WorldWideScience

Sample records for siox gas barrier

  1. Plasma-polymerized SiOx deposition on polymer film surfaces for preparation of oxygen gas barrier polymeric films

    International Nuclear Information System (INIS)

    Inagaki, N.

    2003-01-01

    SiOx films were deposited on surfaces of three polymeric films, PET, PP, and Nylon; and their oxygen gas barrier properties were evaluated. To mitigate discrepancies between the deposited SiOx and polymer film, surface modification of polymer films was done, and how the surface modification could contribute to was discussed from the viewpoint of apparent activation energy for the permeation process. The SiOx deposition on the polymer film surfaces led to a large decrease in the oxygen permeation rate. Modification of polymer film surfaces by mans of the TMOS or Si-COOH coupling treatment in prior to the SiOx deposition was effective in decreasing the oxygen permeation rate. The cavity model is proposed as an oxygen permeation process through the SiOx-deposited Nylon film. From the proposed model, controlling the interface between the deposited SiOx film and the polymer film is emphasized to be a key factor to prepare SiOx-deposited polymer films with good oxygen gas barrier properties. (author)

  2. Na effect on flexible Cu(In,Ga)Se{sub 2} photovoltaic cell depending on diffusion barriers (SiOx, i-ZnO) on stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Woo-Jung; Cho, Dae-Hyung; Wi, Jae-Hyung; Han, Won Seok [Electronics and Telecommunications Research Institute, Daejeon 305-700 (Korea, Republic of); Kim, Jeha [Insitute of Photovoltaics, Cheongju University, Cheongju 360-764 (Korea, Republic of); Chung, Yong-Duck, E-mail: ydchung@etri.re.kr [Electronics and Telecommunications Research Institute, Daejeon 305-700 (Korea, Republic of); Department of Advanced Device Engineering, Korea University of Science and Technology, Daejeon 305-350 (Korea, Republic of)

    2014-10-15

    Cu(In,Ga)Se{sub 2} (CIGS) based-photovoltaic (PV) cells with different diffusion barriers of SiOx and i-ZnO were fabricated on stainless steel (STS) substrate and their electrical characteristics were investigated by measuring J–V curves under illuminated and dark conditions. The physical properties of the CIGS film depending on type of diffusion barrier were also analyzed using X-ray diffraction and secondary ion mass spectroscopy. The efficiency of the CIGS-PV cell with i-ZnO barrier was approximately 2% higher than that with the SiOx barrier. Through the analysis of dark J–V curves, we discovered that distinctive defects were formed in the band gap of CIGS based on which diffusion barrier contacted the STS. The diffraction pattern showed a slightly different tendency of the peak intensity ratio of (220/204)/(112) in the PV cell with the i-ZnO barrier, which was slightly higher than that in the PV cell with SiOx barrier. In elemental depth profile, a deficient Ga profile was observed near the surface of the CIGS film with the SiOx barrier, and an abundant Na profile within the CIGS film with the i-ZnO barrier was detected. This is attributed to a difference in thermal conduction through the diffusion barriers during CIGS film growth, originating from the larger thermal conductivity of ZnO compared with SiOx. - Highlights: • We fabricated CIGS-PV cells with diffusion barriers of SiOx and i-ZnO on STS. • The efficiency of CIGS-PV cell with i-ZnO was ∼2% higher than that with SiOx. • Distinctive defects were formed into CIGS absorber depending on diffusion barrier.

  3. Synthesis of SiO(x) powder using DC arc plasma.

    Science.gov (United States)

    Jung, Chan-Ok; Park, Dong-Wha

    2013-02-01

    SiO(x) was prepared by DC arc plasma and applied to the anode material of lithium ion batteries. A pellet of a mixture of Si and SiO2 was used as the raw material. The ratios of the silicon and silicon dioxide (SiO2) mixtures were varied by controlling the Si-SiO2 molar ratio (Si-SiO2 = 1-4). Hydrogen gas was used as the reduction atmosphere in the chamber. The prepared SiO(x) was collected on the chamber wall. The obtained SiO(x) was characterized by X-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). XRD and TEM showed that the phase composition of the prepared particles was composed of amorphous SiO(x) and crystalline Si. The prepared SiO(x) showed wire and spherical morphology. XPS indicated the bonding state and 'x' value of the prepared SiO(x), which was close to one. The result of prepared SiO(x) is discussed from thermodynamic equilibrium calculations. The electrochemical behavior of the silicon monoxide anode was investigated.

  4. Diffusion barrier and adhesion properties of SiO(x)N(y) and SiO(x) layers between Ag/polypyrrole composites and Si substrates.

    Science.gov (United States)

    Horváth, Barbara; Kawakita, Jin; Chikyow, Toyohiro

    2014-06-25

    This paper describes the interface reactions and diffusion between silver/polypyrrole (Ag/PPy) composite and silicon substrate. This composite material can be used as a novel technique for 3D-LSI (large-scale integration) by the fast infilling of through-silicon vias (TSV). By immersion of the silicon wafer with via holes into the dispersed solution of Ag/PPy composite, the holes are filled with the composite. It is important to develop a layer between the composite and the Si substrate with good diffusion barrier and adhesion characteristics. In this paper, SiOx and two types of SiOxNy barrier layers with various thicknesses were investigated. The interface structure between the Si substrate, the barrier, and the Ag/PPy composite was characterized by transmission electron microscopy. The adhesion and diffusion properties of the layers were established for Ag/PPy composite. Increasing thickness of SiOx proved to permit less Ag to transport into the Si substrate. SiOxNy barrier layers showed very good diffusion barrier characteristics; however, their adhesion depended strongly on their composition. A barrier layer composition with good adhesion and Ag barrier properties has been identified in this paper. These results are useful for filling conductive metal/polymer composites into TSV.

  5. Optimizing The Organic/Inorganic Barrier Structure For Flexible Plastic Substrate Encapsulation

    Directory of Open Access Journals (Sweden)

    Yi-Chiuan Lin

    2012-07-01

    Full Text Available A multilayered barrier structure stacked with organosilicon and silicon oxide (SiOx films consecutively prepared using plasma-enhanced chemical vapor deposition (PECVD was developed to encapsulate flexible plastic substrate. The evolution on the residual internal stress, structural quality of the organosilicon/SiOx multilayered structure as well as its adhesion to the substrate were found to correlate closely with the thickness of the inset organosilicon layer. Due to the significant discrepancy in the thermal expansion coefficient between the substrate and SiOx film, the thickness of the organosilicon layer deposited onto the substrate and SiOx film thus was crucial to optimize the barrier property of the organosilicon/SiOx structure. The organosilicon/SiOx barrier structure possessed a lowest residual compressive stress and quality adhesion to the substrate was achieved from engineering the organosilicon layer thickness in the multilayered structure. The relaxation of the residual internal stress in the barrier structure led to a dense SiOx film as a consequence of the enhancement in the Si-O-Si networks and thereby resulted in the reduction of the water vapor permeation. Accordingly, a water vapor transmission rate (WVTR below 1 × 10-2 g/m2 /day being potential for the application on the flexible optoelectronic device packaging was achievable from the 3-pairs organosilicon/SiOx multilayered structure deposited onto the polyethylene terephthalate (PET substrate.

  6. Deposition of SiOx thin films on Y-TZP by reactive magnetron sputtering: influence of plasma parameters on the adhesion properties between Y-TZP and resin cement for application in dental prosthesis

    Directory of Open Access Journals (Sweden)

    José Renato Calvacanti de Queiroz

    2011-01-01

    Full Text Available In this paper SiOx thin films were deposited on Y-TZP ceramics by reactive magnetron sputtering technique in order to improve the adhesion properties between Y-TZP and resin cement for applications in dental prosthesis. For fixed cathode voltage, target current, working pressure and target-to-substrate distance, SiOx thin films were deposited at different oxygen concentrations in the Ar+O2 plasma forming gas. After deposition processes, SiOx thin films were characterized by profilometry, energy dispersive spectroscopy (EDS, optical microscopy and scanning electron microscopy (SEM. Adhesion properties between Y-TZP and resin cement were evaluated by shear testing. Results indicate that films deposited at 20%O2 increased the bond strength to (32.8 ± 5.4 MPa. This value has not been achieved by traditional methods.

  7. High-performance and low-power rewritable SiOx 1 kbit one diode-one resistor crossbar memory array.

    Science.gov (United States)

    Wang, Gunuk; Lauchner, Adam C; Lin, Jian; Natelson, Douglas; Palem, Krishna V; Tour, James M

    2013-09-14

    An entire 1-kilobit crossbar device based upon SiOx resistive memories with integrated diodes has been made. The SiOx -based one diode-one resistor device system has promise to satisfy the prerequisite conditions for next generation non-volatile memory applications. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Alternatives to SiOx for protective scan mirror coatings in remote sensing instruments

    Science.gov (United States)

    MacDonald, Michael E.

    1999-09-01

    Mirrors in remote sensing instruments require durable dielectric coatings, both to prevent oxidation of the reflective surface and to protect it during cleaning. IR absorption bands within widely-used SiOx coatings produce scene radiance and instrument background variations as a function of scan mirror angle which motivate the search for possible substitute materials. In this work several candidate coatings are evaluated including CeF3, HfO2, MgF2 SrF2, and Y2O3. This evaluation consists of reflectance, adhesion, and durability measurements of mirrors with an aluminum reflective surface over-coated with these materials. S-polarized and P- polarized reflectance measurements are presented between 2 and 20 micrometers for incidence angles between 40 and 50 degrees. This angular range is sufficient to scan the earth disk from geostationary orbit. Additional measurements at 45 degrees incidence are presented between 2 and 55 micrometers , covering the IR wavelength range of interest for earth radiation budget sensors. Comparisons are drawn with measurements of scan- mirror witness samples from the imaging and sounding instruments used in the Geostationary Operational Environmental Satellite (GOES). These witness samples exhibit reflectance variations arising from IR absorption bands in the SiOx protective coatings used in these mirrors. The spectral characteristics of several of the alternate materials are found to be quite attractive, however durable coatings of some of these materials require elevated deposition temperature which are incompatible with the nickel-coated beryllium scan mirror substrate construction used in GOES. This work present the achievable reflectance and durability of these alternate dielectric protective coatings at the deposition temperature constraints imposed by the scan mirror substrate. The prospects for substituting one of these coatings for SiOx are evaluated, and contrasted with the capability of radiometric calibration techniques to deal

  9. Oxygen Barrier Coating Deposited by Novel Plasma-enhanced Chemical Vapor Deposition

    DEFF Research Database (Denmark)

    Jiang, Juan; Benter, M.; Taboryski, Rafael Jozef

    2010-01-01

    We report the use of a novel plasma-enhanced chemical vapor deposition chamber with coaxial electrode geometry for the SiOx deposition. This novel plasma setup exploits the diffusion of electrons through the inner most electrode to the interior samples space as the major energy source. This confi......We report the use of a novel plasma-enhanced chemical vapor deposition chamber with coaxial electrode geometry for the SiOx deposition. This novel plasma setup exploits the diffusion of electrons through the inner most electrode to the interior samples space as the major energy source...... effect of single-layer coatings deposited under different reaction conditions was studied. The coating thickness and the carbon content in the coatings were found to be the critical parameters for the barrier property. The novel barrier coating was applied on different polymeric materials...

  10. Membrane barriers for radon gas flow restrictions

    International Nuclear Information System (INIS)

    Archibald, J.F.

    1984-08-01

    Research was performed to assess the feasibility of barrier membrane substances, for use within mining or associated high risk environments, in restricting the diffusion transport of radon gas quantities. Specific tests were conducted to determine permeability parameters of a variety of membrane materials with reference to radon flow capabilities. Tests were conducted both within laboratory and in-situ emanation environments where concentrations and diffusion flows of radon gas were known to exist. Equilibrium radon gas concentrations were monitored in initially radon-free chambers adjacent to gas sources, but separated by specified membrane substances. Membrane barrier effectiveness was demonstrated to result in reduced emanation concentrations of radon gas within the sampling chamber atmosphere. Minimum gas concentrations were evidenced where the barrier membrane material was shown to exhibit lowest radon permeability characteristics

  11. The ion capturing effect of 5° SiOx alignment films in liquid crystal devices

    Science.gov (United States)

    Huang, Yi; Bos, Philip J.; Bhowmik, Achintya

    2010-09-01

    We show that SiOx, deposited at 5° to the interior surface of a liquid crystal cell allows for a surprisingly substantial reduction in the ion concentration of liquid crystal devices. We have investigated this effect and found that this type of film, due to its surface morphology, captures ions from the liquid crystal material. Ion adsorption on 5° SiOx film obeys the Langmuir isotherm. Experimental results shown allow estimation of the ion capturing capacity of these films to be more than an order of 10 000/μm2. These types of materials are useful for new types of very low power liquid crystal devices such as e-books.

  12. Light-activated resistance switching in SiOx RRAM devices

    Science.gov (United States)

    Mehonic, A.; Gerard, T.; Kenyon, A. J.

    2017-12-01

    We report a study of light-activated resistance switching in silicon oxide (SiOx) resistive random access memory (RRAM) devices. Our devices had an indium tin oxide/SiOx/p-Si Metal/Oxide/Semiconductor structure, with resistance switching taking place in a 35 nm thick SiOx layer. The optical activity of the devices was investigated by characterising them in a range of voltage and light conditions. Devices respond to illumination at wavelengths in the range of 410-650 nm but are unresponsive at 1152 nm, suggesting that photons are absorbed by the bottom p-type silicon electrode and that generation of free carriers underpins optical activity. Applied light causes charging of devices in the high resistance state (HRS), photocurrent in the low resistance state (LRS), and lowering of the set voltage (required to go from the HRS to LRS) and can be used in conjunction with a voltage bias to trigger switching from the HRS to the LRS. We demonstrate negative correlation between set voltage and applied laser power using a 632.8 nm laser source. We propose that, under illumination, increased electron injection and hence a higher rate of creation of Frenkel pairs in the oxide—precursors for the formation of conductive oxygen vacancy filaments—reduce switching voltages. Our results open up the possibility of light-triggered RRAM devices.

  13. Oxide Structure Dependence of SiO2/SiOx/3C-SiC/n-Type Si Nonvolatile Resistive Memory on Memory Operation Characteristics

    Science.gov (United States)

    Yamaguchi, Yuichiro; Shouji, Masatsugu; Suda, Yoshiyuki

    2012-11-01

    We have investigated the dependence of the oxide layer structure of our previously proposed metal/SiO2/SiOx/3C-SiC/n-Si/metal metal-insulator-semiconductor (MIS) resistive memory device on the memory operation characteristics. The current-voltage (I-V) measurement and X-ray photoemission spectroscopy results suggest that SiOx defect states mainly caused by the oxidation of 3C-SiC at temperatures below 1000 °C are related to the hysteresis memory behavior in the I-V curve. By restricting the SiOx interface region, the number of switching cycles and the on/off current ratio are more enhanced. Compared with a memory device formed by one-step or two-step oxidation of 3C-SiC, a memory device formed by one-step oxidation of Si/3C-SiC exhibits a more restrictive SiOx interface with a more definitive SiO2 layer and higher memory performances for both the endurance switching cycle and on/off current ratio.

  14. Effect of dual-dielectric hydrogen-diffusion barrier layers on the performance of low-temperature processed transparent InGaZnO thin-film transistors

    Science.gov (United States)

    Tari, Alireza; Wong, William S.

    2018-02-01

    Dual-dielectric SiOx/SiNx thin-film layers were used as back-channel and gate-dielectric barrier layers for bottom-gate InGaZnO (IGZO) thin-film transistors (TFTs). The concentration profiles of hydrogen, indium, gallium, and zinc oxide were analyzed using secondary-ion mass spectroscopy characterization. By implementing an effective H-diffusion barrier, the hydrogen concentration and the creation of H-induced oxygen deficiency (H-Vo complex) defects during the processing of passivated flexible IGZO TFTs were minimized. A bilayer back-channel passivation layer, consisting of electron-beam deposited SiOx on plasma-enhanced chemical vapor-deposition (PECVD) SiNx films, effectively protected the TFT active region from plasma damage and minimized changes in the chemical composition of the semiconductor layer. A dual-dielectric PECVD SiOx/PECVD SiNx gate-dielectric, using SiOx as a barrier layer, also effectively prevented out-diffusion of hydrogen atoms from the PECVD SiNx-gate dielectric to the IGZO channel layer during the device fabrication.

  15. Investigations of thermal barrier coatings of turbine parts using gas flame heating

    Science.gov (United States)

    Lepeshkin, A. R.; Bichkov, N. G.; Ilinskaja, O. I.; Nazarov, V. V.

    2017-09-01

    The development of methods for the calculated and experimental investigations thermal barrier coatings and thermal state of gas-turbine engine parts with a thermal barrier coatings is actual work. The gas flame heating was demonstrated to be effectively used during investigations of a thermal ceramic barrier coatings and thermal state of such gas-turbine engine parts with a TBC as the cooled turbine blades and vanes and combustion liner components. The gas-flame heating is considered to be preferable when investigating the gas-turbine engine parts with a TBC in the special cases when both the convective and radiant components of thermal flow are of great importance. The small-size rig with gas-flame flow made it possible to conduct the comparison investigations with the purpose of evaluating the efficiency of thermal protection of the ceramic deposited thermal barrier coatings on APS and EB techniques. The developed design-experiment method was introduced in bench tests of turbine blades and combustion liner components of gas turbine engines.

  16. Transparent, Ultrahigh-Gas-Barrier Films with a Brick-Mortar-Sand Structure.

    Science.gov (United States)

    Dou, Yibo; Pan, Ting; Xu, Simin; Yan, Hong; Han, Jingbin; Wei, Min; Evans, David G; Duan, Xue

    2015-08-10

    Transparent and flexible gas-barrier materials have shown broad applications in electronics, food, and pharmaceutical preservation. Herein, we report ultrahigh-gas-barrier films with a brick-mortar-sand structure fabricated by layer-by-layer (LBL) assembly of XAl-layered double hydroxide (LDH, X=Mg, Ni, Zn, Co) nanoplatelets and polyacrylic acid (PAA) followed by CO2 infilling, denoted as (XAl-LDH/PAA)n-CO2. The near-perfectly parallel orientation of the LDH "brick" creates a long diffusion length to hinder the transmission of gas molecules in the PAA "mortar". Most significantly, both the experimental studies and theoretical simulations reveal that the chemically adsorbed CO2 acts like "sand" to fill the free volume at the organic-inorganic interface, which further depresses the diffusion of permeating gas. The strategy presented here provides a new insight into the perception of barrier mechanism, and the (XAl-LDH/PAA)n-CO2 film is among the best gas barrier films ever reported. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Safety barriers to prevent release of hydrocarbons during production of oil and gas

    OpenAIRE

    Sklet, Snorre; Hauge, Stein

    2004-01-01

    This report documents a set of scenarios related to release of hydrocarbons during production on oil and gas platforms. For each release scenario, initiating events, barrier functions aimed to prevent loss of containment, and barrier systems that realize these barrier functions are identified and described. Safety barriers to prevent release of hydrocarbons during production of oil and gas

  18. Human and Organisational Safety Barriers in the Oil & Gas Industry

    International Nuclear Information System (INIS)

    Nystad, E.; Szőke, I.

    2016-01-01

    The oil & gas industry is a safety-critical industry where errors or accidents may potentially have severe consequences. Offshore oil & gas installations are complex technical systems constructed to pump hydrocarbons from below the seabed, process them and pipe them to onshore refineries. Hydrocarbon leaks may lead to major accidents or have negative environmental impacts. The industry must therefore have a strong focus on safety. Safety barriers are devices put into place to prevent or reduce the effects of unwanted incidents. Technical barriers are one type of safety barrier, e.g., blow-out preventers to prevent uncontrolled release of hydrocarbons from a well. Human operators may also have an important function in maintaining safety. These human operators are part of a larger organisation consisting of different roles and responsibilities and with different mechanisms for ensuring safety. This paper will present two research projects from the Norwegian oil & gas industry that look at the role of humans and organisations as safety barriers. The first project used questionnaire data to investigate the use of mindful safety practices (safety-promoting work practices intended to prevent or interrupt unwanted events) and what contextual factors may affect employees’ willingness to use these safety practices. Among the findings was that employees’ willingness to use mindful safety practices was affected more by factors on a group level than factors at an individual or organisational level, and that the factors may differ depending on what is the object of a practice—the employee or other persons. It was also suggested that employees’ willingness to use mindful safety practices could be an indicator used in the assessment of the safety level on oil & gas installations. The second project is related to organisational safety barriers against major accidents. This project was based on a review of recent incidents in the Norwegian oil & gas industry, as well as

  19. Spatially confined synthesis of SiOx nano-rod with size-controlled Si quantum dots in nano-porous anodic aluminum oxide membrane.

    Science.gov (United States)

    Pai, Yi-Hao; Lin, Gong-Ru

    2011-01-17

    By depositing Si-rich SiOx nano-rod in nano-porous anodic aluminum oxide (AAO) membrane using PECVD, the spatially confined synthesis of Si quantum-dots (Si-QDs) with ultra-bright photoluminescence spectra are demonstrated after low-temperature annealing. Spatially confined SiOx nano-rod in nano-porous AAO membrane greatly increases the density of nucleated positions for Si-QD precursors, which essentially impedes the route of thermally diffused Si atoms and confines the degree of atomic self-aggregation. The diffusion controlled growth mechanism is employed to determine the activation energy of 6.284 kJ mole(-1) and diffusion length of 2.84 nm for SiO1.5 nano-rod in nano-porous AAO membrane. HRTEM results verify that the reduced geometric dimension of the SiOx host matrix effectively constrain the buried Si-QD size at even lower annealing temperature. The spatially confined synthesis of Si-QD essentially contributes the intense PL with its spectral linewidth shrinking from 210 to 140 nm and its peak intensity enhancing by two orders of magnitude, corresponding to the reduction on both the average Si-QD size and its standard deviation from 2.6 to 2.0 nm and from 25% to 12.5%, respectively. The red-shifted PL wavelength of the Si-QD reveals an inverse exponential trend with increasing temperature of annealing, which is in good agree with the Si-QD size simulation via the atomic diffusion theory.

  20. Gas permeability of bentonite barriers: development, construction and testing of a measurement system

    Directory of Open Access Journals (Sweden)

    Heraldo Nunes Pitanga

    Full Text Available Abstract This article proposes a testing device to quickly and reliably estimate the gas permeability of bentonite-based clay barriers used in landfill cover systems. The testing methodology is based on a transient gas flow regime that passes through the barrier, therefore not requiring the use of sophisticated equipment that aim to maintain constant differential pressure and measure the gas flow, common requirements for testing methods under a permanent flow regime. To confirm the feasibility of the proposed technique, tests were performed on a pure hydrated bentonite layer, which subsequently encompassed samples of geosynthetic clay liner (GCL at different moisture contents. Geosynthetic clay liners are often selected as a part of the barrier layer for cover systems in solid waste landfills to prevent infiltration of rainfall and migration of biogas into the atmosphere. The results confirmed the equipment reliability and differentiate the different responses of the gas flow barriers studied, considering their different compositions and different moistures.

  1. Safety barriers on oil and gas platforms. Means to prevent hydrocarbon releases

    Energy Technology Data Exchange (ETDEWEB)

    Sklet, Snorre

    2005-12-15

    The main objective of the PhD project has been to develop concepts and methods that can be used to define, illustrate, analyse, and improve safety barriers in the operational phase of offshore oil and gas production platforms. The main contributions of this thesis are; Clarification of the term safety barrier with respect to definitions, classification, and relevant attributes for analysis of barrier performance Development and discussion of a representative set of hydrocarbon release scenarios Development and testing of a new method, BORA-Release, for qualitative and quantitative risk analysis of hydrocarbon releases Safety barriers are defined as physical and/or non-physical means planned to prevent, control, or mitigate undesired events or accidents. The means may range from a single technical unit or human actions, to a complex socio-technical system. It is useful to distinguish between barrier functions and barrier systems. Barrier functions describe the purpose of safety barriers or what the safety barriers shall do in order to prevent, control, or mitigate undesired events or accidents. Barrier systems describe how a barrier function is realized or executed. If the barrier system is functioning, the barrier function is performed. If a barrier function is performed successfully, it should have a direct and significant effect on the occurrence and/or consequences of an undesired event or accident. It is recommended to address the following attributes to characterize the performance of safety barriers; a) functionality/effectiveness, b) reliability/ availability, c) response time, d) robustness, and e) triggering event or condition. For some types of barriers, not all the attributes are relevant or necessary in order to describe the barrier performance. The presented hydrocarbon release scenarios include initiating events, barrier functions introduced to prevent hydrocarbon releases, and barrier systems realizing the barrier functions. Both technical and human

  2. Time-resolved photoluminescence of SiOx encapsulated Si

    Science.gov (United States)

    Kalem, Seref; Hannas, Amal; Österman, Tomas; Sundström, Villy

    Silicon and its oxide SiOx offer a number of exciting electrical and optical properties originating from defects and size reduction enabling engineering new electronic devices including resistive switching memories. Here we present the results of photoluminescence dynamics relevant to defects and quantum confinement effects. Time-resolved luminescence at room temperature exhibits an ultrafast decay component of less than 10 ps at around 480 nm and a slower component of around 60 ps as measured by streak camera. Red shift at the initial stages of the blue luminescence decay confirms the presence of a charge transfer to long lived states. Time-correlated single photon counting measurements revealed a life-time of about 5 ns for these states. The same quantum structures emit in near infrared close to optical communication wavelengths. Nature of the emission is described and modeling is provided for the luminescence dynamics. The electrical characteristics of metal-oxide-semiconductor devices were correlated with the optical and vibrational measurement results in order to have better insight into the switching mechanisms in such resistive devices as possible next generation RAM memory elements. ``This work was supported by ENIAC Joint Undertaking and Laser-Lab Europe''.

  3. An assessment of gas impact on geological repository. Methodology and material property of gas migration analysis in engineered barrier system

    International Nuclear Information System (INIS)

    Yamamoto, Mikihiko; Mihara, Morihiro; Ooi, Takao

    2004-01-01

    Gas production in a geological repository has potential hazard, as overpressurisation and enhanced release of radionuclides. Amongst data needed for assessment of gas impact, gas migration properties of engineered barriers, focused on clayey and cementitious material, was evaluated in this report. Gas injection experiments of saturated bentonite sand mixture, mortar and cement paste were carried out. In the experiments, gas entry phenomenon and gas outflow rate were observed for these materials. Based on the experimental results, two-phase flow parameters were evaluated quantitatively. A conventional continuum two-phase flow model, which is only practically used multidimensional multi-phase flow model, was applied to fit the experimental results. The simulation results have been in good agreement with the gas entry time and the outflow flux of gas and water observed in the experiments. It was confirmed that application of the continuum two-phase flow model to gas migration in cementitious materials provides sufficient degree of accuracy for assessment of repository performance. But, for sand bentonite mixture, further extension of basic two-phase flow model is needed especially for effect of stress field. Furthermore, gas migration property of other barrier materials, including rocks, but long-term gas injection test, clarification of influence of chemicals environment and large-scale gas injection test is needed for multi-barrier assessment tool development and their verification. (author)

  4. Schottky barriers measurements through Arrhenius plots in gas sensors based on semiconductor films

    Directory of Open Access Journals (Sweden)

    F. Schipani

    2012-09-01

    Full Text Available The oxygen adsorption effects on the Schottky barriers height measurements for thick films gas sensors prepared with undoped nanometric SnO2 particles were studied. From electrical measurements, the characteristics of the intergranular potential barriers developed at intergrains were deduced. It is shown that the determination of effective activation energies from conduction vs. 1/temperature curves is not generally a correct manner to estimate barrier heights. This is due to gas adsorption/desorption during the heating and cooling processes, the assumption of emission over the barrier as the dominant conduction mechanism, and the possible oxygen diffusion into or out of the grains.

  5. Natural gas vehicles : Status, barriers, and opportunities.

    Energy Technology Data Exchange (ETDEWEB)

    Rood Werpy, M.; Santini, D.; Burnham, A.; Mintz, M.; Energy Systems

    2010-11-29

    In the United States, recent shale gas discoveries have generated renewed interest in using natural gas as a vehicular fuel, primarily in fleet applications, while outside the United States, natural gas vehicle use has expanded significantly in the past decade. In this report for the U.S. Department of Energy's Clean Cities Program - a public-private partnership that advances the energy, economic, and environmental security of the U.S. by supporting local decisions that reduce petroleum use in the transportation sector - we have examined the state of natural gas vehicle technology, current market status, energy and environmental benefits, implications regarding advancements in European natural gas vehicle technologies, research and development efforts, and current market barriers and opportunities for greater market penetration. The authors contend that commercial intracity trucks are a prime area for advancement of this fuel. Therefore, we examined an aggressive future market penetration of natural gas heavy-duty vehicles that could be seen as a long-term goal. Under this scenario using Energy Information Administration projections and GREET life-cycle modeling of U.S. on-road heavy-duty use, natural gas vehicles would reduce petroleum consumption by approximately 1.2 million barrels of oil per day, while another 400,000 barrels of oil per day reduction could be achieved with significant use of natural gas off-road vehicles. This scenario would reduce daily oil consumption in the United States by about 8%.

  6. Thermal barrier coatings issues in advanced land-based gas turbines

    Science.gov (United States)

    Parks, W. P.; Lee, W. Y.; Wright, I. G.

    1995-01-01

    The Department of Energy's Advanced Turbine System (ATS) program is aimed at forecasting the development of a new generation of land-based gas turbine systems with overall efficiencies significantly beyond those of current state-of-the-art machines, as well as greatly increased times between inspection and refurbishment, improved environmental impact, and decreased cost. The proposed duty cycle of ATS turbines will require the use of different criteria in the design of the materials for the critical hot gas path components. In particular, thermal barrier coatings will be an essential feature of the hot gas path components in these machines. While such coatings are routinely used in high-performance aircraft engines and are becoming established in land-based turbines, the requirements of the ATS turbine application are sufficiently different that significant improvements in thermal barrier coating technology will be necessary. In particular, it appears that thermal barrier coatings will have to function on all airfoil sections of the first stage vanes and blades to provide the significant temperature reduction required. In contrast, such coatings applied to the blades and vances of advanced aircraft engines are intended primarily to reduce air cooling requirements and extend component lifetime; failure of those coatings can be tolerated without jeopardizing mechanical or corrosion performance. A major difference is that in ATS turbines these components will be totally reliant on thermal barrier coatings which will, therefore, need to be highly reliable even over the leading edges of first stage blades. Obviously, the ATS program provides a very challenging opportunity for TBC's, and involves some significant opportunities to extend this technology.

  7. Assessment of institutional barriers to the use of natural gas fuel in automotive vehicle fleets

    Science.gov (United States)

    Jablonski, J.; Lent, L.; Lawrence, M.; White, L.

    1983-01-01

    Institutional barriers to the use of natural gas as a fuel for motor vehicle fleets were identified. Recommendations for barrier removal were developed. Eight types of institutional barriers were assessed: (1) lack of a national standard for the safe design and certification of natural gas vehicles and refueling stations; (2) excessively conservative or misapplied state and local regulations, including bridge and tunnel restrictions, restrictions on types of vehicles that may be fueled by natural gas, zoning regulations that prohibit operation of refueling stations, parking restrictions, application of LPG standards to LNG vehicles, and unintentionally unsafe vehicle or refueling station requirements; (3) need for clarification of EPA's tampering enforcement policy; (4) the U.S. hydrocarbon standard; (5) uncertainty concerning state utility commission jurisdiction; (6) sale for resale prohibitions imposed by natural gas utility companies or state utility commissions; (7) uncertainty of the effects of conversions to natural gas on vehicle manufactures warranties; and (8) need for a natural gas to gasoline equivalent units conversion factor for use in calculation of state road use taxes.

  8. Mapping the Fluid Pathways and Permeability Barriers of a Large Gas Hydrate Reservoir

    Science.gov (United States)

    Campbell, A.; Zhang, Y. L.; Sun, L. F.; Saleh, R.; Pun, W.; Bellefleur, G.; Milkereit, B.

    2012-12-01

    An understanding of the relationship between the physical properties of gas hydrate saturated sedimentary basins aids in the detection, exploration and monitoring one of the world's upcoming energy resources. A large gas hydrate reservoir is located in the MacKenzie Delta of the Canadian Arctic and geophysical logs from the Mallik test site are available for the gas hydrate stability zone (GHSZ) between depths of approximately 850 m to 1100 m. The geophysical data sets from two neighboring boreholes at the Mallik test site are analyzed. Commonly used porosity logs, as well as nuclear magnetic resonance, compressional and Stoneley wave velocity dispersion logs are used to map zones of elevated and severely reduced porosity and permeability respectively. The lateral continuity of horizontal permeability barriers can be further understood with the aid of surface seismic modeling studies. In this integrated study, the behavior of compressional and Stoneley wave velocity dispersion and surface seismic modeling studies are used to identify the fluid pathways and permeability barriers of the gas hydrate reservoir. The results are compared with known nuclear magnetic resonance-derived permeability values. The aim of investigating this heterogeneous medium is to map the fluid pathways and the associated permeability barriers throughout the gas hydrate stability zone. This provides a framework for an understanding of the long-term dissociation of gas hydrates along vertical and horizontal pathways, and will improve the knowledge pertaining to the production of such a promising energy source.

  9. Recent Advances in Gas Barrier Thin Films via Layer-by-Layer Assembly of Polymers and Platelets.

    Science.gov (United States)

    Priolo, Morgan A; Holder, Kevin M; Guin, Tyler; Grunlan, Jaime C

    2015-05-01

    Layer-by-layer (LbL) assembly has emerged as the leading non-vacuum technology for the fabrication of transparent, super gas barrier films. The super gas barrier performance of LbL deposited films has been demonstrated in numerous studies, with a variety of polyelectrolytes, to rival that of metal and metal oxide-based barrier films. This Feature Article is a mini-review of LbL-based multilayer thin films with a 'nanobrick wall' microstructure comprising polymeric mortar and nano-platelet bricks that impart high gas barrier to otherwise permeable polymer substrates. These transparent, water-based thin films exhibit oxygen transmission rates below 5 × 10(-3) cm(3) m(-2) day(-1) atm(-1) and lower permeability than any other barrier material reported. In an effort to put this technology in the proper context, incumbent technologies such as metallized plastics, metal oxides, and flake-filled polymers are briefly reviewed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. The effect of the stretching of PLA extruded films on their crystallinity and gas barrier properties

    Science.gov (United States)

    Guinault, A.; Menary, G. H.; Courgneau, C.; Griffith, D.; Ducruet, V.; Miri, V.; Sollogoub, C.

    2011-05-01

    Driven by environmental concerns, new polymers based on renewable resources are arriving on the market to replace conventional polymers, obtained from petroleum, for different applications like food packaging. One of the most prominent polymers among these materials is poly(lactic acid) (PLA), a biodegradable, thermoplastic, aliphatic polyester derived from renewable resources, such as corn starch (in the USA) or sugarcanes (in the rest of the world). However this polymer presents different disadvantages and especially low gas barrier properties [1]. Thermal crystallization can be used to increase its gas barrier properties but long times are necessary [2] and are not compatible with an industrial process. Another way to increase the gas barrier properties consists in stretching the film in order to increase its crystallinity and so its diffusion coefficient. We have prepared stretched PLA films with different stretch ratio and we have studied the effect of the stretching parameters on the gas barrier properties of PLA films. Finally we compared this process with the isothermal crystallization process by taking into account the crystallinity degree and the crystalline morphology.

  11. Response of a thermal barrier system to acoustic excitation in a gas turbine nuclear reactor

    International Nuclear Information System (INIS)

    Betts, W.S. Jr.; Blevins, R.D.

    1980-11-01

    A gas turbine located within a High-Temperature Gas-Cooled Reactor (HTGR) induces high acoustic sound pressure levels into the primary coolant (helium). This acoustic loading induces high cycle fatigue stresses which may control the design of the thermal barrier system. This study examines the dynamic response of a thermal barrier configuration consisting of a fibrous insulation compressed against the reactor vessel by a coverplate which is held in position by a central attachment fixture. The results of dynamic vibration analyses indicate the effect of the plate size and curvature and the attachment size on the response of the thermal barrier

  12. Application of CFRP with High Hydrogen Gas Barrier Characteristics to Fuel Tanks of Space Transportation System

    Science.gov (United States)

    Yonemoto, Koichi; Yamamoto, Yuta; Okuyama, Keiichi; Ebina, Takeo

    In the future, carbon fiber reinforced plastics (CFRPs) with high hydrogen gas barrier performance will find wide applications in all industrial hydrogen tanks that aim at weight reduction; the use of such materials will be preferred to the use of conventional metallic materials such as stainless steel or aluminum. The hydrogen gas barrier performance of CFRP will become an important issue with the introduction of hydrogen-fuel aircraft. It will also play an important role in realizing fully reusable space transportation system that will have high specific tensile CFRP structures. Such materials are also required for the manufacture of high-pressure hydrogen gas vessels for use in the fuel cell systems of automobiles. This paper introduces a new composite concept that can be used to realize CFRPs with high hydrogen gas barrier performance for applications in the cryogenic tanks of fully reusable space transportation system by the incorporation of a nonmetallic crystal layer, which is actually a dense and highly oriented clay crystal laminate. The preliminary test results show that the hydrogen gas barrier characteristics of this material after cryogenic heat shocks and cyclic loads are still better than those of other polymer materials by approximately two orders of magnitude.

  13. Waste Isolation Pilot Plant: Alcove Gas Barrier trade-off study

    International Nuclear Information System (INIS)

    Lin, M.S.; Van Sambeek, L.L.

    1992-07-01

    A modified Kepner-Tregoe method was used for a trade-off study of Alcove Gas Barrier (AGB) concepts for the Waste Isolation Pilot Plant. The AGB is a gas-constraining seal to be constructed in an alcove entrance drift. In this trade-off study, evaluation criteria were first selected. Then these criteria were classified as to their importance to the task, assigning a weighting value to each aspect. Eleven conceptual design alternatives were developed based on geometrical/geological considerations, construction materials, constructibility, and other relevant factors and evaluated

  14. Optimization of Heat Transfer on Thermal Barrier Coated Gas Turbine Blade

    Science.gov (United States)

    Aabid, Abdul; Khan, S. A.

    2018-05-01

    In the field of Aerospace Propulsion technology, material required to resist the maximum temperature. In this paper, using thermal barrier coatings (TBCs) method in gas turbine blade is used to protect hot section component from high-temperature effect to extend the service life and reduce the maintenance costs. The TBCs which include three layers of coating corresponding initial coat is super alloy-INCONEL 718 with 1 mm thickness, bond coat is Nano-structured ceramic-metallic composite-NiCoCrAIY with 0.15 mm thickness and top coat is ceramic composite-La2Ce2O7 with 0.09 mm thickness on the nickel alloy turbine blade which in turn increases the strength, efficiency and life span of the blades. Modeling a gas turbine blade using CATIA software and determining the amount of heat transfer on thermal barrier coated blade using ANSYS software has been performed. Thermal stresses and effects of different TBCs blade base alloys are considered using CATIA and ANSYS.

  15. Removal of ammonia from gas streams with dielectric barrier discharge plasmas

    International Nuclear Information System (INIS)

    Xia Lanyan; Huang Li; Shu Xiaohong; Zhang Renxi; Dong Wenbo; Hou Huiqi

    2008-01-01

    We reported on the experimental study of gas-phase removal of ammonia (NH 3 ) via dielectric barrier discharge (DBD) at atmospheric pressure, in which we mainly concentrated on three aspects-influence of initial NH 3 concentration, peak voltage, and gas residence time on NH 3 removal efficiency. Effectiveness, e.g. the removal efficiency, specific energy density, absolute removal amount and energy yield, of the self-made DBD reactor had also been studied. Basic analysis on DBD physical parameters and its performance was made in comparison with previous investigation. Moreover, products were detected via ion exchange chromatography (IEC). Experimental results demonstrated the application potential of DBD as an alternative technology for odor-causing gases elimination from gas streams

  16. Infrared gas phase study on plasma-polymer interactions in high-current diffuse dielectric barrier discharge

    NARCIS (Netherlands)

    Liu, Y.; Welzel, S.; Starostin, S. A.; van de Sanden, M. C. M.; Engeln, R.; de Vries, H. W.

    2017-01-01

    A roll-to-roll high-current diffuse dielectric barrier discharge at atmospheric pressure was operated in air and Ar/N2/O2 gas mixtures. The exhaust gas from the discharge was studied using a high-resolution Fourier-transform infrared spectrometer in the range from 3000 to 750?cm-1 to unravel the

  17. Gas barrier properties of hydrogenated amorphous carbon films coated on polyethylene terephthalate by plasma polymerization in argon/n-hexane gas mixture

    Energy Technology Data Exchange (ETDEWEB)

    Polonskyi, Oleksandr; Kylián, Ondřej, E-mail: ondrej.kylian@gmail.com; Petr, Martin; Choukourov, Andrei; Hanuš, Jan; Biederman, Hynek

    2013-07-01

    Hydrogenated amorphous carbon thin films were deposited by RF plasma polymerization in argon/n-hexane gas mixture on polyethylene terephthalate (PET) foils. It was found that such deposited films may significantly improve the barrier properties of PET. It was demonstrated that the principal parameter that influences barrier properties of such deposited films towards oxygen and water vapor is the density of the coatings. Moreover, it was shown that for achieving good barrier properties it is advantageous to deposit coatings with very low thickness. According to the presented results, optimal thickness of the coating should not be higher than several tens of nm. - Highlights: • a-C:H films were prepared by plasma polymerization in Ar/n-hexane atmosphere. • Barrier properties of coatings are dependent on their density and thickness. • Highest barrier properties were observed for films with thickness 15 nm.

  18. High mobility bottom gate InGaZnO thin film transistors with SiOx etch stopper

    Science.gov (United States)

    Kim, Minkyu; Jeong, Jong Han; Lee, Hun Jung; Ahn, Tae Kyung; Shin, Hyun Soo; Park, Jin-Seong; Jeong, Jae Kyeong; Mo, Yeon-Gon; Kim, Hye Dong

    2007-05-01

    The authors report on the fabrication of thin film transistors (TFTs), which use an amorphous indium gallium zinc oxide (a-IGZO) channel, by rf sputtering at room temperature and for which the channel length and width are patterned by photolithography and dry etching. To prevent plasma damage to the active channel, a 100-nm-thick SiOx layer deposited by plasma enhanced chemical vapor deposition was adopted as an etch stopper structure. The a-IGZO TFT (W /L=10μm/50μm) fabricated on glass exhibited a high field-effect mobility of 35.8cm2/Vs, a subthreshold gate swing value of 0.59V/decade, a thrseshold voltage of 5.9V, and an Ion/off ratio of 4.9×106, which is acceptable for use as the switching transistor of an active-matrix TFT backplane.

  19. Verification of the integrity of barriers using gas diffusion

    International Nuclear Information System (INIS)

    Ward, D.B.; Williams, C.V.

    1997-06-01

    In-situ barrier materials and designs are being developed for containment of high risk contamination as an alternative to immediate removal or remediation. The intent of these designs is to prevent the movement of contaminants in either the liquid or vapor phase by long-term containment, essentially buying time until the contaminant depletes naturally or a remediation can be implemented. The integrity of the resultant soil-binder mixture is typically assessed by a number of destructive laboratory tests (leaching, compressive strength, mechanical stability with respect to wetting and freeze-thaw cycles) which as a group are used to infer the likelihood of favorable long-term performance of the barrier. The need exists for a minimally intrusive yet quantifiable methods for assessment of a barrier's integrity after emplacement, and monitoring of the barrier's performance over its lifetime. Here, the authors evaluate non-destructive measurements of inert-gas diffusion (specifically, SF 6 ) as an indicator of waste-form integrity. The goals of this project are to show that diffusivity can be measured in core samples of soil jet-grouted with Portland cement, validate the experimental method through measurements on samples, and to calculate aqueous diffusivities from a series of diffusion measurements. This study shows that it is practical to measure SF 6 diffusion rates in the laboratory on samples of grout (Portland cement and soil) typical of what might be used in a barrier. Diffusion of SF 6 through grout (Portland cement and soil) is at least an order of magnitude slower than through air. The use of this tracer should be sensitive to the presence of fractures, voids, or other discontinuities in the grout/soil structure. Field-scale measurements should be practical on time-scales of a few days

  20. Plasma-Enhanced Chemical Vapor Deposition (PE-CVD) yields better Hydrolytical Stability of Biocompatible SiOx Thin Films on Implant Alumina Ceramics compared to Rapid Thermal Evaporation Physical Vapor Deposition (PVD).

    Science.gov (United States)

    Böke, Frederik; Giner, Ignacio; Keller, Adrian; Grundmeier, Guido; Fischer, Horst

    2016-07-20

    Densely sintered aluminum oxide (α-Al2O3) is chemically and biologically inert. To improve the interaction with biomolecules and cells, its surface has to be modified prior to use in biomedical applications. In this study, we compared two deposition techniques for adhesion promoting SiOx films to facilitate the coupling of stable organosilane monolayers on monolithic α-alumina; physical vapor deposition (PVD) by thermal evaporation and plasma enhanced chemical vapor deposition (PE-CVD). We also investigated the influence of etching on the formation of silanol surface groups using hydrogen peroxide and sulfuric acid solutions. The film characteristics, that is, surface morphology and surface chemistry, as well as the film stability and its adhesion properties under accelerated aging conditions were characterized by means of X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), inductively coupled plasma-optical emission spectroscopy (ICP-OES), and tensile strength tests. Differences in surface functionalization were investigated via two model organosilanes as well as the cell-cytotoxicity and viability on murine fibroblasts and human mesenchymal stromal cells (hMSC). We found that both SiOx interfaces did not affect the cell viability of both cell types. No significant differences between both films with regard to their interfacial tensile strength were detected, although failure mode analyses revealed a higher interfacial stability of the PE-CVD films compared to the PVD films. Twenty-eight day exposure to simulated body fluid (SBF) at 37 °C revealed a partial delamination of the thermally deposited PVD films whereas the PE-CVD films stayed largely intact. SiOx layers deposited by both PVD and PE-CVD may thus serve as viable adhesion-promoters for subsequent organosilane coupling agent binding to α-alumina. However, PE-CVD appears to be favorable for long-term direct film exposure to aqueous

  1. Review of hot corrosion of thermal barrier coatings of gas turbine

    Directory of Open Access Journals (Sweden)

    LIU Yongbao

    2017-03-01

    Full Text Available The review was done in order to make clear the problem of the hot corrosion of the Thermal Barrier Coatings(TBCsduring gas turbine serving. This paper summarizes the factors resulting from the hot corrosion of TBCs during turbine service and classifies methods for enhancing the corrosive resistance of TBCs. A prospective methodology for improving corrosion resistance is also formulated. The main types of corrosion coating include phase reaction, oxidizing of the bond coating, salt-fog corrosion, CMAS corrosion and fuel impurity corrosion. So far, methods for improving the corrosion resistance of TBCs include developing new coating materials, anticorrosive treatment on the surface of TBCs, modifying the stacking configuration and improving the cleansing functions of the gas turbines. In the future, developing new materials with excellent performance will still be the main direction for boosting the improvement of the hot corrosion resistance of TBCs. Simultaneously, improving the tacking configuration and nanotechnology of TBC coatings are potential approaches for improving corrosion resistance. With the development of a Ceramic Matrix Composite (CMC, the focus of the hot corrosion of TBCs may turn to that of Environmental Barrier Coatings (EBCs.

  2. Gas Diffusion Barriers Prepared by Spatial Atmospheric Pressure Plasma Enhanced ALD.

    Science.gov (United States)

    Hoffmann, Lukas; Theirich, Detlef; Pack, Sven; Kocak, Firat; Schlamm, Daniel; Hasselmann, Tim; Fahl, Henry; Räupke, André; Gargouri, Hassan; Riedl, Thomas

    2017-02-01

    In this work, we report on aluminum oxide (Al 2 O 3 ) gas permeation barriers prepared by spatial ALD (SALD) at atmospheric pressure. We compare the growth characteristics and layer properties using trimethylaluminum (TMA) in combination with an Ar/O 2 remote atmospheric pressure plasma for different substrate velocities and different temperatures. The resulting Al 2 O 3 films show ultralow water vapor transmission rates (WVTR) on the order of 10 -6 gm -2 d -1 . In notable contrast, plasma based layers already show good barrier properties at low deposition temperatures (75 °C), while water based processes require a growth temperature above 100 °C to achieve equally low WVTRs. The activation energy for the water permeation mechanism was determined to be 62 kJ/mol.

  3. Using dissolved gas analysis to investigate the performance of an organic carbon permeable reactive barrier for the treatment of mine drainage

    Science.gov (United States)

    Williams, R.L.; Mayer, K.U.; Amos, R.T.; Blowes, D.W.; Ptacek, C.J.; Bain, J.G.

    2007-01-01

    The strongly reducing nature of permeable reactive barrier (PRB) treatment materials can lead to gas production, potentially resulting in the formation of gas bubbles and ebullition. Degassing in organic C based PRB systems due to the production of gases (primarily CO2 and CH4) is investigated using the depletion of naturally occurring non-reactive gases Ar and N2, to identify, confirm, and quantify chemical and physical processes. Sampling and analysis of dissolved gases were performed at the Nickel Rim Mine Organic Carbon PRB, which was designed for the treatment of groundwater contaminated by low quality mine drainage characterized by slightly acidic pH, and elevated Fe(II) and SO4 concentrations. A simple 4-gas degassing model was used to analyze the dissolved gas data, and the results indicate that SO4 reduction is by far the dominant process of organic C consumption within the barrier. The data provided additional information to delineate rates of microbially mediated SO4 reduction and confirm the presence of slow and fast flow zones within the barrier. Degassing was incorporated into multicomponent reactive transport simulations for the barrier and the simulations were successful in reproducing observed dissolved gas trends.

  4. Reinforcement of the Gas Barrier Properties of Polyethylene and Polyamide Through the Nanocomposite Approach: Key Factors and Limitations

    Directory of Open Access Journals (Sweden)

    Picard E.

    2015-02-01

    Full Text Available In this study, polyamide 6 (PA6 and polyethylene (PE nanocomposites were prepared from melt blending and a detailed characterization of the nanocomposite morphology and gas barrier properties was performed. The choice of the organoclay was adapted to each polymer matrix. Exfoliated morphology and improved gas transport properties were obtained by melt mixing the polar PA6 matrix and the organoclay, whereas a microcomposite with poor barrier properties was formed from the binary PE/organomodified clay mixture. Different modified polyethylenes were examined as compatibilizers for the polyethylene/organoclay system. The effect of compatibilizer molar mass, polarity and content was investigated on the clay dispersion and on the gas barrier properties. The optimal compatibilizer to clay weight ratio was found to be equal to 4 whatever the compatibilizer. However, a high degree of clay delamination was obtained with the high molar mass compatibilizer whereas highly swollen clay aggregates resulted from the incorporation of the low molar mass interfacial agents. Contrary to the PA based system, the barrier properties of PE nanocomposites were not directly related to the clay dispersion state but resulted also from the matrix/clay interfacial interactions. Oxidized wax was identified as a very promising interfacial agent and a step by step study was performed to optimize the gas transport properties of the systems based on PE, oxidized wax and organoclay. In particular, an interesting combination of oxidized wax and high molar mass maleic anhydride grafted polyethylene allowing dividing the gas permeability by a factor 2 in comparison with neat PE was proposed.

  5. Functionally gradient materials for thermal barrier coatings in advanced gas turbine systems

    Energy Technology Data Exchange (ETDEWEB)

    Banovic, S.W.; Barmak, K.; Chan, H.M. [Lehigh Univ., Bethlehem, PA (United States)] [and others

    1995-10-01

    New designs for advanced gas turbine engines for power production are required to have higher operating temperatures in order to increase efficiency. However, elevated temperatures will increase the magnitude and severity of environmental degradation of critical turbine components (e.g. combustor parts, turbine blades, etc{hor_ellipsis}). To offset this problem, the usage of thermal barrier coatings (TBCs) has become popular by allowing an increase in maximum inlet temperatures for an operating engine. Although thermal barrier technology is over thirty years old, the principle failure mechanism is the spallation of the ceramic coating at or near the ceramic/bond coat interface. Therefore, it is desirable to develop a coating that combines the thermal barrier qualities of the ceramic layer and the corrosion protection by the metallic bond coat without the detrimental effects associated with the localization of the ceramic/metal interface to a single plane.

  6. Gas transport in the bentonite barrier of AGP and their interfaces; Transporte de gas en la barrera de bentonita de un AGP y sus interfases

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez Rodrigo, V.; Villar Gelicia, M. V.; Martin Martin, P. L.; Romero Alvarez, F. J.

    2014-07-01

    The research of gas transport processes through the barriers is of great relevance in the assessment of the behaviour of the repository. The main objective of this study is to determine the properties of gas transport in saturated bentonite samples and the interfaces between them. (Author)

  7. Kinetic Migration of Diethylhexyl Phthalate in Functional PVC Films

    Science.gov (United States)

    Fei, Fei; Liu, Zhongwei; Chen, Qiang; Liu, Fuping

    2012-02-01

    Plasticizers that are generally used in plastics to produce flexible food packaging materials have proved to cause reproductive system problems and women's infertility. A long-term consumption may even cause cancer diseases. Hence a nano-scale layer, named as functional barrier layer, was deposited on the plastic surface to prevent plasticizer diethylhexyl phthalate's (DEHP) migration from plastics to foods. The feasibility of functional barrier layer i.e. SiOx coating through plasma enhanced chemical vapor deposition (PECVD) process was then described in this paper. We used Fourier transform infrared spectroscopy (FTIR) to analyze the chemical composition of coatings, scanning electron microscope (SEM) to explore the topography of the coating surfaces, surface profilemeter to measure thickness of coatings, and high-performance liquid chromatography (HPLC) to evaluate the barrier properties of coatings. The results have clearly shown that the coatings can perfectly block the migration of the DEHP from plastics to their containers. It is also concluded that process parameters significantly influence the block efficiency of the coatings. When the deposition conditions of SiOx coatings were optimized, i.e. 50 W of the discharge power, 4:1 of ratio of O2: HMDSO, and ca.100 nm thickness of SiOx, 71.2% of the DEHP was effectively blocked.

  8. Gas barrier properties of diamond-like carbon films coated on PTFE

    International Nuclear Information System (INIS)

    Ozeki, K.; Nagashima, I.; Ohgoe, Y.; Hirakuri, K.K.; Mukaibayashi, H.; Masuzawa, T.

    2009-01-01

    Diamond-like carbon (DLC) films were deposited on polytetrafluoroethylene (PTFE) using radio frequency (RF) plasma-enhanced chemical vapour deposition (PE-CVD). Before the DLC coating, the PTFE substrate was modified with a N 2 plasma pre-treatment to enhance the adhesive strength of the DLC to the substrate. The influences of the N 2 plasma pre-treatment and process pressure on the gas permeation properties of these DLC-coated PTFE samples were investigated. In the Raman spectra, the G peak position shifted to a lower wave number with increasing process pressure. With scanning electron microscopy (SEM), a network of microcracks was observed on the surface of the DLC film without N 2 plasma pre-treatment. The density of these cracks decreased with increasing process pressure. In the film subjected to a N 2 plasma pre-treatment, no cracks were observed at any process pressure. In the gas barrier test, the gas permeation decreased drastically with increasing film thickness and saturated at a thickness of 0.2 μm. The DLC-coated PTFE with the N 2 plasma pre-treatment exhibited a greater reduction in gas permeation than did the samples without pre-treatment. For both sample types, gas permeation decreased with increasing process pressure.

  9. Transparent nanocellulosic multilayer thin films on polylactic acid with tunable gas barrier properties.

    Science.gov (United States)

    Aulin, Christian; Karabulut, Erdem; Tran, Amy; Wågberg, Lars; Lindström, Tom

    2013-08-14

    The layer-by-layer (LbL) deposition method was used for the build-up of alternating layers of nanofibrillated cellulose (NFC) or carboxymethyl cellulose (CMC) with a branched, cationic polyelectrolyte, polyethyleneimine (PEI) on flexible poly (lactic acid) (PLA) substrates. With this procedure, optically transparent nanocellulosic films with tunable gas barrier properties were formed. 50 layer pairs of PEI/NFC and PEI/CMC deposited on PLA have oxygen permeabilities of 0.34 and 0.71 cm(3)·μm/m(2)·day·kPa at 23 °C and 50% relative humidity, respectively, which is in the same range as polyvinyl alcohol and ethylene vinyl alcohol. The oxygen permeability of these multilayer nanocomposites outperforms those of pure NFC films prepared by solvent-casting. The nanocellulosic LbL assemblies on PLA substrates was in detailed characterized using a quartz crystal microbalance with dissipation (QCM-D). Atomic force microscopy (AFM) reveals large structural differences between the PEI/NFC and the PEI/CMC assemblies, with the PEI/NFC assembly showing a highly entangled network of nanofibrils, whereas the PEI/CMC surfaces lacked structural features. Scanning electron microscopy images showed a nearly perfect uniformity of the nanocellulosic coatings on PLA, and light transmittance results revealed remarkable transparency of the LbL-coated PLA films. The present work demonstrates the first ever LbL films based on high aspect ratio, water-dispersible nanofibrillated cellulose, and water-soluble carboxymethyl cellulose polymers that can be used as multifunctional films and coatings with tailorable properties, such as gas barriers and transparency. Owing to its flexibility, transparency and high-performance gas barrier properties, these thin film assemblies are promising candidates for several large-scale applications, including flexible electronics and renewable packaging.

  10. Influence of the gas mixture radio on the correlations between the excimer XeCl emission and the sealed gas temperature in dielectric barrier discharge lamps

    CERN Document Server

    Xu Jin Zhou; Ren Zhao Xing

    2002-01-01

    For dielectric barrier discharge lamps filled with various gas mixture ratios, the correlations between the excimer XeCl emission and the sealed gas temperature have been founded, and a qualitative explication is presented. For gas mixture with chlorine larger than 3%, the emission intensity increases with the sealed gas temperature, while with chlorine about 2%, the emission intensity decreases with the increasing in the gas temperature, and could be improved by cooling water. However, if chlorine is less than 1.5%, the discharge appears to be a mixture mode with filaments distributed in a diffused glow-like discharge, and the UV emission is independent on the gas temperature

  11. Atmospheric-pressure dielectric barrier discharge with capillary injection for gas-phase nanoparticle synthesis

    International Nuclear Information System (INIS)

    Ghosh, Souvik; Liu, Tianqi; Bilici, Mihai; Cole, Jonathan; Huang, I-Min; Sankaran, R Mohan; Staack, David; Mariotti, Davide

    2015-01-01

    We present an atmospheric-pressure dielectric barrier discharge (DBD) reactor for gas-phase nanoparticle synthesis. Nickel nanoparticles are synthesized by homogenous nucleation from nickelocene vapor and characterized online by aerosol mobility measurements. The effects of residence time and precursor concentration on particle growth are studied. We find that narrower distributions of smaller particles are produced by decreasing the precursor concentration, in agreement with vapor nucleation theory, but larger particles and aggregates form at higher gas flow rates where the mean residence time should be reduced, suggesting a cooling effect that leads to enhanced particle nucleation. In comparison, incorporating a capillary gas injector to alter the velocity profile is found to significantly reduce particle size and agglomeration. These results suggest that capillary gas injection is a better approach to decreasing the mean residence time and narrowing the residence time distribution for nanoparticle growth by producing a sharp and narrow velocity profile. (paper)

  12. Enhancement of Gas Barrier Properties of CFRP Laminates Fabricated Using Thin-Ply Prepregs

    Science.gov (United States)

    横関, 智弘; 高木, 智宏; 吉村, 彰記; Ogasawara, Toshio; 荻原, 慎二

    Composite laminates manufactured using thin-ply prepregs are expected to have superior resistance properties against microcracking compared to those using standard prepregs. In this study, comparative investigations are presented on the microcrack accumulation and gas leakage characteristics of CFRP laminates fabricated using standard and thin-ply prepregs, consisting of high-performance carbon fiber and toughened epoxy, as a fundamental research on the cryogenic composite tanks for future space vehicles. It was shown that laminates using thin-ply prepregs exhibited much higher strain at microcrack initiation compared to those using standard prepregs at room and cryogenic temperatures. In addition, helium gas leak tests using CFRP laminated tubular specimens subjected to quasi-static tension loadings were performed. It was demonstrated that CFRP laminates using thin-ply prepregs have higher gas barrier properties than those using standard prepregs.

  13. Poly(butylene 2,5-thiophenedicarboxylate: An Added Value to the Class of High Gas Barrier Biopolyesters

    Directory of Open Access Journals (Sweden)

    Giulia Guidotti

    2018-02-01

    Full Text Available Many efforts are currently devoted to the design and development of high performance bioplastics to replace traditional fossil-based polymers. In response, this contribution presents a new biobased aromatic polyester, i.e., poly(butylene 2,5-thiophenedicarboxylate (PBTF. Here, PBTF is characterized from the molecular, thermo-mechanical and structural point of view. Gas permeability is evaluated at different temperatures, in the range below and above glass transition, providing a full insight into the performances of this material under different operating conditions, and demonstrating the superior gas barrier behavior of PBTF with respect to other polyesters, such as PEF and PET. The combination of calorimetric and diffractometric studies allows for a deep understanding of the structure of PBTF, revealing the presence of a not-induced 2D-ordered phase (meso-phase, responsible for its outstanding gas permeability behavior. The simple synthetic strategy adopted, the exceptional barrier properties, combined with the interesting mechanical characteristics of PBTF open up new scenarios in the world of green and sustainable packaging materials.

  14. Fabrication of High Gas Barrier Epoxy Nanocomposites: An Approach Based on Layered Silicate Functionalized by a Compatible and Reactive Modifier of Epoxy-Diamine Adduct

    Directory of Open Access Journals (Sweden)

    Ran Wei

    2018-05-01

    Full Text Available To solve the drawbacks of poor dispersion and weak interface in gas barrier nanocomposites, a novel epoxy-diamine adduct (DDA was synthesized by reacting epoxy monomer DGEBA with curing agent D400 to functionalize montmorillonite (MMT, which could provide complete compatibility and reactivity with a DGEBA/D400 epoxy matrix. Thereafter, sodium type montmorillonite (Na-MMT and organic-MMTs functionalized by DDA and polyether amines were incorporated with epoxy to manufacture nanocomposites. The effects of MMT functionalization on the morphology and gas barrier property of nanocomposites were evaluated. The results showed that DDA was successfully synthesized, terminating with epoxy and amine groups. By simulating the small-angle neutron scattering data with a sandwich structure model, the optimal dispersion/exfoliation of MMT was observed in a DDA-MMT/DGEBA nanocomposite with a mean radius of 751 Å, a layer thickness of 30.8 Å, and only two layers in each tactoid. Moreover, the DDA-MMT/DGEBA nanocomposite exhibited the best N2 barrier properties, which were about five times those of neat epoxy. Based on a modified Nielsen model, it was clarified that this excellent gas barrier property was due to the homogeneously dispersed lamellas with almost exfoliated structures. The improved morphology and barrier property confirmed the superiority of the adduct, which provides a general method for developing gas barrier nanocomposites.

  15. Assessing the effectiveness of slab flooring as a barrier to soil gas and radon infiltration

    International Nuclear Information System (INIS)

    Williamson, A.D.; Fowler, C.S.; McDonough, S.E.

    1995-01-01

    Experimental studies on the entry of soil gas and radon into slab-on-grade buildings have been carried out in instrumented, single-zone test structures. This work, as part of the Florida Radon Research Program, focused on the effectiveness of slab flooring variants as barriers to soil gas/radon entry. A second objective was the study of the role of subslab fill soil as both a potential source of and barrier to radon entry. Studies were made in well-sealed (∼ 600 mm 2 ELA) unoccupied test buildings placed on well-characterized, radium-bearing sandy fill soil. The buildings were instrumented with data acquisition systems to continuously monitor indoor radon concentrations, differential pressures at several subsurface locations, weather conditions, and soil moisture. The response of the structures to mechanical depressurization as well as natural driving forces was measured. Limited measurements were made regarding direct diffusive transport of radon through apparently intact concrete slabs, as well as transport through cracks in the floor structure

  16. Plasma sprayed thermal barrier coatings for industrial gas turbines: morphology, processing and properties

    International Nuclear Information System (INIS)

    Gruenling, H.W.; Mannsmann, W.

    1993-01-01

    Thermal barrier coatings out of fully or partially stabilized zirconia offer a unique chance in gas turbines to increase the gas inlet temperature significantly while keeping the temperature of the structural material of the component within conventional limits. The protection of combustor parts and transition pieces as well as of some stationary gas turbine parts however is state of the art. As a consequence of still insufficient reliability, the application for hot rotating parts is very limited. The introduction as a design element requires safe life within defined time intervals. These depend on the overhaul and repair intervals of the engines. For large land based industrial or utility gas turbines, for example, coating life between 25.000 and 30.000 hrs. is a minimum requirement. Premature failure of a coating by e.g. local spalling causes local overheating of the component with the consequence of its total destruction or even more expensive secondary damages. Life limiting is the corrosion rate at the ceramic-metal interface and the behavior of the coated system under transient operating conditions, where multiaxial strain and stress distributions are generated. Sufficient strain tolerance of the coating both under tensile as well as compressive conditions is required. The properties of thermal barrier coating systems depend strongly on the structure and phase composition of the coating layers and the morphology of and the adhesion at the ceramic-metal interface. They have to be controlled by the process itself, the process parameters and the characteristics of the applied materials (e.g. chemical composition, processing, morphology, particle size and size distribution). It will be reviewed, how properties and structures of coating systems correlate and how structures can be modified by careful control of the process parameters. (orig.)

  17. The loyalty of industrial clients of gas and electricity: the value rol and switching barriers

    International Nuclear Information System (INIS)

    Garcia Acebron, C.; Vazquez Castelles, R.; Iglesias Arguelles, V.

    2007-01-01

    This paper deals with perceived value and loyalty in a B2 B environment taking account switching barriers. The Spanish energy market has been newly liberalized and many companies offer supply services of natural gas and electricity. The research examines the casual relations between perceived value and two dimensions of loyalty: repurchase intentions and price tolerance. Although our results indicate that suppliers achieve better repurchase intentions by providing value to their customers, they also show that this is insufficient when the aim is to increase customer price tolerance. In this case another moderating variable must be included: the switching barriers. (Author)

  18. Reducing greenhouse gas emissions in the commercial and industrial sectors in British Columbia: Technical/economic potential, market barriers, and strategies for success

    International Nuclear Information System (INIS)

    Boudreau, K.

    2000-05-01

    According to current forecasts, greenhouse gas emissions from energy consumption by the commercial and industrial sector will increase from 11,000 kilotonnes to 16,000 kilotons between 1990 and 2015. During the same period electricity generated in British Columbia from fossil fuel combustion will have increased from five per cent to 26 per cent. Therefore, to reduce greenhouse gas emissions it will be imperative to find ways of significantly reducing the consumption of electricity, natural gas and petroleum products in both the commercial and industrial sectors. Increased application of energy conservation practices, energy efficiency improvements, fuel switching and the increased use of renewable energy sources come to mind as the most appropriate strategies to be considered, despite formidable barriers to implementation. Despite the existence of barriers, some progress is being made as indicated by codes and standards, financial incentives, educational and public awareness campaigns, and research and development programs. This report examines the barriers, the measures that have already been implemented to combat greenhouse gas emissions and the economic and environmental benefits that will accrue from these and other measures currently under development. The beneficial impact of increased investment in greenhouse gas emission reduction technologies on employment is emphasized. 24 refs., tabs., figs

  19. Removal of formaldehyde from gas streams via packed-bed dielectric barrier discharge plasmas

    International Nuclear Information System (INIS)

    Ding Huixian; Zhu Aimin; Yang Xuefeng; Li Cuihong; Xu Yong

    2005-01-01

    Formaldehyde is a major indoor air pollutant and can cause serious health disorders in residents. This work reports the removal of formaldehyde from gas streams via alumina-pellet-filled dielectric barrier discharge plasmas at atmospheric pressure and 70 deg. C. With a feed gas mixture of 140 ppm HCHO, 21.0% O 2 , 1.0% H 2 O in N 2 , ∼92% of formaldehyde can be effectively destructed at GHSV (gas flow volume per hour per discharge volume) of 16 500 h -1 and E in = 108 J l -1 . An increase in the specific surface area of the alumina pellets enhances the HCHO removal, and this indicates that the adsorbed HCHO species may have a lower C-H bond breakage energy. Based on an examination of the influence of gas composition on the removal efficiency, the primary destruction pathways, besides the reactions initiated by discharge-generated radicals, such as O, H, OH and HO 2 , may include the consecutive dissociations of HCHO molecules and HCO radicals through their collisions with vibrationally- and electronically-excited metastable N 2 species. The increase of O 2 content in the inlet gas stream is able to diminish the CO production and to promote the formation of CO 2 via O-atom or HO 2 -radical involved reactions

  20. Development of natural gas vehicles in China: An assessment of enabling factors and barriers

    International Nuclear Information System (INIS)

    Wang, Hongxia; Fang, Hong; Yu, Xueying; Wang, Ke

    2015-01-01

    Replacing conventional gasoline or diesel vehicles with natural gas vehicles (NGVs) is necessary if China hopes to significantly reduce its greenhouse gas emissions in the short term. Based on city-level data, this paper analyzes the enabling factors and barriers to China's NGV development. We find that a shortage in natural gas supply and a relatively high price ratio of natural gas compared to gasoline are the main factors impeding China's NGV development. Imbalanced development between natural gas refueling stations and NGVs also hinder the popularity of these lower-carbon vehicles. While various policies have been implemented in recent years to promote NGVs in China, only those encouraging adoption of NGVs by the private sector appear effective. To promote further NGV development in China, the following strategies are proposed: (1) improve natural gas delivery infrastructure across the country; (2) reasonably reduce the relative price of natural gas compared to gasoline; (3) give priority to middle-income and medium-sized cities and towns, since siting natural gas refueling stations is easier in these areas; and (4) promote the use of NGVs in the private sector. -- Highlights: •We assess the effectiveness of NGV policies in China. •Relatively low natural gas price promotes NGV development. •Coordinated development of refueling stations and NGVs is important. •Policies that encourage private NGV development should be adopted. •Middle-income and medium-sized cities are more suitable for developing NGVs

  1. Influence of gas discharge parameters on emissions from a dielectric barrier discharge excited argon excimer lamp

    Directory of Open Access Journals (Sweden)

    Mike Collier

    2011-11-01

    Full Text Available A dielectric barrier discharge excited neutral argon (Ar I excimer lamp has been developed and characterised. The aim of this study was to develop an excimer lamp operating at atmospheric pressure that can replace mercury lamps and vacuum equipment used in the sterilisation of medical equipment and in the food industry. The effects of discharge gas pressure, flow rate, excitation frequency and pulse width on the intensity of the Ar I vacuum ultraviolet (VUV emission at 126 nm and near infrared (NIR lines at 750.4 nm and 811.5 nm have been investigated. These three lines were chosen as they represent emissions resulting from de-excitation of excimer states that emit energetic photons with an energy of 9.8 eV. We observed that the intensity of the VUV Ar2* excimer emission at 126 nm increased with increasing gas pressure, but decreased with increasing excitation pulse frequency and pulse width. In contrast, the intensities of the NIR lines decreased with increasing gas pressure and increased with increasing pulse frequency and pulse width. We have demonstrated that energetic VUV photons of 9.8 eV can be efficiently generated in a dielectric barrier discharge in Ar.

  2. Performance and emission characteristics of the thermal barrier coated SI engine by adding argon inert gas to intake mixture

    Directory of Open Access Journals (Sweden)

    T. Karthikeya Sharma

    2015-11-01

    Full Text Available Dilution of the intake air of the SI engine with the inert gases is one of the emission control techniques like exhaust gas recirculation, water injection into combustion chamber and cyclic variability, without scarifying power output and/or thermal efficiency (TE. This paper investigates the effects of using argon (Ar gas to mitigate the spark ignition engine intake air to enhance the performance and cut down the emissions mainly nitrogen oxides. The input variables of this study include the compression ratio, stroke length, and engine speed and argon concentration. Output parameters like TE, volumetric efficiency, heat release rates, brake power, exhaust gas temperature and emissions of NOx, CO2 and CO were studied in a thermal barrier coated SI engine, under variable argon concentrations. Results of this study showed that the inclusion of Argon to the input air of the thermal barrier coated SI engine has significantly improved the emission characteristics and engine’s performance within the range studied.

  3. Performance and emission characteristics of the thermal barrier coated SI engine by adding argon inert gas to intake mixture.

    Science.gov (United States)

    Karthikeya Sharma, T

    2015-11-01

    Dilution of the intake air of the SI engine with the inert gases is one of the emission control techniques like exhaust gas recirculation, water injection into combustion chamber and cyclic variability, without scarifying power output and/or thermal efficiency (TE). This paper investigates the effects of using argon (Ar) gas to mitigate the spark ignition engine intake air to enhance the performance and cut down the emissions mainly nitrogen oxides. The input variables of this study include the compression ratio, stroke length, and engine speed and argon concentration. Output parameters like TE, volumetric efficiency, heat release rates, brake power, exhaust gas temperature and emissions of NOx, CO2 and CO were studied in a thermal barrier coated SI engine, under variable argon concentrations. Results of this study showed that the inclusion of Argon to the input air of the thermal barrier coated SI engine has significantly improved the emission characteristics and engine's performance within the range studied.

  4. Effects of variation of oil and zinc oxide type on the gas barrier and mechanical properties of chlorobutyl rubber/epoxidised natural rubber blends

    International Nuclear Information System (INIS)

    Li, Lin; Zhang, Jin; Jo, Jae Ok; Datta, Sanjoy; Kim, Jin Kuk

    2013-01-01

    Highlights: ► A (90:10) blend of CIIR and ENR by weight was used as the base. ► Different process oil and ZnO were used to optimize the gas barrier property. ► The minimum oxygen permeability is obtained using sheet ZnO. - Abstract: In many polymer applications such as inner tire liners and fuel hoses, imparting excellent gas barrier property is of prime importance. Researches in this direction had been done based on a judicious choice of polymer type or a blend thereof and the compounding ingredients. Though butyl rubber has been the polymer of choice because of its excellent gas barrier property, yet researches were targeted to improve the same with further modification in the polymer type and variation in compounding ingredients. In this study, a (90:10) blend of chlorobutyl rubber (CIIR) and Epoxdised Natural Rubber (ENR) by weight was used as the base. Four different types of process oil and three different types of zinc oxide (ZnO) at fixed predetermined concentrations were used to optimize the gas barrier and mechanical properties. In this blend, recycled aromatic oil (RAE) and sheet zinc oxide were effective in imparting the best overall combination of properties. Scanning Electron Microscopic (SEM) studies of ZnO were done to understand the structure property relationship

  5. Controlling effective aspect ratio and packing of clay with pH for improved gas barrier in nanobrick wall thin films.

    Science.gov (United States)

    Hagen, David A; Saucier, Lauren; Grunlan, Jaime C

    2014-12-24

    Polymer-clay thin films constructed via layer-by-layer (LbL) assembly, with a nanobrick wall structure (i.e., clay nanoplatelets as bricks surrounded by a polyelectrolyte mortar), are known to exhibit a high oxygen barrier. Further barrier improvement can be achieved by lowering the pH of the clay suspension in the polyethylenimine (PEI) and montmorillonite (MMT) system. In this case, the charge of the deposited PEI layer is increased in the clay suspension environment, which causes more clay to be deposited. At pH 4, MMT platelets deposit with near perfect ordering, observed with transmission electron microscopy, enabling a 5× improvement in the gas barrier for a 10 PEI/MMT bilayer thin film (85 nm) relative to the same film made with pH 10 MMT. This improved gas barrier approaches that achieved with much higher aspect ratio vermiculite clay. In essence, lower pH is generating a higher effective aspect ratio for MMT due to greater induced surface charge in the PEI layers, which causes heavier clay deposition. These flexible, transparent nanocoatings have a wide range of possible applications, from food and electronics packaging to pressurized bladders.

  6. Design of Thermal Barrier Coatings Thickness for Gas Turbine Blade Based on Finite Element Analysis

    OpenAIRE

    Li, Biao; Fan, Xueling; Li, Dingjun; Jiang, Peng

    2017-01-01

    Thermal barrier coatings (TBCs) are deposited on the turbine blade to reduce the temperature of underlying substrate, as well as providing protection against the oxidation and hot corrosion from high temperature gas. Optimal ceramic top-coat thickness distribution on the blade can improve the performance and efficiency of the coatings. Design of the coatings thickness is a multiobjective optimization problem due to the conflicts among objectives of high thermal insulation performance, long op...

  7. Evaluation of a Degradation of Thermal Barrier Coating for Gas Turbine Blade

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae Jin; Lee, Dong Hoon; Koo, Jae Mean; Seok, Chang Sung [Sungkyunkwan Univ., Seoul (Korea, Republic of); Kim, Mun Young; Yang, Sung Ho; Park, Sang Yoel [Korea Power Engineering Company, Inc., Yongin (Korea, Republic of)

    2007-07-01

    Thermal barrier coating system for gas turbine blade were thermally aged by isothermal heating in the furnace varing aging time and temperature. Then, micro Vickers hardness test was done for the cross section of bond coat and Ni-based superalloy substrate. Also, the thickness of TGO was measured by image analyzer and the changes in the microstructure and element distributions in the coating were analyzed by optical microscope and SEM-EDX analysis. No significant changes in the Vickers hardness of the bond coat were observed as the coated specimen was aged at high temperature and delaminations near between top coat and bond coat occurred when the coatings were aged for 50 hr at over 1,151 .deg. C.

  8. Thermal barrier coatings on gas turbine blades: Chemical vapor deposition (Review)

    Science.gov (United States)

    Igumenov, I. K.; Aksenov, A. N.

    2017-12-01

    Schemes are presented for experimental setups (reactors) developed at leading scientific centers connected with the development of technologies for the deposition of coatings using the CVD method: at the Technical University of Braunschweig (Germany), the French Aerospace Research Center, the Materials Research Institute (Tohoku University, Japan) and the National Laboratory Oak Ridge (USA). Conditions and modes for obtaining the coatings with high operational parameters are considered. It is established that the formed thermal barrier coatings do not fundamentally differ in their properties (columnar microstructure, thermocyclic resistance, thermal conductivity coefficient) from standard electron-beam condensates, but the highest growth rates and the perfection of the crystal structure are achieved in the case of plasma-chemical processes and in reactors with additional laser or induction heating of a workpiece. It is shown that CVD reactors can serve as a basis for the development of rational and more advanced technologies for coating gas turbine blades that are not inferior to standard electron-beam plants in terms of the quality of produced coatings and have a much simpler and cheaper structure. The possibility of developing a new technology based on CVD processes for the formation of thermal barrier coatings with high operational parameters is discussed, including a set of requirements for industrial reactors, high-performance sources of vapor precursors, and promising new materials.

  9. On the use of pulsed Dielectric Barrier Discharges to control the gas-phase composition of atmospheric pressure air plasmas

    Science.gov (United States)

    Barni, R.; Biganzoli, I.; Dell'Orto, E.; Riccardi, C.

    2014-11-01

    We presents results obtained from the numerical simulation of the gas-phase chemical kinetics in atmospheric pressure air non-equilibrium plasmas. In particular we have addressed the effect of pulsed operation mode of a plane dielectric barrier discharge. It was conjectured that the large difference in the time scales involved in the fast dissociation of oxygen molecules in plasma and their subsequent reactions to produce ozone and nitrogen oxides, makes the presence of a continuously repeated plasma production unnecessary and a waste of electrical power and thus efficiency. In order to test such suggestion we have performed a numerical study of the composition and the temporal evolution of the gas-phase of atmospheric pressure air non-equilibrium plasmas. Comparison with experimental findings in a dielectric barrier discharge with an electrode configuration symmetrical and almost ideally plane is briefly addressed too, using plasma diagnostics to extract the properties of the single micro-discharges and a sensor to measure the concentration of ozone produced by the plasma.

  10. On the use of pulsed Dielectric Barrier Discharges to control the gas-phase composition of atmospheric pressure air plasmas

    International Nuclear Information System (INIS)

    Barni, R; Biganzoli, I; Dell'Orto, E; Riccardi, C

    2014-01-01

    We presents results obtained from the numerical simulation of the gas-phase chemical kinetics in atmospheric pressure air non-equilibrium plasmas. In particular we have addressed the effect of pulsed operation mode of a plane dielectric barrier discharge. It was conjectured that the large difference in the time scales involved in the fast dissociation of oxygen molecules in plasma and their subsequent reactions to produce ozone and nitrogen oxides, makes the presence of a continuously repeated plasma production unnecessary and a waste of electrical power and thus efficiency. In order to test such suggestion we have performed a numerical study of the composition and the temporal evolution of the gas-phase of atmospheric pressure air non-equilibrium plasmas. Comparison with experimental findings in a dielectric barrier discharge with an electrode configuration symmetrical and almost ideally plane is briefly addressed too, using plasma diagnostics to extract the properties of the single micro-discharges and a sensor to measure the concentration of ozone produced by the plasma

  11. Effect of duty-cycles on the air plasma gas-phase of dielectric barrier discharges

    Science.gov (United States)

    Barni, R.; Biganzoli, I.; Dell'Orto, E. C.; Riccardi, C.

    2015-10-01

    An experimental investigation concerning the effects of a duty-cycle in the supply of a dielectric barrier discharge in atmospheric pressure air has been performed. Electrical characteristics of the discharge have been measured, focusing mainly on the statistical properties of the current filaments and on dielectric surface charging, both affected by the frequent repetition of breakdown imposed by the duty-cycle. Information on the gas-phase composition was gathered too. In particular, a strong enhancement in the ozone formation rate is observed when suitable long pauses separate the active discharge phases. A simulation of the chemical kinetics in the gas-phase, based on a simplified discharge modeling, is briefly described in order to shed light on the observed increase in ozone production. The effect of a duty-cycle on surface modification of polymeric films in order to increase their wettability has been investigated too.

  12. Rupture of a high pressure gas or steam pipe in a tunnel: a preliminary investigation of the jet thrust exerted on a tunnel barrier

    International Nuclear Information System (INIS)

    Baum, M.R.

    1988-04-01

    On power plant, if a high pressure pipe containing high temperature gas or steam were to rupture, sensitive equipment necessary for safety shutdown of the plant could possibly be incapacitated if exposed to the subsequent high temperature environment. In many plant configurations the high pressure pipework is contained in tunnels where it is possible to construct barriers which isolate one section of the plant from another, thereby restricting the spread of the high temperature fluid/air mixture. This paper describes a preliminary experimental investigation of the magnitude of the thrust likely to be exerted on such barriers by a gas jet issuing from the failed pipe. Measurements of the thrust exerted on a flat plate by normal impingement of a highly underexpanded gas jet are in agreement with a semi-quantitative analysis assuming conservation of the axial momentum of the jet. (author)

  13. Design of Thermal Barrier Coatings Thickness for Gas Turbine Blade Based on Finite Element Analysis

    Directory of Open Access Journals (Sweden)

    Biao Li

    2017-01-01

    Full Text Available Thermal barrier coatings (TBCs are deposited on the turbine blade to reduce the temperature of underlying substrate, as well as providing protection against the oxidation and hot corrosion from high temperature gas. Optimal ceramic top-coat thickness distribution on the blade can improve the performance and efficiency of the coatings. Design of the coatings thickness is a multiobjective optimization problem due to the conflicts among objectives of high thermal insulation performance, long operation durability, and low fabrication cost. This work developed a procedure for designing the TBCs thickness distribution for the gas turbine blade. Three-dimensional finite element models were built and analyzed, and weighted-sum approach was employed to solve the multiobjective optimization problem herein. Suitable multiregion top-coat thickness distribution scheme was designed with the considerations of manufacturing accuracy, productivity, and fabrication cost.

  14. A Numerical Study of the Sour Gas Reforming in a Dielectric Barrier Discharge Reactor

    Directory of Open Access Journals (Sweden)

    Sajedeh Shahsavari

    2016-10-01

    Full Text Available In this paper, using a one-dimensional simulation model, the reforming process of sour gas, i.e. CH4, CO2, and H2S, to the various charged particles and syngas in a dielectric barrier discharge (DBD reactor is studied. An electric field is applied across the reactor radius, and thus a non-thermal plasma discharge is formed within the reactor. Based on the space-time coupled finite element method, the governing equations are solved, and the temporal and spatial profiles of different formed charged species from sour gas inside the plasma reactor are verified. It is observed that the electric field increases radially towards the cathode electrode. Moreover, the electron density growth rate at the radial positions closer to the cathode surface is smaller than the one in the anode electrode region. Furthermore, as time progresses, the positive ions density near the anode electrode is higher. In addition, the produced syngas density is mainly concentrated in the proximity of anode dielectric electrode.

  15. Holographic tracking of quantized intra-film segments during interferometric laser processing of SiOx thin films(Conference Presentation)

    Science.gov (United States)

    Ho, Stephen; Domke, Matthias; Huber, Heinz P.; Herman, Peter P.

    2017-03-01

    Interferometric femtosecond laser processing of thin dielectric films has recently opened the novel approach for quantized nanostructuring from inside the film, driven by the rapid formation of periodic thin nanoscale plasma disks of 20 to 45 nm width, separated on half-wavelength, λ/2nfilm, spacing (refractive index, nfilm). The nano-disk explosions enable intra-film cleaving of subwavelength cavities at single or multiple periodic depths, enabling the formation of intra-film blisters with nanocavities and the digital ejection at fractional film depths with quantized-depth thickness defined by the laser wavelength. For this paper, the physical mechanisms and ablation dynamics underlying the intra-film cleavage of SiOx thin films were investigated by laser pump-probe microscopy with high temporal dynamic range recorded in a wide time-frame between 100 fs and 10 μs. The long time scales revealed a new observation method as Newton's Rings (observed 50 ns) of the laser-ablated film fragments. For the first time to our knowledge, the holographic tracking reveals the clustering of large mechanically ejected nano-film planes into distinct speed groups according to the multiple of λ/2nfilm in the film. The observation verifies a new `quantized' form of photo-mechanical laser "lift-off".

  16. Nanomechanical Behavior of High Gas Barrier Multilayer Thin Films.

    Science.gov (United States)

    Humood, Mohammad; Chowdhury, Shahla; Song, Yixuan; Tzeng, Ping; Grunlan, Jaime C; Polycarpou, Andreas A

    2016-05-04

    Nanoindentation and nanoscratch experiments were performed on thin multilayer films manufactured using the layer-by-layer (LbL) assembly technique. These films are known to exhibit high gas barrier, but little is known about their durability, which is an important feature for various packaging applications (e.g., food and electronics). Films were prepared from bilayer and quadlayer sequences, with varying thickness and composition. In an effort to evaluate multilayer thin film surface and mechanical properties, and their resistance to failure and wear, a comprehensive range of experiments were conducted: low and high load indentation, low and high load scratch. Some of the thin films were found to have exceptional mechanical behavior and exhibit excellent scratch resistance. Specifically, nanobrick wall structures, comprising montmorillonite (MMT) clay and polyethylenimine (PEI) bilayers, are the most durable coatings. PEI/MMT films exhibit high hardness, large elastic modulus, high elastic recovery, low friction, low scratch depth, and a smooth surface. When combined with the low oxygen permeability and high optical transmission of these thin films, these excellent mechanical properties make them good candidates for hard coating surface-sensitive substrates, where polymers are required to sustain long-term surface aesthetics and quality.

  17. Effect of the barrier properties on the surface part of the barrier discharge

    International Nuclear Information System (INIS)

    Sokolova, M.V.; Zhukov, S.V.

    1998-01-01

    The effect of barrier characteristics on the discharge processes in a barrier discharge was investigated, main attention being paid to the amount and distribution of the charge left on the barrier surface by the volume discharge in the main air gap. The measurements show that the main part of the gap charge is due to the volume part of the discharge. The measured values of the surface charge significantly increase with the voltage applied and with the length of the gas gap, while the dimensions of the charge spot and the distribution of charge density are determined by the barrier properties. (J.U.)

  18. Deimanto tipo anglies nanokompozicinių (SiOx turinčių deimanto tipo anglies plėvelių struktūros, cheminės sudėties, savybių ir taikymo sričių apžvalga

    Directory of Open Access Journals (Sweden)

    Šarūnas MEŠKINIS

    2011-11-01

    Full Text Available Straipsnyje apžvelgiama dabartinė būklė nanokompozicinių deimanto tipo anglies plėvelių (SiOx turinčių deimanto tipo anglies dangų tyrimų srityje. Aptariami įvairūs šių dangų formavimo metodai bei sintezei naudojamos medžiagos. Įvairiais būdais ir įvairiomis sąlygomis užaugintų deimanto tipo anglies nanokompozicinių plėvelių cheminė sudėtis nagrinėta atsižvelgiant į tyrimų duomenis, gautus taikant skirtingus analizės metodus (rentgeno spindulių fotoelektronų spektroskopiją, infraraudonųjų spindulių spektroskopiją. Taip pat aprašyti skirtingų autorių siūlomi nanokompozicinių deimanto tipo anglies plėvelių struktūros modeliai. Apžvelgtos SiOx turinčių DTA plėvelių, suformuotų įvairiais būdais, mechaninės, optinės, elektrinės savybės bei plėvelių paviršiaus energija. Straipsnio pabaigoje aprašomos nanokompozicinių deimanto tipo anglies plėvelių dabartinės naudojimo sritys ir ateities perspektyvos.http://dx.doi.org/10.5755/j01.ms.17.4.770

  19. Mercury Oxidation via Catalytic Barrier Filters Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Wayne Seames; Michael Mann; Darrin Muggli; Jason Hrdlicka; Carol Horabik

    2007-09-30

    In 2004, the Department of Energy National Energy Technology Laboratory awarded the University of North Dakota a Phase II University Coal Research grant to explore the feasibility of using barrier filters coated with a catalyst to oxidize elemental mercury in coal combustion flue gas streams. Oxidized mercury is substantially easier to remove than elemental mercury. If successful, this technique has the potential to substantially reduce mercury control costs for those installations that already utilize baghouse barrier filters for particulate removal. Completed in 2004, Phase I of this project successfully met its objectives of screening and assessing the possible feasibility of using catalyst coated barrier filters for the oxidation of vapor phase elemental mercury in coal combustion generated flue gas streams. Completed in September 2007, Phase II of this project successfully met its three objectives. First, an effective coating method for a catalytic barrier filter was found. Second, the effects of a simulated flue gas on the catalysts in a bench-scale reactor were determined. Finally, the performance of the best catalyst was assessed using real flue gas generated by a 19 kW research combustor firing each of three separate coal types.

  20. Measurements of water molecule density by tunable diode laser absorption spectroscopy in dielectric barrier discharges with gas-water interface

    Science.gov (United States)

    Tachibana, Kunihide; Nakamura, Toshihiro; Kawasaki, Mitsuo; Morita, Tatsuo; Umekawa, Toyofumi; Kawasaki, Masahiro

    2018-01-01

    We measured water molecule (H2O) density by tunable diode-laser absorption spectroscopy (TDLAS) for applications in dielectric barrier discharges (DBDs) with a gas-water interface. First, the effects of water temperature and presence of gas flow were tested using a Petri dish filled with water and a gas injection nozzle. Second, the TDLAS system was applied to the measurements of H2O density in two types of DBDs; one was a normal (non-inverted) type with a dielectric-covered electrode above a water-filled counter electrode and the other was an inverted type with a water-suspending mesh electrode above a dielectric-covered counter electrode. The H2O density in the normal DBD was close to the density estimated from the saturated vapor pressure, whereas the density in the inverted DBD was about half of that in the former type. The difference is attributed to the upward gas flow in the latter type, that pushes the water molecules up towards the gas-water interface.

  1. A large-scale laboratory investigation into the movement of gas and water through clay barriers exposed to the environment

    International Nuclear Information System (INIS)

    1993-01-01

    This report describes a large scale laboratory investigation into the movements of gas and water through clay barriers exposed to the environment. The test beds, each 3m square were constructed and filled with clay to a depth of 400 mm, after compaction. One test bed contained London Clay, the other Glacial Till. The clays were subjected to accelerated environmental cycling and tests carried out on samples of the clays at appropriate intervals. The tests included measurements of the mechanical, physical and chemical properties of the clays and their permeability to gas and water. Gas permeability emerged as the more appropriate for the clays being investigated. The report discusses the difficulties of measuring the permeability of partially saturated clays and the need to define the measuring techniques when specifying limiting acceptability values. 55 refs., 8 figs., 7 tabs., 27 plates

  2. A sensitive gas chromatography detector based on atmospheric pressure chemical ionization by a dielectric barrier discharge.

    Science.gov (United States)

    Kirk, Ansgar T; Last, Torben; Zimmermann, Stefan

    2017-02-03

    In this work, we present a novel concept for a gas chromatography detector utilizing an atmospheric pressure chemical ionization which is initialized by a dielectric barrier discharge. In general, such a detector can be simple and low-cost, while achieving extremely good limits of detection. However, it is non-selective apart from the use of chemical dopants. Here, a demonstrator manufactured entirely from fused silica capillaries and printed circuit boards is shown. It has a size of 75×60×25mm 3 and utilizes only 2W of power in total. Unlike other known discharge detectors, which require high-purity helium, this detector can theoretically be operated using any gas able to form stable ion species. Here, purified air is used. With this setup, limits of detection in the low parts-per-billion range have been obtained for acetone. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Dependence of Ozone Generation on Gas Temperature Distribution in AC Atmospheric Pressure Dielectric Barrier Discharge in Oxygen

    Science.gov (United States)

    Takahashi, Go; Akashi, Haruaki

    AC atmospheric pressure multi-filament dielectric barrier discharge in oxygen has been simulated using two dimensional fluid model. In the discharge, three kinds of streamers have been obtained. They are primary streamers, small scale streamers and secondary streamers. The primary streamers are main streamers in the discharge and the small scale streamers are formed after the ceasing of the primary streamers. And the secondary streamers are formed on the trace of the primary streamers. In these streamers, the primary and the small scale streamers are very effective to generate O(3P) oxygen atoms which are precursor of ozone. And the ozone is generated mainly in the vicinity of the dielectrics. In high gas temperature region, ozone generation decreases in general. However, increase of the O(3P) oxygen atom density in high gas temperature region compensates decrease of ozone generation rate coefficient. As a result, amount of ozone generation has not changed. But if the effect of gas temperature was neglected, amount of ozone generation increases 10%.

  4. Effects of gas temperature in the plasma layer on RONS generation in array-type dielectric barrier discharge at atmospheric pressure

    Science.gov (United States)

    Yoon, Sung-Young; Yi, Changho; Eom, Sangheum; Park, Seungil; Kim, Seong Bong; Ryu, Seungmin; Yoo, Suk Jae

    2017-12-01

    In this work, we studied the control of plasma-produced species under a fixed gas composition (i.e., ambient air) in a 10 kHz-driven array-type dielectric barrier atmospheric-pressure plasma discharge. Instead of the gas composition, only the gas velocity was controlled. Thus, the plasma-maintenance cost was considerably lower than methods such as external N2 or O2 injection. The plasma-produced species were monitored using Fourier transformed infrared spectroscopy. The discharge properties were measured using a voltage probe, current probe, infrared camera, and optical emission spectroscopy. The results showed that the major plasma products largely depend on the gas temperature in the plasma discharge layer. The gas temperature in the plasma discharge layer was significantly different to the temperature of the ceramic adjacent to the plasma discharge layer, even in the small discharge power density of ˜15 W/cm2 or ˜100 W/cm3. Because the vibrational excitation of N2 was suppressed by the higher gas flow, the major plasma-produced species shifted from NOx in low flow to O3 in high flow.

  5. The control of an invasive bivalve, Corbicula fluminea, using gas impermeable benthic barriers in a large natural lake.

    Science.gov (United States)

    Wittmann, Marion E; Chandra, Sudeep; Reuter, John E; Schladow, S Geoffrey; Allen, Brant C; Webb, Katie J

    2012-06-01

    Anoxia can restrict species establishment in aquatic systems and the artificial promotion of these conditions can provide an effective control strategy for invasive molluscs. Low abundances (2-20 m(-2)) of the nonnative bivalve, Asian clam (Corbicula fluminea), were first recorded in Lake Tahoe, CA-NV in 2002 and by 2010 nuisance-level population densities (>10,000 m(-2)) were observed. A non-chemical control method using gas impermeable benthic barriers to reduce dissolved oxygen (DO) concentrations available to C. fluminea was tested in this ultra-oligotrophic natural lake. In 2009, the impact of ethylene propylene diene monomer (EPDM) sheets (9 m(2), n = 6) on C. fluminea beds was tested on 1-7 day intervals over a 56 day period (August-September). At an average water temperature of 18 °C, DO concentrations under these small barriers were reduced to zero after 72 h resulting in 100 % C. fluminea mortality after 28 days. In 2010, a large EPDM barrier (1,950 m(2)) was applied to C. fluminea populations for 120 days (July-November). C. fluminea abundances were reduced over 98 % after barrier removal, and remained significantly reduced (>90 %) 1 year later. Non-target benthic macroinvertebrate abundances were also reduced, with variable taxon-specific recolonization rates. High C. fluminea abundance under anoxic conditions increased the release of ammonium and soluble reactive phosphorus from the sediment substrate; but levels of unionized ammonia were low at 0.004-0.005 mg L(-1). Prolonged exposure to anoxia using benthic barriers can provide an effective short term control strategy for C. fluminea.

  6. Overexpanded viscous supersonic jet interacting with a unilateral barrier

    Science.gov (United States)

    Dobrynin, B. M.; Maslennikov, V. G.; Sakharov, V. A.; Serova, E. V.

    1986-07-01

    The interaction of a two-dimensional supersonic jet with a unilateral barrier parallel to the flow symmetry plane was studied to account for effects due to gas viscosity and backgound-gas ejection from the region into which the jet expands. In the present experiments, the incident shock wave was reflected at the end of a shock tube equipped with a nozzle. The jet emerged into a pressure chamber 6 cu m in volume and the environmental pressure ratio of the flow in the quasi-stationary phase remained constant. The light source was an OGM-20 laser operating in the giant-pulse mode. Due to background-gas ejection, the gas density in the vicinity of the barrier is much less than on the unconfined side of the jet. The resulting flow is characterized by two distinct environmental pressure ratios: the flow is underexpanded near the barrier, while on the other side it is overexpanded.

  7. An Isotope Study of Hydrogenation of poly-Si/SiOx Passivated Contacts for Si Solar Cells: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Schnabel, Manuel; Nemeth, William; van de Loo, Bas, W.H.; Macco, Bart; Kessels, Wilhelmus, M.M.; Stradins, Paul; Young, David, L.

    2017-06-26

    For many years, the record Si solar cell efficiency stood at 25.0%. Only recently have several companies and institutes managed to produce more efficient cells, using passivated contacts of made doped poly-Si or a-Si:H and a passivating intrinsic interlayer in all cases. Common to these designs is the need to passivate the layer stack with hydrogen. In this contribution, we perform a systematic study of passivated contact passivation by hydrogen, using poly-Si/SiOx passivated contacts on n-Cz-Si, and ALD Al2O3 followed by a forming gas anneal (FGA) as the hydrogen source. We study p-type and n-type passivated contacts with implied Voc exceeding 690 and 720 mV, respectively, and perform either the ALD step or the FGA with deuterium instead of hydrogen in order to separate the two processes via SIMS. By examining the deuterium concentration at the SiOx in both types of samples, we demonstrate that the FGA supplies negligible hydrogen species to the SiOx, regardless of whether the FGA is hydrogenated or deuterated. Instead, it supplies the thermal energy needed for hydrogen species in the Al2O3 to diffuse there. Furthermore, the concentration of hydrogen species at the SiOx can saturate while implied Voc continues to increase, showing that the energy from the FGA is also required for hydrogen species already at the SiOx to find recombination-active defects to passivate.

  8. Gas injection system in the Tara center cell

    International Nuclear Information System (INIS)

    Brau, K.; Post, R.S.; Sevillano, E.

    1985-11-01

    Precise control of the gas fueling is essential to the successful operation of tandem mirror plasmas. Improper choice of fueling location, magnetic geometry, and gas injection rates can prevent potential and thermal barrier formation, as well as reduce the energy confinement time. In designing the new gas injection configuration for the Tara center cell, the following issues were addressed: RF potential barriers, gas leakage, and charge exchange recombination. 2 refs., 6 figs

  9. Gas migration characteristics of highly compacted bentonite ore

    International Nuclear Information System (INIS)

    Tanaka, Yukihisa; Hironaga, Michihiko

    2010-01-01

    In the current concept of repository for radioactive waste disposal, compacted bentonite will be used as an engineered barrier mainly for inhibiting migration of radioactive nuclides. Hydrogen gas can be generated inside the engineered barrier by anaerobic corrosion of metals used for containers, etc. If the gas generation rate exceeds the diffusion rate of dissolved gas inside of the engineered barrier, gas will accumulate in the void space inside of the engineered barrier until its pressure becomes large enough for it to enter the bentonite as a discrete gaseous phase. It is expected to be not easy for gas to entering into the bentonite as a discrete gaseous phase because the pore of compacted bentonite is so minute. Gas migration characteristics of highly compacted powdered bentonite are already reported by CRIEPI. In this report, gas migration characteristics of bentonite ore, which is a candidate for construction material of repository for radioactive waste, is investigated. The following conclusions are obtained through the results of the gas migration tests which are conducted in this study: 1) When the total gas pressure exceeds the initial total axial stress, the total axial stress is always equal to the total gas pressure because specimens shrink in the axial direction with causing the clearance between the end of the specimen and porous metal. By increasing the gas pressure more, gas breakthrough, which defined as a sudden and sharp increase in gas flow rate out of the specimen, occurs. Therefore gas migration mechanism of compacted bentonite ore is basically identical to that of compacted powdered bentonite. 2) Hydraulic conductivity measured after the gas breakthrough is somewhat smaller than that measured before the gas migration test. This fact means that it might be possible to neglect decline of the function of bentonite as engineered barrier caused by the gas breakthrough. These characteristics of compacted bentonite ore are identical to those of

  10. Effect of thermal barrier coatings on the performance of steam and water-cooled gas turbine/steam turbine combined cycle system

    Science.gov (United States)

    Nainiger, J. J.

    1978-01-01

    An analytical study was made of the performance of air, steam, and water-cooled gas-turbine/steam turbine combined-cycle systems with and without thermal-barrier coatings. For steam cooling, thermal barrier coatings permit an increase in the turbine inlet temperature from 1205 C (2200 F), resulting in an efficiency improvement of 1.9 percentage points. The maximum specific power improvement with thermal barriers is 32.4 percent, when the turbine inlet temperature is increased from 1425 C (2600 F) to 1675 C (3050 F) and the airfoil temperature is kept the same. For water cooling, the maximum efficiency improvement is 2.2 percentage points at a turbine inlet temperature of 1683 C (3062 F) and the maximum specific power improvement is 36.6 percent by increasing the turbine inlet temperature from 1425 C (2600 F) to 1730 C (3150 F) and keeping the airfoil temperatures the same. These improvements are greater than that obtained with combined cycles using air cooling at a turbine inlet temperature of 1205 C (2200 F). The large temperature differences across the thermal barriers at these high temperatures, however, indicate that thermal stresses may present obstacles to the use of coatings at high turbine inlet temperatures.

  11. The loyalty of industrial clients of gas and electricity: the value rol and switching barriers; La fidelizacion de clientes industriales de gas natural y electricidad: El papel del valor recibido y las barreras al cambio

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Acebron, C.; Vazquez Castelles, R.; Iglesias Arguelles, V.

    2007-07-01

    This paper deals with perceived value and loyalty in a B2 B environment taking account switching barriers. The Spanish energy market has been newly liberalized and many companies offer supply services of natural gas and electricity. The research examines the casual relations between perceived value and two dimensions of loyalty: repurchase intentions and price tolerance. Although our results indicate that suppliers achieve better repurchase intentions by providing value to their customers, they also show that this is insufficient when the aim is to increase customer price tolerance. In this case another moderating variable must be included: the switching barriers. (Author)

  12. Barrier Coatings for Refractory Metals and Superalloys

    Energy Technology Data Exchange (ETDEWEB)

    SM Sabol; BT Randall; JD Edington; CJ Larkin; BJ Close

    2006-02-23

    In the closed working fluid loop of the proposed Prometheus space nuclear power plant (SNPP), there is the potential for reaction of core and plant structural materials with gas phase impurities and gas phase transport of interstitial elements between superalloy and refractory metal alloy components during service. Primary concerns are surface oxidation, interstitial embrittlement of refractory metals and decarburization of superalloys. In parallel with kinetic investigations, this letter evaluates the ability of potential coatings to prevent or impede communication between reactor and plant components. Key coating requirements are identified and current technology coating materials are reviewed relative to these requirements. Candidate coatings are identified for future evaluation based on current knowledge of design parameters and anticipated environment. Coatings were identified for superalloys and refractory metals to provide diffusion barriers to interstitial transport and act as reactive barriers to potential oxidation. Due to their high stability at low oxygen potential, alumina formers are most promising for oxidation protection given the anticipated coolant gas chemistry. A sublayer of iridium is recommended to provide inherent diffusion resistance to interstitials. Based on specific base metal selection, a thin film substrate--coating interdiffusion barrier layer may be necessary to meet mission life.

  13. Barrier Coatings for Refractory Metals and Superalloys

    International Nuclear Information System (INIS)

    SM Sabol; BT Randall; JD Edington; CJ Larkin; BJ Close

    2006-01-01

    In the closed working fluid loop of the proposed Prometheus space nuclear power plant (SNPP), there is the potential for reaction of core and plant structural materials with gas phase impurities and gas phase transport of interstitial elements between superalloy and refractory metal alloy components during service. Primary concerns are surface oxidation, interstitial embrittlement of refractory metals and decarburization of superalloys. In parallel with kinetic investigations, this letter evaluates the ability of potential coatings to prevent or impede communication between reactor and plant components. Key coating requirements are identified and current technology coating materials are reviewed relative to these requirements. Candidate coatings are identified for future evaluation based on current knowledge of design parameters and anticipated environment. Coatings were identified for superalloys and refractory metals to provide diffusion barriers to interstitial transport and act as reactive barriers to potential oxidation. Due to their high stability at low oxygen potential, alumina formers are most promising for oxidation protection given the anticipated coolant gas chemistry. A sublayer of iridium is recommended to provide inherent diffusion resistance to interstitials. Based on specific base metal selection, a thin film substrate--coating interdiffusion barrier layer may be necessary to meet mission life

  14. Pulsed sub-microsecond dielectric barrier discharge treatment of simulated glass manufacturing industry flue gas: removal of SO2 and NOx

    International Nuclear Information System (INIS)

    Khacef, A; Cormier, J M

    2006-01-01

    Experiments were carried out to investigate the removal of SO 2 and NOx from simulated glass manufacturing industry flue gas containing O 2 , N 2 , NO, NO 2 , CO 2 , SO 2 and H 2 O using a sub-microsecond pulsed dielectric barrier discharge (DBD) at atmospheric pressure. Removal efficiencies of SO 2 and NOx (NO+NO 2 ) were achieved as a function of gas temperature for two specific energies and two initial NO, NO 2 and SO 2 concentrations. The higher SO 2 and NOx removal efficiencies were achieved in a gas stream containing 163 ppm of SO 2 , 523 ppm of NO, 49 ppm of NO 2 , 14% of CO 2 , 8% of O 2 , 16% of H 2 O and N 2 as balance. The experimental results were evaluated using the energy cost or W-value (eV/molecule removed). About 100% of SO 2 and 36% of NOx were removed at a gas temperature of 100 deg. C with an energy cost of about 45 eV/molecule removed and 36 eV/molecule removed, respectively. These results indicate that DBD plasmas have the potential to remove SO 2 and NOx from gas streams without additives

  15. Gas migration mechanism of saturated dense bentonite and its modeling

    International Nuclear Information System (INIS)

    Tanaka, Yukihisa; Hironaga, Michihiko; Kudo, Koji

    2007-01-01

    In the current concept of repository for nuclear waste disposal, compacted bentonite will be used as an engineered barrier mainly for inhibiting migration of radioactive nuclides. Hydrogen gas can be generated inside the engineered barrier by anaerobic corrosion of metals used for containers, etc. If the gas generation rate exceeds the diffusion rate of gas molecules inside of the engineered barrier, gas will accumulate in the void space inside of the engineered barrier until its pressure becomes large enough for it to enter the bentonite as a discrete gaseous phase. It is expected to be not easy for gas to entering into the bentonite as a discrete gaseous phase because the pore of compacted bentonite is so minute. Therefore it is necessary to investigate the following subjects: a) Effect of the accumulated gas pressure on surrounding objects such as concrete lining, rock mass. b) Effect of gas breakthrough on the barrier function of bentonite. c) Revealing and modeling gas migration mechanism for overcoming the scale effects in laboratory specimen test. Therefore in this study, gas migration tests for compacted and saturated bentonite to investigate and to model the mechanism of gas migration phenomenon. Firstly, the following conclusions were obtained through by the results of the gas migration tests which are conducted in this study: 1) Bubbles appear in the semitransparent drainage tube at first when the total gas is equal to the initial total axial stress or somewhat smaller. By increasing the gas pressure more, breakthrough of gas migration, which is defined as a sudden increase of amount of emission gas, occurred. When the total gas pressure exceeds the initial total axial stress, the total axial stress is always equal to the total gas pressure because specimens shrink in the axial direction with causing the clearance between the end of the specimen and porous metal. 2) Effective gas conductivity after breakthrough of gas migration is times larger than that

  16. Validation of an analytical method for simultaneous high-precision measurements of greenhouse gas emissions from wastewater treatment plants using a gas chromatography-barrier discharge detector system.

    Science.gov (United States)

    Pascale, Raffaella; Caivano, Marianna; Buchicchio, Alessandro; Mancini, Ignazio M; Bianco, Giuliana; Caniani, Donatella

    2017-01-13

    Wastewater treatment plants (WWTPs) emit CO 2 and N 2 O, which may lead to climate change and global warming. Over the last few years, awareness of greenhouse gas (GHG) emissions from WWTPs has increased. Moreover, the development of valid, reliable, and high-throughput analytical methods for simultaneous gas analysis is an essential requirement for environmental applications. In the present study, an analytical method based on a gas chromatograph (GC) equipped with a barrier ionization discharge (BID) detector was developed for the first time. This new method simultaneously analyses CO 2 and N 2 O and has a precision, measured in terms of relative standard of variation RSD%, equal to or less than 6.6% and 5.1%, respectively. The method's detection limits are 5.3ppm v for CO 2 and 62.0ppb v for N 2 O. The method's selectivity, linearity, accuracy, repeatability, intermediate precision, limit of detection and limit of quantification were good at trace concentration levels. After validation, the method was applied to a real case of N 2 O and CO 2 emissions from a WWTP, confirming its suitability as a standard procedure for simultaneous GHG analysis in environmental samples containing CO 2 levels less than 12,000mg/L. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Advocating for responsible oil and natural gas extraction policies; FracTracker as a mechanism for overcoming the barriers to scientific advocacy for academics and communities

    Science.gov (United States)

    Ferrar, K. J.; Malone, S.; Kelso, M.; Lenker, B.

    2013-12-01

    The inability to translate data to scientific information that can readily be incorporated by citizens into the public arena is an obstacle for science-based advocacy. This issue is particularly poignant for shale oil and natural gas development via hydraulic fracturing, as the issue has become highly politicized. Barriers to engaging in policy debate are different but highly related for community members and scientists. For citizens and interest groups, barriers including accessibility, public awareness and data presentation limit the motivation for community involvement in political interactions. To overcome such barriers, social researchers call for public engagement to move upstream and many call for a broad engagement of scientists in science-based advocacy. Furthermore surveys have shown that citizens, interest groups, and decision-makers share a broad desire for scientists to engage in environmental policy development. Regardless, scientists face a number of perceived barriers, with academics expressing the most resistance to overcoming the tension created by adherence to the scientific method and the need to engage with the broader society, described by Schneider (1990) as the 'double ethical bind'. For the scientific community the appeal of public dissemination of information beyond the scope of academic journals is limited for a number of reasons. Barriers include preservation of credibility, peer attitudes, training, and career trajectory. The result is a lack of translated information available to the public. This systematic analysis of the FracTracker platform provides an evaluation of where the features of the public engagement, GIS platform has been successful at overcoming these barriers to public dissemination, where the platform needs further development or is ill-suited to address these issues, and the development of FracTracker as an outlet for scientific researchers to engage with citizens. The analysis will also provide insight into what

  18. Hot fuel gas dedusting after sorbent-based gas cleaning

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    Advanced power generation technologies, such as Air Blown Gasification Cycle (ABGC), require gas cleaning at high temperatures in order to meet environmental standards and to achieve high thermal efficiencies. The primary hot gas filtration process, which removes particulates from the cooled raw fuel gas at up to 600{degree}C is the first stage of gas cleaning prior to desulphurization and ammonia removal processes. The dust concentration in the fuel gas downstream of the sorbent processes would be much lower than for the hot gas filtration stage and would have a lower sulphur content and possibly reduced chlorine concentration. The main aim of this project is to define the requirements for a hot gas filter for dedusting fuel gas under these conditions, and to identify a substantially simpler and more cost effective solution using ceramic or metal barrier filters.

  19. Wholesale gas competition in the Netherlands and implications for phase III customers

    International Nuclear Information System (INIS)

    Harris, D.; Lapuerta, C.

    2003-06-01

    We begin by describing the Dutch gas supply chain, including the recently proposed restructuring of the 'Gas Gebouw' (Gas Building). We also analyse Dutch gas consumers, discussing the time frame for market opening and the distinguishing characteristics of different consumers. We also discuss some of the unique features of the Dutch gas supply system, such as the Groningen field's role in providing flexibility. We identify several serious barriers to shippers who wish to serve customers that consume L-gas at a low load factor. We describe the barriers in detail and, where possible, estimate the maximum portion of the market that competitors could obtain in the face of such barriers. We then examine the implications of entry barriers for L-gas prices in the Netherlands. We examine the likely pricing incentives of Shell and ExxonMobil, which may be affected by the costs of switching between L-gas and H-gas. We discuss supplyside switching costs and demand-side switching costs separately, and examine the feasibility of distribution networks converting to H-gas in response to excessive gas prices. We conclude by framing these problems in the context of the European Commission's formal methodology for defining markets and assessing market dominance. We describe the Commission's methodology for market definition, and then apply the methodology to test whether H-gas and L-gas different occupy the same market. We conclude that small consumers of low-load-factor L-gas constitute a separate market, in which Gasunie has a 100% market share. High entry barriers and a high market share combine to give Gasunie a monopoly in the market, which after the proposed restructuring of the Gas Gebouw would become a duopoly between ExxonMobil and Shell

  20. Effect of etching stop layer on characteristics of amorphous IGZO thin film transistor fabricated at low temperature

    Directory of Open Access Journals (Sweden)

    Xifeng Li

    2013-03-01

    Full Text Available Transparent bottom-gate amorphous Indium-Gallium-Zinc Oxide (a-IGZO thin-film transistors (TFTs had been successfully fabricated at relative low temperature. The influence of reaction gas ratio of N2O and SiH4 during the growth of etching stop layer (SiOx on the characteristics of a-IGZO TFTs was investigated. The transfer characteristics of the TFTs were changed markedly because active layer of a-IGZO films was modified by plasma in the growth process of SiOx. By optimizing the deposition parameters of etching stop layer process, a-IGZO TFTs were manufactured and exhibited good performance with a field-effect mobility of 8.5 cm2V-1s-1, a threshold voltage of 1.3 V, and good stability under gate bias stress of 20 V for 10000 s.

  1. Effect of the superposition of a dielectric barrier discharge onto a premixed gas burner flame

    Science.gov (United States)

    Zaima, Kazunori; Takada, Noriharu; Sasaki, Koichi

    2011-10-01

    We are investigating combustion control with the help of nonequilibrium plasma. In this work, we examined the effect of dielectric barrier discharge (DBD) on a premixed burner flame with CH4/O2/Ar gas mixture. The premixed burner flame was covered with a quartz tube. A copper electrode was attached on the outside of the quartz tube, and it was connected to a high-voltage power supply. DBD inside the quartz tube was obtained between the copper electrode and the grounded nozzle of the burner which was placed at the bottom of the quartz tube. We clearly observed that the flame length was shortened by superposing DBD onto the bottom part of the flame. The shortened flame length indicates the enhancement of the burning velocity. We measured the optical emission spectra from the bottom region of the flame. As a result, we observed clear line emissions from Ar, which were never observed from the flame without DBD. We evaluated the rotational temperatures of OH and CH radicals by spectral fitting. As a result, the rotational temperature of CH was not changed, and the rotational temperature of OH was decreased by the superposition of DBD. According to these results, it is considered that the enhancement of the burning velocity is not caused by gas heating. New reaction pathways are suggested.

  2. Barrier-based micro/milli channels reactor

    NARCIS (Netherlands)

    Al-Rawashdeh, M.I.M.

    2013-01-01

    Gas-liquid processing in microreactors remains mostly restricted to the laboratory scale dueto the complexity and expenditure needed for an adequate numbering-up with a uniform flowdistribution. The barrier-based distributor is a multiphase flow distributor which assures flowuniformity and prevents

  3. Permeability measurement of some barrier materials as a function of temperature and pressure

    International Nuclear Information System (INIS)

    Maqsood, M.; Faisal, S.; Ali, J.; Usman, A.; Alamgir, K.; Farooq, K.

    2011-01-01

    Barrier materials possess the ability to restrict the passage of gases, vapors, and organic liquids through their boundaries. These barrier materials have large number of applications in industry and scientific research. To measure the permeability of barrier materials, a specific gas flow system has been developed, pure helium gas is used to measure the back ground reading through SS-316. The permeability and break-through time has been measured through Inconel X-750, NBR and Viton below and above the atmospheric pressure and at different temperatures 20 deg. C, 40 deg. C and 70 deg. C. (author)

  4. Determining optimal preventive maintenance interval for component of Well Barrier Element in an Oil & Gas Company

    Science.gov (United States)

    Siswanto, A.; Kurniati, N.

    2018-04-01

    An oil and gas company has 2,268 oil and gas wells. Well Barrier Element (WBE) is installed in a well to protect human, prevent asset damage and minimize harm to the environment. The primary WBE component is Surface Controlled Subsurface Safety Valve (SCSSV). The secondary WBE component is Christmas Tree Valves that consist of four valves i.e. Lower Master Valve (LMV), Upper Master Valve (UMV), Swab Valve (SV) and Wing Valve (WV). Current practice on WBE Preventive Maintenance (PM) program is conducted by considering the suggested schedule as stated on manual. Corrective Maintenance (CM) program is conducted when the component fails unexpectedly. Both PM and CM need cost and may cause production loss. This paper attempts to analyze the failure data and reliability based on historical data. Optimal PM interval is determined in order to minimize the total cost of maintenance per unit time. The optimal PM interval for SCSSV is 730 days, LMV is 985 days, UMV is 910 days, SV is 900 days and WV is 780 days. In average of all components, the cost reduction by implementing the suggested interval is 52%, while the reliability is improved by 4% and the availability is increased by 5%.

  5. Microstructure Evolution and Impedance Spectroscopy Characterization of Thermal Barrier Coating Exposed to Gas Thermal-shock Environment

    Directory of Open Access Journals (Sweden)

    CHEN Wen-long

    2017-10-01

    Full Text Available Gas thermal-shock experiment of thermal barrier coatings (TBCs was carried out in air up to 1250℃ in order to simulate the thermal cycling process of the engine blades during the start heating and shut down cooling. The growth of thermal growth oxide (TGO layer and microstructure evolution of YSZ layer during thermal cycling process were investigated systematically by electrochemical impedance spectroscopy testing and SEM. The results show that the thickness of TGO layer increases when increasing the frequency of thermal cycling, and the impedance response of middle frequencies is more and more remarkable. Meanwhile, initiation and growth of micro-cracks occur in YSZ layer during the gas thermal-shock experiment. The corresponding impedance characterization of YSZ layer after 100 cycles is similar to the as-sprayed sample, indicating that micro-cracks in short time could heal since the YSZ micro-cracks sinter at high temperature. But after 300 cycles, the impedance spectroscopy of YSZ layer is quite different to the as-sprayed sample, with the corresponding impedance of particle-gap of YSZ more and more remarkable with the increase of the thermal-shock times, indicating that non-healing micro-cracks form in the YSZ layer, which may be the main reason to induce the failure of YSZ layer.

  6. Optimizing The Efficiency of a Dielectric Barrier Discharge Reactor for Removal of Nitric Oxides in Gas Phase

    International Nuclear Information System (INIS)

    Siti Aiasah Hashim; Wong, C.S.; Abas, M.R.

    2016-01-01

    A dielectric barrier discharge (DBD) reactor was built and used to remove nitric oxides in gas phase. In the preliminary work, it was found that the DBD reactor can used for direct processing of contaminated air stream. It was observed that if the applied energy is sufficiently high, reduction can overcome the oxidation process. The other characteristics that can affect the efficiency of the reactor are the processing flow rate, number of DBD tubes used and how the tubes are connected. The composition of the feed gas also plays important role. To improve the efficiency, more tubes were added and configured in combination of serial and parallel connections to achieve the best result. The reactor was found to be most efficient when using 6 tubes configured to have 2 sets of 3 tubes in series connected in parallel. The maximum flow rate that can be treated is 5 scfh. When operated with the optimum input voltage of 32 kV, the reactor can remove up to 80 % nitric oxide in the reduction mode. This means that the energy is sufficiently high to sustain the reduction mode and prevent further oxidation. (author)

  7. Testing and analyses of a high temperature thermal barrier for gas-cooled reactors

    International Nuclear Information System (INIS)

    Black, W.E.; Betts, W.S.; Felten, P.

    1979-01-01

    A full size, multi-panel section of a thermal barrier system was fabricated from a nickel-base superalloy and a combination of fibrous blanket insulation materials for specific application in a steam cycle gas-cooled nuclear reactor. The 2.4 m square array was representative of the sidewall of the lower core outlet plenum and included coverplates, attachments, seals, and a simulated water-cooled liner. Testing was conducted in a reactor grade, helium-filled chamber at 816 0 C for 100 hours, which established a normal (baseline) condition; 982 0 C for 10 hours, which satisfied an emergency condition; 1093 0 C for 1 hour, which simulated a faulted condition; and 1260 0 C, which was a non-design condition test to demonstrate the temperature overshoot capability of the system. Post-test examination indicated: (1) an acceptable performance by the anti-friction chromium carbide (Cr 3 C 2 ) coating; (2) no significant galling between non-coated surfaces; (3) no distortion of attachment fixtures; (4) predictable coverplate deflection during the design conditions testing (normal, emergency, and faulted); and (5) considerable plastic deformation resulting from the near-incipient melting temperature. (orig.)

  8. Isomers and conformational barriers of gas phase nicotine, nornicotine and their protonated forms

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Tomoki; Farone, William A.; Xantheas, Sotiris S.

    2014-07-17

    We report extensive conformational searches of the neutral nicotine, nornicotine and their protonated analogs that are based on ab-initio second order Møller-Plesset perturbation (MP2) electronic structure calculations. Initial searches were performed with the 6-31G(d,p) and the energetics of the most important structures were further refined from geometry optimizations with the aug-cc-pVTZ basis set. Based on the calculated free energies at T=298 K for the gas phase molecules, neutral nicotine has two dominant trans conformers, whereas neutral nornicotine is a mixture of several conformers. For nicotine, the protonation on both the pyridine and the pyrrolidine sites is energetically competitive, whereas nornicotine prefers protonation on the pyridine nitrogen. The protonated form of nicotine is mainly a mixture of two pyridine-protonated trans conformers and two pyrrolidine-protonated trans conformers, whereas the protonated form of nornicotine is a mixture of four pyridine-protonated trans conformers. Nornicotine is conformationally more flexible than nicotine, however it is less protonated at the biologically important pyrrolidine nitrogen site. The lowest energy isomers for each case were found to interconvert via low (< 6 kcal/mol) rotational barriers around the pyridine-pyrrolidine bond.

  9. Gas-phase evolution of Ar/H2O and Ar/CH4 dielectric barrier discharge plasmas

    Science.gov (United States)

    Barni, Ruggero; Riccardi, Claudia

    2018-04-01

    We present some experimental results of an investigation aimed to hydrogen production with atmospheric pressure plasmas, based on the use of dielectric barrier discharges, fed with a high-voltage alternating signal at frequency 30-50 kHz, in mixtures of methane or water vapor diluted in argon. The plasma gas-phase of the discharge was investigated by means of optical and electrical diagnostics. The emission spectra of the discharges was measured with a wide band spectrometer and a photosensor module, based on a photomultiplier tube. A Rogowski coil allowed to measure the electric current flowing into the circuit and a high voltage probe was employed for evaluating the voltage at the electrodes. The analysis of the signals of voltage and current shows the presence of microdischarges between the electrodes in two alternating phases during the period of oscillation of the applied voltage. The hydrogen concentration in the gaseous mixture was measured too. Besides this experimental campaign, we present also results from a numerical modeling of chemical kinetics in the gas-phase of Ar/H2O and Ar/CH4 plasmas. The simulations were conducted under conditions of single discharge to study the evolution of the system and of fixed frequency repeated discharging. In particular in Ar/H2O mixtures we could study the evolution from early atomic dissociation in the discharge, to longer time scales, when chemical reactions take place producing an increase of the density of species such as OH, H2O2 and subsequently of H and H2. The results of numerical simulations provide some insights into the evolution happening in the plasma gas-phase during the hydrogen reforming process.

  10. Evaluation of gas migration characteristics of compacted bentonite considering in-situ conditions of disposal facility

    International Nuclear Information System (INIS)

    Tanaka, Yukihisa; Hironaga, Michihiko

    2012-01-01

    In the current concept of repository for radioactive waste disposal, compacted bentonite will be used as an engineered barrier mainly for inhibiting migration of radioactive nuclides. Hydrogen gas can be generated inside the engineered barrier by anaerobic corrosion of metals used for containers, etc. If the gas generation rate exceeds the diffusion rate of gas molecules inside of the engineered barrier, gas will accumulate in the void space inside of the engineered barrier until its pressure becomes large enough for it to enter the bentonite as a discrete gaseous phase. It is expected to be not easy for gas to entering into the bentonite as a discrete gaseous phase because the pore of compacted bentonite is so minute. Therefore it is necessary to investigate the effect of gas pressure generation and gas migration on the engineered barrier, peripheral facilities and ground. CRIEPI already proposed an analytical method for simulating gas migration through the compacted bentonite using the model of two phase flow through deformable porous media. Though validity of the analytical code of CRIEPI was examined by comparing existing gas migration test results with the calculated results, further validation is needed because in situ conditions, such as stress conditions and boundary condition, are different from conventional laboratory gas migration tent. In this study, gas migration tests whose initial axial stress is larger than initial radial stress and gas migration tests whose gas inlet is small. Simulation of the test results is also conducted. Comparing the test results with the calculated results, it is revealed that the analytical code of CRIEPI can simulate gas migration behavior through compacted bentonite with accuracy. (author)

  11. Prototype Engineered Barrier System Field Tests

    International Nuclear Information System (INIS)

    Ramirez, A.L.; Beatty, J.; Buscheck, T.A.

    1989-01-01

    This paper presents selected preliminary results obtained during the first 54 days of the Prototype Engineered Barrier System Field Tests (PEBSFT) that are being performed in G-Tunnel within the Nevada Test Site. The test described is a precursor to the Engineered Barrier Systems Field Tests (EBSFT). The EBSFT will consist of in situ tests of the geohydrologic and geochemical environment in the near field (within a few meters) of heaters emplaced in welded tuff to simulate the thermal effects of waste packages. The PEBSFTs are being conducted to evaluate the applicability of measurement techniques, numerical models, and procedures for future investigations that will be conducted in the Exploratory Shaft Facilities of the Yucca Mountain Project (YMP). The paper discusses the evolution of hydrothermal behavior during the prototype test, including rock temperatures, changes in rock moisture content, air permeability of fractures, gas pressures, and rock mass gas-phase humidity. 10 refs., 12 figs

  12. Theoretical investigation of gas separation in functionalized nanoporous graphene membranes

    Science.gov (United States)

    Wang, Yong; Yang, Qingyuan; Zhong, Chongli; Li, Jinping

    2017-06-01

    Graphene has enormous potential as a membrane-separation material with ultrahigh permeability and selectivity. The understanding of mass-transport mechanism in graphene membranes is crucial for applications in gas separation field. We computationally investigated the capability and mechanisms of functionalized nanoporous graphene membranes for gas separation. The functionalized graphene membranes with appropriate pore size and geometry possess excellent high selectivity for separating CO2/N2, CO2/CH4 and N2/CH4 gas mixtures with a gas permeance of ∼103-105 GPU, compared with ∼100 GPU for typical polymeric membranes. More important, we found that, for ultrathin graphene membranes, the gas separation performance has a great dependence not only with the energy barrier for gas getting into the pore of the graphene membranes, but also with the energy barrier for gas escaping from the pore to the other side of the membranes. The gas separation performance can be tuned by changing the two energy barriers, which can be realized by varying the chemical functional groups on the pore rim of the graphene. The novel mass-transport mechanism obtained in current study may provide a theoretical foundation for guiding the future design of graphene membranes with outstanding separation performance.

  13. Degassing, gas retention and release in Fe(0) permeable reactive barriers.

    Science.gov (United States)

    Ruhl, Aki S; Jekel, Martin

    2014-04-01

    Corrosion of Fe(0) has been successfully utilized for the reductive treatment of multiple contaminants. Under anaerobic conditions, concurrent corrosion leads to the generation of hydrogen and its liberation as a gas. Gas bubbles are mobile or trapped within the irregular pore structure leading to a reduction of the water filled pore volume and thus decreased residence time and permeability (gas clogging). With regard to the contaminant transport to the reactive site, the estimation of surface properties of the reactive material indicated that individual gas bubbles only occupied minor contact areas of the reactive surface. Quantification of gas entrapment by both gravimetrical and tracer investigations revealed that development of preferential flow paths was not significant. A novel continuous gravimetrical method was implemented to record variations in gas entrapment and gas bubble releases from the reactive filling. Variation of grain size fractions revealed that the pore geometry had a significant impact on gas release. Large pores led to the release of comparably large gas amounts while smaller volumes were released from finer pores with a higher frequency. Relevant processes are explained with a simplified pictorial sequence that incorporates relevant mechanisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Cost and effectiveness of radon barrier systems

    International Nuclear Information System (INIS)

    Baker, E.G.; Freeman, H.D.; Hartley, J.N.; Gee, G.W.

    1982-12-01

    Earthen, asphalt, and multilayer radon barrier systems can all provide reduction in the amount of radon gas released from uranium mill tailings. Pacific Northwest Laboratory field tested all three types of covers at Grand Junction, Colorado during the summer of 1981. All nine individual radon barrier systems tested currently meet the EPA standard for radon flux of 20 pCi m - 2 s - 1 . The cost of the asphalt and 3m earthen covers were about the same at the field test. Multilayer covers were significantly more costly. Cost estimates for three high priority western sites indicate 3m of earthen cover is the least costly radon barrier when earthen material is available at or near the disposal site. If earthen material must be imported more than 8 to 10 km asphalt and possibly multilayer radon barriers can be cost effective

  15. Structural properties of ultraviolet cured polysilazane gas barrier layers on polymer substrates

    International Nuclear Information System (INIS)

    Morlier, Arnaud; Cros, Stéphane; Garandet, Jean-Paul; Alberola, Nicole

    2014-01-01

    Perhydropolysilazane (PHPS) conversion to silica through high energy ultraviolet irradiation has been studied. Precursor conversion speed and structural properties of the UV cured PHPS have been investigated and showed that this conversion method is fast but that complete conversion into silica is not achieved in an oxygen depleted atmosphere for layer thicknesses higher than 30 nm, resulting in a composite structure with concentration gradients. We further show that Fourier transform infrared spectroscopy data allow investigating the local structure and composition over the depth of the obtained layers. Gas permeability of the thin UV cured PHPS layers deposited on polymers has been studied. We used a high sensitivity permeation measurement technique to determine water vapor and oxygen permeabilities of the barrier layers and show the correlation between helium, oxygen and water permeability of these materials. Oxygen and water vapor transmission rates of respectively 0.06 cm 3 /m 2 /day/bar and 0.2 g/m 2 /day have been obtained with layers deposited on a polymer substrate. - Highlights: • Perhydropolysilazane has been converted into dense layers by vacuum UV irradiation. • Cured perhydropolysilazane layers have an inhomogeneous structure. • The cured material consists in 3 spontaneously formed layers. • Oxygen and water transmission rates of 0.06 cm 3 /m 2 /day/bar and 0.02 g/m 2 /day are reached

  16. Ultraviolet-B radiation enhancement in dielectric barrier discharge based xenon chloride exciplex source by air

    Energy Technology Data Exchange (ETDEWEB)

    Gulati, P., E-mail: pgulati1512@gmail.com [CSIR-Central Electronics Engineering Research Institute (CSIR-CEERI), Pilani, Rajasthan-333031 (India); Department of Physics, Banasthali University, P.O. Banasthali Vidyapith, Rajasthan 304022 (India); Prakash, R.; Pal, U. N.; Kumar, M. [CSIR-Central Electronics Engineering Research Institute (CSIR-CEERI), Pilani, Rajasthan-333031 (India); Vyas, V. [Department of Physics, Banasthali University, P.O. Banasthali Vidyapith, Rajasthan 304022 (India)

    2014-07-07

    A single barrier dielectric barrier discharge tube of quartz with multi-strip Titanium-Gold (Ti-Au) coatings have been developed and utilized for ultraviolet-B (UV-B) radiation production peaking at wavelength 308 nm. The observed radiation at this wavelength has been examined for the mixtures of the Xenon together with chlorine and air admixtures. The gas mixture composition, chlorine gas content, total gas pressure, and air pressure dependency of the UV intensity, has been analyzed. It is found that the larger concentration of Cl{sub 2} deteriorates the performance of the developed source and around 2% Cl{sub 2} in this source produced optimum results. Furthermore, an addition of air in the xenon and chlorine working gas environment leads to achieve same intensity of UV-B light but at lower working gas pressure where significant amount of gas is air.

  17. Ultraviolet-B radiation enhancement in dielectric barrier discharge based xenon chloride exciplex source by air

    Science.gov (United States)

    Gulati, P.; Prakash, R.; Pal, U. N.; Kumar, M.; Vyas, V.

    2014-07-01

    A single barrier dielectric barrier discharge tube of quartz with multi-strip Titanium-Gold (Ti-Au) coatings have been developed and utilized for ultraviolet-B (UV-B) radiation production peaking at wavelength 308 nm. The observed radiation at this wavelength has been examined for the mixtures of the Xenon together with chlorine and air admixtures. The gas mixture composition, chlorine gas content, total gas pressure, and air pressure dependency of the UV intensity, has been analyzed. It is found that the larger concentration of Cl2 deteriorates the performance of the developed source and around 2% Cl2 in this source produced optimum results. Furthermore, an addition of air in the xenon and chlorine working gas environment leads to achieve same intensity of UV-B light but at lower working gas pressure where significant amount of gas is air.

  18. GAS PERMEABILITY OF GEOSYNTHETIC CLAY LINERS

    Directory of Open Access Journals (Sweden)

    Helena Vučenović

    2017-01-01

    Full Text Available Geosynthetic clay liners (GCL are manufactured hydraulic barriers consisting of mineral and geosynthetic components. They belong to a group of geosynthetic products whose primary purpose is to seal and they have been used in many geotechnical and hydrotechnical applications, landfi lls and liquid waste lagoons for quite a while. They are used in landfill final cover systems to prevent the infi ltration of precipitation into the landfi ll body and the penetration of gases and liquids from the landfill into the atmosphere and environment. Laboratory and fi eld research and observations on regulated landfi lls have proven the eff ectiveness of GCL as a barrier for the infi ltration of precipitation into the landfi ll body as well as the drainage of fl uid beneath the landfill. Due to the presence of high concentrations of gases in the landfill body, there is a growing interest in determining the efficiency of GCL as a gas barrier. It was not until the last twenty years that the importance of this topic was recognized. In this article, current GCL gas permeability studies, the testing methods and test results of gas permeability in laboratory conditions are described.

  19. The effect of O2 in a humid O2/N2/NOx gas mixture on NOx and N2O remediation by an atmospheric pressure dielectric barrier discharge

    DEFF Research Database (Denmark)

    Teodoru, Steluta; Kusano, Yukihiro; Bogaerts, Annemie

    2012-01-01

    A numerical model for NxOy remediation in humid air plasma produced with a dielectric barrier discharge at atmospheric pressure is presented. Special emphasis is given to NO2 and N2O reduction with the decrease of O2 content in the feedstock gas. A detailed reaction mechanism including electronic...

  20. Gas barrier properties of titanium oxynitride films deposited on polyethylene terephthalate substrates by reactive magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Lin, M.-C. [Department of Materials Science and Engineering, National ChungHsin University, 250, Kuo-Kung Road, 40227 Taichung, Taiwan (China); Chang, L.-S. [Department of Materials Science and Engineering, National ChungHsin University, 250, Kuo-Kung Road, 40227 Taichung, Taiwan (China)], E-mail: lschang@dragon.nchu.edu.tw; Lin, H.C. [Department of Materials Science and Engineering, National Taiwan University, 1, Roosevelt Road, Sec. 4, 106 Taipei, Taiwan (China)

    2008-03-30

    Titanium oxynitride (TiN{sub x}O{sub y}) films were deposited on polyethylene terephthalate (PET) substrates by means of a reactive radio frequency (RF) magnetron sputtering system in which the power density and substrate bias were the varied parameters. Experimental results show that the deposited TiN{sub x}O{sub y} films exhibited an amorphous or a columnar structure with fine crystalline dependent on power density. The deposition rate increases significantly in conjunction as the power density increases from 2 W/cm{sup 2} to 7 W/cm{sup 2}. The maximum deposition rate occurs, as the substrate bias is -40 V at a certain power densities chosen in this study. The film's roughness slightly decreases with increasing substrate bias. The TiN{sub x}O{sub y} films deposited at power densities above 4 W/cm{sup 2} show a steady Ti:N:O ratio of about 1:1:0.8. The water vapor and oxygen transmission rates of the TiN{sub x}O{sub y} films reach values as low as 0.98 g/m{sup 2}-day-atm and 0.60 cm{sup 3}/m{sup 2}-day-atm which are about 6 and 47 times lower than those of the uncoated PET substrate, respectively. These transmission rates are comparable to those of DLC, carbon-based and Al{sub 2}O{sub 3} barrier films. Therefore, TiN{sub x}O{sub y} films are potential candidates to be used as a gas permeation barrier for PET substrate.

  1. Collective phenomena in volume and surface barrier discharges

    Science.gov (United States)

    Kogelschatz, U.

    2010-11-01

    Barrier discharges are increasingly used as a cost-effective configuration to produce non-equilibrium plasmas at atmospheric pressure. This way, copious amounts of electrons, ions, free radicals and excited species can be generated without significant heating of the background gas. In most applications the barrier is made of dielectric material. Major applications utilizing mainly dielectric barriers include ozone generation, surface cleaning and modification, polymer and textile treatment, sterilization, pollution control, CO2 lasers, excimer lamps, plasma display panels (flat TV screens). More recent research efforts are devoted to biomedical applications and to plasma actuators for flow control. Sinusoidal feeding voltages at various frequencies as well as pulsed excitation schemes are used. Volume as well as surface barrier discharges can exist in the form of filamentary, regularly patterned or diffuse, laterally homogeneous discharges. The physical effects leading to collective phenomena in volume and surface barrier discharges are discussed in detail. Special attention is paid to self-organization of current filaments and pattern formation. Major similarities of the two types of barrier discharges are elaborated.

  2. Failure Analysis of Multilayered Suspension Plasma-Sprayed Thermal Barrier Coatings for Gas Turbine Applications

    Science.gov (United States)

    Gupta, M.; Markocsan, N.; Rocchio-Heller, R.; Liu, J.; Li, X.-H.; Östergren, L.

    2018-02-01

    Improvement in the performance of thermal barrier coatings (TBCs) is one of the key objectives for further development of gas turbine applications. The material most commonly used as TBC topcoat is yttria-stabilized zirconia (YSZ). However, the usage of YSZ is limited by the operating temperature range which in turn restricts the engine efficiency. Materials such as pyrochlores, perovskites, rare earth garnets are suitable candidates which could replace YSZ as they exhibit lower thermal conductivity and higher phase stability at elevated temperatures. The objective of this work was to investigate different multilayered TBCs consisting of advanced topcoat materials fabricated by suspension plasma spraying (SPS). The investigated topcoat materials were YSZ, dysprosia-stabilized zirconia, gadolinium zirconate, and ceria-yttria-stabilized zirconia. All topcoats were deposited by TriplexPro-210TM plasma spray gun and radial injection of suspension. Lifetime of these samples was examined by thermal cyclic fatigue and thermal shock testing. Microstructure analysis of as-sprayed and failed specimens was performed with scanning electron microscope. The failure mechanisms in each case have been discussed in this article. The results show that SPS could be a promising route to produce multilayered TBCs for high-temperature applications.

  3. Method for contamination control and barrier apparatus with filter for containing waste materials that include dangerous particulate matter

    Science.gov (United States)

    Pinson, Paul A.

    1998-01-01

    A container for hazardous waste materials that includes air or other gas carrying dangerous particulate matter has incorporated in barrier material, preferably in the form of a flexible sheet, one or more filters for the dangerous particulate matter sealably attached to such barrier material. The filter is preferably a HEPA type filter and is preferably chemically bonded to the barrier materials. The filter or filters are preferably flexibly bonded to the barrier material marginally and peripherally of the filter or marginally and peripherally of air or other gas outlet openings in the barrier material, which may be a plastic bag. The filter may be provided with a backing panel of barrier material having an opening or openings for the passage of air or other gas into the filter or filters. Such backing panel is bonded marginally and peripherally thereof to the barrier material or to both it and the filter or filters. A coupling or couplings for deflating and inflating the container may be incorporated. Confining a hazardous waste material in such a container, rapidly deflating the container and disposing of the container, constitutes one aspect of the method of the invention. The chemical bonding procedure for producing the container constitutes another aspect of the method of the invention.

  4. Method for contamination control and barrier apparatus with filter for containing waste materials that include dangerous particulate matter

    International Nuclear Information System (INIS)

    Pinson, P.A.

    1998-01-01

    A container for hazardous waste materials that includes air or other gas carrying dangerous particulate matter has incorporated barrier material, preferably in the form of a flexible sheet, and one or more filters for the dangerous particulate matter sealably attached to such barrier material. The filter is preferably a HEPA type filter and is preferably chemically bonded to the barrier materials. The filter or filters are preferably flexibly bonded to the barrier material marginally and peripherally of the filter or marginally and peripherally of air or other gas outlet openings in the barrier material, which may be a plastic bag. The filter may be provided with a backing panel of barrier material having an opening or openings for the passage of air or other gas into the filter or filters. Such backing panel is bonded marginally and peripherally thereof to the barrier material or to both it and the filter or filters. A coupling or couplings for deflating and inflating the container may be incorporated. Confining a hazardous waste material in such a container, rapidly deflating the container and disposing of the container, constitutes one aspect of the method of the invention. The chemical bonding procedure for producing the container constitutes another aspect of the method of the invention. 3 figs

  5. Stoichiometry of Silicon Dioxide Films Obtained by Ion-Beam Sputtering

    Science.gov (United States)

    Telesh, E. V.; Dostanko, A. P.; Gurevich, O. V.

    2018-03-01

    The composition of SiOx films produced by ion-beam sputtering (IBS) of silicon and quartz targets were studied by infrared spectrometry. Films with thicknesses of 150-390 nm were formed on silicon substrates. It was found that increase in the partial pressure of oxygen in the working gas, increase in the temperature of the substrate, and the presence of a positive potential on the target during reactive IBS of silicon shifted the main absorption band νas into the high-frequency region and increased the composition index from 1.41 to 1.85. During IBS of a quartz target the stoichiometry of the films deteriorates with increase of the energy of the sputtering argon ions. This may be due to increase of the deposition rate. Increase in the current of the thermionic compensator, increase of the substrate temperature, and addition of oxygen led to the formation of SiOx films with improved stoichiometry.

  6. The simplest equivalent circuit of a pulsed dielectric barrier discharge and the determination of the gas gap charge transfer

    Science.gov (United States)

    Pipa, A. V.; Koskulics, J.; Brandenburg, R.; Hoder, T.

    2012-11-01

    The concept of the simplest equivalent circuit for a dielectric barrier discharge (DBD) is critically reviewed. It is shown that the approach is consistent with experimental data measured either in large-scale sinusoidal-voltage driven or miniature pulse-voltage driven DBDs. An expression for the charge transferred through the gas gap q(t) is obtained with an accurate account for the displacement current and the values of DBD reactor capacitance. This enables (i) the significant reduction of experimental error in the determination of q(t) in pulsed DBDs, (ii) the verification of the classical electrical theory of ozonizers about maximal transferred charge qmax, and (iii) the development of a graphical method for the determination of qmax from charge-voltage characteristics (Q-V plots, often referred as Lissajous figures) measured under pulsed excitation. The method of graphical presentation of qmax is demonstrated with an example of a Q-V plot measured under pulsed excitation. The relations between the discharge current jR(t), the transferred charge q(t), and the measurable parameters are presented in new forms, which enable the qualitative interpretation of the measured current and voltage waveforms without the knowledge about the value of the dielectric barrier capacitance Cd. Whereas for quantitative evaluation of electrical measurements, the accurate estimation of the Cd is important.

  7. Highly conformal SiO2/Al2O3 nanolaminate gas-diffusion barriers for large-area flexible electronics applications

    International Nuclear Information System (INIS)

    Choi, Jin-Hwan; Kim, Young-Min; Park, Young-Wook; Park, Tae-Hyun; Jeong, Jin-Wook; Choi, Hyun-Ju; Song, Eun-Ho; Ju, Byeong-Kwon; Lee, Jin-Woo; Kim, Cheol-Ho

    2010-01-01

    The present study demonstrates a flexible gas-diffusion barrier film, containing an SiO 2 /Al 2 O 3 nanolaminate on a plastic substrate. Highly uniform and conformal coatings can be made by alternating the exposure of a flexible polyethersulfone surface to vapors of SiO 2 and Al 2 O 3 , at nanoscale thickness cycles via RF-magnetron sputtering deposition. The calcium degradation test indicates that 24 cycles of a 10/10 nm inorganic bilayer, top-coated by UV-cured resin, greatly enhance the barrier performance, with a permeation rate of 3.79 x 10 -5 g m -2 day -1 based on the change in the ohmic behavior of the calcium sensor at 20 deg. C and 50% relative humidity. Also, the permeation rate for 30 cycles of an 8/8 nm inorganic bilayer coated with UV resin was beyond the limited measurable range of the Ca test at 60 deg. C and 95% relative humidity. It has been found that such laminate films can effectively suppress the void defects of a single inorganic layer, and are significantly less sensitive against moisture permeation. This nanostructure, fabricated by an RF-sputtering process at room temperature, is verified as being useful for highly water-sensitive organic electronics fabricated on plastic substrates.

  8. New Type Far IR and THz Schottky Barrier Detectors for Scientific and Civil Application

    Directory of Open Access Journals (Sweden)

    V. G. Ivanov

    2011-01-01

    Full Text Available The results of an experimental investigation into a new type of VLWIR detector based on hot electron gas emission and architecture of the detector are presented and discussed. The detectors (further referred to as HEGED take advantage of the thermionic emission current change effect in a semiconductor diode with a Schottky barrier (SB as a result of the direct transfer of the absorbed radiation energy to the system of electronic gas in the quasimetallic layer of the barrier. The possibility of detecting radiation having the energy of quantums less than the height of the Schottky diode potential barrier and of obtaining a substantial improvement of a cutoff wavelength to VLWIR of the PtSi/Si detector has been demonstrated. The complementary contribution of two physical mechanisms of emanation detection—“quantum” and hot electrons gas emission—has allowed the creation of a superwideband IR detector using standard silicon technology.

  9. Silicon oxide: a non-innocent surface for molecular electronics and nanoelectronics studies.

    Science.gov (United States)

    Yao, Jun; Zhong, Lin; Natelson, Douglas; Tour, James M

    2011-02-02

    Silicon oxide (SiO(x)) has been widely used in many electronic systems as a supportive and insulating medium. Here, we demonstrate various electrical phenomena such as resistive switching and related nonlinear conduction, current hysteresis, and negative differential resistance intrinsic to a thin layer of SiO(x). These behaviors can largely mimic numerous electrical phenomena observed in molecules and other nanomaterials, suggesting that substantial caution should be paid when studying conduction in electronic systems with SiO(x) as a component. The actual electrical phenomena can be the result of conduction from SiO(x) at a post soft-breakdown state and not the presumed molecular or nanomaterial component. These electrical properties and the underlying mechanisms are discussed in detail.

  10. Gas composition and isotopic geochemistry of cuttings, core, and gas hydrate from the JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well

    Science.gov (United States)

    Lorenson, T.D.

    1999-01-01

    Molecular and isotopic composition of gases from the JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well demonstrate that the in situ gases can be divided into three zones composed of mixtures of microbial and thermogenic gases. Sediments penetrated by the well are thermally immature; thus the sediments are probably not a source of thermogenic gas. Thermogenic gas likely migrated from depths below 5000 m. Higher concentrations of gas within and beneath the gas hydrate zone suggest that gas hydrate is a partial barrier to gas migration. Gas hydrate accumulations occur wholly within zone 3, below the base of permafrost. The gas in gas hydrate resembles, in part, the thermogenic gas in surrounding sediments and gas desorbed from lignite. Gas hydrate composition implies that the primary gas hydrate form is Structure I. However, Structure II stabilizing gases are more concentrated and isotopically partitioned in gas hydrate relative to the sediment hosting the gas hydrate, implying that Structure II gas hydrate may be present in small quantities.

  11. Bond strength and stress measurements in thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Gell, M.; Jordan, E. [Univ. of Connecticut, Storrs, CT (United States)

    1995-10-01

    Thermal barrier coatings have been used extensively in aircraft gas turbines for more than 15 years to insulate combustors and turbine vanes from the hot gas stream. Plasma sprayed thermal barrier coatings (TBCs) provide metal temperature reductions as much as 300{degrees}F, with improvements in durability of two times or more being achieved. The introduction of TBCs deposited by electron beam physical vapor deposition (EB-PVD) processes in the last five years has provided a major improvement in durability and also enabled TBCs to be applied to turbine blades for improved engine performance. To meet the aggressive Advanced Turbine Systems goals for efficiency, durability and the environment, it will be necessary to employ thermal barrier coatings on turbine airfoils and other hot section components. For The successful application of TBCs to ATS engines with 2600{degrees}F turbine inlet temperatures and required component lives 10 times greater than those for aircraft gas turbine engines, it is necessary to develop quantitative assessment techniques for TBC coating integrity with time and cycles in ATS engines. Thermal barrier coatings in production today consist of a metallic bond coat, such as an MCrAlY overlay coating or a platinum aluminide (Pt-Al) diffusion coating. During heat treatment, both these coatings form a thin, tightly adherent alumina (Al{sub 2}O{sub 3}) film. Failure of TBC coatings in engine service occurs by spallation of the ceramic coating at or near the bond coat to alumina or the alumina to zirconia bonds. Thus, it is the initial strength of these bonds and the stresses at the bond plane, and their changes with engine exposure, that determines coating durability. The purpose of this program is to provide, for the first time, a quantitative assessment of TBC bond strength and bond plane stresses as a function of engine time and cycles.

  12. Clays in natural and engineered barriers for radioactive waste confinement

    International Nuclear Information System (INIS)

    2007-01-01

    The meeting covers all topics concerning natural argillaceous geological barriers and the clay material based engineered barrier systems, investigated by means of: laboratory experiments on clay samples (new analytical developments), in situ experiments in underground research laboratories, mock-up demonstrations, natural analogues, as well as numerical modelling and global integration approaches (including up-scaling processes and treatment of uncertainties). The works presented deal with: examples of broad research programs (national or international) on the role of natural and artificial clay barriers for radionuclide confinement; clay-based repository concepts: repository designs, including technological and safety issues related to the use of clay for nuclear waste confinement; geology and clay characterisation: mineralogy, sedimentology, paleo-environment, diagenesis, dating techniques, discontinuities in rock clay, fracturing, self sealing processes, role of organic matter and microbiological processes; geochemistry: pore water geochemistry, clay thermodynamics, chemical retention, geochemical modelling, advanced isotopic geochemistry; mass transfer: water status and hydraulic properties in low permeability media, pore space geometry, water, solute and gas transfer processes, colloid mediated transport, large scale movements, long-term diffusion; alteration processes: oxidation effects, hydration-dehydration processes, response to thermal stress, iron-clay interactions, alkaline perturbation; geomechanics: thermo-hydro-mechanical behaviour of clay, rheological models, EDZ characterisation and evolution, coupled behaviour and models (HM, THM, THMC). A particular interest is given to potential contributions coming from fields of activities other than radioactive waste management, which take advantage of the confinement properties of the clay barrier (oil and gas industries, gas geological storage, CO 2 geological sequestration, chemical waste isolation

  13. Clays in natural and engineered barriers for radioactive waste confinement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The meeting covers all topics concerning natural argillaceous geological barriers and the clay material based engineered barrier systems, investigated by means of: laboratory experiments on clay samples (new analytical developments), in situ experiments in underground research laboratories, mock-up demonstrations, natural analogues, as well as numerical modelling and global integration approaches (including up-scaling processes and treatment of uncertainties). The works presented deal with: examples of broad research programs (national or international) on the role of natural and artificial clay barriers for radionuclide confinement; clay-based repository concepts: repository designs, including technological and safety issues related to the use of clay for nuclear waste confinement; geology and clay characterisation: mineralogy, sedimentology, paleo-environment, diagenesis, dating techniques, discontinuities in rock clay, fracturing, self sealing processes, role of organic matter and microbiological processes; geochemistry: pore water geochemistry, clay thermodynamics, chemical retention, geochemical modelling, advanced isotopic geochemistry; mass transfer: water status and hydraulic properties in low permeability media, pore space geometry, water, solute and gas transfer processes, colloid mediated transport, large scale movements, long-term diffusion; alteration processes: oxidation effects, hydration-dehydration processes, response to thermal stress, iron-clay interactions, alkaline perturbation; geomechanics: thermo-hydro-mechanical behaviour of clay, rheological models, EDZ characterisation and evolution, coupled behaviour and models (HM, THM, THMC). A particular interest is given to potential contributions coming from fields of activities other than radioactive waste management, which take advantage of the confinement properties of the clay barrier (oil and gas industries, gas geological storage, CO{sub 2} geological sequestration, chemical waste isolation

  14. Synergetic aspects of gas-discharge: lateral patterns in dc systems with a high ohmic barrier

    Science.gov (United States)

    Purwins, H.-G.; Stollenwerk, L.

    2014-12-01

    The understanding of self-organized patterns in spatially extended nonlinear dissipative systems is one of the most challenging subjects in modern natural sciences. Such patterns are also referred to as dissipative structures. We review this phenomenon in planar low temperature dc gas-discharge devices with a high ohmic barrier. It is demonstrated that for these systems a deep qualitative understanding of dissipative structures can be obtained from the point of view of synergetics. At the same time, a major contribution can be made to the general understanding of dissipative structures. The discharge spaces of the experimentally investigated systems, to good approximation, have translational and rotational symmetry by contraction. Nevertheless, a given system may exhibit stable current density distributions and related patterns that break these symmetries. Among the experimentally observed fundamental patterns one finds homogeneous isotropic states, fronts, periodic patterns, labyrinth structures, rotating spirals, target patterns and localized filaments. In addition, structures are observed that have the former as elementary building blocks. Finally, defect structures as well as irregular patterns are common phenomena. Such structures have been detected in numerous other driven nonlinear dissipative systems, as there are ac gas-discharge devices, semiconductors, chemical solutions, electrical networks and biological systems. Therefore, from the experimental observations it is concluded that the patterns in planar low temperature dc gas-discharge devices exhibit universal behavior. From the theoretical point of view, dissipative structures of the aforementioned kind are also referred to as attractors. The possible sets of attractors are an important characteristic of the system. The number and/or qualitative nature of attractors may change when changing parameters. The related bifurcation behavior is a central issue of the synergetic approach chosen in the present

  15. Synergetic aspects of gas-discharge: lateral patterns in dc systems with a high ohmic barrier

    International Nuclear Information System (INIS)

    Purwins, H-G; Stollenwerk, L

    2014-01-01

    The understanding of self-organized patterns in spatially extended nonlinear dissipative systems is one of the most challenging subjects in modern natural sciences. Such patterns are also referred to as dissipative structures. We review this phenomenon in planar low temperature dc gas-discharge devices with a high ohmic barrier. It is demonstrated that for these systems a deep qualitative understanding of dissipative structures can be obtained from the point of view of synergetics. At the same time, a major contribution can be made to the general understanding of dissipative structures. The discharge spaces of the experimentally investigated systems, to good approximation, have translational and rotational symmetry by contraction. Nevertheless, a given system may exhibit stable current density distributions and related patterns that break these symmetries. Among the experimentally observed fundamental patterns one finds homogeneous isotropic states, fronts, periodic patterns, labyrinth structures, rotating spirals, target patterns and localized filaments. In addition, structures are observed that have the former as elementary building blocks. Finally, defect structures as well as irregular patterns are common phenomena. Such structures have been detected in numerous other driven nonlinear dissipative systems, as there are ac gas-discharge devices, semiconductors, chemical solutions, electrical networks and biological systems. Therefore, from the experimental observations it is concluded that the patterns in planar low temperature dc gas-discharge devices exhibit universal behavior. From the theoretical point of view, dissipative structures of the aforementioned kind are also referred to as attractors. The possible sets of attractors are an important characteristic of the system. The number and/or qualitative nature of attractors may change when changing parameters. The related bifurcation behavior is a central issue of the synergetic approach chosen in the present

  16. The influence of the structures and compounds of DLC coatings on the barrier properties of PET bottles

    International Nuclear Information System (INIS)

    Li, Yang; Zhen-Duo, Wang; Shou-Ye, Zhang; Li-Zhen, Yang; Qiang, Chen

    2009-01-01

    To reduce the oxygen transmission rate through a polyethylene terephthalate (PET) bottle (an organic plastic) diamond-like carbon (DLC) coatings on the inner surface of the PET bottle were deposited by radio frequency plasma-enhanced chemical vapour deposition (RF-PECVD) technology with C 2 H 2 as the source of carbon and Ar as the diluted gas. As the barrier layer to humidity and gas permeation, this paper analyses the DLC film structure, composition, morphology and barrier properties by Fourier transform infrared, atomic force microscopy, scanning electron microscopy and oxygen transmission rate in detail. From the spectrum, it is found that the DLC film mainly consists of sp 3 bonds. The barrier property of the films is significantly relevant to the sp 3 bond concentration in the coating, the film thickness and morphology. Additionally, it is found that DLC film deposited in an inductively coupled plasma enhanced capacitively coupled plasma source shows a compact, homogeneous and crack-free surface, which is beneficial for a good gas barrier property in PET bottles. (fluids, plasmas and electric discharges)

  17. The simplest equivalent circuit of a pulsed dielectric barrier discharge and the determination of the gas gap charge transfer

    International Nuclear Information System (INIS)

    Pipa, A. V.; Brandenburg, R.; Hoder, T.; Koskulics, J.

    2012-01-01

    The concept of the simplest equivalent circuit for a dielectric barrier discharge (DBD) is critically reviewed. It is shown that the approach is consistent with experimental data measured either in large-scale sinusoidal-voltage driven or miniature pulse-voltage driven DBDs. An expression for the charge transferred through the gas gap q(t) is obtained with an accurate account for the displacement current and the values of DBD reactor capacitance. This enables (i) the significant reduction of experimental error in the determination of q(t) in pulsed DBDs, (ii) the verification of the classical electrical theory of ozonizers about maximal transferred charge q max , and (iii) the development of a graphical method for the determination of q max from charge-voltage characteristics (Q-V plots, often referred as Lissajous figures) measured under pulsed excitation. The method of graphical presentation of q max is demonstrated with an example of a Q-V plot measured under pulsed excitation. The relations between the discharge current j R (t), the transferred charge q(t), and the measurable parameters are presented in new forms, which enable the qualitative interpretation of the measured current and voltage waveforms without the knowledge about the value of the dielectric barrier capacitance C d . Whereas for quantitative evaluation of electrical measurements, the accurate estimation of the C d is important.

  18. Landfill gas for energy utilisation. A market strategy for Europe

    International Nuclear Information System (INIS)

    1995-05-01

    The Biogas and Landfill Gas Marketing Strategy Group was set up with the objective to advise EU-DG 17 (THERMIE/OPET) on the dissemination strategies for biogas and landfill gas (LFG), a subsector of the Renewable Energy Sector (RES). The Marketing Strategy Group has identified market barriers and users' needs in the biogas and LFG subsector. Subsequently, the group evaluated successful instruments/methods to overcome these market barriers and to satisfy the users' needs. The group investigated the feasibility of transposing these instruments/success stories to other countries. The work of the Marketing Strategy Group resulted in proposals for future dissemination of biogas and LFG technology. After a short introduction into LFG technology and the LFG market, this document describes barriers to landfill gas technology dissemination and gives some examples about how to overcome them. This results in recommendations on a strategy for dissemination of LFG technology and expanding LFG markets. The document is mainly based on experience gained in the United Kingdom, Italy and the Netherlands

  19. Magnetized advective accretion flows: formation of magnetic barriers in magnetically arrested discs

    Science.gov (United States)

    Mondal, Tushar; Mukhopadhyay, Banibrata

    2018-05-01

    We discuss the importance of large-scale strong magnetic field in the removal of angular momentum outward, as well as the possible origin of different kinds of magnetic barrier in advective, geometrically thick, sub-Keplerian accretion flows around black holes. The origin of this large-scale strong magnetic field near the event horizon is due to the advection of the magnetic flux by the accreting gas from the environment, say, the interstellar medium or a companion star, because of flux freezing. In this simplest vertically averaged, 1.5-dimensional disc model, we choose the maximum upper limit of the magnetic field, which the disc around a black hole can sustain. In this so called magnetically arrested disc model, the accreting gas either decelerates or faces the magnetic barrier near the event horizon by the accumulated magnetic field depending on the geometry. The magnetic barrier may knock the matter to infinity. We suggest that these types of flow are the building block to produce jets and outflows in the accreting system. We also find that in some cases, when matter is trying to go back to infinity after knocking the barrier, matter is prevented being escaped by the cumulative action of strong gravity and the magnetic tension, hence by another barrier. In this way, magnetic field can lock the matter in between these two barriers and it might be a possible explanation for the formation of episodic jet.

  20. Natural gas market review 2006 - towards a global gas market

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    Natural gas is essential to the world economy. Gas now accounts for almost a quarter of OECD primary energy requirements and is expected to become the second most important fuel in the world in the next decade. Industrial and residential consumers increasingly rely on natural gas to keep their houses warm, their lights on and their factories running. Meanwhile the gas industry itself has entered a new phase. Where gas used to be restricted to regional markets, it is now increasingly traded on a global scale. While gas production and transport requires long-term investment, now it is optimised on a short-term basis. Demand continues to grow, but local gas production has become much more expensive. How should we react? How will demand be satisfied? What changes are required to promote flexibility and trade? What are the implications for gas security, investment and interdependence? At stake is an opportunity to diversify supply and demand - but this goal is threatened by barriers to competition and investment. This book is the first of a new IEA publication series. It takes an unprecedented look at developments in natural gas to 2010, analysing not only the three IEA regions (Asia Pacific, North America and Europe) but also broader global trends, such as the interaction of pipeline gas with LNG which binds the regions together. The Review provides invaluable insights for understanding this dynamic market.

  1. Natural gas market review 2006 - towards a global gas market

    International Nuclear Information System (INIS)

    2006-01-01

    Natural gas is essential to the world economy. Gas now accounts for almost a quarter of OECD primary energy requirements and is expected to become the second most important fuel in the world in the next decade. Industrial and residential consumers increasingly rely on natural gas to keep their houses warm, their lights on and their factories running. Meanwhile the gas industry itself has entered a new phase. Where gas used to be restricted to regional markets, it is now increasingly traded on a global scale. While gas production and transport requires long-term investment, now it is optimised on a short-term basis. Demand continues to grow, but local gas production has become much more expensive. How should we react? How will demand be satisfied? What changes are required to promote flexibility and trade? What are the implications for gas security, investment and interdependence? At stake is an opportunity to diversify supply and demand - but this goal is threatened by barriers to competition and investment. This book is the first of a new IEA publication series. It takes an unprecedented look at developments in natural gas to 2010, analysing not only the three IEA regions (Asia Pacific, North America and Europe) but also broader global trends, such as the interaction of pipeline gas with LNG which binds the regions together. The Review provides invaluable insights for understanding this dynamic market

  2. Collective Phenomena In Volume And Surface Barrier Discharges

    Science.gov (United States)

    Kogelschatz, U.

    2010-07-01

    Barrier discharges are increasingly used as a cost-effective means to produce non-equilibrium plasmas at atmospheric pressure. This way, copious amounts of electrons, ions, free radicals and excited species can be generated without appreciable gas heating. In most applications the barrier is made of dielectric material. In laboratory experiments also the use of resistive, ferroelectric and semiconducting materials has been investigated, also porous ceramic layers and dielectric barriers with controlled surface conductivity. Major applications utilizing mainly dielectric barriers include ozone generation, surface cleaning and modification, polymer and textile treatment, sterilization, pollution control, CO2 lasers, excimer lamps, plasma display panels (flat TV screens). More recent research efforts are also devoted to biomedical applications and to plasma actuators for flow control. Sinu- soidal feeding voltages at various frequencies as well as pulsed excitation schemes are used. Volume as well as surface barrier discharges can exist in the form of filamentary, regularly patterned or laterally homogeneous discharges. Reviews of the subject and the older literature on barrier discharges were published by Kogelschatz (2002, 2003), by Wagner et al. (2003) and by Fridman et al. (2005). A detailed discussion of various properties of barrier discharges can also be found in the recent book "Non-Equilibrium Air Plasmas at Atmospheric Pressure" by Becker et al. (2005). The physical effects leading to collective phenomena in volume and surface barrier discharges will be discussed in detail. Special attention will be given to self-organization of current filaments. Main similarities and differences of the two types of barrier discharges will be elaborated.

  3. Antioxidant migration resistance of SiOx layer in SiOx/PLA coated film.

    Science.gov (United States)

    Huang, Chongxing; Zhao, Yuan; Su, Hongxia; Bei, Ronghua

    2018-02-01

    As novel materials for food contact packaging, inorganic silicon oxide (SiO x ) films are high barrier property materials that have been developed rapidly and have attracted the attention of many manufacturers. For the safe use of SiO x films for food packaging it is vital to study the interaction between SiO x layers and food contaminants, as well as the function of a SiO x barrier layer in antioxidant migration resistance. In this study, we deposited a SiO x layer on polylactic acid (PLA)-based films to prepare SiO x /PLA coated films by plasma-enhanced chemical vapour deposition. Additionally, we compared PLA-based films and SiO x /PLA coated films in terms of the migration of different antioxidants (e.g. t-butylhydroquinone [TBHQ], butylated hydroxyanisole [BHA], and butylated hydroxytoluene [BHT]) via specific migration experiments and then investigated the effects of a SiO x layer on antioxidant migration under different conditions. The results indicate that antioxidant migration from SiO x /PLA coated films is similar to that for PLA-based films: with increase of temperature, decrease of food simulant polarity, and increase of single-sided contact time, the antioxidant migration rate and amount in SiO x /PLA coated films increase. The SiO x barrier layer significantly reduced the amount of migration of antioxidants with small and similar molecular weights and similar physical and chemical properties, while the degree of migration blocking was not significantly different among the studied antioxidants. However, the migration was affected by temperature and food simulant. Depending on the food simulants considered, the migration amount in SiO x /PLA coated films was reduced compared with that in PLA-based films by 42-46%, 44-47%, and 44-46% for TBHQ, BHA, and BHT, respectively.

  4. Erosion and foreign object damage of thermal barrier coatings

    International Nuclear Information System (INIS)

    Nicholls, J.R.; Jaslier, Y.; Rickerby, D.S.

    1997-01-01

    Thermal barrier coating technology is used in the hot sections of gas turbines to extend component life. To maximise these benefits, the thermal barrier coating has to remain intact throughout the life of the turbine. High velocity ballistic damage can lead to total thermal barrier removal, while erosion may lead to progressive loss of thickness during operation. This paper particularly addresses the erosion resistance and resistance to foreign object damage of thermal barrier coatings. It was found that EB-PVD thermal barriers are significantly more erosion resistant when impacted with alumina or silica, than the equivalent plasma spray coating, both at room temperature and 910 C. Examination of tested hardware, reveals that cracking occurs within the near surface region of the columns for EB-PVD ceramic and that erosion occurs by removal of these small blocks of material. In stark contrast, removal of material for plasma sprayed ceramic occurs through poorly bonded splat boundaries. Large particle impact results in severe damage to the EB-PVD thermal barrier, with cracks penetrating through the ceramic coating to the ceramic/bond coat interface. Material removal, per particle impact, increases with increased particle size. (orig.)

  5. Transport of gases through concrete barriers. Task 3: characterization of radioactive waste forms

    International Nuclear Information System (INIS)

    Harris, A.W.; Atkinson, A.; Claisse, P.A.

    1993-01-01

    The performance of the cementitious materials within a radioactive waste repository as a physical barrier to the migration of radionuclides depends on the maintenance of the integrity of the barrier. Potentially, this can be compromised by physical damage to the barrier caused by pressurization as gas is generated within the repository. The maintenance of chemical homogeneity within the material used for backfilling the repository may also be compromised as a consequence of gas pressurization through the formation of additional cracks and the reaction of cementitious materials with gases such as carbon dioxide. Consequently, the migration of gas within repository construction materials may be a significant parameter in both the design of a repository and the provision of a safety-case for disposal. The migration of hydrogen, helium, methane, argon and carbon dioxide has been studied for materials selected to be typical of repository structural concretes and grouts that are being considered for backfilling and waste encapsulation. The apparent permeability of these materials to gas has been shown to be dependent on gas type and average pressure in the structural concrete due to the effects of Knudsen flow at pressures of the order of 100 kPa. This is not observed in the grouts due to the significantly greater pore size. The permeability coefficients of the grouts are several orders of magnitude greater than those of the concrete. Gas migration is strongly influenced by the degree of water saturation of the materials. The presence of interfaces within the materials results in an increase in permeability at higher degrees of water saturation. A simple model has been developed to simulate the effects of gas pressurization. The tangential hoop stress at the surface of a void is calculated and comparison with the expected tensile strength of the materials is used to assess the potential for cracking. The backfill grouts seem to have sufficient permeability to disperse

  6. Improvements in or relating to thermal barrier systems

    International Nuclear Information System (INIS)

    Birch, W.; Pearson, R.

    1976-01-01

    Reference is made to thermal barrier systems for the internal surface of gas cooled reactor prestressed concrete pressure vessels. Provision has to be made to anchor the thermal barrier system to a metal limit within the pressure vessel, and the object of the arrangement described is to provided a suitable attachment means. The thermal barrier may consist of a number of plates arranged in overlapped fashion or having flexible joint portions. A problem that arises concerns anchoring of the hot plates to the cold pressure vessel by a rigid attachment, and the design must be such as to ensure adequate bending and axial strength compatible with a minimum heat conduction area and allowable thermal stress. The arrangement must also allow easy installation. The arrangement described also provides for a 'fail-safe' structure. It comprises a metal stud with a hollow body; two or more helical channels are provided through the side walls of the body. The body portion expands or contracts to accommodate axial temperature gradient stress set up by the temperature difference between the pressure vessel and the thermal barrier. The space between the thermal barrier and the pressure vessel may contain solid insulating material. (U.K.)

  7. Independents in European Gas Markets after liberalisation - downstream integration of upstream oil and gas companies

    International Nuclear Information System (INIS)

    Eikeland, Per Ove

    2005-01-01

    A central objective of gas market liberalisation in Europe in the 1990s was to increase competition by opening end-use markets for independent suppliers. Upstream oil and gas companies in Europe reacted to this opportunity by announcing strategies to integrate forward in European gas markets. By late 2004, however, upstream companies still recorded generally weak downstream strategy implementation in Europe. The article concludes that this general implementation gap should be explained by political failure in EU member states to abolish gas market barriers to entry for independents. Variation between companies in degree of implementation should be explained by variation in conditions in the companies' home markets / wider business spheres and internal company factors. (Author)

  8. Photochemical approach to high-barrier films for the encapsulation of flexible laminary electronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Prager, L., E-mail: lutz.prager@iom-leipzig.de [Leibniz-Institut für Oberflächenmodifizierung e.V., Permoserstr. 15, 04318 Leipzig (Germany); Helmstedt, U. [Leibniz-Institut für Oberflächenmodifizierung e.V., Permoserstr. 15, 04318 Leipzig (Germany); Herrnberger, H. [Solarion AG, Pereser Höhe 1, Breitscheidstraße 45, 04442 Zwenkau (Germany); Kahle, O. [Fraunhofer-Einrichtung für Polymermaterialien und Composite PYCO, Kantstraße 55, 14513 Teltow (Germany); Kita, F. [AZ Electronic Materials Germany GmbH, Rheingaustraße 190-196, 65203 Wiesbaden (Germany); Münch, M. [Solarion AG, Pereser Höhe 1, Breitscheidstraße 45, 04442 Zwenkau (Germany); Pender, A.; Prager, A.; Gerlach, J.W. [Leibniz-Institut für Oberflächenmodifizierung e.V., Permoserstr. 15, 04318 Leipzig (Germany); Stasiak, M. [Fraunhofer-Einrichtung für Polymermaterialien und Composite PYCO, Kantstraße 55, 14513 Teltow (Germany)

    2014-11-03

    Based on results of preceding research and development, thin gas barriers were made by wet application of perhydropolysilazane solution onto polymer films and its subsequent photo-initiated conversion to dense silica layers applying vacuum ultraviolet irradiation. Compared to the state of the art, these layers were sufficiently improved and characterized by spectroscopic methods, by scanning electron microscopy and by gas permeation measurements. Water vapor transmission rates (WVTR) below 10{sup −2} g m{sup −2} d{sup −1} were achieved. In this way, single barrier films were developed and produced on a pilot plant from roll to roll, 250 mm wide, at speeds up to 10 m min{sup −1}. Two films were laminated using adhesives curable with ultraviolet (UV) light and evaluated by peel tests, gas permeation measurement and climate testing. It could be shown that the described high-barrier laminates which exhibit WVTR ≈ 5 × 10{sup −4} g m{sup −2} d{sup −1}, determined by the calcium mirror method, are suitable for encapsulation of flexible thin-film photovoltaic modules. Durability of the encapsulated modules could be verified in several climate tests including damp-heat, thermo-cycle (heating, freezing, wetting) and UV exposures which are equivalent to more than 20 years of endurance at outdoor conditions in temperate climate. In the frame of further research and technical development it seems to be possible to design a cost efficient industrial scale process for the production of encapsulation films for photovoltaic applications. - Highlights: • Dense silica barrier layers were developed by a photochemical approach. • Polymer based barrier films were laminated yielding flexible high-barrier films. • Using these laminates photovoltaic test modules were encapsulated and tested. • A durability of more than 20 years at outdoor conditions could be proved.

  9. Decomposition of acetaminophen in water by a gas phase dielectric barrier discharge plasma combined with TiO2-rGO nanocomposite: Mechanism and degradation pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guyu; Sun, Yabing, E-mail: sybnju@163.com; Zhang, Chunxiao; Yu, Zhongqing

    2017-02-05

    Highlights: • Graphene Oxide-based catalyst was first applied with dielectric barrier discharge plasma. • The TiO{sub 2}-rGO showed efficient synergistic effect with gas phase dielectric barrier discharge plasma. • The property changes of TiO{sub 2}-rGO nanocomposite after plasma treatment were characterized. • The mechanism and possible pathways of APAP degradation in plasma/TiO{sub 2}-rGO system were proposed. - Abstract: Acetaminophen (APAP) served as the model pollutant to evaluate the feasibility of pollutant removal by gas phase dielectric barrier discharge plasma combined with the titanium dioxide-reduced Graphene Oxide (TiO{sub 2}-rGO) nanocomposite. TiO{sub 2}-rGO nanocomposite was prepared using the modified hydrothermal method and characterized by TEM and XPS before and after plasma process. The results indicated that the APAP degradation efficiency was significantly improved to 92% after 18 min of discharge plasma treatment coupling 0.25 g L{sup −1} TiO{sub 2}-rGO 5% wt at 18 kV, compared with the plasma alone and plasma combined with P25 TiO{sub 2}. The degradation mechanism for APAP in this system was studied by investigating the effects of the operational variables (e.g. discharge voltage and pH value) and the amount of the generated active species; and the results showed that O{sub 3} and H{sub 2}O{sub 2} yields were influenced notably by adding TiO{sub 2}-rGO. Also, it was observed that, compared with unused TiO{sub 2}-rGO, the photocatalytic performance of used TiO{sub 2}-rGO declined after several recirculation times due to the further reduction of Graphene Oxide in plasma system. Finally, intermediate products were analyzed by UV–vis spectrometry and HPLC/MS, and possible transformation pathways were identified with the support of theoretically calculating the frontier electron density of APAP.

  10. Socio-cultural barriers to the development of a sustainable energy system - the case of hydrogen

    DEFF Research Database (Denmark)

    Petersen, Lars Kjerulf; Andersen, Anne Holst

    Any transition to a more sustainable energy system, radically reducing greenhouse gas emissions, is bound to run in to a host of different barriers - technological and economic, but also socio-cultural. This will also be the case for any large-scale application of hydrogen as energy carrier......, especially if the system is going to be based on renewable energy sources. The aim of these research notes is to review and discuss major socio-cultural barriers to new forms of energy supply in general and to hydrogen specifically. Reaching sufficient reductions in greenhouse gas emissions may require more...

  11. Self-healing thermal barrier coatings; with application to gas turbine engines

    NARCIS (Netherlands)

    Ponnusami, S.A.

    2013-01-01

    Thermal Barrier Coating (TBC) systems have been applied in turbine engines for aerospace and power plants since the beginning of the 1980s to increase the energy efficiency of the engine, by allowing for higher operation temperatures. TBC systems on average need to be replaced about four times

  12. The future of gas power in Europe

    International Nuclear Information System (INIS)

    Trong, Maj Dang

    2001-01-01

    The growth of gas power capacity in Western Europe in 2001 is estimated at 6.5 per cent. The extent of plants under construction in 2001 and ambitious plans for further development demonstrates the general belief that investing in gas power is soon becoming profitable. Expected slump in the world economy may curb the willingness to invest, at least in the short run. In Norway, the greatest barrier to the development of gas power production is political. Great Britain is the major gas power producing country in Western Europe, contributing 30 per cent of the total production

  13. Composite Films of Arabinoxylan and Fibrous Sepiolite: Morphological, Mechanical, and Barrier Properties

    DEFF Research Database (Denmark)

    Sárossy, Zsuzsa; Blomfeldt, J.O.; Hedenqvist, Mikael S.

    2012-01-01

    (ethylene glycol) methyl ether (mPEG) plasticizer addition. Incorporation of sepiolite did not significantly influence the thermal degradation or the gas barrier properties of arabinoxylan films, which is likely a consequence of sepiolite fiber morphology. In summary, sepiolite was shown to have potential...... as an additive to obtain stronger hemicellulose films although other approaches, possibly in combination with the use of sepiolite, would be needed if enhanced film barrier properties are required for specific applications....

  14. Development of the SEAtrace{trademark} barrier verification and validation technology. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, S.D.; Lowry, W.; Walsh, R.; Rao, D.V. [Science and Engineering Associates, Santa Fe, NM (United States); Williams, C. [Sandia National Labs., Albuquerque, NM (United States). Underground Storage Technology Dept.

    1998-08-01

    In-situ barrier emplacement techniques and materials for the containment of high-risk contaminants in soils are currently being developed by the Department of Energy (DOE). Because of their relatively high cost, the barriers are intended to be used in cases where the risk is too great to remove the contaminants, the contaminants are too difficult to remove with current technologies, or the potential movement of the contaminants to the water table is so high that immediate action needs to be taken to reduce health risks. Assessing the integrity of the barrier once it is emplaced, and during its anticipated life, is a very difficult but necessary requirement. Science and Engineering Associates, Inc., (SEA) and Sandia National Laboratories (SNL) have developed a quantitative subsurface barrier assessment system using gaseous tracers in support of the Subsurface Contaminants Focus Area barrier technology program. Called SEAtrace{trademark}, this system integrates an autonomous, multi-point soil vapor sampling and analysis system with a global optimization modeling methodology to locate and size barrier breaches in real time. The methodology for the global optimization code was completed and a prototype code written using simplifying assumptions. Preliminary modeling work to validate the code assumptions were performed using the T2VOC numerical code. A multi-point field sampling system was built to take soil gas samples and analyze for tracer gas concentration. The tracer concentration histories were used in the global optimization code to locate and size barrier breaches. SEAtrace{trademark} was consistently able to detect and locate leaks, even under very adverse conditions. The system was able to locate the leak to within 0.75 m of the actual value, and was able to determine the size of the leak to within 0.15 m.

  15. Development of the SEAtrace trademark barrier verification and validation technology. Final report

    International Nuclear Information System (INIS)

    Dunn, S.D.; Lowry, W.; Walsh, R.; Rao, D.V.; Williams, C.

    1998-08-01

    In-situ barrier emplacement techniques and materials for the containment of high-risk contaminants in soils are currently being developed by the Department of Energy (DOE). Because of their relatively high cost, the barriers are intended to be used in cases where the risk is too great to remove the contaminants, the contaminants are too difficult to remove with current technologies, or the potential movement of the contaminants to the water table is so high that immediate action needs to be taken to reduce health risks. Assessing the integrity of the barrier once it is emplaced, and during its anticipated life, is a very difficult but necessary requirement. Science and Engineering Associates, Inc., (SEA) and Sandia National Laboratories (SNL) have developed a quantitative subsurface barrier assessment system using gaseous tracers in support of the Subsurface Contaminants Focus Area barrier technology program. Called SEAtrace trademark, this system integrates an autonomous, multi-point soil vapor sampling and analysis system with a global optimization modeling methodology to locate and size barrier breaches in real time. The methodology for the global optimization code was completed and a prototype code written using simplifying assumptions. Preliminary modeling work to validate the code assumptions were performed using the T2VOC numerical code. A multi-point field sampling system was built to take soil gas samples and analyze for tracer gas concentration. The tracer concentration histories were used in the global optimization code to locate and size barrier breaches. SEAtrace trademark was consistently able to detect and locate leaks, even under very adverse conditions. The system was able to locate the leak to within 0.75 m of the actual value, and was able to determine the size of the leak to within 0.15 m

  16. Numerical studies of independent control of electron density and gas temperature via nonlinear coupling in dual-frequency atmospheric pressure dielectric barrier discharge plasmas

    International Nuclear Information System (INIS)

    Zhang, Z. L.; Nie, Q. Y.; Wang, Z. B.; Gao, X. T.; Kong, F. R.; Sun, Y. F.; Jiang, B. H.

    2016-01-01

    Dielectric barrier discharges (DBDs) provide a promising technology of generating non-equilibrium cold plasmas in atmospheric pressure gases. For both application-focused and fundamental studies, it is important to explore the strategy and the mechanism for enabling effective independent tuning of key plasma parameters in a DBD system. In this paper, we report numerical studies of effects of dual-frequency excitation on atmospheric DBDs, and modulation as well as separate tuning mechanism, with emphasis on dual-frequency coupling to the key plasma parameters and discharge evolution. With an appropriately applied low frequency to the original high frequency, the numerical calculation demonstrates that a strong nonlinear coupling between two frequencies governs the process of ionization and energy deposition into plasma, and thus raises the electron density significantly (e.g., three times in this case) in comparisons with a single frequency driven DBD system. Nevertheless, the gas temperature, which is mainly determined by the high frequency discharge, barely changes. This method then enables a possible approach of controlling both averaged electron density and gas temperature independently.

  17. The measurement of argon metastable atoms in the barrier discharge plasma

    Science.gov (United States)

    Ghildina, Anna R.; Mikheyev, Pavel Anatolyevich; Chernyshov, Aleksandr Konstantinovich; Lunev, Nikolai Nikolaevich; Azyazov, Valeriy Nikolaevich

    2018-04-01

    The mandatory condition for efficient operation of an optically-pumped all-rare-gas laser (OPRGL) is the presence of rare gas metastable atoms in the discharge plasma with number density of the order of 1012-1013 cm-3. This requirement mainly depends on the choice of a discharge system. In this study the number density values of argon metastable atoms were obtained in the condition of the dielectric-barrier discharge (DBD) at an atmospheric pressure.

  18. Uses and evaluation methods of potential hydrogen permeation barriers for nuclear reactor materials

    International Nuclear Information System (INIS)

    Noga, J.O.; Piercy, G.R.; Bowker, J.T.

    1985-07-01

    This report summarizes results on the use of coatings as hydrogen permeation barriers on nuclear reactor component materials. Two classes of base materials were considered, exothermic hydrogen absorbers and endothermic hydrogen absorbers. The results of the tests indicate that substantial reductions in the amount of hydrogen absorbed by a metal can be achieved through the use of hydrogen permeation barrier coatings. Gold was determined to provide an effective hydrogen permeation barrier on Zr-2-1/2 Nb pressure tube material. Tin was determined to be a suitable hydrogen permeation barrier when applied on AISI 410 stainless steel and iron. Both gas phase and electrochemical permeation techniques were used to determine hydrogen permeabilities through coatings and base materials

  19. Thermal Conductivity of Ceramic Thermal Barrier and Environmental Barrier Coating Materials

    Science.gov (United States)

    Zhu, Dong-Ming; Bansal, Narottam P.; Lee, Kang N.; Miller, Robert A.

    2001-01-01

    Thermal barrier and environmental barrier coatings (TBC's and EBC's) have been developed to protect metallic and Si-based ceramic components in gas turbine engines from high temperature attack. Zirconia-yttria based oxides and (Ba,Sr)Al2Si2O8(BSAS)/mullite based silicates have been used as the coating materials. In this study, thermal conductivity values of zirconia-yttria- and BSAS/mullite-based coating materials were determined at high temperatures using a steady-state laser heat flux technique. During the laser conductivity test, the specimen surface was heated by delivering uniformly distributed heat flux from a high power laser. One-dimensional steady-state heating was achieved by using thin disk specimen configuration (25.4 mm diam and 2 to 4 mm thickness) and the appropriate backside air-cooling. The temperature gradient across the specimen thickness was carefully measured by two surface and backside pyrometers. The thermal conductivity values were thus determined as a function of temperature based on the 1-D heat transfer equation. The radiation heat loss and laser absorption corrections of the materials were considered in the conductivity measurements. The effects of specimen porosity and sintering on measured conductivity values were also evaluated.

  20. Downstream natural gas in Europe - high hopes dashed for upstream oil and gas companies

    International Nuclear Information System (INIS)

    Eikeland, P.O.

    2007-01-01

    Access for independents to retail gas markets was a central concern in European policy reform efforts in the 1990s. Upstream oil and gas companies reacted with strategic intentions of forward integration. By late 2004, forward integration was still weak, however. An important explanation of the gap between announced strategic re-orientation and actual strategy implementation lies in the political failure of EU member states to dismantle market barriers to entry for independents. Variations between companies in downstream strategy implementation are explained by variations in business opportunities and internal company factors. [Author

  1. Downstream natural gas in Europe-High hopes dashed for upstream oil and gas companies

    International Nuclear Information System (INIS)

    Eikeland, Per Ove

    2007-01-01

    Access for independents to retail gas markets was a central concern in European policy reform efforts in the 1990s. Upstream oil and gas companies reacted with strategic intentions of forward integration. By late 2004, forward integration was still weak, however. An important explanation of the gap between announced strategic re-orientation and actual strategy implementation lies in the political failure of EU member states to dismantle market barriers to entry for independents. Variations between companies in downstream strategy implementation are explained by variations in business opportunities and internal company factors

  2. Noise characterization of oil and gas operations.

    Science.gov (United States)

    Radtke, Cameron; Autenrieth, Daniel A; Lipsey, Tiffany; Brazile, William J

    2017-08-01

    In cooperation with The Colorado Oil and Gas Conservation Commission, researchers at Colorado State University performed area noise monitoring at 23 oil and gas sites throughout Northern Colorado. The goals of this study were to: (1) measure and compare the noise levels for the different phases of oil and gas development sites; (2) evaluate the effectiveness of noise barriers; and (3) determine if noise levels exceeded the Colorado Oil and Gas Conservation Commission noise limits. The four phases of oil and gas development include drilling, hydraulic fracturing, completion and production. Noise measurements were collected using the A- and C-weighted sound scales. Octave band analysis was also performed to characterize the frequency spectra of the noise measurements.  Noise measurements were collected using noise dosimeters and a hand-held sound-level meter at specified distances from the development sites in each cardinal direction. At 350 ft (107 m), drilling, hydraulic fracturing, and completion sites without noise barriers exceeded the maximum permissible noise levels for residential and commercial zones (55 dBA and 60 dBA, respectively). In addition, drilling and hydraulic fracturing sites with noise barriers exceeded the maximum permissible noise level for residential zones (55 dBA). However, during drilling, hydraulic fracturing, and completion operations, oil producers are allowed an exception to the noise permissible limits in that they only must comply with the industrial noise limit (80 dBA). It is stated in Rule 604.c.(2)A. that: "Operations involving pipeline or gas facility installation or maintenance, the use of a drilling rig, completion rig, workover rig, or stimulation is subject to the maximum permissible noise levels for industrial zones (80dBA)." [8] Production sites were within the Colorado Oil and Gas Conservation Commission permissible noise level criteria for all zones. At 350 ft (107 m) from the noise source, all drilling

  3. [Phylogeny of gas exchange systems].

    Science.gov (United States)

    Jürgens, K D; Gros, G

    2002-04-01

    Several systems of gas transport have developed during evolution, all of which are able to sufficiently supply oxygen to the tissues and eliminate the CO2 produced by the metabolism, in spite of great distances between the environment and the individual cells of the tissues. Almost all these systems utilize a combination of convection and diffusion steps. Convection achieves an efficient transport of gas over large distances, but requires energy and cannot occur across tissue barriers. Diffusion, on the other hand, achieves gas transport across barriers, but requires optimization of diffusion paths and diffusion areas. When two convectional gas flows are linked via a diffusional barrier (gas/fluid in the case of the avian lung, fluid/fluid in the case of gills), the directions in which the respective convectional movements pass each other are important determinants of gas exchange efficiency (concurrent, countercurrent and cross-current systems). The tracheal respiration found in insects has the advantage of circumventing the convective gas transport step in the blood, thereby avoiding the high energy expenditure of circulatory systems. This is made possible by a system of tracheae, ending in tracheoles, that reaches from the body surface to every cell within the body. The last step of gas transfer in these animals occurs by diffusion from the tracheoles ("air capillaries") to the mitochondria of cells. The disadvantage is that the tracheal system occupies a substantial fraction of body volume and that, due to limited mechanical stability of tracheal walls, this system would not be able to operate under conditions of high hydrostatic pressures, i. e. in large animals. Respiration in an "open" system, i. e. direct exposure of the diffusional barrier to the environmental air, eliminates the problem of bringing the oxygen to the barrier by convection, as is necessary in the avian and mammalian lung, in the insects' tracheal system and in the gills. An open system is

  4. High efficiency combined heat and power facilities - benefits and barriers

    International Nuclear Information System (INIS)

    Klein, M.

    2001-01-01

    There are important linkages between the economy, energy production, the environment and our health. Where thermal energy is needed, distributed Combined Heat and Power facilities, using gas turbines, reciprocating engines and future fuel cells can provide significant improvements to our long term mix of energy production. Local generation can also have benefits in security of energy supply and economic savings. This paper is intended to discuss the relevant air pollution and greenhouse gas emissions from modem CHP plants, the emission prevention and reduction methods available, and their operating experience and cost-effectiveness. Mention is made of recently constructed industrial and commercial plants, and institutional barriers to further development. Solutions described for these barriers include the need for more awareness of opportunities, improved access to the electricity grid, the proper design balance between thermal and electric for CHP systems rather than large combined cycles, improved corporate taxation incentives, and the assessment of all environmental and economic benefits when considering such cleaner sources in a restructured energy market. (author)

  5. Technological innovations to development remote gas reserves: gas-to-liquids; Inovacoes tecnologicas no desenvolvimento de reservas remotas de gas natural: gas-to-liquids

    Energy Technology Data Exchange (ETDEWEB)

    Maculan, Berenice D. [Agencia Nacional do Petroleo, Gas Natural e Biocombustiveis (ANP), Rio de Janeiro, RJ (Brazil); Falabella, Eduardo [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2004-07-01

    The GTL - gas to liquids technology was born in Germany, after the 20's with the goal to product liquid fuel from coal to supply the bellicose and domestic demand. The grow of the petroleum industry lead the world to the forgiveness of the GTL technology, except in South Africa. In the last two decades the number of news natural gas reserves and the perspectives of the increase demand from natural gas for the next 20 years change this scenario. Nearly 60% of this reserves are calling stranded or remote, meaning reserves which can't produce with conventional technologies (logistics and economics barriers). So, the oil and gas industry restart to analyze the economics and applicability of the GTL technology. The competitively and applicability of this technology were evaluated and compared to the traditional way of natural gas transport, as well as the solidification of the new environmental rules and the creation of niche to this kind of fuel - the cleans ones - seams the cause of this changes in the oil and gas industries. Which began to adjust to all this news rules and conditions, as show in the sum of investments in R and D area. So, is in this new scenario that the reappear of GTL technology is consider has a technological innovation. (author)

  6. Effectiveness of air vapor barriers combined with ventilated crawlspaces in decreasing residential exposure to radon daughters to radon daughters: preliminary report

    International Nuclear Information System (INIS)

    Sterling, T.D.; Arundel, A.; McIntyre, D.; Sterling, E.; Sterling, T.D.

    1986-01-01

    Radon gas is present in many homes. Concentrations may be increased in airtight, energy-efficient structures. This is especially true in cold climates where energy conservation is an important factor leading to the widespread application of sealing and tightening techniques both in older renovated homes and new construction. To reduce radon concentrations, it may be effective to ventilate crawlspaces and prevent infiltration of radon gas into the house by means of an air/vapor barrier. The authors report first results of comparing radon levels in homes with and without ventilated crawlspaces and air/vapor barriers. Radon emissions were measured in a tightly sealed home with ventilated crawlspaces and an air/vapor barrier and in two homes without such vapor barriers and ventilated crawlspaces, but differing in ventilation. Preliminary results suggest that use of ventilated crawlspaces and bottomside vapor barriers may reduce indoor radon levels by approximately 60%. 15 references, 1 table

  7. State of R and D of radioactive waste disposal (5). R and D of low level radioactive waste disposal. Engineered barrier: evaluation of barrier materials

    International Nuclear Information System (INIS)

    Hironaga, Michihiko

    2008-01-01

    The Central Research Institute of Electric Power Industry (CRIEPI) has researched and developed the long-term durability evaluation of engineered barrier materials for the facility of sub-surface disposal at intermediate depth. The important functions of engineered barrier are mechanical stability of construction, low hydraulic conductivity and diffusivity, and absorption of nuclide. A natural barrier plays an important part in nuclide transfer. Some examples of researches on the engineered barrier with cement and bentonite are reported. They contained the leaching test of hardened cement paste using X-ray microanalysis, relation between the dissociation rate of montmorillonite and pH from 15 to 70 deg C, and the mechanism of gas permeability of dense bentonite. The results of leaching test showed that the modified underground water leached smaller amount of ions than the ion exchanged water. The sediment was found on the surface of hardened paste. The dissociation rate of smectite under alkaline conditions showed almost the same values as neutral conditions at 15 deg C. (S.Y.)

  8. Development of Innovating Materials for Distributing Mixtures of Hydrogen and Natural Gas. Study of the Barrier Properties and Durability of Polymer Pipes

    Directory of Open Access Journals (Sweden)

    Klopffer Marie-Hélène

    2015-02-01

    Full Text Available With the growing place taken by hydrogen, a question still remains about its delivery and transport from the production site to the end user by employing the existing extensive natural gas pipelines. Indeed, the key challenge is the significant H2 permeation through polymer infrastructures (PolyEthylene (PE pipes, components such as connecting parts. This high flow rate of H2 through PE has to be taken into account for safety and economic requirements. A 3-year project was launched, the aim of which was to develop and assess material solutions to cope with present problems for hydrogen gas distribution and to sustain higher pressure compared to classical high density polyethylene pipe. This project investigated pure hydrogen gas and mixtures with natural gas (20% of CH4 and 80% of H2 in pipelines with the aim to select engineering polymers which are more innovative than polyethylene and show outstanding properties, in terms of permeation, basic mechanical tests but also more specific characterizations such as long term ageing and behaviour. The adequate benches, equipments and scientific approach for materials testing had been developed and validated. In this context, the paper will focus on the evaluation of the barrier properties of 3 polymers (PE, PA11 and PAHM. Experiments were performed for pure H2 and CH4 and also in the presence of mixtures of hydrogen and natural gas in order to study the possible mixing effects of gases. It will report some round-robin tests that have been carried out. Secondly, by comparing data obtained on film, polymer membrane and on pipe section, the influence of the polymer processing will be studied. Innovative multilayers systems will be proposed and compared on the basis of the results obtained on monolayer systems. Finally, the evolution of the transport properties of the studied polymers with an ageing under representative service conditions will be discussed.

  9. Practical Aspects of Suspension Plasma Spray for Thermal Barrier Coatings on Potential Gas Turbine Components

    Science.gov (United States)

    Ma, X.; Ruggiero, P.

    2018-04-01

    Suspension plasma spray (SPS) process has attracted extensive efforts and interests to produce fine-structured and functional coatings. In particular, thermal barrier coatings (TBCs) applied by SPS process gain increasing interest due to its potential for superior thermal protection of gas turbine hot sections as compared to conventional TBCs. Unique columnar architectures and nano- and submicrometric grains in the SPS-TBC demonstrated some advantages of thermal shock durability, low thermal conductivity, erosion resistance and strain-tolerant microstructure. This work aimed to look into some practical aspects of SPS processing for TBC applications before it becomes a reliable industry method. The spray capability and applicability of SPS process to achieve uniformity thickness and microstructure on curved substrates were emphasized in designed spray trials to simulate the coating fabrication onto industrial turbine parts with complex configurations. The performances of the SPS-TBCs were tested in erosion, falling ballistic impact and indentational loading tests as to evaluate SPS-TBC performances in simulated turbine service conditions. Finally, a turbine blade was coated and sectioned to verify SPS sprayability in multiple critical sections. The SPS trials and test results demonstrated that SPS process is promising for innovative TBCs, but some challenges need to be addressed and resolved before it becomes an economic and capable industrial process, especially for complex turbine components.

  10. Fire and Gas Barrier Properties of Poly(styrene-co-acrylonitrile Nanocomposites Using Polycaprolactone/Clay Nanohybrid Based-Masterbatch

    Directory of Open Access Journals (Sweden)

    S. Benali

    2008-01-01

    Full Text Available Exfoliated nanocomposites are prepared by dispersion of poly(ε-caprolactone (PCL grafted montmorillonite nanohybrids used as masterbatches in poly(styrene-co-acrylonitrile (SAN. The PCL-grafted clay nanohybrids with high inorganic content are synthesized by in situ intercalative ring-opening polymerization of ε-caprolactone between silicate layers organomodified by alkylammonium cations bearing two hydroxyl functions. The polymerization is initiated by tin alcoholate species derived from the exchange reaction of tin(II bis(2-ethylhexanoate with the hydroxyl groups borne by the ammonium cations that organomodified the clay. These highly filled PCL nanocomposites (25 wt% in inorganics are dispersed as masterbatches in commercial poly(styrene-co-acrylonitrile by melt blending. SAN-based nanocomposites containing 3 wt% of inorganics are accordingly prepared. The direct blend of SAN/organomodified clay is also prepared for sake of comparison. The clay dispersion is characterized by wide-angle X-ray diffraction (WAXD, atomic force microscopy (AFM, and solid state NMR spectroscopy measurements. The thermal properties are studied by thermogravimetric analysis. The flame retardancy and gas barrier resistance properties of nanocomposites are discussed both as a function of the clay dispersion and of the matrix/clay interaction.

  11. Energy market reform and greenhouse gas emission reductions

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    The report reviews micro-economic reform in the energy market and measures the impact that energy market reform is expected to have on greenhouse gas outcomes. It indicates that reform in the electricity and gas industries is delivering what was promised, an efficient market with lower energy prices and, over the longer term, will deliver a gradually reducing rate of greenhouse gas emissions per unit of energy produced. It also recognises that energy market reform has removed some barriers to the entry of less greenhouse gas intense fuels. These trends will result in reduced greenhouse gas intensity in the supply of energy and significant reductions in the growth in greenhouse gas emissions compared to what may have been expected without the reforms

  12. Development of numerical simulation method for gas migration through highly-compacted bentonite using model of two-phase flow through deformable porous media

    International Nuclear Information System (INIS)

    Tanaka, Yukihisa

    2011-01-01

    In the current concept of repository for radioactive waste disposal, compacted bentonite will be used as an engineered barrier mainly for inhibiting migration of radioactive nuclides. Hydrogen gas can be generated inside of the engineered barrier by anaerobic corrosion of metals used for containers, etc. It is expected to be not easy for gas to entering into the bentonite as a discrete gaseous phase because the pore of compacted bentonite is so minute. Therefore it is necessary to investigate the effect of gas pressure generation and gas migration on the engineered barrier, peripheral facilities and ground. In this study, a method for simulating gas migration through the compacted bentonite is proposed. The proposed method can analyze coupled hydrological-mechanical processes using the model of two-phase flow through deformable porous media. Validity of the proposed analytical method is examined by comparing gas migration test results with the calculated results, which revealed that the proposed method can simulate gas migration behavior through compacted bentonite with accuracy. (author)

  13. Making sure natural gas gets to market

    International Nuclear Information System (INIS)

    Pleckaitis, A.

    2004-01-01

    The role of natural gas in power generation was discussed with reference to price implications and policy recommendations. New natural gas supply is not keeping pace with demand. Production is leveling out in traditional basins and industry investment is not adequate. In addition, energy deregulation is creating disconnects. This presentation included a map depicting the abundant natural gas reserves across North America. It was noted that at 2002 levels of domestic production, North America has approximately 80 years of natural gas. The AECO consensus wholesale natural gas price forecast is that natural gas prices in 2010 will be lower than today. The use of natural gas for power generation was outlined with reference to fuel switching, distributed generation, and central generation. It was emphasized that government, regulators and the energy industry must work together to address policy gaps and eliminate barriers to new investment. 13 figs

  14. Gauging gas sector opportunities in Asia

    International Nuclear Information System (INIS)

    Cox, L.C.

    1996-01-01

    The future prospects for use of liquefied natural gas in Asia were examined, combined with a description of the opportunities and risks of investing in the Asian energy sector. It was concluded that the marked increase in energy demand makes market development for natural gas in Asia similar to what it was in North America several decades ago. Rapid economic development has increased the value of electricity, and natural gas is seen as the ideal fuel to generate it, as well as helping to combat local air pollution. Some of the barriers to expanded natural gas use include structural problems resulting from government action (or inaction), lack of an efficient distribution system and stable pricing for natural gas. Nevertheless, interest is growing, and however slowly, progress is inevitable At the same time, it should be emphasized that while the prospects are good for the domestic gas sector, there is yet no country where a foreign firm has been permitted to bring natural gas into the country, either by pipeline, or as liquid natural gas. 7 figs

  15. Low pressure storage of natural gas on activated carbon

    Science.gov (United States)

    Wegrzyn, J.; Wiesmann, H.; Lee, T.

    The introduction of natural gas to the transportation energy sector offers the possibility of displacing imported oil with an indigenous fuel. The barrier to the acceptance of natural gas vehicles (NGV) is the limited driving range due to the technical difficulties of on-board storage of a gaseous fuel. In spite of this barrier, compressed natural gas (CNG) vehicles are today being successfully introduced into the market place. The purpose of this work is to demonstrate an adsorbent natural gas (ANG) storage system as a viable alternative to CNG storage. It can be argued that low pressure ANG has reached near parity with CNG, since the storage capacity of CNG (2400 psi) is rated at 190 V/V, while low pressure ANG (500 psi) has reached storage capacities of 180 V/V in the laboratory. A program, which extends laboratory results to a full-scale vehicle test, is necessary before ANG technology will receive widespread acceptance. The objective of this program is to field test a 150 V/V ANG vehicle in FY 1994. As a start towards this goal, carbon adsorbents have been screened by Brookhaven for their potential use in a natural gas storage system. This paper reports on one such carbon, trade name Maxsorb, manufactured by Kansai Coke under an Amoco license.

  16. Investigation of the development of dielectric-barrier discharge instabilities in excimer lamp

    Science.gov (United States)

    Bouchachia, A.; Belasri, A.; Harrache, Z.; Amir Aid, D.

    2017-11-01

    This work represents a study of the formation and propagation of the streamer during a pulse in a plasma cell with dielectric barriers containing a Ne/Xe gas mixture. It is based on a longitudinal mono-dimensional model of the dielectric barrier discharge. In this model, we show the possibility of streamers development in the cathode sheath and its propagation during the plasma formation stage. The model gives the spatiotemporal variations of the propagation speed, the electric field, and the charged particle density of the streamer's head.

  17. Identifying technology barriers in adapting a state-of-the-art gas turbine for IGCC applications and an experimental investigation of air extraction schemes for IGCC operations. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Tah-teh; Agrawal, A.K.; Kapat, J.S.

    1993-06-01

    Under contracted work with Morgantown Energy Technology Center, Clemson University, the prime contractor, and General Electric (GE) and CRSS, the subcontractors, made a comprehensive study in the first phase of research to investigate the technology barriers of integrating a coal gasification process with a hot gas cleanup scheme and the state-of-the-art industrial gas turbine, the GE MS-7001F. This effort focused on (1) establishing analytical tools necessary for modeling combustion phenomenon and emissions in gas turbine combustors operating on multiple species coal gas, (2) estimates the overall performance of the GE MS-7001F combined cycle plant, (3) evaluating material issues in the hot gas path, (4) examining the flow and temperature fields when air extraction takes place at both the compressor exit and at the manhole adjacent to the combustor, and (5) examining the combustion/cooling limitations of such a gas turbine by using 3-D numerical simulation of a MS-7001F combustor operated with gasified coal. In the second phase of this contract, a 35% cool flow model was built similar to GE`s MS-7001F gas turbine for mapping the flow region between the compressor exit and the expander inlet. The model included sufficient details, such as the combustor`s transition pieces, the fuel nozzles, and the supporting struts. Four cases were studied: the first with a base line flow field of a GE 7001F without air extraction; the second with a GE 7001F with air extraction; and the third and fourth with a GE 7001F using a Griffith diffuser to replace the straight wall diffuser and operating without air extraction and with extraction, respectively.

  18. TMX-U thermal-barrier experiments

    International Nuclear Information System (INIS)

    Simonen, T.C.; Allen, S.L.; Barter, J.D.

    1988-01-01

    This review of thermal-barrier experiments in the Tandem Mirror Experiment Upgrade (TMX-U) describes our progress at Lawrence Livermore National Laboratory in plasma confinement and central-cell heating. Thermal barriers in TMX-U improved axial confinement by two orders of magnitude over a limited range of densities, compared with confinement in single-cell mirrors at the same ion temperature. Our study shows that central-cell radial nonambipolar confinement scales as neoclassical theory and can be eliminated by floating the end walls. Radial ambipolar losses can also be measured and reduced. The electron energy balance is improved in tandem mirrors to near classical, resulting in T/sub e/ up to 0.28 keV. Electron cyclotron heating (ECH) efficiencies up to 42 percent, with low levels of electron microinstability, were achieved when hot electrons in the thermal barrier were heated to average betas as large as 15 percent. The hot-electron distribution is measured from X rays and is modeled by a Fokker-Planck code that includes heating from cavity radio-frequency (RF) fields. Neutral-beam injection in the central cell created average ion betas up to 5 percent with radial profiles of hot ions that are modeled accurately by a radial Fokker-Planck code. Gas fueling between two fundamental ion cyclotron heating (ICH) resonances resulted in symmetrical heating of passing ions toward both ends

  19. Internal barrier discharges in JET and their sensitivity to edge conditions

    International Nuclear Information System (INIS)

    Sips, A.C.C.

    2001-01-01

    Experiments in JET have concentrated on steady state discharges with internal transport barriers. The internal transport barriers are formed during the current rise phase of the discharge with low magnetic shear in the centre and with high additional heating power. In order to achieve stability against disruptions at high pressure peaking, typical for ITB discharges, the pressure profile can be broadened with a H-mode transport barrier at the edge of the plasma. However, the strong increase in edge pressure during an ELM free H-mode weakens the internal transport barrier due to a reduction of the rotational shear and pressure gradient at the ITB location. In addition, type I ELM activity, associated with a high edge pedestal pressure, leads to a collapse of the ITB with the input powers available in JET. The best ITB discharges are obtained with input power control to reduce to core pressure, and with the edge of the plasma controlled by argon gas dosing. These discharges achieve steady conditions for several energy confinement times with H97 confinement enhancement factors of 1.2-1.6 at line average densities around 30%-40% of the Greenwald density. This is at much lower density (typically factor 2 to 3) compared to standard H-mode discharges in JET. Increasing the density, using additional deuterium gas dosing or shallow pellet fueling has not been successful so far. A possible route to higher densities should maintain the type III ELM's towards high edge density, giving scope for future experiments in JET. (author)

  20. Calculation of Onset Voltage of Sliding Discharge over a Dielectric Barrier

    Directory of Open Access Journals (Sweden)

    Abdel-Salam Mazen

    2016-01-01

    Full Text Available This paper is aimed at calculating the onset voltage of a sliding discharge established between two electrodes at the upper and bottom surfaces of a dielectric barrier plate; named sliding dielectric barrier discharge (SDBD driven by AC voltage during negative half cycle. The onset voltage is based on the condition of self-sustenance of avalanche growth in the vicinity of the stressed electrode. This calls at first for calculation of the electric field in the vicinity of stressed electrode. The dependency of onset voltage on the thickness and permittivity of the dielectric barrier as well as the thickness of the stressed electrode and the inter-electrode spacing between the stressed and ground electrodes is investigated. The obtained results are discussed in the light of gas discharge physics.

  1. Study of the efficiency of the anti-convective thermal barrier of the Super-Phenix vessels inter space

    International Nuclear Information System (INIS)

    Durin, M.; Mejane, A.

    1983-08-01

    In the LMFBR Phenix reactor, the junction between the primary vessel and the roof slab is a region of large thermal gradients. In order to limit the gradient in the primary vessel, a thermal barrier has been installed between the primary and the safety vessel. The purpose of this barrier is to prevent the penetration of hot gas in the upper part of the vessels inter space. Experimental results have been obtained on a full scale model representing a 25 0 vessel sector of the reactor. Different geometrical configurations have been tested for a large range of boundary condition: - perfectly tight barrier - no thermal barrier; - simulation of leakages on the barrier [fr

  2. Decomposition mechanism of trichloroethylene based on by-product distribution in the hybrid barrier discharge plasma process

    Energy Technology Data Exchange (ETDEWEB)

    Han, Sang-Bo [Industry Applications Research Laboratory, Korea Electrotechnology Research Institute, Changwon, Kyeongnam (Korea, Republic of); Oda, Tetsuji [Department of Electrical Engineering, The University of Tokyo, Tokyo 113-8656 (Japan)

    2007-05-15

    The hybrid barrier discharge plasma process combined with ozone decomposition catalysts was studied experimentally for decomposing dilute trichloroethylene (TCE). Based on the fundamental experiment for catalytic activities on ozone decomposition, MnO{sub 2} was selected for application in the main experiments for its higher catalytic abilities than other metal oxides. A lower initial TCE concentration existed in the working gas; the larger ozone concentration was generated from the barrier discharge plasma treatment. Near complete decomposition of dichloro-acetylchloride (DCAC) into Cl{sub 2} and CO{sub x} was observed for an initial TCE concentration of less than 250 ppm. C=C {pi} bond cleavage in TCE gave a carbon single bond of DCAC through oxidation reaction during the barrier discharge plasma treatment. Those DCAC were easily broken in the subsequent catalytic reaction. While changing oxygen concentration in working gas, oxygen radicals in the plasma space strongly reacted with precursors of DCAC compared with those of trichloro-acetaldehyde. A chlorine radical chain reaction is considered as a plausible decomposition mechanism in the barrier discharge plasma treatment. The potential energy of oxygen radicals at the surface of the catalyst is considered as an important factor in causing reactive chemical reactions.

  3. Evaluation of gas migration characteristics of compacted bentonite and Ca-bentonite mixture

    International Nuclear Information System (INIS)

    Tanaka, Yukihisa; Hironaga, Michihiko

    2014-01-01

    In the current concept of subsurface disposal and near-surface pit disposal for low level radioactive waste, compacted bentonite and Ca-bentonite mixture will be used as an engineered barrier mainly for inhibiting migration of radioactive nuclides, respectively. Hydrogen gas can be generated inside the engineered barrier of subsurface disposal facilities mainly by anaerobic corrosion of metals used for containers, etc. Hydrogen gas can be also generated inside the engineered barrier of near-surface pit disposal facilities mainly by the chemical interaction between aluminum and the alkaline component of cement, or water. If the gas generation rate exceeds the diffusion rate of gas molecules inside of the compacted bentonite and Ca-bentonite mixture, gas will accumulate in the void space inside of the compacted bentonite and Ca-bentonite mixture until breakthrough occurs. It is expected to be not easy for gas to entering into the compacted bentonite mixture as a discrete gaseous phase because the pore of the compacted bentonite and Ca-bentonite mixture is so minute. Therefore in this study, the gas migration characteristics and the effect of gas migration on the hydraulic conductivity of the compacted bentonite and Ca-bentonite mixture are investigated by the gas migration tests. The applicability of the two phase flow model without considering deformability of the specimen is investigated. The applicability of the model of two phase flow through deformable porous media, which was originally developed by CRIEPI, is also investigated. Results of this study imply that : (1) Gas migration mechanism of the compacted bentonite and Ca-bentonite mixture is revealed through gas migration test. (2) Hydraulic conductivity measured after the large gas breakthrough is substantially the same that measured before the gas migration test. (3) Stress change, pore-water pressure change and volume change of the specimen during the gas migration test can be reproduced by the numerical

  4. Diagnosis of a short-pulse dielectric barrier discharge at atmospheric pressure in helium with hydrogen-methane admixtures

    Science.gov (United States)

    Nastuta, A. V.; Pohoata, V.; Mihaila, I.; Topala, I.

    2018-04-01

    In this study, we present results from electrical, optical, and spectroscopic diagnosis of a short-pulse (250 ns) high-power impulse (up to 11 kW) dielectric barrier discharge at atmospheric pressure running in a helium/helium-hydrogen/helium-hydrogen-methane gas mixture. This plasma source is able to generate up to 20 cm3 of plasma volume, pulsed in kilohertz range. The plasma spatio-temporal dynamics are found to be developed in three distinct phases. All the experimental observations reveal a similar dynamic to medium power microsecond barrier discharges, although the power per pulse and current density are up to two orders of magnitude higher than the case of microsecond barrier discharges. This might open the possibility for new applications in the field of gas or surface processing, and even life science. These devices can be used in laboratory experiments relevant for molecular astrophysics.

  5. Observation of trapped gas during electrical resistance heating of trichloroethylene under passive venting conditions

    Science.gov (United States)

    Martin, E. J.; Kueper, B. H.

    2011-11-01

    A two-dimensional experiment employing a heterogeneous sand pack incorporating two pools of trichloroethylene (TCE) was performed to assess the efficacy of electrical resistance heating (ERH) under passive venting conditions. Temperature monitoring displayed the existence of a TCE-water co-boiling plateau at 73.4 °C, followed by continued heating to 100 °C. A 5 cm thick gas accumulation formed beneath a fine-grained capillary barrier during and after co-boiling. The capillary barrier did not desaturate during the course of the experiment; the only pathway for gas escape being through perforated wells traversing the barrier. The thickness of the accumulation was dictated by the entry pressure of the perforated well. The theoretical maximum TCE soil concentration within the region of gas accumulation, following gas collapse, was estimated to be 888 mg/kg. Post-heating soil sampling revealed TCE concentrations in this region ranging from 27 mg/kg to 96.7 mg/kg, indicating removal of aqueous and gas phase TCE following co-boiling as a result of subsequent boiling of water. The equilibrium concentrations of TCE in water corresponding to the range of post-treatment concentrations in soil (6.11 mg/kg to 136 mg/kg) are calculated to range from 19.8 mg/l to 440 mg/l. The results of this experiment illustrate the importance of providing gas phase venting during the application of ERH in heterogeneous porous media.

  6. Thermal barrier coatings - Technology for diesel engines

    International Nuclear Information System (INIS)

    Harris, D.H.; Lutz, J.

    1988-01-01

    Thermal Barrier Coatings (TBC) are a development of the aerospace industry primarily aimed at hot gas flow paths in turbine engines. TBC consists of zirconia ceramic coatings applied over (M)CrAlY. These coatings can provide three benefits: (1) a reduction of metal surface operating temperatures, (2) a deterrent to hot gas corrosion, and (3) improved thermal efficiencies. TBC brings these same benefits to reciprocal diesel engines but coating longevity must be demonstrated. Diesels require thicker deposits and have challenging geometries for the arc-plasma spray (APS) deposition process. Different approaches to plasma spraying TBC are required for diesels, especially where peripheral edge effects play a major role. Bondcoats and ceramic top coats are modified to provide extended life as determined by burner rig tests, using ferrous and aluminum substrates

  7. Gas breakthrough and emission through unsaturated compacted clay in landfill final cover

    International Nuclear Information System (INIS)

    Ng, C.W.W.; Chen, Z.K.; Coo, J.L.; Chen, R.; Zhou, C.

    2015-01-01

    Highlights: • Explore feasibility of unsaturated clay as a gas barrier in landfill cover. • Gas breakthrough pressure increases with clay thickness and degree of saturation. • Gas emission rate decreases with clay thickness and degree of saturation. • A 0.6 m-thick clay layer may be sufficient to meet gas emission rate limit. - Abstract: Determination of gas transport parameters in compacted clay plays a vital role for evaluating the effectiveness of soil barriers. The gas breakthrough pressure has been widely studied for saturated swelling clay buffer commonly used in high-level radioactive waste disposal facility where the generated gas pressure is very high (in the order of MPa). However, compacted clay in landfill cover is usually unsaturated and the generated landfill gas pressure is normally low (typically less than 10 kPa). Furthermore, effects of clay thickness and degree of saturation on gas breakthrough and emission rate in the context of unsaturated landfill cover has not been quantitatively investigated in previous studies. The feasibility of using unsaturated compacted clay as gas barrier in landfill covers is thus worthwhile to be explored over a wide range of landfill gas pressures under various degrees of saturation and clay thicknesses. In this study, to evaluate the effectiveness of unsaturated compacted clay to minimize gas emission, one-dimensional soil column tests were carried out on unsaturated compacted clay to determine gas breakthrough pressures at ultimate limit state (high pressure range) and gas emission rates at serviceability limit state (low pressure range). Various degrees of saturation and thicknesses of unsaturated clay sample were considered. Moreover, numerical simulations were carried out using a coupled gas–water flow finite element program (CODE-BRIGHT) to better understand the experimental results by extending the clay thickness and varying the degree of saturation to a broader range that is typical at different

  8. Gas breakthrough and emission through unsaturated compacted clay in landfill final cover

    Energy Technology Data Exchange (ETDEWEB)

    Ng, C.W.W.; Chen, Z.K.; Coo, J.L. [Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Chen, R., E-mail: chenrui1005@hotmail.com [Shenzhen Key Laboratory of Urban and Civil Engineering for Disaster Prevention and Mitigation, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen 518055 (China); Zhou, C. [Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)

    2015-10-15

    Highlights: • Explore feasibility of unsaturated clay as a gas barrier in landfill cover. • Gas breakthrough pressure increases with clay thickness and degree of saturation. • Gas emission rate decreases with clay thickness and degree of saturation. • A 0.6 m-thick clay layer may be sufficient to meet gas emission rate limit. - Abstract: Determination of gas transport parameters in compacted clay plays a vital role for evaluating the effectiveness of soil barriers. The gas breakthrough pressure has been widely studied for saturated swelling clay buffer commonly used in high-level radioactive waste disposal facility where the generated gas pressure is very high (in the order of MPa). However, compacted clay in landfill cover is usually unsaturated and the generated landfill gas pressure is normally low (typically less than 10 kPa). Furthermore, effects of clay thickness and degree of saturation on gas breakthrough and emission rate in the context of unsaturated landfill cover has not been quantitatively investigated in previous studies. The feasibility of using unsaturated compacted clay as gas barrier in landfill covers is thus worthwhile to be explored over a wide range of landfill gas pressures under various degrees of saturation and clay thicknesses. In this study, to evaluate the effectiveness of unsaturated compacted clay to minimize gas emission, one-dimensional soil column tests were carried out on unsaturated compacted clay to determine gas breakthrough pressures at ultimate limit state (high pressure range) and gas emission rates at serviceability limit state (low pressure range). Various degrees of saturation and thicknesses of unsaturated clay sample were considered. Moreover, numerical simulations were carried out using a coupled gas–water flow finite element program (CODE-BRIGHT) to better understand the experimental results by extending the clay thickness and varying the degree of saturation to a broader range that is typical at different

  9. Barrier and operational risk analysis of hydrocarbon releases (BORA-Release)

    International Nuclear Information System (INIS)

    Sklet, Snorre; Vinnem, Jan Erik; Aven, Terje

    2006-01-01

    This paper presents results from a case study carried out on an offshore oil and gas production platform with the purpose to apply and test BORA-Release, a method for barrier and operational risk analysis of hydrocarbon releases. A description of the BORA-Release method is given in Part I of the paper. BORA-Release is applied to express the platform specific hydrocarbon release frequencies for three release scenarios for selected systems and activities on the platform. The case study demonstrated that the BORA-Release method is a useful tool for analysing the effect on the release frequency of safety barriers introduced to prevent hydrocarbon releases, and to study the effect on the barrier performance of platform specific conditions of technical, human, operational, and organisational risk influencing factors (RIFs). BORA-Release may also be used to analyse the effect on the release frequency of risk reducing measures

  10. How can natural gas markets be competitively organized

    International Nuclear Information System (INIS)

    Funk, C.

    1992-01-01

    In this paper it will be discussed how to most effectively give room to competitive forces in natural gas markets, given the traditional merchant pipeline as point of departure. Alternative models of organizing the market will be reviewed: we first consider decreasing barriers to entry and then analyze advantages and drawbacks of a third party access system. In this context different forms of implementing a competitive market for transportation capacity and coordinating it with gas trade are discussed, among them a simultaneous auction of gas and transmission capacity. Finally a hub system of point markets in conjunction with third party access will be suggested to allow for competitive markets for gas and transportation service. 33 refs

  11. Silicon oxide barrier films deposited on PET foils in pulsed plasmas: influence of substrate bias on deposition process and film properties

    International Nuclear Information System (INIS)

    Steves, S; Bibinov, N; Awakowicz, P; Ozkaya, B; Liu, C-N; Ozcan, O; Grundmeier, G

    2013-01-01

    A widely used plastic for packaging, polyethylene terephtalate (PET) offers limited barrier properties against gas permeation. For many applications of PET (from food packaging to micro electronics) improved barrier properties are essential. A silicon oxide barrier coating of PET foils is applied by means of a pulsed microwave driven low-pressure plasma. While the adjustment of the microwave power allows for a control of the ion production during the plasma pulse, a substrate bias controls the energy of ions impinging on the substrate. Detailed analysis of deposited films applying oxygen permeation measurements, x-ray photoelectron spectroscopy and atomic force microscopy are correlated with results from plasma diagnostics describing the deposition process. The influence of a change in process parameters such as gas mixture and substrate bias on the gas temperature, electron density, mean electron energy, ion energy and the atomic oxygen density is studied. An additional substrate bias results in an increase in atomic oxygen density up to a factor of 6, although plasma parameter such as electron density of n e = 3.8 ± 0.8 × 10 17 m −3 and electron temperature of k B T e = 1.7 ± 0.1 eV are unmodified. It is shown that atomic oxygen densities measured during deposition process higher than n O = 1.8 × 10 21 m −3 yield in barrier films with a barrier improvement factor up to 150. Good barrier films are highly cross-linked and show a smooth morphology. (paper)

  12. Steady-state modelling of the universal exhaust gas oxygen (UEGO) sensor

    International Nuclear Information System (INIS)

    Collings, N; Hegarty, K; Ramsander, T

    2012-01-01

    The universal exhaust gas oxygen (UEGO) sensor is a well-established device which was developed for the measurement of relative air fuel ratio in internal combustion engines. There is, however, little information available which allows for the prediction of the UEGO's behaviour when exposed to arbitrary gas mixtures, pressures and temperatures. Here we present a steady-state model for the sensor, based on a solution of the Stefan–Maxwell equation, and which includes a momentum balance. The response of the sensor is dominated by a diffusion barrier, which controls the rate of diffusion of gas species between the exhaust and a cavity. Determination of the diffusion barrier characteristics, especially the mean pore size, porosity and tortuosity, is essential for the purposes of modelling, and a measurement technique based on identification of the sensor pressure giving zero temperature sensitivity is shown to be a convenient method of achieving this. The model, suitably calibrated, is shown to make good predictions of sensor behaviour for large variations of pressure, temperature and gas composition. (paper)

  13. Influence of ultrasonic irradiation on ozone generation in a dielectric barrier discharge

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Drews, J.; Leipold, Frank

    2012-01-01

    An atmospheric pressure dielectric barrier discharge (DBD) was generated in an N2/O2 gas mixture at room temperature with and without ultrasonic irradiation to investigate ozone production. Powerful ultrasonic irradiation with the sound pressure level of approximately 150 dB into the DBD can...

  14. Assessment of missiles generated by pressure component failure and its application to recent gas-cooled nuclear plant design

    International Nuclear Information System (INIS)

    Tulacz, J.; Smith, R.E.

    1980-01-01

    Methods for establishing characteristics of missiles following pressure barrier rupture have been reviewed in order to enable evaluation of structural response to missile impact and to aid the design of barriers to protect essential plant on gas cooled nuclear plant against unacceptable damage from missile impact. Methods for determining structural response of concrete barriers to missile impact have been reviewed and some methods used for assessing the adequacy of steel barriers on gas-cooled nuclear plant have been described. The possibility of making an incredibility case for some of the worst missiles based on probability arguments is briefly discussed. It is shown that there may be scope for such arguments but there are difficulties in quantifying some of the probability factors. (U.K.)

  15. Thermo-economic assessment of externally fired micro-gas turbine fired by natural gas and biomass: Applications in Italy

    International Nuclear Information System (INIS)

    Pantaleo, A.M.; Camporeale, S.M.; Shah, N.

    2013-01-01

    Highlights: • A thermo-economic analysis of natural gas/biomass fired microturbine is proposed. • Energy efficiency, capex, opex and electricity revenues trade-offs are assessed. • The optimal biomass energy input is 70% of total CHP consumption. • Industrial/tertiary heat demand and baseload/heat driven operation is assessed. • The main barriers of small scale CHP systems in Italy are overviewed. - Abstract: This paper proposes a thermo-economic assessment of small scale (100 kWe) combined heat and power (CHP) plants fired by natural gas and solid biomass. The focus is on dual fuel gas turbine cycle, where compressed air is heated in a high temperature heat exchanger (HTHE) using the hot gases produced in a biomass furnace, before entering the gas combustion chamber. The hot air expands in the turbine and then feeds the internal pre-heater recuperator, Various biomass/natural gas energy input ratios are modeled, ranging from 100% natural gas to 100% biomass. The research assesses the trade-offs between: (i) lower energy conversion efficiency and higher investment cost of high biomass input rate and (ii) higher primary energy savings and revenues from bio-electricity feed-in tariff in case of high biomass input rate. The influence of fuel mix and biomass furnace temperature on energy conversion efficiencies, primary energy savings and profitability of investments is assessed. The scenarios of industrial vs. tertiary heat demand and baseload vs. heat driven plant operation are also compared. On the basis of the incentives available in Italy for biomass electricity and for high efficiency cogeneration (HEC), the maximum investment profitability is achieved for 70% input biomass percentage. The main barriers of these embedded cogeneration systems in Italy are also discussed

  16. Sprache als Barriere (Language as a Barrier)

    Science.gov (United States)

    Mattheier, Klaus

    1974-01-01

    The concept of language barrier has its derivations in the fields of dialectology, sociology and psychology. In contemporary usage however, the concept has two meanings i.e. regional-cultural barrier and socio-cultural barrier. (Text is in German.) (DS)

  17. Effects of a pulsed operation on ozone production in dielectric barrier air discharges

    OpenAIRE

    Ruggero Barni; Ilaria Biganzoli; Elisa Dell’Orto; Claudia Riccardi

    2014-01-01

    We have performed an experimental investigation of ozone production in a pulsed dielectric barrier discharge (DBD) reactor. Measurements of ozone in the gas-phase as a function of the power level show that in continuous mode a maximum concentration is achieved before a decrease presumably connected with gas-phase heating. When the reactor is employed in pulsed mode, by applying a definite duty cycle, a strong increase in ozone concentration is generally observed, with a maximum which happens...

  18. Development of modified flyash as a permeable reactive barrier medium for a former manufactured gas plant site, Northern Ireland

    Science.gov (United States)

    Doherty, R.; Phillips, D. H.; McGeough, K. L.; Walsh, K. P.; Kalin, R. M.

    2006-05-01

    A sequential biological permeable reactive barrier (PRB) was determined to be the best option for remediating groundwater that has become contaminated with a wide range of organic contaminants (i.e., benzene, toluene, ethylbenzene, xylene and polyaromatic hydrocarbons), heavy metals (i.e., lead and arsenic), and cyanide at a former manufactured gas plant after 150 years of operation in Portadown, Northern Ireland. The objective of this study was to develop a modified flyash that could be used in the initial cell within a sequential biological PRB to filter complex contaminated groundwater containing ammonium. Flyash modified with lime (CaOH) and alum was subjected to a series of batch tests which investigated the modified cation exchange capacity (CEC) and rate of removal of anions and cations from the solution. These tests showed that a high flyash composition medium (80%) could remove 8.65 mol of ammonium contaminant for every kilogram of medium. The modified CEC procedure ruled out the possibility of cation exchange as the major removal mechanism. The medium could also adsorb anions as well as cations (i.e., Pb and Cr), but not with the same capacity. The initial mechanism for Pb and Cr removal is probably precipitation. This is followed by sorption, which is possibly the only mechanism for the removal of dichromate anions. Scanning electron microscopic analysis revealed very small (productive zeolite formation. Surface area measurements showed that biofilm growth on the medium could be a major factor in the comparative reduction of surface area between real and synthetic contaminant groundwaters. The modified flyash was found to be a highly sorptive granular material that did not inhibit microbiological activity, however, leaching tests revealed that the medium would fail as a long-term barrier material.

  19. Properties of dielectric barrier discharges in different arrangements

    International Nuclear Information System (INIS)

    Pietsch, G.J.

    2001-01-01

    Dielectric barrier discharges (DBDs) occur in arrangements where at least one dielectric is positioned in a gas space in between conducting electrodes. When breakdown field strength is reached in such a device, charge carriers are created in the gas region, accelerated, multiplied and finally collected on the surface(s) of the dielectric(s). The charge accumulation on the dielectric creates a counter field to that resulting from the power supply and as all of these processes are rather fast, the discharge quenches rapidly. The dielectric has two tasks, it limits the transferred charge and by this the energy conversion and distributes the discharge over the electrode area. That is why DBDs are non-thermal discharges which exist even at atmospheric pressure

  20. Gelatinous soil barrier for reducing contaminant emissions at waste-disposal sites

    International Nuclear Information System (INIS)

    Opitz, B.E.; Martin, W.J.; Sherwood, D.R.

    1982-09-01

    The milling of uranium ore produces large quantities of waste (mill tailings) that are being deposited in earthen pits or repositories. These wastes, which remain potentially hazardous for long time periods, may reach the biosphere at levels greater than those allowed by the Environmental Protection Agency (EPA). For example, the leachates associated with these wastes contain numerous radionuclides and toxic trace metals at levels 10 2 to 10 4 greater than allowable for drinking water based on EPA Primary Drinking Water Standards. As a result, technologies must be developed to ensure that such wastes will not reach the biosphere at hazardous levels. Under sponsorship of the Department of Energy's Uranium Mill Tailings Remedial Action Program (UMTRAP), Pacific Northwest Laboratory (PNL) has investigated the use of engineered barriers for use as liners and covers for waste containment. Results of these investigations have led to the development of a low permeable, multilayer earthen barrier that effectively reduces contaminant loss from waste disposal sites. The multilayer earth barrier was developed as an alternative to clay liner or cover schemes for use in areas where clays were not locally available and must be shipped to the disposal site. The barrier layer is comprised of 90% locally available materials whose liner or cover properties are enhanced by the addition of a gelatinous precipitate which entrains moisture into the cover's air-filled pore spaces, blocking the pathways through which gas would otherwise diffuse into the atmosphere or through which moisture would migrate into the ground. In field verification tests, the earthen seal reduced radon gas emissions by 95 to 99% over prior release rates with measured permeabilities on the order of 10 - 9 cm/s

  1. Tests of potential functional barriers for laminated multilayer food packages. Part I: Low molecular weight permeants.

    Science.gov (United States)

    Simal-Gándara, J; Sarria-Vidal, M; Koorevaar, A; Rijk, R

    2000-08-01

    The advent of the functional barrier concept in food packaging has brought with it a requirement for fast tests of permeation through potential barrier materials. In such tests it would be convenient for both foodstuffs and materials below the functional barrier (sub-barrier materials) to be represented by standard simulants. By means of inverse gas chromatography, liquid paraffin spiked with appropriate permeants was considered as a potential simulant of sub-barrier materials based on polypropylene (PP) or similar polyolefins. Experiments were performed to characterize the kinetics of the permeation of low molecular weight model permeants (octene, toluene and isopropanol) from liquid paraffin, through a surrogate potential functional barrier (25 microns-thick oriented PP) into the food stimulants olive oil and 3% (w/v) acetic acid. These permeation results were interpreted in terms of three permeation kinetic models regarding the solubility of a particular model permeant in the post-barrier medium (i.e. the food simulant). The results obtained justify the development and evaluation of liquid sub-barrier simulants that would allow flexible yet rigorous testing of new laminated multilayer packaging materials.

  2. Effects of thermal barrier coating on gas emissions and performance of a LHR engine with different injection timings and valve adjustments

    International Nuclear Information System (INIS)

    Bueyuekkaya, Ekrem; Engin, Tahsin; Cerit, Muhammet

    2006-01-01

    Tests were performed on a six cylinder, direct injection, turbocharged Diesel engine whose pistons were coated with a 350 μm thickness of MgZrO 3 over a 150 μm thickness of NiCrAl bond coat. CaZrO 3 was employed as the coating material for the cylinder head and valves. The working conditions for the standard engine (uncovered) and low heat rejection (LHR) engine were kept exactly the same to ensure a realistic comparison between the two configurations of the engine. Comparisons between the standard engine and its LHR version were made based on engine performance, exhaust gas emissions, injection timing and valve adjustment. The results showed that 1-8% reduction in brake specific fuel consumption could be achieved by the combined effect of the thermal barrier coating (TBC) and injection timing. On the other hand, NO x emissions were obtained below those of the base engine by 11% for 18 o BTDC injection timing

  3. Barrier mechanisms in the Drosophila blood-brain barrier

    Directory of Open Access Journals (Sweden)

    Samantha Jane Hindle

    2014-12-01

    Full Text Available The invertebrate blood-brain barrier field is growing at a rapid pace and, in recent years, studies have shown a physiologic and molecular complexity that has begun to rival its vertebrate counterpart. Novel mechanisms of paracellular barrier maintenance through GPCR signaling were the first demonstrations of the complex adaptive mechanisms of barrier physiology. Building upon this work, the integrity of the invertebrate blood-brain barrier has recently been shown to require coordinated function of all layers of the compound barrier structure, analogous to signaling between the layers of the vertebrate neurovascular unit. These findings strengthen the notion that many blood-brain barrier mechanisms are conserved between vertebrates and invertebrates, and suggest that novel findings in invertebrate model organisms will have a significant impact on the understanding of vertebrate BBB functions. In this vein, important roles in coordinating localized and systemic signaling to dictate organism development and growth are beginning to show how the blood-brain barrier can govern whole animal physiologies. This includes novel functions of blood-brain barrier gap junctions in orchestrating synchronized neuroblast proliferation, and of blood-brain barrier secreted antagonists of insulin receptor signaling. These advancements and others are pushing the field forward in exciting new directions. In this review, we provide a synopsis of invertebrate blood-brain barrier anatomy and physiology, with a focus on insights from the past 5 years, and highlight important areas for future study.

  4. The development of competition in the gas market. A micro economic analysis

    International Nuclear Information System (INIS)

    Parati, M.

    2000-01-01

    This paper analyzes, from a theoretical point of view, the most likely strategy for an incumbent to face the threat of new competitors to enter the gas market. This strategy is suggested to monopolize the residual demand, so to leave new entrants choosing the quantity they are willing to sell in the market. However, this quantity will be probably bounded by the existing take-or-pay contracts. The potential barrier to entry arising from the take-or-pay contracts already signed could be high. The take-or-pay clause transforms a typical variable cost (the cost of gas) in a fixed cost so changing the incentive for an incumbent to define its strategy: pushing the quantity sold in the gas market below the take-or-pay level could be extremely expensive. It is argued that the less efficiency gap with respect to the incumbent (measured by means of the difference in marginal costs) the stronger the penetration of new competitors in the gas market. The implementation of a gas release program could be useful for development of concurrence. This would reduce directly the barrier set out by the existing take-or-pay contracts [it

  5. New concepts for drift pumping a thermal barrier with rf

    International Nuclear Information System (INIS)

    Barter, J.D.; Baldwin, D.; Chen, Y.; Poulsen, P.

    1985-01-01

    Pump neutral beams, which are directed into the loss cone of the TMX-U plugs, are normally used to pump ions from the thermal barriers. Because these neutral beams introduce cold gas that reduces pumping efficiency, and require a straight line entrance and exit from the plug, alternate methods are being investigated to provide barrier pumping. To maintain the thermal barrier, either of two classes of particles can be pumped. First, the collisionally trapped ions can be pumped directly. In this case, the most promising selection criterion is the azimuthal drift frequency. Second, the excess sloshing-ion density can be removed, allowing the use of increased sloshing-beam density to pump the trapped ions. The selection mechanism in this case is the Doppler-shifted ion-cyclotron resonance of the high-energy sloshing-ions (3 keV less than or equal to U/sub parallel/ less than or equal to 10 keV)

  6. Potential of electrical gas discharges for pollution control of large gas volumes

    International Nuclear Information System (INIS)

    Kogelschatz, U.

    1997-01-01

    Non-equilibrium gas discharges in many cases offer an innovative approach to the solution cf industrial air pollution problems. Negative corona discharges are used in electrostatic precipitators to collect dust and fly ash particles. Pulsed positive streamer coronas, dielectric-barrier discharges and possibly also flow-stabilised high pressure glow discharges are emerging technologies for the destruction of air pollutants like nitrogen oxides and sulfur dioxide in flue gases and volatile organic compounds (VOCs) in industrial effluents. The different discharge types are discussed with special emphasis on their potential for upscaling. Major applications are expected particularly in the removal of dilute concentrations of air pollutants, in odour control and in the simultaneous removal of different pollutants. Dielectric-barrier discharges exhibit disposal efficiencies similar to those of pulsed positive streamer coronas and require less sophisticated feeding circuits in large-scale industrial applications. (author)

  7. Magnetic tunnel junctions with AlN and AlNxOy barriers

    International Nuclear Information System (INIS)

    Schwickert, M. M.; Childress, J. R.; Fontana, R. E.; Kellock, A. J.; Rice, P. M.; Ho, M. K.; Thompson, T. J.; Gurney, B. A.

    2001-01-01

    Nonoxide tunnel barriers such as AlN are of interest for magnetic tunnel junctions to avoid the oxidation of the magnetic electrodes. We have investigated the fabrication and properties of thin AlN-based barriers for use in low resistance magnetic tunnel junctions. Electronic, magnetic and structural data of tunnel valves of the form Ta (100 Aa)/PtMn (300 Aa)/CoFe 20 (20 Aa - 25 Aa)/barrier/CoFe 20 (10 - 20 Aa)/NiFe 16 (35 - 40 Aa)/Ta (100 Aa) are presented, where the barrier consists of AlN, AlN x O y or AlN/AlO x with total thicknesses between 8 and 15 Aa. The tunnel junctions were sputter deposited and then lithographically patterned down to 2 x 2μm 2 devices. AlN was deposited by reactive sputtering from an Al target with 20% - 35% N 2 in the Ar sputter gas at room temperature, resulting in stoichiometric growth of AlN x (x=0.50±0.05), as determined by RBS. TEM analysis shows that the as-deposited AlN barrier is crystalline. For AlN barriers and AlN followed by natural O 2 oxidation, we obtain tunnel magnetoresistance >10% with specific junction resistance R j down to 60Ωμm 2 . [copyright] 2001 American Institute of Physics

  8. How can natural gas markets be competitively organized

    International Nuclear Information System (INIS)

    Funk, C.

    1992-01-01

    In this paper it will be discussed how to most effectively give room to competitive forces in natural gas markets, given the traditional merchant pipeline as point of departure. Alternative models of organizing the market will be reviewed: we first consider decreasing barriers to entry and then analyse advantages and drawbacks of a third party access system. In this context different forms of implementing a competitive market for transportation capacity and coordinating it with gas trade are discussed, among them a simultaneous auction of gas and transmission capacity. Finally a hub system of point markets will be suggested to improve the currently implemented third party access system and to allow for competitive markets for gas and transportation service. 33 refs., 6 figs

  9. Direct Measurement of the Isomerization Barrier of the Isolated Retinal Chromophore

    Science.gov (United States)

    2015-11-03

    al. Angew. Chem. Int. Ed. 2008, 47, 1668 –1671 Dehydrated gas-phase structures Barlow Correlation Experiment – Barrier energy in protein is ~1-1.2...eV, and inversely correlated with the absorption wavelength Theory – ~1-2eV Barlow R.B.; Birge R.R.; Kaplan E.; Tallent J.R. Nature 1993, 366, 64

  10. Direct access tariffs and barriers to choice

    International Nuclear Information System (INIS)

    Levson, D.

    1999-01-01

    The current situation of the power market in Alberta was reviewed. Based on this review is was concluded that the province is a long way from being a competitive, liquid power market. Further, it was predicted that unless large power purchasers get actively involved in managing their options, identify realistic and competitive supply options and actively campaign for the removal of barriers to choice, they will experience significant cost increases in the year 2001 and beyond, due in large measure to the market power exercised by the four major utilities (TAU, EPCOR, APL and Powerex). Barriers to new supply such as the high cost of standby, uncertainties about transmission and natural gas prices, the delays to cogeneration caused by low oil prices, and the design of direct access tariffs by utilities, were also explored. The cumulative contribution of these factors to uncertainties in pool price, fixed price and transmission and distribution costs were outlined

  11. Formation and evolution of the glow-like dielectric barrier discharge at atmospheric pressure

    NARCIS (Netherlands)

    Starostin, S.A.; ElSabbagh, M.A.M.; Premkumar, P.A.; Vries, de H.W.; Paffen, R.M.J.; Creatore, M.; Sanden, van de M.C.M.

    2008-01-01

    Time resolved process of formation and evolution of the atmospheric pressure glow discharge was studied in the roll-to- roll plasma- enhanced chemical vapor deposition dielectric barrier discharge reactor operating in helium-free gas mixtures by means of fast ICCD imaging. It was observed that the

  12. Emision of Cl2* molecules in a barrier discharge

    International Nuclear Information System (INIS)

    Avdeev, S M; Erofeev, M V; Sosnin, E A; Tarasenko, V F

    2008-01-01

    The energy and spectral parameters of emission of a barrier discharge in chlorine and its mixtures with inert gases are studied experimentally. The barrier discharge in chlorine was homogeneous at pressures up to ∼9 Torr and its spectrum contained the 3 Π 2g → 3 Π 2u , 3 Π 2g → 3 Σ 2u + and 1 Σ u + → 1 Σ g + bands of Cl 2 * molecules. After the addition of an inert gas, the 257.8-nm 3 Π 2g → 3 Π 2u band made the main contribution to the spectrum. The maximum efficiency and power of the Cl 2 excilamp were obtained for the chlorine-argon mixture and amounted to 0.7% and 1.3 W, respectively. (laser applications and other topics in quantum electronics)

  13. Natural gas : a critical component of Ontario's electricity future

    International Nuclear Information System (INIS)

    Pleckaitis, A.

    2004-01-01

    This PowerPoint presentation identified natural gas as part of the electricity solution. It reviewed price implications and policy recommendations. New natural gas supply is not keeping pace with demand. Production is leveling out in traditional basins and industry investment is not adequate. In addition, energy deregulation is creating disconnects. This presentation included a map depicting the abundant natural gas reserves across North America. It was noted that at 2002 levels of domestic production, North America has approximately 80 years of natural gas. The AECO consensus wholesale natural gas price forecast is that natural gas prices in 2010 will be lower than today. The use of natural gas for power generation was outlined with reference to fuel switching, distributed generation, and central generation. It was emphasized that government, regulators and the energy industry must work together to address policy gaps and eliminate barriers to new investment. tabs., figs

  14. Powerful highly efficient KrF lamps excited by surface and barrier discharges

    International Nuclear Information System (INIS)

    Borisov, V M; Vodchits, V A; El'tsov, A V; Khristoforov, O B

    1998-01-01

    An investigation was made of the characteristics of KrF lamps with different types of excitation by surface and barrier discharges in which the dielectric material was sapphire. The conditions were determined for the attainment of an extremely high yield of the KrF* fluorescence with the internal efficiency η in ∼30 % and 22% for pulsed surface and barrier discharges, respectively. A homogeneous surface discharge was maintained without gas circulation when the pulse repetition rate was 5 x 10 4 Hz. Quasicontinuous excitation of a surface discharge at near-atmospheric pressure made it possible to reach a KrF* fluorescence power density of about 80 W cm -3 , which was close to the limit set by the kinetics of the gaseous medium. Under prolonged excitation conditions the intensity of the UV output radiation was limited by the permissible heating of the gas to a temperature above which the operating life of the gaseous mixture containing fluorine fell steeply. This was the reason for the advantage of surface over barrier discharges: the former were characterised by a high thermal conductivity of a thin (∼0.2 mm) plasma layer on the surface of the cooled dielectric, which made it possible to construct powerful highly efficient KrF and ArF lamps emitting UV radiation of up to 1 W cm -2 intensity. (laser system components)

  15. The development of dielectric barrier discharges in gas gaps and on surfaces

    International Nuclear Information System (INIS)

    Gibalov, Valentin I.; Pietsch, Gerhard J.

    2000-01-01

    Dielectric barrier discharges (DBDs) occur in configurations which are characterized by a dielectric layer between conducting electrodes. Two basic configurations can be distinguished: a volume discharge (VD) arrangement with a gas gap; and a surface discharge (SD) arrangement with surface electrode(s) on a dielectric layer and an extensive counter electrode on its reverse side. At atmospheric pressure the DBD consists of numerous microdischarges (VD) and discharge steps (SD), respectively, their number being proportional to the amplitude of the voltage. These events have a short duration in the range of some 10 ns transferring a certain amount of charge within the discharge region. The total transferred charge determines the current and hence the volt-ampere characteristic of each arrangement. The microdischarges (discharge steps) have a complicated spatial structure. The discharge patterns on the dielectric surface depend on the polarity and amplitude of the applied voltage as well as on the specific capacity of the dielectric. Experimental findings on DBDs in air and oxygen are presented and discussed. On the basis of a self-consistent two-dimensional modelling the temporal and spatial development of a microdischarge and discharge step are investigated numerically. The results lead to an understanding of the dynamics of DBDs. Although in VD arrangements cathode-directed streamers appear especially in electronegative gases, their appearance is rather unlikely in SD arrangements. The application of DBDs for plasma-chemical reactions is determined by the productivity, with which the energy of the electric field can be converted into internal states of atoms and/or molecules. Depending on the desired product it could be both the generation of internal electronic states of molecules or atoms and dissociation products of molecules. The discharge current and current density of DBDs in both the SD and VD arrangements as well as the energy release and energy density

  16. Combination gas producing and waste-water disposal well

    Science.gov (United States)

    Malinchak, Raymond M.

    1984-01-01

    The present invention is directed to a waste-water disposal system for use in a gas recovery well penetrating a subterranean water-containing and methane gas-bearing coal formation. A cased bore hole penetrates the coal formation and extends downwardly therefrom into a further earth formation which has sufficient permeability to absorb the waste water entering the borehole from the coal formation. Pump means are disposed in the casing below the coal formation for pumping the water through a main conduit towards the water-absorbing earth formation. A barrier or water plug is disposed about the main conduit to prevent water flow through the casing except for through the main conduit. Bypass conduits disposed above the barrier communicate with the main conduit to provide an unpumped flow of water to the water-absorbing earth formation. One-way valves are in the main conduit and in the bypass conduits to provide flow of water therethrough only in the direction towards the water-absorbing earth formation.

  17. Conversion of carbon dioxide to carbon monoxide by pulse dielectric barrier discharge plasma

    Science.gov (United States)

    Wang, Taobo; Liu, Hongxia; Xiong, Xiang; Feng, Xinxin

    2017-01-01

    The conversion of carbon dioxide (CO2) to carbon monoxide (CO) was investigated in a non-thermal plasma dielectric barrier discharge (DBD) reactor, and the effects of different process conditions on the CO2 conversion were investigated. The results showed that the increase of input power could optimize the conversion of CO2 to CO. The CO2 conversion and CO yield were negatively correlated with the gas flow rate, but there was an optimum gas flow rate, that made the CO selectivity best. The carrier gas (N2, Ar) was conducive to the conversion of CO2, and the effect of N2 as carrier gas was better than Ar. The conversion of CO2 to CO was enhanced by addition of the catalyst (5A molecular sieve).

  18. A Novel Temperature Measurement Approach for a High Pressure Dielectric Barrier Discharge Using Diode Laser Absorption Spectroscopy (Preprint)

    National Research Council Canada - National Science Library

    Leiweke, R. J; Ganguly, B. N

    2006-01-01

    A tunable diode laser absorption spectroscopic technique is used to measure both electronically excited state production efficiency and gas temperature rise in a dielectric barrier discharge in argon...

  19. Gas turbines and operation of gas turbines 2011; Gasturbinen und Gasturbinenbetrieb 2011

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Within the VGB Conference at 11th and 12th May, 2011 in Offenbach/Main (Federal Republic of Germany), the following lectures were held: (1) The future of high temperature gas turbines in power plants (Konrad Vogeler); (2) Development of reliable thermal barrier coatings for high-loaded turbine and combustor parts (Hans-Peter Bossmann); (3) CCPP Irsching 4 with gas turbine SGT5-8000H, on the way to 60 % CC efficiency (Willibald Fischer); (4) First test results of MAN's new 6 MW gas turbine (Markus Beukenberg); (5) Design characteristics and key thermodynamic parameters of the recuperated 4 MW solar turbines Mercury 50 gas turbines: - Economics and environmental feasibility, - operating experience in combined cycle applications with recuperation (Ulrich Stang); (6) Medium size gas turbines - OEM concept for continued reduction of life cycle costs (Vladimir Navrotsky); (7) Fracture mechanical analysis on fatigue failures of gas turbine components: - Root cause analysis - fracture mechanics - stress corrosion cracking - examples of failure analysis (Peter Verstraete); (8) The effectiveness of blade superalloy reheat treatment (Michael Wood); (9) An innovative combustion technology for high efficient gas turbines (Christian Oliver Paschereit); (10) Damping of thermo-acoustic vibrations in gas turbine combustion chambers (Sermed Sadig); (11) Alstom GT13E2 combustor upgrade for Vattenfalls Berlin Mitte combined heat and power plant (Klaus Doebbeling); (12) Optimisation of air inlet filtration for dust, rain and humidity (Heiko Manstein); (13) Life cycle cost reduction through high efficiency membrane based air intake filters (Helmut Krah); (14) Status and impact of national, European and international standardization on GT plants; GT standardizing status quo? (Gerd Weber); (15) Technical and thermodynamic aspects of compresssed air energy storage (Peter Radgen); (16) Requirements on the gas turbine in the course of time - intelligent OEM-concepts to ensure reliable

  20. The Dragons of Inaction: Psychological Barriers That Limit Climate Change Mitigation and Adaptation

    Science.gov (United States)

    Gifford, Robert

    2011-01-01

    Most people think climate change and sustainability are important problems, but too few global citizens engaged in high-greenhouse-gas-emitting behavior are engaged in enough mitigating behavior to stem the increasing flow of greenhouse gases and other environmental problems. Why is that? Structural barriers such as a climate-averse infrastructure…

  1. Energy efficiency barriers in commercial and industrial firms in Ukraine: An empirical analysis

    International Nuclear Information System (INIS)

    Hochman, Gal; Timilsina, Govinda R.

    2017-01-01

    Improvement in energy efficiency is one of the main options to reduce energy demand and greenhouse gas emissions. However, large-scale deployment of energy-efficient technologies is constrained by several factors. Employing a survey of 509 industrial and commercial firms throughout Ukraine and a generalized ordered logit model, we quantified the economic, behavioral, and institutional barriers that may impede the deployment of energy-efficient technologies. Our analysis shows that behavioral barriers resulted from lack of information, knowledge, and awareness are major impediments to the adoption of energy-efficient technologies in Ukraine, and that financial barriers may further impede investments in these technologies especially for small firms. This suggests that carefully targeted information provisions and energy audits will enhance Ukrainian firms' investments in energy-efficient technologies to save energy consumption, improve productivity, and reduce carbon emissions from the productive sectors. - Highlights: • Employing a survey of 509 industrial and commercial firms throughout Ukraine • A generalized ordered logit model is used in the analysis. • The paper quantifies the economic, behavioral, and institutional barriers to energy-efficient technologies. • Behavioral barriers are major impediments to the adoption of energy-efficient technologies. • Financial barriers may further impede investments in these technologies especially for small firms.

  2. Effect of avalanche-type barrier discharge on a silver halide photographic material in the case of blocked ionic conductivity

    International Nuclear Information System (INIS)

    Boychenko, A. P.

    2012-01-01

    Imaging of avalanche-type barrier gas discharge excited by single videopulses ∼7 μs long is studied via chemical activation of an ion subsystem of microcrystals of silver halide photographic emulsions by 1-phenyl-5-mercaptotetrazole. Using “Retina” commercial X-ray film and specially fabricated photoemulsion microcrystals with effective surface and deep electron traps as an example, the selective gas-discharge sensitivity of photographic layers to applied-voltage polarity is detected. It is shown that their sensitivity to barrier discharge ignited by negative-polarity pulses (on the electrode with a photographic material) is higher than in the case of positive pulses, irrespective of the photographic material’s position in the capacitor system.

  3. Sustainability, Shale Gas, and Energy Transition in China: Assessing Barriers and Prioritizing Strategic Measures

    DEFF Research Database (Denmark)

    Ren, Jingzheng; Sovacool, Benjamin

    2015-01-01

    and prioritized the feasible strategic measures by employing the methods of fuzzy Analytic Network Process and Interpretative Structural Modeling. The aim is to help the stakeholders and administrators to better comprehend the relative importance of the barriers and adopt suitable measures. The results...

  4. The limits to deregulation of entry and expansion of the US gas pipeline industry

    International Nuclear Information System (INIS)

    Rosput, P.G.

    1993-01-01

    US consumers of natural gas have enjoyed significant benefits as the pricing of the commodity has been deregulated. Thanks in large part to the success of deregulation of the natural gas commodity. US federal regulators have embarked upon a wide-ranging programme of eliminating barriers to entry and expansion of natural gas pipelines, which have traditionally been regulated as natural monopolies. As a result, there is now significant excess capacity in the natural gas transmission sector, without measurable benefits to consumers. (author)

  5. Optimization of High Porosity Thermal Barrier Coatings Generated with a Porosity Former

    Czech Academy of Sciences Publication Activity Database

    Medřický, J.; Curry, N.; Pala, Zdeněk; Vilémová, Monika; Chráska, Tomáš; Johansson, J.; Markocsan, N.

    2015-01-01

    Roč. 24, č. 4 (2015), s. 622-628 ISSN 1059-9630 R&D Projects: GA ČR GB14-36566G Institutional support: RVO:61389021 Keywords : gas turbine s * high temperature application * porosity of coatings * stabilized zirconia * thermal barrier coatings (TBCs) Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 1.568, year: 2015

  6. PEO-like Plasma Polymers Prepared by Atmospheric Pressure Surface Dielectric Barrier Discharge

    Czech Academy of Sciences Publication Activity Database

    Gordeev, I.; Choukourov, A.; Šimek, Milan; Prukner, Václav; Biederman, H.

    2012-01-01

    Roč. 9, č. 8 (2012), s. 782-791 ISSN 1612-8850 R&D Projects: GA ČR(CZ) GD104/09/H080 Institutional research plan: CEZ:AV0Z20430508 Keywords : fibrinogen * non-fouling properties * PEO * plasma polymerization * surface dielectric barrier discharge Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.730, year: 2012

  7. Fundamental structural aspects and features in the bioengineering of the gas exchangers: comparative perspectives.

    Science.gov (United States)

    Maina, J N

    2002-01-01

    the ubiquitous method of transfer of O2 across biological tissues. Gills, evaginated gas exchangers, were the primordial respiratory organs that evolved for water breathing, whereas lungs (invaginated gas exchangers) developed for terrestrial (air) breathing. Transitional (= bimodal = amphibious) breathing has evolved in animals with specialized organs that extract O2 from both water and air. Lungs are tidally (= bidirectionally) ventilated, while gills are unidirectionally ventilated, a feature that allows the highly efficient counter-current disposition between blood and water. Since animals occupy inconstant environmental milieus and their metabolic states vary, gas exchangers are designed to operate optimally across a spectrum of conditions that range from resting to exercise and even under hypoxia. Inbuilt structural and functional flexibility provides the requisite safety factors that allow adjustments to modest pressures. The fundamental structural features that determine the respiratory function of a gas exchanger are respiratory surface area, thickness of the blood-water/gas (tissue) barrier and volume of the pulmonary capillary blood. The diffusing capacity of a gas exchanger correlates directly with the surface area and inversely with the thickness of the blood-water/gas (tissue) barrier. An extensive surface area is generated in gills by extensive stratification of the gas exchanger and in lungs by profuse internal subdivision. Compartmentalization yields small terminal gas exchange compartments that compel greater commitment of energy to ventilate. The surfactant, a phospholipid lining, reduces the forces of surface tension at the air-water interface. This attenuates the propensity of physical collapse of the minute gas exchange units and minimizes the cost of ventilation. The surfactant characterizes all the gas exchangers derived from the piscine air bladder. In the lower air-breathing vertebrates, such as the lungfishes (Dipnoi), amphibians and certain

  8. High speed PVD thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Beele, W. [Sulzer Metco Coatings BV (Netherlands); Eschendorff, G. [Sulzer Metco Coatings BV (Netherlands); Eldim BV (Netherlands)

    2006-07-15

    The high speed PVD process (HS-PVD) combines gas phase coating synthesis with high deposition rates. The process has been demonstrated for high purity YSZ deposited as a chemically bonded top thermal barrier with columnar structure of EB-PVD features. The process can manufacture EB-PVD like coatings that match in regards to their TGO-formation and columnar structure. Coatings with a columnar structure formed by individual columns of 1/4 of the diameter of a classical EB-PVD type TBC have been deposited. These coatings have the potential to prove a significant reduction in thermal conductivity and in erosion performance. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  9. High speed PVD thermal barrier coatings

    International Nuclear Information System (INIS)

    Beele, W.; Eschendorff, G.

    2006-01-01

    The high speed PVD process (HS-PVD) combines gas phase coating synthesis with high deposition rates. The process has been demonstrated for high purity YSZ deposited as a chemically bonded top thermal barrier with columnar structure of EB-PVD features. The process can manufacture EB-PVD like coatings that match in regards to their TGO-formation and columnar structure. Coatings with a columnar structure formed by individual columns of 1/4 of the diameter of a classical EB-PVD type TBC have been deposited. These coatings have the potential to prove a significant reduction in thermal conductivity and in erosion performance. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  10. A gas-silicon telescope for medium-heavy ion detection

    International Nuclear Information System (INIS)

    Kozik, T.; Buschmann, J.; Neudold, M.

    1985-12-01

    A ΔE-E telescope for the identification of medium-heavy ions is presented. The specific energy loss is measured with a gas ionization chamber, and the residual energy is determined with a silicon surface barrier detector. The main features of the collecting electrical field and the timing properties of the device are discussed under theoretical aspects. The gas supply system, its electronic control unit, and the operating procedures are described. Two different versions of the coincidence electronics are shown. The experimental performance of the gas-silicon telescope is demonstrated and is found to be close to the best Z-resolution which can be obtained with this technique. (orig.) [de

  11. Smart parking barrier

    KAUST Repository

    Alharbi, Abdulrazaq M.

    2016-05-06

    Various methods and systems are provided for smart parking barriers. In one example, among others, a smart parking barrier system includes a movable parking barrier located at one end of a parking space, a barrier drive configured to control positioning of the movable parking barrier, and a parking controller configured to initiate movement of the parking barrier, via the barrier drive. The movable parking barrier can be positioned between a first position that restricts access to the parking space and a second position that allows access to the parking space. The parking controller can initiate movement of the movable parking barrier in response to a positive identification of an individual allowed to use the parking space. The parking controller can identify the individual through, e.g., a RFID tag, a mobile device (e.g., a remote control, smartphone, tablet, etc.), an access card, biometric information, or other appropriate identifier.

  12. Environmental degradation of oxidation resistant and thermal barrier coatings for fuel-flexible gas turbine applications

    Science.gov (United States)

    Mohan, Prabhakar

    The development of thermal barrier coatings (TBCs) has been undoubtedly the most critical advancement in materials technology for modern gas turbine engines. TBCs are widely used in gas turbine engines for both power-generation and propulsion applications. Metallic oxidation-resistant coatings (ORCs) are also widely employed as a stand-alone protective coating or bond coat for TBCs in many high-temperature applications. Among the widely studied durability issues in these high-temperature protective coatings, one critical challenge that received greater attention in recent years is their resistance to high-temperature degradation due to corrosive deposits arising from fuel impurities and CMAS (calcium-magnesium-alumino-silicate) sand deposits from air ingestion. The presence of vanadium, sulfur, phosphorus, sodium and calcium impurities in alternative fuels warrants a clear understanding of high-temperature materials degradation for the development of fuel-flexible gas turbine engines. Degradation due to CMAS is a critical problem for gas turbine components operating in a dust-laden environment. In this study, high-temperature degradation due to aggressive deposits such as V2O5, P2O 5, Na2SO4, NaVO3, CaSO4 and a laboratory-synthesized CMAS sand for free-standing air plasma sprayed (APS) yttria stabilized zirconia (YSZ), the topcoat of the TBC system, and APS CoNiCrAlY, the bond coat of the TBC system or a stand-alone ORC, is examined. Phase transformations and microstructural development were examined by using x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. This study demonstrated that the V2O5 melt degrades the APS YSZ through the formation of ZrV2O7 and YVO 4 at temperatures below 747°C and above 747°C, respectively. Formation of YVO4 leads to the depletion of the Y2O 3 stabilizer and the deleterious transformation of the YSZ to the monoclinic ZrO2 phase. The investigation on the YSZ degradation by Na 2SO4 and a Na2SO4 + V2

  13. Design and Performance Optimizations of Advanced Erosion-Resistant Low Conductivity Thermal Barrier Coatings for Rotorcraft Engines

    Science.gov (United States)

    Zhu, Dongming; Miller, Robert A.; Kuczmarski, Maria A.

    2012-01-01

    Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future rotorcraft engine higher fuel efficiency and lower emission goals. For thermal barrier coatings designed for rotorcraft turbine airfoil applications, further improved erosion and impact resistance are crucial for engine performance and durability, because the rotorcraft are often operated in the most severe sand erosive environments. Advanced low thermal conductivity and erosion-resistant thermal barrier coatings are being developed, with the current emphasis being placed on thermal barrier coating toughness improvements using multicomponent alloying and processing optimization approaches. The performance of the advanced thermal barrier coatings has been evaluated in a high temperature erosion burner rig and a laser heat-flux rig to simulate engine erosion and thermal gradient environments. The results have shown that the coating composition and architecture optimizations can effectively improve the erosion and impact resistance of the coating systems, while maintaining low thermal conductivity and cyclic oxidation durability

  14. Influence of oxygen concentration on ethylene removal using dielectric barrier discharge

    Science.gov (United States)

    Takahashi, Katsuyuki; Motodate, Takuma; Takaki, Koichi; Koide, Shoji

    2018-01-01

    Ethylene gas is decomposed using a dielectric barrier discharge plasma reactor for long-period preservation of fruits and vegetables. The oxygen concentration in ambient gas is varied from 2 to 20% to simulate the fruit and vegetable transport container. The experimental results show that the efficiency of ethylene gas decomposition increases with decreasing oxygen concentration. The reactions of ethylene molecules with ozone are analyzed by Fourier transform infrared spectrometry. The analysis results show that the oxidization process by ozone is later than that by oxygen atoms. The amount of oxygen atoms that contribute to ethylene removal increases with decreasing oxygen concentration because the reaction between oxygen radicals and oxygen molecules is suppressed at low oxygen concentrations. Ozone is completely removed and the energy efficiency of C2H4 removal is increased using manganese dioxide as a catalyst.

  15. Chaotic correlations in barrier billiards with arbitrary barriers

    International Nuclear Information System (INIS)

    Osbaldestin, A H; Adamson, L N C

    2013-01-01

    We study autocorrelation functions in symmetric barrier billiards for golden mean trajectories with arbitrary barriers. Renormalization analysis reveals the presence of a chaotic invariant set and thus that, for a typical barrier, there are chaotic correlations. The chaotic renormalization set is the analogue of the so-called orchid that arises in a generalized Harper equation. (paper)

  16. Directional mass transport in an atmospheric pressure surface barrier discharge.

    Science.gov (United States)

    Dickenson, A; Morabit, Y; Hasan, M I; Walsh, J L

    2017-10-25

    In an atmospheric pressure surface barrier discharge the inherent physical separation between the plasma generation region and downstream point of application reduces the flux of reactive chemical species reaching the sample, potentially limiting application efficacy. This contribution explores the impact of manipulating the phase angle of the applied voltage to exert a level of control over the electrohydrodynamic forces generated by the plasma. As these forces produce a convective flow which is the primary mechanism of species transport, the technique facilitates the targeted delivery of reactive species to a downstream point without compromising the underpinning species generation mechanisms. Particle Imaging Velocimetry measurements are used to demonstrate that a phase shift between sinusoidal voltages applied to adjacent electrodes in a surface barrier discharge results in a significant deviation in the direction of the plasma induced gas flow. Using a two-dimensional numerical air plasma model, it is shown that the phase shift impacts the spatial distribution of the deposited charge on the dielectric surface between the adjacent electrodes. The modified surface charge distribution reduces the propagation length of the discharge ignited on the lagging electrode, causing an imbalance in the generated forces and consequently a variation in the direction of the resulting gas flow.

  17. Mechanical Properties and Durability of Advanced Environmental Barrier Coatings in Calcium-Magnesium-Alumino-Silicate Environments

    Science.gov (United States)

    Miladinovich, Daniel S.; Zhu, Dongming

    2011-01-01

    Environmental barrier coatings are being developed and tested for use with SiC/SiC ceramic matrix composite (CMC) gas turbine engine components. Several oxide and silicate based compositons are being studied for use as top-coat and intermediate layers in a three or more layer environmental barrier coating system. Specifically, the room temperature Vickers-indentation-fracture-toughness testing and high-temperature stability reaction studies with Calcium Magnesium Alumino-Silicate (CMAS or "sand") are being conducted using advanced testing techniques such as high pressure burner rig tests as well as high heat flux laser tests.

  18. LIF diagnostics of hydroxyl radical in atmospheric pressure He-H2O dielectric barrier discharges

    Czech Academy of Sciences Publication Activity Database

    Dilecce, G.; Ambrico, P. F.; Šimek, Milan; De Benedictis, S.

    2012-01-01

    Roč. 398, č. 4 (2012), s. 142-147 ISSN 0301-0104 Institutional research plan: CEZ:AV0Z20430508 Keywords : Spectroscopic Techniques * Plasma Diagnostics * LIF * OH * Dielectric Barrier Discharge Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.957, year: 2012

  19. Smart parking barrier

    KAUST Repository

    Alharbi, Abdulrazaq M.

    2016-01-01

    positioning of the movable parking barrier, and a parking controller configured to initiate movement of the parking barrier, via the barrier drive. The movable parking barrier can be positioned between a first position that restricts access to the parking

  20. Direct gas-phase epoxidation of propylene to propylene oxide through radical reactions: A theoretical study

    Science.gov (United States)

    Kizilkaya, Ali Can; Fellah, Mehmet Ferdi; Onal, Isik

    2010-03-01

    The gas-phase radical chain reactions which utilize O 2 as the oxidant to produce propylene oxide (PO) are investigated through theoretical calculations. The transition states and energy profiles were obtained for each path. The rate constants were also calculated. The energetics for the competing pathways indicate that PO can be formed selectively due to its relatively low activation barrier (9.3 kcal/mol) which is in a good agreement with the experimental value (11 kcal/mol) of gas-phase propylene epoxidation. The formation of the acrolein and combustion products have relatively high activation barriers and are not favored. These results also support the recent experimental findings.

  1. Influence of ultrasonic irradiation on ozone generation in a dielectric barrier discharge

    International Nuclear Information System (INIS)

    Kusano, Y; Drews, J; Leipold, F; Fateev, A; Bardenshtein, A; Krebs, N

    2012-01-01

    An atmospheric pressure dielectric barrier discharge (DBD) was generated in an N 2 /O 2 gas mixture at room temperature with and without ultrasonic irradiation to investigate ozone production. Powerful ultrasonic irradiation with the sound pressure level of approximately 150 dB into the DBD can enhance ozone production especially when the DBD was driven at a frequency of 15 kHz.

  2. The influence of roadside solid and vegetation barriers on near-road air quality

    Science.gov (United States)

    Ghasemian, Masoud; Amini, Seyedmorteza; Princevac, Marko

    2017-12-01

    The current study evaluates the influence of roadside solid and vegetation barriers on the near-road air quality. Reynolds Averaged Navier-Stokes (RANS) technique coupled with the k - ε realizable turbulence model is utilized to investigate the flow pattern and pollutant concentration. A scalar transport equation is solved for a tracer gas to represent the roadway pollutant emissions. In addition, a broad range of turbulent Schmidt numbers are tested to calibrate the scalar transport equation. Three main scenarios including flat terrain, solid barrier, and vegetative barrier are studied. To validate numerical methodology, predicted pollutant concentration is compared with published wind tunnel data. Results show that the solid barrier induces an updraft motion and lofts the vehicle emission plume. Therefore, the ground-level pollutant concentration decreases compared to the flat terrain. For the vegetation barrier, different sub-scenarios with different vegetation densities ranging from approximately flat terrain to nearly solid barrier are examined. Dense canopies act in a similar manner as a solid barrier and mitigate the pollutant concentration through vertical mixing. On the other hand, the high porosity vegetation barriers reduce the wind speed and lead to a higher pollutant concentration. As the vegetation density increases, i.e. the barrier porosity decreases, the recirculation zone behind the canopy becomes larger and moves toward the canopy. The dense plant canopy with LAD = 3.33m-2m3 can improve the near-road air quality by 10% and high porosity canopy with LAD = 1m-2m3 deteriorates near-road air quality by 15%. The results of this study can be implemented as green infrastructure design strategies by urban planners and forestry organizations.

  3. Evaluation of gas migration characteristics of compacted and saturated Ca-bentonite mixture

    International Nuclear Information System (INIS)

    Tanaka, Yukihisa; Hironaga, Michihiko

    2014-01-01

    In the current concept of near-surface pit disposal for low level radioactive waste, compacted bentonite mixture will be used as an engineered barrier mainly for inhibiting migration of radioactive nuclides. Hydrogen gas can be generated inside the engineered barrier mainly by the chemical interaction between aluminum and the alkaline component of cement, or water. If the gas generation rate exceeds the diffusion rate of gas molecules inside of the compacted bentonite mixture, gas will accumulate in the void space inside of the compacted bentonite mixture until its pressure becomes large enough for it to enter the compacted bentonite mixture as a discrete gaseous phase. It is expected to be not easy for gas to entering into the compacted bentonite mixture as a discrete gaseous phase because the pore of the compacted bentonite mixture is so minute. Therefore in this study, the gas migration characteristics and the effect of gas migration on the hydraulic conductivity of the compacted Ca-bentonite mixture are investigated by the gas migration tests. The effect of stress state on the migration characteristics is also investigated by the gas migration tests and by parametric study using the model of two phase flow through deformable porous media, which was originally developed by CRIEPI. Results of this study imply that : (1) Large gas breakthrough pressure, which is defined as a rapid increase of amount of discharged gas, is affected by initial stress conditions as well as Ca-bentonite content of the mixture. (2) Hydraulic conductivity measured after the large gas breakthrough is substantially the same that measured before the gas migration test. (3) Axial stress change and volume change of the specimen during the gas migration test can be reproduced by the numerical simulation using the model of two-phase flow through deformable porous media, which was originally developed by CRIEPI. (4) Gas migration of a small scale model is numerically simulated to investigate the

  4. PECVD Tekniği ile Büyütülmüş İnce Filmlerde Oluşan Ge ve SiGe Nanokristallerin Geçirgen Elektron Mikroskobu (TEM) ,Raman ve Fotoışıma Spektroskopisi Teknikleri ile İncelenmesi

    OpenAIRE

    Şahin, Bünyamin; Ağan, Sedat

    2009-01-01

    We report an experimental study, optical properties of Ge and SiGe nanocrystals in SiOx structures are investigated by using Transmission Electron Microscopy (TEM), Raman and Photlüminescence Spectroscopy techniques. Ge nanocrystals in silicon oxide thin films have been grown with different annealing time by Plasma Enhanced Chemical Vapor Deposition (PECVD) technique. The aim of our work is to determine size and size distiributions Ge, SiGe nanocrystals in SiOx martix due to annealing process...

  5. Regulatory issues and assumptions associated with polymers for subsurface barriers surrounding buried waste

    International Nuclear Information System (INIS)

    Heiser, J.; Siskind, B.

    1993-01-01

    One of the options for control of contaminant migration from buried waste sites is the construction of a subsurface barrier that consists of a wall of low permeability material. Subsurface barriers will improve remediation performance by removing pathways for contaminant transport due to groundwater movement, meteorological water infiltration, vapor- and gas-phase transport, transpiration, etc. Subsurface barriers may be used to open-quotes directclose quotes contaminant movement to collection sumps/lysimeters in cases of unexpected remediation failures or transport mechanisms, to contain leakage from underground storage tanks, and to restrict in-situ soil cleanup operation and chemicals. Brookhaven National Laboratory is currently investigating advanced polymer materials for subsurface barriers. This report addresses the regulatory aspects of using of non-traditional polymer materials as well as soil-bentonite or cement-bentonite mixtures for such barriers. The regulatory issues fall into two categories. The first category consists of issues associated with the acceptability of subsurface barriers to the Environmental Protection Agency (EPA) as a method for achieving waste site performance improvement. The second category encompasses those regulatory issues concerning health, safety and the environment which must be addressed regarding barrier installation and performance, especially if non-traditional materials are to be used. Since many of EPA's concerns regarding subsurface barriers focus on the chemicals used during installation of these barriers the authors discuss the results of a search of the Federal Register and the Code of Federal Regulations for references in Titles 29 and 40 pertaining to key chemicals likely to be utilized in installing non-traditional barrier materials. The use of polymeric materials in the construction industry has been accomplished with full compliance with the applicable health, safety, and environmental regulations

  6. Women in Canada's oil and gas sector

    Energy Technology Data Exchange (ETDEWEB)

    Sherk, S. [AGRA Earth and Environmental Ltd., St. John' s, NF (Canada)

    2005-01-01

    This text presents a summary of the report: Women in Canada's Oil and Gas Sector, gathered for the Oil and Gas Sector Programme Pakistan (OGSP). The OGSP aims to strengthen Pakistan's capacity to manage its oil and gas resources more sustainably through policy advice, privatization assistance, appropriate regulatory mechanisms, technology transfer and specialized petroleum training. The OGSP promotes gender equity and women's participation in its project activities and within the petroleum industry in Pakistan and Canada. The purpose of this report was to identify current levels of female labour force participation in the Canadian petroleum sector, examine barriers to women's entry and promotion within the petroleum sector, and present strategies used by petroleum companies to promote the complete participation of their female employees. The report concluded that although women are not yet equally represented in Canada's petroleum industry, the industry is moving in the right direction. For example, there are more women in petroleum-related university programs, more associations dedicated to promoting women in science and engineering, organizational change within companies in support of the principles of diversity. While monitoring and overcoming barriers to women's participation should continue, these positive steps should be supported, in order to ensure that Canada's oil and gas sector benefits fully from the new approaches, ideas and alternative working styles that women bring to their work. 4 tabs.

  7. Securing growth markets for natural gas

    International Nuclear Information System (INIS)

    Evans, G.

    1999-01-01

    The Industry Development Strategy 2000-2005 (IDS) identifies the major growth markets for natural gas, as the industry readies itself for the challenges of the new millenium. An integral part of this process is to examine the key barriers to market expansion, and to devise strategies that both The Australian Gas Association (AGA) and the wider industry can pursue to underpin improvement in overall gas consumption. This is the task of the IDS which examines the opportunities confronting the industry over the next five year period. The significant growth prospects of the gas industry both in the short term (2000-2005) and long term (2005-2015) are indicated in two comprehensive and independent studies. The first, Australian Energy Market Developments and Projections to 2014-15, was released earlier this year by the Australian Bureau of Agricultural and Resource Economics (the ABARE Energy Report). The second, Natural Gas Consumption in Australia to 2015-Prospects by State, Industry and Sector, was commissioned by the AGA, and was completed by the National Institute of Economic and Industry Research in September 1999 (NIEIR Report). Both reports indicate that in terms of consumption levels, in the period up to 2015 the gas industry is forecast to more than double its current size. Natural gas is also projected to increase its primary energy share ranking from third to second place

  8. Direct plasma NOx reduction using single surface dielectric barrier discharge

    DEFF Research Database (Denmark)

    Kroushawi, Feisal; Stamate, Eugen

    2014-01-01

    NOx reduction using direct atmospheric barrier discharge in air-NO mixture at different voltages and flow rates is inversigated. Reduction rate of 80% is achieved at 3.18 W/cm2 power density and gas mixture of 20 slm air and 0.006 slm NO. The ozone for NO reduction is produced by a honeycomb stru...

  9. Dynamics of the edge transport barrier at plasma biasing on the CASTOR tokamak

    Czech Academy of Sciences Publication Activity Database

    Stöckel, Jan; Spolaore, M.; Peleman, P.; Brotánková, Jana; Horáček, Jan; Dejarnac, Renaud; Devynck, P.; Ďuran, Ivan; Gunn, J. P.; Hron, Martin; Kocan, M.; Martines, E.; Pánek, Radomír; Sharma, A.; Van Oost, G.

    2006-01-01

    Roč. 12, č. 6 (2006), s. 19-23 ISSN 1562-6016. [International Conference on Plasma Physics and Technology/11th./. Alushta, 11.9.2006-16.9.2006] Institutional research plan: CEZ:AV0Z20430508 Keywords : tokamak * plasma * transport barrier * relaxations Subject RIV: BL - Plasma and Gas Discharge Physics http:// vant .kipt.kharkov.ua/TABFRAME.html

  10. Socio-cultural barriers to the development of a sustainable energy system - the case of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Kjerulf Petersen, L.; Holst Andersen, A.

    2009-02-15

    Any transition to a more sustainable energy system, radically reducing greenhouse gas emissions, is bound to run in to a host of different barriers - technological and economic, but also socio-cultural. This will also be the case for any large-scale application of hydrogen as energy carrier, especially if the system is going to be based on renewable energy sources. The aim of these research notes is to review and discuss major socio-cultural barriers to new forms of energy supply in general and to hydrogen specifically. Reaching sufficient reductions in greenhouse gas emissions may require more than large-scale dissemination of renewable energy sources. Also reductions or moderations in energy demand may be necessary. Hence, a central point in the research note is to consider not only socio-cultural obstacles for changing technologies in energy production, distribution and consumption but also obstacles for changing the scale of energy consumption, i.e. moderating the growth in how much energy is consumed or even reducing consumption volumes. (au)

  11. Radical production efficiency and electrical characteristics of a coplanar barrier discharge built by multilayer ceramic technology

    International Nuclear Information System (INIS)

    Jõgi, Indrek; Erme, Kalev; Levoll, Erik; Stamate, Eugen

    2017-01-01

    The present study investigated the electrical characteristics and radical production efficiency of a coplanar barrier discharge (CBD) device manufactured by Kyocera by multilayer ceramic technology. The device consisted of a number of linear electrodes with electrode and gap widths of 0.75 mm, immersed into a ceramic dielectric barrier. A closed flow-through system necessary for the measurements was prepared by placing a quartz plate at a height of 3 mm from the ceramic barrier. The production of nitrogen radicals was determined from the removal of a trace amount of NO in pure N 2 gas, while the production of oxygen radicals was determined by ozone production in pure O 2 or synthetic air. The production efficiency of N and O radicals and NO oxidation in synthetic air was comparable with the efficiency of a volume barrier discharge device. The power density per unit of surface area of the CBD device was more than two times larger than that of a similar volume barrier discharge setup, which makes the CBD device a compact alternative for gas treatment. The production of ozone and different nitrogen oxides was also evaluated for the open system of the CBD which is usable for surface treatment. The ozone concentration of this system was nearly independent from the input power, while the concentration of nitrogen oxides increased with input power. The open system of the CBD was additionally tested for the treatment of a silicon surface. An increase of applied power decreased the time required to reduce the water contact angle below 10 degrees but also started to have an impact on the surface roughness. (paper)

  12. Stability of barrier buckets with zero RF-barrier separations

    Energy Technology Data Exchange (ETDEWEB)

    Ng, K.Y.; /Fermilab

    2005-03-01

    A barrier bucket with very small separation between the rf barriers (relative to the barrier widths) or even zero separation has its synchrotron tune decreasing rather slowly from a large value towards the boundary of the bucket. As a result, large area at the bucket edges can become unstable under the modulation of rf voltage and/or rf phase. In addition, chaotic regions may form near the bucket center and extend outward under increasing modulation. Application is made to those barrier buckets used in the process of momentum mining at the Fermilab Recycler Ring.

  13. Experimental investigation on large-area dielectric barrier discharge in atmospheric nitrogen and air assisted by the ultraviolet lamp.

    Science.gov (United States)

    Zhang, Yan; Gu, Biao; Wang, Wenchun; Wang, Dezhen; Peng, Xuwen

    2009-04-01

    In this paper, ultraviolet radiation produced by the ultraviolet lamp is employed to supply pre-ionization for the dielectric barrier discharge in N(2) or air at atmospheric pressure. The effect of the ultraviolet pre-ionization on improving the uniformity of the dielectric barrier discharge is investigated experimentally. The atmospheric pressure glow discharge of the large area (270 mm x 120 mm) is obtained successfully via the ultraviolet pre-ionization in atmospheric DBD in N(2) when the gas gap decrease to 3mm. Based on the emission spectra, the mechanism which ultraviolet pre-ionization improves the uniformity of the dielectric barrier discharge is discussed.

  14. Next Generation Thermal Barrier Coatings for the Gas Turbine Industry

    Science.gov (United States)

    Curry, Nicholas; Markocsan, Nicolaie; Li, Xin-Hai; Tricoire, Aurélien; Dorfman, Mitch

    2011-01-01

    The aim of this study is to develop the next generation of production ready air plasma sprayed thermal barrier coating with a low conductivity and long lifetime. A number of coating architectures were produced using commercially available plasma spray guns. Modifications were made to powder chemistry, including high purity powders, dysprosia stabilized zirconia powders, and powders containing porosity formers. Agglomerated & sintered and homogenized oven spheroidized powder morphologies were used to attain beneficial microstructures. Dual layer coatings were produced using the two powders. Laser flash technique was used to evaluate the thermal conductivity of the coating systems from room temperature to 1200 °C. Tests were performed on as-sprayed samples and samples were heat treated for 100 h at 1150 °C. Thermal conductivity results were correlated to the coating microstructure using image analysis of porosity and cracks. The results show the influence of beneficial porosity on reducing the thermal conductivity of the produced coatings.

  15. Suppression of atmospheric recycling of planets embedded in a protoplanetary disc by buoyancy barrier

    Science.gov (United States)

    Kurokawa, Hiroyuki; Tanigawa, Takayuki

    2018-06-01

    The ubiquity of super-Earths poses a problem for planet formation theory to explain how they avoided becoming gas giants. Rapid recycling of the envelope gas of planets embedded in a protoplanetary disc has been proposed to delay the cooling and following accretion of disc gas. We compare isothermal and non-isothermal 3D hydrodynamical simulations of the gas flow past a planet to investigate the influence on the feasibility of the recycling mechanism. Radiative cooling is implemented by using the β cooling model. We find that, in either case, gas enters the Bondi sphere at high latitudes and leaves through the midplane regions, or vice versa when disc gas rotates sub-Keplerian. However, in contrast to the isothermal case where the recycling flow reaches the deeper part of the envelope, the inflow is inhibited from reaching the deep envelope in the non-isothermal case. Once the atmosphere starts cooling, buoyant force prevents the high-entropy disc gas from intruding the low-entropy atmosphere. We suggest that the buoyancy barrier isolates the lower envelope from the recycling and allows further cooling, which may lead runaway gas accretion onto the core.

  16. Fabrication and lithium storage performance of sugar apple-shaped SiOx@C nanocomposite spheres

    Science.gov (United States)

    Li, Mingqi; Zeng, Ying; Ren, Yurong; Zeng, Chunmei; Gu, Jingwei; Feng, Xiaofang; He, Hongyan

    2015-08-01

    Nonstoichiometric SiOx is a kind of very attractive anode material for high-energy lithium-ion batteries because of a high specific capacity and facile synthesis. However, the poor electrical conductivity and unstable electrode structure of SiOx severely limit its electrochemical performance as anode in lithium-ion batteries. In this work, highly durable sugar apple-shaped SiOx@C nanocomposite spheres are fabricated to achieve significantly improved electrochemical performance. The composite is synthesized by homogenous one-pot synthesis, using ethyltriethoxysilanes (EtSi(OEt)3) and resorcinol/formaldehyde (RF) as starting materials. The morphology, composition and structure of the composite are investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), elemental analysis (EA) and X-ray photoelectron spectroscopy (XPS). At a current density of 50 mA g-1, the sugar apple-shaped SiOx@C spheres exhibit a stable discharge capacity of about 630 mAh g-1 calculated on the total mass of both SiOx and C. At a current density of 100 mA g-1, a stable discharge capacity of about 550 mAh g-1 is obtained and the capacity has been kept up to 400 cycles. The excellent cycling performance is attributed to the homogeneous dispersion of SiOx in disordered carbon at the nanometer scale and the unique structure of the composite.

  17. Investigation of NOx Reduction by Low Temperature Oxidation Using Ozone Produced by Dielectric Barrier Discharge

    DEFF Research Database (Denmark)

    Stamate, Eugen; Irimiea, Cornelia; Salewski, Mirko

    2013-01-01

    NOx reduction by low temperature oxidation using ozone produced by a dielectric barrier discharge generator is investigated for different process parameters in a 6m long reactor in serpentine arrangement using synthetic dry flue gas with NOx levels below 500 ppm, flows up to 50 slm and temperatures...

  18. Natural gas distribution in Brazil - opportunities of improvement; Distribuicao de gas natural no pais - oportunidades de melhoria

    Energy Technology Data Exchange (ETDEWEB)

    Correa, Silvia R. [PETROBRAS, Rio de Janeiro, RJ (Brazil); Quintella, Odair M.; Farias Filho, Jose R. de [Universidade Federal Fluminense, Niteroi, RJ (Brazil)

    2005-07-01

    Great are the challenges established by the Brazilian Government related to goals to be achieved for the increment of the Natural Gas participation in brazilian energetic matrix, from current 5% to 12%, up to 2010. The enlargement of the distribution infrastructure of the gas (gas-pipelines 'mesh') in Brazil is considered one of the greatest challenges for the growth of the Brazilian market of Natural Gas, accomplishment that involves elevated investments. This paper presents a model of Management System for the good organizational performance of the small Natural Gas Supplying Brazilian Companies focused on criteria of Leadership, Strategies and Plans and Results, established by the Premio TOP Empresarial and by the 'Rumo a Excelencia', held by the 'Progama Qualidade Rio' and 'Fundacao para o Premio Nacional da Qualidade', respectively. The management practices of these companies were reviewed, considering the context of the energetic Brazilian scenario, subjected to the political and operational definitions and uncertainties, the available financial resources, limited or not prioritized, and actual barriers to be surpassed by the Gas Supplying Companies in order to achieve the pre-established government goals for this segment. The implementation of the proposed simplified Model, seen as improvement opportunities for the segment of Natural Gas distribution, will lead the Gas Distribution Companies to a intermediary stage envisioning the real steps towards the excellence of the performance. (author)

  19. Safety- barrier diagrams

    DEFF Research Database (Denmark)

    Duijm, Nijs Jan

    2008-01-01

    Safety-barrier diagrams and the related so-called 'bow-tie' diagrams have become popular methods in risk analysis. This paper describes the syntax and principles for constructing consistent and valid safety-barrier diagrams. The relation of safety-barrier diagrams to other methods such as fault...... trees and Bayesian networks is discussed. A simple method for quantification of safety-barrier diagrams is proposed. It is concluded that safety-barrier diagrams provide a useful framework for an electronic data structure that integrates information from risk analysis with operational safety management....

  20. Safety-barrier diagrams

    DEFF Research Database (Denmark)

    Duijm, Nijs Jan

    2007-01-01

    Safety-barrier diagrams and the related so-called "bow-tie" diagrams have become popular methods in risk analysis. This paper describes the syntax and principles for constructing consistent and valid safety-barrier diagrams. The relation with other methods such as fault trees and Bayesian networks...... are discussed. A simple method for quantification of safety-barrier diagrams is proposed, including situations where safety barriers depend on shared common elements. It is concluded that safety-barrier diagrams provide a useful framework for an electronic data structure that integrates information from risk...... analysis with operational safety management....

  1. Hurdling barriers through market uncertainty: Case studies ininnovative technology adoption

    Energy Technology Data Exchange (ETDEWEB)

    Payne, Christopher T.; Radspieler Jr., Anthony; Payne, Jack

    2002-08-18

    The crisis atmosphere surrounding electricity availability in California during the summer of 2001 produced two distinct phenomena in commercial energy consumption decision-making: desires to guarantee energy availability while blackouts were still widely anticipated, and desires to avoid or mitigate significant price increases when higher commercial electricity tariffs took effect. The climate of increased consideration of these factors seems to have led, in some cases, to greater willingness on the part of business decision-makers to consider highly innovative technologies. This paper examines three case studies of innovative technology adoption: retrofit of time-and-temperature signs on an office building; installation of fuel cells to supply power, heating, and cooling to the same building; and installation of a gas-fired heat pump at a microbrewery. We examine the decision process that led to adoption of these technologies. In each case, specific constraints had made more conventional energy-efficient technologies inapplicable. We examine how these barriers to technology adoption developed over time, how the California energy decision-making climate combined with the characteristics of these innovative technologies to overcome the barriers, and what the implications of hurdling these barriers are for future energy decisions within the firms.

  2. Observation of linear I-V curves on vertical GaAs nanowires with atomic force microscope

    Science.gov (United States)

    Geydt, P.; Alekseev, P. A.; Dunaevskiy, M.; Lähderanta, E.; Haggrén, T.; Kakko, J.-P.; Lipsanen, H.

    2015-12-01

    In this work we demonstrate the possibility of studying the current-voltage characteristics for single vertically standing semiconductor nanowires on standard AFM equipped by current measuring module in PeakForce Tapping mode. On the basis of research of eight different samples of p-doped GaAs nanowires grown on different GaAs substrates, peculiar electrical effects were revealed. It was found how covering of substrate surface by SiOx layer increases the current, as well as phosphorous passivation of the grown nanowires. Elimination of the Schottky barrier between golden cap and the top parts of nanowires was observed. It was additionally studied that charge accumulation on the shell of single nanowires affects its resistivity and causes the hysteresis loops on I-V curves.

  3. Evaluation of bond strength of isothermally aged plasma sprayed thermal barrier coating

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae Jin; Lee, Dong Hoon; Koo, Jae Mean; Song, Sung Jin; Seok, Chang Sung [Sungkyunkwan University, Suwon (Korea, Republic of); Kim, Mun Young [Korea Plant Service and Engineering Co., Ltd., Seongnam (Korea, Republic of)

    2008-07-15

    In this study, disk type of thermal barrier coating system for gas turbine blade was isothermally aged in the furnace changing exposure time and temperature. For each aging condition, bond tests for three samples were conducted for evaluating degradation of adhesive or cohesive strength of thermal barrier coating system. For as-sprayed condition, the location of fracture in the bond test was in the middle of epoxy which have bond strength of 57 MPa. As specimens are degraded by thermal aging, bond strength gradually decreased and the location of failure was also changed from within top coat at the earlier stage of thermal aging to the interface between top coat and TGO at the later stage due to the delamination in the coating.

  4. Vehicle barrier systems

    International Nuclear Information System (INIS)

    Sena, P.A.

    1986-01-01

    The ground vehicle is one of the most effective tools available to an adversary force. Vehicles can be used to penetrate many types of perimeter barriers, transport equipment and personnel rapidly over long distances, and deliver large amounts of explosives directly to facilities in suicide missions. The function of a vehicle barrier system is to detain or disable a defined threat vehicle at a selected distance from a protected facility. Numerous facilities are installing, or planning to install, vehicle barrier systems and many of these facilities are requesting guidance to do so adequately. Therefore, vehicle barriers are being evaluated to determine their stopping capabilities so that systems can be designed that are both balanced and capable of providing a desired degree of protection. Equally important, many of the considerations that should be taken into account when establishing a vehicle barrier system have been identified. These considerations which pertain to site preparation, barrier selection, system integration and operation, and vehicle/barrier interaction, are discussed in this paper

  5. Ozone Production Using Pulsed Dielectric Barrier Discharge in Oxygen

    OpenAIRE

    Samaranayake, W. J. M.; Miyahara, Y.; Namihira, T.; Katsuki, S.; Hackam, R.; Akiyama, H.; ナミヒラ, タカオ; カツキ, スナオ; アキヤマ, ヒデノリ; 浪平, 隆男; 勝木, 淳; 秋山, 秀典

    2000-01-01

    The production of ozone was investigated using a dielectric barrier discharge in oxygen, and employing short-duration pulsed power. The dependence of the ozone concentration (parts per million, ppm) and ozone production yield (g(O3)/kWh) on the peak pulsed voltage (17.5 to 57.9 kV) and the pulse repetition rate (25 to 400 pulses/s, pps) were investigated. In the present study, the following parameters were kept constant: a pressure of 1.01×105 Pa, a temperature of 26±4°C a gas flow rate of 3....

  6. Rapid analysis of ethanol and water in commercial products using ionic liquid capillary gas chromatography with thermal conductivity detection and/or barrier discharge ionization detection.

    Science.gov (United States)

    Weatherly, Choyce A; Woods, Ross M; Armstrong, Daniel W

    2014-02-26

    Analysis of ethanol and water in consumer products is important in a variety of processes and often is mandated by regulating agencies. A method for the simultaneous quantitation of ethanol and water that is simple, accurate, precise, rapid, and cost-effective is demonstrated. This approach requires no internal standard for the quantitation of both ethanol and water at any/all levels in commercial products. Ionic liquid based gas chromatography (GC) capillary columns are used to obtain a fast analysis with high selectivity and resolution of water and ethanol. Typical run times are just over 3 min. Examination of the response range of water and ethanol with GC, thermal conductivity detection (TCD), and barrier ionization detection (BID) is performed. Quantitation of both ethanol and water in consumer products is accomplished with both TCD and BID GC detectors using a nonlinear calibration. Validation of method accuracy is accomplished by using standard reference materials.

  7. LIBRETTO-3: modelling tritium extraction/permeation and evaluation of permeation barriers under irradiation

    International Nuclear Information System (INIS)

    Sedano, L.A.; Fuetterer, M.A.; Viola, R.; Dies, X.

    1996-01-01

    Permeation barriers are required in order to limit the size and cost of the detritiation plants for future fusion reactor blankets of the water-cooled Pb-17Li type. The LIBRETTO irradiations were performed to evaluate the efficiency of permeation barriers under high flux reactor (HFR) conditions. Tritium extraction and permeation characteristics from Pb-17Li under variable temperatures 553-723 K, H 2 doping (0-1 vol%) and purge gas flow rates 20-100 scc/min were tested in LIBRETTO-3. An external TiC coating, an internal (TiC+Al 2 O 3 ), both produced by chemical vapour deposition (CVD), and an internal Al 2 O 3 produced by pack cementation (PC) on AISI 316L steel were tested as permeation barriers. The release mechanisms, experimental uncertainties and method for permeation barriers qualification are presented. As a result permeation reduction factors (PRF) at 0.1 dpa of 17 and 34 were obtained for the CVD-Al 2 O 3 at 498 K and for the PC-Al 2 O 3 at 508 K, respectively. These values were confirmed by a residence time analysis and are higher than in a preliminary analysis. (orig.)

  8. Remarks to the DOE/NARUC conference on natural gas in the post-order 636/EPACT environment

    International Nuclear Information System (INIS)

    Makowski, J.

    1993-01-01

    Ways to remove barriers to the efficient use of natural gas are explored. Two summary observations are made. First, natural gas is clearly the fuel of choice among a majority of non-utility generators. Second, virtually every projection shows that power generation is the single largest potential new market for natural gas in North America. Today, suppliers are organizing themselves to serve this market. Methods by which suppliers intend to serve this market are discussed

  9. High mobility two-dimensional electron gases in nitride heterostructures with high Al composition AlGaN alloy barriers

    International Nuclear Information System (INIS)

    Li Guowang; Cao Yu; Xing Huili Grace; Jena, Debdeep

    2010-01-01

    We report high-electron mobility nitride heterostructures with >70% Al composition AlGaN alloy barriers grown by molecular beam epitaxy. Direct growth of such AlGaN layers on GaN resulted in hexagonal trenches and a low mobility polarization-induced charge. By applying growth interruption at the heterojunction, the surface morphology improved dramatically and the room temperature two-dimensional electron gas (2DEG) mobility increased by an order of magnitude, exceeding 1300 cm 2 /V s. The 2DEG density was tunable at 0.4-3.7x10 13 /cm 2 by varying the total barrier thickness (t). Surface barrier heights of the heterostructures were extracted and exhibited dependence on t.

  10. Interest grows in African oil and gas opportunities

    International Nuclear Information System (INIS)

    Knott, D.

    1997-01-01

    As African countries continue a slow drift towards democratic government and market economics, the continent is increasingly attractive to international oil and gas companies. Though Africa remains politically diverse, and its volatile politics remains a major barrier to petroleum companies, a number of recent developments reflect its growing significance for the industry. Among recent projects and events reflecting changes in Africa: oil and gas exporter Algeria has invited foreign oil companies to help develop major gas discoveries, with a view to boosting exports to Europe; oil and gas producer Egypt invited foreign companies to explore in the Nile Delta region, and the result appears to be a flowering world scale gas play; west African offshore exploration has entered deep water and new areas, and a number of major projects are expected in years to come; Nigeria's reputation as a difficult place to operate has been justified by recent political and civil events, but a long-planned liquefied natural gas (LNG) export plant is being built there; South Africa, which has returned to the international scene after years of trade isolation because of apartheid, is emerging as a potential driver for energy industry schemes throughout the continent. Activities are discussed

  11. Computational design and experimental validation of new thermal barrier systems

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Shengmin [Louisiana State Univ., Baton Rouge, LA (United States)

    2015-03-31

    The focus of this project is on the development of a reliable and efficient ab initio based computational high temperature material design method which can be used to assist the Thermal Barrier Coating (TBC) bond-coat and top-coat design. Experimental evaluations on the new TBCs are conducted to confirm the new TBCs’ properties. Southern University is the subcontractor on this project with a focus on the computational simulation method development. We have performed ab initio density functional theory (DFT) method and molecular dynamics simulation on screening the top coats and bond coats for gas turbine thermal barrier coating design and validation applications. For experimental validations, our focus is on the hot corrosion performance of different TBC systems. For example, for one of the top coatings studied, we examined the thermal stability of TaZr2.75O8 and confirmed it’s hot corrosion performance.

  12. Barriers to fusion

    International Nuclear Information System (INIS)

    Berriman, A.C.; Butt, R.D.; Dasgupta, M.; Hinde, D.J.; Morton, C.R.; Newton, J.O.

    1999-01-01

    The fusion barrier is formed by the combination of the repulsive Coulomb and attractive nuclear forces. Recent research at the Australian National University has shown that when heavy nuclei collide, instead of a single fusion barrier, there is a set of fusion barriers. These arise due to intrinsic properties of the interacting nuclei such deformation, rotations and vibrations. Thus the range of barrier energies depends on the properties of both nuclei. The transfer of matter between nuclei, forming a neck, can also affect the fusion process. High precision data have been used to determine fusion barrier distributions for many nuclear reactions, leading to new insights into the fusion process

  13. Extremal surface barriers

    International Nuclear Information System (INIS)

    Engelhardt, Netta; Wall, Aron C.

    2014-01-01

    We present a generic condition for Lorentzian manifolds to have a barrier that limits the reach of boundary-anchored extremal surfaces of arbitrary dimension. We show that any surface with nonpositive extrinsic curvature is a barrier, in the sense that extremal surfaces cannot be continuously deformed past it. Furthermore, the outermost barrier surface has nonnegative extrinsic curvature. Under certain conditions, we show that the existence of trapped surfaces implies a barrier, and conversely. In the context of AdS/CFT, these barriers imply that it is impossible to reconstruct the entire bulk using extremal surfaces. We comment on the implications for the firewall controversy

  14. Thermal Conductivity Analysis and Lifetime Testing of Suspension Plasma-Sprayed Thermal Barrier Coatings

    Directory of Open Access Journals (Sweden)

    Nicholas Curry

    2014-08-01

    Full Text Available Suspension plasma spraying (SPS has become an interesting method for the production of thermal barrier coatings for gas turbine components. The development of the SPS process has led to structures with segmented vertical cracks or column-like structures that can imitate strain-tolerant air plasma spraying (APS or electron beam physical vapor deposition (EB-PVD coatings. Additionally, SPS coatings can have lower thermal conductivity than EB-PVD coatings, while also being easier to produce. The combination of similar or improved properties with a potential for lower production costs makes SPS of great interest to the gas turbine industry. This study compares a number of SPS thermal barrier coatings (TBCs with vertical cracks or column-like structures with the reference of segmented APS coatings. The primary focus has been on lifetime testing of these new coating systems. Samples were tested in thermo-cyclic fatigue at temperatures of 1100 °C for 1 h cycles. Additional testing was performed to assess thermal shock performance and erosion resistance. Thermal conductivity was also assessed for samples in their as-sprayed state, and the microstructures were investigated using SEM.

  15. Review on technical issues influencing the performance of chemical barriers of TRU waste repository

    International Nuclear Information System (INIS)

    Fujita, Tomonari; Sugiyama, Daisuke; Tsukamoto, Masaki; Yokoyama, Hayaichi

    1997-01-01

    Studies of technical issues influencing the performance assessment of TRU waste disposal which is occurred from the nuclear fuel reprocessing were reviewed in related to the development of safety analysis method. Especially, the chemical containment was investigated as a key barrier to radionuclide migration. TRU waste including long-lived radionuclides need long-term performance assessment which could be assumed only by the chemical barrier. The description of technical issues concerned with the performance of TRU waste repository has been divided into the following categories: long-term degradation of cementitious materials as engineered barrier for radionuclide migration, effect of colloids, organic macromolecules and organic degradation products on chemical behavior of radionuclides, gas generation by corrosion of metallic wastes, and effects of microbial activity. Preliminary performance assessment indicated that important factors affecting performance of chemical barriers in near-field were the distribution coefficient and the solubility of radionuclides in near-field groundwater. Therefore, it was identified that key issues associated with performance of chemical barrier were evaluation of (a) the long-term change of distribution coefficient of cementitious material through the degradation under repository condition and (b) chemical speciation change of radionuclides such as increase of solubility by the presence of colloidal-size materials. (author)

  16. Novel Functionally Graded Thermal Barrier Coatings in Coal-Fired Power Plant Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jing [Indiana Univ., Indianapolis, IN (United States)

    2016-11-01

    This project presents a detailed investigation of a novel functionally graded coating material, pyrochlore oxide, for thermal barrier coating (TBC) in gas turbines used in coal-fired power plants. Thermal barrier coatings are refractory materials deposited on gas turbine components, which provide thermal protection for metallic components at operating conditions. The ultimate goal of this research is to develop a manufacturing process to produce the novel low thermal conductivity and high thermal stability pyrochlore oxide based coatings with improved high-temperature durability. The current standard TBC, yttria stabilized zirconia (YSZ), has service temperatures limited to <1200°C, due to sintering and phase transition at higher temperatures. In contrast, pyrochlore oxide, e.g., lanthanum zirconate (La2Zr2O7, LZ), has demonstrated lower thermal conductivity and better thermal stability, which are crucial to high temperature applications, such as gas turbines used in coal-fired power plants. Indiana University – Purdue University Indianapolis (IUPUI) has collaborated with Praxair Surface Technologies (PST), and Changwon National University in South Korea to perform the proposed research. The research findings are critical to the extension of current TBCs to a broader range of high-temperature materials and applications. Several tasks were originally proposed and accomplished, with additional new opportunities identified during the course of the project. In this report, a description of the project tasks, the main findings and conclusions are given. A list of publications and presentations resulted from this research is listed in the Appendix at the end of the report.

  17. Multilayer moisture barrier

    Science.gov (United States)

    Pankow, Joel W; Jorgensen, Gary J; Terwilliger, Kent M; Glick, Stephen H; Isomaki, Nora; Harkonen, Kari; Turkulainen, Tommy

    2015-04-21

    A moisture barrier, device or product having a moisture barrier or a method of fabricating a moisture barrier having at least a polymer layer, and interfacial layer, and a barrier layer. The polymer layer may be fabricated from any suitable polymer including, but not limited to, fluoropolymers such as polyethylene terephthalate (PET) or polyethylene naphthalate (PEN), or ethylene-tetrafluoroethylene (ETFE). The interfacial layer may be formed by atomic layer deposition (ALD). In embodiments featuring an ALD interfacial layer, the deposited interfacial substance may be, but is not limited to, Al.sub.2O.sub.3, AlSiO.sub.x, TiO.sub.2, and an Al.sub.2O.sub.3/TiO.sub.2 laminate. The barrier layer associated with the interfacial layer may be deposited by plasma enhanced chemical vapor deposition (PECVD). The barrier layer may be a SiO.sub.xN.sub.y film.

  18. A framework for understanding semi-permeable barrier effects on migratory ungulates

    Science.gov (United States)

    Sawyer, Hall; Kauffman, Matthew J.; Middleton, Arthur D.; Morrison, Thomas A.; Nielson, Ryan M.; Wyckoff, Teal B.

    2013-01-01

    1. Impermeable barriers to migration can greatly constrain the set of possible routes and ranges used by migrating animals. For ungulates, however, many forms of development are semi-permeable, and making informed management decisions about their potential impacts to the persistence of migration routes is difficult because our knowledge of how semi-permeable barriers affect migratory behaviour and function is limited. 2. Here, we propose a general framework to advance the understanding of barrier effects on ungulate migration by emphasizing the need to (i) quantify potential barriers in terms that allow behavioural thresholds to be considered, (ii) identify and measure behavioural responses to semi-permeable barriers and (iii) consider the functional attributes of the migratory landscape (e.g. stopovers) and how the benefits of migration might be reduced by behavioural changes. 3. We used global position system (GPS) data collected from two subpopulations of mule deer Odocoileus hemionus to evaluate how different levels of gas development influenced migratory behaviour, including movement rates and stopover use at the individual level, and intensity of use and width of migration route at the population level. We then characterized the functional landscape of migration routes as either stopover habitat or movement corridors and examined how the observed behavioural changes affected the functionality of the migration route in terms of stopover use. 4. We found migratory behaviour to vary with development intensity. Our results suggest that mule deer can migrate through moderate levels of development without any noticeable effects on migratory behaviour. However, in areas with more intensive development, animals often detoured from established routes, increased their rate of movement and reduced stopover use, while the overall use and width of migration routes decreased. 5. Synthesis and applications. In contrast to impermeable barriers that impede animal movement

  19. Natural gas strategic plan and multi-year program crosscut plan, FY 1993--1998

    International Nuclear Information System (INIS)

    1992-04-01

    The overall mission of the Natural Gas Program is to enhance the Nation's energy security, environmental quality, and economic strength by displacing oil use in the US and increasing efficient use of natural gas. In support of this are programs that will improve the confidence in the continued availability of a long term gas supply (Resource and Extraction Area); provide more cost-effective and competitive means to use natural gas (Utilization Area); develop improved and less costly means of delivering and storing natural gas (Delivery and Storage Area); and to minimize barriers to efficient market operation, promote cost-effective regulation based on improved environmental assessments, and to assure availability to industry of low-cost waste management and waste minimization technology (Environmental/Regulatory Impact Area). (VC)

  20. Combination gas-producing and waste-water disposal well. [DOE patent application

    Science.gov (United States)

    Malinchak, R.M.

    1981-09-03

    The present invention is directed to a waste-water disposal system for use in a gas recovery well penetrating a subterranean water-containing and methane gas-bearing coal formation. A cased bore hole penetrates the coal formation and extends downwardly therefrom into a further earth formation which has sufficient permeability to absorb the waste water entering the borehole from the coal formation. Pump means are disposed in the casing below the coal formation for pumping the water through a main conduit towards the water-absorbing earth formation. A barrier or water plug is disposed about the main conduit to prevent water flow through the casing except for through the main conduit. Bypass conduits disposed above the barrier communicate with the main conduit to provide an unpumped flow of water to the water-absorbing earth formation. One-way valves are in the main conduit and in the bypass conduits to provide flow of water therethrough only in the direction towards the water-absorbing earth formation.

  1. Low-temperature hydrogenation of diamond nanoparticles using diffuse coplanar surface barrier discharge at atmospheric pressure

    Czech Academy of Sciences Publication Activity Database

    Kromka, Alexander; Čech, J.; Kozak, Halyna; Artemenko, Anna; Ižák, Tibor; Čermák, Jan; Rezek, Bohuslav; Černák, M.

    2015-01-01

    Roč. 252, č. 11 (2015), s. 2602-2607 ISSN 0370-1972 R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:68378271 Keywords : atmospheric plasma * diamond nanoparticles * diffuse coplanar surface barrier discharge * FTIR * XPS Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.522, year: 2015

  2. Liquefied Natural Gas for Trucks and Buses

    International Nuclear Information System (INIS)

    James Wegrzyn; Michael Gurevich

    2000-01-01

    Liquefied natural gas (LNG) is being developed as a heavy vehicle fuel. The reason for developing LNG is to reduce our dependency on imported oil by eliminating technical and costs barriers associated with its usage. The U.S. Department of Energy (DOE) has a program, currently in its third year, to develop and advance cost-effective technologies for operating and refueling natural gas-fueled heavy vehicles (Class 7-8 trucks). The objectives of the DOE Natural Gas Vehicle Systems Program are to achieve market penetration by reducing vehicle conversion and fuel costs, to increase consumer acceptance by improving the reliability and efficiency, and to improve air quality by reducing tailpipe emissions. One way to reduce fuel costs is to develop new supplies of cheap natural gas. Significant progress is being made towards developing more energy-efficient, low-cost, small-scale natural gas liquefiers for exploiting alternative sources of natural gas such as from landfill and remote gas sites. In particular, the DOE program provides funds for research and development in the areas of; natural gas clean up, LNG production, advanced vehicle onboard storage tanks, improved fuel delivery systems and LNG market strategies. In general, the program seeks to integrate the individual components being developed into complete systems, and then demonstrate the technology to establish technical and economic feasibility. The paper also reviews the importance of cryogenics in designing LNG fuel delivery systems

  3. Policy and tecnological constraints to implementation of greenhouse gas mitigation options in agriculture

    CSIR Research Space (South Africa)

    Smith, P

    2007-01-01

    Full Text Available A recent assessment of agricultural greenhouse gas (GHG) emissions has demonstrated significant potential for mitigation, but suggests that the full mitigation will not be realized due to significant barriers to implementation. In this paper, we...

  4. Experience transfer in Norwegian oil and gas industry: Approaches and organizational mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Aase, Karina

    1997-12-31

    The main objective of this thesis has been to explore how experience transfer works in Norwegian oil and gas industry. This includes how the concept of experience transfer is defined, what the barriers to achieve experience transfer are, how the oil and gas companies address experience transfer, and how these approaches work. The thesis is organized in five papers: (1) describes how organizational members perceive experience transfer and then specifies the organizational and structural barriers that must be overcome to achieve efficient transfer. (2) discusses the organizational means an oil company implements to address experience transfer. (3) describes a process of improving and using requirement and procedure handbooks for experience transfer. (4) explores how the use of information technology influences experience transfer. (5) compares organizational members` perceptions of experience transfer means in an oil company and an engineering company involved in offshore development projects. 277 refs., 3 figs., 29 tabs.

  5. Experience transfer in Norwegian oil and gas industry: Approaches and organizational mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Aase, Karina

    1998-12-31

    The main objective of this thesis has been to explore how experience transfer works in Norwegian oil and gas industry. This includes how the concept of experience transfer is defined, what the barriers to achieve experience transfer are, how the oil and gas companies address experience transfer, and how these approaches work. The thesis is organized in five papers: (1) describes how organizational members perceive experience transfer and then specifies the organizational and structural barriers that must be overcome to achieve efficient transfer. (2) discusses the organizational means an oil company implements to address experience transfer. (3) describes a process of improving and using requirement and procedure handbooks for experience transfer. (4) explores how the use of information technology influences experience transfer. (5) compares organizational members` perceptions of experience transfer means in an oil company and an engineering company involved in offshore development projects. 277 refs., 3 figs., 29 tabs.

  6. Thermal barrier coatings application in diesel engines

    Science.gov (United States)

    Fairbanks, J. W.

    1995-01-01

    thermal barrier coatings will be to reduce thermal fatigue as the engine peak cylinder pressure will nearly be doubled. As the coatings result in higher available energy in the exhaust gas, efficiency gains are achieved through use of this energy by turbochargers, turbocompounding or thermoelectric generators.

  7. Atmospheric pressure plasma produced inside a closed package by a dielectric barrier discharge in Ar/CO2 for bacterial inactivation of biological samples

    DEFF Research Database (Denmark)

    Chiper, Alina Silvia; Chen, Weifeng; Mejlholm, Ole

    2011-01-01

    The generation and evaluation of a dielectric barrier discharge produced inside a closed package made of a commercially available packaging film and filled with gas mixtures of Ar/CO2 at atmospheric pressure is reported. The discharge parameters were analysed by electrical measurements and optical...... emission spectroscopy in two modes of operation: trapped gas atmosphere and flowing gas atmosphere. Gas temperature was estimated using the OH(A–X) emission spectrum and the rotational temperature reached a saturation level after a few minutes of plasma running. The rotational temperature was almost three...

  8. Analysis of Gas Vent System in Overseas LILW Disposal Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ju Yub; Kim, Ju Youl [FNC Technology Co., Yongin (Korea, Republic of); Jung, Hae Ryong; Ha, Jae Chul [Korea Radioactive Waste Management Corporation, Daejeon (Korea, Republic of)

    2012-05-15

    A Low- and Intermediate-Level Radioactive Waste (LILW) disposal facility is currently under construction in Korea. It is located in the aquifer, 80{approx}130 m below the ground surface. Thus, it is expected that disposal facility will be saturated after closure and various gases will be generated from metal corrosion, microbial degradation of organic materials and radiolysis. Generated gases will move up to the upper part of the silo, and it will increase the pressure of the silo. Since the integrity of the engineered barrier could be damaged, development of effective gas vent system which can prevent the gas accumulation in the silo is essential. In order to obtain basic data needed to develop site-specific gas vent system, gas vent systems of Sweden, Finland and Switzerland, which have the disposal concept of underground facility, were analyzed

  9. [Investigation on the gas temperature of a plasma jet at atmospheric pressure by emission spectrum].

    Science.gov (United States)

    Li, Xue-chen; Yuan, Ning; Jia, Peng-ying; Niu, Dong-ying

    2010-11-01

    A plasma jet of a dielectric barrier discharge in coaxial electrode was used to produce plasma plume in atmospheric pressure argon. Spatially and temporally resolved measurement was carried out by photomultiplier tubes. The light emission signals both from the dielectric barrier discharge and from the plasma plume were analyzed. Furthermore, emission spectrum from the plasma plume was collected by high-resolution optical spectrometer. The emission spectra of OH (A 2sigma + --> X2 II, 307.7-308.9 nm) and the first negative band of N2+ (B2 sigma u+ --> X2 IIg+, 390-391.6 nm) were used to estimate the rotational temperature of the plasma plume by fitting the experimental spectra to the simulated spectra. The rotational temperature obtained is about 443 K by fitting the emission spectrum from the OH, and that from the first negative band of N2+ is about 450 K. The rotational temperatures obtained by the two method are consistent within 5% error band. The gas temperature of the plasma plume at atmospheric pressure was obtained because rotational temperature equals to gas temperature approximately in gas discharge at atmospheric pressure. Results show that gas temperature increases with increasing the applied voltage.

  10. Spectroscopic Diagnostics of Barrier Discharge Plasmas in Mixtures of Zinc Diiodide with Inert Gases

    International Nuclear Information System (INIS)

    Guivan, N.N.; Malinin, A.N.

    2005-01-01

    The spectral characteristics of the emission of gas discharge atmospheric pressure plasmas in mixtures of zinc diiodide vapor with inert gases (He, Ne, Ar, Kr, and Xe) are investigated. The formation of a gas discharge plasma and the excitation of the components of a working mixture were performed in a high-frequency (with a repetition frequency of sinusoidal voltage pulses of 100 kHz) barrier discharge. The gas discharge emission was analyzed in the spectral range 200-900 nm with a resolution of 0.05 nm. Emission bands of ZnI(B-X) exciplex molecules and I* 2 excimer molecules, lines of inert gases, and emission bands of XeI* exciplex molecules (in Xe-containing mixtures) were revealed. It is ascertained that the strongest emission of ZnI* molecules is observed in ZnI 2 /He(Ne) mixtures. The regularities in the spectral characteristics of the gas discharge plasma emission are considered

  11. Structure and Barrier Properties of Multinanolayered Biodegradable PLA/PBSA Films: Confinement Effect via Forced Assembly Coextrusion.

    Science.gov (United States)

    Messin, Tiphaine; Follain, Nadège; Guinault, Alain; Sollogoub, Cyrille; Gaucher, Valérie; Delpouve, Nicolas; Marais, Stéphane

    2017-08-30

    Multilayer coextrusion processing was applied to produce 2049-layer film of poly(butylene succinate-co-butylene adipate) (PBSA) confined against poly(lactic acid) (PLA) using forced assembly, where the PBSA layer thickness was about 60 nm. This unique technology allowed to process semicrystalline PBSA as confined polymer and amorphous PLA as confining polymer in a continuous manner. The continuity of PBSA layers within the 80/20 wt % PLA/PBSA layered films was clearly evidenced by atomic force microscopy (AFM). Similar thermal events to the reference films were revealed by thermal studies; indicating no diffusion of polymers during the melt-processing. Mechanical properties were measured for the multilayer film and the obtained results were those expected considering the fraction of each polymer, revealing the absence of delamination in the PLA/PBSA multinanolayer film. The confinement effect induced by PLA led to a slight orientation of the crystals, an increase of the rigid amorphous fraction (RAF) in PBSA with a densification of this fraction without changing film crystallinity. These structural changes allowed to strongly improve the water vapor and gas barrier properties of the PBSA layer into the multilayer film up to two decades in the case of CO 2 gas. By confining the PBSA structure in very thin and continuous layers, it was then possible to improve the barrier performances of a biodegradable system and the resulting barrier properties were successfully correlated to the effect of confinement on the microstructure and the chain segment mobility of the amorphous phase. Such investigation on these multinanolayers of PLA/PBSA with the aim of evidencing relationships between microstructure implying RAF and barrier performances has never been performed yet. Besides, gas and water permeation results have shown that the barrier improvement obtained from the multilayer was mainly due to the reduction of solubility linked to the reduction of the free volume while

  12. Impact of production and release of gas in a L/ILW repository. A summary of the work performed within the Nagra programme

    International Nuclear Information System (INIS)

    Zuidema, P.; Hoglund, L.O.

    1988-01-01

    In a repository for low- and intermediate-level radioactive wastes, gases will be formed due to corrosion of metals, microbial degradation of organic materials and radiolytic decomposition of water and organic materials. The predominant source of gas is calculated to be anaerobic corrosion of metals, particularly iron. Gas pressure will build up in the near-field until it is released through the system of engineered barriers into the geosphere at a rate equivalent to the production rate. Excessive gas pressures may damage the engineered barriers if no precautions are taken. Radionuclide transport both through the host rock and near-field may be influenced by such gas releases. Water will be displaced and local hydrology will be altered. The significance of these alterations are site-specific; theoretical studies as well as field investigations are underway to clarify the role of the different processes involved

  13. Durability of the Solid Oxide Cells for Co-Electrolysis of Steam and Carbon Dioxide under High Current Densities

    DEFF Research Database (Denmark)

    Tao, Youkun

    Production of hydrogen and syngas (CO + H2) using solid oxide electrolysis cells (SOECs) has become increasingly attractive due to high oil price, the capability for conversion and storage of intermittent energy from renewable sources and the general interest in hydrogen energy and carbon...... severe percolation loss of Ni particles. The blocking of the Ni-YSZ TPBs by impurities (e.g. SiOx) also contributed to the fast degradation of SOECs in the initial test period. However, the post-test observation revealed dominating SiOx inclusions inside the Ni grain close to the electrolyte, instead...

  14. Thames barrier (flood protection barriers on the Thames)

    International Nuclear Information System (INIS)

    Ilkovic, J.

    2005-01-01

    In this paper the flood protection barriers on the Thames are presented. The flood protection system on the Thames in 1984 was commissioned. During two decades this barrier was used 54 times against to the high water and 34 times against storm-sewage. There is installed buttress type hydroelectric power plant

  15. Inflammatory Response and Barrier Dysfunction by Different e-Cigarette Flavoring Chemicals Identified by Gas Chromatography-Mass Spectrometry in e-Liquids and e-Vapors on Human Lung Epithelial Cells and Fibroblasts.

    Science.gov (United States)

    Gerloff, Janice; Sundar, Isaac K; Freter, Robert; Sekera, Emily R; Friedman, Alan E; Robinson, Risa; Pagano, Todd; Rahman, Irfan

    2017-03-01

    Recent studies suggest that electronic cigarette (e-cig) flavors can be harmful to lung tissue by imposing oxidative stress and inflammatory responses. The potential inflammatory response by lung epithelial cells and fibroblasts exposed to e-cig flavoring chemicals in addition to other risk-anticipated flavor enhancers inhaled by e-cig users is not known. The goal of this study was to evaluate the release of the proinflammatory cytokine (interleukin-8 [IL-8]) and epithelial barrier function in response to different e-cig flavoring chemicals identified in various e-cig e-liquid flavorings and vapors by chemical characterization using gas chromatography-mass spectrometry analysis. Flavorings, such as acetoin (butter), diacetyl, pentanedione, maltol (malt), ortho-vanillin (vanilla), coumarin, and cinnamaldehyde in comparison with tumor necrosis factor alpha (TNFα), were used in this study. Human bronchial epithelial cells (Beas2B), human mucoepidermoid carcinoma epithelial cells (H292), and human lung fibroblasts (HFL-1) were treated with each flavoring chemical for 24 hours. The cells and conditioned media were then collected and analyzed for toxicity (viability %), lung epithelial barrier function, and proinflammatory cytokine IL-8 release. Cell viability was not significantly affected by any of the flavoring chemicals tested at a concentration of 10 μM to 1 mM. Acetoin and diacetyl treatment induced IL-8 release in Beas2B cells. Acetoin- and pentanedione-treated HFL-1 cells produced a differential, but significant response for IL-8 release compared to controls and TNFα. Flavorings, such as ortho-vanillin and maltol, induced IL-8 release in Beas2B cells, but not in H292 cells. Of all the flavoring chemicals tested, acetoin and maltol were more potent inducers of IL-8 release than TNFα in Beas2B and HFL-1 cells. Flavoring chemicals rapidly impaired epithelial barrier function in human bronchial epithelial cells (16-HBE) as measured by electric cell surface

  16. Parallel 3-D numerical simulation of dielectric barrier discharge plasma actuators

    Science.gov (United States)

    Houba, Tomas

    Dielectric barrier discharge plasma actuators have shown promise in a range of applications including flow control, sterilization and ozone generation. Developing numerical models of plasma actuators is of great importance, because a high-fidelity parallel numerical model allows new design configurations to be tested rapidly. Additionally, it provides a better understanding of the plasma actuator physics which is useful for further innovation. The physics of plasma actuators is studied numerically. A loosely coupled approach is utilized for the coupling of the plasma to the neutral fluid. The state of the art in numerical plasma modeling is advanced by the development of a parallel, three-dimensional, first-principles model with detailed air chemistry. The model incorporates 7 charged species and 18 reactions, along with a solution of the electron energy equation. To the author's knowledge, a parallel three-dimensional model of a gas discharge with a detailed air chemistry model and the solution of electron energy is unique. Three representative geometries are studied using the gas discharge model. The discharge of gas between two parallel electrodes is used to validate the air chemistry model developed for the gas discharge code. The gas discharge model is then applied to the discharge produced by placing a dc powered wire and grounded plate electrodes in a channel. Finally, a three-dimensional simulation of gas discharge produced by electrodes placed inside a riblet is carried out. The body force calculated with the gas discharge model is loosely coupled with a fluid model to predict the induced flow inside the riblet.

  17. Ab initio study of gas phase and water-assisted tautomerization of ...

    Indian Academy of Sciences (India)

    WINTEC

    Water-assisted tautomerization in maleimide and formamide showed that difference in energy barrier reduces to 2⋅83 kcal/mol from 10⋅41 kcal/mol (in gas phase) at B3LYP level, which resulted that maleimide readily undergoes tautomerization in water molecule. Keywords. Ab Initio calculations; maleimide; formamide; ...

  18. The effect of desiccation on UMTRA Project radon barrier materials

    International Nuclear Information System (INIS)

    1990-11-01

    The proposed US Environmental Protection Agency (EPA) groundwater standards (40 CFR 192) require that Uranium Mill Tailings Remedial Action (UMTRA) Project remedial action designs meet low numerical limits for contaminants contained in water or vapors exiting the disposal cell embankments. To meet the standards, a cover of compacted, fine-grained soil is placed over UMTRA Project embankments. One of the functions of this cover is to limit infiltration into the disposal cell . The hydraulic conductivity of this infiltration barrier must be low in order to reduce the resultant seepage from the base of the cell to the extent necessary to comply with the proposed EPA groundwater standards. Another function of this cover is to limit the emission of radon gas. The air permeability of the cover must be low in order to reduce radon emissions to comply with EPA standards. Fine-grained soils exposed to evaporation will dry. Continued exposure will cause shrinking that, if allowed to continue, will eventually result in the development of cracks. The results of the cracking could be an increase in the hydraulic conductivity and an increase in the air permeability. This could then allow additional infiltration and increased radon emissions. Cracking of the radon barrier has been noted at one UMTRA Project location. The potential for cracking of the radon barrier during construction has been addressed by requiring moistening of previously compacted surfaces prior to placing additional lifts. The efficacy of these treatments has not been verified. The potential for cracking after construction of the cover is completed has also not been examined. The purpose of this study is to evaluate the potential for cracking of the radon barrier both during construction and after completion of the cover. The effect of shrinkage cracking on the performance of the radon barrier will also be examined

  19. Sealing efficiency of an argillite-bentonite plug subjected to gas pressure, in the context of deep underground nuclear waste storage

    International Nuclear Information System (INIS)

    Liu, Jiang-Feng

    2013-01-01

    In France, the deep underground nuclear waste repository consists of a natural barrier (in an argillaceous rock named argillite), associated to artificial barriers, including plugs of swelling clay (bentonite)-sand for tunnel sealing purposes. The main objective of this thesis is to assess the sealing efficiency of the bentonite-sand plug in contact with argillite, in presence of both water and gas pressures. To assess the sealing ability of partially water-saturated bentonite/sand plugs, their gas permeability is measured under varying confining pressure (up to 12 MPa). It is observed that tightness to gas is achieved under confinement greater than 9 MPa for saturation levels of at least 86-91%. We than assess the sealing efficiency of the bentonite-sand plug placed in a tube of argillite or of Plexiglas-aluminium (with a smooth or a rough interface). The presence of pressurized gas affects the effective swelling pressure at values P gas from 4 MPa. Continuous gas breakthrough of fully water-saturated bentonite-sand plugs is obtained for gas pressures on the order of full swelling pressure (7-8 MPa), whenever the plug is applied along a smooth interface. Whenever a rough interface is used in contact with the bentonite-sand plug, a gas pressure significantly greater than its swelling pressure is needed for gas to pass continuously. Gas breakthrough tests show that the interface between plug/argillite or the argillite itself are two preferential pathways for gas migration, when the assembly is fully saturated. (author)

  20. Interest grows in African oil and gas opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Knott, D.

    1997-05-12

    As African countries continue a slow drift towards democratic government and market economics, the continent is increasingly attractive to international oil and gas companies. Though Africa remains politically diverse, and its volatile politics remains a major barrier to petroleum companies, a number of recent developments reflect its growing significance for the industry. Among recent projects and events reflecting changes in Africa: oil and gas exporter Algeria has invited foreign oil companies to help develop major gas discoveries, with a view to boosting exports to Europe; oil and gas producer Egypt invited foreign companies to explore in the Nile Delta region, and the result appears to be a flowering world scale gas play; west African offshore exploration has entered deep water and new areas, and a number of major projects are expected in years to come; Nigeria`s reputation as a difficult place to operate has been justified by recent political and civil events, but a long-planned liquefied natural gas (LNG) export plant is being built there; South Africa, which has returned to the international scene after years of trade isolation because of apartheid, is emerging as a potential driver for energy industry schemes throughout the continent. Activities are discussed.

  1. Market Brief : Turkey oil and gas pipelines

    International Nuclear Information System (INIS)

    2001-08-01

    This report presented some quick facts about oil and gas pipelines in Turkey and presented opportunities for trade. The key players and customers in the oil and gas sector were described along with an export check list. Turkey is looking into becoming an energy bridge between oil and gas producing countries in the Middle East, Central Asia and Europe. The oil and gas sectors are dominated by the Turkish Petroleum Corporation, a public enterprise dealing with exploration and production, and the State Pipeline Corporation which deals with energy transmission. They are also the key buyers of oil and gas equipment in Turkey. There are several pipelines connecting countries bordering the Caspian Sea. Opportunities exist in the areas of engineering consulting as well as contracting services for oil and gas pipeline transmission and distribution. Other opportunities lie in the area of pipeline construction, rehabilitation, materials, equipment, installation, and supervisory control and data acquisition (SCADA) systems. Currently, the major players are suppliers from Italy, Germany, France, United States and Japan. Turkey has no trade barriers and imported equipment and materials are not subjected to any restriction. The oil and gas market in Turkey expected in increase by an average annual growth rate of 15 per cent from 2001 to 2003. A brief description of pipeline projects in Turkey was presented in this report along with a list of key contacts and support services. 25 refs., 1 append

  2. Gas permeation through a polymer network

    International Nuclear Information System (INIS)

    Schmittmann, B; Gopalakrishnan, Manoj; Zia, R K P

    2005-01-01

    We study the diffusion of gas molecules through a two-dimensional network of polymers with the help of Monte Carlo simulations. The polymers are modelled as non-interacting random walks on the bonds of a two-dimensional square lattice, while the gas particles occupy the lattice cells. When a particle attempts to jump to a nearest-neighbour empty cell, it has to overcome an energy barrier which is determined by the number of polymer segments on the bond separating the two cells. We investigate the gas current J as a function of the mean segment density ρ, the polymer length l and the probability q m for hopping across m segments. Whereas J decreases monotonically with ρ for fixed l, its behaviour for fixed ρ and increasing ldepends strongly on q. For small, non-zero q, J appears to increase slowly with l. In contrast, for q = 0, it is dominated by the underlying percolation problem and can be non-monotonic. We provide heuristic arguments to put these interesting phenomena into context

  3. Bringing gas prices to economic levels. An overview of some of the barriers and challenges

    International Nuclear Information System (INIS)

    Dorssen, R. van

    1996-01-01

    This presentation is a general overview of the situation in Central and Eastern Europe regarding gas pricing. The experience in Central and Eastern Europe shows that many countries have embarked on the road towards a sound gas pricing. The speed of this differs among countries, depending on their specific circumstances. It has been a difficult process, despite the fact that all market players will benefit: the industry, the governments and the end consumers

  4. THERMAL BARRIER COATINGS FOR GAS TURBINE APPLICATIONS: FAILURE MECHANISMS AND KEY MICROSTRUCTURAL FEATURES

    Directory of Open Access Journals (Sweden)

    JULIAN D. OSORIO

    2012-01-01

    Full Text Available Los avances en nuevos materiales para los dispositivos de generación de energía, como las turbinas a gas, han permitido incrementar su eficiencia y durabilidad para suplir la creciente demanda energética. Las altas eficiencias en las turbinas a gas como consecuencia de mayores temperaturas de operación, han sido posibles a través del desarrollo de recubrimientos de barrera térmica. Éstos son sistemas multicapas que proveen aislamiento térmico y protección contra la corrosión y erosión a alta temperatura. En este trabajo, se describe los procesos de aplicación de barreras térmicas, su microestructura y sus principales mecanismos de falla. Dos sistemas de barrera térmica son caracterizados y las nuevas tendencias de estos sistemas son resumidas.

  5. Skin barrier function

    DEFF Research Database (Denmark)

    2016-01-01

    Renowned experts present the latest knowledge Although a very fragile structure, the skin barrier is probably one of the most important organs of the body. Inward/out it is responsible for body integrity and outward/in for keeping microbes, chemicals, and allergens from penetrating the skin. Since...... the role of barrier integrity in atopic dermatitis and the relationship to filaggrin mutations was discovered a decade ago, research focus has been on the skin barrier, and numerous new publications have become available. This book is an interdisciplinary update offering a wide range of information...... on the subject. It covers new basic research on skin markers, including results on filaggrin and on methods for the assessment of the barrier function. Biological variation and aspects of skin barrier function restoration are discussed as well. Further sections are dedicated to clinical implications of skin...

  6. Thermal analysis of the position of the freezing front around an LNG in-ground storage tank with a heat barrier

    Science.gov (United States)

    Watanabe, O.; Tanaka, M.

    A technique of controlling the extent of the freezing zone created by in ground liquefied natural gas storage tanks by installing a heat barrier is described. The freezing conditions around three representative tanks after operating the system were compared.

  7. Thermophysical and Thermomechanical Properties of Thermal Barrier Coating Systems

    Science.gov (United States)

    Zhu, Dongming; Miller, Robert A.

    2000-01-01

    Thermal barrier coatings have been developed for advanced gas turbine and diesel engine applications to improve engine reliability and fuel efficiency. However, the issue of coating durability under high temperature cyclic conditions is still of major concern. The coating failure is closely related to thermal stresses and oxidation in the coating systems. Coating shrinkage cracking resulting from ceramic sintering and creep at high temperatures can further accelerate the coating failure process. The purpose of this paper is to address critical issues such as ceramic sintering and creep, thermal fatigue and their relevance to coating life prediction. Novel test approaches have been established to obtain critical thermophysical and thermomechanical properties of the coating systems under near-realistic temperature and stress gradients encountered in advanced engine systems. Emphasis is placed on the dynamic changes of the coating thermal conductivity and elastic modulus, fatigue and creep interactions, and resulting failure mechanisms during the simulated engine tests. Detailed experimental and modeling results describing processes occurring in the thermal barrier coating systems provide a framework for developing strategies to manage ceramic coating architecture, microstructure and properties.

  8. Measurement of leakage and design for the protective barrier of the high energy radiation therapy room

    International Nuclear Information System (INIS)

    Chu, S.S.; Park, C.Y.

    1981-01-01

    The logical development of an optimum structural shielding design and the computation of protective barriers for high energy radiation therapy room, Toshiba 13 MeV are presented. We obtained following results by comparison in between the precalculating values and actual survey after complete installation of radiogenerating units. 1) The calculating formula for the protective barrier written in NCRP report no. 34(1970) was the most ideal and economic calculating methods for the construction of barrier and to determine thickness for the meeting requirements of the number of patients of 80-100 in daily treatment. 2) The precalculating values of protective barrier are 5 times more protective than that of actual measurement. It is depending on radiation workload and utilization the data most securely. 3) The dose rate during exposure are 2-10 mR/hr at out of the door and the control room. 4) The foul smelling and ozone gas production from long exposure of cancer patients cannot be estimated when the room is ill ventilated. (author)

  9. LIBRETTO-3: Performance of tritium permeation barriers under irradiation at the HFR Petten

    International Nuclear Information System (INIS)

    Conrad, R.; Fuetterer, M.A.; Giancarli, L.; May, R.; Perujo, A.; Sample, T.

    1994-01-01

    The LIBRETTO-3 irradiation was performed at the HFR Petten during 77 full power days in three cycles to compare the efficiency of three different tritium permeation barriers in presence of Pb-17Li to uncoated AISI 316L steel. For this purpose four steel capsules (arnothing o =10 mm, arnothing i =8 mm, l=300 mm) were filled with 28 g Pb-17Li. The coatings included CVD TiC (outside), CVD TiC+Al 2 O 3 (inside), and pack cementation aluminisation (inside). The generated tritium was partly extracted by bubbling, partly it permeated through the capsules. Permeated and extracted tritium were measured as a function of temperature (280-450 C), H 2 doping (0-1 vol%) and purge gas flow rate. The driving partial pressure in the coated capsules were from an extraction model calibrated by the uncoated capsule for which tritium partial pressure could be calculated. In LIBRETTO-3 conditons, the best barrier was pack cementation aluminisation. The first interpretation of the experiment could, however, not confirm permeation reduction factors of 100 or more expected from this barrier. ((orig.))

  10. Hydro-mechanical and gas transport properties of bentonite blocks - role of interfaces

    International Nuclear Information System (INIS)

    Popp, Till; Roehlke, Christopher; Salzer, Klaus; Gruner, Matthias

    2012-01-01

    Document available in extended abstract form only. The long-term safety of the disposal of nuclear waste is an important issue in all countries with a significant nuclear programme. Repositories for the disposal of high-level and long-lived radioactive waste generally rely on a multi-barrier system to isolate the waste from the biosphere. The multi-barrier system typically comprises the natural geological barrier provided by the repository host rock and its surroundings and an engineered barrier system (EBS), i.e. the backfilling and sealing of shafts and galleries to block any preferential path for radioactive contaminants. Because gas will be created in a radioactive waste repository performance assessment requires quantification of the relevancy of various potential pathways. Referring to the sealing plugs it is expected that in addition to the matrix properties of the sealing material conductive discrete interfaces inside the sealing elements itself and to the host rock may act not only as mechanical weakness planes but also as preferential gas pathways (Popp, 2009). For instance despite the assumed self sealing capacity of bentonite inherent existing interfaces may be reopened during gas injection. Our lab investigations are aiming on a comprehensive hydro-mechanical characterization of interfaces in bentonite buffers, i.e. (1) between prefabricated bentonite blocks itself and (2) on mechanical contacts of bentonite blocks and concrete to various host rocks, i.e. granite. We used as reference material pre-compacted bentonite blocks consisting of a sand clay-bentonite mixture but the variety of bentonite-based buffer materials has to be taken in mind. The blocks were manufactured in the frame work of the so-called dam - project 'Sondershausen', i.e. a German research project performed between 1997 and 2002. The blocks have a standard size of (250 x 125 x 62.5) mm. Approximately 500 t of such bentonite blocks have been produced and assembled in underground drift

  11. Geophysical characterization of subsurface barriers

    International Nuclear Information System (INIS)

    Borns, D.J.

    1995-08-01

    An option for controlling contaminant migration from plumes and buried waste sites is to construct a subsurface barrier of a low-permeability material. The successful application of subsurface barriers requires processes to verify the emplacement and effectiveness of barrier and to monitor the performance of a barrier after emplacement. Non destructive and remote sensing techniques, such as geophysical methods, are possible technologies to address these needs. The changes in mechanical, hydrologic and chemical properties associated with the emplacement of an engineered barrier will affect geophysical properties such a seismic velocity, electrical conductivity, and dielectric constant. Also, the barrier, once emplaced and interacting with the in situ geologic system, may affect the paths along which electrical current flows in the subsurface. These changes in properties and processes facilitate the detection and monitoring of the barrier. The approaches to characterizing and monitoring engineered barriers can be divided between (1) methods that directly image the barrier using the contrasts in physical properties between the barrier and the host soil or rock and (2) methods that reflect flow processes around or through the barrier. For example, seismic methods that delineate the changes in density and stiffness associated with the barrier represents a direct imaging method. Electrical self potential methods and flow probes based on heat flow methods represent techniques that can delineate the flow path or flow processes around and through a barrier

  12. Effect of Fluorine Diffusion on Amorphous-InGaZnO-Based Thin-Film Transistors.

    Science.gov (United States)

    Jiang, Jingxin; Furuta, Mamoru

    2018-08-01

    This study investigated the effect of fluorine (F) diffusion from a fluorinated siliconnitride passivation layer (SiNX:F-Pa) into amorphous-InGaZnO-based thin-film transistors (a-IGZO TFTs). The results of thermal desorption spectroscopy and secondary ion mass spectrometry revealed that F was introduced into the SiOX etch-stopper layer (SiOX-ES) during the deposition of a SiNX:F-Pa, and did not originate from desorption of Si-F bonds; and that long annealing times enhanced F diffusion from the SiOX-ES layer to the a-IGZO channel. Improvements to the performance and threshold-voltage (Vth) negative shift of IGZO TFTs were achieved when annealing time increased from 1 h to 3 h; and capacitance-voltage results indicated that F acted as a shallow donor near the source side in a-IGZO and induced the negative Vth shift. In addition, it was found that when IGZO TFTs with SiNX:F-Pa were annealed 4 h, a low-resistance region was formed at the backchannel of the TFT, leading to a drastic negative Vth shift.

  13. Laboratory studies of refractory metal oxide smokes

    International Nuclear Information System (INIS)

    Nuth, J.A.; Nelson, R.N.; Donn, B.

    1989-01-01

    Studies of the properties of refractory metal oxide smokes condensed from a gas containing various combinations of SiH4, Fe(CO)5, Al(CH3)3, TiCl4, O2 and N2O in a hydrogen carrier stream at 500 K greater than T greater than 1500 K were performed. Ultraviolet, visible and infrared spectra of pure, amorphous SiO(x), FeO(x), AlO(x) and TiO(x) smokes are discussed, as well as the spectra of various co-condensed amorphous oxides, such as FE(x)SiO(y) or Fe(x)AlO(y). Preliminary studies of the changes induced in the infrared spectra of iron-containing oxide smokes by vacuum thermal annealing suggest that such materials become increasingly opaque in the near infrared with increased processing: hydration may have the opposite effect. More work on the processing of these materials is required to confirm such a trend: this work is currently in progress. Preliminary studies of the ultraviolet spectra of amorphous Si2O3 and MgSiO(x) smokes revealed no interesting features in the region from 200 to 300 nm. Studies of the ultraviolet spectra of both amorphous, hydrated and annealed SiO(x), TiO(x), AlO(x) and FeO(x) smokes are currently in progress. Finally, data on the oxygen isotopic composition of the smokes produced in the experiments are presented, which indicate that the oxygen becomes isotopically fractionated during grain condensation. Oxygen in the grains is as much as 3 percent per amu lighter than the oxygen in the original gas stream. The authors are currently conducting experiments to understand the mechanism by which fractionation occurs

  14. Absence of pollinator-mediated premating barriers in mixed-ploidy populations of Gymnadenia conopsea s.l. (Orchidaceae)

    Czech Academy of Sciences Publication Activity Database

    Jersáková, Jana; Castro, Sílvia; Sonk, N.; Milchreit, K.; Schödelbauerová, Iva; Tolasch, T.; Dötterl, S.

    2010-01-01

    Roč. 24, č. 5 (2010), s. 1199-1218 ISSN 0269-7653 R&D Projects: GA AV ČR KJB600870601 Institutional research plan: CEZ:AV0Z60870520; CEZ:AV0Z60050516 Keywords : cytotypes * floral volatiles * fragrant orchid * gas chromatography-electroantennographic detection * matting barriers * polyploidy Subject RIV: EH - Ecology, Behaviour Impact factor: 2.398, year: 2010

  15. Effects of plasma pretreatment on the process of self-forming Cu–Mn alloy barriers for Cu interconnects

    Directory of Open Access Journals (Sweden)

    Jae-Hyung Park

    2018-02-01

    Full Text Available This study investigated the effect of plasma pretreatment on the process of a self-forming Cu–Mn alloy barrier on porous low-k dielectrics. To study the effects of plasma on the performance of a self-formed Mn-based barrier, low-k dielectrics were pretreated with H2 plasma or NH3 plasma. Cu–Mn alloy materials on low-k substrates that were subject to pretreatment with H2 plasma exhibited lower electrical resistivity values and the formation of thicker Mn-based interlayers than those on low-k substrates that were subject to pretreatment with NH3 plasma. Transmission electron microscopy (TEM, X-ray photoemission spectroscopy (XPS, and thermal stability analyses demonstrated the exceptional performance of the Mn-based interlayer on plasma-pretreated low-k substrates with regard to thickness, chemical composition, and reliability. Plasma treating with H2 gas formed hydrophilic Si–OH bonds on the surface of the low-k layer, resulting in Mn-based interlayers with greater thickness after annealing. However, additional moisture uptake was induced on the surface of the low-k dielectric, degrading electrical reliability. By contrast, plasma treating with NH3 gas was less effective with regard to forming a Mn-based interlayer, but produced a Si–N/C–N layer on the low-k surface, yielding improved barrier characteristics.

  16. Stress controlled gas-barrier oxide coatings on semi-crystalline polymers

    International Nuclear Information System (INIS)

    Rochat, G.; Leterrier, Y.; Fayet, P.; Manson, J.-A.E.

    2005-01-01

    Thin silicon oxide (SiO x ) barrier coatings formed by plasma enhanced chemical vapor deposition on poly(ethylene terephthalate) (PET) substrates were subjected to post-deposition annealing treatments in the temperature range for orientation relaxation of the polymer. The resulting change in coating internal stress state was measured by means of thermo-mechanical analyses, and its effect on the coating cohesive properties and coating/polymer adhesion was determined from the analysis of uniaxial fragmentation tests in situ in a scanning electron microscope, assuming a Weibull-type probability of failure and a perfectly plastic stress transfer at the SiO x /PET interface. The strain to failure and intrinsic fracture toughness of the ultrathin oxide coating were found to be as high as 5.7% and 10 J/m 2 , respectively, and its interfacial shear strength with PET was found to be close to 100 MPa. Annealing for 10 min at 150 deg. C did not modify the oxygen permeation properties of the SiO x /PET film, which suggests that the defect population of the oxide was not affected by the thermal treatment. In contrast, the coating internal compressive stress resulting from annealing was shown to increase by 40% the apparent coating cohesive properties and adhesion to the polymer

  17. Heat conduction in caricature models of the Lorentz gas

    International Nuclear Information System (INIS)

    Kramli, A.; Simanyi, N.; Szasz, D.

    1987-01-01

    Heat transport coefficients are calculated for various random walks with internal states (the Markov partition of the Sinai billiard connects these walks with the Lorentz gas among a periodic configuration of scatterers). Models with reflecting or absorbing barriers and also those without or with local thermal equilibrium are investigated. The method is unified and is based on the Keldysh expansion of the resolvent of a matrix polynomial

  18. Gas generation in deep radioactive waste repositories: a review of processes, controls and models

    International Nuclear Information System (INIS)

    Jones, M.A.

    1990-10-01

    Gas generation within radioactive waste repositories may produce two general problems: 1) breaching of engineered and natural barriers due to high gas pressures; 2) enhanced radiological risk due to reduced groundwater travel times and/or greater aqueous or gaseous activities reaching the biosphere. As a result of these concerns, HMIP must be aware of the current status of relevant research, together with any associated deficiencies. This report addresses the current status of published research on near-field gas generation from worldwide sources and documents the important gas generating processes, the factors controlling them and models available to simulate them. In the absence of suitable models, outline technical specifications for corrosion and microbial degradation gas generation models are defined and the deficiencies in the current understanding of gas generation are highlighted; a conceptual research programme to correct these deficiencies is presented. (author)

  19. Monitoring CO2 gas-phase migration in a shallow sand aquifer using cross-borehole ground penetrating radar

    DEFF Research Database (Denmark)

    Lassen, Rune Nørbæk; Sonnenborg, T.O.; Jensen, Karsten Høgh

    2015-01-01

    and transversely to the groundwater flow direction. As the injection continued, the main flow direction of the gaseous CO2 shifted and CO2 gas pockets with a gas saturation of up to 0.3 formed below lower-permeable sand layers. CO2 gas was detected in a GPR-panel 5 m away from the injection point after 21 h...... of leakage from a CCS site, and that even small changes in the formation texture can create barriers for the CO2 migration....

  20. Diffusion barriers of Al2O3 to reduce the bondcoat-oxidation of MCrAlY alloys

    International Nuclear Information System (INIS)

    Schmitt-Thomas, K.G.; Dietl, U.

    1992-01-01

    Under operating conditions in gas turbines plasma sprayed MCrAlY bondcoats (M = Co and/or Ni) for thermal barrier coatings are exposed to a strong oxidation attack. One possibility to reduce bondcoat oxidation is the application of diffusion barriers. Onto the bondcoat, diffusion barriers of Al 2 O 3 are deposited by CVD, PVD and plasma pulse process. The oxidation behaviour of these coating systems were examined at a temperature of 1273 K for times up to 250 hours. The CVD and PVD Al 2 O 3 - coated specimens show compared to the uncoated specimens smaller oxidation rates. The porous Al 2 O 3 coatings, produced by plasma pulse process are not fit for oxidation protection of the bondcoat. There is hope for further improvement of the oxidation resistance by optimizing the CVD- and PVD-process parameters. (orig.) [de

  1. Thermoelectricity viability in Brazil through changes in the regulatory environment of the natural gas industry; Viabilizacao da termoeletricidade no Brasil atraves de mudancas no ambiente regulatorio da industria do gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Borelli, Samuel [Sao Paulo Univ., SP (Brazil). Inst. de Eletrotecnica e Energia. Programa de Pos-graduacao Interunidades em Energia; Promon Engenharia, Rio de Janeiro, RJ (Brazil)]. E-mail: samuel.borelli@promon.com.br

    2003-07-01

    The electric power generated through natural gas in large thermal plants in Brazil presents many severe competitive barriers compared to the hydroelectric power available. Among the motives that cause such situation are relatively high fuel costs associated to the thermal power. The objective of this paper is discuss the available tools in the regulatory environment whose application may lead to the reduction of the price of the natural gas, that represents up to 60% of the total cost of the generated power. (author)

  2. Gas phase hydrolysis of formaldehyde to form methanediol: impact of formic acid catalysis.

    Science.gov (United States)

    Hazra, Montu K; Francisco, Joseph S; Sinha, Amitabha

    2013-11-21

    We find that formic acid (FA) is very effective at facilitating diol formation through its ability to reduce the barrier for the formaldehyde (HCHO) hydrolysis reaction. The rate limiting step in the mechanism involves the isomerization of a prereactive collision complex formed through either the HCHO···H2O + FA and/or HCHO + FA···H2O pathways. The present study finds that the effective barrier height, defined as the difference between the zero-point vibrational energy (ZPE) corrected energy of the transition state (TS) and the HCHO···H2O + FA and HCHO + FA···H2O starting reagents, are respectively only ∼1 and ∼4 kcal/mol. These barriers are substantially lower than the ∼17 kcal/mol barrier associated with the corresponding step in the hydrolysis of HCHO catalyzed by a single water molecule (HCHO + H2O + H2O). The significantly lower barrier heights for the formic acid catalyzed pathway reveal a new important role that organic acids play in the gas phase hydrolysis of atmospheric carbonyl compounds.

  3. Life-cycle comparison of greenhouse gas emissions and water consumption for coal and shale gas fired power generation in China

    International Nuclear Information System (INIS)

    Chang, Yuan; Huang, Runze; Ries, Robert J.; Masanet, Eric

    2015-01-01

    China has the world's largest shale gas reserves, which might enable it to pursue a new pathway for electricity generation. This study employed hybrid LCI (life cycle inventory) models to quantify the ETW (extraction-to-wire) GHG (greenhouse gas) emissions and water consumption per kWh of coal- and shale gas-fired electricity in China. Results suggest that a coal-to-shale gas shift and upgrading coal-fired power generation technologies could provide pathways to less GHG and water intensive power in China. Compared to different coal-fired generation technologies, the ETW GHG emissions intensity of gas-fired CC (combined cycle) technology is 530 g CO 2 e/kWh, which is 38–45% less than China's present coal-fired electricity. Gas-fired CT (combustion turbine) technology has the lowest ETW water consumption intensity at 960 g/kWh, which is 34–60% lower than China's present coal-fired electricity. The GHG-water tradeoff of the two gas-fired power generation technologies suggests that gas-fired power generation technologies should be selected based on regional-specific water resource availabilities and electricity demand fluctuations in China. However, the low price of coal-fired electricity, high cost of shale gas production, insufficient pipeline infrastructures, and multiple consumers of shale gas resources may serve as barriers to a coal-to-shale gas shift in China's power sector in the near term. - Highlights: • The GHG and water footprints of coal- and shale gas-fired electricity are estimated. • A coal-to-shale gas shift can enable less GHG and water intensive power in China. • The GHG emissions of shale gas-fired combined cycle technology is 530 g CO 2 e/kWh. • The water consumption of shale gas-fired combustion turbine technology is 960 g/kWh. • Shale gas-fired power generation technologies selection should be regional-specific

  4. Information barriers

    International Nuclear Information System (INIS)

    Fuller, J.L.; Wolford, J.

    2001-01-01

    Full text: An information barrier (IB) consists of procedures and technology that prevent the release of sensitive information during a joint inspection of a sensitive nuclear item, and provides confidence that the measurement system into which it has been integrated functions exactly as designed and constructed. Work in the U.S. on radiation detection system information barriers dates back at least to 1990, even though the terminology is more recent. In January 1999 the Joint DoD-DOE Information Barrier Working Group was formed in the United States to help coordinate technical efforts related to information barrier R and D. This paper presents an overview of the efforts of this group, by its Chairs, as well as recommendations for further information barrier R and D. Progress on the demonstration of monitoring systems containing IBs is also provided. From the U.S. perspective, the basic, top-level functional requirements for the information barrier portion of an integrated radiation signature-information barrier inspection system are twofold: The host must be assured that his classified information is protected from disclosure to the inspecting party; and The inspecting party must be confident that the integrated inspection system measures, processes, and presents the radiation-signature-based measurement conclusion in an accurate and reproducible manner. It is the position of the United States that in the absence of any agreement to share classified nuclear weapons design information in the conduct of an inspection regime, the requirement to protect host country classified warhead design information is paramount and admits no tradeoff versus the confidence provided to the inspecting party in the accuracy and reproducibility of the measurements. The U.S. has reached an internal consensus on several critical design elements that define a general standard for radiation signature information barrier design. These criteria have stood the test of time under intense

  5. UK-China review of opportunities for landfill gas (LFG) technology transfer

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report presents the results of a project to identify opportunities to transfer UK skills with regard to landfill gas (LFG) technologies to China and other countries looking to develop LFG as a commercially viable clean energy source. The aim of the project was to develop all aspects of LFG extraction and utilisation techniques. The project involved: examining current Chinese waste disposal practices; identifying key technologies and methods for maximising LFG recovery; considering end use options and methods to optimise gas use; assessing the environmental benefits; and identifying potential opportunities for UK industry. The report consider: barriers to the development of LFG; waste disposal and landfill design in China; China's experience of LFG use; UN Development Programme (UNDP) and Global Environmental Forum (GEF) LFG demonstration projects in China; environmental regulation and controls in China; LFG technology in the UK; support for renewable energy in China and the UK; design and operational needs in China from a UK perspective; technology needs, barriers and opportunities; and recommendations for action and future work.

  6. Tritium/hydrogen barrier development

    International Nuclear Information System (INIS)

    Hollenberg, G.W.; Simonen, E.P.; Kalinen, G.; Terlain, A.

    1994-06-01

    A review of hydrogen permeation barriers that can be applied to structural metals used in fusion power plants is presented. Both implanted and chemically available hydrogen isotopes must be controlled in fusion plants. The need for permeation barriers appears strongest in Li17-Pb blanket designs, although barriers also appear necessary for other blanket and coolant systems. Barriers that provide greater than a 1000 fold reduction in the permeation of structural metals are desired. In laboratory experiments, aluminide and titanium ceramic coatings provide permeation reduction factors, PRFS, from 1000 to over 100,000 with a wide range of scatter. The rate-controlling mechanism for hydrogen permeation through these barriers may be related to the number and type of defects in the barriers. Although these barriers appear robust and resistant to liquid metal corrosion, irradiation tests which simulate blanket environments result in very low PRFs in comparison to laboratory experiments, i.e., <150. It is anticipated from fundamental research activities that the REID enhancement of hydrogen diffusion in oxides may contribute to the lower permeation reduction factors during in-reactor experiments

  7. Grid integration policies of gas-fired cogeneration in Peninsular Malaysia: Fallacies and counterexamples

    Energy Technology Data Exchange (ETDEWEB)

    Shaaban, M., E-mail: m.shaaban@fke.utm.my [Centre of Electrical Energy Systems, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru (Malaysia); Azit, A.H. [Tenaga Nasional Berhad, Wisma TNB, Jalan Timur, 46200 Petaling Jaya, Selangor (Malaysia); Nor, K.M. [Centre of Electrical Energy Systems, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru (Malaysia)

    2011-09-15

    Despite the abundance of natural gas reserves in Malaysia coupled with serious government thrusts to promote cogeneration, its (cogeneration) development pace lags far off expectations. There are widespread fallacies among potential cogeneration developers and concerned professionals that cogeneration is uncompetitive in Malaysia due to existing policies of subsidized gas prices and grid-connection charges. This paper exposes these fallacies through counterexamples of practical cogeneration system design and evaluation of some segments of the industrial and service sectors in Peninsular Malaysia. The electrical and thermal characteristics of the cogeneration were modeled based on heat rate characteristics at partial loading patterns. A hierarchical mathematical programming approach that uses mixed-integer nonlinear optimization and dynamic programming principle, if necessary, is employed to determine the optimal size of cogeneration and its related auxiliary equipment as well as the optimal operation schedule. Financial assessment is integrated at a later stage to assess the economic viability of the system. Analyses of the cogeneration potential for several facilities of miscellaneous activities were carried out using various gas and electricity prices. Results obtained consistently rebuff the perpetuated fallacies and confirm that there is no real barrier to cogeneration development in Malaysia under current policies of gas prices and electricity tariffs. - Highlights: > Mixed-integer nonlinear programming and dynamic programming are used in the design. > Various loading levels are modeled and hourly operation schedule is determined. > Standby electricity charge has a minimal impact on cogeneration feasibility. > Gas and electricity prices are interrelated and affect cogeneration investment. > Under existing policies, there is no barrier to cogeneration adoption in Malaysia.

  8. Grid integration policies of gas-fired cogeneration in Peninsular Malaysia: Fallacies and counterexamples

    International Nuclear Information System (INIS)

    Shaaban, M.; Azit, A.H.; Nor, K.M.

    2011-01-01

    Despite the abundance of natural gas reserves in Malaysia coupled with serious government thrusts to promote cogeneration, its (cogeneration) development pace lags far off expectations. There are widespread fallacies among potential cogeneration developers and concerned professionals that cogeneration is uncompetitive in Malaysia due to existing policies of subsidized gas prices and grid-connection charges. This paper exposes these fallacies through counterexamples of practical cogeneration system design and evaluation of some segments of the industrial and service sectors in Peninsular Malaysia. The electrical and thermal characteristics of the cogeneration were modeled based on heat rate characteristics at partial loading patterns. A hierarchical mathematical programming approach that uses mixed-integer nonlinear optimization and dynamic programming principle, if necessary, is employed to determine the optimal size of cogeneration and its related auxiliary equipment as well as the optimal operation schedule. Financial assessment is integrated at a later stage to assess the economic viability of the system. Analyses of the cogeneration potential for several facilities of miscellaneous activities were carried out using various gas and electricity prices. Results obtained consistently rebuff the perpetuated fallacies and confirm that there is no real barrier to cogeneration development in Malaysia under current policies of gas prices and electricity tariffs. - Highlights: → Mixed-integer nonlinear programming and dynamic programming are used in the design. → Various loading levels are modeled and hourly operation schedule is determined. → Standby electricity charge has a minimal impact on cogeneration feasibility. → Gas and electricity prices are interrelated and affect cogeneration investment. → Under existing policies, there is no barrier to cogeneration adoption in Malaysia.

  9. Barriers for realisation of energy savings in buildings; Barrierer for realisering af energibesparelser i bygninger

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, O.M.

    2004-07-01

    Many years' efforts within the energy labelling area have shown large saving potentials in heating and use of electricity in buildings. At the same time it has been proved that these saving potentials, even when economically advantageous, only are cashed to a limited extent. The reason to this is ascribed to barriers that meet the individual building owner who wants to start saving energy. Most barriers are known and a lot of these have been sought overcome for some time. The questions are how many barriers still exist, have new barriers arisen and the character of these barriers. On this background the objective of this survey has been to concretize and study the barriers, which are blocking reasonable energy savings. Focus has especially been on barriers for realisation of heating savings, but through a general evaluation of energy savings of barriers other forms of energy saving methods have been taken into consideration. Special interest has been directed towards houses, typically one family houses, which are affected by the Energy Labelling Scheme. The concept barriers include all kinds of barriers, also barriers that not are acknowledged as barriers by the individual house owner, or that on closer inspection turn out to be something else than actual barriers. This note suggests an alternative inertia model, in order to create an idea of the inertness characteristic of the many house owners who understand the message but fail to act on it. (BA)

  10. Systems study on engineered barriers: barrier performance analysis

    International Nuclear Information System (INIS)

    Stula, R.T.; Albert, T.E.; Kirstein, B.E.; Lester, D.H.

    1980-09-01

    A performance assessment model for multiple barrier packages containing unreprocessed spent fuel has been modified and applied to several package designs. The objective of the study was to develop information to be used in programmatic decision making concerning engineered barrier package design and development. The assessment model, BARIER, was developed in previous tasks of the System Study on Engineered Barriers (SSEB). The new version discussed in this report contains a refined and expanded corrosion rate data base which includes pitting, crack growth, and graphitization as well as bulk corrosion. Corrosion rates for oxic and anoxic conditions at each of the two temperature ranges are supplied. Other improvements include a rigorous treatment of radionuclide release after package failure which includes resistance of damaged barriers and backfill, refined temperature calculations that account for convection and radiation, a subroutine to calculate nuclear gamma radiation field at each barrier surface, refined stress calculations with reduced conservatism and various coding improvements to improve running time and core usage. This report also contains discussion of alternative scenarios to the assumed flooded repository as well as the impact of water exclusion backfills. The model was used to assess post repository closure performance for several designs which were all variation of basic designs from the Spent Unreprocessed Fuel (SURF) program. Many designs were found to delay the onset of leaching by at least a few hundreds of years in all geologic media. Long delay times for radionuclide release were found for packages with a few inches of sorption backfill. Release of uranium, plutonium, and americium was assessed

  11. Systems study on engineered barriers: barrier performance analysis

    Energy Technology Data Exchange (ETDEWEB)

    Stula, R.T.; Albert, T.E.; Kirstein, B.E.; Lester, D.H.

    1980-09-01

    A performance assessment model for multiple barrier packages containing unreprocessed spent fuel has been modified and applied to several package designs. The objective of the study was to develop information to be used in programmatic decision making concerning engineered barrier package design and development. The assessment model, BARIER, was developed in previous tasks of the System Study on Engineered Barriers (SSEB). The new version discussed in this report contains a refined and expanded corrosion rate data base which includes pitting, crack growth, and graphitization as well as bulk corrosion. Corrosion rates for oxic and anoxic conditions at each of the two temperature ranges are supplied. Other improvements include a rigorous treatment of radionuclide release after package failure which includes resistance of damaged barriers and backfill, refined temperature calculations that account for convection and radiation, a subroutine to calculate nuclear gamma radiation field at each barrier surface, refined stress calculations with reduced conservatism and various coding improvements to improve running time and core usage. This report also contains discussion of alternative scenarios to the assumed flooded repository as well as the impact of water exclusion backfills. The model was used to assess post repository closure performance for several designs which were all variation of basic designs from the Spent Unreprocessed Fuel (SURF) program. Many designs were found to delay the onset of leaching by at least a few hundreds of years in all geologic media. Long delay times for radionuclide release were found for packages with a few inches of sorption backfill. Release of uranium, plutonium, and americium was assessed.

  12. Discursive barriers and cross-scale forest governance in Central Kalimantan, Indonesia

    Directory of Open Access Journals (Sweden)

    Caleb T. Gallemore

    2014-06-01

    Full Text Available Students of social-ecological systems have emphasized the need for effective cross-scale governance. We theorized that discursive barriers, particularly between technical and traditional practices, can act as a barrier to cross-scale collaboration. We analyzed the effects of discursive divides on collaboration on Reducing Emissions from Deforestation and Forest Degradation (REDD+ policy development in Central Kalimantan, an Indonesian province on the island of Borneo selected in 2010 to pilot subnational REDD+ policy. We argue that the complexities of bridging local land management practices and technical approaches to greenhouse gas emissions reduction and carbon offsetting create barriers to cross-scale collaboration. We tested these hypotheses using an exponential random graph model of collaboration among 36 organizations active in REDD+ policy in the province. We found that discursive divides were associated with a decreased probability of collaboration between organizations and that organizations headquartered outside the province were less likely to collaborate with organizations headquartered in the province. We conclude that bridging discursive communities presents a chicken-and-egg problem for cross-scale governance of social-ecological systems. In precisely the situations where it is most important, when bridging transnational standards with local knowledge and land management practices, it is the most difficult.

  13. Record of proceedings: Conference on state regulation and the market potential for natural gas: Challenges and opportunities

    International Nuclear Information System (INIS)

    1992-01-01

    This conference was convened by the US Department of Energy and the National Association of Regulatory Utility Commissioners to provide a forum for state and federal policymakers, sate and federal regulators, and all segments of the natural gas industry to address issues of significance to the current and future use of natural gas, with particular emphasis on sate regulation. The conference brought together a cross-section of interested parties to begin the process of identifying the barriers to natural gas achieving its market potential and developing better communication between Federal officials, State officials and different segments of the natural gas and electric industries

  14. Barrier penetration database

    International Nuclear Information System (INIS)

    Fainberg, A.; Bieber, A.M. Jr.

    1978-11-01

    This document is intended to supply the NRC and nuclear power plant licensees with basic data on the times required to penetrate forcibly the types of barriers commonly found in nuclear plants. These times are necessary for design and evaluation of the physical protection system required under 10CFR73.55. Each barrier listed is described in detail. Minor variations in basic barrier construction that result in the same penetration time, are also described

  15. Oxygen barrier of multilayer thin films comprised of polysaccharides and clay.

    Science.gov (United States)

    Laufer, Galina; Kirkland, Christopher; Cain, Amanda A; Grunlan, Jaime C

    2013-06-05

    Multilayered thin films of chitosan (CH), carrageenan (CR) and montmorillonite (MMT) clay, deposited using the layer-by-layer technique, were studied in an effort to produce fully renewable polysaccharide-based thin films with low oxygen permeability. Ten 'trilayers' of CH/MMT/CR (film reduced its oxygen permeability (1.76×10(-15) cm(3) cm/cm(2) s Pa) by an order of magnitude under dry conditions. By adding an additional layer of CH to the trilayer sequence, a 'quadlayer' film of CH/CR/CH/MMT (barrier is believed to be due to the unique nanostructure of these films, often referred to as a "nanobrick wall" structure, as well as a strong association amongst the oppositely charged polysaccharides. Combining fully renewable and food contact approved ingredients with high gas barrier and optical transparency makes this technology promising as a foil replacement for food packaging. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Environmental Barrier Coatings for Turbine Engines: A Design and Performance Perspective

    Science.gov (United States)

    Zhu, Dongming; Fox, Dennis S.; Ghosn, Louis; Smialek, James L.; Miller, Robert A.

    2009-01-01

    Ceramic thermal and environmental barrier coatings (TEBC) for SiC-based ceramics will play an increasingly important role in future gas turbine engines because of their ability to effectively protect the engine components and further raise engine temperatures. However, the coating long-term durability remains a major concern with the ever-increasing temperature, strength and stability requirements in engine high heat-flux combustion environments, especially for highly-loaded rotating turbine components. Advanced TEBC systems, including nano-composite based HfO2-aluminosilicate and rare earth silicate coatings are being developed and tested for higher temperature capable SiC/SiC ceramic matrix composite (CMC) turbine blade applications. This paper will emphasize coating composite and multilayer design approach and the resulting performance and durability in simulated engine high heat-flux, high stress and high pressure combustion environments. The advances in the environmental barrier coating development showed promise for future rotating CMC blade applications.

  17. Design of engineered sorbent barriers

    International Nuclear Information System (INIS)

    Jones, E.O.; Freeman, H.D.

    1988-01-01

    A sorbent barrier uses sorbent material such as activated carbon or natural zeolites to prevent the migration of radionuclides from a low-level waste site to the aquifer. The sorbent barrier retards the movement of radioactive contaminants, thereby providing time for the radionuclides to decay. Sorbent barriers can be a simple, effective, and inexpensive method for reducing the migration of radionuclides to the environment. Designing a sorbent barrier consists of using soil and sorbent material properties and site conditions as input to a model which will determine the necessary sorbent barrier thickness to meet contaminant limits. The paper covers the following areas: techniques for measuring sorption properties of barrier materials and underlying soils, use of a radionuclide transport model to determine the required barrier thickness and performance under a variety of site conditions, and cost estimates for applying the barrier

  18. Barrier Data Base user's guide

    International Nuclear Information System (INIS)

    Worrell, R.B.; Gould, D.J.; Wall, D.W.

    1977-06-01

    A special purpose data base for physical security barriers has been developed. In addition to barriers, the entities accommodated by the Barrier Data Base (BDB) include threats and references. A threat is established as a configuration of people and equipment which has been employed to penetrate (or attempt to penetrate) a barrier. References are used to cite publications pertinent to the barriers and threats in the data base. Utilization and maintenance of the Barrier Data Base is achieved with LIST, QUERY, ENTER, DELETE, and CHANGE commands which are used to manipulate the data base entities

  19. Tunable Gas Permeability of Polymer-Clay Nano Brick Wall Thin Film Assemblies

    Science.gov (United States)

    Gamboa, Daniel; Priolo, Morgan; Grunlan, Jaime

    2010-03-01

    Thin films of anionic natural montmorrilonite (MMT) clay and cationic polyethylenimine (PEI) have been produced by alternately dipping a plastic substrate into dilute aqueous mixtures containing each ingredient. After 40 polymer-clay layers have been deposited, the resulting transparent film exhibits an oxygen transmission rate (OTR) below 0.35 cm^3/m^2 . day when the pH of PEI solution is 10. This low permeability is due to a brick wall nanostructure comprised of completely exfoliated clay bricks in polymeric mortar. This brick wall creates an extremely tortuous path at thicknesses below 250 nm and clay concentration above 80 wt%. A 70-bilayer PEI-MMT assembly has an undetectable OTR (< 0.005 cm^3/m^2 . day), which equates to a permeability below SiOx when multiplied by its film thickness of 231 nm. With optical transparency greater than 86% and the ability to be microwaved, these thin film composites are good candidates for flexible electronics packaging and foil replacement for food.

  20. Smoldering and Flame Resistant Textiles via Conformal Barrier Formation.

    Science.gov (United States)

    Zammarano, Mauro; Cazzetta, Valeria; Nazaré, Shonali; Shields, J Randy; Kim, Yeon Seok; Hoffman, Kathleen M; Maffezzoli, Alfonso; Davis, Rick

    2016-12-07

    A durable and flexible silicone-based backcoating (halogen free) is applied to the backside of an otherwise smoldering-prone and flammable fabric. When exposed to fire, cyclic siloxanes (produced by thermal decomposition of the backcoating) diffuse through the fabric in the gas phase. The following oxidation of the cyclic siloxanes forms a highly conformal and thermally stable coating that fully embeds all individual fibers and shields them from heat and oxidation. As a result, the combustion of the fabric is prevented. This is a novel fire retardant mechanism that discloses a powerful approach towards textiles and multifunctional flexible materials with combined smoldering/flaming ignition resistance and fire-barrier properties.

  1. Gas lantern mantle: a low activity alpha particle source

    International Nuclear Information System (INIS)

    Mukherjee, B.; Manzoor, S.

    1991-01-01

    Commercially available gas lantern mantles contain a substantial amount of radioactive ThO 2 . Gas lantern mantles purchased from a Sydney camping shop were incinerated, deposited as a thin layer on a aluminium planchette, and the emitted alpha spectrum was measured with a silicon surfacer barrier detector. The specific activity of the samples was estimated by high resolution gamma spectroscopy using a high purity germanium detector as well as CR-39 solid state nuclear track detectors. The micro-morphology of the incinerated powder was analysed by scanning electron microscopy. The depth dose and LET distribution of alpha particles in soft tissue were calculated from the energy spectrum. 12 refs., 2 tabs., 5 figs

  2. Life Prediction Issues in Thermal/Environmental Barrier Coatings in Ceramic Matrix Composites

    Science.gov (United States)

    Shah, Ashwin R.; Brewer, David N.; Murthy, Pappu L. N.

    2001-01-01

    Issues and design requirements for the environmental barrier coating (EBC)/thermal barrier coating (TBC) life that are general and those specific to the NASA Ultra-Efficient Engine Technology (UEET) development program have been described. The current state and trend of the research, methods in vogue related to the failure analysis, and long-term behavior and life prediction of EBCITBC systems are reported. Also, the perceived failure mechanisms, variables, and related uncertainties governing the EBCITBC system life are summarized. A combined heat transfer and structural analysis approach based on the oxidation kinetics using the Arrhenius theory is proposed to develop a life prediction model for the EBC/TBC systems. Stochastic process-based reliability approach that includes the physical variables such as gas pressure, temperature, velocity, moisture content, crack density, oxygen content, etc., is suggested. Benefits of the reliability-based approach are also discussed in the report.

  3. Electrical model of dielectric barrier discharge homogenous and filamentary modes

    Science.gov (United States)

    López-Fernandez, J. A.; Peña-Eguiluz, R.; López-Callejas, R.; Mercado-Cabrera, A.; Valencia-Alvarado, R.; Muñoz-Castro, A.; Rodríguez-Méndez, B. G.

    2017-01-01

    This work proposes an electrical model that combines homogeneous and filamentary modes of an atmospheric pressure dielectric barrier discharge cell. A voltage controlled electric current source has been utilized to implement the power law equation that represents the homogeneous discharge mode, which starts when the gas breakdown voltage is reached. The filamentary mode implies the emergence of electric current conducting channels (microdischarges), to add this phenomenon an RC circuit commutated by an ideal switch has been proposed. The switch activation occurs at a higher voltage level than the gas breakdown voltage because it is necessary to impose a huge electric field that contributes to the appearance of streamers. The model allows the estimation of several electric parameters inside the reactor that cannot be measured. Also, it is possible to appreciate the modes of the DBD depending on the applied voltage magnitude. Finally, it has been recognized a good agreement between simulation outcomes and experimental results.

  4. Electrical model of dielectric barrier discharge homogenous and filamentary modes

    International Nuclear Information System (INIS)

    López-Fernandez, J A; Peña-Eguiluz, R; López-Callejas, R; Mercado-Cabrera, A; Valencia-Alvarado, R; Muñoz-Castro, A; Rodríguez-Méndez, B G

    2017-01-01

    This work proposes an electrical model that combines homogeneous and filamentary modes of an atmospheric pressure dielectric barrier discharge cell. A voltage controlled electric current source has been utilized to implement the power law equation that represents the homogeneous discharge mode, which starts when the gas breakdown voltage is reached. The filamentary mode implies the emergence of electric current conducting channels (microdischarges), to add this phenomenon an RC circuit commutated by an ideal switch has been proposed. The switch activation occurs at a higher voltage level than the gas breakdown voltage because it is necessary to impose a huge electric field that contributes to the appearance of streamers. The model allows the estimation of several electric parameters inside the reactor that cannot be measured. Also, it is possible to appreciate the modes of the DBD depending on the applied voltage magnitude. Finally, it has been recognized a good agreement between simulation outcomes and experimental results. (paper)

  5. Propagation of atmospheric pressure helium plasma jet into ambient air at laminar gas flow

    Science.gov (United States)

    Pinchuk, M.; Stepanova, O.; Kurakina, N.; Spodobin, V.

    2017-05-01

    The formation of an atmospheric pressure plasma jet (APPJ) in a gas flow passing through the discharge gap depends on both gas-dynamic properties and electrophysical parameters of the plasma jet generator. The paper presents the results of experimental and numerical study of the propagation of the APPJ in a laminar flow of helium. A dielectric-barrier discharge (DBD) generated inside a quartz tube equipped with a coaxial electrode system, which provided gas passing through it, served as a plasma source. The transition of the laminar regime of gas flow into turbulent one was controlled by the photography of a formed plasma jet. The corresponding gas outlet velocity and Reynolds numbers were revealed experimentally and were used to simulate gas dynamics with OpenFOAM software. The data of the numerical simulation suggest that the length of plasma jet at the unvarying electrophysical parameters of DBD strongly depends on the mole fraction of ambient air in a helium flow, which is established along the direction of gas flow.

  6. Design of engineered sorbent barriers

    International Nuclear Information System (INIS)

    Jones, E.O.; Freeman, H.D.

    1988-08-01

    A sorbent barrier uses sorbent material such as activated carbon or natural zeolites to prevent the migration of radionuclides from a low-level waste site to the aquifer. The sorbent barrier retards the movement of radioactive contaminants, thereby providing time for the radionuclides to decay. Sorbent barriers can be a simple, effective, and inexpensive method for reducing the migration of radionuclides to the environment. Designing a sorbent barrier consists of using soil and sorbent material properties and site conditions as input to a model which will determine the necessary sorbent barrier thickness to meet contaminant limits. The paper will cover the following areas: techniques for measuring sorption properties of barrier materials and underlying soils, use of a radionuclide transport model to determine the required barrier thickness and performance under a variety of site conditions, and cost estimates for applying the barrier. 8 refs., 6 figs., 1 tab

  7. Gas geochemistry studies at the gas hydrate occurrence in the permafrost environment of Mallik (NWT, Canada)

    Science.gov (United States)

    Wiersberg, T.; Erzinger, J.; Zimmer, M.; Schicks, J.; Dahms, E.; Mallik Working Group

    2003-04-01

    We present real-time mud gas monitoring data as well as results of noble gas and isotope investigations from the Mallik 2002 Production Research Well Program, an international research project on Gas Hydrates in the Northwest Territories of Canada. The program participants include 8 partners; The Geological Survey of Canada (GSC), The Japan National Oil Corporation (JNOC), GeoForschungsZentrum Potsdam (GFZ), United States Geological Survey (USGS), United States Department of the Energy (USDOE), India Ministry of Petroleum and Natural Gas (MOPNG)/Gas Authority of India (GAIL) and the Chevron-BP-Burlington joint venture group. Mud gas monitoring (extraction of gas dissolved in the drill mud followed by real-time analysis) revealed more or less complete gas depth profiles of Mallik 4L-38 and Mallik 5L-38 wells for N_2, O_2, Ar, He, CO_2, H_2, CH_4, C_2H_6, C_3H_8, C_4H10, and 222Rn; both wells are approx. 1150 m deep. Based on the molecular and and isotopic composition, hydrocarbons occurring at shallow depth (down to ˜400 m) are mostly of microbial origin. Below 400 m, the gas wetness parameter (CH_4/(C_2H_6 + C_3H_8)) and isotopes indicate mixing with thermogenic gas. Gas accumulation at the base of permafrost (˜650 m) as well as δ13C and helium isotopic data implies that the permafrost inhibits gas flux from below. Gas hydrate occurrence at Mallik is known in a depth between ˜890 m and 1100 m. The upper section of the hydrate bearing zone (890 m--920 m) consists predominantly of methane bearing gas hydrates. Between 920 m and 1050 m, concentration of C_2H_6, C_3H_8, and C_4H10 increases due to the occurrence of organic rich sediment layers. Below that interval, the gas composition is similar to the upper section of the hydrate zone. At the base of the hydrate bearing zone (˜1100 m), elevated helium and methane concentrations and their isotopic composition leads to the assumption that gas hydrates act as a barrier for gas migration from below. In mud gas

  8. In pursuit of resilient, low carbon communities: An examination of barriers to action in three Canadian cities

    International Nuclear Information System (INIS)

    Burch, Sarah

    2010-01-01

    This article presents the findings of a study that examined three municipalities in the Lower Mainland of British Columbia, Canada, in order to determine the nature of the socio-cultural and institutional barriers to action on climate change at the local level. The central goals of this paper are: (1) to propose a simple typology of institutional and socio-cultural barriers to action by gathering insights from an inter-disciplinary set of literatures; (2) to explore the ways that these barriers influence the utilization of various forms of capacity to achieve greenhouse gas reduction and resiliency in three case study communities; and (3) to understand the dynamic interactions amongst, and relative importance of, these barriers at the local level. The evidence presented in this paper indicates that barriers are deeply interwoven phenomena, which may reinforce one another and create substantial inertia behind unsustainable patterns of municipal operations. Nevertheless, the same factors that can inhibit action on climate change (such as an organizational culture of combativeness or mutual disrespect) can also facilitate it (as with a culture of collaboration or innovation). This article suggests that a deeper understanding of the ways in which barriers can be transformed into enablers of action is a critical next step in the evolution climate change policy design and implementation at the local level.

  9. Lessons learned from Brazilian natural gas industry reform

    International Nuclear Information System (INIS)

    Mathias, Melissa Cristina; Szklo, Alexandre

    2007-01-01

    Over the past decades many countries have reformed their infrastructure industries. Although these reforms have been broadly similar for the most part, aiming at introducing competition in potentially competitive segments, the contexts in which they have been carried out differ. This is due to the past regulatory experience in each country, the maturity of the industry and/or the number of agents when the reform process started. The Brazilian natural gas reform stands out due to the country's singular conditions. The development of the natural gas industry in Brazil was grounded on stepping up supplies through integration with neighboring nations (particularly Bolivia) and establishing a competitive environment by lowering the barriers hampering the arrival of new investors. However, natural gas is located at the crossroads of two main energy chains: oil and hydroelectricity. This article analyzes the Brazilian natural gas reform, and extracts lessons from this process. The low capillarity of transportation and distribution systems continues to be the main bottleneck of the country's natural gas industry. The challenges of the new legal framework are to encourage investments in networks and guarantee supply, to allow the industry to consolidate and mature, against a backdrop of rapid changes in the world market. (author)

  10. WIPP panel simulations with gas generation

    International Nuclear Information System (INIS)

    DeVries, K.L.; Callahan, G.D.; Munson, D.E.

    1996-01-01

    An important issue in nuclear waste repository performance is the potential for fracture development resulting in pathways for release of radionuclides beyond the confines of the repository. A series of demonstration calculations using structural finite element analyses are presented here to examine the effect of internal gas generation on the response of a sealed repository. From the calculated stress fields, the most probable location for a fracture to develop was determined to be within the pillars interior to the repository for the range of parameter values considered. If a fracture interconnects the rooms and panels of the repository, fracture opening produces significant additional void volume to limit the excess gas pressure to less than 1.0 MPa above the overburden pressure. Consequently, the potential for additional fracture development into the barrier pillar is greatly reduced, which provides further confidence that the waste will be contained within the repository

  11. Role of HHM coupling mechanisms on the evolution of rock masses around nuclear waste disposals in the context of gas generation

    International Nuclear Information System (INIS)

    Hoxha, D.; Do, D.-P.; Wendling, J.; Poutrel, A.

    2010-01-01

    Document available in extended abstract form only. This paper aims at modelling of long term evolution of hydro-mechanical state of rock masses around sealing nuclear waste disposals. In the principles of nuclear waste disposals the geological barrier must play a long term confining role in respect with nuclide transport. In terms of hydro-mechanical properties this calls for managing the damage around the underground workings of the waste disposals. In particular the seal buffers and barrier rock will support the generation of hydrogen of different origins, mainly from the corrosion of steals used in various elements of a nuclear waste disposal. This generation would generate gas pressures sufficiently high to partially dry seal or barrier rock leading to a redistribution of stress around underground openings, to a reactivation of the rock damage and finally could put in question the concept of geological barrier itself. The object of this paper is to shed light in the mechanisms of HHM coupling in rocks around a repository by comparative numerical analyses. Basically, we chose two configurations to proceed with analyses: one in plan strain conditions and the other an axial symmetric configuration. The goal of the first configuration is the assessment of gas pressure evolution in the openings of a repository. The principal input of the problem is the kinetics of gas generation (H 2 generation) given by a step-wise function of time describing the gas generation of one single nuclear waste coli. Then known the repository architecture one could easily calculate the mass of gas generated on one access gallery. Since extreme scenario is studied, we suppose that the gas generated by the set of alveoli is fully located in the access gallery and only a radial gas flux is possible.The hydro mechanical properties of rocks up to the surface were taken into account. For the callovo-Oxfordian clay that constitutes barrier rock in immediate neighbouring of the gallery a model

  12. Hanford protective barriers program: Status of asphalt barrier studies - FY 1989

    International Nuclear Information System (INIS)

    Freeman, H.D.; Gee, G.W.

    1989-11-01

    The Hanford Protective Barrier Program is evaluating alternate barriers to provide a means of meeting stringent water infiltration requirements. One type of alternate barrier being considered is an asphalt-based layer, 1.3 to 15 cm thick. Evaluations of these barriers were initiated in FY 1988, and, based on laboratory studies, two asphalt formulations were selected for further testing in small-tube lysimeters: a hot rubberized asphalt and an admixture of cationic asphalt emulsion and concrete sand containing 24 wt% residual asphalt. Eight lysimeters containing asphalt seals were installed as part of the Small Tube Lysimeter Test Facility on the Hanford Site. Two control lysimeters containing Hanford sand with a surface gravel treatment were also installed for comparison. 5 refs., 13 figs., 1 tab

  13. Phase Stability and Thermal Conductivity of Composite Environmental Barrier Coatings on SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Benkel, Samantha; Zhu, Dongming

    2011-01-01

    Advanced environmental barrier coatings are being developed to protect SiC/SiC ceramic matrix composites in harsh combustion environments. The current coating development emphasis has been placed on the significantly improved cyclic durability and combustion environment stability in high-heat-flux and high velocity gas turbine engine environments. Environmental barrier coating systems based on hafnia (HfO2) and ytterbium silicate, HfO2-Si nano-composite bond coat systems have been processed and their stability and thermal conductivity behavior have been evaluated in simulated turbine environments. The incorporation of Silicon Carbide Nanotubes (SiCNT) into high stability (HfO2) and/or HfO2-silicon composite bond coats, along with ZrO2, HfO2 and rare earth silicate composite top coat systems, showed promise as excellent environmental barriers to protect the SiC/SiC ceramic matrix composites.

  14. Improving air quality in large cities by substituting natural gas for coal in China: changing idea and incentive policy implications

    International Nuclear Information System (INIS)

    Mao Xianqiang; Guo Xiurui; Chang Yongguan; Peng Yingdeng

    2005-01-01

    Natural gas has long been used in China mainly as chemical raw material. With the increasing emphasis on urban air pollution prevention, the issue of natural gas substitution to coal has been raised in many large Chinese cities. This paper reviews the environmental-economic-technical rationality of dashing-for-gas in urban area, especially for civil use such as cooking and heating in China. Taking Beijing and Chongqing as study cases, a cost-benefit analysis of natural gas substitution is done and the ongoing economic and system barriers to natural gas penetration are analyzed. Indications of natural gas penetration incentive policy making are given finally

  15. Improving air quality in large cities by substituting natural gas for coal in China: changing idea and incentive policy implications

    International Nuclear Information System (INIS)

    Xianqiang Mao; Yingdeng Peng

    2005-01-01

    Natural gas has long been used in China mainly as chemical raw material. With the increasing emphasis on urban air pollution prevention, the issue of natural gas substitution to coal has been raised in many large Chinese cities. This paper reviews the environmental - economic - technical rationality of dashing-for-gas in urban area, especially for civil use such as cooking and heating in China. Taking Beijing and Chongqing as study cases, a cost-benefit analysis of natural gas substitution is done and the ongoing economic and system barriers to natural gas penetration are analyzed. Indications of natural gas penetration incentive policy making are given finally. (author)

  16. Market Opportunities and Barriers for Smart Buildings

    DEFF Research Database (Denmark)

    Ma, Zheng; Badi, Adrian; Jørgensen, Bo Nørregaard

    2016-01-01

    Buildings consume up to 42% of the global electricity and the primary emitter of greenhouse gas on the planet. Building efficiency is the largest growing segment in the US, the estimated global revenue by the building efficiency sector is around 210 million dollars, and constantly increases since...... 2011. Much research already shows the players' passive and conservative attitudes to enter into the energy efficiency market. Especially there are obstacles for the construction companies to redesign their business model from the traditional building business to the smart building market. This paper...... conducts a qualitative approach with primary and secondary data to investigate the Barriers and opportunities of the construction companies into the smart building market. The result shows the willingness of the players to involve the building efficiency business with huge potential monetary benefits...

  17. Gas generation and migration in the shallow land disposal and preliminary impact analysis

    International Nuclear Information System (INIS)

    Nakai, Kunihiro

    1996-01-01

    As the latent effect in the case of gas generation in waste repositories, the damage of barriers by gas pressure, the pushing-out of contaminated water by pressure gas in waste repositories, the movement of radioactive gases containing H-3, C-14 and others, the explosion accompanying the release of combustible gas like hydrogen onto ground, and the effect to ground-water flow by gas movement or pressure are conceivable. The mechanism and the rate of gas generation, and the amount of the substances that generate gases in low level radioactive waste are explained. The models for evaluating the generation, accumulation and movement of gases are described. As to the evaluation of gas movement, the conditions for the evaluation, the results of evaluating gas permeation, the sensitivity of various parameters and so on are reported. Also the effects of radioactive gases, the pushing-out of pore water, the explosion of pressure-accumulating gases and the effect to ground-water flow were evaluated. Supposing the gas generation in shallow underground waste repositories, the model for evaluating the behaviors of gases and water in a whole system was made, and the preliminary evaluation was carried out. (K.I.)

  18. Hydro-mechanical properties of the red salt clay (T4) - Natural analogue of a clay barrier

    International Nuclear Information System (INIS)

    Minkley, W.; Popp, T.; Salzer, K.; Gruner, M.; Boettge, V.

    2010-01-01

    transition to the stable conditions is characterized by the change of mineral composition from Montmorillonite to Illite - Chlorite. This process is accompanied with a decrease of swelling pressure to a minimum and the change of mechanical behaviour, i.e. a decrease of plasticity corresponds with increasing rock stiffness. An extensive laboratory programme has been conducted using samples from different locations and focusing on the determination of geomechanical and hydraulic properties. The measured strength and creep data clearly demonstrate the influence of burial depth and temperature on the mechanical properties. The test results delivered a comprehensive basis for the subsequent performed rock mechanical modelling. Permeability was measured in the lab on core samples with gas- and water injection tests, which demonstrated low permeabilities in the order of 10 -19 to 10 -21 m 2 and lower. Because in repositories for radioactive or toxic waste a gas pressure may develop in the long term its potential impact on the integrity of a low permeable clay barrier has to be assessed. A long term field test (duration more than two years) has been performed in ∼ 500 m depth in a salt mine of NW-Germany where the Red Salt Clay is partly exposed. A funnel-shape oriented borehole array was installed consisting of the nearly horizontal central injection borehole (Diam. = 60 mm, sealed using a hydro-mechanical packer system) and four surrounding boreholes. Two of them were used for the detection of gas transport. In addition, in the other two boreholes a micro-seismic monitoring array was installed, each equipped with two seismic sensors. The performed multi-stage pulse tests showed very limited gas pressure decay, thus confirming the low permeability of the clay formation. In addition, although a gas-break occurred as the minimal stress criterion was transgressed, spontaneous self sealing was confirmed resulting in recovery of tightness after the gas pressure decreased. The large

  19. Degradation of m-cresol in aqueous solution by dielectric barrier discharge

    International Nuclear Information System (INIS)

    Jaramillo-Sierra, B; De la Piedad-Benitez, A; Mercado-Cabrera, A; López-Callejas, R; Peña-Eguiluz, R; Barocio, S R; Valencia-Alvarado, R; Rodríguez-Méndez, B; Muñoz-Castro, A

    2012-01-01

    It was carried out a theoretical and experimental study of the m-cresol degradation in aqueous solution using a non-thermal plasma induced by dielectric barrier discharge. For the experimental setup a coaxial reactor vertically placed was used. Wherein a liquid solution flowing inside the internal electrode was impelled by a peristaltic pump and falling over the external surface of the internal electrode. Working gas was applied in a parallel direction respect to the surface of the liquid and inside of the quartz tube. Non-thermal plasma was generated at the gas-liquid interface in Ar-O 2 gas mixtures with a high-voltage power supply system. The electric power applied ranged from 10–60W at a 3.0 kHz frequency. The initial concentration of m-cresol was of 5 × 10 −3 mol/L, and the removal efficiency up to 97.3% was obtained after 1 h of treatment. For the theoretical study a simplified model of the chemical kinetics was developed where the temporary evolution of the compounds generated in the process of degradation of the m-cresol was analyzed. Byproducts as oxalic acid and CO 2 were found.

  20. Tritium permeation characterization of Al{sub 2}O{sub 3}/FeAl coatings as tritium permeation barriers on 321 type stainless steel containers

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Feilong; Xiang, Xin; Lu, Guangda; Zhang, Guikai, E-mail: zhangguikai@caep.cn; Tang, Tao; Shi, Yan; Wang, Xiaolin

    2016-09-15

    Accurate tritium transport properties of prospective tritium permeation barriers (TPBs) are essential to tritium systems in fusion reactors. By passing a temperature and rate-controlled sweeping gas over specimen surfaces to carry the permeated tritium to an ion chamber, the gas-driven permeation of tritium has been performed on 321 type stainless steel containers with Al{sub 2}O{sub 3}/FeAl barriers, to determine the T-permeation resistant performance and mechanism of the barrier. The tritium permeability of the Al{sub 2}O{sub 3}/FeAl coated container was reduced by 3 orders of magnitude at 500–700 °C by contrast with that of the bare one, which meets the requirement of the tritium permeation reduction factor (PRF) of TPBs for tritium operating components in the CN-HCCB TBM. The Al{sub 2}O{sub 3}/FeAl barrier resists the tritium permeation by the diffusion in the bulk substrate at a limited number of defect sites with an effective area and thickness, suggesting that the TPB quality is a very important factor for efficient T-permeation resistance. - Highlights: • T-permeation has been measured on bare and coated type 321 SS containers. • Al{sub 2}O{sub 3}/FeAl coating give a reduction of T-permeability of 3 orders of magnitude. • Mechanism of Al{sub 2}O{sub 3}/FeAl barrier resisting T-permeation has obtained. • Quality of TPB is a very important factor for efficient T-permeating reduction.

  1. Barrier cell sheath formation

    International Nuclear Information System (INIS)

    Kesner, J.

    1980-04-01

    The solution for electrostatic potential within a simply modeled tandem mirror thermal barrier is seen to exhibit a sheath at each edge of the cell. The formation of the sheath requires ion collisionality and the analysis assmes that the collisional trapping rate into the barrier is considerably slower than the barrier pump rate

  2. Performance of a sequential reactive barrier for bioremediation of coal tar contaminated groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Oriol Gibert; Andrew S. Ferguson; Robert M. Kalin; Rory Doherty; Keith W. Dickson; Karen L. McGeough; Jamie Robinson; Russell Thomas [Queen' s University Belfast (United Kingdom). EERC, School of Planning Architecture and Civil Engineering

    2007-10-01

    Following a thorough site investigation, a biological Sequential Reactive Barrier (SEREBAR), designed to remove polycyclic aromatic hydrocarbons (PAHs) and benzene, toluene, ethylbenzene, xylene (BTEX) compounds was installed at a former manufactured gas pPlant (FMGP) site currently used for gas storage and distribution within the UK. The novel design of the barrier comprises, in series, an interceptor and six reactive chambers. The first four chambers (2 nonaerated-2 aerated) were filled with sand to encourage microbial colonization. Sorbant granular activated carbon (GAC) was present in the final two chambers in order to remove any recalcitrant compounds. The SEREBAR has been in continuous operation for 2 years at different operational flow rates (ranging from 320 L/d to 4000 L/d, with corresponding residence times in each chamber of 19 days and 1.5 days, respectively). Under low flow rate conditions (320-520 L/d) the majority of contaminant removal ({gt}93%) occurred biotically within the interceptor and the aerated chambers. Under high flow rates (1000-4000 L/d) and following the installation of a new interceptor to prevent passive aeration, the majority of contaminant removal ({gt}80%) again occurred biotically within the aerated chambers. The sorption zone (GAC) proved to be an effective polishing step, removing any remaining contaminants to acceptable concentrations before discharge down-gradient of the SEREBAR (overall removals {gt}95%). 22 refs., 4 figs., 1 tab.

  3. Analysis of Nova 1 strategy formed by barrier options and its application in hedging against a price drop in oil market

    Directory of Open Access Journals (Sweden)

    Michal Šoltés

    2015-12-01

    Full Text Available This paper investigates hedging analysis against an underlying price drop by using the Nova 1 strategy formed by standard vanilla and barrier options. There are used European down and knock-in put options together with barrier call options. Derived income functions from the secured positions in analytical expressions are presented. Based on the theoretical results, the hedged portfolio is applied to SPDR SandP Oil and Gas Exploration and Production ETF. The proposed hedging variants are analysed and compared with the recommendation of the best possibilities for investors.

  4. Barriers to the future

    Energy Technology Data Exchange (ETDEWEB)

    Massey, C T

    1986-09-01

    Opportunities for the British coal industry seem vast yet there are still barriers to progress. Seven areas are identified and discussed: mining mobility (for example, longwall mining systems are rigid and inflexible compared with American stall and pillar working); mine structure (many mines are more suitable to pit ponies than to large pieces of equipment); financial barriers (Government requires the industry to break even in 1987/88); personnel barriers (less specialization, better use of skills); safety barriers (increased use of remote control, ergonomics and robotics to protect workers); microelectronic management (nationalization has cushioned management from the market place; there is a need for a more multidisciplinary approach to the industry); and legal barriers (most legislation in the past has been in response to accidents; legislation external to the industry but affecting it is more fundamental).

  5. A chromia forming thermal barrier coating system

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, M.P.; Evans, H.E. [Metallurgy and Materials, The University of Birmingham, Birmingham, B15 2TT (United Kingdom); Gray, S.; Nicholls, J.R. [Surface Science and Engineering Centre, Cranfield University, Cranfield, MK43 0AL (United Kingdom)

    2011-07-15

    Conventional thermal barrier coating (TBC) systems consist of an insulating ceramic topcoat, a bond coat for oxidation protection and the underlying superalloy designed to combat the oxidising conditions in aero- and land-based gas turbines. Under high-temperature oxidation, the use of an alumina forming bond coat is warranted, thus all current TBC systems are optimised for the early formation of a dense, protective thermally grown oxide (TGO) of alumina. This also offers protection against Type I hot corrosion but a chromia layer gives better protection against Type II corrosion and intermediate temperatures, the conditions found in land-based gas turbines. In this paper the authors present the first known results for a chromia forming TBC system. Tests have been performed under oxidising conditions, up to 1000 h, at temperatures between 750 C and 900 C, and under Type I (900 C) and Type II (700 C) hot corrosion conditions up to 500 h. Under all these conditions no cracking, spallation or degradation was observed. Examination showed the formation of an adherent, dense chromia TGO at the bond coat / topcoat interface. These initial results are very encouraging and the TGO thicknesses agree well with comparable results reported in the literature. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. International perspective on energy recovery from landfill gas. A joint report of the IEA Bioenergy Programme and the IEA CADDET Renewable Energy Technologies Programme

    International Nuclear Information System (INIS)

    2000-02-01

    This report presents a review of the current status of energy recovery from landfill gas. Utilisation, collection and treatment technologies are examined, and ten case studies of landfill gas utilisation are given. Non-technical issues such as barrier to energy recovery from landfill gas, landfill gas generation, and landfill gas emissions are addressed, and recommendations are outlined. The potential market for landfill gas, and market opportunities are considered. Details of the objectives of the International Energy Agency (IEA), the IEA Bioenergy Programme, and the IEA CADDET Renewable Energy Technologies Programme are included in appendices. (UK)

  7. Pulsed dielectric barrier discharge for Bacillus subtilis inactivation in water

    Science.gov (United States)

    Hernández-Arias, A. N.; Rodríguez-Méndez, B. G.; López-Callejas, R.; Valencia-Alvarado, R.; Mercado-Cabrera, A.; Peña-Eguiluz, R.; Barocio, S. R.; Muñoz-Castro, A. E.; de la Piedad Beneitez, A.

    2012-06-01

    The inactivation of Bacillus subtilis bacteria in water has been experimentally studied by means of a pulsed dielectric barrier discharge (PDBD) in a coaxial reactor endowed with an alumina dielectric. The plasma source is capable of operating at atmospheric pressure with gas, water or hybrid gas-liquid media at adjustable 25 kV pulses, 30 μs long and at a 500 Hz frequency. In order to evaluate the inactivation efficiency of the system, a set of experiments were designed on the basis of oxygen flow control. The initial data have showed a significant bacterial rate reduction of 103-107 CFU/mL. Additional results proved that applying an oxygen flow for a few seconds during the PDBD treatment inactivates the Bacillus subtilis population with 99.99% effectiveness. As a reference, without gas flow but with the same exposure times, this percentage is reduced to ~90%. The analysis of the relationship between inactivation rate and chemical species in the discharge has been carried out using optical emission spectroscopy as to identifying the main reactive species. Reactive oxygen species such as atomic oxygen and ozone tuned out to be the dominant germicidal species. Some proposed inactivation mechanisms of this technique are discussed.

  8. Pulsed dielectric barrier discharge for Bacillus subtilis inactivation in water

    International Nuclear Information System (INIS)

    Hernández-Arias, A N; López-Callejas, R; De la Piedad Beneitez, A; Rodríguez-Méndez, B G; Valencia-Alvarado, R; Mercado-Cabrera, A; Peña-Eguiluz, R; Barocio, S R; Muñoz-Castro, A E

    2012-01-01

    The inactivation of Bacillus subtilis bacteria in water has been experimentally studied by means of a pulsed dielectric barrier discharge (PDBD) in a coaxial reactor endowed with an alumina dielectric. The plasma source is capable of operating at atmospheric pressure with gas, water or hybrid gas-liquid media at adjustable 25 kV pulses, 30 μs long and at a 500 Hz frequency. In order to evaluate the inactivation efficiency of the system, a set of experiments were designed on the basis of oxygen flow control. The initial data have showed a significant bacterial rate reduction of 10 3 -10 7 CFU/mL. Additional results proved that applying an oxygen flow for a few seconds during the PDBD treatment inactivates the Bacillus subtilis population with 99.99% effectiveness. As a reference, without gas flow but with the same exposure times, this percentage is reduced to ∼90%. The analysis of the relationship between inactivation rate and chemical species in the discharge has been carried out using optical emission spectroscopy as to identifying the main reactive species. Reactive oxygen species such as atomic oxygen and ozone tuned out to be the dominant germicidal species. Some proposed inactivation mechanisms of this technique are discussed.

  9. Chemical barriers for controlling groundwater contamination

    International Nuclear Information System (INIS)

    Morrison, S.J.; Spangler, R.R.

    1993-01-01

    Chemical barriers are being explored as a low-cost means of controlling groundwater contamination. The barrier can intercept a contaminant plume and prevent migration by transferring contaminants from the groundwater to immobile solids. A chemical barrier can be emplaced in a landfill liner or in an aquifer cutoff wall or can be injected into a contaminant plume. Chemical barriers can be classified as either precipitation barriers or sorption barriers depending upon the dominant mode of contaminant extraction. In a precipitation barrier, contaminants are bound in the structures of newly formed phases; whereas, in a sorption barrier, contaminants attach to the surfaces of preexisting solids by adsorption or some other surface mechanism. Sorption of contaminants is pH dependent. A precipitation barrier can control the pH of the system, but alkaline groundwater may dominate the pH in a sorption barrier. A comparison is made of the characteristics of precipitation and sorption barriers. Experimental data on the extraction of uranium and molybdenum from simulated groundwater are used to demonstrate these concepts. 10 refs., 9 figs., 1 tab

  10. Barrier mechanisms in the Drosophila blood-brain barrier.

    Science.gov (United States)

    Hindle, Samantha J; Bainton, Roland J

    2014-01-01

    The invertebrate blood-brain barrier (BBB) field is growing at a rapid pace and, in recent years, studies have shown a physiologic and molecular complexity that has begun to rival its vertebrate counterpart. Novel mechanisms of paracellular barrier maintenance through G-protein coupled receptor signaling were the first demonstrations of the complex adaptive mechanisms of barrier physiology. Building upon this work, the integrity of the invertebrate BBB has recently been shown to require coordinated function of all layers of the compound barrier structure, analogous to signaling between the layers of the vertebrate neurovascular unit. These findings strengthen the notion that many BBB mechanisms are conserved between vertebrates and invertebrates, and suggest that novel findings in invertebrate model organisms will have a significant impact on the understanding of vertebrate BBB functions. In this vein, important roles in coordinating localized and systemic signaling to dictate organism development and growth are beginning to show how the BBB can govern whole animal physiologies. This includes novel functions of BBB gap junctions in orchestrating synchronized neuroblast proliferation, and of BBB secreted antagonists of insulin receptor signaling. These advancements and others are pushing the field forward in exciting new directions. In this review, we provide a synopsis of invertebrate BBB anatomy and physiology, with a focus on insights from the past 5 years, and highlight important areas for future study.

  11. Barriers against psychosocial communication: oncologists' perceptions.

    Science.gov (United States)

    Fagerlind, Hanna; Kettis, Åsa; Glimelius, Bengt; Ring, Lena

    2013-10-20

    To explore oncologists' psychosocial attitudes and beliefs and their perceptions regarding barriers against psychosocial communication. A questionnaire was distributed to oncologists in Sweden (n = 537). Questions covered demography, the Physician Psychosocial Beliefs Scale (PPBS), and barriers against psychosocial communication. Stepwise multiple regression was used to determine what factors contribute the most to the PPBS score and the total number of barriers and barriers affecting clinical practice, respectively. Spearman rank-order correlation was used to determine correlation between PPBS score and number of barriers. Questionnaire response rate was 64%. Mean PPBS value was 85.5 (range, 49 to 123; SD, 13.0). Most oncologists (93%) perceived one or more barriers in communicating psychosocial aspects with patients. On average, five different communication barriers were perceived, of which most were perceived to affect clinical practice. These barriers included insufficient consultation time, lack of resources for taking care of problems discovered, and lack of methods to evaluate patients' psychosocial health in clinical practice. There was a positive correlation (rs = 0.490; P barriers (ie, less psychosocially oriented oncologists perceived more barriers). Oncologists with supplementary education with a psychosocial focus perceived fewer barriers/barriers affecting clinical practice (P barriers affecting psychosocial communication in clinical practice. Interventions aiming to improve psychosocial communication must therefore be multifaceted and individualized to clinics and individual oncologists. It is important to minimize barriers to facilitate optimal care and treatment of patients with cancer.

  12. Testing and analyses of a high temperature duct for gas-cooled reactors

    International Nuclear Information System (INIS)

    Black, W.E.; Roberge, A.; Felten, P.; Bastien, R.

    1979-01-01

    A 0.6 scale model of a steam cycle gas-cooled reactor high temperature duct was tested in a closed loop helium facility. The object of the test series was to determine: 1) the thermal effects of gas permeation within the thermal barrier, 2) the plastic deformation of the metallic components, and 3) the thermal performance of the fibrous insulation. A series of tests was performed with thermal cyclings from 100 0 C to 760 0 C at 50 atmospheres until the system thermal performance had stabilized hence enabling predictions for the reactor life. Additional tests were made to assess permeation by deliberately simulating sealing weld failures thereby allowing gas flow by-pass within the primary thermal barrier. After 100 cycles the entire primary structure was found to have performed without structural failure. Due to high pressures exerted by the insulation on the cover plates and a design oversight, the thin seal sheets were unable to expand in an anticipated manner. Local buckling resulted. Pre and post test metallurgical analyses were conducted on the Hastelloy-X structures and reference specimens. The results gave evidence of aging in the form of noticeable changes in room temperature tensile and reduction in area parameters. The Hastelloy-X welds exhibited greater changes in properties due to thermal aging. The antifriction coating (Cr 3 C 2 ) performed well without spallation or excessive wear. (orig.)

  13. Alternative Liquid Fuel Effects on Cooled Silicon Nitride Marine Gas Turbine Airfoils

    Energy Technology Data Exchange (ETDEWEB)

    Holowczak, J.

    2002-03-01

    With prior support from the Office of Naval Research, DARPA, and U.S. Department of Energy, United Technologies is developing and engine environment testing what we believe to be the first internally cooled silicon nitride ceramic turbine vane in the United States. The vanes are being developed for the FT8, an aeroderivative stationary/marine gas turbine. The current effort resulted in further manufacturing and development and prototyping by two U.S. based gas turbine grade silicon nitride component manufacturers, preliminary development of both alumina, and YTRIA based environmental barrier coatings (EBC's) and testing or ceramic vanes with an EBC coating.

  14. Barriers to improvements in energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, A.K.N.

    1991-10-01

    To promote energy-efficiency improvements, actions may be required at one or more levels -- from the lowest level of the consumer (residential, commercial, industrial, etc.) through the highest level of the global agencies. But barriers to the implementation of energy-efficiency improvements exist or can arise at all these levels. Taking up each one of these barriers in turn, the paper discusses specific measures that can contribute to overcoming the barriers. However, a one-barrier-one-measure approach must be avoided. Single barriers may in fact involve several sub-barriers. Also, combinations of measures are much more effective in overcoming barriers. In particular, combinations of measures that simultaneously overcome several barriers are most successful. The paper discusses the typology of barriers, explores their origin and suggests measures that by themselves or in combination with other measures, will overcome these barriers. Since most of the barriers dealt with can be found in the barriers'' literature, any originality in the paper lies in its systematic organization, synoptic view and holistic treatment of this issue. This paper is intended to initiate a comprehensive treatment of barriers, their origins and the measures that contribute to overcoming them. Hopefully, such a treatment will facilitate the implementation of energy-efficiency improvements involving a wide diversity of ever-changing energy end uses and consumer preferences.

  15. Barriers to improvements in energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, A.K.N.

    1991-10-01

    To promote energy-efficiency improvements, actions may be required at one or more levels -- from the lowest level of the consumer (residential, commercial, industrial, etc.) through the highest level of the global agencies. But barriers to the implementation of energy-efficiency improvements exist or can arise at all these levels. Taking up each one of these barriers in turn, the paper discusses specific measures that can contribute to overcoming the barriers. However, a one-barrier-one-measure approach must be avoided. Single barriers may in fact involve several sub-barriers. Also, combinations of measures are much more effective in overcoming barriers. In particular, combinations of measures that simultaneously overcome several barriers are most successful. The paper discusses the typology of barriers, explores their origin and suggests measures that by themselves or in combination with other measures, will overcome these barriers. Since most of the barriers dealt with can be found in the ``barriers`` literature, any originality in the paper lies in its systematic organization, synoptic view and holistic treatment of this issue. This paper is intended to initiate a comprehensive treatment of barriers, their origins and the measures that contribute to overcoming them. Hopefully, such a treatment will facilitate the implementation of energy-efficiency improvements involving a wide diversity of ever-changing energy end uses and consumer preferences.

  16. Economic analysis of the vertical structure of the European gas network

    International Nuclear Information System (INIS)

    Baranes, E.; Mirabel, F.; Poudou, J-C.

    2003-01-01

    The report prepared for the European Commission on the initial results of the competitive natural gas market, which opened in August 2000, identified various technical and organizational problems. The report highlighted the preponderant place occupied by historical natural gas suppliers in the market place and the barriers they have constructed in their former exclusively held territories, with the obvious intention of limiting the entry of new suppliers into the market. The authors conclude that to avoid such competition-limiting behaviour, it will be necessary to limit the power of the existing supply firms. To lay the foundation for a series of recommendations the authors first examine the positions occupied by the various actors in the gas supply chain, followed by a review of the principal factors affecting the European natural gas market, paying special attention to existing regulations. Based on the literature on vertical integration of markets, the final section makes certain proposals concerning the separation of the gas production and distribution functions and the resulting behaviour of the various actors in terms of their respective positions along the natural gas supply chain. Recommendations are also made regarding possible future directions in market regulations. 25 refs., 1 tab. figs

  17. First time evidence of pronounced plateaus right above the Coulomb barrier in 8Li + 4He fusion

    Directory of Open Access Journals (Sweden)

    A. Del Zoppo

    2016-02-01

    Full Text Available We investigate unprecedented experimental information on the fusion reaction induced by the radioactive projectile 8Li on a 4He gas target, at center-of-mass energies between 0.6 and 5 MeV. The main issue is the tendency of the dimensionless fusion cross section σfπƛ2 to form well visible plateaus alternated to steep rises. This finding is likely to be the most genuine consequence of the discrete nature of the intervening angular momenta observed so far in fusion reactions right above the Coulomb barrier. A partial-wave analysis, exclusively based on a pure quantal penetration fusion model and sensitive to the interaction potential, identifies a remarkably low-height barrier.

  18. Novel Prospects for Plasma Spray-Physical Vapor Deposition of Columnar Thermal Barrier Coatings

    Science.gov (United States)

    Anwaar, Aleem; Wei, Lianglinag; Guo, Qian; Zhang, Baopeng; Guo, Hongbo

    2017-12-01

    Plasma spray-physical vapor deposition (PS-PVD) is an emerging coating technique that can produce columnar thermal barrier coatings from vapor phase. Feedstock treatment at the start of its trajectory in the plasma torch nozzle is important for such vapor-phase deposition. This study describes the effects of the plasma composition (Ar/He) on the plasma characteristics, plasma-particle interaction, and particle dynamics at different points spatially distributed inside the plasma torch nozzle. The results of calculations show that increasing the fraction of argon in the plasma gas mixture enhances the momentum and heat flow between the plasma and injected feedstock. For the plasma gas combination of 45Ar/45He, the total enthalpy transferred to a representative powder particle inside the plasma torch nozzle is highest ( 9828 kJ/kg). Moreover, due to the properties of the plasma, the contribution of the cylindrical throat, i.e., from the feed injection point (FIP) to the start of divergence (SOD), to the total transferred energy is 69%. The carrier gas flow for different plasma gas mixtures was also investigated by optical emission spectroscopy (OES) measurements of zirconium emissions. Yttria-stabilized zirconia (YSZ) coating microstructures were produced when using selected plasma gas compositions and corresponding carrier gas flows; structural morphologies were found to be in good agreement with OES and theoretical predictions. Quasicolumnar microstructure was obtained with porosity of 15% when applying the plasma composition of 45Ar/45He.

  19. The blood-tendon barrier: identification and characterisation of a novel tissue barrier in tendon blood vessels

    Directory of Open Access Journals (Sweden)

    C Lehner

    2016-05-01

    Full Text Available Tissue barriers function as “gate keepers” between different compartments (usually blood and tissue and are formed by specialised membrane-associated proteins, localising to the apicolateral plasma membrane domain of epithelial and endothelial cells. By sealing the paracellular space, the free diffusion of solutes and molecules across epithelia and endothelia is impeded. Thereby, tissue barriers contribute to the establishment and maintenance of a distinct internal and external environment, which is crucial during organ development and allows maintenance of an organ-specific homeostatic milieu. So far, various epithelial and endothelial tissue barriers have been described, including the blood-brain barrier, the blood-retina barrier, the blood-testis barrier, the blood-placenta barrier, and the cerebrospinal fluid (CSF-brain barrier, which are vital for physiological function and any disturbance of these barriers can result in severe organ damage or even death. Here, we describe the identification of a novel barrier, located in the vascular bed of tendons, which we term the blood-tendon barrier (BTB. By using immunohistochemistry, transmission electron microscopy, and tracer studies we demonstrate the presence of a functional endothelial barrier within tendons restricting the passage of large blood-borne molecules into the surrounding tendon tissue. We further provide in vitro evidence that the BTB potentially contributes to the creation of a distinct internal tissue environment impacting upon the proliferation and differentiation of tendon-resident cells, effects which might be fundamental for the onset of tendon pathologies.

  20. Government chartered banks step up oil and gas lending

    International Nuclear Information System (INIS)

    Crow, P.

    1994-01-01

    International government chartered banks are playing an increasingly prominent role in lending for world oil and gas development projects. The main players are the World Bank's International Finance Corp. (IFC), European Bank for Reconstruction and Development (EBRD), US Export-Import Bank, and Overseas Private Investment Corp. (OPIC). Those institutions and similar ones are the catalysts for a large number of projects in the former Soviet Union (FSU) and in other nations that are seeking to develop oil and gas resources and build processing plants, pipelines, and distribution networks. Banks also are taking a greater degree of interest in the environmental aspects of projects. In country after country, especially in the developing world, barriers to foreign investment in domestic petroleum sectors are falling. Oil and gas law reforms are under way on each continent. The paper discusses the major players, the World Bank grouped, the Romanian example, the Ex-Im Bank, OPIC, the emphasis on FSU, environmental issues, and new sources of capital in developing countries

  1. Creep Behavior of Hafnia and Ytterbium Silicate Environmental Barrier Coating Systems on SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming; Fox, Dennis S.; Ghosn, Louis J.; Harder, Bryan

    2011-01-01

    Environmental barrier coatings will play a crucial role in future advanced gas turbine engines because of their ability to significantly extend the temperature capability and stability of SiC/SiC ceramic matrix composite (CMC) engine components, thus improving the engine performance. In order to develop high performance, robust coating systems for engine components, appropriate test approaches simulating operating temperature gradient and stress environments for evaluating the critical coating properties must be established. In this paper, thermal gradient mechanical testing approaches for evaluating creep and fatigue behavior of environmental barrier coated SiC/SiC CMC systems will be described. The creep and fatigue behavior of Hafnia and ytterbium silicate environmental barrier coatings on SiC/SiC CMC systems will be reported in simulated environmental exposure conditions. The coating failure mechanisms will also be discussed under the heat flux and stress conditions.

  2. Thermal barrier coatings: Coating methods, performance, and heat engine applications. (Latest citations from the EI Compendex*plus database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    The bibliography contains citations concerning conference proceedings on coating methods, performance evaluations, and applications of thermal barrier coatings as protective coatings for heat engine components against high temperature corrosions and chemical erosions. The developments of thermal barrier coating techniques for high performance and reliable gas turbines, diesel engines, jet engines, and internal combustion engines are presented. Topics include plasma sprayed coating methods, yttria stabilized zirconia coatings, coating life models, coating failure and durability, thermal shock and cycling, and acoustic emission analysis of coatings. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  3. Thermal barrier coatings: Coating methods, performance, and heat engine applications. (Latest citations from the EI Compendex*plus database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The bibliography contains citations concerning conference proceedings on coating methods, performance evaluations, and applications of thermal barrier coatings as protective coatings for heat engine components against high temperature corrosions and chemical erosions. The developments of thermal barrier coating techniques for high performance and reliable gas turbines, diesel engines, jet engines, and internal combustion engines are presented. Topics include plasma sprayed coating methods, yttria stabilized zirconia coatings, coating life models, coating failure and durability, thermal shock and cycling, and acoustic emission analysis of coatings. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  4. The natural gas and the possibilities of use in Rio de Janeiro State

    International Nuclear Information System (INIS)

    Carvalho, A.G.F. de; Almeida Luercio, C. de

    1990-01-01

    Although the Rio de Janeiro State owns one of Brazilian most important natural gas reserves and is responsible for 40% of country's natural gas production, the option to increase the utilization of this form of energy, in Rio, has been unexpectedly delayed. The warning that soon there will be a lack of electric power has already been given, and Rio's industrial activity, which has been growing above national average, may suffer irretrievable damages from this scarcity. Brazil is not self-sufficient as regards PLG yet, this fuel is heavily subsidized which thwarts competition in the residential market, with presently existing systems for distributing piped gas. It becomes necessary to remove barriers for obtaining resources and for incorporating PETROBRAS parallel distribution system into the State system, thus supplying the conditions for accelerating large scale use of natural gas in Rio de Janeiro. (author)

  5. Insurance issues and natural gas vehicles. Final report, January 1992

    International Nuclear Information System (INIS)

    Squadron, W.F.; Ward, C.O.; Brown, M.H.

    1992-01-01

    GRI has been funding research on natural gas vehicle (NGV) technology since 1986. To support the activity, GRI is evaluating a number of NGV issues including fuel storage, tank inspection, system safety, refueling, U.S. auto and truck use characteristics, and the fleet vehicle infrastructure. In addition, insurance and leasing companies will require new regulations and policies to address clean-fueled vehicle fleets' emergence into the marketplace. These policies may influence and partially determine the structure of the alternatively fueled vehicle industry, and the requirements, if any, imposed upon vehicle technologies. The report asseses the insurance and leasing industries' infrastructure/institutional barriers as they relate to the introduction of natural gas fueled vehicle fleets

  6. Measurements and Simulations of Surface Dielectric Barrier Discharges Used as Plasma Actuators

    Science.gov (United States)

    Hoskinson, Alan R.

    2012-01-01

    This report is a Ph.D. dissertation performed under NRA cooperative agreement and submitted as part of the final report. Asymmetric surface dielectric barrier discharges (DBDs) have shown promise for use as aerodynamic actuators for active flow control. In this project we studied DBD actuators experimentally and numerically. Our DBDs used a symmetric triangular high voltage waveform to generate plasma in atmospheric pressure air. Time-averaged measurements indicated that the induced force of a single barrier actuator design (one electrode insulated from the plasma) can be increased exponentially above the results of previous studies by decreasing both the length and thickness of the electrode exposed to the plasma. This increased force may allow these devices to control flow separation in a wider range of flow environments. Experiments using an intensified digital camera to examine the plasma on time scales of a few nanoseconds showed that, in addition to the previously-observed filamentary and jet-like plasma structures, discharges with very thin exposed electrodes exhibited a weak but constant plasma immediately adjacent to those electrodes. In double-barrier actuators (both electrodes insulated), decreasing the diameter of the narrower electrode lead to increasing forces, and recorded images showed the simultaneous existence of both filamentary and jet-like plasma structures. The development and application of a time-dependent, two-dimensional computational fluid plasma model has aided in understanding the detailed physics of surface DBDs at all-time scales. For simulated single-barrier discharges, the model qualitatively reproduced the filamentary and jet-like micro-discharge structures. The model was somewhat successful in reproducing the observed characteristics of double-barrier actuators. For both actuator geometries, the model indicated that the majority of the forces induced on the neutral gas occur in between micro-discharges as the plasmas decay.

  7. Decoupling of bilayer leaflets under gas supersaturation: nitrogen nanobubbles in a membrane and their implication in decompression sickness

    Science.gov (United States)

    Li, Jing; Zhang, Xianren; Cao, Dapeng

    2018-05-01

    Decompression sickness (also known as diver’s sickness) is a disease that arises from the formation of a bubble inside the body caused by rapid decompression from high atmospheric pressures. However, the nature of pre-existing micronuclei that are proposed for interpreting the formation and growth of the bubble, as well as their very existence, is still highly controversial. In this work, atomistic molecular dynamics simulations are employed to investigate the nucleation of gas bubbles under the condition of nitrogen supersaturation, in the presence of a lipid bilayer and lipid micelle representing other macromolecules with a smaller hydrophobic region. Our simulation results demonstrate that by crossing a small energy barrier, excess nitrogen molecules can enter the lipid bilayer nearly spontaneously, for which the hydrophobic core serves as a potential well for gas enrichment. At a rather low nitrogen supersaturation, gas molecules in the membrane are dispersed in the hydrophobic region of the bilayer, with a slight increase in membrane thickness. But as the level of gas supersaturation reaches a threshold, the accumulation of N2 molecules in the bilayer center causes the two leaflets to be decoupled and the formation of nanobubbles. Therefore, we propose a nucleation mechanism for bubble formation in a supersaturated solution of inert gas: a cell membrane acts as a potential well for gas enrichment, being an ideal location for forming nanobubbles that induce membrane damage at a high level of gas supersaturation. As opposed to previous models, the new mechanism involves forming gas nuclei in a very low-tension hydrophobic environment, and thus a rather low energy barrier is required and pre-existing bubble micronuclei are not needed.

  8. Experimental and computational study of dielectric barrier discharges for environmental applications

    Science.gov (United States)

    Aerts, Robby

    Air pollution has become a major global concern which affects all inhabitants of our precious earth. Nowadays it is fact that our climate is changing and the sea level is rising. Moreover, we are facing an energy crisis because all our fossil fuel resources will sooner or later be running empty. It is clear that drastic measures are needed to keep our planet as it is today for generations to come. One of these measures is the 20-20-20 targets imposed by the European Commission, which stimulates the research for environmental energy applications. In this PhD dissertation two environmental applications of plasma technology are investigated. The first one is the abatement of flue gases, and more specifically the destruction of volatile organic compounds (VOCs). The second one is the conversion of CO2 into valuable chemicals. Both of these applications suffer from a large energy cost under classical (thermodynamic) conditions, due to the chemical stability of these molecules. Plasma technology is quite promising to overcome these thermodynamic barriers. Plasmas allow reactions at different time-scales with different species, such as electrons, ions, radicals, molecules and excited species, creating new chemical pathways. Indeed, in a plasma the applied electrical energy is directly transferred to the electrons, which activate the gas by ionization, excitation and dissociation, hence creating reactive species (ions, excited species, radicals), that can further easily undergo other chemical reactions. Especially gas discharges, which are low temperature plasmas, show promising results in the destruction of pollutants at mild conditions. A common type of gas discharge is the dielectric barrier discharge (DBD) which has been successfully scaled up for industrial ozone generation and is widely investigated in the field of environmental applications. The complexity of DBDs creates difficulties for experimental diagnostics and therefore numerical studies can help to improve

  9. Influence of Duty Cycle on Ozone Generation and Discharge Using Volume Dielectric Barrier Discharge

    Czech Academy of Sciences Publication Activity Database

    Wei, L.S.; Pongrác, Branislav; Zhang, Y.F.; Liang, X.; Prukner, Václav; Šimek, Milan

    2018-01-01

    Roč. 38, č. 2 (2018), s. 355-364 ISSN 0272-4324 R&D Projects: GA ČR(CZ) GA15-04023S Institutional support: RVO:61389021 Keywords : Ozone generation * Volume dielectric barrier discharge * Electrical characteristics * Duty cycle * Adjustable ozone concentration Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.355, year: 2016 https://link.springer.com/article/10.1007%2Fs11090-017-9866-y

  10. Atmospheric pressure dielectric barrier discharges for sterilization and surface treatment

    Energy Technology Data Exchange (ETDEWEB)

    Chin, O. H.; Lai, C. K.; Choo, C. Y.; Wong, C. S.; Nor, R. M. [Plasma Technology Research Centre, Physics Department, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Thong, K. L. [Microbiology Division, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-04-24

    Atmospheric pressure non-thermal dielectric barrier discharges can be generated in different configurations for different applications. For sterilization, a parallel-plate electrode configuration with glass dielectric that discharges in air was used. Gram-negative bacteria (Escherichia coli and Salmonella enteritidis) and Gram-positive bacteria (Bacillus cereus) were successfully inactivated using sinusoidal high voltage of ∼15 kVp-p at 8.5 kHz. In the surface treatment, a hemisphere and disc electrode arrangement that allowed a plasma jet to be extruded under controlled nitrogen gas flow (at 9.2 kHz, 20 kVp-p) was applied to enhance the wettability of PET (Mylar) film.

  11. A SIMULATION MODEL OF THE GAS COMPLEX

    Directory of Open Access Journals (Sweden)

    Sokolova G. E.

    2016-06-01

    Full Text Available The article considers the dynamics of gas production in Russia, the structure of sales in the different market segments, as well as comparative dynamics of selling prices on these segments. Problems of approach to the creation of the gas complex using a simulation model, allowing to estimate efficiency of the project and determine the stability region of the obtained solutions. In the presented model takes into account the unit repayment of the loan, allowing with the first year of simulation to determine the possibility of repayment of the loan. The model object is a group of gas fields, which is determined by the minimum flow rate above which the project is cost-effective. In determining the minimum source flow rate for the norm of discount is taken as a generalized weighted average percentage on debt and equity taking into account risk premiums. He also serves as the lower barrier to internal rate of return below which the project is rejected as ineffective. Analysis of the dynamics and methods of expert evaluation allow to determine the intervals of variation of the simulated parameters, such as the price of gas and the exit gas complex at projected capacity. Calculated using the Monte Carlo method, for each random realization of the model simulated values of parameters allow to obtain a set of optimal for each realization of values minimum yield of wells, and also allows to determine the stability region of the solution.

  12. Radio frequency plasma power dependence of the moisture permeation barrier characteristics of Al2O3 films deposited by remote plasma atomic layer deposition

    International Nuclear Information System (INIS)

    Jung, Hyunsoo; Choi, Hagyoung; Lee, Sanghun; Jeon, Heeyoung; Jeon, Hyeongtag

    2013-01-01

    In the present study, we investigated the gas and moisture permeation barrier properties of Al 2 O 3 films deposited on polyethersulfone films (PES) by capacitively coupled plasma (CCP) type Remote Plasma Atomic Layer Deposition (RPALD) at Radio Frequency (RF) plasma powers ranging from 100 W to 400 W in 100 W increments using Trimethylaluminum [TMA, Al(CH 3 ) 3 ] as the Al source and O 2 plasma as the reactant. To study the gas and moisture permeation barrier properties of 100-nm-thick Al 2 O 3 at various plasma powers, the Water Vapor Transmission Rate (WVTR) was measured using an electrical Ca degradation test. WVTR decreased as plasma power increased with WVTR values for 400 W and 100 W of 2.6 × 10 −4 gm −2 day −1 and 1.2 × 10 −3 gm −2 day −1 , respectively. The trends for life time, Al-O and O-H bond, density, and stoichiometry were similar to that of WVTR with improvement associated with increasing plasma power. Further, among plasma power ranging from 100 W to 400 W, the highest power of 400 W resulted in the best moisture permeation barrier properties. This result was attributed to differences in volume and amount of ion and radical fluxes, to join the ALD process, generated by O 2 plasma as the plasma power changed during ALD process, which was determined using a plasma diagnosis technique called the Floating Harmonic Method (FHM). Plasma diagnosis by FHM revealed an increase in ion flux with increasing plasma power. With respect to the ALD process, our results indicated that higher plasma power generated increased ion and radical flux compared with lower plasma power. Thus, a higher plasma power provides the best gas and moisture permeation barrier properties

  13. Transport barriers in plasmas

    International Nuclear Information System (INIS)

    Caldas, I L; Szezech, J D Jr; Kroetz, T; Marcus, F A; Roberto, M; Viana, R L; Lopes, S R

    2012-01-01

    We discuss the creation of transport barriers in magnetically confined plasmas with non monotonic equilibrium radial profiles. These barriers reduce the transport in the shearless region (i.e., where the twist condition does not hold). For the chaotic motion of particles in an equilibrium electric field with a nonmonotonic radial profile, perturbed by electrostatic waves, we show that a nontwist transport barrier can be created in the plasma by modifying the electric field radial profile. We also show non twist barriers in chaotic magnetic field line transport in the plasma near to the tokamak wall with resonant modes due to electric currents in external coils.

  14. Energy (in)security in Poland the case of shale gas

    International Nuclear Information System (INIS)

    Johnson, Corey; Boersma, Tim

    2013-01-01

    The large scale extraction of natural gas from shale rock layers in North America using hydraulic fracturing, or “fracking”, has prompted geologists, economists and politicians in various parts of the world to ask whether there are new reserves of this precious resource to be found under their soils. It has also raised a host of questions about the potential environmental impacts of extracting it. Drawing on research on both sides of the Atlantic, this paper assesses the most pressing issues for research and policy makers related to shale gas extraction. The paper first provides a survey of environmental and economic issues related to shale gas. It then turns to a case study of Poland, whose policy makers have been among the most fervent proponents of shale gas development in the European Union. We examine the status of shale gas extraction in that country and what the barriers are to overcome before commercial extraction can in fact take place, if at all. - Highlights: ► We examine geologic, economic, environmental and political issues of shale gas. ► Poland is used to assess prospects for shale gas development in Europe. ► Debate in Poland has largely been framed as an energy security issue. ► A number of significant hurdles may prevent large scale development there.

  15. Maximizing competition : reducing barriers for new players

    International Nuclear Information System (INIS)

    Chandler, H.; Cramer, D.; McLeese, R.; Singer, J.

    2003-01-01

    This session included highlights from four guest speakers who commented on ways to reduce barriers to competition in Ontario's electric power industry. Topics of discussion included intertie transaction failures, the lack of overall investment in the market, the government's inaction which is preventing investment, the continued underwriting of Ontario Power Generation's activities by the government which discourages investment in the private sector, and indecisiveness regarding policy on coal plants. It was emphasized that investors need to know for certain that they can get a reasonable rate of return on their investments, that the market will be transparent and there will be no shift in policy. The need to promote new, efficient power generation by means of nuclear, coal, natural gas, and hydro energy was also emphasized. Charts depicting total energy production by source were presented for 2001 with projections to 2012. figs

  16. Propagation of atmospheric pressure helium plasma jet into ambient air at laminar gas flow

    International Nuclear Information System (INIS)

    Pinchuk, M; Kurakina, N; Spodobin, V; Stepanova, O

    2017-01-01

    The formation of an atmospheric pressure plasma jet (APPJ) in a gas flow passing through the discharge gap depends on both gas-dynamic properties and electrophysical parameters of the plasma jet generator. The paper presents the results of experimental and numerical study of the propagation of the APPJ in a laminar flow of helium. A dielectric-barrier discharge (DBD) generated inside a quartz tube equipped with a coaxial electrode system, which provided gas passing through it, served as a plasma source. The transition of the laminar regime of gas flow into turbulent one was controlled by the photography of a formed plasma jet. The corresponding gas outlet velocity and Reynolds numbers were revealed experimentally and were used to simulate gas dynamics with OpenFOAM software. The data of the numerical simulation suggest that the length of plasma jet at the unvarying electrophysical parameters of DBD strongly depends on the mole fraction of ambient air in a helium flow, which is established along the direction of gas flow. (paper)

  17. FEBEX. Investigations on gas generation, release and migration

    International Nuclear Information System (INIS)

    Jockwer, Norbert; Wieczorek, Klaus

    2008-06-01

    The FEBEX project is based on the Spanish reference concept for the disposal of radioactive waste in crystalline rock, which considers the emplacement of the canisters enclosing the conditioned waste surrounded by clay barriers constructed of high-compacted bentonite blocks in horizontal drifts /ENR 957. The whole project consisted of an experimental and a modelling part. The experimental part itself was divided into the in-situ test, a mock-up test performed at the CIEMAT laboratory, and various small-scale laboratory tests. In the modelling part it was expected to develop and validate the thermo-hydro-mechanical (THM) and the thermo-hydro-chemical (THC) processes for the performance assessment of the near-field behaviour. GRS was only involved in the in-situ test and some additional laboratory work with regard to gas generation, gas migration, and pore pressure build-up in the buffer constructed of high-compacted bentonite blocks around the electrical heaters simulating the waste containers. The following topics are covered: installation and dismantling of the heater pipes; methods of gas generation and release measurement, summary of results and discussion

  18. Advanced oxidation technology for H2S odor gas using non-thermal plasma

    Science.gov (United States)

    Tao, ZHU; Ruonan, WANG; Wenjing, BIAN; Yang, CHEN; Weidong, JING

    2018-05-01

    Non-thermal plasma technology is a new type of odor treatment processing. We deal with H2S from waste gas emission using non-thermal plasma generated by dielectric barrier discharge. On the basis of two criteria, removal efficiency and absolute removal amount, we deeply investigate the changes in electrical parameters and process parameters, and the reaction process of the influence of ozone on H2S gas removal. The experimental results show that H2S removal efficiency is proportional to the voltage, frequency, power, residence time and energy efficiency, while it is inversely proportional to the initial concentration of H2S gas, and ozone concentration. This study lays the foundations of non-thermal plasma technology for further commercial application.

  19. Potential Energy Curves and Associated Line Shape of Alkali-Metal and Noble-Gas Interactions

    Science.gov (United States)

    2014-10-20

    work. The ab initio calculations for M + Ng molecular combina- tions are reported and discussed in Chapter 3. Chapter 4 discusses both pedagogical ...mass of the noble-gas atom decreases. These barriers at R = rb are accompanied by shallow wells at R = rmin2 and, together with the shallow wells

  20. Saturated Resin Ectopic Regeneration by Non-Thermal Dielectric Barrier Discharge Plasma

    Directory of Open Access Journals (Sweden)

    Chunjing Hao

    2017-11-01

    Full Text Available Textile dyes are some of the most refractory organic compounds in the environment due to their complex and various structure. An integrated resin adsorption/Dielectric Barrier Discharge (DBD plasma regeneration was proposed to treat the indigo carmine solution. It is the first time to report ectopic regeneration of the saturated resins by non-thermal Dielectric Barrier Discharge. The adsorption/desorption efficiency, surface functional groups, structural properties, regeneration efficiency, and the intermediate products between gas and liquid phase before and after treatment were investigated. The results showed that DBD plasma could maintain the efficient adsorption performance of resins while degrading the indigo carmine adsorbed by resins. The degradation rate of indigo carmine reached 88% and the regeneration efficiency (RE can be maintained above 85% after multi-successive regeneration cycles. The indigo carmine contaminants were decomposed by a variety of reactive radicals leading to fracture of exocyclic C=C bond, which could cause decoloration of dye solution. Based on above results, a possible degradation pathway for the indigo carmine by resin adsorption/DBD plasma treatment was proposed.

  1. Influence of a BGaN back-barrier on DC and dynamic performances of an AlGaN/GaN HEMT: simulation study

    Science.gov (United States)

    Guenineche, Lotfi; Hamdoune, Abdelkader

    2016-05-01

    In this paper, we study the effect of a BGaN back-barrier on the DC and RF performances of an AlGaN/GaN high electron mobility transistor. Using TCAD Silvaco, we examine some variations of thickness and boron concentration in the BGaN back-barrier layer. First, we fix the thickness of the back-barrier layer at 5 nm and we vary the concentration of the boron in BGaN from 1% to 4%. Second, we fix the concentration of the boron in BGaN to only 2% and we vary the thickness of the back-barrier layer from 20 nm to 110 nm. The BGaN back-barrier layer creates an electrostatic barrier under the channel layer and improves the performances of the device by improving the electron confinement in the two-dimensional electron gas. The DC and AC characteristics are improved, respectively, by a greater concentration of boron and by a thicker BGaN layer. For 4% boron concentration and 5 nm thick back-barrier layer, we obtain a maximum drain current of 1.1 A, a maximum transconductance of 480 mS mm-1, a cut-off frequency of 119 GHz, and a maximum oscillation frequency of 311 GHz.

  2. Industry sector analysis, Mexico: Oil and gas field machinery and equipment. Export Trade Information

    International Nuclear Information System (INIS)

    1990-04-01

    The Industry Sector Analyses (I.S.A.) for oil and gas field machinery and equipment contains statistical and narrative information on projected market demand, end-users, receptivity of Mexican consumers to U.S. products, the competitive situation - Mexican production, total import market, U.S. market position, foreign competition, and competitive factors, and market access - Mexican tariffs, non-tariff barriers, standards, taxes and distribution channels. The I.S.A. provides the United States industry with meaningful information regarding the Mexican market for oil and gas field machinery and equipment

  3. Air extraction in gas turbines burning coal-derived gas

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Tah-teh; Agrawal, A.K.; Kapat, J.S.

    1993-11-01

    In the first phase of this contracted research, a comprehensive investigation was performed. Principally, the effort was directed to identify the technical barriers which might exist in integrating the air-blown coal gasification process with a hot gas cleanup scheme and the state-of-the-art, US made, heavy-frame gas turbine. The guiding rule of the integration is to keep the compressor and the expander unchanged if possible. Because of the low-heat content of coal gas and of the need to accommodate air extraction, the combustor and perhaps, the flow region between the compressor exit and the expander inlet might need to be modified. In selecting a compressed air extraction scheme, one must consider how the scheme affects the air supply to the hot section of the turbine and the total pressure loss in the flow region. Air extraction must preserve effective cooling of the hot components, such as the transition pieces. It must also ensure proper air/fuel mixing in the combustor, hence the combustor exit pattern factor. The overall thermal efficiency of the power plant can be increased by minimizing the total pressure loss in the diffusers associated with the air extraction. Therefore, a study of airflow in the pre- and dump-diffusers with and without air extraction would provide information crucial to attaining high-thermal efficiency and to preventing hot spots. The research group at Clemson University suggested using a Griffith diffuser for the prediffuser and extracting air from the diffuser inlet. The present research establishes that the analytically identified problems in the impingement cooling flow are factual. This phase of the contracted research substantiates experimentally the advantage of using the Griffith diffuser with air extraction at the diffuser inlet.

  4. Devices for overcoming biological barriers: the use of physical forces to disrupt the barriers.

    Science.gov (United States)

    Mitragotri, Samir

    2013-01-01

    Overcoming biological barriers including skin, mucosal membranes, blood brain barrier as well as cell and nuclear membrane constitutes a key hurdle in the field of drug delivery. While these barriers serve the natural protective function in the body, they limit delivery of drugs into the body. A variety of methods have been developed to overcome these barriers including formulations, targeting peptides and device-based technologies. This review focuses on the use of physical methods including acoustic devices, electric devices, high-pressure devices, microneedles and optical devices for disrupting various barriers in the body including skin and other membranes. A summary of the working principles of these devices and their ability to enhance drug delivery is presented. Copyright © 2012. Published by Elsevier B.V.

  5. The oil and gas equipment and services market in Bolivia

    International Nuclear Information System (INIS)

    2003-01-01

    The economy of Bolivia is based mainly on agriculture and resource extraction, making Bolivia one of the poorest countries in Latin America. Approximately 14 per cent of exports are hydrocarbons. Starting in 1996, the oil and gas sector was privatised, resulting in the domination of multinational corporations. It is estimated that the natural gas reserves of Bolivia stand in excess of 2.2 trillion cubic metres. Equipment, materials, and services used in all stages of the oil and gas production and distribution chain are all in demand in Bolivia. Over the medium term, it is expected that pipelines and equipment required for gas-fired power plants represent the most important opportunity in the country. Incentives for vehicle and industrial conversion were included in the new domestic energy plan, as well as the extension of the domestic gas distribution system to 250,000 homes. Canadian geomatics capability could fill the requirements concerning the Bolivian oil and gas assets still in the exploration, development, and documentation stages. Companies with exploration and development contracts, companies producing from commercial fields, refinery operators, producers in the liquid propane gas and compressed natural gas sub-sector, as well as pipeline operators are all considered key players, in addition to the Bolivian Chamber of Hydrocarbons. The customers are sophisticated buyers who purchase based on technical specifications and price negotiations. There are no significant non-tariff barriers, and Bolivia has adopted liberal trade policies. 9 refs., 3 tabs

  6. Correlation between SiOx content and properties of DLC : SiOx films prepared by PECVD

    Czech Academy of Sciences Publication Activity Database

    Zajíčková, L.; Bursíková, V.; Peřina, Vratislav; Macková, Anna; Janča, J.

    2003-01-01

    Roč. 174, - (2003), s. 281-285 ISSN 0257-8972 R&D Projects: GA AV ČR KSK1010104 Keywords : diamond-like carbon * mechanical-properties * optical properties Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.410, year: 2003

  7. International landfill gas conference: best practice and future opportunities

    International Nuclear Information System (INIS)

    1996-01-01

    This International Landfill Gas Conference, the third to be organised by ETSU on behalf of the Department of Trade and Industry (DTI) and the former Department of Energy has been jointly sponsored by the DTI, the International Energy Agency, the Altener Programme of the European Union (EU), the Environment Agency and the Institution of Diesel and Gas Turbine Engineers. The Conference coincides with the publication of the new Government guidance document, Landfill Gas Development Guidelines, prepared by ETSU for the DTI with co-sponsorship from the EU ALTENER Programme. The aim of the new Guidelines is to promote more widespread use of landfill gas (LFG) as an energy source by helping to reduce remaining perceived barriers to project development. The document is intended for a broad readership and is designed to allow easy access to a wide range of information. Essentially it is a ''hub'' document providing links to a variety of more specialised or detailed materials. For this reason, the emphasis is placed on breadth rather than on detail. The new Guidelines are certain to become the standard reference for all those with an interest in LFG technology. (Author)

  8. Towards a Biohybrid Lung: Endothelial Cells Promote Oxygen Transfer through Gas Permeable Membranes.

    Science.gov (United States)

    Menzel, Sarah; Finocchiaro, Nicole; Donay, Christine; Thiebes, Anja Lena; Hesselmann, Felix; Arens, Jutta; Djeljadini, Suzana; Wessling, Matthias; Schmitz-Rode, Thomas; Jockenhoevel, Stefan; Cornelissen, Christian Gabriel

    2017-01-01

    In patients with respiratory failure, extracorporeal lung support can ensure the vital gas exchange via gas permeable membranes but its application is restricted by limited long-term stability and hemocompatibility of the gas permeable membranes, which are in contact with the blood. Endothelial cells lining these membranes promise physiological hemocompatibility and should enable prolonged application. However, the endothelial cells increase the diffusion barrier of the blood-gas interface and thus affect gas transfer. In this study, we evaluated how the endothelial cells affect the gas exchange to optimize performance while maintaining an integral cell layer. Human umbilical vein endothelial cells were seeded on gas permeable cell culture membranes and cultivated in a custom-made bioreactor. Oxygen transfer rates of blank and endothelialized membranes in endothelial culture medium were determined. Cell morphology was assessed by microscopy and immunohistochemistry. Both setups provided oxygenation of the test fluid featuring small standard deviations of the measurements. Throughout the measuring range, the endothelial cells seem to promote gas transfer to a certain extent exceeding the blank membranes gas transfer performance by up to 120%. Although the underlying principles hereof still need to be clarified, the results represent a significant step towards the development of a biohybrid lung.

  9. Performing a local barrier operation

    Science.gov (United States)

    Archer, Charles J; Blocksome, Michael A; Ratterman, Joseph D; Smith, Brian E

    2014-03-04

    Performing a local barrier operation with parallel tasks executing on a compute node including, for each task: retrieving a present value of a counter; calculating, in dependence upon the present value of the counter and a total number of tasks performing the local barrier operation, a base value, the base value representing the counter's value prior to any task joining the local barrier; calculating, in dependence upon the base value and the total number of tasks performing the local barrier operation, a target value of the counter, the target value representing the counter's value when all tasks have joined the local barrier; joining the local barrier, including atomically incrementing the value of the counter; and repetitively, until the present value of the counter is no less than the target value of the counter: retrieving the present value of the counter and determining whether the present value equals the target value.

  10. Near- and sub-barrier fusion of 6He+40Ar

    International Nuclear Information System (INIS)

    Hinnefeld, J.D.; Kolata, J.J.; Belbot, M.; Lamkin, K.; Zahar, M.; Santi, P.; Kugi, J.

    1993-01-01

    A measurement of the fusion cross section for 6 He + 40 Ar near and below the Coulomb barrier has been performed using a 6 He beam from the UND/Um radioactive beam facility. The 6 He nucleus is thought to have a neutron skin surrounding a 6 He core. If this is the case, then Coulomb polarization of the core relative to the halo might result in neutron flow along a neck, and therefore to a large enhancement of the sub-barrier fusion cross section. 6 He nuclei, of incident energy 10.05 ± 0.44 MeV, were directed into a segmented ionization counter (MUSIC) filled with P10 at 40 torr. The 40 Ar in the detector gas served also as the target nuclei. 6 He energies in the 50-cm active length of the detector varied from 7.75 MeV down to 3.05 MeV. Calculations indicate that fusion events should be distinguishable from most non-fusion events on the basis of energy deposition patterns in the ten MUSIC detector segments. For some large-angle scattering events a more elaborate analysis involving detailed Monte Carlo simulation of the various reactions is necessary

  11. Scientific investigation plan for initial engineered barrier system field tests

    International Nuclear Information System (INIS)

    Wunan Lin.

    1993-02-01

    The purpose of this Scientific Investigation Plan (SIP) is to describe tests known as Initial Engineered Barrier System Field Tests (IEBSFT) and identified by Work Breakdown Structure as WBS 1.2.2.2.4. The IEBSFT are precursors to the Engineered Barrier System Field Test (EBSFT), WBS 1.2.2.2.4, to be conducted in the Exploratory Study Facility (ESF) at Yucca Mountain. The EBSFT and IEBSFT are designed to provide information on the interaction between waste packages (simulated by heated containers) and the surrounding rock mass, its vadose water, and infiltrated water. Heater assemblies will be installed in drifts or boreholes openings and heated to measure moisture movement during heat-up and subsequent cool-down of the rock mass. In some of the tests, infiltration of water into the heated rock mass will be studied. Throughout the heating and cooling cycle, instruments installed in the rock will monitor such parameters as temperature, moisture content, concentration of some chemical species, and stress and strain. Rock permeability measurements, rock and fluid (water and gas) sampling, and fracture pattern measurements will also be made before and after the test

  12. The future of Alberta's oil and gas: Long-term strategies necessary to sustain markets

    International Nuclear Information System (INIS)

    Anon

    2002-01-01

    The Canadian Association of Petroleum Producers predicts that based on current combustion and depending on world oil prices, Canadian oil sands can supply North American demand for 40 years and Canadian natural gas can meet North American requirements for 20 years. Natural gas production in the U.S. is greater in total energy output than oil production of the world's largest oil producer, Saudi Arabia. At the same time the U.S. gas industry is confronting a unique and profound combination of events, namely it is facing the first true shortage of deliverable reserves in its history. This may be harsh news for the consumer, however, for Alberta's oil and gas industry, the new world energy order has the potential to be a huge blessing. With relatively large, unexploited oil and gas reserves and a next door neighbour with the world's most voracious appetite for fossil fuels, it is inevitable that much of this shortage is going to be satisfied by oil and gas from Canadian sources. Nevertheless, there are some barriers to be overcome. The greatest barriers to an assured U. S. market for Canadian oil and gas is competition from Venezuelan heavy crude and synthetic crude and light sour crude from the Gulf of Mexico. To assure a ready market for Canadian heavy crude in the U. S. Midwest, Canadian producers need to be pro-active in working with U. S. refiners to develop new conversion capacity, or develop upgrading in Canada. Mexico and Venezuela have been successfully participating in major U. S. expansions in coker projects to allow projects to run heavy crude. This will eventually result in an additional 600,000 barrels per day of heavy crude available on the U. S. market, putting further pressure on Canadian markets. The challenge is for Albertan producers to undertake similar strategies with U. S. Midwest refiners for heavy and synthetic crude. Long-term supply arrangements appear to be the only way to induce American Midwest refiners to make more investment to process

  13. Transmission through a potential barrier in Luttinger liquids with a topological spin gap

    Science.gov (United States)

    Kainaris, Nikolaos; Carr, Sam T.; Mirlin, Alexander D.

    2018-03-01

    We study theoretically the transport of the one-dimensional single-channel interacting electron gas through a strong potential barrier in the parameter regime where the spin sector of the low-energy theory is gapped by interaction (Luther-Emery liquid). There are two distinct phases of this nature, of which one is of particular interest as it exhibits nontrivial interaction-induced topological properties. Focusing on this phase and using bosonization and an expansion in the tunneling strength we calculate the conductance through the barrier as a function of the temperature as well as the local density of states (LDOS) at the barrier. Our main result concerns the mechanism of bound-state-mediated tunneling. The characteristic feature of the topological phase is the emergence of protected zero-energy bound states with fractional spin located at the impurity position. By flipping this fractional spin, single electrons can tunnel across the impurity even though the bulk spectrum for spin excitations is gapped. This results in a finite LDOS below the bulk gap and in a nonmonotonic behavior of the conductance. The system represents an important physical example of an interacting symmetry-protected topological phase, which combines features of a topological spin insulator and a topological charge metal, in which the topology can be probed by measuring transport properties.

  14. Barrier to entry : boom or no boom, oilsands outsiders hit barriers to technology uptake

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.

    2009-05-15

    Oil sands extraction and upgrading innovators are becoming annoyed at what they perceive as the closed door attitude of existing producers. This article discussed various technologies for oil sands extraction and upgrading such as in-situ fireflooding; electro-thermal stimulation; solvent-enhanced steam-assisted gravity drainage (SAGD); as well as oil-digesting bugs and miracle solvents and oleophilic screening and borehole mining. Oilpatch outsiders are offering the oilsands industry green alternatives to hot water flotation separation technology and the heavily natural gas-reliant SAGD extraction method. The author cautioned that these solutions and alternatives are largely unproven and untested. Promoters of new technologies claim that while evolutionary technologies that could mesh readily with existing operations are generally welcomed by industry, the so-called disruptive technologies are rarely adopted as producers seek to protect their investments. Several examples were provided in the article that demonstrated barriers to entry into the market such as Houston-based Planet Resource Recovery. The company was promoting a proprietary chemical product called PetroLuxus, which used nanoscale technology to interrupt the bonding of metals and hydrocarbons in soil, water and oil and gas applications. Early efforts to showcase the product, entirely at the company's expense, were rejected despite success in certified independent lab tests using Utah tar sands. The oleophilic process was also described in detail. Last, the article discussed BioTiger, a natural microbial consortium that was the product of eight years of extensive microbiology screening and characterization of bacteria isolates collected from a century-old oil refinery waste lagoon in Poland. A discussion of technologies for borehole mining concluded the article. 1 tab., 5 figs.

  15. Freeze-Thaw Cycles and Soil Biogeochemistry: Implications for Greenhouse Gas emission

    Science.gov (United States)

    Rezanezhad, F.; Milojevic, T.; Oh, D. H.; Parsons, C. T.; Smeaton, C. M.; Van Cappellen, P.

    2016-12-01

    Freeze-thaw cycles represent a major natural climate forcing acting on soils at middle and high latitudes. Repeated freezing and thawing of soils changes their physical properties, geochemistry, and microbial community structure, which together govern the biogeochemical cycling of carbon and nutrients. In this presentation, we focus on how freeze-thaw cycles regulate carbon and nitrogen cycling and how these transformations influence greenhouse gas (GHG) fluxes. We present a novel approach, which combines the acquisition of physical and chemical data in a newly developed experimental soil column system. This system simulates realistic soil temperature profiles during freeze-thaw cycles. A high-resolution, Multi-Fiber Optode (MuFO) microsensor technique was used to detect oxygen (O2) continuously in the column at multiple depths. Surface and subsurface changes to gas and aqueous phase chemistry were measured to delineate the pathways and quantify soil respiration rates during freeze-thaw cycles. The results indicate that the time-dependent release of GHG from the soil surface is influenced by a combination of two key factors. Firstly, fluctuations in temperature and O2 availability affect soil biogeochemical activity and GHG production. Secondly, the recurrent development of a physical ice barrier prevents exchange of gaseous compounds between the soil and atmosphere during freezing conditions; removal of this barrier during thaw conditions increases GHG fluxes. During freezing, O2 levels in the unsaturated zone decreased due to restricted gas exchange with the atmosphere. As the soil thawed, O2 penetrated deeper into the soil enhancing the aerobic mineralization of organic carbon and nitrogen. Additionally, with the onset of thawing a pulse of gas flux occurred, which is attributed to the build-up of respiratory gases in the pore space during freezing. The latter implies enhanced anaerobic respiration as O2 supply ceases when the upper soil layer freezes.

  16. Layout designs of surface barrier coatings for boosting the capability of oxygen/vapor obstruction utilized in flexible electronics

    Science.gov (United States)

    Lee, Chang-Chun; Huang, Pei-Chen; He, Jing-Yan

    2018-04-01

    Organic light-emitting diode-based flexible and rollable displays have become a promising candidate for next-generation flexible electronics. For this reason, the design of surface multi-layered barriers should be optimized to enhance the long-term mechanical reliability of a flexible encapsulation that prevents the penetration of oxygen and vapor. In this study, finite element-based stress simulation was proposed to estimate the mechanical reliability of gas/vapor barrier design with low-k/silicon nitride (low-k/SiNx) stacking architecture. Consequently, stress-induced failure of critical thin films within the flexible display under various bending conditions must be considered. The feasibility of one pair SiO2/SiNx barrier design, which overcomes the complex lamination process, and the critical bending radius, which is decreased to 1.22 mm, were also examined. In addition, the influence of distance between neutral axes to the concerned layer surface dominated the induced-stress magnitude rather than the stress compliant mechanism provided from stacked low-k films.

  17. Barrier island facies models and recognition criteria

    Science.gov (United States)

    Mulhern, J.; Johnson, C. L.

    2017-12-01

    Barrier island outcrops record transgressive shoreline motion at geologic timescales, providing integral clues to understanding how coastlines respond to rising sea levels. However, barrier island deposits are difficult to recognize. While significant progress has been made in understanding the modern coastal morphodynamics, this insight is not fully leveraged in existing barrier island facies models. Excellent outcrop exposures of the paralic Upper Cretaceous Straight Cliffs Formation of southern Utah provide an opportunity to revise facies models and recognition criteria for barrier island deposits. Preserved barrier islands are composed of three main architectural elements (shorefaces, tidal inlets, and tidal channels) which occur independently or in combination to create larger-scale barrier island deposits. Barrier island shorefaces record progradation, while barrier island tidal inlets record lateral migration, and barrier island tidal channels record aggradation within the tidal inlet. Four facies associations are used to describe and characterize these barrier island architectural elements. Barrier islands occur in association with backarrier fill and internally contain lower and upper shoreface, high-energy upper shoreface, and tidal channel facies. Barrier islands bound lagoons or estuaries, and are distinguished from other shoreface deposits by their internal facies and geometry, association with backbarrier facies, and position within transgressive successions. Tidal processes, in particular tidal inlet migration and reworking of the upper shoreface, also distinguish barrier island deposits. Existing barrier island models highlight the short term heterogeneous and dynamic nature of barrier island systems, yet overlook processes tied to geologic time scales, such as multi-directional motion, erosion, and reworking, and their expressions in preserved barrier island strata. This study uses characteristic outcrop expressions of barrier island successions to

  18. Enershield : energy saving air barriers

    Energy Technology Data Exchange (ETDEWEB)

    Hallihan, D. [Enershield Industries Ltd., Edmonton, AB (Canada)

    2008-07-01

    Enershield Industries is a leader in air barrier technology and provides solution for the Canadian climate. This presentation described the advantages of air barriers and the impact of rising energy costs. An air barrier is used to separate areas of differing environments and makes existing building systems more efficient. This presentation discussed how an air barrier works. It also identified how Enershield Industries calculates energy savings. It described air barrier applications and those who use barrier technology. These include the commercial and industrial sector as well as the personnel and retail sector. Barrier technology can be used for cold storage; vehicle and equipment washes; food processing; and environmental separation. Features and benefits such as the ability to create seal, acoustic insulation, and long term durability were also discussed. Last, the presentation addressed model selection and design criteria issues. Design criteria that were presented included a discussion of acoustic installation, articulating nozzles, scroll cased fans, and structural frame. Other design criteria presented were galvanized frames, telescopic sliders, and off the shelf parts. It was concluded that the ability to reduce energy consumption and enhance employee/client comfort is beneficial to the employer as well as to the employee. figs.

  19. Dielectric Barrier Discharge based Mercury-free plasma UV-lamp for efficient water disinfection.

    Science.gov (United States)

    Prakash, Ram; Hossain, Afaque M; Pal, U N; Kumar, N; Khairnar, K; Mohan, M Krishna

    2017-12-12

    A structurally simple dielectric barrier discharge based mercury-free plasma UV-light source has been developed for efficient water disinfection. The source comprises of a dielectric barrier discharge arrangement between two co-axial quartz tubes with an optimized gas gap. The outer electrode is an aluminium baked foil tape arranged in a helical form with optimized pitch, while the inner electrode is a hollow aluminium metallic rod, hermetically sealed. Strong bands peaking at wavelengths 172 nm and 253 nm, along with a weak band peaking at wavelength 265 nm have been simultaneously observed due to plasma radiation from the admixture of xenon and iodine gases. The developed UV source has been used for bacterial deactivation studies using an experimental setup that is an equivalent of the conventional house-hold water purifier system. Deactivation studies for five types of bacteria, i.e., E. coli, Shigella boydii, Vibrio, Coliforms and Fecal coliform have been demonstrated with 4 log reductions in less than ten seconds.

  20. Engineered barriers: current status

    International Nuclear Information System (INIS)

    Atkinson, A.; Marsh, G.P.

    1988-01-01

    This report summarises the current state of research relevant to assessing the performance of engineered barriers made of steel and concrete in radioactive waste repositories. The objective of these barriers is to contain the radionuclides within them by providing both physical and chemical impediment to their release. The physical barriers are of most value for highly soluble isotopes with relatively short half-lives (eg 137 Cs), since they can provide containment until a large fraction of the activity has decayed. In addition they can facilitate retrievability for some period after disposal. The chemical barriers operate by beneficial conditioning of the near field groundwater and providing sites for sorption of radionuclides. Both of these reduce the aqueous concentration of radionuclides in the near field. (author)

  1. Atmospheric pressure plasma produced inside a closed package by a dielectric barrier discharge in Ar/CO2 for bacterial inactivation of biological samples

    International Nuclear Information System (INIS)

    Chiper, A S; Chen, W; Stamate, E; Mejlholm, O; Dalgaard, P

    2011-01-01

    The generation and evaluation of a dielectric barrier discharge produced inside a closed package made of a commercially available packaging film and filled with gas mixtures of Ar/CO 2 at atmospheric pressure is reported. The discharge parameters were analysed by electrical measurements and optical emission spectroscopy in two modes of operation: trapped gas atmosphere and flowing gas atmosphere. Gas temperature was estimated using the OH(A-X) emission spectrum and the rotational temperature reached a saturation level after a few minutes of plasma running. The rotational temperature was almost three times higher in the Ar/CO 2 plasma compared with an Ar plasma. The efficiency of the produced plasma for the inactivation of bacteria on food inside the closed package was investigated.

  2. Geopolitics of European natural gas demand: Supplies from Russia, Caspian and the Middle East

    International Nuclear Information System (INIS)

    Bilgin, Mert

    2009-01-01

    This paper addresses issues of natural gas which raise questions about European energy security. It first focuses on the rising gas demand of the EU27 and elaborates alleged risks of dependence on Russia such as Gazprom's disagreement with Ukraine, which became an international gas crisis in January 2006 and also more recently in January 2009. Incentives and barriers of Europe's further cooperation with selected Caspian (Azerbaijan, Kazakhstan and Turkmenistan) and Middle Eastern (Iran, Iraq and Egypt) countries are discussed. Supplies from Caspian are analyzed with a particular focus on Russia's role and the vested interests in the region. Supplies from the Middle East are elaborated with regard to Iran's huge and Iraq's emerging potentials in terms of natural gas reserves and foreign direct investments in the energy sector. The geopolitical analysis leads to a conclusion that the best strategy, and what seems more likely, for the EU is to include at least two countries from Azerbaijan, Turkmenistan, Iran and Iraq within its natural gas supply system.

  3. Geothermal(Ground-Source)Heat Pumps: Market Status, Barriers to Adoption, and Actions to Overcome Barriers

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Patrick [ORNL

    2008-12-01

    More effective stewardship of our resources contributes to the security, environmental sustainability, and economic well-being of the nation. Buildings present one of the best opportunities to economically reduce energy consumption and limit greenhouse gas emissions. Geothermal heat pumps (GHPs), sometimes called ground-source heat pumps, have been proven capable of producing large reductions in energy use and peak demand in buildings. However, GHPs have received little attention at the policy level as an important component of a national strategy. Have policymakers mistakenly overlooked GHPs, or are GHPs simply unable to make a major contribution to the national goals for various reasons? This brief study was undertaken at DOE's request to address this conundrum. The scope of the study includes determining the status of global GHP markets and the status of the GHP industry and technology in the United States, assembling previous estimates of GHP energy savings potential, identifying key barriers to application of GHPs, and identifying actions that could accelerate market adoption of GHPs. The findings are documented in this report along with conclusions and recommendations.

  4. Material Barriers to Diffusive Mixing

    Science.gov (United States)

    Haller, George; Karrasch, Daniel

    2017-11-01

    Transport barriers, as zero-flux surfaces, are ill-defined in purely advective mixing in which the flux of any passive scalar is zero through all material surfaces. For this reason, Lagrangian Coherent Structures (LCSs) have been argued to play the role of mixing barriers as most repelling, attracting or shearing material lines. These three kinematic concepts, however, can also be defined in different ways, both within rigorous mathematical treatments and within the realm of heuristic diagnostics. This has lead to a an ever-growing number of different LCS methods, each generally identifying different objects as transport barriers. In this talk, we examine which of these methods have actual relevance for diffusive transport barriers. The latter barriers are arguably the practically relevant inhibitors in the mixing of physically relevant tracers, such as temperature, salinity, vorticity or potential vorticity. We demonstrate the role of the most effective diffusion barriers in analytical examples and observational data. Supported in part by the DFG Priority Program on Turbulent Superstructures.

  5. Anisotropic Thermal Diffusivities of Plasma-Sprayed Thermal Barrier Coatings

    Science.gov (United States)

    Akoshima, Megumi; Takahashi, Satoru

    2017-09-01

    Thermal barrier coatings (TBCs) are used to shield the blades of gas turbines from heat and wear. There is a pressing need to evaluate the thermal conductivity of TBCs in the thermal design of advanced gas turbines with high energy efficiency. These TBCs consist of a ceramic-based top coat and a bond coat on a superalloy substrate. Usually, the focus is on the thermal conductivity in the thickness direction of the TBC because heat tends to diffuse from the surface of the top coat to the substrate. However, the in-plane thermal conductivity is also important in the thermal design of gas turbines because the temperature distribution within the turbine cannot be ignored. Accordingly, a method is developed in this study for measuring the in-plane thermal diffusivity of the top coat. Yttria-stabilized zirconia top coats are prepared by thermal spraying under different conditions. The in-plane and cross-plane thermal diffusivities of the top coats are measured by the flash method to investigate the anisotropy of thermal conduction in a TBC. It is found that the in-plane thermal diffusivity is higher than the cross-plane one for each top coat and that the top coats have significantly anisotropic thermal diffusivity. The cross-sectional and in-plane microstructures of the top coats are observed, from which their porosities are evaluated. The thermal diffusivity and its anisotropy are discussed in detail in relation to microstructure and porosity.

  6. Diabetes and diet : managing dietary barriers

    NARCIS (Netherlands)

    Friele, R.D.

    1989-01-01

    This thesis reports on the barriers diabetic patients experience with their diet, and the ways they cope with these barriers. A dietary barrier is a hinderance to a person's well-being, induced by being advised a diet. First inventories were made of possible dietary barriers and ways of

  7. Internal transport barrier discharges in JET and their sensitivity to edge conditions

    International Nuclear Information System (INIS)

    Sips, A.C.C.

    2001-01-01

    Experiments in JET have concentrated on steady state discharges with internal transport barriers (ITBs). The ITBs are formed during the current rise phase of the discharge with low magnetic shear (=r/q(dq/dr)) in the centre and with high additional heating power. In order to achieve stability against disruptions at high pressure peaking, which is typical for ITB discharges, the pressure profile can be broadened with an H mode transport barrier at the edge of the plasma. However, the strong increase in edge pressure during an ELM free H mode weakens the ITB owing to a reduction of the rotational shear and pressure gradient at the ITB location. In addition, type I ELM activity during the H mode phase leads to a collapse of the ITB with the input powers available in JET (up to 28 MW). The best ITB discharges are obtained with input power control to reduce the core pressure, and with the edge pressure of the plasma controlled by argon gas dosing. These discharges achieve steady conditions for several energy confinement times (τ E ) with H97 confinement enhancement factors (τ E /τ E,ITER97scaling ) of 1.2-1.6 at line averaged densities of around 30-40% of the Greenwald density. Increasing the density by using additional deuterium gas dosing or shallow pellet fuelling leads to a weakening of the ITB. In order to sustain ITBs at higher densities, type III ELMs should be maintained at the plasma edge, giving scope for future experiments in JET. (author)

  8. Vibration damage testing of thermal barrier fibrous blanket insulation

    International Nuclear Information System (INIS)

    Black, W.E.; Betts, W.S.

    1984-01-01

    GA Technologies is engaged in a long-term, multiphase program to determine the vibration characteristics of thermal barrier components leading to qualification of assemblies for High Temperature Gas-Cooled Reactor (HTGR) service. The phase of primary emphasis described herein is the third in a series of acoustic tests and uses as background the more elemental tests preceding it. Two sizes of thermal barrier coverplates with one fibrous blanket insulation type were tested in an acoustic environment at sound pressure levels up to 160 dB. Three tests were conducted using sinusoidal and random noise for up to 200 h duration at room temperature. Frequent inspections were made to determine the progression of degradation using definition of stages from a prior test program. Initially the insulation surface adjacent to the metallic seal sheets (noise side) assumed a chafed or polished appearance. This was followed by flattening of the as-received pillowed surface. This stage was followed by a depression being formed in the vicinity of the free edge of the coverplate. Next, loose powder from within the blanket and from fiber erosion accumulated in the depression. Prior experience showed that the next stage of deterioration exhibited a consolidation of the powder to form a local crust. In this test series, this last stage generally failed to materialize. Instead, surface holes generated by solid ceramic particulates (commonly referred to as 'shot') constituted the stage following powdering. With the exception of some manufacturing-induced anomalies, the final stage, namely, gross fiber breakup, did not occur. It is this last stage that must be prevented for the thermal barrier to maintain its integrity. (orig./GL)

  9. Sweeping Gas Membrane Desalination Using Commercial Hydrophobic Hollow Fiber Membranes; TOPICAL

    International Nuclear Information System (INIS)

    EVANS, LINDSEY; MILLER, JAMES E.

    2002-01-01

    Water shortages affect 88 developing countries that are home to half of the world's population. In these places, 80-90% of all diseases and 30% of all deaths result from poor water quality. Furthermore, over the next 25 years, the number of people affected by severe water shortages is expected to increase fourfold. Low cost methods of purifying freshwater, and desalting seawater are required to contend with this destabilizing trend. Membrane distillation (MD) is an emerging technology for separations that are traditionally accomplished via conventional distillation or reverse osmosis. As applied to desalination, MD involves the transport of water vapor from a saline solution through the pores of a hydrophobic membrane. In sweeping gas MD, a flowing gas stream is used to flush the water vapor from the permeate side of the membrane, thereby maintaining the vapor pressure gradient necessary for mass transfer. Since liquid does not penetrate the hydrophobic membrane, dissolved ions are completely rejected by the membrane. MD has a number of potential advantages over conventional desalination including low temperature and pressure operation, reduced membrane strength requirements, compact size, and 100% rejection of non-volatiles. The present work evaluated the suitability of commercially available technology for sweeping gas membrane desalination. Evaluations were conducted with Celgard Liqui-Cel(reg s ign) Extra-Flow 2.5X8 membrane contactors with X-30 and X-40 hydrophobic hollow fiber membranes. Our results show that sweeping gas membrane desalination systems are capable of producing low total dissolved solids (TDS) water, typically 10 ppm or less, from seawater, using low grade heat. However, there are several barriers that currently prevent sweeping gas MD from being a viable desalination technology. The primary problem is that large air flows are required to achieve significant water yields, and the costs associated with transporting this air are prohibitive. To

  10. Bypassing Russia: Nabucco project and its implications for the European gas security

    International Nuclear Information System (INIS)

    Erdogdu, Erkan

    2010-01-01

    Restrictions on CO 2 emissions, the nuclear phase-out announced by some member states, high emissions from coal-fired power plants, and barriers to rapid development of renewable generation are factors that make the European Union (EU) highly dependent on natural gas. With three non-EU countries (Russia, Algeria and Norway) currently supplying more than half the gas consumed within the EU and with projections pointing out that by 2030 internal sources will only be able to meet 25% of demand, the EU desperately looks for means to secure new sources of gas supply. In this context, the Nabucco pipeline is planned to deliver gas from Caspian and Middle East regions to the EU market. It runs across Turkey and then through Bulgaria, Romania and Hungary before connecting with a major gas hub in Austria. On paper, Nabucco project makes perfect sense, offering a new export route to the EU markets for Caspian gas producers (Azerbaijan, Turkmenistan and Kazakhstan) as well as Iran and, in time, Iraq. The project is backed by the EU and strongly supported by the United States. Perhaps most importantly, Nabucco would completely bypass Russia. This paper addresses issues surrounding Nabucco project and their implications for the European gas security. (author)

  11. Barriers to healthcare for transgender individuals.

    Science.gov (United States)

    Safer, Joshua D; Coleman, Eli; Feldman, Jamie; Garofalo, Robert; Hembree, Wylie; Radix, Asa; Sevelius, Jae

    2016-04-01

    Transgender persons suffer significant health disparities and may require medical intervention as part of their care. The purpose of this manuscript is to briefly review the literature characterizing barriers to healthcare for transgender individuals and to propose research priorities to understand mechanisms of those barriers and interventions to overcome them. Current research emphasizes sexual minorities' self-report of barriers, rather than using direct methods. The biggest barrier to healthcare reported by transgender individuals is lack of access because of lack of providers who are sufficiently knowledgeable on the topic. Other barriers include: financial barriers, discrimination, lack of cultural competence by providers, health systems barriers, and socioeconomic barriers. National research priorities should include rigorous determination of the capacity of the US healthcare system to provide adequate care for transgender individuals. Studies should determine knowledge and biases of the medical workforce across the spectrum of medical training with regard to transgender medical care; adequacy of sufficient providers for the care required, larger social structural barriers, and status of a framework to pay for appropriate care. As well, studies should propose and validate potential solutions to address identified gaps.

  12. Market Barriers to Increased Efficiency in the European On-road Freight Sector

    Energy Technology Data Exchange (ETDEWEB)

    Aarnink, S.; Faber, J.; Den Boer, E.

    2012-10-15

    There are numerous technical and operational measures available to improve the fuel efficiency of truck fleets, but many of these measures are currently not universally implemented. Even cost-effective measures (i.e., measures which can be implemented with net fuel savings that outweigh the initial technology costs and potentially at a net profit) are often not adopted. The main barrier is the lack of information on the fuel savings of individual technical measures for trucks and especially trailers. While many transport companies and all original equipment manufacturers (OEMs) are aware that certain technologies exist, few respondents believe that these technologies are cost-effective. As a result of this belief, the supply of fuel-saving technologies from OEMs is limited. This report aims to better understand the reasons for the limited adoption of cost-effective fuel-saving technologies and to inform the policy-making process in the European Union and abroad, and specifically to provide input to the European Commission's strategy for reducing greenhouse gas emissions from HDVs. The primary goal of the study is to identify the barriers to the implementation of technologies that improve fuel efficiency in the European road freight transport sector. For this report, the existence and importance of barriers were analyzed through surveys of and interviews with transport companies, OEMs, shippers and logistics service providers.

  13. Gas-Phase Thermal Tautomerization of Imidazole-Acetic Acid: Theoretical and Computational Investigations

    Directory of Open Access Journals (Sweden)

    Saadullah G. Aziz

    2015-11-01

    Full Text Available The gas-phase thermal tautomerization reaction between imidazole-4-acetic (I and imidazole-5-acetic (II acids was monitored using the traditional hybrid functional (B3LYP and the long-range corrected functionals (CAM-B3LYP and ωB97XD with 6-311++G** and aug-cc-pvdz basis sets. The roles of the long-range and dispersion corrections on their geometrical parameters, thermodynamic functions, kinetics, dipole moments, Highest Occupied Molecular Orbital–Lowest Unoccupied Molecular Orbital (HOMO–LUMO energy gaps and total hyperpolarizability were investigated. All tested levels of theory predicted the preference of I over II by 0.750–0.877 kcal/mol. The origin of predilection of I is assigned to the H-bonding interaction (nN8→σ*O14–H15. This interaction stabilized I by 15.07 kcal/mol. The gas-phase interconversion between the two tautomers assumed a 1,2-proton shift mechanism, with two transition states (TS, TS1 and TS2, having energy barriers of 47.67–49.92 and 49.55–52.69 kcal/mol, respectively, and an sp3-type intermediate. A water-assisted 1,3-proton shift route brought the barrier height down to less than 20 kcal/mol in gas-phase and less than 12 kcal/mol in solution. The relatively high values of total hyperpolarizability of I compared to II were interpreted and discussed.

  14. Dynamics of dielectric barrier discharges in different arrangements

    International Nuclear Information System (INIS)

    Gibalov, Valentin I; Pietsch, Gerhard J

    2012-01-01

    Based on experimental results, numerical investigations of dielectric barrier discharges (DBDs) have been performed in three basic configurations: in the volume, coplanar and surface discharge arrangements. It is shown that the DBD dynamics is the same in all arrangements and it is determined by the development of a few principal constituents, i.e. cathode- and anode-directed streamers, discharge channel, cathode layer and surface charges. It is found that the anode- and cathode-directed streamers appear with a highly conductive channel in between. The interaction of the streamers with conductive and dielectric surfaces determines the filamentary or homogeneous appearance of the discharge and its properties. The cathode-directed streamer is a self-sustaining phenomenon, which moves in a gas gap or along an electrode driven by a positive loop-back between photoemission and electron multiplication. The anode-directed streamer plays a subsidiary role. Depending on the kind of gas (electronegative or electropositive) and/or the degree of development of the cathode-directed streamer, the field strength in the conductive channels changes significantly. When the cathode-directed streamer touches the electrode surface, a cathode layer appears with parameters close to those of normal glow discharges. In volume discharge arrangements the movement of the streamers results in the appearance of Lichtenberg figures on dielectric surfaces. (paper)

  15. Multi-channel spintronic transistor design based on magnetoelectric barriers and spin-orbital effects

    International Nuclear Information System (INIS)

    Fujita, T; Jalil, M B A; Tan, S G

    2008-01-01

    We present a spin transistor design based on spin-orbital interactions in a two-dimensional electron gas, with magnetic barriers induced by a patterned ferromagnetic gate. The proposed device overcomes certain shortcomings of previous spin transistor designs such as long device length and degradation of conductance modulation for multi-channel transport. The robustness of our device for multi-channel transport is unique in spin transistor designs based on spin-orbit coupling. The device is more practical in fabrication and experimental respects compared to previously conceived single-mode spin transistors

  16. 24 CFR 574.645 - Coastal barriers.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 3 2010-04-01 2010-04-01 false Coastal barriers. 574.645 Section....645 Coastal barriers. In accordance with the Coastal Barrier Resources Act, 16 U.S.C. 3501, no financial assistance under this part may be made available within the Coastal Barrier Resources System. ...

  17. A comparison of freeway median crash frequency, severity, and barrier strike outcomes by median barrier type.

    Science.gov (United States)

    Russo, Brendan J; Savolainen, Peter T

    2018-08-01

    Median-crossover crashes are among the most hazardous events that can occur on freeways, often resulting in severe or fatal injuries. The primary countermeasure to reduce the occurrence of such crashes is the installation of a median barrier. When installation of a median barrier is warranted, transportation agencies are faced with the decision among various alternatives including concrete barriers, beam guardrail, or high-tension cable barriers. Each barrier type differs in terms of its deflection characteristics upon impact, the required installation and maintenance costs, and the roadway characteristics (e.g., median width) where installation would be feasible. This study involved an investigation of barrier performance through an in-depth analysis of crash frequency and severity data from freeway segments where high-tension cable, thrie-beam, and concrete median barriers were installed. A comprehensive manual review of crash reports was conducted to identify crashes in which a vehicle left the roadway and encroached into the median. This review also involved an examination of crash outcomes when a barrier strike occurred, which included vehicle containment, penetration, or re-direction onto the travel lanes. The manual review of crash reports provided critical supplementary information through narratives and diagrams not normally available through standard fields on police crash report forms. Statistical models were estimated to identify factors that affect the frequency, severity, and outcomes of median-related crashes, with particular emphases on differences between segments with varying median barrier types. Several roadway-, traffic-, and environmental-related characteristics were found to affect these metrics, with results varying across the different barrier types. The results of this study provide transportation agencies with important guidance as to the in-service performance of various types of median barrier. Copyright © 2018 Elsevier Ltd. All rights

  18. Gas generation in SFL 3-5 and effects on radionuclide release

    International Nuclear Information System (INIS)

    Skagius, K.; Lindgren, M.; Pers, K.

    1999-12-01

    A deep repository, SFL 3-5, is presently planned for disposing of long-lived low- and intermediate-level waste. In this study the amounts of gas that can be generated in the waste packages and in the vaults are estimated. The potential gas pressure build-up, the displacement of contaminated water and the consequences on radionuclide release from the engineered barriers in the repository are also addressed. The study is focussed on the repository design and waste inventory that was defined for the prestudy of SFL 3-5. Since the reporting of the prestudy the design of the repository has been modified and the waste inventory has been updated and a preliminary safety assessment of the repository has been carried out based on the new design and updated waste inventory. The implications on gas generation and release of these modifications in design and waste inventory are briefly addressed in this study

  19. Gas generation in SFL 3-5 and effects on radionuclide release

    Energy Technology Data Exchange (ETDEWEB)

    Skagius, K.; Lindgren, M.; Pers, K. [Kemakta Konsult AB, Stockholm (Sweden)

    1999-12-01

    A deep repository, SFL 3-5, is presently planned for disposing of long-lived low- and intermediate-level waste. In this study the amounts of gas that can be generated in the waste packages and in the vaults are estimated. The potential gas pressure build-up, the displacement of contaminated water and the consequences on radionuclide release from the engineered barriers in the repository are also addressed. The study is focussed on the repository design and waste inventory that was defined for the prestudy of SFL 3-5. Since the reporting of the prestudy the design of the repository has been modified and the waste inventory has been updated and a preliminary safety assessment of the repository has been carried outbased on the new design and updated waste inventory. The implications on gas generation and release of these modifications in design and waste inventory are briefly addressed in this study.

  20. Design and construction of a system for determination of Radon-222 by a surface-barrier detector

    International Nuclear Information System (INIS)

    Bonifacio M, J.; Iturbe, J.L.

    1993-01-01

    In the present work the design and construction of a system for the determination of 222 Rn is described, which utilizes silicon surface-barrier detectors. The 222 Rn gas was obtained a source of 226 Ra electrodeposited on stainless-steel discs. The well separated energies with this system makes possible the measurement and identification of alpha particles of 222 Rn, and its daughters 210 Po, 218 Po and 214 Po. (Author) 3 figs, 19 refs

  1. Super-Robust Polylactide Barrier Films by Building Densely Oriented Lamellae Incorporated with Ductile in Situ Nanofibrils of Poly(butylene adipate-co-terephthalate).

    Science.gov (United States)

    Zhou, Sheng-Yang; Huang, Hua-Dong; Ji, Xu; Yan, Ding-Xiang; Zhong, Gan-Ji; Hsiao, Benjamin S; Li, Zhong-Ming

    2016-03-01

    Remarkable combination of excellent gas barrier performance, high strength, and toughness was realized in polylactide (PLA) composite films by constructing the supernetworks of oriented and pyknotic crystals with the assistance of ductile in situ nanofibrils of poly(butylene adipate-co-terephthalate) (PBAT). On the basis that the permeation of gas molecules through polymer materials with anisotropic structure would be more frustrated, we believe that oriented crystalline textures cooperating with inerratic amorphism can be favorable for the enhancement of gas barrier property. By taking full advantage of intensively elongational flow field, the dispersed phase of PBAT in situ forms into nanofibrils, and simultaneously sufficient row-nuclei for PLA are induced. After appropriate thermal treatment with the acceleration effect of PBAT on PLA crystallization, oriented lamellae of PLA tend to be more perfect in a preferential direction and constitute into a kind of network interconnecting with each other. At the same time, the molecular chains between lamellae tend to be more extended. This unique structure manifests superior ability in ameliorating the performance of PLA film. The oxygen permeability coefficient can be achieved as low as 2 × 10(-15) cm(3) cm cm(-2) s(-1) Pa(-1), combining with the high strength, modulus, and ductility (104.5 MPa, 3484 MPa, and 110.6%, respectively). The methodology proposed in this work presents an industrially scalable processing method to fabricate super-robust PLA barrier films. It would indeed push the usability of biopolymers forward, and certainly prompt wider application of biodegradable polymers in the fields of environmental protection such as food packaging, medical packaging, and biodegradable mulch.

  2. Protective barrier development: Overview

    International Nuclear Information System (INIS)

    Wing, N.R.; Gee, G.W.

    1990-01-01

    Protective barrier and warning marker systems are being developed to isolate wastes disposed of near the earth's surface at the Hanford Site. The barrier is designed to function in an arid to semiarid climate, to limit infiltration and percolation of water through the waste zone to near-zero, to be maintenance free, and to last up to 10,000 yr. Natural materials (e.g., fine soil, sand, gravel, riprap, clay, asphalt) have been selected to optimize barrier performance and longevity and to create an integrated structure with redundant features. These materials isolate wastes by limiting water drainage; reducing the likelihood of plant, animal, and human intrusion; controlling emission of noxious gases; and minimizing erosion. Westinghouse Hanford Company and Pacific Northwest Laboratory efforts to assess the performance of various barrier and marker designs will be discussed

  3. Gas Separation through Bilayer Silica, the Thinnest Possible Silica Membrane.

    Science.gov (United States)

    Yao, Bowen; Mandrà, Salvatore; Curry, John O; Shaikhutdinov, Shamil; Freund, Hans-Joachim; Schrier, Joshua

    2017-12-13

    Membrane-based gas separation processes can address key challenges in energy and environment, but for many applications the permeance and selectivity of bulk membranes is insufficient for economical use. Theory and experiment indicate that permeance and selectivity can be increased by using two-dimensional materials with subnanometer pores as membranes. Motivated by experiments showing selective permeation of H 2 /CO mixtures through amorphous silica bilayers, here we perform a theoretical study of gas separation through silica bilayers. Using density functional theory calculations, we obtain geometries of crystalline free-standing silica bilayers (comprised of six-membered rings), as well as the seven-, eight-, and nine-membered rings that are observed in glassy silica bilayers, which arise due to Stone-Wales defects and vacancies. We then compute the potential energy barriers for gas passage through these various pore types for He, Ne, Ar, Kr, H 2 , N 2 , CO, and CO 2 gases, and use the data to assess their capability for selective gas separation. Our calculations indicate that crystalline bilayer silica, which is less than a nanometer thick, can be a high-selectivity and high-permeance membrane material for 3 He/ 4 He, He/natural gas, and H 2 /CO separations.

  4. Permeation barrier for lightweight liquid hydrogen tanks

    Energy Technology Data Exchange (ETDEWEB)

    Schultheiss, D.

    2007-04-16

    For the future usage of hydrogen as an automotive fuel, its on-board storage is crucial. One approach is the storage of liquid hydrogen (LH2, 20 K) in double-walled, vacuum insulated tanks. The introduction of carbon fiber reinforced plastics (CFRP) as structural material enables a high potential of reducing the weight in comparison to the state-of-the-art stainless steel tanks. The generally high permeability of hydrogen through plastics, however, can lead to long-term degradation of the insulating vacuum. The derived objective of this dissertation was to find and apply an adequate permeation barrier (liner) on CFRP. The investigated liners were either foils adhered on CFRP specimens or coatings deposited on CFRP specimens. The coatings were produced by means of thermal spraying, metal plating or physical vapor deposition (PVD). The materials of the liners included Al, Au, Cu, Ni and Sn as well as stainless steel and diamond-like carbon. The produced liners were tested for their permeation behavior, thermal shock resistance and adherence to the CFRP substrate. Additionally, SEM micrographs were used to characterize and qualify the liners. The foils, although being a good permeation barrier, adhered weakly to the substrate. Furthermore, leak-free joining of foil segments is a challenge still to be solved. The metal plating liners exhibited the best properties. For instance, no permeation could be detected through a 50 {mu}m thick Cu coating within the accuracy of the measuring apparatus. This corresponds to a reduction of the permeation gas flow by more than factor 7400 compared to uncoated CFRP. In addition, the metal platings revealed a high adherence and thermal shock resistance. The coatings produced by means of thermal spraying and PVD did not show a sufficient permeation barrier effect. After having investigated the specimens, a 170 liter CFRP tank was fully coated with 50 {mu}m Cu by means of metal plating. (orig.)

  5. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    International Nuclear Information System (INIS)

    R. Jarek

    2005-01-01

    The purpose of this model report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The resulting seepage evaporation and gas abstraction models are used in the total system performance assessment for the license application (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2005 [DIRS 173782], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports. To be consistent with other project documents that address features, events, and processes (FEPs), Table 6.14.1 of the current report includes updates to FEP numbers and FEP subjects for two FEPs identified in the technical work plan (TWP) governing this report (BSC 2005 [DIRS 173782]). FEP 2.1.09.06.0A (Reduction-oxidation potential in EBS), as listed in Table 2 of the TWP (BSC 2005 [DIRS 173782]), has been updated in the current report to FEP 2.1.09.06.0B (Reduction-oxidation potential in Drifts; see Table 6.14-1). FEP 2.1.09.07.0A (Reaction kinetics in EBS), as listed in Table 2 of the TWP (BSC 2005 [DIRS 173782]), has been updated in the current report to FEP 2.1.09.07.0B (Reaction kinetics in Drifts; see Table 6.14-1). These deviations from the TWP are justified because they improve integration with FEPs documents. The updates

  6. Dielectric barrier discharge plasma pretreatment on hydrolysis of microcrystalline cellulose

    Science.gov (United States)

    Huang, Fangmin; Long, Zhouyang; Liu, Sa; Qin, Zhenglong

    2017-04-01

    Dielectric barrier discharge (DBD) plasma was used as a pretreatment method for downstream hydrolysis of microcrystalline cellulose (MCC). The degree of polymerization (DP) of MCC decreased after it was pretreated by DBD plasma under a carrier gas of air/argon. The effectiveness of depolymerization was found to be influenced by the crystallinity of MCC when under the pretreatment of DBD plasma. With the addition of tert-butyl alcohol in the treated MCC water suspension solution, depolymerization effectiveness of MCC was inhibited. When MCC was pretreated by DBD plasma for 30 min, the total reducing sugar concentration (TRSC) and liquefaction yield (LY) of pretreated-MCC (PMCC) increased by 82.98% and 34.18% respectively compared with those for raw MCC.

  7. IOGCC/DOE oil and gas environmental workshop

    International Nuclear Information System (INIS)

    1991-01-01

    The Interstate Oil and Gas Compact Commission (IOGCC) in cooperation with US Department of Energy (DOE) has developed a workshop format to allow state regulatory officials and industry representatives the opportunity to participate in frank and open discussions on issues of environmental regulatory compliance. The purpose in providing this forum is to assist both groups in identifying the key barriers to the economic recoverability of domestic oil and gas resources while adequately protecting human health and the environment. The following topics were discussed, groundwater protection; temporarily abandoned and idle wells; effluent discharges; storm water runoff; monitoring and compliance; wetlands; naturally occurring radioactive materials; RCRA reauthorization and oil pollution prevention regulation. At the conclusion, all of the participants were asked to complete a questionnaire which critiqued the day activities. A discussion of each of the issues is made a part of this report as is a summary of the critique questionnaire which were received

  8. Fusion barriers in heavy ion collisions

    International Nuclear Information System (INIS)

    Zhu Long; Su Jun; Xie Wenjie; Guo Chenchen; Zhang Donghong; Zhang Fengshou

    2014-01-01

    Study of fusion barrier is very important for people to better understand fusion reactions. In this paper the Improved Isospin-dependent Quantum Molecular Dynamics (ImIQMD) model is introduced firstly. Then the shell correction effects, energy dependence, isospin effects and orientation effects of fusion barrier are studied. The fusion barriers for the fusion reactions "4"0Ca + "4"0Ca, "4"8Ca + "2"0"8Pb, "4"8Ca + "2"0"4Pb and "1"6O + "1"5"4Sm are extracted. The negative shell correction energies lower potential barriers of a certain reaction. A complex phenomenon of energy dependence is observed. It is also found that incident energy dependence of the barrier radius and barrier height shows opposite behaviors. The Coulomb potential shows weak energy dependence when distance of two colliding nuclei is lower than the touching distance. The isospin effects of the potential barrier are investigated. The orientation effects of the potential barrier are also discussed for the system "1"6O + "1"5"4Sm. (authors)

  9. Molecularly Designed Stabilized Asymmetric Hollow Fiber Membranes for Aggressive Natural Gas Separation.

    Science.gov (United States)

    Liu, Gongping; Li, Nanwen; Miller, Stephen J; Kim, Danny; Yi, Shouliang; Labreche, Ying; Koros, William J

    2016-10-24

    New rigid polyimides with bulky CF 3 groups were synthesized and engineered into high-performance hollow fiber membranes. The enhanced rotational barrier provided by properly positioned CF 3 side groups prohibited fiber transition layer collapse during cross-linking, thereby greatly improving CO 2 /CH 4 separation performance compared to conventional materials for aggressive natural gas feeds. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Can new legislation in importing countries represent new barriers to the development of an international ethanol market?

    International Nuclear Information System (INIS)

    Souza, Raquel R. de; Schaeffer, Roberto; Meira, Irineu

    2011-01-01

    The use of ethanol as a fuel has been attracting increasing attention in countries that are interested in reducing their dependence on imported oil and lowering their greenhouse gas emissions. Despite this growing interest, the global ethanol market is still incipient because of the small number of producing countries, the lack of technical standardization and the existence of tariff and non-tariff trade barriers. New laws have taken effect in 2010 in the United States and the European Union imposing domestic requirements for sustainable production of ethanol. Although these are generally positive developments, they can create greater difficulties for the development of an international ethanol market. This work examines the technical barriers posed by these new laws and how they can be resolved under the auspices of the World Trade Organization. In addition, this work analyses the Brazilian and Caribbean cases discussing to what extent these new technical barriers will affect ethanol production and exports arising from these countries. - Research highlights: → We examine the ethanol market and the increase of technical barriers. → Higher production costs will be associated with different environmental standards. → The adoption of international standards is key to develop the ethanol market. → A global agreement on biofuels will foster the development of its market.

  11. Economic alternatives for containment barriers

    International Nuclear Information System (INIS)

    Nicholson, P.J.; Jasperse, B.H.; Fisher, M.J.

    1997-01-01

    Fixation, barriers, and containment of existing landfills and other disposal areas are often performed by insitu auger type soil mixing and jet grouting. Cement or other chemical reagents are mixed with soil to form both vertical and horizontal barriers. Immobilization of contaminants can be economically achieved by mixing soil and the contaminants with reagents that solidify or stabilize the contaminated area. Developed in Japan, and relatively new to the United States, the first large scale application was for a vertical barrier at the Jackson Lake Dam project in 1986. This technology has grown in both the civil and environmental field since. The paper describes current United States practice for Deep Soil Mixing (over 12 meters in depth), and Shallow Soil Mixing for vertical barriers and stabilization/solidification, and Jet Grouting for horizontal and vertical barriers. Creating very low permeability barriers at depth with minimal surface return often makes these techniques economical when compared to slurry trenches. The paper will discuss equipment, materials, soil and strength parameters, and quality control

  12. Comparative economics of natural gas vehicles and other vehicles

    International Nuclear Information System (INIS)

    Biederman, R.T.; Blazek, C.F.

    1992-01-01

    The utilization of alternative fuels for transportation applications is now a certainty. The only real questions that remain to be answered involve the type of fuel (or fuels) to be adopted most extensively. While some alternative fuel advocates suggest that a niche will exist for all alternative fuels, the most likely scenario will involve widespread use of only a few major fuel types. Undoubtedly, reformulated gasoline will be a major force as an interim fuel, due to inertia and a predominant bias toward liquid fuels. The prospects for utilization of ethanol, methanol, MTBE, and ETBE appear to be most promising in the area of blending with gasoline to meet the needs of reformulated gasoline and flexible fueled vehicles (FFV's). Propane fueled vehicles will continue to grow in popularity, especially with fleets, but will never become a major force in the transportation market in the U.S. due to unresolvable supply limitations. The clear winner in the alternative fuels transportation market appears to be natural gas. Either in compressed or liquefied form, natural gas enjoys low costs, tremendous availability, and impressive environmental benefits. As shown in this analysis, natural gas competes favorably with gasoline in terms of economics. Natural gas is also preferential to other alternative fuels in terms of safety and heath issues as well as operational issues. Adoption of natural gas as a standard transportation fuel will probably require market segmentation characterized by compressed natural gas utilization in light-duty vehicles and liquefied natural gas utilization in heavy-duty vehicles. The most significant barrier to natural gas utilization will continue to be the creation of a refueling infrastructure. As these problems are resolved, however, natural gas will emerge as the transportation fuel of the future

  13. Prospects for and barriers to domestic micro-generation: A United Kingdom perspective

    International Nuclear Information System (INIS)

    Allen, S.R.; Hammond, G.P.; McManus, M.C.

    2008-01-01

    Approximately 38% of current UK greenhouse gas emissions can be attributed to the energy supply sector. Losses in the current electricity supply system amount to around 65% of the primary energy input, mainly due to heat wasted during centralised production. Micro-generation and other decentralised technologies have the potential to dramatically reduce these losses because, when fossil fuels are used, the heat generated by localised electricity production can be captured and utilised for space and water heating. Heat and electricity can also be produced locally by renewable sources. Prospects and barriers to domestic micro-generation in the UK are outlined, with reference to the process of technological innovation, energy policy options, and the current status of the micro-generation industry. Requirements for the main technology options, typical energy outputs, costs to consumers, and numbers of installed systems are given where data is available. It is concluded that while micro-generation has the potential to contribute favourably to energy supply, there remain substantial barriers to a significant rise in the use of micro-generation in the UK

  14. Gas-fired power. IEA ETSAP technology brief E02

    Energy Technology Data Exchange (ETDEWEB)

    Seebregts, A.J. [Energy research Centre of the Netherlands (Netherlands)], E-mail: seebregts@ecn.nl

    2010-04-15

    This technology brief on gas-fired power is part of a series produced by the IEA called the energy technology data source (E-Tech-DS). The E-Tech-DS series consists of a number of 5-10 page technology briefs similar to the IEA Energy Technology Essentials. Based on the data collected for the models that the Energy Technology Systems Analysis Programme (ETSAP) is known for, ETSAP also prepares technology briefs, called E-TechDS. The E-TechDS briefs are standardized presentations of basic information (process, status, performance, costs, potential, and barriers) for key energy technology clusters. Each brief includes an overview of the technology, charts and graphs, and a summary data table, and usually ending with some key references and further information. The E TechDS briefs are intended to offer essential, reliable and quantitative information to energy analysts, experts, policymakers, investors and media from both developed and developing countries. This specific brief focuses on the state of combined-cycle gas turbines (CCGT). CCGT's have become the technology of choice for new gas-fired power plants since the 1990's.

  15. Effective enhancement of gas separation performance in mixed matrix membranes using core/shell structured multi-walled carbon nanotube/graphene oxide nanoribbons

    Science.gov (United States)

    Xue, Qingzhong; Pan, Xinglong; Li, Xiaofang; Zhang, Jianqiang; Guo, Qikai

    2017-02-01

    Novel core/shell structured multi-walled carbon nanotube/graphene oxide nanoribbons (MWCNT@GONRs) nanohybrids were successfully prepared using a modified chemical longitudinal unzipping method. Subsequently, the MWCNT@GONRs nanohybrids were used as fillers to enhance the gas separation performance of polyimide based mixed matrix membranes (MMMs). It is found that MMMs concurrently exhibited higher gas selectivity and higher gas permeability compared to pristine polyimide. The high gas selectivity could be attributed to the GONRs shell, which provided a selective barrier and large gas adsorbed area, while the high gas permeability resulted from the hollow structured MWCNTs core with smooth internal surface, which acted as a rapid transport channel. MWCNT@GONRs could be promising candidates to improve gas separation performance of MMMs due to the unique microstructures, ease of synthesis and low filling loading.

  16. Converse Barrier Certificate Theorem

    DEFF Research Database (Denmark)

    Wisniewski, Rafael; Sloth, Christoffer

    2013-01-01

    This paper presents a converse barrier certificate theorem for a generic dynamical system.We show that a barrier certificate exists for any safe dynamical system defined on a compact manifold. Other authors have developed a related result, by assuming that the dynamical system has no singular...... points in the considered subset of the state space. In this paper, we redefine the standard notion of safety to comply with generic dynamical systems with multiple singularities. Afterwards, we prove the converse barrier certificate theorem and illustrate the differences between ours and previous work...

  17. Production of atmospheric pressure diffuse nanosecond pulsed dielectric barrier discharge using the array needles-plate electrode in air

    International Nuclear Information System (INIS)

    Yang Dezheng; Wang Wenchun; Jia Li; Nie Dongxia; Shi Hengchao

    2011-01-01

    In this paper, a bidirectional high pulse voltage with 20 ns rising time is employed to generate an atmospheric pressure diffuse dielectric barrier discharge using the array needles-plate electrode configuration. Both double needle and multiple needle electrode configurations nanosecond pulsed dielectric barrier discharges are investigated. It is found that a diffuse discharge plasma with low gas temperature can be obtained, and the plasma volume increases with the increase of the pulse peak voltage, but remains almost constant with the increase of the pulse repetition rate. In addition to showing the potential application on a topographically nonuniform surface treatment of the discharge, the multiple needle-plate electrode configuration with different needle-plate electrode gaps are also employed to generate diffuse discharge plasma.

  18. Tunnel superpenetrability of potential barriers

    International Nuclear Information System (INIS)

    Zakhariev, B N.

    1982-01-01

    The transmission of two particles through the same barrier is considered. The limiting cases are compared when the particles are joined together in a single particle with double mass-energy and potential and when they pass the barrier independently. As an intermediate case a pair of particles bound in a quasideuteron of a finite size is considered. It is shown that long-range collective correlations of particles (of the superfluidity type and others) simplify very much for them passing through high potential barriers. This happens due to the transfer of the additional energy from the particles outside the barriers to those inside it

  19. Barrier rf systems in synchrotrons

    International Nuclear Information System (INIS)

    Bhat, Chandra M.

    2004-01-01

    Recently, many interesting applications of the barrier RF system in hadron synchrotrons have been realized. A remarkable example of this is the development of longitudinal momentum mining and implementation at the Fermilab Recycler for extraction of low emittance pbars for the Tevatron shots. At Fermilab, we have barrier RF systems in four different rings. In the case of Recycler Ring, all of the rf manipulations are carried out using a barrier RF system. Here, the author reviews various uses of barrier rf systems in particle accelerators including some new schemes for producing intense proton beam and possible new applications

  20. Development of the infrared instrument for gas detection

    Science.gov (United States)

    Chen, Ching-Wei; Chen, Chia-Ray

    2017-08-01

    MWIR (Mid-Wave Infrared) spectroscopy shows a large potential in the current IR devices market, due to its multiple applications, such as gas detection, chemical analysis, industrial monitoring, combustion and flame characterization. It opens this technique to the fields of application, such as industrial monitoring and control, agriculture and environmental monitoring. However, a major barrier, which is the lack of affordable specific key elements such a MWIR light sources and low cost uncooled detectors, have held it back from its widespread use. In this paper an uncooled MWIR detector combined with image enhancement technique is reported. This investigation shows good results in gas leakage detection test. It also verify the functions of self-developed MWIR lens and optics. A good agreement in theoretical design and experiment give us the lessons learned for the potential application in infrared satellite technology. A brief discussions will also be presented in this paper.

  1. Time-dependent analysis of dissolver off-gas cleaning installations in a reprocessing plant

    International Nuclear Information System (INIS)

    Nagel, K.; Furrer, J.; Becker, G.; Obrowski, W.; Seghal, Y.P.; Weymann, J.

    1983-01-01

    The iodine- and aerosol-filtering test facility PASSAT of the Nuclear Research Centre in Karlsruhe has been investigated using a method which allows time-dependent analyses under accident conditions. This method which is closely related to fault-tree analysis needs subdivision in barriers of the system, and their logical combination in a tree. The barriers have binary states: defect and intact. The defect state will be described by a fault tree, whereas the intact state includes dependences of a barrier operation on physical parameters. The intact state enables time-dependent calculations. Calculations have been done for iodine filtering, because the best known entrance data are given. Results demonstrate clearly that the amount of iodine released increases only if both heaters failed, which heat the off-gas from 30 0 C to 80 0 C and then to 130 0 C. Additionally the integrated amount of iodine released depends on time period between the failures of the heaters

  2. Subsurface barrier verification technologies, informal report

    International Nuclear Information System (INIS)

    Heiser, J.H.

    1994-06-01

    One of the more promising remediation options available to the DOE waste management community is subsurface barriers. Some of the uses of subsurface barriers include surrounding and/or containing buried waste, as secondary confinement of underground storage tanks, to direct or contain subsurface contaminant plumes and to restrict remediation methods, such as vacuum extraction, to a limited area. To be most effective the barriers should be continuous and depending on use, have few or no breaches. A breach may be formed through numerous pathways including: discontinuous grout application, from joints between panels and from cracking due to grout curing or wet-dry cycling. The ability to verify barrier integrity is valuable to the DOE, EPA, and commercial sector and will be required to gain full public acceptance of subsurface barriers as either primary or secondary confinement at waste sites. It is recognized that no suitable method exists for the verification of an emplaced barrier's integrity. The large size and deep placement of subsurface barriers makes detection of leaks challenging. This becomes magnified if the permissible leakage from the site is low. Detection of small cracks (fractions of an inch) at depths of 100 feet or more has not been possible using existing surface geophysical techniques. Compounding the problem of locating flaws in a barrier is the fact that no placement technology can guarantee the completeness or integrity of the emplaced barrier. This report summarizes several commonly used or promising technologies that have been or may be applied to in-situ barrier continuity verification

  3. Fluctuations in Schottky barrier heights

    International Nuclear Information System (INIS)

    Mahan, G.D.

    1984-01-01

    A double Schottky barrier is often formed at the grain boundary in polycrystalline semiconductors. The barrier height is shown to fluctuate in value due to the random nature of the impurity positions. The magnitude of the fluctuations is 0.1 eV, and the fluctuations cause the barrier height measured by capacitance to differ from the one measured by electrical conductivity

  4. Thin film electronic devices with conductive and transparent gas and moisture permeation barriers

    Science.gov (United States)

    Simpson, Lin Jay

    2013-12-17

    A thin film stack (100, 200) is provided for use in electronic devices such as photovoltaic devices. The stack (100, 200) may be integrated with a substrate (110) such as a light transmitting/transmissive layer. A electrical conductor layer (120, 220) is formed on a surface of the substrate (110) or device layer such as a transparent conducting (TC) material layer (120,220) with pin holes or defects (224) caused by manufacturing. The stack (100) includes a thin film (130, 230) of metal that acts as a barrier for environmental contaminants (226, 228). The metal thin film (130,230) is deposited on the conductor layer (120, 220) and formed from a self-healing metal such as a metal that forms self-terminating oxides. A permeation plug or block (236) is formed in or adjacent to the thin film (130, 230) of metal at or proximate to the pin holes (224) to block further permeation of contaminants through the pin holes (224).

  5. Interprovincial regulatory barriers to procurement in western Canada's oil and gas sector : potential standardization-based solutions : final report

    International Nuclear Information System (INIS)

    Hawkins, R.; Godin, M.; Josty, P.

    2008-01-01

    This study reviewed the regulatory environment related to the oil and gas industry in western Canada in order to identify factors limiting the procurement of goods and services required by the industry. The aim of the study was to identify solutions based on the development of voluntary industry standards. Literature and reports related to interprovincial trade and standards were reviewed. The procurement divisions of oil and gas companies and suppliers to the oil and gas industry were consulted in addition to government official and industry experts. A review of provincial technical regulations was completed. The study identified 3 candidates for specific action within the standards system: (1) modular transport platforms; (2) regulatory conformance procedures; and (3) the mobility of skilled workers. Results of the study indicated that the development of service standards for technical and inspection activities of importance to the petroleum industry will help to facilitate the increased mobility of skilled workers, while initiatives to develop a standard information disclosure and exchange format for all federal, provincial and territorial jurisdictions will address the conflicting regimes to which oil and gas products and services are subjected. 40 refs., 5 tabs.

  6. Converse Barrier Certificate Theorems

    DEFF Research Database (Denmark)

    Wisniewski, Rafael; Sloth, Christoffer

    2016-01-01

    This paper shows that a barrier certificate exists for any safe dynamical system. Specifically, we prove converse barrier certificate theorems for a class of structurally stable dynamical systems. Other authors have developed a related result by assuming that the dynamical system has neither...

  7. Barrier inhomogeneities limited current and 1/f noise transport in GaN based nanoscale Schottky barrier diodes

    Science.gov (United States)

    Kumar, Ashutosh; Heilmann, M.; Latzel, Michael; Kapoor, Raman; Sharma, Intu; Göbelt, M.; Christiansen, Silke H.; Kumar, Vikram; Singh, Rajendra

    2016-01-01

    The electrical behaviour of Schottky barrier diodes realized on vertically standing individual GaN nanorods and array of nanorods is investigated. The Schottky diodes on individual nanorod show highest barrier height in comparison with large area diodes on nanorods array and epitaxial film which is in contrast with previously published work. The discrepancy between the electrical behaviour of nanoscale Schottky diodes and large area diodes is explained using cathodoluminescence measurements, surface potential analysis using Kelvin probe force microscopy and 1ow frequency noise measurements. The noise measurements on large area diodes on nanorods array and epitaxial film suggest the presence of barrier inhomogeneities at the metal/semiconductor interface which deviate the noise spectra from Lorentzian to 1/f type. These barrier inhomogeneities in large area diodes resulted in reduced barrier height whereas due to the limited role of barrier inhomogeneities in individual nanorod based Schottky diode, a higher barrier height is obtained. PMID:27282258

  8. Respiratory Mechanics and Gas Exchange: The Effect of Surfactants

    Science.gov (United States)

    Jbaily, Abdulrahman; Szeri, Andrew J.

    2017-11-01

    The purpose of the lung is to exchange gases, primarily oxygen and carbon dioxide, between the atmosphere and the circulatory system. To enable this exchange, the airways in the lungs terminate in some 300 million alveoli that provide adequate surface area for transport. During breathing, work must be done to stretch various tissues to accommodate a greater volume of gas. Considerable work must also be done to expand the liquid lining (hypophase) that coats the interior surfaces of the alveoli. This is enabled by a surface active lipo-protein complex, known as pulmonary surfactant, that modifies the surface tension at the hypophase-air interface. Surfactants also serve as physical barriers that modify the rate of gas transfer across interfaces. We develop a mathematical model to study the action of pulmonary surfactant and its determinative contributions to breathing. The model is used to explore the influence of surfactants on alveolar mechanics and on gas exchange: it relates the work of respiration at the level of the alveolus to the gas exchange rate through the changing influence of pulmonary surfactant over the breathing cycle. This work is motivated by a need to develop improved surfactant replacement therapies to treat serious medical conditions.

  9. Richards Barrier LA Reference Design Feature Evaluation

    International Nuclear Information System (INIS)

    N.E. Kramer

    1999-01-01

    The Richards Barrier is one of the design features of the repository to be considered for the License Application (LA), Richards was a soil scientist who first described the diversion of moisture between two materials with different hydrologic properties. In this report, a Richards Barrier is a special type of backfill with a fine-grained material (such as sand) overlaying a coarse-grained material (such as gravel). Water that enters an emplacement drift will first encounter the fine-grained material and be transported around the coarse-grained material covering the waste package, thus protecting the waste package from contact with most of the groundwater. The objective of this report is to discuss the benefits and liabilities to the repository by the inclusion of a Richards Barrier type backfill in emplacement drifts. The Richards Barrier can act as a barrier to water flow, can reduce the waste package material dissolution rate, limit mobilization of the radionuclides, and can provide structural protection for the waste package. The scope of this report is to: (1) Analyze the behavior of barrier materials following the intrusion of groundwater for influxes of 1 to 300 mm per year. The report will demonstrate diversion of groundwater intrusions into the barrier over an extended time period when seismic activity and consolidation may cause the potential for liquefaction and settlement of the Richards Barrier. (2) Review the thermal effects of the Richards Barrier on material behavior. (3) Analyze the effect of rockfall on the performance of the Richards Barrier and the depth of the barrier required to protect waste packages under the barrier. (4) Review radiological and heating conditions on placement of multiple layers of the barrier. Subsurface Nuclear Safety personnel will perform calculations to determine the radiation reduction-time relationship and shielding capacity of the barrier. (5) Evaluate the effects of ventilation on cooling of emplacement drifts and

  10. Dielectric barrier discharge plasma atomizer for hydride generation atomic absorption spectrometry—Performance evaluation for selenium

    Energy Technology Data Exchange (ETDEWEB)

    Duben, Ondřej [Institute of Analytical Chemistry of the CAS, v.v.i., Veveří 97, CZ-602 00 Brno (Czech Republic); Faculty of Science, Department of Analytical Chemistry, Charles University in Prague, Hlavova 8, Prague, CZ 128 43 Czech Republic (Czech Republic); Boušek, Jaroslav [Faculty of Electrical Engineering and Communications, Brno University of Technology, Technická 1058/10, 61600 Brno (Czech Republic); Dědina, Jiří [Institute of Analytical Chemistry of the CAS, v.v.i., Veveří 97, CZ-602 00 Brno (Czech Republic); Kratzer, Jan, E-mail: jkratzer@biomed.cas.cz [Institute of Analytical Chemistry of the CAS, v.v.i., Veveří 97, CZ-602 00 Brno (Czech Republic)

    2015-09-01

    Atomization of selenium hydride in a quartz dielectric barrier discharge (DBD) atomizer was optimized and its performance was compared to that of the externally heated quartz multiatomizer. Argon was found as the best DBD discharge gas employing a flow rate of 75 ml min{sup −1} Ar while the DBD power was optimized at 14 W. The detection limits reached 0.24 ng ml{sup −1} Se in the DBD and 0.15 ng ml{sup −1} Se in the multiatomizer. The tolerance of DBD to interferences is even better than with the multiatomizer. - Highlights: • SeH{sub 2} atomization in a dielectric barrier discharge (DBD) was optimized for AAS. • Atomizer performance was compared for DBD and externally heated quartz atomizer. • Detection limits were quantified and interferences were studied in both atomizers. • Atomization efficiency in the DBD was estimated.

  11. Renewable energy in South Africa: Potentials, barriers and options for support

    International Nuclear Information System (INIS)

    Pegels, Anna

    2010-01-01

    The challenge of transforming entire economies is enormous; even more so if a country is as fossil fuel based and emission intensive as South Africa. However, in an increasingly carbon constrained world and already now facing climate change impacts South Africa has to reduce greenhouse gas emissions intensity soon and decidedly. The South African electricity sector is a vital part of the economy and at the same time contributes most to the emissions problem. First steps have been taken by the South African government to enhance energy efficiency and promote renewable energy, however, they fail to show large-scale effects. This paper seeks to identify the relevant barriers to renewable energy investments and, based on experience from other countries, provide policy recommendations. The major barrier identified in the paper is based on the economics of renewable energy technologies, i.e. their cost and risk structures, two main factors in investment planning. As a solution, the South African government introduced several renewable energy support measures, such as a feed-in tariff. The paper discusses the potential and possible shortcomings of this and other existing support schemes and identifies complementing measures on a national scale.

  12. Renewable energy in South Africa. Potentials, barriers and options for support

    Energy Technology Data Exchange (ETDEWEB)

    Pegels, Anna [German Development Institute/Deutsches Institut fuer Entwicklungspolitik, Tulpenfeld 6, 53113 Bonn (Germany)

    2010-09-15

    The challenge of transforming entire economies is enormous; even more so if a country is as fossil fuel based and emission intensive as South Africa. However, in an increasingly carbon constrained world and already now facing climate change impacts South Africa has to reduce greenhouse gas emissions intensity soon and decidedly. The South African electricity sector is a vital part of the economy and at the same time contributes most to the emissions problem. First steps have been taken by the South African government to enhance energy efficiency and promote renewable energy, however, they fail to show large-scale effects. This paper seeks to identify the relevant barriers to renewable energy investments and, based on experience from other countries, provide policy recommendations. The major barrier identified in the paper is based on the economics of renewable energy technologies, i.e. their cost and risk structures, two main factors in investment planning. As a solution, the South African government introduced several renewable energy support measures, such as a feed-in tariff. The paper discusses the potential and possible shortcomings of this and other existing support schemes and identifies complementing measures on a national scale. (author)

  13. Renewable energy in South Africa: Potentials, barriers and options for support

    Energy Technology Data Exchange (ETDEWEB)

    Pegels, Anna, E-mail: anna.pegels@die-gdi.d [German Development Institute/Deutsches Institut fuer Entwicklungspolitik, Tulpenfeld 6, 53113 Bonn (Germany)

    2010-09-15

    The challenge of transforming entire economies is enormous; even more so if a country is as fossil fuel based and emission intensive as South Africa. However, in an increasingly carbon constrained world and already now facing climate change impacts South Africa has to reduce greenhouse gas emissions intensity soon and decidedly. The South African electricity sector is a vital part of the economy and at the same time contributes most to the emissions problem. First steps have been taken by the South African government to enhance energy efficiency and promote renewable energy, however, they fail to show large-scale effects. This paper seeks to identify the relevant barriers to renewable energy investments and, based on experience from other countries, provide policy recommendations. The major barrier identified in the paper is based on the economics of renewable energy technologies, i.e. their cost and risk structures, two main factors in investment planning. As a solution, the South African government introduced several renewable energy support measures, such as a feed-in tariff. The paper discusses the potential and possible shortcomings of this and other existing support schemes and identifies complementing measures on a national scale.

  14. Skin barrier composition

    International Nuclear Information System (INIS)

    Osburn, F.G.

    1985-01-01

    A skin barrier composition comprises a mixture of a copolymer resin of ethylene and vinyl acetate (EVA), and a water-insoluble dry tack-providing elastomer such as polyisobutylene. The composition after mixing and molding, is subjected to ionizing irradiation to form cross-linked polymer networks of the EVA. The compositions have exceptional properties for use as barrier sheets, rings, or strips in ostomy, wound drainage, and incontinence devices. (author)

  15. Skin barrier composition

    Energy Technology Data Exchange (ETDEWEB)

    Osburn, F G

    1985-06-12

    A skin barrier composition comprises a mixture of a copolymer resin of ethylene and vinyl acetate (EVA), and a water-insoluble dry tack-providing elastomer such as polyisobutylene. The composition after mixing and molding, is subjected to ionizing irradiation to form cross-linked polymer networks of the EVA. The compositions have exceptional properties for use as barrier sheets, rings, or strips in ostomy, wound drainage, and incontinence devices.

  16. Prospective gas turbine and combined-cycle units for power engineering (a Review)

    Science.gov (United States)

    Ol'khovskii, G. G.

    2013-02-01

    The modern state of technology for making gas turbines around the world and heat-recovery combined-cycle units constructed on their basis are considered. The progress achieved in this field by Siemens, Mitsubishi, General Electric, and Alstom is analyzed, and the objectives these companies set forth for themselves for the near and more distant future are discussed. The 375-MW gas turbine unit with an efficiency of 40% produced by Siemens, which is presently the largest one, is subjected to a detailed analysis. The main specific features of this turbine are that the gas turbine unit's hot-path components have purely air cooling, due to which the installation has enhanced maneuverability. The single-shaft combined-cycle plant constructed on the basis of this turbine has a capacity of 570 MW and efficiency higher than 60%. Programs adopted by different companies for development of new-generation gas turbine units firing synthesis gas and fitted with low-emission combustion chambers and new cooling systems are considered. Concepts of rotor blades for new gas turbine units with improved thermal barrier coatings and composite blades different parts of which are made of materials selected in accordance with the conditions of their operation are discussed.

  17. Barriers for recess physical activity

    DEFF Research Database (Denmark)

    Pawlowski, Charlotte Skau; Tjørnhøj-Thomsen, Tine; Schipperijn, Jasper

    2014-01-01

    BACKGROUND: Many children, in particular girls, do not reach the recommended amount of daily physical activity. School recess provides an opportunity for both boys and girls to be physically active, but barriers to recess physical activity are not well understood. This study explores gender...... differences in children's perceptions of barriers to recess physical activity. Based on the socio-ecological model four types of environmental barriers were distinguished: natural, social, physical and organizational environment. METHODS: Data were collected through 17 focus groups (at 17 different schools...... this study, we recommend promoting recess physical activity through a combination of actions, addressing barriers within the natural, social, physical and organizational environment....

  18. Gas supply for independent power projects: Drilling programs and reserve acquisitions

    International Nuclear Information System (INIS)

    Lambert, J.D.; Walker, R.K.

    1990-01-01

    Developers of gas-fired independent power projects, although drawn to gas as the fuel of choice for economic and environmental reasons, are finding the problem of cost-effective gas supply to be intractable. By one estimate, there are $6 billion worth of gas-fired projects languishing in the planning stage for want of long-term gas supply that is acceptable to project lenders. Worse still, as the authors are aware, some currently operating gas-fired projects lack such a supply, thus forcing the developer to rely on the spot market for gas as an interim (and unsatisfactory) solution. Although spot market prices in the deregulated natural gas industry have remained relatively low over several years, long-term gas supply has become problematic, particularly for power projects whose economics typically require an assured supply at a determined price over a multiyear period. In short, while there is an increasing demand for gas as a preferred source of fuel supply for power projects, there are discontinuities in the approaches taken to contracting for that supply by producers and developers. These concern primarily allocation of the risk of commodity-driven price increases during the term of the fuel supply contract. Without a means of accommodating price-related risk, the parties will inevitably find themselves at an impasse in contract negotiations. If there is a barrier to the independent power generation industry's vertical integration into gas production, it is the fundamental insularity of the two industries. As they have discovered, it may be indispensable for gas producers and power developers to employ intermediaries familiar with both industries in order to consummate appropriate joint-venture drilling programs and reserve acquisitions. Given the economic consequences of doing so successfully, however, they believe such programs and acquisitions may become an integral part of independent power developers' business strategy in the 1990s and beyond

  19. Epicuticular wax on cherry laurel (Prunus laurocerasus) leaves does not constitute the cuticular transpiration barrier.

    Science.gov (United States)

    Zeisler, Viktoria; Schreiber, Lukas

    2016-01-01

    Epicuticular wax of cherry laurel does not contribute to the formation of the cuticular transpiration barrier, which must be established by intracuticular wax. Barrier properties of cuticles are established by cuticular wax deposited on the outer surface of the cuticle (epicuticular wax) and in the cutin polymer (intracuticular wax). It is still an open question to what extent epi- and/or intracuticular waxes contribute to the formation of the transpiration barrier. Epicuticular wax was mechanically removed from the surfaces of isolated cuticles and intact leaf disks of cherry laurel (Prunus laurocerasus L.) by stripping with different polymers (collodion, cellulose acetate and gum arabic). Scanning electron microscopy showed that two consecutive treatments with all three polymers were sufficient to completely remove epicuticular wax since wax platelets disappeared and cuticle surfaces appeared smooth. Waxes in consecutive polymer strips and wax remaining in the cuticle after treatment with the polymers were determined by gas chromatography. This confirmed that two treatments of the polymers were sufficient for selectively removing epicuticular wax. Water permeability of isolated cuticles and cuticles covering intact leaf disks was measured using (3)H-labelled water before and after selectively removing epicuticular wax. Cellulose acetate and its solvent acetone led to a significant increase of cuticular permeability, indicating that the organic solvent acetone affected the cuticular transpiration barrier. However, permeability did not change after two subsequent treatments with collodion and gum arabic or after treatment with the corresponding solvents (diethyl ether:ethanol or water). Thus, in the case of P. laurocerasus the epicuticular wax does not significantly contribute to the formation of the cuticular transpiration barrier, which evidently must be established by the intracuticular wax.

  20. Sub-barrier fusion and near-barrier quasi-elastic scattering

    International Nuclear Information System (INIS)

    Kolata, J.J.; Tighe, R.J.

    1990-01-01

    Elastic scattering of 32 S on 58,64 Ni and fusion of 32 S+ 58,64 Ni and 34 S+ 64 Ni have been measured at energies near the Coulomb barrier. Our results differ in several important respects from previous measurements on these systems. Coupled-channels calculations which explicitly allow for inelastic excitation and single-nucleon transfer reproduce the main features of the new data. Near-barrier elastic scattering of 48 Ca on 40 Ca has also been measured. These data provide evidence for the effect of strong coupling to positive Q-value channels other than single-nucleon transfer. 18 refs., 3 figs

  1. Poly(3-hydroxybutyrate/ZnO Bionanocomposites with Improved Mechanical, Barrier and Antibacterial Properties

    Directory of Open Access Journals (Sweden)

    Ana M. Díez-Pascual

    2014-06-01

    Full Text Available Poly(3-hydroxybutyrate (PHB-based bionanocomposites incorporating different contents of ZnO nanoparticles were prepared via solution casting technique. The nanoparticles were dispersed within the biopolymer without the need for surfactants or coupling agents. The morphology, thermal, mechanical, barrier, migration and antibacterial properties of the nanocomposites were investigated. The nanoparticles acted as nucleating agents, increasing the crystallization temperature and the degree of crystallinity of the matrix, and as mass transport barriers, hindering the diffusion of volatiles generated during the decomposition process, leading to higher thermal stability. The Young’s modulus, tensile and impact strength of the biopolymer were enhanced by up to 43%, 32% and 26%, respectively, due to the strong matrix-nanofiller interfacial adhesion attained via hydrogen bonding interactions, as revealed by the FT-IR spectra. Moreover, the nanocomposites exhibited reduced water uptake and superior gas and vapour barrier properties compared to neat PHB. They also showed antibacterial activity against both Gram-positive and Gram-negative bacteria, which was progressively improved upon increasing ZnO concentration. The migration levels of PHB/ZnO composites in both non-polar and polar simulants decreased with increasing nanoparticle content, and were well below the current legislative limits for food packaging materials. These biodegradable nanocomposites show great potential as an alternative to synthetic plastic packaging materials especially for use in food and beverage containers and disposable applications.

  2. The Fuel Efficiency of Maritime Transport. Potential for improvement and analysis of barriers

    Energy Technology Data Exchange (ETDEWEB)

    Faber, J.; Nelissen, D.; Smit, M. [CE Delft, Delft (Netherlands); Behrends, B. [Marena Ltd., s.l. (United Kingdom); Lee, D.S. [Manchester Metropolitan University, Machester (United Kingdom)

    2012-02-15

    There is significant potential to improve the fuel efficiency of ships and thus contribute to reducing greenhouse gas emissions from maritime transport. It has long been recognised that this potential is not being fully exploited, owing to the existence of non-market barriers. This report analyses the barriers to implementing fuel efficiency improvements, and concludes that the most important of these are the split incentive between ship owners and operators, a lack of trusted data on new technologies, and transaction costs associated with evaluating measures. As a result, in practice about a quarter of the cost-effective abatement potential is unavailable. There are several ways to overcome these barriers. The split incentive can - to some extent - be overcome by providing more detailed information on the fuel efficiency of vessels, making due allowance for operational profiles. This would allow fuel consumption to be more accurately projected and a larger share of efficiency benefits to accrue to ship owners, thus increasing the return on investment in fuel-saving technologies. This would also require changes to standard charter parties. The credibility of information on new technologies can be improved through intensive collaboration between suppliers of new technologies and shipping companies. In order to overcome risk, government subsidies could provide an incentive. This could have the additional benefit that governments could require publication of results.

  3. Self-regulation of turbulence bursts and transport barriers

    International Nuclear Information System (INIS)

    Floriani, E; Ciraolo, G; Ghendrih, Ph; Sarazin, Y; Lima, R

    2013-01-01

    The interplay between turbulent bursts and transport barriers is analyzed with a simplified model of interchange turbulence in magnetically confined plasmas. The turbulent bursts spread into the transport barriers and, depending on the competing magnitude of the burst and stopping capability of the barrier, can burn through. Simulations of two models of transport barriers are presented: a hard barrier where interchange turbulence modes are stable in a prescribed region and a soft barrier with external plasma biasing. The response of the transport barriers to the non-linear perturbations of the turbulent bursts, addressed in a predator–prey approach, indicates that the barriers monitor an amplification factor of the turbulent bursts, with amplification smaller than one for most bursts and, in some cases, amplification factors that can significantly exceed unity. The weak barriers in corrugated profiles and magnetic structures, as well as the standard barriers, are characterized by these transmission properties, which then regulate the turbulent burst transport properties. The interplays of barriers and turbulent bursts are modeled as competing stochastic processes. For different classes of the probability density function (PDF) of these processes, one can predict the heavy tail properties of the bursts downstream from the barrier, either exponential for a leaky barrier, or with power laws for a tight barrier. The intrinsic probing of the transport barriers by the turbulent bursts thus gives access to the properties of the barriers. The main stochastic variables are the barrier width and the spreading distance of the turbulent bursts within the barrier, together with their level of correlation. One finds that in the case of a barrier with volumetric losses, such as radiation or particle losses as addressed in our present simulations, the stochastic model predicts a leaky behavior with an exponential PDF of escaping turbulent bursts in agreement with the simulation

  4. Identifying barriers to emergency care services.

    Science.gov (United States)

    Cannoodt, Luk; Mock, Charles; Bucagu, Maurice

    2012-01-01

    This paper aims to present a review of published evidence of barriers to emergency care, with attention towards both financial and other barriers. With the keywords (financial) accessibility, barriers and emergency care services, citations in PubMed were searched and further selected in the context of the objective of this article. Forty articles, published over a period of 15 years, showed evidence of significant barriers to emergency care. These barriers often tend to persist, despite the fact that the evidence was published many years ago. Several publications stressed the importance of the financial barriers in foregoing or delaying potentially life-saving emergency services, both in poor and rich countries. Other publications report non-financial barriers that prevent patients in need of emergency care (pre-hospital and in-patient care) from seeking care, from arriving in the proper emergency department without undue delay or from receiving proper treatment when they do arrive in these departments. It is clear that timely access to life-saving and disability-preventing emergency care is problematic in many settings. Yet, low-cost measures can likely be taken to significantly reduce these barriers. It is time to make an inventory of these measures and to implement the most cost-effective ones worldwide. Copyright © 2011 John Wiley & Sons, Ltd.

  5. Cryogenic Barrier Demonstration Project. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, L.A.; Yarmak, E.; Long, E.L.

    2000-03-01

    A long-term frozen soil barrier was implemented at the HRE (Homogeneous Reactor Experiment) Pond facility at the Oak Ridge National Laboratory in 1997. This was performed to verify the technical feasibility and costs of deploying a frozen barrier at a radiologically contaminated site. Work began in September 1996 and progressed through to December 1999. The frozen barrier has been operational since November 1997. Verification of the barrier integrity was performed independently by the EPA's SITE Program. This project showed frozen barriers offer a proven technology to retain below grade hazardous substances at relatively low costs with minimal effect on the environment.

  6. Fuzzy barrier distributions

    International Nuclear Information System (INIS)

    Piasecki, E.

    2009-01-01

    Heavy-ion collisions often produce a fusion barrier distribution with structures displaying a fingerprint of couplings to highly collective excitations [1]. Basically the same distribution can be obtained from large-angle quasi-elastic scattering, though here the role of the many weak direct-reaction channels is unclear. For 2 0N e + 9 0Z r we have observed the barrier structures expected for the highly deformed neon projectile, but for 2 0N e + 9 2Z r we find completely smooth distribution (see Fig.1). We find that transfer channels in these systems are of similar strength but single particle excitations are significantly stronger in the latter case. They apparently reduce the 'resolving power' of the quasi-elastic channel, what leads to smeared out, or 'fuzzy' barrier distribution. This is the first case when such a phenomenon has been observed.(author)

  7. Using natural gas generation to improve power system efficiency in China

    International Nuclear Information System (INIS)

    Hu, Junfeng; Kwok, Gabe; Xuan, Wang; Williams, James H.; Kahrl, Fredrich

    2013-01-01

    China's electricity sector faces the challenge of managing cost increases, improving reliability, and reducing its environmental footprint even as operating conditions become more complex due to increasing renewable penetration, growing peak demand, and falling system load factors. Addressing these challenges will require changes in how power generation is planned, priced, and dispatched in China. This is especially true for natural gas generation, which is likely to play an important role in power systems worldwide as a flexible generation resource. Although natural gas is commonly perceived to be economically uncompetitive with coal in China, these perceptions are based on analysis that fails to account for the different roles that natural gas generation plays in power systems—baseload, load following, and peaking generation. Our analysis shows that natural gas generation is already cost-effective for meeting peak demand in China, resulting in improved capacity factors and heat rates for coal-fired generators and lower system costs. We find that the largest barrier to using natural gas for peaking generation in China is generation pricing, which could be addressed through modest reforms to support low capacity factor generation. - Highlights: • Using gas generation as a “capacity resource” in China could have multiple benefits. • Benefits include lower total costs, improved efficiency for coal generators. • Price reforms needed to support low capacity factor generation in China

  8. High pressure deuterium-tritium gas target vessels for muon-catalyzed fusion experiments

    International Nuclear Information System (INIS)

    Caffrey, A.J.; Spaletta, H.W.; Ware, A.G.; Zabriskie, J.M.; Hardwick, D.A.; Maltrud, H.R.; Paciotti, M.A.

    1989-01-01

    In experimental studies of muon-catalyzed fusion, the density of the hydrogen gas mixture is an important parameter. Catalysis of up to 150 fusions per muon has been observed in deuterium-tritium gas mixtures at liquid hydrogen density; at room temperature, such densities require a target gas pressure of the order of 1000 atmospheres (100 MPa, 15,000 psi). We report here the design considerations for hydrogen gas target vessels for muon-catalyzed fusion experiments that operate at 1000 and 10,000 atmospheres. The 1000 atmosphere high pressure target vessels are fabricated of Type A-286 stainless steel and lined with oxygen-free, high-conductivity (OFHC) copper to provide a barrier to hydrogen permeation of the stainless steel. The 10,000 atmosphere ultrahigh pressure target vessels are made from 18Ni (200 grade) maraging steel and are lined with OFHC copper, again to prevent hydrogen permeation of the steel. In addition to target design features, operating requirements, fabrication procedures, and secondary containment are discussed. 13 refs., 3 figs., 1 tab

  9. Strategies to overcome barriers for cleaner generation technologies in small developing power systems: Sri Lanka case study

    International Nuclear Information System (INIS)

    Wijayatunga, Priyantha D.C.; Siriwardena, Kanchana; Fernando, W.J.L.S.; Shrestha, Ram M.; Attalage, Rahula A.

    2006-01-01

    The penetration of cleaner and energy efficient technologies in small power systems such as the one in Sri Lanka has encountered many problems. This has caused major concerns among the policy makers, mainly in the context of the growing need to reduce harmful emissions in the electricity supply industry from the point of view of both local environmental pollution as well as the global warming concerns. This paper presents the outcome of a study involved in identifying and ranking the barriers to the promotion of cleaner and energy efficient technologies and strategies to overcome these barriers in Sri Lanka. Barriers for renewable energy based systems such as wind and wood fuel fired plants (dendro thermal power) and cleaner technologies such as liquefied natural gas (LNG) fired combined cycle and IGCC (coal) were identified based on a survey. A direct assessment multi-criteria decision making method called Analytic Hierarchy Process (AHP) was used to rank the barriers. The most effective strategies are proposed to address the three major barriers for each of these technologies based on extensive discussions with all the stakeholders in the electricity industry. It was found that lack of financing instruments, high initial cost and lack of assurance of resource supply or availability are the main barriers for renewable technologies. As for cleaner fuel and technology options associated with conventional generation systems, the lack of a clear government policy, uncertainty of fuel supplies and their prices and the reliability of the technologies themselves are the major barriers. Strategies are identified to overcome the above barriers. Establishment of a proper feed in tariff, geographical diversification of installations and capacity building in commercial banks are suggested for wind power. Investment incentives, streamlining of wood production and research on site identification are proposed for wood fuel fired plants. Also the study suggests delayed

  10. NATURAL GAS RESOURCES IN DEEP SEDIMENTARY BASINS

    Energy Technology Data Exchange (ETDEWEB)

    Thaddeus S. Dyman; Troy Cook; Robert A. Crovelli; Allison A. Henry; Timothy C. Hester; Ronald C. Johnson; Michael D. Lewan; Vito F. Nuccio; James W. Schmoker; Dennis B. Riggin; Christopher J. Schenk

    2002-02-05

    using laboratory pyrolysis methods have provided much information on the origins of deep gas. Technologic problems are one of the greatest challenges to deep drilling. Problems associated with overcoming hostile drilling environments (e.g. high temperatures and pressures, and acid gases such as CO{sub 2} and H{sub 2}S) for successful well completion, present the greatest obstacles to drilling, evaluating, and developing deep gas fields. Even though the overall success ratio for deep wells is about 50 percent, a lack of geological and geophysical information such as reservoir quality, trap development, and gas composition continues to be a major barrier to deep gas exploration. Results of recent finding-cost studies by depth interval for the onshore U.S. indicate that, on average, deep wells cost nearly 10 times more to drill than shallow wells, but well costs and gas recoveries vary widely among different gas plays in different basins. Based on an analysis of natural gas assessments, many topical areas hold significant promise for future exploration and development. One such area involves re-evaluating and assessing hypothetical unconventional basin-center gas plays. Poorly-understood basin-center gas plays could contain significant deep undiscovered technically-recoverable gas resources.

  11. Barriers to evidence-based medicine: a systematic review.

    Science.gov (United States)

    Sadeghi-Bazargani, Homayoun; Tabrizi, Jafar Sadegh; Azami-Aghdash, Saber

    2014-12-01

    Evidence-based medicine (EBM) has emerged as an effective strategy to improve health care quality. The aim of this study was to systematically review and carry out an analysis on the barriers to EBM. Different database searching methods and also manual search were employed in this study using the search words ('evidence-based' or 'evidence-based medicine' or 'evidence-based practice' or 'evidence-based guidelines' or 'research utilization') and (barrier* or challenge or hinder) in the following databases: PubMed, Scopus, Web of Knowledge, Cochrane library, Pro Quest, Magiran, SID. Out of 2592 articles, 106 articles were finally identified for study. Research barriers, lack of resources, lack of time, inadequate skills, and inadequate access, lack of knowledge and financial barriers were found to be the most common barriers to EBM. Examples of these barriers were found in primary care, hospital/specialist care, rehabilitation care, medical education, management and decision making. The most common barriers to research utilization were research barriers, cooperation barriers and changing barriers. Lack of resources was the most common barrier to implementation of guidelines. The result of this study shows that there are many barriers to the implementation and use of EBM. Identifying barriers is just the first step to removing barriers to the use of EBM. Extra resources will be needed if these barriers are to be tackled. © 2014 John Wiley & Sons, Ltd.

  12. Market and Policy Barriers to Energy Storage Deployment

    Energy Technology Data Exchange (ETDEWEB)

    Bhatnagar, Dhruv [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Currier, Aileen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hernandez, Jacquelynne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ma, Ookie [Dept. of Energy (DOE), Washington DC (United States) Office of Energy Efficiency and Renewable Energy; Kirby, Brendan [Consultant

    2013-09-01

    Electric energy storage technologies can provide numerous grid services; there are a number of factors that restrict their current deployment. The most significant barrier to deployment is high capital costs, though several recent deployments indicate that capital costs are decreasing and energy storage may be the preferred economic alternative in certain situations. However, a number of other market and regulatory barriers persist, limiting further deployment. These barriers can be categorized into regulatory barriers, market (economic) barriers, utility and developer business model barriers, cross-cutting barriers and technology barriers.

  13. Information barriers and authentication

    International Nuclear Information System (INIS)

    MacArthur, D.W.; Wolford, J.K.

    2001-01-01

    Acceptance of nuclear materials into a monitoring regime is complicated if the materials are in classified shapes or have classified composition. An attribute measurement system with an information barrier can be emplo,yed to generate an unclassified display from classified measurements. This information barrier must meet two criteria: (1) classified information cannot be released to the monitoring party, and (2) the monitoring party must be convinced that the unclassified output accurately represents the classified input. Criterion 1 is critical to the host country to protect the classified information. Criterion 2 is critical to the monitoring party and is often termed the 'authentication problem.' Thus, the necessity for authentication of a measurement system with an information barrier stems directly from the description of a useful information barrier. Authentication issues must be continually addressed during the entire development lifecycle of the measurement system as opposed to being applied only after the system is built.

  14. Dielectric Barrier Discharge Plasma-Induced Photocatalysis and Ozonation for the Treatment of Wastewater

    International Nuclear Information System (INIS)

    Sun, Mok Young; Jin-Oh, Jo; Heon-Ju, Lee

    2008-01-01

    The physicochemical processes of dielectric barrier discharge (DBD) such as in-situ formation of chemically active species and emission of ultraviolet (UV)/visible light were utilized for the treatment of a simulated wastewater formed with Acid Red 4 as the model organic contaminant. The chemically active species (mostly ozone) produced in the DBD reactor were well distributed in the wastewater using a porous gas diffuser, thereby increasing the gas-liquid contact area. For the purpose of making the best use of the light emission, a titanium oxide-based photocatalyst was incorporated in the wastewater treating system. The experimental parameters chosen were the voltage applied to the DBD reactor, the initial pH of the wastewater, and the concentration of hydrogen peroxide added to the wastewater. The results have clearly shown that the present system capable of degrading organic contaminants in two ways (photocatalysis and ozonation) may be a promising wastewater treatment technology.

  15. Dielectric Barrier Discharge Plasma-Induced Photocatalysis and Ozonation for the Treatment of Wastewater

    Science.gov (United States)

    Mok, Young Sun; Jo, Jin-Oh; Lee, Heon-Ju

    2008-02-01

    The physicochemical processes of dielectric barrier discharge (DBD) such as in-situ formation of chemically active species and emission of ultraviolet (UV)/visible light were utilized for the treatment of a simulated wastewater formed with Acid Red 4 as the model organic contaminant. The chemically active species (mostly ozone) produced in the DBD reactor were well distributed in the wastewater using a porous gas diffuser, thereby increasing the gas-liquid contact area. For the purpose of making the best use of the light emission, a titanium oxide-based photocatalyst was incorporated in the wastewater treating system. The experimental parameters chosen were the voltage applied to the DBD reactor, the initial pH of the wastewater, and the concentration of hydrogen peroxide added to the wastewater. The results have clearly shown that the present system capable of degrading organic contaminants in two ways (photocatalysis and ozonation) may be a promising wastewater treatment technology.

  16. The Share Price and Investment: Current Footprints for Future Oil and Gas Industry Performance

    Directory of Open Access Journals (Sweden)

    Ionel Jianu

    2018-02-01

    Full Text Available The share price has become a very important indicator for shareholders, banks, and financial institutions evaluating the performance of companies. The oil and gas industry seems to be in a difficult era of development, due to the market prices for its products. Moreover, climate change and renewable energies are barriers for fossil energy. This state of affairs, and the fact that oil and gas shares are considered one of the most solid and reliable shares on the London Stock Exchange (LSE, have drawn our attention. International institutions encourage the investment in the oil and gas economic sector. This study investigates how investments of oil and gas companies in long-term assets influence the share price. Using the Ohlson share price model for a sample of 51 listed companies on the LSE proves that investments in long-term assets influence the share price in the case of companies which record losses. Investments in long-term assets are responsible for the attractiveness of the oil and gas company shares.

  17. Geopolitics of European natural gas demand: Supplies from Russia, Caspian and the Middle East

    Energy Technology Data Exchange (ETDEWEB)

    Bilgin, Mert, E-mail: mert.bilgin@bahcesehir.edu.t [Bahcesehir University Faculty of Economics and Administrative Sciences, Political Science and International Relations Department, Ciragan Caddesi Besiktas, 34353 Istanbul (Turkey)

    2009-11-15

    This paper addresses issues of natural gas which raise questions about European energy security. It first focuses on the rising gas demand of the EU27 and elaborates alleged risks of dependence on Russia such as Gazprom's disagreement with Ukraine, which became an international gas crisis in January 2006 and also more recently in January 2009. Incentives and barriers of Europe's further cooperation with selected Caspian (Azerbaijan, Kazakhstan and Turkmenistan) and Middle Eastern (Iran, Iraq and Egypt) countries are discussed. Supplies from Caspian are analyzed with a particular focus on Russia's role and the vested interests in the region. Supplies from the Middle East are elaborated with regard to Iran's huge and Iraq's emerging potentials in terms of natural gas reserves and foreign direct investments in the energy sector. The geopolitical analysis leads to a conclusion that the best strategy, and what seems more likely, for the EU is to include at least two countries from Azerbaijan, Turkmenistan, Iran and Iraq within its natural gas supply system.

  18. Geopolitics of European natural gas demand. Supplies from Russia, Caspian and the Middle East

    Energy Technology Data Exchange (ETDEWEB)

    Bilgin, Mert [Bahcesehir University Faculty of Economics and Administrative Sciences, Political Science and International Relations Department, Ciragan Caddesi Besiktas, 34353 Istanbul (Turkey)

    2009-11-15

    This paper addresses issues of natural gas which raise questions about European energy security. It first focuses on the rising gas demand of the EU27 and elaborates alleged risks of dependence on Russia such as Gazprom's disagreement with Ukraine, which became an international gas crisis in January 2006 and also more recently in January 2009. Incentives and barriers of Europe's further cooperation with selected Caspian (Azerbaijan, Kazakhstan and Turkmenistan) and Middle Eastern (Iran, Iraq and Egypt) countries are discussed. Supplies from Caspian are analyzed with a particular focus on Russia's role and the vested interests in the region. Supplies from the Middle East are elaborated with regard to Iran's huge and Iraq's emerging potentials in terms of natural gas reserves and foreign direct investments in the energy sector. The geopolitical analysis leads to a conclusion that the best strategy, and what seems more likely, for the EU is to include at least two countries from Azerbaijan, Turkmenistan, Iran and Iraq within its natural gas supply system. (author)

  19. Fusion barrier characteristics of actinides

    Science.gov (United States)

    Manjunatha, H. C.; Sridhar, K. N.

    2018-03-01

    We have studied fusion barrier characteristics of actinide compound nuclei with atomic number range 89 ≤ Z ≤ 103 for all projectile target combinations. After the calculation of fusion barrier heights and positions, we have searched for their parameterization. We have achieved the empirical formula for fusion barrier heights (VB), positions (RB), curvature of the inverted parabola (ħω) of actinide compound nuclei with atomic number range 89 ≤ Z ≤ 103 for all projectile target combinations (6 projectile target combinations. The values produced by the present formula are also compared with experiments. The present pocket formula produces fusion barrier characteristics of actinides with the simple inputs of mass number (A) and atomic number (Z) of projectile-targets.

  20. Analyses of 2-DEG characteristics in GaN HEMT with AlN/GaN super-lattice as barrier layer grown by MOCVD.

    Science.gov (United States)

    Xu, Peiqiang; Jiang, Yang; Chen, Yao; Ma, Ziguang; Wang, Xiaoli; Deng, Zhen; Li, Yan; Jia, Haiqiang; Wang, Wenxin; Chen, Hong

    2012-02-20

    GaN-based high-electron mobility transistors (HEMTs) with AlN/GaN super-lattices (SLs) (4 to 10 periods) as barriers were prepared on (0001) sapphire substrates. An innovative method of calculating the concentration of two-dimensional electron gas (2-DEG) was brought up when AlN/GaN SLs were used as barriers. With this method, the energy band structure of AlN/GaN SLs was analyzed, and it was found that the concentration of 2-DEG is related to the thickness of AlN barrier and the thickness of the period; however, it is independent of the total thickness of the AlN/GaN SLs. In addition, we consider that the sheet carrier concentration in every SL period is equivalent and the 2-DEG concentration measured by Hall effect is the average value in one SL period. The calculation result fitted well with the experimental data. So, we proposed that our method can be conveniently applied to calculate the 2-DEG concentration of HEMT with the AlN/GaN SL barrier.