WorldWideScience

Sample records for sio2 films deposited

  1. Ion assisted deposition of SiO2 film from silicon

    Science.gov (United States)

    Pham, Tuan. H.; Dang, Cu. X.

    2005-09-01

    Silicon dioxide, SiO2, is one of the preferred low index materials for optical thin film technology. It is often deposited by electron beam evaporation source with less porosity and scattering, relatively durable and can have a good laser damage threshold. Beside these advantages the deposition of critical optical thin film stacks with silicon dioxide from an E-gun was severely limited by the stability of the evaporation pattern or angular distribution of the material. The even surface of SiO2 granules in crucible will tend to develop into groove and become deeper with the evaporation process. As the results, angular distribution of the evaporation vapor changes in non-predicted manner. This report presents our experiments to apply Ion Assisted Deposition process to evaporate silicon in a molten liquid form. By choosing appropriate process parameters we can get SiO2 film with good and stable property.

  2. Synthesis of crystalline Ge nanoclusters in PE-CVD-deposited SiO2 films

    DEFF Research Database (Denmark)

    Leervad Pedersen, T.P.; Skov Jensen, J.; Chevallier, J.

    2005-01-01

    The synthesis of evenly distributed Ge nanoclusters in plasma-enhanced chemical-vapour-deposited (PE-CVD) SiO2 thin films containing 8 at. % Ge is reported. This is of importance for the application of nanoclusters in semiconductor technology. The average diameter of the Ge nanoclusters can...

  3. Atmospheric Plasma Deposition of SiO2 Films for Adhesion Promoting Layers on Titanium

    Directory of Open Access Journals (Sweden)

    Liliana Kotte

    2014-12-01

    Full Text Available This paper evaluates the deposition of silica layers at atmospheric pressure as a pretreatment for the structural bonding of titanium (Ti6Al4V, Ti15V3Cr3Sn3Al in comparison to an anodizing process (NaTESi process. The SiO2 film was deposited using the LARGE plasma source, a linearly extended DC arc plasma source and applying hexamethyldisiloxane (HMDSO as a precursor. The morphology of the surface was analyzed by means of SEM, while the characterization of the chemical composition of deposited plasma layers was done by XPS and FTIR. The long-term durability of bonded samples was evaluated by means of a wedge test in hot/wet condition. The almost stoichiometric SiO2 film features a good long-term stability and a high bonding strength compared to the films produced with the wet-chemical NaTESi process.

  4. Characterization of Chemical Vapor Deposited Tetraethyl Orthosilicate based SiO2 Films for Photonic Devices

    Directory of Open Access Journals (Sweden)

    Jhansirani KOTCHARLAKOTA

    2016-05-01

    Full Text Available Silicon has been the choice for photonics technology because of its cost, compatibility with mass production and availability. Silicon based photonic devices are very significant from commercial point of view and are much compatible with established technology. This paper deals with deposition and characterization of SiO2 films prepared by indigenously developed chemical vapor deposition system. Ellipsometry study of prepared films showed an increase in refractive index and film thickness with the increment in deposition temperature. The deposition temperature has a significant role for stoichiometric SiO2 films, FTIR measurement has shown the three characteristics peaks of Si-O-Si through three samples prepared at temperatures 700, 750 and 800 °C while Si-O-Si stretching peak positions were observed to be shifted to lower wavenumber in accordance to the temperature. FESEM analysis has confirmed the smooth surface without any crack or disorder while EDX analysis showed the corresponding peaks of compositional SiO2 films.DOI: http://dx.doi.org/10.5755/j01.ms.22.1.7245

  5. Room temperature synthesis of porous SiO2 thin films by plasma enhanced chemical vapor deposition

    OpenAIRE

    Barranco Quero, Ángel; Cotrino Bautista, José; Yubero Valencia, Francisco; Espinós, J. P.; Rodríguez González-Elipe, Agustín

    2004-01-01

    Synthesis of porous SiO2 thin films in room temperature was carried out using plasma enhanced chemical vapor deposition (CVD) in an electron cyclotron resonance microwave reactor with a downstream configuration.The gas adsorption properties and the type of porosity of the SiO2 thin films were assessed by adsorption isotherms of toluene at room temperature.The method could also permit the tailoring synthesis of thin films when both composition and porosity can be simultaneously and independent...

  6. Potentiodynamical deposition of nanostructured MnO2 film at the assist of electrodeposited SiO2 as template

    International Nuclear Information System (INIS)

    Wu, Lian-Kui; Xia, Jie; Hou, Guang-Ya; Cao, Hua-Zhen; Tang, Yi-Ping; Zheng, Guo-Qu

    2016-01-01

    Highlights: • MnO 2 -SiO 2 composite film is prepared by potentiodynamical deposition. • Hierarchical porous MnO 2 films is obtained after the etching of SiO 2 . • The obtained MnO 2 film electrode exhibit high specific capacitance. - Abstract: We report a novel silica co-electrodeposition route to prepare nanostructured MnO 2 films. Firstly, MnO 2 -SiO 2 composite film was fabricated on a stainless steel substrate by potentiodynamical deposition, i.e. cyclic deposition, and then the SiO 2 template was removed by simple immersion in concentrated alkaline solution, leading to the formation of a porous MnO 2 (po-MnO 2 ) matrix. The structure and morphology of the obtained films were characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The electrochemical properties of the po-MnO 2 film were evaluated by cyclic voltammetry (CV), galvanostatic charge–discharge (GCD) and electrochemical impedance spectroscopy (EIS). Results showed that this porous MnO 2 derived from the MnO 2 -SiO 2 composite film exhibits good electrochemical performance for potential use as a supercapacitor material.

  7. Passivation of pigment-grade TiO2 particles by nanothick atomic layer deposited SiO2 films

    International Nuclear Information System (INIS)

    King, David M; Liang Xinhua; Weimer, Alan W; Burton, Beau B; Akhtar, M Kamal

    2008-01-01

    Pigment-grade TiO 2 particles were passivated using nanothick insulating films fabricated by atomic layer deposition (ALD). Conformal SiO 2 and Al 2 O 3 layers were coated onto anatase and rutile powders in a fluidized bed reactor. SiO 2 films were deposited using tris-dimethylaminosilane (TDMAS) and H 2 O 2 at 500 deg. C. Trimethylaluminum and water were used as precursors for Al 2 O 3 ALD at 177 deg. C. The photocatalytic activity of anatase pigment-grade TiO 2 was decreased by 98% after the deposition of 2 nm SiO 2 films. H 2 SO 4 digest tests were performed to exhibit the pinhole-free nature of the coatings and the TiO 2 digest rate was 40 times faster for uncoated TiO 2 than SiO 2 coated over a 24 h period. Mass spectrometry was used to monitor reaction progress and allowed for dosing time optimization. These results demonstrate that the TDMAS-H 2 O 2 chemistry can deposit high quality, fully dense SiO 2 films on high radius of curvature substrates. Particle ALD is a viable passivation method for pigment-grade TiO 2 particles

  8. A comparative study on omnidirectional anti-reflection SiO2 nanostructure films coating by glancing angle deposition

    Science.gov (United States)

    Prachachet, R.; Samransuksamer, B.; Horprathum, M.; Eiamchai, P.; Limwichean, S.; Chananonnawathorn, C.; Lertvanithphol, T.; Muthitamongkol, P.; Boonruang, S.; Buranasiri, P.

    2018-02-01

    Fabricated omnidirectional anti-reflection nanostructure films as a one of the promising alternative solar cell applications have attracted enormous scientific and industrial research benefits to their broadband, effective over a wide range of incident angles, lithography-free and high-throughput process. Recently, the nanostructure SiO2 film was the most inclusive study on anti-reflection with omnidirectional and broadband characteristics. In this work, the three-dimensional silicon dioxide (SiO2) nanostructured thin film with different morphologies including vertical align, slant, spiral and thin films were fabricated by electron beam evaporation with glancing angle deposition (GLAD) on the glass slide and silicon wafer substrate. The morphological of the prepared samples were characterized by field-emission scanning electron microscope (FE-SEM) and high-resolution transmission electron microscope (HRTEM). The transmission, omnidirectional and birefringence property of the nanostructure SiO2 films were investigated by UV-Vis-NIR spectrophotometer and variable angle spectroscopic ellipsometer (VASE). The spectrophotometer measurement was performed at normal incident angle and a full spectral range of 200 - 2000 nm. The angle dependent transmission measurements were investigated by rotating the specimen, with incidence angle defined relative to the surface normal of the prepared samples. This study demonstrates that the obtained SiO2 nanostructure film coated on glass slide substrate exhibits a higher transmission was 93% at normal incident angle. In addition, transmission measurement in visible wavelength and wide incident angles -80 to 80 were increased in comparison with the SiO2 thin film and glass slide substrate due to the transition in the refractive index profile from air to the nanostructure layer that improve the antireflection characteristics. The results clearly showed the enhanced omnidirectional and broadband characteristic of the three dimensional Si

  9. Electronic and surface properties of pentacene films deposited on SiO2 prepared by the sol–gel and thermally grown methods

    International Nuclear Information System (INIS)

    Dai, Chi-Jie; Tsao, Hou-Yen; Lin, Yow-Jon; Liu, Day-Shan

    2014-01-01

    This study investigates the effect of different types of SiO 2 on the electronic and surface properties of pentacene films. Developing better contacts on dielectrics is one of the main challenges for pentacene-based transistor technology. The water contact angle variation indicates more hydrophobic thermally grown SiO 2 surfaces than sol–gel SiO 2 surfaces, suggesting that the thermally grown SiO 2 dielectric enables a better molecular arrangement as the pentacene layer is deposited. It is found that the carrier mobility in pentacene on thermally grown SiO 2 dielectrics is higher than that in pentacene on sol–gel SiO 2 dielectrics. The Hall-effect analysis by using the polaron theory revealed that the enhanced carrier mobility is due to the increased spacing between molecules. - Highlights: • The carrier mobility of pentacene on thermally grown and sol–gel SiO 2 was researched. • The enhanced carrier mobility of pentacene on thermally grown SiO2 was observed. • The dominance of tunneling (hopping) at low (high) temperatures was observed. • The carrier mobility is correlated with the morphology of pentacene films

  10. Noise measurements on NbN thin films with a negative temperature resistance coefficient deposited on sapphire and on SiO2

    NARCIS (Netherlands)

    Leroy, G.; Gest, J.; Vandamme, L.K.J.; Bourgeois, O.

    2007-01-01

    We characterize granular NbNx thin cermet films deposited on either sapphire substrate or on SiO2 and compare the 1/f noise at 300 K and 80 K. The films were characterized with an impedance analyzer from 20 Hz to 1 MHz and analyzed as a resistor R in parallel with a capacitor C. The calculated noise

  11. SiO2 films deposited on silicon at low temperature by plasma-enhanced decomposition of hexamethyldisilazane: Defect characterization

    International Nuclear Information System (INIS)

    Croci, S.; Pecheur, A.; Autran, J.L.; Vedda, A.; Caccavale, F.; Martini, M.; Spinolo, G.

    2001-01-01

    Silicon dioxide films have been deposited by plasma-enhanced chemical vapor deposition at low substrate temperature (50 deg. C) in a parallel-plate reactor using hexamethyldisilazane (HMDS), diluted in He, and O 2 as Si and O precursors. The effect of the O 2 /(HMDS+He) flow rate ratio on the oxide properties has been investigated in the range of 0.05-1.25 by means of deposition rate, wet etching rate, secondary ion mass spectrometry, thermally stimulated luminescence, and high frequency capacitance-voltage measurements. Both the deposition rate and the etching rate increase by increasing the O 2 /(HMDS+He) flow rate ratio and reach a constant value at flow rate ratios higher than 0.6. The strong increase and saturation in the deposition rate can be attributed to the impinging oxide atoms flux and to the consumption of silyl radicals at the deposition surface, respectively. The Si/SiO 2 interface state density and the positive fixed charge density are in the range 1x10 11 -1x10 12 eV -1 cm -2 and 6x10 11 -1.5x10 12 C cm -2 , respectively. These concentrations are comparable with literature data concerning SiO 2 films obtained by plasma enhanced chemical vapor deposition at temperatures higher than 200 deg. C using other Si precursors. Moreover, the interface state density decreases while the fixed oxide charge increases by increasing the O 2 /(HMDS+He) flow rate ratio. A correlation has been found between defects monitored by thermally stimulated luminescence and fixed oxide charges. From a comparison with secondary ion mass spectrometry results, the fixed oxide charges can be preliminarily attributed to intrinsic defects

  12. Influence of annealing temperature on structural and magnetic properties of pulsed laser-deposited YIG films on SiO2 substrate

    Science.gov (United States)

    Nag, Jadupati; Ray, Nirat

    2018-05-01

    Yttrium Iron Garnet (Y3Fe5O12) was synthesized by solid state/ceramic process. Thin films of YIG were deposited on SiO2 substrate at room temperature(RT) and at substrate temperature (Ts) 700 °C using pulsed laser deposition (PLD) technique. RT deposited thin films are amorphous in nature and non-magnetic. After annealing at temperature 800 ° RT deposited thin films showed X-ray peaks as well as the magnetic order. Magnetic ordering is enhanced by annealing temperature(Ta ≥ 750 °C) and resulted good quality of films with high magnetization value.

  13. Silver nanoparticle deposition on inverse opal SiO2 films embedded in protective polypropylene micropits for SERS applications

    Science.gov (United States)

    Ammosova, Lena; Ankudze, Bright; Philip, Anish; Jiang, Yu; Pakkanen, Tuula T.; Pakkanen, Tapani A.

    2018-01-01

    Common methods to fabricate surface enhanced Raman scattering (SERS) substrates with controlled micro-nanohierarchy are often complex and expensive. In this study, we demonstrate a simple and cost effective method to fabricate SERS substrates with complex geometries. Microworking robot structuration is used to pattern a polypropylene (PP) substrate with micropits, facilitating protective microenvironment for brittle SiO2 inverse opal (IO) structure. Hierarchical SiO2 IO patterns were obtained using polystyrene (PS) spheres as a sacrificial template, and were selectively embedded into the hydrophilized PP micropits. The same microworking robot technique was subsequently used to deposit silver nanoparticle ink into the SiO2 IO cavities. The fabricated multi-level micro-nanohierarchy surface was studied to enhance Raman scattering of the 4-aminothiophenol (4-ATP) analyte molecule. The results show that the SERS performance of the micro-nanohierarchical substrate increases significantly the Raman scattering intensity compared to substrates with structured 2D surface geometries.

  14. Comparison of interfaces for (Ba,Sr)TiO3 films deposited on Si and SiO2/Si substrates

    International Nuclear Information System (INIS)

    Suvorova, N.A.; Lopez, C.M.; Irene, E.A.; Suvorova, A.A.; Saunders, M.

    2004-01-01

    (Ba,Sr)TiO 3 (BST) thin films were deposited by ion sputtering on both bare and oxidized Si. Spectroscopic ellipsometry results have shown that a SiO 2 underlayer of nearly the same thickness (2.6 nm in average) is found at the Si interface for BST sputter depositions onto nominally bare Si, 1 nm SiO 2 on Si or 3.5 nm SiO 2 on Si. This result was confirmed by high-resolution electron microscopy analysis of the films, and it is believed to be due to simultaneous subcutaneous oxidation of Si and reaction of the BST layer with SiO 2 . Using the conductance method, capacitance-voltage measurements show a decrease in the interface trap density D it of an order of magnitude for oxidized Si substrates with a thicker SiO 2 underlayer. Further reduction of D it was achieved for the capacitors grown on oxidized Si and annealed in forming gas after metallization

  15. Comparison of interfaces for (Ba,Sr)TiO3 films deposited on Si and SiO2/Si substrates

    Science.gov (United States)

    Suvorova, N. A.; Lopez, C. M.; Irene, E. A.; Suvorova, A. A.; Saunders, M.

    2004-03-01

    (Ba,Sr)TiO3(BST) thin films were deposited by ion sputtering on both bare and oxidized Si. Spectroscopic ellipsometry results have shown that a SiO2 underlayer of nearly the same thickness (2.6 nm in average) is found at the Si interface for BST sputter depositions onto nominally bare Si, 1 nm SiO2 on Si or 3.5 nm SiO2 on Si. This result was confirmed by high-resolution electron microscopy analysis of the films, and it is believed to be due to simultaneous subcutaneous oxidation of Si and reaction of the BST layer with SiO2. Using the conductance method, capacitance-voltage measurements show a decrease in the interface trap density Dit of an order of magnitude for oxidized Si substrates with a thicker SiO2 underlayer. Further reduction of Dit was achieved for the capacitors grown on oxidized Si and annealed in forming gas after metallization.

  16. Comparative study of the characteristics of Ni films deposited on SiO2/Si(100) by oblique-angle sputtering and conventional sputtering

    International Nuclear Information System (INIS)

    Yu Mingpeng; Qiu Hong; Chen Xiaobai; Wu Ping; Tian Yue

    2008-01-01

    Ni films were deposited on SiO 2 /Si(100) substrates at 300 K and 573 K by oblique-angle sputtering and conventional sputtering. The films deposited at 300 K mainly have a [110] crystalline orientation in the growing direction whereas those deposited at 573 K grow with a [111] crystalline orientation in the growing direction. The film prepared only at 300 K by oblique-angle sputtering grows with a weakly preferential orientation along the incidence direction of the sputtered Ni atoms. All the films grow with thin columnar grains perpendicular to the substrate surface. The grain size of the films sputter-deposited obliquely is larger than that of the films sputter-deposited conventionally. The grain size of the Ni film does not change markedly with the deposition temperature. The film deposited at 573 K by oblique-angle sputtering has the highest saturation magnetization. For the conventional sputtering, the coercivity of the Ni film deposited at 573 K is larger than that of the film deposited at 300 K. However, for the oblique-angle sputtering, the coercivity of the Ni film is independent of the deposition temperature. All the Ni films exhibit an isotropic magnetization characteristic in the film plane

  17. Effect of a SiO2 buffer layer on the characteristics of In2O3-ZnO-SnO2 films deposited on PET substrates

    International Nuclear Information System (INIS)

    Woo, B.-J.; Hong, J.-S.; Kim, S.-T.; Kim, H.-M.; Park, S.-H.; Kim, J.-J.; Ahn, J.-S.

    2006-01-01

    Transparent and conducting In 2 O 3 -ZnO-SnO 2 (IZTO) thin films were prepared on flexible PET substrates at room temperature by using an ion-gun-assisted sputtering technique. We mainly investigated the effect of a SiO 2 buffer layer, deposited in-between the film and the PET substrate, on the electrical stability of the film under various external stresses caused by moist-heat or violent temperature variations. The insertion of the SiO 2 layer improves structural, optical and electrical properties of the films: The IZTO/SiO 2 /PET film with a buffer shows a change (∼4 %) in the sheet resistance much smaller than that of the IZTO/PET film without a buffer (∼22 %), against a severe thermal stress of the repeated processes between quenching at -25 .deg. C and annealing at 100 .deg. C for 5 min at each process. Under a moist-heat stress at 90 % relative humidity at 80 .deg. C, the IZTO/SiO 2 /PET film responds with only a slight change (∼8.5 %) in the sheet resistance from 30.2 to 33.0 Ω/□ after being exposed for 240 h. The enhanced stability is understood to be the result of the buffer layers acting as a blocking barrier to water vapor or organic solvents diffusing from the PET substrate during deposition or annealing.

  18. Effect of annealing time and NH3 flow on GaN films deposited on amorphous SiO2 by MOCVD

    Science.gov (United States)

    Li, Tianbao; Liu, Chenyang; Zhang, Zhe; Yu, Bin; Dong, Hailiang; Jia, Wei; Jia, Zhigang; Yu, Chunyan; Xu, Bingshe

    2018-05-01

    GaN polycrystalline films were successfully grown on amorphous SiO2 by metal-organic chemical vapour deposition to fabricate transferable devices using inorganic films. Field-emission scanning electron microscopy images show that by prolonging the annealing time, re-evaporation is enhanced, which reduced the uniformity of the nucleation layer and GaN films. X-ray diffraction patterns indicate that the decomposition rate of the nucleation layer increases when the annealing flow rate of NH3 is 500 sccm, which makes the unstable plane and amorphous domains decompose rapidly, thereby improving the crystallinity of the GaN films. Photoluminescence spectra also indicate the presence of fewer defects when the annealing flow rate of NH3 is 500 sccm. The excellent crystal structure of the GaN films grown under optimized conditions was revealed by transmission electron microscopy analysis. More importantly, the crystal structure and orientation of GaN grown on SiO2 are the same as that of GaN grown on conventional sapphire substrate when a buffer layer is used. This work can aid in the development of transferable devices using GaN films.

  19. Influence of ion bombardment on structural and electrical properties of SiO2 thin films deposited from O2/HMDSO inductively coupled plasmas under continuous wave and pulsed modes

    International Nuclear Information System (INIS)

    Bousquet, A.; Goullet, A.; Leteinturier, C.; Granier, A.; Coulon, N.

    2008-01-01

    Low pressure Plasma Enhanced Chemical Vapour Deposition is commonly used to deposit insulators on temperature sensitive substrates. In these processes, the ion bombardment experienced by films during its growth is known to have benefits but also some disadvantages on material properties. In the present paper, we investigate the influence of this bombardment on the structure and the electrical properties of SiO 2 -like film deposited from oxygen/hexa-methyl-di-siloxane radiofrequency plasma in continuous and pulsed modes. First, we studied the ion kinetics thanks to time-resolved measurements by Langmuir probe. After, we showed the ion bombardment in such plasma controls the OH bond content in deposited films. Finally, we highlight the impressive reduction of fixed charge and interface state densities in films obtained in pulsed mode due to a lower ion bombardment. (authors)

  20. Effect of SiO2 passivation overlayers on hillock formation in Al thin films

    International Nuclear Information System (INIS)

    Kim, Deok-kee

    2012-01-01

    Hillock formation in Al thin films with varying thicknesses of SiO 2 as a passivation layer was investigated during thermal cycling. Based on the stress measurements and the number of hillocks, 250 nm thick SiO 2 was thick enough to suppress the hillock formation and the suppression of hillock at 250 nm passivation and the lack of suppression at thinner passivation is related to the presence/absence of protection against the diffusive flow of atoms from the surrounding area to the surface due to the biaxial compressive stresses present in the film through the weak spots in the passivation layer. The stress state of Al films measured during annealing (the driving force for hillock formation) did not vary much with SiO 2 thickness. A small number of hillocks formed during the plasma enhanced chemical vapor deposition of SiO 2 overlayers at 300 °C. - Highlights: ► We examined the effect of SiO 2 overlayers on hillock formation in Al thin films. ► Thin overlayers were not effective in suppressing diffusive flow to the surface. ► A thick overlayer suppressed the diffusive flow from the interior to the surface. ► The stress state of Al films did not vary much with SiO 2 passivation thickness. ► High mechanical strength provided a large driving force for the large grain growth.

  1. SiO2 coating of silver nanoparticles by photoinduced chemical vapor deposition

    International Nuclear Information System (INIS)

    Boies, Adam M; Girshick, Steven L; Roberts, Jeffrey T; Zhang Bin; Nakamura, Toshitaka; Mochizuki, Amane

    2009-01-01

    Gas-phase silver nanoparticles were coated with silicon dioxide (SiO 2 ) by photoinduced chemical vapor deposition (photo-CVD). Silver nanoparticles, produced by inert gas condensation, and a SiO 2 precursor, tetraethylorthosilicate (TEOS), were exposed to vacuum ultraviolet (VUV) radiation at atmospheric pressure and varying temperatures. The VUV photons dissociate the TEOS precursor, initiating a chemical reaction that forms SiO 2 coatings on the particle surfaces. Coating thicknesses were measured for a variety of operation parameters using tandem differential mobility analysis and transmission electron microscopy. The chemical composition of the particle coatings was analyzed using energy dispersive x-ray spectrometry and Fourier transform infrared spectroscopy. The highest purity films were produced at 300-400 0 C with low flow rates of additional oxygen. The photo-CVD coating technique was shown to effectively coat nanoparticles and limit core particle agglomeration at concentrations up to 10 7 particles cm -3 .

  2. Density gradient in SiO 2 films on silicon as revealed by positron annihilation spectroscopy

    Science.gov (United States)

    Revesz, A. G.; Anwand, W.; Brauer, G.; Hughes, H. L.; Skorupa, W.

    2002-06-01

    Positron annihilation spectroscopy of thermally grown and deposited SiO 2 films on silicon shows in a non-destructive manner that these films have a gradient in their density. The gradient is most pronounced for the oxide grown in dry oxygen. Oxidation in water-containing ambient results in an oxide with reduced gradient, similarly to the gradient in the deposited oxide. These observations are in accordance with earlier optical and other studies using stepwise etching or a set of samples of varying thickness. The effective oxygen charge, which is very likely one of the reasons for the difference in the W parameters of silica glass and quartz crystal, could be even higher at some localized configurations in the SiO 2 films resulting in increased positron trapping.

  3. Morphology of SiO2 films as a key factor in alignment of liquid crystals with negative dielectric anisotropy

    Directory of Open Access Journals (Sweden)

    Volodymyr Tkachenko

    2016-11-01

    Full Text Available Control of liquid crystal (LC orientation using a proper SiO2 alignment layer is essential for the optimization of vertically aligned nematic (VAN displays. With this aim, we studied the optical anisotropy of thin SiO2 films by generalized ellipsometry as a function of deposition angle. The columnar SiO2 structure orientation measured by a noninvasive ellipsometry technique is reported for the first time, and its morphology influence on the LC alignment is demonstrated for large deposition angles.

  4. In situ study of interface reactions of ion beam sputter deposited (Ba0.5Sr0.5)TiO3 films on Si, SiO2, and Ir

    International Nuclear Information System (INIS)

    Gao, Y.; Mueller, A.H.; Irene, E.A.; Auciello, O.; Krauss, A.; Schultz, J.A.

    1999-01-01

    (Ba 0.5 ,Sr 0.5 )TiO 3 (BST) thin films were deposited on MgO, Si, SiO 2 and Ir surfaces by ion beam sputter deposition in oxygen at 700 degree C. In situ spectroscopic ellipsometry (SE) has been used to investigate the evolution of the BST films on different surfaces during both deposition and postannealing processes. First, the optical constants of the BST films in the photon energy range of 1.5 - 4.5 eV were determined by SE analysis on crystallized BST films deposited on MgO single crystal substrates. The interfaces in BST/Si and BST/SiO 2 /Si structure were examined by SE and Auger electron spectroscopy depth profiles. Subcutaneous oxidation in the BST/Ir structure was observed by in situ SE during both ion beam sputter deposition and postdeposition annealing in oxygen at 700 degree C. A study of the thermal stability of the Ir/TiN/SiO 2 /Si structure in oxygen at 700 degree C was carried out using in situ SE. The oxidation of Ir was confirmed by x-ray diffraction. The surface composition and morphology evolution after oxidation were investigated by time of flight mass spectroscopy of recoiled ions (TOF-MSRI) and atomic force microscopy. It has been found that Ti from the underlying TiN barrier layer diffused through the Ir layer onto the surface and thereupon became oxidized. It was also shown that the surface roughness increases with increasing oxidation time. The implications of the instability of Ir/TiN/SiO 2 /Si structure on the performance of capacitor devices based on this substrate are discussed. It has been shown that a combination of in situ SE and TOF-MSRI provides a powerful methodology for in situ monitoring of complex oxide film growth and postannealing processes. copyright 1999 American Vacuum Society

  5. High-resolution ellipsometric study of an n-alkane film, dotriacontane, adsorbed on a SiO2 surface

    DEFF Research Database (Denmark)

    Volkmann, U.G.; Pino, M.; Altamirano, L.A.

    2002-01-01

    -crystal substrates. Our results suggest a model of a solid dotriacontane film that has a phase closest to the SiO2 surface in which the long-axis of the molecules is oriented parallel to the interface. Above this "parallel film" phase, a solid monolayer adsorbs in which the molecules are oriented perpendicular...... at higher coverages. In addition, we have performed high-resolution ellipsometry and stray-light measurements on dotriacontane films deposited from solution onto highly oriented pyrolytic graphite substrates. After film deposition, these substrates proved to be less stable in air than SiO2....

  6. Thickness measurement of SiO2 films thinner than 1 nm by X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Joong Kim, Kyung; Park, Ki Tae; Lee, Jong Wan

    2006-01-01

    The thickness measurement of ultra-thin SiO 2 films thinner than 1 nm was studied by X-ray photoelectron spectroscopy (XPS). Amorphous SiO 2 thin films were grown on amorphous Si films to avoid the thickness difference due to the crystalline structure of a substrate. SiO 2 thin films were grown by ion beam sputter deposition under oxygen gas flow and the thickness was measured by in situ XPS. The attenuation length was determined experimentally by a SiO 2 film with a known thickness. The straight line fit between the measured thickness using XPS and the nominal thickness showed a good linear relation with a gradient of 0.969 and a small offset of 0.126 nm. The gradient measured at the range of 3.4-0.28 nm was very close to that measured at sub-nanometer range of 1.13-0.28 nm. This result means that the reliable measurement of SiO 2 film thickness below 1 nm is possible by XPS

  7. Water droplet behavior on superhydrophobic SiO2 nanocomposite films during icing/deicing cycles

    NARCIS (Netherlands)

    Lazauskas, A.; Guobiene, A.; Prosycevas, I.; Baltrusaitis, V.; Grigaliunas, V.; Narmontas, P.; Baltrusaitis, Jonas

    2013-01-01

    This work investigates water droplet behavior on superhydrophobic (water contact angle value of 162 ± 1°) SiO2 nanocomposite films subjected to repetitive icing/deicing treatments, changes in SiO2 nanocomposite film surface morphology and their non-wetting characteristics. During the experiment,

  8. Formation of thin DLC films on SiO2/Si substrate using FCVAD technique

    International Nuclear Information System (INIS)

    Bootkul, D.; Intarasiri, S.; Aramwit, C.; Tippawan, U.; Yu, L.D.

    2013-01-01

    Diamond-like carbon (DLC) films deposited on SiO 2 /Si substrate are attractive for novel sensitive and selective chemical sensors. According to the almost never ending of size reduction, a nm-thickness layer of the film is greatly required. However, formation of such a very thin DLC film on SiO 2 /Si substrate is challenging. In this experiment, DLC films were formed using our in-house Filtered Cathodic Vacuum Arc Deposition (FCVAD) facility by varying the bias voltage of 0 V, −250 V and −450 V with the arc voltage of 350 V, 450 V, 550 V, 650 V and 750 V for 10 min. Raman spectroscopy was applied for characterization of the film qualities and Transmission Electron Microscopy (TEM) was applied for cross sectional analysis. Results showed that films of thickness ranging from 10–50 nm were easily acquired depending on deposition conditions. Deconvolution of Raman spectra of these samples revealed that, when fixing the substrate bias but increasing the arc voltage from 350 to 750 V, the ratio between D-peak and G-peak intensity, namely I D /I G ratio, tended to reduce up to the arc voltage of 450 V, then increased up to the arc voltage of 650 V and finally decreased again. On the other hand, when fixing the arc voltage, the I D /I G ratio tended to decrease continuously as the increasing of bias voltage. It can be concluded that the bonding structure would evolve from a graphitic-like structure to a diamond-like structure as the substrate bias increases. Additionally, the sp 3 site should be maximized at the arc voltage ∼450 V for fixed bias voltage. It is expected that, at −450 V bias and 450 V arc, sp 3 fractions could be higher than 60%. However, in some cases, e.g. at low arc voltages, voids formed between the film and the amorphous SiO 2 substrate. Electron energy loss spectroscopy (EELS) of the C edge across the DLC indicated that the thicker DLC film had uniform chemistry and structure, whereas the thin DLC film showed changes in the edge shape

  9. Plasma-assisted ALD for the conformal deposition of SiO2 : process, material and electronic properties

    NARCIS (Netherlands)

    Dingemans, G.; Helvoirt, van C.A.A.; Pierreux, D.; Keuning, W.; Kessels, W.M.M.

    2012-01-01

    Plasma-assisted atomic layer deposition (ALD) was used to deposit SiO2 films in the temperature range of Tdep = 50–400°C on Si(100). H2Si[N(C2H5)2]2 and an O2 plasma were used as Si precursor and oxidant, respectively. The ALD growth process and material properties were characterized in detail.

  10. Synthesis of TiO2-doped SiO2 composite films and its applications

    Indian Academy of Sciences (India)

    Wintec

    structure of the titanium oxide species in the TiO2-doped SiO2 composite films and the photocatalytic reactiv- ity in order to ... gaku D-max γA diffractometer with graphite mono- chromized ... FT–IR absorption spectra of TiO2-doped SiO2 com-.

  11. Enhanced Visible Transmittance of Thermochromic VO2 Thin Films by SiO2 Passivation Layer and Their Optical Characterization

    Directory of Open Access Journals (Sweden)

    Jung-Hoon Yu

    2016-07-01

    Full Text Available This paper presents the preparation of high-quality vanadium dioxide (VO2 thermochromic thin films with enhanced visible transmittance (Tvis via radio frequency (RF sputtering and plasma enhanced chemical vapor deposition (PECVD. VO2 thin films with high Tvis and excellent optical switching efficiency (Eos were successfully prepared by employing SiO2 as a passivation layer. After SiO2 deposition, the roughness of the films was decreased 2-fold and a denser structure was formed. These morphological changes corresponded to the results of optical characterization including the haze, reflectance and absorption spectra. In spite of SiO2 coating, the phase transition temperature (Tc of the prepared films was not affected. Compared with pristine VO2, the total layer thickness after SiO2 coating was 160 nm, which is an increase of 80 nm. Despite the thickness change, the VO2 thin films showed a higher Tvis value (λ 650 nm, 58% compared with the pristine samples (λ 650 nm, 43%. This enhancement of Tvis while maintaining high Eos is meaningful for VO2-based smart window applications.

  12. SiO2 sol-gel films after ammonia and heat two-step treatments

    International Nuclear Information System (INIS)

    Zhang Chunlai; Wang Biyi; Tian Dongbin; Yin Wei; Jiang Xiaodong; Yuan Xiaodong; Yan Lianghong; Zhang Hongliang; Zhao Songnan; Lv Haibing

    2008-01-01

    SiO 2 thin films were deposited using tetraethoxylsilane as precursor, ammonia as catalyst on K9 glass by sol-gel method. These films were post-treated by ammonia and heat. The properties of the coatings were characterized by ellipsometer, UV-vis spectrophotometry, FTIR-spectroscopy, scanning probe microscope and contact angle measurement apparatus. The resuits indicate that the thickness of the films with ammonia and heat treatment tend to decrease. Both the refractive index and water contact angle increase after ammonia treatment. However, they both decrease after heat treatment. The former increases by 0.236 for the first step, then decreases by 0.202 for the second. The latter increases to 58.92 degree, then decreases to 38.07 degree. The transmittance of the coatings turn to be better and continuously shift to short wave by UV-vis spectrophotometry. The surface becomes smoother by AFM after the two-step treatment. (authors)

  13. Investigation of SiO2 thin films dielectric constant using ellipsometry technique

    Directory of Open Access Journals (Sweden)

    P Sangpour

    2014-11-01

    Full Text Available In this paper, we studied the optical behavior of SiO2 thin films prepared via sol-gel route using spin coating deposition from tetraethylorthosilicate (TEOS as precursor. Thin films were annealed at different temperatures (400-600oC. Absorption edge and band gap of thin layers were measured using UV-Vis spectrophotometery. Optical refractive index and dielectric constant were measured by ellipsometry technique. Based on our atomic force microscopic (AFM and ellipsometry results, thin layers prepared through this method showed high surface area, and high porosity ranging between 4.9 and 16.9, low density 2 g/cm, and low dielectric constant. The dielectric constant and porosity of layers increased by increasing the temperature due to the changes in surface roughness and particle size.

  14. Characterisation of NdFeB thin films prepared on (100)Si substrates with SiO2 barrier layers

    International Nuclear Information System (INIS)

    Sood, D.K.; Muralidhar, G.K.

    1998-01-01

    This work presents a systematic study of the deposition and characterization of NdFeB films on substrates of Si(100) and of SiO2 layer thermally grown on Si(100) held at RT, 360 deg C or 440 deg C. The post-deposition annealing is performed at 600 or 800 deg C in vacuum. The films are characterised using the analytical techniques of RBS, SIMS, XRD, OM and SEM. Results indicate that SiO2 is, in deed, an excellent diffusion barrier layer till 600 deg C but becomes relatively less effective at 800 deg C. Without this barrier layer, interdiffusion at the Si-NdFeB film interface leads to formation of iron silicides, α-Fe and B exclusion from the diffusion zone, in competition with the formation of the magnetic NdFeB phase. (authors)

  15. Liquid-phase-deposited SiO2 on AlGaAs and its application

    International Nuclear Information System (INIS)

    Lee, Kuan-Wei; Huang, Jung-Sheng; Lu, Yu-Lin; Lee, Fang-Ming; Lin, Hsien-Cheng; Huang, Jian-Jun; Wang, Yeong-Her

    2011-01-01

    The silicon dioxide (SiO 2 ) on AlGaAs prepared by liquid phase deposition (LPD) at 40 °C has been explored. The LPD-SiO 2 film deposition rate is about 67 nm h −1 for the first hour. The leakage current density is about 1.21 × 10 −6 A cm −2 at 1 MV cm −1 . The interface trap density (D it ) and the flat-band voltage shift (ΔV FB ) are 1.28 × 10 12 cm −2 eV −1 and 0.5 V, respectively. After rapid thermal annealing in the N 2 ambient at 300 °C for 1 min, the leakage current density, D it , and ΔV FB can be improved to 4.24 × 10 −7 A cm −2 at 1 MV cm −1 , 1.7 × 10 11 cm −2 eV −1 , and 0.2 V, respectively. Finally, this study demonstrates the application of the LPD-SiO 2 film to the AlGaAs/InGaAs pseudomorphic high-electron-mobility transistor

  16. Structural colors of the SiO2/polyethyleneimine thin films on poly(ethylene terephthalate) substrates

    International Nuclear Information System (INIS)

    Jia, Yanrong; Zhang, Yun; Zhou, Qiubao; Fan, Qinguo; Shao, Jianzhong

    2014-01-01

    The SiO 2 /polyethyleneimine (PEI) films with structural colors on poly(ethylene terephthalate) (PET) substrates were fabricated by an electrostatic self-assembly method. The morphology of the films was characterized by Scanning Electron Microscopy. The results showed that there was no distinguishable multilayered structure found of SiO 2 /PEI films. The optical behaviors of the films were investigated through the color photos captured by a digital camera and the color measurement by a multi-angle spectrophotometer. Different hue and brightness were observed at various viewing angles. The structural colors were dependent on the SiO 2 particle size and the number of assembly cycles. The mechanism of the structural colors generated from the assembled films was elucidated. The morphological structures and the optical properties proved that the SiO 2 /PEI film fabricated on PET substrate formed a homogeneous inorganic/organic SiO 2 /PEI composite layer, and the structural colors were originated from single thin film interference. - Highlights: • SiO 2 /PEI thin films were electrostatic self-assembled on PET substrates. • The surface morphology and optical behavior of the film were investigated. • The structural colors varied with various SiO 2 particle sizes and assembly cycles. • Different hue and lightness of SiO 2 /PEI film were observed at various viewing angles. • Structural color of the SiO 2 /PEI film originated from single thin film interference

  17. High performance a-IGZO thin-film transistors with mf-PVD SiO2 as an etch-stop-layer

    NARCIS (Netherlands)

    Nag, M.; Steudel, S.; Bhoolokam, A.; Chasin, A.; Rockele, M.; Myny, K.; Maas, J.; Fritz, T.; Trube, J.; Groeseneken, G.; Heremans, P.

    2014-01-01

    In this work, we report on high-performance bottom-gate top-contact (BGTC) amorphous-Indium-Gallium-Zinc-Oxide (a-IGZO) thin-film transistor (TFT) with SiO2 as an etch-stop-layer (ESL) deposited by medium frequency physical vapor deposition (mf-PVD). The TFTs show field-effect mobility (μFE) of

  18. Fabrication of a Large-Area Superhydrophobic SiO2 Nanorod Structured Surface Using Glancing Angle Deposition

    Directory of Open Access Journals (Sweden)

    Xun Lu

    2017-01-01

    Full Text Available A glancing angle deposition (GLAD technique was used to generate SiO2 nanorods on a glass substrate to fabricate a low-cost superhydrophobic functional nanostructured surface. GLAD-deposited SiO2 nanorod structures were fabricated using various deposition rates, substrate rotating speeds, oblique angles, and deposition times to analyze the effects of processing conditions on the characteristics of the fabricated functional nanostructures. The wettability of the surface was measured after surface modification with a self-assembled monolayer (SAM. The measured water contact angles were primarily affected by substrate rotation speed and oblique angle because the surface fraction of the GLAD nanostructure was mainly affected by these parameters. A maximum contact angle of 157° was obtained from the GLAD sample fabricated at a rotation speed of 5 rpm and an oblique angle of 87°. Although the deposition thickness (height of the nanorods was not a dominant factor for determining the wettability, we selected a deposition thickness of 260 nm as the optimum processing condition based on the measured optical transmittance of the samples because optically transparent films can serve as superhydrophobic functional nanostructures for optical applications.

  19. Effects of substrate temperature on structural and electrical properties of SiO2-matrix boron-doped silicon nanocrystal thin films

    International Nuclear Information System (INIS)

    Huang, Junjun; Zeng, Yuheng; Tan, Ruiqin; Wang, Weiyan; Yang, Ye; Dai, Ning; Song, Weijie

    2013-01-01

    In this work, silicon-rich SiO 2 (SRSO) thin films were deposited at different substrate temperatures (T s ) and then annealed by rapid thermal annealing to form SiO 2 -matrix boron-doped silicon-nanocrystals (Si-NCs). The effects of T s on the micro-structure and electrical properties of the SiO 2 -matrix boron-doped Si-NC thin films were investigated using Raman spectroscopy and Hall measurements. Results showed that the crystalline fraction and dark conductivity of the SiO 2 -matrix boron-doped Si-NC thin films both increased significantly when the T s was increased from room temperature to 373 K. When the T s was further increased from 373 K to 676 K, the crystalline fraction of 1373 K-annealed thin films decreased from 52.2% to 38.1%, and the dark conductivity reduced from 8 × 10 −3 S/cm to 5.5 × 10 −5 S/cm. The changes in micro-structure and dark conductivity of the SiO 2 -matrix boron-doped Si-NC thin films were most possibly due to the different amount of Si-O 4 bond in the as-deposited SRSO thin films. Our work indicated that there was an optimal T s , which could significantly increase the crystallization and conductivity of Si-NC thin films. Also, it was illumined that the low-resistivity SiO 2 -matrix boron-doped Si-NC thin films can be achieved under the optimal substrate temperatures, T s .

  20. Potential energy landscape of an interstitial O2 molecule in a SiO2 film near the SiO2/Si(001) interface

    Science.gov (United States)

    Ohta, Hiromichi; Watanabe, Takanobu; Ohdomari, Iwao

    2008-10-01

    Potential energy distribution of interstitial O2 molecule in the vicinity of SiO2/Si(001) interface is investigated by means of classical molecular simulation. A 4-nm-thick SiO2 film model is built by oxidizing a Si(001) substrate, and the potential energy of an O2 molecule is calculated at Cartesian grid points with an interval of 0.05 nm in the SiO2 film region. The result shows that the potential energy of the interstitial site gradually rises with approaching the interface. The potential gradient is localized in the region within about 1 nm from the interface, which coincides with the experimental thickness of the interfacial strained layer. The potential energy is increased by about 0.62 eV at the SiO2/Si interface. The result agrees with a recently proposed kinetic model for dry oxidation of silicon [Phys. Rev. Lett. 96, 196102 (2006)], which argues that the oxidation rate is fully limited by the oxidant diffusion.

  1. Characterization of electron beam deposited thin films of HfO2 and binary thin films of (HfO2:SiO2) by XRD and EXAFS measurements

    International Nuclear Information System (INIS)

    Das, N.C.; Sahoo, N.K.; Bhattacharyya, D.; Thakur, S.; Kamble, N.M.; Nanda, D.; Hazra, S.; Bal, J.K.; Lee, J.F.; Tai, Y.L.; Hsieh, C.A.

    2009-10-01

    In this report, we have discussed the microstructure and the local structure of composite thin films having varying hafnia and silica compositions and prepared by reactive electron beam evaporation. XRD and EXAFS studies have confirmed that the pure hafnium oxide thin film has crystalline microstructure whereas the films with finite hafnia and silica composition are amorphous. The result of EXAFS analysis has shown that the bond lengths as well as coordination numbers around hafnium atom change with the variation of hafnia and silica compositions in the thin film. Finally, change of bond lengths has been correlated with change of refractive index and band gap of the composite thin films. (author)

  2. Microstructure and magnetic properties of FePt:Ag nanocomposite films on SiO2/Si(1 0 0)

    International Nuclear Information System (INIS)

    Wang Hao; Yang, F.J.; Wang, H.B.; Cao, X.; Xue, S.X.; Wang, J.A.; Gao, Y.; Huang, Z.B.; Yang, C.P.; Chiah, M.F.; Cheung, W.Y.; Wong, S.P.; Li, Q.; Li, Z.Y.

    2006-01-01

    FePt:Ag nanocomposite films were prepared by pulsed filtered vacuum arc deposition system and subsequent rapid thermal annealing on SiO 2 /Si(1 0 0) substrates. The microstructure and magnetic properties were investigated. A strong dependence of coercivity and ordering of the face-central tetragonal structure on both Ag concentration and annealing temperature was observed. With Ag concentration of 22% in atomic ratio, the coercivity got to 6.0 kOe with a grain size of 6.7 nm when annealing temperature was 400 deg. C

  3. Role of yttria-stabilized zirconia produced by ion-beam-assisted deposition on the properties of RuO2 on SiO2/Si

    International Nuclear Information System (INIS)

    Jia, Q.X.; Arendt, P.; Groves, J.R.; Fan, Y.; Roper, J.M.; Foltyn, S.R.

    1998-01-01

    Highly conductive biaxially textured RuO 2 thin films were deposited on technically important SiO 2 /Si substrates by pulsed laser deposition, where yttria-stabilized zirconia (YSZ) produced by ion-beam-assisted-deposition (IBAD) was used as a template to enhance the biaxial texture of RuO 2 on SiO 2 /Si. The biaxially oriented RuO 2 had a room-temperature resistivity of 37 μΩ-cm and residual resistivity ratio above 2. We then deposited Ba 0.5 Sr 0.5 TiO 3 thin films on RuO 2 /IBAD-YSZ/SiO 2 /Si. The Ba 0.5 Sr 0.5 TiO 3 had a pure (111) orientation normal to the substrate surface and a dielectric constant above 360 at 100 kHz. copyright 1998 Materials Research Society

  4. Photoluminescence properties of powder and pulsed laser-deposited PbS nanoparticles in SiO2

    International Nuclear Information System (INIS)

    Dhlamini, M.S.; Terblans, J.J.; Ntwaeaborwa, O.M.; Ngaruiya, J.M.; Hillie, K.T.; Botha, J.R.; Swart, H.C.

    2008-01-01

    Thin films of lead sulfide (PbS) nanoparticles embedded in an amorphous silica (SiO 2 ) host were grown on Si(1 0 0) substrates at different temperatures by the pulsed laser deposition (PLD) technique. Surface morphology and photoluminescence (PL) properties of samples were analyzed with scanning electron microscopy (SEM) and a 458 nm Ar + laser, respectively. The PL data show a blue-shift from the normal emission at ∼3200 nm in PbS bulk to ∼560-700 nm in nanoparticulate PbS powders and thin films. Furthermore, the PL emission of the films was red-shifted from that of the powders at ∼560 to ∼660 nm. The blue-shifting of the emission wavelengths from 3200 to ∼560-700 nm is attributed to quantum confinement of charge carriers in the restricted volume of nanoparticles, while the red-shift between powders and thin-film PbS nanoparticles is speculated to be due to an increase in the defect concentration. The red-shift increased slightly with an increase in deposition temperature, which suggests that there has been a relative growth in particle sizes during the PLD of the films at higher temperatures. Generally, the PL emission of the powders was more intense than that of the films, although the intensity of some of the films was improved marginally by post-deposition annealing at 400 deg. C. This paper compares the PL properties of powder and pulsed laser-deposited thin films of PbS nanoparticles and the effects of deposition temperatures

  5. Effects of deposition rates on laser damage threshold of TiO2/SiO2 high reflectors

    International Nuclear Information System (INIS)

    Yao Jianke; Xu Cheng; Ma Jianyong; Fang Ming; Fan Zhengxiu; Jin Yunxia; Zhao Yuanan; He Hongbo; Shao Jianda

    2009-01-01

    TiO 2 single layers and TiO 2 /SiO 2 high reflectors (HR) are prepared by electron beam evaporation at different TiO 2 deposition rates. It is found that the changes of properties of TiO 2 films with the increase of rate, such as the increase of refractive index and extinction coefficient and the decrease of physical thickness, lead to the spectrum shift and reflectivity bandwidth broadening of HR together with the increase of absorption and decrease of laser-induced damage threshold. The damages are found of different morphologies: a shallow pit to a seriously delaminated and deep crater, and the different amorphous-to-anatase-to-rutile phase transition processes detected by Raman study. The frequency shift of Raman vibration mode correlates with the strain in film. Energy dispersive X-ray analysis reveals that impurities and non-stoichiometric defects are two absorption initiations resulting to the laser-induced transformation.

  6. A novel growth mode of alkane films on a SiO2 surface

    DEFF Research Database (Denmark)

    Mo, H.; Taub, H.; Volkmann, U.G.

    2003-01-01

    on the SiO2 surface with the long-axis of the C32 molecules oriented parallel to the interface followed by a C32 monolayer with the long-axis perpendicular to it. Finally, preferentially oriented bulk particles nucleate having two different crystal structures. This growth model differs from that found...... previously for shorter alkanes deposited from the vapor phase onto solid surfaces....

  7. Thermally tunable VO2-SiO2 nanocomposite thin-film capacitors

    Science.gov (United States)

    Sun, Yifei; Narayanachari, K. V. L. V.; Wan, Chenghao; Sun, Xing; Wang, Haiyan; Cooley, Kayla A.; Mohney, Suzanne E.; White, Doug; Duwel, Amy; Kats, Mikhail A.; Ramanathan, Shriram

    2018-03-01

    We present a study of co-sputtered VO2-SiO2 nanocomposite dielectric thin-film media possessing continuous temperature tunability of the dielectric constant. The smooth thermal tunability is a result of the insulator-metal transition in the VO2 inclusions dispersed within an insulating matrix. We present a detailed comparison of the dielectric characteristics of this nanocomposite with those of a VO2 control layer and of VO2/SiO2 laminate multilayers of comparable overall thickness. We demonstrated a nanocomposite capacitor that has a thermal capacitance tunability of ˜60% between 25 °C and 100 °C at 1 MHz, with low leakage current. Such thermally tunable capacitors could find potential use in applications such as sensing, thermal cloaks, and phase-change energy storage devices.

  8. Laser conditioning effect on HfO2/SiO2 film

    International Nuclear Information System (INIS)

    Wei Yaowei; Zhang Zhe; Liu Hao; Ouyang Sheng; Zheng Yi; Tang Gengyu; Chen Songlin; Ma Ping

    2013-01-01

    Laser conditioning is one of the important methods to improve the laser damage threshold of film optics. Firstly, a large aperture laser was used to irradiate the HfO 2 /SiO 2 reflectors, which were evaporated from hafnia and silica by e-beam. Secondly, a laser calorimeter was used to test the film absorption before and after laser irradiation. Focused ion beam (FIB) was few reported using on laser film, it was used to study the damage morphology and explore the cause of damage. The shooting of the partial ejection on nodule was obtained for the first time, which provided the basis for study the damage process. The results show that film absorption was decreased obviously after the laser irradiation, laser conditioning can raise the laser damage threshold by the 'cleaning mechanism'. For the HfO 2 /SiO 2 reflectors, laser conditioning was effective to eject the nodules on substrate. It resulted from the nodule residue not to affect the subsequent laser. In addition, laser conditioning was not effective to the nodule in the film, which might be from the material spatter in coating process. In this case, other method could be used to get rid of the nodules. (authors)

  9. Effects of Mev Si Ions and Thermal Annealing on Thermoelectric and Optical Properties of SiO2/SiO2+Ge Multi-nanolayer thin Films

    Science.gov (United States)

    Budak, S.; Alim, M. A.; Bhattacharjee, S.; Muntele, C.

    Thermoelectric generator devices have been prepared from 200 alternating layers of SiO2/SiO2+Ge superlattice films using DC/RF magnetron sputtering. The 5 MeV Si ionsbombardmenthasbeen performed using the AAMU Pelletron ion beam accelerator to formquantum dots and / or quantum clusters in the multi-layer superlattice thin films to decrease the cross-plane thermal conductivity, increase the cross-plane Seebeck coefficient and increase the cross-plane electrical conductivity to increase the figure of merit, ZT. The fabricated devices have been annealed at the different temperatures to tailor the thermoelectric and optical properties of the superlattice thin film systems. While the temperature increased, the Seebeck coefficient continued to increase and reached the maximum value of -25 μV/K at the fluenceof 5x1013 ions/cm2. The decrease in resistivity has been seen between the fluence of 1x1013 ions/cm2 and 5x1013 ions/cm2. Transport properties like Hall coefficient, density and mobility did not change at all fluences. Impedance spectroscopy has been used to characterize the multi-junction thermoelectric devices. The loci obtained in the C*-plane for these data indicate non-Debye type relaxation displaying the presence of the depression parameter.

  10. Deposition of conductive TiN shells on SiO2 nanoparticles with a fluidized bed ALD reactor

    NARCIS (Netherlands)

    Didden, A.; Hillebrand, P.; Wollgarten, M.; Dam, B.; Van de Krol, R.

    2016-01-01

    Conductive TiN shells have been deposited on SiO2 nanoparticles (10–20 nm primary particle size) with fluidized bed atomic layer deposition using TDMAT and NH3 as precursors. Analysis of the powders confirms that shell growth saturates at approximately 0.4 nm/cycle at TDMAT doses of >1.2 mmol/g of

  11. Effect of SiO2, PVA and glycerol concentrations on chemical and mechanical properties of alginate-based films.

    Science.gov (United States)

    Yang, Manli; Shi, Jinsheng; Xia, Yanzhi

    2018-02-01

    Sodium alginate (SA)/polyvinyl alcohol (PVA)/SiO 2 nanocomposite films were prepared by in situ polymerization through solution casting and solvent evaporation. The effect of different SA/PVA ratios, SiO 2 , and glycerol content on the mechanical properties, water content, water solubility, and water vapor permeability were studied. The nanocomposite films were characterized by Fourier transform infrared, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and thermal stability (thermogravimetric analysis/differential thermogravimetry) analyses. The nanocomposites showed the highest values of mechanical properties, such as SA/PVA ratio, SiO 2 , and glycerol content was 7:3, 6wt.%, and 0.25g/g SA, respectively. The tensile strength and elongation at break (E%) of the nanocomposites increased by 525.7% and 90.7%, respectively, compared with those of the pure alginate film. The Fourier transform infrared spectra showed a new SiOC band formed in the SA/PVA/SiO 2 nanocomposite film. The scanning electron microscopy image revealed good adhesion between SiO 2 and SA/PVA matrix. After the incorporation of PVA and SiO 2 , the water resistance of the SA/PVA/SiO 2 nanocomposite film was markedly improved. Transparency decreased with increasing PVA content but was enhanced by adding SiO 2 . Copyright © 2017. Published by Elsevier B.V.

  12. Effect of interfacial SiO2- y layer and defect in HfO2- x film on flat-band voltage of HfO2- x /SiO2- y stacks for backside-illuminated CMOS image sensors

    Science.gov (United States)

    Na, Heedo; Lee, Jimin; Jeong, Juyoung; Kim, Taeho; Sohn, Hyunchul

    2018-03-01

    In this study, the effect of oxygen gas fraction during deposition of a hafnium oxide (HfO2- x ) film and the influence of the quality of the SiO2- y interlayer on the nature of flat-band voltage ( V fb) in TiN/HfO/SiO2- y /p-Si structures were investigated. X-ray photoemission spectroscopy analysis showed that the non-lattice oxygen peak, indicating an existing oxygen vacancy, increased as the oxygen gas fraction decreased during sputtering. From C- V and J- E analyses, the V fb behavior was significantly affected by the characteristics of the SiO2- y interlayer and the non-lattice oxygen fraction in the HfO2- x films. The HfO2- x /native SiO2- y stack presented a V fb of - 1.01 V for HfO2- x films with an oxygen gas fraction of 5% during sputtering. Additionally, the V fb of the HfO2- x /native SiO2- y stack could be controlled from - 1.01 to - 0.56 V by changing the deposition conditions of the HfO2- x film with the native SiO2- y interlayer. The findings of this study can be useful to fabricate charge-accumulating layers for backside-illuminated image sensor devices.

  13. Regulating effect of SiO2 interlayer on optical properties of ZnO thin films

    International Nuclear Information System (INIS)

    Xu, Linhua; Zheng, Gaige; Miao, Juhong; Su, Jing; Zhang, Chengyi; Shen, Hua; Zhao, Lilong

    2013-01-01

    ZnO/SiO 2 nanocomposite films with periodic structure were prepared by electron beam evaporation technique. Regulating effect of SiO 2 interlayer with various thicknesses on the optical properties of ZnO/SiO 2 thin films was investigated deeply. The analyses of X-ray diffraction show that the ZnO layers in ZnO/SiO 2 nanocomposite films have a wurtzite structure and are preferentially oriented along the c-axis while the SiO 2 layers are amorphous. The scanning electron microscope images display that the ZnO layers are composed of columnar grains and the thicknesses of ZnO and SiO 2 layers are all very uniform. The SiO 2 interlayer presents a significant modulation effect on the optical properties of ZnO thin films, which is reflected in the following two aspects: (1) the transmittance of ZnO/SiO 2 nanocomposite films is increased; (2) the photoluminescence (PL) of ZnO/SiO 2 nanocomposite films is largely enhanced compared with that of pure ZnO thin films. The ZnO/SiO 2 nanocomposite films have potential applications in light-emitting devices and flat panel displays. -- Highlights: ► ZnO/SiO 2 nanocomposite films with periodic structure were prepared by electron beam evaporation technique. ► The SiO 2 interlayer presents a significant modulation effect on the optical properties of ZnO thin films. ► The photoluminescence of ZnO/SiO 2 nanocomposite films is largely enhanced compared with that of pure ZnO thin films. ► The ZnO/SiO 2 nanocomposite films have potential applications in light-emitting devices and flat panel displays

  14. Synthesis and characterization of Al2O3 and SiO2 films with fluoropolymer content using rf-plasma magnetron sputtering technique

    International Nuclear Information System (INIS)

    Islam, Mohammad; Inal, Osman T.

    2008-01-01

    Pure and molecularly mixed inorganic films for protection against atomic oxygen in lower earth orbit were prepared using radio-frequency (rf) plasma magnetron sputtering technique. Alumina (Al 2 O 3 ) and silica (SiO 2 ) films with average grain size in the range of 30-80 nm and fully dense or dense columnar structure were synthesized under different conditions of pressure and power. Simultaneous oxide sputtering and plasma polymerization (PP) of hexafluoropropylene (HFP) led to the formation of molecularly mixed films with fluoropolymer content. The degree of plasma polymerization was strongly influenced by total chamber pressure and the argon to HFP molar ratio (n Ar /n M ). An order of magnitude increase in pressure due to argon during codeposition changed the plasma-polymerization mechanism from radical-chain- to radical-radical-type processes. Subsequently, a shift from linear CH 2 group based chain polymerization to highly disordered fluoropolymer content with branching and cross-linking was observed. Fourier transform infrared spectroscopy studies revealed chemical interaction between depositing SiO 2 and PP-HFP through appearance of absorption bands characteristic of Si-F stretching and expansion of SiO 2 network. The relative amount and composition of plasma-polymerized fluoropolymer in such films can be controlled by changing argon to HFP flow ratio, total chamber pressure, and applied power. These films offer great potential for use as protective coatings in aerospace applications

  15. Porous SiO2/HAp Coatings on Cp-Titanium Grade 1 Surfaces Produced by Electrophoretic Deposition

    Directory of Open Access Journals (Sweden)

    Moskalewicz T.

    2016-12-01

    Full Text Available Porous hydroxyapatite doped SiO2 coatings were electrophoretically deposited (EPD on commercially pure titanium. The influence of EPD parameters on coatings quality was investigated. Microstructural observation was done using transmission and scanning electron microscopy as well as X-ray diffractometry.

  16. Characterization of Ultra thin chromium layers deposited ou to SiO2 using the Le-PIXE and the RB S techniques

    International Nuclear Information System (INIS)

    Zahraman, K.; Nsouli, B.; Roumie, M.

    2007-01-01

    In this paper, we demonstrate the ability of the Le-PIXE (Low Energy PIXE) technique, using proton energies < 1 MeV, for the monitoring of the thickness and the thickness uniformity of ultra thin (0.5 nm < t < 20 nm) chromium layers deposited onto quartz substrates. Chromium is a good candidate for obtaining conductive ultra thin layers on insulator substrates such as quartz (SiO2). The resistivity of such layers is highly related to the quality of the deposited chromium film. In order to optimize the deposition process, there is a need for rapid and accurate monitoring of such films (film thickness, thickness uniformity over a big surface...). The acquisition time needed to obtain results with less than 3-4 % precision was 5 minutes for the thinnest layers. The validation for the use of the Le-PIXE technique was checked by means of conventional RB S technique.

  17. Suppression of dewetting phenomena during excimer laser melting of thin metal films on SiO2

    International Nuclear Information System (INIS)

    Kline, J.E.; Leonard, J.P.

    2005-01-01

    Pulsed excimer laser irradiation has been used to fully melt 200 nm films of elemental Au and Ni on SiO 2 substrates. With the use of a capping layer of SiO 2 and line irradiation via projection optics, the typical liquid-phase dewetting processes associated with these metals on SiO 2 has been suppressed. In a series of experiments varying line widths and fluence, a process region is revealed immediately above the complete melting threshold for which the films remain continuous and smooth after melting and resolidification. Simple energetic arguments for mechanisms leading to initiation of dewetting support these observations, and a gas-mediated model is proposed to describe the process conditions that are necessary for the suppression of dewetting

  18. Compositional dependence of absorption coefficient and band-gap for Nb2O5-SiO2 mixture thin films

    International Nuclear Information System (INIS)

    Sancho-Parramon, Jordi; Janicki, Vesna; Zorc, Hrvoje

    2008-01-01

    The absorption coefficient of composite films consisting of niobia (Nb 2 O 5 ) and silica (SiO 2 ) mixtures is studied for photon energies around the band gap. The films were deposited by co-evaporation and their composition was varied by changing the ratio of deposition rates of the two materials. Both, as-deposited and thermally annealed films were characterized by different techniques: the absorption coefficient was determined by spectrophotometric measurements and the structural properties were investigated using infrared spectroscopy, transmission electron microscopy and X-ray diffraction. The correlation between the variations of absorption properties and film composition and structure is established. The absorption coefficients determined experimentally are compared with the results derived from effective medium theories in order to evaluate the suitability of these theories for the studied composites

  19. Photoluminescent characteristics of ion beam synthesized Ge nanoparticles in thermally grown SiO2 films

    International Nuclear Information System (INIS)

    Yu, C.F.; Chao, D.S.; Chen, Y.-F.; Liang, J.H.

    2013-01-01

    Prospects of developing into numerous silicon-based optoelectronic applications have prompted many studies on the optical properties of Ge nanoparticles within a silicon oxide (SiO 2 ) matrix. Even with such abundant studies, the fundamental mechanism underlying the Ge nanoparticle-induced photoluminescence (PL) is still an open question. In order to elucidate the mechanism, we dedicate this study to investigating the correlation between the PL properties and microstructure of the Ge nanoparticles synthesized in thermally grown SiO 2 films. Our spectral data show that the peak position, at ∼3.1 eV or 400 nm, of the PL band arising from the Ge nanoparticles was essentially unchanged under different Ge implantation fluences and the temperatures of the following annealing process, whereas the sample preparation parameters modified or even fluctuated (in the case of the annealing temperature) the peak intensity considerably. Given the microscopically observed correlation between the nanoparticle structure and the sample preparation parameters, this phenomenon is consistent with the mechanism in which the oxygen-deficiency-related defects in the Ge/SiO 2 interface act as the major luminescence centers; this mechanism also successfully explains the peak intensity fluctuation with the annealing temperature. Moreover, our FTIR data indicate the formation of GeO x upon ion implantation. Since decreasing of the oxygen-related defects by the GeO x formation is expected to be correlated with the annealing temperature, presence of the GeO x renders further experimental support to the oxygen defect mechanism. This understanding may assist the designing of the manufacturing process to optimize the Ge nanoparticle-based PL materials for different technological applications

  20. Surface passivation of n-type doped black silicon by atomic-layer-deposited SiO2/Al2O3 stacks

    Science.gov (United States)

    van de Loo, B. W. H.; Ingenito, A.; Verheijen, M. A.; Isabella, O.; Zeman, M.; Kessels, W. M. M.

    2017-06-01

    Black silicon (b-Si) nanotextures can significantly enhance the light absorption of crystalline silicon solar cells. Nevertheless, for a successful application of b-Si textures in industrially relevant solar cell architectures, it is imperative that charge-carrier recombination at particularly highly n-type doped black Si surfaces is further suppressed. In this work, this issue is addressed through systematically studying lowly and highly doped b-Si surfaces, which are passivated by atomic-layer-deposited Al2O3 films or SiO2/Al2O3 stacks. In lowly doped b-Si textures, a very low surface recombination prefactor of 16 fA/cm2 was found after surface passivation by Al2O3. The excellent passivation was achieved after a dedicated wet-chemical treatment prior to surface passivation, which removed structural defects which resided below the b-Si surface. On highly n-type doped b-Si, the SiO2/Al2O3 stacks result in a considerable improvement in surface passivation compared to the Al2O3 single layers. The atomic-layer-deposited SiO2/Al2O3 stacks therefore provide a low-temperature, industrially viable passivation method, enabling the application of highly n- type doped b-Si nanotextures in industrial silicon solar cells.

  1. Atomic layer deposition of W - based layers on SiO2

    NARCIS (Netherlands)

    van Nieuwkasteele-Bystrova, Svetlana Nikolajevna; Holleman, J.; Wolters, Robertus A.M.; Aarnink, Antonius A.I.

    2003-01-01

    W and W1-xNx , where x= 15- 22 at%, thin films were grown using the ALD (Atomic Layer Deposition) principle. Growth rate of W films is about 4- 5 monolayers/ cycle at 300- 350 ºC. Growth rate of W1-xNx is 0.5 monolayer/cycle at 325- 350 ºC. Standard Deviation (STDV) of thickness is about 2%

  2. Atomic force microscopy measurements of topography and friction on dotriacontane films adsorbed on a SiO2 surface

    DEFF Research Database (Denmark)

    Trogisch, S.; Simpson, M.J.; Taub, H.

    2005-01-01

    We report comprehensive atomic force microscopy (AFM) measurements at room temperature of the nanoscale topography and lateral friction on the surface of thin solid films of an intermediate-length normal alkane, dotriacontane (n-C32H66), adsorbed onto a SiO2 surface. Our topographic and frictional...

  3. Composite SiOx/hydrocarbon plasma polymer films prepared by RF magnetron sputtering of SiO2 and polyimide

    Czech Academy of Sciences Publication Activity Database

    Drabik, M.; Kousal, J.; Pinosh, Y.; Choukourov, A.; Biederman, H.; Slavínská, D.; Macková, Anna; Boldyryeva, Hanna; Pešička, J.

    2007-01-01

    Roč. 81, č. 7 (2007), s. 920-927 ISSN 0042-207X Institutional research plan: CEZ:AV0Z10480505 Keywords : composite films * magnetron * sputtering * polyimide * SiO2 Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.881, year: 2007

  4. Surface texture modification of spin-coated SiO2 xerogel thin films ...

    Indian Academy of Sciences (India)

    hydrolysis and condensation of tetraethylorthosilicate (TEOS) with ethanol as a solvent. Further, the deposited thin films were ... termed as hydrolysis and condensation that occur simultane- ously in the formation of silica films. ... rial leads to capillary tensions, which destroy the structure of silica (Naik and Ghosh 2009).

  5. Influence of plasma-generated negative oxygen ion impingement on magnetron sputtered amorphous SiO2 thin films during growth at low temperatures

    International Nuclear Information System (INIS)

    Macias-Montero, M.; Garcia-Garcia, F. J.; Alvarez, R.; Gil-Rostra, J.; Gonzalez, J. C.; Gonzalez-Elipe, A. R.; Palmero, A.; Cotrino, J.

    2012-01-01

    Growth of amorphous SiO 2 thin films deposited by reactive magnetron sputtering at low temperatures has been studied under different oxygen partial pressure conditions. Film microstructures varied from coalescent vertical column-like to homogeneous compact microstructures, possessing all similar refractive indexes. A discussion on the process responsible for the different microstructures is carried out focusing on the influence of (i) the surface shadowing mechanism, (ii) the positive ion impingement on the film, and (iii) the negative ion impingement. We conclude that only the trend followed by the latter and, in particular, the impingement of O - ions with kinetic energies between 20 and 200 eV, agrees with the resulting microstructural changes. Overall, it is also demonstrated that there are two main microstructuring regimes in the growth of amorphous SiO 2 thin films by magnetron sputtering at low temperatures, controlled by the amount of O 2 in the deposition reactor, which stem from the competition between surface shadowing and ion-induced adatom surface mobility.

  6. Lateral protonic/electronic hybrid oxide thin-film transistor gated by SiO2 nanogranular films

    International Nuclear Information System (INIS)

    Zhu, Li Qiang; Chao, Jin Yu; Xiao, Hui

    2014-01-01

    Ionic/electronic interaction offers an additional dimension in the recent advancements of condensed materials. Here, lateral gate control of conductivities of indium-zinc-oxide (IZO) films is reported. An electric-double-layer (EDL) transistor configuration was utilized with a phosphorous-doped SiO 2 nanogranular film to provide a strong lateral electric field. Due to the strong lateral protonic/electronic interfacial coupling effect, the IZO EDL transistor could operate at a low-voltage of 1 V. A resistor-loaded inverter is built, showing a high voltage gain of ∼8 at a low supply voltage of 1 V. The lateral ionic/electronic coupling effects are interesting for bioelectronics and portable electronics

  7. Biocomposite of Cassava Starch Reinforced with Cellulose Pulp Fibers Modified with Deposition of Silica (SiO2 Nanoparticles

    Directory of Open Access Journals (Sweden)

    Joabel Raabe

    2015-01-01

    Full Text Available Eucalyptus pulp cellulose fibers were modified by the sol-gel process for SiO2 superficial deposition and used as reinforcement of thermoplastic starch (TPS. Cassava starch, glycerol, and water were added at the proportion of 60/26/14, respectively. For composites, 5% and 10% (by weight of modified and unmodified pulp fibers were added before extrusion. The matrix and composites were submitted to thermal stability, tensile strength, moisture adsorption, and SEM analysis. Micrographs of the modified fibers revealed the presence of SiO2 nanoparticles on fiber surface. The addition of modified fibers improved tensile strength in 183% in relation to matrix, while moisture adsorption decreased 8.3%. Such improvements were even more effective with unmodified fibers addition. This result was mainly attributed to poor interaction between modified fibers and TPS matrix detected by SEM analysis.

  8. Ta2O5/ Al2O3/ SiO2 - antireflective coating for non-planar optical surfaces by atomic layer deposition

    Science.gov (United States)

    Pfeiffer, K.; Schulz, U.; Tünnermann, A.; Szeghalmi, A.

    2017-02-01

    Antireflective coatings are essential to improve transmittance of optical elements. Most research and development of AR coatings has been reported on a wide variety of plane optical surfaces; however, antireflection is also necessary on nonplanar optical surfaces. Physical vapor deposition (PVD), a common method for optical coatings, often results in thickness gradients on strongly curved surfaces, leading to a failure of the desired optical function. In this work, optical thin films of tantalum pentoxide, aluminum oxide and silicon dioxide were prepared by atomic layer deposition (ALD), which is based on self-limiting surface reactions. The results demonstrate that ALD optical layers can be deposited on both vertical and horizontal substrate surfaces with uniform thicknesses and the same optical properties. A Ta2O5/Al2O3/ SiO2 multilayer AR coating (400-700 nm) was successfully applied to a curved aspheric glass lens with a diameter of 50 mm and a center thickness of 25 mm.

  9. The structural studies of aluminosilicate gels and thin films synthesized by the sol-gel method using different Al2O3 and SiO2 precursors

    Directory of Open Access Journals (Sweden)

    Adamczyk Anna

    2015-12-01

    Full Text Available Aluminosilicate materials were obtained by sol-gel method, using different Al2O3 and SiO2 precursors in order to prepare sols based on water and organic solvents. As SiO2 precursors, Aerosil 200TM and tetraethoxysilane TEOS: Si(OC2H54 were applied, while DisperalTM and aluminium secondary butoxide ATSB: Al(OC4H93 were used for Al2O3 ones. Bulk samples were obtained by heating gels at 500 °C, 850 °C and at 1150 °C in air, while thin films were synthesized on carbon, steel and alundum (representing porous ceramics substrates by the dip coating method. Thin films were annealed in air (steel and alundum and in argon (carbon at different temperatures, depending on the substrate type. The samples were synthesized as gels and coatings of the composition corresponding the that of 3Al2O3·2SiO2 mullite because of the specific valuable properties of this material. The structure of the annealed bulk samples and coatings was studied by FT-IR spectroscopy and XRD method (in standard and GID configurations. Additionally, the electron microscopy (SEM together with EDS microanalysis were applied to describe the morphology and the chemical composition of thin films. The analysis of FT-IR spectra and X-ray diffraction patterns of bulk samples revealed the presence of γ-Al2O3 and δ-Al2O3 phases, together with the small amount of SiO2 in the particulate samples. This observation was confirmed by the bands due to vibrations of Al–O bonds occurring in γ-Al2O3 and δ-Al2O3 structures, in the range of 400 to 900 cm−1. The same phases (γ-Al2O3 and δ-Al2O were observed in the deposited coatings, but the presence of particulate ones strongly depended on the type of Al2O3 and SiO2 precursor and on the heat treatment temperature. All thin films contained considerable amounts of amorphous phase.

  10. Strong piezoelectricity in single-layer graphene deposited on SiO2 grating substrates.

    Science.gov (United States)

    da Cunha Rodrigues, Gonçalo; Zelenovskiy, Pavel; Romanyuk, Konstantin; Luchkin, Sergey; Kopelevich, Yakov; Kholkin, Andrei

    2015-06-25

    Electromechanical response of materials is a key property for various applications ranging from actuators to sophisticated nanoelectromechanical systems. Here electromechanical properties of the single-layer graphene transferred onto SiO2 calibration grating substrates is studied via piezoresponse force microscopy and confocal Raman spectroscopy. The correlation of mechanical strains in graphene layer with the substrate morphology is established via Raman mapping. Apparent vertical piezoresponse from the single-layer graphene supported by underlying SiO2 structure is observed by piezoresponse force microscopy. The calculated vertical piezocoefficient is about 1.4 nm V(-1), that is, much higher than that of the conventional piezoelectric materials such as lead zirconate titanate and comparable to that of relaxor single crystals. The observed piezoresponse and achieved strain in graphene are associated with the chemical interaction of graphene's carbon atoms with the oxygen from underlying SiO2. The results provide a basis for future applications of graphene layers for sensing, actuating and energy harvesting.

  11. Study of sputtered ZnO thin films on SiO2 and GaP substrates

    International Nuclear Information System (INIS)

    Brath, T.; Buc, D.; Kovac, J.; Hrnciar, V.; Caplovic, L.

    2011-01-01

    We have investigated n-ZnO polycrystalline thin films prepared on SiO 2 and p-GaP substrate using magnetron sputtering technique. The structural and electrical properties of these structures were studied. The measured parameters give promising results with a possibility to utilize n-ZnO/p-GaP heterostructure for application in the solar cells development especially in the field of nanostructures. The prepared structures will be a subject of further research. (authors)

  12. Target swapping in PLD: An efficient approach for CdS/SiO2 and CdS:Ag(1%)/SiO2 nanocomposite thin films with enhanced luminescent properties

    International Nuclear Information System (INIS)

    Saxena, Nupur; Kumar, Pragati; Gupta, Vinay

    2017-01-01

    A novel synthesis method for luminescent and by-products (like CdO) free CdS/SiO 2 and CdS:Ag(1%)/SiO 2 (i.e. 1%Ag doped CdS/SiO 2 ) nanocomposite thin films at room temperature by pulsed laser deposition is reported. Targets of CdS, CdS:Ag(1%) and SiO 2 are used to deposit CdS/SiO 2 and CdS:Ag(1%)/SiO 2 nanocomposite thin films by swapping them at a frequency ratio of 2:8 laser pulses/sec. X-ray photoelectron spectroscopy analysis ensures the ratio of CdS to SiO 2 in nanocomposite as 21:79 which is nearly same as the ratio of incident pulses/sec (i.e. 2:8) on the two targets. Transmission electron micrographs visualize the formation of CdS/ CdS:Ag(1%) nanocrystals in nanocomposite systems after annealing at 500 °C. Highly intense and broad red emission is achieved from CdS/SiO 2 and CdS:Ag(1%)/SiO 2 nanocomposites. The efficiencies of emission from pristine CdS:SiO 2 and CdS:Ag(1%)/SiO 2 nanocomposites are found to be enhanced by approximately two times as compared to sole nanocrystalline CdS and CdS:Ag(1%) thin films respectively and further enhanced upto 7 times on annealing the nanocomposite systems at 500 °C. - Graphical abstract: A modified synthesis method for luminescent and by-products (like CdO) free undoped &1% Ag doped CdS/SiO 2 (deposit CdS/SiO 2 and CdS:Ag(1%)/SiO 2 ) nanocomposite thin films at room temperature by pulsed laser deposition is reported. Targets of CdS or CdS:Ag(1%) and SiO 2 are used to deposit CdS/SiO 2 and CdS:Ag(1%)/SiO 2 nanocomposite thin films by swapping them at a frequency of 2:8 pulses/sec. X-ray photoelectron spectroscopy analysis ensures the ratio of CdS to SiO 2 in nanocomposite as 21:79 which is nearly same as the ratio of incident pulses/sec (2:8) on the two targets. Transmission electron micrographs visualize the formation of CdS nanocrystals in nanocomposite systems after annealing at 500 °C. Intense and broad red emission is achieved from deposit CdS/SiO 2 and CdS:Ag(1%)/SiO 2 nanocomposites. The efficiency of

  13. Shift in room-temperature photoluminescence of low-fluence Si+-implanted SiO2 films subjected to rapid thermal annealing

    International Nuclear Information System (INIS)

    Fu Mingyue; Tsai, J.-H.; Yang, C.-F.; Liao, C.-H.

    2008-01-01

    We experimentally demonstrate the effect of the rapid thermal annealing (RTA) in nitrogen flow on photoluminescence (PL) of SiO 2 films implanted by different doses of Si + ions. Room-temperature PL from 400-nm-thick SiO 2 films implanted to a dose of 3x10 16 cm -2 shifted from 2.1 to 1.7 eV upon increasing RTA temperature (950-1150 deg. C) and duration (5-20 s). The reported approach of implanting silicon into SiO 2 films followed by RTA may be effective for tuning Si-based photonic devices.

  14. The Effects of SiO2 Nanoparticles on Mechanical and Physicochemical Properties of Potato Starch Films

    Directory of Open Access Journals (Sweden)

    Z. Torabi

    2013-06-01

    Full Text Available In this paper effect of SiO2 nanoparticles was investigated on potato starch films. Potato starch films were prepared by casting method with addition of nano-silicon dioxide and a mixture of sorbitol/glycerol (weight ratio of 3 to 1 as plasticizers. SiO2 nanoparticles incorporated to the potato starch films at different concentrations 0, 1, 2, 3, and 5% of total solid, and the films were dried under controlled conditions.  Physicochemical properties such as water absorption capacity (WAC, water vapor permeability (WVP and mechanical properties of the films were measured. Results show that by increasing the concentration of silicon dioxide nanoparticles, mechanical properties of films can be improved. Also incorporation of silicon dioxide nanoparticles in the structure of biopolymer decrease permeability of the gaseous molecules such as water vapor. In summary, addition of silicon dioxide nanoparticles improves functional properties of potato starch films and these bio Nano composites can be used in food packaging.

  15. Alkali passivation mechanism of sol-gel derived TiO2-SiO2 films coated on soda-lime-silica glass substrates

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, A; Matsuno, Y; Katayama, S; Tsuno, T [Nippon Steel Glass Co. Ltd., Tokyo (Japan); Toge, N; Minami, T [University of Osaka Prefecture, Osaka (Japan). College of Engineering

    1992-09-01

    TiO2-SiO2 films prepared by the sol-gel method serves as an effective alkali passivation layer on a soda-lime-silica glass substrate and the film is superior to a sol-gel derived pure SiO2 film from the view point of weathering resistance improvement. To clarify the reason, alkali passivation mechanism of sol-gel derived TiO2-SiO2 glass films with different TiO2 contents coated on a soda-lime-silica glass substrate was studied by SIMS (secondary ion mass spectroscopy) and XPS (X-ray photoelectron spectroscopy) analyses, and compared with the results of a sol-gel derived pure SiO2 film. As a result, the following conclusions were obtained: An increase in TiO2 content in the TiO2 SiO2 film increases the sodium concentration in the film, which was induced by sodium migration from the glass substrate during the heat-treatment. Because of the presence of sodium the TiO2 -SiO2 films serve not as a barrier but as an effective getter of alkali ions and thereby effectively improve the weathering resistance Of the glass substrate. 10 refs., 6 figs.

  16. Pulsed ion-beam assisted deposition of Ge nanocrystals on SiO2 for non-volatile memory device

    International Nuclear Information System (INIS)

    Stepina, N.P.; Dvurechenskii, A.V.; Armbrister, V.A.; Kirienko, V.V.; Novikov, P.L.; Kesler, V.G.; Gutakovskii, A.K.; Smagina, Z.V.; Spesivtzev, E.V.

    2008-01-01

    A floating gate memory structure, utilizing Ge nanocrystals (NCs) deposited on tunnel SiO 2 , have been fabricated using pulsed low energy ion-beam induced molecular-beam deposition (MBD) in ultra-high vacuum. The ion-beam action is shown to stimulate the nucleation of Ge NCs when being applied after thin Ge layer deposition. Growth conditions for independent change of NCs size and array density were established allowing to optimize the structure parameters required for memory device. Activation energy E = 0.25 eV was determined from the temperature dependence of NCs array density. Monte Carlo simulation has shown that the process, determining NCs array density, is the surface diffusion. Embedding of the crystalline Ge dots into silicon oxide was carried out by selective oxidation of Si(100)/SiO 2 /Ge(NCs)/poly-Si structure. MOS-capacitor obtained after oxidation showed a hysteresis in its C-V curves attributed to charge retention in the Ge dots

  17. Surface PIXE analysis of phosphorus in a thin SiO2 (P, B) CVD layer deposited onto Si substrate

    International Nuclear Information System (INIS)

    Roumie, M.; Nsouli, B.

    2001-01-01

    Phosphorus determination, at level of percent, in Si matrix is not an easy analytical task. The analyzed materials arc Borophosphosilicate glass which are an important component of silicon based semiconductor technology. It's a thin SiO2 layer (400 nm) doped with boron and phosphorus using, in general, CVD (Chemical Vapor Deposition) process, in order to improve its plasticity, and deposited onto Si substrate. Therefore, the mechanical behaviour of the CVD SiO2 (P, B) layer is very sensitive to the phosphorus concentration. In this work we explore the capability of FIXE (Particle Induced X-ray Emission) to monitor a rapid and accurate quantification of P which is usually very low in such materials (few percent of the thin CVD layer deposited onto a silicon substrate). A systematic study is undertaken using Proton (0.5-3 MeV energy) and helium (1-3 MeV energy) beams, different thickness of X-ray absorber (131 and 146 μm of Kapton filter) and different tilting angles (0,45,60 and 80 deg.). The optimized measurement conditions should improve the P signal detection comparing to the Si and Background ones

  18. Van der Waals epitaxial growth of MoS2 on SiO2/Si by chemical vapor deposition

    KAUST Repository

    Cheng, Yingchun

    2013-01-01

    Recently, single layer MoS2 with a direct band gap of 1.9 eV has been proposed as a candidate for two dimensional nanoelectronic devices. However, the synthetic approach to obtain high-quality MoS2 atomic thin layers is still problematic. Spectroscopic and microscopic results reveal that both single layers and tetrahedral clusters of MoS2 are deposited directly on the SiO2/Si substrate by chemical vapor deposition. The tetrahedral clusters are mixtures of 2H- and 3R-MoS2. By ex situ optical analysis, both the single layers and tetrahedral clusters can be attributed to van der Waals epitaxial growth. Due to the similar layered structures we expect the same growth mechanism for other transition-metal disulfides by chemical vapor deposition. © 2013 The Royal Society of Chemistry.

  19. Diffusion limited Cu and Au nanocrystal formation in thin film SiO2

    International Nuclear Information System (INIS)

    Johannessen, B.; Kluth, P.; Glover, C.J.; Foran, G.J.; Ridgway, M.C.

    2006-01-01

    Elemental Cu and Au nanocrystals (NCs) were produced by high-energy ion-implantations into amorphous silica (SiO 2 ) and subsequent thermal annealing. By a combination of X-ray diffraction (XRD) and cross-sectional transmission electron microscopy (XTEM) we confirm both NC species to have the bulk face-centered cubic phase and estimate their average diameter. We concentrate on the investigation of the concentration and size-dependent coordination number (China) of these matrix embedded NCs utilising extended X-ray absorption fine structure (EXAFS) spectroscopy. The CN is found to be suppressed compared to that of a bulk standard. The CN in Au NCs is found to be lower than that of Cu NCs in agreement with smaller average Au NC sizes. We explain this difference by the difference in diffusivity for the two atomic species in SiO 2

  20. Annealing behavior of oxygen in-diffusion from SiO2 film to silicon substrate

    International Nuclear Information System (INIS)

    Abe, T.; Yamada-Kaneta, H.

    2004-01-01

    Diffusion behavior of oxygen at (near) the Si/SiO 2 interface was investigated. We first oxidized the floating-zone-grown silicon substrates, and then annealed the SiO 2 -covered substrates in an argon ambient. We examined two different conditions for oxidation: wet and dry oxidation. By the secondary-ion-mass spectrometry, we measured the depth profiles of the oxygen in-diffusion of these heat-treated silicon substrates: We found that the energy of dissolution (in-diffusion) of an oxygen atom that dominates the oxygen concentration at the Si/SiO 2 interface depends on the oxidation condition: 2.0 and 1.7 eV for wet and dry oxidation, respectively. We also found that the barrier heights for the oxygen diffusion in argon anneal were significantly different for different ambients adopted for the SiO 2 formation: 3.3 and 1.8 eV for wet and dry oxidation, respectively. These findings suggest that the microscopic behavior of the oxygen atoms at the Si/SiO 2 interface during the argon anneal depends on the ambient adopted for the SiO 2 formation

  1. Annealing temperature effect on structure and electrical properties of films formed of Ge nanoparticles in SiO2

    International Nuclear Information System (INIS)

    Stavarache, Ionel; Lepadatu, Ana-Maria; Stoica, Toma; Ciurea, Magdalena Lidia

    2013-01-01

    Ge–SiO 2 films with high Ge/Si atomic ratio of about 1.86 were obtained by co-sputtering of Ge and SiO 2 targets and subsequently annealed at different temperatures between 600 and 1000 °C in a conventional furnace in order to show how the annealing process influences the film morphology concerning the Ge nanocrystal and/or amorphous nanoparticle formation and to study their electrical behaviour. Atomic force microscopy (AFM) imaging, Raman spectroscopy and electrical conductance measurements were performed in order to find out the annealing effect on the film surface morphology, as well as the Ge nanoparticle formation in correlation with the hopping conductivity of the films. AFM images show that the films annealed at 600 and 700 °C present a granular surface with particle height of about 15 nm, while those annealed at higher temperatures have smoother surface. The Raman investigations evidence Ge nanocrystals (including small ones) coexisting with amorphous Ge in the films annealed at 600 °C and show that almost all Ge is crystallized in the films annealed at 700 °C. The annealing at 800 °C disadvantages the Ge nanocrystal formation due to the strong Ge diffusion. This transition in Ge nanocrystals formation process by annealing temperature increase from 700 to 800 °C revealed by AFM and Raman spectroscopy measurements corresponds to a change in the electrical transport mechanism. Thus, in the 700 °C annealed films, the current depends on temperature according to a T −1/2 law which is typical for a tunnelling mechanism between neighbour Ge nanocrystals. In the 800 °C annealed films, the current–temperature characteristic has a T −1/4 dependence showing a hopping mechanism within an electronic band of localized states related to diffused Ge in SiO 2 .

  2. Internal Friction and Young's Modulus Measurements on SiO2 and Ta2O5 Films Done with an Ultra-High Q Silicon-Wafer Suspension

    Directory of Open Access Journals (Sweden)

    Granata M.

    2015-04-01

    Full Text Available In order to study the internal friction of thin films a nodal suspension system called GeNS (Gentle Nodal Suspension has been developed. The key features of this system are: i the possibility to use substrates easily available like silicon wafers; ii extremely low excess losses coming from the suspension system which allows to measure Q factors in excess of 2×108 on 3” diameter wafers; iii reproducibility of measurements within few percent on mechanical losses and 0.01% on resonant frequencies; iv absence of clamping; v the capability to operate at cryogenic temperatures. Measurements at cryogenic temperatures on SiO2 and at room temperature only on Ta2O5 films deposited on silicon are presented.

  3. Preparation and characterization of layer-by-layer self-assembled polyelectrolyte multilayer films doped with surface-capped SiO2 nanoparticles.

    Science.gov (United States)

    Yang, Guangbin; Ma, Hongxia; Yu, Laigui; Zhang, Pingyu

    2009-05-15

    SiO(2) nanoparticles capped with gamma-aminopropyltrimethoxysilane were doped into polyelectrolyte (poly(allylamine hydrochloride), PAH, and poly(acrylic acid), PAA) multilayer films via spin-assisted layer-by-layer self-assembly. The resulting as-prepared multilayer films were heated at a proper temperature to generate cross-linked composite films with increased adhesion to substrates. The tribological behavior of the multilayer films was evaluated on a microtribometer. It was found that SiO(2)-doped composite films had better wear resistance than pure polyelectrolyte multilayers, possibly because doped SiO(2) nanoparticles were capable of enhancing load-carrying capacity and had "miniature ball bearings" effect. Moreover, heat-treatment had significant effect on the morphology of the composite films. Namely, heat-treated (SiO(2)/PAA)(9) film had a larger roughness than the as-prepared one, due to heat-treatment-induced agglomeration of SiO(2) nanoparticles and initiation of defects. However, heat-treated (PAH/PAA)(3)/(SiO(2)/PAA)(3)(PAH/PAA)(3) film had greatly reduced roughness than the as-prepared one, and it showed considerably improved wear resistance as well. This could be closely related to the "sandwich-like" structure of the composite multilayer film. Namely, the outermost strata of composite multilayer film were able to eliminate defects associated with the middle strata, allowing nanoparticles therein to maintain strength and robustness while keeping soft and fluid-like exposed surface. And the inner strata were well anchored to substrate and acted as an initial "bed" for SiO(2) nanoparticles to be inhabited, resulting in good antiwear ability.

  4. Characterization of anodic SiO2 films on P-type 4H-SiC

    International Nuclear Information System (INIS)

    Woon, W.S.; Hutagalung, S.D.; Cheong, K.Y.

    2009-01-01

    The physical and electronic properties of 100-120-nm thick anodic silicon dioxide film grown on p-type 4H-SiC wafer and annealed at different temperatures (500, 600, 700, and 800 deg. C ) have been investigated and reported. Chemical bonding of the films has been analyzed by Fourier transform infra red spectroscopy. Smooth and defect-free film surface has been revealed under field emission scanning electron microscope. Atomic force microscope has been used to study topography and surface roughness of the films. Electronic properties of the film have been investigated by high frequency capacitance-voltage and current-voltage measurements. As the annealing temperature increased, refractive index, dielectric constant, film density, SiC surface roughness, effective oxide charge, and leakage current density have been reduced until 700 deg. C . An increment of these parameters has been observed after this temperature. However, a reversed trend has been demonstrated in porosity of the film and barrier height between conduction band edge of SiO 2 and SiC

  5. Properties of indium tin oxide films deposited on unheated polymer substrates by ion beam assisted deposition

    International Nuclear Information System (INIS)

    Yu Zhinong; Li Yuqiong; Xia Fan; Zhao Zhiwei; Xue Wei

    2009-01-01

    The optical, electrical and mechanical properties of indium tin oxide (ITO) films prepared on polyethylene terephthalate (PET) substrates by ion beam assisted deposition at room temperature were investigated. The properties of ITO films can be improved by introducing a buffer layer of silicon dioxide (SiO 2 ) between the ITO film and the PET substrate. ITO films deposited on SiO 2 -coated PET have better crystallinity, lower electrical resistivity, and improved resistance stability under bending than those deposited on bare PET. The average transmittance and the resistivity of ITO films deposited on SiO 2 -coated PET are 85% and 0.90 x 10 -3 Ω cm, respectively, and when the films are bent, the resistance remains almost constant until a bending radius of 1 cm and it increases slowly under a given bending radius with an increase of the bending cycles. The improved resistance stability of ITO films deposited on SiO 2 -coated PET is mainly attributed to the perfect adhesion of ITO films induced by the SiO 2 buffer layer.

  6. Temperature stability of c-axis oriented LiNbO3/SiO2/Si thin film layered structures

    International Nuclear Information System (INIS)

    Tomar, Monika; Gupta, Vinay; Mansingh, Abhai; Sreenivas, K.

    2001-01-01

    Theoretical calculations have been performed for the temperature stability of the c-axis oriented LiNbO 3 thin film layered structures on passivated silicon (SiO 2 /Si) substrate with and without a non-piezoelectric SiO 2 overlayer. The phase velocity, electromechanical coupling coefficient and temperature coefficient of delay (TCD) have been calculated. The thicknesses of various layers have been determined for optimum SAW performance with zero TCD. The presence of a non-piezoelectric SiO 2 overlayer on LiNbO 3 film is found to significantly enhance the coupling coefficient. The optimized results reveal that a high coupling coefficient of K 2 =3.45% and a zero TCD can be obtained in the SiO 2 /LiNbO 3 /SiO 2 /Si structure with a 0.235λ thick LiNbO 3 layer sandwiched between 0.1λ thick SiO 2 layers. (author)

  7. Resistive switching of organic–inorganic hybrid devices of conductive polymer and permeable ultra-thin SiO2 films

    Science.gov (United States)

    Yamamoto, Shunsuke; Kitanaka, Takahisa; Miyashita, Tokuji; Mitsuishi, Masaya

    2018-06-01

    We propose a resistive switching device composed of conductive polymer (PEDOT:PSS) and SiO2 ultra-thin films. The SiO2 film was fabricated from silsesquioxane polymer nanosheets as a resistive switching layer. Devices with metal (Ag or Au)∣SiO2∣PEDOT:PSS architecture show good resistive switching performance with set–reset voltages as low as several hundred millivolts. The device properties and the working mechanism were investigated by varying the electrode material, surrounding atmosphere, and SiO2 film thickness. Results show that resistive switching is based on water and ion migration at the PEDOT:PSS∣SiO2 interface.

  8. Negative differential resistance effect induced by metal ion implantation in SiO2 film for multilevel RRAM application

    Science.gov (United States)

    Wu, Facai; Si, Shuyao; Shi, Tuo; Zhao, Xiaolong; Liu, Qi; Liao, Lei; Lv, Hangbing; Long, Shibing; Liu, Ming

    2018-02-01

    Pt/SiO2:metal nanoparticles/Pt sandwich structure is fabricated with the method of metal ion (Ag) implantation. The device exhibits multilevel storage with appropriate R off/R on ratio, good endurance and retention properties. Based on transmission electron microscopy and energy dispersive spectrometer analysis, we confirm that Pt nanoparticles are spurted into SiO2 film from Pt bottom electrode by Ag implantation; during electroforming, the local electric field can be enhanced by these Pt nanoparticles, meanwhile the Ag nanoparticles constantly migrate toward the Pt nanoparticles. The implantation induced nanoparticles act as trap sites in the resistive switching layer and play critical roles in the multilevel storage, which is evidenced by the negative differential resistance effect in the current-voltage (I-V) measurements.

  9. Luminescence of Eu(3+) doped SiO2 Thin Films and Glass Prepared by Sol-gel Technology

    Science.gov (United States)

    Castro, Lymari; Jia, Weiyi; Wang, Yanyun; Santiago, Miguel; Liu, Huimin

    1998-01-01

    Trivalent europium ions are an important luminophore for lighting and display. The emission of (5)D0 to (7)F2 transition exhibits a red color at about 610 nm, which is very attractive and fulfills the requirement for most red-emitting phosphors including lamp and cathode ray phosphorescence materials. Various EU(3+) doped phosphors have been developed, and luminescence properties have been extensively studied. On the other hand, sol-gel technology has been well developed by chemists. In recent years, applications of this technology to optical materials have drawn a great attention. Sol-gel technology provides a unique way to obtain homogeneous composition distribution and uniform doping, and the processing temperature can be very low. In this work, EU(3+) doped SiO2 thin films and glasses were prepared by sol-gel technology and their spectroscopic properties were investigated.

  10. Surface morphology of amorphous germanium thin films following thermal outgassing of SiO2/Si substrates

    International Nuclear Information System (INIS)

    Valladares, L. de los Santos; Dominguez, A. Bustamante; Llandro, J.; Holmes, S.; Quispe, O. Avalos; Langford, R.; Aguiar, J. Albino; Barnes, C.H.W.

    2014-01-01

    Highlights: • Annealing promotes outgassing of SiO 2 /Si wafers. • Outgassing species embed in the a-Ge film forming bubbles. • The density of bubbles obtained by slow annealing is smaller than by rapid annealing. • The bubbles explode after annealing the samples at 800 °C. • Surface migration at higher temperatures forms polycrystalline GeO 2 islands. - Abstract: In this work we report the surface morphology of amorphous germanium (a-Ge) thin films (140 nm thickness) following thermal outgassing of SiO 2 /Si substrates. The thermal outgassing was performed by annealing the samples in air at different temperatures from 400 to 900 °C. Annealing at 400 °C in slow (2 °C/min) and fast (10 °C/min) modes promotes the formation of bubbles on the surface. A cross sectional view by transmission electron microscope taken of the sample slow annealed at 400 °C reveals traces of gas species embedded in the a-Ge film, allowing us to propose a possible mechanism for the formation of the bubbles. The calculated internal pressure and number of gas molecules for this sample are 30 MPa and 38 × 10 8 , respectively. Over an area of 22 × 10 −3 cm 2 the density of bubbles obtained at slow annealing (9 × 10 3 cm −2 ) is smaller than that at rapid annealing (6.4 × 10 4 cm −2 ), indicating that the amount of liberated gas in both cases is only a fraction of the total gas contained in the substrate. After increasing the annealing temperature in the slow mode, bubbles of different diameters (from tens of nanometers up to tens of micrometers) randomly distribute over the Ge film and they grow with temperature. Vertical diffusion of the outgas species through the film dominates the annealing temperature interval 400–600 °C, whereas coalescence of bubbles caused by lateral diffusion is detected after annealing at 700 °C. The bubbles explode after annealing the samples at 800 °C. Annealing at higher temperatures, such as 900 °C, leads to surface migration of the

  11. Unraveling the role of SiC or Si substrates in water vapor incorporation in SiO 2 films thermally grown using ion beam analyses

    Science.gov (United States)

    Corrêa, S. A.; Soares, G. V.; Radtke, C.; Stedile, F. C.

    2012-02-01

    The incorporation of water vapor in SiO 2 films thermally grown on 6H-SiC(0 0 0 1) and on Si (0 0 1) was investigated using nuclear reaction analyses. Water isotopically enriched in deuterium ( 2H or D) and in 18O was used. The dependence of incorporated D with the water annealing temperature and initial oxide thickness were inspected. The D amount in SiO 2/SiC structures increases continuously with temperature and with initial oxide thickness, being incorporated in the surface, bulk, and interface regions of SiO 2 films. However, in SiO 2/Si, D is observed mostly in near-surface regions of the oxide and no remarkable dependence with temperature or initial oxide thickness was observed. At any annealing temperature, oxygen from water vapor was incorporated in all depths of the oxide films grown on SiC, in contrast with the SiO 2/Si.

  12. Surface properties of SiO2 with and without H2O2 treatment as gate dielectrics for pentacene thin-film transistor applications

    Science.gov (United States)

    Hung, Cheng-Chun; Lin, Yow-Jon

    2018-01-01

    The effect of H2O2 treatment on the surface properties of SiO2 is studied. H2O2 treatment leads to the formation of Si(sbnd OH)x at the SiO2 surface that serves to reduce the number of trap states, inducing the shift of the Fermi level toward the conduction band minimum. H2O2 treatment also leads to a noticeable reduction in the value of the SiO2 capacitance per unit area. The effect of SiO2 layers with H2O2 treatment on the behavior of carrier transports for the pentacene/SiO2-based organic thin-film transistor (OTFT) is also studied. Experimental identification confirms that the shift of the threshold voltage towards negative gate-source voltages is due to the reduced number of trap states in SiO2 near the pentacene/SiO2 interface. The existence of a hydrogenated layer between pentacene and SiO2 leads to a change in the pentacene-SiO2 interaction, increasing the value of the carrier mobility.

  13. Density, thickness and composition measurements of TiO2 -SiO2 thin films by coupling X-ray reflectometry, ellipsometry and electron probe microanalysis-X

    International Nuclear Information System (INIS)

    Hodroj, A.; Roussel, H.; Crisci, A.; Robaut, F.; Gottlieb, U.; Deschanvres, J.L.

    2006-01-01

    Mixed TiO 2 -SiO 2 thin films were deposited by aerosol atmospheric CVD method by using di-acetoxi di-butoxi silane (DADBS) and Ti tetra-butoxide as precursors. By varying the deposition temperatures between 470 and 600 deg. C and the ratios between the Si and Ti precursors (Si/Ti) from 2 up to 16, films with different compositions and thicknesses were deposited. The coupled analysis of the results of different characterisation methods was used in order to determine the variation of the composition, the thickness and the density of the films. First EPMA measurements were performed at different acceleration voltages with a Cameca SX50 system. By analysing, with specific software, the evolution of the intensity ratio I x /I std versus the voltage, the composition and the mass thickness (product of density by the thickness) were determined. In order to measure independently the density, X-ray reflectometry experiments were performed. By analysing the value of the critical angle and the Kiessig fringes, the density and the thickness of the layers were determined. The refractive index and the thickness of the films were also measured by ellipsometry. By assuming a linear interpolation between the index value of the pure SiO 2 and TiO 2 films, the film composition was deduced from the refractive index value. XPS measurements were also performed in order to obtain an independent value of the composition. A good agreement between the ways to measure the density is obtained

  14. Two mechanisms of crater formation in ultraviolet-pulsed-laser irradiated SiO2 thin films with artificial defects

    International Nuclear Information System (INIS)

    Papernov, S.; Schmid, A.W.

    2005-01-01

    Atomic force microscopy was employed to investigate the morphology of ultraviolet nanosecond-pulsed-laser damage in SiO 2 thin films. Gold nanoparticles, 18.5-nm diameter, embedded in the film were used as calibrated absorbing defects. Damage-crater diameter, depth, and cross-sectional profiles were measured as a function of laser fluence and the lodging depth of gold nanoparticles. The results indicate that, at laser fluences close to the crater-formation threshold and for lodging depths of a few particle diameters, the dominating regime of the material removal is melting and evaporation. The morphology of craters initiated by deep absorbing defects, with a lodging depth larger than ∼10 particle diameters, clearly points to a two-stage material-removal mechanism. The process starts with the material melting within the narrow channel volume and, upon temperature and pressure buildup, film fracture takes place. Crater-diameter variation with lodging depth and laser fluence is compared with theoretical predictions

  15. Production of stable superhydrophilic surfaces on 316L steel by simultaneous laser texturing and SiO2 deposition

    Science.gov (United States)

    Rajab, Fatema H.; Liu, Zhu; Li, Lin

    2018-01-01

    Superhydrophilic surfaces with liquid contact angles of less than 5 ° have attracted much interest in practical applications including self-cleaning, cell manipulation, adhesion enhancement, anti-fogging, fluid flow control and evaporative cooling. Standard laser metal texturing method often result in unstable wetting characteristics, i.e. changing from super hydrophilic to hydrophobic in a few days or weeks. In this paper, a simple one step method is reported for fabricating a stable superhydrophilic metallic surface that lasted for at least 6 months. Here, 316L stainless steel substrates were textured using a nanosecond laser with in-situ SiO2 deposition. Morphology and chemistry of laser-textured surfaces were characterised using SEM, XRD, XPS and an optical 3D profiler. Static wettability analysis was carried out over a period of 6 months after the laser treatment. The effect of surface roughness on wettability was also studied. Results showed that the wettability of the textured surfaces could be controlled by changing the scanning speed of laser beam and number of passes. The main reason for the realisation of the stable superhydrophilic surface is the combination of the melted glass particles mainly Si and O with that of stainless steel in the micro-textured patterns. This study presents a useful method

  16. Magnetotransport properties of c-axis oriented La0.7Sr0.3MnO3 thin films on MgO-buffered SiO2/Si substrates

    International Nuclear Information System (INIS)

    Kang, Young-Min; Ulyanov, Alexander N.; Shin, Geo-Myung; Lee, Sung-Yun; Yoo, Dae-Gil; Yoo, Sang-Im

    2009-01-01

    c-axis oriented La 0.7 Sr 0.3 MnO 3 (LSMO) films on MgO-buffered SiO 2 /Si substrates were prepared, and their texture, microstructure, and magnetotransport properties were studied and compared to epitaxial LSMO/MgO (001) and polycrystalline LSMO/SiO 2 /Si films. c-axis oriented MgO buffer layers were obtained on amorphous SiO 2 layer through rf sputter deposition at low substrate temperature and consequent postannealing processes. In situ pulsed laser deposition-grown LSMO films, deposited on the MgO layer, show strong c-axis texture, but no in-plane texture. The c-axis oriented LSMO films which are magnetically softer than LSMO/SiO 2 /Si films exhibit relatively large low field magnetoresistance (LFMR) and sharper MR drop at lower field. The large LFMR is attributed to a spin-dependent scattering of transport current at the grain boundaries

  17. Effects of atomic hydrogen on the selective area growth of Si and Si1-xGex thin films on Si and SiO2 surfaces: Inhibition, nucleation, and growth

    International Nuclear Information System (INIS)

    Schroeder, T.W.; Lam, A.M.; Ma, P.F.; Engstrom, J.R.

    2004-01-01

    Supersonic molecular beam techniques have been used to study the nucleation of Si and Si 1-x Ge x thin films on Si and SiO 2 surfaces, where Si 2 H 6 and GeH 4 have been used as sources. A particular emphasis of this study has been an examination of the effects of a coincident flux of atomic hydrogen. The time associated with formation of stable islands of Si or Si 1-x Ge x on SiO 2 surfaces--the incubation time--has been found to depend strongly on the kinetic energy of the incident molecular precursors (Si 2 H 6 and GeH 4 ) and the substrate temperature. After coalescence, thin film morphology has been found to depend primarily on substrate temperature, with smoother films being grown at substrate temperatures below 600 deg. C. Introduction of a coincident flux of atomic hydrogen has a large effect on the nucleation and growth process. First, the incubation time in the presence of atomic hydrogen has been found to increase, especially at substrate temperatures below 630 deg. C, suggesting that hydrogen atoms adsorbed on Si-like sites on SiO 2 can effectively block nucleation of Si. Unfortunately, in terms of promoting selective area growth, coincident atomic hydrogen also decreases the rate of epitaxial growth rate, essentially offsetting any increase in the incubation time for growth on SiO 2 . Concerning Si 1-x Ge x growth, the introduction of GeH 4 produces substantial changes in both thin film morphology and the rate nucleation of poly-Si 1-x Ge x on SiO 2 . Briefly, the addition of Ge increases the incubation time, while it lessens the effect of coincident hydrogen on the incubation time. Finally, a comparison of the maximum island density, the time to reach this density, and the steady-state polycrystalline growth rate strongly suggests that all thin films [Si, Si 1-x Ge x , both with and without H(g)] nucleate at special sites on the SiO 2 surface, and grow primarily via direct deposition of adatoms on pre-existing islands

  18. Annihilation of positronium atoms confined in mesoporous and macroporous SiO2 films

    Science.gov (United States)

    Cooper, B. S.; Boilot, J.-P.; Corbel, C.; Guillemot, F.; Gurung, L.; Liszkay, L.; Cassidy, D. B.

    2018-05-01

    We report experiments in which positronium (Ps) atoms were created in thin, porous silica films containing isolated voids with diameters ranging from 5 to 75 nm. Ps lifetimes in the pore structures were measured directly via time-delayed laser excitation of 13S1→23PJ transitions. In a film containing 5-nm pores Ps was predominantly emitted into vacuum, with a small component of confined Ps with a lifetime of 75 ns also observed. In films with larger pores Ps atoms were not emitted into vacuum except from the film surface, and confined Ps lifetimes of ≈90 ns were measured with no dependence on the pore size. However, for such large pores, extended Tao-Eldrup (ETE)-type models predict Ps lifetimes close to the 142-ns vacuum value. Moreover, 13S1→23PJ excitation of Ps atoms inside the pores was found to result in annihilation and exhibited an extremely broad (≈10 THz) linewidth. We attribute these observations to a process in which nonthermal Ps atoms in the isolated voids become temporarily trapped in a series of surface states that dissociate following excitation. The occurrence of this mechanism is not necessarily apparent from ground-state Ps decay rates without some prior knowledge of the sample structure, and it precludes the application of ETE-type models as they do not take into account surface interactions other than pickoff annihilation.

  19. Optical transparency and mechanical properties of semi-refined iota carrageenan film reinforced with SiO2 as food packaging material

    Science.gov (United States)

    Aji, Afifah Iswara; Praseptiangga, Danar; Rochima, Emma; Joni, I. Made; Panatarani, Camellia

    2018-02-01

    Food packaging is important for protecting food from environmental influences such as heat, light, water vapor, oxygen, dirt, dust particles, gas emissions and so on, which leads to decrease the quality of food. The most widely used type of packaging in the food industry is plastic which is made from synthetic polymers and takes hundreds of years to biodegrade. Recently, food packaging with high bio-degradability is being developed using biopolymer combined with nanoparticles as reinforcing agent (filler) to improve its properties. In this study, semi-refined iota carrageenan films were prepared by incorporating SiO2 nanoparticles as filler at different concentrations (0%, 0.5%, 1.0% and 1.5% w/w carrageenan) using solution casting method. The optical transparency and mechanical properties (tensile strength and elongation at break) of the films were analyzed. The results showed that incorporation of SiO2 nanoparticles to carrageenan matrix on optical transparency of the films. For the mechanical properties, the highest tensile strength was found for incorporation of 0.5% SiO2, while the elongation at break of the films improved with increasing SiO2 concentration.

  20. Periodically ordered meso – and macroporous SiO2 thin films and their induced electrochemical activity as a function of pore hierarchy

    Czech Academy of Sciences Publication Activity Database

    Sel, O.; Sallard, S.; Brezesinski, T.; Rathouský, Jiří; Dunphy, D. R.; Collord, A.; Smarsly, B. M.

    2007-01-01

    Roč. 17, č. 16 (2007), s. 3241-3250 ISSN 1616-301X Institutional research plan: CEZ:AV0Z40400503 Keywords : SiO2 * thin films * pore hierarchy * electrochemistry Subject RIV: CG - Electrochemistry Impact factor: 7.496, year: 2007

  1. Reflection Enhancement Using TiO2/SiO2 Bilayer Films Prepared by Cost-Effective Sol-gel Method

    Directory of Open Access Journals (Sweden)

    R. Ajay Kumar

    2017-04-01

    Full Text Available Multilayer dielectric thin film structure has been demanded for its application in optoelectronic devices such as optical waveguides, vertical cavity surface-emitting devices, biosensors etc. In this paper, we present the fabrication and characterization of bilayer thin films of TiO2/SiO2 using sol-gel spin coating method. Ellipsometer measurement showed refractive index values 1.46, 2.1 corresponding to the SiO2 and TiO2 films respectively. The FTIR transmittance peaks observed at ~970 cm-1, ~1100 cm-1 and ~1400 cm-1 are attributed to the Ti-O-Si, Si-O-Si and Ti-O-Ti bonds respectively. Maximum reflectance is observed from two bilayer film structure which can be further optimized to get the high reflection to a broad wavelength range.

  2. Site-specific Pt deposition and etching on electrically and thermally isolated SiO2 micro-disk surfaces

    International Nuclear Information System (INIS)

    Saraf, Laxmikant V

    2010-01-01

    Electrically and thermally isolated surfaces are crucial for improving the detection sensitivity of microelectronic sensors. The site-specific in situ growth of Pt nano-rods on thermally and electrically isolated SiO 2 micro-disks using wet chemical etching and a focused ion/electron dual beam (FIB-SEM) is demonstrated. Fabrication of an array of micro-cavities on top of a micro-disk is also demonstrated. The FIB source is utilized to fabricate through-holes in the micro-disks. Due to the amorphous nature of SiO 2 micro-disks, the Ga implantation possibly modifies through-hole sidewall surface chemistry rather than affecting its transport properties. Some sensor design concepts based on micro-fabrication of SiO 2 micro-disks utilizing thermally and electrically isolated surfaces are discussed from the viewpoint of applications in photonics and bio-sensing.

  3. Selective growth of Ge1- x Sn x epitaxial layer on patterned SiO2/Si substrate by metal-organic chemical vapor deposition

    Science.gov (United States)

    Takeuchi, Wakana; Washizu, Tomoya; Ike, Shinichi; Nakatsuka, Osamu; Zaima, Shigeaki

    2018-01-01

    We have investigated the selective growth of a Ge1- x Sn x epitaxial layer on a line/space-patterned SiO2/Si substrate by metal-organic chemical vapor deposition. We examined the behavior of a Sn precursor of tributyl(vinyl)tin (TBVSn) during the growth on Si and SiO2 substrates and investigated the effect of the Sn precursor on the selective growth. The selective growth of the Ge1- x Sn x epitaxial layer was performed under various total pressures and growth temperatures of 300 and 350 °C. The selective growth of the Ge1- x Sn x epitaxial layer on the patterned Si region is achieved at a low total pressure without Ge1- x Sn x growth on the SiO2 region. In addition, we found that the Sn content in the Ge1- x Sn x epitaxial layer increases with width of the SiO2 region for a fixed Si width even with low total pressure. To control the Sn content in the selective growth of the Ge1- x Sn x epitaxial layer, it is important to suppress the decomposition and migration of Sn and Ge precursors.

  4. Manufacturing and investigation of surface morphology and optical properties of composite thin films reinforced by TiO2, Bi2O3 and SiO2 nanoparticles

    Science.gov (United States)

    Jarka, Paweł; Tański, Tomasz; Matysiak, Wiktor; Krzemiński, Łukasz; Hajduk, Barbara; Bilewicz, Marcin

    2017-12-01

    The aim of submitted paper is to present influence of manufacturing parameters on optical properties and surface morphology of composite materials with a polymer matrix reinforced by TiO2 and SiO2 and Bi2O3 nanoparticles. The novelty proposed by the authors is the use of TiO2 and SiO2 and Bi2O3 nanoparticles simultaneously in polymeric matrix. This allows using the combined effect of nanoparticles to a result composite material. The thin films of composite material were prepared by using spin-coating method with various spinning rates from solutions of different concentration of nanoparticles. In order to prepare the spinning solution polymer, Poly(methyl methacrylate) (PMMA) was used as a matrix. The reinforcing phase was the mixture of the nanoparticles of SiO2, TiO2 and B2O3. In order to identify the surface morphology of using thin films and arrangement of the reinforcing phase Atomic Force Microscope (AFM) and Scanning Electron Microscope (SEM) were used. In order to study the optical properties of the obtained thin films, the thin films of composites was subjected to an ellipsometry analysis. The measurements of absorbance of the obtained materials, from which the value of the band gap width was specified, were carried out using the UV/VIS spectroscopy. The optical properties of obtain composite thin films depend not only on the individual components used, but also on the morphology and the interfacial characteristics. Controlling the participation of three kinds of nanoparticles of different sizes and optical parameters allows to obtaining the most optimal optical properties of nanocomposites and also controlling the deposition parameters allows to obtaining the most optimal surface morphology of nanocomposites.

  5. Band alignment of atomic layer deposited SiO2 and HfSiO4 with (\\bar{2}01) β-Ga2O3

    Science.gov (United States)

    Carey, Patrick H., IV; Ren, Fan; Hays, David C.; Gila, Brent P.; Pearton, Stephen J.; Jang, Soohwan; Kuramata, Akito

    2017-07-01

    The valence band offset at both SiO2/β-Ga2O3 and HfSiO4/β-Ga2O3 heterointerfaces was measured using X-ray photoelectron spectroscopy. Both dielectrics were deposited by atomic layer deposition (ALD) onto single-crystal β-Ga2O3. The bandgaps of the materials were determined by reflection electron energy loss spectroscopy as 4.6 eV for Ga2O3, 8.7 eV for Al2O3 and 7.0 eV for HfSiO4. The valence band offset was determined to be 1.23 ± 0.20 eV (straddling gap, type I alignment) for ALD SiO2 on β-Ga2O3 and 0.02 ± 0.003 eV (also type I alignment) for HfSiO4. The respective conduction band offsets were 2.87 ± 0.70 eV for ALD SiO2 and 2.38 ± 0.50 eV for HfSiO4, respectively.

  6. New intelligent multifunctional SiO2/VO2 composite films with enhanced infrared light regulation performance, solar modulation capability, and superhydrophobicity.

    Science.gov (United States)

    Wang, Chao; Zhao, Li; Liang, Zihui; Dong, Binghai; Wan, Li; Wang, Shimin

    2017-01-01

    Highly transparent, energy-saving, and superhydrophobic nanostructured SiO 2 /VO 2 composite films have been fabricated using a sol-gel method. These composite films are composed of an underlying infrared (IR)-regulating VO 2 layer and a top protective layer that consists of SiO 2 nanoparticles. Experimental results showed that the composite structure could enhance the IR light regulation performance, solar modulation capability, and hydrophobicity of the pristine VO 2 layer. The transmittance of the composite films in visible region ( T lum ) was higher than 60%, which was sufficient to meet the requirements of glass lighting. Compared with pristine VO 2 films and tungsten-doped VO 2 film, the near IR control capability of the composite films was enhanced by 13.9% and 22.1%, respectively, whereas their solar modulation capability was enhanced by 10.9% and 22.9%, respectively. The water contact angles of the SiO 2 /VO 2 composite films were over 150°, indicating superhydrophobicity. The transparent superhydrophobic surface exhibited a high stability toward illumination as all the films retained their initial superhydrophobicity even after exposure to 365 nm light with an intensity of 160 mW . cm -2 for 10 h. In addition, the films possessed anti-oxidation and anti-acid properties. These characteristics are highly advantageous for intelligent windows or solar cell applications, given that they can provide surfaces with anti-fogging, rainproofing, and self-cleaning effects. Our technique offers a simple and low-cost solution to the development of stable and visible light transparent superhydrophobic surfaces for industrial applications.

  7. Depth-resolved detection and process dependence of traps at ultrathin plasma-oxidized and deposited SiO2/Si interfaces

    International Nuclear Information System (INIS)

    Brillson, L. J.; Young, A. P.; White, B. D.; Schaefer, J.; Niimi, H.; Lee, Y. M.; Lucovsky, G.

    2000-01-01

    Low-energy electron-excited nanoluminescence spectroscopy reveals depth-resolved optical emission associated with traps near the interface between ultrathin SiO 2 deposited by plasma-enhanced chemical vapor deposition on plasma-oxidized crystalline Si. These near-interface states exhibit a strong dependence on local chemical bonding changes introduced by thermal/gas processing, layer-specific nitridation, or depth-dependent radiation exposure. The depth-dependent results provide a means to test chemical and structural bond models used to develop advanced dielectric-semiconductor junctions. (c) 2000 American Vacuum Society

  8. Photocatalytic properties of Au-deposited mesoporous SiO_2–TiO_2 photocatalyst under simultaneous irradiation of UV and visible light

    International Nuclear Information System (INIS)

    Okuno, T.; Kawamura, G.; Muto, H.; Matsuda, A.

    2016-01-01

    Mesoporous SiO_2 templates deposited TiO_2 nanocrystals are synthesized via a sol–gel route, and Au nanoparticles (NPs) are deposited in the tubular mesopores of the templates by a photodeposition method (Au/SiO_2–TiO_2). The photocatalytic characteristics of Au/SiO_2–TiO_2 are discussed with the action spectra of photoreactions of 2-propanol and methylene blue. Photocatalytic activities of SiO_2–TiO_2 under individual ultraviolet (UV) and visible (Vis) light illumination are enhanced by deposition of Au NPs. Furthermore, Au/SiO_2–TiO_2 shows higher photocatalytic activities under simultaneous irradiation of UV and Vis light compared to the activity under individual UV and Vis light irradiation. Since the photocatalytic activity under simultaneous irradiation is almost the same as the total activities under individual UV and Vis light irradiation, it is concluded that the electrons and the holes generated by lights of different wavelengths are efficiently used for photocatalysis without carrier recombination. - Graphical abstract: This graphic shows the possible charge behavior in Au/SiO_2–TiO_2 under independent light irradiation of ultraviolet and visible light irradiation. Both reactions under independent UV and Vis light irradiation occurred in parallel when Au/SiO_2–TiO_2 photocatalyst was illuminated UV and Vis light simultaneously, and then photocatalytic activity is improved by simultaneous irradiation. - Highlights: • Au nanoparticles were deposited in mesoporous SiO_2–TiO_2 by a photodeposition method. • Photocatalytic activity under UV and Vis light was enhanced by deposition of Au. • Photocatalytic activity of Au/SiO_2–TiO_2 was improved by simultaneous irradiation.

  9. Damage performance of TiO2/SiO2 thin film components induced by a long-pulsed laser

    International Nuclear Information System (INIS)

    Wang Bin; Dai Gang; Zhang Hongchao; Ni Xiaowu; Shen Zhonghua; Lu Jian

    2011-01-01

    In order to study the long-pulsed laser induced damage performance of optical thin films, damage experiments of TiO 2 /SiO 2 films irradiated by a laser with 1 ms pulse duration and 1064 nm wavelength are performed. In the experiments, the damage threshold of the thin films is measured. The damages are observed to occur in isolated spots, which enlighten the inducement of the defects and impurities originated in the films. The threshold goes down when the laser spot size decreases. But there exists a minimum threshold, which cannot be further reduced by decreasing the laser spot size. Optical microscopy reveals a cone-shaped cavity in the film substrate. Changes of the damaged sizes in film components with laser fluence are also investigated. The results show that the damage efficiency increases with the laser fluence before the shielding effects start to act.

  10. Formation, structure, and phonon confinement effect of nanocrystalline Si1-xGex in SiO2-Si-Ge cosputtered films

    International Nuclear Information System (INIS)

    Yang, Y.M.; Wu, X.L.; Siu, G.G.; Huang, G.S.; Shen, J.C.; Hu, D.S.

    2004-01-01

    Using magnetron cosputtering of SiO 2 , Ge, and Si targets, Si-based SiO 2 :Ge:Si films were fabricated for exploring the influence of Si target proportion (P Si ) and annealing temperature (Ta) on formation, local structure, and phonon properties of nanocrystalline Si 1-x Ge x (nc-Si 1-x Ge x ). At low P Si and Ta higher than 800 deg. C, no nc-Si 1-x Ge x but a kind of composite nanocrystal consisting of a Ge core, GeSi shell, and amorphous Si outer shell is formed in the SiO 2 matrix. At moderate P Si , nc-Si 1-x Ge x begins to be formed at Ta=800 deg. C and coexists with nc-Ge at Ta=1100 deg. C. At high P Si , it was disclosed that both optical phonon frequency and lattice spacing of nc-Si 1-x Ge x increase with raising Ta. The possible origin of this phenomenon is discussed by considering three factors, the phonon confinement, strain effect, and composition variation of nc-Si 1-x Ge x . This work will be helpful in understanding the growth process of ternary GeSiO films and beneficial to further investigations on optical properties of nc-Ge 1-x Si x in the ternary matrix

  11. Simultaneous ultra-long data retention and low power based on Ge10Sb90/SiO2 multilayer thin films

    Science.gov (United States)

    You, Haipeng; Hu, Yifeng; Zhu, Xiaoqin; Zou, Hua; Song, Sannian; Song, Zhitang

    2018-02-01

    In this article, Ge10Sb90/SiO2 multilayer thin films were prepared to improve thermal stability and data retention for phase change memory. Compared with Ge10Sb90 monolayer thin film, Ge10Sb90 (1 nm)/SiO2 (9 nm) multilayer thin film had higher crystallization temperature and resistance contrast between amorphous and crystalline states. Annealed Ge10Sb90 (1 nm)/SiO2 (9 nm) had uniform grain with the size of 15.71 nm. After annealing, the root-mean-square surface roughness for Ge10Sb90 (1 nm)/SiO2 (9 nm) thin film increased slightly from 0.45 to 0.53 nm. The amorphization time for Ge10Sb90 (1 nm)/SiO2 (9 nm) thin film (2.29 ns) is shorter than Ge2Sb2Te5 (3.56 ns). The threshold voltage of a cell based on Ge10Sb90 (1 nm)/SiO2 (9 nm) (3.57 V) was smaller than GST (4.18 V). The results indicated that Ge10Sb90/SiO2 was a promising phase change thin film with high thermal ability and low power consumption for phase change memory application.

  12. Effects of (NH4)2S x treatment on the surface properties of SiO2 as a gate dielectric for pentacene thin-film transistor applications

    Science.gov (United States)

    Hung, Cheng-Chun; Lin, Yow-Jon

    2018-01-01

    The effect of (NH4)2S x treatment on the surface properties of SiO2 is studied. (NH4)2S x treatment leads to the formation of S-Si bonds on the SiO2 surface that serves to reduce the number of donor-like trap states, inducing the shift of the Fermi level toward the conduction band minimum. A finding in this case is the noticeably reduced value of the SiO2 capacitance as the sulfurated layer is formed at the SiO2 surface. The effect of SiO2 layers with (NH4)2S x treatment on the carrier transport behaviors for the pentacene/SiO2-based organic thin-film transistor (OTFT) is also studied. The pentacene/as-cleaned SiO2-based OTFT shows depletion-mode behavior, whereas the pentacene/(NH4)2S x -treated SiO2-based OTFT exhibits enhancement-mode behavior. Experimental identification confirms that the depletion-/enhancement-mode conversion is due to the dominance competition between donor-like trap states in SiO2 near the pentacene/SiO2 interface and acceptor-like trap states in the pentacene channel. A sulfurated layer between pentacene and SiO2 is expected to give significant contributions to carrier transport for pentacene/SiO2-based OTFTs.

  13. Dewetting and nanopattern formation of thin Pt films on SiO2 induced by ion beam irradiation

    International Nuclear Information System (INIS)

    Hu, Xiaoyuan; Cahill, David G.; Averback, Robert S.

    2001-01-01

    Dewetting and nanopattern formation of 3 - 10 nm Pt thin films upon ion irradiation is studied using scanning electron microscopy (SEM). Lateral feature size and the fraction of exposed surface area are extracted from SEM images and analyzed as functions of ion dose. The dewetting phenomenon has little temperature dependence for 3 nm Pt films irradiated by 800 keV Kr + at temperatures ranging from 80 to 823 K. At 893 K, the films dewet without irradiation, and no pattern formation is observed even after irradiation. The thickness of the Pt films, in the range 3 - 10 nm, influences the pattern formation, with the lateral feature size increasing approximately linearly with film thickness. The effect of different ion species and energies on the dewetting process is also investigated using 800 keV Kr + and Ar + irradiation and 19.5keVHe + , Ar + , Kr + , and Xe + irradiation. The lateral feature size and exposed surface fraction scale with energy deposition density (J/cm2) for all conditions except 19.5keVXe + irradiation. [copyright] 2001 American Institute of Physics

  14. van der Waals epitaxy of SnS film on single crystal graphene buffer layer on amorphous SiO2/Si

    Science.gov (United States)

    Xiang, Yu; Yang, Yunbo; Guo, Fawen; Sun, Xin; Lu, Zonghuan; Mohanty, Dibyajyoti; Bhat, Ishwara; Washington, Morris; Lu, Toh-Ming; Wang, Gwo-Ching

    2018-03-01

    Conventional hetero-epitaxial films are typically grown on lattice and symmetry matched single crystal substrates. We demonstrated the epitaxial growth of orthorhombic SnS film (∼500 nm thick) on single crystal, monolayer graphene that was transferred on the amorphous SiO2/Si substrate. Using X-ray pole figure analysis we examined the structure, quality and epitaxy relationship of the SnS film grown on the single crystal graphene and compared it with the SnS film grown on commercial polycrystalline graphene. We showed that the SnS films grown on both single crystal and polycrystalline graphene have two sets of orientation domains. However, the crystallinity and grain size of the SnS film improve when grown on the single crystal graphene. Reflection high-energy electron diffraction measurements show that the near surface texture has more phases as compared with that of the entire film. The surface texture of a film will influence the growth and quality of film grown on top of it as well as the interface formed. Our result offers an alternative approach to grow a hetero-epitaxial film on an amorphous substrate through a single crystal graphene buffer layer. This strategy of growing high quality epitaxial thin film has potential applications in optoelectronics.

  15. The effects of irradiation and proton implantation on the density of mobile protons in SiO2 films

    International Nuclear Information System (INIS)

    Vanheusden, K.

    1998-04-01

    Proton implantation into the buried oxide of Si/SiO 2 /Si structures does not introduce mobile protons. The cross section for capture of radiation-induced electrons by mobile protons is two orders of magnitude smaller than for electron capture by trapped holes. The data provide new insights into the atomic mechanisms governing the generation and radiation tolerance of mobile protons in SiO 2 . This can lead to improved techniques for production and radiation hardening of radiation tolerant memory devices

  16. Nano-structure formation of Fe-Pt perpendicular magnetic recording media co-deposited with MgO, Al2O3 and SiO2 additives

    International Nuclear Information System (INIS)

    Safran, G.; Suzuki, T.; Ouchi, K.; Barna, P.B.; Radnoczi, G.

    2006-01-01

    Perpendicular magnetic recording media samples were prepared by sputter deposition on sapphire with a layer sequence of MgO seed-layer/Cr under-layer/FeSi soft magnetic under-layer/MgO intermediate layer/FePt-oxide recording layer. The effects of MgO, Al 2 O 3 and SiO 2 additives on the morphology and orientation of the FePt layer were investigated by transmission electron microscopy. The samples exhibited (001) orientation of the L1 FePt phase with the mutual orientations of sapphire substrate//MgO(100)[001]//Cr(100)[11-bar0]//FeSi(100)[11-bar0]//MgO(100) [001]//FePt(001)[100]. The morphology of the FePt films varied due to the co-deposited oxides: The FePt layers were continuous and segmented by stacking faults aligned at 54 o to the surface. Films with SiO 2 addition, beside the oriented columnar FePt grains, exhibited a fraction of misoriented crystallites due to random repeated nucleation. Al 2 O 3 addition resulted in a layered structure, i.e. an initial continuous epitaxial FePt layer covered by a secondary layer of FePt-Al 2 O 3 composite. Both components (FePt and MgO) of the MgO-added samples were grown epitaxially on the MgO intermediate layer, so that a nano-composite of intercalated (001) FePt and (001) MgO was formed. The revealed microstructures and formation mechanisms may facilitate the improvement of the structural and magnetic properties of the FePt-oxide composite perpendicular magnetic recording media

  17. Preparation and Characterization of PbO-SrO-Na2O-Nb2O5-SiO2 Glass Ceramics Thin Film for High-Energy Storage Application

    Science.gov (United States)

    Tan, Feihu; Zhang, Qingmeng; Zhao, Hongbin; Wei, Feng; Du, Jun

    2018-03-01

    PbO-SrO-Na2O-Nb2O5-SiO2 (PSNNS) glass ceramic thin films were prepared by pulsed laser deposition technology on heavily doped silicon substrates. The influence of annealing temperatures on microstructures, dielectric properties and energy storage performances of the as-prepared films were investigated in detail. X-ray diffraction studies indicate that Pb2Nb2O7 crystallizes at 800°C and disappears at 900°C, while NaNbO3 and PbNb2O6 are formed at the higher temperature of 900°C. The dielectric properties of the glass ceramics thin films have a strong dependence on the phase assemblages that are developed during heat treatment. The maximum dielectric constant value of 171 was obtained for the film annealed at 800°C, owing to the high electric breakdown field strength, The energy storage densities of the PSNNS films annealed at 800°C were as large as 36.9 J/cm3, These results suggest that PSNNS thin films are promising for energy storage applications.

  18. Heterogeneous integration of thin film compound semiconductor lasers and SU8 waveguides on SiO2/Si

    Science.gov (United States)

    Palit, Sabarni; Kirch, Jeremy; Mawst, Luke; Kuech, Thomas; Jokerst, Nan Marie

    2010-02-01

    We present the heterogeneous integration of a 3.8 μm thick InGaAs/GaAs edge emitting laser that was metal-metal bonded to SiO2/Si and end-fire coupled into a 2.8 μm thick tapered SU8 polymer waveguide integrated on the same substrate. The system was driven in pulsed mode and the waveguide output was captured on an IR imaging array to characterize the mode. The waveguide output was also coupled into a multimode fiber, and into an optical head and spectrum analyzer, indicating lasing at ~997 nm and a threshold current density of 250 A/cm2.

  19. In situ observation of electron-beam-induced dewetting of CdSe thin film embedded in SiO2

    DEFF Research Database (Denmark)

    Fabrim, Zacarias Eduardo; Kjelstrup-Hansen, Jakob; Fichtner, Paulo F. P.

    In this work we show the dewetting process of the CdSe thin films induced by electron beam irradiation. A multilayer heterostructure of SiO2/CdSe/SiO2 was made by a magnetron sputtering process. A plan-view (PV) sample was irradiated with 200 kV electrons in the TEM with two current densities: 0.......33 A.cm2 and 1.0 A.cm2 and at 80 kV with 0.37 A.cm2. The dewetting of the CdSe film is inferred by a number of micrographs taken during the irradiation. The microstructural changes were analyzed under the assumption of being induced by ballistic collision effects in the absence of sample heating....

  20. Optical properties of the Al2O3/SiO2 and Al2O3/HfO2/SiO2 antireflective coatings

    Science.gov (United States)

    Marszałek, Konstanty; Winkowski, Paweł; Jaglarz, Janusz

    2014-01-01

    Investigations of bilayer and trilayer Al2O3/SiO2 and Al2O3/HfO2/SiO2 antireflective coatings are presented in this paper. The oxide films were deposited on a heated quartz glass by e-gun evaporation in a vacuum of 5 × 10-3 [Pa] in the presence of oxygen. Depositions were performed at three different temperatures of the substrates: 100 °C, 200 °C and 300 °C. The coatings were deposited onto optical quartz glass (Corning HPFS). The thickness and deposition rate were controlled with Inficon XTC/2 thickness measuring system. Deposition rate was equal to 0.6 nm/s for Al2O3, 0.6 nm - 0.8 nm/s for HfO2 and 0.6 nm/s for SiO2. Simulations leading to optimization of the thin film thickness and the experimental results of optical measurements, which were carried out during and after the deposition process, have been presented. The optical thickness values, obtained from the measurements performed during the deposition process were as follows: 78 nm/78 nm for Al2O3/SiO2 and 78 nm/156 nm/78 nm for Al2O3/HfO2/SiO2. The results were then checked by ellipsometric technique. Reflectance of the films depended on the substrate temperature during the deposition process. Starting from 240 nm to the beginning of visible region, the average reflectance of the trilayer system was below 1 % and for the bilayer, minima of the reflectance were equal to 1.6 %, 1.15 % and 0.8 % for deposition temperatures of 100 °C, 200 °C and 300 °C, respectively.

  1. Room-Temperature Voltage Stressing Effects on Resistive Switching of Conductive-Bridging RAM Cells with Cu-Doped SiO2 Films

    Directory of Open Access Journals (Sweden)

    Jian-Yang Lin

    2014-01-01

    Full Text Available SiO2 or Cu-doped SiO2 (Cu:SiO2 insulating films combined with Cu or W upper electrodes were constructed on the W/Si substrates to form the conductive-bridging RAM (CB-RAM cells. The CB-RAMs were then subjected to a constant-voltage stressing (CVS at room temperature. The experimental results show that the room-temperature CVS treatment can effectively affect the current conduction behavior and stabilize the resistive switching of the memory cells. After the CVS, the current conduction mechanisms in the high resistance state during the set process of the Cu/Cu:SiO2/W cell can be changed from Ohm’s law and the space charge limited conduction to Ohm’s law, the Schottky emission, and the space charge limited conduction. Presumably, it is due to the breakage of the conduction filaments during the CVS treatment that the conduction electrons cannot go back to the back electrode smoothly.

  2. Design of laser-driven SiO2-YAG:Ce composite thick film: Facile synthesis, robust thermal performance, and application in solid-state laser lighting

    Science.gov (United States)

    Xu, Jian; Liu, Bingguo; Liu, Zhiwen; Gong, Yuxuan; Hu, Baofu; Wang, Jian; Li, Hui; Wang, Xinliang; Du, Baoli

    2018-01-01

    In recent times, there have been rapid advances in the solid-state laser lighting technology. Due to the large amounts of heat accumulated from the high flux laser radiation, color conversion materials used in solid-state laser lighting devices should possess high durability, high thermal conductivity, and low thermal quenching. The aim of this study is to develop a thermally robust SiO2-YAG:Ce composite thick film (CTF) for high-power solid-state laser lighting applications. Commercial colloidal silica which was used as the source of SiO2, played the roles of an adhesive, a filler, and a protecting agent. Compared to the YAG:Ce powder, the CTF exhibits remarkable thermal stability (11.3% intensity drop at 200 °C) and durability (4.5% intensity drop after 1000 h, at 85 °C and 85% humidity). Furthermore, the effects of the substrate material and the thickness of the CTF on the laser lighting performance were investigated in terms of their thermal quenching and luminescence saturation behaviors, respectively. The CTF with a thickness of 50 μm on a sapphire substrate does not show luminescence saturation, despite a high-power density of incident radiation i.e. 20 W/mm2. These results demonstrate the potential applicability of the CTF in solid-state laser lighting devices.

  3. Temperature-dependent field-effect carrier mobility in organic thin-film transistors with a gate SiO2 dielectric modified by H2O2 treatment

    Science.gov (United States)

    Lin, Yow-Jon; Hung, Cheng-Chun

    2018-02-01

    The effect of the modification of a gate SiO2 dielectric using an H2O2 solution on the temperature-dependent behavior of carrier transport for pentacene-based organic thin-film transistors (OTFTs) is studied. H2O2 treatment leads to the formation of Si(-OH) x (i.e., the formation of a hydroxylated layer) on the SiO2 surface that serves to reduce the SiO2 capacitance and weaken the pentacene-SiO2 interaction, thus increasing the field-effect carrier mobility ( µ) in OTFTs. The temperature-dependent behavior of carrier transport is dominated by the multiple trapping model. Note that H2O2 treatment leads to a reduction in the activation energy. The increased value of µ is also attributed to the weakening of the interactions of the charge carriers with the SiO2 dielectric that serves to reduce the activation energy.

  4. Interfacial, Electrical, and Band Alignment Characteristics of HfO2/Ge Stacks with In Situ-Formed SiO2 Interlayer by Plasma-Enhanced Atomic Layer Deposition

    Science.gov (United States)

    Cao, Yan-Qiang; Wu, Bing; Wu, Di; Li, Ai-Dong

    2017-05-01

    In situ-formed SiO2 was introduced into HfO2 gate dielectrics on Ge substrate as interlayer by plasma-enhanced atomic layer deposition (PEALD). The interfacial, electrical, and band alignment characteristics of the HfO2/SiO2 high-k gate dielectric stacks on Ge have been well investigated. It has been demonstrated that Si-O-Ge interlayer is formed on Ge surface during the in situ PEALD SiO2 deposition process. This interlayer shows fantastic thermal stability during annealing without obvious Hf-silicates formation. In addition, it can also suppress the GeO2 degradation. The electrical measurements show that capacitance equivalent thickness of 1.53 nm and a leakage current density of 2.1 × 10-3 A/cm2 at gate bias of Vfb + 1 V was obtained for the annealed sample. The conduction (valence) band offsets at the HfO2/SiO2/Ge interface with and without PDA are found to be 2.24 (2.69) and 2.48 (2.45) eV, respectively. These results indicate that in situ PEALD SiO2 may be a promising interfacial control layer for the realization of high-quality Ge-based transistor devices. Moreover, it can be demonstrated that PEALD is a much more powerful technology for ultrathin interfacial control layer deposition than MOCVD.

  5. Coupling between Ge-nanocrystals and defects in SiO2

    International Nuclear Information System (INIS)

    Skov Jensen, J.; Franzo, G.; Leervad Petersen, T.P.; Pereira, R.; Chevallier, J.; Christian Petersen, M.; Bech Nielsen, B.; Nylandsted Larsen, A.

    2006-01-01

    Room temperature photoluminescence (PL) at around 600 nm from magnetron-sputtered SiO 2 films co-doped with Ge is reported. The PL signal is observed in pure SiO 2 , however, its intensity increases significantly in the presence of Ge-nanocrystals (Ge-nc). The PL intensity has been optimized by varying the temperature of heat treatment, type of gas during heat treatment, concentration of Ge in the SiO 2 films, and gas pressure during deposition. Maximum intensity occurs when Ge-nc of around 3.5 nm are present in large concentration in SiO 2 layers deposited at fairly high gas pressure. Based on time resolved PL, and PL measurements after α-particle irradiation or H passivation, we attribute the origin of the PL to a defect in SiO 2 (probably an O deficiency) that is excited through an energy transfer from Ge-nc. There is no direct PL from the Ge-nc; however, there is a strong coupling between excitons created in the Ge-nc and the SiO 2 defect

  6. On red-shift of UV photoluminescence with decreasing size of silicon nanoparticles embedded in SiO2 matrix grown by pulsed laser deposition

    International Nuclear Information System (INIS)

    Chaturvedi, Amita; Joshi, M.P.; Rani, Ekta; Ingale, Alka; Srivastava, A.K.; Kukreja, L.M.

    2014-01-01

    Ensembles of silicon nanoparticles (Si-nps) embedded in SiO 2 matrix were grown by alternate ablation of Si and SiO 2 targets using KrF excimer laser based pulsed laser deposition (PLD). The sizes of Si-nps (mean size ranging from 1–5 nm) were controlled by varying the ablation time of silicon target. Transmission electron microscopy (TEM) along with selected area electron diffraction (SAED) and Raman spectroscopy were used to confirm the growth of silicon nanoparticles, its size variation with growth time and the crystalline quality of the grown nanoparticles. TEM analysis showed that mean size and size distribution of Si-nps increased with increase in the ablation time of Si target. Intense peaks ∼521 cm −1 in Raman analysis showed reasonably good crystalline quality of grown Si-nps. We observed asymmetric broadening of phonon line shapes which also redshift with decreasing size of Si-nps. Photoluminescence (PL) from these samples, obtained at room temperature, was broad band and consisted of three bands in UV and visible range. The intensity of PL band in UV spectral range (peak ∼3.2 eV) was strong compared to visible range bands (peaks ∼2.95 eV and ∼2.55 eV). We observed a small red-shift (∼0.07 eV) of peak position of UV range PL with the decrease in the mean sizes of Si-nps, while there was no appreciable size dependent shift of PL peak positions for other bands in the visible range. The width of UV PL band was also found to increase with decrease of Si-nps mean sizes. Based on the above observations of size dependent redshift of UV range PL band together with the PL lifetimes and PL excitation spectroscopy, the origin of UV PL band is attributed to the direct band transition at the Γ point of Si band structure. Visible range bands were ascribed as defect related transitions. The weak intensities of PL bands ∼2.95 eV and ∼2.55 eV suggested that Si nanoparticles grown by PLD were efficiently capped or passivated by SiO 2 with low density of

  7. Ag films deposited on Si and Ti: How the film-substrate interaction influences the nanoscale film morphology

    Science.gov (United States)

    Ruffino, F.; Torrisi, V.

    2017-11-01

    Submicron-thick Ag films were sputter deposited, at room temperature, on Si, covered by the native SiO2 layer, and on Ti, covered by the native TiO2 layer, under normal and oblique deposition angle. The aim of this work was to study the morphological differences in the grown Ag films on the two substrates when fixed all the other deposition parameters. In fact, the surface diffusivity of the Ag adatoms is different on the two substrates (higher on the SiO2 surface) due to the different Ag-SiO2 and Ag-TiO2 atomic interactions. So, the effect of the adatoms surface diffusivity, as determined by the adatoms-substrate interaction, on the final film morphology was analyzed. To this end, microscopic analyses were used to study the morphology of the grown Ag films. Even if the homologous temperature prescribes that the Ag film grows on both substrates in the zone I described by the structure zone model some significant differences are observed on the basis of the supporting substrate. In the normal incidence condition, on the SiO2/Si surface a dense close-packed Ag film exhibiting a smooth surface is obtained, while on the TiO2/Ti surface a more columnar film morphology is formed. In the oblique incidence condition the columnar morphology for the Ag film occurs both on SiO2/Si and TiO2/Ti but a higher porous columnar film is obtained on TiO2/Ti due to the lower Ag diffusivity. These results indicate that the adatoms diffusivity on the substrate as determined by the adatom-surface interaction (in addition to the substrate temperature) strongly determines the final film nanostructure.

  8. A Study of the Dielectric Breakdown of SiO2 Films on Si by the Self- Quenching Technique

    Science.gov (United States)

    1974-10-01

    Cambell . Much of the early work on the breakdown of oxide films in 2 1 Q MOS structures was done by N. Klein and his coworkers...Electron Physics, 26, Academic Press. New York (1969). P. J. Harrop and D. S. Cambell , "Dielectric Properties of Thin Films," Handbook of Thin Film

  9. Ti-catalyzed HfSiO4 formation in HfTiO4 films on SiO2 studied by Z-contrast scanning electron microscopy

    Directory of Open Access Journals (Sweden)

    Elizabeth Ellen Hoppe

    2013-08-01

    Full Text Available Hafnon (HfSiO4 as it is initially formed in a partially demixed film of hafnium titanate (HfTiO4 on fused SiO2 is studied by atomic number (Z contrast high resolution scanning electron microscopy, x-ray diffraction, and Raman spectroscopy and microscopy. The results show exsoluted Ti is the catalyst for hafnon formation by a two-step reaction. Ti first reacts with SiO2 to produce a glassy Ti-silicate. Ti is then replaced by Hf in the silicate to produce HfSiO4. The results suggest this behavior is prototypical of other Ti-bearing ternary or higher order oxide films on SiO2 when film thermal instability involves Ti exsolution.

  10. Surface Phenomena During Plasma-Assisted Atomic Layer Etching of SiO2.

    Science.gov (United States)

    Gasvoda, Ryan J; van de Steeg, Alex W; Bhowmick, Ranadeep; Hudson, Eric A; Agarwal, Sumit

    2017-09-13

    Surface phenomena during atomic layer etching (ALE) of SiO 2 were studied during sequential half-cycles of plasma-assisted fluorocarbon (CF x ) film deposition and Ar plasma activation of the CF x film using in situ surface infrared spectroscopy and ellipsometry. Infrared spectra of the surface after the CF x deposition half-cycle from a C 4 F 8 /Ar plasma show that an atomically thin mixing layer is formed between the deposited CF x layer and the underlying SiO 2 film. Etching during the Ar plasma cycle is activated by Ar + bombardment of the CF x layer, which results in the simultaneous removal of surface CF x and the underlying SiO 2 film. The interfacial mixing layer in ALE is atomically thin due to the low ion energy during CF x deposition, which combined with an ultrathin CF x layer ensures an etch rate of a few monolayers per cycle. In situ ellipsometry shows that for a ∼4 Å thick CF x film, ∼3-4 Å of SiO 2 was etched per cycle. However, during the Ar plasma half-cycle, etching proceeds beyond complete removal of the surface CF x layer as F-containing radicals are slowly released into the plasma from the reactor walls. Buildup of CF x on reactor walls leads to a gradual increase in the etch per cycle.

  11. Void Shapes Controlled by Using Interruption-Free Epitaxial Lateral Overgrowth of GaN Films on Patterned SiO2 AlN/Sapphire Template

    Directory of Open Access Journals (Sweden)

    Yu-An Chen

    2014-01-01

    Full Text Available GaN epitaxial layers with embedded air voids grown on patterned SiO2 AlN/sapphire templates were proposed. Using interruption-free epitaxial lateral overgrowth technology, we realized uninterrupted growth and controlled the shape of embedded air voids. These layers showed improved crystal quality using X-ray diffraction and measurement of etching pits density. Compared with conventional undoped-GaN film, the full width at half-maximum of the GaN (0 0 2 and (1 0 2 peaks decreased from 485 arcsec to 376 arcsec and from 600 arcsec to 322 arcsec, respectively. Transmission electron microscopy results showed that the coalesced GaN growth led to bending threading dislocation. We also proposed a growth model based on results of scanning electron microscopy.

  12. Alpha-particle irradiation induced defects in SiO2 films of Si-SiO2 structures

    International Nuclear Information System (INIS)

    Koman, B.P.; Gal'chynskyy, O.V.; Kovalyuk, R.O.; Shkol'nyy, A.K.

    1996-01-01

    The aim of the work was to investigate alpha-particle irradiation induced defects in Si-SiO 2 structures by means of the thermostimulated discharge currents (TSDC) analysis. The object of investigation were (p-Si)-SiO 2 structures formed by a combined oxidation of the industrial p-Si wafers in dry and wet oxygen at temperature of 1150 C. The TSD currents were investigated in the temperature range between 90 and 500 K under linear heating rate. Pu 238 isotopes were the source of alpha-particles with an energy of 4-5 MeV and a density of 5.10 7 s -1 cm -2 . The TSD current curves show two peculiar maxima at about 370 and 480 K. Alpha-particle irradiation doesn't affect the general shape of the TSDC curves but leads to a shift of the maximum at 370 K and reduces the total electret charge which is accumulated in the Si-SiO 2 structures during polarization. The energy distribution function of the defects which are involved in SiO 2 polarization has been calculated. It showes that defects with activation energies of about 0.8 and 1.0 eV take part in forming the electret state, and these activation energies have certain energy distributions. It has been found that the TSDC maximum at 370 K has space charge nature and is caused by migration of hydrogen ions. In irradiated samples hydrogen and natrium ions localize on deeper trapping centres induced by alpha-particle irradiation. (orig.)

  13. Sol-gel prepared B2O3-SiO2 thin films for protection of copper substrates

    International Nuclear Information System (INIS)

    Gouda, M.; Ahmed, M.S.; Shahin, M.A.

    2000-01-01

    Full text.Borosilicate coating has potential for applications in the field of electronics, e.g., as passivation layers. One of the main difficulties for applying these films by the conventional melting process is the extensive volatilization of B 2 O 3 from the melt. In this work transparent borosilicate films of 2OB 2 O3.8OSiO 2 (in mole %). Prepared by the sole gel method, were applied onto copper substrates by dip-coating technique. The transparency of these films was very sensitive to the humidity of the atmosphere during the coating process. Transparent films were obtained below 20% relative humidity at 20 celsius degree. High temperature oxidation tests, at about 585 celsius degree stream of air, showed that the sol-gel prepared 2OB 2 O 3 .8OSiO 2 thin films are protective coating for copper substrates under fairly severe temperature gradient and oxidizing atmosphere. It was found that the protective action of these films depends on the film thickness

  14. Electrical resistivity, magnetoresistance and magnetostriction of Ni81Fe19 monolithic films on SiO2

    International Nuclear Information System (INIS)

    Sahingoez, R.

    2004-01-01

    Ultra thin films of Ni 8 1Fe 1 9, 1Onm, 6nm, 5nm, 3nm and 2.5, 2nm thick have been grown on thermally oxidised Si. Pirst, the thickness dependence of electrical resistivity of Ni 8 1Fe 1 9 monolithic films was measured. It was found that the electrical resistivity was proportional to t - 4, where t indicates the thickness of the sample. Second, the magnetoresistance (MR), of the samples was plotted against applied DC magnetic field. The thickness dependence of MR was investigated. The next step was to investigate the effect of stress on MR. The aim of the final part was to show that MR values could be used to calculate the magnetostriction constant

  15. Fabrication and characterization of Er+3 doped SiO2/SnO2 glass-ceramic thin films for planar waveguide applications

    Science.gov (United States)

    Guddala, S.; Chiappini, A.; Armellini, C.; Turell, S.; Righini, G. C.; Ferrari, M.; Narayana Rao, D.

    2015-02-01

    Glass-ceramics are a kind of two-phase materials constituted by nanocrystals embedded in a glass matrix and the respective volume fractions of crystalline and amorphous phase determine the properties of the glass-ceramics. Among these properties transparency is crucial in particular when confined structures, such as, dielectric optical waveguides, are considered. Moreover, the segregation of dopant rare-earth ions, like erbium, in low phonon energy crystalline medium makes these structures more promising in the development of waveguide amplifiers. Here we are proposing a new class of low phonon energy tin oxide semiconductor medium doped silicate based planar waveguides. Er3+ doped (100-x) SiO2-xSnO2 (x= 10, 20, 25 and 30mol%), glass-ceramic planar waveguide thin films were fabricated by a simple sol-gel processing and dip coating technique. XRD and HRTEM studies indicates the glass-ceramic phase of the film and the dispersion of ~4nm diameter of tin oxide nanocrystals in the amorphous phase of silica. The spectroscopic assessment indicates the distribution of the dopant erbium ions in the crystalline medium of tin oxide. The observed low losses, 0.5±0.2 dB/cm, at 1.54 μm communication wavelength makes them a quite promising material for the development of high gain integrated optical amplifiers.

  16. Optical thin film deposition

    International Nuclear Information System (INIS)

    Macleod, H.A.

    1979-01-01

    The potential usefulness in the production of optical thin-film coatings of some of the processes for thin film deposition which can be classified under the heading of ion-assisted techniques is examined. Thermal evaporation is the process which is virtually universally used for this purpose and which has been developed to a stage where performance is in almost all respects high. Areas where further improvements would be of value, and the possibility that ion-assisted deposition might lead to such improvements, are discussed. (author)

  17. Role of chamber dimension in fluorocarbon based deposition and etching of SiO2 and its effects on gas and surface-phase chemistry

    International Nuclear Information System (INIS)

    Joseph, E. A.; Zhou, B.-S.; Sant, S. P.; Overzet, L. J.; Goeckner, M. J.

    2008-01-01

    It is well understood that chamber geometry is an influential factor governing plasma processing of materials. Simple models suggest that a large fraction of this influence is due to changes in basic plasma properties, namely, density, temperature, and potential. However, while such factors do play an important role, they only partly describe the observed differences in process results. Therefore, to better elucidate the role of chamber geometry in this work, the authors explore the influence of plasma chemistry and its symbiotic effect on plasma processing by decoupling the plasma density, temperature, and potential from the plasma-surface (wall) interactions. Specifically, a plasma system is used with which the authors can vary the chamber dimension so as to vary the plasma-surface interaction directly. By varying chamber wall diameter, 20-66 cm, and source-platen distance, 4-6 cm, the etch behavior of SiO 2 (or the deposition behavior of fluorocarbon polymer) and the resulting gas-phase chemistry change significantly. Results from in situ spectroscopic ellipsometry show significant differences in etch characteristics, with etch rates as high as 350 nm/min and as low as 75 nm/min for the same self-bias voltage. Fluorocarbon deposition rates are also highly dependent on chamber dimension and vary from no net deposition to deposition rates as high as 225 nm/min. Etch yields, however, remain unaffected by the chamber size variations. From Langmuir probe measurements, it is clear that chamber geometry results in significant shifts in plasma properties such as electron and ion densities. Indeed, such measurements show that on-wafer processes are limited at least in part by ion flux for high energy reactive ion etch. However, in situ multipass Fourier transform infrared spectroscopy reveals that the line-averaged COF 2 , SiF 4 , CF 2 , and CF 3 gas-phase densities are also dependent on chamber dimension at high self-bias voltage and also correlate well to the CF x

  18. Fe/Ni thin films temperature investigation with MgO and SiO2 interfaces by ferromagnetic resonance

    International Nuclear Information System (INIS)

    Zyubin, A; Orlova, A; Astashonok, A; Kupriyanova, G; Nevolin, V

    2011-01-01

    In this work the temperature study of magnetic – resonance properties of the structures such as Fe/MgO/Ni, Fe/SiO2/Ni differing thickness of spacer and of method of preparation was carried out by FMR. These systems are investigated to estimate their applicability in model creation experiments for a spintronics devices research [1–4]. The special attention was given to the temperature dependence research of three layer films linewidths. The out-of-plane temperature dependences of FMR signal position and line widths have been measured for Fe/Ni samples with MgO and Si/SiO2 interfaces in static position of 0 and 90 degrees rotation angle to the external static magnetic field. The extracted magnetic parameters such as linewidths and resonance field position were studied.

  19. Self-Ordered Voids Formation in SiO2 Matrix by Ge Outdiffusion

    Directory of Open Access Journals (Sweden)

    B. Pivac

    2018-01-01

    Full Text Available The annealing behavior of very thin SiO2/Ge multilayers deposited on Si substrate by e-gun deposition in high vacuum was explored. It is shown that, after annealing at moderate temperatures (800°C in inert atmosphere, Ge is completely outdiffused from the SiO2 matrix leaving small (about 3 nm spherical voids embedded in the SiO2 matrix. These voids are very well correlated and formed at distances governed by the preexisting multilayer structure (in vertical direction and self-organization (in horizontal direction. The formed films produce intensive photoluminescence (PL with a peak at 500 nm. The explored dynamics of the PL decay show the existence of a very rapid process similar to the one found at Ge/SiO2 defected interface layers.

  20. Degradation of TiO2 and/or SiO2 hybrid films doped with different cationic dyes

    International Nuclear Information System (INIS)

    Purcar, Violeta; Caprarescu, Simona; Donescu, Dan; Petcu, Cristian; Stamatin, Ioan; Ianchis, Raluca; Stroescu, Hermine

    2013-01-01

    Hybrid thin films, silica–titanium oxides and silica–aluminum oxides, designed based on the sol–gel process are evaluated as catalysts in the photo-degradation of the cationic dyes. Silica matrices from different precursors with various organic functional groups and cross-linked with titanium or aluminum agents (tetraisopropyl orthotitanate and aluminum sec-butoxide) allow the surface property tailoring related to the high capacity of the dye adsorption respective, high photo-degradation activity. The cationic dyes (methylene blue, rhodamine B, crystal violet, malachite green) embedded on the hybrid silica matrix, under ultraviolet light, have a first order kinetics of photodegradation. The cross-linking agents play a key role in the photocatalytic degradation and silica matrix as dye absorbent. The photo-degradation rate for the binary system derived from methyltriethoxysilane/vinyltriethoxysilane precursors with both cross linkers showed a significant improvement by comparison with other hybrid materials. The significant increasing in the photodecomposition rate is related to the capacity to generate additional oxidizing species by each silica hybrid compounds. - Highlights: ► Dyes display different electrostatic interactions to the silica matrix. ► Cross-linking agent influences the photocatalytic degradation of dyes. ► Photodegradation reaction obeyed the rules of a pseudo-first-order kinetic reaction. ► UV radiation can be the origin of the photodegradation

  1. Preparation and optical and electrical evaluation of bulk SiO2 sonogel hybrid composites and vacuum thermal evaporated thin films prepared from molecular materials derived from (Fe, Co) metallic phthalocyanines and 1,8 dihydroxiantraquinone compounds

    International Nuclear Information System (INIS)

    Sanchez Vergara, Maria Elena; Morales-Saavedra, Omar G.; Ontiveros-Barrera, Fernando G.; Torres-Zuniga, Vicente; Ortega-Martinez, Roberto; Ortiz Rebollo, Armando

    2009-01-01

    Semiconducting molecular material of PcFe(CN)L1 and PcCo(CN)L1 (L1 = 1,8 dihydroxianthraquinone), PcFe(CN)L2 and PcCo(CN)L2 (L2 = double potassium salt of 1,8 dihydroxianthraquinone) have been successfully used to prepare thin film and bulk sol-gel hybrid optical materials. These samples were developed according to the vacuum thermal evaporation technique and the catalyst-free sonogel route, respectively. Thin films samples were deposited on Corning glass substrates and crystalline silicon wafers and were characterized by infrared (FTIR), Raman and ultraviolet-visible (UV-vis) spectroscopies. IR-spectroscopy and Raman studies unambiguously confirmed that the molecular material thin films exhibit the same intra-molecular bonds, which suggests that the thermal evaporation process does not alter these bonds significantly. These results show that it is possible to deposit molecular materials of PcFe(CN)L2 and PcCo(CN)L2 on Corning glass substrates and silicon wafers. From the UV-vis studies the optical band gap (E g ) was evaluated. The effect of temperature on conductivity was also evaluated in these samples. Finally, the studied molecular systems dissolved at different concentrations in tetrahydrofuran (THF) were successfully embedded into a highly pure SiO 2 sonogel network generated via sonochemical reactions to form several solid state, optically active sol-gel hybrid glasses. By this method, homogeneous and stable hybrid monoliths suitable for optical characterization can be produced. The linear optical properties of these amorphous bulk structures were determined by the Brewster angle method and by absorption-, Raman- and photoluminescent (PL)-spectroscopies, respectively

  2. Reaction analysis of initial oxidation of silicon by UV-light-excited ozone and the application to rapid and uniform SiO2 film growth

    International Nuclear Information System (INIS)

    Tosaka, Aki; Nonaka, Hidehiko; Ichimura, Shingo; Nishiguchi, Tetsuya

    2007-01-01

    UV-light-excited O 3 prepared by irradiation of nearly 100% pure O 3 with a KrF excimer laser (λ=248 nm, irradiated area=30x10 mm 2 ) was utilized for low-temperature Si oxidation. The initial oxidation rate was determined, and the activation energy was shown to be almost zero (0.049 eV). To clarify the optimum oxidation conditions, the dependence of the SiO 2 film growth rate on the total photon number and the photon density was investigated. The evolution of O 3 density after UV-light irradiation was experimentally measured, and the O( 1 D) density change is discussed. O( 1 D) density changes are successfully explained by using a second-order reaction model, indicating that a pulse supply of oxygen atoms is essential in the initial oxidation process. The uniform oxidation of 8 in. Si wafer has been carried out using a wafer-transfer type chamber by irradiating the wafer with KrF excimer laser light expanded linearly to the wafer width by a concave lens

  3. Vanadium oxide thin films deposited on silicon dioxide buffer layers by magnetron sputtering

    International Nuclear Information System (INIS)

    Chen Sihai; Ma Hong; Wang Shuangbao; Shen Nan; Xiao Jing; Zhou Hao; Zhao Xiaomei; Li Yi; Yi Xinjian

    2006-01-01

    Thin films made by vanadium oxide have been obtained by direct current magnetron sputtering method on SiO 2 buffer layers. A detailed electrical and structural characterization has been performed on the deposited films by four-point probe method and scanning electron microscopy (SEM). At room temperature, the four-point probe measurement result presents the resistance of the film to be 25 kU/sheet. The temperature coefficient of resistance is - 2.0%/K. SEM image indicates that the vanadium oxide exhibits a submicrostructure with lamella size ranging from 60 nm to 300 nm. A 32 x 32-element test microbolometer was fabricated based on the deposited thin film. The infrared response testing showed that the response was 200 mV. The obtained results allow us to conclude that the vanadium oxide thin films on SiO 2 buffer layers is suitable for uncooled focal plane arrays applications

  4. Transfer free graphene growth on SiO2 substrate at 250 °C

    Science.gov (United States)

    Vishwakarma, Riteshkumar; Rosmi, Mohamad Saufi; Takahashi, Kazunari; Wakamatsu, Yuji; Yaakob, Yazid; Araby, Mona Ibrahim; Kalita, Golap; Kitazawa, Masashi; Tanemura, Masaki

    2017-03-01

    Low-temperature growth, as well as the transfer free growth on substrates, is the major concern of graphene research for its practical applications. Here we propose a simple method to achieve the transfer free graphene growth on SiO2 covered Si (SiO2/Si) substrate at 250 °C based on a solid-liquid-solid reaction. The key to this approach is the catalyst metal, which is not popular for graphene growth by chemical vapor deposition. A catalyst metal film of 500 nm thick was deposited onto an amorphous C (50 nm thick) coated SiO2/Si substrate. The sample was then annealed at 250 °C under vacuum condition. Raman spectra measured after the removal of the catalyst by chemical etching showed intense G and 2D peaks together with a small D and intense SiO2 related peaks, confirming the transfer free growth of multilayer graphene on SiO2/Si. The domain size of the graphene confirmed by optical microscope and atomic force microscope was about 5 μm in an average. Thus, this approach will open up a new route for transfer free graphene growth at low temperatures.

  5. Nucleation of C60 on ultrathin SiO2

    Science.gov (United States)

    Conrad, Brad; Groce, Michelle; Cullen, William; Pimpinelli, Alberto; Williams, Ellen; Einstein, Ted

    2012-02-01

    We utilize scanning tunneling microscopy to characterize the nucleation, growth, and morphology of C60 on ultrathin SiO2 grown at room temperature. C60 thin films are deposited in situ by physical vapor deposition with thicknesses varying from <0.05 to ˜1 ML. Island size and capture zone distributions are examined for a varied flux rate and substrate deposition temperature. The C60 critical nucleus size is observed to change between monomers and dimers non-monotonically from 300 K to 500 K. Results will be discussed in terms of recent capture zone studies and analysis methods. Relation to device fabrication will be discussed. doi:10.1016/j.susc.2011.08.020

  6. Preparation and characterization of amorphous SiO2 coatings deposited by mirco-arc oxidation on sintered NdFeB permanent magnets

    International Nuclear Information System (INIS)

    Xu, J.L.; Xiao, Q.F.; Mei, D.D.; Zhong, Z.C.; Tong, Y.X.; Zheng, Y.F.; Li, L.

    2017-01-01

    Amorphous SiO 2 coatings were prepared on sintered NdFeB magnets by micro-arc oxidation (MAO) in silicate solution. The surface and cross-sectional morphologies, element and phase composition, corrosion resistance and magnetic properties of the coatings were investigated by scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), X-ray photoelectron spectroscopy (XPS), potentiodynamic polarization test and physical properties measurements system (PPMS). The results showed that the surface morphologies of the coatings exhibited the “coral reef” like structure, different from the typical MAO porous structure. With increasing the voltages, the thickness of the coatings increased from 12.72 to 19.90 µm, the content of Si element increased, while the contents of Fe, Nd and P elements decreased. The coatings were mainly composed of amorphous SiO 2 and a few amorphous Fe 2 O 3 and Nd 2 O 3 . The amorphous SiO 2 coatings presented excellent thermal shock resistance, while the thermal shock resistance decreased with increasing the voltages. The corrosion resistance of the coatings increased with increasing the voltages, and it could be enhanced by one order of magnitude compared to the uncoated NdFeB magnets. The MAO coatings slightly decreased the magnetic properties of the NdFeB samples in different degrees. - Highlights: • Amorphous SiO 2 coatings were prepared on sintered NdFeB magnets by micro-arc oxidation. • The coatings presented excellent thermal shock resistance. • The corrosion resistance could be enhanced by one order of magnitude. • The MAO coatings slightly decreased the magnetic properties of the NdFeB samples.

  7. Preparation and characterization of amorphous SiO2 coatings deposited by mirco-arc oxidation on sintered NdFeB permanent magnets

    Science.gov (United States)

    Xu, J. L.; Xiao, Q. F.; Mei, D. D.; Zhong, Z. C.; Tong, Y. X.; Zheng, Y. F.; Li, L.

    2017-03-01

    Amorphous SiO2 coatings were prepared on sintered NdFeB magnets by micro-arc oxidation (MAO) in silicate solution. The surface and cross-sectional morphologies, element and phase composition, corrosion resistance and magnetic properties of the coatings were investigated by scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), X-ray photoelectron spectroscopy (XPS), potentiodynamic polarization test and physical properties measurements system (PPMS). The results showed that the surface morphologies of the coatings exhibited the "coral reef" like structure, different from the typical MAO porous structure. With increasing the voltages, the thickness of the coatings increased from 12.72 to 19.90 μm, the content of Si element increased, while the contents of Fe, Nd and P elements decreased. The coatings were mainly composed of amorphous SiO2 and a few amorphous Fe2O3 and Nd2O3. The amorphous SiO2 coatings presented excellent thermal shock resistance, while the thermal shock resistance decreased with increasing the voltages. The corrosion resistance of the coatings increased with increasing the voltages, and it could be enhanced by one order of magnitude compared to the uncoated NdFeB magnets. The MAO coatings slightly decreased the magnetic properties of the NdFeB samples in different degrees.

  8. Low-temperature transport properties of chemical solution deposited polycrystalline La0.7Sr0.3MnO3 ferromagnetic films under a magnetic field

    International Nuclear Information System (INIS)

    Zhu, Junyu; Chen, Ying; Xu, Wenfei; Yang, Jing; Bai, Wei; Wang, Genshui; Duan, Chungang; Tang, Zheng; Tang, Xiaodong

    2011-01-01

    Polycrystalline La 0.7 Sr 0.3 MnO 3 (LSMO) films were prepared on SiO 2 /Si (001) substrates by chemical solution deposition technique. Electrical and magnetic properties of LSMO were investigated. A minimum phenomenon in resistivity is found at the low temperature ( 0.7 Sr 0.3 MnO 3 films were grown by a modified chemical solution deposition route. → High quality LSMO thin films were prepared directly onto SiO 2 /Si substrates. → Abnormality in resistivity of LSMO films at low temperatures was studied in detail. → The abnormality was mainly attributed to Kondo-like spin dependent scattering.

  9. Imprinted sol-gel electrochemical sensor for the determination of benzylpenicillin based on Fe3O4/SiO2 multi-walled carbon nanotubes-chitosans nanocomposite film modified carbon electrode

    International Nuclear Information System (INIS)

    Hu Yufang; Li Jiaxing; Zhang Zhaohui; Zhang Huabin; Luo Lijuan; Yao Shouzhuo

    2011-01-01

    Graphical abstract: A novel imprinted sol-gel electrochemical sensor based on Fe 3 O 4 /SiO 2 -MWNTs-CTS nanocomposite film and a thin MIP film has been developed on a carbon electrode. Highlights: → A novel imprinted sol-gel electrochemical sensor based on Fe 3 O 4 /SiO 2 -MWNTs-CTS nanocomposites has been developed. → Fe 3 O 4 /SiO 2 -MWNTs-CTS nanocomposites act as 'electronic wires' to enhance the electron transfer. → The inherent specificity of the MIPs brings about highly selectivity. The imprinted sensor detects benzylpenicillin in real samples successfully. - Abstract: Herein, a novel imprinted sol-gel electrochemical sensor based on multi-walled carbon nanotubes (MWNTs) doped with chitosan film on a carbon electrode has been developed. Prior to doped, the MWNTs have been decorated with Fe 3 O 4 nanoparticles which have been coated uniformly with SiO 2 layer. The characterization of imprinted sensor has been carried out by X-ray diffraction and scanning electron microscopy. The performance of the proposed imprinted sensor has been investigated using cyclic voltammetry and differential pulse voltammetry. The imprinted sensor offers a fast response and sensitive benzylpenicillin quantification. The fabricated benzylpenicillin imprinted sensor exhibits a linear response from 5.0 x 10 -8 to 1.0 x 10 -3 mol L -1 with a detection limit of 1.5 x 10 -9 mol L -1 . For samples analysis, perfect recoveries of the imprinted sensor for benzylpenicillin indicated that the imprinted sensor was able to detect benzylpenicillin in real samples successfully.

  10. Physical and Chemical Properties of TiOxNy Prepared by Low-Temperature Oxidation of Ultrathin Metal Nitride Directly Deposited on SiO2

    Institute of Scientific and Technical Information of China (English)

    HAN Yue-Ping; HAN Yan

    2009-01-01

    Physical and chemical properties of titanium oxynitride (TiOxNy) formed by low-temperature oxidation of titanium nitride (TIN) layer are investigated for advanced metal-oxide--semiconductor (MOS) gate dielectric application.TiOx Ny exhibits polycrystalline properties after the standard thermal process for MOS device fabrication,showing the preferred orientation at [200].Superior electrical properties of TiOxNy can be maintained before and after the annealing,probably due to the nitrogen incorporation in the oxide bulk and at the interface.Naturally formed transition layer between TiOxNy and SiO2 is also confirmed.

  11. Enhancement of photocatalytic degradation of furfural and acetophenone in water media using nano-TiO2-SiO2 deposited on cementitious materials.

    Science.gov (United States)

    Soltan, Sahar; Jafari, Hoda; Afshar, Shahrara; Zabihi, Omid

    2016-10-01

    In the present study, silicon dioxide (SiO 2 ) nanoparticles were loaded to titanium dioxide (TiO 2 ) nano-particles by sol-gel method to make a high porosity photocatalyst nano-hybrid. These photocatalysts were synthesized using titanium tetrachloride and tetraethyl orthosilicate as titanium and silicon sources, respectively, and characterized by X-ray powder diffraction (XRD) and scanning electron microscope methods. Subsequently, the optimizations of the component and operation conditions were investigated. Then, nano-sized TiO 2 and TiO 2 -SiO 2 were supported on concrete bricks by the dip coating process. The photocatalytic activity of nano photocatalysts under UV irradiation was examined by studying the decomposition of aqueous solutions of furfural and acetophenone (10 mg/L) as model of organic pollutants to CO 2 and H 2 O at room temperature. A decrease in the concentration of these pollutants was assayed by using UV-visible absorption, gas chromatography technique, and chemical oxygen demand. The removal of these pollutants from water using the concrete-supported photocatalysts under UV irradiation was performed with a greater efficiency, which does not require an additional separation stage to recover the catalyst. Therefore, it would be applicable to use in industrial wastewater treatment at room temperature and atmospheric pressure within the optimized pH range.

  12. SiO2 Antireflection Coatings Fabricated by Electron-Beam Evaporation for Black Monocrystalline Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Minghua Li

    2014-01-01

    Full Text Available In this work we prepared double-layer antireflection coatings (DARC by using the SiO2/SiNx:H heterostructure design. SiO2 thin films were deposited by electron-beam evaporation on the conventional solar cell with SiNx:H single-layer antireflection coatings (SARC, while to avoid the coverage of SiO2 on the front side busbars, a steel mask was utilized as the shelter. The thickness of the SiNx:H as bottom layer was fixed at 80 nm, and the varied thicknesses of the SiO2 as top layer were 105 nm and 122 nm. The results show that the SiO2/SiNx:H DARC have a much lower reflectance and higher external quantum efficiency (EQE in short wavelengths compared with the SiNx:H SARC. A higher energy conversion efficiency of 17.80% was obtained for solar cells with SiO2 (105 nm/SiNx:H (80 nm DARC, an absolute conversion efficiency increase of 0.32% compared with the conventional single SiNx:H-coated cells.

  13. Effect of hydrogen on the device performance and stability characteristics of amorphous InGaZnO thin-film transistors with a SiO2/SiNx/SiO2 buffer

    Science.gov (United States)

    Han, Ki-Lim; Ok, Kyung-Chul; Cho, Hyeon-Su; Oh, Saeroonter; Park, Jin-Seong

    2017-08-01

    We investigate the influence of the multi-layered buffer consisting of SiO2/SiNx/SiO2 on amorphous InGaZnO (a-IGZO) thin-film transistors (TFTs). The multi-layered buffer inhibits permeation of water from flexible plastic substrates and prevents degradation of overlying organic layers. The a-IGZO TFTs with a multi-layered buffer suffer less positive bias temperature stress instability compared to the device with a single SiO2 buffer layer after annealing at 250 °C. Hydrogen from the SiNx layer diffuses into the active layer and reduces electron trapping at loosely bound oxygen defects near the SiO2/a-IGZO interface. Quantitative analysis shows that a hydrogen density of 1.85 × 1021 cm-3 is beneficial to reliability. However, the multi-layered buffer device annealed at 350 °C resulted in conductive characteristics due to the excess carrier concentration from the higher hydrogen density of 2.12 × 1021 cm-3.

  14. Chemical vapor deposition of amorphous ruthenium-phosphorus alloy films

    International Nuclear Information System (INIS)

    Shin Jinhong; Waheed, Abdul; Winkenwerder, Wyatt A.; Kim, Hyun-Woo; Agapiou, Kyriacos; Jones, Richard A.; Hwang, Gyeong S.; Ekerdt, John G.

    2007-01-01

    Chemical vapor deposition growth of amorphous ruthenium-phosphorus films on SiO 2 containing ∼ 15% phosphorus is reported. cis-Ruthenium(II)dihydridotetrakis-(trimethylphosphine), cis-RuH 2 (PMe 3 ) 4 (Me = CH 3 ) was used at growth temperatures ranging from 525 to 575 K. Both Ru and P are zero-valent. The films are metastable, becoming increasingly more polycrystalline upon annealing to 775 and 975 K. Surface studies illustrate that demethylation is quite efficient near 560 K. Precursor adsorption at 135 K or 210 K and heating reveal the precursor undergoes a complex decomposition process in which the hydride and trimethylphosphine ligands are lost at temperatures as low at 280 K. Phosphorus and its manner of incorporation appear responsible for the amorphous-like character. Molecular dynamics simulations are presented to suggest the local structure in the films and the causes for phosphorus stabilizing the amorphous phase

  15. Densification of ∼5 nm-thick SiO_2 layers by nitric acid oxidation

    International Nuclear Information System (INIS)

    Choi, Jaeyoung; Joo, Soyeong; Park, Tae Joo; Kim, Woo-Byoung

    2017-01-01

    Highlights: • Leakage current density of the commercial PECVD grown ∼5 nm SiO_2 layer has been decreased about three orders of magnitude by densification. • The densification of SiO_2 layer is achieved by high oxidation ability of O·. • Densities of suboxide, fixed charge (N_f) and defect state (N_d) in SiO_2/Si interface are decreased by NAOS and PMA. • Tunneling barrier height (Φ_t) is increased because of the increase of atomic density in SiO_2 layer. - Abstract: Low-temperature nitric acid (HNO_3) oxidation of Si (NAOS) has been used to improve the interface and electrical properties of ∼5 nm-thick SiO_2/Si layers produced by plasma-enhanced chemical vapor deposition (PECVD). Investigations of the physical properties and electrical characteristics of these thin films revealed that although their thickness is not changed by NAOS, the leakage current density at a gate bias voltage of −1 V decreases by about two orders of magnitude from 1.868 × 10"−"5 A/cm"2. This leakage current density was further reduced by post-metallization annealing (PMA) at 250 °C for 10 min in a 5 vol.% hydrogen atmosphere, eventually reaching a level (5.2 × 10"−"8 A/cm"2) approximately three orders of magnitude less than the as-grown SiO_2 layer. This improvement is attributed to a decrease in the concentration of suboxide species (Si"1"+, Si"2"+ and Si"3"+) in the SiO_2/Si interface, as well as a decrease in the equilibrium density of defect sites (N_d) and fixed charge density (N_f). The barrier height (Φ_t) generated by a Poole-Frenkel mechanism also increased from 0.205 to 0.371 eV after NAOS and PMA. The decrease in leakage current density is therefore attributed to a densification of the SiO_2 layer in combination with the removal of OH species and increase in interfacial properties at the SiO_2/Si interface.

  16. Laser deposition of HTSC films

    International Nuclear Information System (INIS)

    Sobol', Eh.N.; Bagratashvili, V.N.; Zherikhin, A.N.; Sviridov, A.P.

    1990-01-01

    Studies of the high-temperature superconducting (HTSC) films fabrication by the laser deposition are reviewed. Physical and chemical processes taking place during laser deposition are considered, such as the target evaporation, the material transport from the target to the substrate, the film growth on the substrate, thermochemical reactions and mass transfer within the HTSC films and their stability. The experimental results on the laser deposition of different HTSC ceramics and their properties investigations are given. The major technological issues are discussed including the deposition schemes, the oxygen supply, the target compositions and structure, the substrates and interface layers selection, the deposition regimes and their impact on the HTSC films properties. 169 refs.; 6 figs.; 2 tabs

  17. Characteristics of Ge-Sb-Te films prepared by cyclic pulsed plasma-enhanced chemical vapor deposition.

    Science.gov (United States)

    Suk, Kyung-Suk; Jung, Ha-Na; Woo, Hee-Gweon; Park, Don-Hee; Kim, Do-Heyoung

    2010-05-01

    Ge-Sb-Te (GST) thin films were deposited on TiN, SiO2, and Si substrates by cyclic-pulsed plasma-enhanced chemical vapor deposition (PECVD) using Ge{N(CH3)(C2H5)}, Sb(C3H7)3, Te(C3H7)3 as precursors in a vertical flow reactor. Plasma activated H2 was used as the reducing agent. The growth behavior was strongly dependent on the type of substrate. GST grew as a continuous film on TiN regardless of the substrate temperature. However, GST formed only small crystalline aggregates on Si and SiO2 substrates, not a continuous film, at substrate temperatures > or = 200 degrees C. The effects of the deposition temperature on the surface morphology, roughness, resistivity, crystallinity, and composition of the GST films were examined.

  18. Characterization, modeling and physical mechanisms of different surface treatment methods at room temperature on the oxide and interfacial quality of the SiO2 film using the spectroscopic scanning capacitance microscopy

    Directory of Open Access Journals (Sweden)

    Kin Mun Wong

    Full Text Available In this article, a simple, low cost and combined surface treatment method [pre-oxidation immersion of the p-type silicon (Si substrate in hydrogen peroxide (H2O2 and post oxidation ultra-violet (UV irradiation of the silicon-dioxide (SiO2 film] at room temperature is investigated. The interface trap density at midgap [Dit(mg] of the resulting SiO2 film (denoted as sample 1A is quantified from the full width at half-maximum of the scanning capacitance microscopy (SCM differential capacitance (dC/dV characteristics by utilizing a previously validated theoretical model. The Dit(mg of sample 1A is significantly lower than the sample without any surface treatments which indicates that it is a viable technique for improving the interfacial quality of the thicker SiO2 films prepared by wet oxidation. Moreover, the proposed combined surface treatment method may possibly complement the commonly used forming gas anneal process to further improve the interfacial quality of the SiO2 films. The positive shift of the flatband voltage due to the overall oxide charges (estimated from the probe tip dc bias at the peak dC/dV spectra of sample 1A suggests the presence of negative oxide fixed charge density (Nf in the oxide. In addition, an analytical formula is derived to approximate the difference of the Nf values between the oxide samples that are immersed in H2O2 and UV irradiated from their measured SCM dC/dV spectra. Conversely, some physical mechanisms are proposed that result in the ionization of the SiO− species (which are converted from the neutral SiOH groups that originate from the pre-oxidation immersion in H2O2 and ensuing wet oxidation during the UV irradiation as well as the UV photo-injected electrons from the Si substrate (which did not interact with the SiOH groups. They constitute the source of mobile electrons which partially passivate the positively charged empty donor-like interface traps at the Si-SiO2 interface. Keywords: Dielectrics

  19. Pulsed ion-beam induced nucleation and growth of Ge nanocrystals on SiO2

    International Nuclear Information System (INIS)

    Stepina, N. P.; Dvurechenskii, A. V.; Armbrister, V. A.; Kesler, V. G.; Novikov, P. L.; Gutakovskii, A. K.; Kirienko, V. V.; Smagina, Zh. V.; Groetzschel, R.

    2007-01-01

    Pulsed low-energy (200 eV) ion-beam induced nucleation during Ge deposition on thin SiO 2 film was used to form dense homogeneous arrays of Ge nanocrystals. The ion-beam action is shown to stimulate the nucleation of Ge nanocrystals when being applied after thin Ge layer deposition. Temperature and flux variation was used to optimize the nanocrystal size and array density required for memory device. Kinetic Monte Carlo simulation shows that ion impacts open an additional channel of atom displacement from a nanocrystal onto SiO 2 surface. This results both in a decrease in the average nanocrystal size and in an increase in nanocrystal density

  20. Dependences of deposition rate and OH content on concentration of added trichloroethylene in low-temperature silicon oxide films deposited using silicone oil and ozone gas

    Science.gov (United States)

    Horita, Susumu; Jain, Puneet

    2018-03-01

    We investigated the dependences of the deposition rate and residual OH content of SiO2 films on the concentration of trichloroethylene (TCE), which was added during deposition at low temperatures of 160-260 °C with the reactant gases of silicone oil (SO) and O3. The deposition rate depends on the TCE concentration and is minimum at a concentration of ˜0.4 mol/m3 at 200 °C. The result can be explained by surface and gas-phase reactions. Experimentally, we also revealed that the thickness profile is strongly affected by gas-phase reaction, in which the TCE vapor was blown directly onto the substrate surface, where it mixed with SO and O3. Furthermore, it was found that adding TCE vapor reduces residual OH content in the SiO2 film deposited at 200 °C because TCE enhances the dehydration reaction.

  1. Ferroelectric properties of bilayer structured Pb(Zr0.52Ti0.48)O3/SrBi2Ta2O9 (PZT/SBT) thin films on Pt/TiO2/SiO2/Si substrates

    International Nuclear Information System (INIS)

    Zhang Wenqi; Li Aidong; Shao Qiyue; Xia Yidong; Wu Di; Liu Zhiguo; Ming Naiben

    2008-01-01

    Pb(Zr 0.52 Ti 0.48 )O 3 (PZT) thin films with large remanent polarization and SrBi 2 Ta 2 O 9 (SBT) thin films with excellent fatigue-resisting characteristic have been widely studied for non-volatile random access memories, respectively. To combine these two advantages , bilayered Pb(Zr 0.52 Ti 0.48 )O 3 /SrBi 2 Ta 2 O 9 (PZT/SBT) thin films were fabricated on Pt/TiO 2 /SiO 2 /Si substrates by chemical solution deposition method. X-ray diffraction patterns revealed that the diffraction peaks of PZT/SBT thin films were completely composed of PZT and SBT, and no other secondary phase was observed. The electrical properties of the bilayered structure PZT/SBT films have been investigated in comparison with pure PZT and SBT films. PZT/SBT bilayered thin films showed larger remanent polarization (2P r ) of 18.37 μC/cm 2 than pure SBT and less polarization fatigue up to 1 x 10 9 switching cycles than pure PZT. These results indicated that this bilayered structure of PZT/SBT is a promising material combination for ferroelectric memory applications

  2. Dependence of wet etch rate on deposition, annealing conditions and etchants for PECVD silicon nitride film

    International Nuclear Information System (INIS)

    Tang Longjuan; Zhu Yinfang; Yang Jinling; Li Yan; Zhou Wei; Xie Jing; Liu Yunfei; Yang Fuhua

    2009-01-01

    The influence of deposition, annealing conditions, and etchants on the wet etch rate of plasma enhanced chemical vapor deposition (PECVD) silicon nitride thin film is studied. The deposition source gas flow rate and annealing temperature were varied to decrease the etch rate of SiN x :H by HF solution. A low etch rate was achieved by increasing the SiH 4 gas flow rate or annealing temperature, or decreasing the NH 3 and N2 gas flow rate. Concentrated, buffered, and dilute hydrofluoric acid were utilized as etchants for SiO 2 and SiN x :H. A high etching selectivity of SiO 2 over SiN x :H was obtained using highly concentrated buffered HF.

  3. Morphology and growth behavior of O_2-free chemical bath deposited ZnS thin films

    International Nuclear Information System (INIS)

    Jet Meitzner, K.; Tillotson, Brock M.; Siedschlag, Amanda T.; Moore, Frederick G.; Kevan, Stephen D.; Richmond, Geraldine L.

    2015-01-01

    We investigate the role of reagent concentrations and ambient O_2 on the morphology and growth behavior of ZnS thin films grown with the chemical bath deposition method. We investigate the role of substrate on film morphology, and find significant differences between films deposited on SiO_2 versus Si. The films are also sensitive to dissolved O_2 in the bath, as it causes a layer of SiO_2 to form at the ZnS/Si interface during deposition. Degassing of solutions and an N_2 atmosphere are effective to minimize this oxidation, allowing deposition of ZnS films directly onto Si. Under these conditions, we examine film properties as they relate to reagent bath concentrations. As the reagent concentrations are decreased, both the film roughness and growth rate decrease linearly. We also observe deformation and shifting of X-ray diffraction peaks that increases with decreasing reagent concentrations. The shifts are characteristic of lattice compression (caused by the substitution of oxygen for sulfur), and the deformation is characteristic of distortion of the lattice near crystal grain interfaces (caused by tensile stress from interatomic forces between neighboring crystal grains). At the weakest concentrations, the low roughness suggests a mixed growth mode in which both clusters and individual ZnS nanocrystallites contribute to film growth. With increasing reagent concentrations, the growth mode shifts and becomes dominated by deposition of clusters. - Highlights: • We deposit ZnS thin films by chemical bath deposition in an O_2-free environment. • The O_2-free environment is effective to minimize oxidation of the Si substrate. • The dominant growth mechanism changes with reagent concentrations. • Film morphology and composition change with reagent concentrations. • X-ray diffraction reveals tensile stress between ZnS crystal grains.

  4. Atomic force microscopy investigation of growth process of organic TCNQ aggregates on SiO2 and mica substrates

    Science.gov (United States)

    Huan, Qing; Hu, Hao; Pan, Li-Da; Xiao, Jiang; Du, Shi-Xuan; Gao, Hong-Jun

    2010-08-01

    Deposition patterns of tetracyanoquinodimethane (TCNQ) molecules on different surfaces are investigated by atomic force microscopy. A homemade physical vapour deposition system allows the better control of molecule deposition. Taking advantage of this system, we investigate TCNQ thin film growth on both SiO2 and mica surfaces. It is found that dense island patterns form at a high deposition rate, and a unique seahorse-like pattern forms at a low deposition rate. Growth patterns on different substrates suggest that the fractal pattern formation is dominated by molecule-molecule interaction. Finally, a phenomenal “two-branch" model is proposed to simulate the growth process of the seahorse pattern.

  5. Atomic force microscopy investigation of growth process of organic TCNQ aggregates on SiO2 and mica substrates

    International Nuclear Information System (INIS)

    Qing, Huan; Hao, Hu; Li-Da, Pan; Jiang, Xiao; Shi-Xuan, Du; Hong-Jun, Gao

    2010-01-01

    Deposition patterns of tetracyanoquinodimethane (TCNQ) molecules on different surfaces are investigated by atomic force microscopy. A homemade physical vapour deposition system allows the better control of molecule deposition. Taking advantage of this system, we investigate TCNQ thin film growth on both SiO 2 and mica surfaces. It is found that dense island patterns form at a high deposition rate, and a unique seahorse-like pattern forms at a low deposition rate. Growth patterns on different substrates suggest that the fractal pattern formation is dominated by molecule–molecule interaction. Finally, a phenomenal “two-branch” model is proposed to simulate the growth process of the seahorse pattern. (general)

  6. Impact of SiO2 on Al–Al thermocompression wafer bonding

    International Nuclear Information System (INIS)

    Malik, Nishant; Finstad, Terje G; Schjølberg-Henriksen, Kari; Poppe, Erik U; Taklo, Maaike M V

    2015-01-01

    Al–Al thermocompression bonding suitable for wafer level sealing of MEMS devices has been investigated. This paper presents a comparison of thermocompression bonding of Al films deposited on Si with and without a thermal oxide (SiO 2 film). Laminates of diameter 150 mm containing device sealing frames of width 200 µm were realized. The wafers were bonded by applying a bond force of 36 or 60 kN at bonding temperatures ranging from 300–550 °C for bonding times of 15, 30 or 60 min. The effects of these process variations on the quality of the bonded laminates have been studied. The bond quality was estimated by measurements of dicing yield, tensile strength, amount of cohesive fracture in Si and interfacial characterization. The mean bond strength of the tested structures ranged from 18–61 MPa. The laminates with an SiO 2 film had higher dicing yield and bond strength than the laminates without SiO 2 for a 400 °C bonding temperature. The bond strength increased with increasing bonding temperature and bond force. The laminates bonded for 30 and 60 min at 400 °C and 60 kN had similar bond strength and amount of cohesive fracture in the bulk silicon, while the laminates bonded for 15 min had significantly lower bond strength and amount of cohesive fracture in the bulk silicon. (paper)

  7. Plasma-enhanced atomic layer deposition of silicon dioxide films using plasma-activated triisopropylsilane as a precursor

    International Nuclear Information System (INIS)

    Jeon, Ki-Moon; Shin, Jae-Su; Yun, Ju-Young; Jun Lee, Sang; Kang, Sang-Woo

    2014-01-01

    The plasma-enhanced atomic layer deposition (PEALD) process was developed as a growth technique of SiO 2 thin films using a plasma-activated triisopropylsilane [TIPS, ((iPr) 3 SiH)] precursor. TIPS was activated by an argon plasma at the precursor injection stage of the process. Using the activated TIPS, it was possible to control the growth rate per cycle of the deposited films by adjusting the plasma ignition time. The PEALD technique allowed deposition of SiO 2 films at temperatures as low as 50 °C without carbon impurities. In addition, films obtained with plasma ignition times of 3 s and 10 s had similar values of root-mean-square surface roughness. In order to evaluate the suitability of TIPS as a precursor for low-temperature deposition of SiO 2 films, the vapor pressure of TIPS was measured. The thermal stability and the reactivity of the gas-phase TIPS with respect to water vapor were also investigated by analyzing the intensity changes of the C–H and Si–H peaks in the Fourier-transform infrared spectrum of TIPS

  8. Comparison of lanthanum substituted bismuth titanate (BLT) thin films deposited by sputtering and pulsed laser deposition

    International Nuclear Information System (INIS)

    Besland, M.P.; Djani-ait Aissa, H.; Barroy, P.R.J.; Lafane, S.; Tessier, P.Y.; Angleraud, B.; Richard-Plouet, M.; Brohan, L.; Djouadi, M.A.

    2006-01-01

    Bi 4-x La x Ti 3 O 12 (BLT x ) (x = 0 to 1) thin films were grown on silicon (100) and platinized substrates Pt/TiO 2 /SiO 2 /Si using RF diode sputtering, magnetron sputtering and pulsed laser deposition (PLD). Stoichiometric home-synthesized targets were used. Reactive sputtering was investigated in argon/oxygen gas mixture, with a pressure ranging from 0.33 to 10 Pa without heating the substrate. PLD was investigated in pure oxygen, at a chamber pressure of 20 Pa for a substrate temperature of 400-440 deg. C. Comparative structural, chemical, optical and morphological characterizations of BLT thin films have been performed by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), X-Ray Photoelectron Spectroscopy (XPS), Spectro-ellipsometric measurements (SE) and Atomic Force Microscopy (AFM). Both sputtering techniques allow to obtain uniform films with thickness ranging from 200 to 1000 nm and chemical composition varying from (Bi,La) 2 Ti 3 O 12 to (Bi,La) 4.5 Ti 3 O 12 , depending on deposition pressure and RF power. In addition, BLT films deposited by magnetron sputtering, at a pressure deposition ranging from 1.1 to 5 Pa, were well-crystallized after a post-deposition annealing at 650 deg. C in oxygen. They exhibit a refractive index and optical band gap of 2.7 and 3.15 eV, respectively. Regarding PLD, single phase and well-crystallized, 100-200 nm thick BLT films with a stoichiometric (Bi,La) 4 Ti 3 O 12 chemical composition were obtained, exhibiting in addition a preferential orientation along (200). It is worth noting that BLT films deposited by magnetron sputtering are as well-crystallized than PLD ones

  9. Processing of SiO2 protective layer using HMDS precursor by combustion CVD.

    Science.gov (United States)

    Park, Kyoung-Soo; Kim, Youngman

    2011-08-01

    Hexamethyldisilazane (HMDS, [(CH3)3Si]2NH) was used as a precursor to form SiO2 protective coatings on IN738LC alloys by combustion chemical vapor deposition (CCVD). SEM and XPS showed that the processed coatings were composed mainly of SiO2. The amount of HMDS had the largest effect on the size of the SiO2 agglomerates and the thickness of the deposited coatings. The specimens coated with SiO2 using the 0.05 mol/l HMDS solution showed a significantly higher temperature oxidation resistance than those deposited under other conditions.

  10. Orientation of pentacene molecules on SiO2: From a monolayer to the bulk

    International Nuclear Information System (INIS)

    Zheng, Fan; Park, Byoung-Nam; Seo, Soonjoo; Evans, Paul G.; Himpsel, F. J.

    2007-01-01

    Near edge x-ray absorption fine structure (NEXAFS) spectroscopy is used to study the orientation of pentacene molecules within thin films on SiO 2 for thicknesses ranging from monolayers to the bulk (150 nm). The spectra exhibit a strong polarization dependence of the π * orbitals for all films, which indicates that the pentacene molecules are highly oriented. At all film thicknesses the orientation varies with the rate at which pentacene molecules are deposited, with faster rates favoring a thin film phase with different tilt angles and slower rates leading to a more bulklike orientation. Our NEXAFS results extend previous structural observations to the monolayer regime and to lower deposition rates. The NEXAFS results match crystallographic data if a finite distribution of the molecular orientations is included. Damage to the molecules by hot electrons from soft x-ray irradiation eliminates the splitting between nonequivalent π * orbitals, indicating a breakup of the pentacene molecule

  11. Self assembly of SiO2-encapsulated carbon microsphere composites

    International Nuclear Information System (INIS)

    Yang Yongzhen; Song Jingjing; Han Yanxing; Guo Xingmei; Liu Xuguang; Xu Bingshe

    2011-01-01

    SiO 2 was firstly coated onto the surface of carbon microspheres (CMSs) using tetraethyl orthosilicate (TEOS) as precursor by Stoeber method. Then SiO 2 -encapsulated CMS (CMS-SiO 2 ) composites were self-assembled by vertical deposition, in which the effects of deposition temperature and suspension concentration on the quality of self-assembling film were investigated. Morphologies and structures of the samples were characterized by field emission scanning electron microscopy, Fourier transformation infrared spectrometry, X-ray diffraction and thermogravimetry. The results show that uniform CMS-SiO 2 composites with good mono-dispersion were prepared by Stober method with 0.5 g of CMSs, 2 mL of TEOS, 30 mL of ammonia and 12 h of reaction time, the CMSs-based films with ordered and denser structure were prepared by vertical deposition using CMS-SiO 2 composites as monodipersion spheres under suspension concentration of 1 wt% and deposition temperature of 50 deg. C. The ultraviolet-visible absorption measurement shows that the absorbance of CMS-SiO 2 composite films grew steadily with increasing suspension concentration.

  12. Physical and Electrical Properties of SiO2 Layer Synthesized by Eco-Friendly Method

    Science.gov (United States)

    Kim, Jong-Woong; Kim, Young-Seok; Hong, Sung-Jei; Hong, Tae-Hwan; Han, Jeong-In

    2010-05-01

    SiO2 thin film has a wide range of applications, including insulation layers in microelectronic devices, such as semiconductors and flat panel displays, due to its advantageous characteristics. Herein, we developed a new eco-friendly method for manufacturing SiO2 nanoparticles and, thereby, SiO2 paste to be used in the digital printing process for the fabrication of SiO2 film. By excluding harmful Cl- and NO3- elements from the SiO2 nanoparticle synthetic process, we were able to lower the heat treatment temperature for the SiO2 precursor from 600 to 300 °C and the diameter of the final SiO2 nanoparticles to about 14 nm. The synthesized SiO2 nanoparticles were dispersed in an organic solvent with additives to make a SiO2 paste for feasibility testing. The SiO2 paste was printed onto a glass substrate to test the feasibility of using it for digital printing. The insulation resistance of the printed film was high enough for it to be used as an insulation layer for passivation.

  13. How laser damage resistance of HfO2/SiO2 optical coatings is affected by embedded contamination caused by pausing the deposition process

    Science.gov (United States)

    Field, Ella; Bellum, John; Kletecka, Damon

    2015-07-01

    Reducing contamination is essential for producing optical coatings with high resistance to laser damage. One aspect of this principle is to make every effort to limit long interruptions during the coating's deposition. Otherwise, contamination may accumulate during the pause and become embedded in the coating after the deposition is restarted, leading to a lower laser-induced damage threshold (LIDT). However, pausing a deposition is sometimes unavoidable, despite our best efforts. For example, a sudden hardware or software glitch may require hours or even overnight to solve. In order to broaden our understanding of the role of embedded contamination on LIDT, and determine whether a coating deposited under such non-ideal circumstances could still be acceptable, this study explores how halting a deposition overnight impacts the LIDT, and whether ion cleaning can be used to mitigate any negative effects on the LIDT. The coatings investigated are a beam splitter design for high reflection at 1054 nm and high transmission at 527 nm, at 22.5° angle of incidence in S-polarization. LIDT tests were conducted in the nanosecond regime.

  14. Highly selective SiO2 etching over Si3N4 using a cyclic process with BCl3 and fluorocarbon gas chemistries

    Science.gov (United States)

    Matsui, Miyako; Kuwahara, Kenichi

    2018-06-01

    A cyclic process for highly selective SiO2 etching with atomic-scale precision over Si3N4 was developed by using BCl3 and fluorocarbon gas chemistries. This process consists of two alternately performed steps: a deposition step using BCl3 mixed-gas plasma and an etching step using CF4/Ar mixed-gas plasma. The mechanism of the cyclic process was investigated by analyzing the surface chemistry at each step. BCl x layers formed on both SiO2 and Si3N4 surfaces in the deposition step. Early in the etching step, the deposited BCl x layers reacted with CF x radicals by forming CCl x and BF x . Then, fluorocarbon films were deposited on both surfaces in the etching step. We found that the BCl x layers formed in the deposition step enhanced the formation of the fluorocarbon films in the CF4 plasma etching step. In addition, because F radicals that radiated from the CF4 plasma reacted with B atoms while passing through the BCl x layers, the BCl x layers protected the Si3N4 surface from F-radical etching. The deposited layers, which contained the BCl x , CCl x , and CF x components, became thinner on SiO2 than on Si3N4, which promoted the ion-assisted etching of SiO2. This is because the BCl x component had a high reactivity with SiO2, and the CF x component was consumed by the etching reaction with SiO2.

  15. Au nanoparticles decorated SiO2 nanowires by dewetting on curved surfaces: facile synthesis and nanoparticles–nanowires sizes correlation

    International Nuclear Information System (INIS)

    Ruffino, F.; Grimaldi, M. G.

    2013-01-01

    We report a solid-state synthesis for SiO 2 nanowires (NWs) (up to 20 microns in length and from about 40 to about 150 nm in diameter) coated by Au nanoparticles (NPs) (from about 20 to about 80 nm in diameter). This protocol is based on three steps: (1) large area production of very long SiO 2 NWs on a Si surface exploiting a simple Au/Si solid-state reaction at high temperature; (2) coating of the SiO 2 NWs by a Au film of desired thickness using sputtering depositions; and (3) a thermal process to induce a dewetting process of the Au-film coating the SiO 2 NWs to obtain Au NPs on the curved surface of the NWs. The morphology evolution of the SiO 2 NWs was followed, in each step, by scanning electron microscopy analyses. They allowed to correlate the evolution of the NPs size with the NWs sizes for different thicknesses of the starting Au-film coating the NWs and different annealing temperatures of the dewetting process. Some theoretical concepts, related to the dewetting process of a film on a curved surface were used to describe the experimental data. The main advantages of the proposed protocols include: (i) simplicity and low-cost (it is based only on sputtering depositions and thermal processes), and (ii) versatility based on the possibility of tuning Au-film thickness and annealing temperature to tune the NPs–NWs sizes ratio. These advantages can make this technique suitable for the mass production of Au NPs-coated SiO 2 NWs toward applications in electronic devices, biosensors, and nanoscale optical devices

  16. Effect of oxide charge trapping on x-ray photoelectron spectroscopy of HfO2/SiO2/Si structures

    International Nuclear Information System (INIS)

    Abe, Yasuhiro; Miyata, Noriyuki; Suzuki, Haruhiko; Kitamura, Koji; Igarashi, Satoru; Nohira, Hiroshi; Ikenaga, Eiji

    2009-01-01

    We examined the effects of interfacial SiO 2 layers and a surface metal layer on the photoelectron spectra of HfO 2 /SiO 2 /Si structures by hard X-ray photoemission spectroscopy with synchrotron radiation as well as conventional X-ray photoelectron spectroscopy (XPS). The Hf 4f and Hf 3d photoelectron peaks broadened and shifted toward a higher binding energy with increasing thickness of the interfacial SiO 2 layer, even though photoelectrons may have been emitted from the HfO 2 layer with the same chemical composition. Thinning the interfacial Si oxide layer to approximately one monolayer and depositing a metal layer on the HfO 2 surface suppressed these phenomena. The O 1s photoelectron spectra revealed marked differences between the metal- and nonmetal-deposited HfO 2 /SiO 2 /Si structures; HfO 2 and SiO 2 components in the O 1s photoelectron spectra for the metal-deposited structures were observed at reasonably separated binding energies, but those for the nonmetal-deposited structures were not separated clearly. From this behavior concerning the effects of interfacial SiO 2 and surface metal layers, we concluded that the Hf 4f, Hf 3d, and O 1s spectra measured from the HfO 2 /SiO 2 /Si structures did not reflect actual chemical bonding states. We consider that potential variations in the HfO 2 film owing to charge trapping strongly affect the measured photoelectron spectra. On the basis of angle-resolved XPS measurements, we propose that positive charges are trapped at the HfO 2 surface and negative charges are trapped inside the HfO 2 layer. (author)

  17. Sol-Gel Synthesis and Characterization of Ba1-xGdxTiO3+δ Thin Films on SiO2/Si Substrates Using Spin-Coating Technique

    Directory of Open Access Journals (Sweden)

    Yen Chin TEH

    2017-02-01

    Full Text Available Ba1-xGdxTiO3+δ, at x = 0, 0.05, 0.1, 0.15, 0.2, (BGT thin films have been fabricated on SiO2/Si substrate using Sol-Gel method. The microstructure and surface morphology of the fabricated films have been investigated using X-ray diffraction (XRD and atomic force microscopy (AFM. The XRD results show that the fabricated films are crystalline with perovskite structure. There is a shifting of the preferred peak at 31.5o to a higher angle as the doping ratio increases suggesting a distortion lattice exists in the films, which could be due to the substitution of Gd3+ ions into Ba-site. The decreasing of lattice constants confirms the substitution of Gd3+ in BaTiO3 lattice structure. The microstrain and dislocation density are found to be increased with the increase of Gd3+ doping, which attributed to the reduction of lattice volume that due to the ionic size mismatch effect. The AFM results show decreasing trend in both average grain size and roughness parameters. Therefore, the microstructure and surface morphology of BGT samples is strongly dependent on the Gd3+ doping concentration that mainly due to the difference ionic radius substitution.DOI: http://dx.doi.org/10.5755/j01.ms.23.1.13954

  18. Plasma Deposited SiO2 for Planar Self-Aligned Gate Metal-Insulator-Semiconductor Field Effect Transistors on Semi-Insulating InP

    Science.gov (United States)

    Tabory, Charles N.; Young, Paul G.; Smith, Edwyn D.; Alterovitz, Samuel A.

    1994-01-01

    Metal-insulator-semiconductor (MIS) field effect transistors were fabricated on InP substrates using a planar self-aligned gate process. A 700-1000 A gate insulator of Si02 doped with phosphorus was deposited by a direct plasma enhanced chemical vapor deposition at 400 mTorr, 275 C, 5 W, and power density of 8.5 MW/sq cm. High frequency capacitance-voltage measurements were taken on MIS capacitors which have been subjected to a 700 C anneal and an interface state density of lxl0(exp 11)/eV/cq cm was found. Current-voltage measurements of the capacitors show a breakdown voltage of 107 V/cm and a insulator resistivity of 10(exp 14) omega cm. Transistors were fabricated on semi-insulating InP using a standard planar self-aligned gate process in which the gate insulator was subjected to an ion implantation activation anneal of 700 C. MIS field effect transistors gave a maximum extrinsic transconductance of 23 mS/mm for a gate length of 3 microns. The drain current drift saturated at 87.5% of the initial current, while reaching to within 1% of the saturated value after only 1x10(exp 3). This is the first reported viable planar InP self-aligned gate transistor process reported to date.

  19. Cellulose acetate-based SiO2/TiO2 hybrid microsphere composite aerogel films for water-in-oil emulsion separation

    Science.gov (United States)

    Yang, Xue; Ma, Jianjun; Ling, Jing; Li, Na; Wang, Di; Yue, Fan; Xu, Shimei

    2018-03-01

    The cellulose acetate (CA)/SiO2-TiO2 hybrid microsphere composite aerogel films were successfully fabricated via water vapor-induced phase inversion of CA solution and simultaneous hydrolysis/condensation of 3-aminopropyltrimethoxysilane (APTMS) and tetrabutyl titanate (TBT) at room temperature. Micro-nano hierarchical structure was constructed on the surface of the film. The film could separate nano-sized surfactant-stabilized water-in-oil emulsions only under gravity. The flux of the film for the emulsion separation was up to 667 L m-2 h-1, while the separation efficiency was up to 99.99 wt%. Meanwhile, the film exhibited excellent stability during multiple cycles. Moreover, the film performed excellent photo-degradation performance under UV light due to the photocatalytic ability of TiO2. Facile preparation, good separation and potential biodegradation maked the CA/SiO2-TiO2 hybrid microsphere composite aerogel films a candidate in oil/water separation application.

  20. Transfer-free, lithography-free, and micrometer-precision patterning of CVD graphene on SiO2 toward all-carbon electronics

    Directory of Open Access Journals (Sweden)

    Yibo Dong

    2018-02-01

    Full Text Available A method of producing large area continuous graphene directly on SiO2 by chemical vapor deposition is systematically developed. Cu thin film catalysts are sputtered onto the SiO2 and pre-patterned. During graphene deposition, high temperature induces evaporation and balling of the Cu, and the graphene “lands onto” SiO2. Due to the high heating and growth rate, continuous graphene is largely completed before the Cu evaporation and balling. 60 nm is identified as the optimal thickness of the Cu for a successful graphene growth and μm-large feature size in the graphene. An all-carbon device is demonstrated based on this technique.

  1. Transfer-free, lithography-free, and micrometer-precision patterning of CVD graphene on SiO2 toward all-carbon electronics

    Science.gov (United States)

    Dong, Yibo; Xie, Yiyang; Xu, Chen; Li, Xuejian; Deng, Jun; Fan, Xing; Pan, Guanzhong; Wang, Qiuhua; Xiong, Fangzhu; Fu, Yafei; Sun, Jie

    2018-02-01

    A method of producing large area continuous graphene directly on SiO2 by chemical vapor deposition is systematically developed. Cu thin film catalysts are sputtered onto the SiO2 and pre-patterned. During graphene deposition, high temperature induces evaporation and balling of the Cu, and the graphene "lands onto" SiO2. Due to the high heating and growth rate, continuous graphene is largely completed before the Cu evaporation and balling. 60 nm is identified as the optimal thickness of the Cu for a successful graphene growth and μm-large feature size in the graphene. An all-carbon device is demonstrated based on this technique.

  2. RBS characterization of the deposition of very thin SiGe/SiO2 multilayers by LPCVD

    International Nuclear Information System (INIS)

    Munoz-Martin, A.; Climent-Font, A.; Rodriguez, A.; Sangrador, J.; Rodriguez, T.

    2005-01-01

    Multilayer structures consisting of several alternated layers of SiGe and SiO 2 with thickness ranging from 2 or Si as well as the deposition of SiO 2 on Si show negligible incubation times. The deposition of SiO 2 on SiGe, however, exhibits an incubation time of several minutes, which would be related to the oxidation of the surface necessary for the SiO 2 deposition to start. In all cases the film thickness increases linearly with deposition time, thus allowing the growth rates to be determined. These data allow the deposition process of these very thin layers to be accurately controlled

  3. Effect of ion implantation energy for the synthesis of Ge nanocrystals in SiN films with HfO2/SiO2 stack tunnel dielectrics for memory application

    Directory of Open Access Journals (Sweden)

    Gloux Florence

    2011-01-01

    Full Text Available Abstract Ge nanocrystals (Ge-NCs embedded in SiN dielectrics with HfO2/SiO2 stack tunnel dielectrics were synthesized by utilizing low-energy (≤5 keV ion implantation method followed by conventional thermal annealing at 800°C, the key variable being Ge+ ion implantation energy. Two different energies (3 and 5 keV have been chosen for the evolution of Ge-NCs, which have been found to possess significant changes in structural and chemical properties of the Ge+-implanted dielectric films, and well reflected in the charge storage properties of the Al/SiN/Ge-NC + SiN/HfO2/SiO2/Si metal-insulator-semiconductor (MIS memory structures. No Ge-NC was detected with a lower implantation energy of 3 keV at a dose of 1.5 × 1016 cm-2, whereas a well-defined 2D-array of nearly spherical and well-separated Ge-NCs within the SiN matrix was observed for the higher-energy-implanted (5 keV sample for the same implanted dose. The MIS memory structures implanted with 5 keV exhibits better charge storage and retention characteristics compared to the low-energy-implanted sample, indicating that the charge storage is predominantly in Ge-NCs in the memory capacitor. A significant memory window of 3.95 V has been observed under the low operating voltage of ± 6 V with good retention properties, indicating the feasibility of these stack structures for low operating voltage, non-volatile memory devices.

  4. Modeling of UV laser-induced patterning of ultrathin Co films on bulk SiO2: verification of short- and long-range ordering mechanisms

    Science.gov (United States)

    Trice, Justin; Favazza, Christopher; Kalyanaraman, Ramki; Sureshkumar, R.

    2006-03-01

    Irradiating ultrathin Co films (1 to 10 nm) by a short-pulsed UV laser leads to pattern formation with both short- and long-range order (SRO, LRO). Single beam irradiation produces SRO, while two-beam interference irradiation produces a quasi-2D arrangement of nanoparticles with LRO and SRO. The pattern formation primarily occurs in the molten phase. An estimate of the thermal behavior of the film/substrate composite following a laser pulse is presented. The thermal behavior includes the lifetime of the liquid phase and the thermal gradient during interference heating. Based on this evidence, the SRO is attributed to spinodal dewetting of the film while surface tension gradients induced by the laser interference pattern appear to influence LRO [1]. [1] C.Favazza, J.Trice, H.Krishna, R.Sureshkumar, and R.Kalyanaraman, unpublished.

  5. Growth and structure of water on SiO2 films on Si investigated byKelvin probe microscopy and in situ X-ray Spectroscopies

    Energy Technology Data Exchange (ETDEWEB)

    Verdaguer, A.; Weis, C.; Oncins, G.; Ketteler, G.; Bluhm, H.; Salmeron, M.

    2007-06-14

    The growth of water on thin SiO{sub 2} films on Si wafers at vapor pressures between 1.5 and 4 torr and temperatures between -10 and 21 C has been studied in situ using Kelvin Probe Microscopy and X-ray photoemission and absorption spectroscopies. From 0 to 75% relative humidity (RH) water adsorbs forming a uniform film 4-5 layers thick. The surface potential increases in that RH range by about 400 mV and remains constant upon further increase of the RH. Above 75% RH the water film grows rapidly, reaching 6-7 monolayers at around 90% RH and forming a macroscopic drop near 100%. The O K-edge near-edge X-ray absorption spectrum around 75% RH is similar to that of liquid water (imperfect H-bonding coordination) at temperatures above 0 C and ice-like below 0 C.

  6. Stress hysteresis during thermal cycling of plasma-enhanced chemical vapor deposited silicon oxide films

    Science.gov (United States)

    Thurn, Jeremy; Cook, Robert F.

    2002-02-01

    The mechanical response of plasma-enhanced chemical vapor deposited SiO2 to thermal cycling is examined by substrate curvature measurement and depth-sensing indentation. Film properties of deposition stress and stress hysteresis that accompanied thermal cycling are elucidated, as well as modulus, hardness, and coefficient of thermal expansion. Thermal cycling is shown to result in major plastic deformation of the film and a switch from a compressive to a tensile state of stress; both athermal and thermal components of the net stress alter in different ways during cycling. A mechanism of hydrogen incorporation and release from as-deposited silanol groups is proposed that accounts for the change in film properties and state of stress.

  7. Polycrystalline AlN films with preferential orientation by plasma enhanced chemical vapor deposition

    International Nuclear Information System (INIS)

    Sanchez, G.; Wu, A.; Tristant, P.; Tixier, C.; Soulestin, B.; Desmaison, J.; Bologna Alles, A.

    2008-01-01

    AlN thin films for acoustic wave devices were prepared by Microwave Plasma Enhanced Chemical Vapor Deposition under different process conditions, employing Si (100) and Pt (111)/SiO 2 /Si (100) substrates. The films were characterized by X-ray diffraction, Fourier transform infrared transmission spectroscopy, atomic force microscopy, scanning electron microscopy, and transmission electron microscopy. The values of the distance between the plasma and the tri-methyl-aluminum precursor injector, the radiofrequency bias potential, and the substrate temperature were central in the development of polycrystalline films. The choice of the chamber total pressure during deposition allowed for the development of two different crystallographic orientations, i.e., or . The film microstructures exhibited in general a column-like growth with rounded tops, an average grain size of about 40 nm, and a surface roughness lower than 20 nm under the best conditions

  8. Formation of Pentacene wetting layer on the SiO2 surface and charge trap in the wetting layer

    International Nuclear Information System (INIS)

    Kim, Chaeho; Jeon, D.

    2008-01-01

    We studied the early-stage growth of vacuum-evaporated pentacene film on a native SiO 2 surface using atomic force microscopy and in-situ spectroscopic ellipsometry. Pentacene deposition prompted an immediate change in the ellipsometry spectra, but atomic force microscopy images of the early stage films did not show a pentacene-related morphology other than the decrease in the surface roughness. This suggested that a thin pentacene wetting layer was formed by pentacene molecules lying on the surface before the crystalline islands nucleated. Growth simulation based on the in situ spectroscopic ellipsometry spectra supported this conclusion. Scanning capacitance microscopy measurement indicated the existence of trapped charges in the SiO 2 and pentacene wetting layer

  9. Crystallization and electrical resistivity of Cu2O and CuO obtained by thermal oxidation of Cu thin films on SiO2/Si substrates

    International Nuclear Information System (INIS)

    De Los Santos Valladares, L.; Salinas, D. Hurtado; Dominguez, A. Bustamante; Najarro, D. Acosta; Khondaker, S.I.; Mitrelias, T.; Barnes, C.H.W.; Aguiar, J. Albino; Majima, Y.

    2012-01-01

    In this work, we study the crystallization and electrical resistivity of the formed oxides in a Cu/SiO 2 /Si thin film after thermal oxidation by ex-situ annealing at different temperatures up to 1000 °C. Upon increasing the annealing temperature, from the X ray diffractogram the phase evolution Cu → Cu + Cu 2 O → Cu 2 O → Cu 2 O + CuO → CuO was detected. Pure Cu 2 O films are obtained at 200 °C, whereas uniform CuO films without structural surface defects such as terraces, kinks, porosity or cracks are obtained in the temperature range 300–550 °C. In both oxides, crystallization improves with annealing temperature. A resistivity phase diagram, which is obtained from the current–voltage response, is presented here. The resistivity was expected to increase linearly as a function of the annealing temperature due to evolution of oxides. However, anomalous decreases are observed at different temperatures ranges, this may be related to the improvement of the crystallization and crystallite size when the temperature increases. - Highlights: ► The crystallization and electrical resistivity of oxides in a Cu films are studied. ► In annealing Cu films, the phase evolution Cu + Cu 2 O → Cu 2 O → Cu 2 O + CuO → CuO occurs. ► A resistivity phase diagram, obtained from the current–voltage response, is presented. ► Some decreases in the resistivity may be related to the crystallization.

  10. Photo-sensitive Ge nanocrystal based films controlled by substrate deposition temperature

    Science.gov (United States)

    Stavarache, Ionel; Maraloiu, Valentin Adrian; Negrila, Catalin; Prepelita, Petronela; Gruia, Ion; Iordache, Gheorghe

    2017-10-01

    Lowering the temperature of crystallization by deposition of thin films on a heated substrate represents the easiest way to find new means to develop and improve new working devices based on nanocrystals embedded in thin films. The improvements are strongly related with the increasing of operation speed, substantially decreasing the energy consumption and reducing unit fabrication costs of the respective semiconductor devices. This approach avoids major problems, such as those related to diffusion or difficulties in controlling nanocrystallites size, which appear during thermal treatments at high temperatures after deposition. This article reports on a significant progress given by structuring Ge nanocrystals (Ge-NCs) embedded in silicon dioxide (SiO2) thin films by heating the substrate at 400 °C during co-deposition of Ge and SiO2 by magnetron sputtering. As a proof-of-concept, a Si/Ge-NCs:SiO2 photo-sensitive structure was fabricated thereof and characterized. The structure shows superior performance on broad operation bandwidth from visible to near-infrared, as strong rectification properties in dark, significant current rise in the inversion mode when illuminated, high responsivity, high photo-detectivity of 1014 Jones, quick response and significant conversion efficiency with peak value reaching 850% at -1 V and about 1000 nm. This simple preparation approach brings an important contribution to the effort of structuring Ge nanocrystallites in SiO2 thin films at a lower temperature for the purpose of using these materials for devices in optoelectronics, solar cells and electronics on flexible substrates.

  11. Composite SiOx/fluorocarbon plasma polymer films prepared by r.f. magnetron sputtering of SiO2 and PTFE

    Czech Academy of Sciences Publication Activity Database

    Pihosh, Y.; Biederman, H.; Slavínská, D.; Kousal, J.; Choukourov, A.; Trchová, Miroslava; Macková, Anna; Boldyryeva, Hanna

    2006-01-01

    Roč. 81, 1-4 (2006), s. 38-44 ISSN 0042-207X R&D Projects: GA MŠk OC 527.10; GA MŠk ME 553 Institutional research plan: CEZ:AV0Z40500505; CEZ:AV0Z10480505 Keywords : composite films * magnetron * sputtering Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.834, year: 2006

  12. Excimer laser crystallization of InGaZnO4 on SiO2 substrate

    NARCIS (Netherlands)

    Chen, T.; Wu, M.Y.; Ishihara, R.; Nomura, K.; Kamiya, T.; Hosono, H.; Beenakker, C.I.M.

    2011-01-01

    In this paper, we were able to crystallize InGaZnO4 (IGZO) by excimer laser on SiO2 substrate. It was observed that uniform [0001] textured polycrystalline IGZO film has been obtained without any grain boundaries and oxygen vacancies on SiO2 substrate. This process is very promising in fabricating

  13. Enhancement of deposition rate at cryogenic temperature in synchrotron radiation excited deposition of silicon film

    International Nuclear Information System (INIS)

    Nara, Yasuo; Sugita, Yoshihiro; Ito, Takashi; Kato, Hiroo; Tanaka, Ken-ichiro

    1989-01-01

    The authors have investigated the synchrotron radiation excited deposition of silicon films on the SiO 2 substrate by using SiH 4 /He mixture gas at BL-12C at Photon Factory. They used VUV light from the multilayer mirror with the center photon energy from 97 to 123eV, which effectively excites L-core electrons of silicon. Substrate temperature was widely varied from -178 degree C to 500 degree C. At -178 degree C, the deposition rate was as high as 400nm/200mAHr (normalized at the storage ring current at 200mA). As increasing the substrate temperature, the deposition rate was drastically decreased. The number of deposited silicon atoms is estimated to be 4 to 50% of incident photons, while the number of photo generated species in the gas phase within the mean free path from the surface is calculated as few as about 10 -3 of incident photons. These experimental results show that the deposition reaction is governed by the dissociation of surface adsorbates by the synchrotron radiation

  14. Characterization of remote O2-plasma-enhanced CVD SiO2/GaN(0001) structure using photoemission measurements

    Science.gov (United States)

    Truyen, Nguyen Xuan; Ohta, Akio; Makihara, Katsunori; Ikeda, Mitsuhisa; Miyazaki, Seiichi

    2018-01-01

    The control of chemical composition and bonding features at a SiO2/GaN interface is a key to realizing high-performance GaN power devices. In this study, an ∼5.2-nm-thick SiO2 film has been deposited on an epitaxial GaN(0001) surface by remote O2-plasma-enhanced chemical vapor deposition (O2-RPCVD) using SiH4 and Ar/O2 mixture gases at a substrate temperature of 500 °C. The depth profile of chemical structures and electronic defects of the O2-RPCVD SiO2/GaN structures has been evaluated from a combination of SiO2 thinning examined by X-ray photoelectron spectroscopy (XPS) and the total photoelectron yield spectroscopy (PYS) measurements. As a highlight, we found that O2-RPCVD is effective for fabricating an abrupt SiO2/GaN interface.

  15. Effect of deposition temperature & oxygen pressure on mechanical properties of (0.5) BZT-(0.5)BCT ceramic thin films

    Science.gov (United States)

    Sailaja, P.; Kumar, N. Pavan; Rajalakshmi, R.; Kumar, R. Arockia; Ponpandian, N.; Prabahar, K.; Srinivas, A.

    2018-05-01

    Lead free ferroelectric thin films of {(0.5) BZT-(0.5) BCT} (termed as BCZT) were deposited on Pt/TiO2/SiO2/Si substrates by pulsed laser deposition at four deposition temperatures 600, 650, 700, 750°C and at two oxygen pressures viz. 75mtorr and 100 mtorr using BCZT ceramic target (prepared by solid state sintering method). The effect of deposition temperature and oxygen pressure on the structure, microstructure and mechanical properties of BCZT films were studied. X-ray diffraction patterns of deposited films confirm tetragonal crystal symmetry and the crystallinity of the films increases with increasing deposition temperature. Variation in BCZT grain growth was observed when the films are deposited at different temperatures andoxygen pressures respectively. The mechanical properties viz. hardness and elastic modulus were also found to be high with increase in the deposition temperature and oxygen pressure. The results will be discussed.

  16. Light-emitting Si films formed by neutral cluster deposition in a thin O2 gas

    International Nuclear Information System (INIS)

    Honda, Y.; Takei, M.; Ohno, H.; Shida, S.; Goda, K.

    2005-01-01

    We have fabricated the light-emitting Si-rich and oxygen-rich amorphous SiO 2 (a-SiO 2 ) films using the neutral cluster deposition (NCD) method without and with oxygen gas admitted, respectively, and demonstrate for the first time that these films show a photoluminescent feature. The Si thin films were observed by atomic force microscopy and high-resolution transmission electron microscopy, and analyzed by means of X-ray photoelectron spectroscopy, photoluminescence (PL) and FTIR-attenuated total reflection measurements. All of the PL spectra show mountainous distribution with a peak around 620 nm. It is found that the increase in the oxygen termination in the a-SiO 2 films evidently makes the PL intensity increase. It is demonstrated that NCD technique is one of the hopeful methods to fabricate light-emitting Si thin films

  17. Deposition of silicon oxynitride films by low energy ion beam assisted nitridation at room temperature

    Science.gov (United States)

    Youroukov, S.; Kitova, S.; Danev, G.

    2008-05-01

    The possibility is studied of growing thin silicon oxynitride films by e-gun evaporation of SiO and SiO2 together with concurrent bombardment with low energy N2+ ions from a cyclotron resonance (ECR) source at room temperature of substrates. The degree of nitridation and oxidation of the films is investigated by means of X-ray spectroscopy. The optical characteristics of the films, their environmental stability and adhesion to different substrates are examined. The results obtained show than the films deposited are transparent. It is found that in the case of SiO evaporation with concurrent N2+ ion bombardment, reactive implantation of nitrogen within the films takes place at room temperature of the substrate with the formation of a new silicon oxynitride compound even at low ion energy (150-200 eV).

  18. Reliability assessment of ultra-thin HfO2 films deposited on silicon wafer

    International Nuclear Information System (INIS)

    Fu, Wei-En; Chang, Chia-Wei; Chang, Yong-Qing; Yao, Chih-Kai; Liao, Jiunn-Der

    2012-01-01

    Highlights: ► Nano-mechanical properties on annealed ultra-thin HfO 2 film are studied. ► By AFM analysis, hardness of the crystallized HfO 2 film significantly increases. ► By nano-indention, the film hardness increases with less contact stiffness. ► Quality assessment on the annealed ultra-thin films can thus be achieved. - Abstract: Ultra-thin hafnium dioxide (HfO 2 ) is used to replace silicon dioxide to meet the required transistor feature size in advanced semiconductor industry. The process integration compatibility and long-term reliability for the transistors depend on the mechanical performance of ultra-thin HfO 2 films. The criteria of reliability including wear resistance, thermal fatigue, and stress-driven failure rely on film adhesion significantly. The adhesion and variations in mechanical properties induced by thermal annealing of the ultra-thin HfO 2 films deposited on silicon wafers (HfO 2 /SiO 2 /Si) are not fully understood. In this work, the mechanical properties of an atomic layer deposited HfO 2 (nominal thickness ≈10 nm) on a silicon wafer were characterized by the diamond-coated tip of an atomic force microscope and compared with those of annealed samples. The results indicate that the annealing process leads to the formation of crystallized HfO 2 phases for the atomic layer deposited HfO 2 . The HfSi x O y complex formed at the interface between HfO 2 and SiO 2 /Si, where the thermal diffusion of Hf, Si, and O atoms occurred. The annealing process increases the surface hardness of crystallized HfO 2 film and therefore the resistance to nano-scratches. In addition, the annealing process significantly decreases the harmonic contact stiffness (or thereafter eliminate the stress at the interface) and increases the nano-hardness, as measured by vertically sensitive nano-indentation. Quality assessments on as-deposited and annealed HfO 2 films can be thereafter used to estimate the mechanical properties and adhesion of ultra-thin HfO 2

  19. High thermal stability of abrupt SiO2/GaN interface with low interface state density

    Science.gov (United States)

    Truyen, Nguyen Xuan; Taoka, Noriyuki; Ohta, Akio; Makihara, Katsunori; Yamada, Hisashi; Takahashi, Tokio; Ikeda, Mitsuhisa; Shimizu, Mitsuaki; Miyazaki, Seiichi

    2018-04-01

    The effects of postdeposition annealing (PDA) on the interface properties of a SiO2/GaN structure formed by remote oxygen plasma-enhanced chemical vapor deposition (RP-CVD) were systematically investigated. X-ray photoelectron spectroscopy clarified that PDA in the temperature range from 600 to 800 °C has almost no effects on the chemical bonding features at the SiO2/GaN interface, and that positive charges exist at the interface, the density of which can be reduced by PDA at 800 °C. The capacitance-voltage (C-V) and current density-SiO2 electric field characteristics of the GaN MOS capacitors also confirmed the reduction in interface state density (D it) and the improvement in the breakdown property of the SiO2 film after PDA at 800 °C. Consequently, a high thermal stability of the SiO2/GaN structure with a low fixed charge density and a low D it formed by RP-CVD was demonstrated. This is quite informative for realizing highly robust GaN power devices.

  20. Excimer laser recrystallization of nanocrystalline-Si films deposited by inductively coupled plasma chemical vapour deposition at 150 deg. C

    International Nuclear Information System (INIS)

    Park, Joong-Hyun; Han, Sang-Myeon; Park, Sang-Geun; Han, Min-Koo; Shin, Moon-Young

    2006-01-01

    Polycrystalline silicon thin film transistors (poly-Si TFTs) fabricated at low temperature (under 200 deg. C) have been widely investigated for flexible substrate applications such as a transparent plastic substrate. Unlike the conventional TFT process using glass substrate, the maximum process temperature should be kept less than 200 deg. C in order to avoid thermal damage on flexible substrates. We report the characteristics of nanocrystalline silicon (nc-Si) irradiated by an excimer laser. Nc-Si precursors were deposited on various buffer layers by inductively coupled plasma chemical vapour deposition (ICP-CVD) at 150 deg. C. We employed various buffer layers, such as silicon nitride (SiN X ) and silicon dioxide (SiO 2 ), in order to report recrystallization characteristics in connection with a buffer layer of a different thermal conductivity. The dehydrogenation and recrystallization was performed by step-by-step excimer laser annealing (ELA) (XeCl,λ=308 nm) in order to prevent the explosive release of hydrogen atoms. The grain size of the poly-Si film, which was recrystallized on the various buffer layers, was measured by scanning electron microscopy (SEM) at each laser energy density. The process margin of step-by-step ELA employing the SiN X buffer layer is wider than SiO 2 and the maximum grain size slightly increased

  1. Composite films prepared by plasma ion-assisted deposition (IAD) for design and fabrication of antireflection coatings in visible and near-infrared spectral regions

    Science.gov (United States)

    Tsai, Rung-Ywan; Ho, Fang C.

    1994-11-01

    Ion-assisted deposition (IAD) processes configured with a well-controlled plasma source at the center base of a vacuum chamber, which accommodates two independent e-gun sources, is used to deposition TiO2MgF2 and TiO2-SiO2 composite films of selected component ratios. Films prepared by this technology are found durable, uniform, and nonabsorbing in visible and near-IR regions. Single- and multilayer antireflection coatings with refractive index from 1.38 to 2.36 at (lambda) equals 550 nm are presented. Methods of enhancement in optical performance of these coatings are studied. The advantages of AR coatings formed by TiO2-MgF2 composite films over those similar systems consisting of TiO2-SiO2 composite films in both visible and near-IR regions are also presented.

  2. ITO thin films deposited by advanced pulsed laser deposition

    International Nuclear Information System (INIS)

    Viespe, Cristian; Nicolae, Ionut; Sima, Cornelia; Grigoriu, Constantin; Medianu, Rares

    2007-01-01

    Indium tin oxide thin films were deposited by computer assisted advanced PLD method in order to obtain transparent, conductive and homogeneous films on a large area. The films were deposited on glass substrates. We studied the influence of the temperature (room temperature (RT)-180 deg. C), pressure (1-6 x 10 -2 Torr), laser fluence (1-4 J/cm 2 ) and wavelength (266-355 nm) on the film properties. The deposition rate, roughness, film structure, optical transmission, electrical conductivity measurements were done. We deposited uniform ITO thin films (thickness 100-600 nm, roughness 5-10 nm) between RT and 180 deg. C on a large area (5 x 5 cm 2 ). The films have electrical resistivity of 8 x 10 -4 Ω cm at RT, 5 x 10 -4 Ω cm at 180 deg. C and an optical transmission in the visible range, around 89%

  3. Minerals deposited as thin films

    International Nuclear Information System (INIS)

    Vazquez, Cristina; Leyt, D.V. de; Custo, Graciela

    1987-01-01

    Free matrix effects are due to thin film deposits. Thus, it was decided to investigate this technique as a possibility to use pure oxide of the desired element, extrapolating its concentration from analytical curves made with avoiding, at the same time, mathematical corrections. The proposed method was employed to determine iron and titanium concentrations in geological samples. The range studied was 0.1-5%m/m for titanium and 5-20%m/m for iron. For both elements the reproducibility was about 7% and differences between this method and other chemical determinations were 15% for titanium and 7% for iron. (Author) [es

  4. Growth, structure and stability of sputter-deposited MoS2 thin films

    Directory of Open Access Journals (Sweden)

    Reinhard Kaindl

    2017-05-01

    Full Text Available Molybdenum disulphide (MoS2 thin films have received increasing interest as device-active layers in low-dimensional electronics and also as novel catalysts in electrochemical processes such as the hydrogen evolution reaction (HER in electrochemical water splitting. For both types of applications, industrially scalable fabrication methods with good control over the MoS2 film properties are crucial. Here, we investigate scalable physical vapour deposition (PVD of MoS2 films by magnetron sputtering. MoS2 films with thicknesses from ≈10 to ≈1000 nm were deposited on SiO2/Si and reticulated vitreous carbon (RVC substrates. Samples deposited at room temperature (RT and at 400 °C were compared. The deposited MoS2 was characterized by macro- and microscopic X-ray, electron beam and light scattering, scanning and spectroscopic methods as well as electrical device characterization. We find that room-temperature-deposited MoS2 films are amorphous, of smooth surface morphology and easily degraded upon moderate laser-induced annealing in ambient conditions. In contrast, films deposited at 400 °C are nano-crystalline, show a nano-grained surface morphology and are comparatively stable against laser-induced degradation. Interestingly, results from electrical transport measurements indicate an unexpected metallic-like conduction character of the studied PVD MoS2 films, independent of deposition temperature. Possible reasons for these unusual electrical properties of our PVD MoS2 thin films are discussed. A potential application for such conductive nanostructured MoS2 films could be as catalytically active electrodes in (photo-electrocatalysis and initial electrochemical measurements suggest directions for future work on our PVD MoS2 films.

  5. Surface Passivation of Silicon Using HfO2 Thin Films Deposited by Remote Plasma Atomic Layer Deposition System.

    Science.gov (United States)

    Zhang, Xiao-Ying; Hsu, Chia-Hsun; Lien, Shui-Yang; Chen, Song-Yan; Huang, Wei; Yang, Chih-Hsiang; Kung, Chung-Yuan; Zhu, Wen-Zhang; Xiong, Fei-Bing; Meng, Xian-Guo

    2017-12-01

    Hafnium oxide (HfO 2 ) thin films have attracted much attention owing to their usefulness in equivalent oxide thickness scaling in microelectronics, which arises from their high dielectric constant and thermodynamic stability with silicon. However, the surface passivation properties of such films, particularly on crystalline silicon (c-Si), have rarely been reported upon. In this study, the HfO 2 thin films were deposited on c-Si substrates with and without oxygen plasma pretreatments, using a remote plasma atomic layer deposition system. Post-annealing was performed using a rapid thermal processing system at different temperatures in N 2 ambient for 10 min. The effects of oxygen plasma pretreatment and post-annealing on the properties of the HfO 2 thin films were investigated. They indicate that the in situ remote plasma pretreatment of Si substrate can result in the formation of better SiO 2 , resulting in a better chemical passivation. The deposited HfO 2 thin films with oxygen plasma pretreatment and post-annealing at 500 °C for 10 min were effective in improving the lifetime of c-Si (original lifetime of 1 μs) to up to 67 μs.

  6. Properties and electric characterizations of tetraethyl orthosilicate-based plasma enhanced chemical vapor deposition oxide film deposited at 400 °C for through silicon via application

    International Nuclear Information System (INIS)

    Su, Meiying; Yu, Daquan; Liu, Yijun; Wan, Lixi; Song, Chongshen; Dai, Fengwei; Xue, Kai; Jing, Xiangmeng; Guidotti, Daniel

    2014-01-01

    The dielectric via liner of through silicon vias was deposited at 400 °C using a tetraethyl orthosilicate (TEOS)-based plasma enhanced chemical vapor deposition process in a via-middle integration scheme. The morphology, conformality and chemical compositions of the liner film were characterized using field emission scanning electron microscopy and Fourier Transform Infrared spectroscopy. The thermal properties and electrical performance of blanket TEOS films were investigated by high temperature film stress and mercury probe Capacitance–Voltage measurements. The TEOS SiO 2 films show good conformality, excellent densification, low thermal stress, high breakdown voltage and low current leakage. - Highlights: • Tetraethyl orthosilicate-based oxide films were deposited for packaging application. • The oxide films deposited plasma-enhanced chemical vapor deposition (PECVD) at 400 °C. • The PECVD oxide films exhibit good step coverage. • The 400 °C PECVD oxide films exhibit low thermal stress and current leakage. • The 400 °C PECVD oxide films show high breakdown voltage and acceptable permittivity

  7. Fabrication of a Transparent Anti-stain Thin Film Using an Atmospheric Pressure Cold Plasma Deposition System

    Directory of Open Access Journals (Sweden)

    Suzaki Y.

    2013-08-01

    Full Text Available Recently, outdoor-constructed solar panels have a problem such as power generation efficiency is reduced by the face plate dirt. On the other hand, electronic touch panels have a problem such as deterioration of visibility of the screen by finger grease stain. To solve these problems, we need to fabricate the anti-stain surfaces which have superhydrophobic and oil-repellent abilities without spoiling the transparency of the transparent substrate. In this study, we fabricated lotus leaves like surface on a glass substrate. Firstly, SiO2 particles of ca. 100 nm diameter were arranged on the glass substrates. Secondly, to obtain the fractal-like structure (ultra-micro-rough structure on the surface, ZnO thin film having a columnar structure was fabricated on the SiO2 particles by using an atmospheric pressure cold plasma deposition system. By using these processes, the ZnO columns formed radiantly on the spherical surface of the SiO2 particles. Furthermore, without spoiling the ultra-micro-rough structure, a transparent anti-stain monolayer with low surface energy was prepared by using a chemical adsorption technique onto the surface. Average value of the water droplet contact angles of the samples fabricated was 151.8 deg. Field emission scanning electron microscope (FE-SEM observation reviled that this sample has a raspberry structure in which columnar structure has grown radially on the SiO2 particles.

  8. Excimer Laser Deposition of PLZT Thin Films

    National Research Council Canada - National Science Library

    Petersen, GAry

    1991-01-01

    .... In order to integrate these devices into optical systems, the production of high quality thin films with high transparency and perovskite crystal structure is desired. This requires development of deposition technologies to overcome the challenges of depositing and processing PLZT thin films.

  9. Self-Ordered Voids Formation in SiO2 Matrix by Ge Outdiffusion

    OpenAIRE

    B. Pivac; P. Dubček; J. Dasović; H. Zorc; S. Bernstorff; J. Zavašnik; B. Vlahovic

    2018-01-01

    The annealing behavior of very thin SiO2/Ge multilayers deposited on Si substrate by e-gun deposition in high vacuum was explored. It is shown that, after annealing at moderate temperatures (800°C) in inert atmosphere, Ge is completely outdiffused from the SiO2 matrix leaving small (about 3 nm) spherical voids embedded in the SiO2 matrix. These voids are very well correlated and formed at distances governed by the preexisting multilayer structure (in vertical direction) and self-organization ...

  10. Suppressing Structural Colors of Photocatalytic Optical Coatings on Glass: The Critical Role of SiO2.

    Science.gov (United States)

    Li, Ronghua; Boudot, Mickael; Boissière, Cédric; Grosso, David; Faustini, Marco

    2017-04-26

    The appearance of structural colors on coated-glass is a critical esthetical drawback toward industrialization of photocatalytic coatings on windows for architecture or automobile. Herein we describe a rational approach to suppress the structural color of mesoporous TiO 2 -based coatings preserving photoactivity and mechanical stiffness. Addition of SiO 2 as third component is discussed. Ti x Si (1-x) O 2 mesoporous coatings were fabricated by one-step liquid deposition process through the evaporation induced self-assembling and characterized by GI-SAXS, GI-WAXS, electron microscopies, and in situ Environmental Ellipsometry Porosimetry. Guided by optical simulation, we investigated the critical role of SiO 2 on the optical responses of the films but also on the structural, mechanical, and photocatalytic properties, important requirements to go toward real applications. We demonstrate that adding SiO 2 to porous TiO 2 allows tuning and suppression of structural colors through refractive index matching and up to 160% increase in mechanical stiffening of the films. This study leads us to demonstrate an example of "invisible" coating, in which the light reflection is angle- and thickness-independent, and exhibiting high porosity, mechanical stiffness, and photoactivity.

  11. Structural Evaluation of 5,5′-Bis(naphth-2-yl)-2,2′-bithiophene in Organic Field-Effect Transistors with n-Octadecyltrichlorosilane Coated SiO2 Gate Dielectric

    DEFF Research Database (Denmark)

    Lauritzen, Andreas E.; Torkkeli, Mika; Bikondoa, Oier

    2018-01-01

    We report on the structure and morphology of 5,5′-bis(naphth-2-yl)-2,2′-bithiophene (NaT2) films in bottom-contact organic field-effect transistors (OFETs) with octadecyltrichlorosilane (OTS) coated SiO2 gate dielectric, characterized by atomic force microscopy (AFM), grazing-incidence X......-ray diffraction (GIXRD), and electrical transport measurements. Three types of devices were investigated with the NaT2 thin-film deposited either on (1) pristine SiO2 (corresponding to higher surface energy, 47 mJ/m2) or on OTS deposited on SiO2 under (2) anhydrous or (3) humid conditions (corresponding to lower...... surface energies, 20–25 mJ/m2). NaT2 films grown on pristine SiO2 form nearly featureless three-dimensional islands. NaT2 films grown on OTS/SiO2 deposited under anhydrous conditions form staggered pyramid islands where the interlayer spacing corresponds to the size of the NaT2 unit cell. At the same time...

  12. PECVD SiO2 dielectric for niobium Josephson IC process

    International Nuclear Information System (INIS)

    Lee, S.Y.; Nandakumar, V.; Murdock, B.; Hebert, D.

    1991-01-01

    PECVD SiO 2 dielectric has been evaluated as an insulator for a Nb-based, all-refractory Josephson integrated circuit process. First, the properties of PECVD SiO 2 films were measured and compared with those of evaporated SiO films. Second, the PECVD SiO 2 dielectric film was used in our Nb-based Josephson integrated circuit process. The main problem was found to be the deterioration of the critical temperature of the superconducting niobium adjacent to the SiO 2 . The cause and a solution of the problem were investigated. Finally, a Josephson integrated sampler circuit was fabricated and tested. This paper shows acceptable junction I-V characteristics and a measured time resolution of a 4.9 ps pulse in liquid helium

  13. Electrical characteristics of top contact pentacene organic thin film

    Indian Academy of Sciences (India)

    Organic thin film transistors (OTFTs) were fabricated using pentacene as the active layer with two different gate dielectrics, namely SiO2 and poly(methyl methacrylate) (PMMA), in top contact geometry for comparative studies. OTFTs with SiO2 as dielectric and gold deposited on the rough side of highly doped silicon (n+ -Si) ...

  14. A facile approach to fabricate Au nanoparticles loaded SiO2 microspheres for catalytic reduction of 4-nitrophenol

    International Nuclear Information System (INIS)

    Tang, Mingyi; Huang, Guanbo; Li, Xianxian; Pang, Xiaobo; Qiu, Haixia

    2015-01-01

    Hydrophilic and biocompatible macromolecules were used to improve and simplify the process for the fabrication of core/shell SiO 2 @Au composite particles. The influence of polymers on the morphology of SiO 2 @Au particles with different size of SiO 2 cores was analyzed by transmission electron microscopy and scanning electron microscopy. The optical property of the SiO 2 @Au particles was studied with UV–Vis spectroscopy. The results indicate that the structure and composition of macromolecules affect the morphology of Au layers on SiO 2 microspheres. The SiO 2 @Au particles prepared in the presence of polyvinyl alcohol (PVA) or polyvinylpyrrolidone (PVP) have thin and complete Au nanoshells owing to their inducing act in preferential growth of Au nanoparticles along the surface of SiO 2 microspheres. SiO 2 @Au particles can be also prepared from SiO 2 microspheres modified with 3-aminopropyltrimethoxysilane in the presence of PVA or PVP. This offers a simple way to fabricate a Au layer on SiO 2 or other microspheres. The SiO 2 @Au particles demonstrated high catalytic activity in the reduction of 4-nitrophenol. - Highlights: • Facile direct deposition method for Au nanoparticles on silica microspheres. • Influence of different types of macromolecule on the formation of Au shell. • High catalytic performance of Au nanoparticles on silica microspheres

  15. Thin Film & Deposition Systems (Windows)

    Data.gov (United States)

    Federal Laboratory Consortium — Coating Lab: Contains chambers for growing thin film window coatings. Plasma Applications Coating Lab: Contains chambers for growing thin film window coatings. Solar...

  16. Time-dependent dielectric breakdown of atomic-layer-deposited Al2O3 films on GaN

    Science.gov (United States)

    Hiraiwa, Atsushi; Sasaki, Toshio; Okubo, Satoshi; Horikawa, Kiyotaka; Kawarada, Hiroshi

    2018-04-01

    Atomic-layer-deposited (ALD) Al2O3 films are the most promising surface passivation and gate insulation layers in non-Si semiconductor devices. Here, we carried out an extensive study on the time-dependent dielectric breakdown characteristics of ALD-Al2O3 films formed on homo-epitaxial GaN substrates using two different oxidants at two different ALD temperatures. The breakdown times were approximated by Weibull distributions with average shape parameters of 8 or larger. These values are reasonably consistent with percolation theory predictions and are sufficiently large to neglect the wear-out lifetime distribution in assessing the long-term reliability of the Al2O3 films. The 63% lifetime of the Al2O3 films increases exponentially with a decreasing field, as observed in thermally grown SiO2 films at low fields. This exponential relationship disproves the correlation between the lifetime and the leakage current. Additionally, the lifetime decreases with measurement temperature with the most remarkable reduction observed in high-temperature (450 °C) O3-grown films. This result agrees with that from a previous study, thereby ruling out high-temperature O3 ALD as a gate insulation process. When compared at 200 °C under an equivalent SiO2 field of 4 MV/cm, which is a design guideline for thermal SiO2 on Si, high-temperature H2O-grown Al2O3 films have the longest lifetimes, uniquely achieving the reliability target of 20 years. However, this target is accomplished by a relatively narrow margin and, therefore, improvements in the lifetime are expected to be made, along with efforts to decrease the density of extrinsic Al2O3 defects, if any, to promote the practical use of ALD Al2O3 films.

  17. Real-time kinetic modeling of YSZ thin film roughness deposited by e-beam evaporation technique

    International Nuclear Information System (INIS)

    Galdikas, A.; Cerapaite-Trusinskiene, R.; Laukaitis, G.; Dudonis, J.

    2008-01-01

    In the present study, the process of yttrium-stabilized zirconia (YSZ) thin films deposition on optical quartz (SiO 2 ) substrates using e-beam deposition technique controlling electron gun power is analyzed. It was found that electron gun power influences the non-monotonous kinetics of YSZ film surface roughness. The evolution of YSZ thin film surface roughness was analyzed by a kinetic model. The model is based on the rate equations and includes processes of surface diffusion of the adatoms and the clusters, nucleation, growth and coalescence of islands in the case of thin film growth in Volmer-Weber mode. The analysis of the experimental results done by modeling explains non-monotonous kinetics and dependence of the surface roughness on the electron gun power. A good quantitative agreement with experimental results is obtained taking into account the initial roughness of the substrate surface and the amount of the clusters in the flux of evaporated material.

  18. Deposition and Characterization of CVD-Grown Ge-Sb Thin Film Device for Phase-Change Memory Application

    Directory of Open Access Journals (Sweden)

    C. C. Huang

    2012-01-01

    Full Text Available Germanium antimony (Ge-Sb thin films with tuneable compositions have been fabricated on SiO2/Si, borosilicate glass, and quartz glass substrates by chemical vapour deposition (CVD. Deposition takes place at atmospheric pressure using metal chloride precursors at reaction temperatures between 750 and 875°C. The compositions and structures of these thin films have been characterized by micro-Raman, scanning electron microscope (SEM with energy dispersive X-ray analysis (EDX and X-ray diffraction (XRD techniques. A prototype Ge-Sb thin film phase-change memory device has been fabricated and reversible threshold and phase-change switching demonstrated electrically, with a threshold voltage of 2.2–2.5 V. These CVD-grown Ge-Sb films show promise for applications such as phase-change memory and optical, electronic, and plasmonic switching.

  19. Fluorocarbon based atomic layer etching of Si_3N_4 and etching selectivity of SiO_2 over Si_3N_4

    International Nuclear Information System (INIS)

    Li, Chen; Metzler, Dominik; Oehrlein, Gottlieb S.; Lai, Chiukin Steven; Hudson, Eric A.

    2016-01-01

    Angstrom-level plasma etching precision is required for semiconductor manufacturing of sub-10 nm critical dimension features. Atomic layer etching (ALE), achieved by a series of self-limited cycles, can precisely control etching depths by limiting the amount of chemical reactant available at the surface. Recently, SiO_2 ALE has been achieved by deposition of a thin (several Angstroms) reactive fluorocarbon (FC) layer on the material surface using controlled FC precursor flow and subsequent low energy Ar"+ ion bombardment in a cyclic fashion. Low energy ion bombardment is used to remove the FC layer along with a limited amount of SiO_2 from the surface. In the present article, the authors describe controlled etching of Si_3N_4 and SiO_2 layers of one to several Angstroms using this cyclic ALE approach. Si_3N_4 etching and etching selectivity of SiO_2 over Si_3N_4 were studied and evaluated with regard to the dependence on maximum ion energy, etching step length (ESL), FC surface coverage, and precursor selection. Surface chemistries of Si_3N_4 were investigated by x-ray photoelectron spectroscopy (XPS) after vacuum transfer at each stage of the ALE process. Since Si_3N_4 has a lower physical sputtering energy threshold than SiO_2, Si_3N_4 physical sputtering can take place after removal of chemical etchant at the end of each cycle for relatively high ion energies. Si_3N_4 to SiO_2 ALE etching selectivity was observed for these FC depleted conditions. By optimization of the ALE process parameters, e.g., low ion energies, short ESLs, and/or high FC film deposition per cycle, highly selective SiO_2 to Si_3N_4 etching can be achieved for FC accumulation conditions, where FC can be selectively accumulated on Si_3N_4 surfaces. This highly selective etching is explained by a lower carbon consumption of Si_3N_4 as compared to SiO_2. The comparison of C_4F_8 and CHF_3 only showed a difference in etching selectivity for FC depleted conditions. For FC accumulation conditions

  20. Perovskite Thin Films via Atomic Layer Deposition

    KAUST Repository

    Sutherland, Brandon R.; Hoogland, Sjoerd; Adachi, Michael M.; Kanjanaboos, Pongsakorn; Wong, Chris T. O.; McDowell, Jeffrey J.; Xu, Jixian; Voznyy, Oleksandr; Ning, Zhijun; Houtepen, Arjan J.; Sargent, Edward H.

    2014-01-01

    © 2014 Wiley-VCH Verlag GmbH & Co. KGaA. (Graph Presented) A new method to deposit perovskite thin films that benefit from the thickness control and conformality of atomic layer deposition (ALD) is detailed. A seed layer of ALD PbS is place-exchanged with PbI2 and subsequently CH3NH3PbI3 perovskite. These films show promising optical properties, with gain coefficients of 3200 ± 830 cm-1.

  1. Perovskite Thin Films via Atomic Layer Deposition

    KAUST Repository

    Sutherland, Brandon R.

    2014-10-30

    © 2014 Wiley-VCH Verlag GmbH & Co. KGaA. (Graph Presented) A new method to deposit perovskite thin films that benefit from the thickness control and conformality of atomic layer deposition (ALD) is detailed. A seed layer of ALD PbS is place-exchanged with PbI2 and subsequently CH3NH3PbI3 perovskite. These films show promising optical properties, with gain coefficients of 3200 ± 830 cm-1.

  2. ZnO nanowire co-growth on SiO2 and C by carbothermal reduction and vapour advection

    International Nuclear Information System (INIS)

    Vega, N C; Caram, J; Grinblat, G; Comedi, D; Wallar, R; LaPierre, R R; Tirado, M

    2012-01-01

    Vertically aligned ZnO nanowires (NWs) were grown on Au-nanocluster-seeded amorphous SiO 2 films by the advective transport and deposition of Zn vapours obtained from the carbothermal reaction of graphite and ZnO powders. Both the NW volume and visible-to-UV photoluminescence ratio were found to be strong functions of, and hence could be tailored by, the (ZnO+C) source–SiO 2 substrate distance. We observe C flakes on the ZnO NWs/SiO 2 substrates which exhibit short NWs that developed on both sides. The SiO 2 and C substrates/NW interfaces were studied in detail to determine growth mechanisms. NWs on Au-seeded SiO 2 were promoted by a rough ZnO seed layer whose formation was catalysed by the Au clusters. In contrast, NWs grew without any seed on C. A correlation comprising three orders of magnitude between the visible-to-UV photoluminescence intensity ratio and the NW volume is found, which results from a characteristic Zn partial pressure profile that fixes both O deficiency defect concentration and growth rate. (paper)

  3. Influence of post-deposition treatment by UV light and oxygen (ozone) on 350 nm damage thresholds of SiO2 films deposited from sols

    International Nuclear Information System (INIS)

    Thomas, I.; Wilder, J.; Lee, A.; George, D.

    1988-01-01

    Certain multilayer porous silica AR coatings on fused silica substrates prepared by the sol-gel process have been found to have a much lower laser damage threshold than single layer coatings prepared by the same method. Treatment with UV light in the presence of oxygen (which gives ozone) at low temperature was found to restore damage thresholds to the levels found in single layers. Damage thresholds were measured at 350 nm with a 25 ns pulse for 1000 shots at 25 Hz. The effect of exposure time and other factors such as replacement of oxygen with nitrogen and vacuum are described

  4. MAPLE deposition and characterization of SnO2 colloidal nanoparticle thin films

    International Nuclear Information System (INIS)

    Caricato, A P; Martino, M; Romano, F; Tunno, T; Valerini, D; Epifani, M; Rella, R; Taurino, A

    2009-01-01

    In this paper we report on the deposition and characterization of tin oxide (SnO 2 ) nanoparticle thin films. The films were deposited by the matrix-assisted pulsed laser evaporation (MAPLE) technique. SnO 2 colloidal nanoparticles with a trioctylphosphine capping layer were diluted in toluene with a concentration of 0.2 wt% and frozen at liquid nitrogen temperature. The frozen target was irradiated with a KrF (248 nm, τ = 20 ns) excimer laser (6000 pulses at 10 Hz). The nanoparticles were deposited on silica (SiO 2 ) and (1 0 0) Si substrates and submitted to morphological (high resolution scanning electron microscopy (SEM)), structural Fourier transform infrared spectroscopy (FTIR) and optical (UV-Vis transmission) characterizations. SEM and FTIR analyses showed that trioctylphosphine was the main component in the as-deposited films. The trioctylphosphine was removed after an annealing in vacuum at 400 0 C, thus allowing to get uniform SnO 2 nanoparticle films in which the starting nanoparticle dimensions were preserved. The energy gap value, determined by optical characterizations, was 4.2 eV, higher than the bulk SnO 2 energy gap (3.6 eV), due to quantum confinement effects.

  5. Microstructure and surface morphology of YSZ thin films deposited by e-beam technique

    International Nuclear Information System (INIS)

    Laukaitis, G.; Dudonis, J.; Milcius, D.

    2008-01-01

    In present study yttrium-stabilized zirconia (YSZ) thin films were deposited on optical quartz (amorphous SiO 2 ), porous Ni-YSZ and crystalline Alloy 600 (Fe-Ni-Cr) substrates using e-beam deposition technique and controlling technological parameters: substrate temperature and electron gun power which influence thin-film deposition mechanism. X-ray diffraction, scanning electron microscopy (SEM), and atomic force microscopy (AFM) were used to investigate how thin-film structure and surface morphology depend on these parameters. It was found that the crystallite size, roughness and growth mechanism of YSZ thin films are influenced by electron gun power. To clarify the experimental results, YSZ thin-film formation as well evolution of surface roughness at its initial growing stages were analyzed. The evolution of surface roughness could be explained by the processes of surface mobility of adatoms and coalescence of islands. The analysis of these experimental results explain that surface roughness dependence on substrate temperature and electron gun power non-monotonous which could result from diffusivity of adatoms and the amount of atomic clusters in the gas stream of evaporated material

  6. Microstructure and morphology of SiOx film deposited by APCVD

    International Nuclear Information System (INIS)

    Zhang Jiliang; Li Jian; Luo Laima; Wo Yinhua

    2009-01-01

    A kind of silicon rich oxide (SiO x ) film deposited on aluminum substrate by atmospheric pressure chemical vapor deposition (APCVD) was reported. The morphology and microstructure of the film were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction (XRD) and transmission electron diffraction (TED). The deposition process is proposed to be a series of nucleation, growth and close stacking of non-uniform SiO x cells, which are stacked up by lots of SiO x laminae. A growth mechanism of the film according to the Stranski-Krastanov model is presented. In the growth process, the SiO x molecules incline to cluster like an island and merge into a layer and, then, form a laminar structure of SiO x cell. High resolution transmission electronic microscopy (TEM) picture shows that the film is basically amorphous with a little micro crystalline zone in it, which is certified by the XRD and TED results. The differences between this SiO x film and the common polycrystalline SiO 2 are also discussed in this paper

  7. Ion beam deposited epitaxial thin silicon films

    International Nuclear Information System (INIS)

    Orrman-Rossiter, K.G.; Al-Bayati, A.H.; Armour, D.G.; Donnelly, S.E.; Berg, J.A. van den

    1991-01-01

    Deposition of thin films using low energy, mass-separated ion beams is a potentially important low temperature method of producing epitaxial layers. In these experiments silicon films were grown on Si (001) substrates using 10-200 eV 28 Si + and 30 Si + ions at substrate temperatures in the range 273-1073 K, under ultrahigh-vacuum conditions (deposition pressure -7 Pa). The film crystallinity was assessed in situ using medium energy ion scattering (MEIS). Films of crystallinity comparable to bulk samples were grown using 10-40 eV 28 Si + and 30 Si + ions at deposition temperatures in the range 623-823 K. These experiments confirmed the role of key experimental parameters such as ion energy, substrate temperature during deposition, and the surface treatment prior to deposition. It was found that a high temperature in situ anneal (1350-1450 K) gave the best results for epitaxial nucleation, whereas low energy (20-40 eV) Cl + ion bombardment resulted in amorphous film growth. The deposition energy for good epitaxial growth indicates that it is necessary to provide enough energy to induce local mobility but not to cause atomic displacements leading to the buildup of stable defects, e.g. divacancies, below the surface layer of the growing film. (orig.)

  8. Microwave electromagnetic and absorption properties of SiO2/C core/shell composites plated with metal cobalt

    Science.gov (United States)

    Shen, Guozhu; Fang, Xumin; Wu, Hongyan; Wei, Hongyu; Li, Jingfa; Li, Kaipeng; Mei, Buqing; Xu, Yewen

    2017-04-01

    A facile method has been developed to fabricate magnetic core/shell SiO2/C/Co sub-microspheres via the pyrolysis of SiO2/PANI (polyaniline) and electroless plating method. The electromagnetic parameters of these SiO2/C and SiO2/C/Co composites were measured and the microwave reflection loss properties were evaluated in the frequency range of 2-18 GHz. The results show that the dielectric loss of SiO2/C composite increases with the increase of carbonization temperature and the magnetic loss enhances due to the deposition of cobalt on the SiO2/C sub-microspheres. The reflection loss results exhibit that the microwave absorption properties of the SiO2/C/Co composites are more excellent than those of SiO2/C composites for each thickness. The maximum effective absorption bandwidth (reflection loss ≤ -10 dB) arrives at 5.0 GHz (13.0-18 GHz) for SiO2/C/Co composite with 1.5 mm of thickness and the minimum reflection loss value is -24.0 dB at 5.0 GHz with 4.0 mm of thickness. The microwave loss mechanism of the SiO2/C/Co composites was also discussed in this paper.

  9. Chemical vapor deposition of nanocrystalline diamond films

    International Nuclear Information System (INIS)

    Vyrovets, I.I.; Gritsyna, V.I.; Dudnik, S.F.; Opalev, O.A.; Reshetnyak, O.M.; Strel'nitskij, V.E.

    2008-01-01

    The brief review of the literature is devoted to synthesis of nanocrystalline diamond films. It is shown that the CVD method is an effective way for deposition of such nanostructures. The basic technological methods that allow limit the size of growing diamond crystallites in the film are studied.

  10. Ge nanocrystals embedded in ultrathin Si3N4 multilayers with SiO2 barriers

    Science.gov (United States)

    Bahariqushchi, R.; Gundogdu, Sinan; Aydinli, A.

    2017-04-01

    Multilayers of germanium nanocrystals (NCs) embedded in thin films of silicon nitride matrix separated with SiO2 barriers have been fabricated using plasma enhanced chemical vapor deposition (PECVD). SiGeN/SiO2 alternating bilayers have been grown on quartz and Si substrates followed by post annealing in Ar ambient from 600 to 900 °C. High resolution transmission electron microscopy (HRTEM) as well as Raman spectroscopy show good crystallinity of Ge confined to SiGeN layers in samples annealed at 900 °C. Strong compressive stress for SiGeN/SiO2 structures were observed through Raman spectroscopy. Size, as well as NC-NC distance were controlled along the growth direction for multilayer samples by varying the thickness of bilayers. Visible photoluminescence (PL) at 2.3 and 3.1 eV with NC size dependent intensity is observed and possible origin of PL is discussed.

  11. [Effect of TiO2-SiO2-SnOx film with different firing temperatures on bond strength of low-fusing dental porcelain to pure titanium].

    Science.gov (United States)

    Zhang, Zichuan; Zhang, Pei

    2015-07-01

    To evaluate the influence of TiO(2)-SiO(2)-SnOx nano-coatings with different firing temperatures on the bond strength of low-fusing dental porcelain to pure titanium. The surface of pure titanium was coated uniformly with TiO(2)-SiO(2)-SnOx nano-coatings by solution-gelatin (Sol-Gel) technology and then fired at 300 °C (group A) or 750 °C (group B) for 1 h. The specimens without any coatings were the control group (group C). There were 10 specimens in each group. Dental porcelain was sintered on the surface of titanium specimens. Surface roughness and contact angle of the coatings were also detected. The titanium-porcelain bond strength was investigated according to YY 0621-2008 standards using three-point flexure bond test. The phase composition of the TiO(2)-SiO(2)-SnOx nano-coatings was characterized by X-ray diffraction(XRD). The interface of titanium-porcelain and TiO(2)-SiO(2)-SnOx nano-coatings were observed using scanning electron microscope (SEM). No rutile phase was found in these specimens of group A and group B. The surface roughness of group A, B, C was (0.97 ± 0.06), (0.99 ± 0.03), (0.96 ± 0.07) µm, respectively. No significant difference was found among the three groups. Compared with that of group C (64.37° ± 3.01°), contact angles detected in group A (52.04° ± 3.15°) and group B (85.27° ± 4.17°) were significantly different (P porcelain in group A [(35.66 ± 2.65) MPa] was significantly increased compared with those in group B [(26.18 ± 2.22) MPa] and group C [(31.66 ± 3.52) MPa]. SEM photomicrographs of titanium-porcelain interface morphology of the specimens before porcelain sintering showed that TiO(2)-SiO(2)-SnOx nano-coatings in group A were compact and homogeneous with petty cracks and those in group B was loose and arranged disorderly. TiO(2)-SiO(2)-SnOx nano-coating fired at 300 °C is significantly effective in improving the titanium-porcelain bond strength.

  12. Enhanced antioxidation and microwave absorbing properties of SiO2-coated flaky carbonyl iron particles

    Science.gov (United States)

    Zhou, Yingying; Xie, Hui; Zhou, Wancheng; Ren, Zhaowen

    2018-01-01

    SiO2 was successfully coated on the surface of flaky carbonyl iron particles using a chemical bath deposition method in the presence of 3-aminopropyl triethoxysilane (APTES). The morphologies, composition, valence states of elements, as well as antioxidation and electromagnetic properties of the samples were characterized by scanning electron microscope (SEM), energy dispersive spectrometer (EDS), X-ray photoelectron spectroscopy (XPS), thermogravimetric (TG) and microwave network analyzer. TG curve shows the obvious weight gain of carbonyl iron was deferred to 360 °C after SiO2-coated, which can be ascribed to the exits of SiO2 overlayer. Compared with the raw carbonyl iron, SiO2-coated sample shows good wave absorption performance due to its impedance matching. The electromagnetic properties of raw and SiO2-coated carbonyl iron particles were characterized in X band before and after heat treatment at 250 °C for 10 h. It was established that SiO2-coated carbonyl iron demonstrate good thermal stability, indicating SiO2-coating is useful in the usage of microwave absorbers operating at temperature up to 250 °C.

  13. Low temperature magnetron sputter deposition of polycrystalline silicon thin films using high flux ion bombardment

    International Nuclear Information System (INIS)

    Gerbi, Jennifer E.; Abelson, John R.

    2007-01-01

    We demonstrate that the microstructure of polycrystalline silicon thin films depends strongly on the flux of low energy ions that bombard the growth surface during magnetron sputter deposition. The deposition system is equipped with external electromagnetic coils which, through the unbalanced magnetron effect, provide direct control of the ion flux independent of the ion energy. We report the influence of low energy ( + on the low temperature ( + ions to silicon neutrals (J + /J 0 ) during growth by an order of magnitude (from 3 to 30) enables the direct nucleation of polycrystalline Si on glass and SiO 2 coated Si at temperatures below 400 degree sign C. We discuss possible mechanisms for this enhancement of crystalline microstructure, including the roles of enhanced adatom mobility and the formation of shallow, mobile defects

  14. ZnO film deposition on Al film and effects of deposition temperature on ZnO film growth characteristics

    International Nuclear Information System (INIS)

    Yoon, Giwan; Yim, Munhyuk; Kim, Donghyun; Linh, Mai; Chai, Dongkyu

    2004-01-01

    The effects of the deposition temperature on the growth characteristics of the ZnO films were studied for film bulk acoustic wave resonator (FBAR) device applications. All films were deposited using a radio frequency magnetron sputtering technique. It was found that the growth characteristics of ZnO films have a strong dependence on the deposition temperature from 25 to 350 deg. C. ZnO films deposited below 200 deg. C exhibited reasonably good columnar grain structures with highly preferred c-axis orientation while those above 200 deg. C showed very poor columnar grain structures with mixed-axis orientation. This study seems very useful for future FBAR device applications

  15. Microstructural modifications induced by rapid thermal annealing in plasma deposited SiOxNyHz films

    International Nuclear Information System (INIS)

    Prado, A. del; San Andres, E.; Martil, I.; Gonzalez-Diaz, G.; Bravo, D.; Lopez, F.J.; Fernandez, M.; Martinez, F.L.

    2003-01-01

    The effect of rapid thermal annealing (RTA) processes on the structural properties of SiO x N y H z films was investigated. The samples were deposited by the electron cyclotron resonance plasma method, using SiH 4 , O 2 and N 2 as precursor gases. For SiO x N y H z films with composition close to that of SiO 2 , which have a very low H content, RTA induces thermal relaxation of the lattice and improvement of the structural order. For films of intermediate composition and of compositions close to SiN y H z , the main effect of RTA is the release of H at high temperatures (T>700 deg. C). This H release is more significant in films containing both Si-H and N-H bonds, due to cooperative reactions between both kinds of bonds. In these films the degradation of structural order associated to H release prevails over thermal relaxation, while in those films with only N-H bonds, thermal relaxation predominates. For annealing temperatures in the 500-700 deg. C range, the passivation of dangling bonds by the nonbonded H in the films and the transition from the paramagnetic state to the diamagnetic state of the K center result in a decrease of the density of paramagnetic defects. The H release observed at high annealing temperatures is accompanied by an increase of density of paramagnetic defects

  16. Improvement of dielectric properties of BLT thin films deposited by magnetron sputtering

    International Nuclear Information System (INIS)

    Besland, M P; Barroy, P R J; Richard-Plouet, M; Tessier, P Y; Brohan, L; Djouadi, M A; Borderon, C; Tacon, S Le; Averty, D; Gundel, H W

    2008-01-01

    Well crystallized BLT thin films were deposited by RF magnetron sputtering using a target of Aurivillius phase Bi 3.25 La 0.75 Ti 3 O 12 (BLT 0,75 ), elaborated in our institute. RF sputtering experiments were performed at room temperature with an argon/oxygen mixture, in a pressure range of 20-50 mTorr. Optimisation of the plasma parameters, namely deposition pressure, RF power and oxygen content in the gas phase, allows obtaining BLT films with a chemical composition close to Bi 3.25 La 0.75 Ti 3 O 12 . After ex-situ annealing under oxygen atmosphere at 650 deg. C, BLT films deposited on Pt/TiO 2 /SiO 2 /Si (multilayer) substrates exhibit well defined rod-like grains morphology. A two step deposition process appeared to be necessary in order to reach satisfying dielectric properties. The effect of the plasma parameters on the chemical composition and electrical properties are presented and discussed

  17. Synthesis and characterization of erbium-doped SiO2-TiO2 thin films prepared by sol-gel and dip-coating techniques onto commercial glass substrates as a route for obtaining active GRadient-INdex materials

    International Nuclear Information System (INIS)

    Gómez-Varela, Ana I.; Castro, Yolanda; Durán, Alicia; De Beule, Pieter A.A.; Flores-Arias, María T.; Bao-Varela, Carmen

    2015-01-01

    In this work, SiO 2 -TiO 2 films doped with erbium were prepared by dip-coating sol-gel process onto commercial glass substrates. The surface morphology of the films was characterized using atomic force microscopy, while thickness, refractive index, extinction coefficient and porosity of the films were determined by ellipsometric measurements in a wavelength region of 400-1000 nm. Optical constants and porosity were found to vary with erbium concentration. The proof of principle presented in this paper is applicable to systems of different nature by tailoring the sol-gel precursors in such a way that active GRadient-INdex media described by a complex, parabolic-like refractive index distribution for beam shaping purposes is obtained. - Highlights: • Sol-gel route for preparation of active GRadient-INdex materials is proposed. • SiO 2 -TiO 2 films doped with erbium were prepared by dipping onto commercial glasses. • Morphological and optical characterization of the samples was performed. • Optical constants and porosity were found to vary with erbium concentration. • Refractive index diminishes with dopant content; the contrary occurs for porosity

  18. Highly textured fresnoite thin films synthesized in situ by pulsed laser deposition with CO2 laser direct heating

    International Nuclear Information System (INIS)

    Lorenz, Michael; Stölzel, Marko; Brachwitz, Kerstin; Hochmuth, Holger; Grundmann, Marius; De Pablos-Martin, Araceli; Patzig, Christian; Höche, Thomas

    2014-01-01

    Fresnoite Ba 2 TiSi 2 O 8 (BTS) thin films were grown and crystallized in situ using pulsed laser deposition (PLD) with CO 2 laser direct heating of the a-plane sapphire (1 1 0) substrates up to 1250 °C. Starting with 775 °C growth temperature, (0 0 1)- and (1 1 0)-textured BTS and BaTiO 3 phases, respectively, could be assigned in the films, and the typical fern-like BTS crystallization patterns appear. For higher process temperatures of 1100 to 1250 °C, atomically smooth, terraced surface of the films was found, accompanied by crystalline high-temperature phases of Ba–Ti–Si oxides. HAADF micrographs taken in both scanning transmission electron microscopy and energy-dispersive x-ray spectrometry mode show details of morphology and elemental distribution inside the films and at the interface. To balance the inherent Si deficiency of the BTS films, growth from glassy BTS × 2 SiO 2 and BTS × 2.5 SiO 2 targets was considered as well. The latter targets are ideal for PLD since the employed glasses possess 100% of the theoretical density and are homogeneous at the atomic scale. (paper)

  19. Characterization of the implantation damage in SiO2 with x-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Ajioka, T.; Ushio, S.

    1986-01-01

    X-ray photoelectron spectroscopy (XPS) has been applied to characterize the damage introduced into SiO 2 by ion implantation. By measuring the peak width of Si/sub 2p/ from SiO 2 which corresponds to perturbation of the SiO 2 network, good depth profiles of the damage have been obtained for implanted samples and subsequently annealed samples. The results show that the damage distributed more widely than that calculated from energy deposition and that the perturbation of the network is caused not only by radiation damage but also by the existence of impurities in the network. It has been found that the XPS method is effective to understand the atomic structure, and thus, electrical properties of SiO 2

  20. Preparation of YBCO on YSZ layers deposited on silicon and sapphire by MOCVD: influence of the intermediate layer on the quality of the superconducting film

    International Nuclear Information System (INIS)

    Garcia, G.; Casado, J.; Llibre, J.; Doudkowski, M.; Santiso, J.; Figueras, A.; Schamm, S.; Dorignac, D.; Grigis, C.; Aguilo, M.

    1995-01-01

    YSZ buffer layers were deposited on silicon and sapphire by MOCVD. The layers deposited on silicon were highly oriented along [100] direction without in-plane orientation, probably because the existence of the SiO 2 amorphous interlayer. In contrast, epitaxial YSZ was obtained on (1-102) sapphire showing an in-plane texture defined by the following relationships: (100) YSZ // (1-102) sapphire and (110) YSZ // (01-12) sapphire. Subsequently, YBCO films were deposited on YSZ by MOCVD. Structural, morphological and electrical characterization of the superconducting layers were correlated with the in-plane texture of the buffer layers. (orig.)

  1. Transparent conductive ITO/Cu/ITO films prepared on flexible substrates at room temperature

    International Nuclear Information System (INIS)

    Ding Xingwei; Yan Jinliang; Li Ting; Zhang Liying

    2012-01-01

    Transparent conductive ITO/Cu/ITO films were deposited on PET substrates by magnetron sputtering using three cathodes at room temperature. Effects of the SiO 2 buffer layer and thickness of Cu interlayer on the structural, electrical and optical properties of ITO/Cu/ITO films were investigated. The optical transmittance was affected slightly by SiO 2 buffer layer, but the electrical properties of ITO/Cu/ITO films were improved. The transmittance and resistivity of the SiO 2 /ITO/Cu/ITO films decrease as the Cu layer thickness increases. The ITO/Cu/ITO film with 5 nm Cu interlayer deposited on the 40 nm thick SiO 2 buffer layer exhibits the sheet resistance of 143 Ω/sq and transmittance of 65% at 550 nm wavelength. The optical and electrical properties of the ITO/Cu/ITO films were mainly dependent on the Cu layer.

  2. Transparent conductive ITO/Cu/ITO films prepared on flexible substrates at room temperature

    Science.gov (United States)

    Ding, Xingwei; Yan, Jinliang; Li, Ting; Zhang, Liying

    2012-01-01

    Transparent conductive ITO/Cu/ITO films were deposited on PET substrates by magnetron sputtering using three cathodes at room temperature. Effects of the SiO2 buffer layer and thickness of Cu interlayer on the structural, electrical and optical properties of ITO/Cu/ITO films were investigated. The optical transmittance was affected slightly by SiO2 buffer layer, but the electrical properties of ITO/Cu/ITO films were improved. The transmittance and resistivity of the SiO2/ITO/Cu/ITO films decrease as the Cu layer thickness increases. The ITO/Cu/ITO film with 5 nm Cu interlayer deposited on the 40 nm thick SiO2 buffer layer exhibits the sheet resistance of 143 Ω/sq and transmittance of 65% at 550 nm wavelength. The optical and electrical properties of the ITO/Cu/ITO films were mainly dependent on the Cu layer.

  3. Sol-Gel SiO2-CaO-P2O5 biofilm with surface engineered for medical application

    Directory of Open Access Journals (Sweden)

    Sonia Regina Federman

    2007-06-01

    Full Text Available Sol-gel film in the SiO2-CaO-P2O5 system was prepared from TEOS, TEP, alcohol and hydrated calcium nitrate in an acidic medium. The coatings were deposited on stainless steel using the dip-coating technique. After deposition, the composite was submitted to heat treatment, at different temperatures and exposure times to investigate the influence of such parameters on the surface morphology of the composite. The coated surfaces were characterized by AFM, SEM and FTIR. The present study showed that the formation of different textures (an important parameter in implant fixation could be controlled by temperature and time of heat treatment.

  4. Surface passivation by Al2O3 and a-SiNx: H films deposited on wet-chemically conditioned Si surfaces

    NARCIS (Netherlands)

    Bordihn, S.; Mertens, V.; Engelhart, P.; Kersten, K.; Mandoc, M.M.; Müller, J.W.; Kessels, W.M.M.

    2012-01-01

    The surface passivation of p- and n-type silicon by different chemically grown SiO2 films (prepared by HNO3, H2SO4/H2O2 and HCl/H2O2 treatments) was investigated after PECVD of a-SiNx:H and ALD of Al2O3 capping films. The wet chemically grown SiO2 films were compared to thermally grown SiO2 and the

  5. Optical properties of amorphous SiO2-TiO2 multi-nanolayered coatings for 1064-nm mirror technology

    Science.gov (United States)

    Magnozzi, M.; Terreni, S.; Anghinolfi, L.; Uttiya, S.; Carnasciali, M. M.; Gemme, G.; Neri, M.; Principe, M.; Pinto, I.; Kuo, L.-C.; Chao, S.; Canepa, M.

    2018-01-01

    The use of amorphous, SiO2-TiO2 nanolayered coatings has been proposed recently for the mirrors of 3rd-generation interferometric detectors of gravitational waves, to be operated at low temperature. Coatings with a high number of low-high index sub-units pairs with nanoscale thickness were found to preserve the amorphous structure for high annealing temperatures, a key factor to improve the mechanical quality of the mirrors. The optimization of mirror designs based on such coatings requires a detailed knowledge of the optical properties of sub-units at the nm-thick scale. To this aim we have performed a Spectroscopic Ellipsometry (SE) study of amorphous SiO2-TiO2 nanolayered films deposited on Si wafers by Ion Beam Sputtering (IBS). We have analyzed films that are composed of 5 and 19 nanolayers (NL5 and NL19 samples) and have total optical thickness nominally equivalent to a quarter of wavelength at 1064 nm. A set of reference optical properties for the constituent materials was obtained by the analysis of thicker SiO2 and TiO2 homogeneous films (∼ 120 nm) deposited by the same IBS facility. By flanking SE with ancillary techniques, such as TEM and AFM, we built optical models that allowed us to retrieve the broad-band (250-1700 nm) optical properties of the nanolayers in the NL5 and NL19 composite films. In the models which provided the best agreement between simulation and data, the thickness of each sub-unit was fitted within rather narrow bounds determined by the analysis of TEM measurements on witness samples. Regarding the NL5 sample, with thickness of 19.9 nm and 27.1 nm for SiO2 and TiO2 sub-units, respectively, the optical properties presented limited variations with respect to the thin film counterparts. For the NL19 sample, which is composed of ultrathin sub-units (4.4 nm and 8.4 nm for SiO2 and TiO2, respectively) we observed a significant decrease of the IR refraction index for both types of sub-units; this points to a lesser mass density with

  6. Iron films deposited on porous alumina substrates

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Yasuhiro, E-mail: yyasu@rs.kagu.tus.ac.jp; Tanabe, Kenichi; Nishida, Naoki [Tokyo University of Science (Japan); Kobayashi, Yoshio [The University of Electro-Communications (Japan)

    2016-12-15

    Iron films were deposited on porous alumina substrates using an arc plasma gun. The pore sizes (120 – 250 nm) of the substrates were controlled by changing the temperature during the anodic oxidation of aluminum plates. Iron atoms penetrated into pores with diameters of less than 160 nm, and were stabilized by forming γ-Fe, whereas α-Fe was produced as a flat plane covering the pores. For porous alumina substrates with pore sizes larger than 200 nm, the deposited iron films contained many defects and the resulting α-Fe had smaller hyperfine magnetic fields. In addition, only a very small amount of γ-Fe was obtained. It was demonstrated that the composition and structure of an iron film can be affected by the surface morphology of the porous alumina substrate on which the film is grown.

  7. Ultrashort pulse laser deposition of thin films

    Science.gov (United States)

    Perry, Michael D.; Banks, Paul S.; Stuart, Brent C.

    2002-01-01

    Short pulse PLD is a viable technique of producing high quality films with properties very close to that of crystalline diamond. The plasma generated using femtosecond lasers is composed of single atom ions with no clusters producing films with high Sp.sup.3 /Sp.sup.2 ratios. Using a high average power femtosecond laser system, the present invention dramatically increases deposition rates to up to 25 .mu.m/hr (which exceeds many CVD processes) while growing particulate-free films. In the present invention, deposition rates is a function of laser wavelength, laser fluence, laser spot size, and target/substrate separation. The relevant laser parameters are shown to ensure particulate-free growth, and characterizations of the films grown are made using several diagnostic techniques including electron energy loss spectroscopy (EELS) and Raman spectroscopy.

  8. Influences of ultra-thin Ti seed layers on the dewetting phenomenon of Au films deposited on Si oxide substrates

    Science.gov (United States)

    Kamiko, Masao; Kim, So-Mang; Jeong, Young-Seok; Ha, Jae-Ho; Koo, Sang-Mo; Ha, Jae-Geun

    2018-05-01

    The influences of a Ti seed layer (1 nm) on the dewetting phenomenon of Au films (5 nm) grown onto amorphous SiO2 substrates have been studied and compared. Atomic force microscopy results indicated that the introduction of Ti between the substrate and Au promoted the dewetting phenomenon. X-ray diffraction measurements suggested that the initial deposition of Ti promoted crystallinity of Au. A series of Auger electron spectroscopy and X-ray photoelectron spectroscopy results revealed that Ti transformed to a Ti oxide layer by reduction of the amorphous SiO2 substrate surface, and that the Ti seed layer remained on the substrate, without going through the dewetting process during annealing. We concluded that the enhancement of Au dewetting and the improvement in crystallinity of Au by the insertion of Ti could be attributed to the fact that Au location was changed from the surface of the amorphous SiO2 substrate to that of the Ti oxide layer.

  9. Physical Vapor Deposition of Thin Films

    Science.gov (United States)

    Mahan, John E.

    2000-01-01

    A unified treatment of the theories, data, and technologies underlying physical vapor deposition methods With electronic, optical, and magnetic coating technologies increasingly dominating manufacturing in the high-tech industries, there is a growing need for expertise in physical vapor deposition of thin films. This important new work provides researchers and engineers in this field with the information they need to tackle thin film processes in the real world. Presenting a cohesive, thoroughly developed treatment of both fundamental and applied topics, Physical Vapor Deposition of Thin Films incorporates many critical results from across the literature as it imparts a working knowledge of a variety of present-day techniques. Numerous worked examples, extensive references, and more than 100 illustrations and photographs accompany coverage of: * Thermal evaporation, sputtering, and pulsed laser deposition techniques * Key theories and phenomena, including the kinetic theory of gases, adsorption and condensation, high-vacuum pumping dynamics, and sputtering discharges * Trends in sputter yield data and a new simplified collisional model of sputter yield for pure element targets * Quantitative models for film deposition rate, thickness profiles, and thermalization of the sputtered beam

  10. Positron annihilation in SiO 2-Si studied by a pulsed slow positron beam

    Science.gov (United States)

    Suzuki, R.; Ohdaira, T.; Uedono, A.; Kobayashi, Y.

    2002-06-01

    Positron and positronium (Ps) behavior in SiO 2-Si have been studied by means of positron annihilation lifetime spectroscopy (PALS) and age-momentum correlation (AMOC) spectroscopy with a pulsed slow positron beam. The PALS study of SiO 2-Si samples, which were prepared by a dry-oxygen thermal process, revealed that the positrons implanted in the Si substrate and diffused back to the interface do not contribute to the ortho-Ps long-lived component, and the lifetime spectrum of the interface has at least two components. From the AMOC study, the momentum distribution of the ortho-Ps pick-off annihilation in SiO 2, which shows broader momentum distribution than that of crystalline Si, was found to be almost the same as that of free positron annihilation in SiO 2. A varied interface model was proposed to interpret the results of the metal-oxide-semiconductor (MOS) experiments. The narrow momentum distribution found in the n-type MOS with a negative gate bias voltage could be attributed to Ps formation and rapid spin exchange in the SiO 2-Si interface. We have developed a two-dimensional positron lifetime technique, which measures annihilation time and pulse height of the scintillation gamma-ray detector for each event. Using this technique, the positronium behavior in a porous SiO 2 film, grown by a sputtering method, has been studied.

  11. Screen-Printed Photochromic Textiles through New Inks Based on SiO2@naphthopyran Nanoparticles.

    Science.gov (United States)

    Pinto, Tânia V; Costa, Paula; Sousa, Céu M; Sousa, Carlos A D; Pereira, Clara; Silva, Carla J S M; Pereira, Manuel Fernando R; Coelho, Paulo J; Freire, Cristina

    2016-10-26

    Photochromic silica nanoparticles (SiO 2 @NPT), fabricated through the covalent immobilization of silylated naphthopyrans (NPTs) based on 2H-naphtho[1,2-b]pyran (S1, S2) and 3H-naphtho[2,1-b]pyran (S3, S4) or through the direct adsorption of the parent naphthopyrans (1, 3) onto silica nanoparticles (SiO 2 NPs), were successfully incorporated onto cotton fabrics by a screen-printing process. Two aqueous acrylic- (AC-) and polyurethane- (PU-) based inks were used as dispersing media. All textiles exhibited reversible photochromism under UV and solar irradiation, developing fast responses and intense coloration. The fabrics coated with SiO 2 @S1 and SiO 2 @S2 showed rapid color changes and high contrasts (ΔE* ab = 39-52), despite presenting slower bleaching kinetics (2-3 h to fade to the original color), whereas the textiles coated with SiO 2 @S3 and SiO 2 @S4 exhibited excellent engagement between coloration and decoloration rates (coloration and fading times of 1 and 2 min, respectively; ΔE* ab = 27-53). The PU-based fabrics showed excellent results during the washing fastness tests, whereas the AC-based textiles evidenced good results only when a protective transfer film was applied over the printed design.

  12. Atomic layer deposited oxide films as protective interface layers for integrated graphene transfer

    Science.gov (United States)

    Cabrero-Vilatela, A.; Alexander-Webber, J. A.; Sagade, A. A.; Aria, A. I.; Braeuninger-Weimer, P.; Martin, M.-B.; Weatherup, R. S.; Hofmann, S.

    2017-12-01

    The transfer of chemical vapour deposited graphene from its parent growth catalyst has become a bottleneck for many of its emerging applications. The sacrificial polymer layers that are typically deposited onto graphene for mechanical support during transfer are challenging to remove completely and hence leave graphene and subsequent device interfaces contaminated. Here, we report on the use of atomic layer deposited (ALD) oxide films as protective interface and support layers during graphene transfer. The method avoids any direct contact of the graphene with polymers and through the use of thicker ALD layers (≥100 nm), polymers can be eliminated from the transfer-process altogether. The ALD film can be kept as a functional device layer, facilitating integrated device manufacturing. We demonstrate back-gated field effect devices based on single-layer graphene transferred with a protective Al2O3 film onto SiO2 that show significantly reduced charge trap and residual carrier densities. We critically discuss the advantages and challenges of processing graphene/ALD bilayer structures.

  13. Ferroelectric properties of Bi3.25Ce0.75Ti3O12 thin films prepared by a liquid source misted chemical deposition

    International Nuclear Information System (INIS)

    Jeon, M.K.; Chung, H.J.; Kim, K.W.; Oh, K.S.; Woo, S.I.

    2005-01-01

    Cerium-substituted bismuth titanate (Bi 3.25 Ce 0.75 Ti 3 O 12 (BCT)) films were deposited on the Pt(111)/SiO 2 /Si(100) substrates by a liquid source misted chemical deposition technique. This film showed X-ray diffraction patterns that crystallization along the (006) direction was suppressed and did not contain any other oxides. The remnant polarization of this film increased with increase in annealing temperature. The 2P r and 2E c values of the BCT film annealed at 700 deg. C were 19.72 μC/cm 2 and 357 kV/cm, respectively. 2P r value of this film decreased by less than 5% of the initial value after 7 x 10 9 read/write switching cycles at a frequency of 1 MHz

  14. Structural and optical properties of titanium dioxide films deposited by reactive magnetron sputtering in pure oxygen plasma

    International Nuclear Information System (INIS)

    Asanuma, T.; Matsutani, T.; Liu, C.; Mihara, T.; Kiuchi, M.

    2004-01-01

    Titanium dioxide (TiO 2 ) thin films were deposited on unheated quartz (SiO 2 ) substrates in 'pure oxygen' plasma by reactive radio-frequency (rf) magnetron sputtering. The structural and optical properties of deposited films were systematically studied by changing the deposition parameters, and it was very recently found that crystalline TiO 2 films grew effectively in pure O 2 atmosphere. For TiO 2 films deposited at a rf power P rf of 200 W, x-ray diffraction patterns show the following features: (a) no diffraction peak was observed at a total sputtering pressure p tot of 1.3 Pa; (b) rutile (110) diffraction was observed at 4.0 Pa, (c) the dominant diffraction was from anatase (101) planes, with additional diffraction from (200), under p tot between 6.7 and 13 Pa. For the deposition at 140 W, however, crystalline films with mixed phases were observed only between 4.0 and 6.7 Pa. The peaks of both the deposition rate and the anatase weight ratio for the films produced at 140 W were found at p tot of approximately 6.7 Pa. This suggests that the nucleation and growth of TiO 2 films were affected by the composition, density, and kinetic energy of the particles impinging on the substrate surface. The optical absorption edge analysis showed that the optical band gap E g and the constant B could sensitively detect the film growth behavior, and determine the film structure and optical absorption. The change in the shape of the fundamental absorption edge is considered to reflect the variation of density and the short-range structural modifications

  15. Nanohole 3D-size tailoring through polystyrene bead combustion during thin film deposition

    International Nuclear Information System (INIS)

    Peng Xiaofeng; Kamiya, Itaru

    2009-01-01

    A novel approach is presented for nanohole 3D-size tailoring. The process starts with a monolayer of polystyrene (PS) beads spun coat on silicon wafer as a template. The holes can be directly prepared through combustion of PS beads by oxygen plasma during metal or oxide thin film deposition. The incoming particles are prevented from adhering on PS beads by H 2 O and CO 2 generated from the combustion of the PS beads. The hole depth generally depends on the film thickness. The hole diameter can be tailored by the PS bead size, film deposition rate, and also the combustion speed of the PS beads. In this work, a series of holes with depth of 4-24 nm and diameter of 10-36 nm has been successfully prepared. The hole wall materials can be selected from metals such as Au or Pt and oxides such as SiO 2 or Al 2 O 3 . These templates could be suitable for the preparation and characterization of novel nanodevices based on single quantum dots or single molecules, and could be extended to the studies of a wide range of coating materials and substrates with controlled hole depth and diameters.

  16. Surface vertical deposition for gold nanoparticle film

    International Nuclear Information System (INIS)

    Diao, J J; Qiu, F S; Chen, G D; Reeves, M E

    2003-01-01

    In this rapid communication, we present the surface vertical deposition (SVD) method to synthesize the gold nanoparticle films. Under conditions where the surface of the gold nanoparticle suspension descends slowly by evaporation, the gold nanoparticles in the solid-liquid-gas junction of the suspension aggregate together on the substrate by the force of solid and liquid interface. When the surface properties of the substrate and colloidal nanoparticle suspension define for the SVD, the density of gold nanoparticles in the thin film made by SVD only depends on the descending velocity of the suspension surface and on the concentration of the gold nanoparticle suspension. (rapid communication)

  17. Study of obliquely deposited thin cobalt films

    International Nuclear Information System (INIS)

    Szmaja, W.; Kozlowski, W.; Balcerski, J.; Kowalczyk, P.J.; Grobelny, J.; Cichomski, M.

    2010-01-01

    Research highlights: → The paper reports simultaneously on the magnetic domain structure of obliquely deposited thin cobalt films (40 nm and 100 nm thick) and their morphological structure. Such studies are in fact rare (Refs. cited in the paper). → Moreover, to our knowledge, observations of the morphological structure of these films have not yet been carried out simultaneously by transmission electron microscopy (TEM) and atomic force microscopy (AFM). → The films of both thicknesses were found to have uniaxial in-plane magnetic anisotropy. → The magnetic microstructure of the films 40 nm thick was composed of domains running and magnetized predominantly in the direction perpendicular to the incidence plane of the vapor beam. → As the film thickness was changed from 40 nm to 100 nm, the magnetic anisotropy was observed to change from the direction perpendicular to parallel with respect to the incidence plane. → Thanks to the application of TEM and AFM, complementary information on the morphological structure of the films could be obtained. → In comparison with TEM images, AFM images revealed grains larger in size and slightly elongated in the direction perpendicular rather than parallel to the incidence plane. → These experimental findings clearly show that surface diffusion plays an important role in the process of film growth. → For the films 40 nm thick, the alignment of columnar grains in the direction perpendicular to the incidence plane was observed. → This correlates well with the magnetic domain structure of these films. → For the films 100 nm thick, the perpendicular alignment of columnar grains could also be found, although in fact with larger difficulty. → TEM studies showed that the films consisted mainly of the hexagonal close-packed (HCP) crystalline structure, but no preferred crystallographic orientation of the grains could be detected for the films of both thicknesses. → For the films 100 nm thick, the alignment of

  18. Growth model and structure evolution of Ag layers deposited on Ge films.

    Science.gov (United States)

    Ciesielski, Arkadiusz; Skowronski, Lukasz; Górecka, Ewa; Kierdaszuk, Jakub; Szoplik, Tomasz

    2018-01-01

    We investigated the crystallinity and optical parameters of silver layers of 10-35 nm thickness as a function 2-10 nm thick Ge wetting films deposited on SiO 2 substrates. X-ray reflectometry (XRR) and X-ray diffraction (XRD) measurements proved that segregation of germanium into the surface of the silver film is a result of the gradient growth of silver crystals. The free energy of Ge atoms is reduced by their migration from boundaries of larger grains at the Ag/SiO 2 interface to boundaries of smaller grains near the Ag surface. Annealing at different temperatures and various durations allowed for a controlled distribution of crystal dimensions, thus influencing the segregation rate. Furthermore, using ellipsometric and optical transmission measurements we determined the time-dependent evolution of the film structure. If stored under ambient conditions for the first week after deposition, the changes in the transmission spectra are smaller than the measurement accuracy. Over the course of the following three weeks, the segregation-induced effects result in considerably modified transmission spectra. Two months after deposition, the slope of the silver layer density profile derived from the XRR spectra was found to be inverted due to the completed segregation process, and the optical transmission spectra increased uniformly due to the roughened surfaces, corrosion of silver and ongoing recrystallization. The Raman spectra of the Ge wetted Ag films were measured immediately after deposition and ten days later and demonstrated that the Ge atoms at the Ag grain boundaries form clusters of a few atoms where the Ge-Ge bonds are still present.

  19. Synthesis of Vertically-Aligned Carbon Nanotubes from Langmuir-Blodgett Films Deposited Fe Nanoparticles on Al2O3/Al/SiO2/Si Substrate.

    Science.gov (United States)

    Takagiwa, Shota; Kanasugi, Osamu; Nakamura, Kentaro; Kushida, Masahito

    2016-04-01

    In order to apply vertically-aligned carbon nanotubes (VA-CNTs) to a new Pt supporting material of polymer electrolyte fuel cell (PEFC), number density and outer diameter of CNTs must be controlled independently. So, we employed Langmuir-Blodgett (LB) technique for depositing CNT growth catalysts. A Fe nanoparticle (NP) was used as a CNT growth catalyst. In this study, we tried to thicken VA-CNT carpet height and inhibit thermal aggregation of Fe NPs by using Al2O3/Al/SiO2/Si substrate. Fe NP LB films were deposited on three typed of substrates, SiO2/Si, as-deposited Al2O3/Al/SiO2/Si and annealed Al2O3/Al/SiO2/Si at 923 K in Ar atmosphere of 16 Pa. It is known that Al2O3/Al catalyzes hydrocarbon reforming, inhibits thermal aggregation of CNT growth catalysts and reduces CNT growth catalysts. It was found that annealed Al2O3/Al/SiO2/Si exerted three effects more strongly than as-deposited Al2O3/Al/SiO2/Si. VA-CNTs were synthesized from Fe NPs-C16 LB films by thermal chemical vapor deposition (CVD) method. As a result, at the distance between two nearest CNTs 28 nm or less, VA-CNT carpet height on annealed Al2O3/Al/SiO2/Si was about twice and ten times thicker than that on SiO2/Si and that on as-deposited Al2O3/Al/SiO2/Si, respectively. Moreover, distribution of CNT outer diameter on annealed Al2O3/Al/SiO2/Si was inhibited compared to that on SiO2/Si. These results suggest that since thermal aggregation of Fe NPs is inhibited, catalyst activity increases and distribution of Fe NP size is inhibited.

  20. Low-temperature atomic layer deposition of MgO thin films on Si

    International Nuclear Information System (INIS)

    Vangelista, S; Mantovan, R; Lamperti, A; Tallarida, G; Kutrzeba-Kotowska, B; Spiga, S; Fanciulli, M

    2013-01-01

    Magnesium oxide (MgO) films have been grown by atomic layer deposition in the wide deposition temperature window of 80–350 °C by using bis(cyclopentadienyl)magnesium and H 2 O precursors. MgO thin films are deposited on both HF-last Si(1 0 0) and SiO 2 /Si substrates at a constant growth rate of ∼0.12 nm cycle −1 . The structural, morphological and chemical properties of the synthesized MgO thin films are investigated by x-ray reflectivity, grazing incidence x-ray diffraction, time-of-flight secondary ion mass spectrometry and atomic force microscopy measurements. MgO layers are characterized by sharp interface with the substrate and limited surface roughness, besides good chemical uniformity and polycrystalline structure for thickness above 7 nm. C–V measurements performed on Al/MgO/Si MOS capacitors, with MgO in the 4.6–11 nm thickness range, allow determining a dielectric constant (κ) ∼ 11. Co layers are grown by chemical vapour deposition in direct contact with MgO without vacuum-break (base pressure 10 −5 –10 −6  Pa). The as-grown Co/MgO stacks show sharp interfaces and no elements interdiffusion among layers. C–V and I–V measurements have been conducted on Co/MgO/Si MOS capacitors. The dielectric properties of MgO are not influenced by the further process of Co deposition. (paper)

  1. The improvement of SiO2 nanotubes electrochemical behavior by hydrogen atmosphere thermal treatment

    Science.gov (United States)

    Spataru, Nicolae; Anastasescu, Crina; Radu, Mihai Marian; Balint, Ioan; Negrila, Catalin; Spataru, Tanta; Fujishima, Akira

    2018-06-01

    Highly defected SiO2 nanotubes (SiO2-NT) were obtained by a simple sol-gel procedure followed by calcination. Boron-doped diamond (BDD) polycrystalline films coated with SiO2-NT were used as working electrodes and, unexpectedly, cyclic voltammetric experiments have shown that the concentration of both positive and negative defects at the surface is high enough to enable redox processes involving positively charged Ru(bpy)32+/3+ to occur. Conversely, no electrochemical activity was put into evidence for Fe(CN)63-/4- species, most likely as a result of the strong electrostatic repulsion exerted by the negatively charged SiO2 surface. The concentration of surface defects was further increased by a subsequent thermal treatment in a hydrogen atmosphere which, as EIS measurements have shown, significantly promotes Ru(bpy)32+ anodic oxidation. Digital simulation of the voltammetric responses demonstrated that this treatment does not lead to a similar increase of the number of electron-donor sites. It was also found that methanol anodic oxidation at hydrogenated SiO2-NT-supported platinum results in Tafel slopes of 116-220 mV decade-1, comparable to those reported for both conventional PtRu and Pt-oxide catalysts.

  2. Ion-assisted deposition of thin films

    International Nuclear Information System (INIS)

    Barnett, S.A.; Choi, C.H.; Kaspi, R.; Millunchick, J.M.

    1993-01-01

    Recent work on low-energy ion-assisted deposition of epitaxial films is reviewed. Much of the recent interest in this area has been centered on the use of very low ion energies (∼ 25 eV) and high fluxes (> 1 ion per deposited atom) obtained using novel ion-assisted deposition techniques. These methods have been applied in ultra-high vacuum, allowing the preparation of high-purity device-quality semiconductor materials. The following ion-surface interaction effects during epitaxy are discussed: improvements in crystalline perfection during low temperature epitaxy, ion damage, improved homogeneity and properties in III-V alloys grown within miscibility gaps, and changes in nucleation mechanism during heteroepitaxial growth

  3. The Role of SiO2 Gas in the Operation of Anti-Corrosion Coating Produced by PVD

    Directory of Open Access Journals (Sweden)

    Meysam Zarchi

    2015-09-01

    Full Text Available This study examined theSiO2 gas present in the coatings used in corrosion industry.These layers have been created by physical vapor deposition (PVD, with an appropriate performance. Sublimation of SiO2is used to protect PVD aluminum flakes from water corrosionand to generate highly porous SiO2 flakes with holes in the nanometer range. SiOx/Al/SiOx sandwiches were made as well as Ag loaded porous SiO2 as antimicrobial filler.

  4. Chemical vapour deposition of thin-film dielectrics

    International Nuclear Information System (INIS)

    Vasilev, Vladislav Yu; Repinsky, Sergei M

    2005-01-01

    Data on the chemical vapour deposition of thin-film dielectrics based on silicon nitride, silicon oxynitride and silicon dioxide and on phosphorus- and boron-containing silicate glasses are generalised. The equipment and layer deposition procedures are described. Attention is focussed on the analysis and discussion of the deposition kinetics and on the kinetic models for film growth. The film growth processes are characterised and data on the key physicochemical properties of thin-film covalent dielectric materials are given.

  5. Integrated nanophotonic hubs based on ZnO-Tb(OH3/SiO2 nanocomposites

    Directory of Open Access Journals (Sweden)

    Lin Yu

    2011-01-01

    Full Text Available Abstract Optical integration is essential for practical application, but it remains unexplored for nanoscale devices. A newly designed nanocomposite based on ZnO semiconductor nanowires and Tb(OH3/SiO2 core/shell nanospheres has been synthesized and studied. The unique sea urchin-type morphology, bright and sharply visible emission bands of lanthanide, and large aspect ratio of ZnO crystalline nanotips make this novel composite an excellent signal receiver, waveguide, and emitter. The multifunctional composite of ZnO nanotips and Tb(OH3/SiO2 nanoparticles therefore can serve as an integrated nanophotonics hub. Moreover, the composite of ZnO nanotips deposited on a Tb(OH3/SiO2 photonic crystal can act as a directional light fountain, in which the confined radiation from Tb ions inside the photonic crystal can be well guided and escape through the ZnO nanotips. Therefore, the output emission arising from Tb ions is truly directional, and its intensity can be greatly enhanced. With highly enhanced lasing emissions in ZnO-Tb(OH3/SiO2 as well as SnO2-Tb(OH3/SiO2 nanocomposites, we demonstrate that our approach is extremely beneficial for the creation of low threshold and high-power nanolaser.

  6. Amorphous Terfenol-D films using nanosecond pulsed laser deposition

    International Nuclear Information System (INIS)

    Ma, James; O'Brien, Daniel T.; Kovar, Desiderio

    2009-01-01

    Thin films of Terfenol-D were produced by nanosecond pulsed laser deposition (PLD) at two fluences. Electron dispersive spectroscopy conducted using scanning electron and transmission electron microscopes showed that the film compositions were similar to that of the PLD target. Contrary to previous assertions that suggested that nanosecond PLD results in crystalline films, X-ray diffraction and transmission electron microscopy analysis showed that the films produced at both fluences were amorphous. Splatters present on the film had similar compositions to the overall film and were also amorphous. Magnetic measurements showed that the films had high saturation magnetization and magnetostriction, similar to high quality films produced using other physical vapor deposition methods.

  7. Preparation and Characterization of Fluorescent SiO2 Microspheres

    Science.gov (United States)

    Xu, Cui; Zhang, Hao; Guan, Ruifang

    2018-01-01

    Fluorescent compound without typical fluorophores was synthesized with citric acid (CA) and aminopropyltriethoxysilane (APTS) firstly, and then it was grafted to the surface of the prepared SiO2 microspheres by chemical reaction. The fluorescent SiO2 microspheres with good fluorescent properties were obtained by optimizing the reaction conditions. And the morphology and structure of the fluorescent SiO2 microspheres have been characterized by scanning electron microscopy (SEM) and fourier transform infrared (FTIR) spectroscopy. The results showed that the preparation of fluorescent SiO2 microspheres have good monodispersity and narrow particle size distribution. Moreover, the fluorescent SiO2 microspheres can be applied to detect Fe3+ in aqueous solution, prepare fluorescent SiO2 rubber, and have potential to be applied in the fluorescent labeling and fingerprint appearing technique fields.

  8. Effect of SiO2 Overlayer on WO3 Sensitivity to Ammonia

    Directory of Open Access Journals (Sweden)

    Vibha Srivastava

    2010-06-01

    Full Text Available Ammonia gas sensing properties of tungsten trioxide thick film sensor was investigated. The doping of noble catalysts such as Pt, Pd, Au enhanced the gas sensitivity. Platinum doping was found to result in highest sensitivity. Remarkable sensitivity enhancement was realized by coating WO3 thick film sensors with SiO2 overlayer. Sol gel process derived silica overlayer increased ammonia gas sensitivity for doped as well as undoped sensor.

  9. Low-pressure chemical vapor deposition as a tool for deposition of thin film battery materials

    NARCIS (Netherlands)

    Oudenhoven, J.F.M.; Dongen, van T.; Niessen, R.A.H.; Croon, de M.H.J.M.; Notten, P.H.L.

    2009-01-01

    Low Pressure Chemical Vapor Deposition was utilized for the deposition of LiCoO2 cathode materials for all-solid-state thin-film micro-batteries. To obtain insight in the deposition process, the most important process parameters were optimized for the deposition of crystalline electrode films on

  10. In-situ grown CNTs modified SiO2/C composites as anode with improved cycling stability and rate capability for lithium storage

    Science.gov (United States)

    Wang, Siqi; Zhao, Naiqin; Shi, Chunsheng; Liu, Enzuo; He, Chunnian; He, Fang; Ma, Liying

    2018-03-01

    Silica (SiO2) is regarded as one of the most promising anode materials for lithium ion batteries owing to its high theoretical specific capacity, relatively low operation potentials, abundance, environmental benignity and low cost. However, the low intrinsic electrical conductivity and large volume change of SiO2 during the discharge/charge cycles usually results in poor electrochemical performance. In this work, carbon nanotubes (CNTs) modified SiO2/C composites have been fabricated through an in-situ chemical vapor deposition method. The results show that the electrical conductivity of the SiO2/C/CNTs is visibly enhanced through a robust connection between the CNTs and SiO2/C particles. Compared with the pristine SiO2 and SiO2/C composites, the SiO2/C/CNTs composites display a high initial capacity of 1267.2 mA h g-1. Besides, an excellent cycling stability with the capacity of 315.7 mA h g-1 is achieved after 1000th cycles at a rate of 1 A g-1. The significantly improved electrochemical properties of the SiO2/C/CNTs composites are mainly attributed to the formation of three dimensional CNT networks in the SiO2/C substrate, which can not only shorten the Li-ion diffusion path but also relieve the volume change during the lithium-ion insertion/extraction processes.

  11. Stress evaluation of chemical vapor deposited silicon dioxide films

    International Nuclear Information System (INIS)

    Maeda, Masahiko; Itsumi, Manabu

    2002-01-01

    Film stress of chemical vapor deposited silicon dioxide films was evaluated. All of the deposited films show tensile intrinsic stresses. Oxygen partial pressure dependence of the intrinsic stress is very close to that of deposition rate. The intrinsic stress increases with increasing the deposition rate under the same deposition temperature, and decreases with increasing substrate temperature. Electron spin resonance (ESR) active defects in the films were observed when the films were deposited at 380 deg. C and 450 deg. C. The ESR signal intensity decreases drastically with increasing deposition temperature. The intrinsic stress correlates very closely to the intensity of the ESR-active defects, that is, the films with larger intrinsic stress have larger ESR-active defects. It is considered that the intrinsic stress was generated because the voids caused by local bond disorder were formed during random network formation among the SiO 4 tetrahedra. This local bond disorder also causes the ESR-active defects

  12. Electrical Conductivity of CUXS Thin Film Deposited by Chemical ...

    African Journals Online (AJOL)

    Thin films of CuxS have successfully been deposited on glass substrates using the Chemical Bath Deposition (CBD) technique. The films were then investigated for their electrical properties. The results showed that the electrical conductivities of the CuxS films with different molarities (n) of thiourea (Tu), determined using ...

  13. Lanthanum titanium perovskite compound: Thin film deposition and high frequency dielectric characterization

    International Nuclear Information System (INIS)

    Le Paven, C.; Lu, Y.; Nguyen, H.V.; Benzerga, R.; Le Gendre, L.; Rioual, S.; Benzegoutta, D.; Tessier, F.; Cheviré, F.

    2014-01-01

    Perovskite lanthanum titanium oxide thin films were deposited on (001) MgO, (001) LaAlO 3 and Pt(111)/TiO 2 /SiO 2 /(001)Si substrates by RF magnetron sputtering, using a La 2 Ti 2 O 7 homemade target sputtered under oxygen reactive plasma. The films deposited at 800 °C display a crystalline growth different than those reported on monoclinic ferroelectric La 2 Ti 2 O 7 films. X-ray photoelectron spectroscopy analysis shows the presence of titanium as Ti 4+ ions, with no trace of Ti 3+ , and provides a La/Ti ratio of 1.02. The depositions being performed from a La 2 Ti 2 O 7 target under oxygen rich plasma, the same composition (La 2 Ti 2 O 7 ) is proposed for the deposited films, with an unusual orthorhombic cell and Cmc2 1 space group. The films have a textured growth on MgO and Pt/Si substrates, and are epitaxially grown on LaAlO 3 substrate. The dielectric characterization displays stable values of the dielectric constant and of the losses in the frequency range [0.1–20] GHz. No variation of the dielectric constant has been observed when a DC electric field up to 250 kV/cm was applied, which does not match a classical ferroelectric behavior at high frequencies and room temperature for the proposed La 2 Ti 2 O 7 orthorhombic phase. At 10 GHz and room temperature, the dielectric constant of the obtained La 2 Ti 2 O 7 films is ε ∼ 60 and the losses are low (tanδ < 0.02). - Highlights: • Lanthanum titanium oxide films were deposited by reactive magnetron sputtering. • A La 2 Ti 2 O 7 chemical composition is proposed, with an unusual orthorhombic cell. • At 10 GHz, the dielectric losses are lower than 0.02. • No variation of the dielectric constant is observed under DC electric biasing

  14. Growth and structure of hyperthin SiO2 coatings on polymers

    International Nuclear Information System (INIS)

    Dennler, G.; Houdayer, A.; Segui, Y.; Wertheimer, M.R.

    2001-01-01

    Transparent inorganic oxide coatings on polymers are playing an increasingly important role in pharmaceutical, food, and beverage packaging, and more recently in encapsulation of organic, light-emitting display devices. Such coatings are being prepared by physical or by chemical vacuum-deposition methods. They possess barrier properties against permeation of gases or vapors when they are thicker than a certain critical thickness, d c ; for d c , the 'oxygen transmission rate' (in standard cm 3 /m 2 /day/bar), for example, is roughly the same as that of the uncoated polymer. This fact is commonly attributed in the literature to a 'nucleation' phase of the coating's growth, during which it is thought to present an island-like structure. In order to test this hypothesis, we have deposited hyperthin SiO 2 coatings on various flexible polymeric substrates using plasma-enhanced chemical vapor deposition. The film thicknesses investigated here, well below d c (typically in the range 1-10 nm), were determined by Rutherford backscattering spectroscopy, which allows us to determine the surface concentration of silicon. This was found to be a linear function of the deposition time, t, for t≥0.5 s. Then, combining reactive ion etching in oxygen plasma with scanning electron and optical microscopy, we have been able to characterize the structure of the coatings: even for d≤2 nm, no island structure has been observed. Instead, we found continuous coatings which contain large concentrations, n, of tiny pinhole defects (with typical radii in the range of tens of nanometers), where n increases with decreasing d. These assertions are confirmed by grazing angle (80 deg. ) angle-resolved x-ray photoelectron spectroscopy, which shows that even for d=2 nm, the structural features of the polymer substrate cannot be detected

  15. Optical properties of ZrO2, SiO2 and TiO2-SiO2 xerogels and coatings doped with Eu3+ and Eu2+

    Directory of Open Access Journals (Sweden)

    Gonçalves Rogéria R.

    1999-01-01

    Full Text Available Eu3+ doped bulk monoliths and thin films were obtained by sol-gel methods in the ZrO2, SiO2 and SiO2-TiO2 systems. Eu3+ 5D0 ® 7FJ emission and decay time characteristics were measured during the entire experimental preparation route from the initial sol to the final xerogels. The crystalline phases identified were tetragonal ZrO2 and mixtures of rutile and anatase TiO2 at high temperature treatments in bulk samples. Good quality thin films were obtained for all systems by dip-coating optical glasses (Schott BK270. The same spectroscopic features were observed either for the bulk monoliths or the films. By appropriate heat treatments under H2 atmosphere Eu2+ containing samples could be obtained in the SiO2-TiO2 system.

  16. Cuprous oxide thin films grown by hydrothermal electrochemical deposition technique

    International Nuclear Information System (INIS)

    Majumder, M.; Biswas, I.; Pujaru, S.; Chakraborty, A.K.

    2015-01-01

    Semiconducting cuprous oxide films were grown by a hydrothermal electro-deposition technique on metal (Cu) and glass (ITO) substrates between 60 °C and 100 °C. X-ray diffraction studies reveal the formation of cubic cuprous oxide films in different preferred orientations depending upon the deposition technique used. Film growth, uniformity, grain size, optical band gap and photoelectrochemical response were found to improve in the hydrothermal electrochemical deposition technique. - Highlights: • Cu 2 O thin films were grown on Cu and glass substrates. • Conventional and hydrothermal electrochemical deposition techniques were used. • Hydrothermal electrochemical growth showed improved morphology, thickness and optical band gap

  17. Recent progress of obliquely deposited thin films for industrial applications

    Science.gov (United States)

    Suzuki, Motofumi; Itoh, Tadayoshi; Taga, Yasunori

    1999-06-01

    More than 10 years ago, birefringent films of metal oxides were formed by oblique vapor deposition and investigated with a view of their application to optical retardation plates. The retardation function of the films was explained in terms of the birefringence caused by the characteristic anisotropic nanostructure inside the films. These films are now classified in the genre of the so-called sculptured thin films. However, the birefringent films thus prepared are not yet industrialized even now due to the crucial lack of the durability and the yield of products. In this review paper, we describe the present status of application process of the retardation films to the information systems such as compact disc and digital versatile disc devices with a special emphasis on the uniformity of retardation properties in a large area and the stability of the optical properties of the obliquely deposited thin films. Finally, further challenges for wide application of the obliquely deposited thin films are also discussed.

  18. Optical analysis of Cr-doped ITO films deposited by double-target laser ablation

    International Nuclear Information System (INIS)

    Cesaria, M.; Caricato, A.P.; Maruccio, G.; Martino, M.

    2015-01-01

    We investigate the optical properties of ITO and Cr-doped ITO films deposited at room temperature by pulsed laser deposition onto amorphous SiO 2 substrates. Our analysis approach is based on the Tauc's plot method applied to the absorption coefficient estimated by a route realistically describing the film structural features and including the contribution of the non-measurable film–substrate interface. Going beyond the conventional application of the Tauc's plot method, we quote two different transition energies for ITO and Cr-doped ITO and discuss their origin in the framework of a band-structure picture as a function of film thickness, Cr changes of the host ITO dispersion and Cr-doping content. In contrast to the conventional optical ITO description, we account for the existence of direct dipole forbidden transitions between the ITO fundamental band edges, involving different electronic and optical band gaps. Our results and discussion demonstrate that disregarding this theoretically established picture, as occurs in the experimental literature, would lead to conclusions inconsistent with the Cr-induced band occupation and effects on ITO dispersions. Preliminary optical (based on transmittance and reflectance spectra as well as band-tailing effects), electrical and structural inspection of the samples are also considered to check reliability and consistency of our discussion. - Highlights: • Realistic absorption coefficient of very thin films. • Electronic and optical band gap: ITO dipole forbidden optical transitions. • Interpretative model combining realistic band structure and Tauc's plot approach. • Inconsistencies stemming from conventional application of the Tauc's plot. • General model applicable to In 2 O 3 -like systems

  19. Electroless Ni-Mo-P diffusion barriers with Pd-activated self-assembled monolayer on SiO2

    International Nuclear Information System (INIS)

    Liu Dianlong; Yang Zhigang; Zhang Chi

    2010-01-01

    Ternary Ni-based amorphous films can serve as a diffusion barrier layer for Cu interconnects in ultralarge-scale integration (ULSI) applications. In this paper, electroless Ni-Mo-P films deposited on SiO 2 layer without sputtered seed layer were prepared by using Pd-activated self-assembled monolayer (SAM). The solutions and operating conditions for pretreatment and deposition were presented, and the formation of Pd-activated SAM was demonstrated by XPS (X-ray photoelectron spectroscopy) analysis and BSE (back-scattered electron) observation. The effects of the concentration of Na 2 MoO 4 added in electrolytes, pH value, and bath temperature on the surface morphology and compositions of Ni-Mo-P films were investigated. The microstructures, diffusion barrier property, electrical resistivity, and adhesion were also examined. Based on the experimental results, the Ni-Mo-P alloys produced by using Pd-activated SAM had an amorphous or amorphous-like structure, and possessed good performance as diffusion barrier layer.

  20. Passivation of Flexible YBCO Superconducting Current Lead With Amorphous SiO2 Layer

    Science.gov (United States)

    Johannes, Daniel; Webber, Robert

    2013-01-01

    across a thermal gradient with as little flow of heat as possible to make an efficient current lead. By protecting YBCO on a flexible substrate of low thermal conductivity with SiO2, a thermally efficient and flexible current lead can be fabricated. The technology is also applicable to current leads for 4 K superconducting electronics current biasing. A commercially available thin-film YBCO composite tape conductor is first stripped of its protective silver coating. It is then mounted on a jig that holds the sample flat and acts as a heat sink. Silicon dioxide is then deposited onto the YBCO to a thickness of about 1 micron using PECVD (plasma-enhanced chemical vapor deposition), without heating the YBCO to the point where degradation occurs. Since SiO2 can have good high-frequency electrical properties, it can be used to coat YBCO cable structures used to feed RF signals across temperature gradients. The prime embodiment concerns the conduction of DC current across the cryogenic temperature gradient. The coating is hard and electrically insulating, but flexible.

  1. Processing and optical properties of Nd3+-doped SiO2-TiO2-Al2O3 planar waveguides

    Science.gov (United States)

    Xiang, Qing; Zhou, Yan; Ooi, Boon Siew; Lam, Yee Loy; Chan, Yuen Chuen; Kam, Chan Hin

    2000-05-01

    We report here the processing and optical characterization of Nd3+-doped SiO2-TiO2-Al2O3 planar waveguides deposited on SOS substrates by the sol-gel route combined with spin-coating and rapid thermal annealing. The recipes used for preparing the solutions by sol-gel route are in mole ratio of 93SiO2:20AlO1.5: x ErO1.5. In order to verify the residual OH content in the films, FTIR spectra were measured and the morphology of the material by the XRD analysis. Five 2-layer films annealed at a maximum temperature of 500 degrees C, 700 degrees C, 900 degrees, 1000 degrees C, 1100 degrees C respectively were fabricated on silicon. The FTIR and XRD curves show that annealing at 1050 degrees C for 15s effectively removes the OH in the materia and keeps the material amorphous. The propagation loss of the planar waveguides was measured by using the method based on scattering in measurements and the result was obtained to be 1.54dB/cm. The fluorescence spectra were measured with 514nm wavelength of Ar+ laser by directly shining the pump beam on the film instead of prism coupling. The results show that the 1 mole Nd3+ content recipe has the strongest emission efficiency among the four samples investigated.

  2. Hydrogen ratios and profiles in deposited amorphous and polycrystalline films and in metals using nuclear techniques

    International Nuclear Information System (INIS)

    Benenson, R.E.; Feldman, L.C.; Bagley, B.G.

    1980-01-01

    Plasma- and chemical vapor deposited films containing hydrogen, Si, B and O, but of unknown thickness and stoichiometry have been assigned concentration ratios through a combination of H-profiling using the 1 H( 15 N,αγ) 12 C(4.43 MeV) reaction and RBS analysis. Relatively intense 15 N ++ beams exceeding the 6.38 MeV resonance energy have been obtained from a 3.75 MeV accelerator with a commercial ion source and terminal analysis. A discussion is given of the method of obtaining film concentration ratios in some representative cases. A search was made for H at the SiO 2 -Si interface. Some preliminary investigations have been made on the H concentration in several metals as supplied: Nb, V, Ta, Al, Ni, OFHC Cu, Ti, Mo and steel and on the effect of acid dips in loading H. Hydrogen in acid-loaded steel migrated under the influence of the probing 15 N beam, but relaxed back when the beam was removed. (orig.)

  3. Enhanced formation of Ge nanocrystals in Ge : SiO2 layers by swift heavy ions

    International Nuclear Information System (INIS)

    Antonova, I V; Volodin, V A; Marin, D M; Skuratov, V A; Smagulova, S A; Janse van Vuuren, A; Neethling, J; Jedrzejewski, J; Balberg, I

    2012-01-01

    In this paper we report the ability of swift heavy Xe ions with an energy of 480 MeV and a fluence of 10 12 cm -2 to enhance the formation of Ge nanocrystals within SiO 2 layers with variable Ge contents. These Ge-SiO 2 films were fabricated by the co-sputtering of Ge and quartz sources which followed various annealing procedures. In particular, we found that the irradiation of the Ge : SiO 2 films with subsequent annealing at 500 °C leads to the formation of a high concentration of nanocrystals (NCs) with a size of 2-5 nm, whereas without irradiation only amorphous inclusions were observed. This effect, as evidenced by Raman spectra, is enhanced by pre-irradiation at 550 °C and post-irradiation annealing at 600 °C, which also leads to the observation of room temperature visible photoluminescence. (paper)

  4. Enhanced Photocatalytic Activity of ZrO2-SiO2 Nanoparticles by Platinum Doping

    Directory of Open Access Journals (Sweden)

    Mohammad W. Kadi

    2013-01-01

    Full Text Available ZrO2-SiO2 mixed oxides were prepared via the sol-gel method. Photo-assisted deposition was utilized for doping the prepared mixed oxide with 0.1, 0.2, 0.3, and 0.4 wt% of Pt. XRD spectra showed that doping did not result in the incorporation of Pt within the crystal structure of the material. UV-reflectance spectrometry showed that the band gap of ZrO2-SiO2 decreased from 3.04 eV to 2.48 eV with 0.4 wt% Pt doping. The results show a specific surface area increase of 20%. Enhanced photocatalysis of Pt/ZrO2-SiO2 was successfully tested on photo degradation of cyanide under illumination of visible light. 100% conversion was achieved within 20 min with 0.3 wt% of Pt doped ZrO2-SiO2.

  5. Ion beam sputter deposited TiAlN films for metal-insulator-metal (Ba,Sr)TiO3 capacitor application

    International Nuclear Information System (INIS)

    Lee, S.-Y.; Wang, S.-C.; Chen, J.-S.; Huang, J.-L.

    2008-01-01

    The present study evaluated the feasibility of TiAlN films deposited using the ion beam sputter deposition (IBSD) method for metal-insulator-metal (MIM) (Ba,Sr)TiO 3 (BST) capacitors. The BST films were crystallized at temperatures above 650 deg. C. TiAlN films deposited using the IBSD method were found having smooth surface and low electrical resistivity at high temperature conditions. TiAlN films showed a good diffusion barrier property against BST components. The J-E (current density-electric field) characteristics of Al/BST/TiAlN capacitors were good, with a high break down electric field of ± 2.5 MV/cm and a leakage current density of about 1 x 10 -5 A/cm 2 at an applied field of ± 0.5 MV/cm. Thermal stress and lateral oxidation that occurred at the interface damaged the capacitor stacking structure. Macro holes that dispersed on the films resulted in higher leakage current and inconsistent J-E characteristics. Vacuum annealing with lower heating rate and furnace cooling, and a Ti-Al adhesion layer between TiAlN and the SiO 2 /Si substrate can effectively minimize the stress effect. TiAlN film deposited using IBSD can be considered as a potential electrode and diffusion barrier material for MIM BST capacitors

  6. Atomic layer deposition of a MoS₂ film.

    Science.gov (United States)

    Tan, Lee Kheng; Liu, Bo; Teng, Jing Hua; Guo, Shifeng; Low, Hong Yee; Tan, Hui Ru; Chong, Christy Yuen Tung; Yang, Ren Bin; Loh, Kian Ping

    2014-09-21

    A mono- to multilayer thick MoS₂ film has been grown by using the atomic layer deposition (ALD) technique at 300 °C on a sapphire wafer. ALD provides precise control of the MoS₂ film thickness due to pulsed introduction of the reactants and self-limiting reactions of MoCl₅ and H₂S. A post-deposition annealing of the ALD-deposited monolayer film improves the crystallinity of the film, which is evident from the presence of triangle-shaped crystals that exhibit strong photoluminescence in the visible range.

  7. Lanthanoid titanate film structure deposited at different temperatures in vacuum

    International Nuclear Information System (INIS)

    Kushkov, V.D.; Zaslavskij, A.M.; Mel'nikov, A.V.; Zverlin, A.V.; Slivinskaya, A.Eh.

    1991-01-01

    Influence of deposition temperature on the structure of lanthanoid titanate films, prepared by the method of high-rate vacuum condensation. It is shown that formation of crystal structure, close to equilibrium samples, proceeds at 1100-1300 deg C deposition temperatures. Increase of temperature in this range promotes formation of films with higher degree of structural perfection. Amorphous films of lanthanoid titanates form at 200-1000 deg C. Deposition temperature shouldn't exceed 1400 deg C to prevent the formation of perovskite like phases in films

  8. Modification of thin film properties by ion bombardment during deposition

    International Nuclear Information System (INIS)

    Harper, J.M.E.; Cuomo, J.J.; Gambino, R.J.; Kaufman, H.R.

    1984-01-01

    Many thin film deposition techniques involve some form of energetic particle bombardment of the growing film. The degree of bombardment greatly influences the film composition, structure and other properties. While in some techniques the degree of bombardment is secondary to the original process design, in recent years more deposition systems are being designed with the capability for controlled ion bombardment of thin films during deposition. The highest degree of control is obtained with ion beam sources which operate independently of the vapor source providing the thin film material. Other plasma techniques offer varying degrees of control of energetic particle bombardment. Deposition methods involving ion bombardment are described, and the basic processes with which film properties are modified by ion bombardment are summarized. (Auth.)

  9. Realization of Colored Multicrystalline Silicon Solar Cells with SiO2/SiNx:H Double Layer Antireflection Coatings

    Directory of Open Access Journals (Sweden)

    Minghua Li

    2013-01-01

    Full Text Available We presented a method to use SiO2/SiNx:H double layer antireflection coatings (DARC on acid textures to fabricate colored multicrystalline silicon (mc-Si solar cells. Firstly, we modeled the perceived colors and short-circuit current density (Jsc as a function of SiNx:H thickness for single layer SiNx:H, and as a function of SiO2 thickness for the case of SiO2/SiNx:H (DARC with fixed SiNx:H (refractive index n=2.1 at 633 nm, and thickness = 80 nm. The simulation results show that it is possible to achieve various colors by adjusting the thickness of SiO2 to avoid significant optical losses. Therefore, we carried out the experiments by using electron beam (e-beam evaporation to deposit a layer of SiO2 over the standard SiNx:H for 156×156 mm2 mc-Si solar cells which were fabricated by a conventional process. Semisphere reflectivity over 300 nm to 1100 nm and I-V measurements were performed for grey yellow, purple, deep blue, and green cells. The efficiency of colored SiO2/SiNx:H DARC cells is comparable to that of standard SiNx:H light blue cells, which shows the potential of colored cells in industrial applications.

  10. Stripe domains and magnetoresistance in thermally deposited nickel films

    International Nuclear Information System (INIS)

    Sparks, P.D.; Stern, N.P.; Snowden, D.S.; Kappus, B.A.; Checkelsky, J.G.; Harberger, S.S.; Fusello, A.M.; Eckert, J.C.

    2004-01-01

    We report a study of the domain structure and magnetoresistance of thermally deposited nickel films. For films thicker than 17 nm, we observe striped domains with period varying with film thickness as a power law with exponent 0.21±0.02 up to 120 nm thickness. There is a negative magnetoresistance for fields out of the plane

  11. Stripe domains and magnetoresistance in thermally deposited nickel films

    Science.gov (United States)

    Sparks, P. D.; Stern, N. P.; Snowden, D. S.; Kappus, B. A.; Checkelsky, J. G.; Harberger, S. S.; Fusello, A. M.; Eckert, J. C.

    2004-05-01

    We report a study of the domain structure and magnetoresistance of thermally deposited nickel films. For films thicker than 17nm, we observe striped domains with period varying with film thickness as a power law with exponent 0.21+/-0.02 up to 120nm thickness. There is a negative magnetoresistance for fields out of the plane.

  12. Stripe domains and magnetoresistance in thermally deposited nickel films

    Energy Technology Data Exchange (ETDEWEB)

    Sparks, P.D. E-mail: sparks@hmc.edu; Stern, N.P.; Snowden, D.S.; Kappus, B.A.; Checkelsky, J.G.; Harberger, S.S.; Fusello, A.M.; Eckert, J.C

    2004-05-01

    We report a study of the domain structure and magnetoresistance of thermally deposited nickel films. For films thicker than 17 nm, we observe striped domains with period varying with film thickness as a power law with exponent 0.21{+-}0.02 up to 120 nm thickness. There is a negative magnetoresistance for fields out of the plane.

  13. Properties of electrophoretically deposited single wall carbon nanotube films

    International Nuclear Information System (INIS)

    Lim, Junyoung; Jalali, Maryam; Campbell, Stephen A.

    2015-01-01

    This paper describes techniques for rapidly producing a carbon nanotube thin film by electrophoretic deposition at room temperature and determines the film mass density and electrical/mechanical properties of such films. The mechanism of electrophoretic deposition of thin layers is explained with experimental data. Also, film thickness is measured as a function of time, electrical field and suspension concentration. We use Rutherford backscattering spectroscopy to determine the film mass density. Films created in this manner have a resistivity of 2.14 × 10 −3 Ω·cm, a mass density that varies with thickness from 0.12 to 0.54 g/cm 3 , and a Young's modulus between 4.72 and 5.67 GPa. The latter was found to be independent of thickness from 77 to 134 nm. We also report on fabricating free-standing films by removing the metal seed layer under the CNT film, and selectively etching a sacrificial layer. This method could be extended to flexible photovoltaic devices or high frequency RF MEMS devices. - Highlights: • We explain the electrophoretic deposition process and mechanism of thin SWCNT film deposition. • Characterization of the SWCNT film properties including density, resistivity, transmittance, and Young's modulus. • The film density and resistivity are found to be a function of the film thickness. • Techniques developed to create free standing layers of SW-CNTs for flexible electronics and mechanical actuators

  14. Plasma-deposited a-C(N) H films

    CERN Document Server

    Franceschini, D E

    2000-01-01

    The growth behaviour, film structure and mechanical properties of plasma-deposited amorphous hydrogenated carbon-nitrogen films are shortly reviewed. The effect of nitrogen-containing gas addition to the deposition to the hydrocarbon atmospheres used is discussed, considering the modifications observed in the chemical composition growth kinetics, carbon atom hybridisation and chemical bonding arrangements of a-C(N):H films. The overall structure behaviour is correlated to the variation of the mechanical properties.

  15. Influence of deposition time on the properties of chemical bath deposited manganese sulfide thin films

    Directory of Open Access Journals (Sweden)

    Anuar Kassim

    2010-12-01

    Full Text Available Manganese sulfide thin films were chemically deposited from an aqueous solution containing manganese sulfate, sodium thiosulfate and sodium tartrate. The influence of deposition time (2, 3, 6 and 8 days on the properties of thin films was investigated. The structure and surface morphology of the thin films were studied by X-ray diffraction and atomic force microscopy, respectively. In addition, in order to investigate the optical properties of the thin films, the UV-visible spectrophotometry was used. The XRD results indicated that the deposited MnS2 thin films exhibited a polycrystalline cubic structure. The number of MnS2 peaks on the XRD patterns initially increased from three to six peaks and then decreased to five peaks, as the deposition time was increased from 2 to 8 days. From the AFM measurements, the film thickness and surface roughness were found to be dependent on the deposition time.

  16. Electrical and optical performance of transparent conducting oxide films deposited by electrostatic spray assisted vapour deposition.

    Science.gov (United States)

    Hou, Xianghui; Choy, Kwang-Leong; Liu, Jun-Peng

    2011-09-01

    Transparent conducting oxide (TCO) films have the remarkable combination of high electrical conductivity and optical transparency. There is always a strong motivation to produce TCO films with good performance at low cost. Electrostatic Spray Assisted Vapor Deposition (ESAVD), as a variant of chemical vapour deposition (CVD), is a non-vacuum and low-cost deposition method. Several types of TCO films have been deposited using ESAVD process, including indium tin oxide (ITO), antimony-doped tin oxide (ATO), and fluorine doped tin oxide (FTO). This paper reports the electrical and optical properties of TCO films produced by ESAVD methods, as well as the effects of post treatment by plasma hydrogenation on these TCO films. The possible mechanisms involved during plasma hydrogenation of TCO films are also discussed. Reduction and etching effect during plasma hydrogenation are the most important factors which determine the optical and electrical performance of TCO films.

  17. Study of hydrogen interaction with SiO2/Si(100) system using positrons

    International Nuclear Information System (INIS)

    Asoka-Kumar, P.; Lynn, K.G.; Leung, T.C.; Nielsen, B.; Wu, X.Y.

    1991-01-01

    We describe positron annihilation studies of SiO 2 /Si(100) structures having 100-nm-thick oxide grown by plasma enhanced chemical vapor deposition. A normalized shape parameter is used to characterize the positron annihilation spectra. Activation and passivation of interface states by atomic hydrogen are demonstrated by repeated vacuum anneal and atomic hydrogen exposure. Hydrogen activation energy is derived for one of the samples as 2.02±0.07 eV

  18. Controllable deposition of gadolinium doped ceria electrolyte films by magnetic-field-assisted electrostatic spray deposition

    International Nuclear Information System (INIS)

    Ksapabutr, Bussarin; Chalermkiti, Tanapol; Wongkasemjit, Sujitra; Panapoy, Manop

    2013-01-01

    This paper describes a simple and low-temperature approach to fabrication of dense and crack-free gadolinium doped ceria (GDC) thin films with controllable deposition by a magnetic-field-assisted electrostatic spray deposition technique. The influences of external permanent magnets on the deposition of GDC films were investigated. The coating area deposited using two magnets with the same pole arrangement decreased in comparison with the case of no magnets, whereas the largest deposition area was obtained in the system of the opposite poles. Analysis of as-deposited films at 450 °C indicated the formation of uniform, smooth and dense thin films with a single-phase fluorite structure. The films produced in the system using same poles were thicker, smaller in crystallite size and smoother than those fabricated under other conditions. Additionally, the GDC film deposited using the same pole arrangement showed the maximum in electrical conductivity of about 2.5 × 10 −2 S/cm at a low operating temperature of 500 °C. - Highlights: • Magnetic-field-assisted electrostatic spray allows a controllable coating. • Dense, crack-free thin films were obtained at low process temperature of 450 °C. • Control of deposition, thickness and uniformity is easy to achieve simultaneously. • Films from the same pole were thicker, smaller in crystal size and smoother. • The maximum conductivity of doped ceria film was 2.5 × 10 −2 S/cm at 500 °C

  19. Modification of thin film properties by ion bombardment during deposition

    International Nuclear Information System (INIS)

    Harper, J.M.E.; Cuomo, J.J.; Gambino, R.J.; Kaufman, H.R.

    1984-01-01

    Deposition methods involving ion bombardment are described, and the basic processes with which film properties are modified by ion bombardment are summarized. Examples of thin film property modification by ion bombardment during deposition, including effects which are primarily compositional as well as those which are primarily structural are presented. The examples demonstrate the usefulness of ion beam techniques in identifying and controlling the fundamental deposition parameters. 68 refs.; 15 figs.; 1 table

  20. Reaction Mechanisms of the Atomic Layer Deposition of Tin Oxide Thin Films Using Tributyltin Ethoxide and Ozone.

    Science.gov (United States)

    Nanayakkara, Charith E; Liu, Guo; Vega, Abraham; Dezelah, Charles L; Kanjolia, Ravindra K; Chabal, Yves J

    2017-06-20

    Uniform and conformal deposition of tin oxide thin films is important for several applications in electronics, gas sensing, and transparent conducting electrodes. Thermal atomic layer deposition (ALD) is often best suited for these applications, but its implementation requires a mechanistic understanding of the initial nucleation and subsequent ALD processes. To this end, in situ FTIR and ex situ XPS have been used to explore the ALD of tin oxide films using tributyltin ethoxide and ozone on an OH-terminated, SiO 2 -passivated Si(111) substrate. Direct chemisorption of tributyltin ethoxide on surface OH groups and clear evidence that subsequent ligand exchange are obtained, providing mechanistic insight. Upon ozone pulse, the butyl groups react with ozone, forming surface carbonate and formate. The subsequent tributyltin ethoxide pulse removes the carbonate and formate features with the appearance of the bands for CH stretching and bending modes of the precursor butyl ligands. This ligand-exchange behavior is repeated for subsequent cycles, as is characteristic of ALD processes, and is clearly observed for deposition temperatures of 200 and 300 °C. On the basis of the in situ vibrational data, a reaction mechanism for the ALD process of tributyltin ethoxide and ozone is presented, whereby ligands are fully eliminated. Complementary ex situ XPS depth profiles confirm that the bulk of the films is carbon-free, that is, formate and carbonate are not incorporated into the film during the deposition process, and that good-quality SnO x films are produced. Furthermore, the process was scaled up in a cross-flow reactor at 225 °C, which allowed the determination of the growth rate (0.62 Å/cycle) and confirmed a self-limiting ALD growth at 225 and 268 °C. An analysis of the temperature-dependence data reveals that growth rate increases linearly between 200 and 300 °C.

  1. Comparison of stress in single and multiple layer depositions of plasma-deposited amorphous silicon dioxide

    International Nuclear Information System (INIS)

    Au, V; Charles, C; Boswell, R W

    2006-01-01

    The stress in a single-layer continuous deposition of amorphous silicon dioxide (SiO 2 ) film is compared with the stress within multiple-layer intermittent or 'stop-start' depositions. The films were deposited by helicon activated reactive evaporation (plasma assisted deposition with electron beam evaporation source) to a 1 μm total film thickness. The relationships for stress as a function of film thickness for single, two, four and eight layer depositions have been obtained by employing the substrate curvature technique on a post-deposition etch-back of the SiO 2 film. At film thicknesses of less than 300 nm, the stress-thickness relationships clearly show an increase in stress in the multiple-layer samples compared with the relationship for the single-layer film. By comparison, there is little variation in the film stress between the samples when it is measured at 1 μm film thickness. Localized variations in stress were not observed in the regions where the 'stop-start' depositions occurred. The experimental results are interpreted as a possible indication of the presence of unstable, strained Si-O-Si bonds in the amorphous SiO 2 film. It is proposed that the subsequent introduction of a 'stop-start' deposition process places additional strain on these bonds to affect the film structure. The experimental stress-thickness relationships were reproduced independently by assuming a linear relationship between the measured bow and film thickness. The constants of the linear model are interpreted as an indication of the density of the amorphous film structure

  2. Hydrothermal crystallization of amorphous titania films deposited using low temperature atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, D.R.G. [Institute of Materials Engineering, ANSTO, PMB 1, Menai, NSW 2234 (Australia)], E-mail: drm@ansto.gov.au; Triani, G.; Zhang, Z. [Institute of Materials Engineering, ANSTO, PMB 1, Menai, NSW 2234 (Australia)

    2008-10-01

    A two stage process (atomic layer deposition, followed by hydrothermal treatment) for producing crystalline titania thin films at temperatures compatible with polymeric substrates (< 130 deg. C) has been assessed. Titania thin films were deposited at 80 deg. C using atomic layer deposition. They were extremely flat, uniform and almost entirely amorphous. They also contained relatively high levels of residual Cl from the precursor. After hydrothermal treatment at 120 deg. C for 1 day, > 50% of the film had crystallized. Crystallization was complete after 10 days of hydrothermal treatment. Crystallization of the film resulted in the formation of coarse grained anatase. Residual Cl was completely expelled from the film upon crystallization. As a result of the amorphous to crystalline transformation voids formed at the crystallization front. Inward and lateral crystal growth resulted in voids being localized to the film/substrate interface and crystallite perimeters resulting in pinholing. Both these phenomena resulted in films with poor adhesion and film integrity was severely compromised.

  3. Highly conformal SiO2/Al2O3 nanolaminate gas-diffusion barriers for large-area flexible electronics applications

    International Nuclear Information System (INIS)

    Choi, Jin-Hwan; Kim, Young-Min; Park, Young-Wook; Park, Tae-Hyun; Jeong, Jin-Wook; Choi, Hyun-Ju; Song, Eun-Ho; Ju, Byeong-Kwon; Lee, Jin-Woo; Kim, Cheol-Ho

    2010-01-01

    The present study demonstrates a flexible gas-diffusion barrier film, containing an SiO 2 /Al 2 O 3 nanolaminate on a plastic substrate. Highly uniform and conformal coatings can be made by alternating the exposure of a flexible polyethersulfone surface to vapors of SiO 2 and Al 2 O 3 , at nanoscale thickness cycles via RF-magnetron sputtering deposition. The calcium degradation test indicates that 24 cycles of a 10/10 nm inorganic bilayer, top-coated by UV-cured resin, greatly enhance the barrier performance, with a permeation rate of 3.79 x 10 -5 g m -2 day -1 based on the change in the ohmic behavior of the calcium sensor at 20 deg. C and 50% relative humidity. Also, the permeation rate for 30 cycles of an 8/8 nm inorganic bilayer coated with UV resin was beyond the limited measurable range of the Ca test at 60 deg. C and 95% relative humidity. It has been found that such laminate films can effectively suppress the void defects of a single inorganic layer, and are significantly less sensitive against moisture permeation. This nanostructure, fabricated by an RF-sputtering process at room temperature, is verified as being useful for highly water-sensitive organic electronics fabricated on plastic substrates.

  4. Investigation of pentacene growth on SiO2 gate insulator after photolithography for nitrogen-doped LaB6 bottom-contact electrode formation

    Science.gov (United States)

    Maeda, Yasutaka; Hiroki, Mizuha; Ohmi, Shun-ichiro

    2018-04-01

    Nitrogen-doped (N-doped) LaB6 is a candidate material for the bottom-contact electrode of n-type organic field-effect transistors (OFETs). However, the formation of a N-doped LaB6 electrode affects the surface morphology of a pentacene film. In this study, the effects of surface treatments and a N-doped LaB6 interfacial layer (IL) were investigated to improve the pentacene film quality after N-doped LaB6 electrode patterning with diluted HNO3, followed by resist stripping with acetone and methanol. It was found that the sputtering damage during N-doped LaB6 deposition on a SiO2 gate insulator degraded the crystallinity of pentacene. The H2SO4 and H2O2 (SPM) and diluted HF treatments removed the damaged layer on the SiO2 gate insulator surface. Furthermore, the N-doped LaB6 IL improved the crystallinity of pentacene and realized dendritic grain growth. Owing to these surface treatments, the hole mobility improved from 2.8 × 10-3 to 0.11 cm2/(V·s), and a steep subthreshold swing of 78 mV/dec for the OFET with top-contact configuration was realized in air even after bottom-contact electrode patterning.

  5. Ultrathin Microporous SiO2 Membranes Photodeposited on Hydrogen Evolving Catalysts Enabling Overall Water Splitting

    KAUST Repository

    Bau, Jeremy A.

    2017-10-17

    Semiconductor systems for photocatalytic overall water splitting into H2 and O2 gases typically require metal cocatalyst particles, such as Pt, to efficiently catalyze H2 evolution. However, such metal catalyst surfaces also serve as recombination sites for H2 and O2, forming H2O. We herein report the photon-induced fabrication of microporous SiO2 membranes that can selectively restrict passage of O2 and larger hydrated ions while allowing penetration of protons, water, and H2. The SiO2 layers were selectively photodeposited on Pt nanoparticles on SrTiO3 photocatalyst by using tetramethylammonium (TMA) as a structure-directing agent (SDA), resulting in the formation of core–shell Pt@SiO2 cocatalysts. The resulting photocatalyst exhibited both improved overall water splitting performance under irradiation and with no H2/O2 recombination in the dark. The function of the SiO2 layers was investigated electrochemically by fabricating the SiO2 layers on a Pt electrode via an analogous cathodic deposition protocol. The uniform, dense, yet amorphous layers possess microporosity originating from ring structures formed during the hydrolysis of the silicate precursor in the presence of TMA, suggesting a double-role for TMA in coordinating silicate to cathodic surfaces and in creating a microporous material. The resulting layers were able to function as a molecular sieve, allowing for exclusive H2 generation while excluding unwanted side reactions by O2 or ferricyanide. The SiO2 layer is stable for extended periods of time in photocatalytic conditions, demonstrating promise as a nontoxic material for selective H2 evolution.

  6. Ultrathin Microporous SiO2 Membranes Photodeposited on Hydrogen Evolving Catalysts Enabling Overall Water Splitting

    KAUST Repository

    Bau, Jeremy A.; Takanabe, Kazuhiro

    2017-01-01

    Semiconductor systems for photocatalytic overall water splitting into H2 and O2 gases typically require metal cocatalyst particles, such as Pt, to efficiently catalyze H2 evolution. However, such metal catalyst surfaces also serve as recombination sites for H2 and O2, forming H2O. We herein report the photon-induced fabrication of microporous SiO2 membranes that can selectively restrict passage of O2 and larger hydrated ions while allowing penetration of protons, water, and H2. The SiO2 layers were selectively photodeposited on Pt nanoparticles on SrTiO3 photocatalyst by using tetramethylammonium (TMA) as a structure-directing agent (SDA), resulting in the formation of core–shell Pt@SiO2 cocatalysts. The resulting photocatalyst exhibited both improved overall water splitting performance under irradiation and with no H2/O2 recombination in the dark. The function of the SiO2 layers was investigated electrochemically by fabricating the SiO2 layers on a Pt electrode via an analogous cathodic deposition protocol. The uniform, dense, yet amorphous layers possess microporosity originating from ring structures formed during the hydrolysis of the silicate precursor in the presence of TMA, suggesting a double-role for TMA in coordinating silicate to cathodic surfaces and in creating a microporous material. The resulting layers were able to function as a molecular sieve, allowing for exclusive H2 generation while excluding unwanted side reactions by O2 or ferricyanide. The SiO2 layer is stable for extended periods of time in photocatalytic conditions, demonstrating promise as a nontoxic material for selective H2 evolution.

  7. Investigation of Al2O3 barrier film properties made by atomic layer deposition onto fluorescent tris-(8-hydroxyquinoline) aluminium molecular films

    International Nuclear Information System (INIS)

    Maindron, Tony; Aventurier, Bernard; Ghazouani, Ahlem; Jullien, Tony; Rochat, Névine; Simon, Jean-Yves; Viasnoff, Emilie

    2013-01-01

    Al 2 O 3 films have been deposited at 85 °C by atomic layer deposition onto single 100 nm thick tris-(8-hydroxyquinoline) aluminium (AlQ 3 ) films made onto silicon wafers. It has been found that a thick ALD-deposited Al 2 O 3 layer (> 11 nm) greatly prevents the photo-oxidation of AlQ 3 films when exposed to continuous UV irradiation (350 mW/cm 2 ). Thin Al 2 O 3 thicknesses (< 11 nm) on the contrary yield lower barrier performances. Defects in the Al 2 O 3 layer have been easily observed as non-fluorescent AlQ 3 singularities, or black spots, under UV light on the system Si/AlQ 3 /Al 2 O 3 stored into laboratory conditions (22 °C/50% Relative Humidity (RH)) for long time scale (∼ 2000 h). Accelerated aging conditions in a climatic chamber (85 °C/85% RH) also allow faster visualization of the same defects (168 h). The black spot density grows upon time and the black spot density occurrence rates have been calculated to be 0.024 h −1 ·cm −2 and 0.243 h −1 ·cm −2 respectively for the two testing conditions. A detailed investigation of these defects did show that they cannot be ascribed to the presence of a detectable particle. In that sense they are presumably the consequence of the existence of nanometre-scaled defects which cannot be detected onto fresh samples. Interestingly, an additional overcoating of ebeam-deposited SiO 2 onto the Si/AlQ 3 /Al 2 O 3 sample helps to decrease drastically the black spot density occurrence rates down to 0.004 h −1 ·cm −2 and 0.04 h −1 ·cm −2 respectively for 22 °C/50% RH and 85 °C/85% RH testing conditions. These observations highlight the moisture sensitivity of low temperature ALD-deposited Al 2 O 3 films and confirm the general idea that a single Al 2 O 3 ALD film performs as an ultra-high barrier but needs to be overprotected from water condensation by an additional moisture-stable layer. - Highlights: • Thin Al 2 O 3 films have been deposited by atomic layer deposition onto organic films.

  8. Effects of deposition time in chemically deposited ZnS films in acidic solution

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, H.; Chelouche, A., E-mail: azeddinechelouche@gmail.com; Talantikite, D.; Merzouk, H.; Boudjouan, F.; Djouadi, D.

    2015-08-31

    We report an experimental study on the synthesis and characterization of zinc sulfide (ZnS) single layer thin films deposited on glass substrates by chemical bath deposition technique in acidic solution. The effect of deposition time on the microstructure, surface morphology, optical absorption, transmittance, and photoluminescence (PL) was investigated by X-ray diffraction (XRD), scanning electronic microscopy (SEM), UV-Vis–NIR spectrophotometry and photoluminescence (PL) spectroscopy. The results showed that the samples exhibit wurtzite structure and their crystal quality is improved by increasing deposition time. The latter, was found to affect the morphology of the thin films as showed by SEM micrographs. The optical measurements revealed a high transparency in the visible range and a dependence of absorption edge and band gap on deposition time. The room temperature PL spectra indicated that all ZnS grown thin films emit a UV and blue light, while the band intensities are found to be dependent on deposition times. - Highlights: • Single layer ZnS thin films were deposited by CBD in acidic solution at 95 °C. • The effect of deposition time was investigated. • Coexistence of ZnS and ZnO hexagonal structures for time deposition below 2 h • Thicker ZnS films were achieved after monolayer deposition for 5 h. • The highest UV-blue emission observed in thin film deposited at 5 h.

  9. Characterization of transparent silica films deposited on polymeric materials

    International Nuclear Information System (INIS)

    Teshima, K.; Sugimura, H.; Inoue, Y.; Takai, O.

    2002-01-01

    Silica films were synthesized by capacitively coupled RF PECVD using mixtures of organo-silane and oxygen as a source. The chemical bonding states and compositions of the films deposited were evaluated with FTIR and XPS. Film surfaces and cross-sections were observed by SEM. Oxygen transmission rates (OTR) of the films coated on polyethylene terephthalate (PET) substrates were measured by an isopiestic method. (Authors)

  10. Formation of metallic Si and SiC nanoparticles from SiO2 particles by plasma-induced cathodic discharge electrolysis in chloride melt

    International Nuclear Information System (INIS)

    Tokushige, M.; Tsujimura, H.; Nishikiori, T.; Ito, Y.

    2013-01-01

    Silicon nanoparticles are formed from SiO 2 particles by conducting plasma-induced cathodic discharge electrolysis. In a LiCl–KCl melt in which SiO 2 particles were suspended at 450 °C, we obtained Si nanoparticles with diameters around 20 nm. During the electrolysis period, SiO 2 particles are directly reduced by discharge electrons on the surface of the melt just under the discharge, and the deposited Si atom clusters form Si nanoparticles, which leave the surface of the original SiO 2 particle due to free spaces caused by a molar volume difference between SiO 2 and Si. We also found that SiC nanoparticles can be obtained using carbon anode. Based on Faraday's law, the current efficiency for the formation of Si nanoparticles is 70%

  11. Thermal annealing of amorphous Ti-Si-O thin films

    OpenAIRE

    Hodroj , Abbas; Chaix-Pluchery , Odette; Audier , Marc; Gottlieb , Ulrich; Deschanvres , Jean-Luc

    2008-01-01

    International audience; Ti-Si-O thin films were deposited using an aerosol chemical vapor deposition process at atmospheric pressure. The film structure and microstructure were analysed using several techniques before and after thermal annealing. Diffraction results indicate that the films remain X-ray amorphous after annealing whereas Fourier transform infrared spectroscopy gives evidence of a phase segregation between amorphous SiO2 and well crystallized anatase TiO2. Crystallization of ana...

  12. SnS thin films deposited by chemical bath deposition, dip coating and SILAR techniques

    Science.gov (United States)

    Chaki, Sunil H.; Chaudhary, Mahesh D.; Deshpande, M. P.

    2016-05-01

    The SnS thin films were synthesized by chemical bath deposition (CBD), dip coating and successive ionic layer adsorption and reaction (SILAR) techniques. In them, the CBD thin films were deposited at two temperatures: ambient and 70 °C. The energy dispersive analysis of X-rays (EDAX), X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM) and optical spectroscopy techniques were used to characterize the thin films. The electrical transport properties studies on the as-deposited thin films were done by measuring the I-V characteristics, DC electrical resistivity variation with temperature and the room temperature Hall effect. The obtained results are deliberated in this paper.

  13. Thin film deposition using rarefied gas jet

    Science.gov (United States)

    Pradhan, Sahadev, , Dr.

    2017-06-01

    The rarefied gas jet of aluminium is studied at Mach number Ma = (Uj /√{ kbTj / mg }) in the range .01 PVD) process for the development of the highly oriented pure metallic aluminum thin film with uniform thickness and strong adhesion on the surface of the substrate in the form of ionic plasma, so that the substrate can be protected from corrosion and oxidation and thereby enhance the lifetime and safety, and to introduce the desired surface properties for a given application. Here, H is the characteristic dimension, U_j and T_j are the jet velocity and temperature, n_d is the number density of the jet, m and d are the molecular mass and diameter, and kbis the Boltzmann constant. An important finding is that the capture width (cross-section of the gas jet deposited on the substrate) is symmetric around the centerline of the substrate, and decreases with increased Mach number due to an increase in the momentum of the gas molecules. DSMC simulation results reveals that at low Knudsen number ((Kn=0.01); shorter mean free paths), the atoms experience more collisions, which direct them toward the substrate. However, the atoms also move with lower momentum at low Mach number, which allows scattering collisions to rapidly direct the atoms to the substrate.

  14. Angular dependence of SiO2 etch rate at various bias voltages in a high density CHF3 plasma

    International Nuclear Information System (INIS)

    Lee, Gyeo-Re; Hwang, Sung-Wook; Min, Jae-Ho; Moon, Sang Heup

    2002-01-01

    The dependence of the SiO 2 etch rate on the angle of ions incident on the substrate surface was studied over a bias voltage range from -20 to -600 V in a high-density CHF 3 plasma using a Faraday cage to control the ion incident angle. The effect of the bottom plane on the sidewall etching was also examined. Differences in the characteristics of the etch rate as a function of the ion angle were observed for different bias voltage regions. When the absolute value of the bias voltage was smaller than 200 V, the normalized etch rate (NER) defined as the etch rate normalized by the rate on the horizontal surface, changed following a cosine curve with respect to the ion incident angle, defined as the angle between the ion direction and the normal of the substrate surface. When the magnitude of the bias voltage was larger than 200 V, the NER was deviated to higher values from those given by a cosine curve at ion angles between 30 deg. and 70 deg. , and then drastically decreased at angles higher than 70 deg. until a net deposition was observed at angles near 90 deg. . The characteristic etch-rate patterns at ion angles below 70 deg. were determined by the ion energy transferred to the surface, which affected the SiO 2 etch rate and, simultaneously, the rate of removal of a fluorocarbon polymer film formed on the substrate surface. At high ion angles, particles emitted from the bottom plane contributed to polymer formation on and affected the etching characteristics of the substrate

  15. Optical and structural properties of SiOxNyHz films deposited by electron cyclotron resonance and their correlation with composition

    International Nuclear Information System (INIS)

    Prado, A. del; San Andres, E.; Martil, I.; Gonzalez-Diaz, G.; Bravo, D.; Lopez, F. J.; Bohne, W.; Roehrich, J.; Selle, B.; Martinez, F. L.

    2003-01-01

    SiO x N y H z films were deposited from O 2 , N 2 , and SiH 4 gas mixtures at room temperature using the electron cyclotron resonance plasma method. The absolute concentrations of all the species present in the films (Si, O, N, and H) were measured with high precision by heavy-ion elastic recoil detection analysis. The composition of the films was controlled over the whole composition range by adjusting the precursor gases flow ratio during deposition. The relative incorporation of O and N is determined by the ratio Q=φ(O 2 )/φ(SiH 4 ) and the relative content of Si is determined by R=[φ(O 2 )+φ(N 2 )]/φ(SiH 4 ) where φ(SiH 4 ), φ(O 2 ), and φ(N 2 ) are the SiH 4 , O 2 , and N 2 gas flows, respectively. The optical properties (infrared absorption and refractive index) and the density of paramagnetic defects were analyzed in dependence on the film composition. Single-phase homogeneous films were obtained at low SiH 4 partial pressure during deposition; while those samples deposited at high SiH 4 partial pressure show evidence of separation of two phases. The refractive index was controlled over the whole range between silicon nitride and silicon oxide, with values slightly lower than in stoichiometric films due to the incorporation of H, which results in a lower density of the films. The most important paramagnetic defects detected in the films were the K center and the E ' center. Defects related to N were also detected in some samples. The total density of defects in SiO x N y H z films was higher than in SiO 2 and lower than in silicon nitride films

  16. Nickel films: Nonselective and selective photochemical deposition and properties

    International Nuclear Information System (INIS)

    Smirnova, N.V.; Boitsova, T.B.; Gorbunova, V.V.; Alekseeva, L.V.; Pronin, V.P.; Kon'uhov, G.S.

    2006-01-01

    Nickel films deposited on quartz surfaces by the photochemical reduction of a chemical nickel plating solution were studied. It was found that the deposition of the films occurs after an induction period, the length of which depends on the composition of the photolyte and the light intensity. Ni particles with a mean diameter of 20-30 nm were detected initially by transmission electron microscopy. The particles then increased in size (50 nm) upon irradiation and grouped into rings consisting of 4-5 particles. Irradiation with high-intensity light produces three-dimensional films. The calculated extinction coefficient of the nickel film was found to be 4800 L mol -1 cm -1 . Electron diffraction revealed that the prepared amorphous nickel films crystallize after one day of storage. It was determined that the films exhibit catalytic activity in the process of nickel deposition from nickel plating solution. The catalytic action remains for about 5-7 min after exposure of the films to air. The processes of selective and nonselective deposition of the nickel films are discussed. The use of poly(butoxy titanium) in the process of selective photochemical deposition enables negative and positive images to be prepared on quartz surfaces

  17. Sputter deposition of BSCCO films from a hollow cathode

    International Nuclear Information System (INIS)

    Lanagan, M.T.; Kampwirth, R.T.; Doyle, K.; Kowalski, S.; Miller, D.; Gray, K.E.

    1991-01-01

    High-T c superconducting thin films were deposited onto MgO single crystal substrates from a hollow cathode onto ceramic targets with the nominal composition of Bi 2 Sr 2 CaCu 2 O x . Films similar in composition to those used for the targets were deposited on MgO substrates by rf sputtering. The effects of sputtering time, rf power, and post-annealing on film microstructure and properties were studied in detail. Substrate temperature was found to have a significant influence on the film characteristics. Initial results show that deposition rates from a hollow cathode are an order of magnitude higher than those of a planar magnetron source at equivalent power levels. Large deposition rates allow for the coating of long lengths of wire

  18. ZnSe thin films by chemical bath deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Lokhande, C.D.; Patil, P.S.; Tributsch, H. [Hahn-Meitner-Institute, Bereich Physikalische Chemie, Abt. CS, Glienicker Strasse-100, D-14109 Berlin (Germany); Ennaoui, A. [Hahn-Meitner-Institute, Bereich Physikalische Chemie, Abt. CG, Glienicker Strasse-100, D-14109 Berlin (Germany)

    1998-09-04

    The ZnSe thin films have been deposited onto glass substrates by the simple chemical bath deposition method using selenourea as a selenide ion source from an aqueous alkaline medium. The effect of Zn ion concentration, bath temperature and deposition time period on the quality and thickness of ZnSe films has been studied. The ZnSe films have been characterized by XRD, TEM, EDAX, TRMC (time-resolved microwave conductivity), optical absorbance and RBS techniques for their structural, compositional, electronic and optical properties. The as-deposited ZnSe films are found to be amorphous, Zn rich with optical band gap, Eg, equal to 2.9 eV

  19. Chemical solution deposition of functional oxide thin films

    CERN Document Server

    Schneller, Theodor; Kosec, Marija

    2014-01-01

    Chemical Solution Deposition (CSD) is a highly-flexible and inexpensive technique for the fabrication of functional oxide thin films. Featuring nearly 400 illustrations, this text covers all aspects of the technique.

  20. Surface treatment of nanocrystal quantum dots after film deposition

    Science.gov (United States)

    Sykora, Milan; Koposov, Alexey; Fuke, Nobuhiro

    2015-02-03

    Provided are methods of surface treatment of nanocrystal quantum dots after film deposition so as to exchange the native ligands of the quantum dots for exchange ligands that result in improvement in charge extraction from the nanocrystals.

  1. Capillary assisted deposition of carbon nanotube film for strain sensing

    Science.gov (United States)

    Li, Zida; Xue, Xufeng; Lin, Feng; Wang, Yize; Ward, Kevin; Fu, Jianping

    2017-10-01

    Advances in stretchable electronics offer the possibility of developing skin-like motion sensors. Carbon nanotubes (CNTs), owing to their superior electrical properties, have great potential for applications in such sensors. In this paper, we report a method for deposition and patterning of CNTs on soft, elastic polydimethylsiloxane (PDMS) substrates using capillary action. Micropillar arrays were generated on PDMS surfaces before treatment with plasma to render them hydrophilic. Capillary force enabled by the micropillar array spreads CNT solution evenly on PDMS surfaces. Solvent evaporation leaves a uniform deposition and patterning of CNTs on PDMS surfaces. We studied the effect of the CNT concentration and micropillar gap size on CNT coating uniformity, film conductivity, and piezoresistivity. Leveraging the piezoresistivity of deposited CNT films, we further designed and characterized a device for the contraction force measurement. Our capillary assisted deposition method of CNT films showed great application potential in fabrication of flexible CNT thin films for strain sensing.

  2. Chemical bath ZnSe thin films: deposition and characterisation

    Science.gov (United States)

    Lokhande, C. D.; Patil, P. S.; Ennaoui, A.; Tributsch, H.

    1998-01-01

    The zinc selenide (ZnSe) thin films have been deposited by a simple and inexpensive chemical bath deposition (CBD) method. The selenourea was used as a selenide ion source. The ZnSe films have been characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDAX), Rutherford back scattering (RBS), and optical absorption. The as-deposited ZnSe films on various substrates are found to be amorphous and contain O2 and N2 in addition to Zn and Se. The optical band gap of the film is estimated to be 2.9 eV. The films are photoactive as evidenced by time resolved microwave conductivity (TRMC).

  3. Nanocomposite oxide thin films grown by pulsed energy beam deposition

    International Nuclear Information System (INIS)

    Nistor, M.; Petitmangin, A.; Hebert, C.; Seiler, W.

    2011-01-01

    Highly non-stoichiometric indium tin oxide (ITO) thin films were grown by pulsed energy beam deposition (pulsed laser deposition-PLD and pulsed electron beam deposition-PED) under low oxygen pressure. The analysis of the structure and electrical transport properties showed that ITO films with a large oxygen deficiency (more than 20%) are nanocomposite films with metallic (In, Sn) clusters embedded in a stoichiometric and crystalline oxide matrix. The presence of the metallic clusters induces specific transport properties, i.e. a metallic conductivity via percolation with a superconducting transition at low temperature (about 6 K) and the melting and freezing of the In-Sn clusters in the room temperature to 450 K range evidenced by large changes in resistivity and a hysteresis cycle. By controlling the oxygen deficiency and temperature during the growth, the transport and optical properties of the nanocomposite oxide films could be tuned from metallic-like to insulating and from transparent to absorbing films.

  4. Nitrogen incorporation in sputter deposited molybdenum nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Stöber, Laura, E-mail: laura.stoeber@tuwien.ac.at; Patocka, Florian, E-mail: florian.patocka@tuwien.ac.at; Schneider, Michael, E-mail: michael.schneider@tuwien.ac.at; Schmid, Ulrich, E-mail: ulrich.e366.schmid@tuwien.ac.at [Institute of Sensor and Actuator Systems, TU Wien, Gußhausstraße 27-29, A-1040 Vienna (Austria); Konrath, Jens Peter, E-mail: jenspeter.konrath@infineon.com; Haberl, Verena, E-mail: verena.haberl@infineon.com [Infineon Technologies Austria AG, Siemensstraße 2, 9500 Villach (Austria)

    2016-03-15

    In this paper, the authors report on the high temperature performance of sputter deposited molybdenum (Mo) and molybdenum nitride (Mo{sub 2}N) thin films. Various argon and nitrogen gas compositions are applied for thin film synthetization, and the amount of nitrogen incorporation is determined by Auger measurements. Furthermore, effusion measurements identifying the binding conditions of the nitrogen in the thin film are performed up to 1000 °C. These results are in excellent agreement with film stress and scanning electron microscope analyses, both indicating stable film properties up to annealing temperatures of 500 °C.

  5. Atomic layer deposition of copper thin film and feasibility of deposition on inner walls of waveguides

    Science.gov (United States)

    Yuqing, XIONG; Hengjiao, GAO; Ni, REN; Zhongwei, LIU

    2018-03-01

    Copper thin films were deposited by plasma-enhanced atomic layer deposition at low temperature, using copper(I)-N,N‧-di-sec-butylacetamidinate as a precursor and hydrogen as a reductive gas. The influence of temperature, plasma power, mode of plasma, and pulse time, on the deposition rate of copper thin film, the purity of the film and the step coverage were studied. The feasibility of copper film deposition on the inner wall of a carbon fibre reinforced plastic waveguide with high aspect ratio was also studied. The morphology and composition of the thin film were studied by atomic force microscopy and x-ray photoelectron spectroscopy, respectively. The square resistance of the thin film was also tested by a four-probe technique. On the basis of on-line diagnosis, a growth mechanism of copper thin film was put forward, and it was considered that surface functional group played an important role in the process of nucleation and in determining the properties of thin films. A high density of plasma and high free-radical content were helpful for the deposition of copper thin films.

  6. Layer-by-layer deposition of zirconium oxide films from aqueous solutions for friction reduction in silicon-based microelectromechanical system devices

    International Nuclear Information System (INIS)

    Liu Junfu; Nistorica, Corina; Gory, Igor; Skidmore, George; Mantiziba, Fadziso M.; Gnade, Bruce E.

    2005-01-01

    This work reports layer-by-layer deposition of zirconium oxide on a Si surface from aqueous solutions using the successive ionic layer adsorption and reaction technique. The process consists of repeated cycles of adsorption of zirconium precursors, water rinse, and hydrolysis. The film composition was determined by X-ray photoelectron spectroscopy. The film thickness was determined by Rutherford backscattering spectrometry, by measuring the Zr atom concentration. The average deposition rate from a 0.1 M Zr(SO 4 ) 2 solution on a SiO 2 /Si surface is 0.62 nm per cycle. Increasing the acidity of the zirconium precursor solution inhibits the deposition of the zirconium oxide film. Atomic force microscopy shows that the zirconium oxide film consists of nanoparticles of 10-50 nm in the lateral dimension. The surface roughness increased with increasing number of deposition cycles. Friction measurements made with a microelectromechanical system device reveal a reduction of 45% in the friction coefficient of zirconium oxide-coated surfaces vs. uncoated surfaces in air

  7. Electrochromism of the electroless deposited cuprous oxide films

    International Nuclear Information System (INIS)

    Neskovska, R.; Ristova, M.; Velevska, J.; Ristov, M.

    2007-01-01

    Thin cuprous oxide films were prepared by a low cost, chemical deposition (electroless) method onto glass substrates pre-coated with fluorine doped tin oxide. The X-ray diffraction pattern confirmed the Cu 2 O composition of the films. Visible transmittance spectra of the cuprous oxide films were studied for the as-prepared, colored and bleached films. The cyclic voltammetry study showed that those films exhibited cathode coloring electrochromism, i.e. the films showed change of color from yellowish to black upon application of an electric field. The transmittance across the films for laser light of 670 nm was found to change due to the voltage change for about 50%. The coloration memory of those films was also studied during 6 h, ex-situ. The coloration efficiency at 670 nm was calculated to be 37 cm 2 /C

  8. Cadmium sulfide thin films growth by chemical bath deposition

    Science.gov (United States)

    Hariech, S.; Aida, M. S.; Bougdira, J.; Belmahi, M.; Medjahdi, G.; Genève, D.; Attaf, N.; Rinnert, H.

    2018-03-01

    Cadmium sulfide (CdS) thin films have been prepared by a simple technique such as chemical bath deposition (CBD). A set of samples CdS were deposited on glass substrates by varying the bath temperature from 55 to 75 °C at fixed deposition time (25 min) in order to investigate the effect of deposition temperature on CdS films physical properties. The determination of growth activation energy suggests that at low temperature CdS film growth is governed by the release of Cd2+ ions in the solution. The structural characterization indicated that the CdS films structure is cubic or hexagonal with preferential orientation along the direction (111) or (002), respectively. The optical characterization indicated that the films have a fairly high transparency, which varies between 55% and 80% in the visible range of the optical spectrum, the refractive index varies from 1.85 to 2.5 and the optical gap value of which can reach 2.2 eV. It can be suggested that these properties make these films perfectly suitable for their use as window film in thin films based solar cells.

  9. Nanocomposite film prepared by depositing xylan on cellulose nanowhiskers matrix

    Science.gov (United States)

    Qining Sun; Anurag Mandalika; Thomas Elder; Sandeep S. Nair; Xianzhi Meng; Fang Huang; Art J. Ragauskas

    2014-01-01

    Novel bionanocomposite films have been prepared by depositing xylan onto cellulose nanowhiskers through a pH adjustment. Analysis of strength properties, water vapour transmission, transparency, surface morphology and thermal decomposition showed the enhancement of film performance. This provides a new green route to the utilization of biomass for sustainable...

  10. Ellipsometric investigations of pyrolytically deposited thin indium oxide films

    International Nuclear Information System (INIS)

    Winkler, U.

    1980-01-01

    Ellipsometric measurements have been carried out of thin indium oxide films deposited pyrolytically on glass substrates. It was found that the roughness of the films affected the measuring results. Therefore, only after applying a two-layer model a reasonable interpretation of the measuring results became possible

  11. Photoluminescence properties of poly (p-phenylene vinylene) films deposited by chemical vapor deposition

    International Nuclear Information System (INIS)

    Gedelian, Cynthia A.; Rajanna, K.C.; Premerlani, Brian; Lu, Toh-Ming

    2014-01-01

    Photoluminescence spectra of PPV at varying thicknesses and temperatures have been studied. A study of the quenching of the polymer film using a modified version of fluorescence spectroscopy reveals interface effects dominating at thicknesses below about 600 Å, while bulk effects dominate at higher thicknesses. The application of the Stern–Volmer equation to solid film is discussed. Stern–Volmer plots were nonlinear with downward deviations at higher thickness of the film which was explained due to self-quenching in films and larger conformational change and increased restriction from change in electron density due to electron transition during excitation in bulk polymer films over 60 nm thick. PPV deposited into porous (∼4 nm in diameter) nanostructured substrate shows a larger 0–0 than 0–1 transition peak intensity and decreased disorder in the films due to structure imposed by substrate matrix. Temperature dependent effects are measured for a film at 500 Å, right on the border between the two areas. PPV films deposited on porous methyl silsesquioxane (MSQ) were also examined in order to compare the flat film to a substrate that allows for the domination of interface effects. The enthalpies of the first two peaks are very similar, but the third peak demonstrates a lower enthalpy and a larger wavelength shift with temperature. Films deposited inside pores show a smaller amount of disorder than flat films. Calculation of the Huang–Rhys factor at varying temperatures for the flat film and film in porous MSQ shows large temperature dependence for the flat film but a smaller amount of disorder in the nanostructured film. -- Highlights: • Poly (p-phenylene vinylene) films deposited by chemical vapor deposition exhibited photoluminescence properties. • Fluorescence spectra of the polymer films revealed interface effects dominating at thicknesses below about 600 Å, while bulk effects dominate at higher thicknesses. • Stern–Volmer plots were

  12. Evolution of optical constants of silicon dioxide on silicon from ultrathin films to thick films

    International Nuclear Information System (INIS)

    Cai Qingyuan; Zheng Yuxiang; Mao Penghui; Zhang Rongjun; Zhang Dongxu; Liu Minghui; Chen Liangyao

    2010-01-01

    A series of SiO 2 films with thickness range 1-600 nm have been deposited on crystal silicon (c-Si) substrates by electron beam evaporation (EBE) method. Variable-angle spectroscopic ellipsometry (VASE) in combination with a two-film model (ambient-oxide-interlayer substrate) was used to determine the optical constants and thicknesses of the investigated films. The refractive indices of SiO 2 films thicker than 60 nm are close to those of bulk SiO 2 . For the thin films deposited at the rate of ∼1.0 nm s -1 , the refractive indices increase with decreasing thickness from ∼60 to ∼10 nm and then drop sharply with decreasing thickness below ∼10 nm. However, for thin films deposited at the rates of ∼0.4 and ∼0.2 nm s -1 , the refractive indices monotonically increase with decreasing thickness below 60 nm. The optical constants of the ultrathin film depend on the morphology of the film, the stress exerted on the film, as well as the stoichiometry of the oxide film.

  13. Pulsed laser deposition and characterisation of thin superconducting films

    Energy Technology Data Exchange (ETDEWEB)

    Morone, A [CNR, zona industriale di Tito Scalo, Potenza (Italy). Istituto per i Materiali Speciali

    1996-09-01

    Same concepts on pulsed laser deposition of thin films will be discussed and same examples of high transition temperature (HTc) BiSrCaCuO (BISCO) and low transition temperature NbN/MgO/NbN multilayers will be presented. X-ray and others characterizations of these films will be reported and discussed. Electrical properties of superconducting thin films will be realized as a function of structural and morphological aspect.

  14. Observations on Si-based micro-clusters embedded in TaN thin film deposited by co-sputtering with oxygen contamination

    Directory of Open Access Journals (Sweden)

    Young Mi Lee

    2015-08-01

    Full Text Available Using scanning electron microscopy (SEM and high-resolution x-ray photoelectron spectroscopy with the synchrotron radiation we investigated Si-based micro-clusters embedded in TaSiN thin films having oxygen contamination. TaSiN thin films were deposited by co-sputtering on fixed or rotated substrates and with various power conditions of TaN and Si targets. Three types of embedded micro-clusters with the chemical states of pure Si, SiOx-capped Si, and SiO2-capped Si were observed and analyzed using SEM and Si 2p and Ta 4f core-level spectra were derived. Their different resistivities are presumably due to the different chemical states and densities of Si-based micro-clusters.

  15. Influence of Reactive Ion Etching on THz Transmission and Reflection Properties of NiCr Film Deposited on a Dielectric Substrate

    Directory of Open Access Journals (Sweden)

    Jun Gou

    2015-06-01

    Full Text Available Enhanced terahertz (THz absorption of NiCr film deposited on a dielectric substrate has been proven by applying a reactive ion etching (RIE treatment to the dielectric film. Nano – scale nickel – chromium (NiCr thin films are deposited on RIE treated silicon dioxide (SiO2 dielectric substrates to study the transmission and reflection characteristics. Experimental results suggest that both transmission and reflection of NiCr film are weakened by the RIE treatment. The most significant decrease of transmission is observed in 1 ~ 4 THz while that of reflection occurs in 1.7 ~ 2.5 THz band. The decrease of both transmission and reflection is more significant for NiCr film with higher thickness. The RIE treatment, which induces nano – scale surface structures and increases the effective surface area of NiCr film, enhances the absorption and weakens the transmission and reflection of THz radiation.DOI: http://dx.doi.org/10.5755/j01.ms.21.2.6131

  16. Physical properties of chemical vapour deposited nanostructured carbon thin films

    International Nuclear Information System (INIS)

    Mahadik, D.B.; Shinde, S.S.; Bhosale, C.H.; Rajpure, K.Y.

    2011-01-01

    Research highlights: In the present paper, nanostructured carbon films are grown using a natural precursor 'turpentine oil (C 10 H 16 )' as a carbon source in the simple thermal chemical vapour deposition method. The influence of substrate surface topography (viz. stainless steel, fluorine doped tin oxide coated quartz) and temperature on the evolution of carbon allotropes surfaces topography/microstructural and structural properties are investigated and discussed. - Abstract: A simple thermal chemical vapour deposition technique is employed for the deposition of carbon films by pyrolysing the natural precursor 'turpentine oil' on to the stainless steel (SS) and FTO coated quartz substrates at higher temperatures (700-1100 deg. C). In this work, we have studied the influence of substrate and deposition temperature on the evolution of structural and morphological properties of nanostructured carbon films. The films were characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM), contact angle measurements, Fourier transform infrared (FTIR) and Raman spectroscopy techniques. XRD study reveals that the films are polycrystalline exhibiting hexagonal and face-centered cubic structures on SS and FTO coated glass substrates respectively. SEM images show the porous and agglomerated surface of the films. Deposited carbon films show the hydrophobic nature. FTIR study displays C-H and O-H stretching vibration modes in the films. Raman analysis shows that, high ID/IG for FTO substrate confirms the dominance of sp 3 bonds with diamond phase and less for SS shows graphitization effect with dominant sp 2 bonds. It reveals the difference in local microstructure of carbon deposits leading to variation in contact angle and hardness, which is ascribed to difference in the packing density of carbon films, as observed also by Raman.

  17. Luminescent thin films by the chemical aerosol deposition technology (CADT)

    NARCIS (Netherlands)

    Martin, F.J.; Martin, F.J.; Albers, H.; Lambeck, Paul; Popma, T.J.A.; van de Velde, G.M.H.

    1992-01-01

    Zinc sulphide thin films have been deposited with CART using zinc chlorideand zinc acetylacetonate as Zn compounds and thiourea and 1,1,3,3-tetramethylthiourea as S compounds soluted in methanol, ethanol, isopropanol and cellosolve. After optimalization of the deposition process homogeneous layers

  18. Deposition of metal chalcogenide thin films by successive ionic layer

    Indian Academy of Sciences (India)

    ) method, has emerged as one of the solution methods to deposit a variety of compound materials in thin film form. The SILAR method is inexpensive, simple and convenient for large area deposition. A variety of substrates such as insulators, ...

  19. Deposition of silicon films in presence of nitrogen plasma— A ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. A design, development and validation work of plasma based 'activated reactive evaporation (ARE) system' is implemented for the deposition of the silicon films in presence of nitrogen plasma on substrate maintained at room temperature. This plasma based deposition system involves evaporation of pure silicon by.

  20. CuOX thin films by direct oxidation of Cu films deposited by physical vapor deposition

    Directory of Open Access Journals (Sweden)

    D. Santos-Cruz

    Full Text Available Thin films of Cu2O and CuO oxides were developed by direct oxidation of physical vapor deposited copper films in an open atmosphere by varying the temperature in the range between 250 and 400 °C. In this work, the influence of oxidation temperature on structural, optical and electrical properties of copper oxide films has been discussed. The characterization results revealed that at lower temperatures (<300 °C, it is feasible to obtained coper (I oxide whereas at temperatures higher than 300 °C, the copper (II oxide is formed. The band gap is found to vary in between 1.54 and 2.21 eV depending on the oxidation temperature. Both oxides present p-type electrical conductivity. The carrier concentration has been increased as a function of the oxidation temperature from 1.61 × 1012 at 250 °C to 6.8 × 1012 cm−3 at 400 °C. The mobility has attained its maximum of 34.5 cm2 V−1 s−1 at a temperature of 300 °C, and a minimum of 13.8 cm2 V−1 s−1 for 400 °C. Finally, the resistivity of copper oxide films decreases as a function of oxidation temperature from 5.4 × 106 to 2.4 × 105 Ω-cm at 250 and 400 °C, respectively. Keywords: PVD, Oxidizing annealed treatment, Non-toxic material

  1. Laser-assisted deposition of thin C60 films

    DEFF Research Database (Denmark)

    Schou, Jørgen; Canulescu, Stela; Fæster, Søren

    Metal and metal oxide films with controlled thickness from a fraction of a monolayer up more than 1000 nm and known stoichiometry can be produced by pulsed laser deposition (PLD) relatively easily, and (PLD) is now a standard technique in all major research laboratories within materials science...... of the matrix material, anisole, with a concentration of 0.67 wt% C60. At laser fluences below 1.5 J/cm2, a dominant fraction of the film molecules are C60 transferred to the substrate without any fragmentation. High-resolution SEM images of MAPLE deposited films reveal large circular features on the surface...

  2. Deposit of thin films for Tokamaks conditioning

    International Nuclear Information System (INIS)

    Valencia A, R.

    2006-01-01

    discharge plasma, created in a calibrated mixture of methane-hydrogen during the hydrogenated amorphous carbon film deposit on the vessel wall of Novillo tokamak, were determined by mass spectrometry. By way of measuring the emission lines of the carbon and oxygen impurities in intense discharges, the time required by the plasma to interact with the wall was estimated. In addition to it, the temporal conduct of the emission line intensity of these impurities was observed by means of an intensified CCD detector. Once an ∼ 10 % of helium was introduced in the operating gas of the tokamak discharges, a 25-42 eV time variation of the electron temperature was measured using the intensity ratio technique. (Author)

  3. Aluminosilicate glass thin films elaborated by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Carlier, Thibault [Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, F-59000 Lille (France); Saitzek, Sébastien [Univ. Artois, CNRS, Centrale Lille, ENSCL, Univ. Lille, UMR 8181, Unité de Catalyse et de Chimie du Solide (UCCS), F-62300 Lens (France); Méar, François O., E-mail: francois.mear@univ-lille1.fr [Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, F-59000 Lille (France); Blach, Jean-François; Ferri, Anthony [Univ. Artois, CNRS, Centrale Lille, ENSCL, Univ. Lille, UMR 8181, Unité de Catalyse et de Chimie du Solide (UCCS), F-62300 Lens (France); Huvé, Marielle; Montagne, Lionel [Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, F-59000 Lille (France)

    2017-03-01

    Highlights: • Successfully deposition of a glassy thin film by PLD. • A good homogeneity and stoichiometry of the coating. • Influence of the deposition temperature on the glassy thin-film structure. - Abstract: In the present work, we report the elaboration of aluminosilicate glass thin films by Pulsed Laser Deposition at various temperatures deposition. The amorphous nature of glass thin films was highlighted by Grazing Incidence X-Ray Diffraction and no nanocristallites were observed in the glassy matrix. Chemical analysis, obtained with X-ray Photoelectron Spectroscopy and Time of Flight Secondary Ion Mass Spectroscopy, showed a good transfer and homogeneous elementary distribution with of chemical species from the target to the film a. Structural studies performed by Infrared Spectroscopy showed that the substrate temperature plays an important role on the bonding configuration of the layers. A slight shift of Si-O modes to larger wavenumber was observed with the synthesis temperature, assigned to a more strained sub-oxide network. Finally, optical properties of thins film measured by Spectroscopic Ellipsometry are similar to those of the bulk aluminosilicate glass, which indicate a good deposition of aluminosilicate bulk glass.

  4. Growth and characterization of nitrogen-doped TiO2 thin films prepared by reactive pulsed laser deposition

    International Nuclear Information System (INIS)

    Sauthier, G.; Ferrer, F.J.; Figueras, A.; Gyoergy, E.

    2010-01-01

    Nitrogen-doped titanium dioxide (TiO 2 ) thin films were grown on (001) SiO 2 substrates by reactive pulsed laser deposition. A KrF* excimer laser source (λ = 248 nm, τ FWHM ≅ 10 ns, ν = 10 Hz) was used for the irradiations of pressed powder targets composed by both anatase and rutile phase TiO 2 . The experiments were performed in a controlled reactive atmosphere consisting of oxygen or mixtures of oxygen and nitrogen gases. The obtained thin film crystal structure was investigated by X-ray diffraction, while their chemical composition as well as chemical bonding states between the elements were studied by X-ray photoelectron spectroscopy. An interrelation was found between nitrogen concentration, crystalline structure, bonding states between the elements, and the formation of titanium oxinitride compounds. Moreover, as a result of the nitrogen incorporation in the films a continuous red-shift of the optical absorption edge accompanied by absorption in the visible spectral range between 400 and 500 nm wavelength was observed.

  5. Effect of substrates and thickness on optical properties in atomic layer deposition grown ZnO thin films

    Science.gov (United States)

    Pal, Dipayan; Singhal, Jaya; Mathur, Aakash; Singh, Ajaib; Dutta, Surjendu; Zollner, Stefan; Chattopadhyay, Sudeshna

    2017-11-01

    Atomic Layer Deposition technique was used to grow high quality, very low roughness, crystalline, Zinc Oxide (ZnO) thin films on silicon (Si) and fused quartz (SiO2) substrates to study the optical properties. Spectroscopic ellipsometry results of ZnO/Si system, staggered type-II quantum well, demonstrate that there is a significant drop in the magnitudes of both the real and imaginary parts of complex dielectric constants and in near-band gap absorption along with a blue shift of the absorption edge with decreasing film thickness at and below ∼20 nm. Conversely, UV-vis absorption spectroscopy of ZnO/SiO2, thin type-I quantum well, consisting of a narrower-band gap semiconductor grown on a wider-band gap (insulator) substrate, shows the similar thickness dependent blue-shift of the absorption edge but with an increase in the magnitude of near-band gap absorption with decreasing film thickness. Thickness dependent blue shift, energy vs. 1/d2, in two different systems, ZnO/Si and ZnO/SiO2, show a difference in their slopes. The observed phenomena can be consistently explained by the corresponding exciton (or carrier/s) deconfinement and confinement effects at the ZnO/Si and ZnO/SiO2 interface respectively, where Tanguy-Elliott amplitude pre-factor plays the key role through the electron-hole overlap factor at the interface.

  6. Plasma deposition of polymer composite films incorporating nanocellulose whiskers

    Science.gov (United States)

    Samyn, P.; Airoudj, A.; Laborie, M.-P.; Mathew, A. P.; Roucoules, V.

    2011-11-01

    In a trend for sustainable engineering and functionalization of surfaces, we explore the possibilities of gas phase processes to deposit nanocomposite films. From an analysis of pulsed plasma polymerization of maleic anhydride in the presence of nanocellulose whiskers, it seems that thin nanocomposite films can be deposited with various patterns. By specifically modifying plasma parameters such as total power, duty cycle, and monomer gas pressure, the nanocellulose whiskers are either incorporated into a buckled polymer film or single nanocellulose whiskers are deposited on top of a polymeric film. The density of the latter can be controlled by modifying the exact positioning of the substrate in the reactor. The resulting morphologies are evaluated by optical microscopy, AFM, contact angle measurements and ellipsometry.

  7. Aerosol deposition of (Cu,Ti) substituted bismuth vanadate films

    Energy Technology Data Exchange (ETDEWEB)

    Exner, Jörg, E-mail: Functional.Materials@Uni-Bayreuth.de [University of Bayreuth, Department of Functional Materials, Universitätsstraße 30, 95440 Bayreuth (Germany); Fuierer, Paul [Materials and Metallurgical Engineering Department, New Mexico Institute of Mining and Technology, Socorro, NM 87801 (United States); Moos, Ralf [University of Bayreuth, Department of Functional Materials, Universitätsstraße 30, 95440 Bayreuth (Germany)

    2014-12-31

    Bismuth vanadate, Bi{sub 4}V{sub 2}O{sub 11}, and related compounds with various metal (Me) substitutions, Bi{sub 4}(Me{sub x}V{sub 1−x}){sub 2}O{sub 11−δ}, show some of the highest ionic conductivities among the known solid oxide electrolytes. Films of Cu and Ti substituted bismuth vanadate were prepared by an aerosol deposition method, a spray coating process also described as room temperature impact consolidation. Resultant films, several microns in thickness, were dense with good adhesion to the substrate. Scanning electron microscopy and high temperature X-ray diffraction were used to monitor the effects of temperature on the structure and microstructure of the film. The particle size remained nano-scale while microstrain decreased rapidly up to 500 °C, above which coarsening and texturing increased rapidly. Impedance measurements of films deposited on inter-digital electrodes revealed an annealing effect on the ionic conductivity, with the conductivity exceeding that of a screen printed film, and approaching that of bulk ceramic. - Highlights: • Cu and Ti doped bismuth vanadate films were prepared by aerosol deposition (AD). • Dense 3–5 μm thick films were deposited on alumina, silicon and gold electrodes. • Annealing of the AD-layer increases the conductivity by 1.5 orders of magnitude. • Effect of temperature on structure and microstructure was investigated.

  8. Picosecond and subpicosecond pulsed laser deposition of Pb thin films

    Directory of Open Access Journals (Sweden)

    F. Gontad

    2013-09-01

    Full Text Available Pb thin films were deposited on Nb substrates by means of pulsed laser deposition (PLD with UV radiation (248 nm, in two different ablation regimes: picosecond (5 ps and subpicosecond (0.5 ps. Granular films with grain size on the micron scale have been obtained, with no evidence of large droplet formation. All films presented a polycrystalline character with preferential orientation along the (111 crystalline planes. A maximum quantum efficiency (QE of 7.3×10^{-5} (at 266 nm and 7 ns pulse duration was measured, after laser cleaning, demonstrating good photoemission performance for Pb thin films deposited by ultrashort PLD. Moreover, Pb thin film photocathodes have maintained their QE for days, providing excellent chemical stability and durability. These results suggest that Pb thin films deposited on Nb by ultrashort PLD are a noteworthy alternative for the fabrication of photocathodes for superconductive radio-frequency electron guns. Finally, a comparison with the characteristics of Pb films prepared by ns PLD is illustrated and discussed.

  9. Deposition of antimony telluride thin film by ECALE

    Institute of Scientific and Technical Information of China (English)

    GAO; Xianhui; YANG; Junyou; ZHU; Wen; HOU; Jie; BAO; Siqian; FAN; Xi'an; DUAN; Xingkai

    2006-01-01

    The process of Sb2Te3 thin film growth on the Pt substrate by electrochemical atomic layer epitaxy (ECALE) was studied. Cyclic voltammetric scanning was performed to analyze the electrochemical behavior of Te and Sb on the Pt substrate. Sb2Te3 film was formed using an automated flow deposition system by alternately depositing Te and Sb atomic layers for 400 circles. The deposited Sb2Te3 films were characterized by XRD, EDX, FTIR and FESEM observation. Sb2Te3 compound structure was confirmed by XRD pattern and agreed well with the results of EDX quantitative analysis and coulometric analysis. FESEM micrographs showed that the deposit was composed of fine nano particles with size of about 20 nm. FESEM image of the cross section showed that the deposited films were very smooth and dense with thickness of about 190 nm. The optical band gap of the deposited Sb2Te3 film was determined as 0.42 eV by FTIR spectroscopy, and it was blue shifted in comparison with that of the bulk Sb2Te3 single crystal due to its nanocrystalline microstructure.

  10. Effects of surface deposition and droplet injection on film cooling

    International Nuclear Information System (INIS)

    Wang, Jin; Cui, Pei; Vujanović, Milan; Baleta, Jakov; Duić, Neven; Guzović, Zvonimir

    2016-01-01

    Highlights: • Cooling effectiveness is significantly affected by the deposition size. • Coverage area for model without mist is reduced by increasing the deposition height. • Wall temperature is decreased by 15% with 2% mist injection. • Cooling coverage is increased by more than three times with 2% mist injection. • Cooling effectiveness for mist models is improved by increasing deposition height. - Abstract: In the present research, the influence of the particle dispersion onto the continuous phase in film cooling application was analysed by means of numerical simulations. The interaction between the water droplets and the main stream plays an important role in the results. The prediction of two-phase flow is investigated by employing the discrete phase model (DPM). The results present heat transfer characteristics in the near-wall region under the influence of mist cooling. The local wall temperature distribution and film cooling effectiveness are obtained, and results show that the film cooling characteristics on the downstream wall are affected by different height of surface deposits. It is also found that smaller deposits without mist injection provide a lower wall temperature and a better cooling performance. With 2% mist injection, evaporation of water droplets improves film cooling effectiveness, and higher deposits cause lateral and downstream spread of water droplets. The results indicate that mist injection can significantly enhance film cooling performance.

  11. UV laser deposition of metal films by photogenerated free radicals

    Science.gov (United States)

    Montgomery, R. K.; Mantei, T. D.

    1986-01-01

    A novel photochemical method for liquid-phase deposition of metal films is described. In the liquid phase deposition scheme, a metal containing compound and a metal-metal bonded carbonyl complex are dissolved together in a polar solvent and the mixture is irradiated using a UV laser. The optical arrangement consists of a HeCd laser which provides 7 mW of power at a wavelength of 325 nm in the TEM(OO) mode. The beam is attenuated and may be expanded to a diameter of 5-20 mm. Experiments with photochemical deposition of silver films onto glass and quartz substrates are described in detail. Mass spectrometric analysis of deposited silver films indicated a deposition rate of about 1 A/s at incident power levels of 0.01 W/sq cm. UV laser-induced copper and palladium films have also been obtained. A black and white photograph showing the silver Van Der Pauw pattern of a solution-deposited film is provided.

  12. Association behaviour of 241Am(III) on SiO2(amorphous) and SiO2(quartz) colloids

    International Nuclear Information System (INIS)

    Degueldre, C.; Wernli, B.

    1993-01-01

    SiO 2 colloids have been identified as a potential vector for enhancing radionuclide transport in granitic groundwater and in concrete pore water. The sorption behaviour of 241 Am(III) on SiO 2 colloids was studied as a function of americium concentration pH (5-12), colloid concentration, ionic strength, temperature and SiO 2 allotropic species. The Am(III) sorption mechanism on amorphous silica is different from that on quartz. For SiO 2(amorphous) solution, the variation of log K p (ml g -1 ) with pH is linear (pH=5-9) with a slope of +1 indicating a one proton exchange mechanism. The colloid concentration (ppm) affects the sorption and log K p 3.7-0.67 log [SiO 2 ] (pH = 6). K p increases insignificantly when the ionic strength decreases. It shows no significant variation, however, with the Am concentration. On amorphous silica, the Am(III) sorption is driven by proton exchange from the silanol groups. For SiO 2 (quartz), log K p is constant over a large range of quartz concentration in suspension and the variation of log K p with pH is about linear (pH = 5-12), with a slope of 0.28, indicating a more complex exchange mechanism. Reactions taking into account the interaction of positive Am(OH) w (3-w)+ species on to the negatively charged quartz surface are suggested. (author)

  13. Chromium carbide thin films deposited by ultra-short pulse laser deposition

    International Nuclear Information System (INIS)

    Teghil, R.; Santagata, A.; De Bonis, A.; Galasso, A.; Villani, P.

    2009-01-01

    Pulsed laser deposition performed by a laser with a pulse duration of 250 fs has been used to deposit films from a Cr 3 C 2 target. Due to the different processes involved in the laser ablation when it is performed by an ultra-short pulse source instead of a conventional short pulse one, it has been possible to obtain in vacuum films containing only one type of carbide, Cr 3 C 2 , as shown by X-ray photoelectron spectroscopy. On the other hand, Cr 3 C 2 is not the only component of the films, since a large amount of amorphous carbon is also present. The films, deposited at room temperature, are amorphous and seem to be formed by the coalescence of a large number of particles with nanometric size. The film composition can be explained in terms of thermal evaporation from particles ejected from the target.

  14. Thermionic vacuum arc (TVA) technique for magnesium thin film deposition

    Energy Technology Data Exchange (ETDEWEB)

    Balbag, M.Z., E-mail: zbalbag@ogu.edu.t [Eskisehir Osmangazi University, Education Faculty, Primary Education, Meselik Campus, Eskisehir 26480 (Turkey); Pat, S.; Ozkan, M.; Ekem, N. [Eskisehir Osmangazi University, Art and Science Faculty, Physics Department, Eskisehir 26480 (Turkey); Musa, G. [Ovidius University, Physics Department, Constanta (Romania)

    2010-08-15

    In this study, magnesium thin films were deposited on glass substrate by the Thermionic Vacuum Arc (TVA) technique for the first time. We present a different technique for deposition of high-quality magnesium thin films. By means of this technique, the production of films is achieved by condensing the plasma of anode material generated using Thermionic Vacuum Arc (TVA) under high vacuum conditions onto the surface to be coated. The crystal orientation and morphology of the deposited films were investigated by using XRD, EDX, SEM and AFM. The aim of this study is to search the use of TVA technique to coat magnesium thin films and to determine some of the physical properties of the films generated. Furthermore, this study will contribute to the scientific studies which search the thin films of magnesium or the compounds containing magnesium. In future, this study will be preliminary work to entirely produce magnesium diboride (MgB{sub 2}) superconductor thin film with the TVA technique.

  15. Heat treatment of cathodic arc deposited amorphous hard carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Anders, S.; Ager, J.W. III; Brown, I.G. [and others

    1997-02-01

    Amorphous hard carbon films of varying sp{sup 2}/sp{sup 3} fractions have been deposited on Si using filtered cathodic are deposition with pulsed biasing. The films were heat treated in air up to 550 C. Raman investigation and nanoindentation were performed to study the modification of the films caused by the heat treatment. It was found that films containing a high sp{sup 3} fraction sustain their hardness for temperatures at least up to 400 C, their structure for temperatures up to 500 C, and show a low thickness loss during heat treatment. Films containing at low sp{sup 3} fraction graphitize during the heat treatment, show changes in structure and hardness, and a considerable thickness loss.

  16. Structural characterization of chemically deposited PbS thin films

    International Nuclear Information System (INIS)

    Fernandez-Lima, F.A.; Gonzalez-Alfaro, Y.; Larramendi, E.M.; Fonseca Filho, H.D.; Maia da Costa, M.E.H.; Freire, F.L.; Prioli, R.; Avillez, R.R. de; Silveira, E.F. da; Calzadilla, O.; Melo, O. de; Pedrero, E.; Hernandez, E.

    2007-01-01

    Polycrystalline thin films of lead sulfide (PbS) grown using substrate colloidal coating chemical bath depositions were characterized by RBS, XPS, AFM and GIXRD techniques. The films were grown on glass substrates previously coated with PbS colloidal particles in a polyvinyl alcohol solution. The PbS films obtained with the inclusion of the polymer showed non-oxygen-containing organic contamination. All samples maintained the Pb:S 1:1 stoichiometry throughout the film. The amount of effective nucleation centers and the mean grain size have being controlled by the substrate colloidal coating. The analysis of the polycrystalline PbS films showed that a preferable (1 0 0) lattice plane orientation parallel to the substrate surface can be obtained using a substrate colloidal coating chemical bath deposition, and the orientation increases when a layer of colloid is initially dried on the substrate

  17. Remote plasma-enhanced metalorganic chemical vapor deposition of aluminum oxide thin films

    NARCIS (Netherlands)

    Volintiru, I.; Creatore, M.; Hemmen, van J.L.; Sanden, van de M.C.M.

    2008-01-01

    Aluminum oxide films were deposited using remote plasma-enhanced metalorganic chemical vapor deposition from oxygen/trimethylaluminum mixtures. Initial studies by in situ spectroscopic ellipsometry demonstrated that the aluminum oxide films deposited at temperatures

  18. Atomic-Layer-Deposition of Indium Oxide Nano-films for Thin-Film Transistors.

    Science.gov (United States)

    Ma, Qian; Zheng, He-Mei; Shao, Yan; Zhu, Bao; Liu, Wen-Jun; Ding, Shi-Jin; Zhang, David Wei

    2018-01-09

    Atomic-layer-deposition (ALD) of In 2 O 3 nano-films has been investigated using cyclopentadienyl indium (InCp) and hydrogen peroxide (H 2 O 2 ) as precursors. The In 2 O 3 films can be deposited preferentially at relatively low temperatures of 160-200 °C, exhibiting a stable growth rate of 1.4-1.5 Å/cycle. The surface roughness of the deposited film increases gradually with deposition temperature, which is attributed to the enhanced crystallization of the film at a higher deposition temperature. As the deposition temperature increases from 150 to 200 °C, the optical band gap (E g ) of the deposited film rises from 3.42 to 3.75 eV. In addition, with the increase of deposition temperature, the atomic ratio of In to O in the as-deposited film gradually shifts towards that in the stoichiometric In 2 O 3 , and the carbon content also reduces by degrees. For 200 °C deposition temperature, the deposited film exhibits an In:O ratio of 1:1.36 and no carbon incorporation. Further, high-performance In 2 O 3 thin-film transistors with an Al 2 O 3 gate dielectric were achieved by post-annealing in air at 300 °C for appropriate time, demonstrating a field-effect mobility of 7.8 cm 2 /V⋅s, a subthreshold swing of 0.32 V/dec, and an on/off current ratio of 10 7 . This was ascribed to passivation of oxygen vacancies in the device channel.

  19. High-quality AlN films grown on chemical vapor-deposited graphene films

    Directory of Open Access Journals (Sweden)

    Chen Bin-Hao

    2016-01-01

    Full Text Available We report the growth of high-quality AlN films on graphene. The graphene films were synthesized by CVD and then transferred onto silicon substrates. Epitaxial aluminum nitride films were deposited by DC magnetron sputtering on both graphene as an intermediate layer and silicon as a substrate. The structural characteristics of the AlN films and graphene were investigated. Highly c-axis-oriented AlN crystal structures are investigated based on the XRDpatterns observations.

  20. Pulsed laser deposition of ITO thin films and their characteristics

    International Nuclear Information System (INIS)

    Zuev, D. A.; Lotin, A. A.; Novodvorsky, O. A.; Lebedev, F. V.; Khramova, O. D.; Petuhov, I. A.; Putilin, Ph. N.; Shatohin, A. N.; Rumyanzeva, M. N.; Gaskov, A. M.

    2012-01-01

    The indium tin oxide (ITO) thin films are grown on quartz glass substrates by the pulsed laser deposition method. The structural, electrical, and optical properties of ITO films are studied as a function of the substrate temperature, the oxygen pressure in the vacuum chamber, and the Sn concentration in the target. The transmittance of grown ITO films in the visible spectral region exceeds 85%. The minimum value of resistivity 1.79 × 10 −4 Ω cm has been achieved in the ITO films with content of Sn 5 at %.

  1. Room temperature deposition of magnetite thin films on organic substrate

    International Nuclear Information System (INIS)

    Arisi, E.; Bergenti, I.; Cavallini, M.; Murgia, M.; Riminucci, A.; Ruani, G.; Dediu, V.

    2007-01-01

    We report on the growth of magnetite films directly on thin layers of organic semiconductors by means of an electron beam ablation method. The deposition was performed at room temperature in a reactive plasma atmosphere. Thin films show ferromagnetic (FM) hysteresis loops and coercive fields of hundreds of Oersted. Micro Raman analysis indicates no presence of spurious phases. The morphology of the magnetite film is strongly influenced by the morphology of the underlayer of the organic semiconductor. These results open the way for the application of magnetite thin films in the field of organic spintronics

  2. Diffusive charge transport in graphene on SiO 2

    Science.gov (United States)

    Chen, J.-H.; Jang, C.; Ishigami, M.; Xiao, S.; Cullen, W. G.; Williams, E. D.; Fuhrer, M. S.

    2009-07-01

    We review our recent work on the physical mechanisms limiting the mobility of graphene on SiO 2. We have used intentional addition of charged scattering impurities and systematic variation of the dielectric environment to differentiate the effects of charged impurities and short-range scatterers. The results show that charged impurities indeed lead to a conductivity linear in density ( σ(n)∝n) in graphene, with a scattering magnitude that agrees quantitatively with theoretical estimates; increased dielectric screening reduces the scattering from charged impurities, but increases the scattering from short-range scatterers. We evaluate the effects of the corrugations (ripples) of graphene on SiO 2 on transport by measuring the height-height correlation function. The results show that the corrugations cannot mimic long-range (charged impurity) scattering effects, and have too small an amplitude-to-wavelength ratio to significantly affect the observed mobility via short-range scattering. Temperature-dependent measurements show that longitudinal acoustic phonons in graphene produce a resistivity that is linear in temperature and independent of carrier density; at higher temperatures, polar optical phonons of the SiO 2 substrate give rise to an activated, carrier density-dependent resistivity. Together the results paint a complete picture of charge carrier transport in graphene on SiO 2 in the diffusive regime.

  3. Defect control in room temperature deposited cadmium sulfide thin films by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Como, N. [Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, TX, 75080 (United States); Martinez-Landeros, V. [Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, TX, 75080 (United States); Centro de Investigación en Materiales Avanzados, Monterrey, Nuevo Leon, 66600, México (Mexico); Mejia, I. [Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, TX, 75080 (United States); Aguirre-Tostado, F.S. [Centro de Investigación en Materiales Avanzados, Monterrey, Nuevo Leon, 66600, México (Mexico); Nascimento, C.D.; Azevedo, G. de M; Krug, C. [Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, 91509-900 (Brazil); Quevedo-Lopez, M.A., E-mail: mquevedo@utdallas.edu [Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, TX, 75080 (United States)

    2014-01-01

    The control of defects in cadmium sulfide thin films and its impact on the resulting CdS optical and electrical characteristics are studied. Sulfur vacancies and cadmium interstitial concentrations in the CdS films are controlled using the ambient pressure during pulsed laser deposition. CdS film resistivities ranging from 10{sup −1} to 10{sup 4} Ω-cm are achieved. Hall Effect measurements show that the carrier concentration ranges from 10{sup 19} to 10{sup 13} cm{sup −3} and is responsible for the observed resistivity variation. Hall mobility varies from 2 to 12 cm{sup 2}/V-s for the same pressure regime. Although the energy bandgap remains unaffected (∼ 2.42 eV), the optical transmittance is reduced due to the increase of defects in the CdS films. Rutherford back scattering spectroscopy shows the dependence of the CdS films stoichiometry with deposition pressure. The presence of CdS defects is attributed to more energetic species reaching the substrate, inducing surface damage in the CdS films during pulsed laser deposition. - Highlights: • CdS thin films deposited by pulsed laser deposition at room temperature. • The optical, electrical and structural properties were evaluated. • Carrier concentration ranged from 10{sup 19} to 10{sup 13} cm{sup −3}. • The chemical composition was studied by Rutherford back scattering. • The density of sulfur vacancies and cadmium interstitial was varied.

  4. Defect control in room temperature deposited cadmium sulfide thin films by pulsed laser deposition

    International Nuclear Information System (INIS)

    Hernandez-Como, N.; Martinez-Landeros, V.; Mejia, I.; Aguirre-Tostado, F.S.; Nascimento, C.D.; Azevedo, G. de M; Krug, C.; Quevedo-Lopez, M.A.

    2014-01-01

    The control of defects in cadmium sulfide thin films and its impact on the resulting CdS optical and electrical characteristics are studied. Sulfur vacancies and cadmium interstitial concentrations in the CdS films are controlled using the ambient pressure during pulsed laser deposition. CdS film resistivities ranging from 10 −1 to 10 4 Ω-cm are achieved. Hall Effect measurements show that the carrier concentration ranges from 10 19 to 10 13 cm −3 and is responsible for the observed resistivity variation. Hall mobility varies from 2 to 12 cm 2 /V-s for the same pressure regime. Although the energy bandgap remains unaffected (∼ 2.42 eV), the optical transmittance is reduced due to the increase of defects in the CdS films. Rutherford back scattering spectroscopy shows the dependence of the CdS films stoichiometry with deposition pressure. The presence of CdS defects is attributed to more energetic species reaching the substrate, inducing surface damage in the CdS films during pulsed laser deposition. - Highlights: • CdS thin films deposited by pulsed laser deposition at room temperature. • The optical, electrical and structural properties were evaluated. • Carrier concentration ranged from 10 19 to 10 13 cm −3 . • The chemical composition was studied by Rutherford back scattering. • The density of sulfur vacancies and cadmium interstitial was varied

  5. Analysis of intensities of positive and negative ion species from silicon dioxide films using time-of-flight secondary ion mass spectrometry and electronegativity of fragments

    International Nuclear Information System (INIS)

    Chiba, Kiyoshi

    2010-01-01

    Intensities of positive and negative ion species emitted from thermally oxidized and plasma-enhanced chemical vapor deposited (PECVD) SiO 2 films were analyzed using time-of-flight secondary ion mass spectrometry (TOF-SIMS) and the Saha-Boltzmann equation. Intensities of positive and negative secondary ion species were normalized to those of 28 Si + and 28 Si - ions, respectively, and an effective temperature of approximately (7.2 ± 0.1) x 10 3 K of the sputtered region bombarded with pulsed 22 kV Au 3 + primary ions was determined. Intensity spectra showed polarity dependence on both n and m values of Si n O m fragments, and a slight shift to negative polarity for PECVD SiO 2 compared to thermally oxidized SiO 2 films. By dividing the intensity ratios of negative-to-positive ions for PECVD SiO 2 by those for thermally oxidized SiO 2 films to cancel statistical factors, the difference in absolute electronegativity (half the sum of ionization potential and electron affinity of fragments) between both films was obtained. An increase in electronegativity for SiO m (m = 1, 2) and Si 2 O m (m = 1-4) fragments for PECVD SiO 2 films compared to thermally oxidized films was obtained to be 0.1-0.2 Pauling units, indicating a more covalent nature of Si-O bonds for PECVD SiO 2 films compared to the thermally oxidized SiO 2 films.

  6. Study on stability of a-SiCOF films deposited by plasma enhanced chemical vapor deposition

    International Nuclear Information System (INIS)

    Ding Shijin; Zhang Qingquan; Wang Pengfei; Zhang Wei; Wang Jitao

    2001-01-01

    Low-dielectric-constant a-SiCOF films have been prepared from TEOS, C 4 F 8 and Ar by using plasma enhanced chemical vapor deposition method. With the aid of X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR), the chemical bonding configuration, thermal stability and resistance to water of the films are explored

  7. Atomic Layer Deposited Thin Films for Dielectrics, Semiconductor Passivation, and Solid Oxide Fuel Cells

    Science.gov (United States)

    Xu, Runshen

    , ultra-thin layer of encapsulating ZnS is coated on the surface of GaSb and GaSb/InAs substrates. The 2 nm-thick ZnS film is found to provide a long-term protection against reoxidation for one order and a half longer times than prior reported passivation likely due to its amorphous structure without pinholes. Finally, a combination of binary ALD processes is developed and demonstrated for the growth of yttria-stabilized zirconia films using alkylamido-cyclopentadiengyls zirconium and tris(isopropyl-cyclopentadienyl)yttrium, as zirconium and yttrium precursors, respectively, with ozone being the oxidant. The desired cubic structure of YSZ films is apparently achieved after post-deposition annealing. Further, platinum is atomic layer deposited as electrode on YSZ (8 mol% of Yttria) within the same system. In order to control the morphology of as-deposited Pt thin structure, the nucleation behavior of Pt on amorphous and cubic YSZ is investigated. Three different morphologies of Pt are observed, including nanoparticle, porous and dense films, which are found to depend on the ALD cycle number and the structure and morphology of they underlying ALD YSZ films.

  8. Towards a uniform and large-scale deposition of MoS2 nanosheets via sulfurization of ultra-thin Mo-based solid films.

    Science.gov (United States)

    Vangelista, Silvia; Cinquanta, Eugenio; Martella, Christian; Alia, Mario; Longo, Massimo; Lamperti, Alessio; Mantovan, Roberto; Basset, Francesco Basso; Pezzoli, Fabio; Molle, Alessandro

    2016-04-29

    Large-scale integration of MoS2 in electronic devices requires the development of reliable and cost-effective deposition processes, leading to uniform MoS2 layers on a wafer scale. Here we report on the detailed study of the heterogeneous vapor-solid reaction between a pre-deposited molybdenum solid film and sulfur vapor, thus resulting in a controlled growth of MoS2 films onto SiO2/Si substrates with a tunable thickness and cm(2)-scale uniformity. Based on Raman spectroscopy and photoluminescence, we show that the degree of crystallinity in the MoS2 layers is dictated by the deposition temperature and thickness. In particular, the MoS2 structural disorder observed at low temperature (<750 °C) and low thickness (two layers) evolves to a more ordered crystalline structure at high temperature (1000 °C) and high thickness (four layers). From an atomic force microscopy investigation prior to and after sulfurization, this parametrical dependence is associated with the inherent granularity of the MoS2 nanosheet that is inherited by the pristine morphology of the pre-deposited Mo film. This work paves the way to a closer control of the synthesis of wafer-scale and atomically thin MoS2, potentially extendable to other transition metal dichalcogenides and hence targeting massive and high-volume production for electronic device manufacturing.

  9. Effect of hydrostatic pressure on photoluminescence spectra from structures with Si nanocrystals fabricated in SiO2 matrix

    International Nuclear Information System (INIS)

    Zhuravlev, K.S.; Tyschenko, I.E.; Vandyshev, E.N.; Bulytova, N.V.; Misiuk, A.; Rebohle, L.; Skorupa, W.

    2002-01-01

    The effect of hydrostatic pressure applied at high temperature on photoluminescence of Si-implanted SiO 2 films was studied. A 'blue'-shift of PL spectrum from the SiO 2 films implanted with Si + ions to total dose of 1.2x10 17 cm -2 with increase in hydrostatic pressure was observed. For the films implanted with Si + ions to a total dose of 4.8x10 16 cm -2 high temperature annealing under high hydrostatic pressure (12 kbar) causes a 'red'-shift of photoluminescence spectrum. The 'red' photoluminescence bands are attributed to Si nanocrystals while the 'blue' ones are related to Si nanocrystals of reduced size or chains of silicon atoms or Si-Si defects. A decrease in size of Si nanocluster occurs in result of the pressure-induced decrease in the diffusion of silicon atoms. (author)

  10. CdS films deposited by chemical bath under rotation

    International Nuclear Information System (INIS)

    Oliva-Aviles, A.I.; Patino, R.; Oliva, A.I.

    2010-01-01

    Cadmium sulfide (CdS) films were deposited on rotating substrates by the chemical bath technique. The effects of the rotation speed on the morphological, optical, and structural properties of the films were discussed. A rotating substrate-holder was fabricated such that substrates can be taken out from the bath during the deposition. CdS films were deposited at different deposition times (10, 20, 30, 40 and 50 min) onto Corning glass substrates at different rotation velocities (150, 300, 450, and 600 rpm) during chemical deposition. The chemical bath was composed by CdCl 2 , KOH, NH 4 NO 3 and CS(NH 2 ) 2 as chemical reagents and heated at 75 deg. C. The results show no critical effects on the band gap energy and the surface roughness of the CdS films when the rotation speed changes. However, a linear increase on the deposition rate with the rotation energy was observed, meanwhile the stoichiometry was strongly affected by the rotation speed, resulting a better 1:1 Cd/S ratio as speed increases. Rotation effects may be of interest in industrial production of CdTe/CdS solar cells.

  11. CdS films deposited by chemical bath under rotation

    Energy Technology Data Exchange (ETDEWEB)

    Oliva-Aviles, A.I., E-mail: aoliva@mda.cinvestav.mx [Centro de Investigacion y de Estudios Avanzados Unidad Merida, Departamento de Fisica Aplicada. A.P. 73-Cordemex, 97310 Merida, Yucatan (Mexico); Patino, R.; Oliva, A.I. [Centro de Investigacion y de Estudios Avanzados Unidad Merida, Departamento de Fisica Aplicada. A.P. 73-Cordemex, 97310 Merida, Yucatan (Mexico)

    2010-08-01

    Cadmium sulfide (CdS) films were deposited on rotating substrates by the chemical bath technique. The effects of the rotation speed on the morphological, optical, and structural properties of the films were discussed. A rotating substrate-holder was fabricated such that substrates can be taken out from the bath during the deposition. CdS films were deposited at different deposition times (10, 20, 30, 40 and 50 min) onto Corning glass substrates at different rotation velocities (150, 300, 450, and 600 rpm) during chemical deposition. The chemical bath was composed by CdCl{sub 2}, KOH, NH{sub 4}NO{sub 3} and CS(NH{sub 2}){sub 2} as chemical reagents and heated at 75 deg. C. The results show no critical effects on the band gap energy and the surface roughness of the CdS films when the rotation speed changes. However, a linear increase on the deposition rate with the rotation energy was observed, meanwhile the stoichiometry was strongly affected by the rotation speed, resulting a better 1:1 Cd/S ratio as speed increases. Rotation effects may be of interest in industrial production of CdTe/CdS solar cells.

  12. The ceramic SiO2 and SiO2-TiO2 coatings on biomedical Ti6Al4VELI titanium alloy

    International Nuclear Information System (INIS)

    Surowska, B.; Walczak, M.; Bienias, J.

    2004-01-01

    The paper presents the study of intermediate SiO 2 and SiO 2 -TiO 2 sol-gel coatings and dental porcelain coatings on Ti6Al4VELI titanium alloy. Surface microstructures and wear behaviour by pin-on-disc method of the ceramic coatings were investigated. The analysis revealed: (1) a compact, homogeneous SiO 2 and SiO 2 -TiO 2 coating and (2) that intermediate coatings may provide a durable joint between metal and porcelain, and (3) that dental porcelain on SiO 2 and TiO 2 coatings shows high wear resistance. (author)

  13. Effect of barrier layers on the properties of indium tin oxide thin films on soda lime glass substrates

    International Nuclear Information System (INIS)

    Lee, Jung-Min; Choi, Byung-Hyun; Ji, Mi-Jung; An, Yong-Tae; Park, Jung-Ho; Kwon, Jae-Hong; Ju, Byeong-Kwon

    2009-01-01

    In this paper, the electrical, structural and optical properties of indium tin oxide (ITO) films deposited on soda lime glass (SLG) haven been investigated, along with high strain point glass (HSPG) substrate, through radio frequency magnetron sputtering using a ceramic target (In 2 O 3 :SnO 2 , 90:10 wt.%). The ITO films deposited on the SLG show a high electrical resistivity and structural defects compared with those deposited on HSPG due to the Na ions from the SLG diffusing to the ITO film by annealing. However, these properties can be improved by intercalating a barrier layer of SiO 2 or Al 2 O 3 between the ITO film and the SLG substrate. SIMS analysis has confirmed that the barrier layer inhibits the Na ion's diffusion from the SLG. In particular, the ITO films deposited on the Al 2 O 3 barrier layer, show better properties than those deposited on the SiO 2 barrier layer.

  14. Plasma deposited fluorinated films on porous membranes

    Energy Technology Data Exchange (ETDEWEB)

    Gancarz, Irena [Department of Polymer and Carbon Materials, Wrocław University of Technology, 50-370 Wrocław (Poland); Bryjak, Marek, E-mail: marek.bryjak@pwr.edu.pl [Department of Polymer and Carbon Materials, Wrocław University of Technology, 50-370 Wrocław (Poland); Kujawski, Jan; Wolska, Joanna [Department of Polymer and Carbon Materials, Wrocław University of Technology, 50-370 Wrocław (Poland); Kujawa, Joanna; Kujawski, Wojciech [Nicolaus Copernicus University, Faculty of Chemistry, 7 Gagarina St., 87-100 Torun (Poland)

    2015-02-01

    75 KHz plasma was used to modify track etched poly(ethylene terephthalate) membranes and deposit on them flouropolymers. Two fluorine bearing monomers were used: perflourohexane and hexafluorobenzene. The modified surfaces were analyzed by means of attenuated total reflection infra-red spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, atomic force microscopy and wettability. It was detected that hexaflourobenxene deposited to the larger extent than perflourohaxane did. The roughness of surfaces decreased when more fluoropolymer was deposited. The hydrophobic character of surface slightly disappeared during 20-days storage of hexaflourobenzene modified membrane. Perfluorohexane modified membrane did not change its character within 120 days after modification. It was expected that this phenomenon resulted from post-reactions of oxygen with radicals in polymer deposits. The obtained membranes could be used for membrane distillation of juices. - Highlights: • Plasma deposited hydrophobic layer of flouropolymers. • Deposition degree affects the surface properties. • Hydrohilization of surface due to reaction of oxygen with entrapped radicals. • Possibility to use modified porous membrane for water distillation and apple juice concentration.

  15. Ultraviolet laser deposition of graphene thin films without catalytic layers

    KAUST Repository

    Sarath Kumar, S. R.

    2013-01-09

    In this letter, the formation of nanostructured graphene by ultraviolet laser ablation of a highly ordered pyrolytic graphite target under optimized conditions is demonstrated, without a catalytic layer, and a model for the growth process is proposed. Previously, graphene film deposition by low-energy laser (2.3 eV) was explained by photo-thermal models, which implied that graphene films cannot be deposited by laser energies higher than the C-C bond energy in highly ordered pyrolytic graphite (3.7 eV). Here, we show that nanostructured graphene films can in fact be deposited using ultraviolet laser (5 eV) directly over different substrates, without a catalytic layer. The formation of graphene is explained by bond-breaking assisted by photoelectronic excitation leading to formation of carbon clusters at the target and annealing out of defects at the substrate.

  16. Ultraviolet laser deposition of graphene thin films without catalytic layers

    KAUST Repository

    Sarath Kumar, S. R.; Alshareef, Husam N.

    2013-01-01

    In this letter, the formation of nanostructured graphene by ultraviolet laser ablation of a highly ordered pyrolytic graphite target under optimized conditions is demonstrated, without a catalytic layer, and a model for the growth process is proposed. Previously, graphene film deposition by low-energy laser (2.3 eV) was explained by photo-thermal models, which implied that graphene films cannot be deposited by laser energies higher than the C-C bond energy in highly ordered pyrolytic graphite (3.7 eV). Here, we show that nanostructured graphene films can in fact be deposited using ultraviolet laser (5 eV) directly over different substrates, without a catalytic layer. The formation of graphene is explained by bond-breaking assisted by photoelectronic excitation leading to formation of carbon clusters at the target and annealing out of defects at the substrate.

  17. Sol–gel hybrid membranes loaded with meso/macroporous SiO2, TiO2–P2O5 and SiO2–TiO2–P2O5 materials with high proton conductivity

    International Nuclear Information System (INIS)

    Castro, Yolanda; Mosa, Jadra; Aparicio, Mario; Pérez-Carrillo, Lourdes A.; Vílchez, Susana; Esquena, Jordi; Durán, Alicia

    2015-01-01

    In this work, highly conductive hybrid organic–inorganic membranes loaded with SiO 2 , TiO 2 –P 2 O 5 and SiO 2 –TiO 2 –P 2 O 5 meso/macroporous particles were prepared via a sol–gel process. Meso/macroporous particles were incorporated to hybrid membranes, for improving water retention and enhancing electrochemical performance. These particles with a polymodal pore size distribution were prepared by templating in highly concentrated emulsions, the particles showed a specific surface area between 50 m 2 /g (TiO 2 –P 2 O 5 ) and 300 m 2 /g (SiO 2 –TiO 2 –P 2 O 5 ). The particles were dispersed in a hybrid silica sol and further sprayed onto glass paper. The films were polymerized and sintered; those loaded with meso/macroporous particles had a homogenous distribution. High temperature proton conductivity measurements confirmed a high water retention. Conductivity of these materials is higher than that of Nafion ® at higher temperatures (120 °C) (2·10 −2  S/cm). This study provides processing guideline to achieve hybrid electrolytes for efficient conduction of protons due to their high surface area and porous structure. - Highlights: • Hybrid electrolyte with meso/macroporous particles were synthesized by sol–gel. • Depositions of hybrid solutions by spraying onto glass substrates were performed. • Proton conductivity was evaluated as a function of composition and porous structure

  18. Polycrystalline thin films of antimony selenide via chemical bath deposition and post deposition treatments

    International Nuclear Information System (INIS)

    Rodriguez-Lazcano, Y.; Pena, Yolanda; Nair, M.T.S.; Nair, P.K.

    2005-01-01

    We report a method for obtaining thin films of polycrystalline antimony selenide via chemical bath deposition followed by heating the thin films at 573 K in selenium vapor. The thin films deposited from chemical baths containing one or more soluble complexes of antimony, and selenosulfate initially did not show X-ray diffraction (XRD) patterns corresponding to crystalline antimony selenide. Composition of the films, studied by energy dispersive X-ray analyses indicated selenium deficiency. Heating these films in presence of selenium vapor at 573 K under nitrogen (2000 mTorr) resulted in an enrichment of Se in the films. XRD peaks of such films matched Sb 2 Se 3 . Evaluation of band gap from optical spectra of such films shows absorption due to indirect transition occurring in the range of 1-1.2 eV. The films are photosensitive, with dark conductivity of about 2 x 10 -8 (Ω cm) -1 and photoconductivity, about 10 -6 (Ω cm) -1 under tungsten halogen lamp illumination with intensity of 700 W m -2 . An estimate for the mobility life time product for the film is 4 x 10 -9 cm 2 V -1

  19. Total Ionizing Dose Effects of Si Vertical Diffused MOSFET with SiO2 and Si3N4/SiO2 Gate Dielectrics

    Directory of Open Access Journals (Sweden)

    Jiongjiong Mo

    2017-01-01

    Full Text Available The total ionizing dose irradiation effects are investigated in Si vertical diffused MOSFETs (VDMOSs with different gate dielectrics including single SiO2 layer and double Si3N4/SiO2 layer. Radiation-induced holes trapping is greater for single SiO2 layer than for double Si3N4/SiO2 layer. Dielectric oxidation temperature dependent TID effects are also studied. Holes trapping induced negative threshold voltage shift is smaller for SiO2 at lower oxidation temperature. Gate bias during irradiation leads to different VTH shift for different gate dielectrics. Single SiO2 layer shows the worst negative VTH at VG=0 V, while double Si3N4/SiO2 shows negative VTH shift at VG=-5 V, positive VTH shift at VG=10 V, and negligible VTH shift at VG=0 V.

  20. Cobalt Xanthate Thin Film with Chemical Bath Deposition

    Directory of Open Access Journals (Sweden)

    İ. A. Kariper

    2013-01-01

    Full Text Available Cobalt xanthate thin films (CXTFs were successfully deposited by chemical bath deposition, onto amorphous glass substrates, as well as on p- and n-silicon, indium tin oxide, and poly(methyl methacrylate. The structure of the films was analyzed by far-infrared spectrum (FIR, mid-infrared (MIR spectrum, nuclear magnetic resonance (NMR, and scanning electron microscopy (SEM. These films were investigated from their structural, optical, and electrical properties point of view. Electrical properties were measured using four-point method, whereas optical properties were investigated via UV-VIS spectroscopic technique. Uniform distribution of grains was clearly observed from the photographs taken by scanning electron microscope (SEM. The transmittance was about 70–80% (4 hours, 50°C. The optical band gap of the CXTF was graphically estimated to be 3.99–4.02 eV. The resistivity of the films was calculated as 22.47–75.91 Ω·cm on commercial glass depending on film thickness and 44.90–73.10 Ω ·cm on the other substrates. It has been observed that the relative resistivity changed with film thickness. The MIR and FIR spectra of the films were in agreement with the literature analogues. The expected peaks of cobalt xanthate were observed in NMR analysis on glass. The films were dipped in chloroform as organic solvent and were analyzed by NMR.

  1. Supramolecular structure of a perylene derivative in thin films deposited by physical vapor deposition

    International Nuclear Information System (INIS)

    Fernandes, Jose D.; Aoki, Pedro H.B.; Constantino, Carlos J.J.; Junior, Wagner D.M.; Teixeira, Silvio R.

    2014-01-01

    Full text: Thin films of a perylene derivative, the bis butylimido perylene (BuPTCD), were produced using thermal evaporation (PVD, physical vapor deposition). The main objective is to investigate the supramolecular structure of the BuPTCD in these PVD films, which implies to control the thickness and to determine the molecular organization, morphology at micro and nanometer scales and crystallinity. This supramolecular structure is a key factor in the optical and electrical properties of the film. The ultraviolet-visible absorption revealed an uniform growth of the PVD films. The optical and atomic force microscopy images showed a homogeneous surface of the film at micro and nanometer scales. A preferential orientation of the molecules in the PVD films was determined via infrared absorption. The X-ray diffraction showed that both powder and PVD film are in the crystalline form. (author)

  2. Electron-beam deposition of vanadium dioxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Marvel, R.E.; Appavoo, K. [Vanderbilt University, Interdisciplinary Materials Science Program, Nashville, TN (United States); Choi, B.K. [Vanderbilt University, Department of Electrical Engineering and Computer Science, Nashville, TN (United States); Nag, J. [Vanderbilt University, Department of Physics and Astronomy, Nashville, TN (United States); Haglund, R.F. [Vanderbilt University, Interdisciplinary Materials Science Program, Nashville, TN (United States); Vanderbilt University, Institute for Nanoscale Science and Engineering, Nashville, TN (United States); Vanderbilt University, Department of Physics and Astronomy, Nashville, TN (United States)

    2013-06-15

    Developing a reliable and efficient fabrication method for phase-transition thin-film technology is critical for electronic and photonic applications. We demonstrate a novel method for fabricating polycrystalline, switchable vanadium dioxide thin films on glass and silicon substrates and show that the optical switching contrast is not strongly affected by post-processing annealing times. The method relies on electron-beam evaporation of a nominally stoichiometric powder, followed by fast annealing. As a result of the short annealing procedure we demonstrate that films deposited on silicon substrates appear to be smoother, in comparison to pulsed laser deposition and sputtering. However, optical performance of e-beam evaporated film on silicon is affected by annealing time, in contrast to glass. (orig.)

  3. Ag-Decorated Fe3O4@SiO2 Nanorods: Synthesis, Characterization, and Applications in Degradation of Organic Dyes

    Directory of Open Access Journals (Sweden)

    Chao Li

    2016-01-01

    Full Text Available Well-dispersed Ag nanoparticles (NPs are successfully decorated on Fe3O4@SiO2 nanorods (NRs via a facile step-by-step strategy. This method involves coating α-Fe2O3 NRs with uniform silica layer, reduction in 10% H2/Ar atmosphere at 450°C to obtain Fe3O4@SiO2 NRs, and then depositing Ag NPs on the surface of Fe3O4@SiO2 NRs through a sonochemical step. It was found that the as-prepared Ag-decorated magnetic Fe3O4@SiO2 NRs (Ag-MNRs exhibited a higher catalytic efficiency than bare Ag NPs in the degradation of organic dye and could be easily recovered by convenient magnetic separation, which show great application potential for environmental protection applications.

  4. Cracking and delamination of vapor-deposited tantalum films

    International Nuclear Information System (INIS)

    Fisher, R.M.; Duan, J.Z.; Liu, J.B.

    1990-01-01

    This paper reports on tantalum films which begin to crack and spall during vapor deposition on glass at a thickness of 180 nm. Islands and ribbons, 10 - 30 μm in size, delaminate by crack growth along the Ta/glass interface for several μm after which the crack penetrates into the glass to a depth of 0.5 - 1 μm and complete spalling occurs. X-ray diffraction showed that about 50% of the original bct, β-tantalum, phase had transformed to the bcc α-Ta phase. When Ta was deposited on glass that was first covered with 52 nm of copper, spalling was observed to begin at a thickness of 105 nm. In this case, the film first cracks and then peels along the Cu/glass interface and curls into scrolls indicating the presence of a small stress gradient. X-ray diffraction of the as-deposited film, and electron diffraction of ion-milled flakes, showed that the Ta films deposited on Cu-coated glass almost completely transform to bcc α-Ta. The critical thickness for delamination along the Cu/glass interface is about 1/2 that for cracking in the glass substrate when an intermediate layer of Cu is not present. All of the above findings are in good agreement with previous observations on Cr films

  5. Quality improvement of organic thin films deposited on vibrating substrates

    Energy Technology Data Exchange (ETDEWEB)

    Paredes, Y.A.; Caldas, P.G.; Prioli, R.; Cremona, M., E-mail: cremona@fis.puc-rio.br

    2011-12-30

    Most of the Organic Light-Emitting Diodes (OLEDs) have a multilayered structure composed of functional organic layers sandwiched between two electrodes. Thin films of small molecules are generally deposited by thermal evaporation onto glass or other rigid or flexible substrates. The interface state between two organic layers in OLED device depends on the surface morphology of the layers and affects deeply the OLED performance. The morphology of organic thin films depends mostly on substrate temperature and deposition rate. Generally, the control of the substrate temperature allows improving the quality of the deposited films. For organic compounds substrate temperature cannot be increased too much due to their poor thermal stability. However, studies in inorganic thin films indicate that it is possible to modify the morphology of a film by using substrate vibration without increasing the substrate temperature. In this work, the effect of the resonance vibration of glass and silicon substrates during thermal deposition in high vacuum environment of tris(8-quinolinolate)aluminum(III) (Alq{sub 3}) and N,N Prime -Bis(naphthalene-2-yl)-N,N Prime -bis(phenyl)-benzidine ({beta}-NPB) organic thin films with different deposition rates was investigated. The vibration used was in the range of hundreds of Hz and the substrates were kept at room temperature during the process. The nucleation and subsequent growth of the organic films on the substrates have been studied by atomic force microscopy technique. For Alq{sub 3} and {beta}-NPB films grown with 0.1 nm/s as deposition rate and using a frequency of 100 Hz with oscillation amplitude of some micrometers, the results indicate a reduction of cluster density and a roughness decreasing. Moreover, OLEDs fabricated with organic films deposited under these conditions improved their power efficiency, driven at 4 mA/cm{sup 2}, passing from 0.11 lm/W to 0.24 lm/W with an increase in their luminance of about 352 cd/m{sup 2

  6. Glancing angle deposition of thin films engineering the nanoscale

    CERN Document Server

    Hawkeye, Matthew M; Brett, Michael J

    2014-01-01

    This book provides a highly practical treatment of GLAD technology, gathering existing procedures, methodologies, and experimental designs into a single, cohesive volume which will be useful both as a ready reference for those in the field and as a definitive guide for those entering it. It covers: History and development of GLAD techniquesProperties and Characterization of GLAD fabricated filmsDesign and engineering of optical GLAD films including fabrication and testingPost-deposition processing and integrationDeposition systems for GLAD fabrication Also includes a patent survey of relevant literature and a survey of GLAD's wide range of material properties and diverse applications.

  7. Alloying process of sputter-deposited Ti/Ni multilayer thin films

    International Nuclear Information System (INIS)

    Cho, H.; Kim, H.Y.; Miyazaki, S.

    2006-01-01

    Alloying process of a Ti/Ni multilayer thin film was investigated in detail by differential scanning calorimetry (DSC), X-ray diffractometry (XRD) and transmission electron microscopy (TEM). The Ti/Ni multilayer thin film was prepared by depositing Ti and Ni layers alternately on a SiO 2 /Si substrate. The number of each metal layer was 100, and the total thickness was 3 μm. The alloy composition was determined as Ti-51 at.%Ni by electron probe micro analysis (EPMA). The DSC curve exhibited three exothermic peaks at 621, 680 and 701 K during heating the as-sputtered multilayer thin film. In order to investigate the alloying process, XRD and TEM observation was carried out for the specimens heated up to various temperatures with the heating rate same as the DSC measurement. The XRD profile of the as-sputtered film revealed only diffraction peaks of Ti and Ni. But reaction layers of 3 nm in thickness were observed at the interfaces of Ti and Ni layers in cross-sectional TEM images. The reaction layer was confirmed as an amorphous phase by the nano beam diffraction analysis. The XRD profiles exhibited that the intensity of Ti diffraction peak decreased in the specimen heat-treated above 600 K. The peak from Ni became broad and shifted to lower diffraction angle. The amorphous layer thickened up to 6 nm in the specimen heated up to 640 K. The diffraction peak corresponding to Ti-Ni B2 phase appeared and the peak from Ni disappeared for the specimen heated up to 675 K. The Ti-Ni B2 crystallized from the amorphous reaction layer. After further heating above the third exothermic peak, the intensity of the peak from the Ti-Ni B2 phase increased, the peak from Ti disappeared and the peaks corresponding to Ti 2 Ni appeared. The Ti 2 Ni phase was formed by the reaction of the Ti-Ni B2 and Ti

  8. Fabrication and characterization of vacuum deposited fluorescein thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jalkanen, Pasi, E-mail: pasi.jalkanen@gmail.co [University of Jyvaeskylae, Department of Physics, Nanoscience center (NSC), P.O. Box 35, FI-40014 Jyvaeskylae (Finland); Kulju, Sampo, E-mail: sampo.j.kulju@jyu.f [University of Jyvaeskylae, Department of Physics, Nanoscience center (NSC), P.O. Box 35, FI-40014 Jyvaeskylae (Finland); Arutyunov, Konstantin, E-mail: konstantin.arutyunov@jyu.f [University of Jyvaeskylae, Department of Physics, Nanoscience center (NSC), P.O. Box 35, FI-40014 Jyvaeskylae (Finland); Antila, Liisa, E-mail: liisa.j.antila@jyu.f [University of Jyvaeskylae, Department of Chemistry, Nanoscience center (NSC) P.O. Box 35, FI-40014 Jyvaeskylae (Finland); Myllyperkioe, Pasi, E-mail: pasi.myllyperkio@jyu.f [University of Jyvaeskylae, Department of Chemistry, Nanoscience center (NSC) P.O. Box 35, FI-40014 Jyvaeskylae (Finland); Ihalainen, Teemu, E-mail: teemu.o.ihalainen@jyu.f [University of Jyvaeskylae, Department of Biology, Nanoscience center (NSC), P.O. Box 35, FI-40014 Jyvaeskylae (Finland); Kaeaeriaeinen, Tommi, E-mail: tommi.kaariainen@lut.f [Lappeenranta University of Technology, ASTRal, P.O. Box 181, FI-50101 Mikkeli (Finland); Kaeaeriaeinen, Marja-Leena, E-mail: marja-leena.kaariainen@lut.f [Lappeenranta University of Technology, ASTRal, P.O. Box 181, FI-50101 Mikkeli (Finland); Korppi-Tommola, Jouko, E-mail: jouko.korppi-tommola@jyu.f [University of Jyvaeskylae, Department of Biology, Nanoscience center (NSC), P.O. Box 35, FI-40014 Jyvaeskylae (Finland)

    2011-03-31

    Simple vacuum evaporation technique for deposition of dyes on various solid surfaces has been developed. The method is compatible with conventional solvent-free nanofabrication processing enabling fabrication of nanoscale optoelectronic devices. Thin films of fluorescein were deposited on glass, fluorine-tin-oxide (FTO) coated glass with and without atomically layer deposited (ALD) nanocrystalline 20 nm thick anatase TiO{sub 2} coating. Surface topology, absorption and emission spectra of the films depend on their thickness and the material of supporting substrate. On a smooth glass surface the dye initially forms islands before merging into a uniform layer after 5 to 10 monolayers. On FTO covered glass the absorption spectra are similar to fluorescein solution in ethanol. Absorption spectra on ALD-TiO{sub 2} is red shifted compared to the film deposited on bare FTO. The corresponding emission spectra at {lambda} = 458 nm excitation show various thickness and substrate dependent features, while the emission of films deposited on TiO{sub 2} is quenched due to the effective electron transfer to the semiconductor conduction band.

  9. Deposition of magnetoelectric hexaferrite thin films on substrates of silicon

    Energy Technology Data Exchange (ETDEWEB)

    Zare, Saba; Izadkhah, Hessam; Vittoria, Carmine

    2016-12-15

    Magnetoelectric M-type hexaferrite thin films (SrCo{sub 2}Ti{sub 2}Fe{sub 8}O{sub 19}) were deposited using Pulsed Laser Deposition (PLD) technique on Silicon substrate. A conductive oxide layer of Indium-Tin Oxide (ITO) was deposited as a buffer layer with the dual purposes of 1) to reduce lattice mismatch between the film and silicon and 2) to lower applied voltages to observe magnetoelectric effects at room temperature on Silicon based devices. The film exhibited magnetoelectric effects as confirmed by vibrating sample magnetometer (VSM) techniques in voltages as low as 0.5 V. Without the oxide conductive layer the required voltages to observe magnetoelectric effects was typically about 1000 times larger. The magnetoelectric thin films were characterized by X-ray diffractometer, scanning electron microscope, energy-dispersive spectroscopy, vibrating sample magnetometer, and ferromagnetic resonance techniques. We measured saturation magnetization of 650 G, and coercive field of about 150 Oe for these thin films. The change in remanence magnetization was measured in the presence of DC voltages and the changes in remanence were in the order of 15% with the application of only 0.5 V (DC voltage). We deduced a magnetoelectric coupling, α, of 1.36×10{sup −9} s m{sup −1} in SrCo{sub 2}Ti{sub 2}Fe{sub 8}O{sub 19} thin films.

  10. Novel doped hydroxyapatite thin films obtained by pulsed laser deposition

    International Nuclear Information System (INIS)

    Duta, L.; Oktar, F.N.; Stan, G.E.; Popescu-Pelin, G.; Serban, N.; Luculescu, C.; Mihailescu, I.N.

    2013-01-01

    Highlights: ► HA coatings synthesized by pulsed laser deposition. ► Comparative study of commercial vs. animal origin materials. ► HA coatings of animal origin were rougher and more adherent to substrates. ► Animal origin films can be considered as promising candidates for implant coatings. - Abstract: We report on the synthesis of novel ovine and bovine derived hydroxyapatite thin films on titanium substrates by pulsed laser deposition for a new generation of implants. The calcination treatment applied to produce the hydroxyapatite powders from ovine/bovine bones was intended to induce crystallization and to prohibit the transmission of diseases. The deposited films were characterized by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and energy dispersive X-ray spectroscopy. Pull-off adherence and profilometry measurements were also carried out. X-ray diffraction ascertained the polycrystalline hydroxyapatite nature of the powders and films. Fourier transform infrared spectroscopy evidenced the vibrational bands characteristic to a hydroxyapatite material slightly carbonated. The micrographs of the films showed a uniform distribution of spheroidal particulates with a mean diameter of ∼2 μm. Pull-off measurements demonstrated excellent bonding strength values between the hydroxyapatite films and the titanium substrates. Because of their physical–chemical properties and low cost fabrication from renewable resources, we think that these new coating materials could be considered as a prospective competitor to synthetic hydroxyapatite used for implantology applications.

  11. Experiment and equipment of depositing diamond films with CVD system

    International Nuclear Information System (INIS)

    Xie Erqing; Song Chang'an

    2002-01-01

    CVD (chemical vapor deposition) emerged in recent years is a new technique for thin film deposition, which play a key role in development of modern physics. It is important to predominate the principle and technology of CVD for studying modern physics. In this paper, a suit of CVD experimental equipment for teaching in college physics is presented, which has simple design and low cost. The good result was gained in past teaching practices

  12. Chemical bath deposited and dip coating deposited CuS thin films - Structure, Raman spectroscopy and surface study

    Science.gov (United States)

    Tailor, Jiten P.; Khimani, Ankurkumar J.; Chaki, Sunil H.

    2018-05-01

    The crystal structure, Raman spectroscopy and surface microtopography study on as-deposited CuS thin films were carried out. Thin films deposited by two techniques of solution growth were studied. The thin films used in the present study were deposited by chemical bath deposition (CBD) and dip coating deposition techniques. The X-ray diffraction (XRD) analysis of both the as-deposited thin films showed that both the films possess covellite phase of CuS and hexagonal unit cell structure. The determined lattice parameters of both the films are in agreement with the standard JCPDS as well as reported data. The crystallite size determined by Scherrer's equation and Hall-Williamsons relation using XRD data for both the as-deposited thin films showed that the respective values were in agreement with each other. The ambient Raman spectroscopy of both the as-deposited thin films showed major emission peaks at 474 cm-1 and a minor emmision peaks at 265 cm-1. The observed Raman peaks matched with the covellite phase of CuS. The atomic force microscopy of both the as-deposited thin films surfaces showed dip coating thin film to be less rough compared to CBD deposited thin film. All the obtained results are presented and deliberated in details.

  13. Optimization of Pb(Zr0.53,Ti0.47)O3 films for micropower generation using integrated cantilevers

    KAUST Repository

    Fuentes-Fernandez, E. M A; Baldenegro-Pé rez, Leonardo Aurelio; Quevedo-Ló pez, Manuel Angel Quevedo; Gnade, Bruce E.; Hande, Abhiman; Shah, Pradeep; Alshareef, Husam N.

    2011-01-01

    Lead zirconate titanate, Pb(Zr0.53,Ti0.47)O 3 or PZT, thin films and integrated cantilevers have been fabricated for energy harvesting applications. The PZT films were deposited on PECVD SiO2/Si substrates with a sol-gel derived ZrO2 buffer layer

  14. Synthesis of metallic nanoparticles in SiO2 matrices

    International Nuclear Information System (INIS)

    Gutierrez W, C.; Mondragon G, G.; Perez H, R.; Mendoza A, D.

    2004-01-01

    Metallic nanoparticles was synthesized in SiO 2 matrices by means of a process of two stages. The first one proceeded via sol-gel, incorporating the metallic precursors to the reaction system before the solidification of the matrix. Later on, the samples underwent a thermal treatment in atmosphere of H 2 , carrying out the reduction of the metals that finally formed to the nanoparticles. Then it was detected the presence of smaller nanoparticles than 20 nm, dispersed and with the property of being liberated easily of the matrix, conserving a free surface, chemically reactive and with response to external electromagnetic radiation. The system SiO 2 -Pd showed an important thermoluminescent response. (Author)

  15. Study of structure and antireflective properties of LaF3/HfO2/SiO2 and LaF3/HfO2/MgF2 trilayers for UV applications

    Science.gov (United States)

    Marszalek, K.; Jaglarz, J.; Sahraoui, B.; Winkowski, P.; Kanak, J.

    2015-01-01

    The aim of this paper is to study antireflective properties of the tree-layer systems LaF3/HfO2/SiO2 and LaF3/HfO2/MgF2 deposited on heated optical glass substrates. The films were evaporated by the use two deposition techniques. In first method oxide films were prepared by means of e-gun evaporation in vacuum of 5 × 10-5 mbar in the presence of oxygen. The second was used for the deposition of fluoride films. They were obtained by means of thermal source evaporation. Simulation of reflectance was performed for 1M2H1L (Quarter Wavelength Optical Thickness) film stack on an optical quartz glass with the refractive index n = 1.46. The layer thickness was optimized to achieve the lowest light scattering from glass surface covered with dioxide and fluoride films. The values of the interface roughness were determined through atomic force microscopy measurements. The essence of performed calculation was to find minimum reflectance of light in wide ultraviolet region. The spectral dispersion of the refractive index needed for calculations was determined from ellipsometric measurements using the spectroscopic ellipsometer M2000. Additionally, the total reflectance measurements in integrating sphere coupled with Perkin Elmer 900 spectrophotometer were performed. These investigations allowed to determine the influence of such film features like surface and interface roughness on light scattering.

  16. Morphological Study Of Palladium Thin Films Deposited By Sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Salcedo, K L; Rodriguez, C A [Grupo Plasma Laser y Aplicaciones, Ingenieria Fisica, Universidad Tecnologica de Pereira (Colombia); Perez, F A [WNANO, West Virginia University (United States); Riascos, H [Grupo Plasma Laser y Aplicaciones, Departamento de Fisica, Universidad Tecnologica de Pereira (Colombia)

    2011-01-01

    This paper presents a morphological analysis of thin films of palladium (Pd) deposited on a substrate of sapphire (Al{sub 2}O{sub 3}) at a constant pressure of 3.5 mbar at different substrate temperatures (473 K, 523 K and 573 K). The films were morphologically characterized by means of an Atomic Force Microscopy (AFM); finding a relation between the roughness and the temperature. A morphological analysis of the samples through AFM was carried out and the roughness was measured by simulating the X-ray reflectivity curve using GenX software. A direct relation between the experimental and simulation data of the Palladium thin films was found.

  17. Morphological Study Of Palladium Thin Films Deposited By Sputtering

    International Nuclear Information System (INIS)

    Salcedo, K L; Rodriguez, C A; Perez, F A; Riascos, H

    2011-01-01

    This paper presents a morphological analysis of thin films of palladium (Pd) deposited on a substrate of sapphire (Al 2 O 3 ) at a constant pressure of 3.5 mbar at different substrate temperatures (473 K, 523 K and 573 K). The films were morphologically characterized by means of an Atomic Force Microscopy (AFM); finding a relation between the roughness and the temperature. A morphological analysis of the samples through AFM was carried out and the roughness was measured by simulating the X-ray reflectivity curve using GenX software. A direct relation between the experimental and simulation data of the Palladium thin films was found.

  18. Optical properties of vacuum deposited polyaniline ultra-thin film

    International Nuclear Information System (INIS)

    Wahab, M. R. A.; Din, M.; Yunus, W. M. M.; Hasan, Z. A.; Kasim, A.

    2005-01-01

    Full text: Ultra-thin films of emeraldine base (EB) and emeraldine salt (ES) form of polyaniline (PANi) were prepared using electron-gun vacuum deposition. Thickness range studied was between 100AA and 450AA. Dielectric permittivity of the films determined from Kretchmann Configuration Surface Plasmon Resonance (SPR) angles-scanning set-up show shifts and narrowing of the SPR dip. Absorbance spectra of S-polarized and P-polarized light show the aging effect on orientation of the film. The effect of aging on its conductivity and photoluminescence is also correlated to the surface morphology

  19. Thin NiTi Films Deposited on Graphene Substrates

    Science.gov (United States)

    Hahn, S.; Schulze, A.; Böhme, M.; Hahn, T.; Wagner, M. F.-X.

    2017-03-01

    We present experimental results on the deposition of Nickel Titanium (NiTi) films on graphene substrates using a PVD magnetron sputter process. Characterization of the 2-4 micron thick NiTi films by electron microscopy, electron backscatter diffraction, and transmission electron microscopy shows that grain size and orientation of the thin NiTi films strongly depend on the type of combination of graphene and copper layers below. Our experimental findings are supported by density functional theory calculations: a theoretical estimation of the binding energies of different NiTi-graphene interfaces is in line with the experimentally determined microstructural features of the functional NiTi top layer.

  20. Pulsed laser deposition of hydroxyapatite thin films

    Czech Academy of Sciences Publication Activity Database

    Koch, C.F.; Johnson, S.; Kumar, D.; Jelínek, Miroslav; Chrisey, D.B.; Doraiswamy, A.; Jin, C.; Narayan, R.J.; Mihailescu, I. N.

    2007-01-01

    Roč. 27, - (2007), s. 484-494 ISSN 0928-4931 Institutional research plan: CEZ:AV0Z10100522 Keywords : hydroxyapatite * pulsed laser deposition * bioactive ceramic s Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.486, year: 2007

  1. Germanium films by polymer-assisted deposition

    Science.gov (United States)

    Jia, Quanxi; Burrell, Anthony K.; Bauer, Eve; Ronning, Filip; McCleskey, Thomas Mark; Zou, Guifu

    2013-01-15

    Highly ordered Ge films are prepared directly on single crystal Si substrates by applying an aqueous coating solution having Ge-bound polymer onto the substrate and then heating in a hydrogen-containing atmosphere. A coating solution was prepared by mixing water, a germanium compound, ethylenediaminetetraacetic acid, and polyethyleneimine to form a first aqueous solution and then subjecting the first aqueous solution to ultrafiltration.

  2. Coaxial carbon plasma gun deposition of amorphous carbon films

    Science.gov (United States)

    Sater, D. M.; Gulino, D. A.; Rutledge, S. K.

    1984-01-01

    A unique plasma gun employing coaxial carbon electrodes was used in an attempt to deposit thin films of amorphous diamond-like carbon. A number of different structural, compositional, and electrical characterization techniques were used to characterize these films. These included scanning electron microscopy, scanning transmission electron microscopy, X ray diffraction and absorption, spectrographic analysis, energy dispersive spectroscopy, and selected area electron diffraction. Optical absorption and electrical resistivity measurements were also performed. The films were determined to be primarily amorphous, with poor adhesion to fused silica substrates. Many inclusions of particulates were found to be present as well. Analysis of these particulates revealed the presence of trace impurities, such as Fe and Cu, which were also found in the graphite electrode material. The electrodes were the source of these impurities. No evidence of diamond-like crystallite structure was found in any of the film samples. Details of the apparatus, experimental procedure, and film characteristics are presented.

  3. Deposition and characterisation of epitaxial oxide thin films for SOFCs

    KAUST Repository

    Santiso, José

    2010-10-24

    This paper reviews the recent advances in the use of thin films, mostly epitaxial, for fundamental studies of materials for solid oxide fuel cell (SOFC) applications. These studies include the influence of film microstructure, crystal orientation and strain in oxide ionic conducting materials used as electrolytes, such as fluorites, and in mixed ionic and electronic conducting materials used as electrodes, typically oxides with perovskite or perovskite-related layered structures. The recent effort towards the enhancement of the electrochemical performance of SOFC materials through the deposition of artificial film heterostructures is also presented. These thin films have been engineered at a nanoscale level, such as the case of epitaxial multilayers or nanocomposite cermet materials. The recent progress in the implementation of thin films in SOFC devices is also reported. © 2010 Springer-Verlag.

  4. Coaxial carbon plasma gun deposition of amorphous carbon films

    International Nuclear Information System (INIS)

    Sater, D.M.; Gulino, D.A.

    1984-03-01

    A unique plasma gun employing coaxial carbon electrodes was used in an attempt to deposit thin films of amorphous diamond-like carbon. A number of different structural, compositional, and electrical characterization techniques were used to characterize these films. These included scanning electron microscopy, scanning transmission electron microscopy, X ray diffraction and absorption, spectrographic analysis, energy dispersive spectroscopy, and selected area electron diffraction. Optical absorption and electrical resistivity measurements were also performed. The films were determined to be primarily amorphous, with poor adhesion to fused silica substrates. Many inclusions of particulates were found to be present as well. Analysis of these particulates revealed the presence of trace impurities, such as Fe and Cu, which were also found in the graphite electrode material. The electrodes were the source of these impurities. No evidence of diamond-like crystallite structure was found in any of the film samples. Details of the apparatus, experimental procedure, and film characteristics are presented

  5. Electrochemical Deposition of Lanthanum Telluride Thin Films and Nanowires

    Science.gov (United States)

    Chi, Su (Ike); Farias, Stephen; Cammarata, Robert

    2013-03-01

    Tellurium alloys are characterized by their high performance thermoelectric properties and recent research has shown nanostructured tellurium alloys display even greater performance than bulk equivalents. Increased thermoelectric efficiency of nanostructured materials have led to significant interests in developing thin film and nanowire structures. Here, we report on the first successful electrodeposition of lanthanum telluride thin films and nanowires. The electrodeposition of lanthanum telluride thin films is performed in ionic liquids at room temperature. The synthesis of nanowires involves electrodepositing lanthanum telluride arrays into anodic aluminum oxide (AAO) nanoporous membranes. These novel procedures can serve as an alternative means of simple, inexpensive and laboratory-environment friendly methods to synthesize nanostructured thermoelectric materials. The thermoelectric properties of thin films and nanowires will be presented to compare to current state-of-the-art thermoelectric materials. The morphologies and chemical compositions of the deposited films and nanowires are characterized using SEM and EDAX analysis.

  6. Fabrication of an a-IGZO thin film transistor using selective deposition of cobalt by the self-assembly monolayer (SAM) process.

    Science.gov (United States)

    Cho, Young-Je; Kim, HyunHo; Park, Kyoung-Yun; Lee, Jaegab; Bobade, Santosh M; Wu, Fu-Chung; Choi, Duck-Kyun

    2011-01-01

    Interest in transparent oxide thin film transistors utilizing ZnO material has been on the rise for many years. Recently, however, IGZO has begun to draw more attention due to its higher stability and superior electric field mobility when compared to ZnO. In this work, we address an improved method for patterning an a-IGZO film using the SAM process, which employs a cost-efficient micro-contact printing method instead of the conventional lithography process. After a-IGZO film deposition on the surface of a SiO2-layered Si wafer, the wafer was illuminated with UV light; sources and drains were then patterned using n-octadecyltrichlorosilane (OTS) molecules by a printing method. Due to the low surface energy of OTS, cobalt was selectively deposited on the OTS-free a-IGZO surface. The selective deposition of cobalt electrodes was successful, as confirmed by an optical microscope. The a-IZGO TFT fabricated using the SAM process exhibited good transistor performance: electric field mobility (micro(FE)), threshold voltage (V(th)), subthreshold slope (SS) and on/off ratio were 2.1 cm2/Vs, 2.4 V, 0.35 V/dec and 2.9 x 10(6), respectively.

  7. Deposition and characterization of aluminum magnesium boride thin film coatings

    Science.gov (United States)

    Tian, Yun

    Boron-rich borides are a special group of materials possessing complex structures typically comprised of B12 icosahedra. All of the boron-rich borides sharing this common structural unit exhibit a variety of exceptional physical and electrical properties. In this work, a new ternary boride compound AlMgB14, which has been extensively studied in bulk form due to its novel mechanical properties, was fabricated into thin film coatings by pulsed laser deposition (PLD) technology. The effect of processing conditions (laser operating modes, vacuum level, substrate temperature, and postannealing, etc.) on the composition, microstructure evolution, chemical bonding, and surface morphology of AlMgB14 thin film coatings has been investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), atomic force microscopy (AFM) and Fourier transform infrared (FTIR) spectrometry; the mechanical, electrical, and optical properties of AlMgB14 thin films have been characterized by nanoindentation, four-point probe, van der Pauw Hall measurement, activation energy measurement, and UV-VIS-NIR spectrophotometer. Experimental results show that AlMgB14 films deposited in the temperature range of 300 K - 873 K are amorphous. Depositions under a low vacuum level (5 x 10-5 Torr) can introduce a significant amount of C and O impurities into AlMgB14 films and lead to a complex oxide glass structure. Orthorhombic AlMgB14 phase cannot be obtained by subsequent high temperature annealing. By contrast, the orthorhombic AlMgB 14 crystal structure can be attained via high temperature-annealing of AlMgB14 films deposited under a high vacuum level (boride films, high vacuum level-as deposited AlMgB14 films also possess a low n-type electrical resistivity, which is a consequence of high carrier concentration and moderate carrier mobility. The operative electrical transport mechanism and doping behavior for high vacuum level-as deposited AlMgB14

  8. Ion assisted deposition of thermally evaporated Ag and Al films

    International Nuclear Information System (INIS)

    Hwangbo, C.K.; Lingg, L.J.; Lehan, J.P.; Macleod, H.A.; Makous, J.L.; Kim, S.Y.; University of Arizona, Physics Department, Tucson, Arizona 85721; Aju University, Physics Department, Suwon, Korea)

    1989-01-01

    Optical, electrical, and microstructural effects of Ar ion bombardment and Ar incorporation on thermally evaporated Ag and Al thin films are investigated. The results show that as the momentum supplied to the growing films by the bombarding ions per arriving metal atom increases, the refractive index at 632.8 nm increases and the extinction coefficient decreases, lattice spacing expands, grain size decreases, electrical resistivity increases, and trapped Ar increases slightly. In Ag films, stress reverses from tensile to compressive and in Al films compressive stress increases. In the Al films the change in optical constants can be explained by the variation in void volume. The reversal of stress from tensile to compressive in Ag films requires a threshold level of momentum. The increase in electrical resistivity is related to the decrease in grain size and increase in trapped Ar in both types of film. Many of these properties correlate well with the momentum transferred, suggesting that the momentum is an important physical parameter in describing the influence of ion beam on growing thin films and determining the characteristics of thin metal films prepared by ion assisted deposition

  9. Deposition of polymer films in low pressure reactive plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Biederman, H.

    1981-12-11

    Sputtering and plasma polymerization have found wide application as deposition techniques and have been extensively studied. R.f. sputtering of plastics, in particular of polytetrafluoroethylene, are discussed in the first part of this paper. In the second part, the general concept of plasma polymerization is considered and some examples of applications of plasma-polymerized films are presented. Special attention is paid to fluorocarbon and fluorochlorocarbon films. It has been suggested that these films could be used in thin film capacitors or as passivating layers for integrated circuits. In the optical field some of these films have been used as convenient moisture-resistant, protective and antireflecting coatings. Their mechanical properties have also been examined with the intention of using them for reducing surface friction. More recently some metals have been incorporated into fluorocarbon films to obtain layers with novel properties. Experiments in which films were prepared by the plasma polymerization of certain Freons are described. Some electrical and optical properties of these films are presented. High dielectric losses were obtained in a metal/film/metal sandwich configuration and the possible influence of ambient atmospheric effects on these measurements is discussed.

  10. Reactive ion assisted deposition of aluminum oxynitride thin films

    International Nuclear Information System (INIS)

    Hwangbo, C.K.; Lingg, L.J.; Lehan, J.P.; Macleod, H.A.; Suits, F.

    1989-01-01

    Optical properties, stoichiometry, chemical bonding states, and crystal structure of aluminum oxynitride (AlO/sub x/N/sub y/) thin films prepared by reactive ion assisted deposition were investigated. The results show that by controlling the amount of reactive gases the refractive index of aluminum oxynitride films at 550 nm is able to be varied from 1.65 to 1.83 with a very small extinction coefficient. Variations of optical constants and chemical bonding states of aluminum oxynitride films are related to the stoichiometry. From an x-ray photoelectron spectroscopy analysis it is observed that our aluminum oxynitride film is not simply a mixture of aluminum oxide and aluminum nitride but a continuously variable compound. The aluminum oxynitride films are amorphous from an x-ray diffraction analysis. A rugate filter using a step index profile of aluminum oxynitride films was fabricated by nitrogen ion beam bombardment of a growing Al film with backfill oxygen pressure as the sole variation. This filter shows a high resistivity to atmospheric moisture adsorption, suggesting that the packing density of aluminum oxynitride films is close to unity and the energetic ion bombardment densifies the film as well as forming the compound

  11. Adsorption of uranyl in SiO2 porous glass

    International Nuclear Information System (INIS)

    Benedetto, F. E.; Prado, M. O.

    2013-01-01

    Vitreous SiO 2 porous matrices can be used in many applications involving the uptake of chemical species on its solid surface. In this work, vitreous silica sponges were prepared from a sodium borosilicate glass manufactured in our laboratory. The product obtained was then separated into phases with subsequent leaching of the soluble phase rich in B and Na. The resulting porous matrices have a specific surface of 35 m2/gr. Adsorption of uranyl ions onto the SiO 2 porous surface was studied to evaluate the use of this material as a filter for treatment of uranium containing water. The effects of contact time, adsorbent mass and equilibrium concentration of solution were studied. The porous adsorbent exhibits a pseudo-second-order kinetic behavior. The sponges with adsorbed uranium were thermally sealed as a way of U immobilization. Retention of uranium was confirmed during the matrix sealing by TGA. Uranium concentration before and after adsorption tests were made by means of ICP-OES. For uranium concentration of 800 ppm, 72 hours contact time and pH of 3.5, the amount of uranium adsorbed was 21.06 ± 0.02 mg U per gram of vitreous porous SiO 2 . (author)

  12. The influences of target properties and deposition times on pulsed laser deposited hydroxyapatite films

    International Nuclear Information System (INIS)

    Bao Quanhe; Chen Chuanzhong; Wang Diangang; Liu Junming

    2008-01-01

    Hydroxyapatite films were produced by pulsed laser deposition from three kinds of hydroxyapatite targets and with different deposition times. A JXA-8800R electron probe microanalyzer (EPMA) with a Link ISIS300 energy spectrum analyzer was used to give the secondary electron image (SE) and determine the element composition of the films. The phases of thin film were analyzed by a D/max-γc X-ray diffractometer (XRD). The Fourier-transform infrared spectroscopy (FT-IR) was used to characterize the hydroxyl, phosphate and other functional groups. The results show that deposited films were amorphous which mainly composed of droplet-like particles and vibration of PO 4 3- groups. With the target sintering temperature deposition times increasing, the density of droplets is decreased. While with deposition times increasing, the density of droplets is increased. With the target sintering temperature and deposition time increasing, the ratio of Ca/P is increasing and higher than that of theoretical value of HA

  13. Synergy Between Plasma-Assisted ALD and Roll-to-Roll Atmospheric Pressure PE-CVD Processing of Moisture Barrier Films on Polymers

    NARCIS (Netherlands)

    Starostin, S. A.; Keuning, W.; Schalken, J.; Creatore, M.; Kessels, W. M. M.; Bouwstra, J. B.; van de Sanden, M. C. M.; de Vries, H. W.

    2016-01-01

    The synergy between fast (1600 nm · min−1), roll-to-roll plasma-enhanced chemical vapor deposited (PE-CVD) SiO2 layers and plasma-assisted atomic layer deposited (PA-ALD) ultra-thin Al2O3 films has been investigated in terms of moisture permeation barrier properties. The effective and intrinsic

  14. Synergy between plasma-assisted ALD and roll-to-roll atmospheric pressure PE-CVD processing of moisture barrier films on polymers

    NARCIS (Netherlands)

    Starostin, S.A.; Keuning, W.; Schalken, J.R.G.; Creatore, M.; Kessels, W.M.M.; Bouwstra, J.B.; Sanden, van de M.C.M.; Vries, de H.W.

    2016-01-01

    The synergy between fast (1600 nm · min−1), roll-to-roll plasma-enhanced chemical vapor deposited (PE-CVD) SiO2 layers and plasma-assisted atomic layer deposited (PA-ALD) ultra-thin Al2O3 films has been investigated in terms of moisture permeation barrier properties. The effective and intrinsic

  15. In situ measurement of conductivity during nanocomposite film deposition

    International Nuclear Information System (INIS)

    Blattmann, Christoph O.; Pratsinis, Sotiris E.

    2016-01-01

    Highlights: • Flame-made nanosilver dynamics are elucidated in the gas-phase & on substrates. • The resistance of freshly depositing nanosilver layers is monitored. • Low T g polymers facilitate rapid synthesis of conductive films. • Conductive nanosilver films form on top of or within the polymer depending on MW. - Abstract: Flexible and electrically conductive nanocomposite films are essential for small, portable and even implantable electronic devices. Typically, such film synthesis and conductivity measurement are carried out sequentially. As a result, optimization of filler loading and size/morphology characteristics with respect to film conductivity is rather tedious and costly. Here, freshly-made Ag nanoparticles (nanosilver) are made by scalable flame aerosol technology and directly deposited onto polymeric (polystyrene and poly(methyl methacrylate)) films during which the resistance of the resulting nanocomposite is measured in situ. The formation and gas-phase growth of such flame-made nanosilver, just before incorporation onto the polymer film, is measured by thermophoretic sampling and microscopy. Monitoring the nanocomposite resistance in situ reveals the onset of conductive network formation by the deposited nanosilver growth and sinternecking. The in situ measurement is much faster and more accurate than conventional ex situ four-point resistance measurements since an electrically percolating network is detected upon its formation by the in situ technique. Nevertheless, general resistance trends with respect to filler loading and host polymer composition are consistent for both in situ and ex situ measurements. The time lag for the onset of a conductive network (i.e., percolation) depends linearly on the glass transition temperature (T g ) of the host polymer. This is attributed to the increased nanoparticle-polymer interaction with decreasing T g . Proper selection of the host polymer in combination with in situ resistance monitoring

  16. Fundamental Mechanisms of Roughening and Smoothing During Thin Film Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Headrick, Randall [Univ. of Vermont, Burlington, VT (United States)

    2016-03-18

    In this research program, we have explored the fundamental limits for thin film deposition in both crystalline and amorphous (i.e. non-crystalline) materials systems. For vacuum-based physical deposition processes such as sputter deposition, the background gas pressure of the inert gas (usually argon) used as the process gas has been found to be a key variable. Both a roughness transition and stress transition as a function of pressure have been linked to a common mechanism involving collisions of energetic particles from the deposition source with the process inert gas. As energetic particles collide with gas molecules in the deposition process they lose their energy rapidly if the pressure (and background gas density) is above a critical value. Both roughness and stress limit important properties of thin films for applications. In the area of epitaxial growth we have also discovered a related effect; there is a critical pressure below which highly crystalline layers grow in a layer-by-layer mode. This effect is also though to be due to energetic particle thermalization and scattering. Several other important effects such as the observation of coalescence dominated growth has been observed. This mode can be likened to the behavior of two-dimensional water droplets on the hood of a car during a rain storm; as the droplets grow and touch each other they tend to coalesce rapidly into new larger circular puddles, and this process proceeds exponentially as larger puddles overtake smaller ones and also merge with other large puddles. This discovery will enable more accurate simulations and modeling of epitaxial growth processes. We have also observed that epitaxial films undergo a roughening transition as a function of thickness, which is attributed to strain induced by the crystalline lattice mismatch with the substrate crystal. In addition, we have studied another physical deposition process called pulsed laser deposition. It differs from sputter deposition due to the

  17. Laser deposition and analysis of biocompatible ceramic films - experiences andoverview

    Czech Academy of Sciences Publication Activity Database

    Jelínek, Miroslav; Dostálová, T.; Fotakis, C.; Studnička, Václav; Jastrabík, Lubomír; Havránek, V.; Grivas, C.; Pospíchal, M.; Kadlec, J.; Peřina, Vratislav

    1996-01-01

    Roč. 6, č. 1 (1996), s. 144-149 ISSN 1054-660X Institutional research plan: CEZ:A02/98:Z1-010-914 Keywords : laser deposition * hydroxyapatite * ceramic films Subject RIV: BM - Solid Matter Physics ; Magnetism

  18. Mobility activation in thermally deposited CdSe thin films

    Indian Academy of Sciences (India)

    Effect of illumination on mobility has been studied from the photocurrent decay characteristics of thermally evaporated CdSe thin films deposited on suitably cleaned glass substrate held at elevated substrate temperatures. The study indicates that the mobilities of the carriers of different trap levels are activated due to the ...

  19. Flame spray pyrolysis synthesis and aerosol deposition of nanoparticle films

    DEFF Research Database (Denmark)

    Tricoli, Antonio; Elmøe, Tobias Dokkedal

    2012-01-01

    The assembly of nanoparticle films by flame spray pyrolysis (FSP) synthesis and deposition on temperature‐controlled substrates (323–723 K) was investigated for several application‐relevant conditions. An exemplary SnO2 nanoparticle aerosol was generated by FSP and its properties (e.g., particle...

  20. Optimizing growth conditions for electroless deposition of Au films ...

    Indian Academy of Sciences (India)

    Unknown

    Optimizing growth conditions for electroless deposition of Au films on. Si(111) substrates. BHUVANA and G U KULKARNI*. Chemistry and Physics of Materials Unit and DST Unit on Nanoscience, Jawaharlal Nehru Centre for. Advanced Scientific Research, Jakkur PO, Bangalore 560 064, India. MS received 24 March 2006.

  1. Physical vapor deposition of cubic boron nitride thin films

    International Nuclear Information System (INIS)

    Kester, D.J.

    1991-01-01

    Cubic boron nitride was successfully deposited using physical vapor-deposition methods. RF-sputtering, magnetron sputtering, dual-ion-beam deposition, and ion-beam-assisted evaporation were all used. The ion-assisted evaporation, using boron evaporation and bombardment by nitrogen and argon ions, led to successful cubic boron nitride growth over the widest and most controllable range of conditions. It was found that two factors were important for c-BN growth: bombardment of the growing film and the presence of argon. A systematic study of the deposition conditions was carried out. It was found that the value of momentum transferred into the growing from by the bombarding ions was critical. There was a very narrow transition range in which mixed cubic and hexagonal phase films were prepared. Momentum-per-atom value took into account all the variables involved in ion-assisted deposition: deposition rate, ion energy, ion flux, and ion species. No other factor led to the same control of the process. The role of temperature was also studied; it was found that at low temperatures only mixed cubic and hexagonal material are deposited

  2. Progress on sputter-deposited thermotractive titanium-nickel films

    International Nuclear Information System (INIS)

    Grummon, D.S.; Hou Li; Zhao, Z.; Pence, T.J.

    1995-01-01

    It is now well established that titanium-nickel alloys fabricated as thin films by physical vapor deposition can display the same transformation and shape-memory effects as their ingot-metallurgy counterparts. As such they may find important application to microelectromechanical and biomechanical systems. Furthermore, we show here that titanium-nickel films may be directly processed so as to possess extremely fine austenite grain size and very high strength. These films display classical transformational superelasticity, including high elastic energy storage capacity, the expected dependence of martensite-start temperature on transformation enthalpy, and large, fully recoverable anelastic strains at temperatures above A f . Processing depends on elevated substrate temperatures during deposition, which may be manipulated within a certain range to control both grain size and crystallographic texture. It is also possible to deposit crystalline titanium-nickel films onto polymeric substrates, making them amenable to lithographic patterning into actuator elements that are well-suited to electrical excitation of the martensite reversion transformation. Finally, isothermal annealing of nickel-rich films, under conditions of controlled extrinsic residual stress, leads to topotaxial orientation of Ni 4 Ti 3 -type precipitates, and the associated possibility of two-way memory effects. Much work remains to be done, especially with respect to precise control of composition. (orig.)

  3. Prediction of ultraviolet-induced damage during plasma processes in dielectric films using on-wafer monitoring techniques

    International Nuclear Information System (INIS)

    Ishikawa, Yasushi; Katoh, Yuji; Okigawa, Mitsuru; Samukawa, Seiji

    2005-01-01

    We measured electron-hole pairs generated in dielectric film using our developed on-wafer monitoring technique to detect electrical currents in the film during the plasma etching processes. The electron-hole pairs were generated by plasma induced ultraviolet (UV) photons, and the number of electron-hole pairs depends on the UV wavelength. In SiO 2 film, UV light, which has a wavelength of less than 140 nm, generates electron-hole pairs, because the band gap energy of the film is 8.8 eV. On the other hand, in Si 3 N 4 film, which has a band gap energy level of 5.0 eV, UV light below 250 nm induces the electron-hole pairs. Additionally, we evaluated the fluorocarbon gas plasma process that induces UV radiation damage using multilayer sensors that consisted of both SiO 2 and Si 3 N 4 stacked films. In these cases, electron-hole pair generation depended on the dielectric film structure. There were more electron-hole pairs generated in the SiO 2 deposited on the Si 3 N 4 film than in the Si 3 N 4 deposited on the SiO 2 film. As a result, our developed on-wafer monitoring sensor was able to predict electron-hole pair generation and the device characteristics

  4. Diamond-like carbon films deposited on polycarbonates by plasma-enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Guo, C.T. [Department of Computer and Communication, Diwan College of Management, 72141 Taiwan (China)], E-mail: ctguo@dwu.edu.tw

    2008-04-30

    Diamond-like carbon films were coated on optical polycarbonate using plasma-enhanced chemical vapor deposition. A mixture of SiH{sub 4} and CH{sub 4}/H{sub 2} gases was utilized to reduce the internal compressive stress of the deposited films. The structure of the DLC films was characterized as a function of film thickness using Raman spectroscopy. The dependence of G peak positions and the intensity ratio of I{sub D}/I{sub G} on the DLC film thicknesses was analyzed in detail. Other studies involving atomic force microscopy, ultraviolet visible spectrometry, and three adhesion tests were conducted. Good transparency in the visible region, and good adhesion between diamond-like carbon films and polycarbonate were demonstrated. One-time recordings before and after a DLC film was coated on compact rewritable disc substrates were analyzed as a case study. The results reveal that the diamond-like carbon film overcoating the optical polycarbonates effectively protects the storage media.

  5. Thermal response of Ru electrodes in contact with SiO2 and Hf-based high-k gate dielectrics

    International Nuclear Information System (INIS)

    Wen, H.-C.; Lysaght, P.; Alshareef, H.N.; Huffman, C.; Harris, H.R.; Choi, K.; Senzaki, Y.; Luan, H.; Majhi, P.; Lee, B.H.; Campin, M. J.; Foran, B.; Lian, G.D.; Kwong, D.-L.

    2005-01-01

    A systematic experimental evaluation of the thermal stability of Ru metal gate electrodes in direct contact with SiO 2 and Hf-based dielectric layers was performed and correlated with electrical device measurements. The distinctly different interfacial reactions in the Ru/SiO 2 , Ru/HfO 2 , and Ru/HfSiO x film systems were observed through cross-sectional high-resolution transmission electron microscopy, high angle annular dark field scanning transmission electron microscopy with electron-energy-loss spectra, and energy dispersive x-ray spectra analysis. Ru interacted with SiO 2 , but remained stable on HfO 2 at 1000 deg. C. The onset of Ru/SiO 2 interfacial interactions is identified via silicon substrate pitting possibly from Ru diffusion into the dielectric in samples exposed to a 900 deg. C/10-s anneal. The dependence of capacitor device degradation with decreasing SiO 2 thickness suggests Ru diffuses through SiO 2 , followed by an abrupt, rapid, nonuniform interaction of ruthenium silicide as Ru contacts the Si substrate. Local interdiffusion detected on Ru/HfSiO x samples may be due to phase separation of HfSiO x into HfO 2 grains within a SiO 2 matrix, suggesting that SiO 2 provides a diffusion pathway for Ru. Detailed evidence consistent with a dual reaction mechanism for the Ru/SiO 2 system at 1000 deg. C is presented

  6. Pulsed Laser Deposition of Tungsten Thin Films on Graphite

    International Nuclear Information System (INIS)

    Kassem, W.; Tabbal, M.; Roumie, M.

    2011-01-01

    Thin coatings of Tungsten were deposited on substrates fabricated by pre-depositing graphite thin layers on Si(100) wafers. We ablate pure W target using a 20 ns KrF excimer laser (248 nm) in an Ar ambient. The effect of background gas pressure, substrate temperature, and laser fluence, on the properties of the deposited W layers is studied using several techniques including X-Ray Diffraction, Atomic Force Microscopy, surface profilometry, and Rutherford Back-Scattering spectrometry. Our results indicate that the deposited layers consist of the well-crystallized body-centered-cubic α-W phase with bulk-like properties, particularly for films deposited at a substrate temperature of 450 0 C, laser fluence greater than 400mJ, and pressure of about 10mTorr. (author)

  7. Effect of the post-deposition processing ambient on the preparation of superconducting YBa2Cu3O/sub 7-//sub x/ coevaporated thin films using a BaF2 source

    International Nuclear Information System (INIS)

    Chan, S.; Bagley, B.G.; Greene, L.H.; Giroud, M.; Feldmann, W.L.; Jenkin, K.R. II; Wilkins, B.J.

    1988-01-01

    We have investigated the effect of the post-deposition processing ambient on the preparation of YBa 2 Cu 3 O/sub 7-//sub x/ thin films from a BaF 2 source. The role of H 2 O vapor during the high-temperature anneal is understood through a thermodynamic analysis of the fluorine removal reaction. The role of a HF getter (e.g., SiO 2 ) is understood through the same type of analysis. We have demonstrated that a zero resistance transition temperature at 77 K can be obtained for an annealing temperature as low as 690 0 C for films deposited on SrTiO 3 substrates by increasing the P/sub H>2/O$ and decreasing P/sub HF/ during the high-temperature soak cycle

  8. Deposition of SiC thin films by PECVD

    CERN Document Server

    Cho, N I; Kim, C K

    1999-01-01

    The SiC films were deposited on Si substrate by the decomposition of CH sub 3 SiCl sub 3 (methylthrichlorosilane) molecules in a high frequency discharge field. From the Raman spectra, it is conjectured that the deposited film are formed into the polycrystalline structure. The photon absorption measurement reveal that the band gap of the electron energy state are to be 2.4 eV for SiC, and 2.6 eV for Si sub 0 sub . sub 4 C sub 0 sub . sub 6 , respectively. In the high power density regime, methyl-radicals decompose easily and increases the carbon concentration in plasma and result in the growing films.

  9. Pulsed laser deposition of high Tc superconducting thin films

    International Nuclear Information System (INIS)

    Singh, R.K.; Narayan, J.

    1990-01-01

    This paper reports on the pulsed laser evaporation (PLE) technique for deposition of thin films characterized by a number of unique properties. Based on the experimental characteristics, a theoretical model is developed which considers the formation and anisotropic three dimensional expansion of the laser generated plasma. This model explains most of the experimental features observed in PLE. We have also employed the PLE technique for in-situ fabrication of YBa 2 Cu 3 O 7 superconducting thin films on different substrates in the temperature range of 500--650 degrees C. At temperatures below 600 degrees C, a biased interposing ring between the substrate and the target was found to significantly improve the superconducting properties. The minimum ion channeling yields were between 3--3.5% for films deposited on (100) SrTiO 3 and (100) LaAlO 3 substrates

  10. Bath parameter dependence of chemically deposited Copper Selenide thin film

    International Nuclear Information System (INIS)

    Al-Mamun; Islam, A.B.M.O.

    2004-09-01

    In this article, a low cost chemical bath deposition (CBD) technique has been used for the preparation Of Cu 2-x Se thin films on to glass substrate. Different thin fms (0.2-0.6/μm) were prepared by adjusting the bath parameter like concentration of ammonia, deposition time, temperature of the solution, and the ratios of the mixing composition between copper and selenium in the reaction bath. From these studies, it reveals that at low concentration of ammonia or TEA, the terminal thicknesses of the films are less, which gradually increases with the increase of concentrations and then drop down at still higher concentrations. It has been found that completing the Cu 2+ ions with EA first, and then addition of ammonia yields better results than the reverse process. The film thickness increases with the decrease of value x of Cu 2-x Se. (author)

  11. Potassium ions in SiO2: electrets for silicon surface passivation

    Science.gov (United States)

    Bonilla, Ruy S.; Wilshaw, Peter R.

    2018-01-01

    This manuscript reports an experimental and theoretical study of the transport of potassium ions in thin silicon dioxide films. While alkali contamination was largely researched in the context of MOSFET instability, recent reports indicate that potassium ions can be embedded into oxide films to produce dielectric materials with permanent electric charge, also known as electrets. These electrets are integral to a number of applications, including the passivation of silicon surfaces for optoelectronic devices. In this work, electric field assisted migration of ions is used to rapidly drive K+ into SiO2 and produce effective passivation of silicon surfaces. Charge concentrations of up to ~5  ×  1012 e cm-2 have been achieved. This charge was seen to be stable for over 1500 d, with decay time constants as high as 17 000 d, producing an effectively passivated oxide-silicon interface with SRV  industrial manufacture of silicon optoelectronic devices.

  12. UV pulsed laser deposition of magnetite thin films

    International Nuclear Information System (INIS)

    Parames, M.L.; Mariano, J.; Rogalski, M.S.; Popovici, N.; Conde, O.

    2005-01-01

    Magnetite thin films were grown by pulsed laser deposition in O 2 reactive atmosphere from Fe 3 O 4 targets. The ablated material was deposited onto Si(1 0 0) substrates at various temperatures up to 623 K. The temperature dependence of structure and stoichiometry was investigated by X-ray diffraction (XRD) and conversion electron Moessbauer spectroscopy (CEMS). The XRD results show that films grown between 483 and 623 K are obtained as pure phase magnetite with an estimated average crystallite size increasing from 14 to 35 nm, respectively. This is in agreement with the CEMS spectra analysis, indicating isomer shift and internal field values for both the T d and O h sites close to those reported for the bulk material and a random orientation of the magnetic moments. The influence of the deposition temperature on the estimated Fe (9-x)/3 O 4 stoichiometry is related to an increase in the vacancy concentration from 483 to 623 K

  13. Photoemission study on electrical dipole at SiO_2/Si and HfO_2/SiO_2 interfaces

    International Nuclear Information System (INIS)

    Fujimura, Nobuyuki; Ohta, Akio; Ikeda, Mitsuhisa; Makihara, Katsunori; Miyazaki, Seiichi

    2017-01-01

    Electrical dipole at SiO_2/Si and HfO_2/SiO_2 interfaces have been investigated by X-ray photoelectron spectroscopy (XPS) under monochromatized Al Kα radiation. From the analysis of the cut-off energy for secondary photoelectrons measured at each thinning step of a dielectric layer by wet-chemical etching, an abrupt potential change caused by electrical dipole at SiO_2/Si and HfO_2/SiO_2 interfaces has been clearly detected. Al-gate MOS capacitors with thermally-grown SiO_2 and a HfO_2/SiO_2 dielectric stack were fabricated to evaluate the Al work function from the flat band voltage shift of capacitance-voltage (C-V) characteristics. Comparing the results of XPS and C-V measurements, we have verified that electrical dipole formed at the interface can be directly measured by photoemission measurements. (author)

  14. Vacuum deposition onto webs, films and foils

    CERN Document Server

    Bishop, Charles A

    2011-01-01

    Roll-to-roll vacuum deposition is the technology that applies an even coating to a flexible material that can be held on a roll and provides a much faster and cheaper method of bulk coating than deposition onto single pieces or non-flexible surfaces, such as glass. This technology has been used in industrial-scale applications for some time, including a wide range of metalized packaging (e.g. snack packets). Its potential as a high-speed, scalable process has seen an increasing range of new products emerging that employ this cost-effective technology: solar energy products are moving from rigid panels onto flexible substrates, which are cheaper and more versatile; in a similar way, electronic circuit 'boards' can be produced on a flexible polymer, creating a new range of 'flexible electronics' products; and, flexible displays are another area of new technology in vacuum coating, with flexible display panels and light sources emerging. Charles Bishop has written this book to meet the need he identified, as a t...

  15. Deposition of thermal and hot-wire chemical vapor deposition copper thin films on patterned substrates.

    Science.gov (United States)

    Papadimitropoulos, G; Davazoglou, D

    2011-09-01

    In this work we study the hot-wire chemical vapor deposition (HWCVD) of copper films on blanket and patterned substrates at high filament temperatures. A vertical chemical vapor deposition reactor was used in which the chemical reactions were assisted by a tungsten filament heated at 650 degrees C. Hexafluoroacetylacetonate Cu(I) trimethylvinylsilane (CupraSelect) vapors were used, directly injected into the reactor with the aid of a liquid injection system using N2 as carrier gas. Copper thin films grown also by thermal and hot-wire CVD. The substrates used were oxidized silicon wafers on which trenches with dimensions of the order of 500 nm were formed and subsequently covered with LPCVD W. HWCVD copper thin films grown at filament temperature of 650 degrees C showed higher growth rates compared to the thermally ones. They also exhibited higher resistivities than thermal and HWCVD films grown at lower filament temperatures. Thermally grown Cu films have very uniform deposition leading to full coverage of the patterned substrates while the HWCVD films exhibited a tendency to vertical growth, thereby creating gaps and incomplete step coverage.

  16. SiO2 Nanopillars on Microscale Roughened Surface of GaN-Based Light-Emitting Diodes by SILAR-Based Method

    Directory of Open Access Journals (Sweden)

    X. F. Zeng

    2013-01-01

    Full Text Available We reported the SiO2 nanopillars on microscale roughened surface on GaN-based LED to enhance light-extraction efficiency. ZnO nanoparticles were deposited on SiO2 as an etching mask before ICP etching SiO2 by successive ionic layer adsorption and reaction method (SILAR, and the different heights of SiO2 nanopillars on microroughened ITO/GaN were obtained after etching. Compared to a regular (flat surface GaN-based LED, the light output power for a LED with microroughening was increased by 33%. Furthermore, the proposed LEDs with SiO2 nanopillars on microroughened surface show the enhancement in light output power by 42.7%–49.1% at 20 mA. The increase in light output power is mostly attributed to reduction in Fresnel reflection by rough surface. The height of SiO2 nanopillars was increasing cause resulting in more rough on the microscale surface of GaN-based LEDs.

  17. Low-Temperature Preparation of (111)-oriented Pb(Zr,Ti)O3 Films Using Lattice-Matched (111)SrRuO3/Pt Bottom Electrode by Metal-Organic Chemical Vapor Deposition

    Science.gov (United States)

    Kuwabara, Hiroki; Sumi, Akihiro; Okamoto, Shoji; Hoko, Hiromasa; Cross, Jeffrey S.; Funakubo, Hiroshi

    2009-04-01

    Pb(Zr0.35Ti0.65)O3 (PZT) films 170 nm thick were prepared at 415 °C by pulsed metal-organic chemical vapor deposition. The (111)-oriented PZT films with local epitaxial growth were obtained on (111)SrRuO3/(111)Pt/TiO2/SiO2/Si substrates and their ferroelectricities were ascertained. Ferroelectricity was improved by postannealing under O2 gas flow up to 550 °C. Larger remanent polarization and better fatigue endurance were obtained using a SrRuO3 top electrode compared to a Pt top electrode for PZT films after annealing at 500 °C.

  18. Effects of post-deposition oxygen annealing on tuning properties of Ba0.8Sr0.2TiO3 thin-film capacitors for microwave integrated circuits

    International Nuclear Information System (INIS)

    Liu, Y.R.; Lai, P.T.; Li, G.Q.; Li, B.; Peng, J.B.; Lo, H.B.

    2005-01-01

    Barium strontium titanate (BST) thin-films deposited on a SiO 2 /Si substrate by argon ion-beam sputtering technique were annealed at 400, 500 and 600 deg. C in oxygen for 30 min, respectively, and were used to fabricate integrated parallel-plate capacitors by standard integrated-circuit technology. These capacitors can achieve tunability greater than 60% at an applied dc voltage of 2 V and a frequency of 100 kHz at room temperature. Considering tunability, loss factor and hysteresis effect, the BST thin-film annealed at 500 deg. C is superior for making tunable microwave integrated capacitors. The effects of annealing treatment in oxygen on the tuning properties of the thin-film capacitors are analyzed, and the results indicate that the tunability is strongly dependent on both oxygen vacancies and negatively charged oxygen, trapped at the grain boundary and/or at the electrode/dielectric interface

  19. Quality of YBCO thin films grown on LAO substrates exposed to the film deposition - film removal processes

    Energy Technology Data Exchange (ETDEWEB)

    Blagoev, B; Nurgaliev, T [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee, 1784 Sofia (Bulgaria); Mozhaev, P B [Institute of Physics and Technology, Russian Academy of Sciences, 117218 Moscow (Russian Federation); Sardela, M; Donchev, T [Materials Research Laboratory, University of Illinois, 104 South Goodwin Ave., Urbana, IL 61801 (United States)], E-mail: blago_sb@yahoo.com

    2008-05-01

    The characteristics are investigated of high temperature superconducting YBa{sub 2}Cu{sub 3}O{sub 7} (YBCO) films grown on LaAlO{sub 3} (LAO) substrates being exposed a different number of times to YBCO film deposition and acid-solution-based cleaning procedures. Possible mechanisms of degradation of the substrate surface quality reflecting on the growing YBCO film parameters are discussed and analyzed.

  20. Annealing dependence of residual stress and optical properties of TiO2 thin film deposited by different deposition methods.

    Science.gov (United States)

    Chen, Hsi-Chao; Lee, Kuan-Shiang; Lee, Cheng-Chung

    2008-05-01

    Titanium oxide (TiO(2)) thin films were prepared by different deposition methods. The methods were E-gun evaporation with ion-assisted deposition (IAD), radio-frequency (RF) ion-beam sputtering, and direct current (DC) magnetron sputtering. Residual stress was released after annealing the films deposited by RF ion-beam or DC magnetron sputtering but not evaporation, and the extinction coefficient varied significantly. The surface roughness of the evaporated films exceeded that of both sputtered films. At the annealing temperature of 300 degrees C, anatase crystallization occurred in evaporated film but not in the RF ion-beam or DC magnetron-sputtered films. TiO(2) films deposited by sputtering were generally more stable during annealing than those deposited by evaporation.

  1. Temperature dependence of InN film deposition by an RF plasma-assisted reactive ion beam sputtering deposition technique

    International Nuclear Information System (INIS)

    Shinoda, Hiroyuki; Mutsukura, Nobuki

    2005-01-01

    Indium nitride (InN) films were deposited on Si(100) substrates using a radiofrequency (RF) plasma-assisted reactive ion beam sputtering deposition technique at various substrate temperatures. The X-ray diffraction patterns of the InN films suggest that the InN films deposited at substrate temperatures up to 370 deg C were cubic crystalline InN; and at 500 deg C, the InN film was hexagonal crystalline InN. In a scanning electron microscope image of the InN film surface, facets of cubic single-crystalline InN grains were clearly observed on the InN film deposited at 370 deg C. The inclusion of metallic indium appeared on the InN film deposited at 500 deg C

  2. Vacuum deposition of high quality metal films on porous substrates

    International Nuclear Information System (INIS)

    Barthell, B.L.; Duchane, D.V.

    1982-01-01

    A composite mandrel has been developed consisting of a core of low density polymethylpentene foam overcoated with a thin layer of film-forming polymer. The surface tension and viscosity of the coating solution are important parameters in obtaining a polymer film which forms a continuous, smooth skin over the core without penetrating into the foam matrix. Water soluble film formers with surface tensions in the range of 45 dyn/cm and minimum viscosities of a few hundred centipoises have been found most satisfactory for coating polymethylpentene foam. By means of this technique, continuous polymer fims with thicknesses of 10--20 μm have been formed on the surface of machined polymethylpentene foam blanks. Aluminum has been vacuum deposited onto these composite mandrels to produce metal films which appear smooth and generally defect free even at 10 000 times magnification

  3. Polarized Raman spectroscopy of chemically vapour deposited diamond films

    International Nuclear Information System (INIS)

    Prawer, S.; Nugent, K.W.; Weiser, P.S.

    1994-01-01

    Polarized micro-Raman spectra of chemically vapour deposited diamond films are presented. It is shown that important parameters often extracted from the Raman spectra such as the ratio of the diamond to non-diamond component of the films and the estimation of the level of residual stress depend on the orientation of the diamond crystallites with respect to the polarization of the incident laser beam. The dependence originates from the fact that the Raman scattering from the non-diamond components in the films is almost completely depolarized whilst the scattering from the diamond components is strongly polarized. The results demonstrate the importance of taking polarization into account when attempting to use Raman spectroscopy in even a semi-quantitative fashion for the assessment of the purity, perfection and stress in CVD diamond films. 8 refs., 1 tab. 2 figs

  4. Study of hard diamond-like carbon films deposited in an inductively coupled plasma source

    International Nuclear Information System (INIS)

    Yu Shiji; Ma Tengcai

    2003-01-01

    Chemical vapor deposition of the hard diamond-like carbon (DLC) films was achieved using an inductively coupled plasma source (ICPS). The microscopy, microhardness, deposition rate and structure characteristic of the DLC films were analyzed. It is shown that the ICPS is suitable for the hard DLC film deposition at relatively low substrate negative bias voltage, and the substrate negative bias voltage greatly affects chemical vapor deposition of the DLC film and its quality

  5. Influence of the substrate on the morphological evolution of gold thin films during solid-state dewetting

    International Nuclear Information System (INIS)

    Nsimama, Patrick D.; Herz, Andreas; Wang, Dong; Schaaf, Peter

    2016-01-01

    Highlights: • Dewetting of thin gold films is faster on TiO_2 than on SiO_2. • Dewetting of thin gold films is faster on amorphous TiO_2 than on crystalline TiO_2. • The kinetics is attributed to the energy of adhesion. • The morphology of thin Au films deposited on TiO_2 substrates is different to those deposited on SiO_2 substrates. • The dewetting activation energy of Au films deposited on crystalline substrates was higher than the activation energy of Au nanofilms deposited on amorphous TiO_2 substrates. - Abstract: The evolution of electron-beam evaporated Au thin films deposited on crystalline TiO_2 (c-TiO_2) and amorphous TiO_2 (a-TiO_2) as well as amorphous SiO_2 substrates are investigated. The kinetic of dewetting is clearly dependent on the type of substrate and is faster on TiO_2 substrates than on SiO_2 substrates. This difference can result from the difference in adhesion energy. Furthermore, the kinetic of dewetting is faster on a-TiO_2 than on c-TiO_2, possibly due to the crystallization of TiO_2 during annealing induced dewetting process. The morphologies of dewetted Au films deposited on crystalline TiO_2 are characterized by branched holes. The XRD patterns of the Au films deposited on TiO_2 substrates constituted peaks from both metallic Au and anatase TiO_2. The activation energy of Au films deposited on crystalline TiO_2 substrates was higher than that that of the films deposited on amorphous TiO_2 substrates.

  6. Deposition of controllable preferred orientation silicon films on glass by inductively coupled plasma chemical vapor deposition

    International Nuclear Information System (INIS)

    Li Junshuai; Wang Jinxiao; Yin Min; Gao Pingqi; He Deyan; Chen Qiang; Li Yali; Shirai, Hajime

    2008-01-01

    An inductively coupled plasma (ICP) system with the adjustable distance between the inductance coil and substrates was designed to effectively utilize the spatial confinement of ICP discharge, and then control the gas-phase transport process. The effects of the gas phase processes on the crystallinity and preferred orientation of silicon films deposited on glass were systematically investigated. The investigation was conducted in the ICP-chemical vapor deposition process with the precursor gas of a SiH 4 /H 2 mixture at a substrate temperature of 350 deg. Highly crystallized silicon films with different preferred orientations, (111) or (220), could be selectively deposited by adjusting the SiH 4 dilution ratio [R=[SiH 4 ]/([SiH 4 ]+[H 2 ])] or total working pressure. When the total working pressure is 20 Pa, the crystallinity of the silicon films increases with the increase of the SiH 4 dilution ratio, while the preferred orientation was changed from (111) to (220). In the case of the fixed SiH 4 dilution (10%), the silicon film with I (220) /I (111) of about 3.5 and Raman crystalline fraction of about 89.6% has been deposited at 29.7 nm/min when the total working pressure was increased to 40 Pa. At the fixed SiH 4 partial pressure of 2 Pa, the film crystallinity decreases and the preferred orientation is always (111) with increasing the H 2 partial pressure from 18 to 58 Pa. Atomic force microscope reveals that the film deposited at a relatively high H 2 partial pressure has a very rough surface caused by the devastating etching of H atoms to the silicon network

  7. Titanium dioxide thin films by atomic layer deposition: a review

    Science.gov (United States)

    Niemelä, Janne-Petteri; Marin, Giovanni; Karppinen, Maarit

    2017-09-01

    Within its rich phase diagram titanium dioxide is a truly multifunctional material with a property palette that has been shown to span from dielectric to transparent-conducting characteristics, in addition to the well-known catalytic properties. At the same time down-scaling of microelectronic devices has led to an explosive growth in research on atomic layer deposition (ALD) of a wide variety of frontier thin-film materials, among which TiO2 is one of the most popular ones. In this topical review we summarize the advances in research of ALD of titanium dioxide starting from the chemistries of the over 50 different deposition routes developed for TiO2 and the resultant structural characteristics of the films. We then continue with the doped ALD-TiO2 thin films from the perspective of dielectric, transparent-conductor and photocatalytic applications. Moreover, in order to cover the latest trends in the research field, both the variously constructed TiO2 nanostructures enabled by ALD and the Ti-based hybrid inorganic-organic films grown by the emerging ALD/MLD (combined atomic/molecular layer deposition) technique are discussed.

  8. Production of selective membranes using plasma deposited nanochanneled thin films

    Directory of Open Access Journals (Sweden)

    Rodrigo Amorim Motta Carvalho

    2006-12-01

    Full Text Available The hydrolization of thin films obtained by tetraethoxysilane plasma polymerization results in the formation of a nanochanneled silicone like structure that could be useful for the production of selective membranes. Therefore, the aim of this work is to test the permeation properties of hydrolyzed thin films. The films were tested for: 1 permeation of polar organic compounds and/or water in gaseous phase and 2 permeation of salt in liquid phase. The efficiency of permeation was tested using a quartz crystal microbalance (QCM technique in gas phase and conductimetric analysis (CA in liquid phase. The substrates used were: silicon for characterization of the deposited films, piezoelectric quartz crystals for tests of selective membranes and cellophane paper for tests of permeation. QCM analysis showed that the nanochannels allow the adsorption and/or permeation of polar organic compounds, such as acetone and 2-propanol, and water. CA showed that the films allow salt permeation after an inhibition time needed for hydrolysis of the organic radicals within the film. Due to their characteristics, the films can be used for grains protection against microorganism proliferation during storage without preventing germination.

  9. Particulate generation during pulsed laser deposition of superconductor thin films

    International Nuclear Information System (INIS)

    Singh, R.K.

    1993-01-01

    The nature of evaporation/ablation characteristics during pulsed laser deposition strongly controls the quality of laser-deposited films. To understand the origin of particulates in laser deposited films, the authors have simulated the thermal history of YBa 2 Cu 3 O 7 targets under intense nanosecond laser irradiation by numerically solving the heat flow equation with appropriate boundary conditions. During planar surface evaporation of the target material, the sub-surface temperatures were calculated to be higher than the surface temperatures. While the evaporating surface of the target is constantly being cooled due to the latent heat of vaporization, subsurface superheating occurs due to the finite absorption depth of the laser beam. Sub-surface superheating was found to increase with decreasing absorption coefficient and thermal conductivity of the target, and with increasing energy density. The superheating may lead to sub-surface nucleation and growth of the gaseous phase which can expand rapidly leading to microexplosions and ''volume expulsion'' of material from the target. Experiments conducted by the authors and other research groups suggest a strong relation between degree of sub-surface superheating and particle density in laser-deposited films

  10. Deposition and consolidation of porous ceramic films for membrane separation

    DEFF Research Database (Denmark)

    Elmøe, Tobias Dokkedal; Tricoli, Antonio; Johannessen, Tue

    The deposition of porous ceramic films for membrane separation can be done by several processes such as thermophoresis [1], dip-coating [2] and spray pyrolysis [3]. Here we present a high-speed method, in which ceramic nano-particles form a porous film by filtration on top of a porous ceramic...... substrate [4]. Ceramic nano-particles are generated in a flame, using either a premixed (gas) flame, in which a metal-oxide precursor is evaporated in an N2 stream, which is combusted with methane and air, or using a flame spray pyrolysis, in which a liquid metal-oxide precursor is sprayed through a nozzle...

  11. Monocrystalline zinc oxide films grown by atomic layer deposition

    International Nuclear Information System (INIS)

    Wachnicki, L.; Krajewski, T.; Luka, G.; Witkowski, B.; Kowalski, B.; Kopalko, K.; Domagala, J.Z.; Guziewicz, M.; Godlewski, M.; Guziewicz, E.

    2010-01-01

    In the present work we report on the monocrystalline growth of (00.1) ZnO films on GaN template by the Atomic Layer Deposition technique. The ZnO films were obtained at temperature of 300 o C using dietylzinc (DEZn) as a zinc precursor and deionized water as an oxygen precursor. High resolution X-ray diffraction analysis proves that ZnO layers are monocrystalline with rocking curve FWHM of the 00.2 peak equals to 0.07 o . Low temperature photoluminescence shows a sharp and bright excitonic line with FWHM of 13 meV.

  12. Ultraviolet optical properties of aluminum fluoride thin films deposited by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Hennessy, John, E-mail: john.j.hennessy@jpl.nasa.gov; Jewell, April D.; Balasubramanian, Kunjithapatham; Nikzad, Shouleh [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109 (United States)

    2016-01-15

    Aluminum fluoride (AlF{sub 3}) is a low refractive index material with promising optical applications for ultraviolet (UV) wavelengths. An atomic layer deposition process using trimethylaluminum and anhydrous hydrogen fluoride has been developed for the deposition of AlF{sub 3} at substrate temperatures between 100 and 200 °C. This low temperature process has resulted in thin films with UV-optical properties that have been characterized by ellipsometric and reflection/transmission measurements at wavelengths down to 200 nm. The optical loss for 93 nm thick films deposited at 100 °C was measured to be less than 0.2% from visible wavelengths down to 200 nm, and additional microstructural characterization demonstrates that the films are amorphous with moderate tensile stress of 42–105 MPa as deposited on silicon substrates. X-ray photoelectron spectroscopy analysis shows no signature of residual aluminum oxide components making these films good candidates for a variety of applications at even shorter UV wavelengths.

  13. Stress in ion-beam assisted silicon dioxide and tantalum pentoxide thin films

    International Nuclear Information System (INIS)

    Sirotkina, Natalia

    2003-01-01

    Ta 2 O 5 and SiO 2 thin films, deposited at room temperature by ion-beam sputtering (IBS) and dual ion-beam sputtering (DIBS), and SiO 2 films, deposited by reactive e-beam evaporation and ion-assisted deposition, were studied. The energy (150-600 eV) and ion-to-atom arrival ratio (0.27-2.0) of assisting argon and oxygen ions were varied. Influence of deposition conditions (deposition system geometry, nature and amount of gas in the chamber, substrate cleaning and ion-assistance parameters) on films properties (stress, composition, refractive index n 500nm and extinction coefficient k 500nm ) was investigated. A scanning method, based on substrate curvature measurements by laser reflection and stress calculation using the Stoney equation, was employed. RBS showed that stoichiometric Ta 2 O 5 films contain impurities of Ar, Fe and Mo. Stoichiometric SiO 2 films also contain Ta impurity. Argon content increases with ion bombardment and, at maximum incorporation, argon bubbles are registered by TEM. XPS studies are complicated by surface contaminations and preferential sputtering. Evaporated SiO 2 films show +100 MPa stress (+ is tensile, - compressive). With 300 eV Ar + bombardment, stress changes to -200 MPa, n 500nm decreases (1.56-1.49) and k 500nm increases (1.4x10 -4 - 1.8x10 -3 ). Of all studied IBS conditions, stress in SiO 2 (-560 MPa) and Ta 2 O 5 (-350 MPa) films depends only on sputtering gas species and oxygen entry point into the chamber. With argon and oxygen bombardment stress in IBS SiO 2 films decreases to -380 MPa and below the stress measurement system resolution, respectively. While Ar + bombardment of Ta 2 O 5 films leads to increase in stress to -490 MPa, the effect of oxygen assistance depends on ion energy. The observed behaviour was related to the total recoil density. In DIBS SiO 2 and Ta 2 O 5 films n 500nm varies in the region of 1.5-1.59 and 2.13-2.20 and k 500nm is below 5.5x10 -3 and 8.5x10 -3 , respectively. The refractive index

  14. Study on the electrical properties of ITO films deposited by facing target sputter deposition

    International Nuclear Information System (INIS)

    Kim, Youn J; Jin, Su B; Kim, Sung I; Choi, Yoon S; Choi, In S; Han, Jeon G

    2009-01-01

    This study examined the mechanism for the change in the electrical properties (carrier concentration (n) and mobility (μ)) of tin-doped indium oxide (ITO) films deposited by magnetron sputtering in a confined facing magnetic field. The relationship between the carrier concentration and the mobility was significantly different from the results reported for ITO films deposited by other magnetron sputtering processes. The lowest resistivity obtained for ITO films deposited in a confined facing magnetic field at low substrate temperatures (approximately 120 0 C) was 4.26 x 10 -4 Ω cm at a power density of 3 W cm -2 . Crystalline ITO films were obtained at a low power density range from 3 to 5 W cm -2 due to the increase in the substrate temperature from 120 to 162 0 C. This contributed to the increased carrier concentration and decreased electrical resistivity. X-ray photoelectron spectroscopy revealed an increase in the concentration of the Sn 4+ states. This was attributed to the formation of a crystalline ITO film, which effectively enhanced the carrier concentration and reduced the carrier mobility.

  15. A new thin film deposition process by cathodic plasma electrolysis

    International Nuclear Information System (INIS)

    Paulmier, T.; Kiriakos, E.; Bell, J.; Fredericks, P.

    2004-01-01

    Full text: A new technique, called atmospheric pressure plasma deposition (APPD), has been developed since a few years for the deposition of carbon and DLC, Titanium or Silicon films on metal and metal alloys substrates. A high voltage (2kV) is applied in a liquid electrolytic solution between an anode and a cathode, both electrodes being cylindrical: a glow discharge is then produced and confined at the vicinity of the cathode. The physic of the plasma in the electrolytic solution near the cathode is very different form the other techniques of plasma deposition since the pressure is here close to the atmospheric pressure. We describe here the different physico-chemical processes occurring during the process. In this cathodic process, the anodic area is significantly larger than the cathode area. In a first step, the electrolytic solution is heated by Joule effect induced by the high voltage between the electrodes. Due to the high current density, the vaporization of the solution occurs near the cathode: a large amount of bubbles are produced which are stabilized at the electrode by hydrodynamic and electromagnetic forces, forming a vapour sheath. The electric field and voltage drop are then concentrated in this gas envelope, inducing the ionization of the gas and the ignition of a glow discharge at the surface of the material. This plasma induces the formation of ionized and reactive species which diffuse and are accelerated toward the cathode. These excited species are the precursors for the formation of the deposition material. At the same time, the glow discharge interacts with the electrolyte solution inducing also ionization, convection and polymerization processes in the liquid: the solution is therefore a second source of the deposition material. A wide range of films have been deposited with a thickness up to 10 micrometers. These films have been analyzed by SEM and Raman spectroscopy. The electrolytic solution has been characterized by GC-MS and the

  16. Defect studies of thin ZnO films prepared by pulsed laser deposition

    International Nuclear Information System (INIS)

    Vlček, M; Čížek, J; Procházka, I; Novotný, M; Bulíř, J; Lančok, J; Anwand, W; Brauer, G; Mosnier, J-P

    2014-01-01

    Thin ZnO films were grown by pulsed laser deposition on four different substrates: sapphire (0 0 0 1), MgO (1 0 0), fused silica and nanocrystalline synthetic diamond. Defect studies by slow positron implantation spectroscopy (SPIS) revealed significantly higher concentration of defects in the studied films when compared to a bulk ZnO single crystal. The concentration of defects in the films deposited on single crystal sapphire and MgO substrates is higher than in the films deposited on amorphous fused silica substrate and nanocrystalline synthetic diamond. Furthermore, the effect of deposition temperature on film quality was investigated in ZnO films deposited on synthetic diamond substrates. Defect studies performed by SPIS revealed that the concentration of defects firstly decreases with increasing deposition temperature, but at too high deposition temperatures it increases again. The lowest concentration of defects was found in the film deposited at 450° C.

  17. Structural and Optical Properties of Chemical Bath Deposited Silver Oxide Thin Films: Role of Deposition Time

    Directory of Open Access Journals (Sweden)

    A. C. Nwanya

    2013-01-01

    Full Text Available Silver oxide thin films were deposited on glass substrates at a temperature of 50°C by chemical bath deposition technique under different deposition times using pure AgNO3 precursor and triethanolamine as the complexing agent. The chemical analysis based on EDX technique shows the presence of Ag and O at the appropriate energy levels. The morphological features obtained from SEM showed that the AgxO structures varied as the deposition time changes. The X-ray diffraction showed the peaks of Ag2O and AgO in the structure. The direct band gap and the refractive index increased as the deposition time increased and was in the range of 1.64–1.95 eV and 1.02–2.07, respectively. The values of the band gap and refractive index obtained indicate possible applications in photovoltaic and photothermal systems.

  18. The properties of nanocomposite aluminium-silicon based thin films deposited by filtered arc deposition

    Energy Technology Data Exchange (ETDEWEB)

    Bendavid, A.; Martin, P.J.; Takikawa, H

    2002-12-02

    Thin films of aluminium silicon oxynitride have been deposited on conducting (100) silicon wafers by filtered arc deposition (FAD) under nitrogen and/or oxygen gas flow. The influence of the N{sub 2}/O{sub 2} flow ratio on the crystal structure, optical and mechanical properties has been investigated. The results of X-ray diffraction showed that the film structure comprised of an AlN crystallite with amorphous Si{sub 3}N{sub 4} and SiO{sub x}. The optical properties over the range of 350-800 nm were measured using spectroscopic ellipsometry and found to be strongly dependent on N{sub 2}/O{sub 2} flow ratio. The refractive index values of the films were measured to be in the range of 2.2-1.64 at a wavelength of 670 nm for oxygen flow range of 0-100%. The hardness of the films was found to be strongly dependent on the oxygen content in the film. The hardness range of the films was between 10 and 22 GPa and for the stress between 0.3 and 1.2 GPa.

  19. Apparatus and process for deposition of hard carbon films

    Science.gov (United States)

    Nyaiesh, Ali R.; Garwin, Edward L.

    1989-01-03

    A process and an apparatus for depositing thin, amorphous carbon films having extreme hardness on a substrate is described. An enclosed chamber maintained at less than atmospheric pressure houses the substrate and plasma producing elements. A first electrode is comprised of a cavity enclosed within an RF coil which excites the plasma. A substrate located on a second electrode is excited by radio frequency power applied to the substrate. A magnetic field confines the plasma produced by the first electrode to the area away from the walls of the chamber and focuses the plasma onto the substrate thereby yielding film deposits having higher purity and having more rapid buildup than other methods of the prior art.

  20. Pulsed laser deposition and characterization of cellulase thin films

    Science.gov (United States)

    Cicco, N.; Morone, A.; Verrastro, M.; Viggiano, V.

    2013-08-01

    Thin films of cellulase were obtained by pulsed laser deposition (PLD) on an appropriate substrate. Glycoside hydrolase cellulase has received our attention because it emerges among the antifouling enzymes (enzymes being able to remove and prevent the formation of micro-organism biofilms) used in industry and medicine field. Pressed cellulase pellets, used as target material, were ablated with pulses of a Nd-YAG laser working at wavelength of 532 nm. In this work, we evaluated the impact of PLD technique both on molecular structure and hydrolytic activity of cellulase. Characteristic chemical bonds and morphology of deposited layers were investigated by FTIR spectroscopy and SEM respectively. The hydrolytic activity of cellulase thin films was detected by a colorimetric assay.

  1. Formation of SiO2/polytetrafluoroethylene hybrid superhydrophobic coating

    International Nuclear Information System (INIS)

    Zheng Yansheng; He Yi; Qing Yongquan; Zhuo Zhihao; Mo Qian

    2012-01-01

    Highlights: ► The coating showed the water contact angle of 165° and the water sliding angle of 6°. ► The hierarchical structure with the low surface energy leads to surface superhydrophobicity. ► We demonstrated a simple yet efficient approach to preparing superhydrophobic surface. - Abstract: Superhydrophobic coating has been fabricated on the glass substrates with modified SiO 2 sol and polytetrafluoroethylene emulsion through a sol–gel process. SiO 2 sol was modified with γ-glycidoxypropyl trimethoxysilane. The coatings were characterized by water contact angle measurement, Scanning electron microscope, Fourier transform infrared spectrometry, X-ray photoelectron spectroscopy and thermal synthetic analysis. The experimental results show that coatings exhibited superhydrophobic and heat-resistant property with a water average contact angle of 156° and sliding angle of 6°, coating has a rough surface with both micro- and nanoscale structures, γ-glycidoxypropyl trimethoxysilane enhanced the hydrophobicity of the coatings. Low surface energy of polymer and special structure of the coatings were responsible for the hydrophobic of the surfaces.

  2. Interactions of atomic hydrogen with amorphous SiO2

    Science.gov (United States)

    Yue, Yunliang; Wang, Jianwei; Zhang, Yuqi; Song, Yu; Zuo, Xu

    2018-03-01

    Dozens of models are investigated by the first-principles calculations to simulate the interactions of an atomic hydrogen with a defect-free random network of amorphous SiO2 (a-SiO2) and oxygen vacancies. A wide variety of stable configurations are discovered due to the disorder of a-SiO2, and their structures, charges, magnetic moments, spin densities, and density of states are calculated. The atomic hydrogen interacts with the defect-free a-SiO2 in positively or negatively charged state, and produces the structures absent in crystalline SiO2. It passivates the neutral oxygen vacancies and generates two neutral hydrogenated E‧ centers with different Si dangling bond projections. Electron spin resonance parameters, including Fermi contacts, and g-tensors, are calculated for these centers. The atomic hydrogen interacts with the positive oxygen vacancies in dimer configuration, and generate four different positive hydrogenated defects, two of which are puckered like the Eγ‧ centers. This research helps to understand the interactions between an atomic hydrogen, and defect-free a-SiO2 and oxygen vacancies, which may generate the hydrogen-complexed defects that play a key role in the degeneration of silicon/silica-based microelectronic devices.

  3. Stability of trapped electrons in SiO2

    International Nuclear Information System (INIS)

    Fleetwood, D.M.; Winokur, P.S.; Flament, O.; Leray, J.L.

    1998-01-01

    Electron trapping near the Si/SiO 2 interface plays a crucial role in mitigating the response of MOS devices to ionizing radiation or high-field stress. These electrons offset positive charge due to trapped holes, and can be present at densities exceeding 10 12 cm -2 in the presence of a similar density of trapped positive charge. The nature of the defects that serve as hosts for trapped electrons in the near-interfacial SiO 2 is presently unknown, although there is compelling evidence that these defects are often intimately associated with trapped holes. This association is depicted most directly in the model of Lelis et al., which suggests that trapped electrons and holes occupy opposite sides of a compensated E center in SiO 2 . Charge exchange between electron traps and the Si can occur over a wide range of time scales, depending on the trap depth and location relative to the Si/SiO 2 interface. Here the authors report a detailed study of the stability of electron traps associated with trapped holes near the Si/SiO 2 interface

  4. Purity and surface roughness of vacuum deposited aluminium films

    Energy Technology Data Exchange (ETDEWEB)

    Dhere, N G; Arsenio, T P [Instituto Militar de Engenharia, Rio de Janeiro (Brazil); Patnaik, B K [Pontificia Universidade Catolica do Rio de Janeiro (Brazil). Instituto de Fisica; Assuncao, F C.R.; de Souza, A M [Pontificia Universidade Catolica do Rio de Janeiro (Brazil). Departamento de Ciencia dos Materiais e Metalurgia

    1975-04-01

    The authors studied the purity, surface roughness and grain size of vacuum-deposited aluminium films, using an intermetallic crucible and a continuous feed of pure aluminium wire. The grain size and roughness were studied by electron difraction, X-ray diffraction and the scanning electron microscope. Purity was determined by X-ray fluorescence produced by proton bombardment in the Van de Graaff accelerator and by X-ray and optical emission spectrometry.

  5. Evidence of Plasmonic Induced Photocatalytic Hydrogen Production on Pd/TiO2 Upon Deposition on Thin Films of Gold

    KAUST Repository

    Khan, M. A.

    2017-02-28

    H2-production from renewables using sunlight is probably the holy grail of modern science and technology. Among the many approaches for increasing reaction rates, by increasing light absorption, plasmonic materials are often invoked. Yet, most plasmonic metals on semiconductors are also good for Schottky barrier formation. In this work, we are presenting evidences of de-coupling the plasmonic from Schottky effects on photoreaction. To conduct this we have systematically changed the under-layer gold film thickness and associated particle size. On top of the thin film layer, we have deposited the exact amount of a prototypical Schottky-based photo-catalyst (Pd/TiO2). We found up to 4 times increase in the H2-production rate at a critical Au film thickness (8 nm-thick). Below this thickness, the plasmonic response is not too strong while above it, the PR decays in favor of the Drude absorption mode. The reaction requires the presence of both UV (to excite the semiconductor) and visible light (to excite Au particles) in order to obtain high hydrogen production, 800 µmol/gCatal.min (probably the highest direct hydrogen (not current) production rate reported on a performing catalyst). The enhancement origin is quantitatively traced to its computed electric field strength (EFS). Adding a dielectric (SiO2) in between the Au thin layer and the catalyst exponentially decreased the reaction rate and EFS, with increasing its thickness. This work indicates the possibility of making an active and stable photo-catalyst from fundamental concepts yet further progress on the structural (technological) front is needed to make a practical catalyst.Graphical abstract

  6. Spontaneous dissociation of Co2(CO8 and autocatalytic growth of Co on SiO2: A combined experimental and theoretical investigation

    Directory of Open Access Journals (Sweden)

    Kaliappan Muthukumar

    2012-07-01

    Full Text Available We present experimental results and theoretical simulations of the adsorption behavior of the metal–organic precursor Co2(CO8 on SiO2 surfaces after application of two different pretreatment steps, namely by air plasma cleaning or a focused electron beam pre-irradiation. We observe a spontaneous dissociation of the precursor molecules as well as autodeposition of cobalt on the pretreated SiO2 surfaces. We also find that the differences in metal content and relative stability of these deposits depend on the pretreatment conditions of the substrate. Transport measurements of these deposits are also presented. We are led to assume that the degree of passivation of the SiO2 surface by hydroxyl groups is an important controlling factor in the dissociation process. Our calculations of various slab settings, using dispersion-corrected density functional theory, support this assumption. We observe physisorption of the precursor molecule on a fully hydroxylated SiO2 surface (untreated surface and chemisorption on a partially hydroxylated SiO2 surface (pretreated surface with a spontaneous dissociation of the precursor molecule. In view of these calculations, we discuss the origin of this dissociation and the subsequent autocatalysis.

  7. Origin of the n -type and p -type conductivity of MoS 2 monolayers on a SiO 2 substrate

    KAUST Repository

    Dolui, Kapildeb

    2013-04-02

    Ab initio density functional theory calculations are performed to study the electronic properties of a MoS2 monolayer deposited over a SiO 2 substrate in the presence of interface impurities and defects. When MoS2 is placed on a defect-free substrate, the oxide plays an insignificant role since the conduction band top and the valence band minimum of MoS2 are located approximately in the middle of the SiO2 band gap. However, if Na impurities and O dangling bonds are introduced at the SiO2 surface, these lead to localized states, which modulate the conductivity of the MoS2 monolayer from n- to p-type. Our results show that the conductive properties of MoS2 deposited on SiO 2 are mainly determined by the detailed structure of the MoS 2/SiO2 interface, and suggest that doping the substrate can represent a viable strategy for engineering MoS2-based devices. © 2013 American Physical Society.

  8. Temperature coefficient of elastic constants of SiO2 over-layer on LiNbO3 for a temperature stable SAW device

    International Nuclear Information System (INIS)

    Tomar, Monika; Gupta, Vinay; Sreenivas, K

    2003-01-01

    The influence of sputtered SiO 2 over-layer on the SAW propagation characteristics of a 128 deg. rotated Y-cut X-propagating lithium niobate SAW filter has been studied. Experimentally measured SAW phase velocity and temperature coefficient of delay (TCD), with varying SiO 2 over-layer thickness, show a significant deviation from the theoretically calculated values using the bulk material parameters of SiO 2 . The observed deviation is attributed to the differences in the material parameters (density, elastic and dielectric constants and their temperature coefficient) of the deposited SiO 2 over-layer. The density and the dielectric constant of the deposited SiO 2 layer were determined separately, and the elastic constants and their temperature coefficients were estimated by fitting the experimental velocity and TCD data, respectively. The deviation in the dielectric constant and the density in comparison to the bulk was insignificant, and the estimated values of the elastic constants (C 11 = 0.75x10 11 N m -2 and C 44 0.225x10 11 N m -2 ) were found to be lower, and the respective temperature coefficients (5.0x10 -4 deg C -1 and 2.0x10 -4 deg C -1 ) were high in comparison to the bulk material parameters

  9. Seed-mediated photodeposition route to Ag-decorated SiO2@TiO2 microspheres with ideal core-shell structure and enhanced photocatalytic activity

    Science.gov (United States)

    Ma, Jianqi; Guo, Xiaohua; Ge, Hongguang; Tian, Guanghui; Zhang, Qiang

    2018-03-01

    Ag-decorated SiO2@TiO2 microspheres (SiO2@TiO2-Ag) with ideal core-shell structure and enhanced photocatalytic activity were successfully fabricated by combining both coating anatase TiO2 on the surface of SiO2 spheres and subsequent depositing face-centered cubic Ag nanoparticles (NPs) on the coated TiO2 surface via novel sol-gel method and Ag-seed-mediated photodeposition (PD) route, respectively. The morphology, structure, composition and optical properties of the resulting composites were characterized in detail. The results reveal that the monodisperse SiO2 spheres of ∼260 nm were covered uniformly and perfectly by the TiO2 nanoparticle coating layer with the thickness of ca. 55 nm by the novel sol-gel method. Further, homogeneously and highly dispersed Ag NPs with an average size of 8 ± 1.5 nm were strongly anchored onto the TiO2 surface in SiO2@TiO2 core-shell spheres by the modified PD process (Ag-seed-mediated PD route), whereas polydispersed Ag aggregates and detached Ag NPs were irregularly deposited over the TiO2 surface in previous works, which is the inherent problem and has not been effectively solved for depositing noble metal NPs such as Au, Ag, Pt, Pd on TiO2 surface by conventional PD method. The formation mechanism of small and uniformly dispersed Ag NPs with narrow size distribution via the modified PD method is tentatively explained by both nucleation kinetics and growth kinetics. The key reason is that the pre-deposited seeds firmly tethered on SiO2@TiO2 spheres served as nucleation sites and anchoring points for the further nucleation and subsequent growth of Ag via photoreduction of Ag+.

  10. Characterisation of magnetron sputtered SmCo5 thin films

    International Nuclear Information System (INIS)

    Wang, Y.; Sood, D.K.; Kothari

    1999-01-01

    SmCo 5 thin films were deposited using DC magnetron sputtering on single crystal silicon substrate with chromium and SiO 2 top layers. Deposition was carried out at three different substrate temperatures: room temperature, 400 deg C and 600 deg C. Films were characterised by using Rutherford Backscattering Spectroscopy (RBS), X-ray Diffraction (XRD), Secondary Ion Mass Spectrometry (SIMS) and SQUID magnetometer. RBS analysis indicated that the films have excellent stoichiometry with the Sm to Co ratio of 1:5. This analysis also showed that the films deposited or annealed at high temperatures (≥600 deg C) indicated significant inter-diffusion at the interface between the barrier layer and the film. Oxygen was found to be the major impurity in the films. XRD data indicated that the films formed 1:5 and 2:17 phases under different deposition conditions. The preliminary studies of these films using magnetic force microscopy revealed the presence of magnetic domains

  11. Film growth kinetics and electric field patterning during electrospray deposition of block copolymer thin films

    Science.gov (United States)

    Toth, Kristof; Hu, Hanqiong; Choo, Youngwoo; Loewenberg, Michael; Osuji, Chinedum

    The delivery of sub-micron droplets of dilute polymer solutions to a heated substrate by electrospray deposition (ESD) enables precisely controlled and continuous growth of block copolymer (BCP) thin films. Here we explore patterned deposition of BCP films by spatially varying the electric field at the substrate using an underlying charged grid, as well as film growth kinetics. Numerical analysis was performed to examine pattern fidelity by considering the trajectories of charged droplets during flight through imposed periodic field variations in the vicinity of the substrate. Our work uncovered an unexpected modality for improving the resolution of the patterning process via stronger field focusing through the use of a second oppositely charged grid beneath a primary focusing array, with an increase in highly localized droplet deposition on the intersecting nodes of the grid. Substrate coverage kinetics are considered for homopolymer deposition in the context of simple kinetic models incorporating temperature and molecular weight dependence of diffusivity. By contrast, film coverage kinetics for block copolymer depositions are additionally convoluted with preferential wetting and thickness-periodicity commensurability effects. NSF GRFP.

  12. Effect of Commercial SiO2 and SiO2 from rice husk ash loading on biodegradation of Poly (lactic acid) and crosslinked Poly (lactic acid)

    Science.gov (United States)

    Prapruddivongs, C.; Apichartsitporn, M.; Wongpreedee, T.

    2017-09-01

    In this work, biodegradation behavior of poly (lactic acid) (PLA) and crosslinked PLA filled with two types of SiO2, precipitated SiO2 (commercial SiO2) and SiO2 from rice husk ash, were studied. Rice husks were first treated with 2 molar hydrochloric acid (HCl) to produce high purity SiO2, before burnt in a furnace at 800°C for 6 hours. All components were melted bending by an internal mixer then hot pressed using compression molder to form tested specimens. FTIR spectra of SiO2 and PLA samples were investigated. The results showed the lack of silanol group (Si-OH) of rice husk ash after steric acid surface modification, while the addition of particles can affect the crosslinking of the PLA. For biodegradation test by evaluating total amount of carbon dioxide (CO2) evolved during 60 days incubation at a controlled temperature of 58±2°C, the results showed that the biodegradation of crosslinked PLA occurred slower than the neat PLA. However, SiO2 incorporation enhanced the degree of biodegradation In particular, introducing commercial SiO2 in PLA and crosslinked PLA tended to clearly increase the degree of biodegradation as a consequence of the more accelerated hydrolysis degradation.

  13. Superconducting niobium nitride films deposited by unbalanced magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Olaya, J.J. [Departamento de Ingenieria Mecanica y Mecatronica, Universidad Nacional de Colombia, Ciudad Universitaria, Carrera 30 Numero 45-03, Bogota (Colombia); Huerta, L. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito exterior s/n, CU Coyoacan, Mexico D.F. 04510 (Mexico); Rodil, S.E. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito exterior s/n, CU Coyoacan, Mexico D.F. 04510 (Mexico)], E-mail: ser42@iim.unam.mx; Escamilla, R. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito exterior s/n, CU Coyoacan, Mexico D.F. 04510 (Mexico)

    2008-10-01

    Niobium nitride (NbN) thin films were deposited under different configurations of the magnetic field using a magnetron sputtering system. The magnetic field configuration varied from balanced to unbalanced leading to different growth conditions and film properties. The aim of the paper was to identify correlations between deposition conditions, film properties and the electrical properties, specially the superconductive critical temperature (T{sub C}). The results suggested that there is a critical deposition condition, having an optimum ion-atom arrival ratio that promotes a well ordered and textured nanocrystalline structure (cubic phase) with the minimum residual stress and only under this condition a high critical temperature (16K) was obtained. Lower T{sub C} values around 12K were obtained for the NbN samples having a lower degree of structural perfection and texture, and a larger fraction of intergranular voids. On the other hand, analysis of valence-band spectra showed that the contribution of the Nb 4d states remained essentially constant while the higher T{sub C} was correlated to a higher contribution of the N 2p states.

  14. Superconducting niobium nitride films deposited by unbalanced magnetron sputtering

    International Nuclear Information System (INIS)

    Olaya, J.J.; Huerta, L.; Rodil, S.E.; Escamilla, R.

    2008-01-01

    Niobium nitride (NbN) thin films were deposited under different configurations of the magnetic field using a magnetron sputtering system. The magnetic field configuration varied from balanced to unbalanced leading to different growth conditions and film properties. The aim of the paper was to identify correlations between deposition conditions, film properties and the electrical properties, specially the superconductive critical temperature (T C ). The results suggested that there is a critical deposition condition, having an optimum ion-atom arrival ratio that promotes a well ordered and textured nanocrystalline structure (cubic phase) with the minimum residual stress and only under this condition a high critical temperature (16K) was obtained. Lower T C values around 12K were obtained for the NbN samples having a lower degree of structural perfection and texture, and a larger fraction of intergranular voids. On the other hand, analysis of valence-band spectra showed that the contribution of the Nb 4d states remained essentially constant while the higher T C was correlated to a higher contribution of the N 2p states

  15. Supercritical fluid molecular spray film deposition and powder formation

    Science.gov (United States)

    Smith, Richard D.

    1986-01-01

    Solid films are deposited, or fine powders formed, by dissolving a solid material into a supercritical fluid solution at an elevated pressure and then rapidly expanding the solution through a short orifice into a region of relatively low pressure. This produces a molecular spray which is directed against a substrate to deposit a solid thin film thereon, or discharged into a collection chamber to collect a fine powder. Upon expansion and supersonic interaction with background gases in the low pressure region, any clusters of solvent are broken up and the solvent is vaporized and pumped away. Solute concentration in the solution is varied primarily by varying solution pressure to determine, together with flow rate, the rate of deposition and to control in part whether a film or powder is produced and the granularity of each. Solvent clustering and solute nucleation are controlled by manipulating the rate of expansion of the solution and the pressure of the lower pressure region. Solution and low pressure region temperatures are also controlled.

  16. Thermoluminescence of Zn O thin films deposited by chemical bath

    International Nuclear Information System (INIS)

    Camacho A, M. C.; Cruz V, C.; Bernal H, R.; Berman M, D.; Castano M, V. M.

    2015-10-01

    Full text: Zn O films on Si were synthesized using a deposition method by chemical bath and thermally treated at 900 degrees C for 12 h in air. The morphological characterization by scanning electron microscopy reveals that uniform films were obtained. To investigate the thermoluminescent properties of the films were exposed to irradiation with beta particles with doses in the range from 0.5 to 128 Gy. The brightness curves obtained using a heating rate of 5 degrees C have two peaks, one at 124 and another at 270 degrees C, and a linear dependence of the integrated thermoluminescence as a function of dose. The second maximum reveals the existence of localized trapping states of potential utility in thermoluminescent dosimetry. (Author)

  17. Atomic layer deposition of superparamagnetic and ferrimagnetic magnetite thin films

    International Nuclear Information System (INIS)

    Zhang, Yijun; Liu, Ming; Ren, Wei; Zhang, Yuepeng; Chen, Xing; Ye, Zuo-Guang

    2015-01-01

    One of the key challenges in realizing superparamagnetism in magnetic thin films lies in finding a low-energy growth way to create sufficiently small grains and magnetic domains which allow the magnetization to randomly and rapidly reverse. In this work, well-defined superparamagnetic and ferrimagnetic Fe 3 O 4 thin films are successfully prepared using atomic layer deposition technique by finely controlling the growth condition and post-annealing process. As-grown Fe 3 O 4 thin films exhibit a conformal surface and poly-crystalline nature with an average grain size of 7 nm, resulting in a superparamagnetic behavior with a blocking temperature of 210 K. After post-annealing in H 2 /Ar at 400 °C, the as-grown α−Fe 2 O 3 sample is reduced to Fe 3 O 4 phase, exhibiting a ferrimagnetic ordering and distinct magnetic shape anisotropy. Atomic layer deposition of magnetite thin films with well-controlled morphology and magnetic properties provides great opportunities for integrating with other order parameters to realize magnetic nano-devices with potential applications in spintronics, electronics, and bio-applications

  18. The application of Cu/SiO2 catalytic system in chemical mechanical planarization based on the stability of SiO2 sol

    International Nuclear Information System (INIS)

    Li Yan; Liu Yuling; Wang Aochen; Yang Zhixin; Sun Mingbin; Cheng Chuan; Zhang Yufeng; Zhang Nannan

    2014-01-01

    There is a lot of hydroxyl on the surface of nano SiO 2 sol used as an abrasive in the chemical mechanical planarization (CMP) process, and the chemical reaction activity of the hydroxyl is very strong due to the nano effect. In addition to providing a mechanical polishing effect, SiO 2 sol is also directly involved in the chemical reaction. The stability of SiO 2 sol was characterized through particle size distribution, zeta potential, viscosity, surface charge and other parameters in order to ensure that the chemical reaction rate in the CMP process, and the surface state of the copper film after CMP was not affected by the SiO 2 sol. Polarization curves and corrosion potential of different concentrations of SiO 2 sol showed that trace SiO 2 sol can effectively weaken the passivation film thickness. In other words, SiO 2 sol accelerated the decomposition rate of passive film. It was confirmed that the SiO 2 sol as reactant had been involved in the CMP process of copper film as reactant by the effect of trace SiO 2 sol on the removal rate of copper film in the CMP process under different conditions. In the CMP process, a small amount of SiO 2 sol can drastically alter the chemical reaction rate of the copper film, therefore, the possibility that Cu/SiO 2 as a catalytic system catalytically accelerated the chemical reaction in the CMP process was proposed. According to the van't Hoff isotherm formula and the characteristics of a catalyst which only changes the chemical reaction rate with out changing the total reaction standard Gibbs free energy, factors affecting the Cu/SiO 2 catalytic reaction were derived from the decomposition rate of Cu (OH) 2 and the pH value of the system, and then it was concluded that the CuSiO 3 as intermediates of Cu/SiO 2 catalytic reaction accelerated the chemical reaction rate in the CMP process. It was confirmed that the Cu/SiO 2 catalytic system generated the intermediate of the catalytic reaction (CuSiO 3 ) in the CMP process

  19. Electronic states of SiO2-MxOy (MxOy=P205, TiO2 and ZrO2) glasses

    Energy Technology Data Exchange (ETDEWEB)

    Kowada, Y [Hyogo Univ. of Teacher Education, Hyogo (Japan); Adachi, H [Kyoto Univ. (Japan). Faculty of Engineering; Minami, T [Univ. of Osaka Prefecture, Osaka (Japan). Faculty of Engineering

    1993-12-01

    Using the sol-gel method the surface of metal and glass substrates can be modified. For example, stainless steel sheets coated with the SiO2-ZrO2 glass films have higher resistance to corrosion and oxidation. The coating films contain high concentration of alkali ions diffusing from the glass substrates. It suggests that the sodium ions are trapped strongly within the coating films and are blocked to further diffuse to the surface. This behavior must be associated with the chemical bonding around the sodium ions in the SiO2-TiO2 and SiO2-ZrO2 films. For better understanding of the chemical bonding in the glasses, the electronic states of the SiO2-MxOy glasses were calculated by means of the DV-Xa cluster method. In this paper, the calculation method is explained, the results are discussed and the conclusion is stated. 17 refs., 6 figs.

  20. Studies on thin film materials on acrylics for optical applications

    Indian Academy of Sciences (India)

    Unknown

    single layer films of MgF2 and SiO2 have good optical transmittance ... increased from 76°C to 108°C during a period of 12 min of deposition. ... the film to PMMA substrate is also good. The difference ... We tried a 4-layer coating of design, consisting of Sub. .... Coating Materials brochure of E Merck, Germany 1998 and of.

  1. Do SiO 2 and carbon-doped SiO 2 nanoparticles melt? Insights from QM/MD simulations and ramifications regarding carbon nanotube growth

    Science.gov (United States)

    Page, Alister J.; Chandrakumar, K. R. S.; Irle, Stephan; Morokuma, Keiji

    2011-05-01

    Quantum chemical molecular dynamics (QM/MD) simulations of pristine and carbon-doped SiO 2 nanoparticles have been performed between 1000 and 3000 K. At temperatures above 1600 K, pristine nanoparticle SiO 2 decomposes rapidly, primarily forming SiO. Similarly, carbon-doped nanoparticle SiO 2 decomposes at temperatures above 2000 K, primarily forming SiO and CO. Analysis of the physical states of these pristine and carbon-doped SiO 2 nanoparticles indicate that they remain in the solid phase throughout decomposition. This process is therefore one of sublimation, as the liquid phase is never entered. Ramifications of these observations with respect to presently debated mechanisms of carbon nanotube growth on SiO 2 nanoparticles will be discussed.

  2. Ellipsometric study of nanostructured carbon films deposited by pulsed laser deposition

    International Nuclear Information System (INIS)

    Bereznai, M.; Budai, J.; Hanyecz, I.; Kopniczky, J.; Veres, M.; Koos, M.; Toth, Z.

    2011-01-01

    When depositing carbon films by plasma processes the resulting structure and bonding nature strongly depends on the plasma energy and background gas pressure. To produce different energy plasma, glassy carbon targets were ablated by laser pulses of different excimer lasers: KrF (248 nm) and ArF (193 nm). To modify plume characteristics argon atmosphere was applied. The laser plume was directed onto Si substrates, where the films were grown. To evaluate ellipsometric measurements first a combination of the Tauc-Lorentz oscillator and the Sellmeier formula (TL/S) was applied. Effective Medium Approximation models were also used to investigate film properties. Applying argon pressures above 10 Pa the deposits became nanostructured as indicated by high resolution scanning electron microscopy. Above ∼ 100 and ∼ 20 Pa films could not be deposited by KrF and ArF laser, respectively. Our ellipsometric investigations showed, that with increasing pressure the maximal refractive index of both series decreased, while the optical band gap starts with a decrease, but shows a non monotonous course. Correlation between the size of the nanostructures, bonding structure, which was followed by Raman spectroscopy and optical properties were also investigated.

  3. Transport Properties of LCMO Granular Films Deposited by the Pulsed Electron Deposition Technique

    Institute of Scientific and Technical Information of China (English)

    CHEN Leiming; XU Bin; ZHANG Yan; CHEN Zhenping

    2011-01-01

    By finely controlling the deposition parameters in the pulsed electron deposition process,granular La2/3Ca1/3MnO3 (LCMO) film was grown on silicon substrates.The substrate temperature,ambient pressure in the deposition chamber and acceleration potential for the electron beam were all found to affect the grain size of the film,resulting in different morphologies of the samples.Transport properties of the obtained granular films,especially the magnetoresistance (MR),were studied.Prominent low-field MR was observed in all samples,indicating the forming of grain boundaries in the sample.The low-field MR show great sensitive to the morphology evolution,which reaches the highest value of about 40% for the sample with the grain size of about 250 nm.More interestingly,positive-MR (p-MR) was also detected above 300 K when low magnetic field applying,whereas it disappeared with higher magnetic field applied up to 1.5 and 2 Tesla.Instead of the spinpolarized tunneling process being commonly regarded as a responsible reason,lattice mismatch between LCMO film and silicon substrate appears to be the origin of the p-MR

  4. Deposition and Tribological Properties of Sulfur-Doped DLC Films Deposited by PBII Method

    Directory of Open Access Journals (Sweden)

    Nutthanun Moolsradoo

    2010-01-01

    Full Text Available Sulfur-doped diamond-like carbon films (S-DLC fabricated from C2H2 and SF6 mixtures were used to study the effects of sulfur content and negative pulse bias voltage on the deposition and tribological properties of films prepared by plasma-based ion implantation (PBII. The structure and relative concentration of the films were analyzed by Raman spectroscopy and Auger electron spectroscopy. Hardness and elastic modulus of films were measured by nanoindentation hardness testing. Tribological characteristics of films were performed using a ball-on-disk friction tester. The results indicate that with the increasing sulfur content, the hardness and elastic modulus decrease. Additionally, by changing the negative pulse bias voltage from 0 kV to −5 kV, the hardness and elastic modulus increase, while the friction coefficient and specific wear rate tends to decrease. Moreover, at a negative pulse bias voltage of −5 kV and flow-rate ratio of 1 : 2, there is considerable improvement in friction coefficient of 0.05 under ambient air is due to the formation of a transfer films on the interface. The decrease in the friction coefficient of films doped with 4.9 at.% sulfur is greater under high vacuum (0.03 than under ambient air (>0.1.

  5. Silicon electrodeposition from chloride-fluoride melts containing K2SiF6 and SiO2

    Directory of Open Access Journals (Sweden)

    Zhuk Sergey I.

    2017-01-01

    Full Text Available Silicon electrodeposition on glassy carbon from the KF-KCl-K2SiF6, KF-KCl-K2SiF6-KOH and KF-KCl-K2SiF6-SiO2 melts was studied by the cyclic voltammetry. Тhe electroreduction of Si(IV to metallic Si was observed as a single 4-electron wave under all considered conditions. The reactions of cathode reduction of silicon from fluoride and oxyfluoride complexes were suggested. It was shown that the process can be controlled by the preliminary transformation of SiO44- to SiF62- and SiOxFyz-. The influence of the current density on structure and morphology of silicon deposits obtained during galvanostatic electrolysis of the KF-KCl-K2SiF6-SiO2 melt was studied.

  6. Incorporation of sol-gel SnO2:Sb into nanoporous SiO2

    International Nuclear Information System (INIS)

    Canut, B.; Blanchin, M.G.; Ramos-Canut, S.; Teodorescu, V.; Toulemonde, M.

    2006-01-01

    Silicon oxide films thermally grown on Si(1 0 0) wafers were irradiated with 200 MeV 197 Au ions in the 10 9 -10 1 cm -2 fluence range. The targets were then etched at room temperature in aqueous HF solution (1 vol.%) for various durations. Atomic force microscopy (AFM) in the tapping mode was used to probe the processed surfaces. Conical holes with a low size dispersion were evidenced. Their surface diameter varies between 20 and 70 nm, depending on the etching time. Sol-gel dip coating technique, associated with a further annealing treatment performed at 500 o C for 15 min, was used to fill the nanopores created in SiO 2 with a transparent conductive oxide (SnO 2 doped with antimony). Transmission electron microscopy (TEM) performed on cross-sectional specimen showed that SnO 2 :Sb crystallites of ∼5 nm mean size are trapped in the holes without degrading their geometry

  7. Growth modes of pentacene films obtained by pulsed laser deposition

    International Nuclear Information System (INIS)

    Wisz, G.; Kuzma, M.; Virt, I.; Sagan, P.; Rudyj, I.

    2011-01-01

    Thin pentacene films were deposited on KCl and ITO/glass substrates by the pulsed laser deposition method (PLD) using a YAG:Nd 3+ laser with a second harmonic (λ = 532 nm). We compared the structure of the layer on differently oriented substrates with respect to the pentacene plasma plume - vertical and parallel orientation. The structure of the layers formed was examined using SEM, RHEED and THEED methods. The lattice parameters of the layer deposited on KCl were determined from THEED pattern (a = 5.928 A, b 7.874 A, c = 14,98 A, α = 76.54 o , β 75.17 o , γ = 89.20 o ). The preferred direction [11-bar 0] of the layer growth on KCl substrate was addressed. The effect of the substrate orientation results in a different growth mode of the layers.

  8. Organic Photovoltaic Devices Based on Oriented n-Type Molecular Films Deposited on Oriented Polythiophene Films.

    Science.gov (United States)

    Mizokuro, Toshiko; Tanigaki, Nobutaka; Miyadera, Tetsuhiko; Shibata, Yousei; Koganezawa, Tomoyuki

    2018-04-01

    The molecular orientation of π-conjugated molecules has been reported to significantly affect the performance of organic photovoltaic devices (OPVs) based on molecular films. Hence, the control of molecular orientation is a key issue toward the improvement of OPV performance. In this research, oriented thin films of an n-type molecule, 3,4,9,10-Perylenetetracarboxylic Bisbenzimida-zole (PTCBI), were formed by deposition on in-plane oriented polythiophene (PT) films. Orientation of the PTCBI films was evaluated by polarized UV-vis spectroscopy and 2D-Grazing incidence X-ray diffraction. Results indicated that PTCBI molecules on PT film exhibit nearly edge-on and in-plane orientation (with molecular long axis along the substrate), whereas PTCBI molecules without PT film exhibit neither. OPVs composed of PTCBI molecular film with and without PT were fabricated and evaluated for correlation of orientation with performance. The OPVs composed of PTCBI film with PT showed higher power conversion efficiency (PCE) than that of film without PT. The experiment indicated that in-plane orientation of PTCBI molecules absorbs incident light more efficiently, leading to increase in PCE.

  9. Morphology evolution in spinel manganite films deposited from an aqueous solution

    International Nuclear Information System (INIS)

    Ko, Song Won; Li, Jing; Trolier-McKinstry, Susan

    2012-01-01

    Spinel manganite films were deposited by the spin spray technique at low deposition temperatures ( 1000, agglomeration of small particles was dominant, which suggests that homogeneous nucleation is dominant during deposition. Heterogeneous nucleation was critical to obtain dense films. - Highlights: ► Film microstructure depends on supersaturation. ► Heterogeneous nucleation induces dense and continuous films. ► The spin spray technique enables use of a variety of substrates.

  10. P-type thin films transistors with solution-deposited lead sulfide films as semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Carrillo-Castillo, A.; Salas-Villasenor, A.; Mejia, I. [Department of Materials Science and Engineering, The University of Texas at Dallas. 800 West Campbell Rd, Richardson, TX 75083 (United States); Aguirre-Tostado, S. [Centro de Investigacion en Materiales Avanzados, S. C. Alianza Norte 202, Parque de Investigacion e Innovacion Tecnologica, Apodaca, Nuevo Leon, C.P. 666000 (Mexico); Gnade, B.E. [Department of Materials Science and Engineering, University of Texas at Dallas. 800 West Campbell Rd, Richardson, TX 75083 (United States); Quevedo-Lopez, M.A., E-mail: mxq071000@utdallas.edu [Department of Materials Science and Engineering, University of Texas at Dallas. 800 West Campbell Rd, Richardson, TX 75083 (United States)

    2012-01-31

    In this paper we demonstrate p-type thin film transistors fabricated with lead sulfide (PbS) as semiconductor deposited by chemical bath deposition methods. Crystallinity and morphology of the resulting PbS films were characterized using X-ray diffraction, atomic force microscopy and scanning electron microscopy. Devices were fabricated using photolithographic processes in a bottom gate configuration with Au as source and drain top contacts. Field effect mobility for as-fabricated devices was {approx} 0.09 cm{sup 2} V{sup -1} s{sup -1} whereas the mobility for devices annealed at 150 Degree-Sign C/h in forming gas increased up to {approx} 0.14 cm{sup 2} V{sup -1} s{sup -1}. Besides the thermal annealing, the entire fabrications process was maintained below 100 Degree-Sign C. The electrical performance of the PbS-thin film transistors was studied before and after the 150 Degree-Sign C anneal as well as a function of the PbS active layer thicknesses. - Highlights: Black-Right-Pointing-Pointer Thin film transistors with PbS as semiconductor deposited by chemical bath deposition. Black-Right-Pointing-Pointer Photolithography-based thin film transistors with PbS films at low temperatures. Black-Right-Pointing-Pointer Electron mobility for anneal-PbS devices of {approx} 0.14 cm{sup 2} V{sup -1} s{sup -1}. Black-Right-Pointing-Pointer Highest mobility reported in thin film transistors with PbS as the semiconductor.

  11. Effects of deposition period on the chemical bath deposited Cu4SnS4 thin films

    International Nuclear Information System (INIS)

    Kassim, Anuar; Wee Tee, Tan; Soon Min, Ho.; Nagalingam, Saravanan

    2010-01-01

    Cu 4 SnS 4 thin films were prepared by simple chemical bath deposition technique. The influence of deposition period on the structural, morphological and optical properties of films was studied. The films were characterized using X-ray diffraction, atomic force microscopy and UV-Vis Spectrophotometer. X-ray diffraction patterns indicated that the films were polycrystalline with prominent peak attributed to (221) plane of orthorhombic crystal structure. The films prepared at 80 min showed significant increased in the intensity of all diffractions. According to AFM images, these films indicated that the surface of substrate was covered completely. The obtained films also produced higher absorption characteristics when compared to the films prepared at other deposition periods based on optical absorption studies. The band gap values of films deposited at different deposition periods were in the range of 1.6-2.1 eV. Deposition for 80 min was found to be the optimum condition to produce good quality thin films under the current conditions. (author).

  12. Scratch resistance of SiO2 and SiO2 - ZrO2 sol-gel coatings on glass-ceramic obtained by sintering

    International Nuclear Information System (INIS)

    Soares, V. O.; Soares, P.; Peitl, O.; Zanotto, E. D.; Duran, A.; Castro, Y.

    2013-01-01

    The sol-gel process is widely used to obtain coatings on glass-ceramic substrates in order to improve the scratch and abrasion resistance, also providing a bright and homogeneous appearance of a glaze avoiding expensive final polishing treatments. This paper describes the preparation of silica and silica / zirconia coatings by sol-gel method on Li 2 O-Al 2 O3-SiO 2 (LAS) glassceramic substrates produced by sintering. The coatings were deposited by dip-coating on LAS substrates and characterized by optical microscopy and spectral ellipsometry. On the other hand, hardness and elastic modulus, coefficient of friction and abrasion and scratch resistance of the coatings were determined and compared with the substrate properties. Coatings deposited on LAS glass-ceramic confere the substrate a bright and homogeneous aspect, similar to a glaze, improving the appearance and avoiding the final polishing. However these coatings do not increase the scratch resistance of the substrate only equaling the properties of the glass-ceramic. (Author)

  13. Crystal structures of sol-gel deposited zirconia thin films

    International Nuclear Information System (INIS)

    Bell, J.M.; Cheary, R.W.; Rice, M.; Ben-Nissan, B.; Cocking, J.L.; Johnstone, G.R.

    1992-01-01

    The authors reports on the crystal structure of zirconia thin films by high temperature x-ray diffraction. The films were deposited by sol-gel processing onto polished stainless steel substrates, and dried at 200 deg C. X-ray diffraction at temperatures between 400 deg C and 800 deg C was carried out using an APEX diffractometer with a position sensitive detector. Previous results indicated that there was a transformation between the tetragonal phase and the monoclinic phase at approximately 770 deg C. Two experiments have been carried out: temperature runs, where the structure evolution is studied as a function of temperature; and time evolution of the structure at fixed temperatures. The results for both experiments, including structural analysis of the different phases found in the thin zirconia films and an analysis of the kinetics of the phase transformation(s) from the time evolution work are presented. This will include a comparison with theories of nucleation and crystallisation in single element films. Impurity phases introduced by interaction of the zirconia with the substrate have been observed, and the effect of increasing annealing time on the substrate-film interaction will also be discussed. 17 refs., 1 tab., 3 figs

  14. Deposition of yttrium oxysulfide thin films by atomic layer epitaxy

    International Nuclear Information System (INIS)

    Kukli, K.; University of Tartu, Tartu,; Johansson, L-S.; Nykaenen, E.; Peussa, M.; Ninistoe, L.

    1998-01-01

    Full text: Yttrium oxysulfide is a highly interesting material for optoelectronic applications. It is industrially exploited in the form of doped powder in catholuminescent phosphors, e.g. Y 2 O 2 S: Eu 3+ for colour TV. Attempts to grow thin films of Y 2 O 2 S have not been frequent and only partially successful due to the difficulties in obtaining crystalline films at a reasonable temperature. Furthermore, sputtering easily leads to a sulphur deficiency. Evaporation of the elements from a multi-source offers a better control of the stoichiometry resulting in hexagonal (0002) oriented films at 580 deg C. In this paper we present the first successful thin film growth experiments using a chemical process with molecular precursors. Atomic layer epitaxy (ALE) allows the use of a relatively low deposition temperature and thus compatibility with other technologies. Already at 425 deg C the reaction between H 2 S and Y(thd) 3 (thd = 2,2,6,6 - tetramethyl-heptane-3,5- dione) yields a crystalline Y 2 O 2 S thin film which was characterized by XRD, XRF and XPS

  15. Short review on chemical bath deposition of thin film and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Mugle, Dhananjay, E-mail: dhananjayforu@gmail.com; Jadhav, Ghanshyam, E-mail: ghjadhav@rediffmail.com [Depertment of Physics, Shri Chhatrapati Shivaji College, Omerga-413606 (India)

    2016-05-06

    This reviews the theory of early growth of the thin film using chemical deposition methods. In particular, it critically reviews the chemical bath deposition (CBD) method for preparation of thin films. The different techniques used for characterizations of the chemically films such as X-ray diffractometer (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Electrical conductivity and Energy Dispersive Spectroscopy (EDS) are discussed. Survey shows the physical and chemical properties solely depend upon the time of deposition, temperature of deposition.

  16. Vacuum deposition and pulsed modification of Ge thin films on Si. Structure and photoluminescence

    International Nuclear Information System (INIS)

    Batalov, R.I.; Bayazitov, R.M.; Novikov, G.A.; Shustov, V.A.; Bizyaev, D.A.; Gajduk, P.I.; Ivlev, G.D.; Prokop'ev, S.L.

    2013-01-01

    Vacuum deposition of Ge thin films onto Si substrates by magnetron sputtering was studied. During deposition sputtering time and substrate temperature were varied. Nanosecond pulsed annealing of deposited films by powerful laser or ion beams was performed. The dependence of the structure and optical properties of Ge/Si films on parameters of pulsed treatments was investigated. Optimum parameters of deposition and pulsed treatments resulting into light emitting monocrystalline Ge/Si layers are determined. (authors)

  17. Sputter deposition of tantalum-nitride films on copper using an rf-plasma

    International Nuclear Information System (INIS)

    Walter, K.C.; Fetherston, R.P.; Sridharan, K.; Chen, A.; Shamim, M.M.; Conrad, J.R.

    1994-01-01

    A tantalum-nitride film was successfully deposited at ambient temperature on copper with a modified ion-assisted-deposition (IAD) technique. The process uses an argon and nitrogen plasma to sputter deposit from a tantalum rf-cathode and ion implant the deposited film simultaneously. Both argon and nitrogen ions are used for sputtering and ion implantation. Auger spectroscopy and x-ray diffraction were used to characterize the resulting film

  18. The Effects of Two Thick Film Deposition Methods on Tin Dioxide Gas Sensor Performance

    OpenAIRE

    Bakrania, Smitesh D.; Wooldridge, Margaret S.

    2009-01-01

    This work demonstrates the variability in performance between SnO2 thick film gas sensors prepared using two types of film deposition methods. SnO2 powders were deposited on sensor platforms with and without the use of binders. Three commonly utilized binder recipes were investigated, and a new binder-less deposition procedure was developed and characterized. The binder recipes yielded sensors with poor film uniformity and poor structural integrity, compared to the binder-less deposition meth...

  19. Optimum deposition, structure, and properties of tantalum oxide films

    International Nuclear Information System (INIS)

    Lin, Y.C.

    1985-01-01

    Amorphous, ductile, and uniform Ta 2 O 5 films that acted as diffusion barriers were developed by sputter depositing Ta metal on Al single crystals (99.99%) and subsequently anodizing these thin films. The morphology, microstructure, composition and properties were characterized by scanning and transmission electron microscopy, surface and Fourier transform infrared spectroscopy, X-ray diffraction, and fluorescence. Superior corrosion resistance in a water saturated Cl 2 atmosphere was provided by Ta 2 O 5 coating on Al single crystal substrates but not on Al alloys. The strong Ta-O bond, the non-porous nature of the film and good adhesion to the substrate are attributed to the outstanding corrosion resistance of these oxide coatings. Al alloy surfaces are not protected, since the anodic film formed over grain boundaries, processing lines and emergent precipitates is poorly adherent, thus providing loci for corrosion. These problems were eliminated by casting a 400 A layer of tantalum oxyhydroxide polymer from ethanol solution onto Al substrate and curing to a Ta 2 O 5 layer that effectively resisted attack by wet Cl 2 . The mechanical properties of Ta 2 O 5 films on Al alloys were studied at various pH's by in-situ fatigue loading coupled with electrochemical measurements of corrosion potential and corrosion current. These results indicate the fatigue resistance of this oxide film effectively protects the underlying metal from strong HCl solution attack. The very unusual ductility and high corrosion resistance of Ta 2 O 5 films could be related to the graphite-like structure that exists in the amorphous state of this oxide

  20. Roughness evolution in Ga doped ZnO films deposited by pulsed laser deposition

    International Nuclear Information System (INIS)

    Liu Yunyan; Cheng Chuanfu; Yang Shanying; Song Hongsheng; Wei Gongxiang; Xue Chengshan; Wang Yongzai

    2011-01-01

    We analyze the morphology evolution of the Ga doped ZnO(GZO) films deposited on quartz substrates by a laser deposition system. The surface morphologies of the film samples grown with different times are measured by the atomic force microscope, and they are analyzed quantitatively by using the image data. In the initial stage of the growth time shorter than 8 min, our analysis shows that the GZO surface morphologies are influenced by such factors as the random fluctuations, the smoothening effects in the deposition, the lateral strain and the substrate. The interface width uw(t) and the lateral correlation length ξ(t) at first decrease with deposition time t. For the growth time larger than 8 min, w(t) and ξ(t) increase with time and it indicates the roughening of the surface and the surface morphology exhibits the fractal characteristics. By fitting data of the roughness w(t) versus deposition time t larger than 4 min to the power-law function, we obtain the growth exponent β is 0.3; and by the height-height correlation functions of the samples to that of the self-affine fractal model, we obtain the value of roughness exponent α about 0.84 for all samples with different growth time t.