of Sciences Publication Activity Database

    Příhoda, Jaromír; Šulc, J.; Sedlář, M.; Zubík, P.

    2009-01-01

    Roč. 16, č. 1 (2009), s. 65-74 ISSN 1802-1484 R&D Projects: GA ČR GA103/06/0461 Institutional research plan: CEZ:AV0Z20760514 Keywords : turbulent flow in open channels * flow over obstacles Subject RIV: BK - Fluid Dynamics

  16. Fragile X mental retardation protein controls ion channel expression and activity.

    Science.gov (United States)

    Ferron, Laurent

    2016-10-15

    Fragile X-associated disorders are a family of genetic conditions resulting from the partial or complete loss of fragile X mental retardation protein (FMRP). Among these disorders is fragile X syndrome, the most common cause of inherited intellectual disability and autism. FMRP is an RNA-binding protein involved in the control of local translation, which has pleiotropic effects, in particular on synaptic function. Analysis of the brain FMRP transcriptome has revealed hundreds of potential mRNA targets encoding postsynaptic and presynaptic proteins, including a number of ion channels. FMRP has been confirmed to bind voltage-gated potassium channels (K v 3.1 and K v 4.2) mRNAs and regulates their expression in somatodendritic compartments of neurons. Recent studies have uncovered a number of additional roles for FMRP besides RNA regulation. FMRP was shown to directly interact with, and modulate, a number of ion channel complexes. The sodium-activated potassium (Slack) channel was the first ion channel shown to directly interact with FMRP; this interaction alters the single-channel properties of the Slack channel. FMRP was also shown to interact with the auxiliary β4 subunit of the calcium-activated potassium (BK) channel; this interaction increases calcium-dependent activation of the BK channel. More recently, FMRP was shown to directly interact with the voltage-gated calcium channel, Ca v 2.2, and reduce its trafficking to the plasma membrane. Studies performed on animal models of fragile X syndrome have revealed links between modifications of ion channel activity and changes in neuronal excitability, suggesting that these modifications could contribute to the phenotypes observed in patients with fragile X-associated disorders. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  17. Hydroxychloroquine-conjugated gold nanoparticles for improved siRNA activity.

    Science.gov (United States)

    Perche, F; Yi, Y; Hespel, L; Mi, P; Dirisala, A; Cabral, H; Miyata, K; Kataoka, K

    2016-06-01

    Current technology of siRNA delivery relies on pharmaceutical dosage forms to route maximal doses of siRNA to the tumor. However, this rationale does not address intracellular bottlenecks governing silencing activity. Here, we tested the impact of hydroxychloroquine conjugation on the intracellular fate and silencing activity of siRNA conjugated PEGylated gold nanoparticles. Addition of hydroxychloroquine improved endosomal escape and increased siRNA guide strand distribution to the RNA induced silencing complex (RISC), both crucial obstacles to the potency of siRNA. This modification significantly improved gene downregulation in cellulo. Altogether, our data suggest the benefit of this modification for the design of improved siRNA delivery systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. The Modification of siRNA with 3′ Cholesterol to Increase Nuclease Protection and Suppression of Native mRNA by Select siRNA Polyplexes

    Science.gov (United States)

    Ambardekar, Vishakha V.; Han, Huai-Yun; Varney, Michelle L.; Vinogradov, Serguei V.; Singh, Rakesh K.; Vetro, Joseph A.

    2010-01-01

    Polymer-siRNA complexes (siRNA polyplexes) are being actively developed to improve the therapeutic application of siRNA. A major limitation for many siRNA polyplexes, however, is insufficient mRNA suppression. Given that modifying the sense strand of siRNA with 3′ cholesterol (chol-siRNA) increases the activity of free nuclease-resistant siRNA in vitro and in vivo, we hypothesized that complexation of chol-siRNA can increase mRNA suppression by siRNA polyplexes. In this study, the characteristics and siRNA activity of self assembled polyplexes formed with chol-siRNA or unmodified siRNA were compared using three types of conventional, positively charged polymers: (i) biodegradable, cross-linked nanogels (BDNG) (ii) graft copolymers (PEI-PEG), and (iii) linear block copolymers (PLL10-PEG, and PLL50-PEG). Chol-siRNA did not alter complex formation or the resistance of polyplexes to siRNA displacement by heparin but increased nuclease protection by BDNG, PLL10-PEG, and PLL50-PEG polyplexes over polyplexes with unmodified siRNA. Chol-CYPB siRNA increased suppression of native CYPB mRNA in mammary microvascular endothelial cells (MVEC) by BDNG polyplexes (35%) and PLL10-PEG polyplexes (69%) over comparable CYPB siRNA polyplexes but had no effect on PEI-PEG or PLL50-PEG polyplexes. Overall, these results indicate that complexation of chol-siRNA increases nuclease protection and mRNA suppression by select siRNA polyplexes. These results also suggest that polycationic block length is an important factor in increasing mRNA suppression by PLL-PEG chol-siRNA polyplexes in mammary MVEC. PMID:21047680

  19. Transdermal Delivery of siRNA through Microneedle Array

    Science.gov (United States)

    Deng, Yan; Chen, Jiao; Zhao, Yi; Yan, Xiaohui; Zhang, Li; Choy, Kwongwai; Hu, Jun; Sant, Himanshu J.; Gale, Bruce K.; Tang, Tao

    2016-02-01

    Successful development of siRNA therapies has significant potential for the treatment of skin conditions (alopecia, allergic skin diseases, hyperpigmentation, psoriasis, skin cancer, pachyonychia congenital) caused by aberrant gene expression. Although hypodermic needles can be used to effectively deliver siRNA through the stratum corneum, the major challenge is that this approach is painful and the effects are restricted to the injection site. Microneedle arrays may represent a better way to deliver siRNAs across the stratum corneum. In this study, we evaluated for the first time the ability of the solid silicon microneedle array for punching holes to deliver cholesterol-modified housekeeping gene (Gapdh) siRNA to the mouse ear skin. Treating the ear with microneedles showed permeation of siRNA in the skin and could reduce Gapdh gene expression up to 66% in the skin without accumulation in the major organs. The results showed that microneedle arrays could effectively deliver siRNA to relevant regions of the skin noninvasively.

  20. Pore dimensions and the role of occupancy in unitary conductance of Shaker K channels

    Science.gov (United States)

    Díaz-Franulic, Ignacio; Sepúlveda, Romina V.; Navarro-Quezada, Nieves; González-Nilo, Fernando

    2015-01-01

    K channels mediate the selective passage of K+ across the plasma membrane by means of intimate interactions with ions at the pore selectivity filter located near the external face. Despite high conservation of the selectivity filter, the K+ transport properties of different K channels vary widely, with the unitary conductance spanning a range of over two orders of magnitude. Mutation of Pro475, a residue located at the cytoplasmic entrance of the pore of the small-intermediate conductance K channel Shaker (Pro475Asp (P475D) or Pro475Gln (P475Q)), increases Shaker’s reported ∼20-pS conductance by approximately six- and approximately threefold, respectively, without any detectable effect on its selectivity. These findings suggest that the structural determinants underlying the diversity of K channel conductance are distinct from the selectivity filter, making P475D and P475Q excellent probes to identify key determinants of the K channel unitary conductance. By measuring diffusion-limited unitary outward currents after unilateral addition of 2 M sucrose to the internal solution to increase its viscosity, we estimated a pore internal radius of capture of ∼0.82 Å for all three Shaker variants (wild type, P475D, and P475Q). This estimate is consistent with the internal entrance of the Kv1.2/2.1 structure if the effective radius of hydrated K+ is set to ∼4 Å. Unilateral exposure to sucrose allowed us to estimate the internal and external access resistances together with that of the inner pore. We determined that Shaker resistance resides mainly in the inner cavity, whereas only ∼8% resides in the selectivity filter. To reduce the inner resistance, we introduced additional aspartate residues into the internal vestibule to favor ion occupancy. No aspartate addition raised the maximum unitary conductance, measured at saturating [K+], beyond that of P475D, suggesting an ∼200-pS conductance ceiling for Shaker. This value is approximately one third of the maximum

  1. Persepsi Guru BK Tentang Kompetensi Konselor di Sekolah Dasar Swasta Kota Semarang

    Directory of Open Access Journals (Sweden)

    Restu Setyoningtyas

    2014-10-01

    Full Text Available Tujuan penelitian ini adalah untuk mengetahui tentang persepsi guru BK tentang kompetensi konselor di sekolah dasar swasta Kota Semarang. Penelitian ini bersifat kuantitatif, responden penelitian adalah guru BK sekolah dasar swasta, teknik pengumpulan data berupa skala psikologi dan dokumentasi. Analisis data menggunakan Analisis Deskriptif Persentase. Hasil penelitian menunjukkan persepsi guru BK tentang kompetensi konselor mendapatkan hasil yang positif. Kompetensi pedagogik yaitu positif, kepribadian yaitu kurang positif, sosial yaitu kurang positif, profesional yaitu cukup positif. Kesimpulan dari penelitian ini adalah persepsi guru BK tentang kompetensi konselor di sekolah dasar swasta Kota Semarang pada umumnya positif. The purpose of this research is determine perception guidance and counseling teacher about counselor competence in private elementary school on Semarang city. This research is quantitative. Respondens is guidance and counseling teacher from private elementary school, techniques of data collection are psychology scale and documentation. The data analysis using Analysis Descriptive Percentage. Result showed that research is perception  guidance and counseling teacher about counselor competence is positive. Pedagogic competence is positive, personality is not positive enough, social is not positive enough, professional is positive enough. The conclusion of this research is perception guidance and counseling teacher about counselor competence in private elementary school on Semarang city in general is positive.

  2. In Silico Design and Experimental Validation of siRNAs Targeting Conserved Regions of Multiple Hepatitis C Virus Genotypes.

    Directory of Open Access Journals (Sweden)

    Mahmoud ElHefnawi

    Full Text Available RNA interference (RNAi is a post-transcriptional gene silencing mechanism that mediates the sequence-specific degradation of targeted RNA and thus provides a tremendous opportunity for development of oligonucleotide-based drugs. Here, we report on the design and validation of small interfering RNAs (siRNAs targeting highly conserved regions of the hepatitis C virus (HCV genome. To aim for therapeutic applications by optimizing the RNAi efficacy and reducing potential side effects, we considered different factors such as target RNA variations, thermodynamics and accessibility of the siRNA and target RNA, and off-target effects. This aim was achieved using an in silico design and selection protocol complemented by an automated MysiRNA-Designer pipeline. The protocol included the design and filtration of siRNAs targeting highly conserved and accessible regions within the HCV internal ribosome entry site, and adjacent core sequences of the viral genome with high-ranking efficacy scores. Off-target analysis excluded siRNAs with potential binding to human mRNAs. Under this strict selection process, two siRNAs (HCV353 and HCV258 were selected based on their predicted high specificity and potency. These siRNAs were tested for antiviral efficacy in HCV genotype 1 and 2 replicon cell lines. Both in silico-designed siRNAs efficiently inhibited HCV RNA replication, even at low concentrations and for short exposure times (24h; they also exceeded the antiviral potencies of reference siRNAs targeting HCV. Furthermore, HCV353 and HCV258 siRNAs also inhibited replication of patient-derived HCV genotype 4 isolates in infected Huh-7 cells. Prolonged treatment of HCV replicon cells with HCV353 did not result in the appearance of escape mutant viruses. Taken together, these results reveal the accuracy and strength of our integrated siRNA design and selection protocols. These protocols could be used to design highly potent and specific RNAi-based therapeutic

  3. Mechanistic profiling of the siRNA delivery dynamics of lipid-polymer hybrid nanoparticles.

    Science.gov (United States)

    Colombo, Stefano; Cun, Dongmei; Remaut, Katrien; Bunker, Matt; Zhang, Jianxin; Martin-Bertelsen, Birte; Yaghmur, Anan; Braeckmans, Kevin; Nielsen, Hanne M; Foged, Camilla

    2015-03-10

    Understanding the delivery dynamics of nucleic acid nanocarriers is fundamental to improve their design for therapeutic applications. We investigated the carrier structure-function relationship of lipid-polymer hybrid nanoparticles (LPNs) consisting of poly(DL-lactic-co-glycolic acid) (PLGA) nanocarriers modified with the cationic lipid dioleoyltrimethyl-ammoniumpropane (DOTAP). A library of siRNA-loaded LPNs was prepared by systematically varying the nitrogen-to-phosphate (N/P) ratio. Atomic force microscopy (AFM) and cryo-transmission electron microscopy (cryo-TEM) combined with small angle X-ray scattering (SAXS) and confocal laser scanning microscopy (CLSM) studies suggested that the siRNA-loaded LPNs are characterized by a core-shell structure consisting of a PLGA matrix core coated with lamellar DOTAP structures with siRNA localized both in the core and in the shell. Release studies in buffer and serum-containing medium combined with in vitro gene silencing and quantification of intracellular siRNA suggested that this self-assembling core-shell structure influences the siRNA release kinetics and the delivery dynamics. A main delivery mechanism appears to be mediated via the release of transfection-competent siRNA-DOTAP lipoplexes from the LPNs. Based on these results, we suggest a model for the nanostructural characteristics of the LPNs, in which the siRNA is organized in lamellar superficial assemblies and/or as complexes entrapped in the polymeric matrix. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Synthesis of PLGA-Lipid Hybrid Nanoparticles for siRNA Delivery Using the Emulsion Method PLGA-PEG-Lipid Nanoparticles for siRNA Delivery.

    Science.gov (United States)

    Wang, Lei; Griffel, Benjamin; Xu, Xiaoyang

    2017-01-01

    The effective delivery of small interfering RNA (siRNA) to tumor cells remains a challenge for applications in cancer therapy. The development of polymeric nanoparticles with high siRNA loading efficacy has shown great potential for cancer targets. Double emulsion solvent evaporation technique is a useful tool for encapsulation of hydrophilic molecules (e.g., siRNA). Here we describe a versatile platform for siRNA delivery based on PLGA-PEG-cationic lipid nanoparticles by using the double emulsion method. The resulting nanoparticles show high encapsulation efficiency for siRNA (up to 90%) and demonstrate effective downregulation of the target genes in vitro and vivo.

  5. Molecular cloning of a K+ channel from the malaria parasite Plasmodium falciparum

    DEFF Research Database (Denmark)

    Ellekvist, Peter; Ricke, Christina Høier; Litman, Thomas

    2004-01-01

    In most living cells, K(+) channels are important for the generation of the membrane potential and for volume regulation. The parasite Plasmodium falciparum, which causes malignant malaria, must be able to deal with large variations in the ambient K(+) concentration: it is exposed to high...... concentrations of K(+) when inside the erythrocyte and low concentrations when in plasma. In the recently published genome of P. falciparum, we have identified a gene, pfkch1, encoding a potential K(+) channel, which to some extent resembles the big-conductance (BK) K(+) channel. We have cloned the approximately...

  6. Pemahaman Guru BK Tentang Pelaksanaan Layanan Peminatan pada Kurikulum 2013

    Directory of Open Access Journals (Sweden)

    Finda Marsetyana

    2015-04-01

    Full Text Available Penelitian ini dilakukan berdasar fenomena yaitu belum adanya kesiapan tentang program peminatan di SMK Negeri se-Kota Semarang. Tujuan penelitian secara umum untuk mengetahui pemahaman guru BK tentang pelaksanaan layanan peminatan pada kurikulum 2013 di SMK Negeri se-Kota Semarang. Medote pengumpulan data yaitu angket tertutup yang diberikan kepada 44 orang guru BK SMK Negeri se Kota Semarang. Analisis data menggunakan analisis deskriptif persentase. Hasil penelitian dari Pemahaman Guru BK Tentang Pelaksanaan Layanan Peminatan Pada Kurikulum 2013 Di SMK Negeri Se-Kota Semarang termasuk dalam kategori tinggi (71.59% dengan perincian indikator variabel yaitu pemahaman guru BK tentang kurikulum 2013 persentase sebesar 75.04% (tinggi, konsep dan strategi pelayanan bimbingan dan konseling pada kurikulum 2013 sebesar 69.31% (sedang, lingkup layanan peminatan sebesar 70.57% (tinggi, dan pelaksanaan layanan peminatan 72.22% (tinggi. Simpulan penelitian ini yakni guru BK SMK Negeri se-Kota Semarang telah mempunyai pemahaman tentang pelaksanaan layanan peminatan pada kurikulum 2013 dengan kriteria tinggi. This research was conducted based on the phenomenon that is there was no readiness about the students’ interest program vocational high schools in around Semarang.The general objective of this research was to know the counseling’s teachers deals with the implementation of students’ interest service towards the 2013 curriculum vocational high schools in around Semarang. Method of data collection is used closed questionnaire and it was given to 44 students vocational high schools in around Semarang in which the data obtained was analysed trough descriptive percentages. The research finding from counseling’s teachers about the implementation of students’ interest in the 2013 curriculum vocational high schools in around Semarang are in a high category (71.59%, with the details of the indicator variable are as follows; the understanding of

  7. HIVsirDB: a database of HIV inhibiting siRNAs.

    Directory of Open Access Journals (Sweden)

    Atul Tyagi

    Full Text Available Human immunodeficiency virus (HIV is responsible for millions of deaths every year. The current treatment involves the use of multiple antiretroviral agents that may harm patients due to their toxic nature. RNA interference (RNAi is a potent candidate for the future treatment of HIV, uses short interfering RNA (siRNA/shRNA for silencing HIV genes. In this study, attempts have been made to create a database HIVsirDB of siRNAs responsible for silencing HIV genes.HIVsirDB is a manually curated database of HIV inhibiting siRNAs that provides comprehensive information about each siRNA or shRNA. Information was collected and compiled from literature and public resources. This database contains around 750 siRNAs that includes 75 partially complementary siRNAs differing by one or more bases with the target sites and over 100 escape mutant sequences. HIVsirDB structure contains sixteen fields including siRNA sequence, HIV strain, targeted genome region, efficacy and conservation of target sequences. In order to facilitate user, many tools have been integrated in this database that includes; i siRNAmap for mapping siRNAs on target sequence, ii HIVsirblast for BLAST search against database, iii siRNAalign for aligning siRNAs.HIVsirDB is a freely accessible database of siRNAs which can silence or degrade HIV genes. It covers 26 types of HIV strains and 28 cell types. This database will be very useful for developing models for predicting efficacy of HIV inhibiting siRNAs. In summary this is a useful resource for researchers working in the field of siRNA based HIV therapy. HIVsirDB database is accessible at http://crdd.osdd.net/raghava/hivsir/.

  8. Faktor-Faktor Hambatan Profesionalisasi Guru BK di SMA Negeri se- Kota Purwokerto

    Directory of Open Access Journals (Sweden)

    Cahya Dewi Rizkiwati

    2014-10-01

    Full Text Available Tujuan penelitian ini yaitu untuk mendeskripsikan tentang faktor-faktor hambatan yang terjadi dalam profesionalisasi guru BK. Jenis penelitian ini merupakan penelitian survey. Penelitian ini dilaksanakan di SMA Negeri se-Kota Purwokerto. Penelitian ini adalah penelitian populasi atau sensus karena populasi guru BK berjumlah 25 orang. Metode yang digunakan dalam penelitian ini adalah  inventori dalam bentuk daftar cek masalah. Instrumen tersebut telah diuji validitasnya menggunakan rumus point biserial, sedangkan reliabilitas instrumen digunakan rumus KR-20. Data yang telah diperoleh dianalisis dengan menggunakan teknik deskriptif prosentase. Hasil dari penelitian ini menunjukkan hambatan yang berasal dari faktor internal mendapat prosentase lebih tinggi daripada faktor eksternal. Faktor internal yang paling mempengaruhi profesionalisasi guru BK antara lain latar belakang pendidikan, pengalaman kerja, motivasi kerja, kompetensi guru BK. Sedangkan faktor eksternal yang paling mempengaruhi profesionalisasi guru BK adalah sarana dan prasarana. The purpose of this research is to describe problems  occur in the professionalization of guidance and counseling teachers. The type of the research is survey research . This research was conducted in all of Senior High School in Purwokerto. Population research or census were used as sampling method, since  the population of guidance and counseling teachers were 25 people. Data collection technique was  using inventory with list of issues. The instrument validity has been tested using point biserial formula, whilst its reliability was tested using KR-20 formula. The data was analyzed using descriptive percentage techniques. The results of this research indicate that internal factors get higher percentage than external factors. Internal factors that have the most influence in the professionalization of guidance and counseling teachers include educational background, working experience , motivation, teacher

  9. Function and anatomy of plant siRNA pools derived from hairpin transgenes

    Directory of Open Access Journals (Sweden)

    Lee Kevin AW

    2007-11-01

    Full Text Available Abstract Background RNA interference results in specific gene silencing by small-interfering RNAs (siRNAs. Synthetic siRNAs provide a powerful tool for manipulating gene expression but high cost suggests that novel siRNA production methods are desirable. Strong evolutionary conservation of siRNA structure suggested that siRNAs will retain cross-species function and that transgenic plants expressing heterologous siRNAs might serve as useful siRNA bioreactors. Here we report a detailed evaluation of the above proposition and present evidence regarding structural features of siRNAs extracted from plants. Results Testing the gene silencing capacity of plant-derived siRNAs in mammalian cells proved to be very challenging and required partial siRNA purification and design of a highly sensitive assay. Using the above assay we found that plant-derived siRNAs are ineffective for gene silencing in mammalian cells. Plant-derived siRNAs are almost exclusively double-stranded and most likely comprise a mixture of bona fide siRNAs and aberrant partially complementary duplexes. We also provide indirect evidence that plant-derived siRNAs may contain a hitherto undetected physiological modification, distinct from 3' terminal 2-O-methylation. Conclusion siRNAs produced from plant hairpin transgenes and extracted from plants are ineffective for gene silencing in mammalian cells. Thus our findings establish that a previous claim that transgenic plants offer a cost-effective, scalable and sustainable source of siRNAs is unwarranted. Our results also indicate that the presence of aberrant siRNA duplexes and possibly a plant-specific siRNA modification, compromises the gene silencing capacity of plant-derived siRNAs in mammalian cells.

  10. Pannexin 1 channels mediate 'find-me' signal release and membrane permeability during apoptosis.

    Science.gov (United States)

    Chekeni, Faraaz B; Elliott, Michael R; Sandilos, Joanna K; Walk, Scott F; Kinchen, Jason M; Lazarowski, Eduardo R; Armstrong, Allison J; Penuela, Silvia; Laird, Dale W; Salvesen, Guy S; Isakson, Brant E; Bayliss, Douglas A; Ravichandran, Kodi S

    2010-10-14

    Apoptotic cells release 'find-me' signals at the earliest stages of death to recruit phagocytes. The nucleotides ATP and UTP represent one class of find-me signals, but their mechanism of release is not known. Here, we identify the plasma membrane channel pannexin 1 (PANX1) as a mediator of find-me signal/nucleotide release from apoptotic cells. Pharmacological inhibition and siRNA-mediated knockdown of PANX1 led to decreased nucleotide release and monocyte recruitment by apoptotic cells. Conversely, PANX1 overexpression enhanced nucleotide release from apoptotic cells and phagocyte recruitment. Patch-clamp recordings showed that PANX1 was basally inactive, and that induction of PANX1 currents occurred only during apoptosis. Mechanistically, PANX1 itself was a target of effector caspases (caspases 3 and 7), and a specific caspase-cleavage site within PANX1 was essential for PANX1 function during apoptosis. Expression of truncated PANX1 (at the putative caspase cleavage site) resulted in a constitutively open channel. PANX1 was also important for the 'selective' plasma membrane permeability of early apoptotic cells to specific dyes. Collectively, these data identify PANX1 as a plasma membrane channel mediating the regulated release of find-me signals and selective plasma membrane permeability during apoptosis, and a new mechanism of PANX1 activation by caspases.

  11. MysiRNA-designer: a workflow for efficient siRNA design.

    Directory of Open Access Journals (Sweden)

    Mohamed Mysara

    Full Text Available The design of small interfering RNA (siRNA is a multi factorial problem that has gained the attention of many researchers in the area of therapeutic and functional genomics. MysiRNA score was previously introduced that improves the correlation of siRNA activity prediction considering state of the art algorithms. In this paper, a new program, MysiRNA-Designer, is described which integrates several factors in an automated work-flow considering mRNA transcripts variations, siRNA and mRNA target accessibility, and both near-perfect and partial off-target matches. It also features the MysiRNA score, a highly ranked correlated siRNA efficacy prediction score for ranking the designed siRNAs, in addition to top scoring models Biopredsi, DISR, Thermocomposition21 and i-Score, and integrates them in a unique siRNA score-filtration technique. This multi-score filtration layer filters siRNA that passes the 90% thresholds calculated from experimental dataset features. MysiRNA-Designer takes an accession, finds conserved regions among its transcript space, finds accessible regions within the mRNA, designs all possible siRNAs for these regions, filters them based on multi-scores thresholds, and then performs SNP and off-target filtration. These strict selection criteria were tested against human genes in which at least one active siRNA was designed from 95.7% of total genes. In addition, when tested against an experimental dataset, MysiRNA-Designer was found capable of rejecting 98% of the false positive siRNAs, showing superiority over three state of the art siRNA design programs. MysiRNA is a freely accessible (Microsoft Windows based desktop application that can be used to design siRNA with a high accuracy and specificity. We believe that MysiRNA-Designer has the potential to play an important role in this area.

  12. siRNA delivery with lipid-based systems

    DEFF Research Database (Denmark)

    Foged, Camilla

    2012-01-01

    A key hurdle for the further development of RNA interference (RNAi) therapeutics like small interfering RNA (siRNA) is their safe and effective delivery. Lipids are promising and versatile carriers because they are based on Nature's own building blocks and can be provided with properties which......RNA into more hydrophobic lipoplexes, which promote passage of the siRNA across cellular membrane barriers, especially when lipids are added that facilitate membrane fusion. Despite these attractive features, siRNA delivery vehicles are facing a number of challenges such as the limited delivery efficiency...

  13. Study of the Role of siRNA Mediated Promoter Methylation in DNMT3B Knockdown and Alteration of Promoter Methylation of CDH1, GSTP1 Genes in MDA-MB -453 Cell Line.

    Science.gov (United States)

    Naghitorabi, Mojgan; Mir Mohammad Sadeghi, Hamid; Mohammadi Asl, Javad; Rabbani, Mohammad; Jafarian-Dehkordi, Abbas

    2017-01-01

    Promoter methylation is one of the main epigenetic mechanisms that leads to the inactivation of tumor suppressor genes during carcinogenesis. Due to the reversible nature of DNA methylation, many studies have been performed to correct theses epigenetic defects by inhibiting DNA methyltransferases (DNMTs). In this case novel therapeutics especially siRNA oligonucleotides have been used to specifically knock down the DNMTs at mRNA level. Also many studies have focused on transcriptional gene silencing in mammalian cells via siRNA mediated promoter methylation. The present study was designed to assess the role of siRNA mediated promoter methylation in DNMT3B knockdown and alteration of promoter methylation of Cadherin-1 (CDH1), Glutathione S-Transferase Pi 1(GSTP1), and DNMT3B genes in MDA-MB-453 cell line. MDA-MB-453 cells were transfected with siDNMT targeting DNMT3B promoter and harvested at 24 and 48 h post transfection to monitor gene silencing and promoter methylation respectively. DNMT3B expression was monitored by quantitative RT-PCR method. Promoter methylation was quantitatively evaluated using differential high resolution melting analysis. A non-significant 20% reduction in DNMT3B mRNA level was shown only after first transfection with siDNMT, which was not reproducible. Promoter methylation levels of DNMT3B, CDH1, and GSTP1 were detected at about 15%, 70% and 10% respectively, in the MDA-MB-453 cell line, with no significant change after transfection. Our results indicated that siDNMT sequence were not able to affect promoter methylation and silencing of DNMT3B in MDA-MB-453 cells. However, quantitation of methylation confirmed a hypermethylated phenotype at CDH1 and GSTP1 promoters as well as a differential methylation pattern at DNMT3B promoter in breast cancer.

  14. Activation gating kinetics of GIRK channels are mediated by cytoplasmic residues adjacent to transmembrane domains.

    Science.gov (United States)

    Sadja, Rona; Reuveny, Eitan

    2009-01-01

    G-protein-coupled inwardly rectifying potassium channels (GIRK/Kir3.x) are involved in neurotransmission-mediated reduction of excitability. The gating mechanism following G protein activation of these channels likely proceeds from movement of inner transmembrane helices to allow K(+) ions movement through the pore of the channel. There is limited understanding of how the binding of G-protein betagamma subunits to cytoplasmic regions of the channel transduces the signal to the transmembrane regions. In this study, we examined the molecular basis that governs the activation kinetics of these channels, using a chimeric approach. We identified two regions as being important in determining the kinetics of activation. One region is the bottom of the outer transmembrane helix (TM1) and the cytoplasmic domain immediately adjacent (the slide helix); and the second region is the bottom of the inner transmembrane helix (TM2) and the cytoplasmic domain immediately adjacent. Interestingly, both of these regions are sufficient in mediating the kinetics of fast activation gating. This result suggests that there is a cooperative movement of either one of these domains to allow fast and efficient activation gating of GIRK channels.

  15. Ultrasound-guided delivery of siRNA and a chemotherapeutic drug by using microbubble complexes: In vitro and in vivo evaluations in a prostate cancer model

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Yun Jung; Yoon, Young Il; Lee, Hak Jong [Dept. of Radiology, Seoul National University Bundang Hospital, Seongnam (Korea, Republic of); Yoon, Tae Jong [Dept. of Applied Bioscience, College of Life Science, CHA University, Pocheon (Korea, Republic of)

    2016-07-15

    To evaluate the effectiveness of ultrasound and microbubble-liposome complex (MLC)-mediated delivery of siRNA and doxorubicin into prostate cancer cells and its therapeutic capabilities both in vitro and in vivo. Microbubble-liposome complexes conjugated with anti-human epidermal growth factor receptor type 2 (Her2) antibodies were developed to target human prostate cancer cell lines PC-3 and LNCaP. Intracellular delivery of MLC was observed by confocal microscopy. We loaded MLC with survivin-targeted small interfering RNA (siRNA) and doxorubicin, and delivered it into prostate cancer cells. The release of these agents was facilitated by ultrasound application. Cell viability was analyzed by MTT assay after the delivery of siRNA and doxorubicin. Survivin-targeted siRNA loaded MLC was delivered into the xenograft mouse tumor model. Western blotting was performed to quantify the expression of survivin in vivo. Confocal microscopy demonstrated substantial intracellular uptake of MLCs in LNCaP, which expresses higher levels of Her2 than PC-3. The viability of LNCaP cells was significantly reduced after the delivery of MLCs loaded with siRNA and doxorubicin (85.0 ± 2.9%), which was further potentiated by application of ultrasound (55.0 ± 3.5%, p = 0.009). Survivin expression was suppressed in vivo in LNCaP tumor xenograft model following the ultrasound and MLC-guided delivery of siRNA (77.4 ± 4.90% to 36.7 ± 1.34%, p = 0.027). Microbubble-liposome complex can effectively target prostate cancer cells, enabling intracellular delivery of the treatment agents with the use of ultrasound. Ultrasound and MLC-mediated delivery of survivin-targeted siRNA and doxorubicin can induce prostate cell apoptosis and block survivin expression in vitro and in vivo.

  16. Ultrasound-Guided Delivery of siRNA and a Chemotherapeutic Drug by Using Microbubble Complexes: In Vitro and In Vivo Evaluations in a Prostate Cancer Model

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Yun Jung [Department of Radiology, Seoul National University Bundang Hospital, Seongnam 13620 (Korea, Republic of); Department of Radiology, Seoul National University College of Medicine, Seoul 03080 (Korea, Republic of); Yoon, Young Il [Department of Radiology, Seoul National University Bundang Hospital, Seongnam 13620 (Korea, Republic of); Department of Radiology, Seoul National University College of Medicine, Seoul 03080 (Korea, Republic of); Program in Nano Science and Technology, Department of Transdisciplinary Studies, Seoul National University Graduate School of Convergence Science and Technology, Suwon 16229 (Korea, Republic of); Yoon, Tae-Jong [Department of Applied Bioscience, College of Life Science, CHA University, Pocheon 11160 (Korea, Republic of); College of Pharmacy, Ajou University, Suwon 16499 (Korea, Republic of); Lee, Hak Jong [Department of Radiology, Seoul National University Bundang Hospital, Seongnam 13620 (Korea, Republic of); Department of Radiology, Seoul National University College of Medicine, Seoul 03080 (Korea, Republic of); Program in Nano Science and Technology, Department of Transdisciplinary Studies, Seoul National University Graduate School of Convergence Science and Technology, Suwon 16229 (Korea, Republic of)

    2016-11-01

    To evaluate the effectiveness of ultrasound and microbubble-liposome complex (MLC)-mediated delivery of siRNA and doxorubicin into prostate cancer cells and its therapeutic capabilities both in vitro and in vivo. Microbubble-liposome complexes conjugated with anti-human epidermal growth factor receptor type 2 (Her2) antibodies were developed to target human prostate cancer cell lines PC-3 and LNCaP. Intracellular delivery of MLC was observed by confocal microscopy. We loaded MLC with survivin-targeted small interfering RNA (siRNA) and doxorubicin, and delivered it into prostate cancer cells. The release of these agents was facilitated by ultrasound application. Cell viability was analyzed by MTT assay after the delivery of siRNA and doxorubicin. Survivin-targeted siRNA loaded MLC was delivered into the xenograft mouse tumor model. Western blotting was performed to quantify the expression of survivin in vivo. Confocal microscopy demonstrated substantial intracellular uptake of MLCs in LNCaP, which expresses higher levels of Her2 than PC-3. The viability of LNCaP cells was significantly reduced after the delivery of MLCs loaded with siRNA and doxorubicin (85.0 ± 2.9%), which was further potentiated by application of ultrasound (55.0 ± 3.5%, p = 0.009). Survivin expression was suppressed in vivo in LNCaP tumor xenograft model following the ultrasound and MLC-guided delivery of siRNA (77.4 ± 4.90% to 36.7 ± 1.34%, p = 0.027). Microbubble-liposome complex can effectively target prostate cancer cells, enabling intracellular delivery of the treatment agents with the use of ultrasound. Ultrasound and MLC-mediated delivery of survivin-targeted siRNA and doxorubicin can induce prostate cell apoptosis and block survivin expression in vitro and in vivo.

  17. Ultrasound-Guided Delivery of siRNA and a Chemotherapeutic Drug by Using Microbubble Complexes: In Vitro and In Vivo Evaluations in a Prostate Cancer Model

    International Nuclear Information System (INIS)

    Bae, Yun Jung; Yoon, Young Il; Yoon, Tae-Jong; Lee, Hak Jong

    2016-01-01

    To evaluate the effectiveness of ultrasound and microbubble-liposome complex (MLC)-mediated delivery of siRNA and doxorubicin into prostate cancer cells and its therapeutic capabilities both in vitro and in vivo. Microbubble-liposome complexes conjugated with anti-human epidermal growth factor receptor type 2 (Her2) antibodies were developed to target human prostate cancer cell lines PC-3 and LNCaP. Intracellular delivery of MLC was observed by confocal microscopy. We loaded MLC with survivin-targeted small interfering RNA (siRNA) and doxorubicin, and delivered it into prostate cancer cells. The release of these agents was facilitated by ultrasound application. Cell viability was analyzed by MTT assay after the delivery of siRNA and doxorubicin. Survivin-targeted siRNA loaded MLC was delivered into the xenograft mouse tumor model. Western blotting was performed to quantify the expression of survivin in vivo. Confocal microscopy demonstrated substantial intracellular uptake of MLCs in LNCaP, which expresses higher levels of Her2 than PC-3. The viability of LNCaP cells was significantly reduced after the delivery of MLCs loaded with siRNA and doxorubicin (85.0 ± 2.9%), which was further potentiated by application of ultrasound (55.0 ± 3.5%, p = 0.009). Survivin expression was suppressed in vivo in LNCaP tumor xenograft model following the ultrasound and MLC-guided delivery of siRNA (77.4 ± 4.90% to 36.7 ± 1.34%, p = 0.027). Microbubble-liposome complex can effectively target prostate cancer cells, enabling intracellular delivery of the treatment agents with the use of ultrasound. Ultrasound and MLC-mediated delivery of survivin-targeted siRNA and doxorubicin can induce prostate cell apoptosis and block survivin expression in vitro and in vivo

  18. G-protein mediates voltage regulation of agonist binding to muscarinic receptors: effects on receptor-Na+ channel interaction

    International Nuclear Information System (INIS)

    Cohen-Armon, M.; Garty, H.; Sokolovsky, M.

    1988-01-01

    The authors previous experiments in membranes prepared from rat heart and brain led them to suggest that the binding of agonist to the muscarinic receptors and to the Na + channels is a coupled event mediated by guanine nucleotide binding protein(s) [G-protein(s)]. These in vitro findings prompted us to employ synaptoneurosomes from brain stem tissue to examine (i) the binding properties of [ 3 H] acetylcholine at resting potential and under depolarization conditions in the absence and presence of pertussis toxin; (ii) the binding of [ 3 H]batrachotoxin to Na + channel(s) in the presence of the muscarinic agonists; and (iii) muscarinically induced 22 Na + uptake in the presence and absence of tetrodotoxin, which blocks Na + channels. The findings indicate that agonist binding to muscarinic receptors is voltage dependent, that this process is mediated by G-protein(s), and that muscarinic agonists induce opening of Na + channels. The latter process persists even after pertussis toxin treatment, indicating that it is not likely to be mediated by pertussis toxin sensitive G-protein(s). The system with its three interacting components-receptor, G-protein, and Na + channel-is such that at resting potential the muscarinic receptor induces opening of Na + channels; this property may provide a possible physiological mechanism for the depolarization stimulus necessary for autoexcitation or repetitive firing in heart or brain tissues

  19. Identification and characterization of microRNAs and endogenous siRNAs in Schistosoma japonicum

    Directory of Open Access Journals (Sweden)

    Wang Heng

    2010-01-01

    Full Text Available Abstract Background Small endogenous non-coding RNAs (sncRNAs such as small interfering RNA (siRNA, microRNA and other small RNA transcripts are derived from distinct loci in the genome and play critical roles in RNA-mediated gene silencing mechanisms in plants and metazoa. They are approximately 22 nucleotides long; regulate mRNA stability through perfect or imperfect match to the targets. The biological activities of sncRNAs have been related to many biological events, from resistance to microbe infections to cellular differentiation. The development of the zoonotic parasite Schistosoma japonicum parasite includes multiple steps of morphological alterations and biological differentiations, which provide a unique model for studies on the functions of small RNAs. Characterization of the genome-wide transcription of the sncRNAs will be a major step in understanding of the parasite biology. The objective of this study is to investigate the transcriptional profile and potential function of the small non-coding RNAs in the development of S. japanicum. Results The endogenous siRNAs were found mainly derived from transposable elements (TE or transposons and the natural antisense transcripts (NAT. In contrast to other organisms, the TE-derived siRNAs in S. japonicum were more predominant than other sncRNAs including microRNAs (miRNAs. Further, there were distinct length and 3'end variations in the sncRNAs, which were associated with the developmental differentiation of the parasite. Among the identified miRNA transcripts, there were 38 unique to S. japonicum and 16 that belonged to 13 miRNA families are common to other metazoan lineages. These miRNAs were either ubiquitously expressed, or they exhibited specific expression patterns related to the developmental stages or sex. Genes that encoded miRNAs are mainly located in clusters within the genome of S. japonicum. However, genes within one cluster could be differentially transcribed, which suggested

  20. Diagnóstico y clasificación molecular del virus BK en receptores de trasplante renal

    OpenAIRE

    Riva, Omar; Cobos, Marisa; Raimondi, J. Clemente

    2010-01-01

    La infección primaria por virus BK ocurre durante la infancia permaneciendo latente en el tracto urogenital. En individuos que presentan alteraciones en la inmunidad celular, el virus se reactiva haciendo posible su detección en orina y sangre. En receptores de trasplante renal, la nefropatía producida por el virus BK puede llevar a la pérdida de la función del injerto. El virus BK es miembro de la familia Polyomaviridae, presenta un genoma de ADN circular doble cadena unido en forma covalent...

  1. Cancer-targeting siRNA delivery from porous silicon nanoparticles.

    Science.gov (United States)

    Wan, Yuan; Apostolou, Sinoula; Dronov, Roman; Kuss, Bryone; Voelcker, Nicolas H

    2014-10-01

    Porous silicon nanoparticles (pSiNPs) with tunable pore size are biocompatible and biodegradable, suggesting that they are suitable biomaterials as vehicles for drug delivery. Loading of small interfering RNA (siRNA) into the pores of pSiNPs can protect siRNA from degradation as well as improve the cellular uptake. We aimed to deliver MRP1 siRNA loaded into pSiNPs to glioblastoma cells, and to demonstrate downregulation of MRP1 at the mRNA and protein levels. 50-220 nm pSiNPs with an average pore size of 26 nm were prepared, followed by electrostatic adsorption of siRNA into pores. Oligonucleotide loading and release profiles were investigated; MRP1 mRNA and protein expression, cell viability and cell apoptosis were studied. Approximately 7.7 µg of siRNA was loaded per mg of pSiNPs. Cells readily took up nanoparticles after 30 min incubation. siRNA-loaded pSiNPs were able to effectively downregulate target mRNA (~40%) and protein expression (31%), and induced cell apoptosis and necrosis (33%). siRNA loaded pSiNPs downregulated mRNA and protein expression and induced cell death. This novel siRNA delivery system may pave the way towards developing more effective tumor therapies.

  2. Tandem-pore K+ channels mediate inhibition of orexin neurons by glucose

    DEFF Research Database (Denmark)

    Burdakov, Denis; Jensen, Lise T; Alexopoulos, Haris

    2006-01-01

    Glucose-inhibited neurons orchestrate behavior and metabolism according to body energy levels, but how glucose inhibits these cells is unknown. We studied glucose inhibition of orexin/hypocretin neurons, which promote wakefulness (their loss causes narcolepsy) and also regulate metabolism...... and reward. Here we demonstrate that their inhibition by glucose is mediated by ion channels not previously implicated in central or peripheral glucose sensing: tandem-pore K(+) (K(2P)) channels. Importantly, we show that this electrical mechanism is sufficiently sensitive to encode variations in glucose...... levels reflecting those occurring physiologically between normal meals. Moreover, we provide evidence that glucose acts at an extracellular site on orexin neurons, and this information is transmitted to the channels by an intracellular intermediary that is not ATP, Ca(2+), or glucose itself...

  3. Pore forming polyalkylpyridinium salts from marine sponges versus synthetic lipofection systems: distinct tools for intracellular delivery of cDNA and siRNA.

    Science.gov (United States)

    McLaggan, Debra; Adjimatera, Noppadon; Sepcić, Kristina; Jaspars, Marcel; MacEwan, David J; Blagbrough, Ian S; Scott, Roderick H

    2006-01-16

    Haplosclerid marine sponges produce pore forming polyalkylpyridinium salts (poly-APS), which can be used to deliver macromolecules into cells. The aim of this study was to investigate the delivery of DNA, siRNA and lucifer yellow into cells mediated by poly-APS and its potential mechanisms as compared with other lipofection systems (lipofectamine and N4,N9-dioleoylspermine (LipoGen)). DNA condensation was evaluated and HEK 293 and HtTA HeLa cells were used to investigate pore formation and intracellular delivery of cDNA, siRNA and lucifer yellow. Poly-APS and LipoGen were both found to be highly efficient DNA condensing agents. Fura-2 calcium imaging was used to measure calcium transients indicative of cell membrane pore forming activity. Calcium transients were evoked by poly-APS but not LipoGen and lipofectamine. The increases in intracellular calcium produced by poly-APS showed temperature sensitivity with greater responses being observed at 12 degrees C compared to 21 degrees C. Similarly, delivery of lucifer yellow into cells with poly-APS was enhanced at lower temperatures. Transfection with cDNA encoding for the expression enhanced green fluorescent protein was also evaluated at 12 degrees C with poly-APS, lipofectamine and LipoGen. Intracellular delivery of siRNA was achieved with knockdown in beta-actin expression when lipofectamine and LipoGen were used as transfection reagents. However, intracellular delivery of siRNA was not achieved with poly-APS. Poly-APS mediated pore formation is critical to its activity as a transfection reagent, but lipofection systems utilise distinct mechanisms to enable delivery of DNA and siRNA into cells.

  4. Pore forming polyalkylpyridinium salts from marine sponges versus synthetic lipofection systems: distinct tools for intracellular delivery of cDNA and siRNA

    Directory of Open Access Journals (Sweden)

    Blagbrough Ian S

    2006-01-01

    Full Text Available Abstract Background Haplosclerid marine sponges produce pore forming polyalkylpyridinium salts (poly-APS, which can be used to deliver macromolecules into cells. The aim of this study was to investigate the delivery of DNA, siRNA and lucifer yellow into cells mediated by poly-APS and its potential mechanisms as compared with other lipofection systems (lipofectamine and N4,N9-dioleoylspermine (LipoGen. DNA condensation was evaluated and HEK 293 and HtTA HeLa cells were used to investigate pore formation and intracellular delivery of cDNA, siRNA and lucifer yellow. Results Poly-APS and LipoGen were both found to be highly efficient DNA condensing agents. Fura-2 calcium imaging was used to measure calcium transients indicative of cell membrane pore forming activity. Calcium transients were evoked by poly-APS but not LipoGen and lipofectamine. The increases in intracellular calcium produced by poly-APS showed temperature sensitivity with greater responses being observed at 12°C compared to 21°C. Similarly, delivery of lucifer yellow into cells with poly-APS was enhanced at lower temperatures. Transfection with cDNA encoding for the expression enhanced green fluorescent protein was also evaluated at 12°C with poly-APS, lipofectamine and LipoGen. Intracellular delivery of siRNA was achieved with knockdown in beta-actin expression when lipofectamine and LipoGen were used as transfection reagents. However, intracellular delivery of siRNA was not achieved with poly-APS. Conclusion Poly-APS mediated pore formation is critical to its activity as a transfection reagent, but lipofection systems utilise distinct mechanisms to enable delivery of DNA and siRNA into cells.

  5. Experimental and numerical modelling of turbulent flow over an inclined backward-facing step in an open channel

    Czech Academy of Sciences Publication Activity Database

    Příhoda, Jaromír; Zubík, P.; Šulc, J.; Sedlář, M.

    2012-01-01

    Roč. 14, 4a (2012), s. 6-12 ISSN 1335-4205 R&D Projects: GA ČR GA103/09/0977 Institutional support: RVO:61388998 Keywords : open channel flow * inclined backward-facing step Subject RIV: BK - Fluid Dynamics

  6. Efficient uptake of blood-borne BK and JC polyomavirus-like particles in endothelial cells of liver sinusoids and renal vasa recta.

    Directory of Open Access Journals (Sweden)

    Jaione Simon-Santamaria

    Full Text Available Liver sinusoidal endothelial cells (LSECs are specialized scavenger cells that mediate high-capacity clearance of soluble waste macromolecules and colloid material, including blood-borne adenovirus. To explore if LSECs function as a sink for other viruses in blood, we studied the fate of virus-like particles (VLPs of two ubiquitous human DNA viruses, BK and JC polyomavirus, in mice. Like complete virions, VLPs specifically bind to receptors and enter cells, but unlike complete virions, they cannot replicate. 125I-labeled VLPs were used to assess blood decay, organ-, and hepatocellular distribution of ligand, and non-labeled VLPs to examine cellular uptake by immunohisto- and -cytochemistry. BK- and JC-VLPs rapidly distributed to liver, with lesser uptake in kidney and spleen. Liver uptake was predominantly in LSECs. Blood half-life (∼1 min, and tissue distribution of JC-VLPs and two JC-VLP-mutants (L55F and S269F that lack sialic acid binding affinity, were similar, indicating involvement of non-sialic acid receptors in cellular uptake. Liver uptake was not mediated by scavenger receptors. In spleen, the VLPs localized to the red pulp marginal zone reticuloendothelium, and in kidney to the endothelial lining of vasa recta segments, and the transitional epithelium of renal pelvis. Most VLP-positive vessels in renal medulla did not express PV-1/Meca 32, suggesting location to the non-fenestrated part of vasa recta. The endothelial cells of these vessels also efficiently endocytosed a scavenger receptor ligand, formaldehyde-denatured albumin, suggesting high endocytic activity compared to other renal endothelia. We conclude that LSECs very effectively cleared a large fraction of blood-borne BK- and JC-VLPs, indicating a central role of these cells in early removal of polyomavirus from the circulation. In addition, we report the novel finding that a subpopulation of endothelial cells in kidney, the main organ of polyomavirus persistence, showed

  7. Characterization of self-assembled virus-like particles of human polyomavirus BK generated by recombinant baculoviruses

    International Nuclear Information System (INIS)

    Li, T.-C.; Takeda, Naokazu; Kato, Kenzo; Nilsson, Josefina; Xing Li; Haag, Lars; Cheng, R. Holland; Miyamura, Tatsuo

    2003-01-01

    The major structural protein of the human polyomavirus BK (BKV), VP1, was expressed by using recombinant baculoviruses. A large amount of protein with a molecular mass of about 42 kDa was synthesized and identified by Western blotting. The protein was detected exclusively in the nuclei by immunofluorescent analysis and it was released into culture medium. The expressed BKV VP1 protein was self-assembled into virus-like particles (BK-VLPs) with two different sizes (50 and 26 nm in diameter), which migrated into four different bands in CsCl gradient with buoyant densities of 1.29, 1.30, 1.33, and 1.35 g/cm 3 . The immunological studies on the BK-VLPs suggested that they have similar antigenicity with those of authentic BKV particles. Cryoelectron microscopy and 3D image analysis further revealed that the larger BK-VLPs were composed of 72 capsomers which all were pentamers arranged in a T = 7 surface lattice. This system provides useful information for detailed studies of viral morphogenesis and the structural basis for the antigenicity of BKV

  8. New insights into siRNA amplification and RNAi.

    Science.gov (United States)

    Zhang, Chi; Ruvkun, Gary

    2012-08-01

    In the nematode Caenorhabditis elegans (C. elegans), gene inactivation by RNA interference can achieve remarkable potency due to the amplification of initial silencing triggers by RNA-dependent RNA polymerases (RdRPs). RdRPs catalyze the biogenesis of an abundant species of secondary small interfering RNAs (siRNAs) using the target mRNA as template. The interaction between primary siRNAs derived from the exogenous double-stranded RNA (dsRNA) trigger and the target mRNA is required for the recruitment of RdRPs. Other genetic requirements for RdRP activities have not been characterized. Recent studies have identified the RDE-10/RDE-11 complex which interacts with the primary siRNA bound target mRNA and acts upstream of the RdRPs. rde-10 and rde-11 mutants show an RNAi defective phenotype because the biogenesis of secondary siRNAs is completely abolished. In addition, the RDE-10/RDE-11 complex plays a similar role in the endogenous RNAi pathway for the biogenesis of a subset of siRNAs targeting recently acquired, duplicated genes.

  9. Activation of human IK and SK Ca2+ -activated K+ channels by NS309 (6,7-dichloro-1H-indole-2,3-dione 3-oxime)

    DEFF Research Database (Denmark)

    Strøbaek, Dorte; Teuber, Lene; Jørgensen, Tino D

    2004-01-01

    We have identified and characterized the compound NS309 (6,7-dichloro-1H-indole-2,3-dione 3-oxime) as a potent activator of human Ca2+ -activated K+ channels of SK and IK types, whereas it is devoid of effect on BK type channels. IK- and SK-channels have previously been reported to be activated...

  10. HIV-1 resistance conferred by siRNA cosuppression of CXCR4 and CCR5 coreceptors by a bispecific lentiviral vector

    Directory of Open Access Journals (Sweden)

    Akkina Ramesh

    2005-01-01

    Full Text Available Abstract Background RNA interference (RNAi mediated by small interfering RNAs (siRNAs has proved to be a highly effective gene silencing mechanism with great potential for HIV/AIDS gene therapy. Previous work with siRNAs against cellular coreceptors CXCR4 and CCR5 had shown that down regulation of these surface molecules could prevent HIV-1 entry and confer viral resistance. Since monospecific siRNAs targeting individual coreceptors are inadequate in protecting against both T cell tropic (X4 and monocyte tropic (R5 viral strains simultaneously, bispecific constructs with dual specificity are required. For effective long range therapy, the bispecific constructs need to be stably transduced into HIV-1 target cells via integrating viral vectors. Results To achieve this goal, lentiviral vectors incorporating both CXCR4 and CCR5 siRNAs of short hairpin design were constructed. The CXCR4 siRNA was driven by a U6 promoter whereas the CCR5 siRNA was driven by an H1 promoter. A CMV promoter driven EGFP reporter gene is also incorporated in the bispecific construct. High efficiency transduction into coreceptor expressing Magi and Ghost cell lines with a concomitant down regulation of respective coreceptors was achieved with lentiviral vectors. When the siRNA expressing transduced cells were challenged with X4 and R5 tropic HIV-1, they demonstrated marked viral resistance. HIV-1 resistance was also observed in bispecific lentiviral vector transduced primary PBMCs. Conclusions Both CXCR4 and CCR5 coreceptors could be simultaneously targeted for down regulation by a single combinatorial lentiviral vector incorporating respective anti-coreceptor siRNAs. Stable down regulation of both the coreceptors protects cells against infection by both X4 and R5 tropic HIV-1. Stable down regulation of cellular molecules that aid in HIV-1 infection will be an effective strategy for long range HIV gene therapy.

  11. Repression of multiple CYP2D genes in mouse primary hepatocytes with a single siRNA construct.

    Science.gov (United States)

    Elraghy, Omaima; Baldwin, William S

    2015-01-01

    The Cyp2d subfamily is the second most abun-dant subfamily of hepatic drug-metabolizing CYPs. In mice, there are nine Cyp2d members that are believed to have redundant catalytic activity. We are testing and optimizing the ability of one short interfering RNA (siRNA) construct to knockdown the expression of multiple mouse Cyp2ds in primary hepatocytes. Expression of Cyp2d10, Cyp2d11, Cyp2d22, and Cyp2d26 was observed in the primary male mouse hepatocytes. Cyp2d9, which is male-specific and growth hormone-dependent, was not expressed in male primary hepatocytes, potentially because of its dependence on pulsatile growth hormone release from the anterior pituitary. Several different siRNAs at different concentrations and with different reagents were used to knockdown Cyp2d expression. siRNA constructs designed to repress only one construct often mildly repressed several Cyp2d isoforms. A construct designed to knockdown every Cyp2d isoform provided the best results, especially when incubated with transfection reagents designed specifically for primary cell culture. Interestingly, a construct designed to knockdown all Cyp2d isoforms, except Cyp2d10, caused a 2.5× increase in Cyp2d10 expression, presumably because of a compensatory response. However, while RNA expression is repressed 24 h after siRNA treatment, associated changes in Cyp2d-mediated metabolism are tenuous. Overall, this study provides data on the expression of murine Cyp2ds in primary cell lines, valuable information on designing siRNAs for silencing multiple murine CYPs, and potential pros and cons of using siRNA as a tool for repressing Cyp2d and estimating Cyp2d's role in murine xenobiotic metabolism.

  12. Two-channel recoder for magnetometer with energy-independent mass memory device

    International Nuclear Information System (INIS)

    Korzinin, V.N.; Selivanov, A.M.

    1993-01-01

    The paper describes a two-channel digit-to-analog recorder designed for converting the sequence of pulses from proton magnetometer (MMH-203) outlet; the device enables processing of the pulses and their recording in RAM and on the tape of the analog recorder. The availability of nonvolotile RAM allows to transmit digit information to a computer (BK-0010) for its further processing

  13. Amelioration of cirrhotic portal hypertension by targeted cyclooxygenase-1 siRNA delivery to liver sinusoidal endothelium with polyethylenimine grafted hyaluronic acid.

    Science.gov (United States)

    Lin, Liteng; Cai, Mingyue; Deng, Shaohui; Huang, Wensou; Huang, Jingjun; Huang, Xinghua; Huang, Mingsheng; Wang, Yong; Shuai, Xintao; Zhu, Kangshun

    2017-10-01

    Portal hypertension (PH), a leading cause of mortality in cirrhosis, lacks effective clinical therapeutic strategies. The increased thromboxane A 2 (TXA 2 ), derived primarily from the upregulation of cyclooxygenase-1 (COX-1) in cirrhotic liver sinusoidal endothelial cells (LSECs), is responsible for hepatic endothelial dysfunction and PH. Thus, blocking the COX-1 pathway in cirrhotic LSECs may benefit the treatment of PH. In this study, hyaluronate-graft-polyethylenimine (HA-PEI) was synthesized for the targeted delivery of COX-1 siRNA to LSECs. Compared to non-targeted PEI, HA-PEI mediated much more efficient siRNA delivery, which resulted in potent targeted gene silencing in LSECs. In vivo, HA-PEI notably increased the accumulation of siRNA along the sinusoidal lining of the liver, inhibited over-activation of the COX-1/TXA 2 pathway in LSECs, and successfully reduced portal pressure in cirrhotic mice. These results highlight the potential of HA-PEI complexed siRNA to serve as a LSECs-specific nanomedical system for effective gene therapy in PH. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Effect of temperature on surface error and laser damage threshold for self-healing BK7 glass.

    Science.gov (United States)

    Wang, Chu; Wang, Hongxiang; Shen, Lu; Hou, Jing; Xu, Qiao; Wang, Jian; Chen, Xianhua; Liu, Zhichao

    2018-03-20

    Cracks caused during the lapping and polishing process can decrease the laser-induced damage threshold (LIDT) of the BK7 glass optical elements, which would shorten the lifetime and limit the output power of the high-energy laser system. When BK7 glass is heated under appropriate conditions, the surface cracks can exhibit a self-healing phenomenon. In this paper, based on thermodynamics and viscous fluid mechanics theory, the mechanisms of crack self-healing are explained. The heat-healing experiment was carried out, and the effect of water was analyzed. The multi-spatial-frequency analysis was used to investigate the effect of temperature on surface error for self-healing BK7 glass, and the lapped BK7 glass specimens before and after heat healing were detected by an interferometer and atomic force microscopy. The low-spatial-frequency error was analyzed by peak to valley and root mean square, the mid-spatial-frequency error was analyzed by power spectral density, and the high-spatial-frequency error was analyzed by surface roughness. The results showed that the optimal heating temperature for BK7 was 450°C, and when the heating temperature was higher than the glass transition temperature (555°C), the surface quality decreased a lot. The laser damage test was performed, and the specimen heated at 450°C showed an improvement in LIDT.

  15. Viral RNAi suppressor reversibly binds siRNA to outcompete Dicer and RISC via multiple turnover.

    Science.gov (United States)

    Rawlings, Renata A; Krishnan, Vishalakshi; Walter, Nils G

    2011-04-29

    RNA interference is a conserved gene regulatory mechanism employed by most eukaryotes as a key component of their innate immune response to viruses and retrotransposons. During viral infection, the RNase-III-type endonuclease Dicer cleaves viral double-stranded RNA into small interfering RNAs (siRNAs) 21-24 nucleotides in length and helps load them into the RNA-induced silencing complex (RISC) to guide the cleavage of complementary viral RNA. As a countermeasure, many viruses have evolved viral RNA silencing suppressors (RSS) that tightly, and presumably quantitatively, bind siRNAs to thwart RNA-interference-mediated degradation. Viral RSS proteins also act across kingdoms as potential immunosuppressors in gene therapeutic applications. Here we report fluorescence quenching and electrophoretic mobility shift assays that probe siRNA binding by the dimeric RSS p19 from Carnation Italian Ringspot Virus, as well as by human Dicer and RISC assembly complexes. We find that the siRNA:p19 interaction is readily reversible, characterized by rapid binding [(1.69 ± 0.07) × 10(8) M(-)(1) s(-1)] and marked dissociation (k(off)=0.062 ± 0.002 s(-1)). We also observe that p19 efficiently competes with recombinant Dicer and inhibits the formation of RISC-related assembly complexes found in human cell extract. Computational modeling based on these results provides evidence for the transient formation of a ternary complex between siRNA, human Dicer, and p19. An expanded model of RNA silencing indicates that multiple turnover by reversible binding of siRNAs potentiates the efficiency of the suppressor protein. Our predictive model is expected to be applicable to the dosing of p19 as a silencing suppressor in viral gene therapy. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Viral RNAi suppressor reversibly binds siRNA to outcompete Dicer and RISC via multiple-turnover

    Science.gov (United States)

    Rawlings, Renata A.; Krishnan, Vishalakshi; Walter, Nils G.

    2011-01-01

    RNA interference (RNAi) is a conserved gene regulatory mechanism employed by most eukaryotes as a key component of their innate immune response against viruses and retrotransposons. During viral infection, the RNase III-type endonuclease Dicer cleaves viral double-stranded RNA into small interfering RNAs (siRNAs), 21–24 nucleotides in length, and helps load them into the RNA-induced silencing complex (RISC) to guide cleavage of complementary viral RNA. As a countermeasure, many viruses have evolved viral RNA silencing suppressor (RSS) proteins that tightly, and presumably quantitatively, bind siRNAs to thwart RNAi-mediated degradation. Viral RSS proteins also act across kingdoms as potential immunosuppressors in gene therapeutic applications. Here we report fluorescence quenching and electrophoretic mobility shift assays that probe siRNA binding by the dimeric RSS p19 from Carnation Italian Ringspot Virus (CIRV), as well as by human Dicer and RISC assembly complexes. We find that the siRNA:p19 interaction is readily reversible, characterized by rapid binding ((1.69 ± 0.07)×108 M−1s−1) and marked dissociation (koff = 0.062 ± 0.002 s−1). We also observe that p19 efficiently competes with recombinant Dicer and inhibits formation of RISC-related assembly complexes found in human cell extract. Computational modeling based on these results provides evidence for the transient formation of a ternary complex between siRNA, human Dicer, and p19. An expanded model of RNA silencing indicates that multiple-turnover by reversible binding of siRNAs potentiates the efficiency of the suppressor protein. Our predictive model is expected to be applicable to the dosing of p19 as a silencing suppressor in viral gene therapy. PMID:21354178

  17. Universal features of JIMWLK and BK evolution at small x

    CERN Document Server

    Rummukainen, K; Rummukainen, Kari; Weigert, Heribert

    2004-01-01

    In this paper we present the results of numerical studies of the JIMWLK and BK equations with a particular emphasis on the universal scaling properties and phase space structure involved. The results are valid for near zero impact parameter in DIS. We demonstrate IR safety due to the occurrence of a rapidity dependent saturation scale Q_s(\\tau). Within the set of initial conditions chosen both JIMWLK and BK equations show remarkable agreement. We point out the crucial importance of running coupling corrections to obtain consistency in the UV. Despite the scale breaking induced by the running coupling we find that evolution drives correlators towards an asymptotic form with near scaling properties. We discuss asymptotic features of the evolution, such as the \\tau- and A-dependence of Q_s away from the initial condition.

  18. Analýza marketingové komunikace sportovního klubu BK Lokomotiva Karlovy Vary

    OpenAIRE

    Houdková, Jana

    2012-01-01

    ANALYSIS OF MARKETING COMMUNICATIONS BK LOKOMOTIVA KARLOVY VARY SPORTS CLUB Objectives: The aim of this work is to analyze the current state of marketing communication with the audience and sponsors for women's basketball club BK Lokomotiva Karlovy Vary and propose a strategy for improving marketing communications. Methods: In this thesis were performed using the methods of observation and personal interviews examined subjects Results: An analysis of marketing communication club, thanks to wh...

  19. Hydronephrosis Resulting from Bilateral Ureteral Stenosis: A Late Complication of Polyoma BK Virus Cystitis?

    OpenAIRE

    Basara, N.; Rasche, F.-M.; Schwalenberg, T.; Wickenhauser, C.; Maier, M.; Ivovic, J.; Niederwieser, D.; Lindner, T. H.

    2010-01-01

    We report here a case of acute lymphoblastic leukemia in remission presenting a late-onset bilateral hydronephrosis probably due to polyoma BK virus-induced proliferation of bladder endothelium on both ostii. The diagnosis was made virologically by BK virus Polymerase Chain Reaction (PCR) detection in the absence of any other bladder disease. Awareness of this late complication is necessary not only in patients after renal transplantation but also in patients after hematopoietic stem cell tra...

  20. A genome-wide siRNA screen to identify modulators of insulin sensitivity and gluconeogenesis.

    Directory of Open Access Journals (Sweden)

    Ruojing Yang

    Full Text Available BACKGROUND: Hepatic insulin resistance impairs insulin's ability to suppress hepatic glucose production (HGP and contributes to the development of type 2 diabetes (T2D. Although the interests to discover novel genes that modulate insulin sensitivity and HGP are high, it remains challenging to have a human cell based system to identify novel genes. METHODOLOGY/PRINCIPAL FINDINGS: To identify genes that modulate hepatic insulin signaling and HGP, we generated a human cell line stably expressing beta-lactamase under the control of the human glucose-6-phosphatase (G6PC promoter (AH-G6PC cells. Both beta-lactamase activity and endogenous G6PC mRNA were increased in AH-G6PC cells by a combination of dexamethasone and pCPT-cAMP, and reduced by insulin. A 4-gene High-Throughput-Genomics assay was developed to concomitantly measure G6PC and pyruvate-dehydrogenase-kinase-4 (PDK4 mRNA levels. Using this assay, we screened an siRNA library containing pooled siRNA targeting 6650 druggable genes and identified 614 hits that lowered G6PC expression without increasing PDK4 mRNA levels. Pathway analysis indicated that siRNA-mediated knockdown (KD of genes known to positively or negatively affect insulin signaling increased or decreased G6PC mRNA expression, respectively, thus validating our screening platform. A subset of 270 primary screen hits was selected and 149 hits were confirmed by target gene KD by pooled siRNA and 7 single siRNA for each gene to reduce G6PC expression in 4-gene HTG assay. Subsequently, pooled siRNA KD of 113 genes decreased PEPCK and/or PGC1alpha mRNA expression thereby demonstrating their role in regulating key gluconeogenic genes in addition to G6PC. Last, KD of 61 of the above 113 genes potentiated insulin-stimulated Akt phosphorylation, suggesting that they suppress gluconeogenic gene by enhancing insulin signaling. CONCLUSIONS/SIGNIFICANCE: These results support the proposition that the proteins encoded by the genes identified in

  1. A ribonuclease coordinates siRNA amplification and mRNA cleavage during RNAi.

    Science.gov (United States)

    Tsai, Hsin-Yue; Chen, Chun-Chieh G; Conte, Darryl; Moresco, James J; Chaves, Daniel A; Mitani, Shohei; Yates, John R; Tsai, Ming-Daw; Mello, Craig C

    2015-01-29

    Effective silencing by RNA-interference (RNAi) depends on mechanisms that amplify and propagate the silencing signal. In some organisms, small-interfering RNAs (siRNAs) are amplified from target mRNAs by RNA-dependent RNA polymerase (RdRP). Both RdRP recruitment and mRNA silencing require Argonaute proteins, which are generally thought to degrade RNAi targets by directly cleaving them. However, in C. elegans, the enzymatic activity of the primary Argonaute, RDE-1, is not required for silencing activity. We show that RDE-1 can instead recruit an endoribonuclease, RDE-8, to target RNA. RDE-8 can cleave RNA in vitro and is needed for the production of 3' uridylated fragments of target mRNA in vivo. We also find that RDE-8 promotes RdRP activity, thereby ensuring amplification of siRNAs. Together, our findings suggest a model in which RDE-8 cleaves target mRNAs to mediate silencing, while generating 3' uridylated mRNA fragments to serve as templates for the RdRP-directed amplification of the silencing signal. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. BK/TD models for analyzing in vitro impedance data on cytotoxicity.

    Science.gov (United States)

    Teng, S; Barcellini-Couget, S; Beaudouin, R; Brochot, C; Desousa, G; Rahmani, R; Pery, A R R

    2015-06-01

    The ban of animal testing has enhanced the development of new in vitro technologies for cosmetics safety assessment. Impedance metrics is one such technology which enables monitoring of cell viability in real time. However, analyzing real time data requires moving from static to dynamic toxicity assessment. In the present study, we built mechanistic biokinetic/toxicodynamic (BK/TD) models to analyze the time course of cell viability in cytotoxicity assay using impedance. These models account for the fate of the tested compounds during the assay. BK/TD models were applied to analyze HepaRG cell viability, after single (48 h) and repeated (4 weeks) exposures to three hepatotoxic compounds (coumarin, isoeugenol and benzophenone-2). The BK/TD models properly fit the data used for their calibration that was obtained for single or repeated exposure. Only for one out of the three compounds, the models calibrated with a single exposure were able to predict repeated exposure data. We therefore recommend the use of long-term exposure in vitro data in order to adequately account for chronic hepatotoxic effects. The models we propose here are capable of being coupled with human biokinetic models in order to relate dose exposure and human hepatotoxicity. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  3. The oncogenic potential of BK-polyomavirus is linked to viral integration into the human genome.

    Science.gov (United States)

    Kenan, Daniel J; Mieczkowski, Piotr A; Burger-Calderon, Raquel; Singh, Harsharan K; Nickeleit, Volker

    2015-11-01

    It has been suggested that BK-polyomavirus is linked to oncogenesis via high expression levels of large T-antigen in some urothelial neoplasms arising following kidney transplantation. However, a causal association between BK-polyomavirus, large T-antigen expression and oncogenesis has never been demonstrated in humans. Here we describe an investigation using high-throughput sequencing of tumour DNA obtained from an urothelial carcinoma arising in a renal allograft. We show that a novel BK-polyomavirus strain, named CH-1, is integrated into exon 26 of the myosin-binding protein C1 gene (MYBPC1) on chromosome 12 in tumour cells but not in normal renal cells. Integration of the BK-polyomavirus results in a number of discrete alterations in viral gene expression, including: (a) disruption of VP1 protein expression and robust expression of large T-antigen; (b) preclusion of viral replication; and (c) deletions in the non-coding control region (NCCR), with presumed alterations in promoter feedback loops. Viral integration disrupts one MYBPC1 gene copy and likely alters its expression. Circular episomal BK-polyomavirus gene sequences are not found, and the renal allograft shows no productive polyomavirus infection or polyomavirus nephropathy. These findings support the hypothesis that integration of polyomaviruses is essential to tumourigenesis. It is likely that dysregulation of large T-antigen, with persistent over-expression in non-lytic cells, promotes cell growth, genetic instability and neoplastic transformation. © 2015 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.

  4. Computer modeling of siRNA knockdown effects indicates an essential role of the Ca2+ channel alpha2delta-1 subunit in cardiac excitation-contraction coupling.

    Science.gov (United States)

    Tuluc, Petronel; Kern, Georg; Obermair, Gerald J; Flucher, Bernhard E

    2007-06-26

    L-type Ca(2+) currents determine the shape of cardiac action potentials (AP) and the magnitude of the myoplasmic Ca(2+) signal, which regulates the contraction force. The auxiliary Ca(2+) channel subunits alpha(2)delta-1 and beta(2) are important regulators of membrane expression and current properties of the cardiac Ca(2+) channel (Ca(V)1.2). However, their role in cardiac excitation-contraction coupling is still elusive. Here we addressed this question by combining siRNA knockdown of the alpha(2)delta-1 subunit in a muscle expression system with simulation of APs and Ca(2+) transients by using a quantitative computer model of ventricular myocytes. Reconstitution of dysgenic muscle cells with Ca(V)1.2 (GFP-alpha(1C)) recapitulates key properties of cardiac excitation-contraction coupling. Concomitant depletion of the alpha(2)delta-1 subunit did not perturb membrane expression or targeting of the pore-forming GFP-alpha(1C) subunit into junctions between the outer membrane and the sarcoplasmic reticulum. However, alpha(2)delta-1 depletion shifted the voltage dependence of Ca(2+) current activation by 9 mV to more positive potentials, and it slowed down activation and inactivation kinetics approximately 2-fold. Computer modeling revealed that the altered voltage dependence and current kinetics exert opposing effects on the function of ventricular myocytes that in total cause a 60% prolongation of the AP and a 2-fold increase of the myoplasmic Ca(2+) concentration during each contraction. Thus, the Ca(2+) channel alpha(2)delta-1 subunit is not essential for normal Ca(2+) channel targeting in muscle but is a key determinant of normal excitation and contraction of cardiac muscle cells, and a reduction of alpha(2)delta-1 function is predicted to severely perturb normal heart function.

  5. A Precise determination of B(K) in quenched QCD

    CERN Document Server

    Dimopoulos, P.; Palombi, F.; Pena, C.; Sint, S.; Vladikas, A.

    2006-01-01

    The $B_K$ parameter is computed in quenched lattice QCD with Wilson twisted mass fermions. Two variants of tmQCD are used; in both of them the relevant $\\Delta S = 2$ four-fermion operator is renormalised multiplicatively. The renormalisation adopted is non-perturbative, with a Schroedinger functional renormalisation condition. Renormalisation group running is also non-perturbative, up to very high energy scales. In one of the two tmQCD frameworks the computations have been performed at the physical $K$-meson mass, thus eliminating the need of mass extrapolations. Simulations have been performed at several lattice spacings and the continuum limit was reached by combining results from both tmQCD regularisations. Finite volume effects have been partially checked and turned out to be small. Exploratory studies have also been performed with non-degenerate valence flavours. The final result for the RGI bag parameter, with all sources of uncertainty (except quenching) under control, is $\\hat B_K =0.789 \\pm 0.046$.

  6. Hydronephrosis Resulting from Bilateral Ureteral Stenosis: A Late Complication of Polyoma BK Virus Cystitis?

    Science.gov (United States)

    Basara, N; Rasche, F-M; Schwalenberg, T; Wickenhauser, C; Maier, M; Ivovic, J; Niederwieser, D; Lindner, T H

    2010-01-01

    We report here a case of acute lymphoblastic leukemia in remission presenting a late-onset bilateral hydronephrosis probably due to polyoma BK virus-induced proliferation of bladder endothelium on both ostii. The diagnosis was made virologically by BK virus Polymerase Chain Reaction (PCR) detection in the absence of any other bladder disease. Awareness of this late complication is necessary not only in patients after renal transplantation but also in patients after hematopoietic stem cell transplantation from matched unrelated donor.

  7. Acrolein-mediated conduction loss is partially restored by K+ channel blockers

    Science.gov (United States)

    Yan, Rui; Page, Jessica C.

    2015-01-01

    Acrolein-mediated myelin damage is thought to be a critical mechanism leading to conduction failure following neurotrauma and neurodegenerative diseases. The exposure and activation of juxtaparanodal voltage-gated K+ channels due to myelin damage leads to conduction block, and K+ channel blockers have long been studied as a means for restoring axonal conduction in spinal cord injury (SCI) and multiple sclerosis (MS). In this study, we have found that 100 μM K+ channel blockers 4-aminopyridine-3-methanol (4-AP-3-MeOH), and to a lesser degree 4-aminopyridine (4-AP), can significantly restore compound action potential (CAP) conduction in spinal cord tissue following acrolein-mediated myelin damage using a well-established ex vivo SCI model. In addition, 4-AP-3-MeOH can effectively restore CAP conduction in acrolein-damaged axons with a range of concentrations from 0.1 to 100 μM. We have also shown that while both compounds at 100 μM showed no preference of small- and large-caliber axons when restoring CAP conduction, 4-AP-3-MeOH, unlike 4-AP, is able to augment CAP amplitude while causing little change in axonal responsiveness measured in refractory periods and response to repetitive stimuli. In a prior study, we show that 4-AP-3-MeOH was able to functionally rescue mechanically injured axons. In this investigation, we conclude that 4-AP-3-MeOH is an effective K+ channel blocker in restoring axonal conduction following both primary (physical) and secondary (chemical) insults. These findings also suggest that 4-AP-3-MeOH is a viable alternative of 4-AP for treating myelin damage and improving function following central nervous system trauma and neurodegenerative diseases. PMID:26581866

  8. siRNAmod: A database of experimentally validated chemically modified siRNAs.

    Science.gov (United States)

    Dar, Showkat Ahmad; Thakur, Anamika; Qureshi, Abid; Kumar, Manoj

    2016-01-28

    Small interfering RNA (siRNA) technology has vast potential for functional genomics and development of therapeutics. However, it faces many obstacles predominantly instability of siRNAs due to nuclease digestion and subsequently biologically short half-life. Chemical modifications in siRNAs provide means to overcome these shortcomings and improve their stability and potency. Despite enormous utility bioinformatics resource of these chemically modified siRNAs (cm-siRNAs) is lacking. Therefore, we have developed siRNAmod, a specialized databank for chemically modified siRNAs. Currently, our repository contains a total of 4894 chemically modified-siRNA sequences, comprising 128 unique chemical modifications on different positions with various permutations and combinations. It incorporates important information on siRNA sequence, chemical modification, their number and respective position, structure, simplified molecular input line entry system canonical (SMILES), efficacy of modified siRNA, target gene, cell line, experimental methods, reference etc. It is developed and hosted using Linux Apache MySQL PHP (LAMP) software bundle. Standard user-friendly browse, search facility and analysis tools are also integrated. It would assist in understanding the effect of chemical modifications and further development of stable and efficacious siRNAs for research as well as therapeutics. siRNAmod is freely available at: http://crdd.osdd.net/servers/sirnamod.

  9. Hydronephrosis Resulting from Bilateral Ureteral Stenosis: A Late Complication of Polyoma BK Virus Cystitis?

    Science.gov (United States)

    Basara, N.; Rasche, F.-M.; Schwalenberg, T.; Wickenhauser, C.; Maier, M.; Ivovic, J.; Niederwieser, D.; Lindner, T. H.

    2010-01-01

    We report here a case of acute lymphoblastic leukemia in remission presenting a late-onset bilateral hydronephrosis probably due to polyoma BK virus-induced proliferation of bladder endothelium on both ostii. The diagnosis was made virologically by BK virus Polymerase Chain Reaction (PCR) detection in the absence of any other bladder disease. Awareness of this late complication is necessary not only in patients after renal transplantation but also in patients after hematopoietic stem cell transplantation from matched unrelated donor. PMID:20936157

  10. Hydronephrosis Resulting from Bilateral Ureteral Stenosis: A Late Complication of Polyoma BK Virus Cystitis?

    Directory of Open Access Journals (Sweden)

    N. Basara

    2010-01-01

    Full Text Available We report here a case of acute lymphoblastic leukemia in remission presenting a late-onset bilateral hydronephrosis probably due to polyoma BK virus-induced proliferation of bladder endothelium on both ostii. The diagnosis was made virologically by BK virus Polymerase Chain Reaction (PCR detection in the absence of any other bladder disease. Awareness of this late complication is necessary not only in patients after renal transplantation but also in patients after hematopoietic stem cell transplantation from matched unrelated donor.

  11. Sticky siRNAs targeting survivin and cyclin B1 exert an antitumoral effect on melanoma subcutaneous xenografts and lung metastases

    International Nuclear Information System (INIS)

    Kedinger, Valerie; Erbacher, Patrick; Bolcato-Bellemin, Anne-Laure; Meulle, Aline; Zounib, Omar; Bonnet, Marie-Elise; Gossart, Jean-Baptiste; Benoit, Elodie; Messmer, Melanie; Shankaranarayanan, Pattabhiraman; Behr, Jean-Paul

    2013-01-01

    Melanoma represents one of the most aggressive and therapeutically challenging malignancies as it often gives rise to metastases and develops resistance to classical chemotherapeutic agents. Although diverse therapies have been generated, no major improvement of the patient prognosis has been noticed. One promising alternative to the conventional therapeutic approaches currently available is the inactivation of proteins essential for survival and/or progression of melanomas by means of RNA interference. Survivin and cyclin B1, both involved in cell survival and proliferation and frequently deregulated in human cancers, are good candidate target genes for siRNA mediated therapeutics. We used our newly developed sticky siRNA-based technology delivered with linear polyethyleneimine (PEI) to inhibit the expression of survivin and cyclin B1 both in vitro and in vivo, and addressed the effect of this inhibition on B16-F10 murine melanoma tumor development. We confirm that survivin and cyclin B1 downregulation through a RNA interference mechanism induces a blockage of the cell cycle as well as impaired proliferation of B16-F10 cells in vitro. Most importantly, PEI-mediated systemic delivery of sticky siRNAs against survivin and cyclin B1 efficiently blocks growth of established subcutaneaous B16-F10 tumors as well as formation and dissemination of melanoma lung metastases. In addition, we highlight that inhibition of survivin expression increases the effect of doxorubicin on lung B16-F10 metastasis growth inhibition. PEI-mediated delivery of sticky siRNAs targeting genes involved in tumor progression such as survivin and cyclin B1, either alone or in combination with chemotherapeutic drugs, represents a promising strategy for melanoma treatment

  12. High-throughput screening of effective siRNAs using luciferase-linked chimeric mRNA.

    Directory of Open Access Journals (Sweden)

    Shen Pang

    Full Text Available The use of siRNAs to knock down gene expression can potentially be an approach to treat various diseases. To avoid siRNA toxicity the less transcriptionally active H1 pol III promoter, rather than the U6 promoter, was proposed for siRNA expression. To identify highly efficacious siRNA sequences, extensive screening is required, since current computer programs may not render ideal results. Here, we used CCR5 gene silencing as a model to investigate a rapid and efficient screening approach. We constructed a chimeric luciferase-CCR5 gene for high-throughput screening of siRNA libraries. After screening approximately 900 shRNA clones, 12 siRNA sequences were identified. Sequence analysis demonstrated that most (11 of the 12 sequences of these siRNAs did not match those identified by available siRNA prediction algorithms. Significant inhibition of CCR5 in a T-lymphocyte cell line and primary T cells by these identified siRNAs was confirmed using the siRNA lentiviral vectors to infect these cells. The inhibition of CCR5 expression significantly protected cells from R5 HIV-1JRCSF infection. These results indicated that the high-throughput screening method allows efficient identification of siRNA sequences to inhibit the target genes at low levels of expression.

  13. BK Virus-Associated Nephropathy: Current Situation in a Resource-Limited Country.

    Science.gov (United States)

    Yooprasert, P; Rotjanapan, P

    Data on BK virus-associated nephropathy (BKVAN) and treatment strategy in a resource-limited country are scarce. This study aimed to evaluate epidemiology of BKVAN and its situation in Thailand. A retrospective analysis was conducted among adult kidney transplant recipients at Ramathibodi Hospital from October 2011 to September 2016. Patients' demographic data, information on kidney transplantation, immunosuppressive therapy, cytomegalovirus and BK virus infections, and allograft outcomes were retrieved and analyzed. This study included 623 kidney transplant recipients. Only 327 patients (52.49%) received BK virus infection screening, and 176 of 327 patients had allograft dysfunction as a trigger for screening. BKVAN was identified in 39 of 327 patients (11.93%). Deceased donor transplantation and cytomegalovirus infection were associated with a higher risk of BKVAN (odds ratio = 2.2, P = .024, 95% confidence intervals [1.1, 4.43], and odds ratio = 2.6, P = .006, 95% confidence intervals [1.29, 5.26], respectively). BKVAN patients were at significantly higher risk for allograft rejection (P < .001) and allograft failure (P = .036). At the end of the study, 4 graft losses were documented (12.12%). BKVAN was associated with high rate of allograft rejection and failure. However, surveillance of its complications has been underperformed at our facility. Implementing a formal practice guideline may improve allograft outcome in resource-limited countries. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Decay properties of Bk97243 and Bk97244

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, I.; Kondev, F. G.; Greene, J. P.; Zhu, S.

    2018-01-01

    Electron capture decays of Bk-243 and Bk-244 have been studied by measuring the gamma-ray spectra of mass-separated sources and level structures of Cm-243 and Cm-244 have been deduced. In Cm-243, the electron capture population to the ground state, 1/2(+)[631], and 1/2(+)[620] Nilsson states have been observed. The octupole K-pi = 2(-) band was identified in Cm-244 at 933.6 keV. In addition, spins and parities were deduced for several other states and two-quasiparticle configurations have been tentatively assigned to them

  15. Development of antibody-modified chitosan nanoparticles for the targeted delivery of siRNA across the blood-brain barrier as a strategy for inhibiting HIV replication in astrocytes.

    Science.gov (United States)

    Gu, Jijin; Al-Bayati, Karam; Ho, Emmanuel A

    2017-08-01

    RNA interference (RNAi)-mediated gene silencing offers a novel treatment and prevention strategy for human immunodeficiency virus (HIV) infection. HIV was found to infect and replicate in human brain cells and can cause neuroinfections and neurological deterioration. We designed dual-antibody-modified chitosan/small interfering RNA (siRNA) nanoparticles to deliver siRNA across the blood-brain barrier (BBB) targeting HIV-infected brain astrocytes as a strategy for inhibiting HIV replication. We hypothesized that transferrin antibody and bradykinin B2 antibody could specifically bind to the transferrin receptor (TfR) and bradykinin B2 receptor (B2R), respectively, and deliver siRNA across the BBB into astrocytes as potential targeting ligands. In this study, chitosan nanoparticles (CS-NPs) were prepared by a complex coacervation method in the presence of siRNA, and antibody was chemically conjugated to the nanoparticles. The antibody-modified chitosan nanoparticles (Ab-CS-NPs) were spherical in shape, with an average particle size of 235.7 ± 10.2 nm and a zeta potential of 22.88 ± 1.78 mV. The therapeutic potential of the nanoparticles was evaluated based on their cellular uptake and gene silencing efficiency. Cellular accumulation and gene silencing efficiency of Ab-CS-NPs in astrocytes were significantly improved compared to non-modified CS-NPs and single-antibody-modified CS-NPs. These results suggest that the combination of anti-Tf antibody and anti-B2 antibody significantly increased the knockdown effect of siRNA-loaded nanoparticles. Thus, antibody-mediated dual-targeting nanoparticles are an efficient and promising delivery strategy for inhibiting HIV replication in astrocytes. Graphical abstract Graphic representation of dual-antibody-conjugated chitosan nanoparticles for the targeted delivery of siRNA across the blood-brain barrier (BBB) for inhibiting HIV replication in astrocytes. a Nanoparticle delivery to the BBB and penetration. b TfR-mediated

  16. Flow over back-facing step in a narrow channel

    Czech Academy of Sciences Publication Activity Database

    Uruba, Václav; Jonáš, Pavel

    2012-01-01

    Roč. 12, č. 1 (2012), s. 501-502 ISSN 1617-7061. [Annual Meeting of the International Association of Applied Mathematics and Mechanics /83./. Darmstadt, 26.03.2012-30.03.2012] R&D Projects: GA ČR GAP101/10/1230; GA ČR GA101/08/1112 Institutional research plan: CEZ:AV0Z20760514 Keywords : channel flow * backward facing step * PIV Subject RIV: BK - Fluid Dynamics http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1617-7061

  17. Self-consistent Dark Matter simplified models with an s-channel scalar mediator

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Nicole F.; Busoni, Giorgio; Sanderson, Isaac W., E-mail: n.bell@unimelb.edu.au, E-mail: giorgio.busoni@unimelb.edu.au, E-mail: isanderson@student.unimelb.edu.au [ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, The University of Melbourne, Victoria 3010 (Australia)

    2017-03-01

    We examine Simplified Models in which fermionic DM interacts with Standard Model (SM) fermions via the exchange of an s -channel scalar mediator. The single-mediator version of this model is not gauge invariant, and instead we must consider models with two scalar mediators which mix and interfere. The minimal gauge invariant scenario involves the mixing of a new singlet scalar with the Standard Model Higgs boson, and is tightly constrained. We construct two Higgs doublet model (2HDM) extensions of this scenario, where the singlet mixes with the 2nd Higgs doublet. Compared with the one doublet model, this provides greater freedom for the masses and mixing angle of the scalar mediators, and their coupling to SM fermions. We outline constraints on these models, and discuss Yukawa structures that allow enhanced couplings, yet keep potentially dangerous flavour violating processes under control. We examine the direct detection phenomenology of these models, accounting for interference of the scalar mediators, and interference of different quarks in the nucleus. Regions of parameter space consistent with direct detection measurements are determined.

  18. Self-consistent Dark Matter simplified models with an s-channel scalar mediator

    International Nuclear Information System (INIS)

    Bell, Nicole F.; Busoni, Giorgio; Sanderson, Isaac W.

    2017-01-01

    We examine Simplified Models in which fermionic DM interacts with Standard Model (SM) fermions via the exchange of an s -channel scalar mediator. The single-mediator version of this model is not gauge invariant, and instead we must consider models with two scalar mediators which mix and interfere. The minimal gauge invariant scenario involves the mixing of a new singlet scalar with the Standard Model Higgs boson, and is tightly constrained. We construct two Higgs doublet model (2HDM) extensions of this scenario, where the singlet mixes with the 2nd Higgs doublet. Compared with the one doublet model, this provides greater freedom for the masses and mixing angle of the scalar mediators, and their coupling to SM fermions. We outline constraints on these models, and discuss Yukawa structures that allow enhanced couplings, yet keep potentially dangerous flavour violating processes under control. We examine the direct detection phenomenology of these models, accounting for interference of the scalar mediators, and interference of different quarks in the nucleus. Regions of parameter space consistent with direct detection measurements are determined.

  19. Dynamics of reattachment region behind backward-facing step in a narrow channel

    Czech Academy of Sciences Publication Activity Database

    Uruba, Václav

    2014-01-01

    Roč. 14, č. 1 (2014), s. 641-642 ISSN 1617-7061. [Annual Meeting of the International Association of Applied Mathematics and Mechanics /85./. Erlangen, 10.03.2014-14.03.2014] R&D Projects: GA ČR GAP101/10/1230 Institutional support: RVO:61388998 Keywords : backward facing step * reattachment * channel flow Subject RIV: BK - Fluid Dynamics http://onlinelibrary.wiley.com/doi/10.1002/pamm.201410305/abstract

  20. Multiple Delivery of siRNA against Endoglin into Murine Mammary Adenocarcinoma Prevents Angiogenesis and Delays Tumor Growth

    Science.gov (United States)

    Dolinsek, Tanja; Markelc, Bostjan; Sersa, Gregor; Coer, Andrej; Stimac, Monika; Lavrencak, Jaka; Brozic, Andreja; Kranjc, Simona; Cemazar, Maja

    2013-01-01

    Endoglin is a transforming growth factor-β (TGF- β) co-receptor that participates in the activation of a signaling pathway that mediates endothelial cell proliferation and migration in angiogenic tumor vasculature. Therefore, silencing of endoglin expression is an attractive approach for antiangiogenic therapy of tumors. The aim of our study was to evaluate the therapeutic potential of small interfering RNA (siRNA) molecules against endoglin in vitro and in vivo. Therapeutic potential in vitro was assessed in human and murine endothelial cells (HMEC-1, 2H11) by determining endoglin expression level, cell proliferation and tube formation. In vivo, the therapeutic potential of siRNA molecules was evaluated in TS/A mammary adenocarcinoma growing in BALB/c mice. Results of our study showed that siRNA molecules against endoglin have a good antiangiogenic therapeutic potential in vitro, as expression of endoglin mRNA and protein levels in mouse and human microvascular endothelial cells after lipofection were efficiently reduced, which resulted in the inhibition of endothelial cell proliferation and tube formation. In vivo, silencing of endoglin with triple electrotransfer of siRNA molecules into TS/A mammary adenocarcinoma also significantly reduced the mRNA levels, number of tumor blood vessels and the growth of tumors. The obtained results demonstrate that silencing of endoglin is a promising antiangiogenic therapy of tumors that could not be used as single treatment, but as an adjunct to the established cytotoxic treatment approaches. PMID:23593103

  1. Multiple delivery of siRNA against endoglin into murine mammary adenocarcinoma prevents angiogenesis and delays tumor growth.

    Directory of Open Access Journals (Sweden)

    Tanja Dolinsek

    Full Text Available Endoglin is a transforming growth factor-β (TGF- β co-receptor that participates in the activation of a signaling pathway that mediates endothelial cell proliferation and migration in angiogenic tumor vasculature. Therefore, silencing of endoglin expression is an attractive approach for antiangiogenic therapy of tumors. The aim of our study was to evaluate the therapeutic potential of small interfering RNA (siRNA molecules against endoglin in vitro and in vivo. Therapeutic potential in vitro was assessed in human and murine endothelial cells (HMEC-1, 2H11 by determining endoglin expression level, cell proliferation and tube formation. In vivo, the therapeutic potential of siRNA molecules was evaluated in TS/A mammary adenocarcinoma growing in BALB/c mice. Results of our study showed that siRNA molecules against endoglin have a good antiangiogenic therapeutic potential in vitro, as expression of endoglin mRNA and protein levels in mouse and human microvascular endothelial cells after lipofection were efficiently reduced, which resulted in the inhibition of endothelial cell proliferation and tube formation. In vivo, silencing of endoglin with triple electrotransfer of siRNA molecules into TS/A mammary adenocarcinoma also significantly reduced the mRNA levels, number of tumor blood vessels and the growth of tumors. The obtained results demonstrate that silencing of endoglin is a promising antiangiogenic therapy of tumors that could not be used as single treatment, but as an adjunct to the established cytotoxic treatment approaches.

  2. Solid nano-in-nanoparticles for potential delivery of siRNA.

    Science.gov (United States)

    Amsalem, Orit; Nassar, Taher; Benhamron, Sandrine; Lazarovici, Philip; Benita, Simon; Yavin, Eylon

    2017-07-10

    siRNA-based therapeutics possess great potential to treat a wide variety of genetic disorders. However, they suffer from low cellular uptake and short half-lives in blood circulation; issues that remain to be addressed. This work is, to the best of our knowledge, the first to report the production of solid nano-in-nanoparticles, termed double nano carriers (DNCs) by means of the innovative technology of nano spray drying. DNCs (with a median size of 580-770nm) were produced by spraying at low temperatures (50°C) to prevent damage to heat-sensitive biomacromolecules like siRNA. DNCs consisting of Poly (d,l-lactide-co-glycolide) used as a wall material, encapsulating 20% human serum albumin primary nanoparticles (PNPs) loaded with siRNA, were obtained as a dry nanoparticulate powder with smooth spherical surfaces and a unique inner morphology. Incubation of pegylated or non-pegylated DNCs under sink conditions at 37°C, elicited a controlled release profile of the siRNA for up to 12 or 24h, respectively, with a minimal burst effect. Prolonged incubation of pegylated DNCs loaded with active siRNA (anti EGFR) in an A549 epithelial cell culture monolayer did not induce any apparent cytotoxicity. A slow degradation of the internalized DNCs by the cells was also observed resulting in the progressive release of the siRNA for up to 6days, as corroborated by laser confocal microscopy. The structural integrity and silencing activity of the double encapsulated siRNA were fully preserved, as demonstrated by HPLC, gel electrophoresis, and potent RNAi activity of siRNA extracted from DNCs. These results demonstrate the potential use of DNCs as a nano drug delivery system for systemic administration and controlled release of siRNA and potentially other sensitive bioactive macromolecules. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. BK virus infection in a renal transplant Saudi child

    International Nuclear Information System (INIS)

    Maghrabi, M.; Marwan, D.; Osoba, Abimbola O.

    2007-01-01

    BK human polyomavirus (BKV) causes an asymptomatic primary infection in children, but later, establishes latency mainly in the urinary tract. Virus-host interactions influencing persistence and pathogenicity are not well-understood. We present here a 12-year-old Saudi boy, who had renal transplant in Egypt. Seven months later, he was admitted to our Pediatric Nephrology Unit as a case of renal impairment. He developed BKV infection, diagnosed and successfully managed in our hospital. This case demonstrates the expanding clinical importance of BKV in a post renal transplant patient. This virus can be detected in transitional cells in the urine (decoy cells) using cytology. Testing for BKV deoxyribonucleic acid in urine and blood is an early detection assay, and can be used as a screening test in the early stages. The early reduction of immunosuppression can improve the prognosis. No specific antiviral treatment has been established yet. This is the first report of detecting BK virus in a Saudi post-transplant child in urine and blood specimens by using polymerase chain reaction. (author)

  4. [Efficacy of siRNA on feline leukemia virus replication in vitro].

    Science.gov (United States)

    Lehmann, Melanie; Weber, Karin; Rauch, Gisep; Hofmann-Lehmann, Regina; Hosie, Margaret J; Meli, Marina L; Hartmann, Katrin

    2015-01-01

    Feline leukemia virus (FeLV) can lead to severe clinical signs in cats. Until now, there is no effective therapy for FeLV-infected cats. RNA interference-based antiviral therapy is a new concept. Specific small interfering RNA (siRNA) are designed complementary to the mRNA of a target region, and thus inhibit replication. Several studies have proven efficacy of siRNAs in inhibiting virus replication. The aim of this study was to evaluate the inhibitory potential of siRNAs against FeLV replication in vitro. siRNAs against the FeLV env gene and the host cell surface receptor (feTHTR1) which is used by FeLV-A for entry as well as siRNA that were not complementary to the FeLV or cat genome, were tested. Crandell feline kidney cells (CrFK cells) were transfected with FeLV-A/Glasgow-1. On day 13, infected cells were transfected with siRNAs. As control, cells were mock-transfected or treated with azidothymidine (AZT) (5 μg/ml). Culture supernatants were analyzed for FeLV RNA using quantitative real-time RT-PCR and for FeLV p27 by ELISA every 24 hours for five days. All siRNAs significantly reduced viral RNA and p27 production, starting after 48 hours. The fact that non-complementary siRNAs also inhibited virus replication may lead to the conclusion that unspecific mechanisms rather than specific binding lead to inhibition.

  5. Pulmonary Delivery of siRNA via Polymeric Vectors as Therapies of Asthma.

    Science.gov (United States)

    Xie, Yuran; Merkel, Olivia M

    2015-10-01

    Asthma is a chronic inflammatory disease. Despite the fact that current therapies, such as the combination of inhaled corticosteroids and β2-agonists, can control the symptoms of asthma in most patients, there is still an urgent need for an alternative anti-inflammatory therapy for patients who suffer from severe asthma but lack acceptable response to conventional therapies. Many molecular factors are involved in the inflammatory process in asthma, and thus blocking the function of these factors could efficiently alleviate airway inflammation. RNA interference (RNAi) is often thought to be the answer in the search for more efficient and biocompatible treatments. However, difficulties of efficient delivery of small interference RNA (siRNA), the key factor in RNAi, to target cells and tissues have limited its clinical application. In this review, we summarize cytokines and chemokines, transcription factors, tyrosine kinases, and costimulatory factors that have been reported as targets of siRNA-mediated treatment in experimental asthma. Additionally, we conclude several targeted delivery systems of siRNA to specific cells such as T cells, macrophages, and dendritic cells, which could potentially be applied in asthma therapy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Mārketinga komunikācijas pielietojums atjaunotā BK "VEF Rīga" zīmola virzīšanā

    OpenAIRE

    Līcis, Mārtiņš

    2014-01-01

    Darba tēma ir „Mārketinga komunikācijas pielietojums atjaunotā BK „VEF Rīga” zīmola virzīšanā”. Darba mērķis ir noskaidrot mārketinga komunikācijas pielietojumu atjaunotā BK „VEF Rīga” zīmola virzīšanā. Uzdevumi ir izstudēt nepieciešamo teoriju, izanalizēt mārketinga komunikācijas instrumentu pielietojumu, noskaidrot BK „VEF Rīga”, sporta mārketinga speciālista un sabiedrības viedokli par BK „VEF Rīga” zīmolu. Teoriju veido: zīmols, zīmolvedība, mārketinga komunikācija, sociālo mediju mārketi...

  7. Dendrimers for siRNA Delivery

    Directory of Open Access Journals (Sweden)

    Swati Biswas

    2013-02-01

    Full Text Available Since the discovery of the “starburst polymer”, later renamed as dendrimer, this class of polymers has gained considerable attention for numerous biomedical applications, due mainly to the unique characteristics of this macromolecule, including its monodispersity, uniformity, and the presence of numerous functionalizable terminal groups. In recent years, dendrimers have been studied extensively for their potential application as carriers for nucleic acid therapeutics, which utilize the cationic charge of the dendrimers for effective dendrimer-nucleic acid condensation. siRNA is considered a promising, versatile tool among various RNAi-based therapeutics, which can effectively regulate gene expression if delivered successfully inside the cells. This review reports on the advancements in the development of dendrimers as siRNA carriers.

  8. DBR1 siRNA inhibition of HIV-1 replication

    Directory of Open Access Journals (Sweden)

    Naidu Yathi

    2005-10-01

    Full Text Available Abstract Background HIV-1 and all retroviruses are related to retroelements of simpler organisms such as the yeast Ty elements. Recent work has suggested that the yeast retroelement Ty1 replicates via an unexpected RNA lariat intermediate in cDNA synthesis. The putative genomic RNA lariat intermediate is formed by a 2'-5' phosphodiester bond, like that found in pre-mRNA intron lariats and it facilitates the minus-strand template switch during cDNA synthesis. We hypothesized that HIV-1 might also form a genomic RNA lariat and therefore that siRNA-mediated inhibition of expression of the human RNA lariat de-branching enzyme (DBR1 expression would specifically inhibit HIV-1 replication. Results We designed three short interfering RNA (siRNA molecules targeting DBR1, which were capable of reducing DBR1 mRNA expression by 80% and did not significantly affect cell viability. We assessed HIV-1 replication in the presence of DBR1 siRNA and found that DBR1 knockdown led to decreases in viral cDNA and protein production. These effects could be reversed by cotransfection of a DBR1 cDNA indicating that the inhibition of HIV-1 replication was a specific effect of DBR1 underexpression. Conclusion These data suggest that DBR1 function may be needed to debranch a putative HIV-1 genomic RNA lariat prior to completion of reverse transcription.

  9. Novel siRNA delivery system using a ternary polymer complex with strong silencing effect and no cytotoxicity.

    Science.gov (United States)

    Kodama, Yukinobu; Shiokawa, Yumi; Nakamura, Tadahiro; Kurosaki, Tomoaki; Aki, Keisei; Nakagawa, Hiroo; Muro, Takahiro; Kitahara, Takashi; Higuchi, Norihide; Sasaki, Hitoshi

    2014-01-01

    We developed a novel small interfering RNA (siRNA) delivery system using a ternary complex with polyethyleneimine (PEI) and γ-polyglutamic acid (γ-PGA), which showed silencing effect and no cytotoxicity. The binary complexes of siRNA with PEI were approximately 73-102 nm in particle size and 45-52 mV in ζ-potential. The silencing effect of siRNA/PEI complexes increased with an increase of PEI, and siRNA/PEI complexes with a charge ratio greater than 16 showed significant luciferase knockdown in a mouse colon carcinoma cell line regularly expressing luciferase (Colon26/Luc cells). However, strong cytotoxicity and blood agglutination were observed in the siRNA/Lipofectamine complex and siRNA/PEI16 complex. Recharging cationic complexes with an anionic compound was reported to be a promising method for overcoming these toxicities. We therefore prepared ternary complexes of siRNA with PEI (charge ratio 16) by the addition of γ-PGA to reduce cytotoxicity and deliver siRNA. As expected, the cytotoxicity of the ternary complexes decreased with an increase of γ-PGA content, which decreased the ζ-potential of the complexes. A strong silencing effect comparable to siRNA/Lipofectamine complex was discovered in ternary complexes including γ-PGA with an anionic surface charge. The high incorporation of ternary complexes into Colon26/Luc cells was confirmed with fluorescence microcopy. Having achieved knockdown of an exogenously transfected gene, the ability of the complex to mediate knockdown of an endogenous housekeeping gene, glyceraldehyde 3-phosphate dehydrogenase (GAPDH), was assessed in B16-F10 cells. The ternary complex (siRNA/PEI16/γ-PGA12 complex) exhibited a significant GAPDH knockdown effect. Thus, we developed a useful siRNA delivery system.

  10. Dwarf Elliptical Galaxies in the M81 Group: The Structure and Stellar Populations of BK5N and F8D1

    OpenAIRE

    Caldwell, Nelson; Armandroff, Taft E.; Da Costa, G. S.; Seitzer, Patrick

    1997-01-01

    We have obtained HST WFPC2 images through the F555W and F814W filters of two M81 group dE's: BK5N and a new system, designated F8D1. The resulting color-magnitude diagrams show the upper two magnitudes of the red giant branch. Surface brightness and total magnitude measurements indicate that BK5N and F8D1 have similar central surface brightness (24.5 and 25.4 mag/arcsec^2 in V, respectively), but F8D1's larger length scale results in it being 3 magnitudes more luminous than BK5N. BK5N lies on...

  11. Prostaglandin E2 EP2 and EP4 receptor activation mediates cAMP-dependent hyperpolarization and exocytosis of renin in juxtaglomerular cells

    DEFF Research Database (Denmark)

    Friis, Ulla Glenert; Stubbe, Jane; Uhrenholt, Torben Rene

    2005-01-01

    /l), AE1-259-01 (1 nmol/l), EP4-selective agonist AE1-329 (1 nmol/l), and IP agonist iloprost (1 micromol/l) significantly increased C(m) mediated by PKA. The EP4 antagonist AE3-208 (10 nmol/l) blocked the effect of EP4 agonist but did not alter the response to PGE(2). Application of both EP4 antagonist....... The membrane potential hyperpolarized significantly after PGE(2), butaprost, AE1-329 and AE1-259 and outward current was augmented in a PKA-dependent fashion. PGE(2)-stimulated outward current, but not C(m) change, was abolished by the BK(Ca) channel inhibitor iberiotoxin (300 nmol/l). EP2 and EP4 m......RNA was detected in sampled JG cells, and the preglomerular and glomerular vasculature was immunopositive for EP4. Thus IP, EP2, and EP4 receptors are associated with JG cells, and their activation leads to rapid PKA-mediated exocytotic fusion and release of renin granules....

  12. EGF receptor targeted lipo-oligocation polyplexes for antitumoral siRNA and miRNA delivery

    Science.gov (United States)

    Müller, Katharina; Klein, Philipp M.; Heissig, Philipp; Roidl, Andreas; Wagner, Ernst

    2016-11-01

    Antitumoral siRNA and miRNA delivery was demonstrated by epidermal growth factor receptor (EGFR) targeted oligoaminoamide polyplexes. For this purpose, the T-shaped lipo-oligomer 454 was used to complex RNA into a core polyplex, which was subsequently functionalized with the targeting peptide ligand GE11 via a polyethylene glycol (PEG) linker. To this end, free cysteines on the surface of 454 polyplex were coupled with a maleimide-PEG-GE11 reagent (Mal-GE11). Resulting particles with sizes of 120-150 nm showed receptor-mediated uptake into EGFR-positive T24 bladder cancer cells, MDA-MB 231 breast cancer cells and Huh7 liver cancer cells. Furthermore, these formulations led to ligand-dependent gene silencing. RNA interference (RNAi) triggered antitumoral effects were observed for two different therapeutic RNAs, a miRNA-200c mimic or EG5 siRNA. Using polyplexes modified with a ratio of 0.8 molar equivalents of Mal-GE11, treatment of T24 or MDA-MB 231 cancer cells with miR-200c led to the expected decreased proliferation and migration, changes in cell cycle and enhanced sensitivity towards doxorubicin. Delivery of EG5 siRNA into Huh7 cells resulted in antitumoral activity with G2/M arrest, triggered by loss of mitotic spindle separation and formation of mono-astral spindles. These findings demonstrate the potential of GE11 ligand-containing RNAi polyplexes for cancer treatment.

  13. Efficient siRNA delivery system using carboxilated single-wall carbon nanotubes in cancer treatment.

    Science.gov (United States)

    Neagoe, Ioana Berindan; Braicu, Cornelia; Matea, Cristian; Bele, Constantin; Florin, Graur; Gabriel, Katona; Veronica, Chedea; Irimie, Alexandru

    2012-08-01

    Several functionalized carbon nanotubes have been designed and tested for the purpose of nucleic acid delivery. In this study, the capacity of SWNTC-COOH for siRNA deliverey were investigated delivery in parallel with an efficient commercial system. Hep2G cells were reverse-transfected with 50 nM siRNA (p53 siRNA, TNF-alphasiRNA, VEGFsiRNA) using the siPORT NeoFX (Ambion) transfection agent in paralel with SWNTC-COOH, functionalised with siRNA. The highest level of gene inhibition was observed in the cases treated with p53 siRNA gene; in the case of transfection with siPort, the NeoFX value was 33.8%, while in the case of SWNTC-COOH as delivery system for p53 siRNA was 37.5%. The gene silencing capacity for VEGF was 53.7%, respectively for TNF-alpha 56.7% for siPORT NeoFX delivery systems versus 47.7% (VEGF) and 46.5% (TNF-alpha) for SWNTC-COOH delivery system. SWNTC-COOH we have been showed to have to be an efficient carrier system. The results from the inhibition of gene expresion for both transfection systems were confirmed at protein level. Overall, the lowest mRNA expression was confirmed at protein level, especially in the case of p53 siRNA and TNF-alpha siRNA transfection. Less efficient reduction protein expressions were observed in the case of VEGF siRNA, for both transfection systems at 24 h; only at 48 h, there was a statistically significant reduction of VEGF protein expression. SWCNT-COOH determined an efficient delivery of siRNA. SWNTC-COOH, combined with suitable tumor markers like p53 siRNA, TNFalpha siRNA or VEGF siRNA can be used for the efficient delivery of siRNA.

  14. Some experimental results on flow in a diverging 2D channel

    Czech Academy of Sciences Publication Activity Database

    Antoš, Pavel; Hladík, Ondřej; Jonáš, Pavel; Uruba, Václav

    2013-01-01

    Roč. 13, č. 1 (2013), s. 297-298 ISSN 1617-7061. [Annual Meeting of the International Association of Applied Mathematics and Mechanics /84./. Novi Sad, 18.03.2013-22.03.2013] R&D Projects: GA ČR GAP101/12/1271 Institutional support: RVO:61388998 Keywords : free stream turbulence * negative pressure gradient * diverging 2D channel Subject RIV: BK - Fluid Dynamics http://onlinelibrary.wiley.com/doi/10.1002/pamm.201310144/pdf

  15. Protein kinase A-induced internalization of Slack channels from the neuronal membrane occurs by adaptor protein-2/clathrin-mediated endocytosis.

    Science.gov (United States)

    Gururaj, Sushmitha; Evely, Katherine M; Pryce, Kerri D; Li, Jun; Qu, Jun; Bhattacharjee, Arin

    2017-11-24

    The sodium-activated potassium (K Na ) channel Kcnt1 (Slack) is abundantly expressed in nociceptor (pain-sensing) neurons of the dorsal root ganglion (DRG), where they transmit the large outward conductance I KNa and arbitrate membrane excitability. Slack channel expression at the DRG membrane is necessary for their characteristic firing accommodation during maintained stimulation, and reduced membrane channel density causes hyperexcitability. We have previously shown that in a pro-inflammatory state, a decrease in membrane channel expression leading to reduced Slack-mediated I KNa expression underlies DRG neuronal sensitization. An important component of the inflammatory milieu, PKA internalizes Slack channels from the DRG membrane, reduces I KNa , and produces DRG neuronal hyperexcitability when activated in cultured primary DRG neurons. Here, we show that this PKA-induced retrograde trafficking of Slack channels also occurs in intact spinal cord slices and that it is carried out by adaptor protein-2 (AP-2) via clathrin-mediated endocytosis. We provide mass spectrometric and biochemical evidence of an association of native neuronal AP-2 adaptor proteins with Slack channels, facilitated by a dileucine motif housed in the cytoplasmic Slack C terminus that binds AP-2. By creating a competitive peptide blocker of AP-2-Slack binding, we demonstrated that this interaction is essential for clathrin recruitment to the DRG membrane, Slack channel endocytosis, and DRG neuronal hyperexcitability after PKA activation. Together, these findings uncover AP-2 and clathrin as players in Slack channel regulation. Given the significant role of Slack in nociceptive neuronal excitability, the AP-2 clathrin-mediated endocytosis trafficking mechanism may enable targeting of peripheral and possibly, central neuronal sensitization. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Overcoming the Challenges of siRNA Delivery: Nanoparticle Strategies.

    Science.gov (United States)

    Shajari, Neda; Mansoori, Behzad; Davudian, Sadaf; Mohammadi, Ali; Baradaran, Behzad

    2017-01-01

    Despite therapeutics based on siRNA have an immense potential for the treatment of incurable diseases such as cancers. However, the in vivo utilization of siRNA and also the delivery of this agent to the target site is one of the most controversial challenges. The helpful assistance by nanoparticles can improve stable delivery and also enhance efficacy. More nanoparticle-based siRNA therapeutics is expected to become available in the near future. The search strategy followed the guidelines of the Centre of Reviews and Dissemination. The studies were identified from seven databases (Scopus, Web of Science, Academic Search Premiere, CINAHL, Medline Ovid, Eric and Cochrane Library). Studies was selected based on titles, abstracts and full texts. One hundred twenty nine papers were included in the review. These papers defined hurdles in RNAi delivery and also strategies to overcome these hurdles. This review discussed the existing hurdles for systemic administration of siRNA as therapeutic agents and highlights the various strategies to overcome these hurdles, including lipid-based nanoparticles and polymeric nanoparticles, and we also briefly reviewed chemical modification. Delivery of siRNA to the target site is the biggest challenge for its application in the clinic. The findings of this review confirmed by encapsulation siRNA in the nanoparticles can overcome these challenges. The rapid progress in nanotechnology has enabled the development of effective nanoparticles as the carrier for siRNA delivery. However, our data about siRNA-based therapeutics and also nanomedicine are still limited. More clinical data needs to be completely understood in the benefits and drawbacks of siRNA-based therapeutics. Prospective studies must pay attention to the in vivo safety profiles of the different delivery systems, including uninvited immune system stimulation and cytotoxicity. In essence, the development of nontoxic, biocompatible, and biodegradable delivery systems for

  17. Silencing VDAC1 Expression by siRNA Inhibits Cancer Cell Proliferation and Tumor Growth In Vivo

    Directory of Open Access Journals (Sweden)

    Tasleem Arif

    2014-01-01

    Full Text Available Alterations in cellular metabolism and bioenergetics are vital for cancer cell growth and motility. Here, the role of the mitochondrial protein voltage-dependent anion channel (VDAC1, a master gatekeeper regulating the flux of metabolites and ions between mitochondria and the cytoplasm, in regulating the growth of several cancer cell lines was investigated by silencing VDAC1 expression using small interfering RNA (siRNA. A single siRNA specific to the human VDAC1 sequence at nanomolar concentrations led to some 90% decrease in VDAC1 levels in the lung A549 and H358, prostate PC-3, colon HCT116, glioblastoma U87, liver HepG2, and pancreas Panc-1 cancer cell lines. VDAC1 silencing persisted 144 hours post-transfection and resulted in profound inhibition of cell growth in cancer but not in noncancerous cells, with up to 90% inhibition being observed over 5 days that was prolonged by a second transfection. Cells expressing low VDAC1 levels showed decreased mitochondrial membrane potential and adenoside triphosphate (ATP levels, suggesting limited metabolite exchange between mitochondria and cytosol. Moreover, cells silenced for VDAC1 expression showed decreased migration, even in the presence of the wound healing accelerator basic fibroblast growth factor (bFGF. VDAC1-siRNA inhibited cancer cell growth in a Matrigel-based assay in host nude mice. Finally, in a xenograft lung cancer mouse model, chemically modified VDAC1-siRNA not only inhibited tumor growth but also resulted in tumor regression. This study thus shows that VDAC1 silencing by means of RNA interference (RNAi dramatically inhibits cancer cell growth and tumor development by disabling the abnormal metabolic behavior of cancer cells, potentially paving the way for a more effective pipeline of anticancer drugs.

  18. Regulation of KV channel voltage-dependent activation by transmembrane β subunits

    Directory of Open Access Journals (Sweden)

    Xiaohui eSun

    2012-04-01

    Full Text Available Voltage-activated K+ (KV channels are important for shaping action potentials and maintaining resting membrane potential in excitable cells. KV channels contain a central pore-gate domain (PGD surrounded by four voltage-sensing domains (VSD. The VSDs will change conformation in response to alterations of the membrane potential thereby inducing the opening of the PGD. Many KV channels are heteromeric protein complexes containing auxiliary β subunits. These β subunits modulate channel expression and activity to increase functional diversity and render tissue specific phenotypes. This review focuses on the KV β subunits that contain transmembrane (TM segments including the KCNE family and the β subunits of large conductance, Ca2+- and voltage-activated K+ (BK channels. These TM β subunits affect the voltage-dependent activation of KV α subunits. Experimental and computational studies have described the structural location of these β subunits in the channel complexes and the biophysical effects on VSD activation, PGD opening and VSD-PGD coupling. These results reveal some common characteristics and mechanistic insights into KV channel modulation by TM β subunits.

  19. Activation of the Nrf2-ARE pathway by siRNA knockdown of Keap1 reduces oxidative stress and provides partial protection from MPTP-mediated neurotoxicity.

    Science.gov (United States)

    Williamson, Tracy P; Johnson, Delinda A; Johnson, Jeffrey A

    2012-06-01

    Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that binds to the antioxidant response element, a cis-acting regulatory element that increases expression of detoxifying enzymes and antioxidant proteins. Kelch-like ECH associating protein 1 (Keap1) protein is a negative regulator of Nrf2. Previous work has shown that genetic overexpression of Nrf2 is protective in vitro and in vivo. To modulate the Nrf2-ARE system without overexpressing Nrf2, we used short interfering RNA (siRNA) directed against Keap1. Keap1 siRNA administration in primary astrocytes increased the levels of Nrf2-ARE driven genes and protected against oxidative stress. Moreover, Keap1 siRNA resulted in a persistent upregulation of the Nrf2-ARE pathway and protection against oxidative stress in primary astrocytes. Keap1 siRNA injected into the striatum was also modestly protective against MPTP-induced dopaminergic terminal damage. These data indicate that activation of endogenous intracellular levels of Nrf2 is sufficient to protect in models of oxidative stress and Parkinson's disease. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Maitotoxin Is a Potential Selective Activator of the Endogenous Transient Receptor Potential Canonical Type 1 Channel in Xenopus laevis Oocytes

    Directory of Open Access Journals (Sweden)

    Pedro L. Flores

    2017-06-01

    Full Text Available Maitotoxin (MTX is the most potent marine toxin known to date. It is responsible for a particular human intoxication syndrome called ciguatera fish poisoning (CFP. Several reports indicate that MTX is an activator of non-selective cation channels (NSCC in different cell types. The molecular identity of these channels is still an unresolved topic, and it has been proposed that the transient receptor potential (TRP channels are involved in this effect. In Xenopus laevis oocytes, MTX at picomolar (pM concentrations induces the activation of NSCC with functional and pharmacological properties that resemble the activity of TRP channels. The purpose of this study was to characterize the molecular identity of the TRP channel involved in the MTX response, using the small interference RNA (siRNA approach and the two-electrode voltage-clamp technique (TEVC. The injection of a specifically designed siRNA to silence the transient receptor potential canonical type 1 (TRPC1 protein expression abolished the MTX response. MTX had no effect on oocytes, even at doses 20-fold higher compared to cells without injection. Total mRNA and protein levels of TRPC1 were notably diminished. The TRPC4 siRNA did not change the MTX effect, even though it was important to note that the protein level was reduced by the silencing of TRPC4. Our results suggest that MTX could be a selective activator of TRPC1 channels in X. laevis oocytes and a useful pharmacological tool for further studies on these TRP channels.

  1. Megalin-mediated specific uptake of chitosan/siRNA nanoparticles in mouse kidney proximal tubule epithelial cells enables AQP1 gene silencing.

    Science.gov (United States)

    Gao, Shan; Hein, San; Dagnæs-Hansen, Frederik; Weyer, Kathrin; Yang, Chuanxu; Nielsen, Rikke; Christensen, Erik I; Fenton, Robert A; Kjems, Jørgen

    2014-01-01

    RNAi-based strategies provide a great therapeutic potential for treatment of various human diseases including kidney disorders, but face the challenge of in vivo delivery and specific targeting. The chitosan delivery system has previously been shown to target siRNA specifically to the kidneys in mice when administered intravenously. Here we confirm by 2D and 3D bioimaging that chitosan formulated siRNA is retained in the kidney for more than 48 hours where it accumulates in proximal tubule epithelial cells (PTECs), a process that was strongly dependent on the molecular weight of chitosan. Chitosan/siRNA nanoparticles, administered to chimeric mice with conditional knockout of the megalin gene, distributed almost exclusively in cells that expressed megalin, implying that the chitosan/siRNA particle uptake was mediated by a megalin-dependent endocytotic pathway. Knockdown of the water channel aquaporin 1 (AQP1) by up to 50% in PTECs was achieved utilizing the systemic i.v. delivery of chitosan/AQP1 siRNA in mice. In conclusion, specific targeting PTECs with the chitosan nanoparticle system may prove to be a useful strategy for knockdown of specific genes in PTECs, and provides a potential therapeutic strategy for treating various kidney diseases.

  2. A novel program to design siRNAs simultaneously effective to highly variable virus genomes.

    Science.gov (United States)

    Lee, Hui Sun; Ahn, Jeonghyun; Jun, Eun Jung; Yang, Sanghwa; Joo, Chul Hyun; Kim, Yoo Kyum; Lee, Heuiran

    2009-07-10

    A major concern of antiviral therapy using small interfering RNAs (siRNAs) targeting RNA viral genome is high sequence diversity and mutation rate due to genetic instability. To overcome this problem, it is indispensable to design siRNAs targeting highly conserved regions. We thus designed CAPSID (Convenient Application Program for siRNA Design), a novel bioinformatics program to identify siRNAs targeting highly conserved regions within RNA viral genomes. From a set of input RNAs of diverse sequences, CAPSID rapidly searches conserved patterns and suggests highly potent siRNA candidates in a hierarchical manner. To validate the usefulness of this novel program, we investigated the antiviral potency of universal siRNA for various Human enterovirus B (HEB) serotypes. Assessment of antiviral efficacy using Hela cells, clearly demonstrates that HEB-specific siRNAs exhibit protective effects against all HEBs examined. These findings strongly indicate that CAPSID can be applied to select universal antiviral siRNAs against highly divergent viral genomes.

  3. Targeted delivery of anti-coxsackievirus siRNAs using ligand-conjugated packaging RNAs.

    Science.gov (United States)

    Zhang, Huifang M; Su, Yue; Guo, Songchuan; Yuan, Ji; Lim, Travis; Liu, Jing; Guo, Peixuan; Yang, Decheng

    2009-09-01

    Coxsackievirus B3 (CVB3) is a common pathogen of myocarditis. We previously synthesized a siRNA targeting the CVB3 protease 2A (siRNA/2A) gene and achieved reduction of CVB3 replication by 92% in vitro. However, like other drugs under development, CVB3 siRNA faces a major challenge of targeted delivery. In this study, we investigated a novel approach to deliver CVB3 siRNAs to a specific cell population (e.g. HeLa cells containing folate receptor) using receptor ligand (folate)-linked packaging RNA (pRNA) from bacterial phage phi29. pRNA monomers can spontaneously form dimers and multimers under optimal conditions by base-pairing between their stem loops. By covalently linking a fluorescence-tag to folate, we delivered the conjugate specifically to HeLa cells without the need of transfection. We further demonstrated that pRNA covalently conjugated to siRNA/2A achieved an equivalent antiviral effect to that of the siRNA/2A alone. Finally, the drug targeted delivery was further evaluated by using pRNA monomers or dimers, which carried both the siRNA/2A and folate ligand and demonstrated that both of them strongly inhibited CVB3 replication. These data indicate that pRNA as a siRNA carrier can specifically deliver the drug to target cells via its ligand and specific receptor interaction and inhibit virus replication effectively.

  4. Treating respiratory viral diseases with chemically modified, second generation intranasal siRNAs.

    Science.gov (United States)

    Barik, Sailen

    2009-01-01

    Chemically synthesized short interfering RNA (siRNA) of pre-determined sequence has ushered a new era in the application of RNA interference (RNAi) against viral genes. We have paid particular attention to respiratory viruses that wreak heavy morbidity and mortality worldwide. The clinically significant ones include respiratory syncytial virus (RSV), parainfluenza virus (PIV) and influenza virus. As the infection by these viruses is clinically restricted to the respiratory tissues, mainly the lungs, the logical route for the application of the siRNA was also the same, i.e., via the nasal route. Following the initial success of intranasal siRNA against RSV, second-generation siRNAs were made against the viral polymerase large subunit (L) that were chemically modified and screened for improved stability, activity and pharmacokinetics. 2'-O-methyl (2'-O-Me) and 2'-deoxy-2'-fluoro (2'-F) substitutions in the ribose ring were incorporated in different positions of the sense and antisense strands and the resultant siRNAs were tested with various transfection reagents intranasally against RSV. Based on these results, we propose the following consensus for designing intranasal antiviral siRNAs: (i) modified 19-27 nt long double-stranded siRNAs are functional in the lung, (ii) excessive 2'-OMe and 2'-F modifications in either or both strands of these siRNAs reduce efficacy, and (iii) limited modifications in the sense strand are beneficial, although their precise efficacy may be position-dependent.

  5. Delivery systems and local administration routes for therapeutic siRNA.

    Science.gov (United States)

    Vicentini, Fabiana Testa Moura de Carvalho; Borgheti-Cardoso, Lívia Neves; Depieri, Lívia Vieira; de Macedo Mano, Danielle; Abelha, Thais Fedatto; Petrilli, Raquel; Bentley, Maria Vitória Lopes Badra

    2013-04-01

    With the increasing number of studies proposing new and optimal delivery strategies for the efficacious silencing of gene-related diseases by the local administration of siRNAs, the present review aims to provide a broad overview of the most important and latest developments of non-viral siRNA delivery systems for local administration. Moreover, the main disease targets for the local delivery of siRNA to specific tissues or organs, including the skin, the lung, the eye, the nervous system, the digestive system and the vagina, were explored.

  6. Confirming the RNAi-mediated mechanism of action of siRNA-based cancer therapeutics in mice.

    Science.gov (United States)

    Judge, Adam D; Robbins, Marjorie; Tavakoli, Iran; Levi, Jasna; Hu, Lina; Fronda, Anna; Ambegia, Ellen; McClintock, Kevin; MacLachlan, Ian

    2009-03-01

    siRNAs that specifically silence the expression of cancer-related genes offer a therapeutic approach in oncology. However, it remains critical to determine the true mechanism of their therapeutic effects. Here, we describe the preclinical development of chemically modified siRNA targeting the essential cell-cycle proteins polo-like kinase 1 (PLK1) and kinesin spindle protein (KSP) in mice. siRNA formulated in stable nucleic acid lipid particles (SNALP) displayed potent antitumor efficacy in both hepatic and subcutaneous tumor models. This was correlated with target gene silencing following a single intravenous administration that was sufficient to cause extensive mitotic disruption and tumor cell apoptosis. Our siRNA formulations induced no measurable immune response, minimizing the potential for nonspecific effects. Additionally, RNAi-specific mRNA cleavage products were found in tumor cells, and their presence correlated with the duration of target mRNA silencing. Histological biomarkers confirmed that RNAi-mediated gene silencing effectively inhibited the target's biological activity. This report supports an RNAi-mediated mechanism of action for siRNA antitumor effects, suggesting a new methodology for targeting other key genes in cancer development with siRNA-based therapeutics.

  7. Dendrimers as Carriers for siRNA Delivery and Gene Silencing: A Review

    Directory of Open Access Journals (Sweden)

    Jiangyu Wu

    2013-01-01

    Full Text Available RNA interference (RNAi was first literaturally reported in 1998 and has become rapidly a promising tool for therapeutic applications in gene therapy. In a typical RNAi process, small interfering RNAs (siRNA are used to specifically downregulate the expression of the targeted gene, known as the term “gene silencing.” One key point for successful gene silencing is to employ a safe and efficient siRNA delivery system. In this context, dendrimers are emerging as potential nonviral vectors to deliver siRNA for RNAi purpose. Dendrimers have attracted intense interest since their emanating research in the 1980s and are extensively studied as efficient DNA delivery vectors in gene transfer applications, due to their unique features based on the well-defined and multivalent structures. Knowing that DNA and RNA possess a similar structure in terms of nucleic acid framework and the electronegative nature, one can also use the excellent DNA delivery properties of dendrimers to develop effective siRNA delivery systems. In this review, the development of dendrimer-based siRNA delivery vectors is summarized, focusing on the vector features (siRNA delivery efficiency, cytotoxicity, etc. of different types of dendrimers and the related investigations on structure-activity relationship to promote safe and efficient siRNA delivery system.

  8. Dendrimers as Carriers for siRNA Delivery and Gene Silencing: A Review

    Science.gov (United States)

    Huang, Weizhe; He, Ziying

    2013-01-01

    RNA interference (RNAi) was first literaturally reported in 1998 and has become rapidly a promising tool for therapeutic applications in gene therapy. In a typical RNAi process, small interfering RNAs (siRNA) are used to specifically downregulate the expression of the targeted gene, known as the term “gene silencing.” One key point for successful gene silencing is to employ a safe and efficient siRNA delivery system. In this context, dendrimers are emerging as potential nonviral vectors to deliver siRNA for RNAi purpose. Dendrimers have attracted intense interest since their emanating research in the 1980s and are extensively studied as efficient DNA delivery vectors in gene transfer applications, due to their unique features based on the well-defined and multivalent structures. Knowing that DNA and RNA possess a similar structure in terms of nucleic acid framework and the electronegative nature, one can also use the excellent DNA delivery properties of dendrimers to develop effective siRNA delivery systems. In this review, the development of dendrimer-based siRNA delivery vectors is summarized, focusing on the vector features (siRNA delivery efficiency, cytotoxicity, etc.) of different types of dendrimers and the related investigations on structure-activity relationship to promote safe and efficient siRNA delivery system. PMID:24288498

  9. Synergy between Piezo1 and Piezo2 channels confers high-strain mechanosensitivity to articular cartilage

    Science.gov (United States)

    Lee, Whasil; Leddy, Holly A.; Chen, Yong; Lee, Suk Hee; Zelenski, Nicole A.; McNulty, Amy L.; Wu, Jason; Beicker, Kellie N.; Coles, Jeffrey; Zauscher, Stefan; Grandl, Jörg; Sachs, Frederick; Liedtke, Wolfgang B.

    2014-01-01

    Diarthrodial joints are essential for load bearing and locomotion. Physiologically, articular cartilage sustains millions of cycles of mechanical loading. Chondrocytes, the cells in cartilage, regulate their metabolic activities in response to mechanical loading. Pathological mechanical stress can lead to maladaptive cellular responses and subsequent cartilage degeneration. We sought to deconstruct chondrocyte mechanotransduction by identifying mechanosensitive ion channels functioning at injurious levels of strain. We detected robust expression of the recently identified mechanosensitive channels, PIEZO1 and PIEZO2. Combined directed expression of Piezo1 and -2 sustained potentiated mechanically induced Ca2+ signals and electrical currents compared with single-Piezo expression. In primary articular chondrocytes, mechanically evoked Ca2+ transients produced by atomic force microscopy were inhibited by GsMTx4, a PIEZO-blocking peptide, and by Piezo1- or Piezo2-specific siRNA. We complemented the cellular approach with an explant-cartilage injury model. GsMTx4 reduced chondrocyte death after mechanical injury, suggesting a possible therapy for reducing cartilage injury and posttraumatic osteoarthritis by attenuating Piezo-mediated cartilage mechanotransduction of injurious strains. PMID:25385580

  10. Efficient and gentle siRNA delivery by magnetofection

    Science.gov (United States)

    Ensenauer, R; Hartl, D; Vockley, J; Roscher, AA; Fuchs, U

    2015-01-01

    Magnetic force combined with magnetic nanoparticles recently has shown potential for enhancing nucleic acid delivery. Achieving effective siRNA delivery into primary cultured cells is challenging. We compared the utility of magnetofection with lipofection procedures for siRNA delivery to primary and immortalized mammalian fibroblasts. Transfection efficiency and cell viability were analyzed by flow cytometry and effects of gene knockdown were quantified by real-time PCR. Lipofectamine 2000 and magnetofection achieved high transfection efficiencies comparable to similar gene silencing effects of about 80%; the cytotoxic effect of magnetofection, however, was significantly less. Magnetofection is a reliable and gentle alternative method with low cytotoxicity for siRNA delivery into difficult to transfect cells such as mammalian fibroblasts. These features are especially advantageous for functional end point analyses of gene silencing, e.g., on the metabolite level. PMID:20297946

  11. Towards saturation of the electron-capture delayed fission probability: The new isotopes 240Es and 236Bk

    Directory of Open Access Journals (Sweden)

    J. Konki

    2017-01-01

    Full Text Available The new neutron-deficient nuclei 240Es and 236Bk were synthesised at the gas-filled recoil separator RITU. They were identified by their radioactive decay chains starting from 240Es produced in the fusion–evaporation reaction 209Bi(34S,3n240Es. Half-lives of 6(2s and 22−6+13s were obtained for 240Es and 236Bk, respectively. Two groups of α particles with energies Eα=8.19(3MeV and 8.09(3MeV were unambiguously assigned to 240Es. Electron-capture delayed fission branches with probabilities of 0.16(6 and 0.04(2 were measured for 240Es and 236Bk, respectively. These new data show a continuation of the exponential increase of ECDF probabilities in more neutron-deficient isotopes.

  12. Intravenous siRNA of brain cancer with receptor targeting and avidin-biotin technology.

    Science.gov (United States)

    Xia, Chun-Fang; Zhang, Yufeng; Zhang, Yun; Boado, Ruben J; Pardridge, William M

    2007-12-01

    The effective delivery of short interfering RNA (siRNA) to brain following intravenous administration requires the development of a delivery system for transport of the siRNA across the brain capillary endothelial wall, which forms the blood-brain barrier in vivo. siRNA was delivered to brain in vivo with the combined use of a receptor-specific monoclonal antibody delivery system, and avidin-biotin technology. The siRNA was mono-biotinylated on either terminus of the sense strand, in parallel with the production of a conjugate of the targeting MAb and streptavidin. Rat glial cells (C6 or RG-2) were permanently transfected with the luciferase gene, and implanted in the brain of adult rats. Following the formation of intra-cranial tumors, the rats were treated with a single intravenous injection of 270 microg/kg of biotinylated siRNA attached to a transferrin receptor antibody via a biotin-streptavidin linker. The intravenous administration of the siRNA caused a 69-81% decrease in luciferase gene expression in the intracranial brain cancer in vivo. Brain delivery of siRNA following intravenous administration is possible with siRNAs that are targeted to brain with the combined use of receptor specific antibody delivery systems and avidin-biotin technology.

  13. BSA Nanoparticles for siRNA Delivery: Coating Effects on Nanoparticle Properties, Plasma Protein Adsorption, and In Vitro siRNA Delivery

    Directory of Open Access Journals (Sweden)

    Haran Yogasundaram

    2012-01-01

    Full Text Available Developing vehicles for the delivery of therapeutic molecules, like siRNA, is an area of active research. Nanoparticles composed of bovine serum albumin, stabilized via the adsorption of poly-L-lysine (PLL, have been shown to be potentially inert drug-delivery vehicles. With the primary goal of reducing nonspecific protein adsorption, the effect of using comb-type structures of poly(ethylene glycol (1 kDa, PEG units conjugated to PLL (4.2 and 24 kDa on BSA-NP properties, apparent siRNA release rate, cell viability, and cell uptake were evaluated. PEGylated PLL coatings resulted in NPs with ζ-potentials close to neutral. Incubation with platelet-poor plasma showed the composition of the adsorbed proteome was similar for all systems. siRNA was effectively encapsulated and released in a sustained manner from all NPs. With 4.2 kDa PLL, cellular uptake was not affected by the presence of PEG, but PEG coating inhibited uptake with 24 kDa PLL NPs. Moreover, 24 kDa PLL systems were cytotoxic and this cytotoxicity was diminished upon PEG incorporation. The overall results identified a BSA-NP coating structure that provided effective siRNA encapsulation while reducing ζ-potential, protein adsorption, and cytotoxicity, necessary attributes for in vivo application of drug-delivery vehicles.

  14. On the Operator ⨁Bk Related to Bessel Heat Equation

    Directory of Open Access Journals (Sweden)

    Wanchak Satsanit

    2010-01-01

    Full Text Available We study the equation (∂/∂tu(x,t=c2⊕Bku(x,t with the initial condition u(x,0=f(x for x∈Rn+. The operator ⊕Bk is the operator iterated k-times and is defined by ⊕Bk=((∑i=1pBxi4-(∑j=p+1p+qBxi4k, where p+q=n is the dimension of the Rn+, Bxi=∂2/∂xi2+(2vi/xi(∂/∂xi, 2vi=2αi+1, αi>-1/2, i=1,2,3,…,n, and k is a nonnegative integer, u(x,t is an unknown function for (x,t=(x1,x2,…,xn,t∈Rn+×(0,∞, f(x is a given generalized function, and c is a positive constant. We obtain the solution of such equation, which is related to the spectrum and the kernel, which is so called Bessel heat kernel. Moreover, such Bessel heat kernel has interesting properties and also related to the kernel of an extension of the heat equation.

  15. Cylindromatosis mediates neuronal cell death in vitro and in vivo.

    Science.gov (United States)

    Ganjam, Goutham K; Terpolilli, Nicole Angela; Diemert, Sebastian; Eisenbach, Ina; Hoffmann, Lena; Reuther, Christina; Herden, Christiane; Roth, Joachim; Plesnila, Nikolaus; Culmsee, Carsten

    2018-01-19

    The tumor-suppressor cylindromatosis (CYLD) is a deubiquitinating enzyme and key regulator of cell proliferation and inflammation. A genome-wide siRNA screen linked CYLD to receptor interacting protein-1 (RIP1) kinase-mediated necroptosis; however, the exact mechanisms of CYLD-mediated cell death remain unknown. Therefore, we investigated the precise role of CYLD in models of neuronal cell death in vitro and evaluated whether CYLD deletion affects brain injury in vivo. In vitro, downregulation of CYLD increased RIP1 ubiquitination, prevented RIP1/RIP3 complex formation, and protected neuronal cells from oxidative death. Similar protective effects were achieved by siRNA silencing of RIP1 or RIP3 or by pharmacological inhibition of RIP1 with necrostatin-1. In vivo, CYLD knockout mice were protected from trauma-induced brain damage compared to wild-type littermate controls. These findings unravel the mechanisms of CYLD-mediated cell death signaling in damaged neurons in vitro and suggest a cell death-mediating role of CYLD in vivo.

  16. Local administration of siRNA through Microneedle: Optimization, Bio-distribution, Tumor Suppression and Toxicity

    Science.gov (United States)

    Tang, Tao; Deng, Yan; Chen, Jiao; Zhao, Yi; Yue, Ruifeng; Choy, Kwong Wai; Wang, Chi Chiu; Du, Quan; Xu, Yan; Han, Linxiao; Chung, Tony Kwok Hung

    2016-07-01

    Although RNA interference may become a novel therapeutic approach for cancer treatment, target-site accumulation of siRNA to achieve therapeutic dosage will be a major problem. Microneedle represents a better way to deliver siRNAs and we have evaluated for the first time the capability of a silicon microneedle array for delivery of Gapdh siRNA to the skin in vivo and the results showed that the microneedle arrays could effectively deliver siRNA to relevant regions of the skin noninvasively. For the further study in this field, we evaluated the efficacy of the injectable microneedle device for local delivery of siRNA to the mouse xenograft. The results presented here indicate that local administration of siRNA through injectable microneedle could effectively deliver siRNA into the tumor region, and inhibit tumor progression without major adverse effects.

  17. JAK2 mediates lung fibrosis, pulmonary vascular remodelling and hypertension in idiopathic pulmonary fibrosis: an experimental study.

    Science.gov (United States)

    Milara, Javier; Ballester, Beatriz; Morell, Anselm; Ortiz, José L; Escrivá, Juan; Fernández, Estrella; Perez-Vizcaino, Francisco; Cogolludo, Angel; Pastor, Enrique; Artigues, Enrique; Morcillo, Esteban; Cortijo, Julio

    2018-06-01

    Pulmonary hypertension (PH) is a common disorder in patients with idiopathic pulmonary fibrosis (IPF) and portends a poor prognosis. Recent studies using vasodilators approved for PH have failed in improving IPF mainly due to ventilation ( V )/perfusion ( Q ) mismatching and oxygen desaturation. Janus kinase type 2 (JAK2) is a non-receptor tyrosine kinase activated by a broad spectrum of profibrotic and vasoactive mediators, but its role in PH associated to PH is unknown. The study of JAK2 as potential target to treat PH in IPF. JAK2 expression was increased in pulmonary arteries (PAs) from IPF (n=10; 1.93-fold; P=0.0011) and IPF+PH (n=9; 2.65-fold; Ppulmonary artery endothelial cells (HPAECs) and human pulmonary artery smooth muscle cells (HPASMCs) from patients with IPF in vitro treated with the JAK2 inhibitor JSI-124 or siRNA-JAK2 and stimulated with transforming growth factor beta. Both JSI-124 and siRNA-JAK2 inhibited the HPAEC to mesenchymal transition and the HPASMCs to myofibroblast transition and proliferation. JAK2 inhibition induced small PA relaxation in precision-cut lung slice experiments. PA relaxation was dependent of the large conductance calcium-activated potassium channel (BK Ca ). JAK2 inhibition activated BK Ca channels and reduced intracellular Ca 2+ . JSI-124 1 mg/kg/day, reduced bleomycin-induced lung fibrosis, PA remodelling, right ventricular hypertrophy, PA hypertension and V / Q mismatching in rats. The animal studies followed the ARRIVE guidelines. JAK2 participates in PA remodelling and tension and may be an attractive target to treat IPF associated to PH. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  18. Hybrid Lipid/Polymer Nanoparticles for Pulmonary Delivery of siRNA: Development and Fate Upon In Vitro Deposition on the Human Epithelial Airway Barrier.

    Science.gov (United States)

    d'Angelo, Ivana; Costabile, Gabriella; Durantie, Estelle; Brocca, Paola; Rondelli, Valeria; Russo, Annapina; Russo, Giulia; Miro, Agnese; Quaglia, Fabiana; Petri-Fink, Alke; Rothen-Rutishauser, Barbara; Ungaro, Francesca

    2017-10-16

    Nowadays, the downregulation of genes involved in the pathogenesis of severe lung diseases through local siRNA delivery appears an interesting therapeutic approach. In this study, we propose novel hybrid lipid-polymer nanoparticles (hNPs) consisting of poly(lactic-co-glycolic) acid (PLGA) and dipalmitoyl phosphatidylcholine (DPPC) as siRNA inhalation system. A panel of DPPC/PLGA hNPs was prepared by emulsion/solvent diffusion and fully characterized. A combination of model siRNAs against the sodium transepithelial channel (ENaC) was entrapped in optimized hNPs comprising or not poly(ethylenimine) (PEI) as third component. siRNA-loaded hNPs were characterized for encapsulation efficiency, release kinetics, aerodynamic properties, and stability in artificial mucus (AM). The fate and cytotoxicity of hNPs upon aerosolization on a triple cell co-culture model (TCCC) mimicking human epithelial airway barrier were assessed. Finally, the effect of siRNA-loaded hNPs on ENaC protein expression at 72 hours was evaluated in A549 cells. Optimized muco-inert hNPs encapsulating model siRNA with high efficiency were produced. The developed hNPs displayed a hydrodynamic diameter of ∼150 nm, a low polydispersity index, a negative ζ potential close to -25 mV, and a peculiar triphasic siRNA release lasting for 5 days, which slowed down in the presence of PEI. siRNA formulations showed optimal in vitro aerosol performance after delivery with a vibrating mesh nebulizer. Furthermore, small-angle X-ray scattering analyses highlighted an excellent stability upon incubation with AM, confirming the potential of hNPs for direct aerosolization on mucus-lined airways. Studies in TCCC confirmed that fluorescent hNPs are internalized inside airway epithelial cells and do not exert any cytotoxic or acute proinflammatory effect. Finally, a prolonged inhibition of ENaC protein expression was observed in A549 cells upon treatment with siRNA-loaded hNPs. Results demonstrate the great potential

  19. BK Virus Load Associated with Serum Levels of sCD30 in Renal Transplant Recipients

    Science.gov (United States)

    Malik, Salma N.; Al-Saffer, Jinan M.; Jawad, Rana S.

    2016-01-01

    Background. Rejection is the main drawback facing the renal transplant operations. Complicated and overlapping factors, mainly related to the immune system, are responsible for this rejection. Elevated serum levels of sCD30 were frequently recorded as an indicator for renal allograft rejection, while BV virus is considered as one of the most serious consequences for immunosuppressive treatment of renal transplant recipients (RTRs). Aims. This study aimed to determine the association of BK virus load with serum levels of sCD30 in RTRs suffering from nephropathy. Patients and Methods. A total of 50 RTRs with nephropathy and 30 age-matched apparently healthy individuals were recruited for this study. Serum samples were obtained from each participant. Real-time PCR was used to quantify BK virus load in RTRs serum, while ELISA technique was employed to estimate serum levels of sCD30. Results. Twenty-two percent of RTRs had detectable BKV with mean viral load of 1.094E + 06 ± 2.291E + 06. RTRs showed higher mean serum level of sCD30 (20.669 ± 18.713 U/mL) than that of controls (5.517 ± 5.304 U/mL) with significant difference. BK virus load had significant positive correlation with the serum levels of sCD30 in RTRs group. Conclusion. These results suggest that serum levels of sCD30 could be used as an indicator of BK viremia, and accordingly the immunosuppressive regime should be adjusted. PMID:27051424

  20. How to save the WIMP. Global analysis of a dark matter model with two s-channel mediators

    International Nuclear Information System (INIS)

    Duerr, Michael; Kahlhoefer, Felix; Schmidt-Hoberg, Kai; Schwetz, Thomas; Vogl, Stefan

    2016-06-01

    A reliable comparison of different dark matter (DM) searches requires models that satisfy certain consistency requirements like gauge invariance and perturbative unitarity. As a well-motivated example, we study two-mediator DM (2MDM). The model is based on a spontaneously broken U(1)"' gauge symmetry and contains a Majorana DM particle as well as two s-channel mediators, one vector (the Z"') and one scalar (the dark Higgs). We perform a global scan over the parameters of the model assuming that the DM relic density is obtained by thermal freeze-out in the early Universe and imposing a large set of constraints: direct and indirect DM searches, monojet, dijet and dilepton searches at colliders, Higgs observables, electroweak precision tests and perturbative unitarity. We conclude that thermal DM is only allowed either close to an s-channel resonance or if at least one mediator is lighter than the DM particle. In these cases a thermal DM abundance can be obtained although DM couplings to the Standard Model are tiny. Interestingly, we find that vector-mediated DM-nucleon scattering leads to relevant constraints despite the velocity-suppressed cross section, and that indirect detection can be important if DM annihilations into both mediators are kinematically allowed.

  1. Fab’-bearing siRNA TNFα-loaded nanoparticles targeted to colonic macrophages offer an effective therapy for experimental colitis

    Science.gov (United States)

    Hamed, Laroui; Emilie, Viennois; Xiao, Bo; Canup, Brandon S.; Duke, Geem; Denning, Timothy L.; Didier, Merlin

    2014-01-01

    Patients suffering from Inflammatory Bowel Disease (IBD) are currently treated by systemic drugs that can have significant side effects. Thus, it would be highly desirable to target TNFα siRNA (a therapeutic molecule) to the inflamed tissue. Here, we demonstrate that TNFα siRNA can be efficiently loaded into nanoparticles (NPs) made of poly (lactic acid) poly (ethylene glycol) block copolymer (PLA-PEG), and that grafting of the Fab’ portion of the F4/80 Ab (Fab’-bearing) onto the NP surface via maleimide/thiol group-mediated covalent bonding improves the macrophage (MP)-targeting kinetics of the NPs to RAW264.7 cells in vitro. Direct binding was shown between MPs and the Fab’-bearing NPs. Next, we orally administered hydrogel (chitosan/alginate)-encapsulated Fab’-bearing TNFα-siRNA-loaded NPs to 3% dextran sodium sulfate (DSS)-treated mice and investigated the therapeutic effect on colitis. In vivo, the release of TNFα-siRNA-loaded NPs into the mouse colon attenuated colitis more efficiently when the NPs were covered with Fab’-bearing, compared to uncovered NPs. All DSS-induced parameters of colonic inflammation (e.g., weight loss, myeloperoxidase activity, and Iκbα accumulation) were more attenuated Fab’-bearing NPs loaded with TNFα siRNA than without the Fab’-bearing. Grafting the Fab’-bearing onto the NPs improved the kinetics of endocytosis as well as the MP-targeting ability, as indicated by flow cytometry. Collectively, our results show that Fab’-bearing PLA-PEG NPs are powerful and efficient nanosized tools for delivering siRNAs into colonic macrophages. PMID:24810114

  2. Comprehensive benchmarking reveals H2BK20 acetylation as a distinctive signature of cell-state-specific enhancers and promoters.

    Science.gov (United States)

    Kumar, Vibhor; Rayan, Nirmala Arul; Muratani, Masafumi; Lim, Stefan; Elanggovan, Bavani; Xin, Lixia; Lu, Tess; Makhija, Harshyaa; Poschmann, Jeremie; Lufkin, Thomas; Ng, Huck Hui; Prabhakar, Shyam

    2016-05-01

    Although over 35 different histone acetylation marks have been described, the overwhelming majority of regulatory genomics studies focus exclusively on H3K27ac and H3K9ac. In order to identify novel epigenomic traits of regulatory elements, we constructed a benchmark set of validated enhancers by performing 140 enhancer assays in human T cells. We tested 40 chromatin signatures on this unbiased enhancer set and identified H2BK20ac, a little-studied histone modification, as the most predictive mark of active enhancers. Notably, we detected a novel class of functionally distinct enhancers enriched in H2BK20ac but lacking H3K27ac, which was present in all examined cell lines and also in embryonic forebrain tissue. H2BK20ac was also unique in highlighting cell-type-specific promoters. In contrast, other acetylation marks were present in all active promoters, regardless of cell-type specificity. In stimulated microglial cells, H2BK20ac was more correlated with cell-state-specific expression changes than H3K27ac, with TGF-beta signaling decoupling the two acetylation marks at a subset of regulatory elements. In summary, our study reveals a previously unknown connection between histone acetylation and cell-type-specific gene regulation and indicates that H2BK20ac profiling can be used to uncover new dimensions of gene regulation. © 2016 Kumar et al.; Published by Cold Spring Harbor Laboratory Press.

  3. siRNA transfection in larvae of the barnacle Amphibalanus amphitrite

    KAUST Repository

    Zhang, G.

    2015-06-25

    RNA interference (RNAi) provides an efficient and specific technique for functional genomic studies. Yet, no successful application of RNAi has been reported in barnacles. In this study, siRNA against p38 MAPK was synthesized and then transfected into A. amphitrite larvae at either the nauplius or cyprid stage, or at both stages. Effects of siRNA transfection on the p38 MAPK level were hardly detectable in the cyprids when they were transfected at the nauplius stage. In contrast, larvae that were transfected at the cyprid stage showed lower levels of p38 MAPK than the blank and reagent controls. However, significantly decreased levels of phosphorylated p38 MAPK (pp38 MAPK) and reduced settlement rates were observed only in ‘double transfections’, in which larvae were exposed to siRNA solution at both the nauplius and cyprid stages. A relatively longer transfection time and more larval cells directly exposed to siRNA might explain the higher efficiency of double transfection experiments.

  4. siRNA transfection in larvae of the barnacle Amphibalanus amphitrite

    KAUST Repository

    Zhang, G.; He, L.-S.; Wong, Y. H.; Yu, L.; Qian, P.-Y.

    2015-01-01

    RNA interference (RNAi) provides an efficient and specific technique for functional genomic studies. Yet, no successful application of RNAi has been reported in barnacles. In this study, siRNA against p38 MAPK was synthesized and then transfected into A. amphitrite larvae at either the nauplius or cyprid stage, or at both stages. Effects of siRNA transfection on the p38 MAPK level were hardly detectable in the cyprids when they were transfected at the nauplius stage. In contrast, larvae that were transfected at the cyprid stage showed lower levels of p38 MAPK than the blank and reagent controls. However, significantly decreased levels of phosphorylated p38 MAPK (pp38 MAPK) and reduced settlement rates were observed only in ‘double transfections’, in which larvae were exposed to siRNA solution at both the nauplius and cyprid stages. A relatively longer transfection time and more larval cells directly exposed to siRNA might explain the higher efficiency of double transfection experiments.

  5. On the influence of plasma DBD actuator on the flow in a rectangular channel

    Czech Academy of Sciences Publication Activity Database

    Procházka, Pavel P.; Uruba, Václav

    2014-01-01

    Roč. 14, č. 1 (2014), s. 727-728 ISSN 1617-7061. [Annual Meeting of the International Association of Applied Mathematics and Mechanics /85./. Erlangen, 10.03.2014-14.03.2014] R&D Projects: GA ČR(CZ) GP14-25354P Institutional support: RVO:61388998 Keywords : plasma DBD * boundary layer * channel flow Subject RIV: BK - Fluid Dynamics http://onlinelibrary.wiley.com/doi/10.1002/pamm.201410346/abstract

  6. Upregulation of the sodium channel NaVβ4 subunit and its contributions to mechanical hypersensitivity and neuronal hyperexcitability in a rat model of radicular pain induced by local DRG inflammation

    Science.gov (United States)

    Xie, Wenrui; Tan, Zhi-Yong; Barbosa, Cindy; Strong, Judith A.; Cummins, Theodore R.; Zhang, Jun-Ming

    2016-01-01

    High frequency spontaneous firing in myelinated sensory neurons plays a key role in initiating pain behaviors in several different models, including the radicular pain model in which the rat lumbar dorsal root ganglia (DRG) are locally inflamed. The sodium channel isoform NaV1.6 contributes to pain behaviors and spontaneous activity in this model. Among all the isoforms in adult DRG, NaV1.6 is the main carrier of TTX-sensitive resurgent Na currents that allow high-frequency firing. Resurgent currents flow after a depolarization or action potential, as a blocking particle exits the pore. In most neurons the regulatory β4 subunit is potentially the endogenous blocker. We used in vivo siRNA mediated knockdown of NaVβ4 to examine its role in the DRG inflammation model. NaVβ4 but not control siRNA almost completely blocked mechanical hypersensitivity induced by DRG inflammation. Microelectrode recordings in isolated whole DRGs showed that NaVβ4 siRNA blocked the inflammation-induced increase in spontaneous activity of Aβ neurons, and reduced repetitive firing and other measures of excitability. NaVβ4 was preferentially expressed in larger diameter cells; DRG inflammation increased its expression and this was reversed by NaVβ4 siRNA, based on immunohistochemistry and Western blotting. NaVβ4 siRNA also reduced immunohistochemical NaV1.6 expression. Patch clamp recordings of TTX-sensitive Na currents in acutely cultured medium diameter DRG neurons showed that DRG inflammation increased transient and especially resurgent current; effects blocked by NaVβ4 siRNA. NaVβ4 may represent a more specific target for pain conditions that depend on myelinated neurons expressing NaV1.6. PMID:26785322

  7. Multi-task learning for cross-platform siRNA efficacy prediction: an in-silico study.

    Science.gov (United States)

    Liu, Qi; Xu, Qian; Zheng, Vincent W; Xue, Hong; Cao, Zhiwei; Yang, Qiang

    2010-04-10

    Gene silencing using exogenous small interfering RNAs (siRNAs) is now a widespread molecular tool for gene functional study and new-drug target identification. The key mechanism in this technique is to design efficient siRNAs that incorporated into the RNA-induced silencing complexes (RISC) to bind and interact with the mRNA targets to repress their translations to proteins. Although considerable progress has been made in the computational analysis of siRNA binding efficacy, few joint analysis of different RNAi experiments conducted under different experimental scenarios has been done in research so far, while the joint analysis is an important issue in cross-platform siRNA efficacy prediction. A collective analysis of RNAi mechanisms for different datasets and experimental conditions can often provide new clues on the design of potent siRNAs. An elegant multi-task learning paradigm for cross-platform siRNA efficacy prediction is proposed. Experimental studies were performed on a large dataset of siRNA sequences which encompass several RNAi experiments recently conducted by different research groups. By using our multi-task learning method, the synergy among different experiments is exploited and an efficient multi-task predictor for siRNA efficacy prediction is obtained. The 19 most popular biological features for siRNA according to their jointly importance in multi-task learning were ranked. Furthermore, the hypothesis is validated out that the siRNA binding efficacy on different messenger RNAs(mRNAs) have different conditional distribution, thus the multi-task learning can be conducted by viewing tasks at an "mRNA"-level rather than at the "experiment"-level. Such distribution diversity derived from siRNAs bound to different mRNAs help indicate that the properties of target mRNA have important implications on the siRNA binding efficacy. The knowledge gained from our study provides useful insights on how to analyze various cross-platform RNAi data for uncovering

  8. Multi-task learning for cross-platform siRNA efficacy prediction: an in-silico study

    Directory of Open Access Journals (Sweden)

    Xue Hong

    2010-04-01

    Full Text Available Abstract Background Gene silencing using exogenous small interfering RNAs (siRNAs is now a widespread molecular tool for gene functional study and new-drug target identification. The key mechanism in this technique is to design efficient siRNAs that incorporated into the RNA-induced silencing complexes (RISC to bind and interact with the mRNA targets to repress their translations to proteins. Although considerable progress has been made in the computational analysis of siRNA binding efficacy, few joint analysis of different RNAi experiments conducted under different experimental scenarios has been done in research so far, while the joint analysis is an important issue in cross-platform siRNA efficacy prediction. A collective analysis of RNAi mechanisms for different datasets and experimental conditions can often provide new clues on the design of potent siRNAs. Results An elegant multi-task learning paradigm for cross-platform siRNA efficacy prediction is proposed. Experimental studies were performed on a large dataset of siRNA sequences which encompass several RNAi experiments recently conducted by different research groups. By using our multi-task learning method, the synergy among different experiments is exploited and an efficient multi-task predictor for siRNA efficacy prediction is obtained. The 19 most popular biological features for siRNA according to their jointly importance in multi-task learning were ranked. Furthermore, the hypothesis is validated out that the siRNA binding efficacy on different messenger RNAs(mRNAs have different conditional distribution, thus the multi-task learning can be conducted by viewing tasks at an "mRNA"-level rather than at the "experiment"-level. Such distribution diversity derived from siRNAs bound to different mRNAs help indicate that the properties of target mRNA have important implications on the siRNA binding efficacy. Conclusions The knowledge gained from our study provides useful insights on how to

  9. Diatomite biosilica nanocarriers for siRNA transport inside cancer cells.

    Science.gov (United States)

    Rea, Ilaria; Martucci, Nicola M; De Stefano, Luca; Ruggiero, Immacolata; Terracciano, Monica; Dardano, Principia; Migliaccio, Nunzia; Arcari, Paolo; Taté, Rosarita; Rendina, Ivo; Lamberti, Annalisa

    2014-12-01

    Diatomite is a natural porous biomaterial of sedimentary origin, formed by fragments of diatom siliceous skeletons, called "frustules". Due to large availability in many areas of the world, chemical stability, and non-toxicity, these fossil structures have been widespread used in lot of industrial applications, such as food production, water extracting agent, production of cosmetics and pharmaceutics. However, diatomite is surprisingly still rarely used in biomedical applications. In this work, we exploit diatomite nanoparticles for small interfering ribonucleic acid (siRNA) transport inside human epidermoid cancer cells (H1355). Morphology and composition of diatomite microfrustules (average size lower than 40μm) are investigated by scanning electron microscopy equipped by energy dispersive X-ray spectroscopy, Fourier transform infrared analysis, and photoluminescence measurements. Nanometric porous particles (average size lower than 450nm) are obtained by mechanical crushing, sonication, and filtering of micrometric frustules. siRNA bioconjugation is performed on both micrometric and nanometric fragments by silanization. In-vitro experiments show very low toxicity on exposure of the cells to diatomite nanoparticle concentration up to 300μg/ml for 72h. Confocal microscopy imaging performed on cancer cells incubated with siRNA conjugated nanoparticles demonstrates a cytoplasmatic localization of vectors. Gene silencing by delivered siRNA is also demonstrated. Our studies endorse diatomite nanoparticles as non-toxic nanocarriers for siRNA transport in cancer cells. siRNA is a powerful molecular tool for cancer treatment but its delivery is inefficient due to the difficulty to penetrate the cell membrane. siRNA-diatomite nanoconjugate may be well suited for delivery of therapeutic to cancer cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Systemic RNAi-mediated Gene Silencing in Nonhuman Primate and Rodent Myeloid Cells

    Directory of Open Access Journals (Sweden)

    Tatiana I Novobrantseva

    2012-01-01

    Full Text Available Leukocytes are central regulators of inflammation and the target cells of therapies for key diseases, including autoimmune, cardiovascular, and malignant disorders. Efficient in vivo delivery of small interfering RNA (siRNA to immune cells could thus enable novel treatment strategies with broad applicability. In this report, we develop systemic delivery methods of siRNA encapsulated in lipid nanoparticles (LNP for durable and potent in vivo RNA interference (RNAi-mediated silencing in myeloid cells. This work provides the first demonstration of siRNA-mediated silencing in myeloid cell types of nonhuman primates (NHPs and establishes the feasibility of targeting multiple gene targets in rodent myeloid cells. The therapeutic potential of these formulations was demonstrated using siRNA targeting tumor necrosis factor-α (TNFα which induced substantial attenuation of disease progression comparable to a potent antibody treatment in a mouse model of rheumatoid arthritis (RA. In summary, we demonstrate a broadly applicable and therapeutically relevant platform for silencing disease genes in immune cells.

  11. Sonoporation-mediated transduction of siRNA ameliorated experimental arthritis using 3 MHz pulsed ultrasound.

    Science.gov (United States)

    Inoue, Hiroaki; Arai, Yuji; Kishida, Tsunao; Shin-Ya, Masaharu; Terauchi, Ryu; Nakagawa, Shuji; Saito, Masazumi; Tsuchida, Shinji; Inoue, Atsuo; Shirai, Toshiharu; Fujiwara, Hiroyoshi; Mazda, Osam; Kubo, Toshikazu

    2014-03-01

    The goal of this feasibility study was to examine whether sonoporation assisted transduction of siRNA could be used to ameliorate arthritis locally. If successful, such approach could provide an alternative treatment for the patients that have or gradually develop adverse response to chemical drugs. Tumor necrosis factor alpha (TNF-α) produced by synovial fibroblasts has an important role in the pathology of rheumatoid arthritis, inducing inflammation and bone destruction. In this study, we injected a mixture of microbubbles and siRNA targeting TNF-α (siTNF) into the articular joints of rats, and transduced siTNF into synovial tissue by exposure to a collimated ultrasound beam, applied through a probe 6mm in diameter with an input frequency of 3.0 MHz, an output intensity of 2.0 W/cm(2) (spatial average temporary peak; SATP), a pulse duty ratio of 50%, and a duration of 1 min. Sonoporation increased skin temperature from 26.8 °C to 27.3 °C, but there were no adverse effect such as burns. The mean level of TNF-α expression in siTNF-treated knee joints was 55% of those in controls. Delivery of siTNF into the knee joints every 3 days (i.e., 7, 10, 13, and 16 days after immunization) by in vivo sonoporation significantly reduced paw swelling on days 20-23 after immunization. Radiographic scores in the siTNF group were 56% of those in the CIA group and 61% of those in the siNeg group. Histological examination showed that the number of TNF-α positive cells was significantly lower in areas of pannus invasion into the ankle joints of siTNF- than of siNeg-treated rats. These results indicate that transduction of siTNF into articular synovium using sonoporation may be an effective local therapy for arthritis. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  12. The vacuolar channel VvALMT9 mediates malate and tartrate accumulation in berries of Vitis vinifera.

    Science.gov (United States)

    De Angeli, Alexis; Baetz, Ulrike; Francisco, Rita; Zhang, Jingbo; Chaves, Maria Manuela; Regalado, Ana

    2013-08-01

    Vitis vinifera L. represents an economically important fruit species. Grape and wine flavour is made from a complex set of compounds. The acidity of berries is a major parameter in determining grape berry quality for wine making and fruit consumption. Despite the importance of malic and tartaric acid (TA) storage and transport for grape berry acidity, no vacuolar transporter for malate or tartrate has been identified so far. Some members of the aluminium-activated malate transporter (ALMT) anion channel family from Arabidopsis thaliana have been shown to be involved in mediating malate fluxes across the tonoplast. Therefore, we hypothesised that a homologue of these channels could have a similar role in V. vinifera grape berries. We identified homologues of the Arabidopsis vacuolar anion channel AtALMT9 through a TBLASTX search on the V. vinifera genome database. We cloned the closest homologue of AtALMT9 from grape berry cDNA and designated it VvALMT9. The expression profile revealed that VvALMT9 is constitutively expressed in berry mesocarp tissue and that its transcription level increases during fruit maturation. Moreover, we found that VvALMT9 is targeted to the vacuolar membrane. Using patch-clamp analysis, we could show that, besides malate, VvALMT9 mediates tartrate currents which are higher than in its Arabidopsis homologue. In summary, in the present study we provide evidence that VvALMT9 is a vacuolar malate channel expressed in grape berries. Interestingly, in V. vinifera, a tartrate-producing plant, the permeability of the channel is apparently adjusted to TA.

  13. Clinical polyomavirus BK variants with agnogene deletion are non-functional but rescued by trans-complementation

    International Nuclear Information System (INIS)

    Myhre, Marit Renee; Olsen, Gunn-Hege; Gosert, Rainer; Hirsch, Hans H.; Rinaldo, Christine Hanssen

    2010-01-01

    High-level replication of polyomavirus BK (BKV) in kidney transplant recipients is associated with the emergence of BKV variants with rearranged (rr) non-coding control region (NCCR) increasing viral early gene expression and cytopathology. Cloning and sequencing revealed the presence of a BKV quasispecies which included non-functional variants when assayed in a recombinant virus assay. Here we report that the rr-NCCR of BKV variants RH-3 and RH-12, both bearing a NCCR deletion including the 5' end of the agnoprotein coding sequence, mediated early and late viral reporter gene expression in kidney cells. However, in a recombinant virus they failed to produce infectious progeny despite large T-antigen and VP1 expression and the formation of nuclear virus-like particles. Infectious progeny was generated when the agnogene was reconstructed in cis or agnoprotein provided in trans from a co-existing BKV rr-NCCR variant. We conclude that complementation can rescue non-functional BKV variants in vitro and possibly in vivo.

  14. A single-center epidemiological study of BK virus infection and analysis of risk factors in patients with renal transplantation

    Directory of Open Access Journals (Sweden)

    Ji-gang LI

    2014-10-01

    Full Text Available Objective To investigate the epidemiological characteristics of BK virus (BKV infection in living renal transplantation patients, and analyze the risk factors of BKV infection and BKV nephropathy (BKVN. Methods The BKV DNA load in urine and blood samples of 43 renal transplant recipients, who had received renal transplantation in 309 Hospital from Feb. 2012 to Feb. 2013, was determined at preoperative period and 0.5, 1, 3, 6, 9, 12 and 15 months after transplantation. Meanwhile, the biopsy of grafted kidney was performed in those patients with continuously elevated serum creatinine and those with higher BKV DNA load. Patients were divided into 3 groups as follows according to the test results: BK viruria group, BK viremia group and pathologically diagnosed BKVN group. Data of each group were then recorded, including gender, age, postoperative diabetes (PTDM, acute rejection (AR, delayed recovery of graft function (DGF, postoperative pulmonary infection, preoperative immune induction therapy, postoperative immunosuppressive regimen, and other information. The risk factors for postoperative BKV infection and BKVN were analyzed. Results After an average of 15-month follow-up, it was found that the incidence of BKV viruria was 46.5%, that of BKV viremia was 14.0%, and that of BKVN was 2.3%. Sixth month after transplantation was found to be the peak time of viruria and viremia. FK506 was significantly associated with viremia in living donor renal transplantation. The immunosuppressive regimen was the immune related independent risk factor for BK viremia developing BKVN after living renal transplantation. Conclusion The incidence of BK viremia and BKVN is lower in living donor renal transplantation than in cadaver renal transplantation, but that of viruria is similar in both groups. Immunosuppressive scheme based on FK506 is an immune related independent risk factor leading to BK viremia proceeding to BKVN in living donor kidney

  15. Immunogenicity investigations of lipidoid structures in vitro and in silico: Modulating lipidoid-mediated TLR4 activation by nanoparticle design

    DEFF Research Database (Denmark)

    de Groot, Anne Marit; Thanki, Kaushik; Gangloff, Monique

    2018-01-01

    , we showed that encapsulation of siRNA in lipid-polymer hybrid nanoparticles (LPNs), based on poly(DL-lactic-co-glycolic acid) (PLGA) and cationic lipid-like materials (lipidoids), remarkably enhances intracellular delivery of siRNA as compared to siRNA delivery with LPNs modified...... acid lipid particles, which was the reference formulation for siRNA delivery, proved to activate TLR4. However, by combining lipidoids with PLGA into LPNs, TLR4 activation was abrogated. Thus, lipidoid-mediated TLR4 activation during siRNA delivery may be modulated via optimization of the formulation......Therapeutics based on small interfering RNA (siRNA) have promising potential as antiviral and anti-inflammatory agents. To deliver siRNA across cell membranes to reach the RNA interference pathway in the cytosol of target cells, non-viral nanoparticulate delivery approaches are explored. Recently...

  16. Ternary complexes of folate-PEG-appended dendrimer (G4)/α-cyclodextrin conjugate, siRNA and low-molecular-weight polysaccharide sacran as a novel tumor-selective siRNA delivery system.

    Science.gov (United States)

    Ohyama, Ayumu; Higashi, Taishi; Motoyama, Keiichi; Arima, Hidetoshi

    2017-06-01

    We previously developed a tumor-selective siRNA carrier by preparing polyamidoamine dendrimer (generation 4, G4) conjugates with α-cyclodextrin and folate-polyethylene glycol (Fol-PαC (G4)). In the present study, we developed ternary complexes of Fol-PαC (G4)/siRNA with low-molecular-weight-sacrans to achieve more effective siRNA transfer activity. Among the different molecular-weight sacrans, i.e. sacran 100, 1000 and 10,000 (MW 44,889Da, 943,692Da and 1,488,281Da, respectively), sacran 100 significantly increased the cellular uptake and the RNAi effects of Fol-PαC (G4)/siRNA binary complex with negligible cytotoxicity in KB cells (folate receptor-α positive cells). In addition, the ζ-potential and particle size of Fol-PαC (G4)/siRNA complex were decreased by the ternary complexation with sacran 100. Importantly, the in vivo RNAi effect of the ternary complex after the intravenous administration to tumor-bearing BALB/c mice was significantly higher than that of the binary complex. In conclusion, Fol-PαC (G4)/siRNA/sacran 100 ternary complex has a potential as a novel tumor-selective siRNA delivery system. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Microfluidic Synthesis of Highly Potent Limit-size Lipid Nanoparticles for In Vivo Delivery of siRNA

    Directory of Open Access Journals (Sweden)

    Nathan M Belliveau

    2012-01-01

    Full Text Available Lipid nanoparticles (LNP are the leading systems for in vivo delivery of small interfering RNA (siRNA for therapeutic applications. Formulation of LNP siRNA systems requires rapid mixing of solutions containing cationic lipid with solutions containing siRNA. Current formulation procedures employ macroscopic mixing processes to produce systems 70-nm diameter or larger that have variable siRNA encapsulation efficiency, homogeneity, and reproducibility. Here, we show that microfluidic mixing techniques, which permit millisecond mixing at the nanoliter scale, can reproducibly generate limit size LNP siRNA systems 20 nm and larger with essentially complete encapsulation of siRNA over a wide range of conditions with polydispersity indexes as low as 0.02. Optimized LNP siRNA systems produced by microfluidic mixing achieved 50% target gene silencing in hepatocytes at a dose level of 10 µg/kg siRNA in mice. We anticipate that microfluidic mixing, a precisely controlled and readily scalable technique, will become the preferred method for formulation of LNP siRNA delivery systems.

  18. Dark matter annihilation with s-channel internal Higgsstrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Jason; Liao, Jiajun, E-mail: liaoj@hawaii.edu; Marfatia, Danny

    2016-08-10

    We study the scenario of fermionic dark matter that annihilates to standard model fermions through an s-channel axial vector mediator. We point out that the well-known chirality suppression of the annihilation cross section can be alleviated by s-channel internal Higgsstrahlung. The shapes of the cosmic ray spectra are identical to that of t-channel internal Higgsstrahlung in the limit of a heavy mediating particle. Unlike the general case of t-channel bremsstrahlung, s-channel Higgsstrahlung can be the dominant annihilation process even for Dirac dark matter. Since the s-channel mediator can be a standard model singlet, collider searches for the mediator are easily circumvented.

  19. Dark matter annihilation with s-channel internal Higgsstrahlung

    International Nuclear Information System (INIS)

    Kumar, Jason; Liao, Jiajun; Marfatia, Danny

    2016-01-01

    We study the scenario of fermionic dark matter that annihilates to standard model fermions through an s-channel axial vector mediator. We point out that the well-known chirality suppression of the annihilation cross section can be alleviated by s-channel internal Higgsstrahlung. The shapes of the cosmic ray spectra are identical to that of t-channel internal Higgsstrahlung in the limit of a heavy mediating particle. Unlike the general case of t-channel bremsstrahlung, s-channel Higgsstrahlung can be the dominant annihilation process even for Dirac dark matter. Since the s-channel mediator can be a standard model singlet, collider searches for the mediator are easily circumvented.

  20. Random small interfering RNA library screen identifies siRNAs that induce human erythroleukemia cell differentiation.

    Science.gov (United States)

    Fan, Cuiqing; Xiong, Yuan; Zhu, Ning; Lu, Yabin; Zhang, Jiewen; Wang, Song; Liang, Zicai; Shen, Yan; Chen, Meihong

    2011-03-01

    Cancers are characterized by poor differentiation. Differentiation therapy is a strategy to alleviate malignant phenotypes by inducing cancer cell differentiation. Here we carried out a combinatorial high-throughput screen with a random siRNA library on human erythroleukemia K-562 cell differentiation. Two siRNAs screened from the library were validated to be able to induce erythroid differentiation to varying degrees, determined by CD235 and globin up-regulation, GATA-2 down-regulation, and cell growth inhibition. The screen we performed here is the first trial of screening cancer differentiation-inducing agents from a random siRNA library, demonstrating that a random siRNA library can be considered as a new resource in efforts to seek new therapeutic agents for cancers. As a random siRNA library has a broad coverage for the entire genome, including known/unknown genes and protein coding/non-coding sequences, screening using a random siRNA library can be expected to greatly augment the repertoire of therapeutic siRNAs for cancers.

  1. Mesoporous silica nanorods toward efficient loading and intracellular delivery of siRNA

    Science.gov (United States)

    Chen, Lijue; She, Xiaodong; Wang, Tao; Shigdar, Sarah; Duan, Wei; Kong, Lingxue

    2018-02-01

    The technology of RNA interference (RNAi) that uses small interfering RNA (siRNA) to silence the gene expression with complementary messenger RNA (mRNA) sequence has great potential for the treatment of cancer in which certain genes were usually found overexpressed. However, the carry and delivery of siRNA to the target site in the human body can be challenging for this technology to be used clinically to silence the cancer-related gene expression. In this work, rod shaped mesoporous silica nanoparticles (MSNs) were developed as siRNA delivery system for specific intracellular delivery. The rod MSNs with an aspect ratio of 1.5 had a high surface area of 934.28 m2/g and achieved a siRNA loading of more than 80 mg/g. With the epidermal growth factor (EGF) grafted on the surface of the MSNs, siRNA can be delivered to the epidermal growth factor receptor (EGFR) overexpressed colorectal cancer cells with high intracellular concentration compared to MSNs without EGF and lead to survivin gene knocking down to less than 30%.

  2. C-terminus-mediated voltage gating of Arabidopsis guard cell anion channel QUAC1.

    Science.gov (United States)

    Mumm, Patrick; Imes, Dennis; Martinoia, Enrico; Al-Rasheid, Khaled A S; Geiger, Dietmar; Marten, Irene; Hedrich, Rainer

    2013-09-01

    Anion transporters in plants play a fundamental role in volume regulation and signaling. Currently, two plasma membrane-located anion channel families—SLAC/SLAH and ALMT—are known. Among the ALMT family, the root-expressed ALuminium-activated Malate Transporter 1 was identified by comparison of aluminum-tolerant and Al(3+)-sensitive wheat cultivars and was subsequently shown to mediate voltage-independent malate currents. In contrast, ALMT12/QUAC1 (QUickly activating Anion Channel1) is expressed in guard cells transporting malate in an Al(3+)-insensitive and highly voltage-dependent manner. So far, no information is available about the structure and mechanism of voltage-dependent gating with the QUAC1 channel protein. Here, we analyzed gating of QUAC1-type currents in the plasma membrane of guard cells and QUAC1-expressing oocytes revealing similar voltage dependencies and activation–deactivation kinetics. In the heterologous expression system, QUAC1 was electrophysiologically characterized at increasing extra- and intracellular malate concentrations. Thereby, malate additively stimulated the voltage-dependent QUAC1 activity. In search of structural determinants of the gating process, we could not identify transmembrane domains common for voltage-sensitive channels. However, site-directed mutations and deletions at the C-terminus of QUAC1 resulted in altered voltage-dependent channel activity. Interestingly, the replacement of a single glutamate residue, which is conserved in ALMT channels from different clades, by an alanine disrupted QUAC1 activity. Together with C- and N-terminal tagging, these results indicate that the cytosolic C-terminus is involved in the voltage-dependent gating mechanism of QUAC1.

  3. In vitro and in vivo siRNA delivery to hepatocyte utilizing ternary complexation of lactosylated dendrimer/cyclodextrin conjugates, siRNA and low-molecular-weight sacran.

    Science.gov (United States)

    Hayashi, Yuya; Higashi, Taishi; Motoyama, Keiichi; Jono, Hirofumi; Ando, Yukio; Arima, Hidetoshi

    2018-02-01

    In this study, we newly developed the ternary complexes consisting of lactosylated dendrimer (generation 3)/α-cyclodextrin conjugate (Lac-α-CDE), siRNA and the anionic polysaccharide sacrans, and evaluated their utility as siRNA transfer carriers. Three kinds of the low-molecular-weight sacrans, i.e. sacran (100) (Mw 44,889Da), sacran (1000) (Mw 943,692Da) and sacran (10,000) (Mw 1,488,281Da) were used. Lac-α-CDE/siRNA/sacran ternary complexes were prepared by adding the low-molecular-weight sacrans to the Lac-α-CDE/siRNA binary complex solution. Cellular uptake of the ternary complex with sacran (100) was higher than that of the binary complex or the other ternary complexes with sacran (1000) and sacran (10,000) in HepG2 cells. Additionally, the ternary complex possessed high serum resistance and endosomal escaping ability in HepG2 cells. High liver levels of siRNA and Lac-α-CDE were observed after the intravenous administration of the ternary complex rather than that of the binary complex. Moreover, intravenous administration of the ternary complex (siRNA 5mg/kg) induced the significant RNAi effect in the liver of mice with negligible change of blood chemistry values. Therefore, a ternary complexation of the Lac-α-CDE/siRNA binary complex with sacran is useful as a hepatocyte-specific siRNA delivery system. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Protection and systemic translocation of siRNA following oral administration of chitosan/siRNA nanoparticles

    DEFF Research Database (Denmark)

    Gonzalez, Borja Ballarin; Dagnæs-Hansen, Frederik; Fenton, Robert A.

    2013-01-01

    , gastrointestinal (GI) deposition, and translocation into peripheral tissue of nonmodified siRNA after oral gavage of chitosan/siRNA nanoparticles in mice. In contrast to naked siRNA, retained structural integrity and deposition in the stomach, proximal and distal small intestine, and colon was observed at 1 and 5...... hours for siRNA within nanoparticles. Furthermore, histological detection of fluorescent siRNA at the apical regions of the intestinal epithelium suggests mucoadhesion provided by chitosan. Detection of intact siRNA in the liver, spleen, and kidney was observed 1 hour after oral gavage, with an organ...

  5. Targeted Delivery of siRNA Therapeutics to Malignant Tumors

    Directory of Open Access Journals (Sweden)

    Qixin Leng

    2017-01-01

    Full Text Available Over the past 20 years, a diverse group of ligands targeting surface biomarkers or receptors has been identified with several investigated to target siRNA to tumors. Many approaches to developing tumor-homing peptides, RNA and DNA aptamers, and single-chain variable fragment antibodies by using phage display, in vitro evolution, and recombinant antibody methods could not have been imagined by researchers in the 1980s. Despite these many scientific advances, there is no reason to expect that the ligand field will not continue to evolve. From development of ligands based on novel or existing biomarkers to linking ligands to drugs and gene and antisense delivery systems, several fields have coalesced to facilitate ligand-directed siRNA therapeutics. In this review, we discuss the major categories of ligand-targeted siRNA therapeutics for tumors, as well as the different strategies to identify new ligands.

  6. Rapid effects of 17beta-estradiol on TRPV5 epithelial Ca2+ channels in rat renal cells.

    LENUS (Irish Health Repository)

    Irnaten, Mustapha

    2009-08-01

    The renal distal tubules and collecting ducts play a key role in the control of electrolyte and fluid homeostasis. The discovery of highly calcium selective channels, Transient Receptor Potential Vanilloid 5 (TRPV5) of the TRP superfamily, has clarified the nature of the calcium entry channels. It has been proposed that this channel mediates the critical Ca(2+) entry step in transcellular Ca(2+) re-absorption in the kidney. The regulation of transmembrane Ca(2+) flux through TRPV5 is of particular importance for whole body calcium homeostasis.In this study, we provide evidence that the TRPV5 channel is present in rat cortical collecting duct (RCCD(2)) cells at mRNA and protein levels. We demonstrate that 17beta-estradiol (E(2)) is involved in the regulation of Ca(2+) influx in these cells via the epithelial Ca(2+) channels TRPV5. By combining whole-cell patch-clamp and Ca(2+)-imaging techniques, we have characterized the electrophysiological properties of the TRPV5 channel and showed that treatment with 20-50nM E(2) rapidly (<5min) induced a transient increase in inward whole-cell currents and intracellular Ca(2+) via TRPV5 channels. This rise was significantly prevented when cells were pre-treated with ruthenium red and completely abolished in cells treated with siRNA specifically targeting TRPV5.These data demonstrate for the first time, a novel rapid modulation of endogenously expressed TRPV5 channels by E(2) in kidney cells. Furthermore, the results suggest calcitropic effects of E(2). The results are discussed in relation to present concepts of non-genomic actions of E(2) in Ca(2+) homeostasis.

  7. Phase 1b randomized trial and follow-up study in Uganda of the blood-stage malaria vaccine candidate BK-SE36.

    Science.gov (United States)

    Palacpac, Nirianne Marie Q; Ntege, Edward; Yeka, Adoke; Balikagala, Betty; Suzuki, Nahoko; Shirai, Hiroki; Yagi, Masanori; Ito, Kazuya; Fukushima, Wakaba; Hirota, Yoshio; Nsereko, Christopher; Okada, Takuya; Kanoi, Bernard N; Tetsutani, Kohhei; Arisue, Nobuko; Itagaki, Sawako; Tougan, Takahiro; Ishii, Ken J; Ueda, Shigeharu; Egwang, Thomas G; Horii, Toshihiro

    2013-01-01

    Up to now a malaria vaccine remains elusive. The Plasmodium falciparum serine repeat antigen-5 formulated with aluminum hydroxyl gel (BK-SE36) is a blood-stage malaria vaccine candidate that has undergone phase 1a trial in malaria-naive Japanese adults. We have now assessed the safety and immunogenicity of BK-SE36 in a malaria endemic area in Northern Uganda. We performed a two-stage, randomized, single-blinded, placebo-controlled phase 1b trial (Current Controlled trials ISRCTN71619711). A computer-generated sequence randomized healthy subjects for 2 subcutaneous injections at 21-day intervals in Stage1 (21-40 year-olds) to 1-mL BK-SE36 (BKSE1.0) (n = 36) or saline (n = 20) and in Stage2 (6-20 year-olds) to BKSE1.0 (n = 33), 0.5-mL BK-SE36 (BKSE0.5) (n = 33), or saline (n = 18). Subjects and laboratory personnel were blinded. Safety and antibody responses 21-days post-second vaccination (Day42) were assessed. Post-trial, to compare the risk of malaria episodes 130-365 days post-second vaccination, Stage2 subjects were age-matched to 50 control individuals. Nearly all subjects who received BK-SE36 had induration (Stage1, n = 33, 92%; Stage2, n = 63, 96%) as a local adverse event. No serious adverse event related to BK-SE36 was reported. Pre-existing anti-SE36 antibody titers negatively correlated with vaccination-induced antibody response. At Day42, change in antibody titers was significant for seronegative adults (1.95-fold higher than baseline [95% CI, 1.56-2.43], p = 0.004) and 6-10 year-olds (5.71-fold [95% CI, 2.38-13.72], p = 0.002) vaccinated with BKSE1.0. Immunogenicity response to BKSE0.5 was low and not significant (1.55-fold [95% CI, 1.24-1.94], p = 0.75). In the ancillary analysis, cumulative incidence of first malaria episodes with ≥5000 parasites/µL was 7 cases/33 subjects in BKSE1.0 and 10 cases/33 subjects in BKSE0.5 vs. 29 cases/66 subjects in the control group. Risk ratio for BKSE1.0 was 0.48 (95% CI, 0

  8. OSR1 regulates a subset of inward rectifier potassium channels via a binding motif variant.

    Science.gov (United States)

    Taylor, Clinton A; An, Sung-Wan; Kankanamalage, Sachith Gallolu; Stippec, Steve; Earnest, Svetlana; Trivedi, Ashesh T; Yang, Jonathan Zijiang; Mirzaei, Hamid; Huang, Chou-Long; Cobb, Melanie H

    2018-04-10

    The with-no-lysine (K) (WNK) signaling pathway to STE20/SPS1-related proline- and alanine-rich kinase (SPAK) and oxidative stress-responsive 1 (OSR1) kinase is an important mediator of cell volume and ion transport. SPAK and OSR1 associate with upstream kinases WNK 1-4, substrates, and other proteins through their C-terminal domains which interact with linear R-F-x-V/I sequence motifs. In this study we find that SPAK and OSR1 also interact with similar affinity with a motif variant, R-x-F-x-V/I. Eight of 16 human inward rectifier K + channels have an R-x-F-x-V motif. We demonstrate that two of these channels, Kir2.1 and Kir2.3, are activated by OSR1, while Kir4.1, which does not contain the motif, is not sensitive to changes in OSR1 or WNK activity. Mutation of the motif prevents activation of Kir2.3 by OSR1. Both siRNA knockdown of OSR1 and chemical inhibition of WNK activity disrupt NaCl-induced plasma membrane localization of Kir2.3. Our results suggest a mechanism by which WNK-OSR1 enhance Kir2.1 and Kir2.3 channel activity by increasing their plasma membrane localization. Regulation of members of the inward rectifier K + channel family adds functional and mechanistic insight into the physiological impact of the WNK pathway.

  9. The Pyrexia transient receptor potential channel mediates circadian clock synchronization to low temperature cycles in Drosophila melanogaster.

    Science.gov (United States)

    Wolfgang, Werner; Simoni, Alekos; Gentile, Carla; Stanewsky, Ralf

    2013-10-07

    Circadian clocks are endogenous approximately 24 h oscillators that temporally regulate many physiological and behavioural processes. In order to be beneficial for the organism, these clocks must be synchronized with the environmental cycles on a daily basis. Both light : dark and the concomitant daily temperature cycles (TCs) function as Zeitgeber ('time giver') and efficiently entrain circadian clocks. The temperature receptors mediating this synchronization have not been identified. Transient receptor potential (TRP) channels function as thermo-receptors in animals, and here we show that the Pyrexia (Pyx) TRP channel mediates temperature synchronization in Drosophila melanogaster. Pyx is expressed in peripheral sensory organs (chordotonal organs), which previously have been implicated in temperature synchronization. Flies deficient for Pyx function fail to synchronize their behaviour to TCs in the lower range (16-20°C), and this deficit can be partially rescued by introducing a wild-type copy of the pyx gene. Synchronization to higher TCs is not affected, demonstrating a specific role for Pyx at lower temperatures. In addition, pyx mutants speed up their clock after being exposed to TCs. Our results identify the first TRP channel involved in temperature synchronization of circadian clocks.

  10. Multifunctional selenium nanoparticles as carriers of HSP70 siRNA to induce apoptosis of HepG2 cells

    Directory of Open Access Journals (Sweden)

    Li Y

    2016-07-01

    Full Text Available Yinghua Li,1 Zhengfang Lin,1 Mingqi Zhao,1 Tiantian Xu,1 Changbing Wang,1 Huimin Xia,1,* Hanzhong Wang,2,* Bing Zhu1,* 1Guangzhou Women and Children’s Medical Center, Guangzhou, Guangdong, 2State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People’s Republic of China *These authors contributed equally to this work Abstract: Small interfering RNA (siRNA as a new therapeutic modality holds promise for cancer treatment, but it is unable to cross cell membrane. To overcome this limitation, nanotechnology has been proposed for mediation of siRNA transfection. Selenium (Se is a vital dietary trace element for mammalian life and plays an essential role in the growth and functioning of humans. As a novel Se species, Se nanoparticles have attracted more and more attention for their higher anticancer efficacy. In the present study, siRNAs with polyethylenimine (PEI-modified Se nanoparticles (Se@PEI@siRNA have been demonstrated to enhance the apoptosis of HepG2 cells. Heat shock protein (HSP-70 is overexpressed in many types of human cancer and plays a significant role in several biological processes including the regulation of apoptosis. The objective of this study was to silence inducible HSP70 and promote the apoptosis of Se-induced HepG2 cells. Se@PEI@siRNA were successfully prepared and characterized by various microscopic methods. Se@PEI@siRNA showed satisfactory size distribution, high stability, and selectivity between cancer and normal cells. The cytotoxicity of Se@PEI@siRNA was lower for normal cells than tumor cells, indicating that these compounds may have fewer side effects. The gene-silencing efficiency of Se@PEI@siRNA was significantly much higher than Lipofectamine 2000@siRNA and resulted in a significantly reduced HSP70 mRNA and protein expression in cancer cells. When the expression of HSP70 was diminished, the function of cell protection was also removed and cancer cells became more

  11. Synthesis and characterization of amino acid-functionalized calcium phosphate nanoparticles for siRNA delivery.

    Science.gov (United States)

    Bakan, Feray; Kara, Goknur; Cokol Cakmak, Melike; Cokol, Murat; Denkbas, Emir Baki

    2017-10-01

    Small interfering RNAs (siRNA) are short nucleic acid fragments of about 20-27 nucleotides, which can inhibit the expression of specific genes. siRNA based RNAi technology has emerged as a promising method for the treatment of a variety of diseases. However, a major limitation in the therapeutic use of siRNA is its rapid degradation in plasma and cellular cytoplasm, resulting in short half-life. In addition, as siRNA molecules cannot penetrate into the cell efficiently, it is required to use a carrier system for its delivery. In this work, chemically and morphologically different calcium phosphate (CaP) nanoparticles, including spherical-like hydroxyapatite (HA-s), needle-like hydroxyapatite (HA-n) and calcium deficient hydroxyapatite (CDHA) nanoparticles were synthesized by the sol-gel technique and the effects of particle characteristics on the binding capacity of siRNA were investigated. In order to enhance the gene loading efficiency, the nanoparticles were functionalized with arginine and the morphological and their structural characteristics were analyzed. The addition of arginine did not significantly change the particle sizes; however, it provided a significantly increased binding of siRNA for all types of CaP nanoparticles, as revealed by spectrophotometric measurements analysis. Arginine functionalized HA-n nanoparticles showed the best binding behavior with siRNA among the other nanoparticles due to its high, positive zeta potential (+18.8mV) and high surface area of Ca ++ rich "c" plane. MTT cytotoxicity assays demonstrated that all the nanoparticles tested herein were biocompatible. Our results suggest that high siRNA entrapment in each of the three modified non-toxic CaP nanoparticles make them promising candidates as a non-viral vector for delivering therapeutic siRNA molecules to treat cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Kinetic analysis of the effects of target structure on siRNA efficiency

    Science.gov (United States)

    Chen, Jiawen; Zhang, Wenbing

    2012-12-01

    RNAi efficiency for target cleavage and protein expression is related to the target structure. Considering the RNA-induced silencing complex (RISC) as a multiple turnover enzyme, we investigated the effect of target mRNA structure on siRNA efficiency with kinetic analysis. The 4-step model was used to study the target cleavage kinetic process: hybridization nucleation at an accessible target site, RISC-mRNA hybrid elongation along with mRNA target structure melting, target cleavage, and enzyme reactivation. At this model, the terms accounting for the target accessibility, stability, and the seed and the nucleation site effects are all included. The results are in good agreement with that of experiments which show different arguments about the structure effects on siRNA efficiency. It shows that the siRNA efficiency is influenced by the integrated factors of target's accessibility, stability, and the seed effects. To study the off-target effects, a simple model of one siRNA binding to two mRNA targets was designed. By using this model, the possibility for diminishing the off-target effects by the concentration of siRNA was discussed.

  13. Chemical consequences of radioactive decay. 1. Study of 249Cf ingrowth into crystalline 249BkBr3: a new crystalline phase of CfBr3

    International Nuclear Information System (INIS)

    Young, J.P.; Haire, R.G.; Peterson, J.R.; Ensor, D.D.; Fellows, R.L.

    1980-01-01

    Spectrophotometric and x-ray powder diffraction methods have been applied to a study of the ingrowth of californium-249 by β - decay of berkelium-249 in crystalline 249 BkBr 3 . It was found that the Cf daughter grows in with the same oxidation state and crystal structure as the parent. Thus, six-coordinate BkBr 3 (AlCl 3 -type monoclinic structure) generates six-coordinate CfBr 3 , and eight-coordinate BkBr 3 (PuBr 3 -type orthorhombic structure) generates eight-coordinate CfBr 3 , a previously unknown form of CfBr 3 . It was also found that the daughter Cf(III) in the BkBr 3 parent compound can be reduced to Cf(II) by treatment with H 2 , as it can in pure CfBr 3 . 5 figures

  14. Development of a Positive-readout Mouse Model of siRNA Pharmacodynamics

    Directory of Open Access Journals (Sweden)

    Mark Stevenson

    2013-01-01

    Full Text Available Development of RNAi-based therapeutics has the potential to revolutionize treatment options for a range of human diseases. However, as with gene therapy, a major barrier to progress is the lack of methods to achieve and measure efficient delivery for systemic administration. We have developed a positive-readout pharmacodynamic transgenic reporter mouse model allowing noninvasive real-time assessment of siRNA activity. The model combines a luciferase reporter gene under the control of regulatory elements from the lac operon of Escherichia coli. Introduction of siRNA targeting lac repressor results in increased luciferase expression in cells where siRNA is biologically active. Five founder luciferase-expressing and three founder Lac-expressing lines were generated and characterized. Mating of ubiquitously expressing luciferase and lac lines generated progeny in which luciferase expression was significantly reduced compared with the parental line. Administration of isopropyl β-D-1-thiogalactopyranoside either in drinking water or given intraperitoneally increased luciferase expression in eight of the mice examined, which fell rapidly when withdrawn. Intraperitoneal administration of siRNA targeting lac in combination with Lipofectamine 2000 resulted in increased luciferase expression in the liver while control nontargeting siRNA had no effect. We believe a sensitive positive readout pharmacodynamics reporter model will be of use to the research community in RNAi-based vector development.

  15. Does Autoimmunity have a Role in Myoclonic Astatic Epilepsy? A Case Report of Voltage Gated Potassium Channel Mediated Seizures.

    Science.gov (United States)

    Sirsi, Deepa; Dolce, Alison; Greenberg, Benjamin M; Thodeson, Drew

    2016-01-01

    There is expanding knowledge about the phenotypic variability of patients with voltage gated potassium channel complex (VGKC) antibody mediated neurologic disorders. The phenotypes are diverse and involve disorders of the central and peripheral nervous systems. The central nervous system manifestations described in the literature include limbic encephalitis, status epilepticus, and acute encephalitis. We report a 4.5 year-old boy who presented with intractable Myoclonic Astatic Epilepsy (MAE) or Doose syndrome and positive VGKC antibodies in serum. Treatment with steroids led to resolution of seizures and electrographic normalization. This case widens the spectrum of etiologies for MAE to include autoimmunity, in particular VGKC auto-antibodies and CNS inflammation, as a primary or contributing factor. There is an evolving understanding of voltage gated potassium channel complex mediated autoimmunity in children and the role of inflammation and autoimmunity in MAE and other intractable pediatric epilepsy syndromes remains to be fully defined. A high index of suspicion is required for diagnosis and appropriate management of antibody mediated epilepsy syndromes.

  16. TRPM8 mediates cold and menthol allergies associated with mast cell activation.

    Science.gov (United States)

    Cho, Yeongyo; Jang, Yongwoo; Yang, Young Duk; Lee, Chang-Hun; Lee, Yunjong; Oh, Uhtaek

    2010-10-01

    Exposure to low temperatures often causes allergic responses or urticaria. Similarly, menthol, a common food additive is also known to cause urticaria, asthma, and rhinitis. However, despite the obvious clinical implications, the molecular mechanisms responsible for inducing allergic responses to low temperatures and menthol have not been determined. Because a non-selective cation channel, transient receptor potential subtype M8 (TRPM8) is activated by cold and menthol, we hypothesized that this channel mediates cold- and menthol-induced histamine release in mast cells. Here, we report that TRPM8 is expressed in the basophilic leukemia mast cell line, RBL-2H3, and that exposure to menthol or low temperatures induced Ca(2+) influx in RBL-2H3 cells, which was reversed by a TRPM8 blocker. Furthermore, menthol, a TRPM8 agonist, induced the dose-dependent release of histamine from RBL-2H3 cells. When TRPM8 transcripts were reduced by siRNA (small interfering RNA), menthol- and cold-induced Ca(2+) influx and histamine release were significantly reduced. In addition, subcutaneous injection of menthol evoked scratching, a typical histamine-induced response which was reversed by a TRPM8 blocker. Thus, our findings indicate that TRPM8 mediates the menthol- and cold-induced allergic responses of mast cells, and suggest that TRPM8 antagonists be viewed as potential treatments for cold- and menthol-induced allergies. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Role of the 25-26 nt siRNA in the resistance of transgenic Prunus domestica graft inoculated with plum pox virus.

    Science.gov (United States)

    Kundu, Jiban Kumar; Briard, Pascal; Hily, Jean Michel; Ravelonandro, Michel; Scorza, Ralph

    2008-02-01

    The reaction of a genetically engineered plum clone (C5) resistant to plum pox virus (PPV) by graft inoculation with the virus was evaluated. The resistance in this clone has been demonstrated to be mediated through post-transcriptional gene silencing (PTGS). A single C5 plant out of 30 plants inoculated with PPV M strain by double chip-budding showed mild diffuse mosaic 'Sharka' symptom at the bottom section of the scion. The upper leaves of this PPV-infected C5 plant remained symptomless and the virus was not detected in them by either DAS-ELISA or RT-PCR. An RNA silencing associated small interfering RNA duplex, siRNA (21-26 nt), was detected in non-inoculated C5 plants and in the portions of inoculated C5 plant in which PPV could not be detected. In the PPV-infected portion of the C5 plant and in C6 PPV susceptible plants only the approximately 21-22 nt siRNAs was detected. Cytosine-methylation was confirmed in C5 plants both uninfected and showing PPV symptoms. The 25-26 nt siRNA normally present in C5 was absent in PPV-infected C5 tissues confirming the critical role of this siRNA in the resistance of clone C5 to PPV infection. We also show that this PPV infection was limited and transient. It was only detected in one plant at one of four post-dormancy sampling dates and did not appear to affect the overall PPV resistance of the C5 clone.

  18. Preliminary study on rotary ultrasonic machining of Bk-7 optical glass rod

    International Nuclear Information System (INIS)

    Hamzah, E.; Izman, S.; Khoo, C.Y.; Zainal Abidin, N.N.

    2007-01-01

    This paper presents an experimental observation on rotary ultrasonic machining (RUM) of BK7 optical glass rod. BK7 is a common technical optical glass for high quality optical components due to its high linear optical transmission in the visible range and is chemically stable. RUM is a hybrid machining process that combines the material removal mechanisms of diamond grinding and ultrasonic machining (USM) and it is non-thermal, non-chemical, creates no change in the microstructure, chemical or physical properties of the work piece. In the RUM, a controlled static load is applied to the rotating core drill with metal bonded diamond abrasive and is ultrasonically vibrated in the axial direction. A water-soluble coolant was used to cool the tool and sample during machining processes. By using DOE (Design of Experiment) approach, the effect of spindle speed and feed rate to the ultrasonic machinability had been developed. The main effects and two-factor interactions of process parameters (spindle speed) and feed rate) on output variables (MRR, surface roughness, opaqueness, chipping thickness and chipping size) are studied. (author)

  19. High-level viruria as a screening tool for BK virus nephropathy in renal transplant recipients

    Directory of Open Access Journals (Sweden)

    W. James Chon

    2016-09-01

    Conclusion: The presence of high-grade viruria is an early marker for developing BK viremia/BKVN. Detection of high-grade viruria should prompt early allograft biopsy and/or preemptive reduction in immunosuppression.

  20. siRNAs Targeting Viral Protein 5: The Major Capsid Protein of ...

    African Journals Online (AJOL)

    Purpose: To investigate whether siRNA targeting viral protein 5 (VP5) can become a new treatment for herpes simplex virus type 1 (HSV-1). Methods: Flow cytometry was performed to determine the ratio of siRNA and lipo2000 to reach the highest transfection efficiency. Western blot and q-PCR were performed to determine ...

  1. Dark-matter production through loop-induced processes at the LHC: the s-channel mediator case.

    Science.gov (United States)

    Mattelaer, Olivier; Vryonidou, Eleni

    We show how studies relevant for mono-X searches at the LHC in simplified models featuring a dark-matter candidate and an s -channel mediator can be performed within the MadGraph5_aMC@NLO framework. We focus on gluon-initiated loop-induced processes, mostly relevant to the case where the mediator couples preferentially to third generation quarks and in particular to the top quark. Our implementation allows us to study signatures at hadron colliders involving missing transverse energy plus jets or plus neutral bosons ([Formula: see text]), possibly including the effects of extra radiation by multi-parton merging and matching to the parton shower.

  2. Dark-matter production through loop-induced processes at the LHC: the s-channel mediator case

    Energy Technology Data Exchange (ETDEWEB)

    Mattelaer, Olivier [Durham University, Institute for Particle Physics Phenomenology (IPPP), Durham (United Kingdom); Vryonidou, Eleni [Universite catholique de Louvain, Centre for Cosmology, Particle Physics and Phenomenology (CP3), Louvain-la-Neuve (Belgium)

    2015-09-15

    We show how studies relevant for mono-X searches at the LHC in simplified models featuring a dark-matter candidate and an s-channel mediator can be performed within the MadGraph5{sub a}MC rate at NLO framework. We focus on gluon-initiated loop-induced processes, mostly relevant to the case where the mediator couples preferentially to third generation quarks and in particular to the top quark. Our implementation allows us to study signatures at hadron colliders involving missing transverse energy plus jets or plus neutral bosons (γ,Z,H), possibly including the effects of extra radiation by multi-parton merging and matching to the parton shower. (orig.)

  3. Dark-matter production through loop-induced processes at the LHC: the s-channel mediator case

    International Nuclear Information System (INIS)

    Mattelaer, Olivier; Vryonidou, Eleni

    2015-01-01

    We show how studies relevant for mono-X searches at the LHC in simplified models featuring a dark-matter candidate and an s-channel mediator can be performed within the MadGraph5 a MC rate at NLO framework. We focus on gluon-initiated loop-induced processes, mostly relevant to the case where the mediator couples preferentially to third generation quarks and in particular to the top quark. Our implementation allows us to study signatures at hadron colliders involving missing transverse energy plus jets or plus neutral bosons (γ,Z,H), possibly including the effects of extra radiation by multi-parton merging and matching to the parton shower. (orig.)

  4. Targeted Sterically Stabilized Phospholipid siRNA Nanomedicine for Hepatic and Renal Fibrosis

    Directory of Open Access Journals (Sweden)

    Fatima Khaja

    2016-01-01

    Full Text Available Since its discovery, small interfering RNA (siRNA has been considered a potent tool for modulating gene expression. It has the ability to specifically target proteins via selective degradation of messenger RNA (mRNA not easily accessed by conventional drugs. Hence, RNA interference (RNAi therapeutics have great potential in the treatment of many diseases caused by faulty protein expression such as fibrosis and cancer. However, for clinical application siRNA faces a number of obstacles, such as poor in vivo stability, and off-target effects. Here we developed a unique targeted nanomedicine to tackle current siRNA delivery issues by formulating a biocompatible, biodegradable and relatively inexpensive nanocarrier of sterically stabilized phospholipid nanoparticles (SSLNPs. This nanocarrier is capable of incorporating siRNA in its core through self-association with a novel cationic lipid composed of naturally occuring phospholipids and amino acids. This overall assembly protects and delivers sufficient amounts of siRNA to knockdown over-expressed protein in target cells. The siRNA used in this study, targets connective tissue growth factor (CTGF, an important regulator of fibrosis in both hepatic and renal cells. Furthermore, asialoglycoprotein receptors are targeted by attaching the galactosamine ligand to the nanocarries which enhances the uptake of nanoparticles by hepatocytes and renal tubular epithelial cells, the major producers of CTGF in fibrosis. On animals this innovative nanoconstruct, small interfering RNA in sterically stabilized phospholipid nanoparticles (siRNA-SSLNP, showed favorable pharmacokinetic properties and accumulated mostly in hepatic and renal tissues making siRNA-SSLNP a suitable system for targeting liver and kidney fibrotic diseases.

  5. Effects of interleukin-7/interleukin-7 receptor on RANKL-mediated osteoclast differentiation and ovariectomy-induced bone loss by regulating c-Fos/c-Jun pathway.

    Science.gov (United States)

    Zhao, Ji-Jun; Wu, Zhao-Feng; Yu, Ying-Hao; Wang, Ling; Cheng, Li

    2018-09-01

    To explore the effects of IL-7/IL-7R on the RANKL-mediated osteoclast differentiation in vitro and OVX-induced bone loss in vivo. BMMs and RAW264.7 were transfected with IL-7, IL-7R siRNA, c-Fos siRNA, and c-jun siRNA and later stimulated by RANKL. TRAP and toluidine blue staining were used to observe osteoclast formation and bone resorption, respectively. HE and TRAP staining were used to detect trabecular bone microstructure and osteoclasts of mice, respectively. qRT-PCR and Western blot analysis were used to examine expression. IL-7 unregulated the expression of CTSK, NFATc1, MMP9, and the phosphorylation of p38 and Akt by activating the c-Fos/c-Jun pathway, which increased osteoclast numbers and bone resorption in RANKL-stimulated macrophages. While IL-7R siRNA and c-Fos siRNA decreased the expression, as well as and the phosphorylation of p38 and Akt.IL-7 decreased the BMD and OPG expression in OVX-induced mice and increased the TRAP positive cells, the mRNA expression of c-fos, c-jun, and RANKL, which was contradictory to IL-7R siRNA, and c-Fos siRNA. Furthermore, IL-7R siRNA and c-Fos siRNA caused thicker trabeculae, increased trabecular number, and decreased osteolysis in OVX mice. IL-7/IL-7R can promote RANKL-mediated osteoclast formation and bone resorption by activating the c-Fos/c-Jun pathway, as well as inducing bone loss in OVX mice. © 2018 Wiley Periodicals, Inc.

  6. Stable gene transfer of CCR5 and CXCR4 siRNAs by sleeping beauty transposon system to confer HIV-1 resistance

    Directory of Open Access Journals (Sweden)

    Akkina Ramesh

    2008-07-01

    Full Text Available Abstract Background Thus far gene therapy strategies for HIV/AIDS have used either conventional retroviral vectors or lentiviral vectors for gene transfer. Although highly efficient, their use poses a certain degree of risk in terms of viral mediated oncogenesis. Sleeping Beauty (SB transposon system offers a non-viral method of gene transfer to avoid this possible risk. With respect to conferring HIV resistance, stable knock down of HIV-1 coreceptors CCR5 and CXCR4 by the use of lentiviral vector delivered siRNAs has proved to be a promising strategy to protect cells from HIV-1 infection. In the current studies our aim is to evaluate the utility of SB system for stable gene transfer of CCR5 and CXCR4 siRNA genes to derive HIV resistant cells as a first step towards using this system for gene therapy. Results Two well characterized siRNAs against the HIV-1 coreceptors CCR5 and CXCR4 were chosen based on their previous efficacy for the SB transposon gene delivery. The siRNA transgenes were incorporated individually into a modified SB transfer plasmid containing a FACS sortable red fluorescence protein (RFP reporter and a drug selectable neomycin resistance gene. Gene transfer was achieved by co-delivery with a construct expressing a hyperactive transposase (HSB5 into the GHOST-R3/X4/R5 cell line, which expresses the major HIV receptor CD4 and and the co-receptors CCR5 and CXCR4. SB constructs expressing CCR5 or CXCR4 siRNAs were also transfected into MAGI-CCR5 or MAGI-CXCR4 cell lines, respectively. Near complete downregulation of CCR5 and CXCR4 surface expression was observed in transfected cells. During viral challenge with X4-tropic (NL4.3 or R5-tropic (BaL HIV-1 strains, the respective transposed cells showed marked viral resistance. Conclusion SB transposon system can be used to deliver siRNA genes for stable gene transfer. The siRNA genes against HIV-1 coreceptors CCR5 and CXCR4 are able to downregulate the respective cell surface proteins

  7. Enhancing potency of siRNA targeting fusion genes by optimization outside of target sequence.

    Science.gov (United States)

    Gavrilov, Kseniya; Seo, Young-Eun; Tietjen, Gregory T; Cui, Jiajia; Cheng, Christopher J; Saltzman, W Mark

    2015-12-01

    Canonical siRNA design algorithms have become remarkably effective at predicting favorable binding regions within a target mRNA, but in some cases (e.g., a fusion junction site) region choice is restricted. In these instances, alternative approaches are necessary to obtain a highly potent silencing molecule. Here we focus on strategies for rational optimization of two siRNAs that target the junction sites of fusion oncogenes BCR-ABL and TMPRSS2-ERG. We demonstrate that modifying the termini of these siRNAs with a terminal G-U wobble pair or a carefully selected pair of terminal asymmetry-enhancing mismatches can result in an increase in potency at low doses. Importantly, we observed that improvements in silencing at the mRNA level do not necessarily translate to reductions in protein level and/or cell death. Decline in protein level is also heavily influenced by targeted protein half-life, and delivery vehicle toxicity can confound measures of cell death due to silencing. Therefore, for BCR-ABL, which has a long protein half-life that is difficult to overcome using siRNA, we also developed a nontoxic transfection vector: poly(lactic-coglycolic acid) nanoparticles that release siRNA over many days. We show that this system can achieve effective killing of leukemic cells. These findings provide insights into the implications of siRNA sequence for potency and suggest strategies for the design of more effective therapeutic siRNA molecules. Furthermore, this work points to the importance of integrating studies of siRNA design and delivery, while heeding and addressing potential limitations such as restricted targetable mRNA regions, long protein half-lives, and nonspecific toxicities.

  8. Lipid-Based Liquid Crystalline Nanoparticles Facilitate Cytosolic Delivery of siRNA via Structural Transformation.

    Science.gov (United States)

    He, Shufang; Fan, Weiwei; Wu, Na; Zhu, Jingjing; Miao, Yunqiu; Miao, Xiaran; Li, Feifei; Zhang, Xinxin; Gan, Yong

    2018-04-11

    RNA interference (RNAi) technology has shown great promise for the treatment of cancer and other genetic disorders. Despite the efforts to increase the target tissue distribution, the safe and effective delivery of siRNA to the diseased cells with sufficient cytosolic transport is another critical factor for successful RNAi clinical application. Here, the constructed lipid-based liquid crystalline nanoparticles, called nano-Transformers, can transform thestructure in the intracellular acidic environment and perform high-efficient siRNA delivery for cancer treatment. The developed nano-Transformers have satisfactory siRNA loading efficiency and low cytotoxicity. Different from the traditional cationic nanocarriers, the endosomal membrane fusion induced by the conformational transition of lipids contributes to the easy dissociation of siRNA from nanocarriers and direct release of free siRNA into cytoplasm. We show that transfection with cyclin-dependent kinase 1 (CDK1)-siRNA-loaded nano-Transformers causes up to 95% reduction of relevant mRNA in vitro and greatly inhibits the tumor growth without causing any immunogenic response in vivo. This work highlights that the lipid-based nano-Transformers may become the next generation of siRNA delivery system with higher efficacy and improved safety profiles.

  9. A Medicago truncatula rdr6 allele impairs transgene silencing and endogenous phased siRNA production but not development.

    Science.gov (United States)

    Bustos-Sanmamed, Pilar; Hudik, Elodie; Laffont, Carole; Reynes, Christelle; Sallet, Erika; Wen, Jiangqi; Mysore, Kirankumar S; Camproux, Anne-Claude; Hartmann, Caroline; Gouzy, Jérome; Frugier, Florian; Crespi, Martin; Lelandais-Brière, Christine

    2014-12-01

    RNA-dependent RNA polymerase 6 (RDR6) and suppressor of gene silencing 3 (SGS3) act together in post-transcriptional transgene silencing mediated by small interfering RNAs (siRNAs) and in biogenesis of various endogenous siRNAs including the tasiARFs, known regulators of auxin responses and plant development. Legumes, the third major crop family worldwide, has been widely improved through transgenic approaches. Here, we isolated rdr6 and sgs3 mutants in the model legume Medicago truncatula. Two sgs3 and one rdr6 alleles led to strong developmental defects and impaired biogenesis of tasiARFs. In contrast, the rdr6.1 homozygous plants produced sufficient amounts of tasiARFs to ensure proper development. High throughput sequencing of small RNAs from this specific mutant identified 354 potential MtRDR6 substrates, for which siRNA production was significantly reduced in the mutant. Among them, we found a large variety of novel phased loci corresponding to protein-encoding genes or transposable elements. Interestingly, measurement of GFP expression revealed that post-transcriptional transgene silencing was reduced in rdr6.1 roots. Hence, this novel mis-sense mutation, affecting a highly conserved amino acid residue in plant RDR6s, may be an interesting tool both to analyse endogenous pha-siRNA functions and to improve transgene expression, at least in legume species. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  10. Dual-functionalized graphene oxide for enhanced siRNA delivery to breast cancer cells.

    Science.gov (United States)

    Imani, Rana; Shao, Wei; Taherkhani, Samira; Emami, Shahriar Hojjati; Prakash, Satya; Faghihi, Shahab

    2016-11-01

    The aim of this study is to improve hydrocolloid stability and siRNA transfection ability of a reduced graphene oxide (rGO) based nano-carrier using a phospholipid-based amphiphilic polymer (PL-PEG) and cell penetrating peptide (CPPs). The dual functionalized nano-carrier is comprehensively characterized for its chemical structure, size, surface charge and morphology as well as thermal stability. The nano-carrier cytocompatibility, siRNA condensation ability both in the presence and absence of enzyme, endosomal buffering capacity, cellular uptake and intracellular localization are also assessed. The siRNA loaded nano-carrier is used for internalization to MCF-7 cells and its gene silencing ability is compared with AllStars Hs Cell Death siRNA as a model gene. The nano-carrier remains stable in biological solution, exhibits excellent cytocompatibility, retards the siRNA migration and protects it against enzyme degradation. The buffering capacity analysis shows that incorporation of the peptide in nano-carrier structure would increase the resistance to endo/lysosomal like acidic condition (pH 6-4) The functionalized nano-carrier which is loaded with siRNA in an optimal N:P ratio presents superior internalization efficiency (82±5.1% compared to HiPerFect(®)), endosomal escape quality and capable of inducing cell death in MCF-7 cancer cells (51±3.1% compared to non-treated cells). The success of siRNA-based therapy is largely dependent on the safe and efficient delivery system, therefore; the dual functionalized rGO introduced here could have a great potential to be used as a carrier for siRNA delivery with relevancy in therapeutics and clinical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Antineoplastic Effects of siRNA against TMPRSS2-ERG Junction Oncogene in Prostate Cancer.

    Directory of Open Access Journals (Sweden)

    Giorgia Urbinati

    Full Text Available TMPRSS2-ERG junction oncogene is present in more than 50% of patients with prostate cancer and its expression is frequently associated with poor prognosis. Our aim is to achieve gene knockdown by siRNA TMPRSS2-ERG and then to assess the biological consequences of this inhibition. First, we designed siRNAs against the two TMPRSS2-ERG fusion variants (III and IV, most frequently identified in patients' biopsies. Two of the five siRNAs tested were found to efficiently inhibit mRNA of both TMPRSS2-ERG variants and to decrease ERG protein expression. Microarray analysis further confirmed ERG inhibition by both siRNAs TMPRSS2-ERG and revealed one common down-regulated gene, ADRA2A, involved in cell proliferation and migration. The siRNA against TMPRSS2-ERG fusion variant IV showed the highest anti-proliferative effects: Significantly decreased cell viability, increased cleaved caspase-3 and inhibited a cluster of anti-apoptotic proteins. To propose a concrete therapeutic approach, siRNA TMPRSS2-ERG IV was conjugated to squalene, which can self-organize as nanoparticles in water. The nanoparticles of siRNA TMPRSS2-ERG-squalene injected intravenously in SCID mice reduced growth of VCaP xenografted tumours, inhibited oncoprotein expression and partially restored differentiation (decrease in Ki67. In conclusion, this study offers a new prospect of treatment for prostate cancer based on siRNA-squalene nanoparticles targeting TMPRSS2-ERG junction oncogene.

  12. Effects of Nonlinear Absorption in BK7 and Color Glasses at 355 nm

    International Nuclear Information System (INIS)

    Adams, J J; McCarville, T; Bruere, J; McElroy, J; Peterson, J

    2003-01-01

    We have demonstrated a simple experimental technique that can be used to measure the nonlinear absorption coefficients in glasses. We determine BK7, UG1, and UG11 glasses to have linear absorption coefficients of 0.0217 ± 10% cm -1 , 1.7 ± 10% cm -1 , and 0.82 ± 10% cm -1 , respectively, two-photon absorption cross-sections of 0.025 ± 20% cm/GW, 0.035 ± 20% cm/GW, and 0.047 ± 20% cm/GW, respectively, excited-state absorption cross-sections of 8.0 x 10 -18 ± 20% cm 2 , 2.8 x 10 -16 ± 20% cm 2 , and 5 x 10 -17 ± 20% cm 2 , respectively, and solarization coefficients of 8.5 x 10 -20 ± 20% cm 2 , 2.5 x 10 -18 ± 20% cm 2 , and 1.3 x 10 -19 ± 20% cm 2 , respectively. For our application, nonlinear effects in 10-cm of BK7 are small ((le) 2%) for 355-nm fluences 2 for flat-top pulses. However, nonlinear effects are noticeable for 355-nm fluences at 0.8 J/cm 2 . In particular, we determine a 20% increase in the instantaneous absorption from linear, a solarization rate of 4% per 100 shots, and a 10% temporal droop introduced in the pulse, for 355-nm flat-top pulses at a fluence of 0.8 J/cm 2 . For 0.5-cm of UG1 absorbing glass the non-linear absorption has a similar effect as that from 10-cm of BK7 on the pulse shape; however, the effects in UG11 are much smaller

  13. Therapeutic Effects of Myeloid Cell Leukemia-1 siRNA on Human Acute Myeloid Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Hadi Karami

    2014-05-01

    Full Text Available Purpose: Up-regulation of Mcl-1, a known anti-apoptotic protein, is associated with the survival and progression of various malignancies including leukemia. The aim of this study was to explore the effect of Mcl-1 small interference RNA (siRNA on the proliferation and apoptosis of HL-60 acute myeloid leukemia (AML cells. Methods: siRNA transfection was performed using Lipofectamine™2000 reagent. Relative mRNA and protein expressions were quantified by quantitative real-time PCR and Western blotting, respectively. Trypan blue assay was performed to assess tumor cell proliferation after siRNA transfection. The cytotoxic effect of Mcl-1 siRNA on leukemic cells was measured using MTT assay. Apoptosis was detected using ELISA cell death assay. Results: Mcl-1 siRNA clearly lowered both Mcl-1 mRNA and protein levels in a time-dependent manner, leading to marked inhibition of cell survival and proliferation. Furthermore, Mcl-1 down-regulation significantly enhanced the extent of HL-60 apoptotic cells. Conclusion: Our results suggest that the down-regulation of Mcl-1 by siRNA can effectively trigger apoptosis and inhibit the proliferation of leukemic cells. Therefore, Mcl-1 siRNA may be a potent adjuvant in AML therapy.

  14. Impact of target mRNA structure on siRNA silencing efficiency: A large-scale study.

    Science.gov (United States)

    Gredell, Joseph A; Berger, Angela K; Walton, S Patrick

    2008-07-01

    The selection of active siRNAs is generally based on identifying siRNAs with certain sequence and structural properties. However, the efficiency of RNA interference has also been shown to depend on the structure of the target mRNA, primarily through studies using exogenous transcripts with well-defined secondary structures in the vicinity of the target sequence. While these studies provide a means for examining the impact of target sequence and structure independently, the predicted secondary structures for these transcripts are often not reflective of structures that form in full-length, native mRNAs where interactions can occur between relatively remote segments of the mRNAs. Here, using a combination of experimental results and analysis of a large dataset, we demonstrate that the accessibility of certain local target structures on the mRNA is an important determinant in the gene silencing ability of siRNAs. siRNAs targeting the enhanced green fluorescent protein were chosen using a minimal siRNA selection algorithm followed by classification based on the predicted minimum free energy structures of the target transcripts. Transfection into HeLa and HepG2 cells revealed that siRNAs targeting regions of the mRNA predicted to have unpaired 5'- and 3'-ends resulted in greater gene silencing than regions predicted to have other types of secondary structure. These results were confirmed by analysis of gene silencing data from previously published siRNAs, which showed that mRNA target regions unpaired at either the 5'-end or 3'-end were silenced, on average, approximately 10% more strongly than target regions unpaired in the center or primarily paired throughout. We found this effect to be independent of the structure of the siRNA guide strand. Taken together, these results suggest minimal requirements for nucleation of hybridization between the siRNA guide strand and mRNA and that both mRNA and guide strand structure should be considered when choosing candidate siRNAs

  15. Intracellular Delivery of siRNA by Polycationic Superparamagnetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Betzaida Castillo

    2012-01-01

    Full Text Available The siRNA transfection efficiency of nanoparticles (NPs, composed of a superparamagnetic iron oxide core modified with polycationic polymers (poly(hexamethylene biguanide or branched polyethyleneimine, were studied in CHO-K1 and HeLa cell lines. Both NPs demonstrated to be good siRNA transfection vehicles, but unmodified branched polyethyleneimine (25 kD was superior on both cell lines. However, application of an external magnetic field during transfection (magnetofection increased the efficiency of the superparamagnetic NPs. Furthermore, our results reveal that these NPs are less toxic towards CHO-K1 cell lines than the unmodified polycationic-branched polyethyleneimine (PEI. In general, the external magnetic field did not alter the cell’s viability nor it disrupted the cell membranes, except for the poly(hexamethylene biguanide-modified NP, where it was observed that in CHO-K1 cells application of the external magnetic field promoted membrane damage. This paper presents new polycationic superparamagnetic NPs as promising transfection vehicles for siRNA and demonstrates the advantages of magnetofection.

  16. Elucidating the role of free polycations in gene knockdown by siRNA polyplexes

    DEFF Research Database (Denmark)

    Klauber, Thomas Christopher Bogh; Søndergaard, Rikke Vicki; Sawant, Rupa R.

    2016-01-01

    capability, but are very different regarding siRNA decondensation, cellular internalization and induction of reporter gene knockdown. Lipid conjugation of bPEI 1.8. kDa improves the siRNA delivery properties, but with markedly different formulation requirements and mechanisms of action compared...... today.A major reason for the lack of progress is insufficient understanding of cell-polyplex interaction. We investigate siRNA delivery using polyethyleneimine (PEI) based vectors and examine how crucial formulation parameters determine the challenges associated with PEI as a delivery vector. We further...

  17. Plasma extravasation mediated by lipopolysaccharide-induction of kinin B1 receptors in rat tissues

    Directory of Open Access Journals (Sweden)

    Paulo Roberto Wille

    2001-01-01

    Full Text Available The present study was performed to: (a evaluate the effects of kinin B1 (Sar{D-Phe8}-des-Arg9-BK; 10 nmol/kg and B2 (bradykinin (BK; 10 nmol/kg receptor agonists on plasma extravasation in selected rat tissues; (b determine the contribution of a lipopolysaccharide (LPS (100 μ g/kg to the effects triggered by B1 and B2 agonists; and (c characterize the selectivity of B1 ({Leu8}desArg9-BK; 10 nmol/kg and B2 (HOE 140; 10 nmol/kg antagonists as inhibitors of this kinin-induced phenomenon. B1 and B2 agonists were shown to increase plasma extravasation in the duodenum, ileum and also in the urinary bladder of the rat. LPS pretreatment enhanced the plasma extravasation mediated only by the B1 agonist in the duodenum, ileum, trachea, main and segmentar bronchi. These effects were prevented by the B1. but not the B2 antagonist. In normal rats, the B2 antagonist inhibited the effect of B2 agonist in all the tissues analyzed. However, in LPS-treated rats, the B2 antagonist was ineffective in the urinary bladder.

  18. Vaccine for BK Polyomavirus-associated Infections in Transplant Recipients | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    NCI researches identified a BK polyomavirus (BKV) virulent strain that causes chronic urinary tract infections, and the development of vaccine and therapeutic methods that would block BKV pathogenesis. The NCI Laboratory of Cellular Oncology, seek parties to license or co-develop this technology.

  19. [siRNAs with high specificity to the target: a systematic design by CRM algorithm].

    Science.gov (United States)

    Alsheddi, T; Vasin, L; Meduri, R; Randhawa, M; Glazko, G; Baranova, A

    2008-01-01

    'Off-target' silencing effect hinders the development of siRNA-based therapeutic and research applications. Common solution to this problem is an employment of the BLAST that may miss significant alignments or an exhaustive Smith-Waterman algorithm that is very time-consuming. We have developed a Comprehensive Redundancy Minimizer (CRM) approach for mapping all unique sequences ("targets") 9-to-15 nt in size within large sets of sequences (e.g. transcriptomes). CRM outputs a list of potential siRNA candidates for every transcript of the particular species. These candidates could be further analyzed by traditional "set-of-rules" types of siRNA designing tools. For human, 91% of transcripts are covered by candidate siRNAs with kernel targets of N = 15. We tested our approach on the collection of previously described experimentally assessed siRNAs and found that the correlation between efficacy and presence in CRM-approved set is significant (r = 0.215, p-value = 0.0001). An interactive database that contains a precompiled set of all human siRNA candidates with minimized redundancy is available at http://129.174.194.243. Application of the CRM-based filtering minimizes potential "off-target" silencing effects and could improve routine siRNA applications.

  20. Unraveling hominin behavior at another anthropogenic site from Olduvai Gorge (Tanzania): new archaeological and taphonomic research at BK, Upper Bed II.

    Science.gov (United States)

    Domínguez-Rodrigo, M; Mabulla, A; Bunn, H T; Barba, R; Diez-Martín, F; Egeland, C P; Espílez, E; Egeland, A; Yravedra, J; Sánchez, P

    2009-09-01

    New archaeological excavations and research at BK, Upper Bed II (Olduvai Gorge, Tanzania) have yielded a rich and unbiased collection of fossil bones. These new excavations show that BK is a stratified deposit formed in a riverine setting close to an alluvial plain. The present taphonomic study reveals the second-largest collection of hominin-modified bones from Olduvai, with abundant cut marks found on most of the anatomical areas preserved. Meat and marrow exploitation is reconstructed using the taphonomic signatures left on the bones by hominins. Highly cut-marked long limb shafts, especially those of upper limb bones, suggest that hominins at BK were actively engaged in acquiring small and middle-sized animals using strategies other than passive scavenging. The exploitation of large-sized game (Pelorovis) by Lower Pleistocene hominins, as suggested by previous researchers, is supported by the present study.

  1. Tumor-targeted inhibition by a novel strategy - mimoretrovirus expressing siRNA targeting the Pokemon gene.

    Science.gov (United States)

    Tian, Zhiqiang; Wang, Huaizhi; Jia, Zhengcai; Shi, Jinglei; Tang, Jun; Mao, Liwei; Liu, Hongli; Deng, Yijing; He, Yangdong; Ruan, Zhihua; Li, Jintao; Wu, Yuzhang; Ni, Bing

    2010-12-01

    Pokemon gene has crucial but versatile functions in cell differentiation, proliferation and tumorigenesis. It is a master regulator of the ARF-HDM2-p53 and Rb-E2F pathways. The facts that the expression of Pokemon is essential for tumor formation and many kinds of tumors over-express the Pokemon gene make it an attractive target for therapeutic intervention for cancer treatment. In this study, we used an RNAi strategy to silence the Pokemon gene in a cervical cancer model. To address the issues involving tumor specific delivery and durable expression of siRNA, we applied the Arg-Gly-Asp (RGD) peptide ligand and polylysine (K(18)) fusion peptide to encapsulate a recombinant retrovirus plasmid expressing a siRNA targeting the Pokemon gene and produced the 'mimoretrovirus'. At charge ratio 2.0 of fusion peptide/plasmid, the mimoretrovirus formed stable and homogenous nanoparticles, and provided complete DNase I protection and complete gel retardation. This nanoparticle inhibited SiHa cell proliferation and invasion, while it promoted SiHa cell apoptosis. The binding of the nanoparticle to SiHa cells was mediated via the RGD-integrin α(v)β(3) interaction, as evidenced by the finding that unconjugated RGD peptide inhibited this binding significantly. This tumor-targeting mimoretrovirus exhibited excellent anti-tumor capacity in vivo in a nude mouse model. Moreover, the mimoretrovirus inhibited tumor growth with a much higher efficiency than recombinant retrovirus expressing siRNA or the K(18)/P4 nanoparticle lacking the RGD peptide. Results suggest that the RNAi/RGD-based mimoretrovirus developed in this study represents a novel anti-tumor strategy that may be applicable to most research involving cancer therapy and, thus, has promising potential as a cervical cancer treatment.

  2. siRNA Treatment: “A Sword-in-the-Stone” for Acute Brain Injuries

    Directory of Open Access Journals (Sweden)

    Jerome Badaut

    2013-09-01

    Full Text Available Ever since the discovery of small interfering ribonucleic acid (siRNA a little over a decade ago, it has been highly sought after for its potential as a therapeutic agent for many diseases. In this review, we discuss the promising possibility of siRNA to be used as a drug to treat acute brain injuries such as stroke and traumatic brain injury. First, we will give a brief and basic overview of the principle of RNA interference as an effective mechanism to decrease specific protein expression. Then, we will review recent in vivo studies describing siRNA research experiments/treatment options for acute brain diseases. Lastly, we will discuss the future of siRNA as a clinical therapeutic strategy against brain diseases and injuries, while addressing the current obstacles to effective brain delivery.

  3. Voltage-gated Na+ channel SCN5A is a key regulator of a gene transcriptional network that controls colon cancer invasion

    Science.gov (United States)

    House, Carrie D.; Vaske, Charles J.; Schwartz, Arnold M.; Obias, Vincent; Frank, Bryan; Luu, Truong; Sarvazyan, Narine; Irby, Rosalyn; Strausberg, Robert L.; Hales, Tim G.; Stuart, Joshua M.; Lee, Norman H.

    2010-01-01

    Voltage-gated Na+ channels (VGSCs) have been implicated in the metastatic potential of human breast, prostate and lung cancer cells. Specifically, the SCN5A gene encoding the VGSC isotype Nav1.5 has been defined as a key driver of human cancer cell invasion. In this study, we examined the expression and function of VGSCs in a panel of colon cancer cell lines by electrophysiological recordings. Na+ channel activity and invasive potential were inhibited pharmacologically by tetrodotoxin or genetically by siRNAs specifically targeting SCN5A. Clinical relevance was established by immunohistochemistry of patient biopsies, where there was strong Nav1.5 protein staining in colon cancer specimens but little to no staining in matched-paired normal colon tissues. We explored the mechanism of VGSC-mediated invasive potential on the basis of reported links between VGSC activity and gene expression in excitable cells. Probabilistic modeling of loss-of-function screens and microarray data established an unequivocal role of VGSC SCN5A as a high level regulator of a colon cancer invasion network, involving genes that encompass Wnt signaling, cell migration, ectoderm development, response to biotic stimulus, steroid metabolic process and cell cycle control. siRNA-mediated knockdown of predicted downstream network components caused a loss of invasive behavior, demonstrating network connectivity and its function in driving colon cancer invasion. PMID:20651255

  4. Protein kinase C epsilon mediates the inhibition of angiotensin II on the slowly activating delayed-rectifier potassium current through channel phosphorylation.

    Science.gov (United States)

    Gou, Xiangbo; Wang, Wenying; Zou, Sihao; Qi, Yajuan; Xu, Yanfang

    2018-03-01

    The slowly activating delayed rectifier K + current (I Ks ) is one of the main repolarizing currents in the human heart. Evidence has shown that angiotensin II (Ang II) regulates I Ks through the protein kinase C (PKC) pathway, but the related results are controversial. This study was designed to identify PKC isoenzymes involved in the regulation of I Ks by Ang II and the underlying molecular mechanism. The whole-cell patch-clamp technique was used to record I Ks in isolated guinea pig ventricular cardiomyocytes and in human embryonic kidney (HEK) 293 cells co-transfected with human KCNQ1/KCNE1 genes and Ang II type 1 receptor genes. Ang II inhibited I Ks in a concentration-dependent manner in native cardiomyocytes. A broad PKC inhibitor Gö6983 (not inhibiting PKCε) and a selective cPKC inhibitor Gö6976 did not affect the inhibitory action of Ang II. In contrast, the inhibition was significantly attenuated by PKCε-selective peptide inhibitor εV1-2. However, direct activation of PKC by phorbol 12-myristate 13-acetate (PMA) increased the cloned human I Ks in HEK293 cells. Similarly, the cPKC peptide activator significantly enhanced the current. In contrast, the PKCε peptide activator inhibited the current. Further evidence showed that PKCε knockdown by siRNA antagonized the Ang II-induced inhibition on KCNQ1/KCNE1 current, whereas knockdown of cPKCs (PKCα and PKCβ) attenuated the potentiation of the current by PMA. Moreover, deletion of four putative phosphorylation sites in the C-terminus of KCNQ1 abolished the action of PMA. Mutation of two putative phosphorylation sites in the N-terminus of KCNQ1 and one site in KCNE1 (S102) blocked the inhibition of Ang II. Our results demonstrate that PKCε isoenzyme mediates the inhibitory action of Ang II on I Ks and by phosphorylating distinct sites in KCNQ1/KCNE1, cPKC and PKCε isoenzymes produce the contrary regulatory effects on the channel. These findings have provided new insight into the molecular mechanism

  5. SiRNAs in vivo imaging: methodology of fluorine-18 radiolabelling and application for the optimization of the siRNAs biodistribution and pharmaceutical properties

    International Nuclear Information System (INIS)

    Viel, Th.

    2008-01-01

    As RNA interference is a natural process which enables eukaryote cells to regulate the gene expressions, to control transposons, and to struggle against some viruses, two imagery techniques have been used in this research, i.e. optical imagery and Positron Emission Tomography (PET) imagery, to study the various modifications of the small interferential RNAs (siRNA). Different chemically modified siRNAs have been prepared and their in vitro activity, their in vivo metabolism (by HPLC analysis), their bio-distribution and their pharmacokinetic properties (by PET imagery) after marking them with fluorine-18. Their in vivo activity has been assessed by optical imagery

  6. The effects of information technology based retail channels integration on retail stores performance: mediating role of organizational Ambidexterity (case study: Rasht stores

    Directory of Open Access Journals (Sweden)

    Mohamadrahim Ramazanian

    2015-12-01

    Full Text Available Information technology is a critical tool for companies to achieve the competitive advantage and organizational innovation. IT capability provides an appropriate opportunity for retailers to improve their relationships with customers and progress firms’ performance. Comes with advances in technology, retail industry by using Information technology has changed its business process from traditional to online channels. This paper, investigates the effects of IT based retail channel integration on retail stores performance, furthermore the mediating role of organizational ambidexterity as organizational capability in exploitation and exploration of growth opportunities has been examined. Research data has been collected from the retailer sales chains in Rasht city. Data was collected through questionnaires and analyzed by structural equation modeling and partial least squares algorithm. Findings show that retail channel integration based on information technology by mediated organizational ambidexterity influence on performance.

  7. A novel tyrosine-modified low molecular weight polyethylenimine (P10Y) for efficient siRNA delivery in vitro and in vivo.

    Science.gov (United States)

    Ewe, Alexander; Przybylski, Susanne; Burkhardt, Jana; Janke, Andreas; Appelhans, Dietmar; Aigner, Achim

    2016-05-28

    The delivery of nucleic acids, particularly of small RNA molecules like siRNAs for the induction of RNA interference (RNAi), still represents a major hurdle with regard to their application in vivo. Possible therapeutic applications thus rely on the development of efficient non-viral gene delivery vectors. While low molecular weight polyethylenimines (PEIs) have been successfully explored, the introduction of chemical modifications offers an avenue towards the development of more efficient vectors. In this paper, we describe the synthesis of a novel tyrosine-modified low-molecular weight polyethylenimine (P10Y) for efficient siRNA complexation and delivery. The comparison with the respective parent PEI reveals that knockdown efficacies are considerably enhanced by the tyrosine modification, as determined in different reporter cell lines, without appreciable cytotoxicity. We furthermore identify optimal conditions for complex preparation as well as for storing or lyophilization of the complexes without loss of biological activity. Beyond reporter cell lines, P10Y/siRNA complexes mediate the efficient knockdown of endogenous target genes and, upon knockdown of the anti-apoptotic oncogene survivin, tumor cell inhibitory effects in different carcinoma cell lines. Pushing the system further towards its therapeutic in vivo application, we demonstrate in mice the delivery of intact siRNAs and distinct biodistribution profiles upon systemic (intravenous or intraperitoneal) injection. No adverse effects (hepatotoxicity, immunostimulation/alterations in immunophenotype, weight loss) are observed. More importantly, profound tumor-inhibitory effects in a melanoma xenograft mouse model are observed upon systemic application of P10Y/siRNA complexes for survivin knockdown, indicating the therapeutic efficacy of P10Y/siRNA complexes. Taken together, we (i) establish tyrosine-modified PEI (P10Y) as efficient platform for siRNA delivery in vitro and in vivo, (ii) identify optimal

  8. Nanostructures to modulate vascular inflammation: Multifunctional nanoparticles for quantifiable siRNA delivery and molecular imaging

    Science.gov (United States)

    Kaneda, Megan Marie

    Early steps in the progression of inflammatory diseases such as atherosclerosis involve the recruitment of leukocytes to the vascular endothelium through the expression or up-regulation of adhesion molecules. These adhesion molecules are critical mediators of leukocyte attachment and subsequent extravasation through transendothelial migration. One of these adhesion molecules, vascular cell adhesion molecule-1 (VCAM-1) is particularly attractive as a marker of early atherosclerotic activity due to its low expression level on normal endothelium and up-regulation prior to and during the development of early lesions. With this in mind, the purpose of this thesis was to develop nanostructures for the detection and down-regulation of adhesion molecules by the vascular endothelium. To detect early inflammation we designed a perfluorocarbon nanoparticle (PFC-NP) probe, which was used for in vivo targeting of VCAM-1. Nanoparticles were detected ex vivo by the magnetic resonance (MR) signature from the fluorine core of the particle. Nanoparticles accumulated in tissues characterized by early inflammatory processes. To down-regulate VCAM-1 expression by vascular endothelial cells, cationic PFC-NP were produced through the addition of the cationic lipid 1,2-Dioleoyl-3-Trimethylammonium-Propane. Cationic PFC-NP were able to deliver anti-VCAM-1 siRNA to endothelial cells through a non-standard lipid raft mediated endocytic pathway. VCAM-1 levels were significantly reduced in treated cells indicating that this delivery mechanism may be advantageous for delivery of cargo into the cytoplasm. Using the fluorine signature from the core of the cationic PFC-NP, we were able to quantify and localize this siRNA delivery agent both in vitro and in vivo. The ability to quantify the local concentrations of these particles could be of great benefit for estimating local drug concentrations and developing new pharmacokinetic and pharmacodynamic paradigms to describe this new class of

  9. Low molecular weight chitosan conjugated with folate for siRNA delivery in vitro: optimization studies

    Science.gov (United States)

    Fernandes, Julio C; Qiu, Xingping; Winnik, Francoise M; Benderdour, Mohamed; Zhang, Xiaoling; Dai, Kerong; Shi, Qin

    2012-01-01

    The low transfection efficiency of chitosan is one of its drawbacks as a gene delivery carrier. Low molecular weight chitosan may help to form small-sized polymer-DNA or small interfering RNA (siRNA) complexes. Folate conjugation may improve gene transfection efficiency because of the promoted uptake of folate receptor-bearing cells. In the present study, chitosan was conjugated with folate and investigated for its efficacy as a delivery vector for siRNA in vitro. We demonstrate that the molecular weight of chitosan has a major influence on its biological and physicochemical properties, and very low molecular weight chitosan (below 10 kDa) has difficulty in forming stable complexes with siRNA. In this study, chitosan 25 kDa and 50 kDa completely absorbed siRNA and formed nanoparticles (≤220 nm) at a chitosan to siRNA weight ratio of 50:1. The introduction of a folate ligand onto chitosan decreased nanoparticle toxicity. Compared with chitosan-siRNA, folate-chitosan-siRNA nanoparticles improved gene silencing transfection efficiency. Therefore, folate-chitosan shows potential as a viable candidate vector for safe and efficient siRNA delivery. PMID:23209368

  10. Delivery of kinesin spindle protein targeting siRNA in solid lipid nanoparticles to cellular models of tumor vasculature

    International Nuclear Information System (INIS)

    Ying, Bo; Campbell, Robert B.

    2014-01-01

    Highlights: • siRNA-lipid nanoparticles are solid particles not lipid bilayers with aqueous core. • High, but not low, PEG content can prevent nanoparticle encapsulation of siRNA. • PEG reduces cellular toxicity of cationic nanoparticles in vitro. • PEG reduces zeta potential while improving gene silencing of siRNA nanoparticles. • Kinesin spindle protein can be an effective target for tumor vascular targeting. - Abstract: The ideal siRNA delivery system should selectively deliver the construct to the target cell, avoid enzymatic degradation, and evade uptake by phagocytes. In the present study, we evaluated the importance of polyethylene glycol (PEG) on lipid-based carrier systems for encapsulating, and delivering, siRNA to tumor vessels using cellular models. Lipid nanoparticles containing different percentage of PEG were evaluated based on their physical chemical properties, density compared to water, siRNA encapsulation, toxicity, targeting efficiency and gene silencing in vitro. siRNA can be efficiently loaded into lipid nanoparticles (LNPs) when DOTAP is included in the formulation mixture. However, the total amount encapsulated decreased with increase in PEG content. In the presence of siRNA, the final formulations contained a mixed population of particles based on density. The major population which contains the majority of siRNA exhibited a density of 4% glucose, and the minor fraction associated with a decreased amount of siRNA had a density less than PBS. The inclusion of 10 mol% PEG resulted in a greater amount of siRNA associated with the minor fraction. Finally, when kinesin spindle protein (KSP) siRNA was encapsulated in lipid nanoparticles containing a modest amount of PEG, the proliferation of endothelial cells was inhibited due to the efficient knock down of KSP mRNA. The presence of siRNA resulted in the formation of solid lipid nanoparticles when prepared using the thin film and hydration method. LNPs with a relatively modest amount of

  11. Nanosystems based on siRNA silencing HuR expression counteract diabetic retinopathy in rat.

    Science.gov (United States)

    Amadio, Marialaura; Pascale, Alessia; Cupri, Sarha; Pignatello, Rosario; Osera, Cecilia; D Agata, Velia; D Amico, Agata Grazia; Leggio, Gian Marco; Ruozi, Barbara; Govoni, Stefano; Drago, Filippo; Bucolo, Claudio

    2016-09-01

    We evaluated whether specifically and directly targeting human antigen R (HuR), a member of embryonic lethal abnormal vision (ELAV) proteins family, may represent a new potential therapeutic strategy to manage diabetic retinopathy. Nanosystems loaded with siRNA silencing HuR expression (lipoplexes), consisting of solid lipid nanoparticles (SLN) and liposomes (SUV) were prepared. Photon correlation spectroscopy analysis, Zeta potential measurement and atomic force microscopy (AFM) studies were carried out to characterize the complexation of siRNA with the lipid nanocarriers. Nanosystems were evaluated by using AFM and scanning electron microscopy. The lipoplexes were injected into the eye of streptozotocin (STZ)-induced diabetic rats. Retinal HuR and VEGF levels were detected by Western blot and ELISA, respectively. Retinal histology was also carried out. The results demonstrated that retinal HuR and VEGF are significantly increased in STZ-rats and are blunted by HuR siRNA treatment. Lipoplexes with a weak positive surface charge and with a 4:1 N/P (cationic lipid nitrogen to siRNA phosphate) ratio exert a better transfection efficiency, significantly dumping retinal HuR and VEGF levels. In conclusion, we demonstrated that siRNA can be efficiently delivered into the rat retina using lipid-based nanocarriers, and some of the lipoplexes loaded with siRNA silencing HuR expression are potential candidates to manage retinal diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Chemosensitization of cancer cells by siRNA using targeted nanogel delivery

    International Nuclear Information System (INIS)

    Dickerson, Erin B; Blackburn, William H; Smith, Michael H; Kapa, Laura B; Lyon, L Andrew; McDonald, John F

    2010-01-01

    Chemoresistance is a major obstacle in cancer treatment. Targeted therapies that enhance cancer cell sensitivity to chemotherapeutic agents have the potential to increase drug efficacy while reducing toxic effects on untargeted cells. Targeted cancer therapy by RNA interference (RNAi) is a relatively new approach that can be used to reversibly silence genes in vivo by selectively targeting genes such as the epidermal growth factor receptor (EGFR), which has been shown to increase the sensitivity of cancer cells to taxane chemotherapy. However, delivery represents the main hurdle for the broad development of RNAi therapeutics. We report here the use of core/shell hydrogel nanoparticles (nanogels) functionalized with peptides that specially target the EphA2 receptor to deliver small interfering RNAs (siRNAs) targeting EGFR. Expression of EGFR was determined by immunoblotting, and the effect of decreased EGFR expression on chemosensitization of ovarian cancer cells after siRNA delivery was investigated. Treatment of EphA2 positive Hey cells with siRNA-loaded, peptide-targeted nanogels decreased EGFR expression levels and significantly increased the sensitivity of this cell line to docetaxel (P < 0.05). Nanogel treatment of SK-OV-3 cells, which are negative for EphA2 expression, failed to reduce EGFR levels and did not increase docetaxel sensitivity (P > 0.05). This study suggests that targeted delivery of siRNAs by nanogels may be a promising strategy to increase the efficacy of chemotherapy drugs for the treatment of ovarian cancer. In addition, EphA2 is a viable target for therapeutic delivery, and the siRNAs are effectively protected by the nanogel carrier, overcoming the poor stability and uptake that has hindered clinical advancement of therapeutic siRNAs

  13. Co-delivery of Cbfa-1-targeting siRNA and SOX9 protein using PLGA nanoparticles to induce chondrogenesis of human mesenchymal stem cells.

    Science.gov (United States)

    Jeon, Su Yeon; Park, Ji Sun; Yang, Han Na; Lim, Hye Jin; Yi, Se Won; Park, Hansoo; Park, Keun-Hong

    2014-09-01

    During stem cell differentiation, various cellular responses occur that are mediated by transcription factors and proteins. This study evaluated the abilities of SOX9, a crucial protein during the early stage of chondrogenesis, and siRNA targeting Cbfa-1, a transcription factor that promotes osteogenesis, to stimulate chondrogenesis. Non-toxic poly-(d,l-lactide-co-glycolide) (PLGA) nanoparticles (NPs) were coated with Cbfa-1-targeting siRNA and loaded with SOX9 protein. Coomassie blue staining and circular dichroism revealed that the loaded SOX9 protein maintained its stability and bioactivity. These NPs easily entered human mesenchymal stem cells (hMSCs) in vitro and caused them to differentiate into chondrocytes. Markers that are typically expressed in mature chondrocytes were examined. These markers were highly expressed at the mRNA and protein levels in hMSCs treated with PLGA NPs coated with Cbfa-1-targeting siRNA and loaded with SOX9 protein. By contrast, these cells did not express osteogenesis-related markers. hMSCs were injected into mice following internalization of PLGA NPs coated with Cbfa-1-targeting siRNA and loaded with SOX9 protein. When the injection site was excised, markers of chondrogenesis were found to be highly expressed at the mRNA and protein levels, similar to the in vitro results. When hMSCs internalized these NPs and were then cultured in vitro or injected into mice, chondrogenesis-related extracellular matrix components were highly expressed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. PLK-1 Silencing in Bladder Cancer by siRNA Delivered With Exosomes.

    Science.gov (United States)

    Greco, Kristin A; Franzen, Carrie A; Foreman, Kimberly E; Flanigan, Robert C; Kuo, Paul C; Gupta, Gopal N

    2016-05-01

    To use exosomes as a vector to deliver small interfering ribonucleic acid (siRNA) to silence the polo-like kinase 1 (PLK-1) gene in bladder cancer cells. Exosomes were isolated from both human embryonic kidney 293 (HEK293) cell and mesenchymal stem cell (MSC) conditioned media. Fluorescently labeled exosomes were co-cultured with bladder cancer and normal epithelial cells and uptake was quantified by image cytometry. PLK-1 siRNA and negative control siRNA were loaded into HEK293 and MSC exosomes using electroporation. An invasive bladder cancer cell line (UMUC3) was co-cultured with the electroporated exosomes. Quantitative reverse transcriptase polymerase chain reaction was performed. Protein analysis was performed by Western blot. Annexin V staining and MTT assays were used to investigate effects on apoptosis and viability. Bladder cancer cell lines internalize an increased percentage of HEK293 exosomes when compared to normal bladder epithelial cells. Treatment of UMUC3 cells with exosomes electroporated with PLK-1 siRNA achieved successful knockdown of PLK-1 mRNA and protein when compared to cells treated with negative control exosomes. HEK293 and MSC exosomes were effectively used as a delivery vector to transport PLK-1 siRNA to bladder cancer cells in vitro, resulting in selective gene silencing of PLK-1. The use of exosomes as a delivery vector for potential intravesical therapy is attractive. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Inhibition of erythropoietin siRNA on corneal neovascularization of rabbit

    Directory of Open Access Journals (Sweden)

    Yu-Shun Xue

    2017-03-01

    Full Text Available AIM: To observe the expression of erythropoietin(EPOon the corneal of rabbit and evaluate the inhibition effect of EPO siRNA on corneal neovascularization(CNV. METHODS: Totally 22 healthy rabbits were randomly divided into 2 groups, which were experimental group and normal control group. Both eyes of rabbits in experimental group were chosen to establish corneal neovascularization model by alkali burn. The morphologic change of corneal was observed with slit lamp microscope and the area of CNV was calculated every day. After alkali burn, the right eye of the experimental group was accepted EPO siRNA injection under the conjunctiva, and the left eye was assigned to be experimental control group. The corneal with CNV was collected for immunohistochemistry at 3d, 7d, 14d, 21d after alkali burn, and the expression of EPO was measured. RESULTS: CNV began growing at the 3d after alkali burn in experimental group, and it was vigorous growing at 7d-14d period. The result of immunohistochemistry shows that the expression of EPO increased after the operation. Compared with experimental group, the rabbits who were treated by EPO siRNA was found with less neovascularization on their corneal, and the expression of EPO decreased. There were statistical significance between the two group at different time(PCONCLUSION: EPO is likely to play an important role on CNV growth, and EPO siRNA can inhibit the growth of CNV by restraining the expression of EPO.

  16. The antifibrotic effects of TGF-β1 siRNA on hepatic fibrosis in rats

    International Nuclear Information System (INIS)

    Lang, Qing; Liu, Qi; Xu, Ning; Qian, Ke-Li; Qi, Jing-Hu; Sun, Yin-Chun; Xiao, Lang; Shi, Xiao-Feng

    2011-01-01

    Highlights: → We constructed CCL4 induced liver fibrosis model successfully. → We proofed that the TGF-β1 siRNA had a definite therapy effect to CCL4 induced liver fibrosis. → The therapy effect of TGF-β1 siRNA had dose-dependent. -- Abstract: Background/aims: Hepatic fibrosis results from the excessive secretion of matrix proteins by hepatic stellate cells (HSCs), which proliferate during fibrotic liver injury. Transforming growth factor (TGF)-β1 is the dominant stimulus for extracellular matrix (ECM) production by stellate cells. Our study was designed to investigate the antifibrotic effects of using short interference RNA (siRNA) to target TGF-β1 in hepatic fibrosis and its mechanism in rats exposed to a high-fat diet and carbon tetrachloride (CCL4). Methods: A total of 40 healthy, male SD (Sprague-Dawley) rats were randomly divided into five even groups containing of eight rats each: normal group, model group, TGF-β1 siRNA 0.125 mg/kg treatment group, TGF-β1 siRNA 0.25 mg/kg treatment group and TGF-β1 siRNA negative control group (0.25 mg/kg). CCL4 and a high-fat diet were used for 8 weeks to induce hepatic fibrosis. All the rats were then sacrificed to collect liver tissue samples. A portion of the liver samples were soaked in formalin for Hematoxylin-Eosin staining, classifying the degree of liver fibrosis, and detecting the expression of type I and III collagen and TGF-β1; the remaining liver samples were stored in liquid nitrogen to be used for detecting TGF-β1 by Western blotting and for measuring the mRNA expression of type I and III collagen and TGF-β1 by quantitative real-time polymerase chain reaction. Results: Comparing the TGF-β1 siRNA 0.25 mg/kg treatment group to the model group, the TGF-β1 siRNA negative control group and the TGF-β1 siRNA 0.125 mg/kg treatment group showed significantly reduced levels of pathological changes, protein expression and the mRNA expression of TGF-β1, type I collagen and type III collagen (P < 0

  17. The antifibrotic effects of TGF-{beta}1 siRNA on hepatic fibrosis in rats

    Energy Technology Data Exchange (ETDEWEB)

    Lang, Qing; Liu, Qi [Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Instituted for Virus Hepatitis and Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing (China); Xu, Ning [The Second Hospital of YuLin, Shanxi Province (China); Qian, Ke-Li; Qi, Jing-Hu; Sun, Yin-Chun; Xiao, Lang [Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Instituted for Virus Hepatitis and Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing (China); Shi, Xiao-Feng, E-mail: sxff2003@yahoo.com.cn [Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Instituted for Virus Hepatitis and Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing (China)

    2011-06-10

    Highlights: {yields} We constructed CCL4 induced liver fibrosis model successfully. {yields} We proofed that the TGF-{beta}1 siRNA had a definite therapy effect to CCL4 induced liver fibrosis. {yields} The therapy effect of TGF-{beta}1 siRNA had dose-dependent. -- Abstract: Background/aims: Hepatic fibrosis results from the excessive secretion of matrix proteins by hepatic stellate cells (HSCs), which proliferate during fibrotic liver injury. Transforming growth factor (TGF)-{beta}1 is the dominant stimulus for extracellular matrix (ECM) production by stellate cells. Our study was designed to investigate the antifibrotic effects of using short interference RNA (siRNA) to target TGF-{beta}1 in hepatic fibrosis and its mechanism in rats exposed to a high-fat diet and carbon tetrachloride (CCL4). Methods: A total of 40 healthy, male SD (Sprague-Dawley) rats were randomly divided into five even groups containing of eight rats each: normal group, model group, TGF-{beta}1 siRNA 0.125 mg/kg treatment group, TGF-{beta}1 siRNA 0.25 mg/kg treatment group and TGF-{beta}1 siRNA negative control group (0.25 mg/kg). CCL4 and a high-fat diet were used for 8 weeks to induce hepatic fibrosis. All the rats were then sacrificed to collect liver tissue samples. A portion of the liver samples were soaked in formalin for Hematoxylin-Eosin staining, classifying the degree of liver fibrosis, and detecting the expression of type I and III collagen and TGF-{beta}1; the remaining liver samples were stored in liquid nitrogen to be used for detecting TGF-{beta}1 by Western blotting and for measuring the mRNA expression of type I and III collagen and TGF-{beta}1 by quantitative real-time polymerase chain reaction. Results: Comparing the TGF-{beta}1 siRNA 0.25 mg/kg treatment group to the model group, the TGF-{beta}1 siRNA negative control group and the TGF-{beta}1 siRNA 0.125 mg/kg treatment group showed significantly reduced levels of pathological changes, protein expression and the m

  18. Biphasic somatic A-type K channel downregulation mediates intrinsic plasticity in hippocampal CA1 pyramidal neurons.

    Directory of Open Access Journals (Sweden)

    Sung-Cherl Jung

    2009-08-01

    Full Text Available Since its original description, the induction of synaptic long-term potentiation (LTP has been known to be accompanied by a lasting increase in the intrinsic excitability (intrinsic plasticity of hippocampal neurons. Recent evidence shows that dendritic excitability can be enhanced by an activity-dependent decrease in the activity of A-type K(+ channels. In the present manuscript, we examined the role of A-type K(+ channels in regulating intrinsic excitability of CA1 pyramidal neurons of the hippocampus after synapse-specific LTP induction. In electrophysiological recordings we found that LTP induced a potentiation of excitability which was accompanied by a two-phased change in A-type K(+ channel activity recorded in nucleated patches from organotypic slices of rat hippocampus. Induction of LTP resulted in an immediate but short lasting hyperpolarization of the voltage-dependence of steady-state A-type K(+ channel inactivation along with a progressive, long-lasting decrease in peak A-current density. Blocking clathrin-mediated endocytosis prevented the A-current decrease and most measures of intrinsic plasticity. These results suggest that two temporally distinct but overlapping mechanisms of A-channel downregulation together contribute to the plasticity of intrinsic excitability. Finally we show that intrinsic plasticity resulted in a global enhancement of EPSP-spike coupling.

  19. Characterization of an extracellular lipase by Pseudomonas koreensis BK-L07 isolated from soil.

    Science.gov (United States)

    Anbu, Periasamy

    2014-01-01

    Screening using spirit blue agar revealed that strain BK-L07 had the highest lipase activity. Furthermore, the isolated strain was identified as Pseudomonas sp. based on morphological, physiological, biochemical, and molecular analyses. The 16S rRNA gene sequence of strain BK-L07 shared a high similarity with that of Pseudomonas koreensis (99%). The nutritional conditions and physicochemical properties were influenced by P. koreensis BK-L07. The maximum lipase production was obtained in tryptic soy broth medium at pH 8.0 and a temperature of 25°C after 36 hr of incubation. In addition, the lipase activity was determined using different carbon sources and lipase inducers. The lipase production was greatest when 1% maltose was used as the carbon source and olive oil was used as the lipase inducer. The lipase production was significantly increased approximately threefold in the optimized medium when compared with the original medium. Further, the lipase was purified by ammonium sulfate precipitation and gel filtration chromatography with a purification yield of 10.8%. The molecular mass of lipase was 45 kDa. The optimum temperature and pH were 40°C and 8.0, respectively. The enzyme was stable up to 50°C and at pH from 7 to 9. In addition, the enzyme activity was stimulated by MgSO4 and completely inhibited by ethylenediamine tetraacetic acid (EDTA), indicating the metalloenzyme type. The lipase activity was toward medium to long chain length of fatty acids (C10 to C18). Supplemental materials are available for this article. Go to the publisher's online edition of Preparative Biochemistry and Biotechnology to view the supplemental file.

  20. Optimizations of siRNA design for the activation of gene transcription by targeting the TATA-box motif.

    Directory of Open Access Journals (Sweden)

    Miaomiao Fan

    Full Text Available Small interfering RNAs (siRNAs are widely used to repress gene expression by targeting mRNAs. Some reports reveal that siRNAs can also activate or inhibit gene expression through targeting the gene promoters. Our group has found that microRNAs (miRNAs could activate gene transcription via interaction with the TATA-box motif in gene promoters. To investigate whether siRNA targeting the same region could upregulate the promoter activity, we test the activating efficiency of siRNAs targeting the TATA-box motif of 16 genes and perform a systematic analysis to identify the common features of the functional siRNAs for effective activation of gene promoters. Further, we try various modifications to improve the activating efficiency of siRNAs and find that it is quite useful to design the promoter-targeting activating siRNA by following several rules such as (a complementary to the TATA-box-centered region; (b UA usage at the first two bases of the antisense strand; (c twenty-three nucleotides (nts in length; (d 2'-O-Methyl (2'-OMe modification at the 3' terminus of the antisense strand; (e avoiding mismatches at the 3' end of the antisense strand. The optimized activating siRNAs potently enhance the expression of interleukin-2 (IL-2 gene in human and mouse primary CD4+ T cells with a long-time effect. Taken together, our study provides a guideline for rational design the promoter-targeting siRNA to sequence-specifically enhance gene expression.

  1. Mapping Optimal Charge Density and Length of ROMP-Based PTDMs for siRNA Internalization.

    Science.gov (United States)

    Caffrey, Leah M; deRonde, Brittany M; Minter, Lisa M; Tew, Gregory N

    2016-10-10

    A fundamental understanding of how polymer structure impacts internalization and delivery of biologically relevant cargoes, particularly small interfering ribonucleic acid (siRNA), is of critical importance to the successful design of improved delivery reagents. Herein we report the use of ring-opening metathesis polymerization (ROMP) methods to synthesize two series of guanidinium-rich protein transduction domain mimics (PTDMs): one based on an imide scaffold that contains one guanidinium moiety per repeat unit, and another based on a diester scaffold that contains two guanidinium moieties per repeat unit. By varying both the degree of polymerization and, in effect, the relative number of cationic charges in each PTDM, the performances of the two ROMP backbones for siRNA internalization were evaluated and compared. Internalization of fluorescently labeled siRNA into Jurkat T cells demonstrated that fluorescein isothiocyanate (FITC)-siRNA internalization had a charge content dependence, with PTDMs containing approximately 40 to 60 cationic charges facilitating the most internalization. Despite this charge content dependence, the imide scaffold yielded much lower viabilities in Jurkat T cells than the corresponding diester PTDMs with similar numbers of cationic charges, suggesting that the diester scaffold is preferred for siRNA internalization and delivery applications. These developments will not only improve our understanding of the structural factors necessary for optimal siRNA internalization, but will also guide the future development of optimized PTDMs for siRNA internalization and delivery.

  2. Enhanced delivery of PEAL nanoparticles with ultrasound targeted microbubble destruction mediated siRNA transfection in human MCF-7/S and MCF-7/ADR cells in vitro

    Directory of Open Access Journals (Sweden)

    Teng Y

    2015-08-01

    Full Text Available Yanwei Teng,1,2,* Min Bai,3,* Ying Sun,2 Qi Wang,1,2 Fan Li,3 Jinfang Xing,3 Lianfang Du,3 Tao Gong,1 Yourong Duan2 1Key Laboratory of Drug Targeting and Novel Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, People’s Republic of China; 2State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People’s Republic of China; 3Department of Ultrasound, Shanghai First People’s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People’s Republic of China *These authors contributed equally to this work Abstract: The gene knockdown activity of small interfering RNA (siRNA has led to their use as potential therapeutics for a variety of diseases. However, successful gene therapy requires safe and efficient delivery systems. In this study, we choose mPEG-PLGA-PLL nanoparticles (PEAL NPs with ultrasound targeted microbubble destruction (UTMD to efficiently deliver siRNA into cells. An emulsification-solvent evaporation method was used to prepare siRNA-loaded PEAL NPs. The NPs possessed an average size of 132.6±10.3 nm (n=5, with a uniform spherical shape, and had an encapsulation efficiency (EE of more than 98%. As demonstrated by MTT assay, neither PEAL NPs nor siRNA-loaded PEAL NPs showed cytotoxicity even at high concentrations. The results of cellular uptake showed, with the assistance of UTMD, the siRNA-loaded PEAL NPs can be effectively internalized and can subsequently release siRNA in cells. Taken together, PEAL NPs with UTMD may be highly promising for siRNA delivery, making it possible to fully exploit the potential of siRNA-based therapeutics. Keywords: gene delivery, mPEG-PLGA-PLL, UTMD, emulsification-solvent evaporation method, orthogonal design

  3. A quantized mechanism for activation of pannexin channels

    Science.gov (United States)

    Chiu, Yu-Hsin; Jin, Xueyao; Medina, Christopher B.; Leonhardt, Susan A.; Kiessling, Volker; Bennett, Brad C.; Shu, Shaofang; Tamm, Lukas K.; Yeager, Mark; Ravichandran, Kodi S.; Bayliss, Douglas A.

    2017-01-01

    Pannexin 1 (PANX1) subunits form oligomeric plasma membrane channels that mediate nucleotide release for purinergic signalling, which is involved in diverse physiological processes such as apoptosis, inflammation, blood pressure regulation, and cancer progression and metastasis. Here we explore the mechanistic basis for PANX1 activation by using wild type and engineered concatemeric channels. We find that PANX1 activation involves sequential stepwise sojourns through multiple discrete open states, each with unique channel gating and conductance properties that reflect contributions of the individual subunits of the hexamer. Progressive PANX1 channel opening is directly linked to permeation of ions and large molecules (ATP and fluorescent dyes) and occurs during both irreversible (caspase cleavage-mediated) and reversible (α1 adrenoceptor-mediated) forms of channel activation. This unique, quantized activation process enables fine tuning of PANX1 channel activity and may be a generalized regulatory mechanism for other related multimeric channels. PMID:28134257

  4. 哈维氏弧菌黑鲷分离株BK-1培养条件优化研究%Studies on the Optimal Culture Conditions of Vibrio harveyi BK-1 from Sparus macrocephalus

    Institute of Scientific and Technical Information of China (English)

    潘晓艺; 沈锦玉; 尹文林; 曹铮; 马海其; 常抗美

    2005-01-01

    从患病黑鲷Sparus macrocephalus 的肾脏分离到一致病菌株BK-1,经鉴定为哈维氏弧菌.对哈维氏弧菌BK-1株的最佳生长条件及培养基优化进行了测定.结果表明:不同的培养条件和培养基成份均会影响其产量.哈维氏弧菌最适宜生长条件为:盐度为2%、pH8、温度为30℃;最佳培养基成份为:蛋白胨0.5%,牛肉膏0.75%,甘油0.05%,CuSO40.15 mg/L,CaCl2 0.01 g/L.

  5. Perivascular delivery of Notch 1 siRNA inhibits injury-induced arterial remodeling.

    Directory of Open Access Journals (Sweden)

    Eileen M Redmond

    Full Text Available To determine the efficacy of perivascular delivery of Notch 1 siRNA in preventing injury-induced arterial remodeling.Carotid artery ligation was performed to induce arterial remodeling. After 14 days, morphometric analysis confirmed increased vSMC growth and subsequent media thickening and neointimal formation. Laser capture microdissection, quantitative qRT-PCR and immunoblot analysis of medial tissue revealed a significant increase in Notch1 receptor and notch target gene, Hrt 1 and 2 expression in the injured vessels. Perivascular delivery of Notch 1 siRNA by pluronic gel inhibited the injury-induced increase in Notch 1 receptor and target gene expression when compared to scrambled siRNA controls while concomitantly reducing media thickening and neointimal formation to pre-injury, sham-operated levels. Selective Notch 1 knockdown also reversed the injury-induced inhibition of pro-apoptotic Bax expression while decreasing injury-induced anti-apoptotic Bcl-XL expression to sham-operated control levels. In parallel experiments, proliferative cyclin levels, as measured by PCNA expression, were reversed to sham-operated control levels following selective Notch 1 knockdown.These results suggest that injury-induced arterial remodeling can be successfully inhibited by localized perivascular delivery of Notch 1 siRNA.

  6. Synthesis of Polymer-Lipid Nanoparticles by Microfluidic Focusing for siRNA Delivery

    Directory of Open Access Journals (Sweden)

    Yujing Li

    2016-10-01

    Full Text Available Polyethylenimine (PEI as a cationic polymer is commonly used as a carrier for gene delivery. PEI-800 is less toxic than PEI-25K but it is also less efficient. A novel nanocarrier was developed by combining PEI-800 with a pH-sensitive lipid to form polymer-lipid hybrid nanoparticles (P/LNPs. They were synthesized by microfluidic focusing (MF. Two microfluidic devices were used to synthesize P/LNPs loaded with VEGF siRNA. A series of P/LNPs with different particle sizes and distributions were obtained by altering the flow rate and geometry of microfluidic chips, and introducing sonication. Furthermore, the P/LNPs can be loaded with VEGF siRNA efficiently and were stable in serum for 12 h. Finally, P/LNPs produced by the microfluidic chip showed greater cellular uptake as well as down-regulation of VEGF protein level in both A549 and MCF-7 with reduced cellular toxicity. All in all, the P/LNPs produced by MF method were shown to be a safe and efficient carrier for VEGF siRNA, with potential application for siRNA therapeutics.

  7. Polo-like kinase 1 siRNA-607 induces mitotic arrest and apoptosis in ...

    African Journals Online (AJOL)

    Polo-like kinase (Plk) 1 is overexpressed in many human malignancies including nasopharyngeal carcinoma, indicating its potential as a therapeutic target. Recently, using a simple cellular morphologybased strategy, we have identified several novel effective siRNAs against Plk1 including Plk1 siRNA- 607. In this study, we ...

  8. In vivo silencing of alpha-synuclein using naked siRNA

    Directory of Open Access Journals (Sweden)

    Charisse Klaus

    2008-11-01

    Full Text Available Abstract Background Overexpression of α-synuclein (SNCA in families with multiplication mutations causes parkinsonism and subsequent dementia, characterized by diffuse Lewy Body disease post-mortem. Genetic variability in SNCA contributes to risk of idiopathic Parkinson's disease (PD, possibly as a result of overexpression. SNCA downregulation is therefore a valid therapeutic target for PD. Results We have identified human and murine-specific siRNA molecules which reduce SNCA in vitro. As a proof of concept, we demonstrate that direct infusion of chemically modified (naked, murine-specific siRNA into the hippocampus significantly reduces SNCA levels. Reduction of SNCA in the hippocampus and cortex persists for a minimum of 1 week post-infusion with recovery nearing control levels by 3 weeks post-infusion. Conclusion We have developed naked gene-specific siRNAs that silence expression of SNCA in vivo. This approach may prove beneficial toward our understanding of the endogenous functional equilibrium of SNCA, its role in disease, and eventually as a therapeutic strategy for α-synucleinopathies resulting from SNCA overexpression.

  9. In vivo silencing of alpha-synuclein using naked siRNA

    Science.gov (United States)

    Lewis, Jada; Melrose, Heather; Bumcrot, David; Hope, Andrew; Zehr, Cynthia; Lincoln, Sarah; Braithwaite, Adam; He, Zhen; Ogholikhan, Sina; Hinkle, Kelly; Kent, Caroline; Toudjarska, Ivanka; Charisse, Klaus; Braich, Ravi; Pandey, Rajendra K; Heckman, Michael; Maraganore, Demetrius M; Crook, Julia; Farrer, Matthew J

    2008-01-01

    Background Overexpression of α-synuclein (SNCA) in families with multiplication mutations causes parkinsonism and subsequent dementia, characterized by diffuse Lewy Body disease post-mortem. Genetic variability in SNCA contributes to risk of idiopathic Parkinson's disease (PD), possibly as a result of overexpression. SNCA downregulation is therefore a valid therapeutic target for PD. Results We have identified human and murine-specific siRNA molecules which reduce SNCA in vitro. As a proof of concept, we demonstrate that direct infusion of chemically modified (naked), murine-specific siRNA into the hippocampus significantly reduces SNCA levels. Reduction of SNCA in the hippocampus and cortex persists for a minimum of 1 week post-infusion with recovery nearing control levels by 3 weeks post-infusion. Conclusion We have developed naked gene-specific siRNAs that silence expression of SNCA in vivo. This approach may prove beneficial toward our understanding of the endogenous functional equilibrium of SNCA, its role in disease, and eventually as a therapeutic strategy for α-synucleinopathies resulting from SNCA overexpression. PMID:18976489

  10. MicroRNA-directed siRNA biogenesis in Caenorhabditis elegans.

    Science.gov (United States)

    Corrêa, Régis L; Steiner, Florian A; Berezikov, Eugene; Ketting, René F

    2010-04-08

    RNA interference (RNAi) is a post-transcriptional silencing process, triggered by double-stranded RNA (dsRNA), leading to the destabilization of homologous mRNAs. A distinction has been made between endogenous RNAi-related pathways and the exogenous RNAi pathway, the latter being essential for the experimental use of RNAi. Previous studies have shown that, in Caenorhabditis elegans, a complex containing the enzymes Dicer and the Argonaute RDE-1 process dsRNA. Dicer is responsible for cleaving dsRNA into short interfering RNAs (siRNAs) while RDE-1 acts as the siRNA acceptor. RDE-1 then guides a multi-protein complex to homologous targets to trigger mRNA destabilization. However, endogenous role(s) for RDE-1, if any, have remained unexplored. We here show that RDE-1 functions as a scavenger protein, taking up small RNA molecules from many different sources, including the microRNA (miRNA) pathway. This is in striking contrast to Argonaute proteins functioning directly in the miRNA pathway, ALG-1 and ALG-2: these proteins exclusively bind miRNAs. While playing no significant role in the biogenesis of the main pool of miRNAs, RDE-1 binds endogenous miRNAs and triggers RdRP activity on at least one perfectly matching, endogenous miRNA target. The resulting secondary siRNAs are taken up by a set of Argonaute proteins known to act as siRNA acceptors in exogenous RNAi, resulting in strong mRNA destabilization. Our results show that RDE-1 in an endogenous setting is actively screening the transcriptome using many different small RNAs, including miRNAs, as a guide, with implications for the evolution of transcripts with a potential to be recognized by Dicer.

  11. MicroRNA–Directed siRNA Biogenesis in Caenorhabditis elegans

    Science.gov (United States)

    Corrêa, Régis L.; Steiner, Florian A.; Berezikov, Eugene; Ketting, René F.

    2010-01-01

    RNA interference (RNAi) is a post-transcriptional silencing process, triggered by double-stranded RNA (dsRNA), leading to the destabilization of homologous mRNAs. A distinction has been made between endogenous RNAi–related pathways and the exogenous RNAi pathway, the latter being essential for the experimental use of RNAi. Previous studies have shown that, in Caenorhabditis elegans, a complex containing the enzymes Dicer and the Argonaute RDE-1 process dsRNA. Dicer is responsible for cleaving dsRNA into short interfering RNAs (siRNAs) while RDE-1 acts as the siRNA acceptor. RDE-1 then guides a multi-protein complex to homologous targets to trigger mRNA destabilization. However, endogenous role(s) for RDE-1, if any, have remained unexplored. We here show that RDE-1 functions as a scavenger protein, taking up small RNA molecules from many different sources, including the microRNA (miRNA) pathway. This is in striking contrast to Argonaute proteins functioning directly in the miRNA pathway, ALG-1 and ALG-2: these proteins exclusively bind miRNAs. While playing no significant role in the biogenesis of the main pool of miRNAs, RDE-1 binds endogenous miRNAs and triggers RdRP activity on at least one perfectly matching, endogenous miRNA target. The resulting secondary siRNAs are taken up by a set of Argonaute proteins known to act as siRNA acceptors in exogenous RNAi, resulting in strong mRNA destabilization. Our results show that RDE-1 in an endogenous setting is actively screening the transcriptome using many different small RNAs, including miRNAs, as a guide, with implications for the evolution of transcripts with a potential to be recognized by Dicer. PMID:20386745

  12. Low cytotoxicity fluorescent PAMAM dendrimer as gene carriers for monitoring the delivery of siRNA

    Energy Technology Data Exchange (ETDEWEB)

    Guan, Lingmei [Sichuan University, State Key Laboratory of Bio-resources and Eco-environment, The Ministry of Education, College of Life Sciences (China); Huang, Saipeng [Chinese Academy of Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Center for Molecular Sciences, Institute of Chemistry (China); Chen, Zhao [Xi’an Jiaotong University, School of Science (China); Li, Yanchao [Chinese Academy of Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Center for Molecular Sciences, Institute of Chemistry (China); Liu, Ke [Sichuan University, State Key Laboratory of Bio-resources and Eco-environment, The Ministry of Education, College of Life Sciences (China); Liu, Yang, E-mail: yliu@iccas.ac.cn; Du, Libo, E-mail: dulibo@iccas.ac.cn [Chinese Academy of Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Center for Molecular Sciences, Institute of Chemistry (China)

    2015-09-15

    Visual detection of gene vectors has attracted a great deal of attention due to the application of these vectors in monitoring and evaluating the effect of gene carriers in living cells. A non-viral vector, the fluorescent PAMAM dendrimer (F-PAMAM), was synthesized through conjugation of PAMAM dendrimers and fluorescein. In vitro and ex vivo experiments show that F-PAMAM exhibits superphotostability, low cytotoxicity and facilitates endocytosis by A549 cells. The vector has a high siRNA binding affinity and it increases the efficiency of cy5-siRNA delivery in A549 cells, in comparison with a cy5-siRNA monomer. Our results provide a new method for simultaneously monitoring the delivery of siRNA and its non-viral carriers in living cells.

  13. Properties of optical breakdown in BK7 glass induced by an extended-cavity femtosecond laser oscillator.

    Science.gov (United States)

    Do, Binh T; Phillips, Mark C; Miller, Paul A; Kimmel, Mark W; Britsch, Justin; Cho, Seong-Ho

    2009-02-16

    Using an extended-cavity femtosecond oscillator, we investigated optical breakdown in BK7 glass caused by the accumulated action of many laser pulses. By using a pump-probe experiment and collecting the transmitted pump along with the reflected pump and the broadband light generated by the optical breakdown, we measured the build-up time to optical breakdown as a function of the pulse energy, and we also observed the instability of the plasma due to the effect of defocusing and shielding created by the electron gas. The spectrum of the broadband light emitted by the optical breakdown and the origin of the material modification in BK7 glass was studied. We developed a simple model of electromagnetic wave propagation in plasma that is consistent with the observed behavior of the reflection, absorption, and transmission of the laser light.

  14. Therapeutic miRNA and siRNA: Moving from Bench to Clinic as Next Generation Medicine

    Directory of Open Access Journals (Sweden)

    Chiranjib Chakraborty

    2017-09-01

    Full Text Available In the past few years, therapeutic microRNA (miRNA and small interfering RNA (siRNA are some of the most important biopharmaceuticals that are in commercial space as future medicines. This review summarizes the patents of miRNA- and siRNA-based new drugs, and also provides a snapshot about significant biopharmaceutical companies that are investing for the therapeutic development of miRNA and siRNA molecules. An insightful view about individual siRNA and miRNA drugs has been depicted with their present status, which is gaining attention in the therapeutic landscape. The efforts of the biopharmaceuticals are discussed with the status of their preclinical and/or clinical trials. Here, some of the setbacks have been highlighted during the biopharmaceutical development of miRNA and siRNA as individual therapeutics. Finally, a snapshot is illustrated about pharmacokinetics, pharmacodynamics with absorption, distribution, metabolism, and excretion (ADME, which is the fundamental development process of these therapeutics, as well as the delivery system for miRNA- and siRNA-based drugs. Keywords: miRNA, siRNA, drug development

  15. A High Throughput In Vivo Model for Testing Delivery and Antiviral Effects of siRNAs in Vertebrates

    DEFF Research Database (Denmark)

    Schyth, Brian Dall; Lorenzen, Niels; Pedersen, Finn Skou

    2007-01-01

    composed of small juvenile rainbow trout and a fish pathogenic virus to analyze the delivery and antiviral effects of formulated siRNAs. Intraperitoneally (IP) injected siRNAs formulated in polycationic liposomes, and to a lesser degree naked siRNAs, primarily entered free IP cells, including macrophage......-like cells. Uptake in these cells correlated with antiviral activity, seen as reduced mortality of virus-challenged fish. However, protection at the disease level was not dependent upon which of three tested siRNAs was used, and protection correlated with up-regulation of an interferon (IFN)-related gene...

  16. Polymer-Mediated Delivery of siRNAs to Hepatocellular Carcinoma: Variables Affecting Specificity and Effectiveness

    Directory of Open Access Journals (Sweden)

    Rossella Farra

    2018-03-01

    Full Text Available Despite the advances in anticancer therapies, their effectiveness for many human tumors is still far from being optimal. Significant improvements in treatment efficacy can come from the enhancement of drug specificity. This goal may be achieved by combining the use of therapeutic molecules with tumor specific effects and delivery carriers with tumor targeting ability. In this regard, nucleic acid-based drug (NABD and particularly small interfering RNAs (siRNAs, are attractive molecules due to the possibility to be engineered to target specific tumor genes. On the other hand, polymeric-based delivery systems are emerging as versatile carriers to generate tumor-targeted delivery systems. Here we will focus on the most recent findings in the selection of siRNA/polymeric targeted delivery systems for hepatocellular carcinoma (HCC, a human tumor for which currently available therapeutic approaches are poorly effective. In addition, we will discuss the most attracting and, in our opinion, promising siRNA-polymer combinations for HCC in relation to the biological features of HCC tissue. Attention will be also put on the mathematical description of the mechanisms ruling siRNA-carrier delivery, this being an important aspect to improve effectiveness reducing the experimental work.

  17. Soft computing model for optimized siRNA design by identifying off target possibilities using artificial neural network model.

    Science.gov (United States)

    Murali, Reena; John, Philips George; Peter S, David

    2015-05-15

    The ability of small interfering RNA (siRNA) to do posttranscriptional gene regulation by knocking down targeted genes is an important research topic in functional genomics, biomedical research and in cancer therapeutics. Many tools had been developed to design exogenous siRNA with high experimental inhibition. Even though considerable amount of work has been done in designing exogenous siRNA, design of effective siRNA sequences is still a challenging work because the target mRNAs must be selected such that their corresponding siRNAs are likely to be efficient against that target and unlikely to accidentally silence other transcripts due to sequence similarity. In some cases, siRNAs may tolerate mismatches with the target mRNA, but knockdown of genes other than the intended target could make serious consequences. Hence to design siRNAs, two important concepts must be considered: the ability in knocking down target genes and the off target possibility on any nontarget genes. So before doing gene silencing by siRNAs, it is essential to analyze their off target effects in addition to their inhibition efficacy against a particular target. Only a few methods have been developed by considering both efficacy and off target possibility of siRNA against a gene. In this paper we present a new design of neural network model with whole stacking energy (ΔG) that enables to identify the efficacy and off target effect of siRNAs against target genes. The tool lists all siRNAs against a particular target with their inhibition efficacy and number of matches or sequence similarity with other genes in the database. We could achieve an excellent performance of Pearson Correlation Coefficient (R=0. 74) and Area Under Curve (AUC=0.906) when the threshold of whole stacking energy is ≥-34.6 kcal/mol. To the best of the author's knowledge, this is one of the best score while considering the "combined efficacy and off target possibility" of siRNA for silencing a gene. The proposed model

  18. [Occupational Hearing Loss (BK-No. 2301) - A Retrospective Analysis of 100 Consecutive Cases].

    Science.gov (United States)

    Reiter, R; Brosch, S

    2016-10-01

    Introduction: In order for a diagnosis of Occupational Hearing Loss (BK-no. 2301) to be made certain criteria must be fulfilled to establish that the hearing loss is occupational in origin. This work compares 2 groups, those who fulfil the criteria (BKE) and those who do not (BKNE). Methods: A 100 consecutive reports ("Lärmgutachten BK-no. 2301") written by the authors were examined retrospectively. These recorded audiometric examination, an analysis of any tinnitus and noise exposure plus use of hearing protection. Pre- and post-noise exposure status together with an expert assessment of work limitations was made to produce a 7 point score. Results: 67% of the group fulfilled the conditions for occupational hearing loss (9% were entitled to compensation). In the BKE group 82% showed typical audiometric signs of noise damage with 75% of them fulfilling at least 6 criteria of occupational disease no. 2301. Tinnitus typical for noise exposure was found in 26%. Discussion: A 7 point score could be useful in the future as a method of helping distinguish hearing loss and tinnitus from occupational as opposed to other causes. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Polyethylenimine-based siRNA nanocomplexes reprogram tumor-associated dendritic cells via TLR5 to elicit therapeutic antitumor immunity.

    Science.gov (United States)

    Cubillos-Ruiz, Juan R; Engle, Xavier; Scarlett, Uciane K; Martinez, Diana; Barber, Amorette; Elgueta, Raul; Wang, Li; Nesbeth, Yolanda; Durant, Yvon; Gewirtz, Andrew T; Sentman, Charles L; Kedl, Ross; Conejo-Garcia, Jose R

    2009-08-01

    The success of clinically relevant immunotherapies requires reversing tumor-induced immunosuppression. Here we demonstrated that linear polyethylenimine-based (PEI-based) nanoparticles encapsulating siRNA were preferentially and avidly engulfed by regulatory DCs expressing CD11c and programmed cell death 1-ligand 1 (PD-L1) at ovarian cancer locations in mice. PEI-siRNA uptake transformed these DCs from immunosuppressive cells to efficient antigen-presenting cells that activated tumor-reactive lymphocytes and exerted direct tumoricidal activity, both in vivo and in situ. PEI triggered robust and selective TLR5 activation in vitro and elicited the production of hallmark TLR5-inducible cytokines in WT mice, but not in Tlr5-/- littermates. Thus, PEI is a TLR5 agonist that, to our knowledge, was not previously recognized. In addition, PEI-complexed nontargeting siRNA oligonucleotides stimulated TLR3 and TLR7. The nonspecific activation of multiple TLRs (specifically, TLR5 and TLR7) reversed the tolerogenic phenotype of human and mouse ovarian tumor-associated DCs. In ovarian carcinoma-bearing mice, this induced T cell-mediated tumor regression and prolonged survival in a manner dependent upon myeloid differentiation primary response gene 88 (MyD88; i.e., independent of TLR3). Furthermore, gene-specific siRNA-PEI nanocomplexes that silenced immunosuppressive molecules on mouse tumor-associated DCs elicited discernibly superior antitumor immunity and enhanced therapeutic effects compared with nontargeting siRNA-PEI nanocomplexes. Our results demonstrate that the intrinsic TLR5 and TLR7 stimulation of siRNA-PEI nanoparticles synergizes with the gene-specific silencing activity of siRNA to transform tumor-infiltrating regulatory DCs into DCs capable of promoting therapeutic antitumor immunity.

  20. Oral cancer cells may rewire alternative metabolic pathways to survive from siRNA silencing of metabolic enzymes

    International Nuclear Information System (INIS)

    Zhang, Min; Chai, Yang D; Brumbaugh, Jeffrey; Liu, Xiaojun; Rabii, Ramin; Feng, Sizhe; Misuno, Kaori; Messadi, Diana; Hu, Shen

    2014-01-01

    Cancer cells may undergo metabolic adaptations that support their growth as well as drug resistance properties. The purpose of this study is to test if oral cancer cells can overcome the metabolic defects introduced by using small interfering RNA (siRNA) to knock down their expression of important metabolic enzymes. UM1 and UM2 oral cancer cells were transfected with siRNA to transketolase (TKT) or siRNA to adenylate kinase (AK2), and Western blotting was used to confirm the knockdown. Cellular uptake of glucose and glutamine and production of lactate were compared between the cancer cells with either TKT or AK2 knockdown and those transfected with control siRNA. Statistical analysis was performed with student T-test. Despite the defect in the pentose phosphate pathway caused by siRNA knockdown of TKT, the survived UM1 or UM2 cells utilized more glucose and glutamine and secreted a significantly higher amount of lactate than the cells transferred with control siRNA. We also demonstrated that siRNA knockdown of AK2 constrained the proliferation of UM1 and UM2 cells but similarly led to an increased uptake of glucose/glutamine and production of lactate by the UM1 or UM2 cells survived from siRNA silencing of AK2. Our results indicate that the metabolic defects introduced by siRNA silencing of metabolic enzymes TKT or AK2 may be compensated by alternative feedback metabolic mechanisms, suggesting that cancer cells may overcome single defective pathways through secondary metabolic network adaptations. The highly robust nature of oral cancer cell metabolism implies that a systematic medical approach targeting multiple metabolic pathways may be needed to accomplish the continued improvement of cancer treatment

  1. Screening of siRNA nanoparticles for delivery to airway epithelial cells using high-content analysis

    LENUS (Irish Health Repository)

    Hibbitts, Alan

    2011-08-01

    Aims: Delivery of siRNA to the lungs via inhalation offers a unique opportunity to develop a new treatment paradigm for a range of respiratory conditions. However, progress has been greatly hindered by safety and delivery issues. This study developed a high-throughput method for screening novel nanotechnologies for pulmonary siRNA delivery. Methodology: Following physicochemical analysis, the ability of PEI–PEG–siRNA nanoparticles to facilitate siRNA delivery was determined using high-content analysis (HCA) in Calu-3 cells. Results obtained from HCA were validated using confocal microscopy. Finally, cytotoxicity of the PEI–PEG–siRNA particles was analyzed by HCA using the Cellomics® multiparameter cytotoxicity assay. Conclusion: PEI–PEG–siRNA nanoparticles facilitated increased siRNA uptake and luciferase knockdown in Calu-3 cells compared with PEI–siRNA.

  2. Nanobody mediated crystallization of an archeal mechanosensitive channel.

    Directory of Open Access Journals (Sweden)

    Christian Löw

    Full Text Available Mechanosensitive channels (MS are integral membrane proteins and allow bacteria to survive sudden changes in external osmolarity due to transient opening of their pores. The efflux of cytoplasmic osmolytes reduces the membrane tension and prevents membrane rupture. Therefore these channels serve as emergency valves when experiencing significant environmental stress. The preparation of high quality crystals of integral membrane proteins is a major bottleneck for structure determination by X-ray crystallography. Crystallization chaperones based on various protein scaffolds have emerged as promising tool to increase the crystallization probability of a selected target protein. So far archeal mechanosensitive channels of small conductance have resisted crystallization in our hands. To structurally analyse these channels, we selected nanobodies against an archeal MS channel after immunization of a llama with recombinant expressed, detergent solubilized and purified protein. Here we present the characterization of 23 different binders regarding their interaction with the channel protein using analytical gel filtration, western blotting and surface plasmon resonance. Selected nanobodies bound the target with affinities in the pico- to nanomolar range and some binders had a profound effect on the crystallization of the MS channel. Together with previous data we show that nanobodies are a versatile and valuable tool in structural biology by widening the crystallization space for highly challenging proteins, protein complexes and integral membrane proteins.

  3. Intranasal siRNA administration reveals IGF2 deficiency contributes to impaired cognition in Fragile X syndrome mice.

    Science.gov (United States)

    Pardo, Marta; Cheng, Yuyan; Velmeshev, Dmitry; Magistri, Marco; Eldar-Finkelman, Hagit; Martinez, Ana; Faghihi, Mohammad A; Jope, Richard S; Beurel, Eleonore

    2017-03-23

    Molecular mechanisms underlying learning and memory remain imprecisely understood, and restorative interventions are lacking. We report that intranasal administration of siRNAs can be used to identify targets important in cognitive processes and to improve genetically impaired learning and memory. In mice modeling the intellectual deficiency of Fragile X syndrome, intranasally administered siRNA targeting glycogen synthase kinase-3β (GSK3β), histone deacetylase-1 (HDAC1), HDAC2, or HDAC3 diminished cognitive impairments. In WT mice, intranasally administered brain-derived neurotrophic factor (BDNF) siRNA or HDAC4 siRNA impaired learning and memory, which was partially due to reduced insulin-like growth factor-2 (IGF2) levels because the BDNF siRNA- or HDAC4 siRNA-induced cognitive impairments were ameliorated by intranasal IGF2 administration. In Fmr1 -/- mice, hippocampal IGF2 was deficient, and learning and memory impairments were ameliorated by IGF2 intranasal administration. Therefore intranasal siRNA administration is an effective means to identify mechanisms regulating cognition and to modulate therapeutic targets.

  4. Novel siRNA formulation to effectively knockdown mutant p53 in osteosarcoma.

    Science.gov (United States)

    Kundu, Anup K; Iyer, Swathi V; Chandra, Sruti; Adhikari, Amit S; Iwakuma, Tomoo; Mandal, Tarun K

    2017-01-01

    The tumor suppressor p53 plays a crucial role in the development of osteosarcoma. The primary objective of this study is to develop and optimize lipid based nanoparticle formulations that can carry siRNA and effectively silence mutant p53 in 318-1, a murine osteosarcoma cell line. The nanoparticles were composed of a mixture of two lipids (cholesterol and DOTAP) and either PLGA or PLGA-PEG and prepared by using an EmulsiFlex-B3 high pressure homogenizer. A series of studies that include using different nanoparticles, different amount of siRNAs, cell numbers, incubation time, transfection media volume, and storage temperature was performed to optimize the gene silencing efficiency. Replacement of lipids by PLGA or PLGA-PEG decreased the particle size and overall cytotoxicity. Among all lipid-polymer nanoformulations, nanoparticles with 10% PLGA showed highest mutant p53 knockdown efficiency while maintaining higher cell viability when a nanoparticle to siRNA ratio equal to 6.8:0.66 and 75 nM siRNA was used. With long term storage the mutant p53 knockdown efficiency decreased to a greater extent. This study warrants a future evaluation of this formulation for gene silencing efficiency of mutant p53 in tissue culture and animal models for the treatment of osteosarcoma.

  5. Novel siRNA formulation to effectively knockdown mutant p53 in osteosarcoma.

    Directory of Open Access Journals (Sweden)

    Anup K Kundu

    Full Text Available The tumor suppressor p53 plays a crucial role in the development of osteosarcoma. The primary objective of this study is to develop and optimize lipid based nanoparticle formulations that can carry siRNA and effectively silence mutant p53 in 318-1, a murine osteosarcoma cell line.The nanoparticles were composed of a mixture of two lipids (cholesterol and DOTAP and either PLGA or PLGA-PEG and prepared by using an EmulsiFlex-B3 high pressure homogenizer. A series of studies that include using different nanoparticles, different amount of siRNAs, cell numbers, incubation time, transfection media volume, and storage temperature was performed to optimize the gene silencing efficiency.Replacement of lipids by PLGA or PLGA-PEG decreased the particle size and overall cytotoxicity. Among all lipid-polymer nanoformulations, nanoparticles with 10% PLGA showed highest mutant p53 knockdown efficiency while maintaining higher cell viability when a nanoparticle to siRNA ratio equal to 6.8:0.66 and 75 nM siRNA was used. With long term storage the mutant p53 knockdown efficiency decreased to a greater extent.This study warrants a future evaluation of this formulation for gene silencing efficiency of mutant p53 in tissue culture and animal models for the treatment of osteosarcoma.

  6. Synthesis and Gene Silencing Properties of siRNAs Containing Terminal Amide Linkages

    Directory of Open Access Journals (Sweden)

    Maria Gaglione

    2014-01-01

    Full Text Available The active components of the RNAi are 21 nucleotides long dsRNAs containing a 2 nucleotide overhang at the 3′ end, carrying 5′-phosphate and 3′-hydroxyl groups (siRNAs. Structural analysis revealed that the siRNA is functionally bound at both ends to RISC. Terminal modifications are considered with interest as the introduction of chemical moieties interferes with the 3′ overhang recognition by the PAZ domain and the 5′-phosphate recognition by the MID and PIWI domains of RISC. Herein, we report the synthesis of modified siRNAs containing terminal amide linkages by introducing hydroxyethylglycine PNA (hegPNA moieties at 5′, and at 3′ positions and on both terminals. Results of gene silencing studies highlight that some of these modifications are compatible with the RNAi machinery and markedly increase the resistance to serum-derived nucleases even after 24 h of incubation. Molecular docking simulations were attained to give at atomistic level a clearer picture of the effect of the most performing modifications on the interactions with the human Argonaute 2 PAZ, MID, and PIWI domains. This study adds another piece to the puzzle of the heterogeneous chemical modifications that can be attained to enhance the silencing efficiency of siRNAs.

  7. Targeted transfection increases siRNA uptake and gene silencing of primary endothelial cells in vitro - A quantitative study

    NARCIS (Netherlands)

    Asgeirsdottir, Sigridur A.; Talman, Eduard G.; de Graaf, Inge A.; Kamps, Jan A. A. M.; Satchell, Simon C.; Mathieson, Peter W.; Ruiters, Marcel H. J.; Molema, Grietje

    2010-01-01

    Applications of small-interfering RNA (siRNA) call for specific and efficient delivery of siRNA into particular cell types. We developed a novel, non-viral targeting system to deliver siRNA specifically into inflammation-activated endothelial cells. This was achieved by conjugating the cationic

  8. Electronic structure and spectral properties of heavy actinides Pu, Am, Cm and Bk

    International Nuclear Information System (INIS)

    Shick, Alexander B; Kolorenc, Jindrich; Lichtenstein, Alexander I; Havela, Ladislav

    2010-01-01

    Selected electronic properties of Pu, Am, Cm and Bk are calculated with the aid of charge self-consistent LDA + Hubbard I method. Presented all-electron calculations are performed in the full-potential LAPW basis and incorporate spin-orbit interaction. The results are found to be in good agreement with experimental valence photoelectron spectra as well as with core XAS/EELS spectra of heavy actinides.

  9. Gold nanoclusters-assisted delivery of NGF siRNA for effective treatment of pancreatic cancer

    Science.gov (United States)

    Lei, Yifeng; Tang, Lixue; Xie, Yangzhouyun; Xianyu, Yunlei; Zhang, Lingmin; Wang, Peng; Hamada, Yoh; Jiang, Kai; Zheng, Wenfu; Jiang, Xingyu

    2017-01-01

    Pancreatic cancer is one of the deadliest human cancers, whose progression is highly dependent on the nervous microenvironment. The suppression of gene expression of nerve growth factor (NGF) may have great potential in pancreatic cancer treatment. Here we show that gold nanocluster-assisted delivery of siRNA of NGF (GNC–siRNA) allows efficient NGF gene silencing and pancreatic cancer treatment. The GNC–siRNA complex increases the stability of siRNA in serum, prolongs the circulation lifetime of siRNA in blood and enhances the cellular uptake and tumour accumulation of siRNA. The GNC–siRNA complex potently downregulates the NGF expression in Panc-1 cells and in pancreatic tumours, and effectively inhibits the tumour progression in three pancreatic tumour models (subcutaneous model, orthotopic model and patient-derived xenograft model) without adverse effects. Our study constitutes a straightforward but effective approach to inhibit pancreatic cancer via NGF knockdown, suggesting a promising therapeutic direction for pancreatic cancer. PMID:28440296

  10. siRNA inhibition of telomerase enhances the anti-cancer effect of doxorubicin in breast cancer cells

    International Nuclear Information System (INIS)

    Dong, Xuejun; Liu, Anding; Zer, Cindy; Feng, Jianguo; Zhen, Zhuan; Yang, Mingfeng; Zhong, Li

    2009-01-01

    Doxorubicin is an effective breast cancer drug but is hampered by a severe, dose-dependent toxicity. Concomitant administration of doxorubicin and another cancer drug may be able to sensitize tumor cells to the cytotoxicity of doxorubicin and lowers the therapeutic dosage. In this study, we examined the combined effect of low-dose doxorubicin and siRNA inhibition of telomerase on breast cancer cells. We found that when used individually, both treatments were rapid and potent apoptosis inducers; and when the two treatments were combined, we observed an enhanced and sustained apoptosis induction in breast cancer cells. siRNA targeting the mRNA of the protein component of telomerase, the telomerase reverse transcriptase (hTERT), was transfected into two breast cancer cell lines. The siRNA inhibition was confirmed by RT-PCR and western blot on hTERT mRNA and protein levels, respectively, and by measuring the activity level of telomerase using the TRAP assay. The effect of the hTERT siRNA on the tumorigenicity of the breast cancer cells was also studied in vivo by injection of the siRNA-transfected breast cancer cells into nude mice. The effects on cell viability, apoptosis and senescence of cells treated with hTERT siRNA, doxorubicin, and the combined treatment of doxorubicin and hTERT siRNA, were examined in vitro by MTT assay, FACS and SA-β-galactosidase staining. The hTERT siRNA effectively knocked down the mRNA and protein levels of hTERT, and reduced the telomerase activity to 30% of the untreated control. In vivo, the tumors induced by the hTERT siRNA-transfected cells were of reduced sizes, indicating that the hTERT siRNA also reduced the tumorigenic potential of the breast cancer cells. The siRNA treatment reduced cell viability by 50% in breast cancer cells within two days after transfection, while 0.5 μM doxorubicin treatment had a comparable effect but with a slower kinetics. The combination of hTERT siRNA and 0.5 μM doxorubicin killed twice as many

  11. Reductively Responsive Hydrogel Nanoparticles with Uniform Size, Shape, and Tunable Composition for Systemic siRNA Delivery in Vivo.

    Science.gov (United States)

    Ma, Da; Tian, Shaomin; Baryza, Jeremy; Luft, J Christopher; DeSimone, Joseph M

    2015-10-05

    To achieve the great potential of siRNA based gene therapy, safe and efficient systemic delivery in vivo is essential. Here we report reductively responsive hydrogel nanoparticles with highly uniform size and shape for systemic siRNA delivery in vivo. "Blank" hydrogel nanoparticles with high aspect ratio were prepared using continuous particle fabrication based on PRINT (particle replication in nonwetting templates). Subsequently, siRNA was conjugated to "blank" nanoparticles via a disulfide linker with a high loading ratio of up to 18 wt %, followed by surface modification to enhance transfection. This fabrication process could be easily scaled up to prepare large quantity of hydrogel nanoparticles. By controlling hydrogel composition, surface modification, and siRNA loading ratio, siRNA conjugated nanoparticles were highly tunable to achieve high transfection efficiency in vitro. FVII-siRNA conjugated nanoparticles were further stabilized with surface coating for in vivo siRNA delivery to liver hepatocytes, and successful gene silencing was demonstrated at both mRNA and protein levels.

  12. Site-Specific Modification Using the 2′-Methoxyethyl Group Improves the Specificity and Activity of siRNAs

    Directory of Open Access Journals (Sweden)

    Xinyun Song

    2017-12-01

    Full Text Available Rapid progress has been made toward small interfering RNA (siRNA-based therapy for human disorders, but rationally optimizing siRNAs for high specificity and potent silencing remains a challenge. In this study, we explored the effect of chemical modification at the cleavage site of siRNAs. We found that modifications at positions 9 and 10 markedly reduced the silencing potency of the unmodified strand of siRNAs but were well tolerated by the modified strand. Intriguingly, addition of the 2′-methoxyethyl (MOE group at the cleavage site improved both the specificity and silencing activity of siRNAs by facilitating the oriented RNA-induced silencing complex (RISC loading of the modified strand. Furthermore, we combined MOE modifications at positions 9 and 10 of one strand together with 2′-O-methylation (OMe at position 14 of the other strand and found a synergistic effect that improved the specificity of siRNAs. The surprisingly beneficial effect of the combined modification was validated using siRNA-targeting endogenous gene intercellular adhesion molecule 1 (ICAM1. We found that the combined modifications eliminated its off-target effects. In conclusion, we established effective strategies to optimize siRNAs using site-specific MOE modifications. The findings may allow the creation of superior siRNAs for therapy in terms of activity and specificity.

  13. An effective tumor-targeting strategy utilizing hypoxia-sensitive siRNA delivery system for improved anti-tumor outcome.

    Science.gov (United States)

    Kang, Lin; Fan, Bo; Sun, Ping; Huang, Wei; Jin, Mingji; Wang, Qiming; Gao, Zhonggao

    2016-10-15

    Hypoxia is a feature of most solid tumors, targeting hypoxia is considered as the best validated yet not extensively exploited strategy in cancer therapy. Here, we reported a novel tumor-targeting strategy using a hypoxia-sensitive siRNA delivery system. In the study, 2-nitroimidazole (NI), a hydrophobic component that can be converted to hydrophilic 2-aminoimidazole (AI) through bioreduction under hypoxic conditions, was conjugated to the alkylated polyethyleneimine (bPEI1.8k-C6) to form amphiphilic bPEI1.8k-C6-NI polycations. bPEI1.8k-C6-NI could self-assemble into micelle-like aggregations in aqueous, which contributed to the improved stability of the bPEI1.8k-C6-NI/siRNA polyplexes, resulted in increased cellular uptake. After being transported into the hypoxic tumor cells, the selective nitro-to-amino reduction would cause structural change and elicit a relatively loose structure to facilitate the siRNA dissociation in the cytoplasm, for enhanced gene silencing efficiency ultimately. Therefore, the conflict between the extracellular stability and the intracellular siRNA release ability of the polyplexes was solved by introducing the hypoxia-responsive unit. Consequently, the survivin-targeted siRNA loaded polyplexes shown remarkable anti-tumor effect not only in hypoxic cells, but also in tumor spheroids and tumor-bearing mice, indicating that the hypoxia-sensitive siRNA delivery system had great potential for tumor-targeted therapy. Hypoxia is one of the most remarkable features of most solid tumors, and targeting hypoxia is considered as the best validated strategy in cancer therapy. However, in the past decades, there were few reports about using this strategy in the drug delivery system, especially in siRNA delivery system. Therefore, we constructed a hypoxia-sensitive siRNA delivery system utilizing a hypoxia-responsive unit, 2-nitroimidazole, by which the unavoidable conflict between improved extracellular stability and promoted intracellular siRNA

  14. PENGEMBANGAN INSTRUMEN ASESMEN KEBUTUHAN PERKEMBANGAN UNTUK PENYUSUNAN KURIKULUM DAN EVALUASI PROGRAM BK

    Directory of Open Access Journals (Sweden)

    Gendon Barus

    2013-01-01

    Full Text Available Penelitian pengembangan ini bertujuan menghasilkan instrumen asesmen kebutuhan peserta didik, disebut Invantori Kebutuhan Perkembangan Murid (IKPM. Penelitian mengikuti model Plomp (1999 dengan lima fase. Reliabilitas instrumen diestimasi dengan teknik Alpha Cronbach, validitas isi diperiksa oleh pakar dan telaah praktisi melalui FGD. Validitas empirik dan kecocokan model pengukuran dibuktikan dengan analisis faktor konfirmatori (CFA dengan program Lisrel 8.30. Telaah praktisi melibatkan 60 orang guru kelas V dan VI SD dalam dua tahap FGD, sedangkan uji coba empirik dan implementasi melibatkan murid kelas V dan VI. Hasil penelitian pengembang-an ini adalah: 1 IKPM dapat digunakan untuk menghimpun data kebutuhan perkembangan sebagai dasar penyusunan kurikulum bimbingan dan melaksanakan evaluasi program, bimbingan dan alat ukur evaluasi program bimbingan klasikal di sekolah dasar dan 2 teridentifikasi butir-butir kebutuhan per-kembangan murid yang intens dan sangat intens untuk dipenuhi melalui layanan bimbingan klasikal. Kata kunci: instrumen asesmen kebutuhan, kurikulum bimbingan, instrument evaluasi program BK ______________________________________________________________ DEVELOPMENT OF DEVELOPMENTAL NEEDS ASSESSMENT INSTRUMENT FOR CURRICULUM ARRANGEMENT AND EVALUATION OF BK PROGRAM Abstract The goal of this research is to produce a developmental needs assessment instrument, called Student’s Developmental Needs Inventory, which can be use to reveal the needs of students in elementary school. The research method follows the model of Research and Development (R & D by Plomp (1999 with five phases. The instrument which is developed in this study guidance and counseling (Bimbingan Konseling, BK in elementary school. Instrument reliability is estimated using by Alpha Cronbach technique, it content validity is checked by experts judgment and practitioner’s assessment with FGD technique. Furthermore, empirical validity and the goodness of fit

  15. Analysis of the siRNA-Mediated Gene Silencing Process Targeting Three Homologous Genes Controlling Soybean Seed Oil Quality.

    Science.gov (United States)

    Lu, Sha; Yin, Xiaoyan; Spollen, William; Zhang, Ning; Xu, Dong; Schoelz, James; Bilyeu, Kristin; Zhang, Zhanyuan J

    2015-01-01

    In the past decade, RNA silencing has gained significant attention because of its success in genomic scale research and also in the genetic improvement of crop plants. However, little is known about the molecular basis of siRNA processing in association with its target transcript. To reveal this process for improving hpRNA-mediated gene silencing in crop plants, the soybean GmFAD3 gene family was chosen as a test model. We analyzed RNAi mutant soybean lines in which three members of the GmFAD3 gene family were silenced. The silencing levels of FAD3A, FAD3B and FAD3C were correlated with the degrees of sequence homology between the inverted repeat of hpRNA and the GmFAD3 transcripts in the RNAi lines. Strikingly, transgenes in two of the three RNAi lines were heavily methylated, leading to a dramatic reduction of hpRNA-derived siRNAs. Small RNAs corresponding to the loop portion of the hairpin transcript were detected while much lower levels of siRNAs were found outside of the target region. siRNAs generated from the 318-bp inverted repeat were found to be diced much more frequently at stem sequences close to the loop and associated with the inferred cleavage sites on the target transcripts, manifesting "hot spots". The top candidate hpRNA-derived siRNA share certain sequence features with mature miRNA. This is the first comprehensive and detailed study revealing the siRNA-mediated gene silencing mechanism in crop plants using gene family GmFAD3 as a test model.

  16. Data on cell growth inhibition induced by anti-VEGF siRNA delivered by Stealth liposomes incorporating G2 PAMAM-cholesterol versus Metafectene® as a function of exposure time and siRNA concentration

    Directory of Open Access Journals (Sweden)

    Nasim Golkar

    2016-09-01

    Full Text Available In this data article, carboxyfluorescein-loaded liposomes were prepared and purified from free carboxyfluorescein using gel filtration chromatography in the first part. In the next part, following preparation of anti-VEGF siRNA loaded liposomes incorporating hydrophobically modified G2 PAMAM dendrimer (G2-Chol40% (Golkar et al., 2016 [1], the cell growth inhibition induced by the formulations (siRNA/Metafectene complexes and siRNA loaded liposomes incorporating hydrophobic G2 was evaluated at two exposure times through MTT assay in a breast cancer cell (SKBR-3 and compared by two-way ANOVA. Keywords: Anti-VEGF siRNA, Cell growth inhibition, Polyamidoaminedendrimer, Liposome

  17. Rational design of micro-RNA-like bifunctional siRNAs targeting HIV and the HIV coreceptor CCR5.

    Science.gov (United States)

    Ehsani, Ali; Saetrom, Pål; Zhang, Jane; Alluin, Jessica; Li, Haitang; Snøve, Ola; Aagaard, Lars; Rossi, John J

    2010-04-01

    Small-interfering RNAs (siRNAs) and micro-RNAs (miRNAs) are distinguished by their modes of action. SiRNAs serve as guides for sequence-specific cleavage of complementary mRNAs and the targets can be in coding or noncoding regions of the target transcripts. MiRNAs inhibit translation via partially complementary base-pairing to 3' untranslated regions (UTRs) and are generally ineffective when targeting coding regions of a transcript. In this study, we deliberately designed siRNAs that simultaneously direct cleavage and translational suppression of HIV RNAs, or cleavage of the mRNA encoding the HIV coreceptor CCR5 and suppression of translation of HIV. These bifunctional siRNAs trigger inhibition of HIV infection and replication in cell culture. The design principles have wide applications throughout the genome, as about 90% of genes harbor sites that make the design of bifunctional siRNAs possible.

  18. Platinum Interference with siRNA Non-seed Regions Fine-Tunes Silencing Capacity

    DEFF Research Database (Denmark)

    Hedman, Hanna K; Kirpekar, Finn; Elmroth, Sofi K C

    2011-01-01

    expression, and the other one focused on the function of endogenous miRNAs. In both cases, the active molecule consists of a ∼20-nucleotide-long RNA duplex. In the siRNA case, improved systemic stability is of central interest for its further development toward clinical applications. With respect to mi......RNA processing and function, understanding its influence on mRNA targeting and the silencing ability of individual miRNAs, e.g., under pathological conditions, remains a scientific challenge. In the present study, a model system is presented where the influence of the two clinically used anticancer drugs......, cisplatin and oxaliplatin, on siRNA's silencing capacity has been evaluated. More specifically, siRNAs targeting the 3' UTR region of Wnt-5a mRNA (NM_003352) were constructed, and the biologically active antisense RNA strand was pre-platinated. Platinum adducts were detected and characterized...

  19. Chaperone-Mediated Sec61 Channel Gating during ER Import of Small Precursor Proteins Overcomes Sec61 Inhibitor-Reinforced Energy Barrier

    Directory of Open Access Journals (Sweden)

    Sarah Haßdenteufel

    2018-05-01

    Full Text Available Summary: Protein transport into the mammalian endoplasmic reticulum (ER is mediated by the heterotrimeric Sec61 channel. The signal recognition particle (SRP and TRC systems and Sec62 have all been characterized as membrane-targeting components for small presecretory proteins, whereas Sec63 and the lumenal chaperone BiP act as auxiliary translocation components. Here, we report the transport requirements of two natural, small presecretory proteins and engineered variants using semipermeabilized human cells after the depletion of specific ER components. Our results suggest that hSnd2, Sec62, and SRP and TRC receptor each provide alternative targeting pathways for short secretory proteins and define rules of engagement for the actions of Sec63 and BiP during their membrane translocation. We find that the Sec62/Sec63 complex plus BiP can facilitate Sec61 channel opening, thereby allowing precursors that have weak signal peptides or other inhibitory features to translocate. A Sec61 inhibitor can mimic the effect of BiP depletion on Sec61 gating, suggesting that they both act at the same essential membrane translocation step. : Protein transport into the human endoplasmic reticulum (ER is mediated by the heterotrimeric Sec61 channel. Haßdenteufel et al. map the determinants for requirement of different targeting pathways and different auxiliary components of the Sec61 channel in ER import of short presecretory proteins. Different characteristics of precursor polypeptides dictate the engagement of each component. Keywords: endoplasmic reticulum, protein targeting and translocation, Sec61 channel gating, Sec62, Sec63, BiP, CAM741, signal peptide, mature region, cluster of positive charges

  20. Similar expression patterns of bestrophin-4 and cGMP dependent Ca2+-activated chloride channel activity in the vasculature

    DEFF Research Database (Denmark)

    Bouzinova, Elena V.; Larsen, Per; Matchkov, Vladimir

    2008-01-01

    (abstract by Matchkov et. al) that siRNA mediated downregulation of bestrophin-4 is associated with the disappearance of a recently demonstrated2 cGMP-dependent Ca2+-activated Cl- current in vascular smooth muscle cells (SMCs). Here we study the distribution of bestrophin-4-and cGMP dependent Cl- channel...... expressed epitope) Western blot detected a ~65 kDa band in cell lysates from rat mesenteric small arteries and aorta, which was not seen in pulmonary arteries and when preincubated with the immunizing peptide. The distribution of bestrophin-4 mRNA and protein has a pattern similar to the cGMP-dependent Cl......- current in SMCs of different origins. Immunohistochemistry identified bestrophin-4 both in endothelial and SMCs of the vascular tree in the brain, heart, kidney and mesentery, but not in the lungs. We suggest that bestrophin-4 is important for the cGMP dependent, Ca2+ activated Cl- conductance in many...

  1. Differential involvement of glutamate-gated chloride channel splice variants in the olfactory memory processes of the honeybee Apis mellifera.

    Science.gov (United States)

    Démares, Fabien; Drouard, Florian; Massou, Isabelle; Crattelet, Cindy; Lœuillet, Aurore; Bettiol, Célia; Raymond, Valérie; Armengaud, Catherine

    2014-09-01

    Glutamate-gated chloride channels (GluCl) belong to the cys-loop ligand-gated ion channel superfamily and their expression had been described in several invertebrate nervous systems. In the honeybee, a unique gene amel_glucl encodes two alternatively spliced subunits, Amel_GluCl A and Amel_GluCl B. The expression and differential localization of those variants in the honeybee brain had been previously reported. Here we characterized the involvement of each variant in olfactory learning and memory processes, using specific small-interfering RNA (siRNA) targeting each variant. Firstly, the efficacy of the two siRNAs to decrease their targets' expression was tested, both at mRNA and protein levels. The two proteins showed a decrease of their respective expression 24h after injection. Secondly, each siRNA was injected into the brain to test whether or not it affected olfactory memory by using a classical paradigm of conditioning the proboscis extension reflex (PER). Amel_GluCl A was found to be involved only in retrieval of 1-nonanol, whereas Amel_GluCl B was involved in the PER response to 2-hexanol used as a conditioned stimulus or as new odorant. Here for the first time, a differential behavioral involvement of two highly similar GluCl subunits has been characterized in an invertebrate species. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Transient Receptor Potential Canonical (TRPC)/Orai1-dependent Store-operated Ca2+ Channels

    Science.gov (United States)

    Sabourin, Jessica; Bartoli, Fiona; Antigny, Fabrice; Gomez, Ana Maria; Benitah, Jean-Pierre

    2016-01-01

    Store-operated Ca2+ entry (SOCE) has emerged as an important mechanism in cardiac pathology. However, the signals that up-regulate SOCE in the heart remain unexplored. Clinical trials have emphasized the beneficial role of mineralocorticoid receptor (MR) signaling blockade in heart failure and associated arrhythmias. Accumulated evidence suggests that the mineralocorticoid hormone aldosterone, through activation of its receptor, MR, might be a key regulator of Ca2+ influx in cardiomyocytes. We thus assessed whether and how SOCE involving transient receptor potential canonical (TRPC) and Orai1 channels are regulated by aldosterone/MR in neonatal rat ventricular cardiomyocytes. Molecular screening using qRT-PCR and Western blotting demonstrated that aldosterone treatment for 24 h specifically increased the mRNA and/or protein levels of Orai1, TRPC1, -C4, -C5, and stromal interaction molecule 1 through MR activation. These effects were correlated with a specific enhancement of SOCE activities sensitive to store-operated channel inhibitors (SKF-96365 and BTP2) and to a potent Orai1 blocker (S66) and were prevented by TRPC1, -C4, and Orai1 dominant negative mutants or TRPC5 siRNA. A mechanistic approach showed that up-regulation of serum- and glucocorticoid-regulated kinase 1 mRNA expression by aldosterone is involved in enhanced SOCE. Functionally, 24-h aldosterone-enhanced SOCE is associated with increased diastolic [Ca2+]i, which is blunted by store-operated channel inhibitors. Our study provides the first evidence that aldosterone promotes TRPC1-, -C4-, -C5-, and Orai1-mediated SOCE in cardiomyocytes through an MR and serum- and glucocorticoid-regulated kinase 1 pathway. PMID:27129253

  3. IN VIVO SCREENING OF CHEMICAL MODIFICATIONS OF siRNAs FOR EFFECT ON THE INNATE IMMUNE RESPONSE IN FISH

    DEFF Research Database (Denmark)

    Lorenzen, Niels; Schyth, Brian Dall; Bramsen, J. B.

    Abstract Due to their sequence specific gene silencing activity siRNAs are regarded as promising new active compounds in gene medicine and functional studies. But one serious problem with delivering siRNAs as treatment is the now well-established non-specific activities of some RNAs duplexes. Cel...... of siRNAs into RISC for specific gene silencing....

  4. Utility of MicroRNAs and siRNAs in Cervical Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Sacnite del Mar Díaz-González

    2015-01-01

    Full Text Available MicroRNAs and siRNAs belong to a family of small noncoding RNAs which bind through partial sequence complementarity to 3′-UTR regions of mRNA from target genes, resulting in the regulation of gene expression. MicroRNAs have become an attractive target for genetic and pharmacological modulation due to the critical function of their target proteins in several signaling pathways, and their expression profiles have been found to be altered in various cancers. A promising technology platform for selective silencing of cell and/or viral gene expression using siRNAs is currently in development. Cervical cancer is the most common cancer in women in the developing world and sexually transmitted infection with HPV is the cause of this malignancy. Therefore, a cascade of abnormal events is induced during cervical carcinogenesis, including the induction of genomic instability, reprogramming of cellular metabolic pathways, deregulation of cell proliferation, inhibition of apoptotic mechanisms, disruption of cell cycle control mechanisms, and alteration of gene expression. Thus, in the present review article, we highlight new research on microRNA expression profiles which may be utilized as biomarkers for cervical cancer. Furthermore, we discuss selective silencing of HPV E6 and E7 with siRNAs which represents a potential gene therapy strategy against cervical cancer.

  5. Reactive Oxygen Species and Mitochondrial KATP Channels Mediate Helium-Induced Preconditioning Against Myocardial Infarction In Vivo

    Science.gov (United States)

    Pagel, Paul S.; Krolikowski, John G.; Pratt, Phillip F.; Shim, Yon Hee; Amour, Julien; Warltier, David C.; Weihrauch, Dorothee

    2008-01-01

    Objectives Helium produces preconditioning by activating prosurvival kinases, but the roles of reactive oxygen species (ROS) or mitochondrial KATP channels in this process are unknown. We tested the hypothesis that ROS and mitochondrial KATP channels mediate helium-induced preconditioning in vivo. Design Randomized, prospective study. Setting University research laboratory. Participants Male New Zealand white rabbits. Interventions Rabbits (n=64) were instrumented for measurement of systemic hemodynamics and subjected to a 30 min left anterior descending coronary artery (LAD) occlusion and 3 h reperfusion. In separate experimental groups, rabbits (n=7 or 8 per group) were randomly assigned to receive 0.9% saline (control) or three cycles of 70% helium-30% oxygen administered for 5 min interspersed with 5 min of an air-oxygen mixture before LAD occlusion with or without the ROS scavengers N-acetylcysteine (NAC; 150 mg/kg) or N-2-mercaptoproprionyl glycine (2-MPG; 75 mg/kg), or the mitochondrial KATP antagonist 5-hydroxydecanoate (5-HD; 5 mg/kg). Statistical analysis of data was performed with analysis of variance for repeated measures followed by Bonferroni's modification of Student's t test. Measurements and Main Results Myocardial infarct size was determined using triphenyltetrazolium chloride staining and presented as a percentage of the left ventricular area at risk. Helium significantly (P<0.05) reduced infarct size (23±4% of the area at risk; mean±SD) compared with control (46±3%). NAC, 2-MPG, and 5-HD did not affect irreversible ischemic injury when administered alone (49±5, 45±6, and 45±3%), but these drugs blocked reductions in infarct size produced by helium (45±4, 45±2, and 44±3%). Conclusions The results suggest that ROS and mitochondrial KATP channels mediate helium-induced preconditioning in vivo. PMID:18662630

  6. Optimal Hydrophobicity in Ring-Opening Metathesis Polymerization-Based Protein Mimics Required for siRNA Internalization.

    Science.gov (United States)

    deRonde, Brittany M; Posey, Nicholas D; Otter, Ronja; Caffrey, Leah M; Minter, Lisa M; Tew, Gregory N

    2016-06-13

    Exploring the role of polymer structure for the internalization of biologically relevant cargo, specifically siRNA, is of critical importance to the development of improved delivery reagents. Herein, we report guanidinium-rich protein transduction domain mimics (PTDMs) based on a ring-opening metathesis polymerization scaffold containing tunable hydrophobic moieties that promote siRNA internalization. Structure-activity relationships using Jurkat T cells and HeLa cells were explored to determine how the length of the hydrophobic block and the hydrophobic side chain compositions of these PTDMs impacted siRNA internalization. To explore the hydrophobic block length, two different series of diblock copolymers were synthesized: one series with symmetric block lengths and one with asymmetric block lengths. At similar cationic block lengths, asymmetric and symmetric PTDMs promoted siRNA internalization in the same percentages of the cell population regardless of the hydrophobic block length; however, with 20 repeat units of cationic charge, the asymmetric block length had greater siRNA internalization, highlighting the nontrivial relationships between hydrophobicity and overall cationic charge. To further probe how the hydrophobic side chains impacted siRNA internalization, an additional series of asymmetric PTDMs was synthesized that featured a fixed hydrophobic block length of five repeat units that contained either dimethyl (dMe), methyl phenyl (MePh), or diphenyl (dPh) side chains and varied cationic block lengths. This series was further expanded to incorporate hydrophobic blocks consisting of diethyl (dEt), diisobutyl (diBu), and dicyclohexyl (dCy) based repeat units to better define the hydrophobic window for which our PTDMs had optimal activity. High-performance liquid chromatography retention times quantified the relative hydrophobicities of the noncationic building blocks. PTDMs containing the MePh, diBu, and dPh hydrophobic blocks were shown to have superior

  7. Higher-order QCD predictions for dark matter production at the LHC in simplified models with s-channel mediators.

    Science.gov (United States)

    Backović, Mihailo; Krämer, Michael; Maltoni, Fabio; Martini, Antony; Mawatari, Kentarou; Pellen, Mathieu

    Weakly interacting dark matter particles can be pair-produced at colliders and detected through signatures featuring missing energy in association with either QCD/EW radiation or heavy quarks. In order to constrain the mass and the couplings to standard model particles, accurate and precise predictions for production cross sections and distributions are of prime importance. In this work, we consider various simplified models with s -channel mediators. We implement such models in the FeynRules/MadGraph5_aMC@NLO framework, which allows to include higher-order QCD corrections in realistic simulations and to study their effect systematically. As a first phenomenological application, we present predictions for dark matter production in association with jets and with a top-quark pair at the LHC, at next-to-leading order accuracy in QCD, including matching/merging to parton showers. Our study shows that higher-order QCD corrections to dark matter production via s -channel mediators have a significant impact not only on total production rates, but also on shapes of distributions. We also show that the inclusion of next-to-leading order effects results in a sizeable reduction of the theoretical uncertainties.

  8. Higher-order QCD predictions for dark matter production at the LHC in simplified models with s-channel mediators

    Energy Technology Data Exchange (ETDEWEB)

    Backović, Mihailo [Centre for Cosmology, Particle Physics and Phenomenology (CP3), Université catholique de Louvain, 1348, Louvain-la-Neuve (Belgium); Krämer, Michael [Institute for Theoretical Particle Physics and Cosmology, RWTH Aachen University, 52056, Aachen (Germany); Maltoni, Fabio; Martini, Antony [Centre for Cosmology, Particle Physics and Phenomenology (CP3), Université catholique de Louvain, 1348, Louvain-la-Neuve (Belgium); Mawatari, Kentarou, E-mail: kentarou.mawatari@vub.ac.be [Theoretische Natuurkunde and IIHE/ELEM, Vrije Universiteit Brussel, and International Solvay Institutes, Pleinlaan 2, 1050, Brussels (Belgium); Pellen, Mathieu [Institute for Theoretical Particle Physics and Cosmology, RWTH Aachen University, 52056, Aachen (Germany)

    2015-10-07

    Weakly interacting dark matter particles can be pair-produced at colliders and detected through signatures featuring missing energy in association with either QCD/EW radiation or heavy quarks. In order to constrain the mass and the couplings to standard model particles, accurate and precise predictions for production cross sections and distributions are of prime importance. In this work, we consider various simplified models with s-channel mediators. We implement such models in the FeynRules/MadGraph5{sub a}MC@NLO framework, which allows to include higher-order QCD corrections in realistic simulations and to study their effect systematically. As a first phenomenological application, we present predictions for dark matter production in association with jets and with a top-quark pair at the LHC, at next-to-leading order accuracy in QCD, including matching/merging to parton showers. Our study shows that higher-order QCD corrections to dark matter production via s-channel mediators have a significant impact not only on total production rates, but also on shapes of distributions. We also show that the inclusion of next-to-leading order effects results in a sizeable reduction of the theoretical uncertainties.

  9. Higher-order QCD predictions for dark matter production at the LHC in simplified models with s-channel mediators

    Energy Technology Data Exchange (ETDEWEB)

    Backovic, Mihailo; Maltoni, Fabio; Martini, Antony [Universite catholique de Louvain, Centre for Cosmology, Particle Physics and Phenomenology (CP3), Louvain-la-Neuve (Belgium); Kraemer, Michael; Pellen, Mathieu [RWTH Aachen University, Institute for Theoretical Particle Physics and Cosmology, Aachen (Germany); Mawatari, Kentarou [Theoretische Natuurkunde and IIHE/ELEM, Vrije Universiteit Brussel, and International Solvay Institutes, Brussels (Belgium)

    2015-10-15

    Weakly interacting dark matter particles can be pair-produced at colliders and detected through signatures featuring missing energy in association with either QCD/EW radiation or heavy quarks. In order to constrain the mass and the couplings to standard model particles, accurate and precise predictions for production cross sections and distributions are of prime importance. In this work, we consider various simplified models with s-channel mediators. We implement such models in the FeynRules/MadGraph5{sub a}MC rate at NLO framework, which allows to include higher-order QCD corrections in realistic simulations and to study their effect systematically. As a first phenomenological application, we present predictions for dark matter production in association with jets and with a top-quark pair at the LHC, at next-to-leading order accuracy in QCD, including matching/merging to parton showers. Our study shows that higher-order QCD corrections to dark matter production via s-channel mediators have a significant impact not only on total production rates, but also on shapes of distributions. We also show that the inclusion of next-to-leading order effects results in a sizeable reduction of the theoretical uncertainties. (orig.)

  10. Higher-order QCD predictions for dark matter production at the LHC in simplified models with s-channel mediators

    International Nuclear Information System (INIS)

    Backovic, Mihailo; Maltoni, Fabio; Martini, Antony; Kraemer, Michael; Pellen, Mathieu; Mawatari, Kentarou

    2015-01-01

    Weakly interacting dark matter particles can be pair-produced at colliders and detected through signatures featuring missing energy in association with either QCD/EW radiation or heavy quarks. In order to constrain the mass and the couplings to standard model particles, accurate and precise predictions for production cross sections and distributions are of prime importance. In this work, we consider various simplified models with s-channel mediators. We implement such models in the FeynRules/MadGraph5 a MC rate at NLO framework, which allows to include higher-order QCD corrections in realistic simulations and to study their effect systematically. As a first phenomenological application, we present predictions for dark matter production in association with jets and with a top-quark pair at the LHC, at next-to-leading order accuracy in QCD, including matching/merging to parton showers. Our study shows that higher-order QCD corrections to dark matter production via s-channel mediators have a significant impact not only on total production rates, but also on shapes of distributions. We also show that the inclusion of next-to-leading order effects results in a sizeable reduction of the theoretical uncertainties. (orig.)

  11. siRNA as a tool to improve the treatment of brain diseases: Mechanism, targets and delivery.

    Science.gov (United States)

    Gomes, Maria João; Martins, Susana; Sarmento, Bruno

    2015-05-01

    As the population ages, brain pathologies such as neurodegenerative diseases and brain cancer increase their incidence, being the need to find successful treatments of upmost importance. Drug delivery to the central nervous system (CNS) is required in order to reach diseases causes and treat them. However, biological barriers, mainly blood-brain barrier (BBB), are the key obstacles that prevent the effectiveness of possible treatments due to their ability to strongly limit the perfusion of compounds into the brain. Over the past decades, new approaches towards overcoming BBB and its efflux transporters had been proposed. One of these approaches here reviewed is through small interfering RNA (siRNA), which is capable to specifically target one gene and silence it in a post-transcriptional way. There are different possible functional proteins at the BBB, as the ones responsible for transport or just for its tightness, which could be a siRNA target. As important as the effective silence is the way to delivery siRNA to its anatomical site of action. This is where nanotechnology-based systems may help, by protecting siRNA circulation and providing cell/tissue-targeting and intracellular siRNA delivery. After an initial overview on incidence of brain diseases and basic features of the CNS, BBB and its efflux pumps, this review focuses on recent strategies to reach brain based on siRNA, and how to specifically target these approaches in order to treat brain diseases. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Characterization and vectorization of siRNA targeting RET/PTC1 in human papillary thyroid carcinoma cells

    Directory of Open Access Journals (Sweden)

    Massade L.

    2011-10-01

    Full Text Available RET/PTC1 fusion oncogene is the most common genetic alteration identified to date in thyroid papillary carcinomas (PTC and represents a good target for small interfering RNA (siRNA. Our aim was: i to target the RET/PTC1 oncogene by siRNAs, ii to assess the knockdown effects on cell growth and cell cycle regulation and iii to vectorize it in order to protect it from degradation. Methods. Human cell lines expressing RET/PTC1 were transfected by siRNA RET/PTC1, inhibition of the oncogene expression was assessed by qRT-PCR and by Western blot. Conjugation of siRNA RET/PTC1 to squalene was performed by coupling it to squalene. In vivo studies are performed in nude mice. Conclusion. In this short communication, we report the main published results obtained during last years.

  13. In Silico, In Vitro, and In Vivo Studies Indicate the Potential Use of Bolaamphiphiles for Therapeutic siRNAs Delivery

    Directory of Open Access Journals (Sweden)

    Taejin Kim

    2013-01-01

    Full Text Available Specific small interfering RNAs (siRNAs designed to silence different oncogenic pathways can be used for cancer therapy. However, non-modified naked siRNAs have short half-lives in blood serum and encounter difficulties in crossing biological membranes due to their negative charge. These obstacles can be overcome by using siRNAs complexed with bolaamphiphiles, consisting of two positively charged head groups that flank an internal hydrophobic chain. Bolaamphiphiles have relatively low toxicities, long persistence in the blood stream, and most importantly, in aqueous conditions can form poly-cationic micelles thus, becoming amenable to association with siRNAs. Herein, two different bolaamphiphiles with acetylcholine head groups attached to an alkyl chain in two distinct configurations are compared for their abilities to complex with siRNAs and deliver them into cells inducing gene silencing. Our explicit solvent molecular dynamics (MD simulations showed that bolaamphiphiles associate with siRNAs due to electrostatic, hydrogen bonding, and hydrophobic interactions. These in silico studies are supported by various in vitro and in cell culture experimental techniques as well as by some in vivo studies. Results demonstrate that depending on the application, the extent of siRNA chemical protection, delivery efficiency, and further intracellular release can be varied by simply changing the type of bolaamphiphile used.

  14. Analysis of the siRNA-Mediated Gene Silencing Process Targeting Three Homologous Genes Controlling Soybean Seed Oil Quality.

    Directory of Open Access Journals (Sweden)

    Sha Lu

    Full Text Available In the past decade, RNA silencing has gained significant attention because of its success in genomic scale research and also in the genetic improvement of crop plants. However, little is known about the molecular basis of siRNA processing in association with its target transcript. To reveal this process for improving hpRNA-mediated gene silencing in crop plants, the soybean GmFAD3 gene family was chosen as a test model. We analyzed RNAi mutant soybean lines in which three members of the GmFAD3 gene family were silenced. The silencing levels of FAD3A, FAD3B and FAD3C were correlated with the degrees of sequence homology between the inverted repeat of hpRNA and the GmFAD3 transcripts in the RNAi lines. Strikingly, transgenes in two of the three RNAi lines were heavily methylated, leading to a dramatic reduction of hpRNA-derived siRNAs. Small RNAs corresponding to the loop portion of the hairpin transcript were detected while much lower levels of siRNAs were found outside of the target region. siRNAs generated from the 318-bp inverted repeat were found to be diced much more frequently at stem sequences close to the loop and associated with the inferred cleavage sites on the target transcripts, manifesting "hot spots". The top candidate hpRNA-derived siRNA share certain sequence features with mature miRNA. This is the first comprehensive and detailed study revealing the siRNA-mediated gene silencing mechanism in crop plants using gene family GmFAD3 as a test model.

  15. Hydrogel doped with nanoparticles for local sustained release of siRNA in breast cancer.

    Science.gov (United States)

    Segovia, Nathaly; Pont, Maria; Oliva, Nuria; Ramos, Victor; Borrós, Salvador; Artzi, Natalie

    2015-01-28

    Of all the much hyped and pricy cancer drugs, the benefits from the promising siRNA small molecule drugs are limited. Lack of efficient delivery vehicles that would release the drug locally, protect it from degradation, and ensure high transfection efficiency, precludes it from fulfilling its full potential. This work presents a novel platform for local and sustained delivery of siRNA with high transfection efficiencies both in vitro and in vivo in a breast cancer mice model. siRNA protection and high transfection efficiency are enabled by their encapsulation in oligopeptide-terminated poly(β-aminoester) (pBAE) nanoparticles. Sustained delivery of the siRNA is achieved by the enhanced stability of the nanoparticles when embedded in a hydrogel scaffold based on polyamidoamine (PAMAM) dendrimer cross-linked with dextran aldehyde. The combination of oligopeptide-terminated pBAE polymers and biodegradable hydrogels shows improved transfection efficiency in vivo even when compared with the most potent commercially available transfection reagents. These results highlight the advantage of using composite materials for successful delivery of these highly promising small molecules to combat cancer. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Depletion of intracellular calcium stores facilitates the influx of extracellular calcium in platelet derived growth factor stimulated A172 glioblastoma cells.

    Science.gov (United States)

    Vereb, G; Szöllösi, J; Mátyus, L; Balázs, M; Hyun, W C; Feuerstein, B G

    1996-05-01

    Calcium signaling in non-excitable cells is the consequence of calcium release from intracellular stores, at times followed by entry of extracellular calcium through the plasma membrane. To study whether entry of calcium depends upon the level of saturation of intracellular stores, we measured calcium channel opening in the plasma membrane of single confluent A172 glioblastoma cells stimulated with platelet derived growth factor (PDGF) and/or bradykinin (BK). We monitored the entry of extracellular calcium by measuring manganese quenching of Indo-1 fluorescence. PDGF raised intracellular calcium concentration ([Ca2+]i) after a dose-dependent delay (tdel) and then opened calcium channels after a dose-independent delay (tch). At higher doses (> 3 nM), BK increased [Ca2+]i after a tdel approximately 0 s, and tch decreased inversely with both dose and peak [Ca2+]i. Experiments with thapsigargin (TG), BK, and PDGF indicated that BK and PDGF share intracellular Ca2+ pools that are sensitive to TG. When these stores were depleted by treatment with BK and intracellular BAPTA, tdel did not change, but tch fell to almost 0 s in PDGF stimulated cells, indicating that depletion of calcium stores affects calcium channel opening in the plasma membrane. Our data support the capacitative model for calcium channel opening and the steady-state model describing quantal Ca2+ release from intracellular stores.

  17. Draft Genome Sequence of an Invasive Multidrug-Resistant Strain, Pseudomonas aeruginosa BK1, Isolated from a Keratitis Patient

    KAUST Repository

    Jeganathan, Lakshmi Priya; Prakash, Logambiga; Neelamegam, Sivakumar; Antony, Aju; Alqarawi, Sami; Prajna, Lalitha; Devarajan, Bharanidharan; Mohankumar, Vidyarani

    2014-01-01

    Pseudomonas aeruginosa infections are difficult to treat due to the presence of a multitude of virulence factors and antibiotic resistance. Here, we report the draft genome sequence of P. aeruginosa BK1, an invasive and multidrug-resistant strain

  18. The C-terminus SH3-binding domain of Kv1.3 is required for the actin-mediated immobilization of the channel via cortactin

    Science.gov (United States)

    Hajdu, Peter; Martin, Geoffrey V.; Chimote, Ameet A.; Szilagyi, Orsolya; Takimoto, Koichi; Conforti, Laura

    2015-01-01

    Kv1.3 channels play a pivotal role in the activation and migration of T-lymphocytes. These functions are accompanied by the channels' polarization, which is essential for associated downstream events. However, the mechanisms that govern the membrane movement of Kv1.3 channels remain unclear. F-actin polymerization occurs concomitantly to channel polarization, implicating the actin cytoskeleton in this process. Here we show that cortactin, a factor initiating the actin network, controls the membrane mobilization of Kv1.3 channels. FRAP with EGFP-tagged Kv1.3 channels demonstrates that knocking down cortactin decreases the actin-based immobilization of the channels. Using various deletion and mutation constructs, we show that the SH3 motif of Kv1.3 mediates the channel immobilization. Proximity ligation assays indicate that deletion or mutation of the SH3 motif also disrupts interaction of the channel with cortactin. In T-lymphocytes, the interaction between HS1 (the cortactin homologue) and Kv1.3 occurs at the immune synapse and requires the channel's C-terminal domain. These results show that actin dynamics regulates the membrane motility of Kv1.3 channels. They also provide evidence that the SH3 motif of the channel and cortactin plays key roles in this process. PMID:25739456

  19. TRPC6 channel-mediated neurite outgrowth in PC12 cells and hippocampal neurons involves activation of RAS/MEK/ERK, PI3K, and CAMKIV signaling.

    Science.gov (United States)

    Heiser, Jeanine H; Schuwald, Anita M; Sillani, Giacomo; Ye, Lian; Müller, Walter E; Leuner, Kristina

    2013-11-01

    The non-selective cationic transient receptor canonical 6 (TRPC6) channels are involved in synaptic plasticity changes ranging from dendritic growth, spine morphology changes and increase in excitatory synapses. We previously showed that the TRPC6 activator hyperforin, the active antidepressant component of St. John's wort, induces neuritic outgrowth and spine morphology changes in PC12 cells and hippocampal CA1 neurons. However, the signaling cascade that transmits the hyperforin-induced transient rise in intracellular calcium into neuritic outgrowth is not yet fully understood. Several signaling pathways are involved in calcium transient-mediated changes in synaptic plasticity, ranging from calmodulin-mediated Ras-induced signaling cascades comprising the mitogen-activated protein kinase, PI3K signal transduction pathways as well as Ca(2+) /calmodulin-dependent protein kinase II (CAMKII) and CAMKIV. We show that several mechanisms are involved in TRPC6-mediated synaptic plasticity changes in PC12 cells and primary hippocampal neurons. Influx of calcium via TRPC6 channels activates different pathways including Ras/mitogen-activated protein kinase/extracellular signal-regulated kinases, phosphatidylinositide 3-kinase/protein kinase B, and CAMKIV in both cell types, leading to cAMP-response element binding protein phosphorylation. These findings are interesting not only in terms of the downstream targets of TRPC6 channels but also because of their potential to facilitate further understanding of St. John's wort extract-mediated antidepressant activity. Alterations in synaptic plasticity are considered to play an important role in the pathogenesis of depression. Beside several other proteins, TRPC6 channels regulate synaptic plasticity. This study demonstrates that different pathways including Ras/MEK/ERK, PI3K/Akt, and CAMKIV are involved in the improvement of synaptic plasticity by the TRPC6 activator hyperforin, the antidepressant active constituent of St. John

  20. Rapid effects of 17beta-estradiol on epithelial TRPV6 Ca2+ channel in human T84 colonic cells.

    LENUS (Irish Health Repository)

    Irnaten, Mustapha

    2008-11-01

    The control of calcium homeostasis is essential for cell survival and is of crucial importance for several physiological functions. The discovery of the epithelial calcium channel Transient Receptor Potential Vaniloid (TRPV6) in intestine has uncovered important Ca(2+) absorptive pathways involved in the regulation of whole body Ca(2+) homeostasis. The role of steroid hormone 17beta-estradiol (E(2)), in [Ca(2+)](i) regulation involving TRPV6 has been only limited at the protein expression levels in over-expressing heterologous systems. In the present study, using a combination of calcium-imaging, whole-cell patch-clamp techniques and siRNA technology to specifically knockdown TRPV6 protein expression, we were able to (i) show that TRPV6 is natively, rather than exogenously, expressed at mRNA and protein levels in human T84 colonic cells, (ii) characterize functional TRPV6 channels and (iii) demonstrate, for the first time, the rapid effects of E(2) in [Ca(2+)](i) regulation involving directly TRPV6 channels in T84 cells. Treatment with E(2) rapidly (<5 min) enhanced [Ca(2+)](i) and this increase was partially but significantly prevented when cells were pre-treated with ruthenium red and completely abolished in cells treated with siRNA specifically targeting TRPV6 protein expression. These results indicate that when cells are stimulated by E(2), Ca(2+) enters the cell through TRPV6 channels. TRPV6 channels in T84 cells contribute to the Ca(2+) entry\\/signalling pathway that is sensitive to 17beta-estradiol.

  1. Microtubule Regulation of Kv7 Channels Orchestrates cAMP-Mediated Vasorelaxations in Rat Arterial Smooth Muscle

    DEFF Research Database (Denmark)

    Lindman, Johanna; Khammy, Makhala M; Lundegaard, Pia R

    2018-01-01

    Microtubules can regulate GPCR (G protein-coupled receptor) signaling in various cell types. In vascular smooth muscle, activation of the β-adrenoceptor leads to production of cAMP to mediate a vasorelaxation. Little is known about the role of microtubules in smooth muscle, and given the importance...... of renal and mesenteric arteries that the microtubule stabilizer, paclitaxel, prevented. Sharp microelectrode experiments showed that colchicine treatment caused increased hyperpolarization of mesenteric artery segments in response to isoprenaline. Application of the Kv7 channel blocker, XE991, attenuated...

  2. Novel targeted therapy for neuroblastoma: silencing the MXD3 gene using siRNA.

    Science.gov (United States)

    Duong, Connie; Yoshida, Sakiko; Chen, Cathy; Barisone, Gustavo; Diaz, Elva; Li, Yueju; Beckett, Laurel; Chung, Jong; Antony, Reuben; Nolta, Jan; Nitin, Nitin; Satake, Noriko

    2017-09-01

    BackgroundNeuroblastoma is the second most common extracranial cancer in children. Current therapies for neuroblastoma, which use a combination of chemotherapy drugs, have limitations for high-risk subtypes and can cause significant long-term adverse effects in young patients. Therefore, a new therapy is needed. In this study, we investigated the transcription factor MXD3 as a potential therapeutic target in neuroblastoma.MethodsMXD3 expression was analyzed in five neuroblastoma cell lines by immunocytochemistry and quantitative real-time reverse transcription PCR, and in 18 primary patient tumor samples by immunohistochemistry. We developed nanocomplexes using siRNA and superparamagnetic iron oxide nanoparticles to target MXD3 in neuroblastoma cell lines in vitro as a single-agent therapeutic and in combination with doxorubicin, vincristine, cisplatin, or maphosphamide-common drugs used in current neuroblastoma treatment.ResultsMXD3 was highly expressed in neuroblastoma cell lines and in patient tumors that had high-risk features. Neuroblastoma cells treated in vitro with the MXD3 siRNA nanocomplexes showed MXD3 protein knockdown and resulted in cell apoptosis. Furthermore, on combining MXD3 siRNA nanocomplexes with each of the four drugs, all showed additive efficacy.ConclusionThese results indicate that MXD3 is a potential new target and that the use of MXD3 siRNA nanocomplexes is a novel therapeutic approach for neuroblastoma.

  3. Can RNAi-mediated hsp90α knockdown in combination with 17-AAG be a therapy for glioma?

    Science.gov (United States)

    Mehta, Adi; Shervington, Amal; Howl, John; Jones, Sarah; Shervington, Leroy

    2013-01-01

    Heat shock protein 90 promotes tumor progression and survival and has emerged as a vital therapeutic target. Previously we reported that the combinatorial treatment of 17AAG/sihsp90α significantly downregulated Hsp90α mRNA and protein levels in Glioblastoma Multiforme (GBM). Here we investigated the ability of cell penetrating peptide (Tat48-60 CPP)-mediated siRNA-induced hsp90α knockdown as a single agent and in combination with 17-allylamino-17-demethoxygeldanamycin (17-AAG) to induce tumor growth inhibition in GBM and whether it possessed therapeutic implications. GBM and non-tumorigenic cells exposed to siRNA and/or 17-AAG were subsequently assessed by qRT-PCR, immunofluorescence, FACS analysis, quantitative Akt, LDH leakage and cell viability assays. PAGE was performed for serum stability assessment. A combination of siRNA/17-AAG treatment significantly induced Hsp90α gene and protein knockdown by 95% and 98%, respectively, concomitant to 84% Akt kinase activity attenuation, induced cell cycle arrest and tumor-specific cytotoxicity by 88%. Efficient complex formation between CPP and siRNA exhibited improved serum stability of the siRNA with minimal intrinsic toxicity in vitro. The preliminary in vivo results showed that combination therapy induced hsp90α knockdown and attenuated Akt kinase activity in intracranial glioblastoma mouse models. The results imply that RNAi-mediated hsp90α knockdown increases 17-AAG treatment efficacy in GBM. In addition, the cytotoxic response observed was the consequence of downregulation of hsp90α gene expression, reduced Akt kinase activity and S-G2/M cell cycle arrest. These results are novel and highlight the ability of Tat to efficiently deliver siRNA in GBM and suggest that the dual inhibition of Hsp90 has therapeutic potentials.

  4. Profil Siswa Agresif dan Peranan Guru BK

    Directory of Open Access Journals (Sweden)

    Hafiz Hidayat

    2013-06-01

    Full Text Available Abstract: Teens have a positive and negative behavior. Negative behavior is not characteristic of normal adolescent development, adolescents are developing will exhibit positive behavior. One of the teens indicated negative behavior is aggressive behavior. It can be seen in SMA N 5 Padang is quarrelsome, like teasing, hitting, pinching her, saying rude, insulting. This study aimed to describe the type of aggressive behavior of students and the role of BK teachers to address students' aggressive behavior SMAN 5 Padang. This study used a descriptive approach. The study population was a high school student Padang N 5 340 people with a total sample amounted to 77 people. Questionnaire data collection techniques to use. Data were analyzed using Microsoft Office Excel 2007. The findings showed that students' views of the aggressive actions hurt people physically with a percentage of 35.32%, while the aggressive actions of the student views of hurting people verbally 41.30% and aggression seen from damaging and destroying property by 30 percent, 42%. This means that the presence of aggressive behavior in SMA N 5 Padang.

  5. Design of an inhalable dry powder formulation of DOTAP-modified PLGA nanoparticles loaded with siRNA.

    Science.gov (United States)

    Jensen, Ditte Krohn; Jensen, Linda Boye; Koocheki, Saeid; Bengtson, Lasse; Cun, Dongmei; Nielsen, Hanne Mørck; Foged, Camilla

    2012-01-10

    Matrix systems based on biocompatible and biodegradable polymers like the United States Food and Drug Administration (FDA)-approved polymer poly(DL-lactide-co-glycolide acid) (PLGA) are promising for the delivery of small interfering RNA (siRNA) due to favorable safety profiles, sustained release properties and improved colloidal stability, as compared to polyplexes. The purpose of this study was to design a dry powder formulation based on cationic lipid-modified PLGA nanoparticles intended for treatment of severe lung diseases by pulmonary delivery of siRNA. The cationic lipid dioleoyltrimethylammoniumpropane (DOTAP) was incorporated into the PLGA matrix to potentiate the gene silencing efficiency. The gene knock-down level in vitro was positively correlated to the weight ratio of DOTAP in the particles, and 73% silencing was achieved in the presence of 10% (v/v) serum at 25% (w/w) DOTAP. Optimal properties were found for nanoparticles modified with 15% (w/w) DOTAP, which reduced the gene expression with 54%. This formulation was spray-dried with mannitol into nanocomposite microparticles of an aerodynamic size appropriate for lung deposition. The spray-drying process did not affect the physicochemical properties of the readily re-dispersible nanoparticles, and most importantly, the in vitro gene silencing activity was preserved during spray-drying. The siRNA content in the powder was similar to the theoretical loading and the siRNA was intact, suggesting that the siRNA is preserved during the spray-drying process. Finally, X-ray powder diffraction analysis demonstrated that mannitol remained in a crystalline state upon spray-drying with PLGA nanoparticles suggesting that the sugar excipient might exert its stabilizing effect by sterical inhibition of the interactions between adjacent nanoparticles. This study demonstrates that spray-drying is an excellent technique for engineering dry powder formulations of siRNA nanoparticles, which might enable the local

  6. Topical treatment of herpes simplex virus infection with enzymatically created siRNA swarm.

    Science.gov (United States)

    Paavilainen, Henrik; Lehtinen, Jenni; Romanovskaya, Alesia; Nygårdas, Michaela; Bamford, Dennis H; Poranen, Minna M; Hukkanen, Veijo

    2017-01-01

    Herpes simplex virus (HSV) is a common human pathogen. Despite current antivirals, it causes a significant medical burden. Drug resistant strains exist and they are especially prevalent in immunocompromised patients and in HSV eye infections. New treatment modalities are needed. BALB/c mice were corneally infected with HSV and subsequently treated with a swarm of enzymatically created, Dicer-substrate small interfering RNA (siRNA) molecules that targeted the HSV gene UL29. Two infection models were used, one in which the infection was predominantly peripheral and another in which it spread to the central nervous system. Mouse survival, as well as viral spread, load, latency and peripheral shedding, was studied. The anti-HSV-UL29 siRNA swarm alleviated HSV infection symptoms, inhibited viral shedding and replication and had a favourable effect on mouse survival. Treatment with anti-HSV-UL29 siRNA swarm reduced symptoms and viral spread in HSV infection of mice and also inhibited local viral replication in mouse corneas.

  7. Inhibition of Hepatitis B virus cccDNA replication by siRNA

    International Nuclear Information System (INIS)

    Li Guiqiu; Gu Hongxi; Li Di; Xu Weizhen

    2007-01-01

    The development of an effective therapy for Hepatitis B virus (HBV) infection is still a challenge. Progress in RNA interference (RNAi) has shed slight on developing a new anti-HBV strategy. Here, we present a series of experiments showing a significant reduction in HBV transcripts and replication intermediates in HepG2.2.15 cells by vector-based siRNA targeted nuclear localization signal (NLS) region. More importantly, we showed that siRNA1 markedly inhibited HBV covalently closed circular DNA (cccDNA) replication. Our results indicated that HBV NLS may serve as a novel RNAi target to combat HBV infection, which can enhance anti-HBV efficacy and overcome the drawbacks of current therapies

  8. S100A4 and BMP-2 Co-Dependently Induce Vascular Smooth Muscle Cell Migration via pERK and Chloride Intracellular Channel 4 (CLIC4)

    Science.gov (United States)

    Spiekerkoetter, Edda; Guignabert, Christophe; de Jesus Perez, Vinicio; Alastalo, Tero-Pekka; Powers, Janine M; Wang, Lingli; Lawrie, Allan; Ambartsumian, Noona; Schmidt, Ann-Marie; Berryman, Mark; Ashley, Richard H; Rabinovitch, Marlene

    2009-01-01

    Rationale S100A4/Mts1 is implicated in motility of human pulmonary artery smooth muscle cells (hPASMC), through an interaction with the receptor for advanced glycation end products (RAGE). Objective We hypothesized that S100A4/Mts1-mediated hPASMC motility might be enhanced by loss of function of bone morphogenetic protein (BMP) receptor (R) II, observed in pulmonary arterial hypertension (PAH). Methods and Results Both S100A4/Mts1 (500ng/ml) and BMP-2 (10ng/ml) induce migration of hPASMCS in a novel co-dependent manner, in that the response to either ligand is lost with anti-RAGE or BMPRII siRNA. Phosphorylation of ERK is induced by both ligands and is required for motility by inducing MMP2 activity, but phosphoERK1/2 is blocked by anti-RAGE and not by BMPRII siRNA. In contrast, BMPRII siRNA, but not anti-RAGE, reduces expression of intracellular chloride channel 4 (CLIC4), a scaffolding molecule necessary for motility in response to S100A4/Mts1 or BMP-2. Reduced CLIC4 expression does not interfere with S100A4/Mts1 internalization or its interaction with myosin heavy chain IIA (MHCIIA), but does alter alignment of MHCIIA and actin filaments creating the appearance of vacuoles. This abnormality is associated with reduced peripheral distribution and/or delayed activation of RhoA and Rac1, small GTPases required for retraction and extension of lamellipodiae in motile cells. Conclusions Our studies demonstrate how a single ligand (BMP-2 or S100A4/Mts1) can recruit multiple cell surface receptors to relay signals that coordinate events culminating in a functional response, i.e., cell motility. We speculate that this carefully controlled process limits signals from multiple ligands, but could be subverted in disease. PMID:19713532

  9. Dual-Functional Nanoparticles Targeting CXCR4 and Delivering Antiangiogenic siRNA Ameliorate Liver Fibrosis.

    Science.gov (United States)

    Liu, Chun-Hung; Chan, Kun-Ming; Chiang, Tsaiyu; Liu, Jia-Yu; Chern, Guann-Gen; Hsu, Fu-Fei; Wu, Yu-Hsuan; Liu, Ya-Chi; Chen, Yunching

    2016-07-05

    The progression of liver fibrosis, an intrinsic response to chronic liver injury, is associated with hepatic hypoxia, angiogenesis, abnormal inflammation, and significant matrix deposition, leading to the development of cirrhosis and hepatocellular carcinoma (HCC). Due to the complex pathogenesis of liver fibrosis, antifibrotic drug development has faced the challenge of efficiently and specifically targeting multiple pathogenic mechanisms. Therefore, CXCR4-targeted nanoparticles (NPs) were formulated to deliver siRNAs against vascular endothelial growth factor (VEGF) into fibrotic livers to block angiogenesis during the progression of liver fibrosis. AMD3100, a CXCR4 antagonist that was incorporated into the NPs, served dual functions: it acted as a targeting moiety and suppressed the progression of fibrosis by inhibiting the proliferation and activation of hepatic stellate cells (HSCs). We demonstrated that CXCR4-targeted NPs could deliver VEGF siRNAs to fibrotic livers, decrease VEGF expression, suppress angiogenesis and normalize the distorted vessels in the fibrotic livers in the carbon tetrachloride (CCl4) induced mouse model. Moreover, blocking SDF-1α/CXCR4 by CXCR4-targeted NPs in combination with VEGF siRNA significantly prevented the progression of liver fibrosis in CCl4-treated mice. In conclusion, the multifunctional CXCR4-targeted NPs delivering VEGF siRNAs provide an effective antifibrotic therapeutic strategy.

  10. Intraventricular Delivery of siRNA Nanoparticles to the Central Nervous System

    Directory of Open Access Journals (Sweden)

    Rishab Shyam

    2015-01-01

    Full Text Available Alzheimer's disease (AD is a progressive neurodegenerative disease currently lacking effective treatment. Efficient delivery of siRNA via nanoparticles may emerge as a viable therapeutic approach to treat AD and other central nervous system disorders. We report here the use of a linear polyethyleneimine (LPEI-g-polyethylene glycol (PEG copolymer-based micellar nanoparticle system to deliver siRNA targeting BACE1 and APP, two therapeutic targets of AD. Using LPEI-siRNA nanoparticles against either BACE1 or APP in cultured mouse neuroblastoma (N2a cells, we observe selective knockdown, respectively, of BACE1 or APP. The encapsulation of siRNA by LPEI-g-PEG carriers, with different grafting degrees of PEG, leads to the formation of micellar nanoparticles with distinct morphologies, including worm-like, rod-like, or spherical nanoparticles. By infusing these shaped nanoparticles into mouse lateral ventricles, we show that rod-shaped nanoparticles achieved the most efficient knockdown of BACE1 in the brain. Furthermore, such knockdown is evident in spinal cords of these treated mice. Taken together, our findings indicate that the shape of siRNA-encapsulated nanoparticles is an important determinant for their delivery and gene knockdown efficiency in the central nervous system.

  11. Nanosecond pulsed electric fields depolarize transmembrane potential via voltage-gated K+, Ca2+ and TRPM8 channels in U87 glioblastoma cells.

    Science.gov (United States)

    Burke, Ryan C; Bardet, Sylvia M; Carr, Lynn; Romanenko, Sergii; Arnaud-Cormos, Delia; Leveque, Philippe; O'Connor, Rodney P

    2017-10-01

    Nanosecond pulsed electric fields (nsPEFs) have a variety of applications in the biomedical and biotechnology industries. Cancer treatment has been at the forefront of investigations thus far as nsPEFs permeabilize cellular and intracellular membranes leading to apoptosis and necrosis. nsPEFs may also influence ion channel gating and have the potential to modulate cell physiology without poration of the membrane. This phenomenon was explored using live cell imaging and a sensitive fluorescent probe of transmembrane voltage in the human glioblastoma cell line, U87 MG, known to express a number of voltage-gated ion channels. The specific ion channels involved in the nsPEF response were screened using a membrane potential imaging approach and a combination of pharmacological antagonists and ion substitutions. It was found that a single 10ns pulsed electric field of 34kV/cm depolarizes the transmembrane potential of cells by acting on specific voltage-sensitive ion channels; namely the voltage and Ca2 + gated BK potassium channel, L- and T-type calcium channels, and the TRPM8 transient receptor potential channel. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Far-infrared radiation acutely increases nitric oxide production by increasing Ca2+ mobilization and Ca2+/calmodulin-dependent protein kinase II-mediated phosphorylation of endothelial nitric oxide synthase at serine 1179

    International Nuclear Information System (INIS)

    Park, Jung-Hyun; Lee, Sangmi; Cho, Du-Hyong; Park, Young Mi; Kang, Duk-Hee; Jo, Inho

    2013-01-01

    Highlights: •Far-infrared (FIR) radiation increases eNOS-Ser 1179 phosphorylation and NO production in BAEC. •CaMKII and PKA mediate FIR-stimulated increases in eNOS-Ser 1179 phosphorylation. •FIR increases intracellular Ca 2+ levels. •Thermo-sensitive TRPV Ca 2+ channels are unlikely to be involved in the FIR-mediated eNOS-Ser 1179 phosphorylation pathway. -- Abstract: Repeated thermal therapy manifested by far-infrared (FIR) radiation improves vascular function in both patients and mouse model with coronary heart disease, but its underlying mechanism is not fully understood. Using FIR as a thermal therapy agent, we investigate the molecular mechanism of its effect on endothelial nitric oxide synthase (eNOS) activity and NO production. FIR increased the phosphorylation of eNOS at serine 1179 (eNOS-Ser 1179 ) in a time-dependent manner (up to 40 min of FIR radiation) in bovine aortic endothelial cells (BAEC) without alterations in eNOS expression. This increase was accompanied by increases in NO production and intracellular Ca 2+ levels. Treatment with KN-93, a selective inhibitor of Ca 2+ /calmodulin-dependent protein kinase II (CaMKII) and H-89, a protein kinase A inhibitor, inhibited FIR radiation-stimulated eNOS-Ser 1179 phosphorylation. FIR radiation itself also increased the temperature of culture medium. As transient receptors potential vanilloid (TRPV) ion channels are known to be temperature-sensitive calcium channels, we explore whether TRPV channels mediate these observed effects. Reverse transcription-PCR assay revealed two TRPV isoforms in BAEC, TRPV2 and TRPV4. Although ruthenium red, a pan-TRPV inhibitor, completely reversed the observed effect of FIR radiation, a partial attenuation (∼20%) was found in cells treated with Tranilast, TRPV2 inhibitor. However, ectopic expression of siRNA of TRPV2 showed no significant alteration in FIR radiation-stimulated eNOS-Ser 1179 phosphorylation. This study suggests that FIR radiation increases NO

  13. Demystifying Mechanosensitive Piezo Ion Channels.

    Science.gov (United States)

    Xu, X Z Shawn

    2016-06-01

    Mechanosensitive channels mediate touch, hearing, proprioception, and blood pressure regulation. Piezo proteins, including Piezo1 and Piezo2, represent a new class of mechanosensitive channels that have been reported to play key roles in most, if not all, of these modalities. The structural architecture and molecular mechanisms by which Piezos act as mechanosensitive channels, however, remain mysterious. Two new studies have now provided critical insights into the atomic structure and molecular basis of the ion permeation and mechano-gating properties of the Piezo1 channel.

  14. Molecular determinants in TRPV5 channel assembly.

    NARCIS (Netherlands)

    Chang, Q.; Gyftogianni, E.; Graaf, K.F.J. van de; Hoefs, S.J.G.; Weidema, A.F.; Bindels, R.J.M.; Hoenderop, J.G.J.

    2004-01-01

    The epithelial Ca(2+) channels TRPV5 and TRPV6 mediate the Ca(2+) influx in 1,25-dihydroxyvitamin D(3)-responsive epithelia and are therefore essential in the maintenance of the body Ca(2+) balance. These Ca(2+) channels assemble in (hetero)tetrameric channel complexes with different functional

  15. Molecular determinants in TRPV5 channel assembly

    NARCIS (Netherlands)

    Chang, Qing; Gyftogianni, Emmanouela; van de Graaf, Stan F. J.; Hoefs, Susan; Weidema, Freek A.; Bindels, René J. M.; Hoenderop, Joost G. J.

    2004-01-01

    The epithelial Ca(2+) channels TRPV5 and TRPV6 mediate the Ca(2+) influx in 1,25-dihydroxyvitamin D(3)-responsive epithelia and are therefore essential in the maintenance of the body Ca(2+) balance. These Ca(2+) channels assemble in (hetero)tetrameric channel complexes with different functional

  16. MDR1 siRNA loaded hyaluronic acid-based CD44 targeted nanoparticle systems circumvent paclitaxel resistance in ovarian cancer

    Science.gov (United States)

    Yang, Xiaoqian; Lyer, Arun K.; Singh, Amit; Choy, Edwin; Hornicek, Francis J.; Amiji, Mansoor M.; Duan, Zhenfeng

    2015-02-01

    Development of multidrug resistance (MDR) is an almost universal phenomenon in patients with ovarian cancer, and this severely limits the ultimate success of chemotherapy in the clinic. Overexpression of the MDR1 gene and corresponding P-glycoprotein (Pgp) is one of the best known MDR mechanisms. MDR1 siRNA based strategies were proposed to circumvent MDR, however, systemic, safe, and effective targeted delivery is still a major challenge. Cluster of differentiation 44 (CD44) targeted hyaluronic acid (HA) based nanoparticle has been shown to successfully deliver chemotherapy agents or siRNAs into tumor cells. The goal of this study is to evaluate the ability of HA-PEI/HA-PEG to deliver MDR1 siRNA and the efficacy of the combination of HA-PEI/HA-PEG/MDR1 siRNA with paclitaxel to suppress growth of ovarian cancer. We observed that HA-PEI/HA-PEG nanoparticles can efficiently deliver MDR1 siRNA into MDR ovarian cancer cells, resulting in down-regulation of MDR1 and Pgp expression. Administration of HA-PEI/HA-PEG/MDR1 siRNA nanoparticles followed by paclitaxel treatment induced a significant inhibitory effect on the tumor growth, decreased Pgp expression and increased apoptosis in MDR ovarian cancer mice model. Our findings suggest that CD44 targeted HA-PEI/HA-PEG/MDR1 siRNA nanoparticles can serve as a therapeutic tool with great potentials to circumvent MDR in ovarian cancer.

  17. Biocompatible and colloidally stabilized mPEG-PE/calcium phosphate hybrid nanoparticles loaded with siRNAs targeting tumors.

    Science.gov (United States)

    Gao, Pei; Zhang, Xiangyu; Wang, Hongzhi; Zhang, Qinghong; Li, He; Li, Yaogang; Duan, Yourong

    2016-01-19

    Calcium phosphate nanoparticles are safe and effective delivery vehicles for small interfering RNA (siRNA), as a result of their excellent biocompatibility. In this work, mPEG-PE (polyethylene glycol-L-α-phosphatidylethanolamine) was synthesized and used to prepare nanoparticles composed of mPEG-PE and calcium phosphate for siRNA delivery. Calcium phosphate and mPEG-PE formed the stable hybrid nanoparticles through self-assembly resulting from electrostatic interaction in water. The average size of the hybrid nanoparticles was approximately 53.2 nm with a negative charge of approximately -16.7 mV, which was confirmed by dynamic light scattering (DLS) measurements. The nanoparticles exhibited excellent stability in serum and could protect siRNA from ribonuclease (RNase) degradation. The cellular internalization of siRNA-loaded nanoparticles was evaluated in SMMC-7721 cells using a laser scanning confocal microscope (CLSM) and flow cytometry. The hybrid nanoparticles could efficiently deliver siRNA to cells compared with free siRNA. Moreover, the in vivo distribution of Cy5-siRNA-loaded hybrid nanoparticles was observed after being injected into tumor-bearing nude mice. The nanoparticles concentrated in the tumor regions through an enhanced permeability and retention (EPR) effect based on the fluorescence intensities of tissue distribution. A safety evaluation of the nanoparticles was performed both in vitro and in vivo demonstrating that the hybrid nanoparticle delivery system had almost no toxicity. These results indicated that the mPEG-PE/CaP hybrid nanoparticles could be a stable, safe and promising siRNA nanocarrier for anticancer therapy.

  18. Conversion from tacrolimus-mycophenolate mofetil to tacrolimus-mTOR immunosuppression after kidney-pancreas transplantation reduces the incidence of both BK and CMV viremia.

    Science.gov (United States)

    Knight, Richard J; Graviss, Edward A; Nguyen, Duc T; Kuten, Samantha A; Patel, Samir J; Gaber, Lillian; Gaber, A Osama

    2018-04-19

    We sought to determine whether conversion from tacrolimus/mycophenolate mofetil (TAC-MMF) into tacrolimus/mTOR inhibitor (TAC-mTOR) immunosuppression would reduce the incidences of BK and CMV viremia after kidney/pancreas (KP) transplantation. In this single-center review, the TAC-mTOR cohort (n = 39) was converted at 1 month post-transplant to an mTOR inhibitor and reduced-dose tacrolimus. Outcomes were compared to a cohort of KP recipients (n = 40) maintained on TAC-MMF. At 3 years post-transplant, KP survivals and incidences of kidney/pancreas rejection were equivalent between mTOR and MMF-treated cohorts. (P = ns). BK viremia-free survival was better for the mTOR vs MMF-treated group (P = .004). In multivariate analysis, MMF vs mTOR immunosuppression was an independent risk factor for BK viremia (hazard ratio 12.27, P = .02). Similarly, mTOR-treated recipients displayed better CMV infection-free survival compared to the MMF-treated cohort (P = .01). MMF vs mTOR immunosuppression (hazard ratio 18.77, P = .001) and older recipient age (hazard ratio 1.13 per year, P = .006) were independent risk factors for CMV viremia. Mean estimated GFR and HgbA1c levels were equivalent between groups at 1, 2, and 3 years post-transplantation. Conversion from TAC/MMF into TAC/mTOR immunosuppression after KP transplantation reduced the incidences of BK and CMV viremia with an equivalent risk of acute rejection and similar renal/pancreas function. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Precise engineering of siRNA delivery vehicles to tumors using polyion complexes and gold nanoparticles.

    Science.gov (United States)

    Kim, Hyun Jin; Takemoto, Hiroyasu; Yi, Yu; Zheng, Meng; Maeda, Yoshinori; Chaya, Hiroyuki; Hayashi, Kotaro; Mi, Peng; Pittella, Frederico; Christie, R James; Toh, Kazuko; Matsumoto, Yu; Nishiyama, Nobuhiro; Miyata, Kanjiro; Kataoka, Kazunori

    2014-09-23

    For systemic delivery of siRNA to solid tumors, a size-regulated and reversibly stabilized nanoarchitecture was constructed by using a 20 kDa siRNA-loaded unimer polyion complex (uPIC) and 20 nm gold nanoparticle (AuNP). The uPIC was selectively prepared by charge-matched polyionic complexation of a poly(ethylene glycol)-b-poly(L-lysine) (PEG-PLL) copolymer bearing ∼40 positive charges (and thiol group at the ω-end) with a single siRNA bearing 40 negative charges. The thiol group at the ω-end of PEG-PLL further enabled successful conjugation of the uPICs onto the single AuNP through coordinate bonding, generating a nanoarchitecture (uPIC-AuNP) with a size of 38 nm and a narrow size distribution. In contrast, mixing thiolated PEG-PLLs and AuNPs produced a large aggregate in the absence of siRNA, suggesting the essential role of the preformed uPIC in the formation of nanoarchitecture. The smart uPIC-AuNPs were stable in serum-containing media and more resistant against heparin-induced counter polyanion exchange, compared to uPICs alone. On the other hand, the treatment of uPIC-AuNPs with an intracellular concentration of glutathione substantially compromised their stability and triggered the release of siRNA, demonstrating the reversible stability of these nanoarchitectures relative to thiol exchange and negatively charged AuNP surface. The uPIC-AuNPs efficiently delivered siRNA into cultured cancer cells, facilitating significant sequence-specific gene silencing without cytotoxicity. Systemically administered uPIC-AuNPs showed appreciably longer blood circulation time compared to controls, i.e., bare AuNPs and uPICs, indicating that the conjugation of uPICs onto AuNP was crucial for enhancing blood circulation time. Finally, the uPIC-AuNPs efficiently accumulated in a subcutaneously inoculated luciferase-expressing cervical cancer (HeLa-Luc) model and achieved significant luciferase gene silencing in the tumor tissue. These results demonstrate the strong

  20. Perilaku Bullying dan Peranan Guru BK/Konselor dalam Pengentasannya (Studi Deskriptif terhadap Siswa SMP Negeri 3 Lubuk Basung

    Directory of Open Access Journals (Sweden)

    Ilfajri Yenes

    2016-06-01

    Full Text Available Bullying merupakan suatu situasi di mana terjadinya penyalahgunaan kekuatan/kekuasaan yang dilakukan oleh seseorang/kelompok. Perilaku bullying merupakan  salah satu bentuk kekerasan dan agresif siswa di sekolah. Penelitian ini adalah penelitian deskriptif yang bertujuan untuk mendeskripsikan perilaku bullying yang ditampilkan siswa SMPN 3 Lubuk Basung dan peranan guru BK/konselor dalam pengentasannya. Populasi penelitian adalah siswa di SMP Negeri 3 Lubuk Basung berjumlah  564 orang dengan sampel 138 orang diambil dengan menggunakan teknik propotonal stratified random. Teknik pengumpulan data dengan menggunakan angket. Temuan penelitian menunjukkan bahwa jenis perilaku bullying yang dominan terjadi yaitu menyakiti secara verbal dilanjutkan dengan menyakiti secara fisik kemudian menyakiti secara mental dengan faktor keluarga. Faktor teman sebaya merupakan faktor yang lebih dominan sebagai penyebab perilaku bullying siswa. Secara umum guru BK/konselor cukup berperan mengatasi perilaku bullyingdengan memberikan  layanan informasi sebagai layanan yang lebih dominan diberikan dilanjutkan dengan layanan bimbingan kelompok dan konseling kelompok serta pemberian layanan konseling individual.

  1. Layer-by-layer nanoparticles as an efficient siRNA delivery vehicle for SPARC silencing.

    Science.gov (United States)

    Tan, Yang Fei; Mundargi, Raghavendra C; Chen, Min Hui Averil; Lessig, Jacqueline; Neu, Björn; Venkatraman, Subbu S; Wong, Tina T

    2014-05-14

    Efficient and safe delivery systems for siRNA therapeutics remain a challenge. Elevated secreted protein, acidic, and rich in cysteine (SPARC) protein expression is associated with tissue scarring and fibrosis. Here we investigate the feasibility of encapsulating SPARC-siRNA in the bilayers of layer-by-layer (LbL) nanoparticles (NPs) with poly(L-arginine) (ARG) and dextran (DXS) as polyelectrolytes. Cellular binding and uptake of LbL NPs as well as siRNA delivery were studied in FibroGRO cells. siGLO-siRNA and SPARC-siRNA were efficiently coated onto hydroxyapatite nanoparticles. The multilayered NPs were characterized with regard to particle size, zeta potential and surface morphology using dynamic light scattering and transmission electron microscopy. The SPARC-gene silencing and mRNA levels were analyzed using ChemiDOC western blot technique and RT-PCR. The multilayer SPARC-siRNA incorporated nanoparticles are about 200 nm in diameter and are efficiently internalized into FibroGRO cells. Their intracellular fate was also followed by tagging with suitable reporter siRNA as well as with lysotracker dye; confocal microscopy clearly indicates endosomal escape of the particles. Significant (60%) SPARC-gene knock down was achieved by using 0.4 pmole siRNA/μg of LbL NPs in FibroGRO cells and the relative expression of SPARC mRNA reduced significantly (60%) against untreated cells. The cytotoxicity as evaluated by xCelligence real-time cell proliferation and MTT cell assay, indicated that the SPARC-siRNA-loaded LbL NPs are non-toxic. In conclusion, the LbL NP system described provides a promising, safe and efficient delivery platform as a non-viral vector for siRNA delivery that uses biopolymers to enhance the gene knock down efficiency for the development of siRNA therapeutics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Enhancement of allele discrimination by introduction of nucleotide mismatches into siRNA in allele-specific gene silencing by RNAi.

    Directory of Open Access Journals (Sweden)

    Yusuke Ohnishi

    Full Text Available Allele-specific gene silencing by RNA interference (RNAi is therapeutically useful for specifically inhibiting the expression of disease-associated alleles without suppressing the expression of corresponding wild-type alleles. To realize such allele-specific RNAi (ASP-RNAi, the design and assessment of small interfering RNA (siRNA duplexes conferring ASP-RNAi is vital; however, it is also difficult. In a previous study, we developed an assay system to assess ASP-RNAi with mutant and wild-type reporter alleles encoding the Photinus and Renilla luciferase genes. In line with experiments using the system, we realized that it is necessary and important to enhance allele discrimination between mutant and corresponding wild-type alleles. Here, we describe the improvement of ASP-RNAi against mutant alleles carrying single nucleotide variations by introducing base substitutions into siRNA sequences, where original variations are present in the central position. Artificially mismatched siRNAs or short-hairpin RNAs (shRNAs against mutant alleles of the human Prion Protein (PRNP gene, which appear to be associated with susceptibility to prion diseases, were examined using this assessment system. The data indicates that introduction of a one-base mismatch into the siRNAs and shRNAs was able to enhance discrimination between the mutant and wild-type alleles. Interestingly, the introduced mismatches that conferred marked improvement in ASP-RNAi, appeared to be largely present in the guide siRNA elements, corresponding to the 'seed region' of microRNAs. Due to the essential role of the 'seed region' of microRNAs in their association with target RNAs, it is conceivable that disruption of the base-pairing interactions in the corresponding seed region, as well as the central position (involved in cleavage of target RNAs, of guide siRNA elements could influence allele discrimination. In addition, we also suggest that nucleotide mismatches at the 3'-ends of sense

  3. Interactions between β-catenin and the HSlo potassium channel regulates HSlo surface expression.

    Directory of Open Access Journals (Sweden)

    Shumin Bian

    Full Text Available The large conductance calcium-activated potassium channel alpha-subunit (Slo is widely distributed throughout the body and plays an important role in a number of diseases. Prior work has shown that Slo, through its S10 region, interacts with β-catenin, a key component of the cytoskeleton framework and the Wnt signaling pathway. However, the physiological significance of this interaction was not clear.Using a combination of proteomic and cell biology tools we show the existence of additional multiple binding sites in Slo, and explore in detail β-catenin interactions with the S10 region. We demonstrate that deletion of this region reduces Slo surface expression in HEK cells, which indicates that interaction with beta-catenin is important for Slo surface expression. This is confirmed by reduced expression of Slo in HEK cells and chicken (Gallus gallus domesticus leghorn white hair cells treated with siRNA to β-catenin. HSlo reciprocally co-immunoprecipitates with β-catenin, indicating a stable binding between these two proteins, with the S10 deletion mutant having reduced binding with β-catenin. We also observed that mutations of the two putative GSK phosphorylation sites within the S10 region affect both the surface expression of Slo and the channel's voltage and calcium sensitivities. Interestingly, expression of exogenous Slo in HEK cells inhibits β-catenin-dependent canonical Wnt signaling.These studies identify for the first time a central role for β-catenin in mediating Slo surface expression. Additionally we show that Slo overexpression can lead to downregulation of Wnt signaling.

  4. Far-infrared radiation acutely increases nitric oxide production by increasing Ca{sup 2+} mobilization and Ca{sup 2+}/calmodulin-dependent protein kinase II-mediated phosphorylation of endothelial nitric oxide synthase at serine 1179

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jung-Hyun; Lee, Sangmi [Department of Molecular Medicine and Ewha Medical Research Institute, Ewha Womans University Medical School, Seoul 158-710 (Korea, Republic of); Cho, Du-Hyong [Department of Neuroscience, School of Medicine, Konkuk University, Seoul 143-701 (Korea, Republic of); Park, Young Mi [Department of Molecular Medicine and Ewha Medical Research Institute, Ewha Womans University Medical School, Seoul 158-710 (Korea, Republic of); Kang, Duk-Hee [Division of Nephrology, Department of Internal Medicine, Ewha Womans University Medical School, Seoul 158-710 (Korea, Republic of); Jo, Inho, E-mail: inhojo@ewha.ac.kr [Department of Molecular Medicine and Ewha Medical Research Institute, Ewha Womans University Medical School, Seoul 158-710 (Korea, Republic of)

    2013-07-12

    Highlights: •Far-infrared (FIR) radiation increases eNOS-Ser{sup 1179} phosphorylation and NO production in BAEC. •CaMKII and PKA mediate FIR-stimulated increases in eNOS-Ser{sup 1179} phosphorylation. •FIR increases intracellular Ca{sup 2+} levels. •Thermo-sensitive TRPV Ca{sup 2+} channels are unlikely to be involved in the FIR-mediated eNOS-Ser{sup 1179} phosphorylation pathway. -- Abstract: Repeated thermal therapy manifested by far-infrared (FIR) radiation improves vascular function in both patients and mouse model with coronary heart disease, but its underlying mechanism is not fully understood. Using FIR as a thermal therapy agent, we investigate the molecular mechanism of its effect on endothelial nitric oxide synthase (eNOS) activity and NO production. FIR increased the phosphorylation of eNOS at serine 1179 (eNOS-Ser{sup 1179}) in a time-dependent manner (up to 40 min of FIR radiation) in bovine aortic endothelial cells (BAEC) without alterations in eNOS expression. This increase was accompanied by increases in NO production and intracellular Ca{sup 2+} levels. Treatment with KN-93, a selective inhibitor of Ca{sup 2+}/calmodulin-dependent protein kinase II (CaMKII) and H-89, a protein kinase A inhibitor, inhibited FIR radiation-stimulated eNOS-Ser{sup 1179} phosphorylation. FIR radiation itself also increased the temperature of culture medium. As transient receptors potential vanilloid (TRPV) ion channels are known to be temperature-sensitive calcium channels, we explore whether TRPV channels mediate these observed effects. Reverse transcription-PCR assay revealed two TRPV isoforms in BAEC, TRPV2 and TRPV4. Although ruthenium red, a pan-TRPV inhibitor, completely reversed the observed effect of FIR radiation, a partial attenuation (∼20%) was found in cells treated with Tranilast, TRPV2 inhibitor. However, ectopic expression of siRNA of TRPV2 showed no significant alteration in FIR radiation-stimulated eNOS-Ser{sup 1179} phosphorylation. This

  5. Identification of Chloride Channels CLCN3 and CLCN5 Mediating the Excitatory Cl− Currents Activated by Sphingosine-1-Phosphate in Sensory Neurons

    Science.gov (United States)

    Qi, Yanmei; Mair, Norbert; Kummer, Kai K.; Leitner, Michael G.; Camprubí-Robles, María; Langeslag, Michiel; Kress, Michaela

    2018-01-01

    Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid involved in numerous physiological and pathophysiological processes. We have previously reported a S1P-induced nocifensive response in mice by excitation of sensory neurons via activation of an excitatory chloride current. The underlying molecular mechanism for the S1P-induced chloride conductance remains elusive. In the present study, we identified two CLCN voltage-gated chloride channels, CLCN3 and CLCN5, which mediated a S1P-induced excitatory Cl− current in sensory neurons by combining RNA-seq, adenovirus-based gene silencing and whole-cell electrophysiological voltage-clamp recordings. Downregulation of CLCN3 and CLCN5 channels by adenovirus-mediated delivery of shRNA dramatically reduced S1P-induced Cl− current and membrane depolarization in sensory neurons. The mechanism of S1P-induced activation of the chloride current involved Rho GTPase but not Rho-associated protein kinase. Although S1P-induced potentiation of TRPV1-mediated ionic currents also involved Rho-dependent process, the lack of correlation of the S1P-activated Cl− current and the potentiation of TRPV1 by S1P suggests that CLCN3 and CLCN5 are necessary components for S1P-induced excitatory Cl− currents but not for the amplification of TRPV1-mediated currents in sensory neurons. This study provides a novel mechanistic insight into the importance of bioactive sphingolipids in nociception. PMID:29479306

  6. Identification of Chloride Channels CLCN3 and CLCN5 Mediating the Excitatory Cl− Currents Activated by Sphingosine-1-Phosphate in Sensory Neurons

    Directory of Open Access Journals (Sweden)

    Yanmei Qi

    2018-02-01

    Full Text Available Sphingosine-1-phosphate (S1P is a bioactive sphingolipid involved in numerous physiological and pathophysiological processes. We have previously reported a S1P-induced nocifensive response in mice by excitation of sensory neurons via activation of an excitatory chloride current. The underlying molecular mechanism for the S1P-induced chloride conductance remains elusive. In the present study, we identified two CLCN voltage-gated chloride channels, CLCN3 and CLCN5, which mediated a S1P-induced excitatory Cl− current in sensory neurons by combining RNA-seq, adenovirus-based gene silencing and whole-cell electrophysiological voltage-clamp recordings. Downregulation of CLCN3 and CLCN5 channels by adenovirus-mediated delivery of shRNA dramatically reduced S1P-induced Cl− current and membrane depolarization in sensory neurons. The mechanism of S1P-induced activation of the chloride current involved Rho GTPase but not Rho-associated protein kinase. Although S1P-induced potentiation of TRPV1-mediated ionic currents also involved Rho-dependent process, the lack of correlation of the S1P-activated Cl− current and the potentiation of TRPV1 by S1P suggests that CLCN3 and CLCN5 are necessary components for S1P-induced excitatory Cl− currents but not for the amplification of TRPV1-mediated currents in sensory neurons. This study provides a novel mechanistic insight into the importance of bioactive sphingolipids in nociception.

  7. Free-energy relationships in ion channels activated by voltage and ligand

    Science.gov (United States)

    Chowdhury, Sandipan

    2013-01-01

    Many ion channels are modulated by multiple stimuli, which allow them to integrate a variety of cellular signals and precisely respond to physiological needs. Understanding how these different signaling pathways interact has been a challenge in part because of the complexity of underlying models. In this study, we analyzed the energetic relationships in polymodal ion channels using linkage principles. We first show that in proteins dually modulated by voltage and ligand, the net free-energy change can be obtained by measuring the charge-voltage (Q-V) relationship in zero ligand condition and the ligand binding curve at highly depolarizing membrane voltages. Next, we show that the voltage-dependent changes in ligand occupancy of the protein can be directly obtained by measuring the Q-V curves at multiple ligand concentrations. When a single reference ligand binding curve is available, this relationship allows us to reconstruct ligand binding curves at different voltages. More significantly, we establish that the shift of the Q-V curve between zero and saturating ligand concentration is a direct estimate of the interaction energy between the ligand- and voltage-dependent pathway. These free-energy relationships were tested by numerical simulations of a detailed gating model of the BK channel. Furthermore, as a proof of principle, we estimate the interaction energy between the ligand binding and voltage-dependent pathways for HCN2 channels whose ligand binding curves at various voltages are available. These emerging principles will be useful for high-throughput mutagenesis studies aimed at identifying interaction pathways between various regulatory domains in a polymodal ion channel. PMID:23250866

  8. Enrichment of intersubtype HIV-1 recombinants in a dual infection system using HIV-1 strain-specific siRNAs

    Science.gov (United States)

    2011-01-01

    Background Intersubtype HIV-1 recombinants in the form of unique or stable circulating recombinants forms (CRFs) are responsible for over 20% of infections in the worldwide epidemic. Mechanisms controlling the generation, selection, and transmission of these intersubtype HIV-1 recombinants still require further investigation. All intersubtype HIV-1 recombinants are generated and evolve from initial dual infections, but are difficult to identify in the human population. In vitro studies provide the most practical system to study mechanisms, but the recombination rates are usually very low in dual infections with primary HIV-1 isolates. This study describes the use of HIV-1 isolate-specific siRNAs to enrich intersubtype HIV-1 recombinants and inhibit the parental HIV-1 isolates from a dual infection. Results Following a dual infection with subtype A and D primary HIV-1 isolates and two rounds of siRNA treatment, nearly 100% of replicative virus was resistant to a siRNA specific for an upstream target sequence in the subtype A envelope (env) gene as well as a siRNA specific for a downstream target sequence in the subtype D env gene. Only 20% (10/50) of the replicating virus had nucleotide substitutions in the siRNA-target sequence whereas the remaining 78% (39/50) harbored a recombination breakpoint that removed both siRNA target sequences, and rendered the intersubtype D/A recombinant virus resistant to the dual siRNA treatment. Since siRNAs target the newly transcribed HIV-1 mRNA, the siRNAs only enrich intersubtype env recombinants and do not influence the recombination process during reverse transcription. Using this system, a strong bias is selected for recombination breakpoints in the C2 region, whereas other HIV-1 env regions, most notably the hypervariable regions, were nearly devoid of intersubtype recombination breakpoints. Sequence conservation plays an important role in selecting for recombination breakpoints, but the lack of breakpoints in many conserved

  9. Draft Genome Sequence of an Invasive Multidrug-Resistant Strain, Pseudomonas aeruginosa BK1, Isolated from a Keratitis Patient

    KAUST Repository

    Jeganathan, Lakshmi Priya

    2014-03-27

    Pseudomonas aeruginosa infections are difficult to treat due to the presence of a multitude of virulence factors and antibiotic resistance. Here, we report the draft genome sequence of P. aeruginosa BK1, an invasive and multidrug-resistant strain, isolated from a bacterial keratitis patient in southern India.

  10. The potential roles of T-type Ca2+ channels in motor coordination

    Directory of Open Access Journals (Sweden)

    Young-Gyun ePark

    2013-10-01

    Full Text Available Specific behavioral patterns are expressed by complex combinations of muscle coordination. Tremors are simple behavioral patterns and are the focus of studies investigating motor coordination mechanisms in the brain. T-type Ca2+ channels mediate intrinsic neuronal oscillations and rhythmic burst spiking, and facilitate the generation of tremor rhythms in motor circuits. Despite substantial evidence that T-type Ca2+ channels mediate pathological tremors, their roles in physiological motor coordination and behavior remain unknown. Here, we review recent progress in understanding the roles that T-type Ca2+ channels play under pathological conditions, and discuss the potential relevance of these channels in mediating physiological motor coordination.

  11. Identification of KCa3.1 channel as a novel regulator of Oxidative phosphorylation in a subset of pancreatic carcinoma cell lines

    DEFF Research Database (Denmark)

    Kovalenko, Ilya; Glasauer, Andrea; Schöckel, Laura

    2016-01-01

    , our goal was to identify novel transporters or channels that regulate oxidative phosphorylation (OxPhos) in PDAC in order to characterize novel potential drug targets for the treatment of these cancers. We set up a Seahorse Analyzer XF based siRNA screen and identified previously described as well...

  12. Abnormal differentiation, hyperplasia and embryonic/perinatal lethality in BK5-T/t transgenic mice

    Science.gov (United States)

    Chen, Xin; Schneider-Broussard, Robin; Hollowell, Debra; McArthur, Mark; Jeter, Collene R.; Benavides, Fernando; DiGiovanni, John; Tang, Dean G.

    2009-01-01

    The cell-of-origin has a great impact on the types of tumors that develop and the stem/progenitor cells have long been considered main targets of malignant transformation. The SV40 large T and small t antigens (T/t), have been targeted to multiple differentiated cellular compartments in transgenic mice. In most of these studies, transgenic animals develop tumors without apparent defects in animal development. In this study, we used the bovine keratin 5 (BK5) promoter to target the T/t antigens to stem/progenitor cell-containing cytokeratin 5 (CK5) cellular compartment. A transgene construct, BK5-T/t, was made and microinjected into the male pronucleus of FVB/N mouse oocytes. After implanting ∼1700 embryos, only 7 transgenics were obtained, including 4 embryos (E9.5, E13, E15, and E20) and 3 postnatal animals, which died at P1, P2, and P18, respectively. Immunohistological analysis revealed aberrant differentiation and prominent hyperplasia in several transgenic CK5 tissues, especially the upper digestive organs (tongue, oral mucosa, esophagus, and forestomach) and epidermis, the latter of which also showed focal dysplasia. Altogether, these results indicate that constitutive expression of the T/t antigens in CK5 cellular compartment results in abnormal epithelial differentiation and leads to embryonic/perinatal animal lethality. PMID:19272531

  13. Structure of the CLC-1 chloride channel from Homo sapiens.

    Science.gov (United States)

    Park, Eunyong; MacKinnon, Roderick

    2018-05-29

    CLC channels mediate passive Cl - conduction, while CLC transporters mediate active Cl - transport coupled to H + transport in the opposite direction. The distinction between CLC-0/1/2 channels and CLC transporters seems undetectable by amino acid sequence. To understand why they are different functionally we determined the structure of the human CLC-1 channel. Its 'glutamate gate' residue, known to mediate proton transfer in CLC transporters, adopts a location in the structure that appears to preclude it from its transport function. Furthermore, smaller side chains produce a wider pore near the intracellular surface, potentially reducing a kinetic barrier for Cl - conduction. When the corresponding residues are mutated in a transporter, it is converted to a channel. Finally, Cl - at key sites in the pore appear to interact with reduced affinity compared to transporters. Thus, subtle differences in glutamate gate conformation, internal pore diameter and Cl - affinity distinguish CLC channels and transporters. © 2018, Park & MacKinnon.

  14. Experimental Investigation on Cutting Characteristics in Nanometric Plunge-Cutting of BK7 and Fused Silica Glasses.

    Science.gov (United States)

    An, Qinglong; Ming, Weiwei; Chen, Ming

    2015-03-27

    Ductile cutting are most widely used in fabricating high-quality optical glass components to achieve crack-free surfaces. For ultra-precision machining of brittle glass materials, critical undeformed chip thickness (CUCT) commonly plays a pivotal role in determining the transition point from ductile cutting to brittle cutting. In this research, cutting characteristics in nanometric cutting of BK7 and fused silica glasses, including machined surface morphology, surface roughness, cutting force and specific cutting energy, were investigated with nanometric plunge-cutting experiments. The same cutting speed of 300 mm/min was used in the experiments with single-crystal diamond tool. CUCT was determined according to the mentioned cutting characteristics. The results revealed that 320 nm was found as the CUCT in BK7 cutting and 50 nm was determined as the size effect of undeformed chip thickness. A high-quality machined surface could be obtained with the undeformed chip thickness between 50 and 320 nm at ductile cutting stage. Moreover, no CUCT was identified in fused silica cutting with the current cutting conditions, and brittle-fracture mechanism was confirmed as the predominant chip-separation mode throughout the nanometric cutting operation.

  15. A combination of genistein and magnesium enhances the vasodilatory effect via an eNOS pathway and BK(Ca) current amplification.

    Science.gov (United States)

    Sun, Lina; Hou, Yunlong; Zhao, Tingting; Zhou, Shanshan; Wang, Xiaoran; Zhang, Liming; Yu, Guichun

    2015-04-01

    The phytoestrogen genistein (GST) and magnesium have been independently shown to regulate vascular tone; however, their individual vasodilatory effects are limited. The aim of this study was to examine the combined effects of GST plus magnesium on vascular tone in mesenteric arteries. The effects of pretreatment with GST (0-200 μmol/L), MgCl2 (0-4.8 mmol/L) and GST plus MgCl2 on 10 μmol/L phenylephrine (PE) precontracted mesenteric arteries in rats were assessed by measuring isometric force. BK(Ca) currents were detected by the patch clamp method. GST caused concentration- and partial endothelium-dependent relaxation. Magnesium resulted in dual adjustment of vascular tone. Magnesium-free solution eliminated the vasodilatation of GST in both endothelium-intact and denuded rings. GST (50 μmol/L) plus magnesium (4.8 mmol/L) caused stronger relaxation in both endothelium-intact and denuded rings. Pretreatment with the nitric oxide synthase (NOS) inhibitor L-N-nitroarginine methyl ester (L-NAME, 100 μmol/L) significantly inhibited the effects of GST, high magnesium, and the combination of GST and magnesium. BK(Ca) currents were amplified to a greater extent when GST (50 μmol/L) was combined with 4.8 versus 1.2 mmol/L Mg(2+). Our data suggest that GST plus magnesium provides enhanced vasodilatory effects in rat mesenteric arteries compared with that observed when either is used separately, which was related to an eNOS pathway and BK(Ca) current amplification.

  16. Increase in cortical pyramidal cell excitability accompanies depression-like behavior in mice: a transcranial magnetic stimulation study.

    Science.gov (United States)

    Sun, Peng; Wang, Furong; Wang, Li; Zhang, Yu; Yamamoto, Ryo; Sugai, Tokio; Zhang, Qing; Wang, Zhengda; Kato, Nobuo

    2011-11-09

    Clinical evidence suggests that cortical excitability is increased in depressives. We investigated its cellular basis in a mouse model of depression. In a modified version of forced swimming (FS), mice were initially forced to swim for 5 consecutive days and then were treated daily with repetitive transcranial magnetic stimulation (rTMS) or sham treatment for the following 4 weeks without swimming. On day 2 through day 5, the mice manifested depression-like behaviors. The next and last FS was performed 4 weeks later, which revealed a 4 week maintenance of depression-like behavior in the sham mice. In slices from the sham controls, excitability in cingulate cortex pyramidal cells was elevated in terms of membrane potential and frequencies of spikes evoked by current injection. Depolarized resting potential was shown to depend on suppression of large conductance calcium-activated potassium (BK) channels. This BK channel suppression was confirmed by measuring spike width, which depends on BK channels. Chronic rTMS treatment during the 4 week period significantly reduced the depression-like behavior. In slices obtained from the rTMS mice, normal excitability and BK channel activity were recovered. Expression of a scaffold protein Homer1a was reduced by the FS and reversed by rTMS in the cingulate cortex. Similar recovery in the same behavioral, electrophysiological, and biochemical features was observed after chronic imipramine treatment. The present study demonstrated that manifestation and disappearance of depression-like behavior are in parallel with increase and decrease in cortical neuronal excitability in mice and suggested that regulation of BK channels by Homer1a is involved in this parallelism.

  17. Structure-activity relationship study of Aib-containing amphipathic helical peptide-cyclic RGD conjugates as carriers for siRNA delivery.

    Science.gov (United States)

    Wada, Shun-Ichi; Takesada, Anna; Nagamura, Yurie; Sogabe, Eri; Ohki, Rieko; Hayashi, Junsuke; Urata, Hidehito

    2017-12-15

    The conjugation of Aib-containing amphipathic helical peptide with cyclo(-Arg-Gly-Asp-d-Phe-Cys-) (cRGDfC) at the C-terminus of the helix peptide (PI) has been reported to be useful for constructing a carrier for targeted siRNA delivery into cells. In order to explore structure-activity relationships for the development of potential carriers for siRNA delivery, we synthesized conjugates of Aib-containing amphipathic helical peptide with cRGDfC at the N-terminus (PII) and both the N- and C-termini (PIII) of the helical peptide. Furthermore, to examine the influence of PI helical chain length on siRNA delivery, truncated peptides containing 16 (PIV), 12 (PV), and 8 (PVI) amino acid residues at the N-terminus of the helical chain were synthesized. PII and PIII, as well as PI, could deliver anti-luciferase siRNA into cells to induce the knockdown of luciferase stably expressed in cells. In contrast, all of the truncated peptides were unlikely to transport siRNA into cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. NIR-to-visible upconversion nanoparticles for fluorescent labeling and targeted delivery of siRNA

    International Nuclear Information System (INIS)

    Jiang Shan; Zhang Yong; Lim, Kian Meng; Sim, Eugene K W; Ye Lei

    2009-01-01

    Near-infrared (NIR)-to-visible upconversion fluorescent nanoparticles were synthesized and used for imaging and targeted delivery of small interfering RNA (siRNA) to cancer cells. Silica-coated NaYF 4 upconversion nanoparticles (UCNs) co-doped with lanthanide ions (Yb/Er) were synthesized. Folic acid and anti-Her2 antibody conjugated UCNs were used to fluorescently label the folate receptors of HT-29 cells and Her2 receptors of SK-BR-3 cells, respectively. The intracellular uptake of the folic acid and antibody conjugated UCNs was visualized using a confocal fluorescence microscope equipped with an NIR laser. siRNA was attached to anti-Her2 antibody conjugated UCNs and the delivery of these nanoparticles to SK-BR-3 cells was studied. Meanwhile, a luciferase assay was established to confirm the gene silencing effect of siRNA. Upconversion nanoparticles can serve as a fluorescent probe and delivery system for simultaneous imaging and delivery of biological molecules.

  19. NIR-to-visible upconversion nanoparticles for fluorescent labeling and targeted delivery of siRNA

    Science.gov (United States)

    Jiang, Shan; Zhang, Yong; Lim, Kian Meng; Sim, Eugene K. W.; Ye, Lei

    2009-04-01

    Near-infrared (NIR)-to-visible upconversion fluorescent nanoparticles were synthesized and used for imaging and targeted delivery of small interfering RNA (siRNA) to cancer cells. Silica-coated NaYF4 upconversion nanoparticles (UCNs) co-doped with lanthanide ions (Yb/Er) were synthesized. Folic acid and anti-Her2 antibody conjugated UCNs were used to fluorescently label the folate receptors of HT-29 cells and Her2 receptors of SK-BR-3 cells, respectively. The intracellular uptake of the folic acid and antibody conjugated UCNs was visualized using a confocal fluorescence microscope equipped with an NIR laser. siRNA was attached to anti-Her2 antibody conjugated UCNs and the delivery of these nanoparticles to SK-BR-3 cells was studied. Meanwhile, a luciferase assay was established to confirm the gene silencing effect of siRNA. Upconversion nanoparticles can serve as a fluorescent probe and delivery system for simultaneous imaging and delivery of biological molecules.

  20. Construction and Biological Evaluation of a Novel Integrin ανβ3-Specific Carrier for Targeted siRNA Delivery In Vitro

    Directory of Open Access Journals (Sweden)

    Xueqi Chen

    2017-02-01

    Full Text Available (1 Background: The great potential of RNA interference (RNAi-based gene therapy is premised on the effective delivery of small interfering RNAs (siRNAs to target tissues and cells. Hence, we aimed at developing and examining a novel integrin αvβ3-specific delivery carrier for targeted transfection of siRNA to malignant tumor cells; (2 Methods: Arginine-glycine-aspartate motif (RGD was adopted as a tissue target for specific recognition of integrin αvβ3. To enable siRNA binding, a chimeric peptide was synthesized by adding nonamer arginine residues (9R at the carboxy terminus of cyclic-RGD dimer, designated as c(RGD2-9R. The efficiency of 9R peptide transferring siRNA was biologically evaluated in vitro by flow cytometry, confocal microscopy, and Western blot; (3 Results: An optimal 10:1 molar ratio of c(RGD2-9R to siRNA was confirmed by the electrophoresis on agarose gels. Both the flow cytometry and confocal microscopy results testified that transfection of c(RGD2-9R as an siRNA delivery carrier was obviously higher than the naked-siRNA group. The results of Western blot demonstrated that these 9R peptides were able to transduce siRNA to HepG2 cells in vitro, resulting in efficient gene silencing; and (4 Conclusion: The chimeric peptide of c(RGD2-9R can be developed as an effective siRNA delivery carrier and shows potential as a new strategy for RNAi-based gene therapy.

  1. SKP2 siRNA inhibits the degradation of P27kip1 and down-regulates the expression of MRP in HL-60/A cells.

    Science.gov (United States)

    Xiao, Jie; Yin, Songmei; Li, Yiqing; Xie, Shuangfeng; Nie, Danian; Ma, Liping; Wang, Xiuju; Wu, Yudan; Feng, Jianhong

    2009-08-01

    S-phase kinase-associated protein 2 (SKP2) gene is a tumor suppressor gene, and is involved in the ubiquitin-mediated degradation of P27kip1. SKP2 and P27kip1 affect the proceeding and prognosis of leukemia through regulating the proliferation, apoptosis and differentiation of leukemia cells. In this study, we explored the mechanism of reversing of HL-60/A drug resistance through SKP2 down-regulation. HL-60/A cells were nucleofected by Amaxa Nucleofector System with SKP2 siRNA. The gene and protein expression levels of Skp2, P27kip1, and multi-drug resistance associated protein (MRP) were determined by reverse transcription-polymerase chain reaction and western blot analysis, respectively. The cell cycle was analyzed by flow cytometry. The 50% inhibitory concentration value was calculated using cytotoxic analysis according to the death rate of these two kinds of cells under different concentrations of chemotherapeutics to compare the sensitivity of the cells. HL-60/A cells showed multi-drug resistance phenotype characteristic by cross-resistance to adriamycin, daunorubicin, and arabinosylcytosine, due to the expression of MRP. We found that the expression of SKP2 was higher in HL-60/A cells than in HL-60 cells, but the expression of P27kip1 was lower. The expression of SKP2 in HL-60/A cells nucleofected by SKP2 siRNA was down-regulated whereas the protein level of P27kip1 was up-regulated. Compared with the MRP expression level in the control group (nucleofected by control siRNA), the mRNA and protein expression levels of MRP in HL-60/A cells nucleofected by SKP2 siRNA were lower, and the latter cells were more sensitive to adriamycin, daunorubicin, and arabinosylcytosine. Down-regulating the SKP2 expression and arresting cells in the G0/G1 phase improve drug sensitivity of leukemia cells with down-regulated MRP expression.

  2. Gene silencing of HPV16 E6/E7 induced by promoter-targeting siRNA in SiHa cells

    OpenAIRE

    Hong, D; Lu, W; Ye, F; Hu, Y; Xie, X

    2009-01-01

    Background: Recently, transcriptional gene silencing induced by small interfering RNA (siRNA) was found in mammalian and human cells. However, previous studies focused on endogenous genes. Methods: In this study, we designed siRNA targeting the promoter of human papillomavirus 16 E6/E7 and transfected it into the cervical cancer cell line, SiHa. E6 and E7 mRNA and protein expression were detected in cells treated by promoter-targeting siRNA. Futhermore, cellular growth, proliferation, apoptos...

  3. Decreases in Casz1 mRNA by an siRNA Complex Do not Alter Blood Pressure in Mice.

    Science.gov (United States)

    Ji, Su-Min; Shin, Young-Bin; Park, So-Yon; Lee, Hyeon-Ju; Oh, Bermseok

    2012-03-01

    Recent genomewide association studies of large samples have identified genes that are associated with blood pressure. The Global Blood Pressure Genetics (Global BPgen) and Cohorts for Heart and Aging Research in Genome Epidemiology (CHARGE) consortiums identified 14 loci that govern blood pressure on a genomewide significance level, one of which is CASZ1 confirmed in both Europeans and Asians. CASZ1 is a zinc finger transcription factor that controls apoptosis and cell fate and suppresses neuroblastoma tumor growth by reprogramming gene expression, like a tumor suppressor. To validate the function of CASZ1 in blood pressure, we decreased Casz1 mRNA levels in mice by siRNA. Casz1 siRNA reduced mRNA levels by 59% in a mouse cell line. A polyethylenimine-mixed siRNA complex was injected into mouse tail veins, reducing Casz1 mRNA expression to 45% in the kidney. However, blood pressure in the treated mice was unaffected, despite a 55% reduction in Casz1 mRNA levels in the kidney on multiple siRNA injections daily. Even though Casz1 siRNA-treated mice did not experience any significant change in blood pressure, our study demonstrates the value of in vivo siRNA injection in analyzing the function of candidate genes identified by genomewide association studies.

  4. A framework for multiple kernel support vector regression and its applications to siRNA efficacy prediction.

    Science.gov (United States)

    Qiu, Shibin; Lane, Terran

    2009-01-01

    The cell defense mechanism of RNA interference has applications in gene function analysis and promising potentials in human disease therapy. To effectively silence a target gene, it is desirable to select appropriate initiator siRNA molecules having satisfactory silencing capabilities. Computational prediction for silencing efficacy of siRNAs can assist this screening process before using them in biological experiments. String kernel functions, which operate directly on the string objects representing siRNAs and target mRNAs, have been applied to support vector regression for the prediction and improved accuracy over numerical kernels in multidimensional vector spaces constructed from descriptors of siRNA design rules. To fully utilize information provided by string and numerical data, we propose to unify the two in a kernel feature space by devising a multiple kernel regression framework where a linear combination of the kernels is used. We formulate the multiple kernel learning into a quadratically constrained quadratic programming (QCQP) problem, which although yields global optimal solution, is computationally demanding and requires a commercial solver package. We further propose three heuristics based on the principle of kernel-target alignment and predictive accuracy. Empirical results demonstrate that multiple kernel regression can improve accuracy, decrease model complexity by reducing the number of support vectors, and speed up computational performance dramatically. In addition, multiple kernel regression evaluates the importance of constituent kernels, which for the siRNA efficacy prediction problem, compares the relative significance of the design rules. Finally, we give insights into the multiple kernel regression mechanism and point out possible extensions.

  5. Inhibition of ABCB1 (MDR1 expression by an siRNA nanoparticulate delivery system to overcome drug resistance in osteosarcoma.

    Directory of Open Access Journals (Sweden)

    Michiro Susa

    2010-05-01

    Full Text Available The use of neo-adjuvant chemotherapy in treating osteosarcoma has improved patients' average 5 year survival rate from 20% to 70% in the past 30 years. However, for patients who progress after chemotherapy, its effectiveness diminishes due to the emergence of multi-drug resistance (MDR after prolonged therapy.In order to overcome both the dose-limiting side effects of conventional chemotherapeutic agents and the therapeutic failure resulting from MDR, we designed and evaluated a novel drug delivery system for MDR1 siRNA delivery. Novel biocompatible, lipid-modified dextran-based polymeric nanoparticles were used as the platform for MDR1 siRNA delivery; and the efficacy of combination therapy with this system was evaluated. In this study, multi-drug resistant osteosarcoma cell lines (KHOS(R2 and U-2OS(R2 were treated with the MDR1 siRNA nanocarriers and MDR1 protein (P-gp expression, drug retention, and immunofluoresence were analyzed. Combination therapy of the MDR1 siRNA loaded nanocarriers with increasing concentrations of doxorubicin was also analyzed. We observed that MDR1 siRNA loaded dextran nanoparticles efficiently suppresses P-gp expression in the drug resistant osteosarcoma cell lines. The results also demonstrated that this approach may be capable of reversing drug resistance by increasing the amount of drug accumulation in MDR cell lines.Lipid-modified dextran-based polymeric nanoparticles are a promising platform for siRNA delivery. Nanocarriers loaded with MDR1 siRNA are a potential treatment strategy for reversing MDR in osteosarcoma.

  6. Dicer-like 3 produces transposable element-associated 24-nt siRNAs that control agricultural traits in rice

    Science.gov (United States)

    Wei, Liya; Gu, Lianfeng; Song, Xianwei; Cui, Xiekui; Lu, Zhike; Zhou, Ming; Wang, Lulu; Hu, Fengyi; Zhai, Jixian; Meyers, Blake C.; Cao, Xiaofeng

    2014-01-01

    Transposable elements (TEs) and repetitive sequences make up over 35% of the rice (Oryza sativa) genome. The host regulates the activity of different TEs by different epigenetic mechanisms, including DNA methylation, histone H3K9 methylation, and histone H3K4 demethylation. TEs can also affect the expression of host genes. For example, miniature inverted repeat TEs (MITEs), dispersed high copy-number DNA TEs, can influence the expression of nearby genes. In plants, 24-nt small interfering RNAs (siRNAs) are mainly derived from repeats and TEs. However, the extent to which TEs, particularly MITEs associated with 24-nt siRNAs, affect gene expression remains elusive. Here, we show that the rice Dicer-like 3 homolog OsDCL3a is primarily responsible for 24-nt siRNA processing. Impairing OsDCL3a expression by RNA interference caused phenotypes affecting important agricultural traits; these phenotypes include dwarfism, larger flag leaf angle, and fewer secondary branches. We used small RNA deep sequencing to identify 535,054 24-nt siRNA clusters. Of these clusters, ∼82% were OsDCL3a-dependent and showed significant enrichment of MITEs. Reduction of OsDCL3a function reduced the 24-nt siRNAs predominantly from MITEs and elevated expression of nearby genes. OsDCL3a directly targets genes involved in gibberellin and brassinosteroid homeostasis; OsDCL3a deficiency may affect these genes, thus causing the phenotypes of dwarfism and enlarged flag leaf angle. Our work identifies OsDCL3a-dependent 24-nt siRNAs derived from MITEs as broadly functioning regulators for fine-tuning gene expression, which may reflect a conserved epigenetic mechanism in higher plants with genomes rich in dispersed repeats or TEs. PMID:24554078

  7. Efficient delivery of Notch1 siRNA to SKOV3 cells by cationic cholesterol derivative-based liposome

    Directory of Open Access Journals (Sweden)

    Zhao Y

    2016-10-01

    Full Text Available Yun-Chun Zhao,1 Li Zhang,2 Shi-Sen Feng,3 Lu Hong,3 Hai-Li Zheng,3 Li-Li Chen,4 Xiao-Ling Zheng,1 Yi-Qing Ye,1 Meng-Dan Zhao,1 Wen-Xi Wang,3 Cai-Hong Zheng1 1Pharmacy Department, Women’s Hospital, 2Pharmacy Department, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China; 3Department of Pharmaceutic Preparation, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 4Department of Gynecologic Oncology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China Abstract: A novel cationic cholesterol derivative-based small interfering RNA (siRNA interference strategy was suggested to inhibit Notch1 activation in SKOV3 cells for the gene therapy of ovarian cancer. The cationic cholesterol derivative, N-(cholesterylhemisuccinoyl-amino-3-propyl-N, N-dimethylamine (DMAPA-chems liposome, was incubated with siRNA at different nitrogen-to-phosphate ratios to form stabilized, near-spherical siRNA/DMAPA-chems nanoparticles with sizes of 100–200 nm and zeta potentials of 40–50 mV. The siRNA/DMAPA-chems nanoparticles protected siRNA from nuclease degradation in 25% fetal bovine serum. The nanoparticles exhibited high cell uptake and Notch1 gene knockdown efficiency in SKOV3 cells at an nitrogen-to-phosphate ratio of 100 and an siRNA concentration of 50 nM. They also inhibited the growth and promoted the apoptosis of SKOV3 cells. These results may provide the potential for using cationic cholesterol derivatives as efficient nonviral siRNA carriers for the suppression of Notch1 activation in ovarian cancer cells. Keywords: siRNA, cationic cholesterol derivative, Notch1, ovarian cancer cells

  8. Utilization of unlocked nucleic acid (UNA) to enhance siRNA performance in vitro and in vivo

    DEFF Research Database (Denmark)

    Laursen, Maria B; Pakula, Malgorzata M; Gao, Shan

    2010-01-01

    Small interfering RNAs (siRNAs) are now established as a favourite tool to reduce gene expression by RNA interference (RNAi) in mammalian cell culture. However, limitations in potency, duration, delivery and specificity of the gene knockdown (KD) are still major obstacles that need further addres...... in a xenograft model of human pancreas cancer. Hereby UNA constitutes an important type of chemical modification for future siRNA designs....

  9. ASIC3 channels in multimodal sensory perception.

    Science.gov (United States)

    Li, Wei-Guang; Xu, Tian-Le

    2011-01-19

    Acid-sensing ion channels (ASICs), which are members of the sodium-selective cation channels belonging to the epithelial sodium channel/degenerin (ENaC/DEG) family, act as membrane-bound receptors for extracellular protons as well as nonproton ligands. At least five ASIC subunits have been identified in mammalian neurons, which form both homotrimeric and heterotrimeric channels. The highly proton sensitive ASIC3 channels are predominantly distributed in peripheral sensory neurons, correlating with their roles in multimodal sensory perception, including nociception, mechanosensation, and chemosensation. Different from other ASIC subunit composing ion channels, ASIC3 channels can mediate a sustained window current in response to mild extracellular acidosis (pH 7.3-6.7), which often occurs accompanied by many sensory stimuli. Furthermore, recent evidence indicates that the sustained component of ASIC3 currents can be enhanced by nonproton ligands including the endogenous metabolite agmatine. In this review, we first summarize the growing body of evidence for the involvement of ASIC3 channels in multimodal sensory perception and then discuss the potential mechanisms underlying ASIC3 activation and mediation of sensory perception, with a special emphasis on its role in nociception. We conclude that ASIC3 activation and modulation by diverse sensory stimuli represent a new avenue for understanding the role of ASIC3 channels in sensory perception. Furthermore, the emerging implications of ASIC3 channels in multiple sensory dysfunctions including nociception allow the development of new pharmacotherapy.

  10. Effect of mitochondrial potassium channel on the renal protection mediated by sodium thiosulfate against ethylene glycol induced nephrolithiasis in rat model

    Directory of Open Access Journals (Sweden)

    N. Baldev

    2015-12-01

    Full Text Available Purpose: Sodium thiosulfate (STS is clinically reported to be a promising drug in preventing nephrolithiasis. However, its mechanism of action remains unclear. In the present study, we investigated the role of mitochondrial KATP channel in the renal protection mediated by STS. Materials and Methods: Nephrolithiasis was induced in Wistar rats by administrating 0.4% ethylene glycol (EG along with 1% ammonium chloride for one week in drinking water followed by only 0.75% EG for two weeks. Treatment groups received STS, mitochondrial KATP channel opener and closer exclusively or in combination with STS for two weeks. Results: Animals treated with STS showed normal renal tissue architecture, supported by near normal serum creatinine, urea and ALP activity. Diazoxide (mitochondria KATP channel opening treatment to the animal also showed normal renal tissue histology and improved serum chemistry. However, an opposite result was shown by glibenclamide (mitochondria KATP channel closer treated rats. STS administered along with diazoxide negated the renal protection rendered by diazoxide alone, while it imparted protection to the glibenclamide treated rats, formulating a mitochondria modulated STS action. Conclusion: The present study confirmed that STS render renal protection not only through chelation and antioxidant effect but also by modulating the mitochondrial KATP channel for preventing urolithiasis.

  11. Polyomavirus BK replication in renal transplant recipients: combined monitoring of viremia and VP1 mRNA in urine

    Directory of Open Access Journals (Sweden)

    Sara Astegiano

    2010-06-01

    Full Text Available Introduction. Human polyomavirus BK (BKV is worldwide distributed, with a seroprevalence rate of 70–90% in the adults. Following primary infection, BK remains latent in the renourinary tract as the epidemiologically most relevant latency site, and in B cell, brain, spleen and probably other tissues. Reactivation may occur in both immunocompetent subjects and immunocompromised patients. In renal transplantation, in the context of intense immunosuppression, viral replication may determine BKV-associated nephropathy (BKVAN with interstitial nephritis and/or ureteral stenosis in 1–10% of the patients and leading to graft failure and return to haemodialysis in 30 to 80% of the cases (5. Screening of BKV replication represents the basic strategy to predict early the onset of BKVAN and may allow for earlier intervention with reduced allograft loss (3, 4. Nowadays, replication of BKV is monitored by quantification of BKV-DNA in serum and urine (2. The aim of this study was to evaluated the role of BKV VP1 mRNA in urine as a marker of viral replication in renal transplant recipients.

  12. Therapeutic Potency of Nanoformulations of siRNAs and shRNAs in Animal Models of Cancers

    Directory of Open Access Journals (Sweden)

    Md. Emranul Karim

    2018-05-01

    Full Text Available RNA Interference (RNAi has brought revolutionary transformations in cancer management in the past two decades. RNAi-based therapeutics including siRNA and shRNA have immense scope to silence the expression of mutant cancer genes specifically in a therapeutic context. Although tremendous progress has been made to establish catalytic RNA as a new class of biologics for cancer management, a lot of extracellular and intracellular barriers still pose a long-lasting challenge on the way to clinical approval. A series of chemically suitable, safe and effective viral and non-viral carriers have emerged to overcome physiological barriers and ensure targeted delivery of RNAi. The newly invented carriers, delivery techniques and gene editing technology made current treatment protocols stronger to fight cancer. This review has provided a platform about the chronicle of siRNA development and challenges of RNAi therapeutics for laboratory to bedside translation focusing on recent advancement in siRNA delivery vehicles with their limitations. Furthermore, an overview of several animal model studies of siRNA- or shRNA-based cancer gene therapy over the past 15 years has been presented, highlighting the roles of genes in multiple cancers, pharmacokinetic parameters and critical evaluation. The review concludes with a future direction for the development of catalytic RNA vehicles and design strategies to make RNAi-based cancer gene therapy more promising to surmount cancer gene delivery challenges.

  13. Comparing 2-nt 3' overhangs against blunt-ended siRNAs: a systems biology based study.

    Science.gov (United States)

    Ghosh, Preetam; Dullea, Robert; Fischer, James E; Turi, Tom G; Sarver, Ronald W; Zhang, Chaoyang; Basu, Kalyan; Das, Sajal K; Poland, Bradley W

    2009-07-07

    In this study, we formulate a computational reaction model following a chemical kinetic theory approach to predict the binding rate constant for the siRNA-RISC complex formation reaction. The model allowed us to study the potency difference between 2-nt 3' overhangs against blunt-ended siRNA molecules in an RNA interference (RNAi) system. The rate constant predicted by this model was fed into a stochastic simulation of the RNAi system (using the Gillespie stochastic simulator) to study the overall potency effect. We observed that the stochasticity in the transcription/translation machinery has no observable effects in the RNAi pathway. Sustained gene silencing using siRNAs can be achieved only if there is a way to replenish the dsRNA molecules in the cell. Initial findings show about 1.5 times more blunt-ended molecules will be required to keep the mRNA at the same reduced level compared to the 2-nt overhang siRNAs. However, the mRNA levels jump back to saturation after a longer time when blunt-ended siRNAs are used. We found that the siRNA-RISC complex formation reaction rate was 2 times slower when blunt-ended molecules were used pointing to the fact that the presence of the 2-nt overhangs has a greater effect on the reaction in which the bound RISC complex cleaves the mRNA.

  14. The polyomavirus BK agnoprotein co-localizes with lipid droplets

    International Nuclear Information System (INIS)

    Unterstab, Gunhild; Gosert, Rainer; Leuenberger, David; Lorentz, Pascal; Rinaldo, Christine H.; Hirsch, Hans H.

    2010-01-01

    Agnoprotein encoded by human polyomavirus BK (BKV) is a late cytoplasmic protein of 66 amino acids (aa) of unknown function. Immunofluorescence microscopy revealed a fine granular and a vesicular distribution in donut-like structures. Using BKV(Dunlop)-infected or agnoprotein-transfected cells, we investigated agnoprotein co-localization with subcellular structures. We found that agnoprotein co-localizes with lipid droplets (LD) in primary human renal tubular epithelial cells as well as in other cells supporting BKV replication in vitro (UTA, Vero cells). Using agnoprotein-enhanced green fluorescent protein (EGFP) fusion constructs, we demonstrate that agnoprotein aa 20-42 are required for targeting LD, whereas aa 1-20 or aa 42-66 were not. Agnoprotein aa 22-40 are predicted to form an amphipathic helix, and mutations A25D and F39E, disrupting its hydrophobic domain, prevented LD targeting. However, changing the phosphorylation site serine-11 to alanine or aspartic acid did not alter LD co-localization. Our findings provide new clues to unravel agnoprotein function.

  15. MicroRNA-Mediated Downregulation of the Potassium Channel Kv4.2 Contributes to Seizure Onset

    Directory of Open Access Journals (Sweden)

    Christina Gross

    2016-09-01

    Full Text Available Seizures are bursts of excessive synchronized neuronal activity, suggesting that mechanisms controlling brain excitability are compromised. The voltage-gated potassium channel Kv4.2, a major mediator of hyperpolarizing A-type currents in the brain, is a crucial regulator of neuronal excitability. Kv4.2 expression levels are reduced following seizures and in epilepsy, but the underlying mechanisms remain unclear. Here, we report that Kv4.2 mRNA is recruited to the RNA-induced silencing complex shortly after status epilepticus in mice and after kainic acid treatment of hippocampal neurons, coincident with reduction of Kv4.2 protein. We show that the microRNA miR-324-5p inhibits Kv4.2 protein expression and that antagonizing miR-324-5p is neuroprotective and seizure suppressive. MiR-324-5p inhibition also blocks kainic-acid-induced reduction of Kv4.2 protein in vitro and in vivo and delays kainic-acid-induced seizure onset in wild-type but not in Kcnd2 knockout mice. These results reveal an important role for miR-324-5p-mediated silencing of Kv4.2 in seizure onset.

  16. A genome-wide siRNA screen identifies proteasome addiction as a vulnerability of basal-like triple-negative breast cancer cells

    Science.gov (United States)

    Petrocca, Fabio; Altschuler, Gabriel; Tan, Shen Mynn; Mendillo, Marc L.; Yan, Haoheng; Jerry, D. Joseph; Kung, Andrew L.; Hide, Winston; Ince, Tan A.; Lieberman, Judy

    2013-01-01

    Summary Basal-like triple negative breast cancers (TNBC) have poor prognosis. To identify basal-like TNBC dependencies, a genome-wide siRNA lethality screen compared two human breast epithelial cell lines transformed with the same genes - basal-like BPLER and myoepithelial HMLER. Expression of the screen’s 154 BPLER dependency genes correlated with poor prognosis in breast, but not lung or colon, cancer. Proteasome genes were overrepresented hits. Basal-like TNBC lines were selectively sensitive to proteasome inhibitor drugs relative to normal epithelial, luminal and mesenchymal TNBC lines. Proteasome inhibition reduced growth of established basal-like TNBC tumors in mice and blocked tumor-initiating cell function and macrometastasis. Proteasome addiction in basal-like TNBCs was mediated by NOXA and linked to MCL-1 dependence. PMID:23948298

  17. General method for labeling siRNA by click chemistry with fluorine-18 for the purpose of PET imaging.

    Science.gov (United States)

    Mercier, Frédéric; Paris, Jérôme; Kaisin, Geoffroy; Thonon, David; Flagothier, Jessica; Teller, Nathalie; Lemaire, Christian; Luxen, André

    2011-01-19

    The alkyne-azide Cu(I)-catalyzed Huisgen cycloaddition, a click-type reaction, was used to label a double-stranded oligonucleotide (siRNA) with fluorine-18. An alkyne solid support CPG for the preparation of monostranded oligonucleotides functionalized with alkyne has been developed. Two complementary azide labeling agents (1-(azidomethyl)-4-[(18)F]fluorobenzene) and 1-azido-4-(3-[(18)F]fluoropropoxy)benzene have been produced with 41% and 35% radiochemical yields (decay-corrected), respectively. After annealing with the complementary strand, the siRNA was directly labeled by click chemistry with [(18)F]fluoroazide to produce the [(18)F]-radiolabeled siRNA with excellent radiochemical yield and purity.

  18. The Caenorhabditis elegans RDE-10/RDE-11 complex regulates RNAi by promoting secondary siRNA amplification.

    Science.gov (United States)

    Zhang, Chi; Montgomery, Taiowa A; Fischer, Sylvia E J; Garcia, Susana M D A; Riedel, Christian G; Fahlgren, Noah; Sullivan, Christopher M; Carrington, James C; Ruvkun, Gary

    2012-05-22

    In nematodes, plants, and fungi, RNAi is remarkably potent and persistent due to the amplification of initial silencing signals by RNA-dependent RNA polymerases (RdRPs). In Caenorhabditis elegans (C. elegans), the interaction between the RNA-induced silencing complex (RISC) loaded with primary small interfering RNAs (siRNAs) and the target messenger RNA (mRNA) leads to the recruitment of RdRPs and synthesis of secondary siRNAs using the target mRNA as the template. The mechanism and genetic requirements for secondary siRNA accumulation are not well understood. From a forward genetic screen for C. elegans genes required for RNAi, we identified rde-10, and through proteomic analysis of RDE-10-interacting proteins, we identified a protein complex containing the new RNAi factor RDE-11, the known RNAi factors RSD-2 and ERGO-1, and other candidate RNAi factors. The RNAi defective genes rde-10 and rde-11 encode a novel protein and a RING-type zinc finger domain protein, respectively. Mutations in rde-10 and rde-11 genes cause dosage-sensitive RNAi deficiencies: these mutants are resistant to low dosage but sensitive to high dosage of double-stranded RNAs. We assessed the roles of rde-10, rde-11, and other dosage-sensitive RNAi-defective genes rsd-2, rsd-6, and haf-6 in both exogenous and endogenous small RNA pathways using high-throughput sequencing and qRT-PCR. These genes are required for the accumulation of secondary siRNAs in both exogenous and endogenous RNAi pathways. The RDE-10/RDE-11 complex is essential for the amplification of RNAi in C. elegans by promoting secondary siRNA accumulation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. TPP-dendrimer nanocarriers for siRNA delivery to the pulmonary epithelium and their dry powder and metered-dose inhaler formulations.

    Science.gov (United States)

    Bielski, Elizabeth; Zhong, Qian; Mirza, Hamad; Brown, Matthew; Molla, Ashura; Carvajal, Teresa; da Rocha, Sandro R P

    2017-07-15

    The regulation of genes utilizing the RNA interference (RNAi) mechanism via the delivery of synthetic siRNA has great potential in the treatment of a variety of lung diseases. However, the delivery of siRNA to the lungs is challenging due to the poor bioavailability of siRNA when delivered intraveneously, and difficulty in formulating and maintaining the activity of free siRNA when delivered directly to the lungs using inhalation devices. The use of non-viral vectors such as cationic dendrimers can help enhance the stability of siRNA and its delivery to the cell cytosol. Therefore, in this work, we investigate the ability of a triphenylphosphonium (TPP) modified generation 4 poly(amidoamine) (PAMAM) dendrimer (G4NH 2 -TPP) to enhance the in vitro transfection efficiency of siRNA in a model of the pulmonary epithelium and their aerosol formulations in pressurized metered dose inhalers (pMDIs) and dry powder inhalers (DPIs). Complexes of siRNA and G4NH 2 -TPP were prepared with varying TPP densities and increasing N/P ratios. The complexation efficiency was modulated by the presence of the TPP on the dendrimer surface, allowing for a looser complexation compared to unmodified dendrimer as determined by gel electrophoresis and polyanion competition assay. An increase in TPP density and N/P ratio led to an increase in the in vitro gene knockdown of stably green fluorescent protein (eGFP) expressing lung alveolar epithelial (A549) cells. G4NH 2 -12TPP dendriplexes (G4NH 2 PAMAM dendrimers containing 12 TPP molecules on the surface complexed with siRNA) at N/P ratio 30 showed the highest in vitro gene knockdown efficiency. To assess the potential of TPP-dendriplexes for pulmonary use, we also developed micron particle technologies for both pMDIs and DPIs and determined their aerosol characteristics utilizing an Andersen Cascade Impactor (ACI). Mannitol microparticles encapsulating 12TPP-dendriplexes were shown to be effective in producing aerosols suitable for deep lung

  20. Neutral endopeptidase up-regulation in isolated human umbilical artery: involvement in desensitization of bradykinin-induced vasoconstrictor effects.

    Science.gov (United States)

    Pelorosso, Facundo Germán; Halperin, Ana Verónica; Palma, Alejandro Martín; Nowak, Wanda; Errasti, Andrea Emilse; Rothlin, Rodolfo Pedro

    2007-02-01

    Previous reports show that bradykinin B(2) receptors mediate contractile responses induced by bradykinin (BK) in human umbilical artery (HUA). However, although it has been reported that BK-induced responses can desensitize in several inflammatory models, the effects of prolonged in vitro incubation on BK-induced vasoconstriction in HUA have not been studied. In isolated HUA rings, BK-induced responses after a 5-h in vitro incubation showed a marked desensitization compared with responses at 2 h. Inhibition of either angiotensin-converting enzyme (ACE) or neutral endopeptidase (NEP), both BK-inactivating enzymes, failed to modify responses to BK at 2 h. After 5 h, ACE inhibition produced only a slight potentiation of BK-induced responses. In contrast, BK-induced vasoconstriction at 5 h was markedly potentiated by NEP inhibition. Moreover, NEP activity, measured by hydrolysis of its synthetic substrate (Z-Ala-Ala-Leu-p-nitroanilide), showed a 2.4-fold increase in 5-h incubated versus 2-h incubated tissues, which was completely reversed by cycloheximide (CHX) treatment. Furthermore, CHX significantly potentiated BK-induced responses, suggesting that NEP-mediated kininase activity increase at 5 h depends on de novo protein synthesis. In addition, under NEP inhibition, CHX treatment failed to produce an additional potentiation of BK-induced vasoconstriction. Still, NEP up-regulation was confirmed by Western blot, showing a 2.1-fold increase in immunoreactive NEP in 5-h incubated versus 2-h incubated HUA. In summary, the present study provides strong pharmacological evidence that NEP is up-regulated and plays a key role in desensitization of BK-induced vasoconstriction after prolonged in vitro incubation in HUA. Our results provide new insights into the possible mechanisms involved in BK-induced response desensitization during sustained inflammatory conditions.