Sample records for sio2 optical fibers

  1. Fiber-optic thermometry using thermal radiation from Tm end doped SiO2 fiber sensor. (United States)

    Morita, Kentaro; Katsumata, Toru; Komuro, Shuji; Aizawa, Hiroaki


    Fiber-optic thermometry based on temperature dependence of thermal radiation from Tm(3+) ions was studied using Tm end doped SiO2 fiber sensor. Visible light radiation peaks due to f-f transition of Tm(3+) ion were clearly observed at λ = 690 and 790 nm from Tm end doped SiO2 fibers sensor at the temperature above 600 °C. Thermal radiation peaks are assigned with f-f transition of Tm(3+) ion, (1)D2-(3)H6, and (1)G4-(3)H6. Peak intensity of thermal radiation from Tm(3+) ion increases with temperature. Intensity ratio of thermal radiation peaks at λ = 690 nm against that at λ = 790 nm, I790/690, is suitable for the temperature measurement above 750 °C. Two-dimensional temperature distribution in a flame is successfully evaluated by Tm end doped SiO2 fiber sensor.

  2. Irradiation behavior of developed radiation resistance optical-fibers and observed optical radiation from their SiO2 cores under reactor irradiation

    International Nuclear Information System (INIS)

    Shikama, Tatsuo; Narui, Minoru; Kayano, Hideo; Kakuta, Tsunemi; Sagawa, Tsutomu; Sanada, Kazuo; Shamoto, Naoki; Uramoto, Toshimasa.


    Two kinds of optical fibers were irradiated in a fission reactor, JMTR(Japan Materials Testing Reactor), up to a 1.55x10 19 n/cm 2 fast neutron fluence and a 3.3x10 9 Gy ionizing dose at 370K. Optical transmission spectra were measured in the wavelength range of 450-1750nm, in-situ. Growth of strong optical absorption bands were observed in the range of wavelength shorter than 750nm. In the meantime, the fibers showed good radiation-resistance in the range of wavelength longer than 750nm. Optical radiations were observed from SiO 2 optical fibers under irradiation. A major part of the observed optical radiations is thought to be composed of broad optical radiation in the whole wavelength range studied in the present experiment. This broad optical radiation will be generated by the process of so-called Cerenkov radiation. Also, a sharp optical radiation peak was found at 1270nm on a F-doped fiber. This peak is thought to relate with doped Fluorine ions and ionizing gamma-ray irradiation. (author)

  3. Thermoluminescence of Ge- and Al-doped SiO2 optical fibers subjected to 0.2-4.0 Gy external photon radiotherapeutic dose

    International Nuclear Information System (INIS)

    Hossain, I.; Wagiran, H.; Yaakob, N.H.


    In this work, we studied the thermoluminescence response of Ge- and Al-doped optical fibers, its linearity, energy dependence, and sensitivity. The Ge-doped optical fibers demonstrate useful TL properties and represent an excellent candidate for use in TL dosimetry of ionizing radiation. The TL response increases monotonically over a wide photon dose range, from 0.2 Gy to 4.0 Gy. The TL results for these fibers have been compared with similar TL data for phosphor TLD-100. Commercially available Al- and Ge-doped optical fibers have both been found to yield a linear dose-TL signal relationship, although the Al-doped fiber provides only 5 % of the sensitivity of the Ge-doped fibers. The TL characteristics of Ge-doped optical fiber, plus its small size (125 μm diameter), high flexibility, ease of handling, and low cost compared with other TL materials, make this commercial optical fiber a very promising TL material for use in medicine, industry, reactor operation, and a variety of other areas. (author)

  4. Growth Stress in SiO2 during Oxidation of SiC Fibers (Preprint) (United States)


    calculating the average self-pressure ( pav ) in the SiO2 scale throughout its thickness, as a function of total scale thickness (w), temperature, and fiber...2 ∑ p(bj2 − bj−12 )ij=1 [54] The average pressure ( pav ) was calculated for 6 and 3 µm...for public release; distribution unlimited. Fig. 13. Average SiO2 scale self-pressure ( pav ) for 6 and 3 µm radius fibers as a function of scale

  5. Humidity sensor based on a long-period fiber grating coated with a SiO2-nanosphere film (United States)

    Viegas, D.; Goicoechea, J.; Corres, J. M.; Santos, J. L.; Ferreira, L. A.; Araújo, F. M.; Matias, I. R.


    This work addresses a humidity sensor using long-period fiber gratings (LPG) coated with silica nanospheres film. SiO2-nanospheres coating is deposited onto the LPG using the electrostatic self-assembly technique (ESA). The polymeric overlay changes its optical properties when exposed to different humidity levels, resulting in a shift of the resonance wavelength of the LPG. The obtained results are accordant with the theoretical simulations. Wavelength shifts up to 12nm in a humidity range from 20% to 80% are reported, maintaining the same dependence at different temperatures.

  6. Electron irradiation response on Ge and Al-doped SiO 2 optical fibres (United States)

    Yaakob, N. H.; Wagiran, H.; Hossain, I.; Ramli, A. T.; Bradley, D. A.; Hashim, S.; Ali, H.


    This paper describes the thermoluminescence response, sensitivity, stability and reproducibility of SiO 2 optical fibres with various electron energies and doses. The TL materials that comprise Al- and Ge-doped silica fibres were used in this experiment. The TL results are compared with those of the commercially available TLD-100. The doped SiO 2 optical fibres and TLD-100 are placed in a solid phantom and irradiated with 6, 9 and 12 MeV electron beams at doses ranging from 0.2 to 4.0 Gy using the LINAC at Hospital Sultan Ismail, Johor Bahru, Malaysia. It was found that the commercially available Al- and Ge-doped optical fibres have a linear dose-TL signal relationship. The intensity of TL response of Ge-doped fibre is markedly greater than that of the Al-doped fibre.

  7. Electron irradiation response on Ge and Al-doped SiO2 optical fibres

    International Nuclear Information System (INIS)

    Yaakob, N.H.; Wagiran, H.; Hossain, I.; Ramli, A.T.; Bradley, D.A; Hashim, S.; Ali, H.


    This paper describes the thermoluminescence response, sensitivity, stability and reproducibility of SiO 2 optical fibres with various electron energies and doses. The TL materials that comprise Al- and Ge-doped silica fibres were used in this experiment. The TL results are compared with those of the commercially available TLD-100. The doped SiO 2 optical fibres and TLD-100 are placed in a solid phantom and irradiated with 6, 9 and 12 MeV electron beams at doses ranging from 0.2 to 4.0 Gy using the LINAC at Hospital Sultan Ismail, Johor Bahru, Malaysia. It was found that the commercially available Al- and Ge-doped optical fibres have a linear dose-TL signal relationship. The intensity of TL response of Ge-doped fibre is markedly greater than that of the Al-doped fibre.

  8. High luminescent fibers with hybrid SiO2-coated CdTe nanocrystals fabricated by electrospinning technique

    International Nuclear Information System (INIS)

    Cao, Yongqiang; Liu, Ning; Yang, Ping; Shi, Ruixia; Ma, Qian; Zhang, Aiyu; Zhu, Yuanna; Wang, Junpeng; Wang, Jianrong


    The polyvinylpyrrolidone (PVP) hybrid luminescent micro-/nanofibers doped with the novel hybrid SiO 2 -coated CdTe nanocrystals (HS-CdTe NCs) have been fabricated for the first time via the electrospinning technique. The morphologies and photoluminescence (PL) emissions of HS-CdTe/PVP micro-/nanofibers prepared by doping the HS-CdTe NCs with the different PL peak wavelength (571, 616, and 643 nm) in PVP fibers were investigated by optical and PL microscope. The results revealed that all the HS-CdTe/PVP hybrid fibers showed an ultralong length for several hundreds of micrometers and a relatively uniform diameter of 1000 ∼ 1200 nm. The hybrid fibers displayed a wavelength-tunable PL emission, determining by the PL of doped HS-CdTe NCs. Moreover, similar to the original PL properties of HS-CdTe NCs before the electrospinning, the HS-CdTe/PVP fibers also showed a series of superior PL properties, such as narrow and symmetry PL spectrum, high, and uniform brightness. For comparison purpose, we also prepared three CdTe/PVP hybrid fibers by doping the 553 nm, 600 nm, and 633 nm PL-emitting CdTe NCs respectively in PVP electrospinning fibers. The characterization results showed that, the obtained three CdTe/PVP hybrid fibers had a basically satisfactory micro-/nanofiber morphology with a long length and relatively uniform diameter, but all the fibers exhibited very weak PL emissions. The enormous contrast in PL properties between HS-CdTe/PVP and CdTe/PVP fibers should mainly be ascribed to the different connection modes of ligands with the NCs and the passivation effect of inert hybrid silica shell on HS-CdTe. It is hopeful that the high luminescent HS-CdTe/PVP micro-/nanofibers with the tunable PL peak wavelength would be a good candidate in the optical sensor, light-emitting devices (LEDs), nanometer-scale waveguides, and the other related photonic materials. - Highlights: • The HS-CdTe/PVP electrospun hybrid fibers were fabricated for the first time. • The

  9. Biocomposite of Cassava Starch Reinforced with Cellulose Pulp Fibers Modified with Deposition of Silica (SiO2 Nanoparticles

    Directory of Open Access Journals (Sweden)

    Joabel Raabe


    Full Text Available Eucalyptus pulp cellulose fibers were modified by the sol-gel process for SiO2 superficial deposition and used as reinforcement of thermoplastic starch (TPS. Cassava starch, glycerol, and water were added at the proportion of 60/26/14, respectively. For composites, 5% and 10% (by weight of modified and unmodified pulp fibers were added before extrusion. The matrix and composites were submitted to thermal stability, tensile strength, moisture adsorption, and SEM analysis. Micrographs of the modified fibers revealed the presence of SiO2 nanoparticles on fiber surface. The addition of modified fibers improved tensile strength in 183% in relation to matrix, while moisture adsorption decreased 8.3%. Such improvements were even more effective with unmodified fibers addition. This result was mainly attributed to poor interaction between modified fibers and TPS matrix detected by SEM analysis.

  10. Photon Irradiation Response on Ge and Al-Doped SiO2 Optical Fibres (United States)

    Yaakob, Nor Haliza; Wagiran, Husin; Ramli, Ahmad Termizi; Ali, Hassan; Asni, Hazila


    Recently, research groups have reported a number of radiation effects on the applications of SiO2 optical fibres with possible use as dosimeter material because these optical fibre provide a good basis for medical radiation dosimetry. The objective of this study is to investigate the thermoluminescence response and fading characteristic for germanium and aluminium doped SiO2 optical fibres with photon irradiation. These optical fibres are placed in solid phantom and irradiated to 6 and 10 MV photon beam at dose ranging from 0.06 Gy to 0.24 Gy using Primus MLC 3339 linear accelerator at Hospital Sultan Ismail, Johor Bahru. In fading studies, the TL measurements were continued up to 14 days period. The optical fibres will produce glow curves whereby the information is then analyzed. Al and Ge-doped optical fibres have a linear dose-TL signal relationship that is proportionality between the TL signal and the doses. Comparison for TL response between different linear accelerator showed a good agreement because these optical fibres also have a linear dose-TL signal relationship even using different equipments.

  11. Effects of Mev Si Ions and Thermal Annealing on Thermoelectric and Optical Properties of SiO2/SiO2+Ge Multi-nanolayer thin Films (United States)

    Budak, S.; Alim, M. A.; Bhattacharjee, S.; Muntele, C.

    Thermoelectric generator devices have been prepared from 200 alternating layers of SiO2/SiO2+Ge superlattice films using DC/RF magnetron sputtering. The 5 MeV Si ionsbombardmenthasbeen performed using the AAMU Pelletron ion beam accelerator to formquantum dots and / or quantum clusters in the multi-layer superlattice thin films to decrease the cross-plane thermal conductivity, increase the cross-plane Seebeck coefficient and increase the cross-plane electrical conductivity to increase the figure of merit, ZT. The fabricated devices have been annealed at the different temperatures to tailor the thermoelectric and optical properties of the superlattice thin film systems. While the temperature increased, the Seebeck coefficient continued to increase and reached the maximum value of -25 μV/K at the fluenceof 5x1013 ions/cm2. The decrease in resistivity has been seen between the fluence of 1x1013 ions/cm2 and 5x1013 ions/cm2. Transport properties like Hall coefficient, density and mobility did not change at all fluences. Impedance spectroscopy has been used to characterize the multi-junction thermoelectric devices. The loci obtained in the C*-plane for these data indicate non-Debye type relaxation displaying the presence of the depression parameter.

  12. Synthesis of optical waveguides in SiO2 by silver ion implantation (United States)

    Márquez, H.; Salazar, D.; Rangel-Rojo, R.; Angel-Valenzuela, J. L.; Vázquez, G. V.; Flores-Romero, E.; Rodríguez-Fernández, L.; Oliver, A.


    Optical waveguides have been obtained by silver ion implantation on fused silica substrates. Silver ion implantation profiles were calculated in a SiO2 matrix with different energies of implantation from 125 keV to 10 MeV. Refractive index change (Δn) of the ion implanted waveguides was calculated as a function of their chemical composition. Optical absorption spectra of waveguides obtained by 9 MeV silver ion implantation, at a dose of 5 × 1016 ions/cm2, exhibit the typical absorption band associated to the surface plasmon resonance of silver nanoparticles. Effective refractive indices of the propagation modes and waveguide propagation losses of silver ion implanted waveguides are also presented.

  13. Optical characterization of glutamate dehydrogenase monolayers chemisorbed on SiO2 (United States)

    Pompa, P. P.; Blasi, L.; Longo, L.; Cingolani, R.; Ciccarella, G.; Vasapollo, G.; Rinaldi, R.; Rizzello, A.; Storelli, C.; Maffia, M.


    This paper describes the formation of glutamate dehydrogenase monolayers on silicon dioxide, and their characterization by means of physical techniques, i.e., fluorescence spectroscopy and Fourier-transform infrared spectroscopy. Detailed investigations of the intrinsic stability of native proteins in solution were carried out to elucidate the occurrence of conformational changes induced by the immobilization procedure. The enzyme monolayers were deposited on SiO2 after preexposing silicon surfaces to 3-aminopropyltriethoxysilane and reacting the silylated surfaces with glutaric dialdehyde. The optical characterization demonstrates that the immobilization does not interfere with the fold pattern of the native enzyme. In addition, fluorescence spectroscopy, thermal denaturation, and quenching studies performed on the enzyme in solution well describe the folding and unfolding properties of glutamate dehydrogenase. The photophysical studies reported here are relevant for nanobioelectronics applications requiring protein immobilization on a chip.

  14. Optical transitions of self-trapped holes in amorphous SiO2

    International Nuclear Information System (INIS)

    Sasajima, Y.; Tanimura, K.


    Optical and electron-spin resonance (ESR) spectroscopy studies of low-temperature electron-irradiated amorphous SiO 2 were carried out to identify optical transitions of self-trapped holes (STHs). Spectroscopic analysis by means of polarized optical bleaching and thermal annealing has revealed two components comprising an absorption band around 2.2 eV: the low-energy component peaking at 2.16 eV and the high energy component at 2.60 eV. These bands are formed with similar yields in three different samples that include different chemical impurities and native defect concentrations. Based on quantitative correlations between ESR signals and optical absorption strengths, the 2.16-eV band is attributed to the two-center type STH, while the 2.60-eV band is attributed to the one-center STH. The origin of STH optical transitions is discussed based on the results of this work and recent theoretical data

  15. Neutron irradiation effects in amorphous SiO2: optical absorption and electron paramagnetic resonance

    International Nuclear Information System (INIS)

    Guzzi, M.; Martini, M.; Paleari, A.; Pio, F.; Vedda, A.; Azzoni, C.B.


    Optical absorption spectra of as-grown and neutron-irradiated amorphous SiO 2 , both fused natural quartz and synthetic silica, have been analysed in the ultraviolet region below the fundamental edge. The description of the optical spectrum has been further clarified by a detailed study of the spectral components as a function of the neutron irradiation in different types of silica; we have verified known correlations between optical bands and between bands and paramagnetic centres. In 'as-grown' fused quartz samples, a previously unreported band at 6.2 eV has been detected. 'As-grown' synthetic silicas do not show any band, up to the intrinsic absorption edge. In the irradiated samples, the experimental results suggest a correlation between two bands at 5.8 and 7.1 eV, while previous attribution of the bands at 5.0 eV (B 2 band) and 7.6 eV (E band) to the same defect is discussed. The role of impurities in the optical absorption and in the radiation hardness is also considered. (author)

  16. Enhanced Visible Transmittance of Thermochromic VO2 Thin Films by SiO2 Passivation Layer and Their Optical Characterization

    Directory of Open Access Journals (Sweden)

    Jung-Hoon Yu


    Full Text Available This paper presents the preparation of high-quality vanadium dioxide (VO2 thermochromic thin films with enhanced visible transmittance (Tvis via radio frequency (RF sputtering and plasma enhanced chemical vapor deposition (PECVD. VO2 thin films with high Tvis and excellent optical switching efficiency (Eos were successfully prepared by employing SiO2 as a passivation layer. After SiO2 deposition, the roughness of the films was decreased 2-fold and a denser structure was formed. These morphological changes corresponded to the results of optical characterization including the haze, reflectance and absorption spectra. In spite of SiO2 coating, the phase transition temperature (Tc of the prepared films was not affected. Compared with pristine VO2, the total layer thickness after SiO2 coating was 160 nm, which is an increase of 80 nm. Despite the thickness change, the VO2 thin films showed a higher Tvis value (λ 650 nm, 58% compared with the pristine samples (λ 650 nm, 43%. This enhancement of Tvis while maintaining high Eos is meaningful for VO2-based smart window applications.

  17. Regulating effect of SiO2 interlayer on optical properties of ZnO thin films

    International Nuclear Information System (INIS)

    Xu, Linhua; Zheng, Gaige; Miao, Juhong; Su, Jing; Zhang, Chengyi; Shen, Hua; Zhao, Lilong


    ZnO/SiO 2 nanocomposite films with periodic structure were prepared by electron beam evaporation technique. Regulating effect of SiO 2 interlayer with various thicknesses on the optical properties of ZnO/SiO 2 thin films was investigated deeply. The analyses of X-ray diffraction show that the ZnO layers in ZnO/SiO 2 nanocomposite films have a wurtzite structure and are preferentially oriented along the c-axis while the SiO 2 layers are amorphous. The scanning electron microscope images display that the ZnO layers are composed of columnar grains and the thicknesses of ZnO and SiO 2 layers are all very uniform. The SiO 2 interlayer presents a significant modulation effect on the optical properties of ZnO thin films, which is reflected in the following two aspects: (1) the transmittance of ZnO/SiO 2 nanocomposite films is increased; (2) the photoluminescence (PL) of ZnO/SiO 2 nanocomposite films is largely enhanced compared with that of pure ZnO thin films. The ZnO/SiO 2 nanocomposite films have potential applications in light-emitting devices and flat panel displays. -- Highlights: ► ZnO/SiO 2 nanocomposite films with periodic structure were prepared by electron beam evaporation technique. ► The SiO 2 interlayer presents a significant modulation effect on the optical properties of ZnO thin films. ► The photoluminescence of ZnO/SiO 2 nanocomposite films is largely enhanced compared with that of pure ZnO thin films. ► The ZnO/SiO 2 nanocomposite films have potential applications in light-emitting devices and flat panel displays

  18. Si nanocrystals embedded in SiO2: Optical studies in the vacuum ultraviolet range

    DEFF Research Database (Denmark)

    Pankratov, V.; Osinniy, Viktor; Kotlov, A.


    Photoluminescence excitation and transmission spectra of Si nanocrystals of different diameters embedded in a SiO2 matrix have been investigated in the broad visible-vacuum ultraviolet spectral range using synchrotron radiation. The dependence of the photoluminescence excitation spectra...

  19. Stem effect of a Ce3+ doped SiO2 optical dosimeter irradiated with a 192Ir HDR brachytherapy source

    International Nuclear Information System (INIS)

    Carrara, Mauro; Tenconi, Chiara; Guilizzoni, Roberta; Borroni, Marta; Cavatorta, Claudia; Cerrotta, Annamaria; Fallai, Carlo; Gambarini, Grazia; Vedda, Anna; Pignoli, Emanuele


    Fiber-optic-coupled scintillation dosimeters are characterized by their small active volume if compared to other existing systems. However, they potentially show a greater stem effect, especially in external beam radiotherapy where the Cerenkov effect is not negligible. In brachytherapy, due to the lower energies and the shorter high dose range of the employed sources, the impact of the stem effect to the detector accuracy might be low. In this work, the stem effect of a Ce 3+ doped SiO 2 scintillation detector coupled to a SiO 2 optical fiber was studied for high dose rate brachytherapy applications. Measurements were performed in a water phantom at changing source-detector mutual positions. The same irradiations were performed with a passive optical fiber, which doesn't have the dosimeter at its end. The relative contribution of the passive fiber with respect to the uncorrected readings of the detector in each one of the investigated source dwell positions was evaluated. Furthermore, the dosimeter was calibrated both neglecting and correcting its response for the passive fiber readings. The obtained absolute dose measurements were then compared to the dose calculations resulting from the treatment planning system. Dosimeter uncertainties with and without taking into account the passive fiber readings were generally below 2.8% and 4.3%, respectively. However, a particular exception results when the source is positioned near to the optical fiber, where the detector underestimates the dose (−8%) or at source-detector longitudinal distances higher than 3 cm. The obtained results show that the proposed dosimeter might be adopted in high dose rate prostate brachytherapy with satisfactory accuracy, without the need for any stem effect correction. However, accuracy further improves by subtraction of the noise signal produced by the passive optical fiber. - Highlights: • A scintillation detector with 0.9 mm diameter was developed for in vivo dosimetry in

  20. Tribological evaluation of an Al2O3-SiO2 ceramic fiber candidate for high temperature sliding seals (United States)

    Dellacorte, Christopher; Steinetz, Bruce


    A test program to determine the relative sliding durability of an alumina-silica candidate ceramic fiber for high temperature sliding seal applications is described. Pin-on-disk tests were used to evaluate the potential seal material by sliding a tow or bundle of the candidate ceramic fiber against a superalloy test disk. Friction was measured during the tests and fiber wear, indicated by the extent of fibers broken in the tow or bundle, was measured at the end of each test. Test variables studied included ambient temperatures from 25 to 900 C, loads from 1.3 to 21.2 N, and sliding velocities from 0.025 to 0.25 m/sec. In addition, the effects of fiber diameter and elastic modulus on friction and wear were measured. Thin gold films deposited on the superalloy disk surface were evaluated in an effort to reduce friction and wear of the fibers. In most cases, wear increased with test temperature. Friction ranged from 0.36 at 500 C and low velocity (0.025 m/sec) to over 1.1 at 900 C and high velocity (0.25 m/sec). The gold films resulted in satisfactory lubrication of the fibers at 25 C. At elevated temperatures diffusion of substrate elements degraded the films. These results indicate that the alumina-silica (Al2O3-SiO2) fiber is a good candidate material system for high temperature sliding seal applications. More work is needed to reduce friction.

  1. Suppressing Structural Colors of Photocatalytic Optical Coatings on Glass: The Critical Role of SiO2. (United States)

    Li, Ronghua; Boudot, Mickael; Boissière, Cédric; Grosso, David; Faustini, Marco


    The appearance of structural colors on coated-glass is a critical esthetical drawback toward industrialization of photocatalytic coatings on windows for architecture or automobile. Herein we describe a rational approach to suppress the structural color of mesoporous TiO 2 -based coatings preserving photoactivity and mechanical stiffness. Addition of SiO 2 as third component is discussed. Ti x Si (1-x) O 2 mesoporous coatings were fabricated by one-step liquid deposition process through the evaporation induced self-assembling and characterized by GI-SAXS, GI-WAXS, electron microscopies, and in situ Environmental Ellipsometry Porosimetry. Guided by optical simulation, we investigated the critical role of SiO 2 on the optical responses of the films but also on the structural, mechanical, and photocatalytic properties, important requirements to go toward real applications. We demonstrate that adding SiO 2 to porous TiO 2 allows tuning and suppression of structural colors through refractive index matching and up to 160% increase in mechanical stiffening of the films. This study leads us to demonstrate an example of "invisible" coating, in which the light reflection is angle- and thickness-independent, and exhibiting high porosity, mechanical stiffness, and photoactivity.

  2. HfO2/SiO2 multilayer based reflective and transmissive optics from the IR to the UV (United States)

    Wang, Jue; Hart, Gary A.; Oudard, Jean Francois; Wamboldt, Leonard; Roy, Brian P.


    HfO2/SiO2 multilayer based reflective optics enable threat detection in the short-wave/middle-wave infrared and high power laser targeting capability in the near infrared. On the other hand, HfO2/SiO2 multilayer based transmissive optics empower early missile warning by taking advantage of the extremely low noise light detection in the deep-ultraviolet region where solar irradiation is strongly absorbed by the ozone layer of the earth's atmosphere. The former requires high laser damage resistance, whereas the latter needs a solar-blind property, i.e., high transmission of the radiation below 290 nm and strong suppression of the solar background from 300 nm above. The technical challenges in both cases are revealed. The spectral limits associated with the HfO2 and SiO2 films are discussed and design concepts are schematically illustrated. Spectral performances are realized for potential A and D and commercial applications.

  3. Preparation and optical properties of SiO2 stablized SnO2 quantum dot films

    International Nuclear Information System (INIS)

    Peng Qiangxiang; Li Zhijie; Zu Xiaotao


    SiO 2 stabilized SnO 2 quantum dot were prepared by sol-gel-hydrothermal process. Then SnO 2 quantum dot thin films were obtained by spin-coating with preprocess of well dispersing SnO 2 quantum dots in SiO 2 sol. The as-prepared SnO 2 quantum dots showed tetragonal rutile crystal structure and quantum dot radius of about 4.0 nm. The optical bad gap of the thin films was derived from UV-vis transmission spectra, with value of about 3.96 eV. The SnO 2 quantum dot thin films showed multi-peak photoluminescence properties at room temperature, mainly excitation emission at 356 nm and defect emission at 388 nm. (authors)

  4. Structural verification and optical characterization of SiO2–Au–Cu2O ...

    Indian Academy of Sciences (India)

    In this paper, SiO2–Au–Cu2O core/shell/shell nanoparticles were synthesized by reducing gold chloride on 3-amino-propyl-triethoxysilane molecules attached silica nanoparticle cores for several stages. Cu2O nanoparticles were synthesized readily with the size of 4–5 nm using a simple route of sol–gel method. Then, they ...

  5. Size dependence of non-linear optical properties of SiO2 thin films containing InP nanocrystals (United States)

    Zheng, M. J.; Zhang, L. D.; Zhang, J. G.

    SiO2 composite thin films containing InP nanocrystals were fabricated by radio-frequency magnetron co-sputtering technique. The microstructure of the composite thin films was characterized by X-ray diffraction and Raman spectrum. The optical absorption band edges exhibit marked blueshift with respect to bulk InP due to strong quantum confinement effect. Non-linear optical absorption and non-linear optical refraction were studied by a Z-scan technique using a single Gaussian beam of a He-Ne laser (632.8 nm). We observed the saturation absorption and two-photon absorption in the composite films. An enhanced third-order non-linear optical absorption coefficient and non-linear optical refractive index were achieved in the composite films. The nonlinear optical properties of the films display the dependence on InP nanocrystals size.

  6. Structural and optical characterization of Mn doped ZnS nanocrystals elaborated by ion implantation in SiO2

    International Nuclear Information System (INIS)

    Bonafos, C.; Garrido, B.; Lopez, M.; Romano-Rodriguez, A.; Gonzalez-Varona, O.; Perez-Rodriguez, A.; Morante, J.R.; Rodriguez, R.


    Mn doped ZnS nanocrystals have been formed in SiO 2 layers by ion implantation and thermal annealing. The structural analysis of the processed samples has been performed mainly by Secondary Ion Mass Spectroscopy (SIMS) and Transmission Electron Microscopy (TEM). The data show the precipitation of ZnS nanocrystals self-organized into two layers parallel to the free surface. First results of the optical analysis of samples co-implanted with Mn show the presence of a yellow-green photoluminescence depending on the Mn concentration and the size of the nanocrystals, suggesting the doping with Mn of some precipitates

  7. SiO2/ZnO Composite Hollow Sub-Micron Fibers: Fabrication from Facile Single Capillary Electrospinning and Their Photoluminescence Properties

    Directory of Open Access Journals (Sweden)

    Guanying Song


    Full Text Available In this work, SiO2/ZnO composite hollow sub-micron fibers were fabricated by a facile single capillary electrospinning technique followed by calcination, using tetraethyl orthosilicate (TEOS, polyvinylpyrrolidone (PVP and ZnO nanoparticles as raw materials. The characterization results of the scanning electron microscopy (SEM, transmission electron microscopy (TEM, X-ray diffraction (XRD and Fourier transform infrared spectroscopy (FT-IR spectra indicated that the asprepared composite hollow fibers consisted of amorphous SiO2 and hexagonal wurtzite ZnO. The products revealed uniform tubular structure with outer diameters of 400–500 nm and wall thickness of 50–60 nm. The gases generated and the directional escaped mechanism was proposed to illustrate the formation of SiO2/ZnO composite hollow sub-micron fibers. Furthermore, a broad blue emission band was observed in the photoluminescence (PL of SiO2/ZnO composite hollow sub-micron fibers, exhibiting great potential applications as blue light-emitting candidate materials.

  8. Linear and nonlinear intraband optical properties of ZnO quantum dots embedded in SiO2 matrix

    Directory of Open Access Journals (Sweden)

    Deepti Maikhuri


    Full Text Available In this work we investigate some optical properties of semiconductor ZnO spherical quantum dot embedded in an amorphous SiO2 dielectric matrix. Using the framework of effective mass approximation, we have studied intraband S-P, and P-D transitions in a singly charged spherical ZnO quantum dot. The optical properties are investigated in terms of the linear and nonlinear photoabsorption coefficient, the change in refractive index, and the third order nonlinear susceptibility and oscillator strengths. Using the parabolic confinement potential of electron in the dot these parameters are studied with the variation of the dot size, and the energy and intensity of incident radiation. The photoionization cross sections are also obtained for the different dot radii from the initial ground state of the dot. It is found that dot size, confinement potential, and incident radiation intensity affects intraband optical properties of the dot significantly.

  9. Fiber optic coupled optical sensor (United States)

    Fleming, Kevin J.


    A displacement sensor includes a first optical fiber for radiating light to a target, and a second optical fiber for receiving light from the target. The end of the first fiber is adjacent and not axially aligned with the second fiber end. A lens focuses light from the first fiber onto the target and light from the target onto the second fiber.

  10. Optically transparent and environmentally durable superhydrophobic coating based on functionalized SiO2 nanoparticles (United States)

    Schaeffer, Daniel A.; Polizos, Georgios; Barton Smith, D.; Lee, Dominic F.; Hunter, Scott R.; Datskos, Panos G.


    Optical surfaces such as mirrors and windows that are exposed to outdoor environmental conditions are susceptible to dust buildup and water condensation. The application of transparent superhydrophobic coatings on optical surfaces can improve outdoor performance via a ‘self-cleaning’ effect similar to the Lotus effect. The contact angle (CA) of water droplets on a typical hydrophobic flat surface varies from 100° to 120°. Adding roughness or microtexture to a hydrophobic surface leads to an enhancement of hydrophobicity and the CA can be increased to a value in the range of 160°-175°. This result is remarkable because such behavior cannot be explained using surface chemistry alone. When surface features are on the order of 100 nm or smaller, they exhibit superhydrophobic behavior and maintain their optical transparency. In this work we discuss our results on transparent superhydrophobic coatings that can be applied across large surface areas. We have used functionalized silica nanoparticles to coat various optical elements and have measured the CA and optical transmission between 190 and 1100 nm on these elements. The functionalized silica nanoparticles were dissolved in a solution of the solvents, while the binder used was a polyurethane clearcoat. This solution was spin-coated onto a variety of test glass substrates, and following a curing period of about 30 min, these coatings exhibited superhydrophobic behavior with a static CA ≥ 160°.

  11. A sensitive optical sensor based on DNA-labelled Si@ SiO2 core ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 40; Issue 7. A sensitive optical sensor based on DNA-labelled Si@SiO 2 core–shell nanoparticle for the detection of Hg 2 + ions in environmental water samples. KRISHNAN SRINIVASAN KATHAVARAYAN SUBRAMANIAN ARULIAH RAJASEKAR KADARKARAI ...

  12. Optical transparency and mechanical properties of semi-refined iota carrageenan film reinforced with SiO2 as food packaging material (United States)

    Aji, Afifah Iswara; Praseptiangga, Danar; Rochima, Emma; Joni, I. Made; Panatarani, Camellia


    Food packaging is important for protecting food from environmental influences such as heat, light, water vapor, oxygen, dirt, dust particles, gas emissions and so on, which leads to decrease the quality of food. The most widely used type of packaging in the food industry is plastic which is made from synthetic polymers and takes hundreds of years to biodegrade. Recently, food packaging with high bio-degradability is being developed using biopolymer combined with nanoparticles as reinforcing agent (filler) to improve its properties. In this study, semi-refined iota carrageenan films were prepared by incorporating SiO2 nanoparticles as filler at different concentrations (0%, 0.5%, 1.0% and 1.5% w/w carrageenan) using solution casting method. The optical transparency and mechanical properties (tensile strength and elongation at break) of the films were analyzed. The results showed that incorporation of SiO2 nanoparticles to carrageenan matrix on optical transparency of the films. For the mechanical properties, the highest tensile strength was found for incorporation of 0.5% SiO2, while the elongation at break of the films improved with increasing SiO2 concentration.

  13. Fiber optic connector (United States)

    Rajic, Slobodan; Muhs, Jeffrey D.


    A fiber optic connector and method for connecting composite materials within which optical fibers are imbedded. The fiber optic connector includes a capillary tube for receiving optical fibers at opposing ends. The method involves inserting a first optical fiber into the capillary tube and imbedding the unit in the end of a softened composite material. The capillary tube is injected with a coupling medium which subsequently solidifies. The composite material is machined to a desired configuration. An external optical fiber is then inserted into the capillary tube after fluidizing the coupling medium, whereby the optical fibers are coupled.

  14. Characterization of Si3N4/SiO2 optical channel waveguides by photon scanning tunneling microscopy (United States)

    Wang, Yan; Chudgar, Mona H.; Jackson, Howard E.; Miller, Jeffrey S.; De Brabander, Gregory N.; Boyd, Joseph T.


    Photon scanning tunneling microscopy (PSTM) is used to characterize Si3N4/Si02 optical channel waveguides being used for integrated optical-micromechanical sensors. PSTM utilizes an optical fiber tapered to a fine point which is piezoelectrically positioned to measure the decay of the evanescent field intensity associated with the waveguide propagating mode. Evanescent field decays are recorded for both ridge channel waveguides and planar waveguide regions. Values for the local effective refractive index are calculated from the data for both polarizations and compared to model calculations.

  15. Synthesis and optical properties of SiO2–Al2O3–MgO–K2CO3–CaO ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 3. Synthesis and optical properties of SiO 2 –Al 2 O 3 –MgO–K 2 CO 3 –CaO–MgF 2 –La 2 O 3 glasses. C R GAUTA. Volume 39 Issue 3 June 2016 pp 677-682. Fulltext. Click here to view fulltext PDF. Permanent link:

  16. Optical properties of amorphous SiO2-TiO2 multi-nanolayered coatings for 1064-nm mirror technology (United States)

    Magnozzi, M.; Terreni, S.; Anghinolfi, L.; Uttiya, S.; Carnasciali, M. M.; Gemme, G.; Neri, M.; Principe, M.; Pinto, I.; Kuo, L.-C.; Chao, S.; Canepa, M.


    The use of amorphous, SiO2-TiO2 nanolayered coatings has been proposed recently for the mirrors of 3rd-generation interferometric detectors of gravitational waves, to be operated at low temperature. Coatings with a high number of low-high index sub-units pairs with nanoscale thickness were found to preserve the amorphous structure for high annealing temperatures, a key factor to improve the mechanical quality of the mirrors. The optimization of mirror designs based on such coatings requires a detailed knowledge of the optical properties of sub-units at the nm-thick scale. To this aim we have performed a Spectroscopic Ellipsometry (SE) study of amorphous SiO2-TiO2 nanolayered films deposited on Si wafers by Ion Beam Sputtering (IBS). We have analyzed films that are composed of 5 and 19 nanolayers (NL5 and NL19 samples) and have total optical thickness nominally equivalent to a quarter of wavelength at 1064 nm. A set of reference optical properties for the constituent materials was obtained by the analysis of thicker SiO2 and TiO2 homogeneous films (∼ 120 nm) deposited by the same IBS facility. By flanking SE with ancillary techniques, such as TEM and AFM, we built optical models that allowed us to retrieve the broad-band (250-1700 nm) optical properties of the nanolayers in the NL5 and NL19 composite films. In the models which provided the best agreement between simulation and data, the thickness of each sub-unit was fitted within rather narrow bounds determined by the analysis of TEM measurements on witness samples. Regarding the NL5 sample, with thickness of 19.9 nm and 27.1 nm for SiO2 and TiO2 sub-units, respectively, the optical properties presented limited variations with respect to the thin film counterparts. For the NL19 sample, which is composed of ultrathin sub-units (4.4 nm and 8.4 nm for SiO2 and TiO2, respectively) we observed a significant decrease of the IR refraction index for both types of sub-units; this points to a lesser mass density with

  17. Fiber Optics Technology. (United States)

    Burns, William E.


    Discusses various applications of fiber optics technology: information systems, industrial robots, medicine, television, transportation, and training. Types of jobs that will be available with fiber optics training (such as electricians and telephone cable installers and splicers) are examined. (CT)

  18. Fiber Optics Instrumentation Development (United States)

    Chan, Patrick Hon Man; Parker, Allen R., Jr.; Richards, W. Lance


    This is a general presentation of fiber optics instrumentation development work being conducted at NASA Dryden for the past 10 years and recent achievements in the field of fiber optics strain sensors.

  19. Optical characterisation of silicon nanocrystals embedded in SiO2/Si3N4 hybrid matrix for third generation photovoltaics (United States)


    Silicon nanocrystals with an average size of approximately 4 nm dispersed in SiO2/Si3N4 hybrid matrix have been synthesised by magnetron sputtering followed by a high-temperature anneal. To gain understanding of the photon absorption and emission mechanisms of this material, several samples are characterised optically via spectroscopy and photoluminescence measurements. The values of optical band gap are extracted from interference-minimised absorption and luminescence spectra. Measurement results suggest that these nanocrystals exhibit transitions of both direct and indirect types. Possible mechanisms of absorption and emission as well as an estimation of exciton binding energy are also discussed. PMID:22136622

  20. Two Fiber Optical Fiber Thermometry (United States)

    Jones, Mathew R.; Farmer, Jeffery T.; Breeding, Shawn P.


    An optical fiber thermometer consists of an optical fiber whose sensing tip is given a metallic coating. The sensing tip of the fiber is essentially an isothermal cavity, so the emission from this cavity will be approximately equal to the emission from a blackbody. Temperature readings are obtained by measuring the spectral radiative heat flux at the end of the fiber at two wavelengths. The ratio of these measurements and Planck's Law are used to infer the temperature at the sensing tip. Optical fiber thermometers have high accuracy, excellent long-term stability and are immune to electromagnetic interference. In addition, they can be operated for extended periods without requiring re-calibration. For these reasons. it is desirable to use optical fiber thermometers in environments such as the International Space Station. However, it has recently been shown that temperature readings are corrupted by emission from the fiber when extended portions of the probe are exposed to elevated temperatures. This paper will describe several ways in which the reading from a second fiber can be used to correct the corrupted temperature measurements. The accuracy and sensitivity to measurement uncertainty will be presented for each method.

  1. Multimode optical fiber (United States)

    Bigot-Astruc, Marianne; Molin, Denis; Sillard, Pierre


    A depressed graded-index multimode optical fiber includes a central core, an inner depressed cladding, a depressed trench, an outer depressed cladding, and an outer cladding. The central core has an alpha-index profile. The depressed claddings limit the impact of leaky modes on optical-fiber performance characteristics (e.g., bandwidth, core size, and/or numerical aperture).

  2. Fiber optic hydrophone (United States)

    Kuzmenko, P.J.; Davis, D.T.


    A miniature fiber optic hydrophone based on the principles of a Fabry-Perot interferometer is disclosed. The hydrophone, in one embodiment, includes a body having a shaped flexible bladder at one end which defines a volume containing air or suitable gas, and including a membrane disposed adjacent a vent. An optical fiber extends into the body with one end terminating in spaced relation to the membrane. Acoustic waves in the water that impinge on the bladder cause the pressure of the volume therein to vary causing the membrane to deflect and modulate the reflectivity of the Fabry-Perot cavity formed by the membrane surface and the cleaved end of the optical fiber disposed adjacent to the membrane. When the light is transmitted down the optical fiber, the reflected signal is amplitude modulated by the incident acoustic wave. Another embodiment utilizes a fluid filled volume within which the fiber optic extends. 2 figures.

  3. Fiber optic hydrophone (United States)

    Kuzmenko, Paul J.; Davis, Donald T.


    A miniature fiber optic hydrophone based on the principles of a Fabry-Perot interferometer. The hydrophone, in one embodiment, includes a body having a shaped flexible bladder at one end which defines a volume containing air or suitable gas, and including a membrane disposed adjacent a vent. An optic fiber extends into the body with one end terminating in spaced relation to the membrane. Acoustic waves in the water that impinge on the bladder cause the pressure of the volume therein to vary causing the membrane to deflect and modulate the reflectivity of the Fabry-Perot cavity formed by the membrane surface and the cleaved end of the optical fiber disposed adjacent to the membrane. When the light is transmitted down the optical fiber, the reflected signal is amplitude modulated by the incident acoustic wave. Another embodiment utilizes a fluid filled volume within which the fiber optic extends.

  4. Photoprocesses in 7-hydroxy coumarins molecules in solutions and SiO2 sol–gel films – Materials for optical chemical sensorics

    International Nuclear Information System (INIS)

    Selivanov, N.I.; Samsonova, L.G.; Kopylova, T.N.


    The paper investigates the spectral properties of protolytic forms of three substituted 7-hydroxy coumarin molecules in aqueous ethanol solutions and SiO 2 films. It explains spectral-and-luminescent properties of coumarins in the produced films. It is found that in aqueous ethanol solutions and sol–gel films, upon excitation in the S 1 state, there is a reaction of proton phototransfer from the O–H group of neutral coumarins molecules to the water molecule with development of anionic forms solvated by hydroxonium ions. We studied sensory properties of compounds in the films to the ammonia gas in terms of changes in their fluorescent properties and revealed the reasons causing such changes. We demonstrated the prospects of using films with one of the investigated coumarins as the ammonia gas sensitive material of an optical chemical sensor.

  5. Fiber optics standard dictionary

    CERN Document Server

    Weik, Martin H


    Fiber Optics Vocabulary Development In 1979, the National Communications System published Technical InfonnationBulle­ tin TB 79-1, Vocabulary for Fiber Optics and Lightwave Communications, written by this author. Based on a draft prepared by this author, the National Communications System published Federal Standard FED-STD-1037, Glossary of Telecommunications Terms, in 1980 with no fiber optics tenns. In 1981, the first edition of this dictionary was published under the title Fiber Optics and Lightwave Communications Standard Dictionary. In 1982, the then National Bureau of Standards, now the National Institute of Standards and Technology, published NBS Handbook 140, Optical Waveguide Communications Glossary, which was also published by the General Services Admin­ istration as PB82-166257 under the same title. Also in 1982, Dynamic Systems, Inc. , Fiberoptic Sensor Technology Handbook, co-authored and edited by published the this author, with an extensive Fiberoptic Sensors Glossary. In 1989, the handbook w...

  6. Optical fiber spectrophotometer

    International Nuclear Information System (INIS)

    Zhuang Weixin; Tian Guocheng; Ye Guoan; Zhou Zhihong; Cheng Weiwei; Huang Lifeng; Liu Suying; Tang Yanji; Hu Jingxin; Zhao Yonggang


    A method called 'Two Arm's Photo out and Electricity Send-back' is introduced. UV-365 UV/VIS/NIR spectrophotometer has been reequipped by this way with 5 meters long optical fiber. Another method called 'One Arm's Photo out and Photo Send-back' is also introduced. λ 19 UV/VIS/NIR spectrophotometer has been reequipped by this way with 10 meters long optical fiber. Optical fiber spectrophotometer can work as its main set. So it is particularly applicable to radio activity work

  7. Visible to vacuum-UV range optical absorption of oxygen dangling bonds in amorphous SiO2

    International Nuclear Information System (INIS)

    Skuja, Linards; Kajihara, Koichi; Hirano, Masahiro; Hosono, Hideo


    Synthetic silica glass with an optical absorption spectrum dominated by oxygen dangling bonds (nonbridging oxygen hole centers, or NBOHCs) and having negligible ( 2 laser (7.9 eV) at T = 80 K. This allowed us to obtain the up-to-now controversial optical absorption spectrum of NBOHC in the ultraviolet and vacuum-ultraviolet (UV-VUV) region of the spectrum and to show that it is semicontinuous from 4 to 7.8 eV and cannot be represented by a pair of distinct Gaussian bands. Since NBOHC is one of the main UV-VUV range optical absorbers in silica, its spectral shape provides a tool to disentangle contributions of different color centers to optical losses in this spectral region.

  8. Synthesis of Y2O3-ZrO2-SiO2 composite coatings on carbon fiber reinforced resin matrix composite by an electro-plasma process (United States)

    Zhang, Yuping; Lin, Xiang; Chen, Weiwei; Cheng, Huanwu; Wang, Lu


    In the present paper the Y2O3-ZrO2-SiO2 composite coating was successfully synthesized on carbon fiber reinforced resin matrix composite by an electro-plasma process. The deposition process, microstructures and oxidation resistance of the coatings with different SiO2 concentrations were systematically investigated. A relatively dense microstructure was observed for the Y2O3-ZrO2-SiO2 composite coating with the SiO2 concentration above 5 g/L. The coating exhibited very good oxidation resistance at 1273 K with the mass loss rate as low as ∼30 wt.%, compared to 100 wt.% of the substrate. The formation of the ceramic composites was discussed in detail based on the electrochemical mechanism and the deposition dynamics in order to explain the effect of the plasma discharge. We believe that the electro-plasma process will find wide applications in preparing ceramics and coatings in industries.

  9. Simulating Optical Fibers. (United States)

    Edgar, Dale


    Described is a demonstration of Snell's law using a laser beam and an optical fiber. Provided are the set-up method of the demonstration apparatus and some practical suggestions including "index matching" technique using vaseline. (YP)

  10. Fiber Optics: No Illusion. (United States)

    American School and University, 1983


    A campus computer center at Hofstra University (New York) that holds 70 terminals for student use was first a gymnasium, then a language laboratory. Strands of fiber optics are used for the necessary wiring. (MLF)

  11. NIR luminescent Er3+/Yb3+ co-doped SiO2–ZrO2 nanostructured planar and channel waveguides: Optical and structural properties

    International Nuclear Information System (INIS)

    Cunha, César dos Santos; Ferrari, Jefferson Luis; Oliveira, Drielly Cristina de; Maia, Lauro June Queiroz; Gomes, Anderson Stevens Leonidas; Ribeiro, Sidney José Lima


    Optical and structural properties of planar and channel waveguides based on sol–gel Er 3+ and Yb 3+ co-doped SiO 2 –ZrO 2 are reported. Microstructured channels with high homogeneous surface profile were written onto the surface of multilayered densified films deposited on SiO 2 /Si substrates by a femtosecond laser etching technique. The densification of the planar waveguides was evaluated from changes in the refractive index and thickness, with full densification being achieved at 900 °C after annealing from 23 up to 500 min, depending on the ZrO 2 content. Crystal nucleation and growth took place together with densification, thereby producing transparent glass ceramic planar waveguides containing rare earth-doped ZrO 2 nanocrystals dispersed in a silica-based glassy host. Low roughness and crack-free surface as well as high confinement coefficient were achieved for all the compositions. Enhanced NIR luminescence of the Er 3+ ions was observed for the Yb 3+ -codoped planar waveguides, denoting an efficient energy transfer from the Yb 3+ to the Er 3+ ion. Highlights: ► Sol–gel high NIR luminescent nanostructured planar and channel waveguides. ► Microstructured channels written by a femtosecond laser etching technique. ► Transparent glass ceramic with rare earth-doped ZrO 2 nanocrystals in a silica host. ► Enhanced NIR luminescence, efficient energy transfer from the Yb 3+ to the Er 3+ ion. ► New planar channel waveguides to be applied as EDWA in the C telecommunication band.

  12. Comparative Study of the Optical and Textural Properties of Tetrapyrrole Macrocycles Trapped Within ZrO2, TiO2, and SiO2 Translucent Xerogels

    Directory of Open Access Journals (Sweden)

    Eduardo Salas-Bañales


    Full Text Available The entrapping of physicochemical active molecules inside mesoporous networks is an appealing field of research due to the myriad of potential applications in optics, photocatalysis, chemical sensing, and medicine. One of the most important reasons for this success is the possibility of optimizing the properties that a free active species displays in solution but now trapped inside a solid substrate. Additionally it is possible to modulate the textural characteristics of substrates, such as pore size, specific surface area, polarity and chemical affinity of the surface, toward the physical or chemical adhesion of a variety of adsorbates. In the present document, two kinds of non-silicon metal alkoxides, Zr and Ti, are employed to prepare xerogels containing entrapped tetrapyrrolic species that could be inserted beforehand in analogue silica systems. The main goal is to develop efficient methods for trapping or binding tetrapyrrole macrocycles inside TiO2 and ZrO2 xerogels, while comparing the properties of these systems against those of the SiO2 analogues. Once the optimal synthesis conditions for obtaining translucent monolithic xerogels of ZrO2 and TiO2 networks were determined, it was confirmed that these substrates allowed the entrapment, in monomeric form, of macrocycles that commonly appear as aggregates within the SiO2 network. From these experiments, it could be determined that the average pore diameters, specific surface areas, and water sorption capacities depicted by each one of these substrates, are a consequence of their own nature combined with the particular structure of the entrapped tetrapyrrole macrocycle. Furthermore, the establishment of covalent bonds between the intruding species and the pore walls leads to the obtainment of very similar pore sizes in the three different metal oxide (Ti, Zr, and Si substrates as a consequence of the templating effect of the encapsulated species.

  13. Fiber optic hydrogen sensor (United States)

    Buchanan, B.R.; Prather, W.S.


    Apparatus and method for detecting a chemical substance by exposing an optic fiber having a core and a cladding to the chemical substance so that the chemical substance can be adsorbed onto the surface of the cladding. The optic fiber is coiled inside a container having a pair of valves for controlling the entrance and exit of the substance. Light from a light source is received by one end of the optic fiber, preferably external to the container, and carried by the core of the fiber. Adsorbed substance changes the transmissivity of the fiber as measured by a spectrophotometer at the other end, also preferably external to the container. Hydrogen is detected by the absorption of infrared light carried by an optic fiber with a silica cladding. Since the adsorption is reversible, a sensor according to the present invention can be used repeatedly. Multiple positions in a process system can be monitored using a single container that can be connected to each location to be monitored so that a sample can be obtained for measurement, or, alternatively, containers can be placed near each position and the optic fibers carrying the partially-absorbed light can be multiplexed for rapid sequential reading, by a single spectrophotometer.

  14. Fiber optics: A research paper (United States)

    Drone, Melinda M.


    Some basic aspects concerning fiber optics are examined. Some history leading up to the development of optical fibers which are now used in the transmission of data in many areas of the world is discussed. Basic theory of the operation of fiber optics is discussed along with methods for improving performance of the optical fiber through much research and design. Splices and connectors are compared and short haul and long haul fiber optic networks are discussed. Fiber optics plays many roles in the commercial world. The use of fiber optics for communication applications is emphasized.

  15. Fiber optics welder (United States)

    Higgins, R.W.; Robichaud, R.E.

    A system is described for welding fiber optic waveguides together. The ends of the two fibers to be joined together are accurately, collinearly aligned in a vertical orientation and subjected to a controlled, diffuse arc to effect welding and thermal conditioning. A front-surfaced mirror mounted at a 45/sup 0/ angle to the optical axis of a stereomicroscope mounted for viewing the junction of the ends provides two orthogonal views of the interface during the alignment operation.

  16. Fiber optic detector

    Energy Technology Data Exchange (ETDEWEB)

    Partin, J.K.; Ward, T.E.; Grey, A.E.


    This invention is comprised of a portable fiber optic detector that senses the presence of specific target chemicals by exchanging the target chemical for a fluorescently-tagged antigen that is bound to an antibody which is in turn attached to an optical fiber. Replacing the fluorescently-tagged antigen reduces the fluorescence so that a photon sensing detector records the reduced light level and activates an appropriate alarm or indicator.

  17. Characterization and fabrication of fully metal-coated scanning near-field optical microscopy SiO2 tips. (United States)

    Aeschimann, L; Akiyama, T; Staufer, U; De Rooij, N F; Thiery, L; Eckert, R; Heinzelmann, H


    The fabrication of silicon cantilever-based scanning near-field optical microscope probes with fully aluminium-coated quartz tips was optimized to increase production yield. Different cantilever designs for dynamic- and contact-mode force feedback were implemented. Light transmission through the tips was investigated experimentally in terms of the metal coating and the tip cone-angle. We found that transmittance varies with the skin depth of the metal coating and is inverse to the cone angle, meaning that slender tips showed higher transmission. Near-field optical images of individual fluorescing molecules showed a resolution thermocouple showed no evidence of mechanical defect or orifice formation by thermal effects.

  18. Characterization by optical and magnetic spectroscopy of a synthesized SiO2 thin film used for radiation detector (United States)

    Abdelaziz, T. D.; Ezz-Eldin, F. M.


    This work reports the synthesis and characterization of silica glass prepared by sol-gel procedure and finds out the effects of doses of gamma irradiation on the steps route of the heat-treated sample at 600 and 1100 °C. Combined characterizations of the glassy samples have been carried out by optical absorption and electron paramagnetic resonance. Also, FT infrared absorption spectra have been measured for both the heat-treated samples before and after gamma irradiation. Optical absorption spectra have identified an absorption band at 212-215 nm beside a broad band at 230-265 nm and the correlation of E' center with heat-treatment and gamma irradiation have been followed. FT infrared absorption spectra indicate the bands within near IR region representing the vibrational modes due to water, OH and SiOH within the wavenumber range 2500-3700 cm-1 are affected by heat treatment due to the elimination of organic residue and amount of OH and water. ESR investigations confirm the results obtained from optical and FTIR measurements. It is concluded from the collective data that sol-gel silica glass can serve as acceptable candidate for gamma-rays irradiator and gamma chamber dosimetry.

  19. Optical fiber switch (United States)

    Early, James W.; Lester, Charles S.


    Optical fiber switches operated by electrical activation of at least one laser light modulator through which laser light is directed into at least one polarizer are used for the sequential transport of laser light from a single laser into a plurality of optical fibers. In one embodiment of the invention, laser light from a single excitation laser is sequentially transported to a plurality of optical fibers which in turn transport the laser light to separate individual remotely located laser fuel ignitors. The invention can be operated electro-optically with no need for any mechanical or moving parts, or, alternatively, can be operated electro-mechanically. The invention can be used to switch either pulsed or continuous wave laser light.


    Directory of Open Access Journals (Sweden)

    Munir BATUR


    Full Text Available Recently there have been many important and valuable developments in the communication industry. The huge increase in the sound, data and visual communications has caused a parallel increase in the demand for systems with wider capacity, higher speed and higher quality. Communication systems that use light to transfer data are immensely increased. There have recently many systems in which glass or plastic fiber cables were developed for light wave to be transmitted from a source to a target place. Fiber optic systems, are nowadays widely used in energy transmission control systems, medicine, industry and lighting. The basics of the system is, movement of light from one point to another point in fiber cable with reflections. Fiber optic lighting systems are quite secure than other lighting systems and have flexibility for realizing many different designs. This situation makes fiber optics an alternative for other lighting systems. Fiber optic lighting systems usage is increasing day-by-day in our life. In this article, these systems are discussed in detail.

  1. Electrospun amplified fiber optics. (United States)

    Morello, Giovanni; Camposeo, Andrea; Moffa, Maria; Pisignano, Dario


    All-optical signal processing is the focus of much research aiming to obtain effective alternatives to existing data transmission platforms. Amplification of light in fiber optics, such as in Erbium-doped fiber amplifiers, is especially important for efficient signal transmission. However, the complex fabrication methods involving high-temperature processes performed in a highly pure environment slow the fabrication process and make amplified components expensive with respect to an ideal, high-throughput, room temperature production. Here, we report on near-infrared polymer fiber amplifiers working over a band of ∼20 nm. The fibers are cheap, spun with a process entirely carried out at room temperature, and shown to have amplified spontaneous emission with good gain coefficients and low levels of optical losses (a few cm(-1)). The amplification process is favored by high fiber quality and low self-absorption. The found performance metrics appear to be suitable for short-distance operations, and the large variety of commercially available doping dyes might allow for effective multiwavelength operations by electrospun amplified fiber optics.

  2. Effects of phosphorus doping on structural and optical properties of silicon nanocrystals in a SiO2 matrix

    International Nuclear Information System (INIS)

    Hao, X.J.; Cho, E.-C.; Scardera, G.; Bellet-Amalric, E.; Bellet, D.; Shen, Y.S.; Huang, S.; Huang, Y.D.; Conibeer, G.; Green, M.A.


    Promise of Si nanocrystals highly depends on tailoring their behaviour through doping. Phosphorus-doped silicon nanocrystals embedded in a silicon dioxide matrix have been realized by a co-sputtering process. The effects of phosphorus-doping on the properties of Si nanocrystals are investigated. Phosphorus diffuses from P-P and/or P-Si to P-O upon high temperature annealing. The dominant X-ray photoelectron spectroscopy P 2p signal attributable to Si-P and/or P-P (130 eV) at 1100 o C indicates that the phosphorus may exist inside Si nanocrystals. It is found that existence of phosphorus enhances phase separation of silicon rich oxide and thereby Si crystallization. In addition, phosphorus has a considerable effect on the optical absorption and photoluminescence properties as a function of annealing temperature.

  3. Optical Properties of Malachite Green Dye Doped SiO2 Glasses: Effect of Transition Metal (Fe-I Used as a Codopant

    Directory of Open Access Journals (Sweden)

    Dulen Bora


    Full Text Available Enhanced luminescence properties of Malachite Green (MG (oxalate in Fe-MG codoped SiO2 glasses compared to its values in MG doped SiO2 glasses are reported here. The enhancement is chiefly attributed to a resonance nonradiative energy transfer between Fe and MG. The quantum yield of Malachite Green (MG, in presence of Iron, trapped in sol-gel derived SiO2 glass increases by an order of ~103 compared to that in low viscous solvent while a lifetime of 3.29 ns is reported.

  4. Intrinsic Properties of Suspended MoS2on SiO2/Si Pillar Arrays for Nanomechanics and Optics. (United States)

    Chaste, Julien; Missaoui, Amine; Huang, Si; Henck, Hugo; Ben Aziza, Zeineb; Ferlazzo, Laurence; Naylor, Carl; Balan, Adrian; Johnson, Alan T Charlie; Braive, Rémy; Ouerghi, Abdelkarim


    Semiconducting two-dimensional (2D) materials, such as transition-metal dichalcogenides (TMDs), are emerging in nanomechanics, optoelectronics, and thermal transport. In each of these fields, perfect control over 2D material properties including strain, doping, and heating is necessary, especially on the nanoscale. Here, we study clean devices consisting of membranes of single-layer MoS 2 suspended on pillar arrays. Using Raman and photoluminescence spectroscopy, we have been able to extract, separate, and simulate the different contributions on the nanoscale and to correlate these to the pillar array design. This control has been used to design a periodic MoS 2 mechanical membrane with a high reproducibility and to perform optomechanical measurements on arrays of similar resonators with a high-quality factor of 600 at ambient temperature, hence opening the way to multiresonator applications with 2D materials. At the same time, this study constitutes a reference for the future development of well-controlled optical emissions within 2D materials on periodic arrays with reproducible behavior. We measured a strong reduction of the MoS 2 band gap induced by the strain generated from the pillars. A transition from direct to indirect band gap was observed in isolated tent structures made of MoS 2 and pinched by a pillar. In fully suspended devices, simulations were performed allowing both the extraction of the thermal conductance and doping of the layer. Using the correlation between the influences of strain and doping on the MoS 2 Raman spectrum, we have developed a simple, elegant method to extract the local strain in suspended and nonsuspended parts of a membrane. This opens the way to experimenting with tunable coupling between light emission and vibration.

  5. Optical fiber stripper positioning apparatus (United States)

    Fyfe, Richard W.; Sanchez, Jr., Amadeo


    An optical fiber positioning apparatus for an optical fiber stripping device is disclosed which is capable of providing precise axial alignment between an optical fiber to be stripped of its outer jacket and the cutting blades of a stripping device. The apparatus includes a first bore having a width approximately equal to the diameter of an unstripped optical fiber and a counter bore axially aligned with the first bore and dimensioned to precisely receive a portion of the stripping device in axial alignment with notched cutting blades within the stripping device to thereby axially align the notched cutting blades of the stripping device with the axis of the optical fiber to permit the notched cutting blades to sever the jacket on the optical fiber without damaging the cladding on the optical fiber. In a preferred embodiment, the apparatus further includes a fiber stop which permits determination of the length of jacket to be removed from the optical fiber.

  6. Fiber optic calorimetry

    International Nuclear Information System (INIS)

    Rudy, C.R.; Bayliss, S.C.; Bracken, D.S.; Bush, I.J.; Davis, P.G.


    A twin-bridge calorimeter using optical fiber as the sensor element was constructed and tested. This system demonstrates the principle and capability of using optical fibers for heat-flow measurements of special nuclear material. This calorimeter uses piezoelectric-generated phase-carrier modulation with subsequent electronic signal processing to allow phase shifts as small as 1 microrad to be measured. The sensing element consists of 21-m lengths of single-mode optical fiber wrapped around sample and reference chambers. The sensitivity of the calorimeter was determined to be 74 rad of phase shift per mW of thermal power. One milliwatt of thermal power is equivalent to 400 mg of plutonium (6% 240 Pu). The system noise base was about 0.2 rad, equivalent to about 1 mg of plutonium

  7. Fiber Optic Calorimetry

    International Nuclear Information System (INIS)

    Rudy, C.; Bayliss, S.; Bracken, D.; Bush, J.; Davis, P.


    A twin-bridge calorimeter using optical fiber as the sensor element was constructed and tested. This system demonstrates the principle and capability of using optical fibers for heat-flow measurements of special nuclear material. This calorimeter uses piezoelectric-generated phase-carrier modulation with subsequent electronic signal processes to allow phase shifts as small as 1 microradian (microrad) to be measured. The sensing element consists of 21-m lengths of single-mode optical fiber wrapped around sample and reference chambers. The sensitivity of the calorimeter was determined to be 74 radians (rad) of phase shift per milliwatt of thermal power. One milliwatt of thermal power is equivalent to 400 mg of plutonium (6% 240 Pu). The system noise base was about 0.2 rad, equivalent to about 1 mg of plutonium

  8. Surface viscoelasticity studies of Gd2O3, SiO2 optical thin films and multilayers using force modulation and force-distance scanning probe microscopy

    International Nuclear Information System (INIS)

    Sahoo, N.K.; Thakur, S.; Senthilkumar, M.; Das, N.C.


    The single and multilayer of Gd 2 O 3 and SiO 2 thin films deposited through reactive electron beam evaporation have been studied for their viscoelasticity properties and optical spectral stability using multimode scanning probe microscope and spectrophotometric techniques. A conspicuous changes in viscoelasticity properties and surface topographies have been observed with the Gd 2 O 3 films deposited under various oxygen pressures. The scanning probe measurements on the multilayer filters fabricated using these film materials for laser wavelengths of 248 nm (KrF) and 355 nm (Nd:Yag-III) have shown superior viscoelasticity property, which is not the case with the most conventional multilayers. The results were correlated with the long-term spectral stability that has been studied by recording transmittance spectra of these filters at a time interval of 10 months. Both the multilayer filters have shown excellent temporal spectral stabilities with a relatively better result for the 248 nm reflection filter. Further analysis has shown a very good co-relationship in the spectral stability and viscoelasticity properties in these multilayers

  9. Fluoride glass fiber optics

    CERN Document Server

    Aggarwal, Ishwar D


    Fluoride Glass Fiber Optics reviews the fundamental aspects of fluoride glasses. This book is divided into nine chapters. Chapter 1 discusses the wide range of fluoride glasses with an emphasis on fluorozirconate-based compositions. The structure of simple fluoride systems, such as BaF2 binary glass is elaborated in Chapter 2. The third chapter covers the intrinsic transparency of fluoride glasses from the UV to the IR, with particular emphasis on the multiphonon edge and electronic edge. The next three chapters are devoted to ultra-low loss optical fibers, reviewing methods for purifying and

  10. Optical fiber rotation sensing

    CERN Document Server

    Burns, William K; Kelley, Paul


    Optical Fiber Rotation Sensing is the first book devoted to Interferometric Fiber Optic Gyros (IFOG). This book provides a complete overview of IFOGs, beginning with a historical review of IFOG development and including a fundamental exposition of basic principles, a discussion of devices and components, and concluding with industry reports on state-of-the-art activity. With several chapters contributed by principal developers of this solid-state device, the result is an authoritative work which will serve as the resource for researchers, students, and users of IFOGs.* * State-of-t

  11. Fiber optic fluid detector (United States)

    Angel, S. Michael


    Particular gases or liquids are detected with a fiber optic element (11, 11a to 11j) having a cladding or coating of a material (23, 23a to 23j) which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector (24, 24a to 24j) may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses.

  12. Optical fibers for communication. (United States)

    Gloge, D


    The transparency of glass fibers in the visible and near infrared-improved beyond all expectations by recent breakthroughs-seems now sufficient to transmit optical signals unprocessed over miles. No wonder that efforts have intensified all over the world to utilize fibers in future communication systems. Materials research and fabrication are the fields where present progress is most rapid. New ways of preform preparation by deposition, doping, or diffusion are being studied and found to offer improvements and versatility. As far as materials are concerned, fused silica has shown the lowest bulk losses and hence receives the most interest, but many glasses are being studied as well. As new processes become available and record lows in fiber loss are being reached, propagation theory is finding new challenges as well. On the one hand, multimode fibers seem desirable with respect to transmitter compatibility, splicing, and fabrication tolerances. On the other hand, the signal distortion caused by mode delay differences in multimode fibers can be considerable and requires equalization-inherent in the fiber or at the fiber end. Beyond that, the wavelength dependence of the refractive index produces dispersion effects serious enough to be of importance. Thinking ahead, one is confronted with the question of fiber handling, strength, and life. The technology of making cables and splices from a brittle material like glass is in its infancy, and we can only indicate the extent of these difficult problems ahead.

  13. Applications of nonlinear fiber optics

    CERN Document Server

    Agrawal, Govind


    * The only book describing applications of nonlinear fiber optics * Two new chapters on the latest developments: highly nonlinear fibers and quantum applications* Coverage of biomedical applications* Problems provided at the end of each chapterThe development of new highly nonlinear fibers - referred to as microstructured fibers, holey fibers and photonic crystal fibers - is the next generation technology for all-optical signal processing and biomedical applications. This new edition has been thoroughly updated to incorporate these key technology developments.The bo

  14. Efficient catalytic ozonation by ruthenium nanoparticles supported on SiO2 or TiO2: Towards the use of a non-woven fiber paper as original support

    KAUST Repository

    Biard, Pierre-François


    This work focuses on the use of Ru(0) nanoparticles as heterogeneous catalyst for ozone decomposition and radical production. In a first set of experiments, the nanoparticles have been deposited on two inorganic supports (TiO2 or SiO2) by a wet impregnation approach. This study confirmed the high potential of Ru nanoparticles as active species for ozone decomposition at pH 3, since the ozone half-life time decreases by a factor 20-25, compared to the reference experiment carried out without any catalyst. The enhancement of the ozone decomposition kinetics provided an improved radical production and a higher transient radical concentration in a shorten ozone exposure. Consequently, lower oxidant dosage and contact time would be necessary. Thus, very significant atrazine consumption kinetics enhancements were measured. In a second set of experiments, a non-woven fiber paper composed of a TiO2/SiO2/zeolite mixture has been evaluated as an original support for ruthenium nanoparticles. Even if lower ozone decomposition kinetics was observed compared to TiO2 or SiO2, this support would be a promising alternative to inorganic powders to avoid the catalyst recovery step and to design reactors such as tubular reactors. A new numerical procedure is presented for the evaluation of the transient HO° concentration and of the Rct.

  15. Reduced Gravity Zblan Optical Fiber (United States)

    Tucker, Dennis S.; Workman, Gary L.; Smith, Guy A.


    Two optical fiber pullers have been designed for pulling ZBLAN optical fiber in reduced gravity. One fiber puller was designed, built and flown on board NASA's KC135 reduced gravity aircraft. A second fiber puller has been designed for use on board the International Space Station.

  16. Fiber optic calorimetry

    International Nuclear Information System (INIS)

    Rudy, C.; Bayliss, S.; Bracken, D.; Bush, J.; Davis, P.


    A twin-bridge calorimeter using optical fiber as the sensor element was constructed and tested. This system demonstrates the principle and capability of using fiber for heat-flow measurements of special nuclear material. This calorimeter uses piezoelectric-generated phase-carrier modulation with subsequent electronic signal processing to allow phase shifts as small as 1 microradian (μrad) to be measured. The sensing element consists of 21-m lengths of single-mode optical fiber wrapped around sample and reference chambers. The sensitivity of the calorimeter was determined to be 74 radians (rad) of phase shift per milliwatt of thermal power. One milliwatt of thermal power is equivalent to 400 mg of plutonium (6% 240 Pu). The system noise base was about 0.2 rad, equivalent to about 1 mg of plutonium

  17. Optical Fiber Protection (United States)


    F&S Inc. developed and commercialized fiber optic and microelectromechanical systems- (MEMS) based instrumentation for harsh environments encountered in the aerospace industry. The NASA SBIR programs have provided F&S the funds and the technology to develop ruggedized coatings and coating techniques that are applied during the optical fiber draw process. The F&S optical fiber fabrication facility and developed coating methods enable F&S to manufacture specialty optical fiber with custom designed refractive index profiles and protective or active coatings. F&S has demonstrated sputtered coatings using metals and ceramics and combinations of each, and has also developed techniques to apply thin coatings of specialized polyimides formulated at NASA Langley Research Center. With these capabilities, F&S has produced cost-effective, reliable instrumentation and sensors capable of withstanding temperatures up to 800? C and continues building commercial sales with corporate partners and private funding. More recently, F&S has adapted the same sensing platforms to provide the rapid detection and identification of chemical and biological agents

  18. Aerogel-clad optical fiber (United States)

    Sprehn, Gregory A.; Hrubesh, Lawrence W.; Poco, John F.; Sandler, Pamela H.


    An optical fiber is surrounded by an aerogel cladding. For a low density aerogel, the index of refraction of the aerogel is close to that of air, which provides a high numerical aperture to the optical fiber. Due to the high numerical aperture, the aerogel clad optical fiber has improved light collection efficiency.

  19. Nonlinear fiber optics

    CERN Document Server

    Agrawal, Govind


    Since the 4e appeared, a fast evolution of the field has occurred. The 5e of this classic work provides an up-to-date account of the nonlinear phenomena occurring inside optical fibers, the basis of all our telecommunications infastructure as well as being used in the medical field. Reflecting the big developments in research, this new edition includes major new content: slow light effects, which offers a reduction in noise and power consumption and more ordered network traffic-stimulated Brillouin scattering; vectorial treatment of highly nonlinear fibers; and a brand new chapter o

  20. Introduction to optical fiber sensors

    International Nuclear Information System (INIS)

    Moukdad, S.


    Optical fiber sensors have many advantages over other types of sensors, for example: Low weight, immunity from EMI, electrical isolation, chemical passivity, and high sensitivity. In this seminar, a brief explanation of the optical fiber sensors, their use, and their advantages will be given. After, a description of the main optical fiber sensor components will be presented. Principles of some kinds of optical fiber sensors will be presented, and the principle of the fiber-optic rotation sensor and its realization will be discussed in some details, as well as its main applications. (author). 5 refs, 8 figs, 2 tabs

  1. Advances on Optical Fiber Sensors

    Directory of Open Access Journals (Sweden)

    Luciano Mescia


    Full Text Available In this review paper some recent advances on optical fiber sensors are reported. In particular, fiber Bragg grating (FBG, long period gratings (LPGs, evanescent field and hollow core optical fiber sensors are mentioned. Examples of recent optical fiber sensors for the measurement of strain, temperature, displacement, air flow, pressure, liquid-level, magnetic field, and the determination of methadone, hydrocarbons, ethanol, and sucrose are briefly described.

  2. Photometric device using optical fibers

    International Nuclear Information System (INIS)

    Boisde, Gilbert; Perez, J.-J.


    Remote measurements in radioactive environment are now possible with optical fibers. Measurement instruments developed by CEA are constitued of: - an optical probe (5 mm to 1 meter optical path length), - a photometric measurement device, - optical fiber links. 'TELEPHOT' is a photometric device for industrial installations. It is uses interferentiel filters for 2 to 5 simultaneous wave lengths. 'CRUDMETER' measures the muddiness of water. It can be equipped with a high sensitivity cell of 50 cm optical path length tested up to 250 bars. Coupling a double beam spectrophotometer to a remote optical probe, up to 1 meter optical path length, is carried out by means of an optical device using optical fibers links, eventually several hundred meter long. For these equipments special step index large core fibers, 1 to 1.5 mm in diameter, have been developed as well connectors. For industrial control and research these instruments offer new prospect thanks to optical fibers use [fr

  3. Optical Fiber Spectroscopy (United States)

    Buoncristiani, A. M.


    This is the final report of work done on NASA Grant NAG-1-443. The work covers the period from July 1, 1992 to December 1, 1998. During this period several distinct but related research studies and work tasks were undertaken. These different subjects are enumerated below with a description of the work done on each of them. The focus of the research was the development of optical fibers for use as distributed temperature and stress sensors. The initial concept was to utilize the utilize the temperature and stress dependence of emission from rare earth and transition metal ions substitutionally doped into crystalline or glass fibers. During the course of investigating this it became clear that fiber Bragg gratings provided a alternative for making the desired measurements and there was a shift of research focus on to include the photo-refractive properties of germano-silicate glasses used for most gratings and to the possibility of developing fiber laser sources for an integrated optical sensor in the research effort. During the course of this work several students from Christopher Newport University and other universities participated in this effort. Their names are listed below. Their participation was an important part of their education.

  4. Anisotropic elliptic optical fibers (United States)

    Kang, Soon Ahm


    The exact characteristic equation for an anisotropic elliptic optical fiber is obtained for odd and even hybrid modes in terms of infinite determinants utilizing Mathieu and modified Mathieu functions. A simplified characteristic equation is obtained by applying the weakly guiding approximation such that the difference in the refractive indices of the core and the cladding is small. The simplified characteristic equation is used to compute the normalized guide wavelength for an elliptical fiber. When the anisotropic parameter is equal to unity, the results are compared with the previous research and they are in close agreement. For a fixed value normalized cross-section area or major axis, the normalized guide wavelength lambda/lambda(sub 0) for an anisotropic elliptic fiber is small for the larger value of anisotropy. This condition indicates that more energy is carried inside of the fiber. However, the geometry and anisotropy of the fiber have a smaller effect when the normalized cross-section area is very small or very large.

  5. Optical fibers for FTTH application (United States)

    Guzowski, Bartlomiej; Tosik, Grzegorz; Lisik, Zbigniew; Bedyk, Michal; Kubiak, Andrzej


    In this paper the specifics of FTTH (Fiber To The Home) networks in terms of requirements for optical fibers has been presented. Optical fiber samples used in FTTH applications acquired from the worldwide leading manufacturers were subjected to small diameter mandrel wraps tests. The detailed procedures of performed tests and the measurement results has been presented.


    Directory of Open Access Journals (Sweden)

    Göktuğ GÜNKAYA


    Full Text Available According to the relevant literature, the utilization of different kind of glass fibers in concrete introduces positive effect on the mechanical behavior, especially toughness. There are many glassfibers available to reinforce concretes. Glass fiber composition is so important because it may change the properties such as strength, elastic modulus and alkali resistance. Its most important property to be used in concrete is the alkali resistance. Some glasses of SrO–MgO–ZrO2–SiO2 (SMZS quaternary system, such as 26SrO, 20MgO, 14ZrO2, 40SiO2 (Zrn glass, have been found to be highly alkali resistant thanks to their high ZrO2 and MgO contents. Previous researches on these glasses with MnO and/or Fe2O3 partially replacing SrO have been made with the aim of improving the chemical resistance and decreasing the production cost.The main target of the present study, first of all, was to characterize commercially available alkali resistant glass fiber for concrete reinforcement and then to compare its alkali durability with those of the SrO-Mn2O3-Fe2O3-MgO-ZrO2-SiO2 (SMFMZS system glasses. For such purposes, XRF, Tg-DTA, alkali resistance tests and SEM analysis conducted with EDX were employed. According tothe alkali endurance test results it was revealed that some of the SMFMZS system glass powders are 10 times resistant to alkali environments than the commercial glass fibers used in this study.Therefore, they can be considered as alternative filling materials on the evolution of chemically resistant concrete structures.

  7. The effect of Ni pre-implantation on surface morphology and optical absorption properties of Ag nanoparticles embedded in SiO2

    International Nuclear Information System (INIS)

    Shen, Yanyan; Qi, Ting; Qiao, Yu; Yu, Shengwang; Hei, Hongjun; He, Zhiyong


    Graphical abstract: - Highlights: • Ag concentration increased significantly due to the Ni pre-implantation. • Deposition and accumulation process of Ag atoms depends on Ni fluences. • The incorporation of Ni elements in Ag NPs can damp SPR absorption intensity. • AgNi alloy NPs embedded in SiO 2 have been created by sequentially implantation. • Unique SPR absorption with dual peaks centered at 406 nm and 563 nm was observed. - Abstract: The effect of Ni ion fluence on Ag nucleation and particle growth was investigated by sequentially implantation of 60 keV Ni ions at fluences of 1 × 10 16 , 5 × 10 16 , 1 × 10 17 ions/cm 2 and 70 keV Ag ions at a fluence of 5 × 10 16 ions/cm 2 . Due to the modification of the deposition and accumulation process of Ag implants caused by Ni pre-implantation, the surface morphology, structures, and optical absorption properties of the Ag nanoparticles (NPs) depends strongly on the Ni fluences. UV–vis absorption spectroscopy study showed that the introducing of Ni atoms lead to intensity decrease in the Ag SPR band. Remarkable local concentration increase of Ag profiles appeared for the sample pre-implanted by Ni ions of 5.0 × 10 16 ions/cm 2 . In particular, the AgNi alloy NPs with dual absorption peaks centered at 406 nm and 563 nm have been formed after 600 °C annealing in Ar atmosphere. However, at a low fluence of 1.0 × 10 16 ions/cm 2 , only small increase of the local Ag concentration than the Ag ions singly implanted sample can be observed. At a high fluence of 1.0 × 10 17 ions/cm 2 , lots Ag atoms are trapped close to the surface, which result in heavy sputtering loss of Ag atoms and the sublimation of Ag atoms after 600 °C annealing.

  8. Selenium semiconductor core optical fibers

    Directory of Open Access Journals (Sweden)

    G. W. Tang


    Full Text Available Phosphate glass-clad optical fibers containing selenium (Se semiconductor core were fabricated using a molten core method. The cores were found to be amorphous as evidenced by X-ray diffraction and corroborated by Micro-Raman spectrum. Elemental analysis across the core/clad interface suggests that there is some diffusion of about 3 wt % oxygen in the core region. Phosphate glass-clad crystalline selenium core optical fibers were obtained by a postdrawing annealing process. A two-cm-long crystalline selenium semiconductor core optical fibers, electrically contacted to external circuitry through the fiber end facets, exhibit a three times change in conductivity between dark and illuminated states. Such crystalline selenium semiconductor core optical fibers have promising utility in optical switch and photoconductivity of optical fiber array.

  9. Determination of optimum Si excess concentration in Er-doped Si-rich SiO2 for optical amplification at 1.54 μm

    International Nuclear Information System (INIS)

    Savchyn, Oleksandr; Coffey, Kevin R.; Kik, Pieter G.


    The presence of indirect Er 3+ excitation in Si-rich SiO 2 is demonstrated for Si-excess concentrations in the range of 2.5-37 at. %. The Si excess concentration providing the highest density of sensitized Er 3+ ions is demonstrated to be relatively insensitive to the presence of Si nanocrystals and is found to be ∼14.5 at. % for samples without Si nanocrystals (annealed at 600 deg. C) and ∼11.5 at. % for samples with Si nanocrystals (annealed at 1100 deg. C). The observed optimum is attributed to an increase in the density of Si-related sensitizers as the Si concentration is increased, with subsequent deactivation and removal of these sensitizers at high Si concentrations. The optimized Si excess concentration is predicted to generate maximum Er-related gain at 1.54 μm in devices based on Er-doped Si-rich SiO 2 .

  10. Contribution to the study of metal-oxide-semiconductor devices with optical access. In2O3-SiO2-Si structure

    International Nuclear Information System (INIS)

    Thenoz, Yves.


    A general study of the fabrication of the structure In 2 O 3 /SiO 2 /Si was made encompassing the problems posed during the realization of these structures. The sputtering study enabled the influence of the main parameters on layer properties to be determined. The decisive importance of clean conditions throughout fabrication (especially during sputtering) on the properties of In 2 O 3 layers and on those of the structure and its stability was revealed. However, the problem of ageing of the structure were not investigated. Finally, the construction of MOS capacitors and transistors showed that In 2 O 3 /SiO 2 /Si structures can be used in MOS circuits [fr

  11. Fiber-Optic Sensor Facility (United States)

    Federal Laboratory Consortium — FUNCTION: Constructs and evaluates fiber-optic sensors for a variety of measurands. These measurands include acoustic, pressure, magnetic, and electric field as well...

  12. Manufacturing and investigation of surface morphology and optical properties of composite thin films reinforced by TiO2, Bi2O3 and SiO2 nanoparticles (United States)

    Jarka, Paweł; Tański, Tomasz; Matysiak, Wiktor; Krzemiński, Łukasz; Hajduk, Barbara; Bilewicz, Marcin


    The aim of submitted paper is to present influence of manufacturing parameters on optical properties and surface morphology of composite materials with a polymer matrix reinforced by TiO2 and SiO2 and Bi2O3 nanoparticles. The novelty proposed by the authors is the use of TiO2 and SiO2 and Bi2O3 nanoparticles simultaneously in polymeric matrix. This allows using the combined effect of nanoparticles to a result composite material. The thin films of composite material were prepared by using spin-coating method with various spinning rates from solutions of different concentration of nanoparticles. In order to prepare the spinning solution polymer, Poly(methyl methacrylate) (PMMA) was used as a matrix. The reinforcing phase was the mixture of the nanoparticles of SiO2, TiO2 and B2O3. In order to identify the surface morphology of using thin films and arrangement of the reinforcing phase Atomic Force Microscope (AFM) and Scanning Electron Microscope (SEM) were used. In order to study the optical properties of the obtained thin films, the thin films of composites was subjected to an ellipsometry analysis. The measurements of absorbance of the obtained materials, from which the value of the band gap width was specified, were carried out using the UV/VIS spectroscopy. The optical properties of obtain composite thin films depend not only on the individual components used, but also on the morphology and the interfacial characteristics. Controlling the participation of three kinds of nanoparticles of different sizes and optical parameters allows to obtaining the most optimal optical properties of nanocomposites and also controlling the deposition parameters allows to obtaining the most optimal surface morphology of nanocomposites.

  13. Fundamentals of plastic optical fibers

    CERN Document Server

    Koike, Yasuhiro


    Polymer photonics is an interdisciplinary field which demands excellence both in optics (photonics) and materials science (polymer). However, theses disciplines have developed independently, and therefore the demand for a comprehensive work featuring the fundamentals of photonic polymers is greater than ever.This volume focuses on Polymer Optical Fiber and their applications. The first part of the book introduces typical optical fibers according to their classifications of material, propagating mode, and structure. Optical properties, the high bandwidth POF and transmission loss are discussed,

  14. Fabrication of Optical Fiber Devices (United States)

    Andres, Miguel V.

    In this paper we present the main research activities of the Laboratorio de Fibras Opticas del Instituto de Ciencia de los Materiales de la Universidad de Valencia. We show some of the main results obtained for devices based on tapered fibers, fiber Bragg gratings, acousto-optic effects and photonic crystal fibers.

  15. Effect of Charging Electron Exposure on 1064nm Transmission Through Bare Sapphire Optics and SiO2 over HfO2 AR-Coated Sapphire Optics (United States)

    Ottens, Brian P.; Connelly, Joseph; Brown, Stephen; Roeder, James; Kauder, Lonny; Cavanaugh, John


    Experiments measuring the effect of electron exposure on 1064nm transmission for optical sapphire were conducted. Detailed before and after inspections did not identify any resulting Litchenburg patterns. Pre- and post-exposure 1064nm transmission measurements are compared.

  16. Optical fiber inspection system (United States)

    Moore, Francis W.


    A remote optical inspection system including an inspection head. The inspection head has a passageway through which pellets or other objects are passed. A window is provided along the passageway through which light is beamed against the objects being inspected. A plurality of lens assemblies are arranged about the window so that reflected light can be gathered and transferred to a plurality of coherent optical fiber light guides. The light guides transfer the light images to a television or other image transducer which converts the optical images into a representative electronic signal. The electronic signal can then be displayed on a signal viewer such as a television monitor for inspection by a person. A staging means can be used to support the objects for viewing through the window. Routing means can be used to direct inspected objects into appropriate exit passages for accepted or rejected objects. The inspected objects are advantageously fed in a singular manner to the staging means and routing means. The inspection system is advantageously used in an enclosure when toxic or hazardous materials are being inspected.

  17. Fiber optic sensor and method for making (United States)

    Vartuli, James Scott; Bousman, Kenneth Sherwood; Deng, Kung-Li; McEvoy, Kevin Paul; Xia, Hua


    A fiber optic sensor including a fiber having a modified surface integral with the fiber wherein the modified surface includes an open pore network with optical agents dispersed within the open pores of the open pore network. Methods for preparing the fiber optic sensor are also provided. The fiber optic sensors can withstand high temperatures and harsh environments.

  18. Fiber optic-based biosensor (United States)

    Ligler, Frances S.


    The NRL fiber optic biosensor is a device which measures the formation of a fluorescent complex at the surface of an optical fiber. Antibodies and DNA binding proteins provide the mechanism for recognizing an analyze and immobilizing a fluorescent complex on the fiber surface. The fiber optic biosensor is fast, sensitive, and permits analysis of hazardous materials remote from the instrumentation. The fiber optic biosensor is described in terms of the device configuration, chemistry for protein immobilization, and assay development. A lab version is being used for assay development and performance characterization while a portable device is under development. Antibodies coated on the fiber are stable for up to two years of storage prior to use. The fiber optic biosensor was used to measure concentration of toxins in the parts per billion (ng/ml) range in under a minute. Immunoassays for small molecules and whole bacteria are under development. Assays using DNA probes as the detection element can also be used with the fiber optic sensor, which is currently being developed to detect biological warfare agents, explosives, pathogens, and toxic materials which pollute the environment.

  19. Optical properties of transparent Li2O-Ga2O3-SiO2 glass-ceramics embedding Ni-doped nanocrystals

    International Nuclear Information System (INIS)

    Suzuki, Takenobu; Murugan, Ganapathy Senthil; Ohishi, Yasutake


    Transparent Li 2 O-Ga 2 O 3 -SiO 2 (LGS) glass-ceramics embedding Ni:LiGa 5 O 8 nanocrystals were fabricated. An intense emission centered around 1300 nm with the width of more than 300 nm was observed by 976 nm photoexcitation of the glass-ceramics. The lifetime was more than 900 μs at 5 K and 500 μs at 300 K. The emission could be attributed to the 3 T 2g ( 3 F)→ 3 A 2g ( 3 F) transition of Ni 2+ in distorted octahedral sites in LiGa 5 O 8 . The product of stimulated emission cross section and lifetime for the emission was about 3.7x10 -24 cm 2 s and was a sufficiently practical value

  20. Polymer optical fiber bragg grating sensors

    DEFF Research Database (Denmark)

    Stefani, Alessio; Yuan, Scott Wu; Andresen, Søren


    Fiber-optical accelerometers based on polymer optical fiber Bragg gratings are reported. We have written fiber Bragg gratings for 1550 nm and 850 nm operations, characterized their temperature and strain response, and tested their performance in a prototype accelerometer....

  1. Application of Fiber Optic Instrumentation (United States)

    Richards, William Lance; Parker, Allen R., Jr.; Ko, William L.; Piazza, Anthony; Chan, Patrick


    Fiber optic sensing technology has emerged in recent years offering tremendous advantages over conventional aircraft instrumentation systems. The advantages of fiber optic sensors over their conventional counterparts are well established; they are lighter, smaller, and can provide enormous numbers of measurements at a fraction of the total sensor weight. After a brief overview of conventional and fiber-optic sensing technology, this paper presents an overview of the research that has been conducted at NASA Dryden Flight Research Center in recent years to advance this promising new technology. Research and development areas include system and algorithm development, sensor characterization and attachment, and real-time experimentally-derived parameter monitoring for ground- and flight-based applications. The vision of fiber optic smart structure technology is presented and its potential benefits to aerospace vehicles throughout the lifecycle, from preliminary design to final retirement, are presented.

  2. Light diffusing fiber optic chamber (United States)

    Maitland, Duncan J.


    A light diffusion system for transmitting light to a target area. The light is transmitted in a direction from a proximal end to a distal end by an optical fiber. A diffusing chamber is operatively connected to the optical fiber for transmitting the light from the proximal end to the distal end and transmitting said light to said target area. A plug is operatively connected to the diffusing chamber for increasing the light that is transmitted to the target area.

  3. Small Business Innovations (Fiber Optics) (United States)


    Foster-Miller, Inc. Waltham, MA developed the In-Situ Fiber Optic Polymer Reaction Monitor which could lead to higher yields and lower costs in complex composite manufacturing. The monitor, developed under a Small Business Innovation Research (SBIR) contract with Langley Research Center, uses an infrared, fiber optic sensor to track the molecular vibrational characteristics of a composite part while it is being cured. It is the first analytical system capable of directly measuring the chemistry of advanced composite materials.

  4. Fiber Ring Optical Gyroscope (FROG) (United States)


    The design, construction, and testing of a one meter diameter fiber ring optical gyro, using 1.57 kilometers of single mode fiber, are described. The various noise components: electronic, thermal, mechanical, and optical, were evaluated. Both dc and ac methods were used. An attempt was made to measure the Earth rotation rate; however, the results were questionable because of the optical and electronic noise present. It was concluded that fiber ring optical gyroscopes using all discrete components have many serious problems that can only be overcome by discarding the discrete approach and adapting an all integrated optic technique that has the laser source, modulator, detector, beamsplitters, and bias element on a single chip.

  5. Monolithic fiber optic sensor assembly (United States)

    Sanders, Scott


    A remote sensor element for spectrographic measurements employs a monolithic assembly of one or two fiber optics to two optical elements separated by a supporting structure to allow the flow of gases or particulates therebetween. In a preferred embodiment, the sensor element components are fused ceramic to resist high temperatures and failure from large temperature changes.

  6. Fiber optic fire detection technology

    International Nuclear Information System (INIS)

    Hering, D.W.


    Electrostatic application of paint was, and still is, the most technically feasible method of reducing VOC (volatile organic compounds) emissions, while reducing the cost to apply the coatings. Prior to the use of electrostatics, only two sides of the traditional fire triangle were normally present in the booth, fuel (solvent), and oxygen (air). Now the third leg (the ignition source) was present at virtually all times during the production operation in the form of the electrostatic charge and the resulting energy in the system. The introduction of fiber optics into the field of fire detection was for specific application to the electrostatic painting industry, but specifically, robots used in the application of electrostatic painting in the automotive industry. The use of fiber optics in this hazard provided detection for locations that have been previously prohibited or inaccessible with the traditional fire detection systems. The fiber optic technology that has been adapted to the field of fire detection operates on the principle of transmission of photons through a light guide (optic fiber). When the light guide is subjected to heat, the cladding on the light guide melts away from the core and allows the light (photons) to escape. The controller, which contains the emitter and receiver is set-up to distinguish between partial loss of light and a total loss of light. Glass optical fibers carrying light offer distinct advantages over wires or coaxial cables carrying electricity as a transmission media. The uses of fiber optic detection will be expanded in the near future into such areas as aircraft, cable trays and long conveyor runs because fiber optics can carry more information and deliver it with greater clarity over longer distances with total immunity to all kinds of electrical interference

  7. Germanium-doped optical fiber for real-time radiation dosimetry

    International Nuclear Information System (INIS)

    Mizanur Rahman, A.K.M.; Zubair, H.T.; Begum, Mahfuza; Abdul-Rashid, H.A.; Yusoff, Z.; Ung, N.M.; Mat-Sharif, K.A.; Wan Abdullah, W.S.; Amouzad Mahdiraji, Ghafour; Amin, Y.M.; Maah, M.J.; Bradley, D.A.


    Over the past three decades growing demand for individualized in vivo dosimetry and subsequent dose verification has led to the pursuit of newer, novel and economically feasible materials for dosimeters. These materials are to facilitate features such as real-time sensing and fast readouts. In this paper, purposely composed SiO 2 :Ge optical fiber is presented as a suitable candidate for dosimetry. The optical fiber is meant to take advantage of the RL/OSL technique, providing both online remote monitoring of dose rate, and fast readouts for absorbed dose. A laboratory-assembled OSL reader has been used to acquire the RL/OSL response to LINAC irradiations (6 MV photons). The notable RL characteristics observed include constant level of luminescence for the same dose rate (providing better consistency compared to TLD-500), and linearity of response in the radiotherapy range (1 Gy/min to 6 Gy/min). The OSL curve was found to conform to an exponential decay characteristic (illumination with low LED source). The Ge doping resulted in an effective atomic number, Z eff , of 13.5 (within the bone equivalent range). The SiO 2 :Ge optical fiber sensor, with efficient coupling, can be a viable solution for in vivo dosimetry, besides a broad range of applications. - Highlights: • Purposely fabricated Ge doped silica fiber for real-time dose measurements. • Constant RL response for dose rates in radiotherapy range. • Linearity of RL curve during irradiation using LINAC. • RL response comparison between SiO 2 :Ge optical fiber and TLD-500.

  8. Fiber optic gas sensor (United States)

    Chen, Peng (Inventor); Buric, Michael P. (Inventor); Swinehart, Philip R. (Inventor); Maklad, Mokhtar S. (Inventor)


    A gas sensor includes an in-fiber resonant wavelength device provided in a fiber core at a first location. The fiber propagates a sensing light and a power light. A layer of a material is attached to the fiber at the first location. The material is able to absorb the gas at a temperature dependent gas absorption rate. The power light is used to heat the material and increases the gas absorption rate, thereby increasing sensor performance, especially at low temperatures. Further, a method is described of flash heating the gas sensor to absorb more of the gas, allowing the sensor to cool, thereby locking in the gas content of the sensor material, and taking the difference between the starting and ending resonant wavelengths as an indication of the concentration of the gas in the ambient atmosphere.

  9. Fiber Optic Bragg Gratings

    National Research Council Canada - National Science Library

    Battiato, James


    Coupled mode theory was used to model reflection fiber gratings. The effects of experimental parameters on grating characteristics were modeled for both uniform and non-uniform grating profiles using this approach...

  10. Integrated optics for fiber gyro's (United States)

    Goss, W.; Goldstein, R.


    Expected advantages of incorporating integrated optical waveguide components into fiber gyroscopes are summarized. The structural-simplicity benefits which can be achieved through the use of solid-state lasers, and integrated and fiber optics are examined; angular rate noise and random walk drift for the current technology in the 0.84-micron wavelength region are reported as 0.00001 deg/sec and 0.0002 deg/hr to the 1/2, respectively. The state-of-the-art in the pertinent materials research is reviewed; lithium niobate, suggested to be used as a waveguide substrate material, is noted to have a complex chemistry that is not yet fully understood. However, most of the optical and electrooptical components of a fiber gyro are conceptually understood and have been demonstrated.

  11. Study of lanthanum aluminum silicate glasses for passive and active optical fibers (United States)

    Schuster, K.; Litzkendorf, D.; Grimm, S.; Kobelke, J.; Schwuchow, A.; Ludwig, A.; Leich, M.; Jetschke, S.; Dellith, J.; Auguste, J.-L.; Leparmentier, S.; Humbert, G.; Werner, G.


    We report on SiO2-Al2O3-La2O3 glasses - with and without Yb2O3 - suitable for nonlinear and fiber laser applications. We also present successful supercontinuum generation and fiber laser operation around 1060 nm in step-index fibers. We have optimized the glass compositions in terms of thermal and optical requirements for both a high La2O3 (24 mol%) and Yb2O3(6 mol%) concentration. The aluminum concentration was adjusted to about 21 mol% Al2O3 to increase the solubility of lanthanum and ytterbium in the glass beyond possible MCVD based techniques. The glasses have been characterized by dilatometrical methods to find transition temperatures from 860 to 880°C and thermal expansion coefficients between 4.1 and 7.0 × 10-6 K-1. Structured step index fibers with a SiO2-Al2O3-La2O3 core and silica cladding have been realized showing a fiber loss minimum of about 500 dB/km at 1200 nm wavelength. The chromatic dispersion could be adjusted to shift the zero dispersion wavelength (ZDW) close to the pump wavelength of 1550 nm in a supercontinuum generation setup. First fiber laser experiments show an efficiency of about 41 % with a remarkably reduced photodarkening compared to MCVD based fibers.

  12. Fiber optics principles and practices

    CERN Document Server

    Al-Azzawi, Abdul


    Since the invention of the laser, our fascination with the photon has led to one of the most dynamic and rapidly growing fields of technology. New advances in fiber optic devices, components, and materials make it more important than ever to stay current. Comprising chapters drawn from the author's highly anticipated book Photonics: Principles and Practices, Fiber Optics: Principles and Practices offers a detailed and focused treatment for anyone in need of authoritative information on this critical area underlying photonics.Using a consistent approach, the author leads you step-by-step throug

  13. Handbook of fiber optics theory and applications

    CERN Document Server

    Yeh, Chai


    Dr. Yeh supplies a firm theoretical foundation in such topics as propagation of light through fibers, fiber fabrication, loss mechanisms, and dispersion properties. He then expands from this into such practical areas as fiber splicing, measuring loss in fibers, fiber-based communications networks, remote fiber sensors, and integrated optics. Whether involved in fiber optics research, design, or practical implementation of systems, this handbook will be extremely useful.Key Features* Here is a comprehensive, ""one-stop"" reference with state-of-the-art information on fiber optics Included is da

  14. Photonics and Fiber Optics Processor Lab (United States)

    Federal Laboratory Consortium — The Photonics and Fiber Optics Processor Lab develops, tests and evaluates high speed fiber optic network components as well as network protocols. In addition, this...

  15. Fiber Optic Augmented Reality System (FOARS) (United States)

    National Aeronautics and Space Administration — Innovation: Fiber Optics Augmented Reality System. This system in form of a mobile app interacts real time with the actual FOSS(Fiber Optics Sensing System) data and...

  16. Orbital Fiber Optic Production Module, Phase I (United States)

    National Aeronautics and Space Administration — Physical Optics Corporation (POC) proposes to develop the Orbital Fiber Optic Production Module (ORFOM), which addresses NASA's needs for sustainable space...

  17. Applications of fiber optics in physical protection

    Energy Technology Data Exchange (ETDEWEB)

    Buckle, T.H. [Sandia National Labs., Albuquerque, NM (United States)


    The purpose of this NUREG is to provide technical information useful for the development of fiber-optic communications and intrusion detection subsystems relevant to physical protection. There are major sections on fiber-optic technology and applications. Other topics include fiber-optic system components and systems engineering. This document also contains a glossary, a list of standards and specifications, and a list of fiber-optic equipment vendors.

  18. Applications of fiber optics in physical protection

    International Nuclear Information System (INIS)

    Buckle, T.H.


    The purpose of this NUREG is to provide technical information useful for the development of fiber-optic communications and intrusion detection subsystems relevant to physical protection. There are major sections on fiber-optic technology and applications. Other topics include fiber-optic system components and systems engineering. This document also contains a glossary, a list of standards and specifications, and a list of fiber-optic equipment vendors

  19. Catching Attention in Fiber Optics Class


    Kezerashvili, R. Ya.; Leng, L.


    Following a brief review on the history and the current development of fiber optics, the significance of teaching fiber optics for science and non-science major college students is addressed. Several experimental demonstrations designed to aid the teaching and learning process in fiber optics lectures are presented. Sample laboratory projects are also proposed to help the students to understand the physical principles of fiber optics.

  20. High pressure fiber optic sensor system (United States)

    Guida, Renato; Xia, Hua; Lee, Boon K; Dekate, Sachin N


    The present application provides a fiber optic sensor system. The fiber optic sensor system may include a small diameter bellows, a large diameter bellows, and a fiber optic pressure sensor attached to the small diameter bellows. Contraction of the large diameter bellows under an applied pressure may cause the small diameter bellows to expand such that the fiber optic pressure sensor may measure the applied pressure.

  1. Nonlinear fiber optics formerly quantum electronics

    CERN Document Server

    Agrawal, Govind


    The field of nonlinear fiber optics has grown substantially since the First Edition of Nonlinear Fiber Optics, published in 1989. Like the First Edition, this Second Edition is a comprehensive, tutorial, and up-to-date account of nonlinear optical phenomena in fiber optics. It synthesizes widely scattered research material and presents it in an accessible manner for students and researchers already engaged in or wishing to enter the field of nonlinear fiber optics. Particular attention is paid to the importance of nonlinear effects in the design of optical fiber communication systems. This is

  2. Optical fibers and RF a natural combination

    CERN Document Server

    Romeiser, Malcolm


    The optical fiber industry has experienced a period of consolidation and reorganization and is now poised for a new surge in growth. To take advantage of that growth, and to respond to the demand to use fiber more efficiently, designers need a better understanding of fiber optics. Taking the approach that optical fibers are an extension of RF-based communications, the author explains basic optical concepts, applications, and systems; the nature and performance characteristics of optical fibers; and optical sources, connectors and splices. Subsequent chapters explore current applications of fib

  3. All-optical fiber compressor

    International Nuclear Information System (INIS)

    Ivanov, Luben M.


    A simple all-optical fiber compressor, based on an idea of dispersion management using a fiber of positive dispersion in the first part and of negative dispersion in the second one at the working wavelength, is investigated. The method allows a combination of the advantages of the classic fiber-grating and of the multisoliton compression. It is possible to improve substantially the quality of the compressed pulse compared to the multisoliton compression. The compression factor could be increased up to 2-2.5 times when the fraction of the input pulse energy appearing within the compressed pulse enhances more than 2 times. Thus, the peak power of the compressed pulse is able to increase about 5 times and the quality of the obtained pulses should be comparable with those obtained by the fiber-grating compressor

  4. Optical Fiber Grating based Sensors

    DEFF Research Database (Denmark)

    Michelsen, Susanne


    In this thesis differenct optical fiber gratings are used for sensor purposes. If a fiber with a core concentricity error (CCE) is used, a directional dependent bend sensor can be produced. The CCE direction can be determined by means of diffraction. This makes it possible to produce long......-period gratings in a fiber with a CCE direction parallel or perpendicular to the writing direction. The maximal bending sensitivity is independent on the writing direction, but the detailed bending response is different in the two cases. A temperature and strain sensor, based on a long-period grating and two...... wavelength. It is shown that it is possible to tune and modulate a DFB fiber laser with both strain from a piezoelectric transducer and by temperature through resistive heating of a methal film. Both a chemical deposited silver layer and an electron-beam evaporation technique has been investigated, to find...

  5. Hybrid Fiber-Optic/CCD Chip (United States)

    Goss, W. C.; Janesick, J. R.


    Low noise and linearity of charge-coupled devices (CCD's) combined with optical waveguide components in hybrid, integrated chip package. Concept used to measure laser flux in fiber-gyro application using sensing fibers that range from several to several tens of kilometers in length. Potential applications include optical delay measurement and linear detector of light flux emanating from fiber-optic waveguides.

  6. Career Directions--Fiber Optic Installer (United States)

    Tech Directions, 2012


    Fiber-optic communication is a method of transmitting information from one place to another by sending pulses of light through an optical fiber that is roughly the diameter of a human hair. The light forms an electromagnetic carrier wave that is modulated to carry information. Each optical fiber is capable of carrying an enormous amount of…

  7. Adsorption properties of BSA and DsRed proteins deposited on thin SiO2 layers: optically non-absorbing versus absorbing proteins (United States)

    Scarangella, A.; Soumbo, M.; Villeneuve-Faure, C.; Mlayah, A.; Bonafos, C.; Monje, M.-C.; Roques, C.; Makasheva, K.


    Protein adsorption on solid surfaces is of interest for many industrial and biomedical applications, where it represents the conditioning step for micro-organism adhesion and biofilm formation. To understand the driving forces of such an interaction we focus in this paper on the investigation of the adsorption of bovine serum albumin (BSA) (optically non-absorbing, model protein) and DsRed (optically absorbing, naturally fluorescent protein) on silica surfaces. Specifically, we propose synthesis of thin protein layers by means of dip coating of the dielectric surface in protein solutions with different concentrations (0.01-5.0 g l-1). We employed spectroscopic ellipsometry as the most suitable and non-destructive technique for evaluation of the protein layers’ thickness and optical properties (refractive index and extinction coefficient) after dehydration, using two different optical models, Cauchy for BSA and Lorentz for DsRed. We demonstrate that the thickness, the optical properties and the wettability of the thin protein layers can be finely controlled by proper tuning of the protein concentration in the solution. These results are correlated with the thin layer morphology, investigated by AFM, FTIR and PL analyses. It is shown that the proteins do not undergo denaturation after dehydration on the silica surface. The proteins arrange themselves in a lace-like network for BSA and in a rod-like structure for DsRed to form mono- and multi-layers, due to different mechanisms driving the organization stage.

  8. Flexible optical fiber sensor based on polyurethane

    DEFF Research Database (Denmark)

    Kaysir, Md Rejvi; Stefani, Alessio; Lwin, Richard

    Polyurethane (PU) based hollow core fibers are investigated as optical sensors. The flexibility of PU fibers makes it suitable for sensing mechanical perturbations. We fabricated a PU fiber using the fiber drawing method, characterized the fiber and experimentally demonstrated a simple way...

  9. Magneto-Optic Field Coupling in Optical Fiber Bragg Gratings (United States)

    Carman, Gregory P. (Inventor); Mohanchandra, Panduranga K. (Inventor); Emmons, Michael C. (Inventor); Richards, William Lance (Inventor)


    The invention is a magneto-optic coupled magnetic sensor that comprises a standard optical fiber Bragg grating system. The system includes an optical fiber with at least one Bragg grating therein. The optical fiber has at least an inner core and a cladding that surrounds the inner core. The optical fiber is part of an optical system that includes an interrogation device that provides a light wave through the optical fiber and a system to determine the change in the index of refraction of the optical fiber. The cladding of the optical fiber comprises at least a portion of which is made up of ferromagnetic particles so that the ferromagnetic particles are subject to the light wave provided by the interrogation system. When a magnetic field is present, the ferromagnetic particles change the optical properties of the sensor directly.

  10. Supersymmetric Transformations in Optical Fibers (United States)

    Macho, Andrés; Llorente, Roberto; García-Meca, Carlos


    Supersymmetry (SUSY) has recently emerged as a tool to design unique optical structures with degenerate spectra. Here, we study several fundamental aspects and variants of one-dimensional SUSY in axially symmetric optical media, including their basic spectral features and the conditions for degeneracy breaking. Surprisingly, we find that the SUSY degeneracy theorem is partially (totally) violated in optical systems connected by isospectral (broken) SUSY transformations due to a degradation of the paraxial approximation. In addition, we show that isospectral constructions provide a dimension-independent design control over the group delay in SUSY fibers. Moreover, we find that the studied unbroken and isospectral SUSY transformations allow us to generate refractive-index superpartners with an extremely large phase-matching bandwidth spanning the S +C +L optical bands. These singular features define a class of optical fibers with a number of potential applications. To illustrate this, we numerically demonstrate the possibility of building photonic lanterns supporting broadband heterogeneous supermodes with large effective area, a broadband all-fiber true-mode (de)multiplexer requiring no mode conversion, and different mode-filtering, mode-conversion, and pulse-shaping devices. Finally, we discuss the possibility of extrapolating our results to acoustics and quantum mechanics.

  11. Optical fiber sensors measurement system and special fibers improvement (United States)

    Jelinek, Michal; Hrabina, Jan; Hola, Miroslava; Hucl, Vaclav; Cizek, Martin; Rerucha, Simon; Lazar, Josef; Mikel, Bretislav


    We present method for the improvement of the measurement accuracy in the optical frequency spectra measurements based on tunable optical filters. The optical filter was used during the design and realization of the measurement system for the inspection of the fiber Bragg gratings. The system incorporates a reference block for the compensation of environmental influences, an interferometric verification subsystem and a PC - based control software implemented in LabView. The preliminary experimental verification of the measurement principle and the measurement system functionality were carried out on a testing rig with a specially prepared concrete console in the UJV Řež. The presented system is the laboratory version of the special nuclear power plant containment shape deformation measurement system which was installed in the power plant Temelin during last year. On the base of this research we started with preparation other optical fiber sensors to nuclear power plants measurement. These sensors will be based on the microstructured and polarization maintaining optical fibers. We started with development of new methods and techniques of the splicing and shaping optical fibers. We are able to made optical tapers from ultra-short called adiabatic with length around 400 um up to long tapers with length up to 6 millimeters. We developed new techniques of splicing standard Single Mode (SM) and Multimode (MM) optical fibers and splicing of optical fibers with different diameters in the wavelength range from 532 to 1550 nm. Together with development these techniques we prepared other techniques to splicing and shaping special optical fibers like as Polarization-Maintaining (PM) or hollow core Photonic Crystal Fiber (PCF) and theirs cross splicing methods with focus to minimalize backreflection and attenuation. The splicing special optical fibers especially PCF fibers with standard telecommunication and other SM fibers can be done by our developed techniques. Adjustment

  12. Generalized fiber Fourier optics. (United States)

    Cincotti, Gabriella


    A twofold generalization of the optical schemes that perform the discrete Fourier transform (DFT) is given: new passive planar architectures are presented where the 2 × 2 3 dB couplers are replaced by M × M hybrids, reducing the number of required connections and phase shifters. Furthermore, the planar implementation of the discrete fractional Fourier transform (DFrFT) is also described, with a waveguide grating router (WGR) configuration and a properly modified slab coupler.

  13. Preparation and optical and electrical evaluation of bulk SiO2 sonogel hybrid composites and vacuum thermal evaporated thin films prepared from molecular materials derived from (Fe, Co) metallic phthalocyanines and 1,8 dihydroxiantraquinone compounds

    International Nuclear Information System (INIS)

    Sanchez Vergara, Maria Elena; Morales-Saavedra, Omar G.; Ontiveros-Barrera, Fernando G.; Torres-Zuniga, Vicente; Ortega-Martinez, Roberto; Ortiz Rebollo, Armando


    Semiconducting molecular material of PcFe(CN)L1 and PcCo(CN)L1 (L1 = 1,8 dihydroxianthraquinone), PcFe(CN)L2 and PcCo(CN)L2 (L2 = double potassium salt of 1,8 dihydroxianthraquinone) have been successfully used to prepare thin film and bulk sol-gel hybrid optical materials. These samples were developed according to the vacuum thermal evaporation technique and the catalyst-free sonogel route, respectively. Thin films samples were deposited on Corning glass substrates and crystalline silicon wafers and were characterized by infrared (FTIR), Raman and ultraviolet-visible (UV-vis) spectroscopies. IR-spectroscopy and Raman studies unambiguously confirmed that the molecular material thin films exhibit the same intra-molecular bonds, which suggests that the thermal evaporation process does not alter these bonds significantly. These results show that it is possible to deposit molecular materials of PcFe(CN)L2 and PcCo(CN)L2 on Corning glass substrates and silicon wafers. From the UV-vis studies the optical band gap (E g ) was evaluated. The effect of temperature on conductivity was also evaluated in these samples. Finally, the studied molecular systems dissolved at different concentrations in tetrahydrofuran (THF) were successfully embedded into a highly pure SiO 2 sonogel network generated via sonochemical reactions to form several solid state, optically active sol-gel hybrid glasses. By this method, homogeneous and stable hybrid monoliths suitable for optical characterization can be produced. The linear optical properties of these amorphous bulk structures were determined by the Brewster angle method and by absorption-, Raman- and photoluminescent (PL)-spectroscopies, respectively

  14. A fibre optic humidity sensor based on a long-period fibre grating coated with a thin film of SiO2 nanospheres (United States)

    Viegas, D.; Goicoechea, J.; Corres, J. M.; Santos, J. L.; Ferreira, L. A.; Araújo, F. M.; Matias, I. R.


    A novel sensing configuration for measuring humidity based on a long-period fibre grating coated with a thin film of silica nanospheres is proposed. The polymeric overlay is deposited on the grating using the electrostatic self-assembly technique. This thin film changes its optical properties when exposed to different humidity levels that translate into a shift of the resonance wavelength of the fibre grating. Wavelength shifts up to 12 nm in a relative humidity range from 20% to 80% are reported, and it is further demonstrated that such humidity sensitivity has negligible thermal dependence.

  15. "Reliability Of Fiber Optic Lans" (United States)

    Code n, Michael; Scholl, Frederick; Hatfield, W. Bryan


    Fiber optic Local Area Network Systems are being used to interconnect increasing numbers of nodes. These nodes may include office computer peripherals and terminals, PBX switches, process control equipment and sensors, automated machine tools and robots, and military telemetry and communications equipment. The extensive shared base of capital resources in each system requires that the fiber optic LAN meet stringent reliability and maintainability requirements. These requirements are met by proper system design and by suitable manufacturing and quality procedures at all levels of a vertically integrated manufacturing operation. We will describe the reliability and maintainability of Codenoll's passive star based systems. These include LAN systems compatible with Ethernet (IEEE 802.3) and MAP (IEEE 802.4), and software compatible with IBM Token Ring (IEEE 802.5). No single point of failure exists in this system architecture.

  16. Fiber optics physics and technology

    CERN Document Server

    Mitschke, Fedor


    This book tells you all you want to know about optical fibers: Their structure, their light-guiding mechanism, their material and manufacture, their use. It began with telephone, then came telefax and email. Today we use search engines, music downloads and internet videos, all of which require shuffling of bits and bytes by the zillions. The key to all this is the conduit: the line which is designed to carry massive amounts of data at breakneck speed. In their data carrying capacity optical fiber lines beat all other technologies (copper cable, microwave beacons, satellite links) hands down, at least in the long haul; wireless devices rely on fibers, too. Several effects tend to degrade the signal as it travels down the fiber: they are spelled out in detail. Nonlinear processes are given due consideration for a twofold reason: On the one hand they are fundamentally different from the more familiar processes in electrical cable. On the other hand, they form the basis of particularly interesting and innovative ...

  17. Active Optical Fibers Doped with Ceramic Nanocrystals

    Directory of Open Access Journals (Sweden)

    Jan Mrazek


    Full Text Available Erbium-doped active optical fiber was successfully prepared by incorporation of ceramic nanocrystals inside a core of optical fiber. Modified chemical vapor deposition was combined with solution-doping approach to preparing preform. Instead of inorganic salts erbium-doped yttrium-aluminium garnet nanocrystals were used in the solution-doping process. Prepared preform was drawn into single-mode optical fiber with a numerical aperture 0.167. Optical and luminescence properties of the fiber were analyzed. Lasing ability of prepared fiber was proofed in a fiber-ring set-up. Optimal laser properties were achieved for a fiber length of 20~m. The slope efficiency of the fiber-laser was about 15%. Presented method can be simply extended to the deposition of other ceramic nanomaterials.

  18. Engineering modes in optical fibers with metamaterial

    DEFF Research Database (Denmark)

    Yan, Min; Mortensen, Asger; Qiu, Min


    In this paper, we report a preliminary theoretical study on optical fibers with fine material inclusions whose geometrical inhomogeneity is almost indistinguishable by the operating wavelength.We refer to such fibers as metamaterial optical fibers, which can conceptually be considered as an exten...

  19. Lateral electrical transport, optical properties and photocurrent measurements in two-dimensional arrays of silicon nanocrystals embedded in SiO2

    Directory of Open Access Journals (Sweden)

    Gardelis Spiros


    Full Text Available Abstract In this study we investigate the electronic transport, the optical properties, and photocurrent in two-dimensional arrays of silicon nanocrystals (Si NCs embedded in silicon dioxide, grown on quartz and having sizes in the range between less than 2 and 20 nm. Electronic transport is determined by the collective effect of Coulomb blockade gaps in the Si NCs. Absorption spectra show the well-known upshift of the energy bandgap with decreasing NC size. Photocurrent follows the absorption spectra confirming that it is composed of photo-generated carriers within the Si NCs. In films containing Si NCs with sizes less than 2 nm, strong quantum confinement and exciton localization are observed, resulting in light emission and absence of photocurrent. Our results show that Si NCs are useful building blocks of photovoltaic devices for use as better absorbers than bulk Si in the visible and ultraviolet spectral range. However, when strong quantum confinement effects come into play, carrier transport is significantly reduced due to strong exciton localization and Coulomb blockade effects, thus leading to limited photocurrent.

  20. Use of optical fibers in spectrophotometry (United States)

    Ramsey, Lawrence W.


    The use of single or small numbers of fiber optic fibers in astronomical spectroscopy with the goal of greater spectrophotometric and radial velocity accuracy is discussed. The properties of multimode step index fibers which are most important for this application are outlined, as are laboratory tests of currently available fibers.

  1. Growth, structure, and optical properties of carbon-reinforced silica fibers

    International Nuclear Information System (INIS)

    Zhang, Z. J.; Ajayan, P. M.; Ramanath, G.; Vacik, J.; Xu, Y. H.


    We report the synthesis of carbon-reinforced silica fibers by methane exposure of metallocene-treated oxidized-Si(001) substrates at 1100 degree C. The SiO 2 cap layer transforms into silica fibers reinforced by glassy carbon in the core during methane exposure. High-resolution electron microscopy and spatially resolved spectroscopy measurements of the fibers reveal an amorphous structure without a hollow, and domains of glassy carbon embedded at the fiber core. The carbon-reinforced fibers are optically transparent and have an optical band gap of ≅3.1 eV. These fibers are organized in radial patterns that vary for different metallocene species. On nickelocene-treated substrates, the fibers originate from the circumference of the circular templates and grow outwards, forming radial patterns. On ferrocene-treated substrates, randomly oriented fibers grow within as well as slightly outside the perimeter of the templates, forming wreath-like patterns. Aligned growth of such fibers could be useful for fabricating optoelectronics devices and reinforced composites. [copyright] 2001 American Institute of Physics

  2. Optical-fiber pyrometer positioning accuracy analysis (United States)

    Tapetado, A.; García, E.; Díaz-Álvarez, J.; Miguélez, M. H.; Vazquez, C.


    The influence of the distance between the fiber end and the machined surface on temperature measurements in a two-color fiber-optic pyrometer is analyzed. The propose fiber-optic pyrometer is capable of measuring highly localized temperatures, while avoiding the use of lenses or fiber bundles, by using a standard graded index glass fiber OM1 with 62.5/125 core and cladding diameters. The fiber is placed very close to the target and below the tool insert. The output optical power at both wavelength bands is theoretically and experimentally analyzed for a temperature of 650°C at different fiber positions in a range of 2mm. The results show that there is no influence of the fiber position on the measured optical power and therefore, on the measured temperature.

  3. Fiber Optics Physics and Technology

    CERN Document Server

    Mitschke, Fedor


    Telephone, telefax, email and internet -- the key ingredient of the inner workings is the conduit: the line which is designed to carry massive amounts of data at breakneck speed. In their data-carrying capacity optical fiber lines beat other technologies (copper cable, microwave beacons, satellite links) hands down, at least in the long haul. This book tells you all you want to know about optical fibers: Their structure, their light-guiding mechanism, their material and manufacture, their use. Several effects tend to degrade the signal as it travels down the fiber: they are spelled out in detail. Nonlinear processes are given due consideration for a twofold reason: On the one hand they are fundamentally different from the more familiar processes in electrical cable. On the other hand, they form the basis of particularly interesting and innovative applications, provided they are understood well enough. A case in point is the use of so-called solitons, i.e. special pulses of light which have the wonderful prope...

  4. Fiber optic neutron imaging system: calibration

    International Nuclear Information System (INIS)

    Malone, R.M.; Gow, C.E.; Thayer, D.R.


    Two neutron imaging experiments using fiber optics have been performed at the Nevada Test Site. In each experiment, an array of scintillator fluor tubes is exposed to neutrons. Light is coupled out through radiation resistant PCS fibers (8-m long) into high-bandwidth, graded index fibers. For image reconstruction to be accurate, common timing differences and transmission variations between fiber optic channels are needed. The calibration system featured a scanning pulsed dye laser, a specially designed fiber optic star coupler, a tektronix 7912AD transient digitizer, and a DEC PDP 11/34 computing system

  5. Fiber-optic gyro for space applications (United States)

    Otaguro, W. S.; Udd, E.; Cahill, R. F.


    State-of-the-art fiber-optic gyro modules can be environmentalized to withstand a wide range of vibration, shock and temperature effects; this modular approach to fiber-optic gyro design has improved reliability to the point where rate control device applications in spacecraft can be confidently considered. In order to arrive at a benchmark for such applications, performance and technology readiness comparisons are presently undertaken of both digital and analog fiber-optic gyros with the ring laser gyro. As mass production of key subassemblies for the fiber-optic gyro proceeds, critical cost advantages relative to the ring laser gyro may be achieved.

  6. A facile approach to fabricate Au nanoparticles loaded SiO2 microspheres for catalytic reduction of 4-nitrophenol

    International Nuclear Information System (INIS)

    Tang, Mingyi; Huang, Guanbo; Li, Xianxian; Pang, Xiaobo; Qiu, Haixia


    Hydrophilic and biocompatible macromolecules were used to improve and simplify the process for the fabrication of core/shell SiO 2 @Au composite particles. The influence of polymers on the morphology of SiO 2 @Au particles with different size of SiO 2 cores was analyzed by transmission electron microscopy and scanning electron microscopy. The optical property of the SiO 2 @Au particles was studied with UV–Vis spectroscopy. The results indicate that the structure and composition of macromolecules affect the morphology of Au layers on SiO 2 microspheres. The SiO 2 @Au particles prepared in the presence of polyvinyl alcohol (PVA) or polyvinylpyrrolidone (PVP) have thin and complete Au nanoshells owing to their inducing act in preferential growth of Au nanoparticles along the surface of SiO 2 microspheres. SiO 2 @Au particles can be also prepared from SiO 2 microspheres modified with 3-aminopropyltrimethoxysilane in the presence of PVA or PVP. This offers a simple way to fabricate a Au layer on SiO 2 or other microspheres. The SiO 2 @Au particles demonstrated high catalytic activity in the reduction of 4-nitrophenol. - Highlights: • Facile direct deposition method for Au nanoparticles on silica microspheres. • Influence of different types of macromolecule on the formation of Au shell. • High catalytic performance of Au nanoparticles on silica microspheres

  7. Fiber-optical accelerometers based on polymer optical fiber Bragg gratings

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Stefani, Alessio; Bang, Ole


    Fiber-optical accelerometers based on polymer optical fiber Bragg gratings (FBGs) are reported. We have written 3mm FBGs for 1550nm operation, characterized their temperature and strain response, and tested their performance in a prototype accelerometer.......Fiber-optical accelerometers based on polymer optical fiber Bragg gratings (FBGs) are reported. We have written 3mm FBGs for 1550nm operation, characterized their temperature and strain response, and tested their performance in a prototype accelerometer....

  8. Dynamically tunable optical bottles from an optical fiber

    DEFF Research Database (Denmark)

    Chen, Yuhao; Yan, Lu; Rishøj, Lars Søgaard


    Optical fibers have long been used to impose spatial coherence to shape free-space optical beams. Recent work has shown that one can use higher order fiber modes to create more exotic beam profiles. We experimentally generate optical bottles from Talbot imaging in the coherent superposition of tw...

  9. Optical pulse generation using fiber lasers and integrated optics

    International Nuclear Information System (INIS)

    Wilcox, R.B.; Browning, D.F.; Burkhart, S.C.; VanWonterghem, B.W.


    We have demonstrated an optical pulse forming system using fiber and integrated optics, and have designed a multiple-output system for a proposed fusion laser facility. Our approach is an advancement over previous designs for fusion lasers, and an unusual application of fiber lasers and integrated optics

  10. Ec-135 Fiber Optic Technology Review (United States)

    Schultz, Jan R...; Hodges, Harry N.


    Fiber optic technology offers many advantages for upgrading nuclear survivability in systems such as the Airborne Command Post EC-135 aircraft, including weight and cost savings, EMI and EMC immunity, high data rates. The greatest advantage seen for nuclear survivable systems, however, is that a fiber optic system's EMP hardness can be maintained more easily with the use of fiber optics than with shielded cables or other protective methods. TRW recently completed a study to determine the feasibility of using fiber optic technology in an EC-135 aircraft environment. Since this study was conducted for a USAF Logistics Command Agency, a feasible system had to be one which could be realistically priced by an integrating contractor. Thus, any fiber optic approach would have to be well developed before it could be considered feasible. During the course of the study problem areas were encountered which are associated with the readiness of the technology for use rather than with the technology itself. These included connectors, standards, fiber radiation resistance, busing, maintenance, and logistics. Because these problems areas have not been resolved, it was concluded that fiber optic technology, despite its advantages, is not ready for directed procurement (i.e., included as a requirement in a prime mission equipment specification). However, offers by a manufacturer to use fiber optic technology in lieu of conventional technology should be considered. This paper treats these problems in more detail, addresses the areas which need further development, and discusses the hardness maintenance advantages of using fiber optic technology.

  11. Laboratory Equipment Type Fiber Optic Refractometer

    Directory of Open Access Journals (Sweden)

    E. F. Carome


    Full Text Available Using fiber optics and micro optics technologies we designed aninnovative fiber optic index of refraction transducer that has uniqueproperties. On the base of this transducer a laboratory equipment typefiber optic refractometer was developed for liquid index of refractionmeasurements. Such refractometer may be used for medical,pharmaceutical, industrial fluid, petrochemical, plastic, food, andbeverage industry applications. For example, it may be used formeasuring the concentrations of aqueous solutions: as the concentrationor density of a solute increase, the refractive index increasesproportionately. The paper describes development work related to designof laboratory type fiber optic refractometer and describes experimentsto evaluation of its basic properties.

  12. Optical properties of modified Bragg fiber-optic waveguides (United States)

    Kulchin, Yu. N.; Zinin, Yu. A.; Nagornyi, I. G.; Voznesenskii, S. S.


    A modified form of optical fibers with varying cross section is proposed. A Bragg optical fiber with an additional conic layer between the core and periodic cladding is considered. Oscillating scattering of light through the side surface of such a fiber is predicted. It is shown that the optical properties of spicules of marine glass sponges Hyalonema sieboldi can be explained by the conic shape of the near-axis layer.

  13. Optical Fiber Grating Hydrogen Sensors: A Review. (United States)

    Dai, Jixiang; Zhu, Li; Wang, Gaopeng; Xiang, Feng; Qin, Yuhuan; Wang, Min; Yang, Minghong


    In terms of hydrogen sensing and detection, optical fiber hydrogen sensors have been a research issue due to their intrinsic safety and good anti-electromagnetic interference. Among these sensors, hydrogen sensors consisting of fiber grating coated with sensitive materials have attracted intensive research interests due to their good reliability and distributed measurements. This review paper mainly focuses on optical fiber hydrogen sensors associated with fiber gratings and various materials. Their configurations and sensing performances proposed by different groups worldwide are reviewed, compared and discussed in this paper. Meanwhile, the challenges for fiber grating hydrogen sensors are also addressed.

  14. Optical fiber sensors for harsh environments (United States)

    Xu, Juncheng; Wang, Anbo


    A diaphragm optic sensor comprises a ferrule including a bore having an optical fiber disposed therein and a diaphragm attached to the ferrule, the diaphragm being spaced apart from the ferrule to form a Fabry-Perot cavity. The cavity is formed by creating a pit in the ferrule or in the diaphragm. The components of the sensor are preferably welded together, preferably by laser welding. In some embodiments, the entire ferrule is bonded to the fiber along the entire length of the fiber within the ferrule; in other embodiments, only a portion of the ferrule is welded to the fiber. A partial vacuum is preferably formed in the pit. A small piece of optical fiber with a coefficient of thermal expansion chosen to compensate for mismatches between the main fiber and ferrule may be spliced to the end of the fiber.

  15. A fiber optic sensor for nerve agent (United States)

    Cordero, Steven R.; Mukamal, Harold; Low, Aaron; Locke, Edward P.; Lieberman, Robert A.


    We report advances made on the development of a fiber optic nerve agent sensor having its entire length as the sensing element. The optical fiber is multimode, and consists of a fused-silica core and a nerve agent sensitive cladding. Upon exposure to sarin gas, the cladding changes color, resulting in an alteration of the light intensity throughput. The fiber is mass produced using a conventional fiber optic draw tower. This technology could replace, or be used with, a collection of point-detectors to protect personnel, buildings and perimeters from dangerous chemical attacks.

  16. Optical fiber communication — An overview

    Indian Academy of Sciences (India)

    optical fibers are not only used in telecommunication links but also used in the Internet and local area networks (LAN) to achieve high signaling rates. 1.1 Historical perspective of optical ..... Imperfect connection or alignment between fibers. 3. Microbending. 4. Radiation of leaky modes. Extrinsic losses are very small when ...

  17. A novel thermoset polymer optical fiber

    NARCIS (Netherlands)

    Flipsen, T.A C; Steendam, R; Pennings, A.J; Hadziioannou, G

    Polymer optical fibers are being investigated with a view to overcoming some of the disadvantages of glass optical fibers in communications applications. Dense cross-linked polymers, such as the polyisocyanurate discussed here (see figure), have been found to be superior in some respects to the

  18. Study of fiber optic sugar sensor

    Indian Academy of Sciences (India)

    Over the last two decades, the fiber optic technology has passed through many analytical stages. Some commercially available fiber optic sensors, though in a small way, are being used for automation in mechanical and industrial environments. They are also used for instrumentation and controls. In the present work, ...

  19. Study of fiber optic sugar sensor

    Indian Academy of Sciences (India)

    Abstract. Over the last two decades, the fiber optic technology has passed through many analytical stages. Some commercially available fiber optic sensors, though in a small way, are being used for automation in mechanical and industrial environments. They are also used for instrumentation and controls. In the present ...


    African Journals Online (AJOL)

    ABSTRACT. Ultrasonic waves are used extensively in nondestructive testing both for characterization of material properties, in this paper, we describe a fiber optic sensor suitable for detection of ultrasonic waves. This sensor is based on an extrinsic fiber optic sagnac interferometer. The proposed sensor model can act as a ...

  1. Assessment of fiber optic pressure sensors

    International Nuclear Information System (INIS)

    Hashemian, H.M.; Black, C.L.; Farmer, J.P.


    This report presents the results of a six-month Phase 1 study to establish the state-of-the-art in fiber optic pressure sensing and describes the design and principle of operation of various fiber optic pressure sensors. This study involved a literature review, contact with experts in the field, an industrial survey, a site visit to a fiber optic sensor manufacturer, and laboratory testing of a fiber optic pressure sensor. The laboratory work involved both static and dynamic performance tests. In addition, current requirements for environmental and seismic qualification of sensors for nuclear power plants were reviewed to determine the extent of the qualification tests that fiber optic pressure sensors may have to meet before they can be used in nuclear power plants. This project has concluded that fiber optic pressure sensors are still in the research and development stage and only a few manufacturers exist in the US and abroad which supply suitable fiber optic pressure sensors for industrial applications. Presently, fiber optic pressure sensors are mostly used in special applications for which conventional sensors are not able to meet the requirements

  2. Fiber optic sensing for telecommunication satellites (United States)

    Reutlinger, Arnd; Glier, Markus; Zuknik, Karl-Heinz; Hoffmann, Lars; Müller, Mathias; Rapp, Stephan; Kurvin, Charles; Ernst, Thomas; McKenzie, Iain; Karafolas, Nikos


    Modern telecommunication satellites can benefit from the features of fiber optic sensing wrt to mass savings, improved performance and lower costs. Within the course of a technology study, launched by the European Space Agency, a fiber optic sensing system has been designed and is to be tested on representative mockups of satellite sectors and environment.

  3. A microstructured Polymer Optical Fiber Biosensor

    DEFF Research Database (Denmark)

    Emiliyanov, Grigoriy Andreev; Jensen, Jesper Bo; Hoiby, Poul E.


    We demonstrate selective detection of fluorophore labeled antibodies from minute samples probed by a sensor layer of the complementary biomolecules immobilized inside the air holes of microstructured Polymer Optical Fibers.......We demonstrate selective detection of fluorophore labeled antibodies from minute samples probed by a sensor layer of the complementary biomolecules immobilized inside the air holes of microstructured Polymer Optical Fibers....

  4. OPTICAL PHENOMENA IN FIBER WAVEGUIDES: Determination of the optical characteristics of infrared fiber-optic waveguides (United States)

    Vasil'ev, A. V.; Plotnichenko, V. G.


    A description is given of the features distinguishing determination of the optical characteristics of fiber-optic waveguides in the middle infrared region. The spectral dependences are given of the overall optical losses for single-crystal two-layer fiber-optic waveguides utilizing cesium bromide and single-layer waveguides made of a chalcogenide glass of the Ge-As-Se system in an F-42 fluoroplastic polymer cladding. In the case of the latter waveguides, a study was made of the angular dependences of the radiation power distribution inside the waveguide when CO laser radiation was coupled in at different angles.

  5. Optical fiber-applied radiation detection system

    International Nuclear Information System (INIS)

    Nishiura, Ryuichi; Uranaka, Yasuo; Izumi, Nobuyuki


    A technique to measure radiation by using plastic scintillation fibers doped radiation fluorescent (scintillator) to plastic optical fiber for a radiation sensor, was developed. The technique contains some superiority such as high flexibility due to using fibers, relatively easy large area due to detecting portion of whole of fibers, and no electromagnetic noise effect due to optical radiation detection and signal transmission. Measurable to wide range of and continuous radiation distribution along optical fiber cable at a testing portion using scintillation fiber and flight time method, the optical fiber-applied radiation sensing system can effectively monitor space radiation dose or apparatus operation condition monitoring. And, a portable type scintillation optical fiber body surface pollution monitor can measure pollution concentration of radioactive materials attached onto body surface by arranging scintillation fiber processed to a plate with small size and flexibility around a man to be tested. Here were described on outline and fundamental properties of various application products using these plastic scintillation fiber. (G.K.)

  6. Radiation resistance of optical fibers, (10)

    International Nuclear Information System (INIS)

    Tsunoda, Tsunemi; Ara, Katsuyuki; Morimoto, Naoki; Sanada, Kazuo; Inada, Koichi.


    Optical fibers have many excellent characteristics such as the light weight of the material, insulation, the noninductivity of electromagnetic interference noise, the wide band of signal transmission, and small loss. Also in the field of atomic energy, the utilization of optical fibers is positively expanded, and the research on the method of application and so on has been advanced. However in optical fibers, there is the problem that color centers are formed at the relatively low level of radiation, and they are colored. Accordingly, for effectively utilizing optical fibers in radiation environment, it is indispensable to improve their radiation resistance. For the purpose of solving this problem, the authors have carried out the basic research on the effect that radiation exerts to optical fibers and the development of the optical fibers having excellent radiation resistance. For the purpose of expanding the range of application of GeO 2 -doped silica core fibers including GI type in radiation regions, the transmission characteristics of the fibers during irradiation were examined by using the Cl content as the parameter. Therefore, the results are reported. The fibers put to the test, the testing method and the results are described. (K.I.)

  7. Essentials of modern optical fiber communication

    CERN Document Server

    Noé, Reinhold


    This is a concise introduction into optical fiber communication. It covers important aspects from the physics of optical wave propagation and amplification to the essentials of modulation formats and receivers. The combination of a solid coverage of necessary fundamental theory with an in-depth discussion of recent relevant research results enables the reader to design modern optical fiber communication systems. The book serves both graduate students and professionals. It includes many worked examples with solutions for lecturers. For the second edition, Reinhold Noé made many changes and additions throughout the text so that this concise book presents the essentials of optical fiber communication in an easy readable and understandable way.

  8. Optical sensors based on plastic fibers. (United States)

    Bilro, Lúcia; Alberto, Nélia; Pinto, João L; Nogueira, Rogério


    The recent advances of polymer technology allowed the introduction of plastic optical fiber in sensor design. The advantages of optical metrology with plastic optical fiber have attracted the attention of the scientific community, as they allow the development of low-cost or cost competitive systems compared with conventional technologies. In this paper, the current state of the art of plastic optical fiber technology will be reviewed, namely its main characteristics and sensing advantages. Several measurement techniques will be described, with a strong focus on interrogation approaches based on intensity variation in transmission and reflection. The potential applications involving structural health monitoring, medicine, environment and the biological and chemical area are also presented.

  9. Structural colors of the SiO2/polyethyleneimine thin films on poly(ethylene terephthalate) substrates

    International Nuclear Information System (INIS)

    Jia, Yanrong; Zhang, Yun; Zhou, Qiubao; Fan, Qinguo; Shao, Jianzhong


    The SiO 2 /polyethyleneimine (PEI) films with structural colors on poly(ethylene terephthalate) (PET) substrates were fabricated by an electrostatic self-assembly method. The morphology of the films was characterized by Scanning Electron Microscopy. The results showed that there was no distinguishable multilayered structure found of SiO 2 /PEI films. The optical behaviors of the films were investigated through the color photos captured by a digital camera and the color measurement by a multi-angle spectrophotometer. Different hue and brightness were observed at various viewing angles. The structural colors were dependent on the SiO 2 particle size and the number of assembly cycles. The mechanism of the structural colors generated from the assembled films was elucidated. The morphological structures and the optical properties proved that the SiO 2 /PEI film fabricated on PET substrate formed a homogeneous inorganic/organic SiO 2 /PEI composite layer, and the structural colors were originated from single thin film interference. - Highlights: • SiO 2 /PEI thin films were electrostatic self-assembled on PET substrates. • The surface morphology and optical behavior of the film were investigated. • The structural colors varied with various SiO 2 particle sizes and assembly cycles. • Different hue and lightness of SiO 2 /PEI film were observed at various viewing angles. • Structural color of the SiO 2 /PEI film originated from single thin film interference

  10. Honeywell FLASH fiber optic motherboard evaluations (United States)

    Stange, Kent


    The use of fiber optic data transmission media can make significant contributions in achieving increasing performance and reduced life cycle cost requirements placed on commercial and military transport aircraft. For complete end-to-end fiber optic transmission, photonics technologies and techniques need to be understood and applied internally to the aircraft line replaceable units as well as externally on the interconnecting aircraft cable plant. During a portion of the Honeywell contribution to Task 2A on the Fly- by-Light Advanced System Hardware program, evaluations were done on a fiber optic transmission media implementation internal to a Primary Flight Control Computer (PFCC). The PFCC internal fiber optic transmission media implementation included a fiber optic backplane, an optical card-edge connector, and an optical source/detector coupler/installation. The performance of these optical media components were evaluated over typical aircraft environmental stresses of temperature, vibration, and humidity. These optical media components represent key technologies to the computer end-to-end fiber optic transmission capability on commercial and military transport aircraft. The evaluations and technical readiness assessments of these technologies will enable better perspectives on productization of fly-by-light systems requiring their utilizations.

  11. Fiber optic D dimer biosensor (United States)

    Glass, Robert S.; Grant, Sheila A.


    A fiber optic sensor for D dimer (a fibrinolytic product) can be used in vivo (e.g., in catheter-based procedures) for the diagnosis and treatment of stroke-related conditions in humans. Stroke is the third leading cause of death in the United States. It has been estimated that strokes and stroke-related disorders cost Americans between $15-30 billion annually. Relatively recently, new medical procedures have been developed for the treatment of stroke. These endovascular procedures rely upon the use of microcatheters. These procedures could be facilitated with this sensor for D dimer integrated with a microcatheter for the diagnosis of clot type, and as an indicator of the effectiveness, or end-point of thrombolytic therapy.

  12. In-fiber integrated chemiluminiscence online optical fiber sensor. (United States)

    Yang, Xinghua; Yuan, Tingting; Yang, Jun; Dong, Biao; Liu, Yanxin; Zheng, Yao; Yuan, Libo


    We report an in-fiber integrated chemiluminiscence (CL) sensor based on a kind of hollow optical fiber with a suspended inner core. The path of microfluid is realized by etching microholes for inlets and outlets on the surface of the optical fiber without damaging the inner core and then constructing a melted point beside the microhole of the outlet. When samples are injected into the fiber, the liquids can be fully mixed and form steady microflows. Simultaneously, the photon emitted from the CL reaction is efficiently coupled into the core and can be detected at the end of the optical fiber. In this Letter, the concentration of H2O2 samples is analyzed through the emission intensity of the CL reaction among H2O2, luminol, K3Fe(CN)6, and NaOH in the optical fiber. The linear sensing range of 0.1-4.0 mmol/L of H2O2 concentration is obtained. The emission intensity can be determined within 400 ms at a total flow rate of 150 μL/min. Significantly, this work presents the information of developing in-fiber integrated online analyzing devices based on optical methods.

  13. Synopsis of fiber optics in harsh environments (United States)

    Pirich, Ronald


    Fiber optic technology is making significant advances for use in a number of harsh environments, such as air and space platforms. Many of these applications involve integration into systems which make extensive use of optical fiber for high bandwidth signal transmission. The large signal transmission bandwidth of optical fiber has a large and positive impact on the overall performance and weight of the cable harness. There are many benefits of fiber optic systems for air and space harsh environment applications, including minimal electromagnetic interference and environmental effects, lightweight and smaller diameter cables, greater bandwidth, integrated prognostics and diagnostics and the ability to be easily upgraded. To qualify and use a fiber optic cable in space and air harsh environments requires treatment of the cable assembly as a system and understanding the design and behavior of its parts. Many parameters affect an optical fiber's ability to withstand a harsh temperature and radiation environment. The space radiation environment is dependent on orbital altitude, inclination and time, contains energetic magnetically-trapped electrons in the outer Van Allen radiation belt, trapped protons in the inner belt and solar event protons and ions. Both transient and permanent temperature and radiation have an attenuation effect on the performance of the cable fiber. This paper presents an overview of defining fiber optic system and component performance by identifying operating and storage environmental requirements, using appropriate standards to be used in fiber optic cable assembly manufacturing and integration, developing inspection methods and fixtures compliant with the selected standards and developing a fiber optic product process that assures compliance with each design requirement.

  14. Recent Development in Optical Fiber Biosensors

    Directory of Open Access Journals (Sweden)

    Catalina Bosch Ojeda


    Full Text Available Remarkable developments can be seen in the field of optical fibre biosensors in the last decade. More sensors for specific analytes have been reported, novel sensing chemistries or transduction principles have been introduced, and applications in various analytical fields have been realised. This review consists of papers mainly reported in the last decade and presents about applications of optical fiber biosensors. Discussions on the trends in optical fiber biosensor applications in real samples are enumerated.

  15. Optical fiber head for providing lateral viewing (United States)

    Everett, Matthew J.; Colston, Billy W.; James, Dale L.; Brown, Steve; Da Silva, Luiz


    The head of an optical fiber comprising the sensing probe of an optical heterodyne sensing device includes a planar surface that intersects the perpendicular to axial centerline of the fiber at a polishing angle .theta.. The planar surface is coated with a reflective material so that light traveling axially through the fiber is reflected transverse to the fiber's axial centerline, and is emitted laterally through the side of the fiber. Alternatively, the planar surface can be left uncoated. The polishing angle .theta. must be no greater than or must be at least The emitted light is reflected from adjacent biological tissue, collected by the head, and then processed to provide real-time images of the tissue. The method for forming the planar surface includes shearing the end of the optical fiber and applying the reflective material before removing the buffer that circumscribes the cladding and the core.

  16. [The recent development of fiber-optic chemical sensor]. (United States)

    Wang, Jian; Wei, Jian-ping; Yang, Bo; Gao, Zhi-yang; Zhang, Li-wei; Yang, Xue-feng


    The present article provides a brief review of recent research on fiber-optic chemical sensor technology and the future development trends. Especially, fiber-optic pH chemical sensor, fiber-optic ion chemicl sensor, and fiber-optic gas chemical sensor are introduced respectively. Sensing film preparation methods such as chemical bonding method and sol-gel method were briefly reviewed. The emergence of new type fiber-microstructured optical fiber opened up a new development direction for fiber-optic chemical sensor. Because of its large inner surface area, flexible design of structure, having internal sensing places in fibers, it has rapidly become an important development direction and research focus of the fiber-optic chemical sensors. The fiber-optic chemical sensor derived from microstructured optical fiber is also discussed in detail. Finally, we look to the future of the fiber-optic chemical sensor.

  17. Hierarchical Cd4SiS6/SiO2 Heterostructure Nanowire Arrays. (United States)

    Liu, Jian; Wang, Chunrui; Xie, Qingqing; Cai, Junsheng; Zhang, Jing


    Novel hierarchical Cd4SiS6/SiO2 based heterostructure nanowire arrays were fabricated on silicon substrates by a one-step thermal evaporation of CdS powder. The as-grown products were characterized using scanning electron microscopy, X-ray diffraction, and transmission electron microscopy. Studies reveal that a typical hierarchical Cd4SiS6/SiO2 heterostructure nanowire is composed of a single crystalline Cd4SiS6 nanowire core sheathed with amorphous SiO2 sheath. Furthermore, secondary nanostructures of SiO2 nanowires are highly dense grown on the primary Cd4SiS6 core-SiO2 sheath nanowires and formed hierarchical Cd4SiS6/SiO2 based heterostructure nanowire arrays which stand vertically on silicon substrates. The possible growth mechanism of hierarchical Cd4SiS6/SiO2 heterostructure nanowire arrays is proposed. The optical properties of hierarchical Cd4SiS6/SiO2 heterostructure nanowire arrays are investigated using Raman and Photoluminescence spectroscopy.

  18. Hierarchical Cd4SiS6/SiO2 Heterostructure Nanowire Arrays

    Directory of Open Access Journals (Sweden)

    Liu Jian


    Full Text Available Abstract Novel hierarchical Cd4SiS6/SiO2 based heterostructure nanowire arrays were fabricated on silicon substrates by a one-step thermal evaporation of CdS powder. The as-grown products were characterized using scanning electron microscopy, X-ray diffraction, and transmission electron microscopy. Studies reveal that a typical hierarchical Cd4SiS6/SiO2 heterostructure nanowire is composed of a single crystalline Cd4SiS6 nanowire core sheathed with amorphous SiO2 sheath. Furthermore, secondary nanostructures of SiO2 nanowires are highly dense grown on the primary Cd4SiS6 core-SiO2 sheath nanowires and formed hierarchical Cd4SiS6/SiO2 based heterostructure nanowire arrays which stand vertically on silicon substrates. The possible growth mechanism of hierarchical Cd4SiS6/SiO2 heterostructure nanowire arrays is proposed. The optical properties of hierarchical Cd4SiS6/SiO2 heterostructure nanowire arrays are investigated using Raman and Photoluminescence spectroscopy.

  19. Mode conversion in hybrid optical fiber coupler (United States)

    Stasiewicz, Karol A.; Marc, P.; Jaroszewicz, Leszek R.


    Designing of all in-line fiber optic systems with a supercontinuum light source gives some issues. The use of a standard single mode fiber (SMF) as an input do not secure single mode transmission in full wavelength range. In the paper, the experimental results of the tested hybrid fiber optic coupler were presented. It was manufactured by fusing a standard single mode fiber (SMF28) and a photonic crystal fiber (PCF). The fabrication process is based on the standard fused biconical taper technique. Two types of large mode area fibers (LMA8 and LAM10 NKT Photonics) with different air holes arrangements were used as the photonic crystal fiber. Spectral characteristics within the range of 800 nm - 1700 nm were presented. All process was optimized to obtain a mode conversion between SMF and PCF and to reach a single mode transmission in the PCF output of the coupler.

  20. Thermal Strain Analysis of Optic Fiber Sensors

    Directory of Open Access Journals (Sweden)

    Chih-Ying Huang


    Full Text Available An optical fiber sensor surface bonded onto a host structure and subjected to a temperature change is analytically studied in this work. The analysis is developed in order to assess the thermal behavior of an optical fiber sensor designed for measuring the strain in the host structure. For a surface bonded optical fiber sensor, the measuring sensitivity is strongly dependent on the bonding characteristics which include the protective coating, adhesive layer and the bonding length. Thermal stresses can be generated due to a mismatch of thermal expansion coefficients between the optical fiber and host structure. The optical fiber thermal strain induced by the host structure is transferred via the adhesive layer and protective coating. In this investigation, an analytical expression of the thermal strain and stress in the optical fiber is presented. The theoretical predictions are validated using the finite element method. Numerical results show that the thermal strain and stress are linearly dependent on the difference in thermal expansion coefficients between the optical fiber and host structure and independent of the thermal expansion coefficients of the adhesive and coating.

  1. Realization of fiber optic displacement sensors (United States)

    Guzowski, Bartlomiej; Lakomski, Mateusz


    Fiber optic sensors are very promising because of their inherent advantages such as very small size, hard environment tolerance and impact of electromagnetic fields. In this paper three different types of Intensity Fiber Optic Displacement Sensors (I-FODS) are presented. Three configurations of I-FODS were realized in two varieties. In the first one, the cleaved multimode optical fibers (MMF) were used to collect reflected light, while in the second variety the MMF ended with ball lenses were chosen. To ensure an accurate alignment of optical fibers in the sensor head the MTP C9730 optical fiber ferrules were used. In this paper the influence of distribution of transmitting and detecting optical fibers on sensitivity and linear range of operation of developed I-FODS were investigated. We have shown, that I-FODS with ball lenses receive average 10.5% more reflected power in comparison to the cleaved optical fibers and they increase linearity range of I-FODS by 33%. In this paper, an analysis of each type of the realized sensor and detailed discussion are given.

  2. Optical fiber cable chemical stripping fixture (United States)

    Kolasinski, John R. (Inventor); Coleman, Alexander M. (Inventor)


    An elongated fixture handle member is connected to a fixture body member with both members having interconnecting longitudinal central axial bores for the passage of an optical cable therethrough. The axial bore of the fixture body member, however, terminates in a shoulder stop for the outer end of a jacket of the optical cable covering both an optical fiber and a coating therefor, with an axial bore of reduced diameter continuing from the shoulder stop forward for a predetermined desired length to the outer end of the fixture body member. A subsequent insertion of the fixture body member including the above optical fiber elements into a chemical stripping solution results in a softening of the exposed external coating thereat which permits easy removal thereof from the optical fiber while leaving a desired length coated fiber intact within the fixture body member.

  3. Fiber optic gyro development at Honeywell (United States)

    Sanders, Glen A.; Sanders, Steven J.; Strandjord, Lee K.; Qiu, Tiequn; Wu, Jianfeng; Smiciklas, Marc; Mead, Derek; Mosor, Sorin; Arrizon, Alejo; Ho, Waymon; Salit, Mary


    Two major architectures of fiber optic gyroscopes have been under development at Honeywell in recent years. The interferometric fiber optic gyro (IFOG) has been in production and deployment for various high performance space and marine applications. Different designs, offering very low noise, ranging from better than navigation grade to ultra-precise performance have been tested and produced. The resonator fiber optic gyro (RFOG) is also under development, primarily for its attractive potential for civil navigation usage, but also because of its scalability to other performance. New techniques to address optical backscatter and laser frequency noise have been developed and demonstrated. Development of novel, enhanced RFOG architectures using hollow core fiber, silicon optical bench technology, and highly stable multifrequency laser sources are discussed.

  4. Stabilizing Fiber-Optic Transmission Lines (United States)

    Lutes, G. F.; Lau, K. Y.


    Voltage-controlled optical phase shifter is key. Optical phase shifter stabilizes propagation delay of fiber-optic transmission line by compensating for temperature and pressure effects. Applicable to phased array antenna systems and very-long-baseline interferometer distribution systems.

  5. Fiber optic communications fundamentals and applications

    CERN Document Server

    Kumar, Shiva


    Fiber-optic communication systems have advanced dramatically over the last four decades, since the era of copper cables, resulting in low-cost and high-bandwidth transmission. Fiber optics is now the backbone of the internet and long-distance telecommunication. Without it we would not enjoy the benefits of high-speed internet, or low-rate international telephone calls. This book introduces the basic concepts of fiber-optic communication in a pedagogical way. The important mathematical results are derived by first principles rather than citing research articles. In addition, physical interpre

  6. Side-emitting fiber optic position sensor (United States)

    Weiss, Jonathan D [Albuquerque, NM


    A side-emitting fiber optic position sensor and method of determining an unknown position of an object by using the sensor. In one embodiment, a concentrated beam of light source illuminates the side of a side-emitting fiber optic at an unknown axial position along the fiber's length. Some of this side-illuminated light is in-scattered into the fiber and captured. As the captured light is guided down the fiber, its intensity decreases due to loss from side-emission away from the fiber and from bulk absorption within the fiber. By measuring the intensity of light emitted from one (or both) ends of the fiber with a photodetector(s), the axial position of the light source is determined by comparing the photodetector's signal to a calibrated response curve, look-up table, or by using a mathematical model. Alternatively, the side-emitting fiber is illuminated at one end, while a photodetector measures the intensity of light emitted from the side of the fiber, at an unknown position. As the photodetector moves further away from the illuminated end, the detector's signal strength decreases due to loss from side-emission and/or bulk absorption. As before, the detector's signal is correlated to a unique position along the fiber.

  7. Passive and Portable Polymer Optical Fiber Cleaver

    DEFF Research Database (Denmark)

    Saez-Rodriguez, D.; Min, R.; Ortega, B.


    Polymer optical fiber (POF) is a growing technology in short distance telecommunication due to its flexibility, easy connectorization, and lower cost than the mostly deployed silica optical fiber technology. Microstructured POFs (mPOFs) have particular promising potential applications...... in the sensors and telecommunications field, and they could specially help to reduce losses in polymer fibers by using hollow-core fibers or reduce the modal dispersion by providing a large mode area endlessly single-mode. However, mPOFs are intrinsically more difficult to cut due to the cladding hole structure...... and it becomes necessary to have a high quality POF cleaver. In the well-known hot-blade cutting process, fiber and blade are heated, which requires electrical components and increases cost. A new method has recently been identified, allowing POF to be cut without the need for heating the blade and fiber, thus...

  8. Monolithically Integrated Fiber Optic Coupler (United States)


    single fused fiber 52 and drawn into ferrule 54 in order to provide an output as a photonic crystal fiber (PCF) or photonic bandgap ( PBG ) fiber 56...the reduced diameter air-silica photonic crystal fiber 56 (PCF) or photonic band gap ( PBG ), which is connected by a continuous transition of the... PBG 56 with a negative index of refraction includes metamaterials of superlattices formed by metal nanoparticles. The binary superlattices are

  9. A microstructured Polymer Optical Fiber Biosensor

    DEFF Research Database (Denmark)

    Emiliyanov, Grigoriy Andreev; Jensen, Jesper Bo; Hoiby, Poul E.


    We demonstrate selective detection of fluorophore labeled antibodies from minute samples probed by a sensor layer of the complementary biomolecules immobilized inside the air holes of microstructured Polymer Optical Fibers....

  10. Fiber Optic Pressure Sensor Array, Phase I (United States)

    National Aeronautics and Space Administration — VIP Sensors proposes to develop a Fiber Optic Pressure Sensor Array for measuring air flow pressure at multiple points on the skin of aircrafts for Flight Load Test...

  11. High Performance Graded Index Polymer Optical Fibers

    National Research Council Canada - National Science Library

    Garito, Anthony


    ...) plastic optical fibers (POF) and graded index (GI) POFs are reported. A set of criteria and analyses of physical parameters are developed in context to the major issues of POF applications in short-distance communication systems...

  12. Fiber Optic Sensing Systems for Launch Vehicles (United States)

    National Aeronautics and Space Administration — AES in partnership with HEOMD's Launch Services Program and ARMD, plans to develop Fiber Optic Sensing System (FOSS) hardware for use with Launch Vehicle Systems.AES...

  13. Fiber Optic Pressure Sensor Array, Phase II (United States)

    National Aeronautics and Space Administration — VIP Sensors proposes to develop a Fiber Optic Pressure Sensor Array System for measuring air flow pressure at multiple points on the skin of aircrafts for Flight...

  14. Fiber optic tracheal detection device (United States)

    Souhan, Brian E.; Nawn, Corinne D.; Shmel, Richard; Watts, Krista L.; Ingold, Kirk A.


    Poorly performed airway management procedures can lead to a wide variety of adverse events, such as laryngeal trauma, stenosis, cardiac arrest, hypoxemia, or death as in the case of failed airway management or intubation of the esophagus. Current methods for confirming tracheal placement, such as auscultation, direct visualization or capnography, may be subjective, compromised due to clinical presentation or require additional specialized equipment that is not always readily available during the procedure. Consequently, there exists a need for a non-visual detection mechanism for confirming successful airway placement that can give the provider rapid feedback during the procedure. Based upon our previously presented work characterizing the reflectance spectra of tracheal and esophageal tissue, we developed a fiber-optic prototype to detect the unique spectral characteristics of tracheal tissue. Device performance was tested by its ability to differentiate ex vivo samples of tracheal and esophageal tissue. Pig tissue samples were tested with the larynx, trachea and esophagus intact as well as excised and mounted on cork. The device positively detected tracheal tissue 18 out of 19 trials and 1 false positive out of 19 esophageal trials. Our proof of concept device shows great promise as a potential mechanism for rapid user feedback during airway management procedures to confirm tracheal placement. Ongoing studies will investigate device optimizations of the probe for more refined sensing and in vivo testing.

  15. Study of fiber optic sugar sensor

    Indian Academy of Sciences (India)

    In the present work, an intensity-modulated intrinsic fiber optic sugar sensor is pre- sented. This type of sensor, with slight modification, can be used for on-line determination of the concentration of sugar content in sugarcane juice in sugar industry. In the present set-up, a plastic fiber made of polymethylmethacrylate is used.

  16. Optical fibers and sensors for chemistry

    International Nuclear Information System (INIS)

    Perez, J.J.; Boisde, G.


    The idea of using optical fibers in nuclear environment occurs as soon as 1967, too soon for practical realizations. In 1973 the first glass fibers were made available in Switzerland. From 1973 to 1988 three periods show the development: conception from 1973 to 1978, technique strengthening from 1978 to 1983 and nuclear and non nuclear industrial development since 1983. 45 refs., 27 figs [fr

  17. Fiber Optic Communications Technology. A Status Report. (United States)

    Hull, Joseph A.

    Fiber optic communications (communications over very pure glass transmission channels of diameter comparable to a human hair) is an emerging technology which promises most improvements in communications capacity at reasonable cost. The fiber transmission system offers many desirable characteristics representing improvements over conventional…

  18. Optical fibers and their applications for radiation measurements

    International Nuclear Information System (INIS)

    Kakuta, Tsunemi


    As a new method of radiation measurements, several optical methods using optical fiber sensors have been developed. One is the application of 'radio-luminescence' from the optical fiber itself such as plastic scintillating fibers. Other researches are made to develop the 'combined-sensors' by combination of optical fibers and scintillating materials. Using the time domain method of optical fiber sensors, the profile of radiation distribution along the optical fiber can be easily determined. A multi-parameter sensing system for measurement of radiation, temperature, stress, etc, are also expected using these optical fiber sensors. (author)

  19. Fiber Optic Tactical Local Network (FOTLAN) (United States)

    Bergman, L. A.; Hartmayer, R.; Wu, W. H.; Cassell, P.; Edgar, G.; Lambert, J.; Mancini, R.; Jeng, J.; Pardo, C.


    A 100 Mbit/s FDDI (fiber distributed data interface) network interface unit is described that supports real-time data, voice and video. Its high-speed interrupt-driven hardware architecture efficiently manages stream and packet data transfer to the FDDI network. Other enhancements include modular single-mode laser-diode fiber optic links to maximize node spacing, optic bypass switches for increased fault tolerance, and a hardware performance monitor to gather real-time network diagnostics.

  20. Optical fiber sensor technique for strain measurement (United States)

    Butler, Michael A.; Ginley, David S.


    Laser light from a common source is split and conveyed through two similar optical fibers and emitted at their respective ends to form an interference pattern, one of the optical fibers having a portion thereof subjected to a strain. Changes in the strain cause changes in the optical path length of the strain fiber, and generate corresponding changes in the interference pattern. The interference pattern is received and transduced into signals representative of fringe shifts corresponding to changes in the strain experienced by the strained one of the optical fibers. These signals are then processed to evaluate strain as a function of time, typical examples of the application of the apparatus including electrodeposition of a metallic film on a conductive surface provided on the outside of the optical fiber being strained, so that strains generated in the optical fiber during the course of the electrodeposition are measurable as a function of time. In one aspect of the invention, signals relating to the fringe shift are stored for subsequent processing and analysis, whereas in another aspect of the invention the signals are processed for real-time display of the strain changes under study.

  1. Optical Fiber Sensors Based on Fiber Ring Laser Demodulation Technology. (United States)

    Xie, Wen-Ge; Zhang, Ya-Nan; Wang, Peng-Zhao; Wang, Jian-Zhang


    A review for optical fiber sensors based on fiber ring laser (FRL) demodulation technology is presented. The review focuses on the principles, main structures, and the sensing performances of different kinds of optical fiber sensors based on FRLs. First of all, the theory background of the sensors has been discussed. Secondly, four different types of sensors are described and compared, which includes Mach-Zehnder interferometer (MZI) typed sensors, Fabry-Perot interferometer (FPI) typed sensors, Sagnac typed sensors, and fiber Bragg grating (FBG) typed sensors. Typical studies and main properties of each type of sensors are presented. Thirdly, a comparison of different types of sensors are made. Finally, the existing problems and future research directions are pointed out and analyzed.

  2. Optical-Fiber Fluorosensors With Polarized Light Sources (United States)

    Egalon, Claudio O.; Rogowski, Robert S.


    Chemiluminescent and/or fluorescent molecules in optical-fiber fluorosensors oriented with light-emitting dipoles along transverse axis. Sensor of proposed type captures greater fraction of chemiluminescence or fluorescence and transmits it to photodetector. Transverse polarization increases sensitivity. Basic principles of optical-fiber fluorosensors described in "Making Optical-Fiber Chemical Sensors More Sensitive" (LAR-14525), "Improved Optical-Fiber Chemical Sensors" (LAR-14607), and "Improved Optical-Fiber Temperature Sensors" (LAR-14647).

  3. SiO2/polyacrylonitrile membranes via centrifugal spinning as a separator for Li-ion batteries (United States)

    Yanilmaz, Meltem; Lu, Yao; Li, Ying; Zhang, Xiangwu


    Centrifugal spinning is a fast, cost-effective and safe alternative to the electrospinning technique, which is commonly used for making fiber-based separator membranes. In this work, SiO2/polyacrylonitrile (PAN) membranes were produced by using centrifugal spinning and they were characterized by using different electrochemical techniques for use as separators in Li-ion batteries. SiO2/PAN membranes exhibited good wettability and high ionic conductivity due to their highly porous fibrous structure. Compared with commercial microporous polyolefin membranes, SiO2/PAN membranes had larger liquid electrolyte uptake, higher electrochemical oxidation limit, and lower interfacial resistance with lithium. SiO2/PAN membrane separators were assembled into lithium/lithium iron phosphate cells and these cells delivered high capacities and exhibited good cycling performance at room temperature. In addition, cells using SiO2/PAN membranes showed superior C-rate performance compared to those using microporous PP membrane.

  4. Fiber-Optic Vibration Sensor Based on Multimode Fiber

    Directory of Open Access Journals (Sweden)

    I. Lujo


    Full Text Available The purpose of this paper is to present a fiberoptic vibration sensor based on the monitoring of the mode distribution in a multimode optical fiber. Detection of vibrations and their parameters is possible through observation of the output speckle pattern from the multimode optical fiber. A working experimental model has been built in which all used components are widely available and cheap: a CCD camera (a simple web-cam, a multimode laser in visible range as a light source, a length of multimode optical fiber, and a computer for signal processing. Measurements have shown good agreement with the actual frequency of vibrations, and promising results were achieved with the amplitude measurements although they require some adaptation of the experimental model. Proposed sensor is cheap and lightweight and therefore presents an interesting alternative for monitoring large smart structures.

  5. Mobile fiber-optic laser Doppler anemometer. (United States)

    Stieglmeier, M; Tropea, C


    A laser Doppler anemometer (LDA) has been developed that combines the compactness and low power consumption of laser diodes and avalanche photodiodes with the flexibility and possibility of miniaturization by using fiber-optic probes. The system has been named DFLDA for laser diode fiber LDA and is especially suited for mobile applications, for example, in trains, airplanes, or automobiles. Optimization considerations of fiber-optic probes are put forward and several probe examples are described in detail. Measurement results from three typical applications are given to illustrate the use of the DFLDA. Finally, a number of future configurations of the DFLDA concept are discussed.

  6. Advanced Optical Fibers for High power Fiber lasers (United States)


    silica single-mode opti‐ cal fiber with photonic crystal cladding,” Opt. Lett. 21, 1547 -1549 (1996). [4] T.A. Birks, J.C. Knight and P.St.J. Russell...Kozlov, J. Hernández-Cordero, R. L. Shubochkin, A. L. G. Carter, and T. F. Morse, “Silica–Air Double-Clad Optical Fiber,” IEEE Photonics Technology...Percival, G. Bouwmans, J.C. Knight, T.A. Birks, T.D. Hedley, and P.St.J. Russell, “Very high numerical aperture fibers,” IEEE Photonic Technology Letters

  7. Evanescent field refractometry in planar optical fiber. (United States)

    Holmes, Christopher; Jantzen, Alexander; Gray, Alan C; Gow, Paul C; Carpenter, Lewis G; Bannerman, Rex H S; Gates, James C; Smith, Peter G R


    This Letter demonstrates a refractometer in integrated optical fiber, a new optical platform that planarizes fiber using flame hydrolysis deposition (FHD). The unique advantage of the technology is survivability in harsh environments. The platform is mechanically robust, and can survive elevated temperatures approaching 1000°C and exposure to common solvents, including acetone, gasoline, and methanol. For the demonstrated refractometer, fabrication was achieved through wet etching an SMF-28 fiber to a diameter of 8 μm before FHD planarization. An external refractive index was monitored using fiber Bragg gratings (FBGs), written into the core of the planarized fiber. A direct comparison to alternative FBG refractometers is made, for which the developed platform is shown to have comparable sensitivity, with the added advantage of survivability in harsh environments.

  8. Fiber-Optic Optical-Microwave Laboratory (United States)

    Federal Laboratory Consortium — FUNCTION: Used to conduct programs of basic science and applied research in the development of laser sources, high-power fiber amplifiers, photonic control of phased...

  9. Two mode optical fiber in space optics communication (United States)

    Hampl, Martin


    In our contribution we propose to use of a two-mode optical fiber as a primary source in a transmitting optical head instead of the laser diode. The distribution of the optical intensity and the complex degree of the coherence on the output aperture of the lens that is irradiated by a step-index weakly guiding optical fiber is investigated. In our treatment we take into account weakly guided modes with polarization corrections to the propagation constant and unified theory of second order coherence and polarization of electromagnetic beams.

  10. Nonlinear fiber-optic strain sensor based on four-wave mixing in microstructured optical fiber

    DEFF Research Database (Denmark)

    Gu, Bobo; Yuan, Scott Wu; Frosz, Michael H.


    We demonstrate a nonlinear fiber-optic strain sensor, which uses the shifts of four-wave mixing Stokes and anti-Stokes peaks caused by the strain-induced changes in the structure and refractive index of a microstructured optical fiber. The sensor thus uses the inherent nonlinearity of the fiber...... and does not require any advanced post-processing of the fiber. Strain sensitivity of -0.23 pm/mu epsilon is achieved experimentally and numerical simulations reveal that for the present fiber the sensitivity can be increased to -4.46 pm/mu epsilon by optimizing the pump wavelength and power....

  11. Optical fibers and their instrumentation applications

    International Nuclear Information System (INIS)

    Boisde, Gilbert.


    The use of optical fibers in instrumentation requires a knowledge of their properties as ''photon carriers'' and ''sensors''. New instrumentation design implies a satisfactory evaluation of the entire measurement circuit, including the emitter, optical coupling, optical fiber with its physical, spectral and physico-chemical properties, the connector, receiver, signal amplifier and data processing system. An example, is provided of the development of a new technique in physico-chemical instrumentation: remote spectrophotometry. Three aspects are discussed: 1) industrial measurement in ''process control'' using the Telephot (R), 2) remote spectral measurement, 3) opical multiplexing. This is followed by a review of various optical fiber based instrumental techniques used in the fields of medicine (endoscopy, fluorothermy, laser surgery), solar energy industrial applications subject to electrical disturbances (position sensors, strain measurements), and in physico-chemical analysis (fluorescence, redox potentials) [fr

  12. Fiber Optic Communication System For Medical Images (United States)

    Arenson, Ronald L.; Morton, Dan E.; London, Jack W.


    This paper discusses a fiber optic communication system linking ultrasound devices, Computerized tomography scanners, Nuclear Medicine computer system, and a digital fluoro-graphic system to a central radiology research computer. These centrally archived images are available for near instantaneous recall at various display consoles. When a suitable laser optical disk is available for mass storage, more extensive image archiving will be added to the network including digitized images of standard radiographs for comparison purposes and for remote display in such areas as the intensive care units, the operating room, and selected outpatient departments. This fiber optic system allows for a transfer of high resolution images in less than a second over distances exceeding 2,000 feet. The advantages of using fiber optic cables instead of typical parallel or serial communication techniques will be described. The switching methodology and communication protocols will also be discussed.

  13. The Bushbaby Optic Nerve: Fiber Count and Fiber Diameter Spectrum (United States)


    The identification of unmyelinated axons was based primariliy on the shape or the axon, its membrane thickness, and the axoplasmic contents ( Maturana ...studies of the optic nerve that axons are not rigid, circular tubes ( Maturana , 1959). They do not traverse the length of the optic nerve in register...fascicles as in most vertebrates (turtle: Fulbrook and Granda, 1978; pigeon: Binggelli and Paule, 1969; frog: Maturana , 1959). Nerve Fiber Total Counts

  14. 7 CFR 1755.903 - Fiber optic service entrance cables. (United States)


    ... given for information purposes only. (ii) The optical waveguides are glass fibers having directly... (incorporated by reference at § 1755.901(c)). (b) Optical fibers. (1) The solid glass optical fibers must... having a coefficient of friction sufficiently low to allow the fibers free movement. The design may...

  15. Optical fiber sensing technology in the pipeline industry

    Energy Technology Data Exchange (ETDEWEB)

    Braga, A.M.B.; Llerena, R.W.A. [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil). Dept. de Engenharia Mecanica]. E-mail:;; Valente, L.C.G.; Regazzi, R.D. [Gavea Sensors, Rio de Janeiro, RJ (Brazil)]. E-mail:;


    This paper is concerned with applications of optical fiber sensors to pipeline monitoring. The basic principles of optical fiber sensors are briefly reviewed, with particular attention to fiber Bragg grating technology. Different potential applications in the pipeline industry are discussed, and an example of a pipeline strain monitoring system based on optical fiber Bragg grating sensors is presented. (author)

  16. The effect of irradiation process on the optical fiber coating (United States)

    Wang, Zeyu; Xiao, Chun; Rong, Liang; Ji, Wei


    Protective fiber coating decides the mechanical strength of an optical fiber as well as its resistance against the influence of environment, especially in some special areas like irradiation atmospheres. According to the experiment in this paper, it was found that the tensile force and peeling force of resistant radiation optical fiber was improved because of the special optical fiber coating.

  17. Multimode-Optical-Fiber Imaging Probe (United States)

    Jackson, Deborah


    Currently, endoscopic surgery uses single-mode fiber-bundles to obtain in vivo image information inside orifices of the body. This limits their use to the larger natural bodily orifices and to surgical procedures where there is plenty of room for manipulation. The knee joint, for example can be easily viewed with a fiber optic viewer, but joints in the finger cannot. However, there are a host of smaller orifices where fiber endoscopy would play an important role if a cost effective fiber probe were developed with small enough dimensions (fibers and analytically demonstrates that the concept is sound. The proof of concept draws upon earlier works that concentrated on image recovery after two-way transmission through a multimode fiber as well as work that demonstrated the recovery of images after one-way transmission through a multimode fiber. Both relied on generating a phase conjugated wavefront which was predistorted with the characteristics of the fiber. The described approach also relies on generating a phase conjugated wavefront, but utilizes two fibers to capture the image at some intermediate point (accessible by the fibers, but which is otherwise visually unaccessible).

  18. Radiation resistant characteristics of optical fibers

    International Nuclear Information System (INIS)

    Nakasuji, Masaaki; Tanaka, Gotaro; Watanabe, Minoru; Kyodo, Tomohisa; Mukunashi, Hiroaki


    It is required to develop the optical fibers with good radiation resistivity because the fibers cause the increase of transmission loss due to glass colouring when they are used under the presence of radiation such as γ-ray. Generally, it is known that SI (step index) fibers are more resistive to radiation than GI (graded index) fibers. However, since a wide band can not be obtained with SI fibers, the development of radiation resistive GI optical fibers is desirable. In this report, the production for trial of the GI fibers of fluorine-doped silica core, the examination of radiation effect on their optical transmission loss by exposing them to γ-ray, thermal and fast neutron beams and also of mechanical strength are described. The GI fibers of fluorine-doped silica core show better radiation resistivity than Ge-doped ones. The B- and F-doped GI fibers show small increase of loss due to γ-ray, but large increase of loss due to thermal neutron beam. This is supposed to be caused by the far greater neutron absorption cross-section of boron than that of other elements. Significant increase of loss was not recognized when 14 MeV fast neutrons (8.6 x 10 4 n/cm 2 .s) were applied by 1.8 x 10 9 n/cm 2 . It was found that ETFE-covered fiber cores generated fluorine-containing gas due to γ irradiation, and the strength was remarkably lowered, but the lowering of strength can be prevented by adding titanium-white to the covering material. (Wakatsuki, Y.)

  19. Recent Developments in Fiber Optics Humidity Sensors. (United States)

    Ascorbe, Joaquin; Corres, Jesus M; Arregui, Francisco J; Matias, Ignacio R


    A wide range of applications such as health, human comfort, agriculture, food processing and storage, and electronic manufacturing, among others, require fast and accurate measurement of humidity. Sensors based on optical fibers present several advantages over electronic sensors and great research efforts have been made in recent years in this field. The present paper reports the current trends of optical fiber humidity sensors. The evolution of optical structures developed towards humidity sensing, as well as the novel materials used for this purpose, will be analyzed. Well-known optical structures, such as long-period fiber gratings or fiber Bragg gratings, are still being studied towards an enhancement of their sensitivity. Sensors based on lossy mode resonances constitute a platform that combines high sensitivity with low complexity, both in terms of their fabrication process and the equipment required. Novel structures, such as resonators, are being studied in order to improve the resolution of humidity sensors. Moreover, recent research on polymer optical fibers suggests that the sensitivity of this kind of sensor has not yet reached its limit. Therefore, there is still room for improvement in terms of sensitivity and resolution.

  20. Fiber Optic Temperature Sensors for Thermal Protection Systems Project (United States)

    National Aeronautics and Space Administration — In Phase 1, Intelligent Fiber Optic Systems Corporation (IFOS), in collaboration with North Carolina State University, successfully demonstrated a Fiber Bragg...

  1. Fiber Optic Temperature Sensors for Thermal Protection Systems, Phase II (United States)

    National Aeronautics and Space Administration — In Phase 1, Intelligent Fiber Optic Systems Corporation (IFOS), in collaboration with North Carolina State University, successfully demonstrated a Fiber Bragg...

  2. Characterization of Si nanocrystals into SiO2 matrix

    International Nuclear Information System (INIS)

    Gravalidis, C.; Logothetidis, S.; Hatziaras, N.; Laskarakis, A.; Tsiaoussis, I.; Frangis, N.


    Silicon nanocrystals (nc-Si) have gained great interest due to their excellent optical and electronic properties and their applications in optoelectronics. The aim of this work is the study of growth mechanism of nc-Si into a-SiO 2 matrix from SiO/SiO 2 multilayer annealing, using non-destructive and destructive techniques. The multilayer were grown by e-beam evaporation from SiO and SiO 2 materials and annealing at temperatures up to 1100 deg. C in N 2 atmosphere. X-rays reflectivity (XRR) and high resolution transmission electron microscopy (HRTEM) were used for the structural characterization and spectroscopic ellipsometry in IR (FTIRSE) energy region for the study of the bonding structure. The ellipsometric results gave a clear evidence of the formation of an a-SiO 2 matrix after the annealing process. The XRR data showed that the density is being increased in the range from 25 to 1100 deg. C. Finally, the HRTEM characterization proved the formation of nc-Si. Using the above results, we describe the growth mechanism of nc-Si into SiO 2 matrix under N 2 atmosphere

  3. Optical Fiber for High-Power Optical Communication

    Directory of Open Access Journals (Sweden)

    Kenji Kurokawa


    Full Text Available We examined optical fibers suitable for avoiding such problems as the fiber fuse phenomenon and failures at bends with a high power input. We found that the threshold power for fiber fuse propagation in photonic crystal fiber (PCF and hole-assisted fiber (HAF can exceed 18 W, which is more than 10 times that in conventional single-mode fiber (SMF. We considered this high threshold power in PCF and HAF to be caused by a jet of high temperature fluid penetrating the air holes. We showed examples of two kinds of failures at bends in conventional SMF when the input power was 9 W. We also observed the generation of a fiber fuse under a condition that caused a bend-loss induced failure. We showed that one solution for the failures at bends is to use optical fibers with a low bending loss such as PCF and HAF. Therefore, we consider PCF and HAF to be attractive solutions to the problems of the fiber fuse phenomenon and failures at bends with a high power input.

  4. Fiber optic gyroscope for automobiles utilizing integrated optical gyrochip and elliptical core polarization-maintaining optical fiber (United States)

    Yuhara, Toshiya; Kumagai, Tatsuya; Iizuka, Hisao; Kajioka, Hiroshi; Mekada, Naoyuki


    We have investigated fiber optic gyroscopes that use phase-modulation signal processing for use in automobiles. These gyroscopes use an integrated optical gyrochip and low-cost elliptical-core polarization-maintaining optical fiber. Fiber-to-fiber insertion loss deviation is less than +/- 0.4 dB at a wavelength of 0.83 micrometers over a temperature range of -30 to +80 degree(s)C, while the core dimensions of pigtailed fiber are as small as 4 X 1 micrometers 2. A gyroscope was developed for navigation systems and on board testing is now being performed. A gyroscope for chassis control systems is also being developed.

  5. Fiber coupled optical spark delivery system (United States)

    Yalin, Azer; Willson, Bryan; Defoort, Morgan


    A spark delivery system for generating a spark using a laser beam is provided, the spark delivery system including a laser light source and a laser delivery assembly. The laser delivery assembly includes a hollow fiber and a launch assembly comprising launch focusing optics to input the laser beam in the hollow fiber. In addition, the laser delivery assembly includes exit focusing optics that demagnify an exit beam of laser light from the hollow fiber, thereby increasing the intensity of the laser beam and creating a spark. In accordance with embodiments of the present invention, the assembly may be used to create a spark in a combustion engine. In accordance with other embodiments of the present invention, a method of using the spark delivery system is provided. In addition, a method of choosing an appropriate fiber for creating a spark using a laser beam is also presented.

  6. Accurate mode characterization of two-mode optical fibers by in-fiber acousto-optics. (United States)

    Alcusa-Sáez, E; Díez, A; Andrés, M V


    Acousto-optic interaction in optical fibers is exploited for the accurate and broadband characterization of two-mode optical fibers. Coupling between LP 01 and LP 1m modes is produced in a broadband wavelength range. Difference in effective indices, group indices, and chromatic dispersions between the guided modes, are obtained from experimental measurements. Additionally, we show that the technique is suitable to investigate the fine modes structure of LP modes, and some other intriguing features related with modes' cut-off.

  7. Evaluations of fiber optic sensors for interior applications

    Energy Technology Data Exchange (ETDEWEB)

    Sandoval, M.W.; Malone, T.P.


    This report addresses the testing and evaluation of commercial fiber optic intrusion detection systems in interior applications. The applications include laying optical fiber cable above suspended ceilings to detect removal of ceiling tiles, embedding optical fibers inside a tamper or item monitoring blanket that could be placed over an asset, and installing optical fibers on a door to detect movement or penetration. Detection capability of the fiber optic sensors as well as nuisance and false alarm information were focused on during the evaluation. Fiber optic sensor processing, system components, and system setup are described.

  8. Fiber Optic Temperature Sensor Insert for High Temperature Environments (United States)

    Black, Richard James (Inventor); Costa, Joannes M. (Inventor); Moslehi, Behzad (Inventor); Zarnescu, Livia (Inventor)


    A thermal protection system (TPS) test plug has optical fibers with FBGs embedded in the optical fiber arranged in a helix, an axial fiber, and a combination of the two. Optionally, one of the optical fibers is a sapphire FBG for measurement of the highest temperatures in the TPS plug. The test plug may include an ablating surface and a non-ablating surface, with an engagement surface with threads formed, the threads having a groove for placement of the optical fiber. The test plug may also include an optical connector positioned at the non-ablating surface for protection of the optical fiber during insertion and removal.

  9. Longitudinal soliton tunneling in optical fiber. (United States)

    Marest, T; Braud, F; Conforti, M; Wabnitz, S; Mussot, A; Kudlinski, A


    We report the observation of the longitudinal soliton tunneling effect in axially varying optical fibers. A fundamental soliton, initially propagating in the anomalous dispersion region of a fiber, can pass through a normal dispersion barrier without being substantially affected. We perform experimental studies by means of spectral and temporal characterizations that show the evidence of the longitudinal soliton tunneling process. Our results are well supported by numerical simulations using the generalized nonlinear Schrödinger equation.

  10. Strain measurement using multiplexed fiber optic sensors

    International Nuclear Information System (INIS)

    Kwon, Il Bum; Kim, Chi Yeop; Yoon, Dong Jin; Lee, Seung Seok


    FBG(Fiber Bragg grating) sensor, which is one of the fiber optic sensors for the application of smart structures, can not only measure one specific point but also multiple points by multiplexing techniques. We have proposed a novel multiplexing technique of FBG sensor by the intensity modulation of light source. This technique is applicable to WDM(Wavelength Division Multiplexing) technique and number of sensors in this system can be increased by using this technique with WDM technique.

  11. Optically tunable chirped fiber Bragg grating. (United States)

    Li, Zhen; Chen, Zhe; Hsiao, V K S; Tang, Jie-Yuan; Zhao, Fuli; Jiang, Shao-Ji


    This work presents an optically tunable chirped fiber Bragg grating (CFBG). The CFBG is obtained by a side-polished fiber Bragg grating (SPFBG) whose thickness of the residual cladding layer in the polished area (D(RC)) varies with position along the length of the grating, which is coated with a photoresponsive liquid crystal (LC) overlay. The reflection spectrum of the CFBG is tuned by refractive index (RI) modulation, which comes from the phase transition of the overlaid photoresponsive LC under ultraviolet (UV) light irradiation. The broadening in the reflection spectrum and corresponding shift in the central wavelength are observed with UV light irradiation density of 0.64mW/mm. During the phase transition of the photoresponsive LC, the RI increase of the overlaid LC leads to the change of the CFBG reflection spectrum and the change is reversible and repeatable. The optically tunable CFBGs have potential use in optical DWDM system and an all-fiber telecommunication system.

  12. Hot Springs-Garrison Fiber Optic Project

    Energy Technology Data Exchange (ETDEWEB)


    Bonneville Power Administration (BPA) is proposing to upgrade its operational telecommunications system between the Hot Springs Substation and the Garrison Substation using a fiber optic system. The project would primarily involve installing 190 kilometers (120 miles) of fiber optic cable on existing transmission structures and installing new fiber optic equipment in BPA`s substation yards and control houses. BPA prepared an environmental assessment (EA) evaluating the proposed action. This EA was published in October 1994. The EA identifies a number of minor impacts that might occur as a result of the proposed action, as well as some recommended mitigation measures. This Mitigation Action Plan (MAP) identifies specific measures to avoid, minimize, or compensate for impacts identified in the EA.

  13. Optical fiber applied to radiation detection

    International Nuclear Information System (INIS)

    Junior, Francisco A.B.; Costa, Antonella L.; Oliveira, Arno H. de; Vasconcelos, Danilo C.


    In the last years, the production of optical fibers cables has make possible the development of a range of spectroscopic probes for in situ analysis performing beyond nondestructive tests, environmental monitoring, security investigation, application in radiotherapy for dose monitoring, verification and validation. In this work, a system using an optical fiber cable to light signal transmission from a NaI(Tl) radiation detector is presented. The innovative device takes advantage mainly of the optical fibers small signal attenuation and immunity to electromagnetic interference to application for radiation detection systems. The main aim was to simplify the detection system making it to reach areas where the conventional device cannot access due to its lack of mobility and external dimensions. Some tests with this innovative system are presented and the results stimulate the continuity of the researches. (author)

  14. Stabilized Optical Fiber Links for the XFEL

    CERN Document Server

    Winter, Axel; Grawert, Felix J; Ilday, Fatih O; Kaertner, Franz X; Kim, Jung-Won; Schlarb, Holger; Schmidt, Bernhard


    The timing synchronization scheme for the European X-Ray free electron laser facility (XFEL) is based on the generation and distribution of sub-picosecond laser pulses with actively stabilized repetition rate which are used to synchronize local RF oscillators. An integral part of the scheme is the distribution of the optical pulse stream to parts of the facility via optical fiber links. The optical path length of the fiber has to be stabilized against short-term and long-term timing jitter due to environmental effects, such as temperature drifts and acoustic vibrations, to better than 10 fs for distances ranging from tens of meters to several kilometers. In this paper, we present first experimental results for signal transmission through a km-long fiber link with femtosecond stability.

  15. Hot Springs-Garrison Fiber Optic Project

    International Nuclear Information System (INIS)


    Bonneville Power Administration (BPA) is proposing to upgrade its operational telecommunications system between the Hot Springs Substation and the Garrison Substation using a fiber optic system. The project would primarily involve installing 190 kilometers (120 miles) of fiber optic cable on existing transmission structures and installing new fiber optic equipment in BPA's substation yards and control houses. BPA prepared an environmental assessment (EA) evaluating the proposed action. This EA was published in October 1994. The EA identifies a number of minor impacts that might occur as a result of the proposed action, as well as some recommended mitigation measures. This Mitigation Action Plan (MAP) identifies specific measures to avoid, minimize, or compensate for impacts identified in the EA

  16. Ion assisted deposition of SiO2 film from silicon (United States)

    Pham, Tuan. H.; Dang, Cu. X.


    Silicon dioxide, SiO2, is one of the preferred low index materials for optical thin film technology. It is often deposited by electron beam evaporation source with less porosity and scattering, relatively durable and can have a good laser damage threshold. Beside these advantages the deposition of critical optical thin film stacks with silicon dioxide from an E-gun was severely limited by the stability of the evaporation pattern or angular distribution of the material. The even surface of SiO2 granules in crucible will tend to develop into groove and become deeper with the evaporation process. As the results, angular distribution of the evaporation vapor changes in non-predicted manner. This report presents our experiments to apply Ion Assisted Deposition process to evaporate silicon in a molten liquid form. By choosing appropriate process parameters we can get SiO2 film with good and stable property.

  17. Focusing over Optical Fiber Using Time Reversal

    DEFF Research Database (Denmark)

    Piels, Molly; Porto da Silva, Edson; Estaran Tolosa, Jose Manuel


    A time-reversal array in multimode fiber is proposed for lossless remotely controlled switching using passive optical splitters. The signal to be transmitted is digitally pre-distorted so that it is routed through the physical layer in order to arrive at only one receiver in an array. System...... performance in the presence of additive white gaussian noise, modal group delay, and timing error is investigated numerically for single-mode and 10-mode fiber. Focusing using a two-transmitter array and 44 km of single- mode fiber is demonstrated experimentally for 3 GBd QPSK signals with a bit error rate...

  18. Lasers and optical fibers in medicine

    CERN Document Server

    Katzir, Abraham


    The increasing use of fiber optics in the field of medicine has created a need for an interdisciplinary perspective of the technology and methods for physicians as well as engineers and biophysicists. This book presents a comprehensive examination of lasers and optical fibers in an hierarchical, three-tier system. Each chapter is divided into three basic sections: the Fundamentals section provides an overview of basic concepts and background; the Principles section offers an in-depth engineering approach; and the Advances section features specific information on systems an

  19. Optical fiber end-facet polymer suspended-mirror devices (United States)

    Yao, Mian; Wu, Jushuai; Zhang, A. Ping; Tam, Hwa-Yaw; Wai, P. K. A.


    This paper presents a novel optical fiber device based on a polymer suspended mirror on the end facet of an optical fiber. With an own-developed optical 3D micro-printing technology, SU-8 suspended-mirror devices (SMDs) were successfully fabricated on the top of a standard single-mode optical fiber. Optical reflection spectra of the fabricated SU- 8 SMDs were measured and compared with theoretical analysis. The proposed technology paves a way towards 3D microengineering of the small end-facet of optical fibers to develop novel fiber-optic sensors.

  20. Towards biochips using microstructured optical fiber sensors

    DEFF Research Database (Denmark)

    Rindorf, Lars Henning; Hoiby, Poul Erik; Jensen, Jesper Bo


    In this paper we present the first incorporation of a microstructured optical fiber (MOF) into biochip applications. A 16-mm-long piece of MOF is incorporated into an optic-fluidic coupler chip, which is fabricated in PMMA polymer using a CO2 laser. The developed chip configuration allows...... the continuous control of liquid flow through the MOF and simultaneous optical characterization. While integrated in the chip, the MOF is functionalized towards the capture of a specific single-stranded DNA string by immobilizing a sensing layer on the microstructured internal surfaces of the fiber. The sensing...... layer contains the DNA string complementary to the target DNA sequence and thus operates through the highly selective DNA hybridization process. Optical detection of the captured DNA was carried out using the evanescent-wave-sensing principle. Owing to the small size of the chip, the presented technique...

  1. Is Polar Bear Hair Fiber Optic? (United States)

    Koon, Daniel W.


    New direct measurement of high optical attenuation rates in polar bear hairs 2 8 dB mm in the visible and reanalysis of the data of Tributsch et al . Sol. Energy Mater. 21, 219 (1990) seem to rule out the UV waveguiding proposed by Grojean et al . Appl. Opt. 19, 339 (1980) . The case against fiber-optic polar bear hairs is summarized, and four conditions are given that any variation of the model of Grojean et al . would have to satisfy.

  2. Optical Fiber Sensing Using Quantum Dots

    Directory of Open Access Journals (Sweden)

    Faramarz Farahi


    Full Text Available Recent advances in the application of semiconductor nanocrystals, or quantumdots, as biochemical sensors are reviewed. Quantum dots have unique optical properties thatmake them promising alternatives to traditional dyes in many luminescence basedbioanalytical techniques. An overview of the more relevant progresses in the application ofquantum dots as biochemical probes is addressed. Special focus will be given toconfigurations where the sensing dots are incorporated in solid membranes and immobilizedin optical fibers or planar waveguide platforms.

  3. Optical fiber sensors for medical applications: practical engineering considerations

    NARCIS (Netherlands)

    Heijmans, J.A.C.; Cheng, L.K.; Wieringa, F.P.


    The advantages of optical fibers as medical sensors are recognized world wide nowadays. Insensitivity to electromagnetic disturbances and relative small dimensions are the most well known properties. The advantages of fiber optic sensors are especially valuable within environments with high

  4. Fiber Optic Temperature Sensors for Thermal Protection Systems, Phase I (United States)

    National Aeronautics and Space Administration — Intelligent Fiber Optic Systems Corporation (IFOS) proposes an innovative fiber optic-based, multiplexable, highly ruggedized, integrated sensor system for real-time...

  5. An optical fiber point liquid level sensor (United States)

    Zhang, Wei; Gong, Ying; Ge, Junfeng; Hua, Bin; Zhang, Hongjie; Ye, Lin


    An optical fiber sensor to accurately judge the level of a point is presented in this paper. Three fibers are used in the sensor, one as the source to emit infrared light, and the others as the differential inputs to absorb the scattering of light. Adopting a differential structure of dual signal fibers helps removing the interference of external environment and the change of the intensity of the light source. When the sensor contacts the liquid, the emitted light will be scatted by the liquid so that the output voltage will have significant difference from it when the sensor is above the liquid. A 45 degree oblique end-face of fibers is not just used to reduce the adhesion of liquid but also can increase discrepancy between differential inputs due to different scattered light intensity at different position, and then enhance the sensitivity. Base on this point, the optical fiber point liquid level sensor is designed and its working performance is investigated by experiments. The experimental results indicated stability, accuracy and excellent performance in the use of this sensor to measure the status of liquid level. And the safety will be ensured for the characteristic of fiber and excellent electrical isolation.

  6. Optical fiber strain sensor with improved linearity range (United States)

    Egalon, Claudio Oliveira (Inventor); Rogowski, Robert S. (Inventor)


    A strain sensor is constructed from a two mode optical fiber. When the optical fiber is surface mounted in a straight line and the object to which the optical fiber is mounted is subjected to strain within a predetermined range, the light intensity of any point at the output of the optical fiber will have a linear relationship to strain, provided the intermodal phase difference is less than 0.17 radians.

  7. Portable fiber-optic taper coupled optical microscopy platform (United States)

    Wang, Weiming; Yu, Yan; Huang, Hui; Ou, Jinping


    The optical fiber taper coupled with CMOS has advantages of high sensitivity, compact structure and low distortion in the imaging platform. So it is widely used in low light, high speed and X-ray imaging systems. In the meanwhile, the peculiarity of the coupled structure can meet the needs of the demand in microscopy imaging. Toward this end, we developed a microscopic imaging platform based on the coupling of cellphone camera module and fiber optic taper for the measurement of the human blood samples and ascaris lumbricoides. The platform, weighing 70 grams, is based on the existing camera module of the smartphone and a fiber-optic array which providing a magnification factor of 6x.The top facet of the taper, on which samples are placed, serves as an irregular sampling grid for contact imaging. The magnified images of the sample, located on the bottom facet of the fiber, are then projected onto the CMOS sensor. This paper introduces the portable medical imaging system based on the optical fiber coupling with CMOS, and theoretically analyzes the feasibility of the system. The image data and process results either can be stored on the memory or transmitted to the remote medical institutions for the telemedicine. We validate the performance of this cell-phone based microscopy platform using human blood samples and test target, achieving comparable results to a standard bench-top microscope.

  8. New interferometric fiber-optic gyroscope with amplified optical feedback. (United States)

    Shi, C X; Yuhara, T; Iizuka, H; Kajioka, H


    A novel interferometric fiber-optic gyroscope with amplified optical feedback by an Er-doped fiber amplifier (EDFA) is proposed and theoretically investigated (the proposed gyroscope is named the feedback EDFA-FOG, FE-FOG in what follows). The FE-FOG functions like a resonant fiber-optic gyro (R-FOG) because of its multiple utilization of the Sagnac loop; however, it is completely different because a low-coherence light source is used. In addition, the gyro output signal is pulsed because the modulation frequency of the phase modulator placed in the Sagnac loop is selected to match the total round-trip time delay of the light, which includes the Sagnac-loop delay plus that of the feedback loop of the fiber amplifier. The sharpness of the output pulse can be adjusted by both the gain of an EDFA and the modulation depth of the phase modulator. When rotation occurs the peak position of the output pulse is shifted as a result of the Sagnac effect. The resolution of the rotation measurement depends on the sharpness of the output pulse. The techniques of both the open-loop and closed-loop methods are described in detail, which shows the great advantage of the proposed gyroscope over the to the conventional interferometric fiber-optical gyroscope (I-FOG).

  9. Vibration Detection Using Optical Fiber Sensors

    Directory of Open Access Journals (Sweden)

    Yoany Rodríguez García


    Full Text Available Condition monitoring of heavy electromechanical equipment is commonly accomplished in the industry using vibration analysis. Several techniques, mainly based on capacitive and piezoelectric accelerometers, have been applied for predictive maintenance. However, the negative influence of the electromagnetic interference (EMI can be a real problem when electrical signals are used to detect and transmit physical parameters in noisy environments such as electric power generator plants with high levels of EMI. Optical fiber sensors are increasingly used because of the nonelectrical nature of signals. In this paper, the most frequently used vibration optical fiber sensors will be reviewed, classifying them by the sensing techniques and measurement principles. The main techniques, intensity modulation, fiber bragg gratings and Fabry-Pérot Interferometry, will be reviewed here.

  10. Fiber optical asssembly for fluorescence spectrometry (United States)

    Piltch, Martin S.; Gray, Perry Clayton; Rubenstein, Richard


    System is provided for detecting the presence of an analyte of interest in a sample, said system comprising an elongated, transparent container for a sample; an excitation source in optical communication with the sample, wherein radiation from the excitation source is directed along the length of the sample, and wherein the radiation induces a signal which is emitted from the sample; and, at least two linear arrays disposed about the sample holder, each linear array comprising a plurality of optical fibers having a first end and a second end, wherein the first ends of the fibers are disposed along the length of the container and in proximity thereto; the second ends of the fibers of each array are bundled together to form a single end port.

  11. Scintillating Optical Fiber Imagers for biology

    International Nuclear Information System (INIS)

    Mastrippolito, R.


    S.O.F.I (Scintillating Optical Fiber Imager) is a detector developed to replace the autoradiographic films used in molecular biology for the location of radiolabelled ( 32 P) DNA molecules in blotting experiments. It analyses samples on a 25 x 25 cm 2 square area still 25 times faster than autoradiographic films, with a 1.75 and 3 mm resolution for two orthogonal directions. This device performs numerised images with a dynamic upper than 100 which allows the direct quantitation of the analysed samples. First, this thesis describes the S.O.F.I. development (Scintillating Optical Fibers, coding of these fibers and specific electronic for the treatment of the Multi-Anode Photo-Multiplier signals) and experiments made in collaboration with molecular biology laboratories. In a second place, we prove the feasibility of an automatic DNA sequencer issued from S.O.F.I [fr

  12. Active optical fibers doped with ceramic nanocrystals

    Czech Academy of Sciences Publication Activity Database

    Mrázek, Jan; Kašík, Ivan; Procházková, L.; Čuba, V.; Aubrecht, Jan; Cajzl, Jakub; Podrazký, Ondřej; Peterka, Pavel; Nikl, Martin


    Roč. 12, č. 6 (2014), s. 567-574 ISSN 1336-1376 Grant - others:GA AV ČR(CZ) M100761202 Institutional support: RVO:67985882 ; RVO:68378271 Keywords : Erbium * Nanocrystals * Special optical fiber Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering; BM - Solid Matter Physics ; Magnetism (FZU-D)

  13. Fiber-optic coupled pressure transducer

    International Nuclear Information System (INIS)

    Tallman, C.R.; Wingate, F.P.; Ballard, E.O.


    A fiber-optic coupled pressure transducer was developed for measurement of pressure transients produced by fast electrical discharges in laser cavities. A detailed description of the design and performance will be given. Shock tube performance and measurements in direct electrical discharge regions will be presented

  14. Military Applications of Fiber Optics Technology (United States)


    with major long-haul telecommunication systems operating between most U.S. cities,1 a transatlantic system recently made operational,2 and a transpacific ...optical signal from a fiber. Trasmissio loss The total loss encountered in transmission through a system. -51- Wavegulde: A cylindrical body of general

  15. Fiber optic gyros from research to production (United States)

    Pavlath, George A.


    Fiber optic gyros are a great success story for a new inertial measurement technology that successfully transitioned from the laboratory in 1975 to production in 1992. This paper will review their research, advanced development, product development, and production transfer. The focus of the paper will be this cycle from Stanford University to Northrop Grumman.

  16. Cascaded Bragg scattering in fiber optics. (United States)

    Xu, Y Q; Erkintalo, M; Genty, G; Murdoch, S G


    We report on a theoretical and experimental study of cascaded Bragg scattering in fiber optics. We show that the usual energy-momentum conservation of Bragg scattering can be considerably relaxed via cascade-induced phase-matching. Experimentally we demonstrate frequency translation over six- and 11-fold cascades, in excellent agreement with derived phase-matching conditions.

  17. Standing waves in fiber-optic interferometers

    NARCIS (Netherlands)

    De Haan, V.; Santbergen, R.; Tijssen, M.; Zeman, M.


    A study is presented giving the response of three types of fiber-optic interferometers by which a standing wave through an object is investigated. The three types are a Sagnac, Mach–Zehnder and Michelson–Morley interferometer. The response of the Mach–Zehnder interferometer is similar to the Sagnac


    This paper describes a fiber optic biosensor for the rapid and sensitive detection of radiation-induced or chemically-induced oxidative DNA damage. The assay is based on the hybridization and temperature-induced dissociation (melting curves) of synthetic oligonucleotides. The...

  19. Microstructured optical fiber refractive index sensor

    DEFF Research Database (Denmark)

    Town, Graham E.; McCosker, Ravi; Yuan, Scott Wu


    We describe a dual-core microstructured optical fiber designed for refractive index sensing of fluids. We show that by using the exponential dependence of intercore coupling on analyte refractive index, both large range and high sensitivity can be achieved in the one device. We also show...

  20. Fiber-Optic Chemical Sensors and Fiber-Optic Bio-Sensors (United States)

    Pospíšilová, Marie; Kuncová, Gabriela; Trögl, Josef


    This review summarizes principles and current stage of development of fiber-optic chemical sensors (FOCS) and biosensors (FOBS). Fiber optic sensor (FOS) systems use the ability of optical fibers (OF) to guide the light in the spectral range from ultraviolet (UV) (180 nm) up to middle infrared (IR) (10 µm) and modulation of guided light by the parameters of the surrounding environment of the OF core. The introduction of OF in the sensor systems has brought advantages such as measurement in flammable and explosive environments, immunity to electrical noises, miniaturization, geometrical flexibility, measurement of small sample volumes, remote sensing in inaccessible sites or harsh environments and multi-sensing. The review comprises briefly the theory of OF elaborated for sensors, techniques of fabrications and analytical results reached with fiber-optic chemical and biological sensors. PMID:26437407

  1. Fiber-Optic Chemical Sensors and Fiber-Optic Bio-Sensors

    Directory of Open Access Journals (Sweden)

    Marie Pospíšilová


    Full Text Available This review summarizes principles and current stage of development of fiber-optic chemical sensors (FOCS and biosensors (FOBS. Fiber optic sensor (FOS systems use the ability of optical fibers (OF to guide the light in the spectral range from ultraviolet (UV (180 nm up to middle infrared (IR (10 μm and modulation of guided light by the parameters of the surrounding environment of the OF core. The introduction of OF in the sensor systems has brought advantages such as measurement in flammable and explosive environments, immunity to electrical noises, miniaturization, geometrical flexibility, measurement of small sample volumes, remote sensing in inaccessible sites or harsh environments and multi-sensing. The review comprises briefly the theory of OF elaborated for sensors, techniques of fabrications and analytical results reached with fiber-optic chemical and biological sensors.

  2. Fiber-Optic Chemical Sensors and Fiber-Optic Bio-Sensors. (United States)

    Pospíšilová, Marie; Kuncová, Gabriela; Trögl, Josef


    This review summarizes principles and current stage of development of fiber-optic chemical sensors (FOCS) and biosensors (FOBS). Fiber optic sensor (FOS) systems use the ability of optical fibers (OF) to guide the light in the spectral range from ultraviolet (UV) (180 nm) up to middle infrared (IR) (10 μm) and modulation of guided light by the parameters of the surrounding environment of the OF core. The introduction of OF in the sensor systems has brought advantages such as measurement in flammable and explosive environments, immunity to electrical noises, miniaturization, geometrical flexibility, measurement of small sample volumes, remote sensing in inaccessible sites or harsh environments and multi-sensing. The review comprises briefly the theory of OF elaborated for sensors, techniques of fabrications and analytical results reached with fiber-optic chemical and biological sensors.

  3. Fiber optical parametric amplifiers in optical communication systems

    DEFF Research Database (Denmark)

    Marhic, Michel E.; Andrekson, Peter A.; Petropoulos, Periklis


    The prospects for using fiber optical parametric amplifiers (OPAs) in optical communication systems are reviewed. Phase-insensitive amplifiers (PIAs) and phase-sensitive amplifiers (PSAs) are considered. Low-penalty amplification at/or near 1 Tb/s has been achieved, for both wavelength- and time...... in excess of 14,000 Tb/s x km in realistic wavelength-division multiplexed long-haul networks. Technical challenges remaining to be addressed in order for fiber OPAs to become useful for long-haul communication networks are discussed....

  4. 21 CFR 872.4620 - Fiber optic dental light. (United States)


    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Fiber optic dental light. 872.4620 Section 872...) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4620 Fiber optic dental light. (a) Identification. A fiber optic dental light is a device that is a light, usually AC-powered, that consists of glass or...

  5. 46 CFR 111.60-6 - Fiber optic cable. (United States)


    ... 46 Shipping 4 2010-10-01 2010-10-01 false Fiber optic cable. 111.60-6 Section 111.60-6 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Wiring Materials and Methods § 111.60-6 Fiber optic cable. Each fiber optic cable must— (a) Be...

  6. Integrated nanophotonic hubs based on ZnO-Tb(OH3/SiO2 nanocomposites

    Directory of Open Access Journals (Sweden)

    Lin Yu


    Full Text Available Abstract Optical integration is essential for practical application, but it remains unexplored for nanoscale devices. A newly designed nanocomposite based on ZnO semiconductor nanowires and Tb(OH3/SiO2 core/shell nanospheres has been synthesized and studied. The unique sea urchin-type morphology, bright and sharply visible emission bands of lanthanide, and large aspect ratio of ZnO crystalline nanotips make this novel composite an excellent signal receiver, waveguide, and emitter. The multifunctional composite of ZnO nanotips and Tb(OH3/SiO2 nanoparticles therefore can serve as an integrated nanophotonics hub. Moreover, the composite of ZnO nanotips deposited on a Tb(OH3/SiO2 photonic crystal can act as a directional light fountain, in which the confined radiation from Tb ions inside the photonic crystal can be well guided and escape through the ZnO nanotips. Therefore, the output emission arising from Tb ions is truly directional, and its intensity can be greatly enhanced. With highly enhanced lasing emissions in ZnO-Tb(OH3/SiO2 as well as SnO2-Tb(OH3/SiO2 nanocomposites, we demonstrate that our approach is extremely beneficial for the creation of low threshold and high-power nanolaser.

  7. Integrated nanophotonic hubs based on ZnO-Tb(OH)3/SiO2 nanocomposites (United States)

    Lin, Hsia Yu; Cheng, Chung Liang; Lin, Yu Shen; Hung, Yann; Mou, Chung Yuan; Chen, Yang Fang


    Optical integration is essential for practical application, but it remains unexplored for nanoscale devices. A newly designed nanocomposite based on ZnO semiconductor nanowires and Tb(OH)3/SiO2 core/shell nanospheres has been synthesized and studied. The unique sea urchin-type morphology, bright and sharply visible emission bands of lanthanide, and large aspect ratio of ZnO crystalline nanotips make this novel composite an excellent signal receiver, waveguide, and emitter. The multifunctional composite of ZnO nanotips and Tb(OH)3/SiO2 nanoparticles therefore can serve as an integrated nanophotonics hub. Moreover, the composite of ZnO nanotips deposited on a Tb(OH)3/SiO2 photonic crystal can act as a directional light fountain, in which the confined radiation from Tb ions inside the photonic crystal can be well guided and escape through the ZnO nanotips. Therefore, the output emission arising from Tb ions is truly directional, and its intensity can be greatly enhanced. With highly enhanced lasing emissions in ZnO-Tb(OH)3/SiO2 as well as SnO2-Tb(OH)3/SiO2 nanocomposites, we demonstrate that our approach is extremely beneficial for the creation of low threshold and high-power nanolaser.

  8. Optical-domain Compensation for Coupling between Optical Fiber Conjugate Vortex Modes

    DEFF Research Database (Denmark)

    Lyubopytov, Vladimir S.; Tatarczak, Anna; Lu, Xiaofeng


    We demonstrate for the first time optical-domain compensation for coupling between conjugate vortex modes in optical fibers. We introduce a novel method for reconstructing the complex propagation matrix of the optical fiber with straightforward implementation....

  9. Fiber optic configurations for local area networks (United States)

    Nassehi, M. M.; Tobagi, F. A.; Marhic, M. E.


    A number of fiber optic configurations for a new class of demand assignment multiple-access local area networks requiring a physical ordering among stations are proposed. In such networks, the data transmission and linear-ordering functions may be distinguished and be provided by separate data and control subnetworks. The configurations proposed for the data subnetwork are based on the linear, star, and tree topologies. To provide the linear-ordering function, the control subnetwork must always have a linear unidirectional bus structure. Due to the reciprocity and excess loss of optical couplers, the number of stations that can be accommodated on a linear fiber optic bus is severely limited. Two techniques are proposed to overcome this limitation. For each of the data and control subnetwork configurations, the maximum number of stations as a function of the power margin, for both reciprocal and nonreciprocal couplers, is computed.

  10. Effect of SiO2 protective layer on the femtosecond laser-induced damage of HfO2/SiO2 multilayer high-reflective coatings

    International Nuclear Information System (INIS)

    Yuan Lei; Zhao Yuanan; Wang Congjuan; He Hongbo; Fan Zhengxiu; Shao Jianda


    Two kinds of HfO 2 /SiO 2 800 nm high-reflective (HR) coatings, with and without SiO 2 protective layer were deposited by electron beam evaporation. Laser-induced damage thresholds (LIDT) were measured for all samples with femtosecond laser pulses. The surface morphologies and the depth information of all samples were observed by Leica optical microscopy and WYKO surface profiler, respectively. It is found that SiO 2 protective layer had no positive effect on improving the LIDT of HR coating. A simple model including the conduction band electron production via multiphoton ionization and impact ionization is used to explain this phenomenon. Theoretical calculations show that the damage occurs first in the SiO 2 protective layer for HfO 2 /SiO 2 HR coating with SiO 2 protective layer. The relation of LIDT for two kinds of HfO 2 /SiO 2 HR coatings in calculation agrees with the experiment result

  11. Optical Soliton Simulation in Optical Fibers by OptiSystem (United States)

    Gaik Tay, Kim; Huong Kah Ching, Audrey; Loi, Wei Sen; Tiong Ong, Chee


    Fiber optic communication is often known to offer higher frequency transmission of signals with greater bit rate and larger data carrying capacity over a long distance with lower loss and interference as compared to copper wire electrical communication. However, several factors that would affect the performance of an optical fiber transmission are such as group velocity dispersion (GVD), fiber loss and also self-phase modulation (SPM). In this paper, the effects of GVD, SPM, optical soliton formation and fiber loss are simulated using OptiSystem 14. It is found that GVD broaden pulse in temporal domain without modifying its spectrum. Meanwhile, SPM creates chirp in spectrum with its temporal profile maintained. This work concluded that a balance between the GVD and SPM is essential to form solitonthat is able to travel for a long distance without being distorted. It is also found that the decrease in the amplitude of the soliton is dependent on the fiber loss and this decay in the signal increases with the propagation distance.

  12. Fiber taper characterization by optical backscattering reflectometry. (United States)

    Lai, Yu-Hung; Yang, Ki Youl; Suh, Myoung-Gyun; Vahala, Kerry J


    Fiber tapers provide a way to rapidly measure the spectra of many types of optical microcavities. Proper fabrication of the taper ensures that its width varies sufficiently slowly (adiabatically) along the length of the taper so as to maintain single spatial mode propagation. This is usually accomplished by monitoring the spectral transmission through the taper. In addition to this characterization method it is also helpful to know the taper width versus length. By developing a model of optical backscattering within the fiber taper, it is possible to use backscatter measurements to characterize the taper width versus length. The model uses the concept of a local taper numerical aperture to accurately account for varying backscatter collection along the length of the taper. In addition to taper profile information, the backscatter reflectometry method delineates locations along the taper where fluctuations in fiber core refractive index, cladding refractive index, and taper surface roughness each provide the dominant source of backscattering. Rayleigh backscattering coefficients are also extracted by fitting the data with the model and are consistent with the fiber manufacturer's datasheet. The optical backscattering reflectometer is also used to observe defects resulting from microcracks and surface contamination. All of this information can be obtained before the taper is removed from its fabrication apparatus. The backscattering method should also be prove useful for characterization of nanofibers.

  13. Fiber optic gyro development at Fibernetics (United States)

    Bergh, Ralph A.; Arnesen, Leif; Herdman, Craig


    Fiber optic gyroscope based inertial sensors are being used within increasingly severe environments, enabling unmanned systems to sense and navigate in areas where GPS satellite navigation is unavailable or jammed. A need exists for smaller, lighter, lower power inertial sensors for the most demanding land, sea, air, and space applications. Fibernetics is developing a family of inertial sensor systems based on our closed-loop navigation-grade fiber optic gyroscope (FOG). We are making use of the packaging flexibility of the fiber to create a navigation grade inertial measurement unit (IMU) (3 gyroscopes and 3 accelerometers) that has a volume of 102 cubic inches. We are also planning a gyrocompass and an inertial navigation system (INS) having roughly the same size. In this paper we provide an update on our development progress and describe our modulation scheme for the Sagnac interferometers. We also present a novel multiplexed design that efficiently delivers source light to each of the three detectors. In our future development section we discuss our work to improve FOG performance per unit volume, specifically detailing our focus in utilizing a multicore optical fiber.

  14. Easy and safe coated optical fiber direct connection without handling bare optical fiber (United States)

    Saito, Kotaro; Kihara, Mitsuru; Shimizu, Tomoya; Kurashima, Toshio


    We propose a novel field installable splicing technique for the direct connection of 250 μm diameter coated optical fiber that does not require bare optical fiber to be handled. Our proposed technique can realize a low insertion loss over a wide field installation temperature range of -10-40 °C. The keys to coated optical fiber direct connection are a cleaving technique and a technique for removing coated optical fiber. As the cleaving technique, we employed a method where the fiber is stretched and then a blade is pushed perpendicularly against the stretched fiber. As a result we confirmed that fiber endfaces cleaved at -10-40 °C were all mirror endfaces. With the removal technique, the coating is removed inside the connecting component by incorporating a circular cone shaped coating removal part. A mechanical splice based on these techniques successfully achieved a low insertion loss of less than 0.11 dB and a return loss of more than 50 dB at -10, 20, and 40 °C. In addition, the temperature cycle characteristics were stable over a wide temperature range of -40-75 °C.

  15. Nonlinear soliton matching between optical fibers

    DEFF Research Database (Denmark)

    Agger, Christian; Sørensen, Simon Toft; Thomsen, Carsten L.


    In this Letter, we propose a generic nonlinear coupling coefficient, η2 NL ¼ ηjγ=β2jfiber2=jγ=β2jfiber1, which gives a quantitative measure for the efficiency of nonlinear matching of optical fibers by describing how a fundamental soliton couples from one fiber into another. Specifically, we use η......NL to demonstrate a significant soliton selffrequency shift of a fundamental soliton, and we show that nonlinear matching can take precedence over linear mode matching. The nonlinear coupling coefficient depends on both the dispersion (β2) and nonlinearity (γ), as well as on the power coupling efficiency η. Being...

  16. Wavelength switchable fiber-optic Sagnac filter (United States)

    Su, Dan; Qiao, Xueguang; Rong, Qiangzhou; Shao, Zhihua


    A wavelength switchable fiber-optic comb filter based on an in-line Sagnac interference is proposed and demonstrated. The proposed filter consists of a polarizer, two polarization controllers (PCs) and two sections of polarization maintaining fiber (PMFs). The output comb spectrum characteristics of the configuration are theoretically analyzed by Jones matrix, and then numerically simulated and experimentally demonstrated, of which the results present four comb filter-types (sinusoidal, flat-top and narrow-band superposition, and line-shaped spectra) by adjusting the polarizations of light with PCs.

  17. Scalable Optical-Fiber Communication Networks (United States)

    Chow, Edward T.; Peterson, John C.


    Scalable arbitrary fiber extension network (SAFEnet) is conceptual fiber-optic communication network passing digital signals among variety of computers and input/output devices at rates from 200 Mb/s to more than 100 Gb/s. Intended for use with very-high-speed computers and other data-processing and communication systems in which message-passing delays must be kept short. Inherent flexibility makes it possible to match performance of network to computers by optimizing configuration of interconnections. In addition, interconnections made redundant to provide tolerance to faults.

  18. Processing of optical combs with fiber optic parametric amplifiers

    Czech Academy of Sciences Publication Activity Database

    Slavík, Radan; Kakande, J.; Richardson, D.J.; Petropoulos, P.


    Roč. 20, č. 9 (2012), s. 10059-10070 ISSN 1094-4087 Institutional support: RVO:67985882 Keywords : Fiber - optic parametric amplifier * Phase sensitive * Spectral coverage Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.546, year: 2012

  19. Cobra Fiber-Optic Positioner Upgrade (United States)

    Fisher, Charles D.; Braun, David F.; Kaluzny, Joel V.


    A prime focus spectrometer (PFS), along with corrective optics, will mount in place of the secondary mirror of the Subaru telescope on Mauna Kea, Hawaii. This will allow simultaneous observations of cosmologic targets. It will enable large-scale galactic archeology and dark energy surveys to help unlock the secrets of the universe. To perform these cosmologic surveys, an array of 2,400 optical fibers needs to be independently positioned within the 498-mm-diameter focal plane of the PFS instrument to collect light from galaxies and stars for spectrographic analyses. To allow for independent re-positioning of the fibers, a very small positioner (7.7 mm in diameter) is required. One hundred percent coverage of the focal plane is also required, so these small actuators need to cover a patrol region of 9.5 mm in diameter. To optimize the amount of light that can be collected, the fibers need to be placed within 5 micrometers of their intended target (either a star or galaxy). The Cobra Fiber Positioner was designed to meet the size and accuracy requirements stated above. Cobra is a two-degrees-of-freedom mechanism that can position an optical fiber in the focal plane of the PFS instrument to a precision of 5 micrometers. It is a theta-phi style positioner containing two rotary piezo tube motors with one offset from the other, which enables the optic fibers to be placed anywhere in a small circular patrol region. The patrol region of the actuator is such that the array of 2,400 positioners allows for full coverage of the instrument focal plane by overlapping the patrol areas. A second-generation Cobra positioner was designed based on lessons learned from the original prototype built in 2009. Improvements were made to the precision of the ceramic motor parts, and hard stops were redesigned to minimize friction and prevent jamming. These changes resulted in reducing the number of move iterations required to position the optical fiber within 5 micrometers of its target. At

  20. Fiber-optic dosimeters for radiation therapy (United States)

    Li, Enbang; Archer, James


    According to the figures provided by the World Health Organization, cancer is a leading cause of death worldwide, accounting for 8.8 million deaths in 2015. Radiation therapy, which uses x-rays to destroy or injure cancer cells, has become one of the most important modalities to treat the primary cancer or advanced cancer. The newly developed microbeam radiation therapy (MRT), which uses highly collimated, quasi-parallel arrays of x-ray microbeams (typically 50 μm wide and separated by 400 μm) produced by synchrotron sources, represents a new paradigm in radiotherapy and has shown great promise in pre-clinical studies on different animal models. Measurements of the absorbed dose distribution of microbeams are vitally important for clinical acceptance of MRT and for developing quality assurance systems for MRT, hence are a challenging and important task for radiation dosimetry. On the other hand, during the traditional LINAC based radiotherapy and breast cancer brachytherapy, skin dose measurements and treatment planning also require a high spatial resolution, tissue equivalent, on-line dosimeter that is both economical and highly reliable. Such a dosimeter currently does not exist and remains a challenge in the development of radiation dosimetry. High resolution, water equivalent, optical and passive x-ray dosimeters have been developed and constructed by using plastic scintillators and optical fibers. The dosimeters have peak edge-on spatial resolutions ranging from 50 to 500 microns in one dimension, with a 10 micron resolution dosimeter under development. The developed fiber-optic dosimeters have been test with both LINAC and synchrotron x-ray beams. This work demonstrates that water-equivalent and high spatial resolution radiation detection can be achieved with scintillators and optical fiber systems. Among other advantages, the developed fiber-optic probes are also passive, energy independent, and radiation hard.

  1. Optical fiber sensor having a sol-gel fiber core and a method of making (United States)

    Tao, Shiquan; Jindal, Rajeev; Winstead, Christopher; Singh, Jagdish P.


    A simple, economic wet chemical procedure is described for making sol-gel fibers. The sol-gel fibers made from this process are transparent to ultraviolet, visible and near infrared light. Light can be guided in these fibers by using an organic polymer as a fiber cladding. Alternatively, air can be used as a low refractive index medium. The sol-gel fibers have a micro pore structure which allows molecules to diffuse into the fiber core from the surrounding environment. Chemical and biochemical reagents can be doped into the fiber core. The sol-gel fiber can be used as a transducer for constructing an optical fiber sensor. The optical fiber sensor having an active sol-gel fiber core is more sensitive than conventional evanescent wave absorption based optical fiber sensors.

  2. Bridge SHM system based on fiber optical sensing technology (United States)

    Li, Sheng; Fan, Dian; Fu, Jiang-hua; Huang, Xing; Jiang, De-sheng


    The latest progress of our lab in recent 10 years on the area of bridge structural health monitoring (SHM) based on optical fiber sensing technology is introduced. Firstly, in the part of sensing technology, optical fiber force test-ring, optical fiber vibration sensor, optical fiber smart cable, optical fiber prestressing loss monitoring method and optical fiber continuous curve mode inspection system are developed, which not only rich the sensor types, but also provides new monitoring means that are needed for the bridge health monitoring system. Secondly, in the optical fiber sensing network and computer system platform, the monitoring system architecture model is designed to effectively meet the integration scale and effect requirement of engineering application, especially the bridge expert system proposed integration of sensing information and informatization manual inspection to realize the mode of multi index intelligence and practical monitoring, diagnosis and evaluation. Finally, the Jingyue bridge monitoring system as the representative, the research on the technology of engineering applications are given.

  3. Irradiation of fiber optics in the SSC tunnel

    International Nuclear Information System (INIS)

    Dickey, C.E.


    The salient question is not whether optical fiber will survive in the Super Conducting Supercollider (SSC) tunnel, but rather how long will it survive. Current estimates indicate that single mode fiber under ideal conditions will have an expected lifetime of at least 25 years. Future development of optical fiber will lead to longer service lifetimes and increased radiation hardness. But conservatively speaking, current production optical fibers can probably not be depended upon for more than 25 years of service even under ideal conditions

  4. Phonon spectra in SiO2 glasses

    International Nuclear Information System (INIS)

    Perez R, J.F.; Jimenez S, S.; Gonzalez H, J.; Vorobiev, Y.V.; Hernandez L, M.A.; Parga T, J.R.


    Phonon spectra in SiO 2 sol-gel made glasses annealed under different conditions are investigated using infrared absorption and Raman scattering. These data are compared with those obtained in commercial optical-quality quartz. All the materials exhibit the same phonon bands, the exact position and the intensity depend on the measuring technique and on the sample preparation method. The phonon spectra in this material are interpreted on the basis of a simple quasi-linear description of elastic waves in an O-Si-O chain. It is shown that the main features observed in the range 400-1400 cm -1 can be predicted using a quasi-linear chain model in which the band at 1070 cm -1 is assigned to the longitudinal optical waves in the O-Si-O chain with the smallest possible wavelength at the Brillouin zone boundary, the band located around 450 cm -1 is assigned to the transversal optical waves and the band at 800 cm -1 to the longitudinal acoustical waves with the same wavelength. The degree of structural disorder can be also deduced within the framework of the proposed model. (Author)

  5. Reconfigurable optical interconnection network for multimode optical fiber sensor arrays (United States)

    Chen, R. T.; Robinson, D.; Lu, H.; Wang, M. R.; Jannson, T.; Baumbick, R.


    A single-source, single-detector architecture has been developed to implement a reconfigurable optical interconnection network multimode optical fiber sensor arrays. The network was realized by integrating LiNbO3 electrooptic (EO) gratings working at the Raman Na regime and a massive fan-out waveguide hologram (WH) working at the Bragg regime onto a multimode glass waveguide. The glass waveguide utilized the whole substrate as a guiding medium. A 1-to-59 massive waveguide fan-out was demonstrated using a WH operating at 514 nm. Measured diffraction efficiency of 59 percent was experimentally confirmed. Reconfigurability of the interconnection was carried out by generating an EO grating through an externally applied electric field. Unlike conventional single-mode integrated optical devices, the guided mode demonstrated has an azimuthal symmetry in mode profile which is the same as that of a fiber mode.

  6. Optical Fibers in Nuclear Reactor Radiation Environments. (United States)

    Holcomb, David Eugene


    A performance evaluation of fiber optics under radiation conditions similar to those encountered in nuclear power plants is reported. The evaluation was accomplished by the creation of an analytical model for atomic scale radiation damage in silica glass and by the execution of an extensive fiber performance measurement program. The analytic model calculates displacement and electronic damage rates for silica glass subjected to a specified nuclear reactor radiation environment. It accomplishes this by first generating the primary charged particle spectrum produced in silica irradiated in a nuclear reactor. The resultant spectra are then applied to the integral equations describing radiation damage in polyatomic solids. The experimental measurements were selected to span the range of fiber types, radiation environments, temperatures, and light powers expected to be used in nuclear power plants. The basic experimental protocol was to expose the optical fibers to either a nuclear reactor or a ^{60}Co radiation environment while simultaneously monitoring fiber light transmission. Experimental temperatures were either ~23 ^circC or ~100 ^circC and light powers were either -30 dBm or -60 dBm. Measurements were made at each of the three standard communications wavelengths (850 nm, 1300 nm, and 1550 nm). Several conclusions are made based on these performance measurements. First, even near the core of a nuclear reactor the vast majority of the dose to silica glass is due to gamma rays. Even with the much lower doses (factor of roughly 40) neutrons cause much more displacement damage than gamma rays (35 times the oxygen displacement rate and 500 times the silicon displacement rate). Even with neutrons having many times the displacement rate as compared with gamma rays, little if any difference is observed in the transmission losses for gamma only as compared to mixed neutron/gamma transmission losses. Therefore, atomic displacement is not a significant damage mechanism for

  7. Refractive index retrieving of polarization maintaining optical fibers (United States)

    Ramadan, W. A.; Wahba, H. H.; Shams El-Din, M. A.; Abd El-Sadek, I. G.


    In this paper, the cross-section images, of two different types of polarization maintaining (PM) optical fibers, are employed to estimate the optical phase variation due to transverse optical rays passing through these optical fibers. An adaptive algorithm is proposed to recognize the different areas constituting the PM optical fibers cross-sections. These areas are scanned by a transverse beam to calculate the optical paths for given values of refractive indices. Consequently, the optical phases across the PM optical fibers could be recovered. PM optical fiber is immersed in a matching fluid and set in the object arm of Mach-Zehnder interferometer. The produced interferograms are analyzed to extract the optical phases caused by the PM optical fibers. The estimated optical phases could be optimized to be in good coincidence with experimentally extracted ones. This has been achieved through changing of the PM optical fibers refractive indices to retrieve the correct values. The correct refractive indices values are confirmed by getting the best fit between the estimated and the extracted optical phases. The presented approach is a promising one because it provides a quite direct and accurate information about refractive index, birefringence and beat length of PM optical fibers comparing with different techniques handle the same task.

  8. Fiber optical assembly for fluorescence spectrometry (United States)

    Carpenter, II, Robert W.; Rubenstein, Richard; Piltch, Martin; Gray, Perry


    A system for analyzing a sample for the presence of an analyte in a sample. The system includes a sample holder for containing the sample; an excitation source, such as a laser, and at least one linear array radially disposed about the sample holder. Radiation from the excitation source is directed to the sample, and the radiation induces fluorescent light in the sample. Each linear array includes a plurality of fused silica optical fibers that receive the fluorescent light and transmits a fluorescent light signal from the first end to an optical end port of the linear array. An end port assembly having a photo-detector is optically coupled to the optical end port. The photo-detector detects the fluorescent light signal and converts the fluorescent light signal into an electrical signal.

  9. Normal dispersion femtosecond fiber optical parametric oscillator. (United States)

    Nguyen, T N; Kieu, K; Maslov, A V; Miyawaki, M; Peyghambarian, N


    We propose and demonstrate a synchronously pumped fiber optical parametric oscillator (FOPO) operating in the normal dispersion regime. The FOPO generates chirped pulses at the output, allowing significant pulse energy scaling potential without pulse breaking. The output average power of the FOPO at 1600 nm was ∼60  mW (corresponding to 1.45 nJ pulse energy and ∼55% slope power conversion efficiency). The output pulses directly from the FOPO were highly chirped (∼3  ps duration), and they could be compressed outside of the cavity to 180 fs by using a standard optical fiber compressor. Detailed numerical simulation was also performed to understand the pulse evolution dynamics around the laser cavity. We believe that the proposed design concept is useful for scaling up the pulse energy in the FOPO using different pumping wavelengths.

  10. Analog data transmission via fiber optics

    International Nuclear Information System (INIS)

    Cisneros, E.L.; Burgueno, G.F.


    In the SLAC Linear Collider Detector (SLD), as in most high-energy particle detectors, the electromagnetic noise environment is the limiting factor in electronic readout performance. Front-end electronics are particulary susceptible to electromagnetic interference (EMI), and great care has been taken to minimize its effects. The transfer of preprocessed analog signals from the detector environs, to the remote digital processing electronics, by conventional means (via metal conductors), may ultimately limit the performance of the system. Because it is highly impervious to EMI and ground loops, a fiber-optic medium has been chosen for the transmission of these signals. This paper describes several fiber-optic transmission schemes which satisfy the requirements of the SLD analog data transmission

  11. Fiber Optic Thermal Detection of Composite Delaminations (United States)

    Wu, Meng-Chou; Winfree, William P.


    A recently developed technique is presented for thermographic detection of delaminations in composites by performing temperature measurements with fiber optic Bragg gratings. A single optical fiber with multiple Bragg gratings employed as surface temperature sensors was bonded to the surface of a composite with subsurface defects. The investigated structure was a 10-ply composite specimen with prefabricated delaminations of various sizes and depths. Both during and following the application of a thermal heat flux to the surface, the individual Bragg grating sensors measured the temporal and spatial temperature variations. The data obtained from grating sensors were analyzed with thermal modeling techniques of conventional thermography to reveal particular characteristics of the interested areas. Results were compared and found to be consistent with the calculations using numerical simulation techniques. Also discussed are methods including various heating sources and patterns, and their limitations for performing in-situ structural health monitoring.

  12. Fiber Optic Thermal Health Monitoring of Composites (United States)

    Wu, Meng-Chou; Winfree, William P.; Moore, Jason P.


    A recently developed technique is presented for thermographic detection of flaws in composite materials by performing temperature measurements with fiber optic Bragg gratings. Individual optical fibers with multiple Bragg gratings employed as surface temperature sensors were bonded to the surfaces of composites with subsurface defects. The investigated structures included a 10-ply composite specimen with subsurface delaminations of various sizes and depths. Both during and following the application of a thermal heat flux to the surface, the individual Bragg grating sensors measured the temporal and spatial temperature variations. The data obtained from grating sensors were analyzed with thermal modeling techniques of conventional thermography to reveal particular characteristics of the interested areas. Results were compared with the calculations using numerical simulation techniques. Methods and limitations for performing in-situ structural health monitoring are discussed.

  13. Active Star Architectures For Fiber Optics Ethernet (United States)

    Linde, Yoseph L.


    Ethernet, and the closely related IEEE 802.3 CSMA/CD standard (Carrier Sense Multiple Access with Collision Detection), is probably the widest used method for high speed Local Area Networks (LANs). The original Ethernet medium was baseband coax but the wide acceptance of the system necessitated the ability to use Ethernet on a variety of media. So far the use of Ethernet on Thin Coax (CheaperNet), Twisted Pair (StarLan) and Broadband Coax has been standardized. Recently, an increased interest in Fiber Optic based LANs resulted in a formation of an IEEE group whose charter is to recommend approaches for Active and Passive Fiber Optic Ethernet systems. The various approaches which are being considered are described in this paper with an emphasis on Active Star based systems.

  14. Multiple-Output Fiber-Ring Lasers and Amplifiers in a Hybrid CATV and ADSL Broadcasting Optical Fiber Communication System (United States)

    Lin, Huang-Cuang; Kuo, Shu-Tsung

    In this article we propose two kinds of new fiber ring structure with a semiconductor optical amplifier. The first structure is a one-fiber-ring amplifier with an 8 × 8 fiber coupler and a semiconductor optical amplifier (SOA). The second fiber ring structure is a two-fiber-ring laser including an 8 × 8 fiber coupler, a 2 × 2 E/O modulator, and an SOA. The 14-output spectra of the fiber laser are measured. The gain coefficients of each port of the multiple-output-fiber-ring amplifiers are also measured. We apply these two kinds of fiber ring structures in a hybrid CATV and ADSL broadcasting optical fiber communication system. This application can develop a broadcasting system with large coverage area without using many laser diodes and optical amplifiers. The performance of such a system is also analyzed in this article.

  15. Elongation-based fiber optic tunable filter (United States)

    Pérez-Sánchez, G. G.; Mejia-Islas, J. A.; Andrade-González, E. A.; Pérez-Torres, J. R.


    This paper focuses on introducing the results of a model using a control system for an optical filter that can be tuned, using a solution that employs both, an elongation control system and a fiber Bragg grating. At the first stage, the optical characterization of the filter was made, then the stepper motors were chosen for the desired wavelength selection with a couple of pulleys which produce the grating elongation and, as a consequence, the wavelength shifting. The pulleys diameters were calculated to produce 0.8 nm shift for each filtering wavelength using a control program.

  16. Optical fiber telecommunications systems and networks

    CERN Document Server

    Kaminow, Ivan; Willner, Alan E


    Optical Fiber Telecommunications VI (A&B) is the sixth in a series that has chronicled the progress in the R&D of lightwave communications since the early 1970s. Written by active authorities from academia and industry, this edition brings a fresh look to many essential topics, including devices, subsystems, systems and networks. A central theme is the enabling of high-bandwidth communications in a cost-effective manner for the development of customer applications. These volumes are an ideal reference for R&D engineers and managers, optical systems implementers, university researchers and s

  17. Optical fiber telecommunications components and subsystems

    CERN Document Server

    Kaminow, Ivan; Willner, Alan E


    Optical Fiber Telecommunications VI (A&B) is the sixth in a series that has chronicled the progress in the R&D of lightwave communications since the early 1970s. Written by active authorities from academia and industry, this edition brings a fresh look to many essential topics, including devices, subsystems, systems and networks. A central theme is the enabling of high-bandwidth communications in a cost-effective manner for the development of customer applications. These volumes are an ideal reference for R&D engineers and managers, optical systems implementers, university researchers and s

  18. Chemical tapering of polymer optical fiber (United States)

    Rashid, Affa Rozana Abdul; Afiqah Nasution, Amna; Hanim Suranin, Aisyah; Athirah Taib, Nur; Maisarah Mukhtar, Wan; Dasuki, Karsono Ahmad; Annuar Ehsan, Abang


    Polymer optical fibers (POFs) have significant advantages over numerous sensing applications. The key element in developing sensor is by removing the cladding of the fiber. The use of organic solvent is one of the methods to create tapered POF in order to expose the core region. In this study, the etching chemicals involved is acetone, methyl isobutyl ketone (MIBK), and acetone-methanol mixture. The POF is immersed in 100%, 80%, and 50% of acetone and MIBK dilution. In addition, the mixture of acetone and methanol is also used for POF etching by the ratio 2:1 of the volume. Acetone has shown to be the most reactive solvent towards POF due to its fastest etching rate compared to MIBK and acetone-methanol mixture. The POF is immersed and lifted from the solution for a specific time, depending on the power loss properties for the purpose of producing unclad POF. In comparison to silica fiber optic, the advantages of POF in terms of its simple technique and easy handling enable it to produce unclad POF without damaging the core region. The surface roughness of the POF is investigated under the microscope after being immersed into different solvent. This method of chemical tapering of POF can be used as the fundamental technique for sensor development. Next, the unclad fiber is immersed into ethanol solutions in order to determine the reaction of unclad POF towards its surrounding. The findings show that this particular sensor is sensitive towards concentration changes ranging between 10 wt% to 50 wt%.

  19. Liquid scintillators for optical fiber applications

    International Nuclear Information System (INIS)

    Franks, L.A.; Lutz, S.S.


    A multicomponent liquid scintillator solution for use as a radiation-to-light converter in conjunction with a fiber optic transmission system. The scintillator includes a quantity of 1, 2 , 4, 5, 3H, 6H, 1 OH, tetrahydro-8-trifluoromethyl (1) benzopyrano (9, 9a, 1-gh) quinolizin-10-one (Coumarin) as a solute in a fluor solvent such as benzyl alcohol or pseudocumene. The use of bibuq as an additional or primary solute is also disclosed

  20. Fiber optics in high dose radiation fields

    International Nuclear Information System (INIS)

    Partin, J.K.


    A review of the behavior of state-of-the-art optical fiber waveguides in high dose (greater than or equal to 10 5 rad), steady state radiation fields is presented. The influence on radiation-induced transmission loss due to experimental parameters such as dose rate, total dose, irradiation history, temperature, wavelength, and light intensity, for future work in high dose environments are given

  1. Fast Asynchronous Data Communication Via Fiber Optics (United States)

    Bergman, Larry A.; Tell, Robert G.


    Transmitter and receiver devised for asynchronous digital communication via optical fiber at rates above 100 Mb/s. Transmitter converts parallel data to serial for high-speed transmission; receiver recovers clock signal and converts data back to parallel. No phase-lock loops used. New receiver design avoids over-sampling altogether. Local sampling oscillator operating nominally at clock frequency generates N clock signals of equally spaced phase, used to clock incoming data into N separate shift registers.

  2. Partially polarized fiber-optic gyro. (United States)

    Blake, J; Szafraniec, B; Feth, J


    We present a new design for an all-fiber-optic gyroscope that makes use of a single-mode coil containing a Lyot depolarizer along with a partial depolarizer placed between the polarizer and the loop coupler. This design provides an optimal trade-off between the suppression of polarization errors and the reduction of drift errors arising from external magnetic f ields and changes in temperature.

  3. Spectrally efficient polymer optical fiber transmission (United States)

    Randel, Sebastian; Bunge, Christian-Alexander


    The step-index polymer optical fiber (SI-POF) is an attractive transmission medium for high speed communication links in automotive infotainment networks, in industrial automation, and in home networks. Growing demands for quality of service, e.g., for IPTV distribution in homes and for Ethernet based industrial control networks will necessitate Gigabit speeds in the near future. We present an overview on recent advances in the design of spectrally efficient and robust Gigabit-over-SI-POF transmission systems.

  4. Microstructured Optical Fiber for X-ray Detection (United States)

    DeHaven, Stanton L.


    A novel scintillating optical fiber is presented using a composite micro-structured quartz optical fiber. Scintillating materials are introduced into the multiple inclusions of the fiber. This creates a composite optical fiber having quartz as a cladding with an organic scintillating material core. X-ray detection using these fibers is compared to a collimated cadmium telluride (CdTe) detector over an energy range from 10 to 40 keV. Results show a good correlation between the fiber count rate trend and that of the CdTe detector.

  5. Nanoimprint lithography using TiO2-SiO2 ultraviolet curable materials (United States)

    Takei, Satoshi


    Ultraviolet nanoimprint lithography has great potential for commercial device applications that are closest to production such as optical gratings, planar waveguides, photonic crystals, semiconductor, displays, solar cell panel, sensors, highbrightness LEDs, OLEDs, and optical data storage. I report and demonstrate the newly TiO2-SiO2 ultraviolet curable materials with 20-25 wt% ratio of high titanium for CF4/O2 etch selectivity using nanoimprint lithography process. The multiple structured three-dimensional micro- and nanolines patterns were observed to be successfully patterned over the large areas. The effect of titanium concentration on CF4/O2 etch selectivity with pattern transferring carbon layer imprinting time was investigated. CF4/O2 etching rate of the TiO2-SiO2 ultraviolet curable material was approximately 3.8 times lower than that of the referenced SiO2 sol-gel ultraviolet curable material. The TiO2-SiO2 ultraviolet curable material with high titanium concentration has been proved to be versatile in advanced nanofabrication.

  6. Fiber optic chemical sensors: The evolution of high- density fiber-optic DNA microarrays (United States)

    Ferguson, Jane A.


    Sensors were developed for multianalyte monitoring, fermentation monitoring, lactate analysis, remote oxygen detection for use in bioremediation monitoring and in a fuel spill clean-up project, heavy metal analysis, and high density DNA microarrays. The major focus of this thesis involved creating and improving high-density DNA gene arrays. Fiber optic sensors are created using fluorescent indicators, polymeric supports, and optical fiber substrates. The fluorescent indicator is entrapped in a polymer layer and attached to the tip of the optical fiber. The tip of the fiber bearing the sensing layer (the distal end) is placed in the sample of interest while the other end of the fiber (the proximal end) is connected to an analysis system. Any length of fiber can be used without compromising the integrity or sensitivity of the system. A fiber optic oxygen sensor was designed incorporating an oxygen sensitive fluorescent dye and a gas permeable polymer attached to an optical fiber. The construction simplicity and ruggedness of the sensor enabled its deployment for in situ chemical oxidation and bioremediation studies. Optical fibers were also used as the substrate to detect biomolecules in solution. To monitor bioprocesses, the production of the analyte of interest must be coupled with a species that is optically measurable. For example, oxygen is consumed in many metabolic functions. The fiber optic oxygen sensor is equipped with an additional sensing layer. Upon contact with a specific biochemical in the sample, a reaction occurs in the additional sensing layer that either consumes or produces oxygen. This dual layer system was used to monitor the presence of lactate, an important metabolite for clinical and bioprocess analysis. In many biological and environmental systems, the generation of one species occurs coincidentally with the generation or consumption of another species. A multianalyte sensor was prepared that can monitor the simultaneous activity of pH, CO2

  7. Demonstration of theoretical and experimental simulations in fiber optics course (United States)

    Yao, Tianfu; Wang, Xiaolin; Shi, Jianhua; Lei, Bing; Liu, Wei; Wang, Wei; Hu, Haojun


    "Fiber optics" course plays a supporting effect in the curriculum frame of optics and photonics at both undergraduate and postgraduate levels. Moreover, the course can be treated as compulsory for students specialized in the fiber-related field, such as fiber communication, fiber sensing and fiber light source. The corresponding content in fiber optics requires the knowledge of geometrical and physical optics as background, including basic optical theory and fiber components in practice. Thus, to help the students comprehend the relatively abundant and complex content, it is necessary to investigate novel teaching method assistant the classic lectures. In this paper, we introduce the multidimensional pattern in fiber-optics teaching involving theoretical and laboratory simulations. First, the theoretical simulations is demonstrated based on the self-developed software named "FB tool" which can be installed in both smart phone with Android operating system and personal computer. FB tool covers the fundamental calculations relating to transverse modes, fiber lasers and nonlinearities and so on. By comparing the calculation results with other commercial software like COMSOL, SFTool shows high accuracy with high speed. Then the laboratory simulations are designed including fiber coupling, Erbium doped fiber amplifiers, fiber components and so on. The simulations not only supports students understand basic knowledge in the course, but also provides opportunities to develop creative projects in fiber optics.

  8. In-Line Fiber Optic Interferometric Sensors in Single-Mode Fibers


    De-Wen Duan; Min Liu; Di Wu; Tao Zhu


    In-line fiber optic interferometers have attracted intensive attention for their potential sensing applications in refractive index, temperature, pressure and strain measurement, etc. Typical in-line fiber-optic interferometers are of two types: Fabry-Perot interferometers and core-cladding-mode interferometers. It’s known that the in-line fiber optic interferometers based on single-mode fibers can exhibit compact structures, easy fabrication and low cost. In this paper, ...

  9. Power Budget Analysis of Fiber Optics Communication Links Along ...

    African Journals Online (AJOL)

    With the development of optical fiber communication system most telecommunication companies now prefer to use optical fiber transmission medium for higher information bandwidth. The design of such a system involves many aspects such as the type of source to be used, the kind of fiber to be employed and detector.

  10. Noninvasive blood pressure measurement scheme based on optical fiber sensor (United States)

    Liu, Xianxuan; Yuan, Xueguang; Zhang, Yangan


    Optical fiber sensing has many advantages, such as volume small, light quality, low loss, strong in anti-jamming. Since the invention of the optical fiber sensing technology in 1977, optical fiber sensing technology has been applied in the military, national defense, aerospace, industrial, medical and other fields in recent years, and made a great contribution to parameter measurement in the environment under the limited condition .With the rapid development of computer, network system, the intelligent optical fiber sensing technology, the sensor technology, the combination of computer and communication technology , the detection, diagnosis and analysis can be automatically and efficiently completed. In this work, we proposed a noninvasive blood pressure detection and analysis scheme which uses optical fiber sensor. Optical fiber sensing system mainly includes the light source, optical fiber, optical detector, optical modulator, the signal processing module and so on. wavelength optical signals were led into the optical fiber sensor and the signals reflected by the human body surface were detected. By comparing actual testing data with the data got by traditional way to measure the blood pressure we can establish models for predicting the blood pressure and achieve noninvasive blood pressure measurement by using spectrum analysis technology. Blood pressure measurement method based on optical fiber sensing system is faster and more convenient than traditional way, and it can get accurate analysis results in a shorter period of time than before, so it can efficiently reduce the time cost and manpower cost.

  11. Intermodal Parametric Frequency Conversion in Optical Fibers (United States)

    Demas, Jeffrey D.

    Lasers are an essential technology enabling countless fields of optics, however, their operation wavelengths are limited to isolated regions across the optical spectrum due to the need for suitable gain media. Parametric frequency conversion (PFC) is an attractive means to convert existing lasers to new colors using nonlinear optical interactions rather than the material properties of the host medium, allowing for the development of high power laser sources across the entire optical spectrum. PFC in bulk chi(2) crystals has led to the development of the optical parametric oscillator, which is currently the standard source for high power light at non-traditional wavelengths in the laboratory setting. Ideally, however, one could implement PFC in an optical fiber, thus leveraging the crucial benefits of a guided-wave geometry: alignment-free, compact, and robust operation. Four-wave mixing (FWM) is a nonlinear effect in optical fibers that can be used to convert frequencies, the major challenge being conservation of momentum, or phase matching, between the interacting light waves. Phase matching can be satisfied through the interaction of different spatial modes in a multi-mode fiber, however, previous demonstrations have been limited by mode stability and narrow-band FWM gain. Alternatively, phase matching within the fundamental mode can be realized in high-confinement waveguides (such as photonic crystal fibers), but achieving the anomalous waveguide dispersion necessary for phase matching at pump wavelengths near ˜1 mum (where the highest power fiber lasers emit) comes at the cost of reducing the effective area of the mode, thus limiting power-handling. Here, we specifically consider the class of Bessel-like LP0,m modes in step-index fibers. It has been shown that these modes can be selectively excited and guided stably for long lengths of fiber, and mode stability increases with mode order 'm'. The effective area of modes in these fibers can be very large (>6000

  12. Hollow-core optical fiber incorporating a metamaterial cladding

    DEFF Research Database (Denmark)


    An optical fiber (100, 200, 300) for guidance of electromagnetic radiation with an operational wavelength l, the fiber (100, 200, 300) having a longitudinal direction along a longitudinal axis and a transverse direction in a plane perpendicular to the longitudinal axis, the fiber (100, 200, 300...... further relates to a method relating to and the use of the inventive fiber....

  13. Two classes of capillary optical fibers: refractive and photonic (United States)

    Romaniuk, Ryszard S.


    This paper is a digest tutorial on some properties of capillary optical fibers (COF). Two basic types of capillary optical fibers are clearly distinguished. The classification is based on propagation mechanism of optical wave. The refractive, singlemode COF guides a dark hollow beam of light (DHB) with zero intensity on fiber axis. The photonic, singlemode COF carries nearly a perfect axial Gaussian beam with maximum intensity on fiber axis. A subject of the paper are these two basic kinds of capillary optical fibers of pure refractive and pure photonic mechanism of guided wave transmission. In a real capillary the wave may be transmitted by a mixed mechanism, refractive and photonic, with strong interaction of photonic and refractive guided wave modes. Refractive capillary optical fibers are used widely for photonic instrumentation applications, while photonic capillary optical fibers are considered for trunk optical communications. Replacement of classical, single mode, dispersion shifted, 1550nm optimized optical fibers for communications with photonic capillaries would potentially cause a next serious revolution in optical communications. The predictions say that such a revolution may happen within this decade. This dream is however not fulfilled yet. The paper compares guided modes in both kinds of optical fiber capillaries: refractive and photonic. The differences are emphasized indicating prospective application areas of these fibers.

  14. Modeling illumination performance of plastic optical fiber passive daylighting system

    International Nuclear Information System (INIS)

    Sulaiman, F.; Ahmad, A.; Ahmed, A.Z.


    One of the most direct methods of utilizing solar energy for energy conservation is to bring natural light indoors to light up an area. This paper reports on the investigation of the feasibility to utilize large core optical fibers to convey and distribute solar light passively throughout residential or commercial structures. The focus of this study is on the mathematical modeling of the illumination performance and the light transmission efficiency of solid core end light fiber for optical day lighting systems. The Meatball simulations features the optical fiber transmittance for glass and plastic fibers, illumination performance over lengths of plastic end-lit fiber, spectral transmission, light intensity loss through the large diameter solid core optical fibers as well as the transmission efficiency of the optical fiber itself. It was found that plastic optical fiber has less transmission loss over the distance of the fiber run which clearly shows that the Plastic Optical Fiber should be optimized for emitting visible light. The findings from the analysis on the performance of large diameter optical fibers for day lighting systems seems feasible for energy efficient lighting system in commercial or residential buildings

  15. Fiber optic based optical coherence tomography (OCT) for dental applications

    Energy Technology Data Exchange (ETDEWEB)

    Everett, M. J., LLNL


    We have developed a hand-held fiber optic based optical coherence tomography (OCT) system for scanning of the oral cavity We have produced, using this scanning device, in viva cross-sectional images of hard and soft dental tissues in human volunteers Clinically relevant anatomical structures, including the gingival margin, periodontal sulcus, and dento-enamel junction, were visible in all the images The dento-enamel junction and the alveolar bone were identifiable in approximately two thirds of the images These images represent, to our knowledge, the first in viva OCT images of human dental tissue.

  16. Polarization modulational instability in a birefringent optical fiber ...

    Indian Academy of Sciences (India)

    odinger equation modelling fourth order dispersion effects when the linearly polarized pump is oriented at arbitrary angles with respect to the slow and fast axes of the birefringent fiber. Keywords. Birefringent optical fiber; fourth order dispersion; ...

  17. Fiber optic and laser sensors III

    International Nuclear Information System (INIS)

    Moore, E.L.; Ramer, O.G.


    Fiber Optic and Laser Sensors III is the third of a planned series of conferences dealing with state-of-the-art advancement in this technology area. Historically this conference has evolved due to the pioneering work aimed at acoustic and rotation sensing at several government and university laboratories (e.g., Naval Research Laboratory, MIT, and Stanford). At this point, if it can be sensed (temperature, magnetic field, blood pressure, rotation, flow, liquid level, current, voltage, gas and liquid chemistry, etc.) someone is trying to do it with fibers; many of these activities are recorded in this publication. A new activity, broadband sensors, was introduced at this conference; the major thrust is to use the large bandwidth of the optical fiber and conventional sensor to record single occurrence events (e.g., a nuclear explosion). Other important areas of presentation were: stress in composites, distributed sensors, and sensors for biological/medical applications. Although several papers were presented by major industrial companies related to the continuing development of the rotation sensor, the participation was limited by the evolution toward products, a natural path (as new technology progresses research and development become specific to proprietary designs)

  18. Teaching stellar interferometry with polymer optical fibers (United States)

    Illarramendi, M. A.; Arregui, L.; Zubia, J.; Hueso, R.; Sanchez-Lavega, A.


    In this manuscript we show the design of a simple experiment that reproduces the operation of the Michelson stellar interferometer by using step-index polymer optical fibers. The emission of stellar sources, single or binary stars, has been simulated by the laser light emerging from the output surface of the 2 meter-long polymer optical fiber. This light has an emission pattern that is similar to the emission pattern of stellar sources - circular, uniform, spatially incoherent, and quasi-monochromatic. Light coming from the fiber end faces passes through two identical pinholes located on a lid covering the objective of a small telescope, thus producing interference. Interference fringes have been acquired using a camera that is coupled to a telescope. The experiments have been carried out both outdoors in the daytime and indoors. By measuring the fringe visibilities, we have determined the size of our artificial stellar sources and the distance between them, when placing them at distances of 54 m from the telescope in the indoor measurements and of 75 m in the outdoor ones.

  19. Fiber Optic Pressure Sensor using Multimode Interference

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Perez, V I; Sanchez-Mondragon, J J [INAOE, Apartado Postal 51 y 216, Puebla 72000 (Mexico); Basurto-Pensado, M A [CIICAp, Universidad Autonoma del Estado de Morelos (Mexico); LiKamWa, P [CREOL, University of Central Florida, Orlando, FL 32816 (United States); May-Arrioja, D A, E-mail:, E-mail:, E-mail:, E-mail: [UAT Reynosa Rodhe, Universidad Autonoma de Tamaulipas (Mexico)


    Based on the theory of multimode interference (MMI) and self-image formation, we developed a novel intrinsic optical fiber pressure sensor. The sensing element consists of a section of multimode fiber (MMF) without cladding spliced between two single mode fibers (SMF). The MMI pressure sensor is based on the intensity changes that occur in the transmitted light when the effective refractive index of the MMF is changed. Basically, a thick layer of Polydimethylsiloxane (PDMS) is placed in direct contact with the MMF section, such that the contact area between the PDMS and the fiber will change proportionally with the applied pressure, which results in a variation of the transmitted light intensity. Using this configuration, a good correlation between the measured intensity variations and the applied pressure is obtained. The sensitivity of the sensor is 3 {mu}V/psi, for a range of 0-60 psi, and the maximum resolution of our system is 0.25 psi. Good repeatability is also observed with a standard deviation of 0.0019. The key feature of the proposed pressure sensor is its low fabrication cost, since the cost of the MMF is minimal.

  20. Electrical impedance spectroscopic investigations of monodispersed SiO2 nanospheres (United States)

    Sakthisabarimoorthi, A.; Martin Britto Dhas, S. A.; Jose, M.


    Dielectric analysis of uniform and monodispersed SiO2 nanospheres at various temperatures in the frequency range 1 Hz-1 MHz is reported. The high optical transmittance and the presence of silica network in the synthesized product are evident from UV-vis and FTIR spectroscopic techniques respectively. The amorphous structure of SiO2 nanospheres is investigated by powder XRD pattern and uniform spherical morphology is visualized by FESEM analysis. The X-ray photoelectron spectroscopy elucidated the exact valence states of the SiO2 nanospheres. The temperature dependent dielectric parameters such as, dielectric constant (εr) and loss factor (tan δ) are decreased with increasing applied frequency and became static at higher frequencies. SiO2 nanospheres exhibited high dielectric constant (εr = 68) and low loss factor (tan δ = 0.0079) at 40 °C at 1 MHz. The activation energy (Ea) and relaxation time constant (τ) are calculated and the equivalent circuit model is developed to describe the electrical behaviour of the material.

  1. Nanomechanical Optical Fiber with Embedded Electrodes Actuated by Joule Heating. (United States)

    Lian, Zhenggang; Segura, Martha; Podoliak, Nina; Feng, Xian; White, Nicholas; Horak, Peter


    Nanomechanical optical fibers with metal electrodes embedded in the jacket were fabricated by a multi-material co-draw technique. At the center of the fibers, two glass cores suspended by thin membranes and surrounded by air form a directional coupler that is highly temperature-dependent. We demonstrate optical switching between the two fiber cores by Joule heating of the electrodes with as little as 0.4 W electrical power, thereby demonstrating an electrically actuated all-fiber microelectromechanical system (MEMS). Simulations show that the main mechanism for optical switching is the transverse thermal expansion of the fiber structure.

  2. Activities to investigate wavelength-shifting optical fibers (United States)

    Anderson, Megan; Strong, Denver; Baker, Blane


    Understanding principles and operation of optical fibers is important for students of physics due to increased applications of fiber optics in today’s technological world. In an effort to devise new activities to study such fibers, we obtained samples of wavelength-shifting WLS optical fibers, used in construction of research-grade particle detectors. Qualitative experiments in our laboratories examined how these fibers interact with various colors of visible light. From these results, student activities were developed to increase critical thinking in introductory physics courses and to facilitate students’ progression from traditional-classroom to research-oriented settings.

  3. Interferometric optical fiber microcantilever beam biosensor (United States)

    Wavering, Thomas A.; Meller, Scott A.; Evans, Mishell K.; Pennington, Charles; Jones, Mark E.; VanTassell, Roger; Murphy, Kent A.; Velander, William H.; Valdes, E.


    With the proliferation of biological weapons, the outbreak of food poisoning occurrences, and the spread of antibiotic resistant strains of pathogenic bacteria, the demand has arisen for portable systems capable of rapid, specific, and quantitative target detection. The ability to detect minute quantities of targets will provide the means to quickly assess a health hazardous situation so that the appropriate response can be orchestrated. Conventional test results generally require hours or even several days to be reported, and there is no change for real-time feedback. An interferometric optical fiber microcantilever beam biosensor has successfully demonstrated real time detection of target molecules. The microcantilever biosensor effectively combines advanced technology from silicon micromachining, optical fiber sensor, and biochemistry to create a novel detection device. This approach utilizes affinity coatings on micromachiend cantilever beams to attract target molecules. The presence of the target molecule causes bending in the cantilever beam, which is monitored using an optical displacement system. Dose-response trials have shown measured responses at nanogram/ml concentrations of target molecules. Sensitivity is expected to extend from the nanogram to the picogram range of total captured mass as the microcantilever sensors are optimized.

  4. Radiation Hard Fiber Optic Gyro Inertial Reference Unit


    Sexton, Gregory


    Orbital Science Corporation and Fibersense Technology Corporation are working together to produce a radiation hard, interferometric fiber optic gyro inertial reference unit. The advantages of fiber optic gyros over both ring laser gyros and traditional mechanical gyros have been well documented. Fiber optic gyros offer a rugged, low cost alternative to other gyro technologies. Their straight forward design provides for a gyro that is highly reliable with a low parts count and simple construct...

  5. The Transition Of Fiber-Optic Gyro Technology Into Products (United States)

    Udd, E.; Wagoner, R. E.


    Substantial progress has been made in recent years toward the development of producible fiber-optic rotation sensors. An overview is presented of the movement of the fiber-optic gyro into a product at McDonnell Douglas from early developments to a fieldable oil drilling tool. The current state-of-the-art of fiber-optic gyro technology with respect to near term product prospects is assessed.

  6. Chemical tapering of polymer optical fiber

    Directory of Open Access Journals (Sweden)

    Abdul Rashid Affa Rozana


    Full Text Available Polymer optical fibers (POFs have significant advantages over numerous sensing applications. The key element in developing sensor is by removing the cladding of the fiber. The use of organic solvent is one of the methods to create tapered POF in order to expose the core region. In this study, the etching chemicals involved is acetone, methyl isobutyl ketone (MIBK, and acetone-methanol mixture. The POF is immersed in 100%, 80%, and 50% of acetone and MIBK dilution. In addition, the mixture of acetone and methanol is also used for POF etching by the ratio 2:1 of the volume. Acetone has shown to be the most reactive solvent towards POF due to its fastest etching rate compared to MIBK and acetone-methanol mixture. The POF is immersed and lifted from the solution for a specific time, depending on the power loss properties for the purpose of producing unclad POF. In comparison to silica fiber optic, the advantages of POF in terms of its simple technique and easy handling enable it to produce unclad POF without damaging the core region. The surface roughness of the POF is investigated under the microscope after being immersed into different solvent. This method of chemical tapering of POF can be used as the fundamental technique for sensor development. Next, the unclad fiber is immersed into ethanol solutions in order to determine the reaction of unclad POF towards its surrounding. The findings show that this particular sensor is sensitive towards concentration changes ranging between 10 wt% to 50 wt%.

  7. Study of Optical Fiber Sensors for Cryogenic Temperature Measurements

    Directory of Open Access Journals (Sweden)

    Veronica De Miguel-Soto


    Full Text Available In this work, the performance of five different fiber optic sensors at cryogenic temperatures has been analyzed. A photonic crystal fiber Fabry-Pérot interferometer, two Sagnac interferometers, a commercial fiber Bragg grating (FBG, and a π-phase shifted fiber Bragg grating interrogated in a random distributed feedback fiber laser have been studied. Their sensitivities and resolutions as sensors for cryogenic temperatures have been compared regarding their advantages and disadvantages. Additionally, the results have been compared with the given by a commercial optical backscatter reflectometer that allowed for distributed temperature measurements of a single mode fiber.

  8. Study of Optical Fiber Sensors for Cryogenic Temperature Measurements. (United States)

    De Miguel-Soto, Veronica; Leandro, Daniel; Lopez-Aldaba, Aitor; Beato-López, Juan Jesus; Pérez-Landazábal, José Ignacio; Auguste, Jean-Louis; Jamier, Raphael; Roy, Philippe; Lopez-Amo, Manuel


    In this work, the performance of five different fiber optic sensors at cryogenic temperatures has been analyzed. A photonic crystal fiber Fabry-Pérot interferometer, two Sagnac interferometers, a commercial fiber Bragg grating (FBG), and a π-phase shifted fiber Bragg grating interrogated in a random distributed feedback fiber laser have been studied. Their sensitivities and resolutions as sensors for cryogenic temperatures have been compared regarding their advantages and disadvantages. Additionally, the results have been compared with the given by a commercial optical backscatter reflectometer that allowed for distributed temperature measurements of a single mode fiber.

  9. Demonstration of a Fiber Optic Regression Probe (United States)

    Korman, Valentin; Polzin, Kurt A.


    The capability to provide localized, real-time monitoring of material regression rates in various applications has the potential to provide a new stream of data for development testing of various components and systems, as well as serving as a monitoring tool in flight applications. These applications include, but are not limited to, the regression of a combusting solid fuel surface, the ablation of the throat in a chemical rocket or the heat shield of an aeroshell, and the monitoring of erosion in long-life plasma thrusters. The rate of regression in the first application is very fast, while the second and third are increasingly slower. A recent fundamental sensor development effort has led to a novel regression, erosion, and ablation sensor technology (REAST). The REAST sensor allows for measurement of real-time surface erosion rates at a discrete surface location. The sensor is optical, using two different, co-located fiber-optics to perform the regression measurement. The disparate optical transmission properties of the two fiber-optics makes it possible to measure the regression rate by monitoring the relative light attenuation through the fibers. As the fibers regress along with the parent material in which they are embedded, the relative light intensities through the two fibers changes, providing a measure of the regression rate. The optical nature of the system makes it relatively easy to use in a variety of harsh, high temperature environments, and it is also unaffected by the presence of electric and magnetic fields. In addition, the sensor could be used to perform optical spectroscopy on the light emitted by a process and collected by fibers, giving localized measurements of various properties. The capability to perform an in-situ measurement of material regression rates is useful in addressing a variety of physical issues in various applications. An in-situ measurement allows for real-time data regarding the erosion rates, providing a quick method for

  10. Novel Fiber-Optic Ring Acoustic Emission Sensor

    Directory of Open Access Journals (Sweden)

    Peng Wei


    Full Text Available Acoustic emission technology has been applied to many fields for many years. However, the conventional piezoelectric acoustic emission sensors cannot be used in extreme environments, such as those with heavy electromagnetic interference, high pressure, or strong corrosion. In this paper, a novel fiber-optic ring acoustic emission sensor is proposed. The sensor exhibits high sensitivity, anti-electromagnetic interference, and corrosion resistance. First, the principle of a novel fiber-optic ring sensor is introduced. Different from piezoelectric and other fiber acoustic emission sensors, this novel sensor includes both a sensing skeleton and a sensing fiber. Second, a heterodyne interferometric demodulating method is presented. In addition, a fiber-optic ring sensor acoustic emission system is built based on this method. Finally, fiber-optic ring acoustic emission experiments are performed. The novel fiber-optic ring sensor is glued onto the surface of an aluminum plate. The 150 kHz standard continuous sinusoidal signals and broken lead signals are successfully detected by the novel fiber-optic ring acoustic emission sensor. In addition, comparison to the piezoelectric acoustic emission sensor is performed, which shows the availability and reliability of the novel fiber-optic ring acoustic emission sensor. In the future, this novel fiber-optic ring acoustic emission sensor will provide a new route to acoustic emission detection in harsh environments.

  11. Novel Fiber-Optic Ring Acoustic Emission Sensor. (United States)

    Wei, Peng; Han, Xiaole; Xia, Dong; Liu, Taolin; Lang, Hao


    Acoustic emission technology has been applied to many fields for many years. However, the conventional piezoelectric acoustic emission sensors cannot be used in extreme environments, such as those with heavy electromagnetic interference, high pressure, or strong corrosion. In this paper, a novel fiber-optic ring acoustic emission sensor is proposed. The sensor exhibits high sensitivity, anti-electromagnetic interference, and corrosion resistance. First, the principle of a novel fiber-optic ring sensor is introduced. Different from piezoelectric and other fiber acoustic emission sensors, this novel sensor includes both a sensing skeleton and a sensing fiber. Second, a heterodyne interferometric demodulating method is presented. In addition, a fiber-optic ring sensor acoustic emission system is built based on this method. Finally, fiber-optic ring acoustic emission experiments are performed. The novel fiber-optic ring sensor is glued onto the surface of an aluminum plate. The 150 kHz standard continuous sinusoidal signals and broken lead signals are successfully detected by the novel fiber-optic ring acoustic emission sensor. In addition, comparison to the piezoelectric acoustic emission sensor is performed, which shows the availability and reliability of the novel fiber-optic ring acoustic emission sensor. In the future, this novel fiber-optic ring acoustic emission sensor will provide a new route to acoustic emission detection in harsh environments.

  12. Eliminating Crystals in Non-Oxide Optical Fiber Preforms and Optical Fibers (United States)

    Tucker, Dennis S.; LaPointe, Michael R.


    Non ]oxide fiber optics such as heavy metal fluoride and chalcogenide glasses are extensively used in infrared transmitting applications such as communication systems, chemical sensors, and laser fiber guides for cutting, welding and medical surgery. The addition of rare earths such as erbium, enable these materials to be used as fiber laser and amplifiers. Some of these glasses however are very susceptible to crystallization. Even small crystals can lead to light scatter and a high attenuation coefficient, limiting their usefulness. Previously two research teams found that microgravity suppressed crystallization in heavy metal fluoride glasses. Looking for a less expensive method to suppress crystallization, ground based research was performed utilizing an axial magnetic field. The experiments revealed identical results to those obtained via microgravity processing. This research then led to a patented process for eliminating crystals in optical fiber preforms and the resulting optical fibers. In this paper, the microgravity results will be reviewed as well as patents and papers relating to the use of magnetic fields in various material and glass processing applications. Finally our patent to eliminate crystals in non ]oxide glasses utilizing a magnetic field will be detailed.

  13. Compact Fiber Optic Strain Sensors (cFOSS) Element (United States)

    National Aeronautics and Space Administration — Armstrong researchers are reducing the Fiber Optic Sensing Sysme (FOSS) technology’s size, power requirement, weight, and cost to effectively extend...

  14. Fiber-Optic Ultrasound Sensors for Smart Structures Applications

    National Research Council Canada - National Science Library

    Krishnaswamy, Sridhar


    The project addressed the development of an important nondestructive evaluation tool utilizing fiber-optic ultrasonic sensors which can be permanently mounted in inaccessible regions of an airframe...

  15. Modulated-splitting-ratio fiber-optic temperature sensor (United States)

    Beheim, Glenn; Anthan, Donald J.; Rys, John R.; Fritsch, Klaus; Ruppe, Walter R.


    A fiber-optic temperature sensor is described that uses a small silicon beamsplitter whose splitting ratio varies as a function of temperature. A four-beam technique is used to measure the sensor's temperature-indicating splitting ratio. This referencing method provides a measurement that is largely independent of the transmission properties of the sensor's optical fiber link. A significant advantage of this sensor, relative to other fiber-optic sensors, is its high stability, which permits the fiber-optic components to be readily substituted, thereby simplifying the sensor's installation and maintenance.

  16. Experimental refractive index determination of the optic fiber's core

    International Nuclear Information System (INIS)

    Oezelsoy, S.


    In this work, the Fresnel's fundamental Law was used to be able to obtain the refractive index of the fiber optic's core. The intensity of light reflected from the boundary between two mediums was measured by the optical powermeter (Melles Griot, Universal optical powermeter). In recent technology, the light that is illuminated from the light source can be transported to the boundary region and measured with minimum loss by using the optic fibers which make the measurement more sensitively. The liquid and the optic fiber's core whose refractive indices will be measured are the two mediums and the surface of the optic fiber's core is the boundary region. By dipping the fiber optic probe to the liquids, the reflected light intensities were measured with powermeter via Silicon Detector for single mode fiber and multimode fiber respectively to obtain the refractive index of the optic fiber's core. At this work, because of the using the diode laser with 661,4 nm (FWHM) and He-Ne laser with 632,8 nm (FWHM) the refractive indices were measured at this wavelengthes with the Refractometer (Abbe 60-70, Bellingham+Stanley). If the refractive indices of two mediums are equal, the light doesn't reflect from the boundary. The graphic is drawn depend upon the refractive index of the liquids versus the back reflected light energy and from the minimum point of the curve the effective refractive index of the fiber optic's core is calculated for 661,4 nm and 780 nm

  17. Synergetic scattering of SiO2 and Ag nanoparticles for light-trapping enhancement in organic bulk heterojunction (United States)

    Yang, Huan; Ding, Qiuyu; Li, Ben Q.; Jiang, Xinbing; Zhang, Manman


    Though noble metal nanoparticles have been explored to enhance the performance of the organic solar cell, effect of dielectric nanoparticles, and coupled effect of dielectric and metal nanoparticles, have rarely been reported, if at all, on organic solar cell. This work reports an experimental study on synergetic scattering of SiO2 and Ag nanoparticles in a bulk organic heterojunction for the broadband light absorption enhancement. The wavelength scale SiO2 particles were arranged as a monolayer on the surface of the solar cell to guide incident light into the active layer and prolong the effective optical length of the entered energy. This is achieved by the excitation of whispering gallery modes in SiO2 nanoparticles and by leaky mode radiation. When small size Ag particles were incorporated into the transport layer of the solar cell, synergetic scattering of SiO2 and Ag nanoparticles is formed by coupling of the whispering gallery mode of closely arranged SiO2 particles atop and collaborative localized surface plasma resonance scattering of Ag nanoparticles dispersed in the transport layer. As a result, the performance of the organic solar cell is greatly enhanced and the short-circuit current density has an improvement of 42.47%. Therefore, the organic solar cell incorporated with SiO2 and Ag particles presents a meaningful strategy to achieve high energy-harvesting performance. [Figure not available: see fulltext.

  18. Analysis of seawater flow through optical fiber (United States)

    Fernández López, Sheila; Carrera Ramírez, Jesús; Rodriguez Sinobar, Leonor; Benitez, Javier; Rossi, Riccardo; Laresse de Tetto, Antonia


    The relation between sea and coastal aquifer is very important to the human populations living in coastal areas. The interrelation involves the submarine ground water discharge of relatively fresh water to the sea and the intrusion of sea water into the aquifer, which impairs the quality of ground water. The main process in seawater intrusion is managed by fluid-density effects which control the displacement of saline water. The underlain salinity acts as the restoring force, while hydrodynamic dispersion and convection lead to a mixing and vertical displacement of the brine. Because of this, a good definition of this saltwater-freshwater interface is needed what is intimately joined to the study of the movements (velocity fields) of fresh and salt water. As it is well known, the flow of salt water studied in seawater intrusion in stationary state, is nearly null or very low. However, in the rest of cases, this flux can be very important, so it is necessary its study to a better comprehension of this process. One possible manner of carry out this analysis is through the data from optical fiber. So, to research the distribution and velocity of the fresh and saltwater in the aquifer, a fiber optic system (OF) has been installed in Argentona (Baix Maresme, Catalonia). The main objective is to obtain the distributed temperature measurements (OF-DTS) and made progress in the interpretation of the dynamic processes of water. For some applications, the optical fiber acts as a passive temperature sensor but in our case, the technique Heated Active Fiber Optic will be used. This is based on the thermal response of the ground as a heat emission source is introduced. The thermal properties of the soil, dependent variables of soil water content, will make a specific temperature distribution around the cable. From the analyzed data we will deduce the velocity field, the real objective of our problem. To simulate this phenomenon and the coupled transport and flow problem

  19. Scintillating optical fiber detectors for DNA sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Bendali, M.; Mastrippolito, R.; Charon, Y.; Leblanc, M.; Tricoire, H.; Valentin, L. (Inst. de Physique Nucleaire, 91 - Orsay (France) Lab. de Physique Nucleaire, Univ. Paris 7, 75 (France)); Martin, B. (Lab. de Neurobiologie Cellulaire et Moleculaire, 91 - Gif-sur-Yvette (France))


    We have developed a two-dimensional detector (SOFI) for {sup 32}P emitting molecules used in molecular biology by combining scinitillating optical fibers (SOFs) and a multianode photomultiplier (MAPM). A good efficiency (15%) was obtained by suppressing the internal cross talk of the MAPM with a new electronic device. Using this improvement we are developing two new detectors using SOFs for DNA sequencing. We shall present the basic principle of these detectors and the results in efficiency and position accuracy obtained with the first prototypes. The advantage of these detectors over currently available DNA sequencers will be discussed. (orig.).

  20. Fiber-Optic Chemical Sensors and Fiber-Optic Bio-Sensors

    Czech Academy of Sciences Publication Activity Database

    Pospíšilová, M.; Kuncová, Gabriela; Trögl, J.


    Roč. 15, č. 10 (2015), s. 25208-25259 ISSN 1424-8220 Institutional support: RVO:67985858 Keywords : fiber-optic sensor * chemical sensors * enzymatic sensor Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 2.033, year: 2015

  1. The technology and development trend of special optical fiber applied on the sea (United States)

    Zhang, X. J.


    Combined with the international submarine cable system, fiber optic guidance technology, as well as the development of the optical fiber hydrophone in recent years, the paper clarified the required properties of optical fiber technology for special optical fiber applied on the sea, and briefly analysis development direction of the low loss, small size and bending resistant optical fiber.

  2. Theory of Fiber Optical Bragg Grating: Revisited (United States)

    Tai, H.


    The reflected signature of an optical fiber Bragg grating is analyzed using the transfer function method. This approach is capable to cast all relevant quantities into proper places and provides a better physical understanding. The relationship between reflected signal, number of periods, index of refraction, and reflected wave phase is elucidated. The condition for which the maximum reflectivity is achieved is fully examined. We also have derived an expression to predict the reflectivity minima accurately when the reflected wave is detuned. Furthermore, using the segmented potential approach, this model can handle arbitrary index of refraction profiles and compare the strength of optical reflectivity of different profiles. The condition of a non-uniform grating is also addressed.

  3. PCS optical fibers for an automobile data bus (United States)

    Clarkin, James P.; Timmerman, Richard J.; Stolte, Gary W.; Klein, Karl-Friedrich


    Optical fibers have been used for data communications in automobiles for several years. The fiber of choice thus far has been a plastic core/plastic clad optical fiber (POF) consisting of the plastic polymethylmethacrylate (PMMA). The POF fiber provides a low cost fiber with relatively easy termination. However, increasing demands regarding temperature performance, transmission losses and bandwidth have pushed the current limits of the POF fiber, and the automotive industry is now moving towards an optical fiber with a silica glass core/plastic clad (PCS). PCS optical fibers have been used successfully in industrial, medical, sensor, military and data communications systems for over two decades. The PCS fiber is now being adapted specifically for automotive use. In the following, the design criteria and design alternatives for the PCS as well as optical, thermal, and mechanical testing results for key automotive parameters are described. The fiber design tested was 200&mum synthetic silica core/230&mum fluoropolymer cladding/1510&mum nylon buffer. Key attributes such as 700 - 900 nm spectral attenuation, 125°C thermal soak, -40 to 125°C thermal cycling, bending losses, mechanical strength, termination capability, and cost are discussed and compared. Overall, a specifically designed PCS fiber is expected to be acceptable for the use in an automotive data bus, and will show improvement in optical transmission, temperature range and bandwidth. However, the final selection of buffer and jacket materials and properties will be most dependent on the selection of a reliable and economical termination method.

  4. Ultra-high Frequency Linear Fiber Optic Systems

    CERN Document Server

    Lau, Kam


    This book provides an in-depth treatment of both linear fiber-optic systems and their key enabling devices. It presents a concise but rigorous treatment of the theory and practice of analog (linear) fiber-optics links and systems that constitute the foundation of Hybrid Fiber Coax infrastructure in present-day CATV distribution and cable modem Internet access. Emerging applications in remote fiber-optic feed for free-space millimeter wave enterprise campus networks are also described. Issues such as dispersion and interferometric noise are treated quantitatively, and means for mitigating them are explained. This broad but concise text will thus be invaluable not only to students of fiber-optics communication but also to practicing engineers. To the second edition of this book important new aspects of linear fiber-optic transmission technologies are added, such as high level system architectural issues, algorithms for deriving the optimal frequency assignment, directly modulated or externally modulated laser t...

  5. Drawing optical fibers from three-dimensional printers. (United States)

    Canning, John; Hossain, Md Arafat; Han, Chunyang; Chartier, Loic; Cook, Kevin; Athanaze, Tristan


    The temperature distribution within extrusion nozzles of three low-cost desktop 3D printers is characterized using fiber Bragg gratings (FBGs) to assess their compatibility as micro-furnaces for optical fiber and taper production. These profiles show remarkably consistent distributions suitable for direct drawing of optical fiber. As proof of principle, coreless optical fibers (φ=30  μm) made from fluorinated acrylonitrile butadiene styrene (ABS) and polyethylene terephthalate glycol (PETG) are drawn. Cutback measurements demonstrate propagation losses as low as α=0.26  dB/cm, which are comparable with standard optical fiber losses with some room for improvement. This work points toward direct optical fiber manufacture of any material from 3D printers.

  6. Short-pulse propagation in fiber optical parametric amplifiers

    DEFF Research Database (Denmark)

    Cristofori, Valentina

    Fiber optical parametric amplifiers (FOPAs) are attractive because they can provide large gain over a broad range of central wavelengths, depending only on the availability of a suitable pump laser. In addition, FOPAs are suitable for the realization of all-optical signal processing functionalities...... is implemented to obtain an all-fiber system. The advantages of all fiber-systems are related to their reliability, long-term stability and compactness. Fiber optical parametric chirped pulse amplification is promising for the amplification of such signals thanks to the inherent compatibility of FOPAs with fiber...... optical systems and high gain over broad bandwidths. In particular, the amplification of 400 fs pulses is investigated in a single-pump fiber optical chirped pulse amplification sc heme. First, a dynamic characterization is carried out both in unsaturated and saturated regimes and, then, amplification...

  7. All-fiber hybrid photon-plasmon circuits: integrating nanowire plasmonics with fiber optics. (United States)

    Li, Xiyuan; Li, Wei; Guo, Xin; Lou, Jingyi; Tong, Limin


    We demonstrate all-fiber hybrid photon-plasmon circuits by integrating Ag nanowires with optical fibers. Relying on near-field coupling, we realize a photon-to-plasmon conversion efficiency up to 92% in a fiber-based nanowire plasmonic probe. Around optical communication band, we assemble an all-fiber resonator and a Mach-Zehnder interferometer (MZI) with Q-factor of 6 × 10(6) and extinction ratio up to 30 dB, respectively. Using the MZI, we demonstrate fiber-compatible plasmonic sensing with high sensitivity and low optical power.

  8. Fiber Optic Detection of Action Potentials in Axons

    National Research Council Canada - National Science Library

    Smela, Elisabeth


    In prior exploratory research, we had designed a fiber optic sensor utilizing a long period Bragg grating for the purpose of detecting action potentials in axons optically, through a change in index...

  9. An inexpensive high-temperature optical fiber thermometer

    International Nuclear Information System (INIS)

    Moore, Travis J.; Jones, Matthew R.; Tree, Dale R.; Allred, David D.


    An optical fiber thermometer consists of an optical fiber whose tip is coated with a highly conductive, opaque material. When heated, this sensing tip becomes an isothermal cavity that emits like a blackbody. This emission is used to predict the sensing tip temperature. In this work, analytical and experimental research has been conducted to further advance the development of optical fiber thermometry. An inexpensive optical fiber thermometer is developed by applying a thin coating of a high-temperature cement onto the tip of a silica optical fiber. An FTIR spectrometer is used to detect the spectral radiance exiting the fiber. A rigorous mathematical model of the irradiation incident on the detection system is developed. The optical fiber thermometer is calibrated using a blackbody radiator and inverse methods are used to predict the sensing tip temperature when exposed to various heat sources. - Highlights: • An inexpensive coating for an optical fiber thermometer sensing tip is tested. • Inverse heat transfer methods are used to estimate the sensing tip temperature. • An FTIR spectrometer is used as the detector to test the optical fiber thermometer using various heat sources.

  10. Fiber-Optic Terahertz Data-Communication Networks (United States)

    Chua, Peter L.; Lambert, James L.; Morookian, John M.; Bergman, Larry A.


    Network protocols implemented in optical domain. Fiber-optic data-communication networks utilize fully available bandwidth of single-mode optical fibers. Two key features of method: use of subpicosecond laser pulses as carrier signals and spectral phase modulation of pulses for optical implementation of code-division multiple access as multiplexing network protocol. Local-area network designed according to concept offers full crossbar functionality, security of data in transit through network, and capacity about 100 times that of typical fiber-optic local-area network in current use.

  11. Fiber optic-based regenerable biosensor (United States)

    Sepaniak, Michael J.; Vo-Dinh, Tuan


    A fiber optic-based regenerable biosensor. The biosensor is particularly suitable for use in microscale work in situ. In one embodiment, the biosensor comprises a reaction chamber disposed adjacent the distal end of a waveguide and adapted to receive therein a quantity of a sample containing an analyte. Leading into the chamber is a plurality of capillary conduits suitable for introducing into the chamber antibodies or other reagents suitable for selective interaction with a predetermined analyte. Following such interaction, the contents of the chamber may be subjected to an incident energy signal for developing fluorescence within the chamber that is detectable via the optical fiber and which is representative of the presence, i.e. concentration, of the selected analyte. Regeneration of the biosensor is accomplished by replacement of the reagents and/or the analyte, or a combination of these, at least in part via one or more of the capillary conduits. The capillary conduits extend from their respective terminal ends that are in fluid communication with the chamber, away from the chamber to respective location(s) remote from the chamber thereby permitting in situ location of the chamber and remote manipulation and/or analysis of the activity with the chamber.

  12. Fiber optic sensor applications in field testing

    International Nuclear Information System (INIS)

    Perea, J.A.


    Fiber optic sensors (F.O.S.) are defined, and the application of this technology to measuring various phenomonon in diverse and hostile environments are discussed. F.O.S. advantages and disavantages both technically and operationally are summarized. Three sensor techniques - intensity, interferometric, and polarization - are then discussed in some detail. General environmental instrumentation and controls that support the Nuclear Weapons Test Program at the Nevada Test Site are discussed next to provide the reader with a basic understanding of the programmatic task. This will aid in recognizing the various difficulties of the traditional measurement techniques at the NTS and the potential advantages that fiber optic measurement systems can provide. An F.O.S. development program is then outlined, depicting a plan to design and fabricate a prototype sensor to be available for field testing by the end of FY84. We conclude with future plans for further development of F.O.S. to measure more of the desired physical parameters for the Test Program, and to eventually become an integral part of an overall measurement and control system

  13. Fiber optical parametric amplifiers in optical communication systems (United States)

    Marhic (†), Michel E; Andrekson, Peter A; Petropoulos, Periklis; Radic, Stojan; Peucheret, Christophe; Jazayerifar, Mahmoud


    The prospects for using fiber optical parametric amplifiers (OPAs) in optical communication systems are reviewed. Phase-insensitive amplifiers (PIAs) and phase-sensitive amplifiers (PSAs) are considered. Low-penalty amplification at/or near 1 Tb/s has been achieved, for both wavelength- and time-division multiplexed formats. High-quality mid-span spectral inversion has been demonstrated at 0.64 Tb/s, avoiding electronic dispersion compensation. All-optical amplitude regeneration of amplitude-modulated signals has been performed, while PSAs have been used to demonstrate phase regeneration of phase-modulated signals. A PSA with 1.1-dB noise figure has been demonstrated, and preliminary wavelength-division multiplexing experiments have been performed with PSAs. 512 Gb/s have been transmitted over 6,000 km by periodic phase conjugation. Simulations indicate that PIAs could reach data rate x reach products in excess of 14,000 Tb/s × km in realistic wavelength-division multiplexed long-haul networks. Technical challenges remaining to be addressed in order for fiber OPAs to become useful for long-haul communication networks are discussed. PMID:25866588

  14. Miniaturized Optical Tweezers Through Fiber-End Microfabrication

    KAUST Repository

    Liberale, Carlo


    Optical tweezers represent a powerful tool for a variety of applications both in biology and in physics, and their miniaturization and full integration is of great interest so as to reduce size (towards portable systems), and to minimize the required intervention from the operator. Optical fibers represent a natural solution to achieve this goal, and here we review the realization of single-fiber optical tweezers able to create a purely optical three-dimensional trap. © Springer International Publishing Switzerland 2015.

  15. 78 FR 16296 - Certain Optoelectronic Devices for Fiber Optic Communications, Components Thereof, and Products... (United States)


    ... Fiber Optic Communications, Components Thereof, and Products Containing Same; Commission Determination... United States after importation of certain optoelectronic devices for fiber optic communications... Fiber IP (Singapore) Pte. Ltd. of Singapore (``Avago Fiber IP''); Avago General IP and Avago...

  16. Optical Characterization of Doped Thermoplastic and Thermosetting Polymer-Optical-Fibers

    Directory of Open Access Journals (Sweden)

    Igor Ayesta


    Full Text Available The emission properties of a graded-index thermoplastic polymer optical fiber and a step-index thermosetting one, both doped with rhodamine 6G, have been studied. The work includes a detailed analysis of the amplified spontaneous emission together with a study of the optical gains and losses of the fibers. The photostability of the emission of both types of fibers has also been investigated. Comparisons between the results of both doped polymer optical fibers are presented and discussed.

  17. Fiber fuse light-induced continuous breakdown of silica glass optical fiber

    CERN Document Server

    Todoroki, Shin-ichi


    This book describes the fiber fuse phenomenon that causes a serious problem for the present optical communication systems. High-power light often brings about catastrophic damage to optical devices. Silica glass optical fibers with ultralow transmission loss are not the exception. A fiber fuse appears in a heated region of the fiber cable delivering a few watts of light and runs toward the light source destroying its core region. Understanding this phenomenon is a necessary first step in the development of future optical communication systems. This book provides supplementary videos and photog

  18. Fiber-optical microphones and accelerometers based on polymer optical fiber Bragg gratings

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Stefani, Alessio; Bang, Ole


    Polymer optical fibers (POFs) are ideal for applications as the sensing element in fiber-optical microphones and accelerometers based on fiber Bragg gratings (FBGs) due to their reduced Young’s Modulus of 3.2GPa, compared to 72GPa of Silica. To maximize the sensitivity and the dynamic range...... of the device the outer diameter and the length of the sensing fiber segment should be as small as possible. To this end we have fabricated 3mm FBGs in single-mode step-index POFs of diameter 115 micron, using 325nm UV writing and a phase-mask technique. 6mm POF sections with FBGs in the center have been glued...... to standard Silica SMF28 fibers. These POF FBGs have been characterized in terms of temperature and strain to find operating regimes with no hysteresis. Commercial fast wavelength interrogators (KHz) are shown to be able to track the thin POF FBGs and they are finally applied in a prototype accelerometer...

  19. Sensing characteristics of birefringent microstructured polymer optical fiber

    DEFF Research Database (Denmark)

    Szczurowski, Marcin K.; Frazao, Orlando; Baptista, J. M.


    We experimentally studied several sensing characteristics of a birefringent microstructured polymer optical fiber. The fiber exhibits a birefringence of the order 2×10-5 at 1.3 μm because of two small holes adjacent to the core. In this fiber, we measured spectral dependence of phase and group...

  20. Utilization of Infrared Fiber Optic in the Automotive Industry (United States)

    Tucker, Dennis S.; Brantley, Lott W. (Technical Monitor)


    Fiber optics are finding a place in the automotive industry. Illumination is the primary application today. Soon, however, fiber optics will be used for data communications and sensing applications. Silica fiber optics and plastic fibers are sufficient for illumination and communication applications however, sensing applications involving high temperature measurement and remote gas analysis would benefit from the use of infrared fiber optics. Chalcogonide and heavy metal fluoride glass optical fibers are two good candidates for these applications. Heavy metal fluoride optical fibers are being investigated by NASA for applications requiring transmission in the infrared portion of the electromagnetic spectrum. Zirconium-Barium-Lanthanum-Aluminum-Sodium-Fluoride (ZBLAN) is one such material which has been investigated. This material has a theoretical attenuation coefficient 100 times lower than that of silica and transmits into the mid-IR. However, the measured attenuation coefficient is higher than silica due to impurities and crystallization. Impurities can be taken care of by utilizing cleaner experimental protocol. It has been found that crystallization can be suppressed by processing in reduced gravity. Fibers processed in reduced gravity on the KC135 reduced gravity aircraft were found to be free of crystals while those processed on the ground were found to have crystals. These results will be presented along with plans for producing continuous lengths of ZBLAN optical fiber on board the International Space Station.

  1. 77 FR 65713 - Certain Optoelectronic Devices for Fiber Optic Communications, Components Thereof, and Products... (United States)


    ... Fiber Optic Communications, Components Thereof, and Products Containing the Same; Notice of Institution... certain optoelectronic devices for fiber optic communications, components thereof, and products containing... optoelectronic devices for fiber optic communications, components thereof, and products containing the same that...

  2. Spectrophotometry with optical fibers applied to nuclear product processing

    International Nuclear Information System (INIS)

    Boisde, G.; Perez, J.J.; Velluet, M.T.; Jeunhomme, L.B.


    Absorption spectrophotometry is widely used in laboratories for composition analysis and quality control of chemical processes. Using optical fibers for transmitting the light between the instrument and the process line allows to improve the safety and productivity of chemical processes, thanks to real time measurements. Such applications have been developed since 1975 in CEA for the monitoring of nuclear products. This has led to the development of fibers, measurement cells, and optical feedthrough sustaining high radiation doses, of fiber/spectrophotometer couplers, and finally of a photodiode array spectrophotometer optimized for being used together with optical fibers [fr

  3. Switch configuration for migration to optical fiber network (United States)

    Zobrist, George W.


    The purpose is to investigate the migration of an Ethernet LAN segment to fiber optics. At the present time it is proposed to support a Fiber Distributed Data Interface (FDDI) backbone and to upgrade the VAX cluster to fiber optic interface. Possibly some workstations will have an FDDI interface. The remaining stations on the Ethernet LAN will be segmented. The rationale for migrating from the present Ethernet configuration to a fiber optic backbone is due to the increase in the number of workstations and the movement of applications to a windowing environment, extensive document transfers, and compute intensive applications.

  4. Optical fibers have come to the Nobel price for physics

    Czech Academy of Sciences Publication Activity Database

    Peterka, Pavel; Matějec, Vlastimil


    Roč. 55, č. 1 (2010), s. 1-11 ISSN 0032-2423 R&D Projects: GA MŠk(CZ) ME10119 Institutional research plan: CEZ:AV0Z20670512 Keywords : optical fiber * optics communications * optical materials Subject RIV: BH - Optics, Masers, Lasers

  5. Fiber-optic demultiplexers with high mechanical resistance

    Directory of Open Access Journals (Sweden)

    Yakovlev M. Ya.


    Full Text Available The paper observes possibilities of fused fiber-optic multiplexer-demultiplexer creation with resistance to mechanical effect. Fabrication method and the equipment for their production are presented. Resonant frequency of weld area mechanical oscillations dependences from fused fiber-optic demultiplexer design characteristics are investigated.

  6. Localized biosensing with Topas microstructured Polymer Optical Fiber

    DEFF Research Database (Denmark)

    Emiliyanov, Grigoriy Andreev; Jensen, Jesper Bo; Bang, Ole


    We present what is believed to be the first microstructured polymer optical fiber (mPOF) fabricated from Topas cyclic olefin copolymer, which has attractive material and biochemical properties. This polymer allows for a novel type of fiber-optic biosensor, where localized sensor layers may...

  7. Soliton models in resonant and nonresonant optical fibers

    Indian Academy of Sciences (India)

    The dispersive characteristics of a fiber can be minimized in the oper- ating region of the system by ... The lower order nonlinearities manifest themselves in three different ways: self- phase modulation (SPM) ... These are mainly due to the optical losses, dispersion, nonlinearity and amplifier induced noise in the optical fiber.

  8. Distributed fiber?optic temperature sensing for hydrologic systems

    NARCIS (Netherlands)

    Selker, J.S.; Thévenaz, L.; Huwald, H.; Mallet, A.; Luxemburg, W.M.J.; Van de Giesen, N.; Stejskal, M.; Zeman, J.; Westhoff, M.; Parlange, M.B.


    Instruments for distributed fiber-optic measurement of temperature are now available with temperature resolution of 0.01°C and spatial resolution of 1 m with temporal resolution of fractions of a minute along standard fiber-optic cables used for communication with lengths of up to 30,000 m. We

  9. Distributed fiber-optic temperature sensing for hydrologic systems

    NARCIS (Netherlands)

    Selker, John S.; Thévenaz, Luc; Huwald, Hendrik; Mallet, Alfred; Luxemburg, Wim; van de Giesen, Nick C.; Stejskal, Martin; Zeman, Josef; Westhoff, Martijn; Parlange, Marc B.


    Instruments for distributed fiber-optic measurement of temperature are now available with temperature resolution of 0.01°C and spatial resolution of 1 m with temporal resolution of fractions of a minute along standard fiber-optic cables used for communication with lengths of up to 30,000 m. We

  10. Modelling of Extrinsic Fiber Optic Sagnac Ultrasound Interferometer ...

    African Journals Online (AJOL)

    Ultrasonic waves are used extensively in nondestructive testing both for characterization of material properties, in this paper, we describe a fiber optic sensor suitable for detection of ultrasonic waves. This sensor is based on an extrinsic fiber optic sagnac interferometer. The proposed sensor model can act as a conventional ...

  11. Fiber optic yield monitor for a sugarcane chopper harvester (United States)

    A fiber optic yield monitoring system was developed for a sugarcane chopper harvester that utilizes a duty-cycle type approach with three fiber optic sensors mounted in the elevator floor to estimate cane yield. Field testing of the monitor demonstrated that there was a linear relationship between t...

  12. Fiber optic modification of a diode array spectrophotometer

    International Nuclear Information System (INIS)

    Van Hare, D.R.; Prather, W.S.


    Fiber optics were adapted to a Hewlett-Packard diode array spectrophotometer to permit the analysis of radioactive samples without risking contamination of the instrument. Instrument performance was not compromised by the fiber optics. The instrument is in routine use at the Savannah River Plant control laboratories

  13. Fiber Optics Technician. Curriculum Research Project. Final Report. (United States)

    Whittington, Herschel K.

    A study examined the role of technicians in the fiber optics industry and determined those elements that should be included in a comprehensive curriculum to prepare fiber optics technicians for employment in the Texas labor market. First the current literature, including the ERIC database and equipment manufacturers' journals were reviewed. After…

  14. Fiber Optics Deliver Real-Time Structural Monitoring (United States)


    To alter the shape of aircraft wings during flight, researchers at Dryden Flight Research Center worked on a fiber optic sensor system with Austin-based 4DSP LLC. The company has since commercialized a new fiber optic system for monitoring applications in health and medicine, oil and gas, and transportation, increasing company revenues by 60 percent.

  15. Feasibility of soil moisture monitoring with heated fiber optics

    NARCIS (Netherlands)

    Sayde, C.; Gregory, C.; Gil-Rodriguez, M.; Tufillaro, N.; Tyler, S.; Van de Giesen, N.C.; English, M.; Cuenca, R.; Selker, J.S.


    Accurate methods are needed to measure changing soil water content from meter to kilometer scales. Laboratory results demonstrate the feasibility of the heat pulse method implemented with fiber optic temperature sensing to obtain accurate distributed measurements of soil water content. A fiber optic

  16. Investigation of vortex laser beam injection into an optical fiber (United States)

    Savelyev, D. A.; Khonina, S. N.


    We investigate Laguerre-Gaussian vortex laser beam injection into an optical fiber. Modelling of radiation entering an optical fiber with plane (cylinder) and axicon (cone with diffrent apex angle) micro-relief is numerically investigated by the finite difference time domain (FDTD) method.

  17. Effect of ring-shaped SiO2 current blocking layer thickness on the external quantum efficiency of high power light-emitting diodes (United States)

    Zhou, Shengjun; Liu, Mengling; Hu, Hongpo; Gao, Yilin; Liu, Xingtong


    A ring-shaped SiO2 CBL underneath the p-electrode was employed to enhance current spreading of GaN-based light-emitting diodes (LEDs). Effects of ring-shaped SiO2 current blocking layer (CBL) thickness on optical and electrical characteristics of high power LEDs were investigated. A 190-nm-thick ring-shaped SiO2 CBL with inclined sidewalls was obtained using a combination of a thermally reflowed photoresist technique and an inductively coupled plasma (ICP) etching process, allowing for the deposition of conformal indium tin oxide (ITO) transparent conductive layer on sidewalls of ring-shaped SiO2 CBL. It was indicated that the external quantum efficiency (EQE) of high power LEDs increased with increasing thickness of ring-shaped SiO2 CBL. The EQE of high power LED with 190-nm-thick ring-shaped SiO2 CBL was 12.7% higher than that of high power LED without SiO2 CBL. Simulations performed with commercial SimuLED software package showed that the ring-shaped SiO2 CBL could significantly alleviate current crowding around p-electrode, resulting in enhanced current spreading over the entire high power LED structure.

  18. Manufacturing and applications of optical fiber sensors and systems (United States)

    Meller, Scott A.; Jones, Mark E.; Wavering, Thomas A.; Greene, Jonathan A.; Murphy, Kent A.


    Optical fiber sensors, because of their small size, low weight, extremely high information carrying capability, immunity to electromagnetic interference, and large operational temperature range, provide numerous advantages over conventional electrically based sensors. Fiber-based sensors have found numerous applications in industry for process control, and more recently for monitoring the health of advanced civil structures. This paper presents preliminary results from optical fiber sensor designs for monitoring acceleration and magnetic field.

  19. Optical fiber Cherenkov detector for beam current monitoring

    International Nuclear Information System (INIS)

    Pishchulin, I.V.; Solov'ev, N.G.; Romashkin, O.B.


    The results obtained in calculation of an optical fiber Cherenkov detector for accelerated beam current monitoring are presented. The technique of beam parameters monitoring is based on Cherenkov radiation excitation by accelerated electrons in the optical fiber. The formulas for calculations of optical power and time dependence of Cherenkov radiation pulse are given. The detector sensitivity and time resolution dependence on the fiber material characteristics are investigated. Parameters of a 10μm one-mode quartz optical fiber detector for the free electron laser photoinjector are calculated. The structure of a monitoring system with the optical fiber Cherenkov detector is considered. Possible applications of this technique are discussed and some recommendations are given

  20. Optic Fiber Sensing IOT Technology and Application Research

    Directory of Open Access Journals (Sweden)

    Wenjuan Zeng


    Full Text Available The growth of the Internet of Things (IOT industry has become a new mark of the communication domain. As the development of the technology of the IOT and the fiber-optical sensor, the combination of the both is a big question to be discussed, and the fiber-optical IOT also has a good development prospect. This article first introduces IOT’s current status, the key technology, the theoretical frame and the applications. Then, it discusses the classification of the optical fiber sensor as well as the development and its application’s situation. Lastly, it puts the optical fiber sensing technology into the IOT, and introduces a specific application which is used in the mine safety based on the fiber-optical IOT.

  1. Simulations and experiments on polarization squeezing in optical fiber

    DEFF Research Database (Denmark)

    Corney, J.F.; Heersink, J.; Dong, R.


    We investigate polarization squeezing of ultrashort pulses in optical fiber, over a wide range of input energies and fiber lengths. Comparisons are made between experimental data and quantum dynamical simulations to find good quantitative agreement. The numerical calculations, performed using both...... effects cause a marked deterioration of squeezing at higher energies and longer fiber lengths. We also calculate the optimum fiber length for maximum squeezing....

  2. Widely tunable picosecond optical parametric oscillator using highly nonlinear fiber. (United States)

    Zhou, Yue; Cheung, Kim K Y; Yang, Sigang; Chui, P C; Wong, Kenneth K Y


    We demonstrated a fully fiber-integrated widely tunable picosecond optical parametric oscillator based on highly nonlinear fiber. The ring cavity with a 50 m highly nonlinear fiber was synchronously pumped with a picosecond mode-locked fiber laser. The tuning range was from 1413 to 1543 nm and from 1573 to 1695 nm, which was as wide as 250 nm. A high-quality pulse was generated with a pulse width narrower than that of the pump.

  3. Multicore optical fiber grating array fabrication for medical sensing applications (United States)

    Westbrook, Paul S.; Feder, K. S.; Kremp, T.; Taunay, T. F.; Monberg, E.; Puc, G.; Ortiz, R.


    In this work we report on a fiber grating fabrication platform suitable for parallel fabrication of Bragg grating arrays over arbitrary lengths of multicore optical fiber. Our system exploits UV transparent coatings and has precision fiber translation that allows for quasi-continuous grating fabrication. Our system is capable of both uniform and chirped fiber grating array spectra that can meet the demands of medical sensors including high speed, accuracy, robustness and small form factor.

  4. Optical fiber sensors fabricated by the focused ion beam technique

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Wang, Fei; Bang, Ole


    crystal fiber (PCF). Using this technique we fabricate a highly compact fiber-optic Fabry-Pérot (FP) refractive index sensor near the tip of fiber taper, and a highly sensitive in-line temperature sensor in PCF. We also demonstrate the potential of using FIB to selectively fill functional fluid......Focused ion beam (FIB) is a highly versatile technique which helps to enable next generation of lab-on-fiber sensor technologies. In this paper, we demonstrate the use application of FIB to precisely mill the fiber taper and end facet of both conventional single mode fiber (SMF) and photonic...

  5. Fiber optic pressure sensors for nuclear power plants

    International Nuclear Information System (INIS)

    Hashemian, H.M.; Black, C.L.


    In the last few years, the nuclear industry has experienced some problems with the performance of pressure transmitters and has been interested in new sensors based on new technologies. Fiber optic pressure sensors offer the potential to improve on or overcome some of the limitations of existing pressure sensors. Up to now, research has been motivated towards development and refinement of fiber optic sensing technology. In most applications, reliability studies and failure mode analyses remain to be exhaustively conducted. Fiber optic sensors have currently penetrated certain cutting edge markets where they possess necessary inherent advantages over other existing technologies. In these markets (e.g. biomedical, aerospace, automotive, and petrochemical), fiber optic sensors are able to perform measurements for which no alternate sensor previously existed. Fiber optic sensing technology has not yet been fully adopted into the mainstream sensing market. This may be due to not only the current premium price of fiber optic sensors, but also the lack of characterization of their possible performance disadvantages. In other words, in conservative industries, the known disadvantages of conventional sensors are sometimes preferable to unknown or not fully characterized (but potentially fewer and less critical) disadvantages of fiber optic sensors. A six-month feasibility study has been initiated under the auspices of the US Nuclear Regulatory Commission (NRC) to assess the performance and reliability of existing fiber optic pressure sensors for use in nuclear power plants. This assessment will include establishment of the state of the art in fiber optic pressure sensing, characterization of the reliability of fiber optic pressure sensors, and determination of the strengths and limitations of these sensors for nuclear safety-related services

  6. Using a Fiber Loop and Fiber Bragg Grating as a Fiber Optic Sensor to Simultaneously Measure Temperature and Displacement

    Directory of Open Access Journals (Sweden)

    Hsu-Chih Cheng


    Full Text Available This study integrated a fiber loop manufactured by using commercial fiber (SMF-28, Corning and a fiber Bragg grating (FBG to form a fiber optic sensor that could simultaneously measure displacement and temperature. The fiber loop was placed in a thermoelectric cooling module with FBG affixed to the module, and, consequently, the center wavelength displacement of FBG was limited by only the effects of temperature change. Displacement and temperature were determined by measuring changes in the transmission of optical power and shifts in Bragg wavelength. This study provides a simple and economical method to measure displacement and temperature simultaneously.

  7. Microstructured optical fibers for gas sensing systems

    Energy Technology Data Exchange (ETDEWEB)

    Challener, William Albert; Choudhury, Niloy; Palit, Sabarni


    Microstructured optical fiber (MOF) includes a cladding extending a length between first and second ends. The cladding includes an inner porous microstructure that at least partially surrounds a hollow core. A perimeter contour of the hollow core has a non-uniform radial distance from a center axis of the cladding such that first segments of the cladding along the perimeter contour have a shorter radial distance from the center axis relative to second segments of the cladding along the perimeter contour. The cladding receives and propagates light energy through the hollow core, and the inner porous microstructure substantially confines the light energy within the hollow core. The cladding defines at least one port hole that extends radially from an exterior surface of the cladding to the hollow core. Each port hole penetrates the perimeter contour of the hollow core through one of the second segments of the cladding.

  8. Fiber design and realization of point-by-point written fiber Bragg gratings in polymer optical fibers

    DEFF Research Database (Denmark)

    Stefani, Alessio; Stecher, Matthias; Town, Graham E.


    . The grating was inspected under Differential Interferometric Contrast microscope and the reflection spectrum was measured. This is, to the best of our knowledge, the first FBGs written into a mPOF with the point-by-point technique and also the fastest ever written into a polymer optical fiber, with less than......An increasing interest in making sensors based on fiber Bragg gratings (FBGs) written in polymer optical fibers (POFs) has been seen recently. Mostly microstructured POFs (mPOFs) have been chosen for this purpose because they are easier to fabricate compared, for example, to step index fibers...... and realization of a microstructured polymer optical fiber made of PMMA for direct writing of FBGs. The fiber was designed specifically to avoid obstruction of the writing beam by air-holes. The realized fiber has been used to point-by-point write a 5 mm long fourth order FBG with a Bragg wavelength of 1518 nm...

  9. Optical fiber strain sensor using fiber resonator based on frequency comb Vernier spectroscopy

    DEFF Research Database (Denmark)

    Zhang, Liang; Lu, Ping; Chen, Li


    A novel (to our best knowledge) optical fiber strain sensor using a fiber ring resonator based on frequency comb Vernier spectroscopy is proposed and demonstrated. A passively mode-locked optical fiber laser is employed to generate a phased-locked frequency comb. Strain applied to the optical fiber...... be proportionally improved by increasing the length of the optical fiber ring resonator....... of the fiber ring resonator can be measured with the transmission spectrum. A good linearity is obtained between displacement and the inverse of wavelength spacing with an R2 of 0.9989, and high sensitivities better than 40  pm/με within the range of 0 to 10  με are achieved. The sensitivity can...

  10. A fiber-optic magnetic-force microscope (United States)

    Kozel, S. M.; Listvin, V. N.; Churenkov, A. V.


    A fiber-optic magnetic-force microscope is proposed in which the excitation and readout channels are closed through an automatic phase frequency tuning loop, resulting in the excitation of oscillations at the probe resonance frequency. The output frequency signal does not require longitudinal probe positioning and is not distorted with changes in the optical power level. The use of fiber-optic technology for oscillation excitation and detection provides for a miniature size and noise immunity.

  11. Crystal-free Formation of Non-Oxide Optical Fiber (United States)

    Nabors, Sammy A.


    Researchers at NASA Marshall Space Flight Center have devised a method for the creation of crystal-free nonoxide optical fiber preforms. Non-oxide fiber optics are extensively used in infrared transmitting applications such as communication systems, chemical sensors, and laser fiber guides for cutting, welding and medical surgery. However, some of these glasses are very susceptible to crystallization. Even small crystals can lead to light scatter and a high attenuation coefficient, limiting their usefulness. NASA has developed a new method of non-oxide fiber formation that uses axial magnetic fields to suppress crystallization. The resulting non-oxide fibers are crystal free and have lower signal attenuation rates than silica based optical fibers.

  12. Computational imaging through a fiber-optic bundle (United States)

    Lodhi, Muhammad A.; Dumas, John Paul; Pierce, Mark C.; Bajwa, Waheed U.


    Compressive sensing (CS) has proven to be a viable method for reconstructing high-resolution signals using low-resolution measurements. Integrating CS principles into an optical system allows for higher-resolution imaging using lower-resolution sensor arrays. In contrast to prior works on CS-based imaging, our focus in this paper is on imaging through fiber-optic bundles, in which manufacturing constraints limit individual fiber spacing to around 2 μm. This limitation essentially renders fiber-optic bundles as low-resolution sensors with relatively few resolvable points per unit area. These fiber bundles are often used in minimally invasive medical instruments for viewing tissue at macro and microscopic levels. While the compact nature and flexibility of fiber bundles allow for excellent tissue access in-vivo, imaging through fiber bundles does not provide the fine details of tissue features that is demanded in some medical situations. Our hypothesis is that adapting existing CS principles to fiber bundle-based optical systems will overcome the resolution limitation inherent in fiber-bundle imaging. In a previous paper we examined the practical challenges involved in implementing a highly parallel version of the single-pixel camera while focusing on synthetic objects. This paper extends the same architecture for fiber-bundle imaging under incoherent illumination and addresses some practical issues associated with imaging physical objects. Additionally, we model the optical non-idealities in the system to get lower modelling errors.

  13. Extended-length fiber optic carbon dioxide monitoring (United States)

    Delgado-Alonso, Jesus; Lieberman, Robert A.


    This paper discusses the design and performance of fiber optic distributed intrinsic sensors for dissolved carbon dioxide, based on the use optical fibers fabricated so that their entire lengths are chemically sensitive. These fibers use a polymer-clad, silica-core structure where the cladding undergoes a large, reversible, change in optical absorbance in the presence of CO2. The local "cladding loss" induced by this change is thus a direct indication of the carbon dioxide concentration in any section of the fiber. To create these fibers, have developed a carbon dioxide-permeable polymer material that adheres well to glass, is physically robust, has a refractive index lower than fused silica, and acts as excellent hosts for a unique colorimetric indicator system that respond to CO2. We have used this proprietary material to produce carbon-dioxide sensitive fibers up to 50 meters long, using commercial optical fiber fabrication techniques. The sensors have shown a measurement range of dissolved CO2 of 0 to 1,450 mg/l (0 to 100% CO2 saturation), limit of detection of 0.3 mg/l and precision of 1.0 mg/l in the 0 to 50 mg/l dissolved CO2 range, when a 5 meter-long sensor fiber segment is used. Maximum fiber length, minimum detectable concentration, and spatial resolution can be adjusted by adjusting indicator concentration and fiber design.

  14. Water Sorption in Electron-Beam Evaporated SiO2 on QCM Crystals and Its Influence on Polymer Thin Film Hydration Measurements. (United States)

    Kushner, Douglas I; Hickner, Michael A


    Spectroscopic ellipsometry (SE) and quartz crystal microbalance (QCM) measurements are two critical characterization techniques routinely employed for hydration studies of polymer thin films. Water uptake by thin polymer films is an important area of study to investigate antifouling surfaces, to probe the swelling of thin water-containing ionomer films, and to conduct fundamental studies of polymer brush hydration and swelling. SiO 2 -coated QCM crystals, employed as substrates in many of these hydration studies, show porosity in the thin electron-beam (e-beam) evaporated SiO 2 layer. The water sorption into this porous SiO 2 layer requires correction of the optical and mass characterization of the hydrated polymer due to changes in the SiO 2 layer as it sorbs water. This correction is especially important when experiments on SiO 2 -coated QCM crystals are compared to measurements on Si wafers with dense native SiO 2 layers. Water adsorption filling void space during hydration in ∼200-260 nm thick SiO 2 layers deposited on a QCM crystal resulted in increased refractive index of the layer during water uptake experiments. The increased refractive index led to artificially higher polymer swelling in the optical modeling of the hydration experiments. The SiO 2 -coated QCM crystals showed between 6 and 8% void as measured by QCM and SE, accounting for 60%-85% of the measured polymer swelling in the low humidity regime (70% RH) from optical modeling for 105 and 47 nm thick sulfonated polymer films. Correcting the refractive index of the SiO 2 layer for its water content resulted in polymer swelling that successfully resembled swelling measured on a silicon wafer with nonporous native oxide.

  15. Respiratory monitoring system based on fiber optic macro bending (United States)

    Purnamaningsih, Retno Wigajatri; Widyakinanti, Astari; Dhia, Arika; Gumelar, Muhammad Raditya; Widianto, Arif; Randy, Muhammad; Soedibyo, Harry


    We proposed a respiratory monitoring system for living activities in human body based on fiber optic macro-bending for laboratory scale. The respiration sensor consists of a single-mode optical fiber and operating on a wavelength at around 1550 nm. The fiber optic was integrated into an elastic fabric placed on the chest and stomach of the monitored human subject. Deformations of the flexible textile involving deformations of the fiber optic bending curvature, which was proportional to the chest and stomach expansion. The deformation of the fiber was detected using photodetector and processed using microcontroller PIC18F14K50. The results showed that this system able to display various respiration pattern and rate for sleeping, and after walking and running activities in real time.

  16. Preparation of SiO2-Capped Sr2MgSi2O7:Eu,Dy Nanoparticles with Laser Ablation in Liquid

    Directory of Open Access Journals (Sweden)

    Mika Ishizaki


    Full Text Available The effect of SiO2 capping on the optical properties of nanoparticles was investigated. The photoluminescence (PL intensity was successfully improved by SiO2-capping. Sr2MgSi2O7:Eu,Dy nanoparticles were prepared by laser ablation in liquid. The SiO2 capping was performed using the Stöber method with ultrasonication. The TEM images indicated that the Sr2MgSi2O7:Eu,Dy nanocrystal was capped with amorphous SiO2, and the shape of the completely capped nanoparticle was an elliptical nanorod, which aggregated after a long SiO2 capping reaction time. The peak wavelength and the shape of the PL spectra were not changed by the pelletization and the laser ablation in liquid. The PL intensity of SiO2 capped nanoparticles was significantly increased. Nonradiative relaxation via surface defects and energy transfer to water molecules decrease the PL intensity. These phenomena accelerate in the case of nanoparticles. SiO2 capping would prevent these phenomena and improve the optical properties of nanoparticles. The combination of laser ablation in liquid and the chemical reaction is important to expand the applications of this method in various research fields.

  17. Effects of Temperature and X-rays on Plastic Scintillating Fiber and Infrared Optical Fiber. (United States)

    Lee, Bongsoo; Shin, Sang Hun; Jang, Kyoung Won; Yoo, Wook Jae


    In this study, we have studied the effects of temperature and X-ray energy variations on the light output signals from two different fiber-optic sensors, a fiber-optic dosimeter (FOD) based on a BCF-12 as a plastic scintillating fiber (PSF) and a fiber-optic thermometer (FOT) using a silver halide optical fiber as an infrared optical fiber (IR fiber). During X-ray beam irradiation, the scintillating light and IR signals were measured simultaneously using a dosimeter probe of the FOD and a thermometer probe of the FOT. The probes were placed in a beaker with water on the center of a hotplate, under variation of the tube potential of a digital radiography system or the temperature of the water in the beaker. From the experimental results, in the case of the PSF, the scintillator light output at the given tube potential decreased as the temperature increased in the temperature range from 25 to 60 °C. We demonstrated that commonly used BCF-12 has a significant temperature dependence of -0.263 ± 0.028%/°C in the clinical temperature range. Next, in the case of the IR fiber, the intensity of the IR signal was almost uniform at each temperature regardless of the tube potential range from 50 to 150 kVp. Therefore, we also demonstrated that the X-ray beam with an energy range used in diagnostic radiology does not affect the IR signals transmitted via a silver halide optical fiber.

  18. Optical Cutting Interruption Sensor for Fiber Lasers

    Directory of Open Access Journals (Sweden)

    Benedikt Adelmann


    Full Text Available We report on an optical sensor system attached to a 4 kW fiber laser cutting machine to detect cutting interruptions. The sensor records the thermal radiation from the process zone with a modified ring mirror and optical filter arrangement, which is placed between the cutting head and the collimator. The process radiation is sensed by a Si and InGaAs diode combination with the detected signals being digitalized with 20 kHz. To demonstrate the function of the sensor, signals arising during fusion cutting of 1 mm stainless steel and mild steel with and without cutting interruptions are evaluated and typical signatures derived. In the recorded signals the piercing process, the laser switch on and switch off point and waiting period are clearly resolved. To identify the cutting interruption, the signals of both Si and InGaAs diodes are high pass filtered and the signal fluctuation ranges being subsequently calculated. Introducing a correction factor, we identify that only in case of a cutting interruption the fluctuation range of the Si diode exceeds the InGaAs diode. This characteristic signature was successfully used to detect 80 cutting interruptions of 83 incomplete cuts (alpha error 3.6% and system recorded no cutting interruption from 110 faultless cuts (beta error of 0. This particularly high detection rate in combination with the easy integration of the sensor, highlight its potential for cutting interruption detection in industrial applications.

  19. Noninvasive encapsulated fiber optic probes for interferometric measurement (United States)

    Zboril, O.; Cubik, J.; Kepak, S.; Nedoma, J.; Fajkus, M.; Zavodny, P.; Vasinek, V.


    This article focuses on the sensitivity of encapsulated interferometric probes. These probes are used mainly for BioMed and security applications. Fiber-optic sensors are interesting for these applications, as they are resistant to electromagnetic interference (EMI) and that also do not affect the surrounding medical and security equipment. Using a loop of the optical fiber with is not a suitable for these measurements. The optical fiber should be fixed to one position, and should not significantly bend. For these reasons, the optical fiber is encapsulated. Furthermore, it is necessary that the encapsulated measuring probes were flexible, inert, water resistant and not toxic. Fiber-optic sensors shouldn't be magnetically active, so they can be used for example, in magnetic resonance environments (MR). Probes meeting these requirements can be widely used in health care and security applications. Encapsulation of interferometric measuring arm brings changes in susceptibility of measurements in comparison with the optical fiber without encapsulation. To evaluate the properties of the encapsulated probes, series of probes made from different materials for encapsulation was generated, using two types of optical fibers with various degrees of protection. Comparison of the sensitivity of different encapsulated probes was performed using a series of measurements at various frequencies. The measurement results are statistically compared in the article and commented. Given the desired properties polydimethylsiloxane (PDMS) polymer has been proven the most interesting encapsulating material for further research.

  20. Fiber-optic Cerenkov radiation sensor for proton therapy dosimetry. (United States)

    Jang, Kyoung Won; Yoo, Wook Jae; Shin, Sang Hun; Shin, Dongho; Lee, Bongsoo


    In proton therapy dosimetry, a fiber-optic radiation sensor incorporating a scintillator must undergo complicated correction processes due to the quenching effect of the scintillator. To overcome the drawbacks of the fiber-optic radiation sensor, we proposed an innovative method using the Cerenkov radiation generated in plastic optical fibers. In this study, we fabricated a fiber-optic Cerenkov radiation sensor without an organic scintillator to measure Cerenkov radiation induced by therapeutic proton beams. Bragg peaks and spread-out Bragg peaks of proton beams were measured using the fiber-optic Cerenkov radiation sensor and the results were compared with those of an ionization chamber and a fiber-optic radiation sensor incorporating an organic scintillator. From the results, we could obtain the Bragg peak and the spread-out Bragg peak of proton beams without quenching effects induced by the scintillator, and these results were in good agreement with those of the ionization chamber. We also measured the Cerenkov radiation generated from the fiber-optic Cerenkov radiation sensor as a function of the dose rate of the proton beam.

  1. Application of optical fiber sensors in Smart Grid (United States)

    Zhang, Ruirui


    Smart Grid is a promising power delivery infrastructure integrated with communication and information technologies. By incorporating monitoring, analysis, control and communications facilities, it is possible to optimize the performance of the power system, allowing electricity to be delivered more efficiently. In the transmission and distribution sector, online monitoring of transmission lines and primary equipments is of vital importance, which can improve the reliability of power systems effectively. Optical fiber sensors can provide an alternative to conventional electrical sensors for such applications, with high accuracy, long term stability, streamlined installation, and premium performance under harsh environmental conditions. These optical fiber sensors offer immunity to EMI and extraordinary resistance to mechanical fatigue and therefore they will have great potential in on-line monitoring applications in Smart Grid. In this paper, we present a summary of the on-line monitoring needs of Smart Grid and explore the use of optical fiber sensors in Smart Grid. First, the on-line monitoring needs of Smart Grid is summarized. Second, a review on optical fiber sensor technology is given. Third, the application of optical fiber sensors in Smart Grid is discussed, including transmission line monitoring, primary equipment monitoring and substation perimeter intrusion detection. Finally, future research directions of optical fiber sensors for power systems are discussed. Compared to other traditional electrical sensors, the application of optical fiber sensors in Smart Grid has unique advantages.

  2. Tunable photonic bandgap fiber based devices for optical networks

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Scolari, Lara; Rottwitt, Karsten


    In future all optical networks one of the enabling technologies is tunable elements including reconfigurable routers, switches etc. Thus, the development of a technology platform that allows construction of tuning components is critical. Lately, microstructured optical fibers, filled with liquid...... crystals, have proven to be a candidate for such a platform. Microstructured optical fibers offer unique wave-guiding properties that are strongly related to the design of the air holes in the cladding of the fiber. These wave-guiding properties may be altered by filling the air holes with a material......, for example a liquid crystal that changes optical properties when subjected to, for example, an optical or an electrical field. The utilization of these two basic properties allows design of tunable optical devices for optical networks. In this work, we focus on applications of such devices and discuss recent...

  3. Quantum Dots Microstructured Optical Fiber for X-Ray Detection (United States)

    DeHaven, Stan; Williams, Phillip; Burke, Eric


    Microstructured optical fibers containing quantum dots scintillation material comprised of zinc sulfide nanocrystals doped with magnesium sulfide are presented. These quantum dots are applied inside the microstructured optical fibers using capillary action. The x-ray photon counts of these fibers are compared to the output of a collimated CdTe solid state detector over an energy range from 10 to 40 keV. The results of the fiber light output and associated effects of an acrylate coating and the quantum dot application technique are discussed.

  4. Femtosecond nonlinear fiber optics in the ionization regime. (United States)

    Hölzer, P; Chang, W; Travers, J C; Nazarkin, A; Nold, J; Joly, N Y; Saleh, M F; Biancalana, F; Russell, P St J


    By using a gas-filled kagome-style photonic crystal fiber, nonlinear fiber optics is studied in the regime of optically induced ionization. The fiber offers low anomalous dispersion over a broad bandwidth and low loss. Sequences of blueshifted pulses are emitted when 65 fs, few-microjoule pulses, corresponding to high-order solitons, are launched into the fiber and undergo self-compression. The experimental results are confirmed by numerical simulations which suggest that free-electron densities of ∼10(17) cm(-3) are achieved at peak intensities of 10(14) W/cm(2) over length scales of several centimeters.

  5. An overview of plastic optical fiber end finishers at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Mishina, M.; Lindenmeyer, C.; Korienek, J.


    Several years ago the need for equipment to precisely finish the ends of plastic optical fibers was recognized. Many high energy physics experiments use thousands of these fibers which must be polished on one or both ends. A fast, easy-to-operate machine yielding repeatable finishes was needed. Three types of machines were designed and constructed that are in daily use at Fermilab, all finish the fiber ends by flycutting with a diamond tool. Althrough diamond flycutting of plastic is not new, the size and fragility of plastic optical fibers present several challenges.

  6. SiO $ _2 $/TiO $ _2 $ multi-layered thin films with self-cleaning and ...

    Indian Academy of Sciences (India)

    Self-cleaning, high transmittance glazing was obtained by cold spray deposition for glazings. The thin films contain TiO 2 , SiO 2 and Au nanoparticles in different structures which allow for tailoring the optical, hydrophilic and photocatalytic properties. The crystallinity, morphology and surface energy were correlated with the ...

  7. Tunable Optical Filter Based on Mechanically Induced Cascaded Long Period Optical Fiber Grating

    Directory of Open Access Journals (Sweden)

    Sunita P. Ugale


    Full Text Available We have proposed and demonstrated experimentally a novel and simple tunable optical filter based on mechanically induced and cascaded long period optical fiber gratings. In this filter variable FWHM and center wavelength is provided by cascading long period and ultralong period optical fiber gratings with different periods in a novel fiber structure. We report here for the first time to our knowledge the characterization of mechanically induced long period fiber gratings with periods up to several millimeters in novel multimode-single-mode-multimode fiber structure. We have obtained maximum loss peak of around 20 dB.

  8. Fiber optic and laser sensors VIII; Proceedings of the Meeting, San Jose, CA, Sept. 17-19, 1990 (United States)

    Depaula, Ramon P. (Editor); Udd, Eric (Editor)


    This issue presents topics on the advances in fiber-optic sensor technology, fiber-optic gyroscope, fiber-optic position and pressure sensors, fiber-optic magnetic and temperature sensors, and generic fiber-optic sensors. Papers included are on a novel analog phase tracker for interferometric fiber-optic sensor applications, recent development status of fiber-optic sensors in China, the magnetic-field sensitivity of depolarized fiber-optic gyros, a depolarized fiber-optic gyro for future tactical applications, fiber-optic position transducers for aircraft controls, and a metal embedded optical-fiber pressure sensor. Attention is also given to a fiber-optic magnetic field sensor using spectral modulation encoding, a bare-fiber temperature sensor, an interferometric fiber-optic accelerometer, improvement of specular reflection pyrometer, a theoretical analysis of two-mode elliptical-core optical fiber sensors, and a fiber probe for ring pattern.

  9. Tunable Anisotropic Absorption of Ag-Embedded SiO2 Thin Films by Oblique Angle Deposition

    International Nuclear Information System (INIS)

    Xiu-Di, Xiao; Guo-Ping, Dong; Jian-Da, Shao; Zheng-Xiu, Fan; Hong-Bo, He; Hong-Ji, Qi


    Ag-embedded SiO 2 thin films are prepared by oblique angle deposition. Through field emission scanning electron microscopy (SEM), an orientated slanted columnar structure is observed. Energy-dispersive x-ray (EDX) analysis shows the Ag concentration is about 3% in the anisotropic SiO 2 matrix. Anisotropic surface plasma resonance (SPR) absorption is observed in the Ag-embedded SiO 2 thin films, which is dependent on polarization state and incidence angle of two orthogonal polarized lights and the deposition angle. This means that optical properties and anisotropic SPR absorption can be tunable in Ag-embedded SiO 2 thin films. Broadband polarization splitting is also observed and the transmission ratio T p /T s between p- and s-polarized lights is up to 2.7 for thin films deposited at α = 70°, which means that Ag-embedded SiO 2 thin films are a promising candidate for thin film polarizers. (condensed matter: structure, mechanical and thermal properties)

  10. Singlemode Optical Fibers With Enhanced Strength And Fatigue Resistance (United States)

    Clarkin, James P.; Drenzek, Gary A.; Skutnik, Bolesh J.


    In recent years the reliability of optical fibers has become of great concern due to military, medicaland other specialty high performance applications. With the nearing promise of the local loop and its inherent requirements for a robust fiber, even the telcom market has come to value research on stronger, more fatigue resistant fibers. With the extension of Hard Clad Silica (HCS) technology to all silica optical fibers, a new singlemode fiber (smf) structure has been developed with enhanced reliability. A thin, hard, adherent, polymeric coating is placed between the silica cladding and the typical acrylate buffer coating. This paper presents results on the mechanical properties of this new singlemode fiber and compares it with the commercially available smf type. Dynamic strength, Weibull mean strength and slope, and static fatigue resistance, especially after zero-stress aging, are superior for the new fiber over the conventional smf fiber. Compared to commercial smf, the new fiber can withstand high stresses in moist environments for 40-60 times longer. More significantly after zero-stress aging in boiling water, the commercial smf break in 2.0 GPa (290 ksi), while the new fibers would still have expected lifetimes at 2.0 GPa stress of >9 years. These results make these fibers very useful for high reliability, high strength, long-haul fiber applications.

  11. Precision-analog fiber-optic transmission system

    International Nuclear Information System (INIS)

    Stover, G.


    This article describes the design, experimental development, and construction of a DC-coupled precision analog fiber optic link. Topics to be covered include overall electrical and mechanical system parameters, basic circuit organization, modulation format, optical system design, optical receiver circuit analysis, and the experimental verification of the major design parameters

  12. Mode profiling of optical fibers at high laser powers

    DEFF Research Database (Denmark)

    Nielsen, Peter Carøe; Pedersen, David Bue; Simonsen, R.B.


    This paper describes the development of a measuring equipment capable of analysing the beam profile at high optical powers emitted by delivery fibers used in manufacturing processes. Together with the optical delivery system, the output beam quality from the delivery fiber and the shape...... is obtained. Choosing a highly reflective rod material and a sufficiently high rotation speed, these measurements can be done with high laser powers, without any additional optical elements between the fiber and analyzer. The performance of the analyzer was evaluated by coupling laser light into different...

  13. Dispersion Compensation of Fiber Optic Systems for KSC Applications (United States)

    Kozaitis, Samuel P.; Hand, Larry


    Installed fibers such as those at the Kennedy Space Center (KSC) are optimized for use at 1310 nm because they have zero dispersion at that wavelength. An installed fiber system designed to operate at 1310 nm will operate at a much lower data rate when operated at 1550 nm because the dispersion is not zero at 1550 nm. Using dispersion measurements of both installed and dispersion compensating fibers, we compensated a 21.04 km length of installed fiber with 4.25 km of dispersion compensating fiber. Using the compensated fiber-optic link, we reduced the dispersion to 0.494 ps/nm-km, from an uncompensated dispersion of 16.8 ps/nm-km. The main disadvantage of the compensated link using DC fiber was an increase in attenuation. Although the increase was not necessarily severe, it could be significant when insertion losses, connector losses, and fiber attenuation are taken into account.

  14. Optofluidic in-fiber interferometer based on hollow optical fiber with two cores. (United States)

    Yuan, Tingting; Yang, Xinghua; Liu, Zhihai; Yang, Jun; Li, Song; Kong, Depeng; Qi, Xiuxiu; Yu, Wenting; Long, Qunlong; Yuan, Libo


    We demonstrate a novel integrated optical fiber interferometer for in-fiber optofluidic detection. It is composed of a specially designed hollow optical fiber with a micro-channel and two cores. One core on the inner surface of the micro-channel is served as sensing arm and the other core in the annular cladding is served as reference arm. Fusion-and-tapering method is employed to couple light from a single mode fiber to the hollow optical fiber in this device. Sampling is realized by side opening a microhole on the surface of the hollow optical fiber. Under differential pressure between the end of the hollow fiber and the microhole, the liquids can form steady microflows in the micro-channel. Simultaneously, the interference spectrum of the interferometer device shifts with the variation of the concentration of the microfluid in the channel. The optofluidic in-fiber interferometer has a sensitivity of refractive index around 2508 nm/RIU for NaCl. For medicine concentration detection, its sensitivity is 0.076 nm/mmolL -1 for ascorbic acid. Significantly, this work presents a compact microfluidic in-fiber interferometer with a micro-channel which can be integrated with chip devices without spatial optical coupling and without complex manufacturing procedure of the waveguide on the chips.

  15. Wireless optics protection of fiber via SONET ring closure (United States)

    Mullen, Ruth Ann; Celmer, Ken T.; Foster, Michael; Wooten, Jimmie; Miller, Jared; Kean, John C.; Carter, Doug; Kefauver, Michael; Singh, Bhupendra; Achour, Maha; Willebrand, Heinz A.


    12 A free-space laser link closes an otherwise all-fiber SONET ring, demonstrating for the first time the feasibility of using wireless optics as a back-up to fiber in an application demanding the highest levels of statistical availability and sub-50-ms protection-restoral times. This experiment demonstrates that protocol-transparent wireless optical links can be readily internetworked with industry- standard fiber-based protection protocols to achieve SONET restoral times in the event of a fiber cut. By using the wireless optics as a back-up to fiber rather than as the primary link, end-users are normally protected from the unavoidable burst errors and outages that can arise on a wireless optical link in the event of anomalously poor atmospheric visibility or unanticipated line-of-sight obstructions. While an all-fiber SONET ring operating over physically diverse paths is generally preferred, hybrid fiber/air rings operating over physically-diverse paths (fiber as one path and air as the other) will easily meet or exceed existing Bellcore availability standards for SONET rings. The hybrid part-fiber, part-air ring advantageously protects customers from fiber cuts (a.k.a. `backhoe fade') and may be preferable to over service via either an unprotected fiber spur or over a `collapsed' fiber ring made up of fiber segments sharing a common conduit. The experiment is performed at an OC-12 (622 Mbps) data rate in a point-to-consecutive point configuration which demonstrates the use of a relay site to work-around a line- of-sight obstruction.

  16. Optical fibers and their applications for radiation measurements

    International Nuclear Information System (INIS)

    Kakuta, Tsunemi


    When optical fibers are used in a strong radiation field, it is necessary to increase the radiation-resistant capacity. Aiming at the improvement of such property, the characteristics of recent optical fibers made from quartz-glass were reviewed and the newly developed techniques for radiation measurement using those fibers were summarized in this report. Since optical fibers became able to use in the levels near the core conditions, their applications have started in various fields of technologies related to radiation. By combining the optical fibers and a small sensor, it became possible to act as 'Key Component' for measuring wide range radioactivity from a trace activity to a strong radiation field in the reactor core. Presently, the fibers are utilized for investigation of the optical mechanisms related in radiation, evaluation of their validities so on. Further, the optical fibers are expected to utilize in a multi-parametric measuring system which allows to concomitantly determine the radiation, temperature, pressure, flow amount etc. as an incore monitor. (M.N.)

  17. Optical Fiber Sensor Based on Localized Surface Plasmon Resonance Using Silver Nanoparticles Photodeposited on the Optical Fiber End

    Directory of Open Access Journals (Sweden)

    J. Gabriel Ortega-Mendoza


    Full Text Available This paper reports the implementation of an optical fiber sensor to measure the refractive index in aqueous media based on localized surface plasmon resonance (LSPR. We have used a novel technique known as photodeposition to immobilize silver nanoparticles on the optical fiber end. This technique has a simple instrumentation, involves laser light via an optical fiber and silver nanoparticles suspended in an aqueous medium. The optical sensor was assembled using a tungsten lamp as white light, a spectrometer, and an optical fiber with silver nanoparticles. The response of this sensor is such that the LSPR peak wavelength is linearly shifted to longer wavelengths as the refractive index is increased, showing a sensitivity of 67.6 nm/RIU. Experimental results are presented.

  18. Bidirectional fiber-IVLLC and fiber-wireless convergence system with two orthogonally polarized optical sidebands. (United States)

    Lu, Hai-Han; Wu, Hsiao-Wen; Li, Chung-Yi; Ho, Chun-Ming; Yang, Zih-Yi; Cheng, Ming-Te; Lu, Chang-Kai


    A bidirectional fiber-invisible laser light communication (IVLLC) and fiber-wireless convergence system with two orthogonally polarized optical sidebands for hybrid cable television (CATV)/millimeter-wave (MMW)/baseband (BB) signal transmission is proposed and experimentally demonstrated. Two optical sidebands generated by a 60-GHz MMW signal are orthogonally polarized and separated into different polarizations. These orthogonally polarized optical sidebands are delivered over a 40-km single-mode fiber (SMF) transport to effectually reduce the fiber dispersion induced by a 40-km SMF transmission and the distortion caused by the parallel polarized optical sidebands. To the best of our knowledge, this work is the first to adopt two orthogonally polarized optical sidebands in a bidirectional fiber-IVLLC and fiber-wireless convergence system to reduce fiber dispersion and distortion effectually. Good carrier-to-noise ratio, composite second order, composite triple beat, and bit error rate (BER) are achieved for downlink transmission at a 40-km SMF operation and a 100-m free-space optical (FSO) link/3-m RF wireless transmission. For up-link transmission, good BER performance is acquired over a 40-km SMF transport and a 100-m FSO link. The approach presented in this work signifies the advancements in the convergence of SMF-based backbone and optical/RF wireless-based feeder.

  19. Application principle of Sagnac interferometer in optical fiber gyroscopic system

    Directory of Open Access Journals (Sweden)

    Michal Márton


    Full Text Available Gyroscopes are widely used in various applications for decades, but the idea to construct a gyroscopic system, able to exploit the properties of the gyroscope and also monitor the status information arose later. The expansion of the optical fiber technology also touch the subject, with the development of such interferometer measuring means to explore a variety of non-optical parameters led to the idea of the application of this knowledge to the already known systems. This optical system has been constructed on a fundamental principle of the gyroscope, but we can’t talk about pure gyroscope, because there is an optical interferometer that uses its features. So it was named as fiber optic gyroscopes. In this article we describe fiber optic gyro system, design and testing experimental measurements with this gyroscope system.

  20. Power Transmission by Optical Fibers for Component Inherent Communication

    Directory of Open Access Journals (Sweden)

    Michael Dumke


    Full Text Available The use of optical fibers for power transmission has been investigated intensely. An optically powered device combined with optical data transfer offers several advantages compared to systems using electrical connections. Optical transmission systems consist of a light source, a transmission medium and a light receiver. The overall system performance depends on the efficiency of opto-electronic converter devices, temperature and illumination dependent losses, attenuation of the transmission medium and coupling between transmitter and fiber. This paper will summarize the state of the art for optically powered systems and will discuss reasons for negative influences on efficiency. Furthermore, an outlook on power transmission by the use of a new technology for creating polymer optical fibers (POF via micro dispensing will be given. This technology is capable to decrease coupling losses by direct contacting of opto-electronic devices.

  1. Nanostructured sapphire optical fiber for sensing in harsh environments (United States)

    Chen, Hui; Liu, Kai; Ma, Yiwei; Tian, Fei; Du, Henry


    We describe an innovative and scalable strategy of transforming a commercial unclad sapphire optical fiber to an allalumina nanostructured sapphire optical fiber (NSOF) that overcomes decades-long challenges faced in the field of sapphire fiber optics. The strategy entails fiber coating with metal Al followed by subsequent anodization to form anodized alumina oxide (AAO) cladding of highly organized pore channel structure. We show that Ag nanoparticles entrapped in AAO show excellent structural and morphological stability and less susceptibility to oxidation for potential high-temperature surface-enhanced Raman Scattering (SERS). We reveal, with aid of numerical simulations, that the AAO cladding greatly increases the evanescent-field overlap both in power and extent and that lower porosity of AAO results in higher evanescent-field overlap. This work has opened the door to new sapphire fiber-based sensor design and sensor architecture.

  2. Laser of optical fiber composed by two coupled cavities: application as optical fiber sensor

    International Nuclear Information System (INIS)

    Vazquez S, R.A.; Kuzin, E.A.; Ibarra E, B.; May A, M.; Shlyagin, M.; Marquez B, I.


    We show an optical fiber laser sensor which consist of two cavities coupled and three fiber Bragg gratings. We used one Bragg grating (called reference) and two Bragg gratings (called sensors), which have the lower reflection wavelength. The reference grating with the two sensors grating make two cavities: first one is the internal cavity which has 4230 m of length and the another one is the external cavity which has 4277 m of length. Measuring the laser beating frequency for a resonance cavity and moving the frequency peaks when the another cavity is put in resonance, we prove that the arrangement can be used as a two points sensor for determining the difference of temperature or stress between these two points. (Author)

  3. Optical fiber pressure and acceleration sensor fabricated on a fiber endface (United States)

    Zhu, Yizheng; Wang, Xingwei; Xu, Juncheng; Wang, Anbo


    A fiber optic sensor has a hollow tube bonded to the endface of an optical fiber, and a diaphragm bonded to the hollow tube. The fiber endface and diaphragm comprise an etalon cavity. The length of the etalon cavity changes when applied pressure or acceleration flexes the diaphragm. The entire structure can be made of fused silica. The fiber, tube, and diaphragm can be bonded with a fusion splice. The present sensor is particularly well suited for measuring pressure or acceleration in high temperature, high pressure and corrosive environments (e.g., oil well downholes and jet engines). The present sensors are also suitable for use in biological and medical applications.

  4. Polymer Optical Fiber Compound Parabolic Concentrator fiber tip based glucose sensor: In-Vitro Testing

    DEFF Research Database (Denmark)

    Hassan, Hafeez Ul; Janting, Jakob; Aasmul, Soren


    We present in-vitro sensing of glucose using a newly developed efficient optical fiber glucose sensor based on a Compound Parabolic Concentrator (CPC) tipped polymer optical fiber (POF). A batch of 9 CPC tipped POF sensors with a 35 mm fiber length is shown to have an enhanced fluorescence pickup...... efficiency with an average increment factor of 1.7 as compared to standard POF sensors with a plane cut fiber tip. Invitro measurements for two glucose concentrations (40 and 400 mg/dL) confirm that the CPC tipped sensors efficiently can detect both glucose concentrations. it sets the footnote at the bottom...

  5. Initial study and verification of a distributed fiber optic corrosion monitoring system for transportation structures. (United States)


    For this study, a novel optical fiber sensing system was developed and tested for the monitoring of corrosion in : transportation systems. The optical fiber sensing system consists of a reference long period fiber gratings (LPFG) sensor : for corrosi...

  6. 77 FR 73456 - Notice of Intent To Grant Exclusive Patent License; Fiber Optic Sensor Systems Technology... (United States)


    ...; Fiber Optic Sensor Systems Technology Corporation AGENCY: Department of the Navy, DoD. ACTION: Notice. SUMMARY: The Department of the Navy hereby gives notice of its intent to grant to Fiber Optic Sensor... Modulated Fiber Optic Pressure Sensor, Navy Case No. 83,816.//U.S. Patent No. 7,149,374: Fiber Optic...

  7. Multiparameter Fiber Optic Sensor Suite for Structures, Phase I (United States)

    National Aeronautics and Space Administration — Structural Health Monitoring (SHM) for microspacecraft is a rapidly growing technology area for the use of fiber optics and MEMS. Morgan Research Corporation...

  8. Optical devices based on liquid crystal photonic bandgap fibers

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard


    hole. The presence of a LC in the holes of the PCF transforms the fiber from a Total Internal Reflection (TIR) guiding type into a Photonic BandGap (PBG) guiding type, where light is confined to the silica core by coherent scattering from the LC-billed holes. The high dielectric and optical anisotropy...... of LCs combined with the unique waveguiding features of PBG fibers gives the LC filled PCFs unique tunable properties. PBG guidance has been demonstrated for different mesophases of LCs and various functional compact fibers has been demonstrated, which utilitzes the high thermo-optical and electro......-optical effects of LCs. Thermally controlled spectral filters and broadband switching functionalities, electrically controlled switches, polarizers and polarization rotators and an all-optical modulator has been demonstrated. The waveguiding mechanism of anistotropic PBGs fibers has been analyzed and spectral...

  9. FTTA System Demo Using Optical Fiber-Coupled Active Antennas

    Directory of Open Access Journals (Sweden)

    Niels Neumann


    Full Text Available The convergence of optical and wireless systems such as Radio-over-Fiber (RoF networks is the key to coping with the increasing bandwidth demands due to the increasing popularity of video and other high data rate applications. A high level of integration of optical technologies enables simple base stations with a fiber-to-the-antenna (FTTA approach. In this paper, we present a complete full-duplex RoF–FTTA system consisting of integrated active fiber-coupled optical receiving and transmitting antennas that are directly connected to a standard single mode fiber optical link. Data rates up to 1 Gbit/s could be shown without advanced modulation formats on a 1.5 GHz carrier frequency. The antennas as well as the whole system are explained and the results of the system experiments are discussed.

  10. Fiber-Optic Sensing for In-Space Inspection (United States)

    Pena, Francisco; Richards, W. Lance; Piazza, Anthony; Parker, Allen R.; Hudson, Larry D.


    This presentation provides examples of fiber optic sensing technology development activities performed at NASA Armstrong. Examples of current and previous work that support in-space inspection techniques and methodologies are highlighted.

  11. Radiation hardness of new Kuraray double cladded optical fibers

    International Nuclear Information System (INIS)

    Bedeschi, F.; Menzione, A.; Budagov, Yu.; Chirikov-Zorin, I.; Solov'ev, A.; Turchanovich, L.; Vasil'chenko, V.


    The radiation hardness of the new plastic scintillating and clear fibers irradiated by 137 Cs γ-flux and by pulsed reactor fast neutrons were investigated. All the studied fibers were of S-type (with S=70) and had a double cladding. Optical fibers degradation study after irradiation shows that the level of radiation hardness lower that what is expected from results of previous studies. 9 refs., 6 figs

  12. Fiber Optic Magnetometers Using Planar And Cylindrical Magnetostrictive Transducers (United States)

    Bucholtz, F.; Yurek, A. M.; Koo, K. P.; Dandridge, A.


    Fiber optic magnetometers which require high sensitivity at low frequencies (dc-10 Hz) rely on the nonlinear magnetostriction of materials such as amorphous metallic glass alloys. Typically, fiber is bonded to a magnetostrictive sample to convert strain in the sample to phase shift in a fiber interferometer. We present the results of measurements of the frequency dependence and dc and ac magnetic field sensitivity of both planar and cylindrical transducing elements, and discuss the practical advantages and disadvan-tages of each configuration.

  13. A multicore compound glass optical fiber for neutron imaging (United States)

    Moore, Michael; Zhang, Xiaodong; Feng, Xian; Brambilla, Gilberto; Hayward, Jason


    Optical fibers have been successfully utilized for point sensors targeting physical quantities (stress, strain, rotation, acceleration), chemical compounds (humidity, oil, nitrates, alcohols, DNA) or radiation fields (X-rays, β particles, γ-rays). Similarly, bundles of fibers have been extremely successful in imaging visible wavelengths for medical endoscopy and industrial boroscopy. This work presents the progress in the fabrication and experimental evaluation of multicore fiber as neutron scattering instrumentation designed to detect and image neutrons with micron level spatial resolution.

  14. Fiber-optic diagnostic for energy measurements (United States)

    Lockwood, G. L.; Muron, D. J.; Ruggles, L. E.; Chang, J.; Bloomquist, D. D.; Babcock, S. R.

    A fiber-optic diagnostic system based on calorime try to measure the total energy deposited in a liquid-filled load resistor is developed. Thermodynamic calculations show the fluid temperature to come to equilibrium in about two seconds and to remain there for several tens of seconds. Thus fluid temperature can determine the energy deposited. Using a fluoroptic thermometer, the change in temperature of a copper sulfate solution load resistor was measured as a function of the energy stored in a capacitor bank. A comparison of these results with the calculated temperature rise shows agreement to + or - 3% over the energy range from 1.4 kJ to 5.9 kJ. Measurements were then made of the energy deposited in a sodium chloride solution load resistor on the Ripple accelerator. These were made as a function of energy stored in the Marx generator from 7.4 kJ to 21.2 kJ. Electrical measurements of the energy deposited were made at the same time. These were high on the average by 8%.

  15. Residual strain sensor using Al-packaged optical fiber and Brillouin optical correlation domain analysis. (United States)

    Choi, Bo-Hun; Kwon, Il-Bum


    We propose a distributed residual strain sensor that uses an Al-packaged optical fiber for the first time. The residual strain which causes Brillouin frequency shifts in the optical fiber was measured using Brillouin optical correlation domain analysis with 2 cm spatial resolution. We quantified the Brillouin frequency shifts in the Al-packaged optical fiber by the tensile stress and compared them for a varying number of Al layers in the optical fiber. The Brillouin frequency shift of an optical fiber with one Al layer had a slope of 0.038 MHz/με with respect to tensile stress, which corresponds to 78% of that for an optical fiber without Al layers. After removal of the stress, 87% of the strain remained as residual strain. When different tensile stresses were randomly applied, the strain caused by the highest stress was the only one detected as residual strain. The residual strain was repeatedly measured for a time span of nine months for the purpose of reliability testing, and there was no change in the strain except for a 4% reduction, which is within the error tolerance of the experiment. A composite material plate equipped with our proposed Al-packaged optical fiber sensor was hammered for impact experiment and the residual strain in the plate was successfully detected. We suggest that the Al-packaged optical fiber can be adapted as a distributed strain sensor for smart structures, including aerospace structures.

  16. Native spider silk as a biological optical fiber (United States)

    Huby, N.; Vié, V.; Renault, A.; Beaufils, S.; Lefèvre, T.; Paquet-Mercier, F.; Pézolet, M.; Bêche, B.


    In this study, we demonstrate the use of eco-friendly native spider silk as an efficient optical fiber in air, highly bent fibers, and physiological liquid. We also integrated the silk filament in a photonic chip made of polymer microstructures fabricated by UV lithography. The molding process is non-destructive for silk and leads to an efficient micro-optical coupling between silk and synthetic optical structures. These optical performances combined with the unique biocompatibility, bioresorbability, flexibility, and tensile strength of silk filaments pave the way for new applications in biological media and for original biophotonic purposes.

  17. Some fiber-tile optical studies for SDC electromagnetic calorimeter

    International Nuclear Information System (INIS)

    Underwood, D.G.


    A number of different issues have been studied at Argonne for development of the fiber-tile optical system for SDC EM. Results on uniformity, masking and wrapping, beveled tiles, timing, fiber damage, and pressure on the scintillator are presented. The instrumentation and techniques are also briefly discussed

  18. Multi-antibody biosensing with Topas microstructured polymer optical fiber

    DEFF Research Database (Denmark)

    Emiliyanov, Grigoriy Andreev; Bang, Ole; Hoiby, Poul E.

    We present a Topas based microstructured polymer optical fiber multi-antibody biosensor. This polymer allows localized activation of sensor layers on the inner side of the air holes. This concept is used to create two different sensor sections in the same fiber. Simultaneous detection of two kinds...

  19. High precision optical fiber alignment using tube laser bending

    NARCIS (Netherlands)

    Folkersma, Ger; Römer, Gerardus Richardus, Bernardus, Engelina; Brouwer, Dannis Michel; Herder, Justus Laurens


    In this paper, we present a method to align optical fibers within 0.2 μm of the optimal position, using tube laser bending and in situ measuring of the coupling efficiency. For near-UV wavelengths, passive alignment of the fibers with respect to the waveguides on photonic integrated circuit chips

  20. Phase-nulling fiber-optic laser gyro. (United States)

    Cahill, R F; Udd, E


    A fiber-optic gyro is described that employs closed-loop phase compensation. Preliminary experimental results are reported of the sensing of rotation rates down to 0.5 degrees /sec for a 135-mm-radius, 100-m-length fiber coil.

  1. Self-pumped phase-conjugate fiber-optic gyro. (United States)

    McMichael, I; Yeh, P


    We describe a new type of phase-conjugate fiber-optic gyro that uses self-pumped phase conjugation. The selfpumped configuration is simpler than externally pumped configurations and permits the use of sensing fibers longer than the coherence length of the laser. A proof-of-principle demonstration of rotation sensing with the device is presented.

  2. Direct functionalization of an optical fiber by a plasmonic nanosensor (United States)

    Zeng, X.; Jradi, S.; Proust, J.; Bachelot, R.; Zhang, Z. P.; Royer, P.; Plain, J.


    We explore a rapid route for fabricating silver nanoparticles (NPs) at the end of an optical fiber. The size and number of silver NPs can be controlled by varying the exposure doses. The effect of the refractive index of different solvents on the extinction spectra have been studied as a proof of concept of a fiber integrated plasmon-based sensor.

  3. "A Fiber Optic Ethernet With Inherent Migration Capability To FDDI" (United States)

    Ferris, Kenneth D.; Chan, Tammy S.


    A Local Area Network (LAN) designed to a standard commercial interface, the Institute of Electrical and Electronics Engineers (IEEE) 802.3 or Ethernet, has been developed using fiber optics as the physical medium. The LAN, WhisperNet, operates in an active ring and thus has an inherent low cost migration path to a Fiber Distributed Data Interface (FDDI) implementation.

  4. Polarization modulational instability in a birefringent optical fiber ...

    Indian Academy of Sciences (India)

    Modulational instability (MI) phenomenon in optical fibers manifests as breakup of con- tinuous wave (cw) or quasi-cw radiation into a train of ultrashort pulses and happens when a cw perturbed radiation experiences an instability that leads to an exponential growth of its amplitude due to an interplay between fiber ...

  5. Distributed Fiber-Optic Sensors for Vibration Detection (United States)

    Liu, Xin; Jin, Baoquan; Bai, Qing; Wang, Yu; Wang, Dong; Wang, Yuncai


    Distributed fiber-optic vibration sensors receive extensive investigation and play a significant role in the sensor panorama. Optical parameters such as light intensity, phase, polarization state, or light frequency will change when external vibration is applied on the sensing fiber. In this paper, various technologies of distributed fiber-optic vibration sensing are reviewed, from interferometric sensing technology, such as Sagnac, Mach–Zehnder, and Michelson, to backscattering-based sensing technology, such as phase-sensitive optical time domain reflectometer, polarization-optical time domain reflectometer, optical frequency domain reflectometer, as well as some combinations of interferometric and backscattering-based techniques. Their operation principles are presented and recent research efforts are also included. Finally, the applications of distributed fiber-optic vibration sensors are summarized, which mainly include structural health monitoring and perimeter security, etc. Overall, distributed fiber-optic vibration sensors possess the advantages of large-scale monitoring, good concealment, excellent flexibility, and immunity to electromagnetic interference, and thus show considerable potential for a variety of practical applications. PMID:27472334

  6. Distributed Fiber-Optic Sensors for Vibration Detection. (United States)

    Liu, Xin; Jin, Baoquan; Bai, Qing; Wang, Yu; Wang, Dong; Wang, Yuncai


    Distributed fiber-optic vibration sensors receive extensive investigation and play a significant role in the sensor panorama. Optical parameters such as light intensity, phase, polarization state, or light frequency will change when external vibration is applied on the sensing fiber. In this paper, various technologies of distributed fiber-optic vibration sensing are reviewed, from interferometric sensing technology, such as Sagnac, Mach-Zehnder, and Michelson, to backscattering-based sensing technology, such as phase-sensitive optical time domain reflectometer, polarization-optical time domain reflectometer, optical frequency domain reflectometer, as well as some combinations of interferometric and backscattering-based techniques. Their operation principles are presented and recent research efforts are also included. Finally, the applications of distributed fiber-optic vibration sensors are summarized, which mainly include structural health monitoring and perimeter security, etc. Overall, distributed fiber-optic vibration sensors possess the advantages of large-scale monitoring, good concealment, excellent flexibility, and immunity to electromagnetic interference, and thus show considerable potential for a variety of practical applications.

  7. An in-fiber integrated optofluidic device based on an optical fiber with an inner core. (United States)

    Yang, Xinghua; Yuan, Tingting; Teng, Pingping; Kong, Depeng; Liu, Chunlan; Li, Entao; Zhao, Enming; Tong, Chengguo; Yuan, Libo


    A new kind of optofluidic in-fiber integrated device based on a specially designed hollow optical fiber with an inner core is designed. The inlets and outlets are built by etching the surface of the optical fiber without damaging the inner core. A reaction region between the end of the fiber and a solid point obtained after melting is constructed. By injecting samples into the fiber, the liquids can form steady microflows and react in the region. Simultaneously, the emission from the chemiluminescence reaction can be detected from the remote end of the optical fiber through evanescent field coupling. The concentration of ascorbic acid (AA or vitamin C, Vc) is determined by the emission intensity of the reaction of Vc, H2O2, luminol, and K3Fe(CN)6 in the optical fiber. A linear sensing range of 0.1-3.0 mmol L(-1) for Vc is obtained. The emission intensity can be determined within 2 s at a total flow rate of 150 μL min(-1). Significantly, this work presents information for the in-fiber integrated optofluidic devices without spatial optical coupling.

  8. Recent Developments in Micro-Structured Fiber Optic Sensors

    Directory of Open Access Journals (Sweden)

    Yanping Xu


    Full Text Available Recent developments in fiber-optic sensing have involved booming research in the design and manufacturing of novel micro-structured optical fiber devices. From the conventional tapered fiber architectures to the novel micro-machined devices by advanced laser systems, thousands of micro-structured fiber-optic sensors have been proposed and fabricated for applications in measuring temperature, strain, refractive index (RI, electric current, displacement, bending, acceleration, force, rotation, acoustic, and magnetic field. The renowned and unparalleled merits of sensors-based micro-machined optical fibers including small footprint, light weight, immunity to electromagnetic interferences, durability to harsh environment, capability of remote control, and flexibility of directly embedding into the structured system have placed them in highly demand for practical use in diverse industries. With the rapid advancement in micro-technology, micro-structured fiber sensors have benefitted from the trends of possessing high performance, versatilities and spatial miniaturization. Here, we comprehensively review the recent progress in the micro-structured fiber-optic sensors with a variety of architectures regarding their fabrications, waveguide properties and sensing applications.

  9. Volatile organic compound optical fiber sensors: a review


    Elosúa Aguado, César; Matías Maestro, Ignacio; Bariáin Aisa, Cándido; Arregui San Martín, Francisco Javier


    Volatile organic compound (VOC) detection is a topic of growing interest with applications in diverse fields, ranging from environmental uses to the food or chemical industries. Optical fiber VOC sensors offering new and interesting properties which overcame some of the inconveniences found on traditional gas sensors appeared over two decades ago. Thanks to its minimum invasive nature and the advantages that optical fiber offers such as light weight, passive nature, low attenuation and the...

  10. Multi-channel fiber optic dew and humidity sensor (United States)

    Limodehi, Hamid E.; Mozafari, Morteza; Amiri, Hesam; Légaré, François


    In this article, we introduce a multi-channel fiber optic dew and humidity sensor which works using a novel method based on relation between surface plasmon resonance (SPR) and water vapor condensation. The proposed sensor can instantly detect moisture or dew formation through its fiber optic channels, separately situated in different places. It enables to simultaneously measure the ambient Relative Humidity (RH) and dew point temperature of several environments with accuracy of 5%.

  11. Optical-fiber-interconnected MEMS sensors and actuators (United States)

    Miller, Michael B.; Meller, Scott A.; Wavering, Thomas A.; Greene, Jonathan A.; Murphy, Kent A.


    Microelectromechanical systems or MEMS are miniature devices that have several advantages over conventional sensing and actuating technology. MEMS devices benefit form well developed integrated circuit production methods which ensure high volume, high yield processes that create low-cost sensors and actuators. OPtical fiber interconnected MEMS will provide new functionality in MEMS devices such as multiplexed operation for distributed sensing applications. This paper presents approaches in optical fiber to MEMS interfacing and some preliminary results.

  12. Radiation Effects on Ytterbium-doped Optical Fibers (United States)


    optical fibers are primarily used as signal amplifiers in complex optical systems such as fiber gyroscopes and laser devices (Girard, et al., 2009...The chemical properties of these defects, the electron transitions of the bonding oxygen atoms, and the resonance vibrations of the Si-O bonds...ions, can cause both ionization in a material and non-ionizing energy loss through displacement or vibration of targeted atoms (Brichard & Fernandez

  13. DSP-Based Focusing over Optical Fiber Using Time Reversal

    DEFF Research Database (Denmark)

    Piels, Molly; Porto da Silva, Edson; Estaran Tolosa, Jose Manuel


    A time-reversal array in multimode fiber is proposed for lossless switching using passive optical splitters. Numerical investigations are performed, and a two-transmitter array that routes a 3GBd QPSK signal through the physical layer is demonstrated experimentally.......A time-reversal array in multimode fiber is proposed for lossless switching using passive optical splitters. Numerical investigations are performed, and a two-transmitter array that routes a 3GBd QPSK signal through the physical layer is demonstrated experimentally....

  14. Asymmetrically and symmetrically coated tapered optical fiber for sensing applications (United States)

    Del Villar, Ignacio; Socorro, Abian B.; Corres, Jesus M.; Arregui, Francisco J.; Matias, Ignacio R.


    The deposition of a non-metallic thin-film in a symmetrically coated tapered optical fiber leads to the generation of resonances due to guidance of a mode in the thin-film. At certain conditions, the resonances overlap each other, which can be avoided with an asymmetric coated tapered optical fiber, which permits to obtain resonances for TM and TE polarization separately. Numerical results showing the sensitivity to coating thickness and surrounding medium refractive index are also presented for both polarizations.

  15. Midinfrared optical rogue waves in soft glass photonic crystal fiber

    DEFF Research Database (Denmark)

    Buccoliero, Daniel; Steffensen, Henrik; Ebendorff-Heidepriem, Heike


    We investigate numerically the formation of extreme events or rogue waves in soft glass tellurite fibers and demonstrate that optical loss drastically diminishes shot-to-shot fluctuations characteristic of picosecond pumped supercontinuum (SC). When loss is neglected these fluctuations include...... distributions. Our results thus implicitly show that rogue waves will not occur in any SC spectrum that is limited by loss, such as commercial silica fiber based SC sources. © 2011 Optical Society of America....

  16. Optically controlled tunable dispersion compensators based on pumped fiber gratings. (United States)

    Shu, Xuewen; Sugden, Kate; Bennion, Ian


    We demonstrate optically tunable dispersion compensators based on pumping fiber Bragg gratings made in Er/Yb codoped fiber. The tunable dispersion for a chirped grating and also a uniform-period grating was successfully demonstrated in the experiment. The dispersion of the chirped grating was tuned from 900 to 1990 ps/nm and also from -600 to -950 ps/nm in the experiment. © 2011 Optical Society of America

  17. New development in optical fibers for data center applications (United States)

    Sun, Yi; Shubochkin, Roman; Zhu, Benyuan


    VCSEL-multimode optical fiber based links is the most successful optical technology in Data Centers. Laser-optimized multimode optical fibers, OM3 and OM4, have been the primary choice of physical media for 10 G serial, 4 x 10 G parallel, 10 x 10 G parallel, and 4 x 25 G parallel optical solutions in IEEE 802.3 standards. As the transition of high-end servers from 10 Gb/s to 40 Gb/s is driving the aggregation of speeds to 40 Gb/s now, and to 100 Gb/s and 400 Gb/s in near future, industry experts are coming together in IEEE 802.3bs 400 Gb/s study group and preliminary discussion of Terabit transmission for datacom applications has also been commenced. To meet the requirement of speed, capacity, density, power consumption and cost for next generation datacom applications, optical fiber design concepts beyond the standard OM3 and OM4 MMFs have a revived research and developmental interest, for example, wide band multimode optical fiber using multiple dopants for coarse wavelength division multiplexing; multicore multimode optical fiber using plural multimode cores in a single fiber strand to improve spatial density; and perhaps 50 Gb/s per lane and few mode fiber in spatial division multiplexing for ultimate capacity increase in far future. This talk reviews the multitude of fiber optic media being developed in the industry to address the upcoming challenges of datacom growth. We conclude that multimode transmission using low cost VCSEL technology will continue to be a viable solution for datacom applications.

  18. Pulse Distortion in Saturated Fiber Optical Parametric Chirped Pulse Amplification

    DEFF Research Database (Denmark)

    Lali-Dastjerdi, Zohreh; Da Ros, Francesco; Rottwitt, Karsten


    Fiber optical parametric chirped pulse amplification is experimentally compared for different chirped pulses in the picosecond regime. The amplified chirped pulses show distortion appearing as pedestals after recompression when the amplifier is operated in saturation.......Fiber optical parametric chirped pulse amplification is experimentally compared for different chirped pulses in the picosecond regime. The amplified chirped pulses show distortion appearing as pedestals after recompression when the amplifier is operated in saturation....

  19. Photodarkening in Tb(3+)-doped phosphosilicate and germanosilicate optical fibers. (United States)

    Atkins, G R; Carter, A L


    The presence of Tb(3+) is found to sensitize greatly phosphosilicate and germanosilicate optical fibers to photodarkening when they are exposed to 488-nm light. The darkening is a three-photon process and may involve the photoionization of Tb(3+) to Tb(4+). This sensitivity raises the possibility of side writing refractive-index gratings into silica-based optical fibers with 488-nm light.

  20. Radiation hardening of optical fibers and fiber sensors for space applications: recent advances (United States)

    Girard, S.; Ouerdane, Y.; Pinsard, E.; Laurent, A.; Ladaci, A.; Robin, T.; Cadier, B.; Mescia, L.; Boukenter, A.


    In these ICSO proceedings, we review recent advances from our group concerning the radiation hardening of optical fiber and fiber-based sensors for space applications and compare their benefits to state-of-the-art results. We focus on the various approaches we developed to enhance the radiation tolerance of two classes of optical fibers doped with rare-earths: the erbium (Er)-doped ones and the ytterbium/erbium (Er/Yb)-doped ones. As a first approach, we work at the component level, optimizing the fiber structure and composition to reduce their intrinsically high radiation sensitivities. For the Erbium-doped fibers, this has been achieved using a new structure for the fiber that is called Hole-Assisted Carbon Coated (HACC) optical fibers whereas for the Er/Ybdoped optical fibers, their hardening was successfully achieved adding to the fiber, the Cerium element, that prevents the formation of the radiation-induced point defects responsible for the radiation induced attenuation in the infrared part of the spectrum. These fibers are used as part of more complex systems like amplifiers (Erbium-doped Fiber Amplifier, EDFA or Yb-EDFA) or source (Erbium-doped Fiber Source, EDFS or Yb- EDFS), we discuss the impact of using radiation-hardened fibers on the system radiation vulnerability and demonstrate the resistance of these systems to radiation constraints associated with today and future space missions. Finally, we will discuss another radiation hardening approach build in our group and based on a hardening-by-system strategy in which the amplifier is optimized during its elaboration for its future mission considering the radiation effects and not in-lab.

  1. Fiber cavities with integrated mode matching optics. (United States)

    Gulati, Gurpreet Kaur; Takahashi, Hiroki; Podoliak, Nina; Horak, Peter; Keller, Matthias


    In fiber based Fabry-Pérot Cavities (FFPCs), limited spatial mode matching between the cavity mode and input/output modes has been the main hindrance for many applications. We have demonstrated a versatile mode matching method for FFPCs. Our novel design employs an assembly of a graded-index and large core multimode fiber directly spliced to a single mode fiber. This all-fiber assembly transforms the propagating mode of the single mode fiber to match with the mode of a FFPC. As a result, we have measured a mode matching of 90% for a cavity length of ~400 μm. This is a significant improvement compared to conventional FFPCs coupled with just a single mode fiber, especially at long cavity lengths. Adjusting the parameters of the assembly, the fundamental cavity mode can be matched with the mode of almost any single mode fiber, making this approach highly versatile and integrable.

  2. Qualification of Fiber Optic Cables for Martian Extreme Temperature Environments (United States)

    Ramesham, Rajeshuni; Lindensmith, Christian A.; Roberts, William T.; Rainen, Richard A.


    Means have been developed for enabling fiber optic cables of the Laser Induced Breakdown Spectrometer instrument to survive ground operations plus the nominal 670 Martian conditions that include Martian summer and winter seasons. The purpose of this development was to validate the use of the rover external fiber optic cabling of ChemCam for space applications under the extreme thermal environments to be encountered during the Mars Science Laboratory (MSL) mission. Flight-representative fiber optic cables were subjected to extreme temperature thermal cycling of the same diurnal depth (or delta T) as expected in flight, but for three times the expected number of in-flight thermal cycles. The survivability of fiber optic cables was tested for 600 cumulative thermal cycles from -130 to +15 C to cover the winter season, and another 1,410 cumulative cycles from -105 to +40 C to cover the summer season. This test satisfies the required 3 times the design margin that is a total of 2,010 thermal cycles (670 x 3). This development test included functional optical transmission tests during the course of the test. Transmission of the fiber optic cables was performed prior to and after 1,288 thermal cycles and 2,010 thermal cycles. No significant changes in transmission were observed on either of the two representative fiber cables subject through the 3X MSL mission life that is 2,010 thermal cycles.

  3. Fiber-Optic Continuous Liquid Sensor for Cryogenic Propellant Gauging (United States)

    Xu. Wei


    An innovative fiber-optic sensor has been developed for low-thrust-level settled mass gauging with measurement uncertainty optical fiber to measure liquid level and liquid distribution of cryogenic propellants. Every point of the sensing fiber is a point sensor that not only distinguishes liquid and vapor, but also measures temperature. This sensor is able to determine the physical location of each point sensor with 1-mm spatial resolution. Acting as a continuous array of numerous liquid/vapor point sensors, the truly distributed optical sensing fiber can be installed in a propellant tank in the same manner as silicon diode point sensor stripes using only a single feedthrough to connect to an optical signal interrogation unit outside the tank. Either water or liquid nitrogen levels can be measured within 1-mm spatial resolution up to a distance of 70 meters from the optical interrogation unit. This liquid-level sensing technique was also compared to the pressure gauge measurement technique in water and liquid nitrogen contained in a vertical copper pipe with a reasonable degree of accuracy. It has been demonstrated that the sensor can measure liquid levels in multiple containers containing water or liquid nitrogen with one signal interrogation unit. The liquid levels measured by the multiple fiber sensors were consistent with those virtually measured by a ruler. The sensing performance of various optical fibers has been measured, and has demonstrated that they can survive after immersion at cryogenic temperatures. The fiber strength in liquid nitrogen has also been measured. Multiple water level tests were also conducted under various actual and theoretical vibration conditions, and demonstrated that the signal-to-noise ratio under these vibration conditions, insofar as it affects measurement accuracy, is manageable and robust enough for a wide variety of spacecraft applications. A simple solution has been developed to absorb optical energy at the termination of

  4. Development of a 2-Channel Embedded Infrared Fiber-Optic Temperature Sensor Using Silver Halide Optical Fibers

    Directory of Open Access Journals (Sweden)

    Bongsoo Lee


    Full Text Available A 2-channel embedded infrared fiber-optic temperature sensor was fabricated using two identical silver halide optical fibers for accurate thermometry without complicated calibration processes. In this study, we measured the output voltages of signal and reference probes according to temperature variation over a temperature range from 25 to 225 °C. To decide the temperature of the water, the difference between the amounts of infrared radiation emitted from the two temperature sensing probes was measured. The response time and the reproducibility of the fiber-optic temperature sensor were also obtained. Thermometry with the proposed sensor is immune to changes if parameters such as offset voltage, ambient temperature, and emissivity of any warm object. In particular, the temperature sensing probe with silver halide optical fibers can withstand a high temperature/pressure and water-chemistry environment. It is expected that the proposed sensor can be further developed to accurately monitor temperature in harsh environments.

  5. Effects of sterilization on optical and mechanical reliability of specialty optical fibers and terminations (United States)

    Stolov, Andrei A.; Warych, Edward T.; Smith, William P.; Fournier, Paula L.; Hokansson, Adam S.; Li, Jie; Allen, R. Steve


    Optical fibers and terminations were subjected to different sterilization techniques, including multiple autoclaving and treatments with peracetic acid, E-beam and UV radiation. Effects of different sterilization techniques on key optical and mechanical properties of the fibers and the terminations were revealed. The primary attention was given to behavior of the coatings on the fibers and adhesives used in the terminations in harsh sterilization environments. The optical fibers with following four coating/buffer types were investigated: (i) dual acrylate, (ii) polyimide, (iii) silicone/PEEK and (iv) fluoroacrylate hard cladding/ETFE.

  6. Gradient-index optical fiber lens for efficient fiber-to-chip coupling. (United States)

    Melkonyan, Henrik; Al Qubaisi, Kenaish; Sloyan, Karen; Khilo, Anatol; Dahlem, Marcus S


    A gradient-index optical fiber lens is proposed and fabricated on the tip of a single-mode fiber using focused ion beam milling. Second-order effective medium theory is used to design a gradual change in the fill factor, which ensures a parabolic effective refractive index distribution. The proposed fiber lens design is simulated via the three-dimensional finite-difference time-domain method, and demonstrated through confocal optical measurements. At a wavelength of 1550 nm, the fabricated lenses focus a 10.4 μm mode field diameter exiting the fiber into spot sizes between 3-5 μm, located 4-6 μm away from the fiber tip. Direct coupling into a silicon-on-insulator chip is also demonstrated, where the fabricated gradient-index lens has a coupling efficiency comparable to a commercial lensed fiber.

  7. A Finite Element Analysis of Fiber Optic Acoustic Sensing Mandrel for Acoustic pressure with Increased Sensitivity


    Prashil M. Junghare


    - This paper investigates the influence of material properties on the performance of an optical fiber wound mandrel composite fiber optic interferometer mandrel by using the ANSYS Cad tool, The acoustic sensitivity of an optical fiber considered analytically, High sensitivity obtained with low young modulus, very thick polymer coatings. The thick coating realized by embedding optical fiber in polyurethane. A flexible composite fiber-optic interferometric acoustic sensor has been developed by...

  8. Fiber-optic polarization diversity detection for rotary probe optical coherence tomography. (United States)

    Lee, Anthony M D; Pahlevaninezhad, Hamid; Yang, Victor X D; Lam, Stephen; MacAulay, Calum; Lane, Pierre


    We report a polarization diversity detection scheme for optical coherence tomography with a new, custom, miniaturized fiber coupler with single mode (SM) fiber inputs and polarization maintaining (PM) fiber outputs. The SM fiber inputs obviate matching the optical lengths of the X and Y OCT polarization channels prior to interference and the PM fiber outputs ensure defined X and Y axes after interference. Advantages for this scheme include easier alignment, lower cost, and easier miniaturization compared to designs with free-space bulk optical components. We demonstrate the utility of the detection system to mitigate the effects of rapidly changing polarization states when imaging with rotating fiber optic probes in Intralipid suspension and during in vivo imaging of human airways.

  9. Polarization optics for out-of-plane light trajectories: GRIN lenses and optical fibers (United States)

    Tentori, Diana; Trevino-Martinez, Fernando; Ayala-Diaz, Cesar; Camacho, Javier; Mendieta-Jimenez, Francisco J.


    The volution of the state of polarization along an out-of- plane trajectory has been widely studied for monomode optical fibers. To demonstrate the validity of our proposal we compare the results predicted by our model with experimental result obtained for helically wound optical fibers and the conoscopic patterns obtained for GRIN lenses when oblique illumination is used.

  10. Optical fiber accelerometer based on MEMS torsional micromirror (United States)

    Zeng, Fanlin; Zhong, Shaolong; Xu, Jing; Wu, Yaming


    A novel structure of optical fiber accelerometer based on MEMS torsional micro-mirror is introduced, including MEMS torsional micro-mirror and optical signal detection. The micro-mirror is a non-symmetric one, which means that the torsional bar supporting the micro-mirror is not located in the axis where the center of the micro-mirror locates. The optical signal detection is composed of PIN diode and dual fiber collimator, which is very sensitive to the coupling angle between the input fiber and output fiber. The detection principle is that acceleration is first transformed into torsional angle of the micro-mirror, then, optical insertion loss of the dual fiber collimator caused by the angle can be received by PIN. So under the flow of acceleration to torsional angle to optical signal attenuation to optical power detection, the acceleration is detected. The theory about sensing and optical signal detect of the device are discussed in this paper. The sensitive structure parameters and performance parameters are calculated by MATLAB. To simulate the static and modal analysis, the finite element analysis, ANSYS, is employed. Based on the above calculation, several optimization methods and the final structure parameters are given. The micro-mirror is completed by using silicon-glass bonding and deep reactive ion etching (DRIE). In the experiment, the acceleration is simulated by electrostatic force and the test results show that the static acceleration detection agrees with the theory analysis very well.

  11. Standards development for fiber optic spectroscopic components for adverse environments (United States)

    Saggese, Steven J.; Greenwell, Roger A.


    Optical fiber sensors are finding wider use in all types of applications involving adverse environments, including exposure to radiation. In order to effectively characterize and evaluate the performance of a fiber sensor system for a radiation environment, such as within a nuclear power plant or in a radioactive waste storage/disposal facility, it is beneficial to develop standard test procedures. Science & Engineering Associates (SEA) has developed two such procedures for the American Society for Testing and Materials (ASTM) which address the testing of optical fibers for remote Raman spectroscopic and broadband sensor applications in a steady state radiation environment.

  12. Metal-Coated Optical Fibers for High Temperature Applications (United States)

    Zeakes, Jason; Murphy, Kent; Claus, Richard; Greene, Jonathan; Tran, Tuan


    A DC magnetron sputtering system has been used to actively coat optical fibers with hermetic metal coatings during the fiber draw process. Thin films of Inconel 625 have been deposited on optical fibers and annealed in air at 2000 F. Scanning electron microscopy and Auger electron microscopy have been used to investigate the morphology and composition of the films prior to and following thermal cycling. Issues to be addressed include film adhesion, other coating materials, and a discussion of additional applications for this novel technology.

  13. Introduction to fiber optics: Sensors for biomedical applications. (United States)

    Shah, R Y; Agrawal, Y K


    The paper focuses on the introduction of fiber optics, a fusion of science and engineering and describes the materials generally used for its construction along with the procedure used to design the fibers. It gives an idea of the materials used for the construction along with the pros and cons associated with them and various factors governing the emission of ultraviolet, infrared or visible radiations. The central core revolves around the applications of optical fibers in the medical and biomedical field and extending the use of the same in pharmaceutical industry as probes in quality control and dosage form analysis.

  14. Plastic optical fiber sensor for gastric ph detection (United States)

    Baldini, Francesco; Bracci, Susanna; Cosi, Franco


    An optical fiber sensor for gastric pH detection is described, making use of plastic fibers as light carriers and a proper electronic system for both source driving and signal processing. The use of a suitable microprocessor and an internal buffer allows the realization of a portable and reliable device, fed by batteries. The indicators, bromophenol blue (BPB) or thymol blue (TB), are immobilized on controlled pore glass (CPG) fixed at the end of plastic optical fibers following a proprietary process. The realized optrode, satisfying clinical requirements, was tested `in vitro.' A precision of pH units and a response time of (

  15. Lab-on-fiber electrophoretic trace mixture separating and detecting an optofluidic device based on a microstructured optical fiber. (United States)

    Yang, Xinghua; Guo, Xiaohui; Li, Song; Kong, Depeng; Liu, Zhihai; Yang, Jun; Yuan, Libo


    We report an in-fiber integrated electrophoretic trace mixture separating and detecting an optofluidic optical fiber sensor based on a specially designed optical fiber. In this design, rapid in situ separation and simultaneous detection of mixed analytes can be realized under electro-osmotic flow in the microstructured optical fiber. To visually display the in-fiber separating and detecting process, two common fluorescent indicators are adopted as the optofluidic analytes in the optical fiber. Results show that a trace amount of the mixture (0.15 μL) can be completely separated within 3.5 min under a high voltage of 5 kV. Simultaneously, the distributed information of the separated analytes in the optical fiber can be clearly obtained by scanning along the optical fiber using a 355 nm laser. The emission from the analytes can be efficiently coupled into the inner core and guides to the remote end of the optical fiber. In addition, the thin cladding around the inner core in the optical fiber can prevent the fluorescent cross talk between the analytes in this design. Compared to previous optical fiber optofluidic devices, this device first realizes simultaneously separating treatment and the detection of the mixed samples in an optical fiber. Significantly, such an in-fiber integrated separating and detecting optofluidic device can find wide applications in various analysis fields involves mixed samples, such as biology, chemistry, and environment.

  16. Broadband Wireline Provider Service: Optical Carrier - Fiber to the End User; BBRI_fiber12 (United States)

    University of Rhode Island Geospatial Extension Program — This dataset represents the availability of wireline broadband Internet access in Rhode Island via "Optical Carrier - Fiber to the End User" technology. Broadband...

  17. Moiré phase-shifted fiber Bragg gratings in polymer optical fibers (United States)

    Min, Rui; Marques, Carlos; Bang, Ole; Ortega, Beatriz


    We demonstrate a simple way to fabricate phase-shifted fiber Bragg grating in polymer optical fibers as a narrowband transmission filter for a variety of applications at telecom wavelengths. The filters have been fabricated by overlapping two uniform fiber Bragg gratings with slightly different periods to create a Moiré grating with only two pulses (one pulse is 15 ns) of UV power. Experimental characterization of the filter is provided under different conditions where the strain and temperature sensitivities were measured.

  18. Moiré phase-shifted fiber Bragg gratings in polymer optical fibers

    DEFF Research Database (Denmark)

    Min, Rui; Marques, Carlos; Bang, Ole


    We demonstrate a simple way to fabricate phase-shifted fiber Bragg grating in polymer optical fibers as a narrowband transmission filter for a variety of applications at telecom wavelengths. The filters have been fabricated by overlapping two uniform fiber Bragg gratings with slightly different...... periods to create a Moiré grating with only two pulses (one pulse is 15 ns) of UV power. Experimental characterization of the filter is provided under different conditions where the strain and temperature sensitivities were measured....

  19. Optical Connecting of Fibers by Laser Beams Propagating from the Fibers Edges

    Directory of Open Access Journals (Sweden)

    Sergey Nikolayevich Mensov


    Full Text Available A possibility to connect nonprecise positioned fibers in photopolymerizable compositions is under discussion in this paper. The processes of optical synthesis of connective waveguiding structures forming in such mediums directly by the radiation leaving the edges of connecting fibers are investigated numerically and experimentally as well. It was shown that nonlinear interaction of the light beams allows to connect misaligned and transversally shifted fibers with high efficiency.

  20. Enhanced photoluminescence by resonant absorption in Er-doped SiO2/Si microcavities (United States)

    Schubert, E. F.; Hunt, N. E. J.; Vredenberg, A. M.; Harris, T. D.; Poate, J. M.; Jacobson, D. C.; Wong, Y. H.; Zydzik, G. J.


    Si/SiO2 Fabry-Perot microcavities with an Er-implanted SiO2 active region resonant at the Er excitation wavelength of 980 nm have been realized. Room-temperature photoluminescence measurements reveal that the Er luminescence intensity increases by a factor of 28 as compared to a structure without cavity enhancement. We show that the experimental enhancement of the luminescence intensity agrees with theory if optical absorption of the 980 nm light in the Si layers of the cavity and reduced mirror reflectivities are taken into account.

  1. Scanning electron microscopy study of protein immobilized on SIO2 Sol-gel surfaces

    Directory of Open Access Journals (Sweden)

    Assis O.B.G.


    Full Text Available Uniform attachment of enzymes to solid surfaces is essential in the development of bio and optical sensor devices. Immobilization by adsorption according to hydrophilic or hydrophobic nature is dependent on the charges and defects of the support surfaces. Sol-gel SiO2 densified glass surfaces, frequently used as supports for protein immobilization, are evaluated via scanning electron microscopy. The model protein is globular enzyme lysozyme, deposited by adsorption on functionalized surfaces. Formation of a protein layer is confirmed by FTIR spectroscopy, and the SEM images suggest discontinuous adsorption in areas where cracks predominate on the glass surface.

  2. Diffraction of slow neutrons by holographic SiO2 nanoparticle-polymer composite gratings (United States)

    Klepp, J.; Pruner, C.; Tomita, Y.; Plonka-Spehr, C.; Geltenbort, P.; Ivanov, S.; Manzin, G.; Andersen, K. H.; Kohlbrecher, J.; Ellabban, M. A.; Fally, M.


    Diffraction experiments with holographic gratings recorded in SiO2 nanoparticle-polymer composites have been carried out with slow neutrons. The influence of parameters such as nanoparticle concentration, grating thickness, and grating spacing on the neutron-optical properties of such materials has been tested. Decay of the grating structure along the sample depth due to disturbance of the recording process becomes an issue at grating thicknesses of about 100 microns and larger. This limits the achievable diffraction efficiency for neutrons. As a solution to this problem, the Pendellösung interference effect in holographic gratings has been exploited to reach a diffraction efficiency of 83% for very cold neutrons.

  3. Effect of soil temperature on optical frequency transfer through unidirectional dense-wavelength-division-multiplexing fiber-optic links

    NARCIS (Netherlands)

    Pinkert, T.J.; Boll, O.; Willmann, L.; Jansen, G.S.M.; Dijck, E.A.; Groeneveld, B.G.H.M.; Smets, R.; Bosveld, F.C.; Ubachs, W.M.G.; Jungmann, K.; Eikema, K.S.E.; Koelemeij, J.C.J.


    Results of optical frequency transfer over a carrier-grade dense-wavelength-division-multiplexing (DWDM) optical fiber network are presented. The relation between soil temperature changes on a buried optical fiber and frequency changes of an optical carrier through the fiber is modeled. Soil

  4. Effect of soil temperature on optical frequency transfer through unidirectional dense-wavelength-divisionmultiplexing fiber-optic links

    NARCIS (Netherlands)

    Pinkert, T.J.; Böll, O.; Willmann, Lorenz; Jansen, G.S.M.; Dijck, E.A.; Groeneveld, B.G.H.M.; Smets, R.; Bosveld, F.C.; Ubachs, W.; Jungmann, K.; Eikema, K.S.E.; Koelemeij, J.C.J.


    Results of optical frequency transfer over a carrier-grade dense-wavelength-division-multiplexing (DWDM) optical fiber network are presented. The relation between soil temperature changes on a buried optical fiber and frequency changes of an optical carrier through the fiber is modeled. Soil

  5. Cryogenic test facility instrumentation with fiber optic and fiber optic sensors for testing superconducting accelerator magnets (United States)

    Chiuchiolo, A.; Bajas, H.; Bajko, M.; Castaldo, B.; Consales, M.; Cusano, A.; Giordano, M.; Giloux, C.; Perez, J. C.; Sansone, L.; Viret, P.


    The magnets for the next steps in accelerator physics, such as the High Luminosity upgrade of the LHC (HL- LHC) and the Future Circular Collider (FCC), require the development of new technologies for manufacturing and monitoring. To meet the HL-LHC new requirements, a large upgrade of the CERN SM18 cryogenic test facilities is ongoing with the implementation of new cryostats and cryogenic instrumentation. The paper deals with the advances in the development and the calibration of fiber optic sensors in the range 300 - 4 K using a dedicated closed-cycle refrigerator system composed of a pulse tube and a cryogen-free cryostat. The calibrated fiber optic sensors (FOS) have been installed in three vertical cryostats used for testing superconducting magnets down to 1.9 K or 4.2 K and in the variable temperature test bench (100 - 4.2 K). Some examples of FOS measurements of cryostat temperature evolution are presented as well as measurements of strain performed on a subscale of High Temperature Superconducting magnet during its powering tests.

  6. Research of high-hardness and wear-resistant SiO2 film coating on acrylic substrates (United States)

    Yao, Yu-ting; Cheng, Yan; Deng, Xiu-mei; Jiang, Jin-hu; Zhu, Xiao-bo; Gu, Wen-hua


    Acrylic (PMMA) possesses excellent optical transparency, good chemical stability as well as many other merits such as the feasibilities in dyeing and manufacturing. But its poor hardness and wear resistance restrict its industrialized applications. In order to improve the hardness and wear resistance, SiO2 films were coated on PMMA substrates by both dip coating method and aerosol spraying method in this work. Heating curing method was carried out after the coating of SiO2 film, and consequently, the mechanical properties, optical properties and surface morphology were characterized and compared. The experimental results showed that the SiO2 films prepared by aerosol spraying method has a better performance in both hardness and wear resistance, compared with the films prepared by dip coating method. In the optimized conditions, the hardness of the PMMA was improved from 3H to 8H, and the non-abrasion rubbing times increased from less than 100 times to 5000 times with a loading of 500g weight after the coating of SiO2 film, indicating the improvement of the wear resistance.

  7. Fiber-Optic Monitoring System of Particle Counters

    Directory of Open Access Journals (Sweden)

    A. A. Titov


    Full Text Available The article considers development of a fiber-optic system to monitor the counters of particles. Presently, optical counters of particles, which are often arranged at considerable distance from each other, are used to study the saltation phenomenon. For monitoring the counters, can be used electric communication lines.However, it complicates and raises the price of system Therefore, we offered a fiber-optic system and the counter of particles, free from these shortcomings. The difference between the offered counter of particles and the known one is that the input of radiation to the counter and the output of radiation scattering on particles are made by the optical fibers, and direct radiation is entered the optical fiber rather than is delayed by a light trap and can be used for lighting the other counters thereby allowing to use their connection in series.The work involved a choice of the quartz multimode optical fiber for communication, defining the optical fiber and lenses parameters of the counter of particles, and a selection of the radiation source and the photo-detector.Using the theory of light diffraction on a particle, a measuring range of the particle sizes has been determined. The system speed has been estimated, and it has been shown that a range of communication can reach 200km.It should be noted that modulation noise of counters of particles connected in series have the impact on the useful signal. To assess the extent of this influence we have developed a calculation procedure to illustrate that with ten counters connected in series this influence on the signal-to-noise ratio will be insignificant.Thus, it has been shown that the offered fiber-optic system can be used for monitoring the counters of particles across the desertified territories. 

  8. Angle dependent Fiber Bragg grating inscription in microstructured polymer optical fibers

    DEFF Research Database (Denmark)

    Bundalo, Ivan-Lazar; Nielsen, Kristian; Bang, Ole


    We report on an incidence angle influence on inscription of the Fiber Bragg Gratings in Polymethyl methacrylate (PMMA) microstructured polymer optical fibers. We have shown experimentally that there is a strong preference of certain angles, labeled Gamma K, over the other ones. Angles close...

  9. Direct Writing of Fiber Bragg Grating in Microstructured Polymer Optical Fiber

    DEFF Research Database (Denmark)

    Stefani, Alessio; Stecher, Matthias; Town, G. E.


    We report point-by-point laser direct writing of a 1520-nm fiber Bragg grating in a microstructured polymer optical fiber (mPOF). The mPOF is specially designed such that the microstructure does not obstruct the writing beam when properly aligned. A fourth-order grating is inscribed in the m...

  10. All-optical wavelength converter based on fiber cross-phase modulation and fiber Bragg grating

    Czech Academy of Sciences Publication Activity Database

    Honzátko, Pavel


    Roč. 283, č. 9 (2010), s. 1744-1749 ISSN 0030-4018 R&D Projects: GA AV ČR 1ET300670502 Institutional research plan: CEZ:AV0Z20670512 Keywords : Wavelength conversion * Fiber cross phase modulation * Fiber Bragg grating Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.517, year: 2010

  11. Time-dependent variation of fiber Bragg grating reflectivity in PMMA-based polymer optical fibers

    DEFF Research Database (Denmark)

    Saez-Rodriguez, D.; Nielsen, Kristian; Bang, Ole


    In this Letter, we investigate the effects of viscoelasticity on both the strength and resonance wavelength of two fiber Bragg gratings (FBGs) inscribed in microstructured polymer optical fiber (mPOF) made of undoped PMMA. Both FBGs were inscribed under a strain of 1% in order to increase...

  12. Optical fiber communication — An overview

    Indian Academy of Sciences (India)

    The use of light for transmitting information from one place to another place is a very old technique. In 800 BC. .... Using a pure silica fiber these losses were reduced to 20 dB/km in 1970 by Kapron, Keck and Maurer. At ..... ceramic or molded plastic ferrule for each fiber and the ferrule fits into the sleeve. The fiber is epoxied ...

  13. Transverse Anderson Localization in Disordered Glass Optical Fibers: A Review

    Directory of Open Access Journals (Sweden)

    Arash Mafi


    Full Text Available Disordered optical fibers show novel waveguiding properties that can be used for various device applications, such as beam-multiplexed optical communications and endoscopic image transport. The strong transverse scattering from the transversely disordered optical fibers results in transversely confined beams that can freely propagate in the longitudinal direction, similar to conventional optical fibers, with the advantage that any point in the cross section of the fiber can be used for beam transport. For beam multiplexing and imaging applications, it is highly desirable to make the localized beam radius as small as possible. This requires large refractive index differences between the materials that define the random features in the disordered fiber. Here, disordered glass-air fibers are briefly reviewed, where randomly placed airholes in a glass matrix provide the sufficiently large refractive index difference of 0.5 for strong random transverse scattering. The main future challenge for the fabrication of an optimally disordered glass-air fibers is to increase the fill-fraction of airholes to nearly 50% for maximum beam confinement.

  14. Synthesis of metallic nanoparticles in SiO2 matrices

    International Nuclear Information System (INIS)

    Gutierrez W, C.; Mondragon G, G.; Perez H, R.; Mendoza A, D.


    Metallic nanoparticles was synthesized in SiO 2 matrices by means of a process of two stages. The first one proceeded via sol-gel, incorporating the metallic precursors to the reaction system before the solidification of the matrix. Later on, the samples underwent a thermal treatment in atmosphere of H 2 , carrying out the reduction of the metals that finally formed to the nanoparticles. Then it was detected the presence of smaller nanoparticles than 20 nm, dispersed and with the property of being liberated easily of the matrix, conserving a free surface, chemically reactive and with response to external electromagnetic radiation. The system SiO 2 -Pd showed an important thermoluminescent response. (Author)

  15. Recent advances toward a fiber optic sensor for nerve agent (United States)

    Beshay, Manal; Cordero, Steven R.; Mukamal, Harold; Ruiz, David; Lieberman, Robert A.


    We report advances made on the development of a fiber optic nerve agent sensor having its entire length as the sensing element. Upon exposure to sarin gas or its simulant, diisopropyl fluorophosphate, the cladding changes color resulting in an alteration of the light intensity throughput. The optical fiber is multimode and consists of a fused-silica core and a nerve agent sensitive cladding. The absorption characteristics of the cladding affect the fiber's spectral attenuation and limit the length of light guiding fiber that can be deployed continuously. The absorption of the cladding is also dependent on the sensor formulation, which in turn influences the sensitivity of the fiber. In this paper, data related to the trade-off of sensitivity, spectral attenuation, and length of fiber challenged will be reported. The fiber is mass produced using a conventional fiber optic draw tower. This technology could be used to protect human resources and buildings from dangerous chemical attacks, particularly when large areas or perimeters must be covered. It may also be used passively to determine how well such areas have been decontaminated.

  16. Novel Optical Fiber Materials With Engineered Brillouin Gain Coefficients SSL 1: Novel Fiber Lasers (United States)


    fibres , Electronics Letters, (07 2013): 0. doi: 10.1049/el.2013.1386 John Ballato, Peter D. Dragic. 120 Years of Optical Glass Science, Optics ...Paris, France, October 27 – November 1, 2013. [2] J. Ballato, “Molten Core Fabrication of Novel Optical Fibers,” Advanced Fibre Photonics...pp. 2675 – 2692, 2013. [4] Inside View. P.D. Dragic and J. Ballato, “Characterisation of Raman gain spectra in Yb:YAG-derived optical fibres

  17. High numerical aperture imaging by using multimode fibers with micro-fabricated optics

    KAUST Repository

    Bianchi, Silvio


    Controlling light propagation into multimode optical fibers through spatial light modulators provides highly miniaturized endoscopes and optical micromanipulation probes. We increase the numerical aperture up to nearly 1 by micro-optics fabricated on the fiber-end.

  18. Fine-grained hodoscopes based on scintillating optical fibers

    International Nuclear Information System (INIS)

    Borenstein, S.R.; Strand, R.C.


    In order to exploit the high event rates at ISABELLE, it will be necessary to have fast detection with fine spatial resolution. The authors are currently constructing a prototype fine-grained hodoscope, the elements of which are scintillating optical fibers. The fibers have been drawn from commercially available plastic scintillator which has been clad with a thin layer of silicone. So far it has been demonstrated with one mm diameter fibers, that with a photodetector at each end, the fibers are more than 99% efficient for lengths of about 60 cm. The readout will be accomplished either with small diameter photomultiplier tubes or avalanche photodiodes used either in the linear or Geiger mode. The program of fiber development and evaluation is described. The status of the APD as a readout element is discussed, and an optical encoding readout scheme is described for events of low multiplicity

  19. Utilization of Faraday Mirror in Fiber Optic Current Sensors

    Directory of Open Access Journals (Sweden)

    P. Fiala


    Full Text Available Fiber optic sensors dispose of some advantages in the field of electrical current and magnetic field measurement, like large bandwidth, linearity, light transmission possibilities. Unfortunately, they suffer from some parasitic phenomena. The crucial issue is the presence of induced and latent linear birefringence, which is imposed by the fiber manufacture imperfections as well as mechanical stress by fiber bending. In order to the linear birefringence compensation a promising method was chosen for pulsed current sensor design. The method employs orthogonal polarization conjugation by the back direction propagation of the light wave in the fiber. The Jones calculus analysis presents its propriety. An experimental fiber optic current sensor has been designed and realized. The advantage of the proposed method was proved considering to the sensitivity improvement.

  20. Characterization of fiber optic cables under large tensile loads

    International Nuclear Information System (INIS)

    Ogle, J.W.; Looney, L.D.; Peterson, R.T.


    Fiber optic cables designed for the Nevada Test Site (NTS) have to withstand an unusually harsh environment. Cables have been manufactured under a 6 year old DOE specification that has been slightly modified as the cable requirements are better understood. In order to better understand the cable properties a unique capability has been established at the NTS. Instrumentation has been developed to characterize the transmission properties of 1 km of fiber optic cable placed under a controlled tensile load up to 1500 lbs. The properties measured are cable tension, cable elongation, induced attenuation, attenuation vs. location, fiber strain, bandwidth, and ambient temperature. Preforming these measurements on cables from the two qualified NTS fiber optic cable manufacturers, Siecor and Andrew Corp., led to a new set of specifications