WorldWideScience

Sample records for sinusoidal excitation signals

  1. Encryption in Chaotic Systems with Sinusoidal Excitations

    Directory of Open Access Journals (Sweden)

    G. Obregón-Pulido

    2014-01-01

    Full Text Available In this contribution an encryption method using a chaotic oscillator, excited by “n” sinusoidal signals, is presented. The chaotic oscillator is excited by a sum of “n” sinusoidal signals and a message. The objective is to encrypt such a message using the chaotic behavior and transmit it, and, as the chaotic system is perturbed by the sinusoidal signal, the transmission security could be increased due to the effect of such a perturbation. The procedure is based on the regulation theory and consider that the receiver knows the frequencies of the perturbing signal, with this considerations the algorithm estimates the excitation in such a way that the receiver can cancel out the perturbation and all the undesirable dynamics in order to produce only the message. In this way we consider that the security level is increased.

  2. Sinusoidal Representation of Acoustic Signals

    Science.gov (United States)

    Honda, Masaaki

    Sinusoidal representation of acoustic signals has been an important tool in speech and music processing like signal analysis, synthesis and time scale or pitch modifications. It can be applicable to arbitrary signals, which is an important advantage over other signal representations like physical modeling of acoustic signals. In sinusoidal representation, acoustic signals are composed as sums of sinusoid (sine wave) with different amplitudes, frequencies and phases, which is based on the timedependent short-time Fourier transform (STFT). This article describes the principles of acoustic signal analysis/synthesis based on a sinusoid representation with focus on sine waves with rapidly varying frequency.

  3. Amplitude Modulated Sinusoidal Signal Decomposition for Audio Coding

    DEFF Research Database (Denmark)

    Christensen, M. G.; Jacobson, A.; Andersen, S. V.

    2006-01-01

    In this paper, we present a decomposition for sinusoidal coding of audio, based on an amplitude modulation of sinusoids via a linear combination of arbitrary basis vectors. The proposed method, which incorporates a perceptual distortion measure, is based on a relaxation of a nonlinear least......-squares minimization. Rate-distortion curves and listening tests show that, compared to a constant-amplitude sinusoidal coder, the proposed decomposition offers perceptually significant improvements in critical transient signals....

  4. Asymptotic Theory of the Least Squares Estimators of Sinusoidal Signal

    National Research Council Canada - National Science Library

    Kundu, Debasis

    1997-01-01

    ... normality are derived for the sinusoidal signal under the assumption of normal error (Kundu; 1993) and under the assumptions of independent and identically distributed random variables in Kundu and Mitra...

  5. CNNs for sinusoidal signal recognition in hearing rehabilitation

    Science.gov (United States)

    Carnimeo, Leonarda; Giaquinto, Antonio

    2003-04-01

    In this paper, a contribution is given to provide a tool to the recognition of sinusoidal signals with a particular reference to the field of pediatric hearing rehabilitation. To this purpose, a synthesis technique previously developed by the authors' is used to design a Cellular Neural Network for an Associative Memory able to compare submitted discrete-time sinusoidal signals with memorized ones. A robustness analysis of the synthesized associative memory is also developed both for noisy inputs and for parameter variations. Simulation results are then reported to illustrate the performances of the designed network.

  6. Removal of Stationary Sinusoidal Noise from Random Vibration Signals.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Brian; Cap, Jerome S.

    2018-02-01

    In random vibration environments, sinusoidal line noise may appear in the vibration signal and can affect analysis of the resulting data. We studied two methods which remove stationary sine tones from random noise: a matrix inversion algorithm and a chirp-z transform algorithm. In addition, we developed new methods to determine the frequency of the tonal noise. The results show that both of the removal methods can eliminate sine tones in prefabricated random vibration data when the sine-to-random ratio is at least 0.25. For smaller ratios down to 0.02 only the matrix inversion technique can remove the tones, but the metrics to evaluate its effectiveness also degrade. We also found that using fast Fourier transforms best identified the tonal noise, and determined that band-pass-filtering the signals prior to the process improved sine removal. When applied to actual vibration test data, the methods were not as effective at removing harmonic tones, which we believe to be a result of mixed-phase sinusoidal noise.

  7. Measurement of definite integral of sinusoidal signal absolute value third power using digital stochastic method

    Directory of Open Access Journals (Sweden)

    Beljić Željko

    2017-01-01

    Full Text Available In this paper a special case of digital stochastic measurement of the third power of definite integral of sinusoidal signal’s absolute value, using 2-bit AD converters is presented. This case of digital stochastic method had emerged from the need to measure power and energy of the wind. Power and energy are proportional to the third power of wind speed. Anemometer output signal is sinusoidal. Therefore an integral of the third power of sinusoidal signal is zero. Two approaches are proposed for the third power calculation of the wind speed signal. One approach is to use absolute value of sinusoidal signal (before AD conversion for which there is no need of multiplier hardware change. The second approach requires small multiplier hardware change, but input signal remains unchanged. For the second approach proposed minimal hardware change was made to calculate absolute value of the result after AD conversion. Simulations have confirmed theoretical analysis. Expected precision of wind energy measurement of proposed device is better than 0,00051% of full scale. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. TR32019

  8. Optimal sinusoidal modelling of gear mesh vibration signals for gear diagnosis and prognosis

    Science.gov (United States)

    Man, Zhihong; Wang, Wenyi; Khoo, Suiyang; Yin, Juliang

    2012-11-01

    In this paper, the synchronous signal average of gear mesh vibration signals is modelled with the multiple modulated sinusoidal representations. The signal model parameters are optimised against the measured signal averages by using the batch learning of the least squares technique. With the optimal signal model, all components of a gear mesh vibration signal, including the amplitude modulations, the phase modulations and the impulse vibration component induced by gear tooth cracking, are identified and analysed with insight of the gear tooth crack development and propagation. In particular, the energy distribution of the impulse vibration signal, extracted from the optimal signal model, provides sufficient information for monitoring and diagnosing the evolution of the tooth cracking process, leading to the prognosis of gear tooth cracking. The new methodologies for gear mesh signal modelling and the diagnosis of the gear tooth fault development and propagation are validated with a set of rig test data, which has shown excellent performance.

  9. GPR182 is a novel marker for sinusoidal endothelial differentiation with distinct GPCR signaling activity in vitro.

    Science.gov (United States)

    Schmid, Christian David; Schledzewski, Kai; Mogler, Carolin; Waldburger, Nina; Kalna, Viktoria; Marx, Alexander; Randi, Anna Maria; Géraud, Cyrill; Goerdt, Sergij; Koch, Philipp-Sebastian

    2018-02-01

    Endothelial cells (EC) along the vascular tree exhibit organ-specific angiodiversity. Compared to most other ECs, liver sinusoidal endothelial cells (LSEC) that constitute the organ-specific microvasculature of the liver are morphologically and functionally unique. Previously, we showed that transcription factor Gata4 acts as a master regulator controlling LSEC differentiation. Upon analysis of the molecular signature of LSEC, we identified GPR182 as a potential LSEC-specific orphan G-protein coupled receptor (GPCR). Here, we demonstrate that GPR182 is expressed by LSEC and by EC with sinusoidal differentiation in spleen, lymph node and bone marrow in healthy human tissues. In a tissue microarray analysis of human hepatocellular carcinoma (HCC) samples, endothelial GPR182 expression was significantly reduced in tumor samples compared to peritumoral liver tissue samples (p = 0.0105). Loss of endothelial GPR182 expression was also seen in fibrotic and cirrhotic liver tissues. In vitro, GPR182 differentially regulated canonical GPCR signaling pathways as shown using reporter luciferase assays in HEK293T cells. Whereas ERK and RhoA signaling were inhibited, CREB and Calcium signaling were activated by ectopic GPR182 overexpression. Our data demonstrate that GPR182 is an endothelial subtype-specific marker for human sinusoidal EC of the liver, spleen, lymph node and bone marrow. In addition, we provide evidence for GPR182-dependent downstream signaling via ERK and SRF pathways that may be involved in regulating endothelial subtype-specific sinusoidal differentiation and sinusoidal functions such as permeability. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  10. An all digital phase locked loop for synchronization of a sinusoidal signal embedded in white Gaussian noise

    Science.gov (United States)

    Reddy, C. P.; Gupta, S. C.

    1973-01-01

    An all digital phase locked loop which tracks the phase of the incoming sinusoidal signal once per carrier cycle is proposed. The different elements and their functions and the phase lock operation are explained in detail. The nonlinear difference equations which govern the operation of the digital loop when the incoming signal is embedded in white Gaussian noise are derived, and a suitable model is specified. The performance of the digital loop is considered for the synchronization of a sinusoidal signal. For this, the noise term is suitably modelled which allows specification of the output probabilities for the two level quantizer in the loop at any given phase error. The loop filter considered increases the probability of proper phase correction. The phase error states in modulo two-pi forms a finite state Markov chain which enables the calculation of steady state probabilities, RMS phase error, transient response and mean time for cycle skipping.

  11. Fine tuning of optical signals in nanoporous anodic alumina photonic crystals by apodized sinusoidal pulse anodisation.

    Science.gov (United States)

    Santos, Abel; Law, Cheryl Suwen; Chin Lei, Dominique Wong; Pereira, Taj; Losic, Dusan

    2016-11-03

    In this study, we present an advanced nanofabrication approach to produce gradient-index photonic crystal structures based on nanoporous anodic alumina. An apodization strategy is for the first time applied to a sinusoidal pulse anodisation process in order to engineer the photonic stop band of nanoporous anodic alumina (NAA) in depth. Four apodization functions are explored, including linear positive, linear negative, logarithmic positive and logarithmic negative, with the aim of finely tuning the characteristic photonic stop band of these photonic crystal structures. We systematically analyse the effect of the amplitude difference (from 0.105 to 0.840 mA cm -2 ), the pore widening time (from 0 to 6 min), the anodisation period (from 650 to 950 s) and the anodisation time (from 15 to 30 h) on the quality and the position of the characteristic photonic stop band and the interferometric colour of these photonic crystal structures using the aforementioned apodization functions. Our results reveal that a logarithmic negative apodisation function is the most optimal approach to obtain unprecedented well-resolved and narrow photonic stop bands across the UV-visible-NIR spectrum of NAA-based gradient-index photonic crystals. Our study establishes a fully comprehensive rationale towards the development of unique NAA-based photonic crystal structures with finely engineered optical properties for advanced photonic devices such as ultra-sensitive optical sensors, selective optical filters and all-optical platforms for quantum computing.

  12. Automatic Frequency Identification under Sample Loss in Sinusoidal Pulse Width Modulation Signals Using an Iterative Autocorrelation Algorithm

    Directory of Open Access Journals (Sweden)

    Alejandro Said

    2016-08-01

    Full Text Available In this work, we present a simple algorithm to calculate automatically the Fourier spectrum of a Sinusoidal Pulse Width Modulation Signal (SPWM. Modulated voltage signals of this kind are used in industry by speed drives to vary the speed of alternating current motors while maintaining a smooth torque. Nevertheless, the SPWM technique produces undesired harmonics, which yield stator heating and power losses. By monitoring these signals without human interaction, it is possible to identify the harmonic content of SPWM signals in a fast and continuous manner. The algorithm is based in the autocorrelation function, commonly used in radar and voice signal processing. Taking advantage of the symmetry properties of the autocorrelation, the algorithm is capable of estimating half of the period of the fundamental frequency; thus, allowing one to estimate the necessary number of samples to produce an accurate Fourier spectrum. To deal with the loss of samples, i.e., the scan backlog, the algorithm iteratively acquires and trims the discrete sequence of samples until the required number of samples reaches a stable value. The simulation shows that the algorithm is not affected by either the magnitude of the switching pulses or the acquisition noise.

  13. Stabilization of Phase of a Sinusoidal Signal Transmitted Over Optical Fiber

    Science.gov (United States)

    DAddario, Larry R.; Trink, Joseph T.

    2010-01-01

    In the process of connecting widely distributed antennas into a coherent array, it is necessary to synchronize the timing of signals at the various locations. This can be accomplished by distributing a common reference signal from a central source, usually over optical fiber. A high-frequency (RF or microwave) tone is a good choice for the reference. One difficulty is that the effective length of the optical fiber changes with temperature and mechanical stress, leading to phase instability in the received tone. This innovation provides a new way to stabilize the phase of the received tone, in spite of variations in the electrical length of the fiber. Stabilization is accomplished by two-way transmission in which part of the received signal is returned to the transmitting end over an identical fiber. The returned signal is detected and used to close an electrical servo loop whose effect is to keep constant the phase of the tone at the receiving end.

  14. Application of the cyclic permutation for analysis of synthesized sinusoidal signal

    Czech Academy of Sciences Publication Activity Database

    Čížek, Václav; Švandová, Hana

    2002-01-01

    Roč. 2, č. 1 (2002), s. 69-72 ISSN 1335-8243. [Digital Signal Processing and Multimedia Communications DSP-MCOM 2001 /5./. Košice, 27.11.2001-29.11.2001] R&D Projects: GA ČR GA102/00/0958 Institutional research plan: CEZ:AV0Z2067918 Keywords : direct digital synthesis * quantisation-signal * number theory Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  15. Digitally generated excitation and near-baseband quadrature detection of rapid scan EPR signals.

    Science.gov (United States)

    Tseitlin, Mark; Yu, Zhelin; Quine, Richard W; Rinard, George A; Eaton, Sandra S; Eaton, Gareth R

    2014-12-01

    The use of multiple synchronized outputs from an arbitrary waveform generator (AWG) provides the opportunity to perform EPR experiments differently than by conventional EPR. We report a method for reconstructing the quadrature EPR spectrum from periodic signals that are generated with sinusoidal magnetic field modulation such as continuous wave (CW), multiharmonic, or rapid scan experiments. The signal is down-converted to an intermediate frequency (IF) that is less than the field scan or field modulation frequency and then digitized in a single channel. This method permits use of a high-pass analog filter before digitization to remove the strong non-EPR signal at the IF, that might otherwise overwhelm the digitizer. The IF is the difference between two synchronized X-band outputs from a Tektronix AWG 70002A, one of which is for excitation and the other is the reference for down-conversion. To permit signal averaging, timing was selected to give an exact integer number of full cycles for each frequency. In the experiments reported here the IF was 5kHz and the scan frequency was 40kHz. To produce sinusoidal rapid scans with a scan frequency eight times IF, a third synchronized output generated a square wave that was converted to a sine wave. The timing of the data acquisition with a Bruker SpecJet II was synchronized by an external clock signal from the AWG. The baseband quadrature signal in the frequency domain was reconstructed. This approach has the advantages that (i) the non-EPR response at the carrier frequency is eliminated, (ii) both real and imaginary EPR signals are reconstructed from a single physical channel to produce an ideal quadrature signal, and (iii) signal bandwidth does not increase relative to baseband detection. Spectra were obtained by deconvolution of the reconstructed signals for solid BDPA (1,3-bisdiphenylene-2-phenylallyl) in air, 0.2mM trityl OX63 in water, 15 N perdeuterated tempone, and a nitroxide with a 0.5G partially-resolved proton

  16. Sinusoids theory and technological applications

    CERN Document Server

    Kythe, Prem K

    2014-01-01

    A Complete Treatment of Current Research Topics in Fourier Transforms and Sinusoids Sinusoids: Theory and Technological Applications explains how sinusoids and Fourier transforms are used in a variety of application areas, including signal processing, GPS, optics, x-ray crystallography, radioastronomy, poetry and music as sound waves, and the medical sciences. With more than 200 illustrations, the book discusses electromagnetic force and sychrotron radiation comprising all kinds of waves, including gamma rays, x-rays, UV rays, visible light rays, infrared, microwaves, and radio waves. It also covers topics of common interest, such as quasars, pulsars, the Big Bang theory, Olbers' paradox, black holes, Mars mission, and SETI.The book begins by describing sinusoids-which are periodic sine or cosine functions-using well-known examples from wave theory, including traveling and standing waves, continuous musical rhythms, and the human liver. It next discusses the Fourier series and transform in both continuous and...

  17. Three dimensional dynamic study of a metal halide thallium iodine discharge plasma powered by a sinusoidal and square signal

    Science.gov (United States)

    Bechir Ben Hamida, Mohamed; Charrada, Kamel

    2016-01-01

    The purpose of this paper is to study the dynamic of a metal halide thallium iodine discharge lamp fed by a sinusoidal and square power supply. For this, a chemical model under Local Thermodynamic Equilibrium conditions has been developed to compute the plasma composition and transport coefficients such as thermal conductivity, viscosity and electric conductivity. This is then coupled with a three-dimensional time-dependent code that solves the system of the mass, energy and momentum equations, as well as the Laplace equation for the plasma using Comsol Multiphysics with Matlab. After validation with the experimental results, this model was applied to analyze the influence of the key parameters on the discharge behavior such as frequency for an AC arc current and the atomic ratio for square arc-current wave form on the convective process.

  18. Utilization of excitation signal harmonics for control of nonlinear systems

    DEFF Research Database (Denmark)

    Vinther, Kasper; Rasmussen, Henrik; Izadi-Zamanabadi, Roozbeh

    2012-01-01

    Many model based control methods exist in the literature. Producing a sufficient system model can be cumbersome and a new non-model based method for control of nonlinear systems with input/output maps exhibiting sigmoid function properties is therefore proposed. The method utilizes an excitation...... signal together with Fourier analysis to generate a feedback signal and simulations have shown that different system gains and time constants does not change the global equilibrium/operating point. An evaporator in a refrigeration system was used as example in the simulations, however, it is anticipated...

  19. Early warning signal for interior crises in excitable systems.

    Science.gov (United States)

    Karnatak, Rajat; Kantz, Holger; Bialonski, Stephan

    2017-10-01

    The ability to reliably predict critical transitions in dynamical systems is a long-standing goal of diverse scientific communities. Previous work focused on early warning signals related to local bifurcations (critical slowing down) and nonbifurcation-type transitions. We extend this toolbox and report on a characteristic scaling behavior (critical attractor growth) which is indicative of an impending global bifurcation, an interior crisis in excitable systems. We demonstrate our early warning signal in a conceptual climate model as well as in a model of coupled neurons known to exhibit extreme events. We observed critical attractor growth prior to interior crises of chaotic as well as strange-nonchaotic attractors. These observations promise to extend the classes of transitions that can be predicted via early warning signals.

  20. Kruppel-like factor 2 inhibit the angiogenesis of cultured human liver sinusoidal endothelial cells through the ERK1/2 signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Xiao-Qing, E-mail: zeng.xiaoqing@zs-hospital.sh.cn [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Li, Na, E-mail: Linala.2009@163.com [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Pan, Du-Yi, E-mail: lasikesmi@hotmail.com [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Miao, Qing, E-mail: sadsadvenus@163.com [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Ma, Gui-Fen, E-mail: ma.guifen@zs-hospital.sh.cn [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Liu, Yi-Mei, E-mail: liuyimei1988@163.com [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Tseng, Yu-Jen, E-mail: dianatseng14@gmail.com [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Li, Feng, E-mail: li.feng2@zs-hospital.sh.cn [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Xu, Li-Li, E-mail: xu.lili3@zs-hospital.sh.cn [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Chen, Shi-Yao, E-mail: chen.shiyao@zs-hospital.sh.cn [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Institute of Endoscopic Research of Zhongshan Hospital, Fudan University, Shanghai (China)

    2015-09-04

    Kruppel-like factor 2 (KLF2) is a crucial anti-angiogenic factor. However, its precise role in hepatic angiogenesis induced by liver sinusoidal endothelial cells (LSECs) remain unclear. This study was aimed to evaluate the effect of KLF2 on angiogenesis of LSECs and to explore the corresponding mechanism. Cultured human LSECs were infected with different lentiviruses to overexpress or suppress KLF2 expression. The CCK-8 assay, transwell migration assay and tube formation test, were used to investigate the roles of KLF2 in the proliferation, migration and vessel tube formation of LSECs, respectively. The expression and phosphorylation of ERK1/2 were detected by western blot. We discovered that the up-regulation of KLF2 expression dramatically inhibited proliferation, migration and tube formation in treated LSECs. Correspondingly, down-regulation of KLF2 expression significantly promoted proliferation, migration and tube formation in treated LSECs. Additionally, KLF2 inhibited the phosphorylation of ERK1/2 pathway, followed by the function of KLF2 in the angiogenesis of LSECs disrupted. In conclusion, KLF2 suppressed the angiogenesis of LSECs through inhibition of cell proliferation, migration, and vessel tube formation. These functions of KLF2 may be mediated through the ERK1/2 signaling pathway. - Highlights: • Overexpression of KLF2 inhibits the proliferation and migration of LSECs. • Overexpression of KLF2 inhibits the angiogenesis of LSECs. • ERK1/2 signaling pathway involved in the anti-angiogenic process of KLF2 on LSECs.

  1. Geometric distortion correction for sinusoidally scanned images

    International Nuclear Information System (INIS)

    Xu, Lijun; Tian, Xiangrui; Li, Xiaolu; Shang, Guangyi; Yao, Junen

    2011-01-01

    A method for correcting the geometric distortion of sinusoidally scanned images was proposed. The generation mechanism of the geometric distortion in sinusoidally scanned images was analyzed. Based on the relationship between the coordinates of uniformly scanned points and those of sinusoidally scanned points, a transformation formula was obtained for correcting the geometric distortion when the sampling rate was a constant. By comparing the forward method with the inverse method, a hybrid method for correcting the geometric distortion of sinusoidally scanned images was proposed. This method takes advantage of both the forward and inverse methods and was proven to be better than either of them in terms of peak signal-to-noise ratio (PSNR). The time consumed by the hybrid method was between the other two. When a higher PSNR is desired, the hybrid method is recommended if time permits. In addition, it is a universal approach to the correction of geometric distortion of the images scanned in the sinusoidal mode

  2. Design of excitation signals for active system monitoring in a performance assessment setup

    DEFF Research Database (Denmark)

    Green, Torben; Izadi-Zamanabadi, Roozbeh; Niemann, Hans Henrik

    2011-01-01

    This paper investigates how the excitation signal should be chosen for a active performance setup. The signal is used in a setup where the main purpose is to detect whether a parameter change of the controller has changed the global performance significantly. The signal has to be able to excite t...

  3. Parametric modeling for damped sinusoids from multiple channels

    DEFF Research Database (Denmark)

    Zhou, Zhenhua; So, Hing Cheung; Christensen, Mads Græsbøll

    2013-01-01

    The problem of parametric modeling for noisy damped sinusoidal signals from multiple channels is addressed. Utilizing the shift invariance property of the signal subspace, the number of distinct sinusoidal poles in the multiple channels is first determined. With the estimated number, the distinct...

  4. Noise upon the Sinusoids

    DEFF Research Database (Denmark)

    Jensen, Karl Kristoffer

    2005-01-01

    Sinusoids are used for making harmonic and other sounds. In order to having life in the sounds and adding a wide variety of noises, irregularities are inserted in the frequency and amplitudes. A simple and intuitive noise model is presented, consisting of a low-pass filtered noise, and having...... control for strength and bandwidth. The noise is added on the frequency and amplitudes of the sinusoids, and the resulting irregularity’s (jitter and shimmer) bandwidth is derived. This, together with an overview of investigation methods of the jitter and shimmer results in an analysis of the necessary...

  5. small signal analysis of load angle governing and excitation control

    African Journals Online (AJOL)

    Dr Obe

    optimal value of regulator gain for damping as far as this study is concerned will be some value above 0.25. This is similar to the findings of Aldred and Shackshaft [2] using frequency response methods. Following as above for the same machine with excitation control only, but this time around, utilizing the load angle.

  6. Compressed Domain Packet Loss Concealment of Sinusoidally Coded Speech

    DEFF Research Database (Denmark)

    Rødbro, Christoffer A.; Christensen, Mads Græsbøll; Andersen, Søren Vang

    2003-01-01

    We consider the problem of packet loss concealment for voice over IP (VoIP). The speech signal is compressed at the transmitter using a sinusoidal coding scheme working at 8 kbit/s. At the receiver, packet loss concealment is carried out working directly on the quantized sinusoidal parameters......, based on time-scaling of the packets surrounding the missing ones. Subjective listening tests show promising results indicating the potential of sinusoidal speech coding for VoIP....

  7. Electric signals of light excited bacteriorhodopsin mutant D96N.

    Science.gov (United States)

    Tóth-Boconádi, R; Taneva, S G; Keszthelyi, L

    2001-12-31

    The study of mutant D96N played an important role in understanding proton translocation by light driven bacteriorhodopsin. Our measurement of photoelectric current for single and double flash illumination revealed new details of the photocycle of this mutant. With double flash excitation we found an intermediate absorbing near the wavelength of the ground state of bacteriorhodopsin (bR) but pumping in the opposite direction. This intermediate has the same lifetime as the species described by Zimányi et al. [Proc. Natl. Acad. Sci. USA 96 (1999) 4414-4419] and was assigned to early recovery of a fraction of the ground state after excitation. Because the electric response does not reconcile with that of the ground state, we tentatively assign it to the L intermediate or to an intermediate similar in absorption to bR (bR').

  8. New Approaches for Channel Prediction Based on Sinusoidal Modeling

    Directory of Open Access Journals (Sweden)

    Ekman Torbjörn

    2007-01-01

    Full Text Available Long-range channel prediction is considered to be one of the most important enabling technologies to future wireless communication systems. The prediction of Rayleigh fading channels is studied in the frame of sinusoidal modeling in this paper. A stochastic sinusoidal model to represent a Rayleigh fading channel is proposed. Three different predictors based on the statistical sinusoidal model are proposed. These methods outperform the standard linear predictor (LP in Monte Carlo simulations, but underperform with real measurement data, probably due to nonstationary model parameters. To mitigate these modeling errors, a joint moving average and sinusoidal (JMAS prediction model and the associated joint least-squares (LS predictor are proposed. It combines the sinusoidal model with an LP to handle unmodeled dynamics in the signal. The joint LS predictor outperforms all the other sinusoidal LMMSE predictors in suburban environments, but still performs slightly worse than the standard LP in urban environments.

  9. Treatment of multicomponent microbarographic signals excited by high power explosions

    International Nuclear Information System (INIS)

    Delclos, C.

    1986-04-01

    A method for analysis of microbarographic signals recorded on a sensor network is developed, the aim is the localization of the source with maximum accuracy. It is shown that the method using the interspectral matrix finds a direct application in the discrimination of waves from high power explosion in a noisy environment. Its powerfulness is demonstrated on actual signals (explosion of the volcano Mt St Helens) allowing interesting results on propagation mechanisms (Brunt period, Lamb modes and acoustic modes) [fr

  10. Use of modulated excitation signals in ultrasound. Part I: Basic concepts and expected benefits

    DEFF Research Database (Denmark)

    Misaridis, Thanassis; Jensen, Jørgen Arendt

    2005-01-01

    This paper, the first from a series of three papers on the application of coded excitation signals in medical ultrasound, discusses the basic principles and ultrasound-related problems of pulse compression. The concepts of signal modulation and matched filtering are given, and a simple model of a...

  11. On the excitation of magnetic signals by Love waves

    Directory of Open Access Journals (Sweden)

    B. Tsegmed

    2004-06-01

    Full Text Available The polarization method for recognition of seismomagnetic waves against a noise background is presented. The method is applied to detection of magnetic oscillations accompanying the propagation of surface Love wave after a strong earthquake. A specific property of the Love waves is that theoretically the Tolman-Stewart effect is alone responsible for the magnetic field that penetrates into the Earth's surface. Data from the Mondy Magnetic Observatory and the Talaya Seismic Station suggest that the arrival time, duration, period,and polarization of magnetic signals conform with the idea of generation of alternating electric currents due to fluid vibrations in pores and fractures of rocks under the action of the inertial force associated with the Love wave propagation.

  12. Multi-frequency exciting and spectrogram-based ECT method

    CERN Document Server

    Chady, T

    2000-01-01

    The purpose of this paper is to experimentally demonstrate advantages of a multi-frequency ECT system. In this system, a precise crack imaging was achieved by using spectrograms obtained from an eddy-current probe multi-frequency response. A complex signal containing selected sinusoidal components was used as an excitation. The results of measurements for various test specimens are presented.

  13. Significance of power average of sinusoidal and non-sinusoidal ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 87; Issue 1. Significance of power average of ... Additional sinusoidal and different non-sinusoidal periodic perturbations applied to the periodically forced nonlinear oscillators decide the maintainance or inhibitance of chaos. It is observed that the weak amplitude of ...

  14. Pathology of the liver sinusoids

    NARCIS (Netherlands)

    Brunt, Elizabeth M.; Gouw, Annette S. H.; Hubscher, Stefan G.; Tiniakos, Dina G.; Bedossa, Pierre; Burt, Alastair D.; Callea, Francesco; Clouston, Andrew D.; Dienes, Hans P.; Goodman, Zachary D.; Roberts, Eve A.; Roskams, Tania; Terracciano, Luigi; Torbenson, Michael S.; Wanless, Ian R.

    The hepatic sinusoids comprise a complex of vascular conduits to transport blood from the porta hepatis to the inferior vena cava through the liver. Under normal conditions, portal venous and hepatic artery pressures are equalized within the sinusoids, oxygen and nutrients from the systemic

  15. Biphase sinusoidal oscillator based on negative resistor.

    Science.gov (United States)

    Bayard, Jean

    2010-06-01

    This paper describes a biphase sinusoidal generator which provides two signals: v(ref)=V(M) sin(omegat) and v(out)=V(M) sin(omegat+DeltaPhi), where DeltaPhi is in the range 0, pi/2 or -pi/2, 0 and is not dependent on the frequency value. It is based on a negative resistor and it requires very few components. SPICE simulations and measurements on an experimental setup confirm the theoretical analysis.

  16. Persistently-exciting signal generation for Optimal Parameter Estimation of constrained nonlinear dynamical systems.

    Science.gov (United States)

    Honório, Leonardo M; Costa, Exuperry Barros; Oliveira, Edimar J; Fernandes, Daniel de Almeida; Moreira, Antonio Paulo G M

    2018-04-13

    This work presents a novel methodology for Sub-Optimal Excitation Signal Generation and Optimal Parameter Estimation of constrained nonlinear systems. It is proposed that the evaluation of each signal must also account for the difference between real and estimated system parameters. However, this metric is not directly obtained once the real parameter values are not known. The alternative presented here is to adopt the hypothesis that, if a system can be approximated by a white box model, this model can be used as a benchmark to indicate the impact of a signal over the parametric estimation. In this way, the proposed method uses a dual layer optimization methodology: (i) Inner Level; For a given excitation signal a nonlinear optimization method searches for the optimal set of parameters that minimizes the error between the outputs of the optimized and benchmark models. (ii) At the outer level, a metaheuristic optimization method is responsible for constructing the best excitation signal, considering the fitness coming from the inner level, the quadratic difference between its parameters and the cost related to the time and space required to execute the experiment. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  17. [The sparkle noise abatement in RF excitation signal of LMW-400 MRI system].

    Science.gov (United States)

    Po, D Q; Luo, C G

    2000-11-01

    We found a sparkle noise in the Radio-Frequency excitation signal of LMW-400 MRI system manufactured by Guangdong Weida Medical Apparatus (Group) Corporation. This sparkle noise appeared just following the RF pulse and had a maximum level of about 40% of maximum RF pulse level. Furthermore, since this sparkle noise existed during the read-out gradient period, it must be eliminated in order to reduce image artifacts. Tests on the Modulation Board showed that this noise was inherent due to abrupt rising edges of two control. signals. Simple integrating circuits had been applied to those two signals and the sparkle noise could be eliminated successfully by the modification.

  18. Use of modulated excitation signals in ultrasound. Part II: Design and performance for medical imaging applications

    DEFF Research Database (Denmark)

    Misaridis, Thanassis; Jensen, Jørgen Arendt

    2005-01-01

    For pt.I, see ibid., vol.52, no.2, p.177-91 (2005). In the first paper, the superiority of linear FM signals was shown in terms of signal-to-noise ratio and robustness to tissue attenuation. This second paper in the series of three papers on the application of coded excitation signals in medical...... ultrasound presents design methods of linear FM signals and mismatched filters, in order to meet the higher demands on resolution in ultrasound imaging. It is shown that for the small time-bandwidth (TB) products available in ultrasound, the rectangular spectrum approximation is not valid, which reduces...... to efficiently use the available bandwidth and at the same time to be insensitive to the transducer's impulse response. With these techniques, temporal sidelobes are kept below 60 to 100 dB, image contrast is improved by reducing the energy within the sidelobe region, and axial resolution is preserved...

  19. Development of a Stair-Step Multifrequency Synchronized Excitation Signal for Fast Bioimpedance Spectroscopy

    Science.gov (United States)

    Bian, He; Du, Fangling; Sun, Qiang

    2014-01-01

    Wideband excitation signal with finite prominent harmonic components is desirable for fast bioimpedance spectroscopy (BIS) measurements. This work introduces a simple method to synthesize and realize a type of periodical stair-step multifrequency synchronized (MFS) signal. The Fourier series analysis shows that the p-order MFS signal f(p, t) has constant 81.06% energy distributed equally on its p  2nth primary harmonics. The synthesis principle is described firstly and then two examples of the 4-order and 5-order MFS signals, f(4, t) and f(5, t), are synthesized. The method to implement the MFS waveform based on a field-programmable gate array (FPGA) and a digital to analog converter (DAC) is also presented. Both the number and the frequencies of the expected primary harmonics can be adjusted as needed. An impedance measurement experiment on a RC three-element equivalent model is performed, and results show acceptable precision, which validates the feasibility of the MFS excitation. PMID:24701563

  20. Development of a Stair-Step Multifrequency Synchronized Excitation Signal for Fast Bioimpedance Spectroscopy

    Directory of Open Access Journals (Sweden)

    Yuxiang Yang

    2014-01-01

    Full Text Available Wideband excitation signal with finite prominent harmonic components is desirable for fast bioimpedance spectroscopy (BIS measurements. This work introduces a simple method to synthesize and realize a type of periodical stair-step multifrequency synchronized (MFS signal. The Fourier series analysis shows that the p-order MFS signal f(p,t has constant 81.06% energy distributed equally on its p  2nth primary harmonics. The synthesis principle is described firstly and then two examples of the 4-order and 5-order MFS signals, f(4,t and f(5,t, are synthesized. The method to implement the MFS waveform based on a field-programmable gate array (FPGA and a digital to analog converter (DAC is also presented. Both the number and the frequencies of the expected primary harmonics can be adjusted as needed. An impedance measurement experiment on a RC three-element equivalent model is performed, and results show acceptable precision, which validates the feasibility of the MFS excitation.

  1. Signal transduction events induced by extracellular guanosine 5?triphosphate in excitable cells

    OpenAIRE

    Pietrangelo, T.; Guarnieri, S.; Fulle, S.; Fan?, G.; Mariggi?, M. A.

    2006-01-01

    A better understanding of the physiological effects of guanosine-based purines should help clarify the complex subject of purinergic signalling. We studied the effect of extracellular guanosine 5?triphosphate (GTP) on the differentiation of two excitable cell lines that both have specific binding sites for GTP: PC12 rat pheochromocytoma cells and C2C12 mouse skeletal muscle cells. PC12 cells can be differentiated into fully functional sympathetic-like neurons with 50?00 ng ml?1 of nerve growt...

  2. Regorafenib suppresses sinusoidal obstruction syndrome in rats.

    Science.gov (United States)

    Okuno, Masayuki; Hatano, Etsuro; Nakamura, Kojiro; Miyagawa-Hayashino, Aya; Kasai, Yosuke; Nishio, Takahiro; Seo, Satoru; Taura, Kojiro; Uemoto, Shinji

    2015-02-01

    Sinusoidal obstruction syndrome (SOS), a form of drug-induced liver injury related to oxaliplatin treatment, is associated with postoperative morbidity after hepatectomy. This study aimed to examine the impact of regorafenib, the first small-molecule kinase inhibitor to show efficacy against metastatic colorectal cancer, on a rat model of SOS. Rats with monocrotaline (MCT)-induced SOS were divided into two groups according to treatment with either regorafenib (6 mg/kg) or vehicle alone, which were administered at 12 and 36 h, respectively, before MCT administration. Histopathologic examination and serum biochemistry tests were performed 48 h after MCT administration. Sinusoidal endothelial cells were evaluated by immunohistochemistry and electron microscopy. To examine whether regorafenib preserved remnant liver function, a 30% hepatectomy was performed in each group. The rats in the vehicle group displayed typical SOS features, whereas these features were suppressed in the regorafenib group. The total SOS scores were significantly lower in the regorafenib group than in the vehicle group. Immunohistochemistry and electron microscopy showed that regorafenib had a protective effect on sinusoidal endothelial cells. The postoperative survival rate after 7 d was significantly better in the regorafenib group than that in the vehicle group (26.7% versus 6.7%, P Regorafenib reduced the phosphorylation of extracellular signal-regulated kinase, which induced matrix metalloproteinase-9 (MMP-9) activation and decreased the activity of MMP-9, one of the crucial mediators of SOS development. Regorafenib suppressed MCT-induced SOS, concomitant with attenuating extracellular signal-regulated kinase phosphorylation, and MMP-9 activation, suggesting that regorafenib may be a favorable agent for use in combination with oxaliplatin-based chemotherapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. The sinusoid and the phasor

    OpenAIRE

    Shah, Kushal; Ramachandran, Harishankar

    2010-01-01

    Mathieu equation is widely used to study several natural phenomenon. In this paper, we show that replacing the sinusoid in the Mathieu equation with a phasor can lead to solutions that behave in a totally different way. Solutions of Mathieu equation are either bounded or grow unboundedly at an exponential rate. Solutions of this new equation are always unbounded and grow linearly with time.

  4. Simultaneous Ultrasonic Measurement of Thickness and Speed of Sound in Elastic Plates Using Coded Excitation Signals.

    Science.gov (United States)

    Kiefer, Daniel A; Fink, Michael; Rupitsch, Stefan J

    2017-11-01

    Layer thickness and the speed of sound are important parameters for nondestructive testing applications. If one of the parameters is known, the other one can be determined by simple time-of-flight (TOF) measurement of ultrasound. However, often these parameters are both unknown. In this contribution, we examine and adapt ultrasonic imaging techniques using coded excitation signals to simultaneously measure the thickness and the speed of sound of homogeneous elastic plates of unknown material. Good axial resolution is required to measure thin samples. We present a new approach for transmission signal conditioning to improve axial resolution. This conditioning consists of enhancing spectral components that are damped by the transducer prior to transmit. Due to the long duration of coded excitation signals, pulse compression techniques are required for TOF measurements. Common pulse compression filters are discussed, and appropriate filtering of the compression waveform is designed to keep the sidelobe level (SLL) acceptably low. An experimental assessment of the presented measurement techniques reveals that the signal conditioning substantially increases the axial resolution. However, a tapered Wiener filter should be used for the best tradeoff between SLL and axial resolution. We used the proposed method to measure different plates of steel, aluminum, and polymethylmethacrylate of various thicknesses, and the results show very good agreement with the reference values, which we obtained with a micrometer screw and by standard TOF measurement, respectively. The relative error for the plate thickness is smaller than 2.2% and that for the speed of sound is smaller than 3%. It is remarkable that plate thickness could be measured down to 60% of the wavelength.

  5. Model selection and comparison for independents sinusoids

    DEFF Research Database (Denmark)

    Nielsen, Jesper Kjær; Christensen, Mads Græsbøll; Jensen, Søren Holdt

    2014-01-01

    In the signal processing literature, many methods have been proposed for estimating the number of sinusoidal basis functions from a noisy data set. The most popular method is the asymptotic MAP criterion, which is sometimes also referred to as the BIC. In this paper, we extend and improve this me....... Through simulations, we demonstrate that the lp-BIC outperforms the asymptotic MAP criterion and other state of the art methods in terms of model selection, de-noising and prediction performance. The simulation code is available online.......In the signal processing literature, many methods have been proposed for estimating the number of sinusoidal basis functions from a noisy data set. The most popular method is the asymptotic MAP criterion, which is sometimes also referred to as the BIC. In this paper, we extend and improve...... this method by considering the problem in a full Bayesian framework instead of the approximate formulation, on which the asymptotic MAP criterion is based. This leads to a new model selection and comparison method, the lp-BIC, whose computational complexity is of the same order as the asymptotic MAP criterion...

  6. Sinusoidal Order Estimation Using Angles between Subspaces

    Directory of Open Access Journals (Sweden)

    Søren Holdt Jensen

    2009-01-01

    Full Text Available We consider the problem of determining the order of a parametric model from a noisy signal based on the geometry of the space. More specifically, we do this using the nontrivial angles between the candidate signal subspace model and the noise subspace. The proposed principle is closely related to the subspace orthogonality property known from the MUSIC algorithm, and we study its properties and compare it to other related measures. For the problem of estimating the number of complex sinusoids in white noise, a computationally efficient implementation exists, and this problem is therefore considered in detail. In computer simulations, we compare the proposed method to various well-known methods for order estimation. These show that the proposed method outperforms the other previously published subspace methods and that it is more robust to the noise being colored than the previously published methods.

  7. Generation of Modified Sinusoidal Waves Using Operational ...

    African Journals Online (AJOL)

    The production of modified sinusoidal waves is currently a field of active research even in already developed countries as it combines the ease of production associated with square waves and avoids the low energy efficiency associated with true sinusoidal waves. This paper discusses the production of Modified Sinusoidal ...

  8. A Concatenation Scheme for the Computation of Beam Excited Higher Order Mode Port Signals

    CERN Document Server

    Flisgen, T; van Rienen, U

    2013-01-01

    Ongoing studies investigate in how far higher order mode (HOM) port signals of superconducting RF cavities can be used for machine and beam diagnostics. Apart from experiments e.g. at the FLASH facility at DESY in Hamburg, numerical modelling is needed for the prediction of HOM coupler signals. For this purpose, the RF properties of the entire accelerating module have to be taken into account, since higher order modes can propagate along the cavity chain. A discretization of the full chain, followed by a wake field simulation is only feasible with powerful and expensive cluster computers. Instead, an element-wise wake field simulation of subsections of the chain, followed by a suitable concatenation scheme can be performed on standard hardware assuming the beam to be sufficiently stiff. In this paper a concatenation scheme for the computation of beam excited HOM port signals is derived as a generalization of the Coupled S-Parameter scheme CSC. Furthermore, the validity of the method is shown for a sample stru...

  9. Simultaneous angular alignment of segmented mirrors using sinusoidal pattern analysis

    Science.gov (United States)

    Choi, Heejoo; Trumper, Isaac; Dubin, Matthew; Zhao, Wenchuan; Kim, Dae Wook

    2017-08-01

    A segmented mirror is one of the most promising solutions to build an extremely large aperture telescope to reveal the secrets of the universe. In this manuscript, we present a simultaneous angle alignment method for segmented mirrors. By taking the displayed sinusoidal pattern reflecting off the mirrors, the tip-tilt angles are measured with 0.8 μrad resolution for a flat mirror. Due to the efficient calculation using Fourier analysis, the total measurement time for seven flat mirrors is 0.07 s. In addition, a multiplexed sinusoidal pattern is adapted to resolve the intrinsic 2π ambiguity problem in a sinusoidal signal. The presented method can measure any number of segmented mirrors provided that the camera's field of view can cover them all simultaneously.

  10. Cosmology and the Sinusoidal Potential

    Science.gov (United States)

    Bartlett, David F.

    2006-06-01

    The nature of dark matter (and dark energy) remains a mystery. An alternative is being explored by several scientists: changing Newton's (and Einstein's) field equations. The sinusoidal potential is the latest attempt[1]. Here the gravitational law is alternately attractive and repulsive:φ = -GM cos(kor)/r, where λo=2π/ko = 1/20 of the distance from the sun to the center of the Milky Way. The proposal accommodates several structural features of the Milky Way including, paradoxically, its spiral shape and flat rotation curve. The sinusoidal potential's unique feature is strong galactic tidal forces (dg/dr). These may explain why the new planetoid Sedna is securely between the Kuiper Belt and the Oort cloud and why distant comets are more influenced by galactic tides that are in the r, rather than the z-direction.At this meeting I discuss the consequences of the sinusoidal potential for cosmology. Here the alternation of attraction and repulsion gives (i) an open universe, and (ii) gravitational lensing which is usually weak, but occasionally very strong. An open universe is one that, asymptotically, has a size R which varies directly as time t. The open universe conflicts both with the old Einstein-deSitter model (R α t2/3} and the new accelerating one. The evidence for an accelerating universe decisively rejects the Einstein-deSitter model. The rejection of an open (or empty) universe is less secure. This rejection is influenced by the different ways the groups studying the brightness of supernovae use the HST. Surprising additional inputs include neutrino masses, the equivalence principle, LSB galaxies, and "over-luminous" Sn1a. I thank Mostafa Jon Dadras and Patrick Motl for early help and John Cumalat for continual support. [1] D.F. Bartlett, "Analogies between electricity and gravity", Metrologia 41, S115-S124 (2004).

  11. Astroglial Excitability and Gliotransmission: An Appraisal of Ca2+ as a Signalling Route

    Directory of Open Access Journals (Sweden)

    Robert Zorec

    2012-02-01

    Full Text Available Astroglial cells, due to their passive electrical properties, were long considered subservient to neurons and to merely provide the framework and metabolic support of the brain. Although astrocytes do play such structural and housekeeping roles in the brain, these glial cells also contribute to the brain's computational power and behavioural output. These more active functions are endowed by the Ca2+-based excitability displayed by astrocytes. An increase in cytosolic Ca2+ levels in astrocytes can lead to the release of signalling molecules, a process termed gliotransmission, via the process of regulated exocytosis. Dynamic components of astrocytic exocytosis include the vesicular-plasma membrane secretory machinery, as well as the vesicular traffic, which is governed not only by general cytoskeletal elements but also by astrocyte-specific IFs (intermediate filaments. Gliotransmitters released into the ECS (extracellular space can exert their actions on neighbouring neurons, to modulate synaptic transmission and plasticity, and to affect behaviour by modulating the sleep homoeostat. Besides these novel physiological roles, astrocytic Ca2+ dynamics, Ca2+-dependent gliotransmission and astrocyte–neuron signalling have been also implicated in brain disorders, such as epilepsy. The aim of this review is to highlight the newer findings concerning Ca2+ signalling in astrocytes and exocytotic gliotransmission. For this we report on Ca2+ sources and sinks that are necessary and sufficient for regulating the exocytotic release of gliotransmitters and discuss secretory machinery, secretory vesicles and vesicle mobility regulation. Finally, we consider the exocytotic gliotransmission in the modulation of synaptic transmission and plasticity, as well as the astrocytic contribution to sleep behaviour and epilepsy.

  12. System And Method For Characterizing Voiced Excitations Of Speech And Acoustic Signals, Removing Acoustic Noise From Speech, And Synthesizi

    Science.gov (United States)

    Burnett, Greg C.; Holzrichter, John F.; Ng, Lawrence C.

    2006-04-25

    The present invention is a system and method for characterizing human (or animate) speech voiced excitation functions and acoustic signals, for removing unwanted acoustic noise which often occurs when a speaker uses a microphone in common environments, and for synthesizing personalized or modified human (or other animate) speech upon command from a controller. A low power EM sensor is used to detect the motions of windpipe tissues in the glottal region of the human speech system before, during, and after voiced speech is produced by a user. From these tissue motion measurements, a voiced excitation function can be derived. Further, the excitation function provides speech production information to enhance noise removal from human speech and it enables accurate transfer functions of speech to be obtained. Previously stored excitation and transfer functions can be used for synthesizing personalized or modified human speech. Configurations of EM sensor and acoustic microphone systems are described to enhance noise cancellation and to enable multiple articulator measurements.

  13. Determination of elastic mechanical characteristics of surface coatings from analysis of signals obtained by impulse excitation

    Science.gov (United States)

    Nyaguly, E.; Craştiu, I.; Deac, S.; Gozman-Pop, C.; Drăgănescu, G.; Bereteu, L.

    2018-01-01

    Most of the surface coatings are based on the synthetic polymers, which are substances composed from very large molecules that form tough, flexible, adhesive films when applied to surfaces. The other components of surface coverings materials are pigments that provide colour, opacity, gloss and other properties. Surface coatings are two-phase composite materials: constitute a polymer matrix on the one side, and on the other side of the pigments and additives dispersed in the matrix. Their role is not only aesthetically but also to ensure anticorrosive protection or even improve some mechanical properties of coated surfaces. In this paper it will follow, starting from the mechanical properties of the substrate, the metallic sheet in general, to determine the new properties of the assembly of substrate and the two coating layers, also the determination of mechanical properties of the layers. From the analysis of vibroacoustic signals obtained by the impulse excitation of the sample, one can determine the elasticity modulus. These results come to validate the results based on finite element analysis (FEA) of the same samples.

  14. Sinusoidal masks for single channel speech separation

    DEFF Research Database (Denmark)

    Mowlaee, Pejman; Christensen, Mads Græsbøll; Jensen, Søren Holdt

    2010-01-01

    In this paper we present a new approach for binary and soft masks used in single-channel speech separation. We present a novel approach called the sinusoidal mask (binary mask and Wiener filter) in a sinusoidal space. Theoretical analysis is presented for the proposed method, and we show that the......In this paper we present a new approach for binary and soft masks used in single-channel speech separation. We present a novel approach called the sinusoidal mask (binary mask and Wiener filter) in a sinusoidal space. Theoretical analysis is presented for the proposed method, and we show...... that the proposed method is able to minimize the target speech distortion while suppressing the crosstalk to a predetermined threshold. It is observed that compared to the STFTbased masks, the proposed sinusoidal masks improve the separation performance in terms of objective measures (SSNR and PESQ) and are mostly...

  15. Acceptor and Excitation Density Dependence of the Ultrafast Polaron Absorption Signal in Donor-Acceptor Organic Solar Cell Blends.

    Science.gov (United States)

    Zarrabi, Nasim; Burn, Paul L; Meredith, Paul; Shaw, Paul E

    2016-07-21

    Transient absorption spectroscopy on organic semiconductor blends for solar cells typically shows efficient charge generation within ∼100 fs, accounting for the majority of the charge carriers. In this Letter, we show using transient absorption spectroscopy on blends containing a broad range of acceptor content (0.01-50% by weight) that the rise of the polaron signal is dependent on the acceptor concentration. For low acceptor content (10%) most polarons are generated within 200 fs. The rise time in blends with low acceptor content was also found to be sensitive to the pump fluence, decreasing with increasing excitation density. These results indicate that the sub-100 fs rise of the polaron signal is a natural consequence of both the high acceptor concentrations in many donor-acceptor blends and the high excitation densities needed for transient absorption spectroscopy, which results in a short average distance between the exciton and the donor-acceptor interface.

  16. Computationally Efficient Amplitude Modulated Sinusoidal Audio Coding using Frequency-Domain Linear Prediction

    DEFF Research Database (Denmark)

    Christensen, M. G.; Jensen, Søren Holdt

    2006-01-01

    A method for amplitude modulated sinusoidal audio coding is presented that has low complexity and low delay. This is based on a subband processing system, where, in each subband, the signal is modeled as an amplitude modulated sum of sinusoids. The envelopes are estimated using frequency......-domain linear prediction and the prediction coefficients are quantized. As a proof of concept, we evaluate different configurations in a subjective listening test, and this shows that the proposed method offers significant improvements in sinusoidal coding. Furthermore, the properties of the frequency...

  17. High resolution DAS via sinusoidal frequency scan OFDR (SFS-OFDR).

    Science.gov (United States)

    Leviatan, Eyal; Eyal, Avishay

    2015-12-28

    There are many advantages to using direct frequency modulation for OFDR based DAS. However, achieving sufficiently linear scan via direct frequency modulation is challenging and poses limits on the scan parameters. A novel method for analyzing sinusoidal frequency modulated light is presented and demonstrated for both static and dynamic sensing. SFS-OFDR projects the measured signal onto appropriate sinusoidal phase terms to obtain spatial information. Thus, by using SFS-OFDR on sinusoidal modulated light it is possible to make use of the many advantages offered by direct frequency modulation without the limitations posed by the linearity requirement.

  18. A β(IV)-spectrin/CaMKII signaling complex is essential for membrane excitability in mice.

    Science.gov (United States)

    Hund, Thomas J; Koval, Olha M; Li, Jingdong; Wright, Patrick J; Qian, Lan; Snyder, Jedidiah S; Gudmundsson, Hjalti; Kline, Crystal F; Davidson, Nathan P; Cardona, Natalia; Rasband, Matthew N; Anderson, Mark E; Mohler, Peter J

    2010-10-01

    Ion channel function is fundamental to the existence of life. In metazoans, the coordinate activities of voltage-gated Na(+) channels underlie cellular excitability and control neuronal communication, cardiac excitation-contraction coupling, and skeletal muscle function. However, despite decades of research and linkage of Na(+) channel dysfunction with arrhythmia, epilepsy, and myotonia, little progress has been made toward understanding the fundamental processes that regulate this family of proteins. Here, we have identified β(IV)-spectrin as a multifunctional regulatory platform for Na(+) channels in mice. We found that β(IV)-spectrin targeted critical structural and regulatory proteins to excitable membranes in the heart and brain. Animal models harboring mutant β(IV)-spectrin alleles displayed aberrant cellular excitability and whole animal physiology. Moreover, we identified a regulatory mechanism for Na(+) channels, via direct phosphorylation by β(IV)-spectrin-targeted calcium/calmodulin-dependent kinase II (CaMKII). Collectively, our data define an unexpected but indispensable molecular platform that determines membrane excitability in the mouse heart and brain.

  19. A βIV-spectrin/CaMKII signaling complex is essential for membrane excitability in mice

    Science.gov (United States)

    Hund, Thomas J.; Koval, Olha M.; Li, Jingdong; Wright, Patrick J.; Qian, Lan; Snyder, Jedidiah S.; Gudmundsson, Hjalti; Kline, Crystal F.; Davidson, Nathan P.; Cardona, Natalia; Rasband, Matthew N.; Anderson, Mark E.; Mohler, Peter J.

    2010-01-01

    Ion channel function is fundamental to the existence of life. In metazoans, the coordinate activities of voltage-gated Na+ channels underlie cellular excitability and control neuronal communication, cardiac excitation-contraction coupling, and skeletal muscle function. However, despite decades of research and linkage of Na+ channel dysfunction with arrhythmia, epilepsy, and myotonia, little progress has been made toward understanding the fundamental processes that regulate this family of proteins. Here, we have identified βIV-spectrin as a multifunctional regulatory platform for Na+ channels in mice. We found that βIV-spectrin targeted critical structural and regulatory proteins to excitable membranes in the heart and brain. Animal models harboring mutant βIV-spectrin alleles displayed aberrant cellular excitability and whole animal physiology. Moreover, we identified a regulatory mechanism for Na+ channels, via direct phosphorylation by βIV-spectrin–targeted calcium/calmodulin-dependent kinase II (CaMKII). Collectively, our data define an unexpected but indispensable molecular platform that determines membrane excitability in the mouse heart and brain. PMID:20877009

  20. Study of stability of a bandpass sigma delta modulator with sinusoidal input

    Energy Technology Data Exchange (ETDEWEB)

    Iu, Herbert H.C. [School of Electrical, Electronic and Computer Engineering, University of Western Australia, 35 Stirling Highway, Crawley (Australia)]. E-mail: herbert@ee.uwa.edu.au

    2007-07-15

    Bandpass sigma delta modulators (SDMs) have applications in areas such as digital radio demodulation. Stability issues of bandpass SDMs have been widely studied. Usually, zero or step inputs are considered. In this paper, we study the stability and non-linear phenomena of a bandpass SDM with sinusoidal input. In particular, the effects of the amplitude and frequency of the sinusoidal input signal will be investigated.

  1. An effective coded excitation scheme based on a predistorted FM signal and an optimized digital filter

    DEFF Research Database (Denmark)

    Misaridis, Thanasis; Jensen, Jørgen Arendt

    1999-01-01

    This paper presents a coded excitation imaging system based on a predistorted FM excitation and a digital compression filter designed for medical ultrasonic applications, in order to preserve both axial resolution and contrast. In radars, optimal Chebyshev windows efficiently weight a nearly...... is applied on receive, contrast or resolution can be traded in for range sidelobe levels down to -86 dB. The digital filter is designed to efficiently use the available bandwidth and at the same time to be insensitive to the transducer's impulse response. For evaluation of the method, simulations were...... performed with the program Field II. A commercial scanner (B-K Medical 3535) was modified and interfaced to an arbitrary function generator along with an RF power amplifier (Ritec). Hydrophone measurements in water were done to establish excitation voltage and corresponding intensity levels (I-sptp and I...

  2. Full-Band Quasi-Harmonic Analysis and Synthesis of Musical Instrument Sounds with Adaptive Sinusoids

    Directory of Open Access Journals (Sweden)

    Marcelo Caetano

    2016-05-01

    Full Text Available Sinusoids are widely used to represent the oscillatory modes of musical instrument sounds in both analysis and synthesis. However, musical instrument sounds feature transients and instrumental noise that are poorly modeled with quasi-stationary sinusoids, requiring spectral decomposition and further dedicated modeling. In this work, we propose a full-band representation that fits sinusoids across the entire spectrum. We use the extended adaptive Quasi-Harmonic Model (eaQHM to iteratively estimate amplitude- and frequency-modulated (AM–FM sinusoids able to capture challenging features such as sharp attacks, transients, and instrumental noise. We use the signal-to-reconstruction-error ratio (SRER as the objective measure for the analysis and synthesis of 89 musical instrument sounds from different instrumental families. We compare against quasi-stationary sinusoids and exponentially damped sinusoids. First, we show that the SRER increases with adaptation in eaQHM. Then, we show that full-band modeling with eaQHM captures partials at the higher frequency end of the spectrum that are neglected by spectral decomposition. Finally, we demonstrate that a frame size equal to three periods of the fundamental frequency results in the highest SRER with AM–FM sinusoids from eaQHM. A listening test confirmed that the musical instrument sounds resynthesized from full-band analysis with eaQHM are virtually perceptually indistinguishable from the original recordings.

  3. Dopamine-signalled reward predictions generated by competitive excitation and inhibition in a spiking neural network model

    Directory of Open Access Journals (Sweden)

    Paul eChorley

    2011-05-01

    Full Text Available Dopaminergic neurons in the mammalian substantia nigra displaycharacteristic phasic responses to stimuli which reliably predict thereceipt of primary rewards. These responses have been suggested toencode reward prediction-errors similar to those used in reinforcementlearning. Here, we propose a model of dopaminergic activity in whichprediction error signals are generated by the joint action ofshort-latency excitation and long-latency inhibition, in a networkundergoing dopaminergic neuromodulation of both spike-timing dependentsynaptic plasticity and neuronal excitability. In contrast toprevious models, sensitivity to recent events is maintained by theselective modification of specific striatal synapses, efferent tocortical neurons exhibiting stimulus-specific, temporally extendedactivity patterns. Our model shows, in the presence of significantbackground activity, (i a shift in dopaminergic response from rewardto reward predicting stimuli, (ii preservation of a response tounexpected rewards, and (iii a precisely-timed below-baseline dip inactivity observed when expected rewards are omitted.

  4. Extracting fluorescence signal due to direct excitation of the energy acceptor from quantum dot-based FRET

    International Nuclear Information System (INIS)

    Huang Chaobiao; Wu Chuanliu; Zhao Yibing

    2010-01-01

    An 'in situ' strategy for extracting the fluorescence signal of dye acceptors due to direct excitation from Qdot-based FRET systems has been reported. The relevant theory model was developed to describe the present strategy. This strategy involves selective control of the quantum yield of Qdot donors 'in situ', not only providing a straightforward approach to qualitatively confirm the FRET-based fluorescence enhancement but also allowing us to quantitatively separate the fluorescence signal of dye acceptors due to direct excitation and FRET enhancement from each other with high precision and convenient procedures. Different from existing method which was commonly used in literatures, our 'in situ' strategy does not involve complicated quantification of the dye acceptors conjugated on the surface of Qdots. Results indicated that the fraction of the emission from the dye acceptors due to FRET process decreases with the increase in the amount of dye acceptors on the Qdot surface. In addition, the relation between the quantum yield of Qdot donors and the FRET enhancement factor of the dye acceptors have also been explored for the first time by the present 'in situ' strategy.

  5. Cavitation on hydrofoils with sinusoidal leading edge

    Science.gov (United States)

    Johari, H.

    2015-12-01

    Cavitation characteristics of hydrofoils with sinusoidal leading edge were examined experimentally at a Reynolds number of 7.2 × 105. The hydrofoils had an underlying NACA 634-021 profile and an aspect ratio of 4.3. The sinusoidal leading edge geometries included three amplitudes of 2.5%, 5%, and 12% and two wavelengths of 25% and 50% of the mean chord length. Results revealed that cavitation on the leading edge-modified hydrofoils existed in pockets behind the troughs whereas the baseline hydrofoil produced cavitation along its entire span. Moreover, cavitation on the modified hydrofoils appeared at consistently lower angles of attack than on the baseline hydrofoil.

  6. Riding the Ferris Wheel: A Sinusoidal Model

    Science.gov (United States)

    Mittag, Kathleen Cage; Taylor, Sharon E.

    2011-01-01

    When thinking of models for sinusoidal waves, examples such as tides of the ocean, daily temperatures for one year in your town, light and sound waves, and certain types of motion are used. Many textbooks [1, p. 222] also present a "Ferris wheel description problem" for students to work. This activity takes the Ferris wheel problem out of the…

  7. Unidirectional Motion of Vehicle on Sinusoidal Path

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 17; Issue 4. Unidirectional Motion of Vehicle on Sinusoidal Path: Can it Cause Illusory Forward and Backward Motion? Anuj Bhatnagar. Classroom Volume 17 Issue 4 April 2012 pp 387-392 ...

  8. Sinusoidal cycling swimming pattern of reservoir fishes

    Czech Academy of Sciences Publication Activity Database

    Čech, Martin; Kubečka, Jan

    2002-01-01

    Roč. 61, č. 2 (2002), s. 456-471 ISSN 0022-1112 R&D Projects: GA AV ČR IAA6017901; GA AV ČR IAA6017201; GA ČR GA206/02/0520 Keywords : sinusoidal swimming * echosounder * reservoir Subject RIV: EH - Ecology, Behaviour Impact factor: 1.186, year: 2002

  9. Targeting Cannabinoid Signaling in the Immune System: “High”-ly Exciting Questions, Possibilities, and Challenges

    Directory of Open Access Journals (Sweden)

    Attila Oláh

    2017-11-01

    Full Text Available It is well known that certain active ingredients of the plants of Cannabis genus, i.e., the “phytocannabinoids” [pCBs; e.g., (−-trans-Δ9-tetrahydrocannabinol (THC, (−-cannabidiol, etc.] can influence a wide array of biological processes, and the human body is able to produce endogenous analogs of these substances [“endocannabinoids” (eCB, e.g., arachidonoylethanolamine (anandamide, AEA, 2-arachidonoylglycerol (2-AG, etc.]. These ligands, together with multiple receptors (e.g., CB1 and CB2 cannabinoid receptors, etc., and a complex enzyme and transporter apparatus involved in the synthesis and degradation of the ligands constitute the endocannabinoid system (ECS, a recently emerging regulator of several physiological processes. The ECS is widely expressed in the human body, including several members of the innate and adaptive immune system, where eCBs, as well as several pCBs were shown to deeply influence immune functions thereby regulating inflammation, autoimmunity, antitumor, as well as antipathogen immune responses, etc. Based on this knowledge, many in vitro and in vivo studies aimed at exploiting the putative therapeutic potential of cannabinoid signaling in inflammation-accompanied diseases (e.g., multiple sclerosis or in organ transplantation, and to dissect the complex immunological effects of medical and “recreational” marijuana consumption. Thus, the objective of the current article is (i to summarize the most recent findings of the field; (ii to highlight the putative therapeutic potential of targeting cannabinoid signaling; (iii to identify open questions and key challenges; and (iv to suggest promising future directions for cannabinoid-based drug development.

  10. SMALL-SIGNAL ANALYZING OF SEPARATELY EXCITED DC MOTOR FED DC - DC CHOPPER

    Directory of Open Access Journals (Sweden)

    İSMAİL COŞKUN

    1999-12-01

    Full Text Available Choppers are widely used in order to get smooth speed characteristics of DC motors. If the load or input voltage is changed, a feedback control technique is used to get the constant speed. To design the proper feedback control, the transfer function of the chopper-motor combination should be kno\\vn. ln this study, the effort was given to obtain the general black diagram, inciurling the field current and aı1na ture current of chopper-fed DC motor. It can be seen from the black diagram that the chopper circuit modifies the transfer function of the DC motor. DC-DC DARBEL E YİCİ iLE YABANCI UYARTIMLI DC KÜÇÜK SİNY AL ANALİZİ ÖZET BESLENEN MOT O RUN DC motorlardan düzgün bir hız karakteristiği elde etmek için darbeleyiciler çok kullamlır. Eğer yük ya da giriş gerilimi de ği şirse, sabit hız elde etmek için geribeslemeli kontrol tekniği kuJlanılır. Uygun bir geribesleme kontrolu tasarlamak iç� darbeliyici-motor kombinasy onunun transfer fonksiyonu bilinmelidir. -Bu çalışma da, darbeleyici ile beslenen DC motorun alan akımı ve endüvi akımını da kapsayan genel blok diyağraınını elde etıııek için çaba gösterilmiştir. Blok diyagramından görülebilec eği gibi, darbeleyici devresi DC motorun tra nsfer fonksiyonunu değiştirmektedir. I. INTRODUCTI ON Choppers are widely used for speed control of DC separately excited motors as they offer high efficiency, quick response, wide speed control range and regeneration down to very low speeds [ 1] . All chopper circuits can be classified into two groups. (a Load ind ependent choppers� in which the output voltage waveform is either a square wave or can be approximated by a square \\vave. (b Load dependent choppers, in which charging of the commutating capacitor is govemed by load current. In such cases, the output voltage wavefoım is neither a square wave nor can be approximated by a square wave. Various methods of analyzing of DC motors fed by a chopper with

  11. A Perceptual Model for Sinusoidal Audio Coding Based on Spectral Integration

    Directory of Open Access Journals (Sweden)

    Jensen Søren Holdt

    2005-01-01

    Full Text Available Psychoacoustical models have been used extensively within audio coding applications over the past decades. Recently, parametric coding techniques have been applied to general audio and this has created the need for a psychoacoustical model that is specifically suited for sinusoidal modelling of audio signals. In this paper, we present a new perceptual model that predicts masked thresholds for sinusoidal distortions. The model relies on signal detection theory and incorporates more recent insights about spectral and temporal integration in auditory masking. As a consequence, the model is able to predict the distortion detectability. In fact, the distortion detectability defines a (perceptually relevant norm on the underlying signal space which is beneficial for optimisation algorithms such as rate-distortion optimisation or linear predictive coding. We evaluate the merits of the model by combining it with a sinusoidal extraction method and compare the results with those obtained with the ISO MPEG-1 Layer I-II recommended model. Listening tests show a clear preference for the new model. More specifically, the model presented here leads to a reduction of more than 20% in terms of number of sinusoids needed to represent signals at a given quality level.

  12. MDMA Increases Excitability in the Dentate Gyrus: Role of 5HT2A Receptor Induced PGE2 Signaling

    Science.gov (United States)

    Collins, Stuart A.; Huff, Courtney; Chiaia, Nicolas; Gudelsky, Gary A.; Yamamoto, Bryan K.

    2015-01-01

    MDMA is a widely abused psychostimulant which causes release of serotonin in various forebrain regions. Recently, we reported that MDMA increases extracellular glutamate concentrations in the dentate gyrus, via activation of 5HT2A receptors. We examined the role of prostaglandin signaling in mediating the effects of 5HT2A receptor activation on the increases in extracellular glutamate and the subsequent long-term loss of parvalbumin interneurons in the dentate gyrus caused by MDMA. Administration of MDMA into the dentate gyrus of rats increased PGE2 concentrations which was prevented by coadministration of MDL100907, a 5HT2A receptor antagonist. MDMA-induced increases in extracellular glutamate were inhibited by local administration of SC-51089, an inhibitor of the EP1 prostaglandin receptor. Systemic administration of SC-51089 during injections of MDMA prevented the decreases in parvalbumin interneurons observed 10 days later. The loss of parvalbumin immunoreactivity after MDMA exposure coincided with a decrease in paired-pulse inhibition and afterdischarge threshold in the dentate gyrus. These changes were prevented by inhibition of EP1 and 5HT2A receptors during MDMA. Additional experiments revealed an increased susceptibility to kainic acid-induced seizures in MDMA treated rats which could be prevented with SC51089 treatments during MDMA exposure. Overall, these findings suggest that 5HT2A receptors mediate MDMA-induced PGE2 signaling and subsequent increases in glutamate. This signaling mediates parvalbumin cell losses as well as physiologic changes in the dentate gyrus, suggesting that the lack of the inhibition provided by these neurons increases the excitability within the dentate gyrus of MDMA treated rats. PMID:26670377

  13. Orbital component extraction by time-variant sinusoidal modeling.

    Science.gov (United States)

    Sinnesael, Matthias; Zivanovic, Miroslav; De Vleeschouwer, David; Claeys, Philippe; Schoukens, Johan

    2016-04-01

    Accurately deciphering periodic variations in paleoclimate proxy signals is essential for cyclostratigraphy. Classical spectral analysis often relies on methods based on the (Fast) Fourier Transformation. This technique has no unique solution separating variations in amplitude and frequency. This characteristic makes it difficult to correctly interpret a proxy's power spectrum or to accurately evaluate simultaneous changes in amplitude and frequency in evolutionary analyses. Here, we circumvent this drawback by using a polynomial approach to estimate instantaneous amplitude and frequency in orbital components. This approach has been proven useful to characterize audio signals (music and speech), which are non-stationary in nature (Zivanovic and Schoukens, 2010, 2012). Paleoclimate proxy signals and audio signals have in nature similar dynamics; the only difference is the frequency relationship between the different components. A harmonic frequency relationship exists in audio signals, whereas this relation is non-harmonic in paleoclimate signals. However, the latter difference is irrelevant for the problem at hand. Using a sliding window approach, the model captures time variations of an orbital component by modulating a stationary sinusoid centered at its mean frequency, with a single polynomial. Hence, the parameters that determine the model are the mean frequency of the orbital component and the polynomial coefficients. The first parameter depends on geologic interpretation, whereas the latter are estimated by means of linear least-squares. As an output, the model provides the orbital component waveform, either in the depth or time domain. Furthermore, it allows for a unique decomposition of the signal into its instantaneous amplitude and frequency. Frequency modulation patterns can be used to reconstruct changes in accumulation rate, whereas amplitude modulation can be used to reconstruct e.g. eccentricity-modulated precession. The time-variant sinusoidal model

  14. Electronically Tunable Quadrature Sinusoidal Oscillator with Equal Output Amplitudes during Frequency Tuning Process

    Directory of Open Access Journals (Sweden)

    Den Satipar

    2017-01-01

    Full Text Available A new configuration of voltage-mode quadrature sinusoidal oscillator is proposed. The proposed oscillator employs two voltage differencing current conveyors (VDCCs, two resistors, and two grounded capacitors. In this design, the use of multiple/dual output terminal active building block is not required. The tuning of frequency of oscillation (FO can be done electronically by adjusting the bias current of active device without affecting condition of oscillation (CO. The electronic tuning can be done by controlling the bias current using a digital circuit. The amplitude of two sinusoidal outputs is equal when the frequency of oscillation is tuned. This makes the sinusoidal output voltages meet good total harmonic distortions (THD. Moreover, the proposed circuit can provide the sinusoidal output current with high impedance which is connected to external load or to another circuit without the use of buffer device. To confirm that the oscillator can generate the quadrature sinusoidal output signal, the experimental results using VDCC constructed from commercially available ICs are also included. The experimental results agree well with theoretical anticipation.

  15. Sampling system for pulsed signals. Study of the radioactive lifetimes of excited 32P1/2 and 32P3/2 states of Na, excited by a tunable dye laser

    International Nuclear Information System (INIS)

    Thomas, P.; Campos, J.

    1979-01-01

    A system for sampling and averaging repetitive signals in the order of nanoseconds is discussed. The system uses as storage memory a multichannel analyzer operating in multi scaling mode. This instrument is employed for the measurement of atomic level lifetimes using a dye laser to excite the atoms and is applied to the study of lifetimes of the 3 2 P1/2 and 3 2 P3/2 states of sodium. (Author) 32 refs

  16. Current and Voltage Mode Multiphase Sinusoidal Oscillators Using CBTAs

    Directory of Open Access Journals (Sweden)

    M. Sagbas

    2013-04-01

    Full Text Available Current-mode (CM and voltage-mode (VM multiphase sinusoidal oscillator (MSO structures using current backward transconductance amplifier (CBTA are proposed. The proposed oscillators can generate n current or voltage signals (n being even or odd equally spaced in phase. n+1 CBTAs, n grounded capacitors and a grounded resistor are used for nth-state oscillator. The oscillation frequency can be independently controlled through transconductance (gm of the CBTAs which are adjustable via their bias currents. The effects caused by the non-ideality of the CBTA on the oscillation frequency and condition have been analyzed. The performance of the proposed circuits is demonstrated on third-stage and fifth-stage MSOs by using PSPICE simulations based on the 0.25 µm TSMC level-7 CMOS technology parameters.

  17. Perception of the dynamic visual vertical during sinusoidal linear motion.

    Science.gov (United States)

    Pomante, A; Selen, L P J; Medendorp, W P

    2017-10-01

    The vestibular system provides information for spatial orientation. However, this information is ambiguous: because the otoliths sense the gravitoinertial force, they cannot distinguish gravitational and inertial components. As a consequence, prolonged linear acceleration of the head can be interpreted as tilt, referred to as the somatogravic effect. Previous modeling work suggests that the brain disambiguates the otolith signal according to the rules of Bayesian inference, combining noisy canal cues with the a priori assumption that prolonged linear accelerations are unlikely. Within this modeling framework the noise of the vestibular signals affects the dynamic characteristics of the tilt percept during linear whole-body motion. To test this prediction, we devised a novel paradigm to psychometrically characterize the dynamic visual vertical-as a proxy for the tilt percept-during passive sinusoidal linear motion along the interaural axis (0.33 Hz motion frequency, 1.75 m/s 2 peak acceleration, 80 cm displacement). While subjects ( n =10) kept fixation on a central body-fixed light, a line was briefly flashed (5 ms) at different phases of the motion, the orientation of which had to be judged relative to gravity. Consistent with the model's prediction, subjects showed a phase-dependent modulation of the dynamic visual vertical, with a subject-specific phase shift with respect to the imposed acceleration signal. The magnitude of this modulation was smaller than predicted, suggesting a contribution of nonvestibular signals to the dynamic visual vertical. Despite their dampening effect, our findings may point to a link between the noise components in the vestibular system and the characteristics of dynamic visual vertical. NEW & NOTEWORTHY A fundamental question in neuroscience is how the brain processes vestibular signals to infer the orientation of the body and objects in space. We show that, under sinusoidal linear motion, systematic error patterns appear in the

  18. Credibility Test for Frequency Estimation of Sinusoid Using Chebyshev’s Inequality

    Directory of Open Access Journals (Sweden)

    Hu Guobing

    2014-01-01

    Full Text Available Estimation of sinusoid frequency is a key research problem related to radar, sonar, and communication systems. The results of numerous investigations on frequency estimation have been reported in the literature. Nevertheless, to the best of our knowledge, none of them have dealt with credibility evaluation, which is used to decide whether an individual frequency estimate of the sinusoid is accurate or not. In this study, the credibility problem is modeled as a hypothesis test based on Chebyshev’s inequality (CI. The correlation calculated from the received signal and the reference signal generated according to the frequency estimate is used as a test statistic. A threshold is determined based on CI, and the analytical expression for the frequency estimation credibility detection performance is derived. Simulations show that the proposed method performs well even at low signal-to-noise ratios.

  19. Identification of the excitation source of the pressure vessel vibration in a Soviet built WWER PWR with signal transmission path analysis

    International Nuclear Information System (INIS)

    Antonopoulos-Domis, M.; Mourtzanos, K.; Por, G.

    1996-01-01

    Signal transmission path analysis via multivariate auto-regressive modelling was applied at signals recorded at a WWER power reactor (Paks reactor, Hungary). The core is equipped with strings of self-powered neutron detectors (SPNDs). Each string has seven SPNDs. The signals were high pass filtered with cut-off at 0.03 Hz and low pass-filtered with cut-off at 25 Hz. The analysis suggests that the source of excitation of all signals at 25 Hz is due to main coolant pump vibration. It was confirmed that there is vibration of main coolant pumps at this frequency due to a bearing problem. Signal transmission path analysis also suggests direct paths from outlet coolant to inlet coolant pressure and in-core neutron detectors at the upper part of the core. (author)

  20. Method of test signal design for estimating the aircraft aerodynamic parameters

    Science.gov (United States)

    Belokon', S. A.; Zolotukhin, Yu. N.; Filippov, M. N.

    2017-07-01

    A method of test signal design is proposed for studying the aircraft aerodynamic characteristics with the use of the technology of dynamically scaled free-flight models. Simultaneous excitation of all input channels in a prescribed frequency band by a set of mutually orthogonal signals is applied to increase the efficiency. A modified method of calculating the set of mutually orthogonal sinusoidal signals with a small normalized peak factor is presented. Results of simulating the aircraft motion in the MATLAB/Simulink environment with the use of the developed method of test signal design are reported.

  1. Rotating permanent magnet excitation for blood flow measurement.

    Science.gov (United States)

    Nair, Sarath S; Vinodkumar, V; Sreedevi, V; Nagesh, D S

    2015-11-01

    A compact, portable and improved blood flow measurement system for an extracorporeal circuit having a rotating permanent magnetic excitation scheme is described in this paper. The system consists of a set of permanent magnets rotating near blood or any conductive fluid to create high-intensity alternating magnetic field in it and inducing a sinusoidal varying voltage across the column of fluid. The induced voltage signal is acquired, conditioned and processed to determine its flow rate. Performance analysis shows that a sensitivity of more than 250 mV/lpm can be obtained, which is more than five times higher than conventional flow measurement systems. Choice of rotating permanent magnet instead of an electromagnetic core generates alternate magnetic field of smooth sinusoidal nature which in turn reduces switching and interference noises. These results in reduction in complex electronic circuitry required for processing the signal to a great extent and enable the flow measuring device to be much less costlier, portable and light weight. The signal remains steady even with changes in environmental conditions and has an accuracy of greater than 95%. This paper also describes the construction details of the prototype, the factors affecting sensitivity and detailed performance analysis at various operating conditions.

  2. Stochastic analysis/synthesis using sinusoidal atoms

    DEFF Research Database (Denmark)

    Jensen, Kristoffer

    2008-01-01

    This work proposes a method for re-synthesizing music for use in perceptual experiments regarding structural changes and in music creation. Atoms are estimated from music audio, modelled in a stochastic model, and re-synthesized from the model pa- rameters. The atoms are found by splitting...... sinusoids into short segments, and modelled into amplitude and envelope shape, frequency, time and duration. A simple model for creating envelopes with percussive, sustained or crescendo shape is presented. Single variable and joint probability density functions are created from the atom parameters and used...... to re-create sounds with the same distribution of the atoms parameters. A novel method for visualization music, the musigram, permits a better understanding of the re- synthesized sounds....

  3. Power Analysis of Traction Transformer under Non-Sinusoidal Conditions

    Directory of Open Access Journals (Sweden)

    Jaromir Kijonka

    2004-01-01

    Full Text Available Article deals with power analysis of traction transformer 100/27 kV, Sn= 10MVA under non-sinusoidal conditions. The power analysis is evaluated by means of IEEE Trial Use Standard Definitions of the Electric Power Quantities under Non-Sinusoidal Conditions, Document Number: IEEE 1459-2000.

  4. Variable Dimension Trellis-Coded Quantization of Sinusoidal Parameters

    DEFF Research Database (Denmark)

    Larsen, Morten Holm; Christensen, Mads G.; Jensen, Søren Holdt

    2008-01-01

    In this letter, we propose joint quantization of the parameters of a set of sinusoids based on the theory of trellis-coded quantization. A particular advantage of this approach is that it allows for joint quantization of a variable number of sinusoids, which is particularly relevant in variable...

  5. Response of rat skin flaps to sinusoidal electromagnetic fields

    International Nuclear Information System (INIS)

    Herbst, E.

    1987-01-01

    Electrical stimulation to heal bone fractures has been used clinically since the early 1970s. As a result of treatment with either direct current or electromagnetic fields, there was an indication that the electrical signals enhanced the ingrowth of blood vessels into the treated area. This possibility was one of the reasons for the initial studies on the influence of pulsed electromagnetic fields (PEMFs) on healing of skin flaps. These investigations reported a decrease in the amount of necrosis of a skin flap after PEMF treatment. The skin flap model was chosen in these studies, as it is generally accepted for the investigation of the influence of different treatments on wound healing. The skin flap is a partially detached portion of the skin which retains part of its blood supply. However, if the flap is too long for its width, part of it will die after the transfer. Flap necrosis, therefore, represents a difficult clinical problem, especially in classes where a large area has to be covered. In the present study the authors address whether enhanced skin flap survival after treatment with PEMF is signal specific, that is , whether one could obtain similar results using various sinusoidal electromagnetic fields (SEMFs). Specifically, they investigated the influence on skin flap survival of SEMFs with different frequencies but the same maximum of dB/dt

  6. Realization of Electronically Tunable Current- Mode Multiphase Sinusoidal Oscillators Using CFTAs

    OpenAIRE

    Prungsak Uttaphut

    2012-01-01

    An implementation of current-mode multiphase sinusoidal oscillators is presented. Using CFTA-based lossy integrators, odd and odd/even phase systems can be realized with following advantages. The condition of oscillation and frequency of oscillation can be orthogonally tuned. The high output impedances facilitate easy driving an external load without additional current buffers. The proposed MSOs provide odd or even phase signals that are equally spaced in phase and equal amplitude. The circui...

  7. The Role of Potassium Channels in Arabidopsis thaliana Long Distance Electrical Signalling: AKT2 Modulates Tissue Excitability While GORK Shapes Action Potentials

    Directory of Open Access Journals (Sweden)

    Tracey Ann Cuin

    2018-03-01

    Full Text Available Fast responses to an external threat depend on the rapid transmission of signals through a plant. Action potentials (APs are proposed as such signals. Plant APs share similarities with their animal counterparts; they are proposed to depend on the activity of voltage-gated ion channels. Nonetheless, despite their demonstrated role in (abiotic stress responses, the identities of the associated voltage-gated channels and transporters remain undefined in higher plants. By demonstrating the role of two potassium-selective channels in Arabidopsis thaliana in AP generation and shaping, we show that the plant AP does depend on similar Kv-like transport systems to those of the animal signal. We demonstrate that the outward-rectifying potassium-selective channel GORK limits the AP amplitude and duration, while the weakly-rectifying channel AKT2 affects membrane excitability. By computational modelling of plant APs, we reveal that the GORK activity not only determines the length of an AP but also the steepness of its rise and the maximal amplitude. Thus, outward-rectifying potassium channels contribute to both the repolarisation phase and the initial depolarisation phase of the signal. Additionally, from modelling considerations we provide indications that plant APs might be accompanied by potassium waves, which prime the excitability of the green cable.

  8. PROBING THE IMPACT OF GAMMA-IRRADIATION ON THE METABOLIC STATE OF NEURAL STEM AND PRECURSOR CELLS USING DUAL-WAVELENGTH INTRINSIC SIGNAL TWO-PHOTON EXCITED FLUORESCENCE.

    Science.gov (United States)

    Krasieva, Tatiana B; Giedzinski, Erich; Tran, Katherine; Lan, Mary; Limoli, Charles L; Tromberg, Bruce J

    2011-07-01

    Two-photon excited fluorescence (TPEF) spectroscopy and imaging were used to investigate the effects of gamma-irradiation on neural stem and precursor cells (NSPCs). While the observed signal from reduced nicotinamide adenine dinucleotide (NADH) was localized to the mitochondria, the signal typically associated with oxidized flavoproteins (Fp) was distributed diffusely throughout the cell. The measured TPEF emission and excitation spectra were similar to the established spectra of NAD(P)H and Fp. Fp fluorescence intensity was markedly increased by addition of the electron transport chain (ETC) modulator menadione to the medium, along with a concomitant decrease in the NAD(P)H signal. Three-dimensional (3D) neurospheres were imaged to obtain the cellular metabolic index (CMI), calculated as the ratio of Fp to NAD(P)H fluorescence intensity. Radiation effects were found to differ between low-dose (≤ 50 cGy) and high-dose (≥ 50 cGy) exposures. Low-dose irradiation caused a marked drop in CMI values accompanied by increased cellular proliferation. At higher doses, both NAD(P)H and Fp signals increased, leading to an overall elevation in CMI values. These findings underscore the complex relationship between radiation dose, metabolic state, and proliferation status in NSPCs and highlight the ability of TPEF spectroscopy and imaging to characterize metabolism in 3D spheroids.

  9. Quadratic sinusoidal analysis of voltage clamped neurons.

    Science.gov (United States)

    Magnani, Christophe; Moore, Lee E

    2011-11-01

    Nonlinear biophysical properties of individual neurons are known to play a major role in the nervous system, especially those active at subthreshold membrane potentials that integrate synaptic inputs during action potential initiation. Previous electrophysiological studies have made use of a piecewise linear characterization of voltage clamped neurons, which consists of a sequence of linear admittances computed at different voltage levels. In this paper, a fundamentally new theory is developed in two stages. First, analytical equations are derived for a multi-sinusoidal voltage clamp of a Hodgkin-Huxley type model to reveal the quadratic response at the ionic channel level. Second, the resulting behavior is generalized to a novel Hermitian neural operator, which uses an algebraic formulation capturing the entire quadratic behavior of a voltage clamped neuron. In addition, this operator can also be used for a nonlinear identification analysis directly applicable to experimental measurements. In this case, a Hermitian matrix of interactions is built with paired frequency probing measurements performed at specific harmonic and interactive output frequencies. More importantly, eigenanalysis of the neural operator provides a concise signature of the voltage dependent conductances determined by their particular distribution on the dendritic and somatic membrane regions of neurons. Finally, the theory is concretely illustrated by an analysis of an experimentally measured vestibular neuron, providing a remarkably compact description of the quadratic responses involved in the nonlinear processing underlying the control of eye position during head rotation, namely the neural integrator.

  10. Nonlinear Dynamic Behavior of a Flexible Structure to Combined External Acoustic and Parametric Excitation

    Directory of Open Access Journals (Sweden)

    Paulo S. Varoto

    2006-01-01

    Full Text Available Flexible structures are frequently subjected to multiple inputs when in the field environment. The accurate determination of the system dynamic response to multiple inputs depends on how much information is available from the excitation sources that act on the system under study. Detailed information include, but are not restricted to appropriate characterization of the excitation sources in terms of their variation in time and in space for the case of distributed loads. Another important aspect related to the excitation sources is how inputs of different nature contribute to the measured dynamic response. A particular and important driving mechanism that can occur in practical situations is the parametric resonance. Another important input that occurs frequently in practice is related to acoustic pressure distributions that is a distributed type of loading. In this paper, detailed theoretical and experimental investigations on the dynamic response of a flexible cantilever beam carrying a tip mass to simultaneously applied external acoustic and parametric excitation signals have been performed. A mathematical model for transverse nonlinear vibration is obtained by employing Lagrange’s equations where important nonlinear effects such as the beam’s curvature and quadratic viscous damping are accounted for in the equation of motion. The beam is driven by two excitation sources, a sinusoidal motion applied to the beam’s fixed end and parallel to its longitudinal axis and a distributed sinusoidal acoustic load applied orthogonally to the beam’s longitudinal axis. The major goal here is to investigate theoretically as well as experimentally the dynamic behavior of the beam-lumped mass system under the action of these two excitation sources. Results from an extensive experimental work show how these two excitation sources interacts for various testing conditions. These experimental results are validated through numerically simulated results

  11. The potent, indirect adenosine monophosphate-activated protein kinase activator R419 attenuates mitogen-activated protein kinase signaling, inhibits nociceptor excitability, and reduces pain hypersensitivity in mice

    Directory of Open Access Journals (Sweden)

    Galo L. Mejia

    2016-07-01

    Full Text Available Abstract. There is a great need for new therapeutics for the treatment of pain. A possible avenue to development of such therapeutics is to interfere with signaling pathways engaged in peripheral nociceptors that cause these neurons to become hyperexcitable. There is strong evidence that mitogen-activated protein kinases and phosphoinositide 3-kinase (PI3K/mechanistic target of rapamycin signaling pathways are key modulators of nociceptor excitability in vitro and in vivo. Activation of adenosine monophosphate-activated protein kinase (AMPK can inhibit signaling in both of these pathways, and AMPK activators have been shown to inhibit nociceptor excitability and pain hypersensitivity in rodents. R419 is one of, if not the most potent AMPK activator described to date. We tested whether R419 activates AMPK in dorsal root ganglion (DRG neurons and if this leads to decreased pain hypersensitivity in mice. We find that R419 activates AMPK in DRG neurons resulting in decreased mitogen-activated protein kinase signaling, decreased nascent protein synthesis, and enhanced P body formation. R419 attenuates nerve growth factor (NGF-induced changes in excitability in DRG neurons and blocks NGF-induced mechanical pain amplification in vivo. Moreover, locally applied R419 attenuates pain hypersensitivity in a model of postsurgical pain and blocks the development of hyperalgesic priming in response to both NGF and incision. We conclude that R419 is a promising lead candidate compound for the development of potent and specific AMPK activation to inhibit pain hypersensitivity as a result of injury.

  12. Cell culture retains contractile phenotype but epigenetically modulates cell-signaling proteins of excitation-contraction coupling in colon smooth muscle cells.

    Science.gov (United States)

    Shi, Xuan-Zheng; Sarna, Sushil K

    2013-02-15

    Smooth muscle cell cultures are used frequently to investigate the cellular mechanisms of contraction. We tested the hypothesis that cell culture alters the expression of select cell-signaling proteins of excitation-contraction coupling in colon smooth muscle cells without altering the contractile phenotype. We used muscularis externa (ME) tissues, freshly dispersed cells (FC), primary cell cultures (PC), and resuspensions of cell cultures (RC). Colon smooth muscle cells retained their phenotype in all states. We investigated expression of 10 cell-signaling proteins of excitation-contraction coupling in all four types of tissue. Expression of all these proteins did not differ between ME and FC (P > 0.05). However, expression of the α(1C)-subunit of Ca(v)1.2b, myosin light chain kinase, myosin phosphatase target subunit 1, and 17-kDa C kinase-potentiated protein phosphatase-1 inhibitor (CPI-17) decreased in PC and RC vs. ME and FC (all P < 0.05). Expression of Gα(i3), serine/threonine protein phosphatase-1 β-catalytic subunit, and Rho kinase 1 increased in PC and RC vs. ME and FC (all P < 0.05). Cell culture and resuspension downregulated expression of α-actin and calponin, but not myosin heavy chain. The net effect of these molecular changes was suppression of cell reactivity to ACh in RC vs. FC. Overexpression of CPI-17 in PC partially reversed the suppression of contractility in resuspended cells. Methylation-specific PCR showed increased methylation of the Cpi-17 gene promoter in PC vs. ME (P < 0.05). We concluded that smooth muscle cells retain their contractile phenotype in culture. However, reactivity to ACh declines because of altered expression of specific cell-signaling proteins involved in excitation-contraction coupling. DNA methylation of the Cpi-17 promoter may contribute to its gene suppression.

  13. Human thermal sensation: frequency response to sinusoidal stimuli at the surface of the skin

    DEFF Research Database (Denmark)

    Ring, J.W.; de Dear, Richard; Melikov, Arsen Krikor

    1993-01-01

    . A psychosensory intensity (PSI) model has been developed to relate experimentally derived sensation data to simulated cutaneous thermoreceptor responses to the temperature ramp-plateaux and step stimuli applied to the skin surface by thermodes. From the point of view of signal processing, a natural extension...... of this approach is to ask what the response would be to sinusoidally varying stimuli of differing frequencies, or, in other words, what would be the frequency response of this skin system? The purpose of this paper is to extend the PSI model and apply these sinusoids to it and hence find the frequency response...... function. This function is then compared with the functional form found in two experiments where the stimuli were pulsating airflows of differing frequency. The PSI model seems to simulate well the form of the response of the human skin system to varying temperature changes of a whole range of frequencies...

  14. Multilevel-Dc-Bus Inverter For Providing Sinusoidal And Pwm Electrical Machine Voltages

    Science.gov (United States)

    Su, Gui-Jia [Knoxville, TN

    2005-11-29

    A circuit for controlling an ac machine comprises a full bridge network of commutation switches which are connected to supply current for a corresponding voltage phase to the stator windings, a plurality of diodes, each in parallel connection to a respective one of the commutation switches, a plurality of dc source connections providing a multi-level dc bus for the full bridge network of commutation switches to produce sinusoidal voltages or PWM signals, and a controller connected for control of said dc source connections and said full bridge network of commutation switches to output substantially sinusoidal voltages to the stator windings. With the invention, the number of semiconductor switches is reduced to m+3 for a multi-level dc bus having m levels. A method of machine control is also disclosed.

  15. Converter for Measurement of non-sinusoidal current peak value

    DEFF Research Database (Denmark)

    Butvin, P.; Nielsen, Otto V; Brauer, Peter

    1997-01-01

    A linear-response toroid with core wound of rapidly quenched soft magnetic metallic ribbon and fitted with two windings is used to enable correct measurement of mean peak value of non-sinusoidal and not noise-free alternating current.......A linear-response toroid with core wound of rapidly quenched soft magnetic metallic ribbon and fitted with two windings is used to enable correct measurement of mean peak value of non-sinusoidal and not noise-free alternating current....

  16. Mathieu function solutions for photoacoustic waves in sinusoidal one-dimensional structures.

    Science.gov (United States)

    Wu, Binbin; Diebold, Gerald J

    2012-07-01

    The photoacoustic effect for a one-dimensional structure, the sound speed of which varies sinusoidally in space, is shown to be governed by an inhomogeneous Mathieu equation with the forcing term dependent on the spatial and temporal properties of the exciting optical radiation. New orthogonality relations, traveling wave Mathieu functions, and solutions to the inhomogeneous Mathieu equation are found, which are used to determine the character of photoacoustic waves in infinite and finite length phononic structures. Floquet solutions to the Mathieu equation give the positions of the band gaps, the damping of the acoustic waves within the band gaps, and the dispersion relation for photoacoustic waves. The solutions to the Mathieu equation give the photoacoustic response of the structure, show the space equivalent of subharmonic generation and acoustic confinement when waves are excited within band gaps.

  17. Testosterone decreases urinary bladder smooth muscle excitability via novel signaling mechanism involving direct activation of the BK channels

    Science.gov (United States)

    Hristov, Kiril L.; Parajuli, Shankar P.; Provence, Aaron

    2016-01-01

    In addition to improving sexual function, testosterone has been reported to have beneficial effects in ameliorating lower urinary tract symptoms by increasing bladder capacity and compliance, while decreasing bladder pressure. However, the cellular mechanisms by which testosterone regulates detrusor smooth muscle (DSM) excitability have not been elucidated. Here, we used amphotericin-B perforated whole cell patch-clamp and single channel recordings on inside-out excised membrane patches to investigate the regulatory role of testosterone in guinea pig DSM excitability. Testosterone (100 nM) significantly increased the depolarization-induced whole cell outward currents in DSM cells. The selective pharmacological inhibition of the large-conductance voltage- and Ca2+-activated K+ (BK) channels with paxilline (1 μM) completely abolished this stimulatory effect of testosterone, suggesting a mechanism involving BK channels. At a holding potential of −20 mV, DSM cells exhibited transient BK currents (TBKCs). Testosterone (100 nM) significantly increased TBKC activity in DSM cells. In current-clamp mode, testosterone (100 nM) significantly hyperpolarized the DSM cell resting membrane potential and increased spontaneous transient hyperpolarizations. Testosterone (100 nM) rapidly increased the single BK channel open probability in inside-out excised membrane patches from DSM cells, clearly suggesting a direct BK channel activation via a nongenomic mechanism. Live-cell Ca2+ imaging showed that testosterone (100 nM) caused a decrease in global intracellular Ca2+ concentration, consistent with testosterone-induced membrane hyperpolarization. In conclusion, the data provide compelling mechanistic evidence that under physiological conditions, testosterone at nanomolar concentrations directly activates BK channels in DSM cells, independent from genomic testosterone receptors, and thus regulates DSM excitability. PMID:27605581

  18. Electrical Excitation of the Pulmonary Venous Musculature May Contribute to the Formation of the Last Component of the High Frequency Signal of the P Wave

    Directory of Open Access Journals (Sweden)

    Junko Abe, MD

    2005-01-01

    Full Text Available Pulmonary veins (PVs have been shown to play an important role in the induction and perpetuation of focal AF. Fifty-one patients with AF, and 24 patients without AF as control subjects, were enrolled in this study. Signal-averaged P-wave recording was performed, and the filtered P wave duration (FPD, the root-mean-square voltage for the last 20, 30 and 40 ms (RMS20, 30, and 40, respectively were compared. In 7 patients with AF, these parameters were compared before and after the catheter ablation. The FPD was significantly longer and the RMS20 was smaller in the patients with AF than those without AF. Because RMS30 was widely distributed between 2 and 10 µV, the AF group was sub-divided into two groups; Group 1 was comprised of the patients with an RMS30 ≧5.0 µV, and group 2, <5.0 µV. In group 1, short-coupled PACs were more frequently documented on Holter monitoring, and exercise testing more readily induced AF. After successful electrical disconnection between the LA and PVs, each micropotential parameter was significantly attenuated. These results indicate that the high frequency signal amplitude of the last component of the P wave is relatively high in patients with AF triggered by focal repetitive excitations most likely originating from the PVs. That is, attenuation by the LA-PV electrical isolation, and thus the high frequency P signals of the last component, may contain the electrical excitation of the PV musculature.

  19. Bayesian interpolation in a dynamic sinusoidal model with application to packet-loss concealment

    DEFF Research Database (Denmark)

    Nielsen, Jesper Kjær; Christensen, Mads Græsbøll; Cemgil, Ali Taylan

    2010-01-01

    In this paper, we consider Bayesian interpolation and parameter estimation in a dynamic sinusoidal model. This model is more flexible than the static sinusoidal model since it enables the amplitudes and phases of the sinusoids to be time-varying. For the dynamic sinusoidal model, we derive...

  20. Measuring the Allan variance by sinusoidal fitting

    Science.gov (United States)

    DeVoe, Ralph G.

    2018-02-01

    The Allan variance of signal and reference frequencies is measured by a least-square fit of the output of two analog-to-digital converters to ideal sine waves. The difference in the fit phase of the two channels generates the timing data needed for the Allan variance. The fits are performed at the signal frequency (≈10 MHz) without the use of heterodyning. Experimental data from a modified digital oscilloscope yield a residual Allan deviation of 3 × 10-13/τ, where τ is the observation time in s. This corresponds to a standard deviation in time of statistical theory and Monte Carlo simulations which suggest that optimized devices may have one or two orders of magnitude better performance.

  1. Can Measured Synergy Excitations Accurately Construct Unmeasured Muscle Excitations?

    Science.gov (United States)

    Bianco, Nicholas A; Patten, Carolynn; Fregly, Benjamin J

    2018-01-01

    Accurate prediction of muscle and joint contact forces during human movement could improve treatment planning for disorders such as osteoarthritis, stroke, Parkinson's disease, and cerebral palsy. Recent studies suggest that muscle synergies, a low-dimensional representation of a large set of muscle electromyographic (EMG) signals (henceforth called "muscle excitations"), may reduce the redundancy of muscle excitation solutions predicted by optimization methods. This study explores the feasibility of using muscle synergy information extracted from eight muscle EMG signals (henceforth called "included" muscle excitations) to accurately construct muscle excitations from up to 16 additional EMG signals (henceforth called "excluded" muscle excitations). Using treadmill walking data collected at multiple speeds from two subjects (one healthy, one poststroke), we performed muscle synergy analysis on all possible subsets of eight included muscle excitations and evaluated how well the calculated time-varying synergy excitations could construct the remaining excluded muscle excitations (henceforth called "synergy extrapolation"). We found that some, but not all, eight-muscle subsets yielded synergy excitations that achieved >90% extrapolation variance accounted for (VAF). Using the top 10% of subsets, we developed muscle selection heuristics to identify included muscle combinations whose synergy excitations achieved high extrapolation accuracy. For 3, 4, and 5 synergies, these heuristics yielded extrapolation VAF values approximately 5% lower than corresponding reconstruction VAF values for each associated eight-muscle subset. These results suggest that synergy excitations obtained from experimentally measured muscle excitations can accurately construct unmeasured muscle excitations, which could help limit muscle excitations predicted by muscle force optimizations.

  2. Nonlocal response functions for predicting shear flow of strongly inhomogeneous fluids. II. Sinusoidally driven shear and multisinusoidal inhomogeneity.

    Science.gov (United States)

    Dalton, Benjamin A; Glavatskiy, Kirill S; Daivis, Peter J; Todd, B D

    2015-07-01

    We use molecular-dynamics computer simulations to investigate the density, strain-rate, and shear-pressure responses of a simple model atomic fluid to transverse and longitudinal external forces. We have previously introduced a response function formalism for describing the density, strain-rate, and shear-pressure profiles in an atomic fluid when it is perturbed by a combination of longitudinal and transverse external forces that are independent of time and have a simple sinusoidal spatial variation. In this paper, we extend the application of the previously introduced formalism to consider the case of a longitudinal force composed of multiple sinusoidal components in combination with a single-component sinusoidal transverse force. We find that additional harmonics are excited in the density, strain-rate, and shear-pressure profiles due to couplings between the force components. By analyzing the density, strain-rate, and shear-pressure profiles in Fourier space, we are able to evaluate the Fourier coefficients of the response functions, which now have additional components describing the coupling relationships. Having evaluated the Fourier coefficients of the response functions, we are then able to accurately predict the density, velocity, and shear-pressure profiles for fluids that are under the influence of a longitudinal force composed of two or three sinusoidal components combined with a single-component sinusoidal transverse force. We also find that in the case of a multisinusoidal longitudinal force, it is sufficient to include only pairwise couplings between different longitudinal force components. This means that it is unnecessary to include couplings between three or more force components in the case of a longitudinal force composed of many Fourier components, and this paves the way for a highly accurate but tractable treatment of nonlocal transport phenomena in fluids with density and strain-rate inhomogeneities on the molecular length scale.

  3. Label-free distinguishing between neurons and glial cells based on two-photon excited fluorescence signal of neuron perinuclear granules

    Science.gov (United States)

    Du, Huiping; Jiang, Liwei; Wang, Xingfu; Liu, Gaoqiang; Wang, Shu; Zheng, Liqin; Li, Lianhuang; Zhuo, Shuangmu; Zhu, Xiaoqin; Chen, Jianxin

    2016-08-01

    Neurons and glial cells are two critical cell types of brain tissue. Their accurate identification is important for the diagnosis of psychiatric disorders such as depression and schizophrenia. In this paper, distinguishing between neurons and glial cells by using the two-photon excited fluorescence (TPEF) signals of intracellular intrinsic sources was performed. TPEF microscopy combined with TUJ-1 and GFAP immunostaining and quantitative image analysis demonstrated that the perinuclear granules of neurons in the TPEF images of brain tissue and the primary cultured cortical cells were a unique characteristic of neurons compared to glial cells which can become a quantitative feature to distinguish neurons from glial cells. With the development of miniaturized TPEF microscope (‘two-photon fiberscopes’) imaging devices, TPEF microscopy can be developed into an effective diagnostic and monitoring tool for psychiatric disorders such as depression and schizophrenia.

  4. The electronic states calculated using the sinusoidal potential for Cd1-xZnxS quantum dot superlattices

    International Nuclear Information System (INIS)

    Sakly, A.; Safta, N.; Mejri, H.; Lamine, A. Ben

    2011-01-01

    Research highlights: → This paper is dedicated to structures based on Cd 1-x Zn x S. - Abstract: The present work reports on a theoretical investigation of superlattices based on Cd 1-x Zn x S quantum dots embedded in an insulating material. The system to model is assumed to be a series of flattened cylindrical quantum dots with a finite barrier at the boundary and is studied using a sinusoidal potential. The electronic states of both Γ 1 - (ground) and Γ 2 - (first excited) minibands have been computed as a function of inter-quantum dot separation and Zn composition. An analysis of the results shows that the widths of Γ 1 - and Γ 2 - minibands decrease as the superlattice period and Zn content increase separately. Moreover, the sinusoidal shape of the confining potential accounts for the coupling between quantum dots quantitatively less than the Kronig-Penney potential model.

  5. New Results on Single-Channel Speech Separation Using Sinusoidal Modeling

    DEFF Research Database (Denmark)

    Mowlaee, Pejman; Christensen, Mads Græsbøll; Jensen, Søren Holdt

    2011-01-01

    We present new results on single-channel speech separation and suggest a new separation approach to improve the speech quality of separated signals from an observed mix- ture. The key idea is to derive a mixture estimator based on sinusoidal parameters. The proposed estimator is aimed at finding...... the proposed method over other methods are confirmed by employing perceptual evaluation of speech quality (PESQ) as an objective measure and a MUSHRA listening test as a subjective evaluation for both speaker-dependent and gender-dependent scenarios....

  6. Voltage-Mode Four-Phase Sinusoidal Generator and Its Useful Extensions

    Directory of Open Access Journals (Sweden)

    Sudhanshu Maheshwari

    2013-01-01

    Full Text Available This paper introduces a new voltage-mode second-order sinusoidal generator circuit with four active elements and six passive elements, including grounded capacitors. The frequency and condition of oscillation can be independently controlled. The effect of active element’s nonidealities and parasitic effects is also studied; the proposed topology is good in absorbing several parasitic elements involved with the active elements. The circuit is advantageous for generating high frequency signals which is demonstrated for 25 MHz outputs. Several circuit extensions are also given which makes the new proposal useful for real circuit adoption. The proposed theory is validated through simulation results.

  7. Toll-like receptor 3 activation impairs excitability and synaptic activity via TRIF signalling in immature rat and human neurons.

    Science.gov (United States)

    Ritchie, Louise; Tate, Rothwell; Chamberlain, Luke H; Robertson, Graham; Zagnoni, Michele; Sposito, Teresa; Wray, Selina; Wright, John A; Bryant, Clare E; Gay, Nicholas J; Bushell, Trevor J

    2018-03-02

    Toll like receptor 3 (TLR3) belongs to a family of pattern recognition receptors that recognise molecules found on pathogens referred to as pathogen associated molecular patterns (PAMPs). Its involvement in innate immunity is well known but despite its presence in the central nervous system (CNS), our knowledge of its function is limited. Here, we have investigated whether TLR3 activation modulates synaptic activity in primary hippocampal cultures and induced pluripotent stem cell (iPSC)-derived neurons. Synaptically driven spontaneous action potential (AP) firing was significantly reduced by the TLR3 specific activator, poly I:C, in a concentration-dependent manner following both short (5 min) and long exposures (1h) in rat hippocampal cultures. Notably, the consequence of TLR3 activation on neuronal function was reproduced in iPSC-derived cortical neurons, with poly I:C (25 μg/ml, 1h) significantly inhibiting sAP firing. We examined the mechanisms underlying these effects, with poly I:C significantly reducing peak sodium current, an effect dependent on the MyD88-independent TRIF dependent pathway. Furthermore, poly I:C (25 μg/ml, 1h) resulted in a significant reduction in miniature excitatory postsynaptic potential (mEPSC) frequency and amplitude and significantly reduced surface AMPAR expression. These novel findings reveal that TLR3 activation inhibits neuronal excitability and synaptic activity through multiple mechanisms, with this being observed in both rat and human iPSC-derived neurons. These data might provide further insight into how TLR3 activation may contribute to neurodevelopmental disorders following maternal infection and in patients with increased susceptibility to herpes simplex encephalitis. Copyright © 2018. Published by Elsevier Ltd.

  8. Production and propagation of Hermite-sinusoidal-Gaussian laser beams.

    Science.gov (United States)

    Tovar, A A; Casperson, L W

    1998-09-01

    Hermite-sinusoidal-Gaussian solutions to the wave equation have recently been obtained. In the limit of large Hermite-Gaussian beam size, the sinusoidal factors are dominant and reduce to the conventional modes of a rectangular waveguide. In the opposite limit the beams reduce to the familiar Hermite-Gaussian form. The propagation of these beams is examined in detail, and resonators are designed that will produce them. As an example, a special resonator is designed to produce hyperbolic-sine-Gaussian beams. This ring resonator contains a hyperbolic-cosine-Gaussian apodized aperture. The beam mode has finite energy and is perturbation stable.

  9. The 3-D alignment of objects in dynamic PET scans using filtered sinusoidal trajectories of sinogram

    International Nuclear Information System (INIS)

    Kostopoulos, Aristotelis E.; Happonen, Antti P.; Ruotsalainen, Ulla

    2006-01-01

    In this study, our goal is to employ a novel 3-D alignment method for dynamic positron emission tomography (PET) scans. Because the acquired data (i.e. sinograms) often contain noise considerably, filtering of the data prior to the alignment presumably improves the final results. In this study, we utilized a novel 3-D stackgram domain approach. In the stackgram domain, the signals along the sinusoidal trajectory signals of the sinogram can be processed separately. In this work, we performed angular stackgram domain filtering by employing well known 1-D filters: the Gaussian low-pass filter and the median filter. In addition, we employed two wavelet de-noising techniques. After filtering we performed alignment of objects in the stackgram domain. The local alignment technique we used is based on similarity comparisons between locus vectors (i.e. the signals along the sinusoidal trajectories of the sinogram) in a 3-D neighborhood of sequences of the stackgrams. Aligned stackgrams can be transformed back to sinograms (Method 1), or alternatively directly to filtered back-projected images (Method 2). In order to evaluate the alignment process, simulated data with different kinds of additive noises were used. The results indicated that the filtering prior to the alignment can be important concerning the accuracy

  10. Controlled generation of nonlinear resonances through sinusoidal lattice modes in Bose–Einstein condensate

    International Nuclear Information System (INIS)

    Das, Priyam; Panigrahi, Prasanta K

    2015-01-01

    We study Bose–Einstein condensate in the combined presence of time modulated optical lattice and harmonic trap in the mean-field approach. Through the self-similar method, we show the existence of sinusoidal lattice modes in this inhomogeneous system, commensurate with the lattice potential. A significant advantage of this system is wide tunability of the parameters through chirp management. The combined effect of the interaction, harmonic trap and lattice potential leads to the generation of nonlinear resonances, exactly where the matter wave changes its direction. When the harmonic trap is switched off, the BEC undergoes a nonlinear compression for the static optical lattice potential. For better understanding of chirp management and the nature of the sinusoidal excitation, we investigate the energy spectrum of the condensate, which clearly reveals the generation of nonlinear resonances in the appropriate regime. We have also identified a classical dynamical phase transition occurring in the system, where loss of superfluidity takes the superfluid phase to an insulating state. (paper)

  11. Excitation of energy harvesters using stick-slip motion

    Science.gov (United States)

    Helseth, L. E.

    2014-08-01

    During the past decades a large number of energy harvesting systems with the ability to transform mechanical energy into electrical energy have been proposed, ranging from systems exhibiting pure sinusoidal motion to stochastic systems. However, to date little emphasis has been put on stick-slip motion as a method for excitation of energy harvesting systems. Stick-slip motion can be associated with both microscopic and macroscopic processes and is omnipresent. The motion can be characterized by two stages. In the first stage there is buildup of elastic energy with little associated motion, whereas in the second stage the elastic energy is released into kinetic energy. We study here the spectral signal characteristics of two different electrical generators excited by stick-slip motion: a piezoelectric macro fiber composite and a triboelectric generator. The force and the voltage generated during the motion were monitored, and we found that the signal spectral density of both variables changes with the frequency in a characteristic manner, thus classifying the slip-stick motion as a colored noise excitation scheme. The force spectral density in both systems was found to exhibit a power-law spectrum following an {{f}^{-2}} trend, where f is the frequency. The voltage spectral density was governed by the product of a high-pass filter, the force spectral density, and the intrinsic generator spectral density. Here the piezoelectric generator exhibited a nearly flat voltage spectral density below the cutoff frequency of the high-pass filter and an {{f}^{-2}} spectrum at higher frequencies, thus demonstrating that the piezoelectric coupling coefficient had a nearly flat frequency response. On the other hand, the triboelectric generator had a coupling coefficient with a spectral response that varied in a non-systematic manner, possibly related to the large number of contact sites and relaxation times occurring during operation. The average power delivered by the generators

  12. Early afferent activity from the facet joint after painful trauma to its capsule potentiates neuronal excitability and glutamate signaling in the spinal cord.

    Science.gov (United States)

    Crosby, Nathan D; Gilliland, Taylor M; Winkelstein, Beth A

    2014-09-01

    Cervical facet joint injury induces persistent pain and central sensitization. Preventing the peripheral neuronal signals that initiate sensitization attenuates neuropathic pain. Yet, there is no clear relationship among facet joint afferent activity, development of central sensitization, and pain, which may be hindering effective treatments for this pain syndrome. This study investigates how afferent activity from the injured cervical facet joint affects induction of behavioral sensitivity and central sensitization. Intra-articular bupivacaine was administered to transiently suppress afferent activity immediately or 4 days after facet injury. Mechanical hyperalgesia was monitored after injury, and spinal neuronal hyperexcitability and spinal expression of proteins that promote neuronal excitability were measured on day 7. Facet injury with saline vehicle treatment induced significant mechanical hyperalgesia (Pinjury significantly attenuated hyperalgesia (Pinjury. This study suggests that early afferent activity from the injured facet induces development of spinal sensitization via spinal excitatory glutamatergic signaling. Peripheral intervention blocking afferent activity is effective only over a short period of time early after injury and before spinal modifications develop, and is independent of modulating spinal glial activation. Copyright © 2014 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  13. Compressed Sensing Of Complex Sinusoids Off The Grid

    Science.gov (United States)

    Ping, Cheng; Liu, Shi; Jiaqun, Zhao

    2015-07-01

    To solve off-grid problem in compressed sensing, a new reconstruction algorithm for complex sinusoids is proposed. The compressed sensing reconstruction problem is transformed into a joint optimized problem. Based on coordinate descent approach and linear estimator, a new iteration algorithm is proposed. The results of experiments verify the effectiveness of the proposed method.

  14. Optimization for sinusoidal profiles in surface relief gratings ...

    Indian Academy of Sciences (India)

    2014-02-07

    Feb 7, 2014 ... filometry [7–9] and monitoring of surface self-diffusion of solids under ultrahigh vacuum conditions [10]. In the present work, recording parameters, i.e. exposure time and deve- lopment time for fabrication of such holographic gratings have been optimized to obtain nearly perfect sinusoidal profiles in the ...

  15. Harmonic analysis of DC capacitor current in sinusoidal and space ...

    Indian Academy of Sciences (India)

    triple-throw switch with the load terminal being the pole. The pole voltage vRO equals +0.5VDC, ... The harmonic content of the line current in a sinusoidally modulated NPC inverter is quite low when the switching ..... and the switching pulses for the switches SR2 and SR4 is generated by comparison with the bottom carrier.

  16. Optimization for sinusoidal profiles in surface relief gratings ...

    Indian Academy of Sciences (India)

    2014-02-07

    Feb 7, 2014 ... Astable sinusoidal pattern generated using a two-beam laser interferometric technique was recorded in thin films of positive photoresist deposited on glass substrates. Several gratings were generated by varying the exposure time of interference pattern and time of chemical development of exposed media.

  17. Sound waves in two-dimensional ducts with sinusoidal walls

    Science.gov (United States)

    Nayfeh, A. H.

    1974-01-01

    The method of multiple scales is used to analyze the wave propagation in two-dimensional hard-walled ducts with sinusoidal walls. For traveling waves, resonance occurs whenever the wall wavenumber is equal to the difference of the wavenumbers of any two duct acoustic modes. The results show that neither of these resonating modes could occur without strongly generating the other.

  18. Pelagic behaviour of reservoir fishes: sinusoidal swimming and associated behaviour

    OpenAIRE

    JAROLÍM, Oldřich

    2009-01-01

    Annotation Long-term fixed-location hydroacoustic study with uplooking transducer was performed during 2005 in Římov reservoir, Czech Republic. It dealt mainly with fish behaviour in the open water of reservoir, especially with sinusoidal swimming behaviour. The dependence of pelagic fish behaviour on environmental conditions was also studied.

  19. Using Antenna Arrays to Motivate the Study of Sinusoids

    Science.gov (United States)

    Becker, J. P.

    2010-01-01

    Educational activities involving antenna arrays to motivate the study of sinusoids are described. Specifically, using fundamental concepts related to phase and simple geometric arguments, students are asked to predict the location of interference nulls in the radiation pattern of two-element phased array antennas. The location of the radiation…

  20. Mechanical Behavior of Quasi-sinusoidal Corrugated Composite sheets

    Directory of Open Access Journals (Sweden)

    Pouyan Ghabezi

    2013-01-01

    Full Text Available An aircraft wing needs to display different mechanical behavior in different directions. 1- stiffness in the spanwise (transverse to the corrugation direction which enables the aerodynamic and inertial loads to be carried. 2- compliance in the chordwise (corrugation direction which would allow shape changes and increases in surface area; whereas a corrugated sheet due to their special geometry has potential to use in morphing applications. Therefore, in this paper the mechanical behaviour of quasi-sinusoidal corrugated composites is studied by commercial FEM software ABAQUS and a simple analytical model which is used for the initial stiffness of the quasi-sinusoidal corrugated composites (Yokozeki model. The elongation and effective stiffness in longitudinal and transverse directions of quasi-sinusoidal  corrugated  skins  and fat  composites  are  calculated  and  compared together.  Using  frst  and  second  Castigliano’s  theorem  and  Bernoulli-Euler  beam theorem can be used to calculate the defection and rotational angle of a beam (sheet. In this research, different dimensions of quasi-sinusoidal element for unidirectional and woven composites of E-glass/epoxy are investigated. FEM results and analytical model are compared together. Then, the analytical model is validated by experimental results of plain woven E-glass/epoxy composites. The results of FEM, experimental and analytical simulations show that how a corrugated composite can afford with certainty larger deformation than the fat composite in using this analytical model to predict the mechanical behavior of quasi-sinusoidal corrugated composites. It was found that the corrugated composites display extremely high anisotropic behavior and have high  tensile and fexural stiffness  in  transverse direction while exhibiting  low stiffness in longitudinal direction of corrugation.

  1. Nonlocal response functions for predicting shear flow of strongly inhomogeneous fluids. I. Sinusoidally driven shear and sinusoidally driven inhomogeneity.

    Science.gov (United States)

    Glavatskiy, Kirill S; Dalton, Benjamin A; Daivis, Peter J; Todd, B D

    2015-06-01

    We present theoretical expressions for the density, strain rate, and shear pressure profiles in strongly inhomogeneous fluids undergoing steady shear flow with periodic boundary conditions. The expressions that we obtain take the form of truncated functional expansions. In these functional expansions, the independent variables are the spatially sinusoidal longitudinal and transverse forces that we apply in nonequilibrium molecular-dynamics simulations. The longitudinal force produces strong density inhomogeneity, and the transverse force produces sinusoidal shear. The functional expansions define new material properties, the response functions, which characterize the system's nonlocal response to the longitudinal force and the transverse force. We find that the sinusoidal longitudinal force, which is mainly responsible for the generation of density inhomogeneity, also modulates the strain rate and shear pressure profiles. Likewise, we find that the sinusoidal transverse force, which is mainly responsible for the generation of sinusoidal shear flow, can also modify the density. These cross couplings between density inhomogeneity and shear flow are also characterized by nonlocal response functions. We conduct nonequilibrium molecular-dynamics simulations to calculate all of the response functions needed to describe the response of the system for weak shear flow in the presence of strong density inhomogeneity up to the third order in the functional expansion. The response functions are then substituted directly into the truncated functional expansions and used to predict the density, velocity, and shear pressure profiles. The results are compared to the directly evaluated profiles from molecular-dynamics simulations, and we find that the predicted profiles from the truncated functional expansions are in excellent agreement with the directly computed density, velocity, and shear pressure profiles.

  2. Nonlocal response functions for predicting shear flow of strongly inhomogeneous fluids. I. Sinusoidally driven shear and sinusoidally driven inhomogeneity

    Science.gov (United States)

    Glavatskiy, Kirill S.; Dalton, Benjamin A.; Daivis, Peter J.; Todd, B. D.

    2015-06-01

    We present theoretical expressions for the density, strain rate, and shear pressure profiles in strongly inhomogeneous fluids undergoing steady shear flow with periodic boundary conditions. The expressions that we obtain take the form of truncated functional expansions. In these functional expansions, the independent variables are the spatially sinusoidal longitudinal and transverse forces that we apply in nonequilibrium molecular-dynamics simulations. The longitudinal force produces strong density inhomogeneity, and the transverse force produces sinusoidal shear. The functional expansions define new material properties, the response functions, which characterize the system's nonlocal response to the longitudinal force and the transverse force. We find that the sinusoidal longitudinal force, which is mainly responsible for the generation of density inhomogeneity, also modulates the strain rate and shear pressure profiles. Likewise, we find that the sinusoidal transverse force, which is mainly responsible for the generation of sinusoidal shear flow, can also modify the density. These cross couplings between density inhomogeneity and shear flow are also characterized by nonlocal response functions. We conduct nonequilibrium molecular-dynamics simulations to calculate all of the response functions needed to describe the response of the system for weak shear flow in the presence of strong density inhomogeneity up to the third order in the functional expansion. The response functions are then substituted directly into the truncated functional expansions and used to predict the density, velocity, and shear pressure profiles. The results are compared to the directly evaluated profiles from molecular-dynamics simulations, and we find that the predicted profiles from the truncated functional expansions are in excellent agreement with the directly computed density, velocity, and shear pressure profiles.

  3. The sinusoidal lining cells in "normal" human liver. A scanning electron microscopic investigation

    DEFF Research Database (Denmark)

    Horn, T; Henriksen, Jens Henrik Sahl; Christoffersen, P

    1986-01-01

    The scanning electron microscopic was used to study the fenestrations of human liver sinusoids. Thirteen biopsies, where light microscopy and transmission electron microscopy revealed normal sinusoidal architecture, were investigated. The number of fenestrae was calculated in acinar zone 3...

  4. 3D hepatic cultures simultaneously maintain primary hepatocyte and liver sinusoidal endothelial cell phenotypes.

    Directory of Open Access Journals (Sweden)

    Yeonhee Kim

    Full Text Available Developing in vitro engineered hepatic tissues that exhibit stable phenotype is a major challenge in the field of hepatic tissue engineering. However, the rapid dedifferentiation of hepatic parenchymal (hepatocytes and non-parenchymal (liver sinusoidal endothelial, LSEC cell types when removed from their natural environment in vivo remains a major obstacle. The primary goal of this study was to demonstrate that hepatic cells cultured in layered architectures could preserve or potentially enhance liver-specific behavior of both cell types. Primary rat hepatocytes and rat LSECs (rLSECs were cultured in a layered three-dimensional (3D configuration. The cell layers were separated by a chitosan-hyaluronic acid polyelectrolyte multilayer (PEM, which served to mimic the Space of Disse. Hepatocytes and rLSECs exhibited several key phenotypic characteristics over a twelve day culture period. Immunostaining for the sinusoidal endothelial 1 antibody (SE-1 demonstrated that rLSECs cultured in the 3D hepatic model maintained this unique feature over twelve days. In contrast, rLSECs cultured in monolayers lost their phenotype within three days. The unique stratified structure of the 3D culture resulted in enhanced heterotypic cell-cell interactions, which led to improvements in hepatocyte functions. Albumin production increased three to six fold in the rLSEC-PEM-Hepatocyte cultures. Only rLSEC-PEM-Hepatocyte cultures exhibited increasing CYP1A1/2 and CYP3A activity. Well-defined bile canaliculi were observed only in the rLSEC-PEM-Hepatocyte cultures. Together, these data suggest that rLSEC-PEM-Hepatocyte cultures are highly suitable models to monitor the transformation of toxins in the liver and their transport out of this organ. In summary, these results indicate that the layered rLSEC-PEM-hepatocyte model, which recapitulates key features of hepatic sinusoids, is a potentially powerful medium for obtaining comprehensive knowledge on liver metabolism

  5. Engraftment and reconstitution of hematopoiesis is dependent on VEGFR2-mediated regeneration of sinusoidal endothelial cells.

    Science.gov (United States)

    Hooper, Andrea T; Butler, Jason M; Nolan, Daniel J; Kranz, Andrea; Iida, Kaoruko; Kobayashi, Mariko; Kopp, Hans-Georg; Shido, Koji; Petit, Isabelle; Yanger, Kilangsungla; James, Daylon; Witte, Larry; Zhu, Zhenping; Wu, Yan; Pytowski, Bronislaw; Rosenwaks, Zev; Mittal, Vivek; Sato, Thomas N; Rafii, Shahin

    2009-03-06

    Myelosuppression damages the bone marrow (BM) vascular niche, but it is unclear how regeneration of bone marrow vessels contributes to engraftment of transplanted hematopoietic stem and progenitor cells (HSPCs) and restoration of hematopoiesis. We found that chemotherapy and sublethal irradiation induced minor regression of BM sinusoidal endothelial cells (SECs), while lethal irradiation induced severe regression of SECs and required BM transplantation (BMT) for regeneration. Within the BM, VEGFR2 expression specifically demarcated a continuous network of arterioles and SECs, with arterioles uniquely expressing Sca1 and SECs uniquely expressing VEGFR3. Conditional deletion of VEGFR2 in adult mice blocked regeneration of SECs in sublethally irradiated animals and prevented hematopoietic reconstitution. Similarly, inhibition of VEGFR2 signaling in lethally irradiated wild-type mice rescued with BMT severely impaired SEC reconstruction and prevented engraftment and reconstitution of HSPCs. Therefore, regeneration of SECs via VEGFR2 signaling is essential for engraftment of HSPCs and restoration of hematopoiesis.

  6. Electric stimulation with sinusoids and white noise for neural prostheses

    Directory of Open Access Journals (Sweden)

    Daniel K Freeman

    2010-02-01

    Full Text Available We are investigating the use of novel stimulus waveforms in neural prostheses to determine whether they can provide more precise control over the temporal and spatial pattern of elicited activity as compared to conventional pulsatile stimulation. To study this, we measured the response of retinal ganglion cells to both sinusoidal and white noise waveforms. The use of cell-attached and whole cell patch clamp recordings allowed the responses to be observed without significant obstruction from the stimulus artifact. Electric stimulation with sinusoids elicited robust responses. White noise analysis was used to derive the linear kernel for the ganglion cell’s spiking response as well as for the underlying excitatory currents. These results suggest that in response to electric stimulation, presynaptic retinal neurons exhibit bandpass filtering characteristics with peak response that occur 25ms after onset. The experimental approach demonstrated here may be useful for studying the temporal response properties of other neurons in the CNS.

  7. Total harmonic distortion of an asymmetric quasi-sinusoidal current

    Directory of Open Access Journals (Sweden)

    Grebennikov Vitaliy

    2017-01-01

    Full Text Available This paper presents the correlation of factors that determine the quality of asymmetric quasi-sinusoidal output current and dynamic losses in the switches of the current generator circuit. The operating mode of the generator was obtained, especially of its power circuit elements, where combination of acceptable output current quality with relatively small dynamic losses in switches and mass-dimensional parameters of the inductor are provided. Achieved results can be used in designing this type of generators.

  8. Vibration Analysis of Composite Beams with Sinusoidal Periodically Varying Interfaces

    Science.gov (United States)

    Li, Botong; Liu, Chein-Shan; Zhu, Liangliang

    2017-12-01

    As an increasing variety of composite materials with complex interfaces are emerging, we develop a theory to investigate composite beams and shed some light on new physical insights into composite beams with sinusoidal periodically varying interfaces. For the natural vibration of composite beams with continuous or periodically varying interfaces, the governing equation has been derived according to the generalised Hamiltonian principle. For composite beams having different boundary conditions, we transform the governing equations into integral equations and solve them by using the sinusoidal functions as test functions as well as the basis of the vibration modes. Due to the orthogonality of the sinusoidal functions, expansion coefficients in closed form can be found. Therefore, the proposed iterative schemes, with the help of the Rayleigh quotient and boundary functions, can quickly find the eigenvalues and free vibration modes. The obtained natural frequencies agree well with those obtained using the finite element method. In addition, the proposed method can be extended easily to laminated composite beams in more general cases or complex components and geometries in vibration engineering. The effects of different material properties of the upper and lower components and varying interface geometry function on the frequency of the composite beams are examined. According to our investigation, the natural frequency of a laminated beam with a continuous or periodically varying interface can be changed by altering the density or elastic modulus. We also show the responses of the frequencies of the components to the varying periodic interface.

  9. Designing and Implementation of Stable Sinusoidal Rough-Neural Identifier.

    Science.gov (United States)

    Ahmadi, Ghasem; Teshnehlab, Mohammad

    2017-08-01

    A rough neuron is defined as a pair of conventional neurons that are called the upper and lower bound neurons. In this paper, the sinusoidal rough-neural networks (SR-NNs) are used to identify the discrete dynamic nonlinear systems (DDNSs) with or without noise in series-parallel configuration. In the identification of periodic nonlinear systems, sinusoidal activation functions provide more efficient neural networks than the sigmoidal activation functions. Based on the Lyapunov stability theory, an online learning algorithm is developed to train the SR-NNs. The asymptotically convergence of the identification error to zero and the boundedness of parameters as well as predictions are proved. SR-NNs are used to identify some DDNSs and the cement rotary kiln (CRK). CRK is a complex nonlinear system in the cement factory, which produces the cement clinker. The experiments show that the SR-NNs in the identification of nonlinear systems have better performances than multilayer perceptrons (MLPs), sinusoidal neural networks, and rough MLPs, particularly in the presence of noise.

  10. Increased sinusoidal volume and solute extraction during retrograde liver perfusion

    International Nuclear Information System (INIS)

    Bass, N.M.; Manning, J.A.; Weisiger, R.A.

    1989-01-01

    Retrograde isolated liver perfusion has been used to probe acinar functional heterogeneity, but the hemodynamic effects of backward flow have not been characterized. In this study, extraction of a long-chain fatty acid derivative, 12-N-methyl-7-nitrobenzo-2-oxa-1,3-diazol-amino stearate (12-NBDS), was greater during retrograde than during anterograde perfusion of isolated rat liver. To determine whether hemodynamic differences between anterograde and retrograde perfused livers could account for this finding, the hepatic extracellular space was measured for both directions of flow by means of [ 14 C]sucrose washout during perfusion as well as by direct measurement of [ 14 C]sucrose entrapped during perfusion. A three- to fourfold enlargement of the total hepatic extracellular space was found during retrograde perfusion by both approaches. Examination of perfusion-fixed livers by light microscopy and morphometry revealed that marked distension of the sinusoids occurred during retrograde perfusion and that this accounts for the observed increase in the [ 14 C]sucrose space. These findings support the hypothesis that maximum resistance to perfusate flow in the isolated perfused rat liver is located at the presinusoidal level. In addition, increased transit time of perfusate through the liver and greater sinusoidal surface area resulting from sinusoidal distension may account for the higher extraction of 12-NBDS and possibly other compounds by retrograde perfused liver

  11. Automatic fringe enhancement with novel bidimensional sinusoids-assisted empirical mode decomposition.

    Science.gov (United States)

    Wang, Chenxing; Kemao, Qian; Da, Feipeng

    2017-10-02

    Fringe-based optical measurement techniques require reliable fringe analysis methods, where empirical mode decomposition (EMD) is an outstanding one due to its ability of analyzing complex signals and the merit of being data-driven. However, two challenging issues hinder the application of EMD in practical measurement. One is the tricky mode mixing problem (MMP), making the decomposed intrinsic mode functions (IMFs) have equivocal physical meaning; the other is the automatic and accurate extraction of the sinusoidal fringe from the IMFs when unpredictable and unavoidable background and noise exist in real measurements. Accordingly, in this paper, a novel bidimensional sinusoids-assisted EMD (BSEMD) is proposed to decompose a fringe pattern into mono-component bidimensional IMFs (BIMFs), with the MMP solved; properties of the resulted BIMFs are then analyzed to recognize and enhance the useful fringe component. The decomposition and the fringe recognition are integrated and the latter provides a feedback to the former, helping to automatically stop the decomposition to make the algorithm simpler and more reliable. A series of experiments show that the proposed method is accurate, efficient and robust to various fringe patterns even with poor quality, rendering it a potential tool for practical use.

  12. Astronomical component estimation (ACE v.1) by time-variant sinusoidal modeling

    Science.gov (United States)

    Sinnesael, Matthias; Zivanovic, Miroslav; De Vleeschouwer, David; Claeys, Philippe; Schoukens, Johan

    2016-09-01

    Accurately deciphering periodic variations in paleoclimate proxy signals is essential for cyclostratigraphy. Classical spectral analysis often relies on methods based on (fast) Fourier transformation. This technique has no unique solution separating variations in amplitude and frequency. This characteristic can make it difficult to correctly interpret a proxy's power spectrum or to accurately evaluate simultaneous changes in amplitude and frequency in evolutionary analyses. This drawback is circumvented by using a polynomial approach to estimate instantaneous amplitude and frequency in orbital components. This approach was proven useful to characterize audio signals (music and speech), which are non-stationary in nature. Paleoclimate proxy signals and audio signals share similar dynamics; the only difference is the frequency relationship between the different components. A harmonic-frequency relationship exists in audio signals, whereas this relation is non-harmonic in paleoclimate signals. However, this difference is irrelevant for the problem of separating simultaneous changes in amplitude and frequency. Using an approach with overlapping analysis frames, the model (Astronomical Component Estimation, version 1: ACE v.1) captures time variations of an orbital component by modulating a stationary sinusoid centered at its mean frequency, with a single polynomial. Hence, the parameters that determine the model are the mean frequency of the orbital component and the polynomial coefficients. The first parameter depends on geologic interpretations, whereas the latter are estimated by means of linear least-squares. As output, the model provides the orbital component waveform, either in the depth or time domain. Uncertainty analyses of the model estimates are performed using Monte Carlo simulations. Furthermore, it allows for a unique decomposition of the signal into its instantaneous amplitude and frequency. Frequency modulation patterns reconstruct changes in

  13. Removing damped sinusoidal vibrations in adaptive optics systems using a DFT-based estimation method

    Science.gov (United States)

    Kania, Dariusz

    2017-06-01

    The problem of a vibrations rejection in adaptive optics systems is still present in publications. These undesirable signals emerge because of shaking the system structure, the tracking process, etc., and they usually are damped sinusoidal signals. There are some mechanical solutions to reduce the signals but they are not very effective. One of software solutions are very popular adaptive methods. An AVC (Adaptive Vibration Cancellation) method has been presented and developed in recent years. The method is based on the estimation of three vibrations parameters and values of frequency, amplitude and phase are essential to produce and adjust a proper signal to reduce or eliminate vibrations signals. This paper presents a fast (below 10 ms) and accurate estimation method of frequency, amplitude and phase of a multifrequency signal that can be used in the AVC method to increase the AO system performance. The method accuracy depends on several parameters: CiR - number of signal periods in a measurement window, N - number of samples in the FFT procedure, H - time window order, SNR, THD, b - number of A/D converter bits in a real time system, γ - the damping ratio of the tested signal, φ - the phase of the tested signal. Systematic errors increase when N, CiR, H decrease and when γ increases. The value of systematic error for γ = 0.1%, CiR = 1.1 and N = 32 is approximately 10^-4 Hz/Hz. This paper focuses on systematic errors of and effect of the signal phase and values of γ on the results.

  14. Deep mRNA sequencing of the Tritonia diomedea brain transcriptome provides access to gene homologues for neuronal excitability, synaptic transmission and peptidergic signalling.

    Directory of Open Access Journals (Sweden)

    Adriano Senatore

    Full Text Available The sea slug Tritonia diomedea (Mollusca, Gastropoda, Nudibranchia, has a simple and highly accessible nervous system, making it useful for studying neuronal and synaptic mechanisms underlying behavior. Although many important contributions have been made using Tritonia, until now, a lack of genetic information has impeded exploration at the molecular level.We performed Illumina sequencing of central nervous system mRNAs from Tritonia, generating 133.1 million 100 base pair, paired-end reads. De novo reconstruction of the RNA-Seq data yielded a total of 185,546 contigs, which partitioned into 123,154 non-redundant gene clusters (unigenes. BLAST comparison with RefSeq and Swiss-Prot protein databases, as well as mRNA data from other invertebrates (gastropod molluscs: Aplysia californica, Lymnaea stagnalis and Biomphalaria glabrata; cnidarian: Nematostella vectensis revealed that up to 76,292 unigenes in the Tritonia transcriptome have putative homologues in other databases, 18,246 of which are below a more stringent E-value cut-off of 1x10-6. In silico prediction of secreted proteins from the Tritonia transcriptome shotgun assembly (TSA produced a database of 579 unique sequences of secreted proteins, which also exhibited markedly higher expression levels compared to other genes in the TSA.Our efforts greatly expand the availability of gene sequences available for Tritonia diomedea. We were able to extract full length protein sequences for most queried genes, including those involved in electrical excitability, synaptic vesicle release and neurotransmission, thus confirming that the transcriptome will serve as a useful tool for probing the molecular correlates of behavior in this species. We also generated a neurosecretome database that will serve as a useful tool for probing peptidergic signalling systems in the Tritonia brain.

  15. Performance of pyrolyzed photoresist carbon films in a microchip capillary electrophoresis device with sinusoidal voltammetric detection.

    Science.gov (United States)

    Hebert, Nicole E; Snyder, Brian; McCreery, Richard L; Kuhr, Werner G; Brazill, Sara A

    2003-08-15

    Pyrolyzed photoresist films (PPF) are introduced as planar carbon electrodes in a PDMS-quartz hybrid microchip device. The utility of PPF in electroanalytical applications is demonstrated by the separation and detection of various neurotransmitters. PPF is found to form a stable, low-capacitance, durable layer on quartz, which can then be used in conjunction with a microchip capillary electrophoretic device. Sinusoidal voltammetric detection at PPF electrodes is shown to be very sensitive, with a detection limit (S/N = 3) of 100 nM for dopamine, corresponding to a mass detection limit (S/N = 3) of 2 amol. The selectivity of analysis in the frequency domain is demonstrated by isolating each individual signal in a pair of analytes that are chromatographically unresolved. Effectively decoupling the electrophoresis and electrochemical systems allows the electrodes to be placed just inside the separation channel, which results in efficient separations (80 000-100 000 plates/m).

  16. Numerical analysis of beam with sinusoidally corrugated webs

    Science.gov (United States)

    Górecki, Marcin; Pieńko, Michał; Łagoda, GraŻyna

    2018-01-01

    The paper presents numerical tests results of the steel beam with sinusoidally corrugated web, which were performed in the Autodesk Algor Simulation Professional 2010. The analysis was preceded by laboratory tests including the beam's work under the influence of the four point bending as well as the study of material characteristics. Significant web's thickness and use of tools available in the software allowed to analyze the behavior of the plate girder as beam, and also to observe the occurrence of stresses in the characteristic element - the corrugated web. The stress distribution observed on the both web's surfaces was analyzed.

  17. Chaotic Dynamics of Red Blood Cells in a Sinusoidal Flow

    Science.gov (United States)

    Dupire, Jules; Abkarian, Manouk; Viallat, Annie

    2010-04-01

    We show that the motion of individual red blood cells in an oscillating moderate shear flow is described by a nonlinear system of three coupled oscillators. Our experiments reveal that the cell tank treads and tumbles either in a stable way with synchronized cell inclination, membrane rotation and hydrodynamic oscillations, or in an irregular way, very sensitively to initial conditions. By adapting our model described previously, we determine the theoretical diagram for the red cell motion in a sinusoidal flow close to physiological shear stresses and flow variation frequencies and reveal large domains of chaotic motions. Finally, fitting our observations allows a characterization of cell viscosity and membrane elasticity.

  18. The Casimir force for 2d sinusoidal gratings

    Directory of Open Access Journals (Sweden)

    Marachevsky Valery N.

    2016-01-01

    Full Text Available The Casimir free energy for 2d gratings separated by a vacuum slit is expressed in terms of Rayleigh coefficients, a novel general approach valid for arbitrary 2d surface profiles of gratings is outlined. The normal Casimir force in the system of two identical Si gratings with 2d sinusoidal surface profiles separated by a vacuum slit is computed for several amplitudes of surface profiles, distance dependence of the force is studied. A comparison with results for flat boundaries is performed.

  19. Monitoring sinusoidal vibration environments with a television system

    Energy Technology Data Exchange (ETDEWEB)

    Davis, J.W.; Anderson, F.O.; Lookabill, H.J.; Taylor, R.D.

    1975-02-01

    The development and prove-in work of this experiment established a technology for using television equipment to monitor hybrid microcircuits and other miniature assemblies in sinusoidal vibration environments. Production assemblies were run through sine vibration test sequences with television systems used to monitor the sequences. During the experiment different television lens systems were tried to obtain clean, sharp, highly magnified pictures of the assemblies being monitored. Successful monitoring of production assemblies during the experiment was accomplished, resulting in design changes to the assemblies and establishment of a television monitoring system.

  20. Calcium homeostasis is required for contact-dependent helical and sinusoidal tip growth in Candida albicans hyphae.

    Science.gov (United States)

    Brand, Alexandra; Lee, Keunsook; Veses, Veronica; Gow, Neil A R

    2009-03-01

    Hyphae of the dimorphic fungus, Candida albicans, exhibit directional tip responses when grown in contact with surfaces. On hard surfaces or in liquid media, the trajectory of hyphal growth is typically linear, with tip re-orientation events limited to encounters with topographical features (thigmotropism). In contrast, when grown on semisolid surfaces, the tips of C. albicans hyphae grow in an oscillatory manner to form regular two-dimensional sinusoidal curves and three-dimensional helices. We show that, like thigmotropism, initiation of directional tip oscillation in C. albicans hyphae is severely attenuated when Ca2+ homeostasis is perturbed. Chelation of extracellular Ca2+ or deletion of the Ca2+ transporters that modulate cytosolic [Ca2+] (Mid1, Cch1 or Pmr1) did not affect hyphal length but curve formation was severely reduced in mid1Delta and cch1Delta and abolished in pmr1Delta. Sinusoidal hypha morphology was altered in the mid1Delta, chs3Delta and heterozygous pmr1Delta/PMR1 strains. Treatments that affect cell wall integrity, changes in surface mannosylation or the provision of additional carbon sources had significant but less pronounced effects on oscillatory growth. The induction of two- and three-dimensional sinusoidal growth in wild-type C. albicans hyphae is therefore the consequence of mechanisms that involve Ca2+ influx and signalling rather than gross changes in the cell wall architecture.

  1. Sinusoidal echo-planar imaging with parallel acquisition technique for reduced acoustic noise in auditory fMRI.

    Science.gov (United States)

    Zapp, Jascha; Schmitter, Sebastian; Schad, Lothar R

    2012-09-01

    To extend the parameter restrictions of a silent echo-planar imaging (sEPI) sequence using sinusoidal readout (RO) gradients, in particular with increased spatial resolution. The sound pressure level (SPL) of the most feasible configurations is compared to conventional EPI having trapezoidal RO gradients. We enhanced the sEPI sequence by integrating a parallel acquisition technique (PAT) on a 3 T magnetic resonance imaging (MRI) system. The SPL was measured for matrix sizes of 64 × 64 and 128 × 128 pixels, without and with PAT (R = 2). The signal-to-noise ratio (SNR) was examined for both sinusoidal and trapezoidal RO gradients. Compared to EPI PAT, the SPL could be reduced by up to 11.1 dB and 5.1 dB for matrix sizes of 64 × 64 and 128 × 128 pixels, respectively. The SNR of sinusoidal RO gradients is lower by a factor of 0.96 on average compared to trapezoidal RO gradients. The sEPI PAT sequence allows for 1) increased resolution, 2) expanded RO frequency range toward lower frequencies, which is in general beneficial for SPL, or 3) shortened TE, TR, and RO train length. At the same time, it generates lower SPL compared to conventional EPI for a wide range of RO frequencies while having the same imaging parameters. Copyright © 2012 Wiley Periodicals, Inc.

  2. Voiced Excitations

    National Research Council Canada - National Science Library

    Holzricher, John

    2004-01-01

    To more easily obtain a voiced excitation function for speech characterization, measurements of skin motion, tracheal tube, and vocal fold, motions were made and compared to EM sensor-glottal derived...

  3. Hydraulic testing in granite using the sinusoidal variation of pressure

    International Nuclear Information System (INIS)

    Black, J.H.; Holmes, D.C.; Noy, D.J.

    1982-09-01

    Access to two boreholes at the Carwynnen test site in Cornwall enabled the trial of a number of innovative approaches to the hydrogeology of fractured crystalline rock. These methods ranged from the use of seisviewer data to measure the orientation of fractures to the use of the sinusoidal pressure technique to measure directional hydraulic diffusivity. The testing began with a short programme of site investigation consisting of borehole caliper and seisviewer logging followed by some single borehole hydraulic tests. The single borehole hydraulic testing was designed to assess whether the available boreholes and adjacent rock were suitable for testing using the sinusoidal method. The main testing methods were slug and pulse tests and were analysed using the fissured porous medium analysis proposed in Barker and Black (1983). Derived hydraulic conductivity (K) ranged from 2 x 10 -12 m/sec to 5 x 10 -7 m/sec with one near-surface zone of high K being perceived in both boreholes. The results were of the form which is typical of fractured rock and indicated a combination of high fracture frequency and permeable granite matrix. The results are described and discussed. (author)

  4. Propiedades de transporte de una superred de grafeno tipo sinusoidal

    Directory of Open Access Journals (Sweden)

    J. A. Briones-Torres

    2015-01-01

    Full Text Available En este trabajo usamos el método de la matriz de transferencia para estudiar el tunelamiento de los electrones de Dirac a través de superredes en grafeno. Consideramos una superred con potencial sinusoidal o polaridad invertida, para ello consideramos dos maneras de crearla, una por medio de sustratos mixtos junto con la aplicación de un campo perpendicular sobre el sustrato de Óxido de Silicio (SiO2, la otra por medio de potenciales alternados aplicados perpendicularmente sobre la sábana de grafeno. Calculamos las propiedades de transmisión, transporte y estructura electrónica, variando diferentes parámetros como ángulo de incidencia, anchos de pozos y barreras y diferente número de barreras. Se encontró (1 el importante papel que juega el efecto Klein en tales estructuras, (2 las propiedades de transmisión y transporte presentan cierta simetría respecto del origen de la energía, y (3 el carácter sinusoidal del sistema trae consigo una baja en el nivel de energía de las subbandas en el espectro de estados acotados, además las degenera y origina que la apertura-cierre de las minibandas sea en el mismo nivel de energía.

  5. Design and Optimization of Sinusoidal Formed Femur Prosthesis

    Directory of Open Access Journals (Sweden)

    Ahmet Zafer ŞENALP

    2015-01-01

    Full Text Available One of the major problems in hip replacement surgery is the hip replacement loosening. Hip replacement loosening occurs over time after the surgery and it is related to the discretization between the bone cement and prosthesis. The underlying factors of this situation are the stress occurring in the bone cement and the shape of the prosthesis. In this study, cortical and trabecular layers of the femur, bone cement and prosthesis were modeled. The models of bone cement and prosthesis were constructed parametrically and two different sinusoidal formed prostheses were developed unlike the former prostheses shapes. Analyses were conducted for these two different sinusoidal forms by using finite element method and optimization was conducted to obtain the appropriate prosthesis stem shape and bone cement thickness by using parametric modeling in finite element analyses. For finite element analyses and optimization, Ansys Workbench software was used and analyses were conducted for 316LS stainless steel material. Finally, the optimum prosthesis stem shape and bone cement thickness was determined by using the results of the analyses in the first stage

  6. Excited states

    CERN Document Server

    Lim, Edward C

    1974-01-01

    Excited States, Volume I reviews radiationless transitions, phosphorescence microwave double resonance through optical spectra in molecular solids, dipole moments in excited states, luminescence of polar molecules, and the problem of interstate interaction in aromatic carbonyl compounds. The book discusses the molecular electronic radiationless transitions; the double resonance techniques and the relaxation mechanisms involving the lowest triplet state of aromatic compounds; as well as the optical spectra and relaxation in molecular solids. The text also describes dipole moments and polarizab

  7. Mixed Over-Voltage Decomposition Using Atomic Decompositions Based on a Damped Sinusoids Atom Dictionary

    Directory of Open Access Journals (Sweden)

    Lin Chen

    2011-09-01

    Full Text Available The main purpose of this paper is to establish a signal decomposition system aiming at mixed over-voltages in power systems. In an electric power system, over-voltage presents a great threat for the system safety. Analysis and identification of over-voltages is helpful to improve the stability and safety of power systems. Through statistical analysis of a collection of field over-voltage records, it was found that a kind of complicated signals created by mixing of multiple different over-voltages is difficult to identify correctly with current classification algorithms. In order to improve the classification and identification accuracy of over-voltages, a mixed over-voltage decomposition system based on the atomic decomposition and a damped sinusoid atom dictionary has been established. This decomposition system is optimized by using particle swarm optimization and the fast Fourier transform. Aiming at possible fault decomposition results during decomposition of the over-voltage signal, a double-atom decomposition algorithm is proposed in this paper. By taking three typical mixed over-voltages as examples, the validity of the algorithm is demonstrated.

  8. Spline-based high-accuracy piecewise-polynomial phase-to-sinusoid amplitude converters.

    Science.gov (United States)

    Petrinović, Davor; Brezović, Marko

    2011-04-01

    We propose a method for direct digital frequency synthesis (DDS) using a cubic spline piecewise-polynomial model for a phase-to-sinusoid amplitude converter (PSAC). This method offers maximum smoothness of the output signal. Closed-form expressions for the cubic polynomial coefficients are derived in the spectral domain and the performance analysis of the model is given in the time and frequency domains. We derive the closed-form performance bounds of such DDS using conventional metrics: rms and maximum absolute errors (MAE) and maximum spurious free dynamic range (SFDR) measured in the discrete time domain. The main advantages of the proposed PSAC are its simplicity, analytical tractability, and inherent numerical stability for high table resolutions. Detailed guidelines for a fixed-point implementation are given, based on the algebraic analysis of all quantization effects. The results are verified on 81 PSAC configurations with the output resolutions from 5 to 41 bits by using a bit-exact simulation. The VHDL implementation of a high-accuracy DDS based on the proposed PSAC with 28-bit input phase word and 32-bit output value achieves SFDR of its digital output signal between 180 and 207 dB, with a signal-to-noise ratio of 192 dB. Its implementation requires only one 18 kB block RAM and three 18-bit embedded multipliers in a typical field-programmable gate array (FPGA) device. © 2011 IEEE

  9. Phonological awareness and sinusoidal amplitude modulation in phonological dislexia

    Directory of Open Access Journals (Sweden)

    Yolanda Peñaloza-López

    2016-04-01

    Full Text Available ABSTRACT Objective Dyslexia is the difficulty of children in learning to read and write as results of neurological deficiencies. The objective was to test the Phonological awareness (PA and Sinusoidal amplitude modulation (SAM threshold in children with Phonological dyslexia (PD. Methods We performed a case-control, analytic, cross sectional study. We studied 14 children with PD and 14 control children from 7 to 11 years of age, by means of PA measurement and by SAM test. The mean age of dyslexic children was 8.39 years and in the control group was 8.15. Results Children with PD exhibited inadequate skills in PA, and SAM. We found significant correlations between PA and SAM at 4 Hertz frequency, and calculated regression equations that predicts between one-fourth and one-third of variance of measurements. Conclusion Alterations in PA and SAM found can help to explain basis of deficient language processing exhibited by children with PD.

  10. Phonological awareness and sinusoidal amplitude modulation in phonological dislexia.

    Science.gov (United States)

    Peñaloza-López, Yolanda; Herrera-Rangel, Aline; Pérez-Ruiz, Santiago J; Poblano, Adrián

    2016-04-01

    Dyslexia is the difficulty of children in learning to read and write as results of neurological deficiencies. The objective was to test the Phonological awareness (PA) and Sinusoidal amplitude modulation (SAM) threshold in children with Phonological dyslexia (PD). We performed a case-control, analytic, cross sectional study. We studied 14 children with PD and 14 control children from 7 to 11 years of age, by means of PA measurement and by SAM test. The mean age of dyslexic children was 8.39 years and in the control group was 8.15. Children with PD exhibited inadequate skills in PA, and SAM. We found significant correlations between PA and SAM at 4 Hertz frequency, and calculated regression equations that predicts between one-fourth and one-third of variance of measurements. Alterations in PA and SAM found can help to explain basis of deficient language processing exhibited by children with PD.

  11. New Realizations of Single OTRA-Based Sinusoidal Oscillators

    Directory of Open Access Journals (Sweden)

    Hung-Chun Chien

    2014-01-01

    Full Text Available This study proposes three new sinusoidal oscillators based on an operational transresistance amplifier (OTRA. Each of the proposed oscillator circuits consists of one OTRA combined with a few passive components. The first circuit is an OTRA-based minimum RC oscillator. The second circuit is capable of providing independent control on the condition of oscillation without affecting the oscillation frequency. The third circuit exhibits independent control of oscillation frequency through a capacitor. This study first introduces the OTRA and the related formulations of the proposed oscillator circuits, and then discusses the nonideal effects, sensitivity analyses, and frequency stability of the presented circuits. The proposed oscillators exhibit low sensitivities and good frequency stability. Because the presented circuits feature low impedance output, they can be connected directly to the next stage without cascading additional voltage buffers. HSPICE simulations and experimental results confirm the feasibility of the new oscillator circuits.

  12. Ageing monitoring in IGBT module under sinusoidal loading

    DEFF Research Database (Denmark)

    Ghimire, Pramod; Pedersen, Kristian Bonderup; Rannestad, Bjørn

    2015-01-01

    until failure. The characterization at different stages of lifetime indicates that the rise in resistance originates from thermo-mechanical degradation of interconnects. Post-test investigations: four-point probing and micro-sectioning indicate thermo-mechanical induced degradation of the chip topside...... different ways: calibration of power modules after 24 h of operation, offline characterization every 5 min of operation, and continuous measurement during normal converter operation. Four power modules are tested, which are cycled to different degradation levels by number of cycles, where one is tested......This paper presents monitoring of ageing in high power insulated gate bipolar transistor (IGBT) modules subjected to sinusoidal loading at nominal power level. On-state voltage for IGBT, diode, and rise in interconnection resistance are used as ageing parameters. These are measured in three...

  13. Surface wave propagation over sinusoidally varying topography: Theory and observation

    Science.gov (United States)

    Davies, A. G.; Heathershaw, A. D.

    Linear perturbation theory is used to show that the reflection coefficient of a patch of sinusoidal ripples on an otherwise flat bed is oscillatory in the quotient of the length of the patch and the surface wave length, and strongly dependent upon the quotient of the surface and bed wave numbers. Resonant interaction between the surface waves and the ripples if the surface wavenumber is half the ripple wavenumber is demonstrated. Few ripples, of relatively small steepness, are required to produce a substantial reflected wave. In resonant cases, the partially standing wave on the up-wave side of the ripple patch gives way, in an almost linear manner over the the ripple patch itself, to a progressive (transmitted) wave on the down-wave side. Wave tank data agree well with predictions, and suggest coupling between wave reflection and ripple growth on an erodible bed.

  14. Representative Sinusoids for Hepatic Four-Scale Pharmacokinetics Simulations.

    Directory of Open Access Journals (Sweden)

    Lars Ole Schwen

    Full Text Available The mammalian liver plays a key role for metabolism and detoxification of xenobiotics in the body. The corresponding biochemical processes are typically subject to spatial variations at different length scales. Zonal enzyme expression along sinusoids leads to zonated metabolization already in the healthy state. Pathological states of the liver may involve liver cells affected in a zonated manner or heterogeneously across the whole organ. This spatial heterogeneity, however, cannot be described by most computational models which usually consider the liver as a homogeneous, well-stirred organ. The goal of this article is to present a methodology to extend whole-body pharmacokinetics models by a detailed liver model, combining different modeling approaches from the literature. This approach results in an integrated four-scale model, from single cells via sinusoids and the organ to the whole organism, capable of mechanistically representing metabolization inhomogeneity in livers at different spatial scales. Moreover, the model shows circulatory mixing effects due to a delayed recirculation through the surrounding organism. To show that this approach is generally applicable for different physiological processes, we show three applications as proofs of concept, covering a range of species, compounds, and diseased states: clearance of midazolam in steatotic human livers, clearance of caffeine in mouse livers regenerating from necrosis, and a parameter study on the impact of different cell entities on insulin uptake in mouse livers. The examples illustrate how variations only discernible at the local scale influence substance distribution in the plasma at the whole-body level. In particular, our results show that simultaneously considering variations at all relevant spatial scales may be necessary to understand their impact on observations at the organism scale.

  15. Unsteady flow damping force prediction of MR dampers subjected to sinusoidal loading

    Science.gov (United States)

    Yu, M.; Wang, S. Q.; Fu, J.; Peng, Y. X.

    2013-02-01

    So far quasi-steady models are usually used to design magnetorheological (MR) dampers, but these models are not sufficient to describe the MR damper behavior under unsteady dynamic loading, for fluid inertia is neglected in quasi-steady models, which will bring more error between computer simulation and experimental results. Under unsteady flow model, the fluid inertia terms will bring error calculated upto 10%, so it is necessary to be considered in the governing equation. In this paper, force-stroke behavior of MR damper with flow mode due to sinusoidal loading excitation is mainly investigated, to simplify the analysis, the one-dimensional axisymmetric annular duct geometry of MR dampers is approximated as a rectangular duct. The rectangular duct can be divided into 3 regions for the velocity profile of the incompressible MR fluid flow, in each region, a partial differential equation is composed of by Navier-Stokes equations, boundary conditions and initial conditions to determine the velocity solution. In addition, in this work, not only Bingham plastic model but the Herschel—Bulkley model is adopted to analyze the MR damper performance. The damping force resulting from the pressure drop of unsteady MR dampers can be obtained and used to design or size MR dampers. Compared with the quasi-steady flow damping force, the damping force of unsteady MR dampers is more close to practice, particularly for the high-speed unsteady movement of MR dampers.

  16. Unsteady flow damping force prediction of MR dampers subjected to sinusoidal loading

    International Nuclear Information System (INIS)

    Yu, M; Fu, J; Wang, S Q; Peng, Y X

    2013-01-01

    So far quasi-steady models are usually used to design magnetorheological (MR) dampers, but these models are not sufficient to describe the MR damper behavior under unsteady dynamic loading, for fluid inertia is neglected in quasi-steady models, which will bring more error between computer simulation and experimental results. Under unsteady flow model, the fluid inertia terms will bring error calculated upto 10%, so it is necessary to be considered in the governing equation. In this paper, force-stroke behavior of MR damper with flow mode due to sinusoidal loading excitation is mainly investigated, to simplify the analysis, the one-dimensional axisymmetric annular duct geometry of MR dampers is approximated as a rectangular duct. The rectangular duct can be divided into 3 regions for the velocity profile of the incompressible MR fluid flow, in each region, a partial differential equation is composed of by Navier-Stokes equations, boundary conditions and initial conditions to determine the velocity solution. In addition, in this work, not only Bingham plastic model but the Herschel—Bulkley model is adopted to analyze the MR damper performance. The damping force resulting from the pressure drop of unsteady MR dampers can be obtained and used to design or size MR dampers. Compared with the quasi-steady flow damping force, the damping force of unsteady MR dampers is more close to practice, particularly for the high-speed unsteady movement of MR dampers.

  17. Magnetic excitations in thulium metal

    International Nuclear Information System (INIS)

    Fernandez-Baca, J.A.; Nicklow, R.M.; Rhyne, J.J.

    1989-01-01

    We have performed inelastic neutron scattering measurements on a single crystal specimen of Tm at wavevectors rvec κ = (1,1, ζ) and (0,0,2 + ζ) (ζ = 0, hor-ellipsis, 1). Most of the measurements have been made at T = 5K, where Tm exhibits a seven layer ferrimagnetic-antiphase-domain structure (four moments up, parallel to the c-axis, followed by three moments down). At this temperature the excitation spectra consist of three peaks. The two lower energy excitations have been identified as originating from magneto-vibrational scattering from the TA phonon, while the higher energy excitation is magnetic and exhibits only a weak dispersion (between 8.3 and 9.6 meV). At T = 50K, a temperature at which the system exhibits a c-axis sinusoidally modulated structure, the magnetic mode shows significant softening and broadening. The magneto-vibrational scattering vanishes above the Neel temperature (T N = 58.5K) while the magnetic mode persists at least up to T = 70K. These results suggest that the Hamiltonian in this system is dominated by the crystal-field-anistropy energy, and that the exchange interaction is relatively weak. 9 refs., 2 figs

  18. A model with nonzero rise time for AE signals

    Indian Academy of Sciences (India)

    Springer Verlag Heidelberg #4 2048 1996 Dec 15 10:16:45

    models, which, while retaining these merits, can also incorporate rise time. We present such a model in the following. 2. Proposed model. The decaying sinusoidal model of (1) can be described in terms of communication terminology as the envelope function A0 exp(−αt) amplitude modulating the sinusoidal signal sin 2 f0t.

  19. Liver sinusoidal endothelial cells induce immunosuppressive IL-10-producing Th1 cells via the Notch pathway.

    Science.gov (United States)

    Neumann, Katrin; Rudolph, Christine; Neumann, Christian; Janke, Marko; Amsen, Derk; Scheffold, Alexander

    2015-07-01

    Under homeostasis, liver sinusoidal endothelial cells (LSECs) shift intrahepatic T-cell responses towards tolerance. However, the role of LSECs in the regulation of T-cell-induced liver inflammation is less clear. Here, we studied the capacity of LSECs to modulate pro-inflammatory Th1-cell differentiation in mice. Using in vitro co-culture systems and subsequent cytokine analysis, we showed that LSECs induced high amounts of the anti-inflammatory cytokine IL-10 in developing Th1 cells. These LSEC-stimulated Th1 cells had no pro-inflammatory capacity in vivo but instead actively suppressed an inflammatory Th1-cell-induced delayed-type hypersensitivity reaction. Blockage of IL-10 signaling in vivo inhibited immunosuppressive activity of LSEC-stimulated Th1 cells. We identified the Notch pathway as a mechanism how LSECs trigger IL-10 expression in Th1 cells. LSECs expressed high levels of the Delta-like and Jagged family of Notch ligands and induced expression of the Notch target genes hes-1 and deltex-1 in Th1 cells. Blockade of Notch signaling selectively inhibited IL-10 induction in Th1 cells by LSECs. Our findings suggest that LSEC-induced IL-10 expression in Th1 cells via the Notch pathway may contribute to the control of hepatic inflammatory immune responses by induction of a self-regulatory mechanism in pro-inflammatory Th1 cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Sinusoidal oscillators and waveform generators using modern electronic circuit building blocks

    CERN Document Server

    Senani, Raj; Singh, V K; Sharma, R K

    2016-01-01

    This book serves as a single-source reference to sinusoidal oscillators and waveform generators, using classical as well as a variety of modern electronic circuit building blocks. It provides a state-of-the-art review of a large variety of sinusoidal oscillators and waveform generators and includes a catalogue of over 600 configurations of oscillators and waveform generators, describing their relevant design details and salient performance features/limitations. The authors discuss a number of interesting, open research problems and include a comprehensive collection of over 1500 references on oscillators and non-sinusoidal waveform generators/relaxation oscillators. Offers readers a single-source reference to everything connected to sinusoidal oscillators and waveform generators, using classical as well as modern electronic circuit building blocks; Provides a state-of-the-art review of a large variety of sinusoidal oscillators and waveform generators; Includes a catalog of over 600 configurations of oscillato...

  1. Time-frequency analyses of fluid–solid interaction under sinusoidal translational shear deformation of the viscoelastic rat cerebrum

    Science.gov (United States)

    Leahy, Lauren N.; Haslach, Henry W.

    2018-02-01

    During normal extracellular fluid (ECF) flow in the brain glymphatic system or during pathological flow induced by trauma resulting from impacts and blast waves, ECF-solid matter interactions result from sinusoidal shear waves in the brain and cranial arterial tissue, both heterogeneous biological tissues with high fluid content. The flow in the glymphatic system is known to be forced by pulsations of the cranial arteries at about 1 Hz. The experimental shear stress response to sinusoidal translational shear deformation at 1 Hz and 25% strain amplitude and either 0% or 33% compression is compared for rat cerebrum and bovine aortic tissue. Time-frequency analyses aim to correlate the shear stress signal frequency components over time with the behavior of brain tissue constituents to identify the physical source of the shear nonlinear viscoelastic response. Discrete fast Fourier transformation analysis and the novel application to the shear stress signal of harmonic wavelet decomposition both show significant 1 Hz and 3 Hz components. The 3 Hz component in brain tissue, whose magnitude is much larger than in aortic tissue, may result from interstitial fluid induced drag forces. The harmonic wavelet decomposition locates 3 Hz harmonics whose magnitudes decrease on subsequent cycles perhaps because of bond breaking that results in easier fluid movement. Both tissues exhibit transient shear stress softening similar to the Mullins effect in rubber. The form of a new mathematical model for the drag force produced by ECF-solid matter interactions captures the third harmonic seen experimentally.

  2. Excited baryons

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, N.C.

    1986-01-01

    The status of the theory of the low-energy approach to hadron structure is reviewed briefly by surveying a few relevant models. A few examples of tests needed to sort out the predictions of different models pertaining to the quark-gluon structure of hadrons are discussed, and given the resulting physics objectives, a few experimental options for excited baryon research at CFBAF are suggested. (LEW)

  3. Excited baryons

    International Nuclear Information System (INIS)

    Mukhopadhyay, N.C.

    1986-01-01

    The status of the theory of the low-energy approach to hadron structure is reviewed briefly by surveying a few relevant models. A few examples of tests needed to sort out the predictions of different models pertaining to the quark-gluon structure of hadrons are discussed, and given the resulting physics objectives, a few experimental options for excited baryon research at CFBAF are suggested

  4. Neuronal Oscillations with Non-sinusoidal Morphology Produce Spurious Phase-to-Amplitude Coupling and Directionality

    Science.gov (United States)

    Lozano-Soldevilla, Diego; ter Huurne, Niels; Oostenveld, Robert

    2016-01-01

    Neuronal oscillations support cognitive processing. Modern views suggest that neuronal oscillations do not only reflect coordinated activity in spatially distributed networks, but also that there is interaction between the oscillations at different frequencies. For example, invasive recordings in animals and humans have found that the amplitude of fast oscillations (>40 Hz) occur non-uniformly within the phase of slower oscillations, forming the so-called cross-frequency coupling (CFC). However, the CFC patterns might be influenced by features in the signal that do not relate to underlying physiological interactions. For example, CFC estimates may be sensitive to spectral correlations due to non-sinusoidal properties of the alpha band wave morphology. To investigate this issue, we performed CFC analysis using experimental and synthetic data. The former consisted in a double-blind magnetoencephalography pharmacological study in which participants received either placebo, 0.5 or 1.5 mg of lorazepam (LZP; GABAergic enhancer) in different experimental sessions. By recording oscillatory brain activity with during rest and working memory (WM), we were able to demonstrate that posterior alpha (8–12 Hz) phase was coupled to beta-low gamma band (20–45 Hz) amplitude envelope during all sessions. Importantly, bicoherence values around the harmonics of the alpha frequency were similar both in magnitude and topographic distribution to the cross-frequency coherence (CFCoh) values observed in the alpha-phase to beta-low gamma coupling. In addition, despite the large CFCoh we found no significant cross-frequency directionality (CFD). Critically, simulations demonstrated that a sizable part of our empirical CFCoh between alpha and beta-low gamma coupling and the lack of CFD could be explained by two-three harmonics aligned in zero phase-lag produced by the physiologically characteristic alpha asymmetry in the amplitude of the peaks relative to the troughs. Furthermore, we

  5. Neuronal oscillations with non-sinusoidal morphology produce spurious phase-to-amplitude coupling and directionality.

    Directory of Open Access Journals (Sweden)

    Diego Lozano-Soldevilla

    2016-08-01

    Full Text Available Neuronal oscillations support cognitive processing. Modern views suggest that neuronal oscillations do not only reflect coordinated activity in spatially distributed networks, but also that there is interaction between the oscillations at different frequencies. For example, invasive recordings in animals and humans have found that the amplitude of fast oscillations (> 40 Hz occur non-uniformly within the phase of slower oscillations, forming the so-called cross-frequency coupling (CFC. However, the CFC patterns be influenced by features in the signal that do not relate to underlying physiological interactions. For example, CFC estimates may be sensitive to spectral correlations due to non-sinusoidal properties of the alpha band wave morphology. To investigate this issue, we performed CFC analysis using experimental and synthetic data. The former consisted in a double-blind magnetoencephalography pharmacological study in which participants received either placebo, 0.5 mg or 1.5 mg of lorazepam (LZP; GABAergic enhancer in different experimental sessions. By recording oscillatory brain activity with during rest and working memory (WM, we were able to demonstrate that posterior alpha (8 – 12 Hz phase was coupled to beta-low gamma band (20 – 45 Hz amplitude envelope during all sessions. Importantly, bicoherence values around the harmonics of the alpha frequency were similar both in magnitude and topographic distribution to the cross-frequency coherence (CFCoh values observed in the alpha-phase to beta-low gamma coupling. In addition, despite the large CFCoh we found no significant cross-frequency directionality (CFD. Critically, simulations demonstrated that a sizable part of our empirical CFCoh between alpha and beta-low gamma coupling and the lack of CFD could be explained by two-three harmonics aligned in zero phase-lag produced by the physiologically characteristic alpha asymmetry in the amplitude of the peaks relative to the troughs

  6. Four-Wire Delta Service Sinusoidal Operation and Compensation Simulator

    Directory of Open Access Journals (Sweden)

    Vicente León-Martínez

    2015-10-01

    Full Text Available An off-line simulator based on Excel used to evaluate the operation of four-wire delta (4WD services as well as the effects of reactive and imbalance compensators in sinusoidal steady-state conditions is described in this paper. Voltages, currents and powers in the primary and secondary windings of the transformer as well as in the high voltage (HV and low voltage (LV lines and in the loads are calculated through that simulator. The apparent powers in the mains, transformer and loads are determined applying Buchholz’s and unified power measurement (UPM formulations in both scalar and vector notations. The effects of the neutral current are especially examined, in order to minimize them, and the optimal wye load distribution is determined by the simulator. The simulator provides the necessary elements of passive reactive and unbalanced compensators that optimize the 4WD transformer operation too. Those compensators are determined for each load, and they can be separately selected and included in the simulation process or not. An application example is finally used to step by step explain how the simulator runs.

  7. Magnetic field components in a sinusoidally varying helical wiggler

    Energy Technology Data Exchange (ETDEWEB)

    Caspi, S.

    1994-07-27

    One may be interested in a pure multipole magnetic field (i.e., proportional to sin(n{theta}) or cos(n{theta}) whose strength varies purely as a Fourier sinusoidal series of the longitudinal coordinate z (say proportional to cos{sub L}/{sup (2m-1){pi}z}), where L denotes the half-period of the wiggler and m=1,2,3{hor_ellipsis}). Associated with such a z variation, there necessarily will be presented a z component of magnetic field which in the source-free region, in fact, will give rise to both normal and skew transverse fields associated with the functions A{sub n}(z) and {Angstrom}{sub n}(z) as expressed in Reference{sup bc}. In this note the field components and expression for the scalar potential both inside and outside a thin pure winding surface are included with additional contributions from a possible high permeable shield. It is also shown that for a pure dipole case of n=1 and pure axial variation of m=1 the transverse field can be derived from a simple two dimensional field.

  8. Sinusoidal magnetic fields and chawki (silkworm) rearing in sericulture.

    Science.gov (United States)

    Qadri, S M H; Dhahira Beevi, N; Mani, A; Leelapriya, T; Dhilip, K S; Sanker Narayan, P V

    2006-01-01

    Effects of sinusoidal magnetic fields on chawki silkworm rearing have been studied. The experiment was conducted using a multi X Bi silkworm hybrid, PM x CSR 2. Disease-free layings were reared from hatching to cocooning and by subjecting first and second instar to three magnetic field frequencies: 0.1, 1.0, and 10 Hz at 1500 nT, pp, for six days at six hours per day. Controls were maintained simultaneously. Larval durations for both young-stage chawki (I and II) and late stage (III, IV, V) were calculated in days and hours, including the feeding and moulting periods for I to IV instars, and the feeding period for V instar up to the time of spinning. The study revealed that the magnetic exposures reduced both feeding and moulting times with no adverse effects on larval growth. The substantial reductions in time, 33 hours in instars I and II, and 64 hours in total larval duration, could be commercially important in chawki rearing, saving time, leaf consumption, and labor expenses.

  9. VXIbus-based signal generator for resonant power supply system of the 3 GeV RCS

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fengqing; Watanabe, Yasuhiro; Koseki, Shoichiro; Tani, Norio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Adachi, Toshikazu; Someya, Hirohiko [High Energy Accelerator Reseach Organization, Tsukuba, Ibaraki (Japan)

    2002-03-01

    The 3 GeV Proton RCS of the JAERI-KEK Joint Project is a 25 Hz separate-function rapid cycling synchrotron under design. Bending magnets (BM) and quadrupole magnets (QM) are excited separately. The 3 GeV RCS requests above 10 families of magnets excited independently, far beyond 3 families in practical RCS's. Difficulty of field tracking between BM and QM is significantly increased. Magnet strings are grouped into resonant networks and excited resonantly with power supplies driven by a waveform pattern, typically a DC-biased sinusoidal signal. To achieve a close tracking between many families, the driving signal of each power supply should be adjusted in phase and amplitude flexibly and dynamically. This report proposes a signal generator based on VXIbus. The VXIbus, an extension of VMEbus (VME eXtensions for Instrument), provides an open architecture with shared process bus and timing. The VXIbus-based signal generator facilitates the timing synchronization and is easy to extend to many channels needed by the 3 GeV RCS. Experimental results of the signal generator are reported. (author)

  10. Sensorless Sinusoidal Drives for Fan and Pump Motors by V/f Control

    Science.gov (United States)

    Kiuchi, Mitsuyuki; Ohnishi, Tokuo

    This paper proposes sensorless sinusoidal driving methods of permanent magnet synchronous motors for fans and pumps by V/f control. The proposed methods are simple methods that control the motor peak current constant by voltage or frequency control, and are characterized by DC link current detection using a single shunt resistor at carrier wave signal bottom timing. As a result of the dumping factor from square torque load characteristics of fan and pump motors, it is possible to control stable starting and stable steady state by V/f control. In general, pressure losses as a result of the fluid pass of fan and pump systems are nearly constant; therefore, the flow rate and motor torque are determined by revolutions. Accordingly, high efficiency driving is possible by setting corresponding currents to q-axis currents (torque currents) at target revolutions. Because of the simple current detection and motor control methods, the proposed methods are optimum for fan and pump motor driving systems of home appliances.

  11. Optimization of the sinusoidal phase modulation technique in resonant fiber optic gyro

    Science.gov (United States)

    Wang, Linglan; Li, Hanzhao; Zhang, Jianjie; Ma, Huilian; Jin, Zhonghe

    2017-03-01

    The sinusoidal wave phase modulation and demodulation have been widely used in the signal processing system of the resonant fiber optic gyro (RFOG). An appropriate selection of the modulation frequency is of great importance, for the frequency value directly affects the slope of the demodulation curve at the resonance point which carries the gyro output information. A large demodulation slope is pursued in a high-performance RFOG. In this paper, an analytical expression of the demodulation slope is for the first time deduced in both transmission-type and reflection-type fiber ring resonators without any approximation. The relationship between the slope value and the modulation frequency at the resonance point is accurately calculated. The calculated best modulation frequency maximizing the demodulation slope at the resonance point is different from previous widely used optimal frequency given by the Lorentzian approximation method. More importantly, both theoretical and experimental results indicate that the achieved maximal demodulation slope from the proposed analytical expression method is double of that obtaining from the Lorentzian approximation method.

  12. Engraftment and reconstitution of hematopoiesis is dependent on VEGFR2 mediated regeneration of sinusoidal endothelial cells

    Science.gov (United States)

    Hooper, Andrea T.; Butler, Jason M.; Nolan, Daniel J; Kranz, Andrea; Iida, Kaoruko; Kobayashi, Mariko; Kopp, Hans-Georg; Shido, Koji; Petit, Isabelle; Yanger, Kilangsungla; James, Daylon; Witte, Larry; Zhu, Zhenping; Wu, Yan; Pytowski, Bronislaw; Rosenwaks, Zev; Mittal, Vivek; Sato, Thomas N.; Rafii, Shahin

    2011-01-01

    SUMMARY The phenotypic attributes and molecular determinants for the regeneration of bone marrow (BM) sinusoidal endothelial cells (SECs) and their contribution to hematopoiesis are unknown. We show that after myelosuppression VEGFR2 activation promotes reassembly of regressed SECs, reconstituting hematopoietic stem and progenitor cells (HSPCs). VEGFR2 and VEGFR3 expression are restricted to BM vasculature, demarcating a continuous network of VEGFR2+VEGFR3+Sca1− SECs and VEGFR2+VEGFR3−Sca1+ arterioles. While chemotherapy (5FU) and sublethal irradiation (650 rad) induce minor SEC regression, lethal irradiation (950 rad) induces severe regression of SECs requiring BM transplantation (BMT) for regeneration. Conditional deletion of VEGFR2 in adult mice blocks regeneration of SECs in sublethally irradiated animals, preventing hematopoietic reconstitution. Inhibition of VEGFR2 signaling in lethally irradiated wild type mice rescued with BMT severely impairs SEC reconstruction, preventing engraftment and reconstitution of HSPCs. Therefore, activation of VEGFR2 is critical for regeneration of VEGFR3+Sca1− SECs that are essential for engraftment and restoration of HSPCs and hematopoiesis. PMID:19265665

  13. Flame Structure and Chemiluminescence Emissions of Inverse Diffusion Flames under Sinusoidally Driven Plasma Discharges

    Directory of Open Access Journals (Sweden)

    Maria Grazia De Giorgi

    2017-03-01

    Full Text Available Reduction of nitric oxides (NOx in aircraft engines and in gas turbines by lean combustion is of great interest in the design of novel combustion systems. However, the stabilization of the flame under lean conditions is a main issue. In this context, the present work investigates the effects of sinusoidal dielectric barrier discharge (DBD on a lean inverse diffusive methane/air flame in a Bunsen-type burner under different actuation conditions. The flame appearance was investigated with fixed methane loading (mass flux, but with varying inner airflow rate. High-speed flame imaging was done by using an intensified (charge-coupled device CCD camera equipped with different optical filters in order to selectively record signals from the chemiluminescent species OH*, CH*, or CO2* to evaluate the flame behavior in presence of plasma actuation. The electrical power consumption was less than 33 W. It was evident that the plasma flame enhancement was significantly influenced by the plasma discharges, particularly at high inner airflow rates. The flame structure changes drastically when the dissipated plasma power increases. The flame area decreases due to the enhancement of mixing and chemical reactions that lead to a more anchored flame on the quartz exit with a reduction of the flame length.

  14. Using spatiotemporal source separation to identify prominent features in multichannel data without sinusoidal filters.

    Science.gov (United States)

    Cohen, Michael X

    2017-09-27

    The number of simultaneously recorded electrodes in neuroscience is steadily increasing, providing new opportunities for understanding brain function, but also new challenges for appropriately dealing with the increase in dimensionality. Multivariate source separation analysis methods have been particularly effective at improving signal-to-noise ratio while reducing the dimensionality of the data and are widely used for cleaning, classifying and source-localizing multichannel neural time series data. Most source separation methods produce a spatial component (that is, a weighted combination of channels to produce one time series); here, this is extended to apply source separation to a time series, with the idea of obtaining a weighted combination of successive time points, such that the weights are optimized to satisfy some criteria. This is achieved via a two-stage source separation procedure, in which an optimal spatial filter is first constructed and then its optimal temporal basis function is computed. This second stage is achieved with a time-delay-embedding matrix, in which additional rows of a matrix are created from time-delayed versions of existing rows. The optimal spatial and temporal weights can be obtained by solving a generalized eigendecomposition of covariance matrices. The method is demonstrated in simulated data and in an empirical electroencephalogram study on theta-band activity during response conflict. Spatiotemporal source separation has several advantages, including defining empirical filters without the need to apply sinusoidal narrowband filters. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  15. Sinusoidal Parameter Estimation Using Quadratic Interpolation around Power-Scaled Magnitude Spectrum Peaks

    Directory of Open Access Journals (Sweden)

    Kurt James Werner

    2016-10-01

    Full Text Available The magnitude of the Discrete Fourier Transform (DFT of a discrete-time signal has a limited frequency definition. Quadratic interpolation over the three DFT samples surrounding magnitude peaks improves the estimation of parameters (frequency and amplitude of resolved sinusoids beyond that limit. Interpolating on a rescaled magnitude spectrum using a logarithmic scale has been shown to improve those estimates. In this article, we show how to heuristically tune a power scaling parameter to outperform linear and logarithmic scaling at an equivalent computational cost. Although this power scaling factor is computed heuristically rather than analytically, it is shown to depend in a structured way on window parameters. Invariance properties of this family of estimators are studied and the existence of a bias due to noise is shown. Comparing to two state-of-the-art estimators, we show that an optimized power scaling has a lower systematic bias and lower mean-squared-error in noisy conditions for ten out of twelve common windowing functions.

  16. An Analysis/Synthesis System of Audio Signal with Utilization of an SN Model

    OpenAIRE

    Turi Nagy, M.; Rozinaj, G.

    2004-01-01

    An SN (sinusoids plus noise) model is a spectral model, in which the periodic components of the sound are represented by sinusoids with time-varying frequencies, amplitudes and phases. The remaining non-periodic components are represented by a filtered noise. The sinusoidal model utilizes physical properties of musical instruments and the noise model utilizes the human inability to perceive the exact spectral shape or the phase of stochastic signals. SN modeling can be applied in a compressio...

  17. Modal Estimation of Civil Structures Subject to Ambient and Harmonic Excitation

    DEFF Research Database (Denmark)

    Andersen, Palle; Brincker, Rune; Ventura, Carlos

    2008-01-01

    In this paper addresses the problems of separating structural modes and harmonics arising from sinusoidal excitation. Though the problem is mostly know in mechanical engineering applications such as rotating machinery, some civil engineering applications experiences the same challenges. A robust...... and fast harmonic detection procedure is presented and illustrated on a civil engineering case....

  18. Estimating Modal Parameters of Civil Engineering Structures subject to Ambient and Harmonic Excitation

    DEFF Research Database (Denmark)

    Andersen, Palle; Brincker, Rune; Ventura, Carlos

    In this paper addresses the problems of separating structural modes and harmonics arising from sinusoidal excitation. Though the problem is mostly know in mechanical engineering applications such as rotating machinery, some civil engineering applications experiences the same challenges. A robust...... and fast harmonic detection procedure is presented and illustrated on a civil engineering case....

  19. Resolution of heterogeneous fluorescence emission signals and decay lifetime measurement on fluorochrome-labeled cells by phase-sensitive FCM

    Energy Technology Data Exchange (ETDEWEB)

    Steinkamp, J.A.; Crissman, H.A.

    1993-01-01

    A phase-sensitive flow cytometer has been developed to resolve signals from heterogeneous fluorescence emission spectra and quantify fluorescence decay times on cells labeled with fluorescent dyes. This instrument combines flow cytometry (FCM) and fluorescence spectroscopy measurement principles to provide unique capabilities for making phase-resolved measurements on single cells in flow, while preserving conventional FCM measurement capabilities. Stained cells are analyzed as they pass through an intensity-modulated (sinusoid) laser excitation beam. Fluorescence is measured orthogonally using a s barrier filter to block scattered laser excitation light, and a photomultiplier tube detector output signals, which are shifted in phase from a reference signal and amplitude demodulated, are processed by phase-sensitive detection electronics to resolve signals from heterogeneous emissions and quantify decay lifetimes directly. The output signals are displayed as frequency distribution histograms and bivariate diagrams using a computer-based data acquisition system. Results have demonstrated signal phase shift, amplitude demodulation, and average measurement of fluorescence lifetimes on stained cells; a detection limit threshold of 300 to 500 fluorescein isothiocyanate (FITC); fluorescence measurement precision of 1.3% on alignment fluorospheres and 3.4% on propidium iodide (PI)-stained cells; the resolution of PI and FITC signals from cells stainedin combination with PI and FITC, based on differences in their decay lifetimes; and the ability to measure single decay nines by the two-phase, phase comparator, method.

  20. Resolution of heterogeneous fluorescence emission signals and decay lifetime measurement on fluorochrome-labeled cells by phase-sensitive FCM

    Energy Technology Data Exchange (ETDEWEB)

    Steinkamp, J.A.; Crissman, H.A.

    1993-02-01

    A phase-sensitive flow cytometer has been developed to resolve signals from heterogeneous fluorescence emission spectra and quantify fluorescence decay times on cells labeled with fluorescent dyes. This instrument combines flow cytometry (FCM) and fluorescence spectroscopy measurement principles to provide unique capabilities for making phase-resolved measurements on single cells in flow, while preserving conventional FCM measurement capabilities. Stained cells are analyzed as they pass through an intensity-modulated (sinusoid) laser excitation beam. Fluorescence is measured orthogonally using a s barrier filter to block scattered laser excitation light, and a photomultiplier tube detector output signals, which are shifted in phase from a reference signal and amplitude demodulated, are processed by phase-sensitive detection electronics to resolve signals from heterogeneous emissions and quantify decay lifetimes directly. The output signals are displayed as frequency distribution histograms and bivariate diagrams using a computer-based data acquisition system. Results have demonstrated signal phase shift, amplitude demodulation, and average measurement of fluorescence lifetimes on stained cells; a detection limit threshold of 300 to 500 fluorescein isothiocyanate (FITC); fluorescence measurement precision of 1.3% on alignment fluorospheres and 3.4% on propidium iodide (PI)-stained cells; the resolution of PI and FITC signals from cells stainedin combination with PI and FITC, based on differences in their decay lifetimes; and the ability to measure single decay nines by the two-phase, phase comparator, method.

  1. AC losses in HTS coils for high-frequency and non-sinusoidal currents

    Science.gov (United States)

    de Bruyn, B. J. H.; Jansen, J. W.; Lomonova, E. A.

    2017-09-01

    AC losses in racetrack coils that are wound of YBCO tapes are measured for sinusoidal and non-sinusoidal transport currents with fundamental frequencies up to 1 kHz. An electrical method to measure losses for non-sinusoidal currents is developed for this purpose. The measured losses are compared to the losses calculated by 2D finite element models with power-law material models. The frequency and waveform-dependency of the measured losses are shown and compared to the results of the models over a wide range of frequencies and waveforms. Finally, it is shown that the finite element models can accurately predict AC losses resulting from non-sinusoidal transport currents as are present in highly dynamic motors with AC armature coils.

  2. Early Afferent Activity from the Facet Joint after Painful Trauma to its Capsule Potentiates Neuronal Excitability and Glutamate Signaling in the Spinal Cord

    OpenAIRE

    Crosby, Nathan D.; Gilliland, Taylor M.; Winkelstein, Beth A.

    2014-01-01

    Cervical facet joint injury induces persistent pain and central sensitization. Preventing the peripheral neuronal signals that initiate sensitization attenuates neuropathic pain. Yet, there is no clear relationship between facet joint afferent activity, development of central sensitization, and pain, which may be hindering effective treatments for this pain syndrome. This study investigates how afferent activity from the injured cervical facet joint affects induction of behavioral sensitivity...

  3. An optimized method for mouse liver sinusoidal endothelial cell isolation

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Jeremy, E-mail: jeremy.meyer@hcuge.ch [Division of Digestive and Transplantation Surgery, University Hospitals of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211 Genève 14 (Switzerland); Unit of Surgical Research, University of Geneva, Rue Michel-Servet 1, 1206 Genève (Switzerland); Lacotte, Stéphanie, E-mail: stephanie.lacotte@unige.ch [Unit of Surgical Research, University of Geneva, Rue Michel-Servet 1, 1206 Genève (Switzerland); Morel, Philippe, E-mail: philippe.morel@hcuge.ch [Division of Digestive and Transplantation Surgery, University Hospitals of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211 Genève 14 (Switzerland); Unit of Surgical Research, University of Geneva, Rue Michel-Servet 1, 1206 Genève (Switzerland); Gonelle-Gispert, Carmen, E-mail: carmen.gonelle@unige.ch [Unit of Surgical Research, University of Geneva, Rue Michel-Servet 1, 1206 Genève (Switzerland); Bühler, Léo, E-mail: leo.buhler@hcuge.ch [Division of Digestive and Transplantation Surgery, University Hospitals of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211 Genève 14 (Switzerland); Unit of Surgical Research, University of Geneva, Rue Michel-Servet 1, 1206 Genève (Switzerland)

    2016-12-10

    The objective of the present study was to develop an accurate and reproducible method for liver sinusoidal endothelial cell (LSEC) isolation in mice. Non-parenchymal cells were isolated using a modified two-step collagenase digestion combined with Optiprep density gradient centrifugation. LSEC were further purified using two prevalent methods, short-term selective adherence and CD146+ magnetic-activated cell sorting (MACS), and compared in terms of cell yield, viability and purity to our purification technique using CD11b cell depletion combined with long-term selective adherence. LSEC purification using our technique allowed to obtain 7.07±3.80 million LSEC per liver, while CD146+ MACS and short-term selective adherence yielded 2.94±1.28 and 0.99±0.66 million LSEC, respectively. Purity of the final cell preparation reached 95.10±2.58% when using our method. In contrast, CD146+ MACS and short-term selective adherence gave purities of 86.75±3.26% and 47.95±9.82%, respectively. Similarly, contamination by non-LSEC was the lowest when purification was performed using our technique, with a proportion of contaminating macrophages of only 1.87±0.77%. Further, isolated cells analysed by scanning electron microscopy presented typical LSEC fenestrations organized in sieve plates, demonstrating that the technique allowed to isolate bona fide LSEC. In conclusion, we described a reliable and reproducible technique for the isolation of high yields of pure LSEC in mice. This protocol provides an efficient method to prepare LSEC for studying their biological functions. - Highlights: • This protocol provides an efficient method to prepare primary mouse LSEC for studying their biological functions. • The liver cell dispersion step was improved by performing a retrograde cannulation of the liver. • The cell yield and the purity obtained were higher than comparative techniques in mice. • Contaminating macrophages were removed by introducing a CD11b- magnetic

  4. Crashworthiness Analysis and Evaluation of Fuselage Section with Sub-floor Composite Sinusoidal Specimens

    Directory of Open Access Journals (Sweden)

    H.L. Mou

    Full Text Available Abstract Crashworthiness is one of the main concerns in civil aviation safety particularly with regard to the increasing ratio of carbon fiber reinforced plastic (CFRP in aircraft primary structures. In order to generate dates for model validations, the mechanical properties of T700/3234 were obtained by material performance tests, and energy-absorbing results were gained by quasi-static crushing tests of composite sinusoidal specimens. The correctness of composite material model and single-layer finite element model of composite sinusoidal specimens were verified based on the simulation results and test results that were in good agreement. A typical civil aircraft fuselage section with composite sinusoidal specimens under cargo floor was suggested. The crashworthiness of finite element model of fuselage section was assessed by simulating the vertical drop test subjected to 7 m/s impact velocity, and the influences of different thickness of sub-floor composite sinusoidal specimens on crashworthiness of fuselage section were also analyzed. The simulation results show that the established finite element model can accurately simulate the crushing process of composite sinusoidal specimens; the failure process of fuselage section is more stable, and the safety of occupants can be effectively improved because of the smaller peak accelerations that was limited to human tolerance, a critical thickness of sub-floor composite sinusoidal specimens can restrict the magnitude of acceleration peaks, which has certain reference values for enhancing crashworthiness capabilities of fuselage section and improving the survivability of passengers.

  5. Subwavelength Localization of Atomic Excitation Using Electromagnetically Induced Transparency

    Directory of Open Access Journals (Sweden)

    J. A. Miles

    2013-09-01

    Full Text Available We report an experiment in which an atomic excitation is localized to a spatial width that is a factor of 8 smaller than the wavelength of the incident light. The experiment utilizes the sensitivity of the dark state of electromagnetically induced transparency (EIT to the intensity of the coupling laser beam. A standing-wave coupling laser with a sinusoidally varying intensity yields tightly confined Raman excitations during the EIT process. The excitations, located near the nodes of the intensity profile, have a width of 100 nm. The experiment is performed using ultracold ^{87}Rb atoms trapped in an optical dipole trap, and atomic localization is achieved with EIT pulses that are approximately 100 ns long. To probe subwavelength atom localization, we have developed a technique that can measure the width of the atomic excitations with nanometer spatial resolution.

  6. Improved single-channel speech separation using sinusoidal modeling

    DEFF Research Database (Denmark)

    Mowlaee, Pejman; Christensen, Mads Græsbøll; Jensen, Søren Holdt

    2010-01-01

    ) and Wiener filter (softmask) approaches, the proposed approach works independently of pitch estimates. Furthermore, it is observed that it can achieve acceptable perceptual speech quality with less cross-talk at different signal-tosignal ratios while bringing down the complexity by replacing STFT...

  7. Sampling system for pulsed signals. Study of the radioactive lifetimes of excited 3{sup 2}P1/2 and 3{sup 2}P3/2 states of Na, excited by a tunable dye laser; Sistema de muestreo para senales pulsadas. Estudio de vidas medias de niveles 3{sup 2} P1/2 y 3{sup 2}P3/2 excitados por un laser de colorantes pulsado

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, P.; Campos, J.

    1979-07-01

    A system for sampling and averaging repetitive signals in the order of nanoseconds is discussed. The system uses as storage memory a multichannel analyzer operating in multi scaling mode. This instrument is employed for the measurement of atomic level lifetimes using a dye laser to excite the atoms and is applied to the study of lifetimes of the 3{sup 2}P1/2 and 3{sup 2}P3/2 states of sodium. (Author) 32 refs.

  8. Generation of medium frequency electrotherapeutic signals

    Science.gov (United States)

    Płaza, Mirosław; Szcześniak, Zbigniew; Dudek, Jolanta

    2017-08-01

    In this paper, generation methods of sinusoidal medium frequency electrotherapeutic signals have been studied. Signals of this type are increasingly used in electrotherapy owing to the development of both physical medicine and engineering sciences. The article presents analysis and comparison of analogue and digital methods of generation therapeutic signals. Analysis presented in the paper attempts to answer the question which technique of medium frequency signal generation can be most broadly applied in electrotherapy methods.

  9. Conversion of Radio-Frequency Pulses to Continuous-Wave Sinusoids by Fast Switching and Narrowband Filtering

    Science.gov (United States)

    2016-09-01

    ARL-TN-0783 ● SEP 2016 US Army Research Laboratory Conversion of Radio -Frequency Pulses to Continuous- Wave Sinusoids by Fast...ARL-TN-0783 ● SEP 2016 US Army Research Laboratory Conversion of Radio -Frequency Pulses to Continuous- Wave Sinusoids by Fast...08/2016 4. TITLE AND SUBTITLE Conversion of Radio -Frequency Pulses to Continuous- Wave Sinusoids by Fast Switching and Narrowband Filtering 5a

  10. Light scattering by sinusoidal surfaces: illumination windows and harmonics in standards.

    Science.gov (United States)

    Marx, E; Lettieri, T R; Vorburger, T V

    1995-03-01

    Sinusoidal surfaces can be used as material standards to help calibrate instruments that measure the angular distribution of the intensity of light scattered by arbitrary surfaces, because the power in the diffraction peaks varies over several orders of magnitude. The calculated power in the higher-order diffraction peaks from sinusoidal surfaces expressed in terms of Bessel functions is much smaller than the values determined from angular distributions that are measured or computed from measured profiles, both of which are determined mainly by the harmonic contents of the profile. The finite size of the illuminated area, represented by an illumination window, gives rise to a background that is much larger than the calculated power in the higher-order peaks. For a rectangular window of a size equal to an even number of periods of the sinusoid, a computation of the power distribution produces minima at or near the location of the diffraction angles for higher-order diffraction angles.

  11. Effects of chopped sinusoidal voltages on the behavior and performance of laying hens

    Energy Technology Data Exchange (ETDEWEB)

    Vidali, G.; Silversides, F.G.; Boily, R. [Laval Univ., Quebec, PQ (Canada). Faculte de Sciences et Genie; Villeneuve, P.; Joncas, R. [Quebec Ministere de l`Agriculture, des Pecheries et de l`Aminentation, Ste-Foy, PQ (Canada)

    1996-04-01

    Studies were conducted to measure the effects of sinusoidal voltages on hens. One hundred and twenty laying hens between 23 and 43 weeks of age were used in these experiments. Normal sinusoidal voltages with constant amplitudes of one to nine volts and pulses with random amplitudes of 3 to 18 volts were applied to the hens. The electrical resistance of hens was also measured to determine their path resistance to electrical currents. No effects on production performance or behavior of laying hens were found. Neither water and feed consumption, nor egg production and quality were affected by the treatments. No behavioral or health problems were observed. 15 refs., 6 tabs., 2 figs.

  12. Rebreathing in the Mapleson A, C and D breathing systems with sinusoidal and exponential flow waveforms.

    Science.gov (United States)

    Cook, L B

    1997-12-01

    The degree of rebreathing in Mapleson A, C and D breathing systems for sinusoidal and exponential flow waveforms is analysed mathematically. The effects of altering the I:E ratio and of introducing an expiratory pause are investigated. The results for sinusoidal waveforms closely resemble those for a square wave. Exponential flow waveforms produce results similar to triangular flow waveforms. The Mapleson A system is always the most efficient. The Mapleson C system is efficient when the I:E ratio is 1:1, becoming less efficient with longer expiration and very inefficient with an expiratory pause. The Mapleson D system becomes efficient when the expiratory pause is long.

  13. Stability of sinusoidal responses of marginally stable bandpass sigma delta modulators

    OpenAIRE

    Ho, Charlotte Yuk-Fan; Ling, Bingo Wing-Kuen; Reiss, Joshua

    2006-01-01

    In this paper, we analyze the stability of the sinusoidal responses of second order interpolative marginally stable bandpass sigma delta modulators (SDMs) with the sum of the numerator and denominator polynomials equal to one and explore new results on the more general second order interpolative marginally stable bandpass SDMs. These results can be further extended to the high order interpolative marginally stable bandpass SDMs.

  14. Comparison between the water activation effects by pulsed and sinusoidal helium plasma jets

    Science.gov (United States)

    Xu, Han; Liu, Dingxin; Xia, Wenjie; Chen, Chen; Wang, Weitao; Liu, Zhijie; Wang, Xiaohua; Kong, Michael G.

    2018-01-01

    Comparisons between pulsed and sinusoidal plasma jets have been extensively reported for the discharge characteristics and gaseous reactive species, but rarely for the aqueous reactive species in water solutions treated by the two types of plasma jets. This motivates us to compare the concentrations of aqueous reactive species induced by a pulsed and a sinusoidal plasma jet, since it is widely reported that these aqueous reactive species play a crucial role in various plasma biomedical applications. Experimental results show that the aqueous H2O2, OH/O2-, and O2-/ONOO- induced by the pulsed plasma jet have higher concentrations, and the proportional difference increases with the discharge power. However, the emission intensities of OH(A) and O(3p5P) are higher for the sinusoidal plasma jet, which may be attributed to its higher gas temperature since more water vapor could participate in the plasma. In addition, the efficiency of bacterial inactivation induced by the pulsed plasma jet is higher than that for the sinusoidal plasma jet, in accordance with the concentration relation of aqueous reactive species for the two types of plasma jets.

  15. The hepatic sinusoid in aging and cirrhosis: effects on hepatic substrate disposition and drug clearance.

    Science.gov (United States)

    Le Couteur, David G; Fraser, Robin; Hilmer, Sarah; Rivory, Laurent P; McLean, Allan J

    2005-01-01

    The fenestrated sinusoidal endothelium ('liver sieve') and space of Disse in the healthy liver do not impede the transfer of most substrates, including drugs and oxygen, from the sinusoidal lumen to the hepatocyte. Plasma components transfer freely in both directions through the endothelial fenestrations and into the space of Disse. The endothelium is attenuated, there is no basement membrane and there is minimum collagen in the space of Disse, thus minimising any barriers to substrate diffusion. Both cirrhosis and aging are associated with marked structural changes in the sinusoidal endothelium and space of Disse that are likely to influence bulk plasma transfer into the space of Disse, and diffusion through the endothelium and space of Disse. These changes, termed capillarisation and pseudocapillarisation in cirrhosis and aging, respectively, impede the transfer of various substrates. Capillarisation is associated with exclusion of albumin, protein-bound drugs and macromolecules from the space of Disse, and the progressive transformation of flow-limited to barrier-limited distribution of some substrates. There is evidence that the sinusoidal changes in cirrhosis and aging contribute to hepatocyte hypoxia, thus providing a mechanism for the apparent differential reduction of oxygen-dependent phase I metabolic pathways in these conditions. Structural change and subsequent dysfunction of the liver sieve warrant consideration as a significant factor in the impairment of overall substrate handling and hepatic drug metabolism in cirrhosis and aging.

  16. A Perceptual Model for Sinusoidal Audio Coding Based on Spectral Integration

    NARCIS (Netherlands)

    Van de Par, S.; Kohlrausch, A.; Heusdens, R.; Jensen, J.; Holdt Jensen, S.

    2005-01-01

    Psychoacoustical models have been used extensively within audio coding applications over the past decades. Recently, parametric coding techniques have been applied to general audio and this has created the need for a psychoacoustical model that is specifically suited for sinusoidal modelling of

  17. A perceptual model for sinusoidal audio coding based on spectral integration

    NARCIS (Netherlands)

    Van de Par, S.; Kohlrauch, A.; Heusdens, R.; Jensen, J.; Jensen, S.H.

    2005-01-01

    Psychoacoustical models have been used extensively within audio coding applications over the past decades. Recently, parametric coding techniques have been applied to general audio and this has created the need for a psychoacoustical model that is specifically suited for sinusoidal modelling of

  18. Liver sinusoidal endothelial cells induce immunosuppressive IL-10-producing Th1 cells via the Notch pathway

    NARCIS (Netherlands)

    Neumann, Katrin; Rudolph, Christine; Neumann, Christian; Janke, Marko; Amsen, Derk; Scheffold, Alexander

    2015-01-01

    Under homeostasis, liver sinusoidal endothelial cells (LSECs) shift intrahepatic T-cell responses towards tolerance. However, the role of LSECs in the regulation of T-cell-induced liver inflammation is less clear. Here, we studied the capacity of LSECs to modulate pro-inflammatory Th1-cell

  19. Stress singularities in a model of a wood disk under sinusoidal pressure

    Science.gov (United States)

    Jay A. Johnson; John C. Hermanson; Steven M. Cramer; Charles Amundson

    2005-01-01

    A thin, solid, circular wood disk, cut from the transverse plane of a tree stem, can be modeled as a cylindrically orthotropic elastic material. It is known that a stress singularity can occur at the center of a cylindrically orthotropic disk subjected to uniform pressure. If a solid cylindrically orthotropic disk is subjected to sinusoidal pressure distributions, then...

  20. Adaptive filtering techniques for gravitational wave interferometric data: Removing long-term sinusoidal disturbances and oscillatory transients

    Science.gov (United States)

    Chassande-Mottin, E.; Dhurandhar, S. V.

    2001-02-01

    It is known by the experience gained from the gravitational wave detector prototypes that the interferometric output signal will be corrupted by a significant amount of non-Gaussian noise, a large part of it being essentially composed of long-term sinusoids with a slowly varying envelope (such as violin resonances in the suspensions, or main power harmonics) and short-term ringdown noise (which may emanate from servo control systems, electronics in a nonlinear state, etc.). Since non-Gaussian noise components make the detection and estimation of the gravitational wave signature more difficult, a denoising algorithm based on adaptive filtering techniques (LMS methods) is proposed to separate and extract them from the stationary and Gaussian background noise. The strength of the method is that it does not require any precise model on the observed data: the signals are distinguished on the basis of their autocorrelation time. We believe that the robustness and simplicity of this method make it useful for data preparation and for the understanding of the first interferometric data. We present the detailed structure of the algorithm and its application to both simulated data and real data from the LIGO 40 m prototype.

  1. Excitation-scanning hyperspectral imaging microscope

    Science.gov (United States)

    Favreau, Peter F.; Hernandez, Clarissa; Heaster, Tiffany; Alvarez, Diego F.; Rich, Thomas C.; Prabhat, Prashant; Leavesley, Silas J.

    2014-01-01

    Abstract. Hyperspectral imaging is a versatile tool that has recently been applied to a variety of biomedical applications, notably live-cell and whole-tissue signaling. Traditional hyperspectral imaging approaches filter the fluorescence emission over a broad wavelength range while exciting at a single band. However, these emission-scanning approaches have shown reduced sensitivity due to light attenuation from spectral filtering. Consequently, emission scanning has limited applicability for time-sensitive studies and photosensitive applications. In this work, we have developed an excitation-scanning hyperspectral imaging microscope that overcomes these limitations by providing high transmission with short acquisition times. This is achieved by filtering the fluorescence excitation rather than the emission. We tested the efficacy of the excitation-scanning microscope in a side-by-side comparison with emission scanning for detection of green fluorescent protein (GFP)-expressing endothelial cells in highly autofluorescent lung tissue. Excitation scanning provided higher signal-to-noise characteristics, as well as shorter acquisition times (300  ms/wavelength band with excitation scanning versus 3  s/wavelength band with emission scanning). Excitation scanning also provided higher delineation of nuclear and cell borders, and increased identification of GFP regions in highly autofluorescent tissue. These results demonstrate excitation scanning has utility in a wide range of time-dependent and photosensitive applications. PMID:24727909

  2. Excited charmed mesons

    International Nuclear Information System (INIS)

    Butler, J.N.; Shukla, S.

    1995-05-01

    The experimental status of excited charmed mesons is reviewed and is compared to theoretical expectations. Six states have been observed and their properties are consistent with those predicted for excited charmed states with orbital angular momentum equal to one

  3. Saturated excitation of Fluorescence to quantify excitation enhancement in aperture antennas

    KAUST Repository

    Aouani, Heykel

    2012-07-23

    Fluorescence spectroscopy is widely used to probe the electromagnetic intensity amplification on optical antennas, yet measuring the excitation intensity amplification is a challenge, as the detected fluorescence signal is an intricate combination of excitation and emission. Here, we describe a novel approach to quantify the electromagnetic amplification in aperture antennas by taking advantage of the intrinsic non linear properties of the fluorescence process. Experimental measurements of the fundamental f and second harmonic 2f amplitudes of the fluorescence signal upon excitation modulation are used to quantify the electromagnetic intensity amplification with plasmonic aperture antennas. © 2012 Optical Society of America.

  4. Search for Excited Leptons at LEP

    CERN Document Server

    Achard, P.; Aguilar-Benitez, M.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio, A.; Alviggi, M.G.; Anderhub, H.; Andreev, Valery P.; Anselmo, F.; Arefev, A.; Azemoon, T.; Aziz, T.; Bagnaia, P.; Bajo, A.; Baksay, G.; Baksay, L.; Baldew, S.V.; Banerjee, S.; Banerjee, Sw.; Barczyk, A.; Barillere, R.; Bartalini, P.; Basile, M.; Batalova, N.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Bellucci, L.; Berbeco, R.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B.L.; Biasini, M.; Biglietti, M.; Biland, A.; Blaising, J.J.; Blyth, S.C.; Bobbink, G.J.; Bohm, A.; Boldizsar, L.; Borgia, B.; Bottai, S.; Bourilkov, D.; Bourquin, M.; Braccini, S.; Branson, J.G.; Brochu, F.; Burger, J.D.; Burger, W.J.; Cai, X.D.; Capell, M.; Cara Romeo, G.; Carlino, G.; Cartacci, A.; Casaus, J.; Cavallari, F.; Cavallo, N.; Cecchi, C.; Cerrada, M.; Chamizo, M.; Chang, Y.H.; Chemarin, M.; Chen, A.; Chen, G.; Chen, G.M.; Chen, H.F.; Chen, H.S.; Chiefari, G.; Cifarelli, L.; Cindolo, F.; Clare, I.; Clare, R.; Coignet, G.; Colino, N.; Costantini, S.; de la Cruz, B.; Cucciarelli, S.; van Dalen, J.A.; de Asmundis, R.; Deglon, P.; Debreczeni, J.; Degre, A.; Dehmelt, K.; Deiters, K.; della Volpe, D.; Delmeire, E.; Denes, P.; DeNotaristefani, F.; De Salvo, A.; Diemoz, M.; Dierckxsens, M.; Dionisi, C.; Dittmar, M.; Doria, A.; Dova, M.T.; Duchesneau, D.; Duda, M.; Echenard, B.; Eline, A.; El Hage, A.; El Mamouni, H.; Engler, A.; Eppling, F.J.; Extermann, P.; Falagan, M.A.; Falciano, S.; Favara, A.; Fay, J.; Fedin, O.; Felcini, M.; Ferguson, T.; Fesefeldt, H.; Fiandrini, E.; Field, J.H.; Filthaut, F.; Fisher, P.H.; Fisher, W.; Fisk, I.; Forconi, G.; Freudenreich, K.; Furetta, C.; Galaktionov, Iouri; Ganguli, S.N.; Garcia-Abia, Pablo; Gataullin, M.; Gentile, S.; Giagu, S.; Gong, Z.F.; Grenier, Gerald Jean; Grimm, O.; Gruenewald, M.W.; Guida, M.; van Gulik, R.; Gupta, V.K.; Gurtu, A.; Gutay, L.J.; Haas, D.; Hakobyan, R.S.; Hansen, J.M.; Hatzifotiadou, D.; Hebbeker, T.; Herve, Alain; Hirschfelder, J.; Hofer, H.; Hohlmann, M.; Holzner, G.; Hou, S.R.; Hu, Y.; Jin, B.N.; Jones, Lawrence W.; de Jong, P.; Josa-Mutuberria, I.; Kafer, D.; Kaur, M.; Kienzle-Focacci, M.N.; Kim, J.K.; Kirkby, Jasper; Kittel, W.; Klimentov, A.; Konig, A.C.; Kopal, M.; Koutsenko, V.; Kraber, M.; Kraemer, R.W.; Kruger, A.; Kunin, A.; Ladron de Guevara, P.; Laktineh, I.; Landi, G.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Le Goff, J.M.; Leiste, R.; Levtchenko, M.; Levtchenko, P.; Li, C.; Likhoded, S.; Lin, C.H.; Lin, W.T.; Linde, F.L.; Lista, L.; Liu, Z.A.; Lohmann, W.; Longo, E.; Lu, Y.S.; Luci, C.; Luminari, L.; Lustermann, W.; Ma, W.G.; Malgeri, L.; Malinin, A.; Mana, C.; Mans, J.; Martin, J.P.; Marzano, F.; Mazumdar, K.; McNeil, R.R.; Mele, S.; Merola, L.; Meschini, M.; Metzger, W.J.; Mihul, A.; Milcent, H.; Mirabelli, G.; Mnich, J.; Mohanty, G.B.; Muanza, G.S.; Muijs, A.J.M.; Musicar, B.; Musy, M.; Nagy, S.; Natale, S.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Nisati, A.; Kluge, Hannelies; Ofierzynski, R.; Organtini, G.; Pal, I.; Palomares, C.; Paolucci, P.; Paramatti, R.; Passaleva, G.; Patricelli, S.; Paul, Thomas Cantzon; Pauluzzi, M.; Paus, C.; Pauss, F.; Pedace, M.; Pensotti, S.; Perret-Gallix, D.; Petersen, B.; Piccolo, D.; Pierella, F.; Pioppi, M.; Piroue, P.A.; Pistolesi, E.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Pothier, J.; Prokofev, D.; Quartieri, J.; Rahal-Callot, G.; Rahaman, Mohammad Azizur; Raics, P.; Raja, N.; Ramelli, R.; Rancoita, P.G.; Ranieri, R.; Raspereza, A.; Razis, P.; Ren, D.; Rescigno, M.; Reucroft, S.; Riemann, S.; Riles, Keith; Roe, B.P.; Romero, L.; Rosca, A.; Rosier-Lees, S.; Roth, Stefan; Rosenbleck, C.; Rubio, J.A.; Ruggiero, G.; Rykaczewski, H.; Sakharov, A.; Saremi, S.; Sarkar, S.; Salicio, J.; Sanchez, E.; Schafer, C.; Schegelsky, V.; Schopper, H.; Schotanus, D.J.; Sciacca, C.; Servoli, L.; Shevchenko, S.; Shivarov, N.; Shoutko, V.; Shumilov, E.; Shvorob, A.; Son, D.; Souga, C.; Spillantini, P.; Steuer, M.; Stickland, D.P.; Stoyanov, B.; Straessner, A.; Sudhakar, K.; Sultanov, G.; Sun, L.Z.; Sushkov, S.; Suter, H.; Swain, J.D.; Szillasi, Z.; Tang, X.W.; Tarjan, P.; Tauscher, L.; Taylor, L.; Tellili, B.; Teyssier, D.; Timmermans, Charles; Ting, Samuel C.C.; Ting, S.M.; Tonwar, S.C.; Toth, J.; Tully, C.; Tung, K.L.; Ulbricht, J.; Valente, E.; Van de Walle, R.T.; Vasquez, R.; Veszpremi, V.; Vesztergombi, G.; Vetlitsky, I.; Vicinanza, D.; Viertel, G.; Villa, S.; Vivargent, M.; Vlachos, S.; Vodopianov, I.; Vogel, H.; Vogt, H.; Vorobev, I.; Vorobyov, A.A.; Wadhwa, M.; Wang, Q.; Wang, X.L.; Wang, Z.M.; Weber, M.; Wienemann, P.; Wilkens, H.; Wynhoff, S.; Xia, L.; Xu, Z.Z.; Yamamoto, J.; Yang, B.Z.; Yang, C.G.; Yang, H.J.; Yang, M.; Yeh, S.C.; Zalite, A.; Zalite, Yu.; Zhang, Z.P.; Zhao, J.; Zhu, G.Y.; Zhu, R.Y.; Zhuang, H.L.; Zichichi, A.; Zimmermann, B.; Zoller, M.

    2003-01-01

    A search for charged and neutral excited leptons is performed in 217 pb-1 of data collected with the L3 detector at LEP at centre-of-mass energies up to 209 GeV. The pair- and single-production mechanisms are investigated and no signals are detected. Combining with L3 results from searches at lower centre-of-mass energies, gives improved limits on the masses and couplings of excited leptons.

  5. The two dynamical states in sinusoidal potentials: An analog simulation experiment

    Science.gov (United States)

    Sawkmie, Ivan Skhem; Mahato, Mangal C.

    2018-04-01

    The phenomenon of stochastic resonance (SR) is usually found to occur theoretically as well as experimentally in bi-stable systems [1]. Recently, it was numerically shown that SR is found to occur in underdamped (friction coefficient γ) sinusoidal potentials also. The occurrence of SR is explained in terms of two competing dynamical states of trajectories as a response to the external periodic drive. We setup an analog simulation experiment similar to the analog simulation work done earlier to study stochastic nonlinear dynamics [2], to verify the existence of the two dynamical states and to investigate the occurrence of SR in sinusoidal potentials obtained earlier [3]. We discuss our experimental setup and the results obtained in detail.

  6. Rapid and efficient clearance of blood-borne virus by liver sinusoidal endothelium.

    Directory of Open Access Journals (Sweden)

    Latha P Ganesan

    2011-09-01

    Full Text Available The liver removes quickly the great bulk of virus circulating in blood, leaving only a small fraction to infect the host, in a manner characteristic of each virus. The scavenger cells of the liver sinusoids are implicated, but the mechanism is entirely unknown. Here we show, borrowing a mouse model of adenovirus clearance, that nearly all infused adenovirus is cleared by the liver sinusoidal endothelial cell (LSEC. Using refined immunofluorescence microscopy techniques for distinguishing macrophages and endothelial cells in fixed liver, and identifying virus by two distinct physicochemical methods, we localized adenovirus 1 minute after infusion mainly to the LSEC (∼90%, finding ∼10% with Kupffer cells (KC and none with hepatocytes. Electron microscopy confirmed our results. In contrast with much prior work claiming the main scavenger to be the KC, our results locate the clearance mechanism to the LSEC and identify this cell as a key site of antiviral activity.

  7. Eddy Current Testing with Giant Magnetoresistance (GMR) Sensors and a Pipe-Encircling Excitation for Evaluation of Corrosion under Insulation.

    Science.gov (United States)

    Bailey, Joseph; Long, Nicholas; Hunze, Arvid

    2017-09-28

    This work investigates an eddy current-based non-destructive testing (NDT) method to characterize corrosion of pipes under thermal insulation, one of the leading failure mechanisms for insulated pipe infrastructure. Artificial defects were machined into the pipe surface to simulate the effect of corrosion wall loss. We show that by using a giant magnetoresistance (GMR) sensor array and a high current (300 A), single sinusoidal low frequency (5-200 Hz) pipe-encircling excitation scheme it is possible to quantify wall loss defects without removing the insulation or weather shield. An analysis of the magnetic field distribution and induced currents was undertaken using the finite element method (FEM) and analytical calculations. Simple algorithms to remove spurious measured field variations not associated with defects were developed and applied. The influence of an aluminium weather shield with discontinuities and dents was ascertained and found to be small for excitation frequency values below 40 Hz. The signal dependence on the defect dimensions was analysed in detail. The excitation frequency at which the maximum field amplitude change occurred increased linearly with the depth of the defect by about 3 Hz/mm defect depth. The change in magnetic field amplitude due to defects for sensors aligned in the azimuthal and radial directions were measured and found to be linearly dependent on the defect volume between 4400-30,800 mm³ with 1.2 × 10 -3 -1.6 × 10 -3 µT/mm³. The results show that our approach is well suited for measuring wall loss defects similar to the defects from corrosion under insulation.

  8. Multi-frequency excitation

    KAUST Repository

    Younis, Mohammad I.

    2016-03-10

    Embodiments of multi-frequency excitation are described. In various embodiments, a natural frequency of a device may be determined. In turn, a first voltage amplitude and first fixed frequency of a first source of excitation can be selected for the device based on the natural frequency. Additionally, a second voltage amplitude of a second source of excitation can be selected for the device, and the first and second sources of excitation can be applied to the device. After applying the first and second sources of excitation, a frequency of the second source of excitation can be swept. Using the methods of multi- frequency excitation described herein, new operating frequencies, operating frequency ranges, resonance frequencies, resonance frequency ranges, and/or resonance responses can be achieved for devices and systems.

  9. Analysis and Implementation of Multiple Bionic Motion Patterns for Caterpillar Robot Driven by Sinusoidal Oscillator

    OpenAIRE

    Yanhe Zhu; Xiaolu Wang; Jizhuang Fan; Sajid Iqbal; Dongyang Bie; Jie Zhao

    2014-01-01

    Articulated caterpillar robot has various locomotion patterns—which make it adaptable to different tasks. Generally, the researchers have realized undulatory (transverse wave) and simple rolling locomotion. But many motion patterns are still unexplored. In this paper, peristaltic locomotion and various additional rolling patterns are achieved by employing sinusoidal oscillator with fixed phase difference as the joint controller. The usefulness of the proposed method is verified using simulati...

  10. Identification of moving sinusoidal wave loads for sensor structural configuration by finite element inverse method

    Science.gov (United States)

    Zhang, B.; Yu, S.

    2018-03-01

    In this paper, a beam structure of composite materials with elastic foundation supports is established as the sensor model, which propagates moving sinusoidal wave loads. The inverse Finite Element Method (iFEM) is applied for reconstructing moving wave loads which are compared with true wave loads. The conclusion shows that iFEM is accurate and robust in the determination of wave propagation. This helps to seek a suitable new wave sensor method.

  11. A Novel Modular Bioreactor to In Vitro Study the Hepatic Sinusoid

    OpenAIRE

    Illa, Xavi; Vila, Sergi; Yeste, Jose; Peralta, Carmen; Gracia-Sancho, Jordi; Villa, Rosa

    2014-01-01

    We describe a unique, versatile bioreactor consisting of two plates and a modified commercial porous membrane suitable for in vitro analysis of the liver sinusoid. The modular bioreactor allows i) excellent control of the cell seeding process; ii) cell culture under controlled shear stress stimulus, and; iii) individual analysis of each cell type upon completion of the experiment. The advantages of the bioreactor detailed here are derived from the modification of a commercial porous membrane ...

  12. Synthesis of Voltages of Multiple Uniform PWM, Generated by Trapezoidal and Sinusoidal Functions

    Directory of Open Access Journals (Sweden)

    A. G. Ctryzhniou

    2013-01-01

    Full Text Available The problem of synthesis and qualitative estimation of the harmonic composition of voltages of multiple uniform PWM pulses generated by trapezoidal and sinusoidal functions is considered. Analytical expressions for PWM pulses parameters ai  and ti have been received and they can be used for program-based generation of multiple uniform PWM, determination of n-harmonic magnitude in pulse-width regulation and AC motor operation simulation.

  13. Volume conductor model of transcutaneous electrical stimulation with kilohertz signals

    Science.gov (United States)

    Medina, Leonel E.; Grill, Warren M.

    2014-12-01

    Objective. Incorporating high-frequency components in transcutaneous electrical stimulation (TES) waveforms may make it possible to stimulate deeper nerve fibers since the impedance of tissue declines with increasing frequency. However, the mechanisms of high-frequency TES remain largely unexplored. We investigated the properties of TES with frequencies beyond those typically used in neural stimulation. Approach. We implemented a multilayer volume conductor model including dispersion and capacitive effects, coupled to a cable model of a nerve fiber. We simulated voltage- and current-controlled transcutaneous stimulation, and quantified the effects of frequency on the distribution of potentials and fiber excitation. We also quantified the effects of a novel transdermal amplitude modulated signal (TAMS) consisting of a non-zero offset sinusoidal carrier modulated by a square-pulse train. Main results. The model revealed that high-frequency signals generated larger potentials at depth than did low frequencies, but this did not translate into lower stimulation thresholds. Both TAMS and conventional rectangular pulses activated more superficial fibers in addition to the deeper, target fibers, and at no frequency did we observe an inversion of the strength-distance relationship. Current regulated stimulation was more strongly influenced by fiber depth, whereas voltage regulated stimulation was more strongly influenced by skin thickness. Finally, our model reproduced the threshold-frequency relationship of experimentally measured motor thresholds. Significance. The model may be used for prediction of motor thresholds in TES, and contributes to the understanding of high-frequency TES.

  14. Evaluation of Steel Shear Walls Behavior with Sinusoidal and Trapezoidal Corrugated Plates

    Directory of Open Access Journals (Sweden)

    Emad Hosseinpour

    2015-01-01

    Full Text Available Reinforcement of structures aims to control the input energy of unnatural and natural forces. In the past four decades, steel shear walls are utilized in huge constructions in some seismic countries such as Japan, United States, and Canada to lessen the risk of destructive forces. The steel shear walls are divided into two types: unstiffened and stiffened. In the former, a series of plates (sinusoidal and trapezoidal corrugated with light thickness are used that have the postbuckling field property under overall buckling. In the latter, steel profile belt series are employed as stiffeners with different arrangement: horizontal, vertical, or diagonal in one side or both sides of wall. In the unstiffened walls, increasing the thickness causes an increase in the wall capacity under large forces in tall structures. In the stiffened walls, joining the stiffeners to the wall is costly and time consuming. The ANSYS software was used to analyze the different models of unstiffened one-story steel walls with sinusoidal and trapezoidal corrugated plates under lateral load. The obtained results demonstrated that, in the walls with the same dimensions, the trapezoidal corrugated plates showed higher ductility and ultimate bearing compared to the sinusoidal corrugated plates.

  15. Analysis of Passive Mixing in a Serpentine Microchannel with Sinusoidal Side Walls

    Directory of Open Access Journals (Sweden)

    Muhammad Usman Javaid

    2017-12-01

    Full Text Available Sample mixing is difficult in microfluidic devices because of laminar flow. Micromixers are designed to ensure the optimal use of miniaturized devices. The present study aims to design a chaotic-advection-based passive micromixer with enhanced mixing efficiency. A serpentine-shaped microchannel with sinusoidal side walls was designed, and three cases, with amplitude to wavelength (A/λ ratios of 0.1, 0.15, and 0.2 were investigated. Numerical simulations were conducted using the Navier–Stokes equations, to determine the flow field. The flow was then coupled with the convection–diffusion equation to obtain the species concentration distribution. The mixing performance of sinusoidal walled channels was compared with that of a simple serpentine channel for Reynolds numbers ranging from 0.1 to 50. Secondary flows were observed at high Reynolds numbers that mixed the fluid streams. These flows were dominant in the proposed sinusoidal walled channels, thereby showing better mixing performance than the simple serpentine channel at similar or less mixing cost. Higher mixing efficiency was obtained by increasing the A/λ ratio.

  16. Frequency response evaluation of radial artery catheter-manometer systems: sinusoidal frequency analysis versus flush method.

    Science.gov (United States)

    Schwid, H A

    1988-07-01

    It is well recognized that catheter-manometer systems significantly distort direct radial artery pressure measurements. Sinusoidal frequency analysis and the flush method of assessing the degree of distortion caused by the monitoring system were compared to determine whether these two methods agree in the estimation of natural frequency and damping coefficient. The frequency response of 30 radial artery catheter-manometer systems used for intensive-care unit patients was measured by the flush method and sinusoidal frequency analysis. The monitoring system consisted of a 20-gauge cannula, 150-cm pressure tubing, two plastic stopcocks, a continuous infusion device with fast flush valve, an American Edwards dome, a Hewlett-Packard quartz transducer, and a Hewlett-Packard blood pressure amplifier. Sinusoidal frequency analysis demonstrated second-order underdamped response for all 30 catheter-manometer systems. No secondary resonance peaks were observed up to a frequency of 200 Hz. The measured frequency response demonstrated that the average catheter-manometer system in use in our intensive care unit would cause significant distortion of the radial artery pressure, with the mean natural frequency (fn) of 14.7 +/- 3.7 Hz and the mean damping coefficient (zeta) of 0.24 +/- 0.07. Although the 30 monitoring systems had identical configurations and visible bubbles were carefully removed, a wide range of frequency responses was found (fn = 10.2 to 25.3; zeta = 0.15 to 0.44).(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Intravascular Immune Surveillance by CXCR6+ NKT Cells Patrolling Liver Sinusoids

    Directory of Open Access Journals (Sweden)

    Geissmann Frederic

    2005-01-01

    Full Text Available We examined the in vivo behavior of liver natural killer T cells (NKT cells by intravital fluorescence microscopic imaging of mice in which a green fluorescent protein cDNA was used to replace the gene encoding the chemokine receptor CXCR6. NKT cells, which account for most CXCR6+ cells in liver, were found to crawl within hepatic sinusoids at 10-20 µm/min and to stop upon T cell antigen receptor activation. CXCR6-deficient mice exhibited a selective and severe reduction of CD1d-reactive NKT cells in the liver and decreased susceptibility to T-cell-dependent hepatitis. CXCL16, the cell surface ligand for CXCR6, is expressed on sinusoidal endothelial cells, and CXCR6 deficiency resulted in reduced survival, but not in altered speed or pattern of patrolling of NKT cells. Thus, NKT cells patrol liver sinusoids to provide intravascular immune surveillance, and CXCR6 contributes to liver-based immune responses by regulating their abundance.

  18. A model with nonzero rise time for AE signals

    Indian Academy of Sciences (India)

    Acoustic emission (AE) signals are conventionally modelled as damped or decaying sinusoidal functions. A major drawback of this model is its negligible or zero rise time. This paper proposes an alternative model, which provides for the rising part of the signal without sacrificing the analytical tractability and simplicity of the ...

  19. Single-carrier sinusoidal PWM-equivalent selective harmonic elimination for a five-level voltage source converter

    Energy Technology Data Exchange (ETDEWEB)

    Dahidah, Mohamed S.A. [School of Electrical and Electronic Engineering, The University of Nottingham, Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor (Malaysia); Agelidis, Vassilios G. [School of Electrical and Information Engineering, The University of Sydney, NSW (Australia)

    2008-11-15

    The paper presents a new variation of selective harmonic elimination pulse-width modulation (SHE-PWM) technique suitable for a high-power five-level converter used in constant frequency utility applications. The governing system of equations associated with the elimination of specific harmonics is defined based on an equal number of switching transitions when compared against the single-carrier sinusoidal PWM (SC-SPWM) technique. For this paper, it is assumed that the modulating signal (triangular carrier) of the equivalent SC-SPWM method has twenty per unit frequency. The switching transitions for every quarter period are therefore distributed between the converter levels according to the modulation index of SC-SPWM. It is confirmed that the proposed technique offers significantly higher converter bandwidth and higher dc bus utilization for the same switching transitions. Furthermore, the proposed SHE-PWM offers better harmonic performance compared to its SC-SPWM counterpart. Selected solutions for the switching transitions are presented and verified experimentally in order to confirm the effectiveness of the proposed technique. (author)

  20. a simple a simple excitation control excitation control excitation

    African Journals Online (AJOL)

    eobe

    produce the primary dc fluxes are usually placed on the rotor because it has to (in most cases) sustain only a small fraction of the armature current. In situations ... concentrated on the var control of a synchronous motor and the study was extended to over-excitation schemes for power factor control of power lines to save.

  1. Study of resonant magnet exciting system for the 3 GeV proton synchrotron

    Energy Technology Data Exchange (ETDEWEB)

    Koseki, Shoichiro; Zhang, Fengqing; Watanabe, Yasuhiro; Tani, Norio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Adachi, Toshikazu; Someya, Hirohiko [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan)

    2001-07-01

    Exciting system for magnets of the 3 GeV Proton synchrotron is under consideration. A resonant exciting system is studied, and two type of power supply are compared. One is a parallel supply that is used generally. Another is a modified series supply. Either of them uses IGBT sinusoidal converters. Capacity of the power converter of the series supply for bending magnets becomes 28.8 MVAp. This is lager more than twice compared with the parallel supply. In the other hand, the series supply has good control performance and flexibility. More study is necessary to decide finally. (author)

  2. Large-signal characterization of DDR silicon IMPATTs operating in millimeter-wave and terahertz regime

    International Nuclear Information System (INIS)

    Acharyya, Aritra; Banerjee, J. P.; Chakraborty, Jit; Das, Kausik; Datta, Subir; De, Pritam; Banerjee, Suranjana

    2013-01-01

    The authors have carried out the large-signal characterization of silicon-based double-drift region (DDR) impact avalanche transit time (IMPATT) devices designed to operate up to 0.5 THz using a large-signal simulation method developed by the authors based on non-sinusoidal voltage excitation. The effect of band-to-band tunneling as well as parasitic series resistance on the large-signal properties of DDR Si IMPATTs have also been studied at different mm-wave and THz frequencies. Large-signal simulation results show that DDR Si IMPATT is capable of delivering peak RF power of 633.69 mW with 7.95% conversion efficiency at 94 GHz for 50% voltage modulation, whereas peak RF power output and efficiency fall to 81.08 mW and 2.01% respectively at 0.5 THz for same voltage modulation. The simulation results are compared with the experimental results and are found to be in close agreement. (semiconductor devices)

  3. Large-signal characterization of DDR silicon IMPATTs operating in millimeter-wave and terahertz regime

    Science.gov (United States)

    Acharyya, Aritra; Chakraborty, Jit; Das, Kausik; Datta, Subir; De, Pritam; Banerjee, Suranjana; Banerjee, J. P.

    2013-10-01

    The authors have carried out the large-signal characterization of silicon-based double-drift region (DDR) impact avalanche transit time (IMPATT) devices designed to operate up to 0.5 THz using a large-signal simulation method developed by the authors based on non-sinusoidal voltage excitation. The effect of band-to-band tunneling as well as parasitic series resistance on the large-signal properties of DDR Si IMPATTs have also been studied at different mm-wave and THz frequencies. Large-signal simulation results show that DDR Si IMPATT is capable of delivering peak RF power of 633.69 mW with 7.95% conversion efficiency at 94 GHz for 50% voltage modulation, whereas peak RF power output and efficiency fall to 81.08 mW and 2.01% respectively at 0.5 THz for same voltage modulation. The simulation results are compared with the experimental results and are found to be in close agreement.

  4. Excited states v.6

    CERN Document Server

    Lim, Edward C

    1982-01-01

    Excited States, Volume 6 is a collection of papers that discusses the excited states of molecules. The first paper discusses the linear polyene electronic structure and potential surfaces, considering both the theoretical and experimental approaches in such electronic states. This paper also reviews the theory of electronic structure and cites some experimental techniques on polyene excitations, polyene spectroscopic phenomenology, and those involving higher states of polyenes and their triplet states. Examples of these experimental studies of excited states involve the high-resolution one-pho

  5. Excited states 2

    CERN Document Server

    Lim, Edward C

    2013-01-01

    Excited States, Volume 2 is a collection of papers that deals with molecules in the excited states. The book describes the geometries of molecules in the excited electronic states. One paper describes the geometries of a diatomic molecule and of polyatomic molecules; it also discusses the determination of the many excited state geometries of molecules with two, three, or four atoms by techniques similar to diatomic spectroscopy. Another paper introduces an ordered theory related to excitons in pure and mixed molecular crystals. This paper also presents some experimental data such as those invo

  6. Impact Testing and Simulation of a Sinusoid Foam Sandwich Energy Absorber

    Science.gov (United States)

    Jackson, Karen E.; Fasanella, Edwin L; Littell, Justin D.

    2015-01-01

    A sinusoidal-shaped foam sandwich energy absorber was developed and evaluated at NASA Langley Research Center through multi-level testing and simulation performed under the Transport Rotorcraft Airframe Crash Testbed (TRACT) research project. The energy absorber, designated the "sinusoid," consisted of hybrid carbon- Kevlar® plain weave fabric face sheets, two layers for each face sheet oriented at +/-45deg with respect to the vertical or crush direction, and a closed-cell ELFOAM(TradeMark) P200 polyisocyanurate (2.0-lb/ft3) foam core. The design goal for the energy absorber was to achieve an average floor-level acceleration of between 25- and 40-g during the full-scale crash test of a retrofitted CH-46E helicopter airframe, designated TRACT 2. Variations in the design were assessed through quasi-static and dynamic crush testing of component specimens. Once the design was finalized, a 5-ft-long subfloor beam was fabricated and retrofitted into a barrel section of a CH-46E helicopter. A vertical drop test of the barrel section was conducted onto concrete to evaluate the performance of the energy absorber prior to retrofit into TRACT 2. Finite element models were developed of all test articles and simulations were performed using LSDYNA ®, a commercial nonlinear explicit transient dynamic finite element code. Test analysis results are presented for the sinusoid foam sandwich energy absorber as comparisons of load-displacement and acceleration-time-history responses, as well as predicted and experimental structural deformations and progressive damage for each evaluation level (component testing through barrel section drop testing).

  7. Unique cell type-specific junctional complexes in vascular endothelium of human and rat liver sinusoids.

    Directory of Open Access Journals (Sweden)

    Cyrill Géraud

    Full Text Available Liver sinusoidal endothelium is strategically positioned to control access of fluids, macromolecules and cells to the liver parenchyma and to serve clearance functions upstream of the hepatocytes. While clearance of macromolecular debris from the peripheral blood is performed by liver sinusoidal endothelial cells (LSECs using a delicate endocytic receptor system featuring stabilin-1 and -2, the mannose receptor and CD32b, vascular permeability and cell trafficking are controlled by transcellular pores, i.e. the fenestrae, and by intercellular junctional complexes. In contrast to blood vascular and lymphatic endothelial cells in other organs, the junctional complexes of LSECs have not yet been consistently characterized in molecular terms. In a comprehensive analysis, we here show that LSECs express the typical proteins found in endothelial adherens junctions (AJ, i.e. VE-cadherin as well as α-, β-, p120-catenin and plakoglobin. Tight junction (TJ transmembrane proteins typical of endothelial cells, i.e. claudin-5 and occludin, were not expressed by rat LSECs while heterogenous immunreactivity for claudin-5 was detected in human LSECs. In contrast, junctional molecules preferentially associating with TJ such as JAM-A, B and C and zonula occludens proteins ZO-1 and ZO-2 were readily detected in LSECs. Remarkably, among the JAMs JAM-C was considerably over-expressed in LSECs as compared to lung microvascular endothelial cells. In conclusion, we show here that LSECs form a special kind of mixed-type intercellular junctions characterized by co-occurrence of endothelial AJ proteins, and of ZO-1 and -2, and JAMs. The distinct molecular architecture of the intercellular junctional complexes of LSECs corroborates previous ultrastructural findings and provides the molecular basis for further analyses of the endothelial barrier function of liver sinusoids under pathologic conditions ranging from hepatic inflammation to formation of liver metastasis.

  8. 1D experiments with multiply selective excitation

    Indian Academy of Sciences (India)

    Administrator

    2.1 Shaped pulse modulation. To achieve tri-selective excitation, the transmitter frequency (νT) may be positioned at the average of any two of the three chemical shifts in question, denoted by νA, νB, νC, here, νA corresponds to the lowest frequency signal, the next higher frequency signal being at νB the highest frequency ...

  9. Generation of hyperchaos from the Chen-Lee system via sinusoidal perturbation

    Energy Technology Data Exchange (ETDEWEB)

    Tam, L.M. [Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Av. Padre Thomas Pereira S.J., Taipa, Macau (China)], E-mail: fstlmt@umac.mo; Chen, J.H. [Department of Mechanical Engineering, Chung Hua University, Hsinchu, Taiwan (China); Chen, H.K. [Department of Mechanical Engineering, Hsiuping Institute of Technology, Taichung, Taiwan (China); Wai Meng Si Tou [Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Av. Padre Thomas Pereira S.J., Taipa, Macau (China)

    2008-11-15

    A system with more than one positive Lyapunov exponent can be classified as a hyperchaotic system. In this study, a sinusoidal perturbation was designed for generating hyperchaos from the Chen-Lee chaotic system. The hyperchaos was identified by the existence of two positive Lyapunov exponents and bifurcation diagrams. The system is hyperchaotic in several different regions of the parameters c, {epsilon}, and {omega}. It was found that this method not only can enhance or suppress chaotic behavior, but also induces chaos in non-chaotic parameter ranges. In addition, two interesting dynamical behaviors, Hopf bifurcation and intermittency, were also found in this study.

  10. Analysis and Implementation of Multiple Bionic Motion Patterns for Caterpillar Robot Driven by Sinusoidal Oscillator

    Directory of Open Access Journals (Sweden)

    Yanhe Zhu

    2014-05-01

    Full Text Available Articulated caterpillar robot has various locomotion patterns—which make it adaptable to different tasks. Generally, the researchers have realized undulatory (transverse wave and simple rolling locomotion. But many motion patterns are still unexplored. In this paper, peristaltic locomotion and various additional rolling patterns are achieved by employing sinusoidal oscillator with fixed phase difference as the joint controller. The usefulness of the proposed method is verified using simulation and experiment. The design parameters for different locomotion patterns have been calculated that they can be replicated in similar robots immediately.

  11. A Statistical and Spectral Model for Representing Noisy Sounds with Short-Time Sinusoids

    Directory of Open Access Journals (Sweden)

    Myriam Desainte-Catherine

    2005-07-01

    Full Text Available We propose an original model for noise analysis, transformation, and synthesis: the CNSS model. Noisy sounds are represented with short-time sinusoids whose frequencies and phases are random variables. This spectral and statistical model represents information about the spectral density of frequencies. This perceptually relevant property is modeled by three mathematical parameters that define the distribution of the frequencies. This model also represents the spectral envelope. The mathematical parameters are defined and the analysis algorithms to extract these parameters from sounds are introduced. Then algorithms for generating sounds from the parameters of the model are presented. Applications of this model include tools for composers, psychoacoustic experiments, and pedagogy.

  12. Exact solution of unsteady flow generated by sinusoidal pressure gradient in a capillary tube

    Directory of Open Access Journals (Sweden)

    M. Abdulhameed

    2015-12-01

    Full Text Available In this paper, the mathematical modeling of unsteady second grade fluid in a capillary tube with sinusoidal pressure gradient is developed with non-homogenous boundary conditions. Exact analytical solutions for the velocity profiles have been obtained in explicit forms. These solutions are written as the sum of the steady and transient solutions for small and large times. For growing times, the starting solution reduces to the well-known periodic solution that coincides with the corresponding solution of a Newtonian fluid. Graphs representing the solutions are discussed.

  13. Investigation of phase error correction for digital sinusoidal phase-shifting fringe projection profilometry

    Science.gov (United States)

    Ma, S.; Quan, C.; Zhu, R.; Tay, C. J.

    2012-08-01

    Digital sinusoidal phase-shifting fringe projection profilometry (DSPFPP) is a powerful tool to reconstruct three-dimensional (3D) surface of diffuse objects. However, a highly accurate profile is often hindered by nonlinear response, color crosstalk and imbalance of a pair of digital projector and CCD/CMOS camera. In this paper, several phase error correction methods, such as Look-Up-Table (LUT) compensation, intensity correction, gamma correction, LUT-based hybrid method and blind phase error suppression for gray and color-encoded DSPFPP are described. Experimental results are also demonstrated to evaluate the effectiveness of each method.

  14. OTRA based second and third order sinusoidal oscillators and their phase noise performance

    Science.gov (United States)

    Komanapalli, Gurumurthy; Pandey, Neeta; Pandey, Rajeshwari

    2017-07-01

    In this paper operational transresistance amplifier (OTRA) based second and third order sinusoidal oscillators are proposed. The proposed second order oscillator is designed using single OTRA based Sallen Key low pass filter structure and third order oscillator is obtained by cascading three low pass filters and placing in a loop. The non-ideality and phase noise analyses of the circuits are also presented with necessary mathematical formulations. Workability of the proposed oscillators are verified through PSPICE simulations using 0.18µm AGILENT CMOS process parameters. The total harmonic distortion (THD) for proposed second order and third order oscillators are found as 3.27% and 0.631% respectively.

  15. Theory of sinusoidal modulation of the resonant neutron scattering in high-temperature superconductors

    International Nuclear Information System (INIS)

    Li Tao

    2001-01-01

    A model with interlayer pairing is proposed to explain the sinusoidal modulation of the resonant neutron scattering in high-temperature superconductors. It is found that the interlayer pairing has s-wave symmetry in the CuO 2 plane and has comparable magnitude with the d-wave intralayer pairing. It is also found that the interlayer pairing mainly affects momentum close to the hot spots on the Fermi surface while its effect on the gap nodes is negligible. It is pointed out that these characteristics of the interlayer pairing can be understood in a model in which the superconducting pairing originates from the exchange of the antiferromagnetic spin fluctuation

  16. Application of Lattice-Boltzmann method and analysis of fluid flow between two sinusoidal plates

    Directory of Open Access Journals (Sweden)

    Marković Jelena Đ.

    2010-01-01

    Full Text Available This paper is concerned with numerical study of fluid flow through a pair of corrugated platest. The aim was to observe and understand the behavior of the flow and vortex formation through channels where the fluid is subjected to a periodic increase and decrease in cross-section area. The plates modeled for the study had sinusoidal profiles. A pair of plates with 180° phase shift was simulated in two-dimensional spaces. The Reynolds number was a function of the average plate spacing (Havg and the laminar flow velocity and it was in the range between 200 and 1000.

  17. BPSK Demodulation Using Digital Signal Processing

    Science.gov (United States)

    Garcia, Thomas R.

    1996-01-01

    A digital communications signal is a sinusoidal waveform that is modified by a binary (digital) information signal. The sinusoidal waveform is called the carrier. The carrier may be modified in amplitude, frequency, phase, or a combination of these. In this project a binary phase shift keyed (BPSK) signal is the communication signal. In a BPSK signal the phase of the carrier is set to one of two states, 180 degrees apart, by a binary (i.e., 1 or 0) information signal. A digital signal is a sampled version of a "real world" time continuous signal. The digital signal is generated by sampling the continuous signal at discrete points in time. The rate at which the signal is sampled is called the sampling rate (f(s)). The device that performs this operation is called an analog-to-digital (A/D) converter or a digitizer. The digital signal is composed of the sequence of individual values of the sampled BPSK signal. Digital signal processing (DSP) is the modification of the digital signal by mathematical operations. A device that performs this processing is called a digital signal processor. After processing, the digital signal may then be converted back to an analog signal using a digital-to-analog (D/A) converter. The goal of this project is to develop a system that will recover the digital information from a BPSK signal using DSP techniques. The project is broken down into the following steps: (1) Development of the algorithms required to demodulate the BPSK signal; (2) Simulation of the system; and (3) Implementation a BPSK receiver using digital signal processing hardware.

  18. Measurement of Non-Linear Internal Damping in Metals: Processing of Decay Signals in a Uniaxial Stress Field

    Science.gov (United States)

    Audenino, A. L.; Calderale, P. M.

    1996-12-01

    The specific damping capacity of metallic materials is not linear and depends upon temperature, strain and strain rate. To evaluate the strain influence on material damping, homogeneous strain fields are recommended; these homogenous fields generally are not realized in damping measurement. In this paper the development of an automated experimental procedure is presented; the procedure is based on an improved method able to evaluate the material damping by sinusoidally exciting the specimen in uniaxal traction or compression with a frequency from 60 to 300 Hz. The test machine is a high frequency Amsler vibrofore and the experimental method is based on the acquisition of the decay signal when the machine excitation force has been removed. Signals are acquired by means of an A/D board installed in a personal computer; dedicated software has been created which performs complete analysis and directly provides graphic results. The method can discriminate between material damping and damping of the machine and fixtures. The resulting curves of the loss factor as a function of strain amplitude for three steels and two cast irons are presented.

  19. Excited states 4

    CERN Document Server

    Lim, Edward C

    2013-01-01

    Excited States, Volume 4 is a collection of papers that deals with the excited states of molecular activity. One paper investigates the resonance Raman spectroscopy as the key to vibrational-electronic coupling. This paper reviews the basic theory of Raman scattering; it also explains the derivation of the Raman spectra, excitation profiles, and depolarization ratios for simple resonance systems. Another paper reviews the magnetic properties of triplet states, including the zero-field resonance techniques, the high-field experiments, and the spin Hamiltonian. This paper focuses on the magnetic

  20. The Relationship between Fenestrations, Sieve Plates and Rafts in Liver Sinusoidal Endothelial Cells

    Science.gov (United States)

    McNerney, Gregory P.; Owen, Dylan M.; Zencak, Dusan; Zykova, Svetlana N.; Crane, Harry; Huser, Thomas; Quinn, Ronald J.; Smedsrød, Bård; Le Couteur, David G.; Cogger, Victoria C.

    2012-01-01

    Fenestrations are transcellular pores in endothelial cells that facilitate transfer of substrates between blood and the extravascular compartment. In order to understand the regulation and formation of fenestrations, the relationship between membrane rafts and fenestrations was investigated in liver sinusoidal endothelial cells where fenestrations are grouped into sieve plates. Three dimensional structured illumination microscopy, scanning electron microscopy, internal reflectance fluorescence microscopy and two-photon fluorescence microscopy were used to study liver sinusoidal endothelial cells isolated from mice. There was an inverse distribution between sieve plates and membrane rafts visualized by structured illumination microscopy and the fluorescent raft stain, Bodipy FL C5 ganglioside GM1. 7-ketocholesterol and/or cytochalasin D increased both fenestrations and lipid-disordered membrane, while Triton X-100 decreased both fenestrations and lipid-disordered membrane. The effects of cytochalasin D on fenestrations were abrogated by co-administration of Triton X-100, suggesting that actin disruption increases fenestrations by its effects on membrane rafts. Vascular endothelial growth factor (VEGF) depleted lipid-ordered membrane and increased fenestrations. The results are consistent with a sieve-raft interaction, where fenestrations form in non-raft lipid-disordered regions of endothelial cells once the membrane-stabilizing effects of actin cytoskeleton and membrane rafts are diminished. PMID:23029409

  1. Biliary obstruction dissipates bioelectric sinusoidal-canalicular barrier without altering taurocholate uptake

    International Nuclear Information System (INIS)

    Cotting, J.; Zysset, T.; Reichen, J.

    1989-01-01

    To study immediate events during extrahepatic cholestasis, we investigated the effect of short-term biliary obstruction on the bioelectrical sinusoidal-canalicular barrier in the rat using molecular weight-matched uncharged and negatively charged inert solute pairs. The bioelectrical barrier averaged -22 +/- 5 and -18 +/- 4 mV (NS) using the pair carboxy-/methoxyinulin and ferrocyanide/sucrose, respectively. After a 20-min biliary obstruction both decreased by 61 and 11%, respectively, but only the large molecular weight pair (the inulins) returned to base line after release of the obstruction. Inert solute clearances were increased after short biliary obstruction depending on molecular size and negative charge (ferrocyanide greater than sucrose greater than carboxyinulin greater than inulin), suggesting that both permeability and bioelectrical barriers were affected by obstruction. The hepatic extraction in vivo of a passively transported drug not excreted into bile (D-propranolol) was not affected by obstruction, whereas that of an actively transported drug (glycocholate) decreased from 66 +/- 8 to 41 +/- 20% during biliary obstruction (P less than 0.01). Unidirectional transfer of glycocholate was not affected by short-term biliary obstruction in the situ perfused rat liver; however, 2 min after [14C]glycocholate administration, increased return was observed in hepatic venous effluent in obstructed animals. Our findings demonstrate a loss of the bioelectrical barrier immediately after short-term biliary obstruction. Decreased hepatic extraction in the view of unaltered sinusoidal uptake demonstrates regurgitation of bile into blood during short-term biliary obstruction

  2. A novel modular bioreactor to in vitro study the hepatic sinusoid.

    Directory of Open Access Journals (Sweden)

    Xavi Illa

    Full Text Available We describe a unique, versatile bioreactor consisting of two plates and a modified commercial porous membrane suitable for in vitro analysis of the liver sinusoid. The modular bioreactor allows i excellent control of the cell seeding process; ii cell culture under controlled shear stress stimulus, and; iii individual analysis of each cell type upon completion of the experiment. The advantages of the bioreactor detailed here are derived from the modification of a commercial porous membrane with an elastomeric wall specifically moulded in order to define the cell culture area, to act as a gasket that will fit into the bioreactor, and to provide improved mechanical robustness. The device presented herein has been designed to simulate the in vivo organization of a liver sinusoid and tested by co-culturing endothelial cells (EC and hepatic stellate cells (HSC. The results show both an optimal morphology of the endothelial cells as well as an improvement in the phenotype of stellate cells, most probably due to paracrine factors released from endothelial cells. This device is proposed as a versatile, easy-to-use co-culture system that can be applied to biomedical research of vascular systems, including the liver.

  3. CFD study on NACA 4415 airfoil implementing spherical and sinusoidal Tubercle Leading Edge.

    Directory of Open Access Journals (Sweden)

    S M A Aftab

    Full Text Available The Humpback whale tubercles have been studied for more than a decade. Tubercle Leading Edge (TLE effectively reduces the separation bubble size and helps in delaying stall. They are very effective in case of low Reynolds number flows. The current Computational Fluid Dynamics (CFD study is on NACA 4415 airfoil, at a Reynolds number 120,000. Two TLE shapes are tested on NACA 4415 airfoil. The tubercle designs implemented on the airfoil are sinusoidal and spherical. A parametric study is also carried out considering three amplitudes (0.025c, 0.05c and 0.075c, the wavelength (0.25c is fixed. Structured mesh is utilized to generate grid and Transition SST turbulence model is used to capture the flow physics. Results clearly show spherical tubercles outperform sinusoidal tubercles. Furthermore experimental study considering spherical TLE is carried out at Reynolds number 200,000. The experimental results show that spherical TLE improve performance compared to clean airfoil.

  4. Aerosol absorption measurement with a sinusoidal phase modulating fiber optic photo thermal interferometer

    Science.gov (United States)

    Li, Shuwang; Shao, Shiyong; Mei, Haiping; Rao, Ruizhong

    2016-10-01

    Aerosol light absorption plays an important role in the earth's atmosphere direct and semi-direct radiate forcing, simultaneously, it also has a huge influence on the visibility impairment and laser engineering application. Although various methods have been developed for measuring aerosol light absorption, huge challenge still remains in precision, accuracy and temporal resolution. The main reason is that, as a part of aerosol light extinction, aerosol light absorption always generates synchronously with aerosol light scattering, and unfortunately aerosol light scattering is much stronger in most cases. Here, a novel photo-thermal interferometry is proposed only for aerosol absorption measurement without disturbance from aerosol scattering. The photo-thermal interferometry consists of a sinusoidal phase-modulating single mode fiber-optic interferometer. The thermal dissipation, caused by aerosol energy from photo-thermal conversion when irritated by pump laser through interferometer, is detected. This approach is completely insensitive to aerosol scattering, and the single mode fiber-optic interferometer is compact, low-cost and insensitive to the polarization shading. The theory of this technique is illustrated, followed by the basic structure of the sinusoidal phase-modulating fiber-optic interferometer and demodulation algorithms. Qualitative and quantitative analysis results show that the new photo-thermal interference is a potential approach for aerosol absorption detection and environmental pollution detection.

  5. Scavenger receptor-mediated endocytosis by sinusoidal cells in rat bone marrow

    International Nuclear Information System (INIS)

    Geoffroy, J.S.

    1987-01-01

    Endocytosis of serum albumin by sinusoidal endothelial cells in rat bone marrow was investigated initially at the ultrastructural level with subsequent biochemical investigation of the specificity mediating this event. Bovine serum albumin adsorbed to 20nm colloidal gold particles (AuBSA) was chosen as the electron microscopic probe. Morphological data strongly suggested that a receptor was involved in uptake of AuBSA. Confirmation of receptor involvement in the uptake of AuBSA by marrow sinusoidal endothelial cells was achieved utilizing an in situ isolated hind limb perfusion protocol in conjunction with unlabeled, radiolabeled, and radio-/colloidal gold labeled probes. The major findings of competition and saturation experiments were: (1) endocytosis of AuBSA was mediated by a receptor for modified/treated serum albumin; (2) endocytosis of formaldehyde-treated serum albumin was mediated by a binding site which may be the same or closely related to the site responsible for the uptake of AuBSA; and (3) endocytosis of native untreated albumin was not mediated by receptor and probably represents fluid-phase pinocitosis

  6. A Comparison Study of Sinusoidal PWM and Space Vector PWM Techniques for Voltage Source Inverter

    Directory of Open Access Journals (Sweden)

    Ömer Türksoy

    2017-06-01

    Full Text Available In this paper, the methods used to control voltage source inverters which have been intensively investigated in recent years are compared. Although the most efficient result is obtained with the least number of switching elements in the inverter topologies, the method used in the switching is at least as effective as the topology. Besides, the selected switching method to control the inverter will play an effective role in suppressing harmonic components while producing the ideal output voltage. There are many derivatives of pulse width modulation techniques that are commonly used to control voltage source inverters. Some of widespread methods are sinusoidal pulse width modulation and space vector pulse width modulation techniques. These modulation techniques used for generating variable frequency and amplitude output voltage in voltage source inverters, have been simulated by using MATLAB/SIMULINK. And, the total harmonic distortions of the output voltages are compared. As a result of simulation studies, sinusoidal pulse width modulation has been found to have more total harmonic distortion in output voltages of voltage source inverters in the simulation. Space vector pulse width modulation has been shown to produce a more efficient output voltage with less total harmonic distortion.

  7. On Emulation of Flueric Devices in Excitable Chemical Medium.

    Directory of Open Access Journals (Sweden)

    Andrew Adamatzky

    Full Text Available Flueric devices are fluidic devices without moving parts. Fluidic devices use fluid as a medium for information transfer and computation. A Belousov-Zhabotinsky (BZ medium is a thin-layer spatially extended excitable chemical medium which exhibits travelling excitation wave-fronts. The excitation wave-fronts transfer information. Flueric devices compute via jets interaction. BZ devices compute via excitation wave-fronts interaction. In numerical model of BZ medium we show that functions of key flueric devices are implemented in the excitable chemical system: signal generator, and, xor, not and nor Boolean gates, delay elements, diodes and sensors. Flueric devices have been widely used in industry since late 1960s and are still employed in automotive and aircraft technologies. Implementation of analog of the flueric devices in the excitable chemical systems opens doors to further applications of excitation wave-based unconventional computing in soft robotics, embedded organic electronics and living technologies.

  8. Enhanced T cell transmigration across the murine liver sinusoidal endothelium is mediated by transcytosis and surface presentation of chemokines.

    Science.gov (United States)

    Schrage, Arnhild; Wechsung, Katja; Neumann, Katrin; Schumann, Michael; Schulzke, Jörg-Dieter; Engelhardt, Britta; Zeitz, Martin; Hamann, Alf; Klugewitz, Katja

    2008-10-01

    Transmigration through the liver endothelium is a prerequisite for the homeostatic balance of intrahepatic T cells and a key regulator of inflammatory processes within the liver. Extravasation into the liver parenchyma is regulated by the distinct expression patterns of adhesion molecules and chemokines and their receptors on the lymphocyte and endothelial cell surface. In the present study, we investigated whether liver sinusoidal endothelial cells (LSEC) inhibit or support the chemokine-driven transmigration and differentially influence the transmigration of pro-inflammatory or anti-inflammatory CD4(+) T cells, indicating a mechanism of hepatic immunoregulation. Finally, the results shed light on the molecular mechanisms by which LSEC modulate chemokine-dependent transmigration. LSEC significantly enhanced the chemotactic effect of CXC-motif chemokine ligand 12 (CXCL12) and CXCL9, but not of CXCL16 or CCL20, on naive and memory CD4(+) T cells of a T helper 1, T helper 2, or interleukin-10-producing phenotype. In contrast, brain and lymphatic endothelioma cells and ex vivo isolated lung endothelia inhibited chemokine-driven transmigration. As for the molecular mechanisms, chemokine-induced activation of LSEC was excluded by blockage of G(i)-protein-coupled signaling and the use of knockout mice. After preincubation of CXCL12 to the basal side, LSEC took up CXCL12 and enhanced transmigration as efficiently as in the presence of the soluble chemokine. Blockage of transcytosis in LSEC significantly inhibited this effect, and this suggested that chemokines taken up from the basolateral side and presented on the luminal side of endothelial cells trigger T cell transmigration. Our findings demonstrate a unique capacity of LSEC to present chemokines to circulating lymphocytes and highlight the importance of endothelial cells for the in vivo effects of chemokines. Chemokine presentation by LSEC could provide a future therapeutic target for inhibiting lymphocyte

  9. Connecting liver and gut: murine liver sinusoidal endothelium induces gut tropism of CD4+ T cells via retinoic acid.

    Science.gov (United States)

    Neumann, Katrin; Kruse, Nils; Szilagyi, Balint; Erben, Ulrike; Rudolph, Christine; Flach, Anne; Zeitz, Martin; Hamann, Alf; Klugewitz, Katja

    2012-06-01

    Gut-activated T cells migrating into the liver can cause extraintestinal manifestations of inflammatory bowel disease. T cells acquire a gut-homing phenotype dependent on retinoic acid (RA) provided by intestinal dendritic cells (DC). We investigated whether liver antigen-presenting cells can induce gut tropism supporting an enterohepatic lymphocyte circulation. Priming of CD4(+) T cells by liver sinusoidal endothelial cells (LSEC) supported migration into gut and gut-associated lymphoid tissue. As observed for T cells primed by intestinal DCs, this gut tropism depended on α(4) β(7) integrin and CC chemokine receptor 9 (CCR9) expression by LSEC-primed CD4(+) T cells. The induction of gut-homing molecules was mediated by RA, a derivate of vitamin A that is stored in large amounts within the liver. LSECs expressed functional retinal dehydrogenases and could convert vitamin A to RA. Conversely, the lack of signaling via the RA receptor prevented the expression of α(4) β(7) integrin and CCR9 on LSEC-primed CD4(+) T cells, consequently reducing their in vivo migration to the intestine. Other liver antigen-presenting cells failed to support high expression of α(4) β(7) integrin on CD4(+) T cells, thus, the potential to induce gut homing is restricted to LSECs. The capacity to promote gut tropism via vitamin A use is not unique for intestinal DCs but is also a feature of LSECs. Our data support the assumption that CD4(+) T cells can migrate from the liver to the gut as one branch of a postulated enterohepatic lymphocyte circulation. Copyright © 2011 American Association for the Study of Liver Diseases.

  10. Dynamical excitation in fission

    International Nuclear Information System (INIS)

    Ledergerber, T.; Paltiel, Z.; Fraenkel, Z.; Pauli, H.C.

    1976-01-01

    The excitation mechanism of the fission process is studied in terms of a model of particles moving in a deformed time-dependent potential. A residual interaction of the pairing type is incoporated by means of the BCS approximation. Only 2-quasi-particle excitations up to some cutoff energy are included. The separation of the total excitation energy into intrinsic and translational parts is made at the scission point. The present calculations for 240 Pu show that, in the framework of this model, most of the available energy at scission is transformed into intrinsic excitation energy. However the convergence of the calculated value for the cutoff energy is unsatisfactory and hence a description in terms of a better model space is needed. The fact that very many channels are involved suggests that a statistical treatment may be useful. (author)

  11. Band excitation method applicable to scanning probe microscopy

    Science.gov (United States)

    Jesse, Stephen [Knoxville, TN; Kalinin, Sergei V [Knoxville, TN

    2010-08-17

    Methods and apparatus are described for scanning probe microscopy. A method includes generating a band excitation (BE) signal having finite and predefined amplitude and phase spectrum in at least a first predefined frequency band; exciting a probe using the band excitation signal; obtaining data by measuring a response of the probe in at least a second predefined frequency band; and extracting at least one relevant dynamic parameter of the response of the probe in a predefined range including analyzing the obtained data. The BE signal can be synthesized prior to imaging (static band excitation), or adjusted at each pixel or spectroscopy step to accommodate changes in sample properties (adaptive band excitation). An apparatus includes a band excitation signal generator; a probe coupled to the band excitation signal generator; a detector coupled to the probe; and a relevant dynamic parameter extractor component coupled to the detector, the relevant dynamic parameter extractor including a processor that performs a mathematical transform selected from the group consisting of an integral transform and a discrete transform.

  12. A feedback control system for vibration of magnetostrictive plate subjected to follower force using sinusoidal shear

    Directory of Open Access Journals (Sweden)

    A. Ghorbanpour Arani

    2016-03-01

    Full Text Available In this research, the vibrational behavior of magnetostrictive plate (MsP as a smart component is studied. The plate is subjected to an external follower force and a magnetic field in which the vibration response of MsP has been investigated for both loading combinations. The velocity feedback gain parameter is evaluated to study the effect of magnetic field which is generated by the coil. Sinusoidal shear deformation theory is utilized due to its accuracy of polynomial function with respect to other plate theories. Equations of motion are derived using Hamilton’s principle and solved by differential quadrature method (DQM considering general boundary conditions. The effects of aspect ratio, thickness ratio, follower force and velocity feedback gain are investigated on the frequency response of MsP. Results indicate that magneto-mechanical coupling in MsM helps to control vibrational behaviors of systems such as electro-hydraulic actuator, wireless linear Motors and sensors.

  13. Continuously varying skin potentials elicited by sinusoidally varying electric shock potentials

    Science.gov (United States)

    Senders, J. W.; Senders, V. L.; Tursky, B.

    1973-01-01

    An investigation was carried out to determine whether a form of quasi-linear systems analysis can be applied to electrodormal responses to yield new insights into the nature of the response mechanisms and their interrelationships. The response investigated was the electrodermal response (galvanic skin potential, GSP) as elicited by an electric shock stimulus applied to the skin. The response subsequent to this stimulation was examined and its characteristics measured. A series of experimental runs on three Ss was accomplished, using sinusoidal modulation envelopes of frequencies. Results showed that it was possible to drive the GSP and to achieve relatively high coherence between the driving frequency and the response itself. The analysis was limited to Fourier analysis of the response in order to determine the relative energies at the driving frequency and at successive harmonics of that driving frequency, and correlational analysis in order to determine the degree of linear relationship between the driving frequency and the driven response.

  14. Influence of muscle cooling on the viscoelastic response of the human ankle to sinusoidal displacements.

    Science.gov (United States)

    Price, R; Lehmann, J F

    1990-09-01

    The changes in passive mechanical muscle properties due to cooling of the calf in healthy human volunteers were investigated. The technique, using sinusoidal driving of the foot, permitted the separation of muscle stiffness response into its elastic and viscous components. Cooling the calf with ice for 30 minutes increases the rate of change of elastic stiffness with frequency, and it increases the frictional stiffness over a frequency range of 3 to 12Hz. Such cooling would produce an estimated 3% to 10% increase in total stiffness, on average, in a spastic person. This increase in stiffness would counteract reductions in total stiffness achieved during the application of cryotherapy to relieve spasticity. However, one could expect that for a clinically significant reduction of spasticity, the increase in passive stiffness of the muscle generated by cooling would be largely overshadowed by the decrease in reflex reactivity.

  15. Exponential sinusoidal model for predicting temperature inside underground wine cellars from a Spanish region

    Energy Technology Data Exchange (ETDEWEB)

    Mazarron, Fernando R.; Canas, Ignacio [Departamento de Construccion y Vias Rurales, Escuela Tecnica Superior de Ingenieros Agronomos, Universidad Politecnica de Madrid, Avda. Complutense s/n, 28040 Madrid (Spain)

    2008-07-01

    This article develops a mathematical model for determining the annual cycle of air temperature inside traditional underground wine cellars in the Spanish region of ''Ribera del Duero'', known because of the quality of its wines. It modifies the sinusoidal analytical model for soil temperature calculation. Results obtained when contrasting the proposed model with experimental data of three subterranean wine cellars for 2 years are satisfactory. The RMSE is below 1 C and the index of agreement is above 0.96 for the three cellars. When using the average of experimental data corresponding to the 2 years' time, results improve noticeably: the RMSE decreases by more than 30% and the mean d reaches 0.99. This model should be a useful tool for designing underground wine cellars making the most of soil energy advantages. (author)

  16. Accurate estimation of the illumination pattern's orientation and wavelength in sinusoidal structured illumination microscopy.

    Science.gov (United States)

    Lahrberg, Marcel; Singh, Mandeep; Khare, Kedar; Ahluwalia, Balpreet Singh

    2018-02-10

    Structured illumination microscopy is able to improve the spatial resolution of wide-field fluorescence imaging by applying sinusoidal stripe pattern illumination to the sample. The corresponding computational image reconstruction requires precise knowledge of the pattern's parameters, which are its phase (ϕ) and wave vector (p). Here, a computationally inexpensive method for estimation of p from the raw data is proposed and illustrated with simulations. The method estimates p through a selective discrete Fourier transform at tunable subpixel precision. This results in an accurate p estimation for all the illumination patterns and subsequently improves the superresolution image recovery by a factor of 10 around sharp edges as compared to an integer pixel approach. The technique as presented here is of major interest to the large variety of custom-build systems that are used. The feasibility of the presented method is proven in comparison with published data.

  17. Compact ASD Topologies for Single-Phase Integrated Motor Drives with Sinusoidal Input Current

    DEFF Research Database (Denmark)

    Klumpner, Christian; Blaabjerg, Frede; Thoegersen, Paul

    2005-01-01

    A standard configuration of an Adjustable Speed Drive (ASD) consists of two separate units: an AC motor, which runs with fixed speed when it is supplied from a constant frequency grid voltage and a frequency converter, which is used to provide the motor with variable voltage-variable frequency......-density integration of the converter caused by the large size of the passive components (electrolytic capacitors and iron chokes) and vibration of the converter enclosure. This paper analyzes the implementation aspects for obtaining a compact and cost effective single-phase ASD with sinusoidal input current...... for high frequency operation, higher core losses will occur, but outside the converter enclosure. The advantages are: the reduction of the number of active semiconductor devices, the reduction of the ASD size and the better integration potential....

  18. A "Brick Mass Spectrometer" Driven by a Sinusoidal Frequency Scanning Technique.

    Science.gov (United States)

    Jiang, Ting; Zhang, Hongjia; Tang, Yang; Zhai, Yanbing; Xu, Wei; Xu, Hualei; Zhao, Xinying; Li, Dayu; Xu, Wei

    2017-05-16

    In this work, a "brick" size miniature mass spectrometer (28 cm × 21 cm × 16 cm) was developed and characterized, which was enabled by the development of a new frequency scanning technique. Different from the conventional voltage scanning method or the digital waveforms used on a digital ion trap, a sinusoidal frequency scanning technique was developed to drive the linear ion trap of the brick mass spectrometer (BMS). Both an in-vacuum plasma ionization source and an electrospray ionization source were coupled with this BMS for the analyses of volatile and nonvolatile samples. Stability diagram, sensitivity, mass resolution, and mass range of the BMS were explored. This new frequency scanning technique could not only reduce the size and power consumption of a miniature mass spectrometer but also improve its analytical performances, especially in terms of mass range and resolution. Analogous to the development of cell phones, this BMS would be an important step from "brick" mass spectrometer to "cell" mass spectrometer.

  19. Real-time detection of musical onsets with linear prediction and sinusoidal modeling

    Science.gov (United States)

    Glover, John; Lazzarini, Victor; Timoney, Joseph

    2011-12-01

    Real-time musical note onset detection plays a vital role in many audio analysis processes, such as score following, beat detection and various sound synthesis by analysis methods. This article provides a review of some of the most commonly used techniques for real-time onset detection. We suggest ways to improve these techniques by incorporating linear prediction as well as presenting a novel algorithm for real-time onset detection using sinusoidal modelling. We provide comprehensive results for both the detection accuracy and the computational performance of all of the described techniques, evaluated using Modal, our new open source library for musical onset detection, which comes with a free database of samples with hand-labelled note onsets.

  20. Sensitivity of echo enabled harmonic generation to sinusoidal electron beam energy structure

    Directory of Open Access Journals (Sweden)

    E. Hemsing

    2017-06-01

    Full Text Available We analytically examine the bunching factor spectrum of a relativistic electron beam with sinusoidal energy structure that then undergoes an echo-enabled harmonic generation (EEHG transformation to produce high harmonics. The performance is found to be described primarily by a simple scaling parameter. The dependence of the bunching amplitude on fluctuations of critical parameters is derived analytically, and compared with simulations. Where applicable, EEHG is also compared with high gain harmonic generation (HGHG and we find that EEHG is generally less sensitive to several types of energy structure. In the presence of intermediate frequency modulations like those produced by the microbunching instability, EEHG has a substantially narrower intrinsic bunching pedestal.

  1. Dynamic Buckling of Embedded Laminated Nanocomposite Plates Based on Sinusoidal Shear Deformation Theory

    Directory of Open Access Journals (Sweden)

    Mohammd Sharif Zarei

    2016-12-01

    Full Text Available In this study, the dynamic buckling of the embedded laminated nanocomposite plates is investigated. The plates are reinforced with the single-walled carbon nanotubes (SWCNTs, and the Mori-Tanaka model is applied to obtain the equivalent material properties of them. Based on the sinusoidal shear deformation theory (SSDT, the motion equations are derived using the energy method and Hamilton's principle. The Navier’s method is used in conjunction with the Bolotin's method for obtaining the dynamic instability region (DIR of the structure. The effects of different parameters such as the volume percentage of SWCNTs, the number and orientation angle of the layers, the elastic medium, and the geometrical parameters of the plates are shown on DIR of the structure. Results indicate that by increasing the volume percentage of SWCNTs the resonance frequency increases, and DIR shifts to right. Moreover, it is found that the present results are in good agreement with the previous researches.

  2. Ultrasound imaging using coded signals

    DEFF Research Database (Denmark)

    Misaridis, Athanasios

    coded excitation can be used for increasing the frame rate. The work includes both simulated results using Field II, and experimental results based on measurements on phantoms as well as clinical images. Initially a mathematical foundation of signal modulation is given. Pulse compression based...... is described. Application of coded excitation in array imaging is evaluated through simulations in Field II. The low degree of the orthogonality among coded signals for ultrasound systems is first discussed, and the effect of mismatched filtering in the cross-correlation properties of the signals is evaluated...... emissions. Finally, a novel coding technique which uses pulse train excitation is presented....

  3. Giant resonances on excited states

    International Nuclear Information System (INIS)

    Besold, W.; Reinhard, P.G.; Toepffer, C.

    1984-01-01

    We derive modified RPA equations for small vibrations about excited states. The temperature dependence of collective excitations is examined. The formalism is applied to the ground state and the first excited state of 90 Zr in order to confirm a hypothesis which states that not only the ground state but every excited state of a nucleus has a giant resonance built upon it. (orig.)

  4. Excitation Methods for Bridge Structures

    Energy Technology Data Exchange (ETDEWEB)

    Farrar, C.R.; Duffy, T.A.; Cornwell, P.J.; Doebling, S.W.

    1999-02-08

    This paper summarizes the various methods that have been used to excited bridge structures during dynamic testing. The excitation methods fall into the general categories of ambient excitation methods and measured-input excitation methods. During ambient excitation the input to the bridge is not directly measured. In contrast, as the category label implies, measured-input excitations are usually applied at a single location where the force input to the structure can be monitored. Issues associated with using these various types of measurements are discussed along with a general description of the various excitation methods.

  5. Research on a new magnetic-field-modulated brushless double-rotor machine with sinusoidal-permeance modulating ring

    Science.gov (United States)

    Zheng, Ping; Liu, Jiaqi; Bai, Jingang; Song, Zhiyi; Liu, Yong

    2017-05-01

    The magnetic-field-modulated brushless double-rotor machine (MFM-BDRM), composed of a stator, a modulating ring rotor, and a PM rotor, is a kind of power-split device for hybrid electric vehicles (HEVs). In this paper, a new MFM-BDRM with sinusoidal-permeance modulating ring named Sinusoidal-Permeance-Modulating-Ring Brushless Double-Rotor Machine (SPMR-BDRM) is proposed to solve the problem of poor mechanical strength and large iron loss. The structure and the operating principle of the MFM-BDRM are introduced. The design principle of the sinusoidal-permeance modulating ring is analyzed and derived. The main idea of that is to minimize the harmonic permeance of air gap, thereby the harmonic magnetic fields can be restrained. There are comparisons between a MFM-BDRM with sinusoidal-permeance modulating ring and a same size MFM-BDRM with traditional modulating ring, including magnetic field distributions and electromagnetic performances. Most importantly, the iron losses are compared under six different conditions. The result indicates that the harmonic magnetic fields in the air gap are restrained; the electromagnetic torque and power factor are almost the same with same armature current; the torque ripples of the modulating ring rotor and the PM rotor are reduced; the stator loss is reduced by 13% at least and the PM loss is reduced by 20% at least compared with the same size traditional MFM-BDRM under the same operating conditions.

  6. Generation of sinusoidal fringes with a holographic phase grating and a phase-only spatial light modulator

    International Nuclear Information System (INIS)

    Berberova, Natalia; Stoykova, Elena; Sainov, Ventseslav

    2012-01-01

    A variety of pattern projection methods for the three-dimensional capture of objects is based on the generation of purely sinusoidal fringes. This is not an easy task, especially when a portable non-interferometric system for outdoor usage is required. The use of phase gratings with coherent illumination as a possible solution has the advantage of providing good stability and a large measurement volume. In this work, we analyze the quality of fringes projected with two sinusoidal phase gratings. The first grating is recorded on a silver-halide holographic plate by means of a Michelson interferometer. The spatial resolution of the silver-halide material used is greater than 6000 lines per millimeter, and the recorded grating is practically analogous to a smooth variation of the phase profile. The second grating is formed as a sinusoidal phase variation on a liquid crystal-on-silicon phase-only reflective display with a resolution of 1920×1080 pixels, a pixel pitch of 8 μm and 256 phase levels. The frequency content of the fringes projected with both gratings is analyzed and compared on the basis of the calculated Fresnel diffraction pattern, taking into account that the sinusoidal phase distribution in the case of a spatial light modulator is both sampled and quantized. Experimental fringe patterns projected using both gratings are also provided.

  7. Research on a new magnetic-field-modulated brushless double-rotor machine with sinusoidal-permeance modulating ring

    Directory of Open Access Journals (Sweden)

    Ping Zheng

    2017-05-01

    Full Text Available The magnetic-field-modulated brushless double-rotor machine (MFM-BDRM, composed of a stator, a modulating ring rotor, and a PM rotor, is a kind of power-split device for hybrid electric vehicles (HEVs. In this paper, a new MFM-BDRM with sinusoidal-permeance modulating ring named Sinusoidal-Permeance-Modulating-Ring Brushless Double-Rotor Machine (SPMR-BDRM is proposed to solve the problem of poor mechanical strength and large iron loss. The structure and the operating principle of the MFM-BDRM are introduced. The design principle of the sinusoidal-permeance modulating ring is analyzed and derived. The main idea of that is to minimize the harmonic permeance of air gap, thereby the harmonic magnetic fields can be restrained. There are comparisons between a MFM-BDRM with sinusoidal-permeance modulating ring and a same size MFM-BDRM with traditional modulating ring, including magnetic field distributions and electromagnetic performances. Most importantly, the iron losses are compared under six different conditions. The result indicates that the harmonic magnetic fields in the air gap are restrained; the electromagnetic torque and power factor are almost the same with same armature current; the torque ripples of the modulating ring rotor and the PM rotor are reduced; the stator loss is reduced by 13% at least and the PM loss is reduced by 20% at least compared with the same size traditional MFM-BDRM under the same operating conditions.

  8. Using composite sinusoidal patterns in structured-illumination reflectance imaging (SIRI) for enhanced detection of defects in food

    Science.gov (United States)

    This study presented a first exploration of using composite sinusoidal patterns that integrated two and three spatial frequencies of interest, in structured-illumination reflectance imaging (SIRI) for enhanced detection of defects in food (e.g., bruises in apples). Three methods based on Fourier tra...

  9. Excitation of Stellar Pulsations

    DEFF Research Database (Denmark)

    Houdek, G.

    2012-01-01

    In this review I present an overview of our current understanding of the physical mechanisms that are responsible for the excitation of pulsations in stars with surface convection zones. These are typically cooler stars such as the δ Scuti stars, and stars supporting solar-like oscillations....

  10. Excitations and spin waves

    International Nuclear Information System (INIS)

    Lindgaard, P.-A.

    1978-01-01

    When neutron scattering data became available for the light rare earths (REs) and the RE compounds, a need was felt for a systematic theory for excitations in crystal-field dominated systems. The crystal field mixes the wavefunctions and provides a coupling between the ground state and the excited states for many operators, whereas for the Heisenberg system only J - has a nonzero matrix element to the first excited state. A review is given of successful applications of the theory in the interpretation of several experiments. The excitation spectrum for neutron scattering is simply given by the poles of the imaginary part of the enhanced wave-vector-dependent susceptibility tensor calculated in the random-phase approximation. A discussion of the effect of two-ion anisotropy is given. The formalism reduces to the conventional spin wave theory for the Heisenberg system when the crystal field is negligible compared to the exchange interaction. However, this theory has the drawback that it is necessary to know the crystal field in advance and each value of J must then be treated separately. A review of the results in the RE Laves-phase compounds and in the heavy rare earths is given, and the status of the current understanding of the interactions is rare earths and their compounds is discussed. (author)

  11. Hardness and excitation energy

    Indian Academy of Sciences (India)

    It is shown that the first excitation energy can be given by the Kohn-Sham hardness (i.e. the energy difference of the ground-state lowest unoccupied and highest occupied levels) plus an extra term coming from the partial derivative of the ensemble exchange-correlation energy with respect to the weighting factor in the ...

  12. Excitations in exotic superconductors

    International Nuclear Information System (INIS)

    Hayden, S.

    1999-01-01

    Neutron scattering has played an important role in unravelling the mysteries of superconductivity. Studies of ordinary or conventional superconductors - materials such as aluminium and lead that lose their electrical resistance when cooled below a certain temperature - have focused on vibrations in the lattice structure of the crystal. In these cases magnetic excitations due to the collective motion of electron spins in the crystal are not particularly important and, moreover, are difficult to see. In contrast, magnetic excitations are thought to be important in the newer, exotic or unconventional superconductors such as heavy fermions and cuprates. Two independent groups working at the Institut Laue-Langevin (ILL) in Grenoble, France, and at the Japan Atomic Energy Research Institute (JAERI) in Tokai have recently observed a new magnetic excitation in the superconducting state of the heavy fermion compound uranium-palladium-aluminium, UPd 2 Al 3 , (Phys. Rev. Lett.1998 81 4244; 1998 80 5417). A similar excitation has been observed in yttrium barium copper oxide (YBa 2 Cu 3 O 6.93 ), a high-temperature superconductor. The results may hold clues about the nature of certain types of unconventional superconductivity. In this article the author describes these latest results. (UK)

  13. Relativistic Coulomb excitation

    International Nuclear Information System (INIS)

    Winther, A.; Alder, K.

    1979-01-01

    Coulomb excitation of both target and projectile in relativistic heavy ion collisions is evaluated including the lowest order correction for the deviation from a straight line trajectory. Explicit results for differential and total cross sections are given in the form of tables and figures. (Auth.)

  14. Hardness and excitation energy

    Indian Academy of Sciences (India)

    ... the ground-state lowest unoccupied and highest occupied levels) plus an extra term coming from the partial derivative of the ensemble exchange-correlation energy with respect to the weighting factor in the limit → 0. It is proposed that the first excitation energy can be used as a reactivity index instead of the hardness.

  15. Large signal and noise properties of heterojunction Al x Ga1-x As/GaAs DDR IMPATTs

    Science.gov (United States)

    Banerjee, Suranjana; Mitra, Monojit

    2016-06-01

    Simulation studies are carried out on the large signal and noise properties of heterojunction (HT) Al x Ga1-x As/GaAs double drift region (DDR) IMPATT devices at V-band (60 GHz). The dependence of Al mole fraction on the aforementioned properties of the device has been investigated. A full simulation software package has been indigenously developed for this purpose. The large signal simulation is based on a non-sinusoidal voltage excitation model. Three mole fractions of Al and two complementary HT DDR structures for each mole fraction i.e., six DDR structures are considered in this study. The purpose is to discover the most suitable structure and corresponding mole fraction at which high power, high efficiency and low noise are obtained from the device. The noise spectral density and noise measure of all six HT DDR structures are obtained from a noise model and simulation method. Similar studies are carried out on homojunction (HM) DDR GaAs IMPATTs at 60 GHz to compare their RF properties with those of HT DDR devices. The results show that the HT DDR device based on N-Al x Ga1-x As/p-GaAs with 30% mole fraction of Al is the best one so far as large signal power output, DC to RF conversion efficiency and noise level are concerned.

  16. THE SINUSOIDAL EFFLUX OF DIBROMOSULFOPHTHALEIN FROM RAT-LIVER IS STIMULATED BY ALBUMIN, LIGANDIN AND FATTY-ACID-BINDING PROTEIN BUT NOT BY OTHER DIBROMOSULFOPHTHALEIN BINDING-PROTEINS

    NARCIS (Netherlands)

    NIJSSEN, HMJ; PIJNING, T; PROOST, JH; MEIJER, DKF; GROOTHUIS, GMM

    Organic anions can be excreted from the liver into the bile or back into the general circulation (sinusoidal efflux). It has previously been shown that the net sinusoidal efflux rate of dibromosulfophthalein from the perfused liver into the perfusate is the result of actual efflux from and reuptake

  17. Three-photon Gaussian–Gaussian–Laguerre–Gaussian excitation of a localized atom to a highly excited Rydberg state

    Science.gov (United States)

    Mashhadi, L.

    2017-12-01

    Optical vortices are currently one of the most intensively studied topics in light–matter interaction. In this work, a three-step axial Doppler- and recoil-free Gaussian–Gaussian-Laguerre–Gaussian (GGLG) excitation of a localized atom to the highly excited Rydberg state is presented. By assuming a large detuning for intermediate states, an effective quadrupole excitation related to the Laguerre–Gaussian (LG) excitation to the highly excited Rydberg state is obtained. This special excitation system radially confines the single highly excited Rydberg atom independently of the trapping system into a sharp potential landscape into the so-called ‘far-off-resonance optical dipole-quadrupole trap’ (FORDQT). The key parameters of the Rydberg excitation to the highly excited state, namely the effective Rabi frequency and the effective detuning including a position-dependent AC Stark shift, are calculated in terms of the basic parameters of the LG beam and of the polarization of the excitation lasers. It is shown that the obtained parameters can be tuned to have a precise excitation of a single atom to the desired Rydberg state as well. The features of transferring the optical orbital and spin angular momentum of the polarized LG beam to the atom via quadrupole Rydberg excitation offer a long-lived and controllable qudit quantum memory. In addition, in contrast to the Gaussian laser beam, the doughnut-shaped LG beam makes it possible to use a high intensity laser beam to increase the signal-to-noise ratio in quadrupole excitation with minimized perturbations coming from stray light broadening in the last Rydberg excitation process.

  18. Code excited linear prediction codec for electrocardiogram.

    Science.gov (United States)

    Banik, Shubhadeep; Martis, Roshan; Nayak, Dayananda

    2004-01-01

    In this paper we propose a CELP ECG codec for medical telemetry. The encoding algorithm is based on CODE-EXCITED LINEAR PREDICTION (CELP). The general framework proposed is: QRS detection, calculation of LPC parameter, generation of residual error signal, codebook generation, MSE (mean square error) search. The codebook is generated for residual error. The indices of the codebook and corresponding LPC parameters are transmitted where the minimum MSE occurs. A replica of the transmitter codebook is present at the receiver. Corresponding to the received index value residual error coefficients are retrieved from the receiver codebook. The ECG signal is reconstructed from the retrieved code word.

  19. Laser-excitation-source development

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    A number of schemes can be used to excite a gas laser, which introduces complexity in the search for the new laser because it requires the development of a host of advanced excitation sources. There are three demonstrated schemes for the excitation of a gas laser: (1) electron beam, (2) electric discharge, and (3) photolytic pumping. The photons for photypic pumping may be obtained with the other two excitation mechanisms in an external gas cell. Thus, from a power conditioning point of view, there are only two important excitation schemes, but each scheme has many different options. Research progress is reported on direct electric-discharge excitation development

  20. Superharmonic imaging with chirp coded excitation: filtering spectrally overlapped harmonics.

    Science.gov (United States)

    Harput, Sevan; McLaughlan, James; Cowell, David M J; Freear, Steven

    2014-11-01

    Superharmonic imaging improves the spatial resolution by using the higher order harmonics generated in tissue. The superharmonic component is formed by combining the third, fourth, and fifth harmonics, which have low energy content and therefore poor SNR. This study uses coded excitation to increase the excitation energy. The SNR improvement is achieved on the receiver side by performing pulse compression with harmonic matched filters. The use of coded signals also introduces new filtering capabilities that are not possible with pulsed excitation. This is especially important when using wideband signals. For narrowband signals, the spectral boundaries of the harmonics are clearly separated and thus easy to filter; however, the available imaging bandwidth is underused. Wideband excitation is preferable for harmonic imaging applications to preserve axial resolution, but it generates spectrally overlapping harmonics that are not possible to filter in time and frequency domains. After pulse compression, this overlap increases the range side lobes, which appear as imaging artifacts and reduce the Bmode image quality. In this study, the isolation of higher order harmonics was achieved in another domain by using the fan chirp transform (FChT). To show the effect of excitation bandwidth in superharmonic imaging, measurements were performed by using linear frequency modulated chirp excitation with varying bandwidths of 10% to 50%. Superharmonic imaging was performed on a wire phantom using a wideband chirp excitation. Results were presented with and without applying the FChT filtering technique by comparing the spatial resolution and side lobe levels. Wideband excitation signals achieved a better resolution as expected, however range side lobes as high as -23 dB were observed for the superharmonic component of chirp excitation with 50% fractional bandwidth. The proposed filtering technique achieved >50 dB range side lobe suppression and improved the image quality without

  1. Harmonically excited orbital variations

    International Nuclear Information System (INIS)

    Morgan, T.

    1985-01-01

    Rephrasing the equations of motion for orbital maneuvers in terms of Lagrangian generalized coordinates instead of Newtonian rectangular cartesian coordinates can make certain harmonic terms in the orbital angular momentum vector more readily apparent. In this formulation the equations of motion adopt the form of a damped harmonic oscillator when torques are applied to the orbit in a variationally prescribed manner. The frequencies of the oscillator equation are in some ways unexpected but can nonetheless be exploited through resonant forcing functions to achieve large secular variations in the orbital elements. Two cases are discussed using a circular orbit as the control case: (1) large changes in orbital inclination achieved by harmonic excitation rather than one impulsive velocity change, and (2) periodic and secular changes to the longitude of the ascending node using both stable and unstable excitation strategies. The implications of these equations are also discussed for both artificial satellites and natural satellites. For the former, two utilitarian orbits are suggested, each exploiting a form of harmonic excitation. 5 refs

  2. Flagellum motion in 2-D: Work rate and efficiency of the non-sinusoidal approach

    Science.gov (United States)

    Viridi, Sparisoma; Nuraini, Nuning; Stephanie, Monica; Rifqi, Ainur; Christina, Dina; Thania, Elsa; Sihite, Erland

    2018-03-01

    Today microorganisms have been widely used to support human life. Some examples include foodstuffs (Spirulina.sp), to help with medical needs, for mining purposes and more. On the other hand, the development of technology is also very big influence on human life. The combination of technology and health science will be very useful if we can develop it. One is the cancer treatment by utilizing the movement of the flagella to be made a nanorobot used as a carrier of cancer drugs. Movement of flagella that resembles the shape of the arc and straight line can be searched formulation and then applied to the manufacture of nanorobot tail. Then the nanorobot will carry a cancer drug that leads directly to the cancer cells. So hopefully with this nanorobot, can minimize the death of healthy cells around cancer cells. From the results of research and analysis of the movement of flagella, it can be concluded that the smaller the mass of the flagella, the greater the efficiency will be or will be more efficient. So, the energy needed nanorobot will be smaller. Model with non-sinusoidal approach (Brokaw, 1965) is discussed in this work and formulation to get the energy efficiency is proposed and analyzed. Unfortunately, there is a negative value in the formulation.

  3. Measurement of electroosmotic and electrophoretic velocities using pulsed and sinusoidal electric fields.

    Science.gov (United States)

    Sadek, Samir H; Pimenta, Francisco; Pinho, Fernando T; Alves, Manuel A

    2017-04-01

    In this work, we explore two methods to simultaneously measure the electroosmotic mobility in microchannels and the electrophoretic mobility of micron-sized tracer particles. The first method is based on imposing a pulsed electric field, which allows to isolate electrophoresis and electroosmosis at the startup and shutdown of the pulse, respectively. In the second method, a sinusoidal electric field is generated and the mobilities are found by minimizing the difference between the measured velocity of tracer particles and the velocity computed from an analytical expression. Both methods produced consistent results using polydimethylsiloxane microchannels and polystyrene micro-particles, provided that the temporal resolution of the particle tracking velocimetry technique used to compute the velocity of the tracer particles is fast enough to resolve the diffusion time-scale based on the characteristic channel length scale. Additionally, we present results with the pulse method for viscoelastic fluids, which show a more complex transient response with significant velocity overshoots and undershoots after the start and the end of the applied electric pulse, respectively. © 2016 The Authors. Electrophoresis published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Effects of chronic alcoholism in the sensitivity to luminance contrast in vertical sinusoidal gratings

    Directory of Open Access Journals (Sweden)

    Éllen Dias Nicácio da Cruz

    2016-01-01

    Full Text Available Abstract The aim of this study was to measure visual contrast sensitivity (CS of luminance using vertical sinusoidal gratings with spatial frequencies of 0.6, 2.5, 5.0 and 20.0 cycles per degree of visual angle in chronic alcoholics in abstinence period. The participants were 20 volunteers (26–59 years of age divided into two groups: the study group (SG consisted of 10 volunteers with a clinical history of chronic alcoholism abstinence and the control group (CG consisted of 10 healthy volunteers. Each group had five female and five male participants. All participants had normal or corrected visual acuity and were free of identifiable diseases. The psychophysical method of forced choice between two temporal alternatives (2AFC was used to measure visual CS of luminance of 41.2 cd/m2. The results showed significant differences between groups for all spatial frequencies tested (p< 0.001. These results suggest alterations in the visual perception related to chronic alcohol consumption even after years of abstinence.

  5. Blood-borne LPS is rapidly eliminated by liver sinusoidal endothelial cells via HDL

    Science.gov (United States)

    Yao, Zhili; Mates, Jessica M.; Cheplowitz, Alana M.; Hammer, Lindsay P.; Maiseyeu, Andrei; Phillips, Gary S.; Wewers, Mark D.; Rajaram, Murugesan V.S.; Robinson, John M.; Anderson, Clark L.; Ganesan, Latha P.

    2016-01-01

    During Gram-negative bacterial infections, excessive lipopolysaccharide (LPS) induces inflammation and sepsis via action on immune cells. However, the bulk of LPS can be cleared from circulation by the liver. Liver clearance is thought to be a slow process mediated exclusively by phagocytic resident macrophages, Kupffer cells (KC). However, we discovered that LPS disappears rapidly from the circulation, with a half-life of 2–4 minutes in mice and liver eliminates about three quarters of LPS from blood circulation. Using microscopic techniques, we found that ~75% of fluor-tagged LPS in liver became associated with liver sinusoidal endothelial cells (LSEC) and only ~25% with KC. Notably, the ratio of LSEC-KC associated LPS remained unchanged 45 min after infusion, indicating that LSEC independently processes the LPS. Most interestingly, results of kinetic analysis of LPS bioactivity, using modified limulus amebocyte lysate assay, suggest that recombinant factor-C, an LPS binding protein, competitively inhibits HDL-mediated LPS association with LSEC early in the process. Supporting the previous notion 3 min post-infusion, 75% of infused fluorescently-tagged LPS-HDL complex associates with LSEC, suggesting that HDL facilitates LPS clearance. These results lead us to propose a new paradigm of LSEC and HDL in clearing LPS with a potential to avoid inflammation during sepsis. PMID:27534554

  6. Experimental study of fluid flow in the entrance of a sinusoidal channel

    International Nuclear Information System (INIS)

    Oviedo-Tolentino, F.; Romero-Mendez, R.; Hernandez-Guerrero, A.; Giron-Palomares, B.

    2008-01-01

    An experimental flow visualization study of the entrance section of channels formed with sinusoidal plates was made. The experiments were conducted in a water tunnel and a laser illuminated particle tracking was used as the technique of flow visualization. The geometric parameters of the plates were maintained constant while the distance between plates, phase angle, and the Reynolds number were varied during the experiments. The flow regimes that were found in the experiments are steady, unsteady and significantly-mixed flows. Instabilities of the flow first appear near the exit of the channel, and move closer to the inlet waves as the Reynolds number grows, but in the first wave from inlet the flow is always steady. The results show that, for all other parameters fixed, the Reynolds number at which unsteady flow first appears grows with the distance between plates. The phase angle that best promotes unsteady flow depends on the average distance between plates: for certain average distance between plates, there is a phase angle that best disturbs the flow. For the set of parameters used in this experiment, a channel with eight waves is sufficiently long and the flow features presented in the first eight waves of a longer channel will be similar to what was observed here

  7. A metabonomic evaluation of the monocrotaline-induced sinusoidal obstruction syndrome (SOS) in rats

    Energy Technology Data Exchange (ETDEWEB)

    Conotte, R.; Colet, J.-M., E-mail: jean-marie.colet@umons.ac.be

    2014-04-15

    The main curative treatment of colorectal cancer remains the surgery. However, when metastases are suspected, surgery is followed by a preventive chemotherapy using oxaliplatin which, unfortunately, may cause liver sinusoidal obstruction syndrome (SOS). Such hepatic damage is barely detected during or after chemotherapy due to a lack of effective diagnostic procedures, but liver biopsy. The primary objective of the present study was to identify potential early diagnosis biomarkers of SOS using a metabonomic approach. SOS was induced in rats by monocrotaline, a prototypical toxic substance. {sup 1}H NMR spectroscopy analysis of urine samples collected from rats treated with monocrotaline showed significant metabolic changes as compared to controls. During a first phase, cellular protective mechanisms such as an increased synthesis of GSH (reduced taurine) and the recruitment of cell osmolytes in the liver (betaine) were seen. In the second phase, the disturbance of the urea cycle (increased ornithine and urea reduction) leading to the depletion of NO, the alteration in the GSH synthesis (increased creatine and GSH precursors (glutamate, dimethylglycine and sarcosine)), and the liver necrosis (decrease taurine and increase creatine) all indicate the development of SOS. - Highlights: • Urine metabonomic profiles of SOS have been identified. • Urine osmoprotectants and anti-oxidants indicated an initial liver protection. • Liver necrosis was demonstrated by increased urine levels of taurine and creatine. • NO depletion was suggested by changes in ornithine and urea.

  8. Human liver sinusoidal endothelial cells but not hepatocytes contain factor VIII.

    Science.gov (United States)

    Shahani, T; Covens, K; Lavend'homme, R; Jazouli, N; Sokal, E; Peerlinck, K; Jacquemin, M

    2014-01-01

    Although the liver is the major site of coagulation factor VIII (FVIII) synthesis, the type of cells producing FVIII within the liver is still unclear. To measure FVIII in extracts of primary liver sinusoidal endothelial cells (LSECs) and hepatocytes, thereby preventing potential bias resulting from the modifications of the cell phenotype that can take place during in vitro culture. LSECs were purified by flow cytometry cell sorting on the basis of their coexpression of Tie2 and CD32b. The purity of the cells was controlled by RNA sequencing. FVIII activity (FVIII:C) in extracts of purified cells was measured with a sensitive FVIII chromogenic assay, in which the specificity of the reaction is controlled by neutralization of FVIII activity with specific inhibitor antibodies. The FVIII:C concentration in purified LSECs ranged from 0.3 to 2.8 nU per cell. In contrast, FVIII:C was undetectable in hepatocytes. The intracellular FVIII:C concentrations are therefore at least 10-100-fold higher in LSECs than in hepatocytes. Our data demonstrate that LSECs, but not hepatocytes, contain measurable amounts of FVIII:C, and suggest that the former are the main cells producing FVIII in the human liver. © 2013 International Society on Thrombosis and Haemostasis.

  9. Elementary steps of contraction probed by sinusoidal analysis technique in rabbit psoas fibers.

    Science.gov (United States)

    Kawai, M; Zhao, Y; Halvorson, H R

    1993-01-01

    Elementary steps of contraction were probed by sinusoidal analysis technique in skinned fibers from the rabbit psoas muscle during maximal Ca2+ activation (pCa 4.55-4.82) at 20 degrees C and 200 mM ionic strength. Our study included the effects of MgATP, MgADP, and Pi concentrations, and an ATP hydrolysis rate measurement. We increased the frequency range up to 350 Hz, and resolved an extra process (D), in addition to well defined processes (A), (B), and (C). Based on these studies, we established a cross-bridge scheme consisting of six attached states, one detached state, and transitions between these states. We deduced all kinetic constants to specify the scheme. The scheme uniquely explains our data, and no other scheme with an equal degree of simplicity could explain our data. We correlated process (D) to ATP isomerization, process (C) to cross-bridge detachment, and process (B) to cross-bridge attachment. We deduced the tension per cross-bridge state, which indicates that force is generated on cross-bridge attachment and before Pi-release. We also found that the rate constants of elementary steps become progressively slower starting from ATP binding to the myosin head and ending by ADP isomerization, and this stepwise slowing may be the essential and integral part of the energy transduction mechanism by muscle.

  10. Morphology and force probing of primary murine liver sinusoidal endothelial cells.

    Science.gov (United States)

    Zapotoczny, B; Owczarczyk, K; Szafranska, K; Kus, E; Chlopicki, S; Szymonski, M

    2017-07-01

    Liver sinusoidal endothelial cells (LSECs) represent unique type of endothelial cells featured by their characteristic morphology, ie, lack of a basement membrane and presence of fenestrations-transmembrane pores acting as a dynamic filter between the vascular space and the liver parenchyma. Delicate structure of LSECs membrane combined with a submicron size of fenestrations hinders their visualization in live cells. In this work, we apply atomic force microscopy contact mode to characterize fenestrations in LSECs. We reveal the structure of fenestrations in live LSECs. Moreover, we show that the high-resolution imaging of fenestrations is possible for the glutaraldehyde-fixed LSECs. Finally, thorough information about the morphology of LSECs including great contrast in visualization of sieve plates and fenestrations is provided using Force Modulation mode. We show also the ability to precisely localize the cell nuclei in fixed LSECs. It can be helpful for more precise description of nanomechanical properties of cell nuclei using atomic force microscopy. Presented methodology combining high-quality imaging of fixed cells with an additional nanomechanical information of both live and fixed LSECs provides a unique approach to study LSECs morphology and nanomechanics that could foster understanding of the role of LSECs in maintaining liver homeostasis. Copyright © 2017 John Wiley & Sons, Ltd.

  11. Numerical simulation of turbulent flow and heat transfer though sinusoidal ducts

    Science.gov (United States)

    Abroshan, Hamid

    2018-02-01

    Turbulent forced convection heat transfer in corrugated plate surfaces was studied by means of CFD. Flow through corrugated plates, which are sets of sinusoidal ducts, was analyzed for different inlet flow angles (0° to 50°), aspect ratios (0.1 to 10), Reynolds numbers (2000 to 40,000) and Prantdel numbers (0.7 to 5). Heat transfer is affected significantly by variation of aspect ratio. A maximum heat transfer coefficient is observed at a particular aspect ratio although the aspect ratio has a minor effect on friction factor. Enlarging inlet flow angle also leads to a higher heat transfer coefficient and pressure loss in aspect ratios close to unity. Dependency of Nusselt and friction factor on the angle and aspect ratio was interpreted by means of appearance of secondary motions and coexistence of laminar and turbulent flow in a cross section. Comparing the results with experimental data shows a maximum 12.8% difference. By evaluating the results, some correlations were proposed to calculate Nusselt number and friction factor for entrance and fully developed regions. A corrugated plate with an aspect ratio equal to 1.125 and an inlet flow angle equal to 50° gives the best heat transfer and pressure drop characteristics.

  12. An Improved Walsh Function Algorithm for Use in Sinusoidal and Nonsinusoidal Power Components Measurement

    Directory of Open Access Journals (Sweden)

    Saifulnizam Bin Abdul Khalid

    2013-01-01

    Full Text Available This paper presents an improved Walsh function IWF algorithms as an alternative approach for active and reactive powers measurement in linear and nonlinear, balanced and unbalanced sinusoidal three-phase load system. It takes advantage of Walsh function unified approach, simple algorithm and its intrinsic high level of accuracy as a result of coefficient characteristics and energy behaviour representation. The developed algorithm was modeled on the Matlab Simulink software; different types of load, linear and nonlinear, were also modeled based on practical voltage and current waveforms and tested with the proposed improved Walsh algorithms. The IEEE standard 1459–2000 which is based on fast Fourier transform FFT approach was used as benchmark for the linear load system. The data obtained from laboratory experiment to determine power components in harmonic load systems using Fluke 435 power quality analyzer PQA which complies with IEC/EN61010-1-2001 standard was modeled and used to validate the improved algorithm for nonlinear load measurement. The results showed that the algorithm has the potential to effectively measure three-phase power components under different load conditions.

  13. Hepatic sinusoidal obstruction syndrome caused by herbal medicine: CT and MRI features

    International Nuclear Information System (INIS)

    Zhou, Hua; Lou, Hai Yan; Wang, Yi Xiang J.; Xu, Xiao Jun; Zhang, Min Ming

    2014-01-01

    To describe the CT and MRI features of hepatic sinusoidal obstruction syndrome (HSOS) caused by herbal medicine Gynura segetum. The CT and MRI features of 16 consecutive Gynura segetum induced HSOS cases (12 men, 4 women) were analyzed. Eight patients had CT; three patients had MRI, and the remaining five patients had both CT and MRI examinations. Based on their clinical presentations and outcomes, the patients were classified into three categories: mild, moderate, and severe. The severity of the disease was also evaluated radiologically based on the abnormal hepatic patchy enhancement in post-contrast CT or MRI images. Ascites, patchy liver enhancement, and main right hepatic vein narrowing or occlusion were present in all 16 cases. Hepatomegaly and gallbladder wall thickening were present in 14 cases (87.5%, 14/16). Periportal high intensity on T2-weighted images was present in 6 cases (75%, 6/8). Normal liver parenchymal enhancement surrounding the main hepatic vein forming a clover-like sign was observed in 4 cases (25%, 4/16). The extent of patchy liver enhancement was statistically associated with clinical severity classification (kappa = 0.565). Ascites, patchy liver enhancement, and the main hepatic veins narrowing were the most frequent signs of herbal medicine induced HSOS. The grade of abnormal patchy liver enhancement was associated with the clinical severity.

  14. Hepatic sinusoidal obstruction syndrome caused by herbal medicine: CT and MRI features

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hua; Lou, Hai Yan [Dept. of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou (China); Wang, Yi Xiang J. [Dept. of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou (China); Xu, Xiao Jun; Zhang, Min Ming [Dept. of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou (China)

    2014-04-15

    To describe the CT and MRI features of hepatic sinusoidal obstruction syndrome (HSOS) caused by herbal medicine Gynura segetum. The CT and MRI features of 16 consecutive Gynura segetum induced HSOS cases (12 men, 4 women) were analyzed. Eight patients had CT; three patients had MRI, and the remaining five patients had both CT and MRI examinations. Based on their clinical presentations and outcomes, the patients were classified into three categories: mild, moderate, and severe. The severity of the disease was also evaluated radiologically based on the abnormal hepatic patchy enhancement in post-contrast CT or MRI images. Ascites, patchy liver enhancement, and main right hepatic vein narrowing or occlusion were present in all 16 cases. Hepatomegaly and gallbladder wall thickening were present in 14 cases (87.5%, 14/16). Periportal high intensity on T2-weighted images was present in 6 cases (75%, 6/8). Normal liver parenchymal enhancement surrounding the main hepatic vein forming a clover-like sign was observed in 4 cases (25%, 4/16). The extent of patchy liver enhancement was statistically associated with clinical severity classification (kappa = 0.565). Ascites, patchy liver enhancement, and the main hepatic veins narrowing were the most frequent signs of herbal medicine induced HSOS. The grade of abnormal patchy liver enhancement was associated with the clinical severity.

  15. Diagnostic performance of Contrast-enhanced CT in Pyrrolizidine Alkaloids-induced Hepatic Sinusoidal Obstructive Syndrome

    Science.gov (United States)

    Kan, Xuefeng; Ye, Jin; Rong, Xinxin; Lu, Zhiwen; Li, Xin; Wang, Yong; Yang, Ling; Xu, Keshu; Song, Yuhu; Hou, Xiaohua

    2016-01-01

    Hepatic sinusoidal obstruction syndrome (HSOS) can be caused by pyrrolizidine alkaloids(PAs)-containing herbals. Since PAs exposure is obscure and clinical presentation of HSOS is unspecific, it is challenge to establish the diagnosis of PAs-induced HSOS. Gynura segetum is one of the most wide-use herbals containing PAs. The aim of our study is to describe the features of contrast-enhanced computed tomography (CT) in gynura segetum-induced HSOS, and then determine diagnostic performance of radiological signs. We retrospectively analyzed medical records and CT images of HSOS patients (71 cases) and the controls (222 cases) enrolled from January 1, 2008, to Oct 31, 2015. The common findings of contrast CT in PAs-induced HSOS included: ascites (100%), hepatomegaly (78.87%), gallbladder wall thickening (86.96%), pleural effusion (70.42%), hepatic vein narrowing (87.32%), patchy liver enhancement (92.96%), and heterogeneous hypoattenuation (100%); of these signs, patchy enhancement and heterogeneous hypoattenuation were valuable features. Then, the result of diagnostic performance demonstrated that contrast CT possessed better performance in diagnosing PAs-induced HSOS compared with various parameters of Seattle criteria. In conclusion, the patients with PAs-induced HSOS display distinct radiologic features at CT-scan, which reveals that contrast-enhanced CT provides an effective noninvasive method for diagnosing PAs-induced HSOS. PMID:27897243

  16. In-vitro study on haemodiluted blood flow in a sinusoidal microstenosis.

    Science.gov (United States)

    Kang, M J; Ji, H-S; Lee, S J

    2010-01-01

    In-vitro experiments were carried out to investigate the haemodynamic and haemorheological behaviours of haemodiluted blood flow through a microstenosis using a micro-particle image velocimetry (PIV) technique. The micro-PIV system employed in this study consisted of a two-head neodymium:yttrium-aluminium-garnet (Nd:YAG) laser, a cooled charge-coupled device camera, and a delay generator. To simulate blood flow in a stenosed vascular vessel, a polydimethylsiloxane (PDMS) microchannel with a sinusoidal throat of 80 per cent severity was employed. The width and depth of the microchannel were 100 microm and 50 microm, respectively. To compare the flow characteristics in the microstenosis, the same experiments were repeated in a straight microchannel under the same flow conditions. Using a syringe pump, human blood with 5 per cent haematocrit was supplied into the microstenosis channel. The flow characteristics and transport of blood cells through the microstenosis were investigated with various flowrates. The mean velocity fields were nearly symmetric with respect to the channel centreline. In the contraction section, the oncoming blood flow was accelerated rapidly, and the maximum velocity at the throat was almost 4.99 times faster than that of the straight microchannel without stenosis. In the diffusion section, the blood cells show rolling, deformation, twisting, and tumbling motion due to the flow-choking characteristics at the stenotic region. The results from this study will provide useful basic data for comparison with those obtained by clinical researchers.

  17. Thermodynamic analysis of fluid flow in channels with wavy sinusoidal walls

    Directory of Open Access Journals (Sweden)

    Bahaidarah Haitham M.S.

    2013-01-01

    Full Text Available Entropy generation in channels with non-uniform cross-section that can be found in many fluid flow systems is an important concern from the thermodynamic design point of view. In this regard, the entropy generation in channels with periodic wavy sinusoidal walls has been considered in present study. The flow is assumed to be two-dimensional steady laminar and the main parameters considered are the Re number, height ratio Hmin/Hmax and module length ratio L/a. The fluid enters the channel with uniform axial velocity and temperature. The wall of the channel is assumed to be at uniform temperature which is different that of the fluid at the inlet of the channel. The distribution of the entropy generation as well as the total entropy generation has been studied numerically. It is found that the Re number and the geometric parameters, height ratio and module length ratio have significant effect on both the local concentrations of entropy generation as well as the total entropy generation in the channel. Flow separation and re-circulation size, strength and location of flow are found to be major concern in determining the local entropy generation.

  18. A high current sinusoidal pulse generator for the diluter magnets of the LHC beam dump system

    CERN Document Server

    Vossenberg, Eugène B; Ducimetière, L; Schröder, G H

    2000-01-01

    CERN is constructing the Large Hadron Collider (LHC), a superconducting accelerator that will collide protons at a center of mass energy of 14 TeV. The two colliding beams will each store an energy of up to 540 MJ, which must be safely deposited within one beam revolution of 89 mu s on two external absorbers located about 700 m from the extraction points at the end of dedicated extraction tunnels. To avoid evaporation of the graphite absorber material by the very high energy density of the incident beams, the deposition area of the beams on the absorber front face will be increased. This is done by a pair of sinusoidally powered orthogonal magnet systems producing approximately an e-shape figure of about 35 mm diameter, with a minimum velocity of 10 mm/ mu s during the dumping process. The pulse generators of the horizontally and vertically deflecting diluter magnets are composed of capacitor banks, discharged by stacks of solid state closing switches. They are connected to the magnets by 28 m long low induct...

  19. Interactions among oscillatory pathways in NF-kappa B signaling

    Directory of Open Access Journals (Sweden)

    White Michael RH

    2011-02-01

    Full Text Available Abstract Background Sustained stimulation with tumour necrosis factor alpha (TNF-alpha induces substantial oscillations—observed at both the single cell and population levels—in the nuclear factor kappa B (NF-kappa B system. Although the mechanism has not yet been elucidated fully, a core system has been identified consisting of a negative feedback loop involving NF-kappa B (RelA:p50 hetero-dimer and its inhibitor I-kappa B-alpha. Many authors have suggested that this core oscillator should couple to other oscillatory pathways. Results First we analyse single-cell data from experiments in which the NF-kappa B system is forced by short trains of strong pulses of TNF-alpha. Power spectra of the ratio of nuclear-to-cytoplasmic concentration of NF-kappa B suggest that the cells' responses are entrained by the pulsing frequency. Using a recent model of the NF-kappa B system due to Caroline Horton, we carried out extensive numerical simulations to analyze the response frequencies induced by trains of pulses of TNF-alpha stimulation having a wide range of frequencies and amplitudes. These studies suggest that for sufficiently weak stimulation, various nonlinear resonances should be observable. To explore further the possibility of probing alternative feedback mechanisms, we also coupled the model to sinusoidal signals with a wide range of strengths and frequencies. Our results show that, at least in simulation, frequencies other than those of the forcing and the main NF-kappa B oscillator can be excited via sub- and superharmonic resonance, producing quasiperiodic and even chaotic dynamics. Conclusions Our numerical results suggest that the entrainment phenomena observed in pulse-stimulated experiments is a consequence of the high intensity of the stimulation. Computational studies based on current models suggest that resonant interactions between periodic pulsatile forcing and the system's natural frequencies may become evident for sufficiently

  20. Effective Micro Grid Stability Under Excitation Limiters in Islanded and Connected Modes

    OpenAIRE

    Tashakori, Sajad; Tavakoli, Amir; Mirzaei, Farzad

    2017-01-01

    International audience; In this paper the authors tried to design a under excitation limiter and a power system stabilizer which can operate without any kind of interaction. The under excitation limiter (UEL) is intended to prevent reduction of generator excitation to a level where the steady state stability limit or the stator core end-region heating limit is exceeded. The power system stabilizer (PSS) uses auxiliary stabilizing signals to control the excitation system so as to improve power...

  1. A Comparison of AC and Short-Pulse Excitation for Xe Excimer Barrier Discharge Lamps

    Science.gov (United States)

    Mildren, R. P.; Morrow, R.; Carman, R. J.

    1999-10-01

    Dielectric barrier discharge excitation of rare-gas and rare-gas halide excimers provides an efficient scheme for generating intense VUV radiation for applications including lighting, ozonisation, and photochemical surface treatment. Typically, lamps employ AC (sinusoidal) voltage excitation in which case VUV emission is produced from short-livid micro discharges (streamers) distributed stochastically over the dielectric. However, it has been recently demonstrated that significantly increased efficiency (by factor 2-3) can be obtained from Xe lamps when using short excitation pulses separated by idle periods[1]. In this paper, we report an investigation into the mechanisms which bring about improved efficiency by comparing the electrical, spectral and spatial emission characteristics of a small-scale Xe lamp excited by short pulses ( 100ns) with that of conventional AC excitation. The results reveal that pulsed excitation produces a homogenous glow-like discharge in which the electron density and temperature are more favourable for efficient excimer production. [1] RP Mildren et al, IVth Int. Conf. Atom. and Molec. Pulsed Lasers, Tomsk, Siberia Sept. (1999); F Vollkommer and L Hitzschke, Proc. 8th Int. Symp. Sci. Tech. Light Sources, Greifswald, Germany, '98, IL-07, pp51-59 (1998)

  2. Electromagnetic Radiation Generated by Acoustic Excitation of Rock Samples

    Science.gov (United States)

    Yavorovich, Lyudmila V.; Bespalko, Anatolii A.; Fedotov, Pavel I.; Baksht, Rina B.

    2016-10-01

    The paper presents an experiment on acoustic excitation of electromagnetic radiation (EMR) signals in skarn, sandstone, and magnetite ore samples. For the skarn and sandstone samples, the EMR signal amplitude was observed to decrease with increasing ultimate strength. Supposedly, this effect can be explained by assuming that EMR is generated when an acoustic wave propagates through an electrical double layer. The presence of piezoelectric inclusions ( e.g., quartz) in the magnetite ore enhances the analog EMR signal and its spectral components.

  3. Highly excited atoms

    International Nuclear Information System (INIS)

    Kleppner, D.; Littman, M.G.; Zimmerman, M.L.

    1981-01-01

    Highly excited atoms are often called Rydberg atoms. These atoms have a wealth of exotic properties which are discussed. Of special interest, are the effects of electric and magnetic fields on Rydberg atoms. Ordinary atoms are scarcely affected by an applied electric or magnetic field; Rydberg atoms can be strongly distorted and even pulled apart by a relatively weak electric field, and they can be squeezed into unexpected shapes by a magnetic field. Studies of the structure of Rydberg atoms in electric and magnetic fields have revealed dramatic atomic phenomena that had not been observed before

  4. Excited QCD 2017

    CERN Document Server

    2017-01-01

    This edition is the ninth in a series of workshops that had been previously organised in Poland (2009), Slovakia (2010 and 2015), France (2011), Portugal (2012 and 2016) and Bosnia and Herzegovina (2013 and 2014). In the year 2017 the workshop goes to the beautiful Sintra near Lisbon, Portugal. The workshop covers diverse aspects of QCD: (i) QCD at low energies: excited hadrons, new resonances, glueballs, multiquarks. (ii) QCD at high temperatures and large densities: heavy-ion collisions, jets, diffraction, hadronisation, quark-gluon plasma, holography, colour-glass condensate, compact stars, applications to astrophysics.

  5. Sinusoidal 50-Hz magnetic fields depress rat pineal NAT activity and serum melatonin. Role of duration and intensity of exposure.

    Science.gov (United States)

    Selmaoui, B; Touitou, Y

    1995-01-01

    The purpose of this study was to determine whether the exposure to a 50-Hz sinusoidal magnetic field could influence serum melatonin concentration and pineal enzymes activities in rats. The effects of both duration and intensity of exposure were also looked at. Two groups of Wistar male rats were exposed to 50-Hz magnetic fields of either 1, 10 or 100 microT. The first group was exposed for 12 hours and the second for 30 days (18 hours per day). During this time the animals were kept under a standard 12:12 light: dark cycle with a temperature of 25 degrees C and a relative humidity of 45 to 50%. Control (Sham-exposed) animals were kept in a similar environment but without exposure to a magnetic field. The animals were sacrificed under red dim light. Serum melatonin concentration and pineal N-acetyltransferase (NAT) and hydroxyindole-O-methyltransferase (HIOMT) activities were studied. Long-term exposure to a magnetic field (10 and 100 microT) significantly depressed the nocturne peak of serum melatonin concentration and pineal NAT activity whereas no effect was observed on HIOMT activity. Short-term exposure depressed both pineal NAT activity and nocturnal serum melatonin concentration but only with the highest intensity used (100 microT). Our results suggest that sinusoidal magnetic fields alter the production of melatonin through an inhibition of pineal NAT activity. Both duration and intensity of exposure play an important role in this effect. This work shows that, 1) sinusoidal magnetic field depresses NAT activity as static magnetic field does whereas HIOMT activity remains unaltered whatever the type of experiment and the intensity used, 2) the effect observed is related to both the duration of exposure and the intensity of magnetic fields, 3) the sensitivity threshold to magnetic fields vary with the duration of exposure which strongly suggests a cumulative effect of sinusoidal magnetic fields on pineal function.

  6. Large right ventricular sinusoids in an infant with aorta-left ventricular tunnel and proximal right coronary artery atresia.

    Science.gov (United States)

    Chen, Peter C; Spinner, Joseph A; Heinle, Jeffrey S

    2018-04-16

    We report a 1-month-old infant diagnosed with an aorta-left ventricular tunnel, ventricular septal defect, and right coronary atresia with right ventricular sinusoids. The patient's anatomy and physiology did not indicate right-ventricular-dependent coronary circulation, and therefore right ventricular decompression could be performed without compromising coronary perfusion during surgical correction. A detailed understanding of the coronary anatomy is critical in managing this defect when coronary anomalies are present.

  7. Calcium homeostasis is required for contact-dependent helical and sinusoidal tip growth in Candida albicans hyphae

    OpenAIRE

    Brand, Alexandra; Lee, Keunsook; Veses, Veronica; Gow, Neil A R

    2009-01-01

    Hyphae of the dimorphic fungus, Candida albicans, exhibit directional tip responses when grown in contact with surfaces. On hard surfaces or in liquid media, the trajectory of hyphal growth is typically linear, with tip re-orientation events limited to encounters with topographical features (thigmotropism). In contrast, when grown on semisolid surfaces, the tips of C. albicans hyphae grow in an oscillatory manner to form regular two-dimensional sinusoidal curves and three-dimensional helices....

  8. Construction of a liver sinusoid based on the laminar flow on chip and self-assembly of endothelial cells.

    Science.gov (United States)

    Mi, Shengli; Yi, Xiaoman; Du, Zhichang; Xu, Yuanyuan; Sun, Wei

    2018-02-20

    The liver is one of the main metabolic organs, and nearly all ingested drugs will be metabolized by the liver. Only a small fraction of drugs are able to come onto the market during drug development, and hepatic toxicity is a major cause for drug failure. Since drug development is costly in both time and materials, an in vitro liver model that can accelerate bioreactions in the liver and reduce drug consumption is imperative in the pharmaceutical industry. The liver on a chip is an ideal alternative for its controllable environment and tiny size, which means constructing a more biomimetic model, reducing material consumption as well as promoting drug diffusion and reaction. In this study, taking advantage of the laminar flow on chips and using natural degradable gel rat tail Collagen-I, we constructed a liver sinusoid on a chip. By synchronously injecting two kinds of cell-laden collagen, HepG2-laden collagen and HUVEC-laden collagen, we formed two collagen layers with a clear borderline. By controlling the HUVEC density and injection of growth factors, HUVECs in collagen formed a monolayer through self-assembly. Thus, a liver sinusoid on a chip was achieved in a more biomimetic environment with a more controllable and uniform distribution of discrete HUVECs. Viability, album secretion and urea synthesis of the live sinusoid on a chip were analysed on days 3, 5 and 7 after collagen injection with acetaminophen treatment at 0 (control), 10 and 20 mM. The results indicated that our liver sinusoid on a chip was able to maintain bioactivity and function for at least 7 d and was beneficial for hepatotoxic drug screening.

  9. Sinusoidal oscillators with lower gain requirements at higher frequencies based on an explicit tanh(x) nonlinearity

    KAUST Repository

    Elwakil, Ahmed S.

    2009-04-28

    Two novel sinusoidal oscillator structures with an explicit tanh(x) nonlinearity are proposed. The oscillators have the attractive feature: the higher the operating frequency, the lower the necessary gain required to start oscillations. A nonlinear model for the two oscillators is derived and verified numerically. Spice simulations using AMS BiCMOS 0.35 μ model parameters and experimental results are shown. Copyright © 2009 John Wiley & Sons, Ltd.

  10. Design of Helical Capacitance Sensor for Holdup Measurement in Two-Phase Stratified Flow: A Sinusoidal Function Approach.

    Science.gov (United States)

    Lim, Lam Ghai; Pao, William K S; Hamid, Nor Hisham; Tang, Tong Boon

    2016-07-04

    A 360° twisted helical capacitance sensor was developed for holdup measurement in horizontal two-phase stratified flow. Instead of suppressing nonlinear response, the sensor was optimized in such a way that a 'sine-like' function was displayed on top of the linear function. This concept of design had been implemented and verified in both software and hardware. A good agreement was achieved between the finite element model of proposed design and the approximation model (pure sinusoidal function), with a maximum difference of ±1.2%. In addition, the design parameters of the sensor were analysed and investigated. It was found that the error in symmetry of the sinusoidal function could be minimized by adjusting the pitch of helix. The experiments of air-water and oil-water stratified flows were carried out and validated the sinusoidal relationship with a maximum difference of ±1.2% and ±1.3% for the range of water holdup from 0.15 to 0.85. The proposed design concept therefore may pose a promising alternative for the optimization of capacitance sensor design.

  11. Design of Helical Capacitance Sensor for Holdup Measurement in Two-Phase Stratified Flow: A Sinusoidal Function Approach

    Directory of Open Access Journals (Sweden)

    Lam Ghai Lim

    2016-07-01

    Full Text Available A 360° twisted helical capacitance sensor was developed for holdup measurement in horizontal two-phase stratified flow. Instead of suppressing nonlinear response, the sensor was optimized in such a way that a ‘sine-like’ function was displayed on top of the linear function. This concept of design had been implemented and verified in both software and hardware. A good agreement was achieved between the finite element model of proposed design and the approximation model (pure sinusoidal function, with a maximum difference of ±1.2%. In addition, the design parameters of the sensor were analysed and investigated. It was found that the error in symmetry of the sinusoidal function could be minimized by adjusting the pitch of helix. The experiments of air-water and oil-water stratified flows were carried out and validated the sinusoidal relationship with a maximum difference of ±1.2% and ±1.3% for the range of water holdup from 0.15 to 0.85. The proposed design concept therefore may pose a promising alternative for the optimization of capacitance sensor design.

  12. Design of Helical Capacitance Sensor for Holdup Measurement in Two-Phase Stratified Flow: A Sinusoidal Function Approach

    Science.gov (United States)

    Lim, Lam Ghai; Pao, William K. S.; Hamid, Nor Hisham; Tang, Tong Boon

    2016-01-01

    A 360° twisted helical capacitance sensor was developed for holdup measurement in horizontal two-phase stratified flow. Instead of suppressing nonlinear response, the sensor was optimized in such a way that a ‘sine-like’ function was displayed on top of the linear function. This concept of design had been implemented and verified in both software and hardware. A good agreement was achieved between the finite element model of proposed design and the approximation model (pure sinusoidal function), with a maximum difference of ±1.2%. In addition, the design parameters of the sensor were analysed and investigated. It was found that the error in symmetry of the sinusoidal function could be minimized by adjusting the pitch of helix. The experiments of air-water and oil-water stratified flows were carried out and validated the sinusoidal relationship with a maximum difference of ±1.2% and ±1.3% for the range of water holdup from 0.15 to 0.85. The proposed design concept therefore may pose a promising alternative for the optimization of capacitance sensor design. PMID:27384567

  13. Cooperative effect of monoclinic distortion and sinusoidal modulation in the martensitic structure of Ni2FeGa

    International Nuclear Information System (INIS)

    Lu, J.B.; Yang, H.X.; Tian, H.F.; Zeng, L.J.; Ma, C.; Feng, L.; Wu, G.H.; Li, J.Q.; Jansen, J.

    2010-01-01

    The structural features of the '5M' martensitic phase in Ni 2 FeGa alloys have been determined by electron diffraction using the multi-slice least-squares (MSLS) method. The results demonstrate that the '5M' phase contains an evident cooperative effect of monoclinic distortion and sinusoidal modulation along the [110] c direction. Theoretical simulations based on our refined data suggest that the '5M' martensitic phase observed in Ni-Fe-Ga and Ni-Mn-Ga has visible common behaviors in both stacking sequence and local structural distortion. Considering the cooperative effect of monoclinic distortion and sinusoidal modulation, we demonstrate that the '7M' martensitic phase could adopt two equivalent structural phases corresponding with the stacking sequences of (43 - ) 2 and (52 - ) 2 , respectively. - Graphical abstract: The structural model of the '5M' Ni 2 FeGa martensite viewed along the [001] c (i.e. [010] m ) zone axis, demonstrating the cooperative effect of monoclinic distortion and sinusoidal modulation along the [110] c direction.

  14. Dynamical pattern formation in a low-concentration magnetorheological fluid under two orthogonal sinusoidal fields

    International Nuclear Information System (INIS)

    Yépez, L.D.; Carrillo, J.L.; Donado, F.; Sausedo-Solorio, J.M.; Miranda-Romagnoli, P.

    2016-01-01

    The dynamical pattern formation of clusters of magnetic particles in a low-concentration magnetorheological fluid, under the influence of a superposition of two perpendicular sinusoidal fields, is studied experimentally. By varying the frequency and phase shift of the perpendicular fields, this configuration enables us to experimentally analyze a wide range of field configurations, including the case of a pure rotating field and the case of an oscillating unidirectional field. The fields are applied parallel to the horizontal plane where the fluid lies or in the vertical plane. For fields applied in the horizontal plane, we observed that, when the ratio of the frequencies increases, the average cluster size exhibits a kind of periodic resonances. When the phase shift between the fields is varied, the average chain length reaches maximal values for the cases of the rotating field and the unidirectional case. We analyze and discuss these results in terms of a weighted average of the time-dependent Mason number. In the case of a rotating field on the vertical plane, we also observe that the competition between the magnetic and the viscous forces determines the average cluster size. We show that this configuration generates a series of physically meaningful self-organization of clusters and transport phenomena. - Highlights: • A weighted average of the time-dependent Mason number is proposed. • The self-propelling clusters appear when a vertical rotating magnetic field is applied. • The largest average chain lengths are reached when frequencies are multiples one another. • Rotating and unidirectional alternating fields produce the largest average chain length values.

  15. Dynamical pattern formation in a low-concentration magnetorheological fluid under two orthogonal sinusoidal fields

    Energy Technology Data Exchange (ETDEWEB)

    Yépez, L.D.; Carrillo, J.L. [Instituto de Física de la Universidad Autónoma de Puebla, Ciudad Universitaria, Edif. 110 A, Puebla 72570 (Mexico); Donado, F.; Sausedo-Solorio, J.M.; Miranda-Romagnoli, P. [Instituto de Ciencias Básicas e Ingeniería Universidad Autónoma del Estado de Hidalgo, Pachuca 42090, Pachuca (Mexico)

    2016-06-15

    The dynamical pattern formation of clusters of magnetic particles in a low-concentration magnetorheological fluid, under the influence of a superposition of two perpendicular sinusoidal fields, is studied experimentally. By varying the frequency and phase shift of the perpendicular fields, this configuration enables us to experimentally analyze a wide range of field configurations, including the case of a pure rotating field and the case of an oscillating unidirectional field. The fields are applied parallel to the horizontal plane where the fluid lies or in the vertical plane. For fields applied in the horizontal plane, we observed that, when the ratio of the frequencies increases, the average cluster size exhibits a kind of periodic resonances. When the phase shift between the fields is varied, the average chain length reaches maximal values for the cases of the rotating field and the unidirectional case. We analyze and discuss these results in terms of a weighted average of the time-dependent Mason number. In the case of a rotating field on the vertical plane, we also observe that the competition between the magnetic and the viscous forces determines the average cluster size. We show that this configuration generates a series of physically meaningful self-organization of clusters and transport phenomena. - Highlights: • A weighted average of the time-dependent Mason number is proposed. • The self-propelling clusters appear when a vertical rotating magnetic field is applied. • The largest average chain lengths are reached when frequencies are multiples one another. • Rotating and unidirectional alternating fields produce the largest average chain length values.

  16. First evidence of pyrrolizidine alkaloid N-oxide-induced hepatic sinusoidal obstruction syndrome in humans.

    Science.gov (United States)

    Yang, Mengbi; Ruan, Jianqing; Gao, Hong; Li, Na; Ma, Jiang; Xue, Junyi; Ye, Yang; Fu, Peter Pi-Cheng; Wang, Jiyao; Lin, Ge

    2017-12-01

    Pyrrolizidine alkaloids (PAs) are among the most potent phytotoxins widely distributed in plant species around the world. PA is one of the major causes responsible for the development of hepatic sinusoidal obstruction syndrome (HSOS) and exerts hepatotoxicity via metabolic activation to form the reactive metabolites, which bind with cellular proteins to generate pyrrole-protein adducts, leading to hepatotoxicity. PA N-oxides coexist with their corresponding PAs in plants with varied quantities, sometimes even higher than that of PAs, but the toxicity of PA N-oxides remains unclear. The current study unequivocally identified PA N-oxides as the sole or predominant form of PAs in 18 Gynura segetum herbal samples ingested by patients with liver damage. For the first time, PA N-oxides were recorded to induce HSOS in human. PA N-oxide-induced hepatotoxicity was further confirmed on mice orally dosed of herbal extract containing 170 μmol PA N-oxides/kg/day, with its hepatotoxicity similar to but potency much lower than the corresponding PAs. Furthermore, toxicokinetic study after a single oral dose of senecionine N-oxide (55 μmol/kg) on rats revealed the toxic mechanism that PA N-oxides induced hepatotoxicity via their biotransformation to the corresponding PAs followed by the metabolic activation to form pyrrole-protein adducts. The remarkable differences in toxicokinetic profiles of PAs and PA N-oxides were found and attributed to their significantly different hepatotoxic potency. The findings of PA N-oxide-induced hepatotoxicity in humans and rodents suggested that the contents of both PAs and PA N-oxides present in herbs and foods should be regulated and controlled in use.

  17. Using EFDD as a Robust Technique for Deterministic Excitation in Operational Modal Analysis

    DEFF Research Database (Denmark)

    Jacobsen, Niels-Jørgen; Andersen, Palle; Brincker, Rune

    2007-01-01

    carried out on a plate structure excited by respectively a pure stochastic signal and the same stochastic signal superimposed by a deterministic signal. Good agreement was found in terms of both natural frequencies, damping ratios and mode shapes. Even the influence of a deterministic signal located...

  18. An Analysis/Synthesis System of Audio Signal with Utilization of an SN Model

    Directory of Open Access Journals (Sweden)

    G. Rozinaj

    2004-12-01

    Full Text Available An SN (sinusoids plus noise model is a spectral model, in which theperiodic components of the sound are represented by sinusoids withtime-varying frequencies, amplitudes and phases. The remainingnon-periodic components are represented by a filtered noise. Thesinusoidal model utilizes physical properties of musical instrumentsand the noise model utilizes the human inability to perceive the exactspectral shape or the phase of stochastic signals. SN modeling can beapplied in a compression, transformation, separation of sounds, etc.The designed system is based on methods used in the SN modeling. Wehave proposed a model that achieves good results in audio perception.Although many systems do not save phases of the sinusoids, they areimportant for better modelling of transients, for the computation ofresidual and last but not least for stereo signals, too. One of thefundamental properties of the proposed system is the ability of thesignal reconstruction not only from the amplitude but from the phasepoint of view, as well.

  19. Vortex Ring Formation Characteristics in Synthetic Jet due to Changes of Excitation Frequency in the ½-Ball Cavity Actuator

    Science.gov (United States)

    Kosasih, Engkos A.; Harinaldi; Trisno, Ramon

    2017-04-01

    A jet flow that contains vortex ring has a large energy compared to a regular jet. As one of the causes of the aerodynamic drag to the vehicle, the flow separation that occurs behind the bluff body must be controlled, so that aerodynamic drag can be significantly reduced. This study is a basic work on the development of turbulent flow separation control for aerodynamic purpose, especially in the design of the vehicle body. The main objective of this study is to analyze the performance of the synthetic jet (SJA) as one of flow control tool to reduce separation area. To get the maximum performance of the synthetic jet actuator, the research starts by characterizing the actuator. Characterization of ½ ball-shaped cavity is done with excitation frequency changes and orifice diameter of 3, 5 and 8 mm. The study was conducted using computational and experimental methods. The experimental data was obtained by testing synthetic jet actuator with providing sinusoidal signal to drive the membrane and at the orifice end a hotwire probe that is set and plugged into a CTA (Constant Temperature Anemometry) to obtain the speed velocity of the exhaust jet. Computational methods used a commercial CFD software (FLUENT 6.3) with a Reynolds Stress Model as a model of turbulence. Each of these calculations or measurements was conducted under the same conditions. The research result is displayed in frequency testing curve to get the maximum velocity of the jet stream. The results are further indicative of the synthetic jet actuator capability to generate vortex rings. In the experimental results, the determination of ring vortex formation taken from the calculation of the flow velocity, while the CFD simulations, the formation of vortex rings can be seen from the visualization of the flow contour. Vortex ring formed from this ½ -ball cavity, occurred at 3 mm and 5 mm orifice diameter, while the 8 mm orifice diameter cavity cannot form a ring vortex.

  20. A Refined Self-Tuning Filter-Based Instantaneous Power Theory Algorithm for Indirect Current Controlled Three-Level Inverter-Based Shunt Active Power Filters under Non-sinusoidal Source Voltage Conditions

    Directory of Open Access Journals (Sweden)

    Yap Hoon

    2017-02-01

    Full Text Available In this paper, a refined reference current generation algorithm based on instantaneous power (pq theory is proposed, for operation of an indirect current controlled (ICC three-level neutral-point diode clamped (NPC inverter-based shunt active power filter (SAPF under non-sinusoidal source voltage conditions. SAPF is recognized as one of the most effective solutions to current harmonics due to its flexibility in dealing with various power system conditions. As for its controller, pq theory has widely been applied to generate the desired reference current due to its simple implementation features. However, the conventional dependency on self-tuning filter (STF in generating reference current has significantly limited mitigation performance of SAPF. Besides, the conventional STF-based pq theory algorithm is still considered to possess needless features which increase computational complexity. Furthermore, the conventional algorithm is mostly designed to suit operation of direct current controlled (DCC SAPF which is incapable of handling switching ripples problems, thereby leading to inefficient mitigation performance. Therefore, three main improvements are performed which include replacement of STF with mathematical-based fundamental real power identifier, removal of redundant features, and generation of sinusoidal reference current. To validate effectiveness and feasibility of the proposed algorithm, simulation work in MATLAB-Simulink and laboratory test utilizing a TMS320F28335 digital signal processor (DSP are performed. Both simulation and experimental findings demonstrate superiority of the proposed algorithm over the conventional algorithm.

  1. Wideband excitation in nonlinear vibro-acoustic modulation for damage detection

    Science.gov (United States)

    Klepka, A.; Adamczyk, M.; Pieczonka, L.; Staszewski, W. J.

    2016-04-01

    The paper discusses the use of wideband excitation in nonlinear vibro-acoustic modulation technique (VAM) used for damage detection. In its original form, two mono-harmonic signals (low and high frequency) are used for excitation. The low frequency excitation is typically selected based on a modal analysis test and high frequency excitation is selected arbitrarily in the ultrasonic frequency range. This paper presents a different approach with use of wideband excitation signals. The proposed approach gives the possibility to simplify the testing procedure by omitting the modal test used to determine the value of low frequency excitation. Simultaneous use of wideband excitation for high frequency solves the ambiguity related to the selection of the frequency of acoustic wave. Broadband excitation signals require, however, more elaborate signal processing methods to determine the intensity of modulation for a given bandwidth. The paper discusses the proposed approach and the related signal processing procedure. Experimental validation of the proposed technique is performed on a laminated composite plate with a barely visible impact damage that was generated in an impact test. Piezoceramic actuators are used for vibration excitation and a scanning laser vibrometer is used for noncontact data acquisition.

  2. Influence of the Periodicity of Sinusoidal Boundary Condition on the Unsteady Mixed Convection within a Square Enclosure Using an Ag–Water Nanofluid

    Directory of Open Access Journals (Sweden)

    Azharul Karim

    2017-12-01

    Full Text Available A numerical study of the unsteady mixed convection heat transfer characteristics of an Ag–water nanofluid confined within a square shape lid-driven cavity has been carried out. The Galerkin weighted residual of the finite element method has been employed to investigate the effects of the periodicity of sinusoidal boundary condition for a wide range of Grashof numbers (Gr (105 to 107 with the parametric variation of sinusoidal even and odd frequency, N, from 1 to 6 at different instants (for τ = 0.1 and 1. It has been observed that both the Grashof number and the sinusoidal even and odd frequency have a significant influence on the streamlines and isotherms inside the cavity. The heat transfer rate enhanced by 90% from the heated surface as the Grashof number (Gr increased from 105 to 107 at sinusoidal frequency N = 1 and τ = 1.

  3. Transient vibration analytical modeling and suppressing for vibration absorber system under impulse excitation

    Science.gov (United States)

    Wang, Xi; Yang, Bintang; Yu, Hu; Gao, Yulong

    2017-04-01

    The impulse excitation of mechanism causes transient vibration. In order to achieve adaptive transient vibration control, a method which can exactly model the response need to be proposed. This paper presents an analytical model to obtain the response of the primary system attached with dynamic vibration absorber (DVA) under impulse excitation. The impulse excitation which can be divided into single-impulse excitation and multi-impulse excitation is simplified as sinusoidal wave to establish the analytical model. To decouple the differential governing equations, a transform matrix is applied to convert the response from the physical coordinate to model coordinate. Therefore, the analytical response in the physical coordinate can be obtained by inverse transformation. The numerical Runge-Kutta method and experimental tests have demonstrated the effectiveness of the analytical model proposed. The wavelet of the response indicates that the transient vibration consists of components with multiple frequencies, and it shows that the modeling results coincide with the experiments. The optimizing simulations based on genetic algorithm and experimental tests demonstrate that the transient vibration of the primary system can be decreased by changing the stiffness of the DVA. The results presented in this paper are the foundations for us to develop the adaptive transient vibration absorber in the future.

  4. Excitation and Transmitted Torque

    Directory of Open Access Journals (Sweden)

    H. B. H. Gubran

    2000-01-01

    Full Text Available In the present study, stress analysis of fiber reinforced thin composite shafts subjected to unbalance excitation and steady torque, is carried out. Shafts of uniform as well as variable wall thickness are considered. The shaft is modeled as a simply supported Timoshenko beam in which shear deformation, rotary inertia and gyroscopic effects have been included. Modified equivalent modulus beam theory has been adopted. Rayleigh-Ritz displacements are used for deriving the solution equations. Shafts with a uniform wall thickness, and with variable wall thickness in which the thickness is varied along the axial length of the shaft for three different cases of fiber angles have been studied. Axial variation of stresses is studied in detail. Results obtained indicate that the stresses in the variable wall thickness are smaller than the one with uniform wall thickness, even for the same weight of the shaft.

  5. CINE: Comet INfrared Excitation

    Science.gov (United States)

    de Val-Borro, Miguel; Cordiner, Martin A.; Milam, Stefanie N.; Charnley, Steven B.

    2017-08-01

    CINE calculates infrared pumping efficiencies that can be applied to the most common molecules found in cometary comae such as water, hydrogen cyanide or methanol. One of the main mechanisms for molecular excitation in comets is the fluorescence by the solar radiation followed by radiative decay to the ground vibrational state. This command-line tool calculates the effective pumping rates for rotational levels in the ground vibrational state scaled by the heliocentric distance of the comet. Fluorescence coefficients are useful for modeling rotational emission lines observed in cometary spectra at sub-millimeter wavelengths. Combined with computational methods to solve the radiative transfer equations based, e.g., on the Monte Carlo algorithm, this model can retrieve production rates and rotational temperatures from the observed emission spectrum.

  6. Length of excitable knots

    Science.gov (United States)

    Maucher, Fabian; Sutcliffe, Paul

    2017-07-01

    In this paper, we present extensive numerical simulations of an excitable medium to study the long-term dynamics of knotted vortex strings for all torus knots up to crossing number 11. We demonstrate that FitzHugh-Nagumo evolution preserves the knot topology for all the examples presented, thereby providing a field theory approach to the study of knots. Furthermore, the evolution yields a well-defined minimal length for each knot that is comparable to the ropelength of ideal knots. We highlight the role of the medium boundary in stabilizing the length of the knot and discuss the implications beyond torus knots. We also show that there is not a unique attractor within a given knot topology.

  7. UV Excited Photoacoustic Raman

    Energy Technology Data Exchange (ETDEWEB)

    Carter, J. Chance [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chambers, David H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Steele, Paul T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Haugen, Peter [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Heller, Don [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-11-15

    To summarize, our efforts and findings are as follows: we analyzed the theoretical system performance using known PARS theory coupled with an acoustic detector model to estimate the expected signal-­to-noise ratio (SNR). The system model comprised a mathematical model of the Raman process leading to a prediction of the temperature change in the active region; a thermoacoustic gas prediction of the radiated pressure field (amplitude and pulse shape); and the receiver response for an acoustic microphone, including a simple model of the receiver circuitry (filters, integrators, etc.). Based on the PARS experimental parameters in Appendix B, the model predicted a PARS signal with pressure peak of 7 Pa and duration slightly longer than 2 ms at a distance of 7 mm from the focal spot when acoustic dissipation is not included. An analytical model of a PARS signal with acoustic dissipation was constructed but the numerical calculation is limited to gains of <1% of the experimental value. For these lower gains, the model predicts spreading of the signal.

  8. Subsurface excitations in a metal

    DEFF Research Database (Denmark)

    Ray, M. P.; Lake, R. E.; Sosolik, C. E.

    2009-01-01

    We investigate internal hot carrier excitations in a Au thin film bombarded by hyperthermal and low energy alkali and noble gas ions. Excitations within the thin film of a metal-oxide-semiconductor device are measured revealing that ions whose velocities fall below the classical threshold given...... by the free-electron model of a metal still excite hot carriers. Excellent agreement between these results and a nonadiabatic model that accounts for the time-varying ion-surface interaction indicates that the measured excitations are due to semilocalized electrons near the metal surface....

  9. Multitaper spectral analysis of atmospheric radar signals

    Directory of Open Access Journals (Sweden)

    V. K. Anandan

    2004-11-01

    Full Text Available Multitaper spectral analysis using sinusoidal taper has been carried out on the backscattered signals received from the troposphere and lower stratosphere by the Gadanki Mesosphere-Stratosphere-Troposphere (MST radar under various conditions of the signal-to-noise ratio. Comparison of study is made with sinusoidal taper of the order of three and single tapers of Hanning and rectangular tapers, to understand the relative merits of processing under the scheme. Power spectra plots show that echoes are better identified in the case of multitaper estimation, especially in the region of a weak signal-to-noise ratio. Further analysis is carried out to obtain three lower order moments from three estimation techniques. The results show that multitaper analysis gives a better signal-to-noise ratio or higher detectability. The spectral analysis through multitaper and single tapers is subjected to study of consistency in measurements. Results show that the multitaper estimate is better consistent in Doppler measurements compared to single taper estimates. Doppler width measurements with different approaches were studied and the results show that the estimation was better in the multitaper technique in terms of temporal resolution and estimation accuracy.

  10. Topological excitations in magnetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Bazeia, D., E-mail: bazeia@fisica.ufpb.br [Departamento de Física, Universidade Federal da Paraíba, 58051-970 João Pessoa, PB (Brazil); Doria, M.M. [Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro (Brazil); Dipartimento di Fisica, Università di Camerino, I-62032 Camerino (Italy); Rodrigues, E.I.B. [Departamento de Física, Universidade Federal da Paraíba, 58051-970 João Pessoa, PB (Brazil)

    2016-05-20

    In this work we propose a new route to describe topological excitations in magnetic systems through a single real scalar field. We show here that spherically symmetric structures in two spatial dimensions, which map helical excitations in magnetic materials, admit this formulation and can be used to model skyrmion-like structures in magnetic materials.

  11. Dynamics of the Josephson multi-junction system with junctions characterized by non-sinusoidal current - phase relationship

    International Nuclear Information System (INIS)

    Abal'osheva, I.; Lewandowski, S.J.

    2004-01-01

    It is shown that the inclusion of junctions characterized by non-sinusoidal current - phase relationship in the systems composed of multiple Josephson junctions - results in the appearance of additional system phase states. Numerical simulations and stability considerations confirm that those phase states can be realized in practice. Moreover, spontaneous formation of the grain boundary junctions in high-T c superconductors with non-trivial current-phase relations due to the d-wave symmetry of the order parameter is probable. Switching between the phase states of multiple grain boundary junction systems can lead to additional 1/f noise in high-T c superconductors. (author)

  12. Monocular and binocular steady-state flicker VEPs: frequency-response functions to sinusoidal and square-wave luminance modulation.

    Science.gov (United States)

    Nicol, David S; Hamilton, Ruth; Shahani, Uma; McCulloch, Daphne L

    2011-02-01

    Steady-state VEPs to full-field flicker (FFF) using sinusoidally modulated light were compared with those elicited by square-wave modulated light across a wide range of stimulus frequencies with monocular and binocular FFF stimulation. Binocular and monocular VEPs were elicited in 12 adult volunteers to FFF with two modes of temporal modulation: sinusoidal or square-wave (abrupt onset and offset, 50% duty cycle) at ten temporal frequencies ranging from 2.83 to 58.8 Hz. All stimuli had a mean luminance of 100 cd/m(2) with an 80% modulation depth (20-180 cd/m(2)). Response magnitudes at the stimulus frequency (F1) and at the double and triple harmonics (F2 and F3) were compared. For both sinusoidal and square-wave flicker, the FFF-VEP magnitudes at F1 were maximal for 7.52 Hz flicker. F2 was maximal for 5.29 Hz flicker, and F3 magnitudes are largest for flicker stimulation from 3.75 to 7.52 Hz. Square-wave flicker produced significantly larger F1 and F2 magnitudes for slow flicker rates (up to 5.29 Hz for F1; at 2.83 and 3.75 Hz for F2). The F3 magnitudes were larger overall for square-wave flicker. Binocular FFF-VEP magnitudes are larger than those of monocular FFF-VEPs, and the amount of this binocular enhancement is not dependant on the mode of flicker stimulation (mean binocular: monocular ratio 1.41, 95% CI: 1.2-1.6). Binocular enhancement of F1 for 21.3 Hz flicker was increased to a factor of 2.5 (95% CI: 1.8-3.5). In the healthy adult visual system, FFF-VEP magnitudes can be characterized by the frequency-response functions of F1, F2 and F3. Low-frequency roll-off in the FFF-VEP magnitudes is greater for sinusoidal flicker than for square-wave flicker for rates ≤ 5.29 Hz; magnitudes for higher-frequency flicker are similar for the two types of flicker. Binocular FFF-VEPs are larger overall than those recorded monocularly, and this binocular summation is enhanced at 21.3 Hz in the mid-frequency range.

  13. Picosecond excitation transport in disordered systems

    International Nuclear Information System (INIS)

    Hart, D.E.

    1987-11-01

    Time-resolved fluorescence decay profiles are used to study excitation transport in 2- and 3-dimensional disordered systems. Time-correlated single photon counting detection is used to collect the fluorescence depolarization data. The high signal-to-noise ratios afforded by this technique makes it possible to critically examine current theories of excitation transport. Care has been taken to eliminate or account for the experimental artifacts common to this type of study. Solutions of 3,3'-diethyloxadicarbocyanine iodide (DODCI) in glycerol serve as a radomly distributed array of energy donors in 3-dimensions. A very thin sample cell (/approximately/ 2 μm) is used to minimize the effects of fluorescence self-absorption on the decay kinetics. Evidence of a dynamic shift of the fluorescence spectrum of DODCI in glycerol due to solvent reorganization is presented. The effects of excitation trapping on the decay profiles is minimized in the data analysis procedure. The 3-body theory of Gochanour, Andersen, and Fayer (GAF) and the far less complex 2-particle analytic theory of Huber, Hamilton, and Barnett yield indistinguishable fits to the data over the wide dynamic range of concentrations and decay times studied

  14. Multiple phonon excitation in nuclei

    International Nuclear Information System (INIS)

    Chomaz, Ph.; Frascaria, N.

    1994-01-01

    The studies of multiphonon excitations in nuclei are reviewed both from the theoretical and experimental points of view. The presence of giant resonances in nuclei is described in the framework of macroscopic and microscopic models and the relative merits of different probes to excite such states are illustrated. The existence of giant resonances built on excited states is stressed. An exhaustive description of the theoretical estimates of the properties of the multiphonon states is presented. The theory predicts that such multiple collective excitations should closely follow a harmonic pattern. Recent experimental results on the double giant dipole resonance using the (π + π - ) double charge exchange reaction are shown. The status of the search for isoscalar multiphonon excitations by means of the strong nuclear potential produced by heavy ions is presented. Conclusions are drawn and new prospects are discussed. (authors) 293 refs., 67 figs., 8 tabs

  15. Optimal Wavelets for Speech Signal Representations

    Directory of Open Access Journals (Sweden)

    Shonda L. Walker

    2003-08-01

    Full Text Available It is well known that in many speech processing applications, speech signals are characterized by their voiced and unvoiced components. Voiced speech components contain dense frequency spectrum with many harmonics. The periodic or semi-periodic nature of voiced signals lends itself to Fourier Processing. Unvoiced speech contains many high frequency components and thus resembles random noise. Several methods for voiced and unvoiced speech representations that utilize wavelet processing have been developed. These methods seek to improve the accuracy of wavelet-based speech signal representations using adaptive wavelet techniques, superwavelets, which uses a linear combination of adaptive wavelets, gaussian methods and a multi-resolution sinusoidal transform approach to mention a few. This paper addresses the relative performance of these wavelet methods and evaluates the usefulness of wavelet processing in speech signal representations. In addition, this paper will also address some of the hardware considerations for the wavelet methods presented.

  16. Get excited: reappraising pre-performance anxiety as excitement.

    Science.gov (United States)

    Brooks, Alison Wood

    2014-06-01

    Individuals often feel anxious in anticipation of tasks such as speaking in public or meeting with a boss. I find that an overwhelming majority of people believe trying to calm down is the best way to cope with pre-performance anxiety. However, across several studies involving karaoke singing, public speaking, and math performance, I investigate an alternative strategy: reappraising anxiety as excitement. Compared with those who attempt to calm down, individuals who reappraise their anxious arousal as excitement feel more excited and perform better. Individuals can reappraise anxiety as excitement using minimal strategies such as self-talk (e.g., saying "I am excited" out loud) or simple messages (e.g., "get excited"), which lead them to feel more excited, adopt an opportunity mind-set (as opposed to a threat mind-set), and improve their subsequent performance. These findings suggest the importance of arousal congruency during the emotional reappraisal process. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  17. Robust excitation power spectrum design for broadband impedance spectroscopy

    International Nuclear Information System (INIS)

    Sanchez, B; Rojas, C R

    2014-01-01

    This paper focuses on the robust design of broadband impedance spectroscopy (IS) experiments. This contribution extends the optimal IS experiment design presented in previous work (Sanchez et al 2012 Meas. Sci. Technol. 23 085702) in order to design a robust broadband excitation which gives relatively good estimation performance over a large number of possible impedance models. To this end, we assume as prior knowledge that the parameters of the impedance model lie in a compact set. Then, we pose the experiment design problem as a convex optimization program, which gives the excitation signal of bounded power that minimizes the worst value of a given scalar function of the Fisher information matrix, as the parameters range over the given compact set. Supported by numerical simulations, our results reveal the robust excitation for impedance experiments has a discrete power spectrum, e.g. (periodic) multisine signals. (paper)

  18. Cell assay using a two-photon-excited europium chelate.

    Science.gov (United States)

    Xiao, Xudong; Haushalter, Jeanne P; Kotz, Kenneth T; Faris, Gregory W

    2011-08-01

    We report application of two-photon excitation of europium chelates to immunolabeling of epidermal growth factor receptor (EGFR) cell surface proteins on A431 cancer cells. The europium chelates are excited with two photons of infrared light and emit in the visible. Europium chelates are conjugated to antibodies for EGFR. A431 (human epidermoid carcinoma) cells are labeled with this conjugate and imaged using a multiphoton microscope. To minimize signal loss due to the relatively long-lived Eu(3+) emission, the multiphoton microscope is used with scanning laser two-photon excitation and non-scanning detection with a CCD. The chelate labels show very little photobleaching (less than 1% during continuous illumination in the microscope for 20 minutes) and low levels of autofluorescence (less than 1% of the signal from labeled cells). The detection limit of the europium label in the cell assay is better than 100 zeptomoles.

  19. Magnetostrictive-piezoelectric magnetic sensor with current excitation

    International Nuclear Information System (INIS)

    Prieto, J.L.; Aroca, C.; Lopez, E.; Sanchez, M.C.; Sanchez, P.

    2000-01-01

    A new working configuration for magnetostrictive-piezoelectric magnetic sensors is presented. In this configuration, the excitation is caused using an electrical current flowing through the ferromagnetic sample and the induced signal is sensed in the piezoelectric support as an electrical voltage. This new idea allows a magnetic field detection without any coil and opens a possibility for a future miniaturisation of the sensor

  20. Methodology to estimate parameters of an excitation system based on experimental conditions

    Energy Technology Data Exchange (ETDEWEB)

    Saavedra-Montes, A.J. [Carrera 80 No 65-223, Bloque M8 oficina 113, Escuela de Mecatronica, Universidad Nacional de Colombia, Medellin (Colombia); Calle 13 No 100-00, Escuela de Ingenieria Electrica y Electronica, Universidad del Valle, Cali, Valle (Colombia); Ramirez-Scarpetta, J.M. [Calle 13 No 100-00, Escuela de Ingenieria Electrica y Electronica, Universidad del Valle, Cali, Valle (Colombia); Malik, O.P. [2500 University Drive N.W., Electrical and Computer Engineering Department, University of Calgary, Calgary, Alberta (Canada)

    2011-01-15

    A methodology to estimate the parameters of a potential-source controlled rectifier excitation system model is presented in this paper. The proposed parameter estimation methodology is based on the characteristics of the excitation system. A comparison of two pseudo random binary signals, two sampling periods for each one, and three estimation algorithms is also presented. Simulation results from an excitation control system model and experimental results from an excitation system of a power laboratory setup are obtained. To apply the proposed methodology, the excitation system parameters are identified at two different levels of the generator saturation curve. The results show that it is possible to estimate the parameters of the standard model of an excitation system, recording two signals and the system operating in closed loop with the generator. The normalized sum of squared error obtained with experimental data is below 10%, and with simulation data is below 5%. (author)

  1. MEMS Logic Using Mixed-Frequency Excitation

    KAUST Repository

    Ilyas, Saad

    2017-06-22

    We present multi-function microelectromechanical systems (MEMS) logic device that can perform the fundamental logic gate AND, OR, universal logic gates NAND, NOR, and a tristate logic gate using mixed-frequency excitation. The concept is based on exciting combination resonances due to the mixing of two or more input signals. The device vibrates at two steady states: a high state when the combination resonance is activated and a low state when no resonance is activated. These vibration states are assigned to logical value 1 or 0 to realize the logic gates. Using ac signals to drive the resonator and to execute the logic inputs unifies the input and output wave forms of the logic device, thereby opening the possibility for cascading among logic devices. We found that the energy consumption per cycle of the proposed logic resonator is higher than those of existing technologies. Hence, integration of such logic devices to build complex computational system needs to take into consideration lowering the total energy consumption. [2017-0041

  2. Excitation kinetics of impurity doped quantum dot driven by Gaussian white noise: Interplay with external field

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Suvajit [Department of Chemistry, Hetampur Raj High School, Hetampur, Birbhum 731124, West Bengal (India); Sinha, Sudarson Sekhar [Department of Chemistry and Biochemistry, Jackson State University, Mississippi, MS 39217-0510 (United States); Ganguly, Jayanta [Department of Chemistry, Brahmankhanda Basapara High School, Basapara, Birbhum 731215, West Bengal (India); Ghosh, Manas, E-mail: pcmg77@rediffmail.com [Department of Chemistry, Physical Chemistry Section, Visva Bharati University, Santiniketan, Birbhum 731 235, West Bengal (India)

    2013-11-29

    Highlights: • The excitation kinetics of impurity doped quantum dot has been investigated. • The dot is subject to Gaussian white noise. • External oscillatory field is also applied. • Noise strength and field intensity fabricate the kinetics. • Role of dopant location has also been analyzed. - Abstract: We investigate the excitation kinetics of a repulsive impurity doped quantum dot initiated by simultaneous application of Gaussian white noise and external sinusoidal field. We have considered both additive and multiplicative noise (in Stratonovich sense). The combined influences of noise strength (ζ) and the field intensity (∊) have been capsuled by invoking their ratio (η). The said ratio and the dopant location have been found to fabricate the kinetics in a delicate way. Moreover, the influences of additive and multiplicative nature of the noise on the excitation kinetics have been observed to be widely different. The investigation reveals emergence of maximization/minimization and saturation in the excitation kinetics as a result of complex interplay between η and the dopant coordinate (r{sub 0}). The present investigation is believed to provide some useful insights in the functioning of mesoscopic devices where noise plays some significant role.

  3. Excitation kinetics of impurity doped quantum dot driven by Gaussian white noise: Interplay with external field

    International Nuclear Information System (INIS)

    Pal, Suvajit; Sinha, Sudarson Sekhar; Ganguly, Jayanta; Ghosh, Manas

    2013-01-01

    Highlights: • The excitation kinetics of impurity doped quantum dot has been investigated. • The dot is subject to Gaussian white noise. • External oscillatory field is also applied. • Noise strength and field intensity fabricate the kinetics. • Role of dopant location has also been analyzed. - Abstract: We investigate the excitation kinetics of a repulsive impurity doped quantum dot initiated by simultaneous application of Gaussian white noise and external sinusoidal field. We have considered both additive and multiplicative noise (in Stratonovich sense). The combined influences of noise strength (ζ) and the field intensity (∊) have been capsuled by invoking their ratio (η). The said ratio and the dopant location have been found to fabricate the kinetics in a delicate way. Moreover, the influences of additive and multiplicative nature of the noise on the excitation kinetics have been observed to be widely different. The investigation reveals emergence of maximization/minimization and saturation in the excitation kinetics as a result of complex interplay between η and the dopant coordinate (r 0 ). The present investigation is believed to provide some useful insights in the functioning of mesoscopic devices where noise plays some significant role

  4. Numerical investigation of magnetic field effect on mixed convection heat transfer of nanofluid in a channel with sinusoidal walls

    International Nuclear Information System (INIS)

    Rashidi, M.M.; Nasiri, Mohammad; Khezerloo, Marzieh; Laraqi, Najib

    2016-01-01

    In this study, mixed convection heat transfer of nano-fluid flow in vertical channel with sinusoidal walls under magnetic field effect is investigated numerically. The heat transfer and hydrodynamic characteristics have been examined. This study has performed for 500≤Re≤1000, 5×104≤Gr≤1×106 , three amplitude sine wave (0.1, 0.2 and 0.3) and three values of Hartman numbers (0, 5 and 10). Water was utilized as the base fluid and Al2O3 is the considered nano-particle. Flow is assumed two dimensional, laminar, steady and incompressible. As well the thermo-physical properties of nano-fluid are considered constant. The Boussinesq approximation used for calculated the density variations. The average Nusslet number increases by increasing the Grashof number for nano-fluids with different volume fraction. The average Nusselt and Poiseuille number increase as Reynolds number increases. Also, the average Nusselt number and Poiseuille number increases by increasing the Hartman number. - Highlights: • Mixed convection of nanofluid flow in a sinusoidal vertical channel is studied. • MHD effects on heat transfer and hydrodynamic characteristics are investigated. • The Nusselt number increases by adding the nanoparticles to the base fluid. • With applying a magnetic field, the velocity profile will be more uniform. • The Nusselt number increases by increasing the Hartman number.

  5. Numerical investigation of magnetic field effect on mixed convection heat transfer of nanofluid in a channel with sinusoidal walls

    Energy Technology Data Exchange (ETDEWEB)

    Rashidi, M.M., E-mail: mm_rashidi@sawtc.com [Shanghai Key Lab of Vehicle Aerodynamics and Vehicle Thermal Management Systems, Shanghai (China); ENN-Tongji Clean Energy Institute of Advanced Studies, Shanghai (China); Nasiri, Mohammad, E-mail: m.nasiri1989@gmail.com [Faculty of Mechanical Engineering, University of Tabriz, Tabriz (Iran, Islamic Republic of); Khezerloo, Marzieh, E-mail: m.khezerloo91@ms.tabrizu.ac.ir [Faculty of Mechanical Engineering, University of Tabriz, Tabriz (Iran, Islamic Republic of); Laraqi, Najib, E-mail: najib.laraqi@u-paris10.fr [Universite Paris 10, LTIE, EA 4415, GTE, 50 Rue de Sevres, F92410 Ville d' Avray (France)

    2016-03-01

    In this study, mixed convection heat transfer of nano-fluid flow in vertical channel with sinusoidal walls under magnetic field effect is investigated numerically. The heat transfer and hydrodynamic characteristics have been examined. This study has performed for 500≤Re≤1000, 5×104≤Gr≤1×106 , three amplitude sine wave (0.1, 0.2 and 0.3) and three values of Hartman numbers (0, 5 and 10). Water was utilized as the base fluid and Al2O3 is the considered nano-particle. Flow is assumed two dimensional, laminar, steady and incompressible. As well the thermo-physical properties of nano-fluid are considered constant. The Boussinesq approximation used for calculated the density variations. The average Nusslet number increases by increasing the Grashof number for nano-fluids with different volume fraction. The average Nusselt and Poiseuille number increase as Reynolds number increases. Also, the average Nusselt number and Poiseuille number increases by increasing the Hartman number. - Highlights: • Mixed convection of nanofluid flow in a sinusoidal vertical channel is studied. • MHD effects on heat transfer and hydrodynamic characteristics are investigated. • The Nusselt number increases by adding the nanoparticles to the base fluid. • With applying a magnetic field, the velocity profile will be more uniform. • The Nusselt number increases by increasing the Hartman number.

  6. Effect of a selective rise in sinusoidal norepinephrine on HGP is due to an increase in glycogenolysis.

    Science.gov (United States)

    Chu, C A; Sindelar, D K; Neal, D W; Allen, E J; Donahue, E P; Cherrington, A D

    1998-01-01

    To determine the effect of a selective rise in liver sinusoidal norepinephrine (NE) on hepatic glucose production (HGP), norepinephrine (50 ng.kg-1.min-1) was infused intraportally (Po-NE) for 3 h into five 18-h-fasted conscious dogs with a pancreatic clamp. In the control protocol, NE (0.2 ng.kg-1.min-1) and glucose were infused peripherally to match the arterial NE and blood glucose levels in the Po-NE group. Hepatic sinusoidal NE levels rose approximately 30-fold in the Po-NE group but did not change in the control group. The arterial NE levels did not change significantly in either group. During the portal NE infusion, HGP increased from 1.9 +/- 0.2 to 3.5 +/- 0.4 mg.kg-1.min-1 (15 min; P glycogenolysis. Compared with the previously determined effects of epinephrine or glucagon on HGP, the effect of NE is, on a molar basis, less potent but more sustained over time.

  7. Sinusoidal obstruction syndrome (veno-occlusive disease in a patient receiving bevacizumab for metastatic colorectal cancer: a case report

    Directory of Open Access Journals (Sweden)

    Agarwal Vijay

    2008-07-01

    Full Text Available Abstract Introduction We present the case of a patient with colon cancer who, while receiving bevacizumab, developed sinusoidal obstruction syndrome (veno-occlusive disease (SOSVOD. Certain antitumour agents such as 6-mercaptopurine and 6-thioguanine have also been reported to initiate hepatic SOSVOD in isolated cases. There have been no reports so far correlating bevacizumab with SOSVOD. Case presentation A 77-year-old man was being treated with oxaliplatin and a modified de Gramont regimen of 5-fluorouracil for metastatic colon cancer. Bevacizumab (7.5 mg/kg was added from the seventh cycle onwards. Protracted neutropenia and thrombocytopenia led to discontinuation of oxaliplatin after the ninth cycle. A computed tomography scan showed complete response and bevacizumab was continued for another 3 months, after which time the patient developed right hypochondrial pain, transudative ascites, splenomegaly and abnormal liver function tests. Upper gastrointestinal endoscopy showed oesophageal varices. Liver biopsy showed features considered to be consistent with SOSVOD. Bevacizumab was stopped and a policy of watchful waiting was adopted. He tolerated the acute damage to his liver and subsequently the ascites resolved and liver function tests normalised. Conclusion We need to be aware that bevacizumab can cause sinusoidal obstruction syndrome (veno-occlusive disease and that the occurrence of ascites should not be attributed to progressive disease without appropriate evaluation.

  8. Contrast-enhanced ultrasonography of hepatocellular carcinoma: Correlation between quantitative parameters and arteries in neoangiogenesis or sinusoidal capillarization

    International Nuclear Information System (INIS)

    Pei Xiaoqing; Liu Longzhong; Zheng Wei; Cai Muyan; Han Feng; He Jiehua; Li Anhua; Chen Minshan

    2012-01-01

    Objective: The quantitative parameters in contrast-enhanced ultrasonography-time–intensity curve of hepatocellular carcinoma (HCC) were studied to explore their potential importance in monitoring the effects of anti-angiogenic therapy for HCC. Methods: 115 HCC patients were studied with contrast-enhanced ultrasonography-time–intensity curve (CEUS-TIC) and with immunohistochemical analysis of tissue sections. The CEUS images were analyzed off-line to obtained quantitative parameters including maximum of intensity (IMAX), rise time (RT), time to peak (TTP), mean transit time (mTT), rise slope (RS), and washout time (WT). Monoclonal antibodies specific for smooth muscle actin and anti-CD34 were used to observe unpaired arteries (UAs) and microvessel area (MVA) of sinusoidal capillarization, respectively. The UAs and MVA of 82 HCC cases were successfully stained. Results: The number of UAs had moderate correlation with RT (r = −0.446), TTP (r = −0.432), and RS (r = 0.431) (P < 0.05), and it had mild correlation with IMAX (r = 0.303) and WT (r = 0.285) (P < 0.05). MVA of sinusoidal capillarization had no correlation with perfusion parameters. Conclusion: Quantitative CEUS-TIC parameters reflecting hemodynamics of tumors are correlated with UAs, but not with MVA, and they might be used to monitor the effects of anti-angiogenic therapy on HCC.

  9. Excited cooper pairs

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Arrietea, M. G.; Solis, M. A.; De Llano, M. [Universidad Nacional Autonoma de Mexico, Mexico, D.F (Mexico)

    2001-02-01

    Excited cooper pairs formed in a many-fermion system are those with nonzero total center-of mass momentum (CMM). They are normally neglected in the standard Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity for being too few compared with zero CMM pairs. However, a Bose-Einstein condensation picture requires both zero and nonzero CMM pairs. Assuming a BCS model interaction between fermions we determine the populations for all CMM values of Cooper pairs by actually calculating the number of nonzero-CMM pairs relative to that of zero-CMM ones in both 2D and 3D. Although this ratio decreases rapidly with CMM, the number of Cooper pairs for any specific CMM less than the maximum (or breakup of the pair) momentum turns out to be typically larger than about 95% of those with zero-CMM at zero temperature T. Even at T {approx}100 K this fraction en 2D is still as large as about 70% for typical quasi-2D cuprate superconductor parameters. [Spanish] Los pares de cooper excitados formados en un sistema de muchos electrones, son aquellos con momentos de centro de masa (CMM) diferente de cero. Normalmente estos no son tomados en cuenta en la teoria estandar de la superconductividad de Bardeen-Cooper-Schrieffer (BCS) al suponer que su numero es muy pequeno comparados con los pares de centro de masa igual a cero. Sin embargo, un esquema de condensacion Bose-Einstein requiere de ambos pares, con CMM cero y diferente de cero. Asumiendo una interaccion modelo BCS entre los fermiones, determinamos la poblacion de pares cooper con cada uno de todos los posibles valores del CMM calculando el numero de pares con momentos de centro de masa diferente de cero relativo a los pares de CMM igual a cero, en 2D y 3D. Aunque esta razon decrece rapidamente con el CMM, el numero de pares de cooper para cualquier CMM especifico menor que el momento maximo (o rompimiento de par) es tipicamente mas grande que el 95% de aquellos con CMM cero. Aun a T {approx}100 K esta fraccion en 2D es

  10. Uniform excitations in magnetic nanoparticles

    DEFF Research Database (Denmark)

    Mørup, Steen; Frandsen, Cathrine; Hansen, Mikkel Fougt

    2010-01-01

    and the magnetic hyperfine field, in contrast to the Bloch T3/2 law in bulk materials. The temperature dependence of the average magnetization is conveniently studied by Mössbauer spectroscopy. The energy of the uniform excitations of magnetic nanoparticles can be studied by inelastic neutron scattering.......We present a short review of the magnetic excitations in nanoparticles below the superparamagnetic blocking temperature. In this temperature regime, the magnetic dynamics in nanoparticles is dominated by uniform excitations, and this leads to a linear temperature dependence of the magnetization...

  11. Excited states in biological systems

    International Nuclear Information System (INIS)

    Cilento, G.; Zinner, K.; Bechara, E.J.H.; Duran, N.; Baptista, R.C. de; Shimizu, Y.; Augusto, O.; Faljoni-Alario, A.; Vidigal, C.C.C.; Oliveira, O.M.M.F.; Haun, M.

    1979-01-01

    Some aspects of bioluminescence related to bioenergetics are discussed: 1. chemical generation of excited species, by means of two general processes: electron transference and cyclic - and linear peroxide cleavage; 2. biological systems capable of generating excited states and 3. biological functions of these states, specially the non-emissive ones (tripletes). The production and the role of non-emissive excited states in biological systems are analysed, the main purpose of the study being the search for non-emissive states. Experiences carried out in biological systems are described; results and conclusions are given. (M.A.) [pt

  12. Extending single molecule fluorescence observation time by amplitude-modulated excitation

    Science.gov (United States)

    Kisley, Lydia; Chang, Wei-Shun; Cooper, David; Mansur, Andrea P.; Landes, Christy F.

    2013-09-01

    We present a hardware-based method that can improve single molecule fluorophore observation time by up to 1500% and super-localization by 47% for the experimental conditions used. The excitation was modulated using an acousto-optic modulator (AOM) synchronized to the data acquisition and inherent data conversion time of the detector. The observation time and precision in super-localization of four commonly used fluorophores were compared under modulated and traditional continuous excitation, including direct total internal reflectance excitation of Alexa 555 and Cy3, non-radiative Förster resonance energy transfer (FRET) excited Cy5, and direct epi-fluorescence wide field excitation of Rhodamine 6G. The proposed amplitude-modulated excitation does not perturb the chemical makeup of the system or sacrifice signal and is compatible with multiple types of fluorophores. Amplitude-modulated excitation has practical applications for any fluorescent study utilizing an instrumental setup with time-delayed detectors.

  13. Extending single molecule fluorescence observation time by amplitude-modulated excitation

    International Nuclear Information System (INIS)

    Kisley, Lydia; Chang, Wei-Shun; Cooper, David; Mansur, Andrea P; Landes, Christy F

    2013-01-01

    We present a hardware-based method that can improve single molecule fluorophore observation time by up to 1500% and super-localization by 47% for the experimental conditions used. The excitation was modulated using an acousto-optic modulator (AOM) synchronized to the data acquisition and inherent data conversion time of the detector. The observation time and precision in super-localization of four commonly used fluorophores were compared under modulated and traditional continuous excitation, including direct total internal reflectance excitation of Alexa 555 and Cy3, non-radiative Förster resonance energy transfer (FRET) excited Cy5, and direct epi-fluorescence wide field excitation of Rhodamine 6G. The proposed amplitude-modulated excitation does not perturb the chemical makeup of the system or sacrifice signal and is compatible with multiple types of fluorophores. Amplitude-modulated excitation has practical applications for any fluorescent study utilizing an instrumental setup with time-delayed detectors. (technical note)

  14. Experimental evaluation of a non-linear coded excitation method for contrast imaging

    NARCIS (Netherlands)

    Borsboom, Jerome; Chin, Chien Ting; de Jong, N.

    2004-01-01

    Previously, we have shown that for a single bubble, using chirps as the excitation signal improves both the linear and the non-linear response. Computer simulations of randomly distributed contrast agent bubbles show an increase of 10–13 dB in response when comparing pulse excitations with chirp

  15. Analysis on Response of Dynamic Systems to Pulse Sequences Excitation

    Directory of Open Access Journals (Sweden)

    Xie Lili

    2009-07-01

    Full Text Available Near-fault ground motions with long-period pulses can place severe demands on structures near an active fault. These pulse-type ground motions can be represented by pulse sequences with simple shapes. Half-sinusoidal pulse sequences are used to approximate recorded ground motions and dynamic responses of SDOF system under the excitation of these pulse sequences are studied. Four cases are considered: (1 variation in duration of successor sub-pulse; (2 variation in duration of predecessor sub-pulse; (3 variation in amplitude of successor sub-pulse; and (4 variation in amplitude of predecessor sub-pulse. The corresponding acceleration, velocity and displacement response spectra of these pulse sequences are studied. The analysis on SDOF system shows that in some cases the responses are strongly affected by the changes of duration and/or amplitude of the sub-pulse. The study can be useful to understand the influences of sub-pulse in the near-fault pulse-type ground motions.

  16. Driving and control strategies in alternative current machines of permanent magnet with non-sinusoidal flux; Estrategias de acionamento e controle em maquinas CA de ima permanente com fluxo nao senoidal

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, Jose Roberto Boffino de Almeida

    1997-07-01

    The aim of this work is to study and analyze the torque performance of brush less machines with non-sinusoidal distributed magnetic fluxes. The machine type considered is a surface mount permanent magnet brush less machine. Three mathematical models for the machine are considered: the per stator phase, the vectorial and the linear second order speed-voltage models. Machines with different stator windings are compared including the permanent magnet synchronous machines with sinusoidal distributed stator windings. The torque outputs of these machines are obtained considering two kinds of open loop driving systems: one with a six-pulse waveform and other with a sinusoidal waveform. Finally, a vectorial control is proposed for the non-sinusoidal machines. The torque ripple as well the overall performance of non-sinusoidal machines with vectorial control is compared to that of sinusoidal machines. (author)

  17. Scattering of highly excited atoms

    International Nuclear Information System (INIS)

    Raith, W.

    1980-01-01

    Experimental methods to excite atomic beams into Rydberg states and the first results of collision experiments with such beams are reported. For further information see hints under relevant topics. (orig.) [de

  18. High power laser exciter accelerators

    International Nuclear Information System (INIS)

    Martin, T.H.

    1975-01-01

    Recent developments in untriggered oil and water switching now permit the construction of compact, high energy density pulsed power sources for laser excitation. These accelerators, developed principally for electron beam fusion studies, appear adaptable to laser excitation and will provide electron beams of 10 13 to 10 14 W in the next several years. The accelerators proposed for e-beam fusion essentially concentrate the available power from the outside edge of a disk into the central region where the electron beam is formed. One of the main problem areas, that of power flow at the vacuum diode insulator, is greatly alleviated by the multiplicity of electron beams that are allowable for laser excitation. A proposal is made whereby the disk-shaped pulsed power sections are stacked vertically to form a series of radially flowing electron beams to excite the laser gas volume. (auth)

  19. Excitation of seismic waves by a tornado

    Science.gov (United States)

    Valovcin, A.; Tanimoto, T.; Twardzik, C.

    2016-12-01

    Tornadoes are among the most common natural disasters to occur in the United States. Various methods are currently used in tornado forecasting, including surface weather stations, weather balloons and satellite and Doppler radar. These methods work for detecting possible locations of tornadoes and funnel clouds, but knowing when a tornado has touched down still strongly relies on reports from spotters. Studying tornadoes seismically offers an opportunity to know when a tornado has touched down without requiring an eyewitness report. With the installation of Earthscope's Transportable Array (TA), there have been an increased number of tornadoes that have come within close range of seismometers. We have identified seismic signals corresponding to three tornadoes that occurred in 2011 in the central US. These signals were recorded by the TA station closest to each of the tornado tracks. For each tornado, the amplitudes of the seismic signals increase when the storm is in contact with the ground, and continue until the tornado lifts off some time later. This occurs at both high and low frequencies. In this study we will model the seismic signal generated by a tornado at low frequencies (below 0.1 Hz). We will begin by modeling the signal from the Joplin tornado, an EF5 rated tornado which occurred in Missouri on May 22, 2011. By approximating the tornado as a vertical force, we model the generated signal as the tornado moves along its track and changes in strength. By modeling the seismic waveform generated by a tornado, we can better understand the seismic-excitation process. It could also provide a way to quantitatively compare tornadoes. Additional tornadoes to model include the Calumet-El Reno-Piedmont-Guthrie (CEPG) and Chickasa-Blanchard-Newcastle (CBN) tornadoes, both of which occurred on May 24, 2011 in Oklahoma.

  20. Autowaves in moving excitable media

    Directory of Open Access Journals (Sweden)

    V.A.Davydov

    2004-01-01

    Full Text Available Within the framework of kinematic theory of autowaves we suggest a method for analytic description of stationary autowave structures appearing at the boundary between the moving and fixed excitable media. The front breakdown phenomenon is predicted for such structures. Autowave refraction and, particulary, one-side "total reflection" at the boundary is considered. The obtained analytical results are confirmed by computer simulations. Prospects of the proposed method for further studies of autowave dynamics in the moving excitable media are discussed.

  1. Electron-excited molecule interactions

    International Nuclear Information System (INIS)

    Christophorou, L.G.; Tennessee Univ., Knoxville, TN

    1991-01-01

    In this paper the limited but significant knowledge to date on electron scattering from vibrationally/rotationally excited molecules and electron scattering from and electron impact ionization of electronically excited molecules is briefly summarized and discussed. The profound effects of the internal energy content of a molecule on its electron attachment properties are highlighted focusing in particular on electron attachment to vibrationally/rotationally and to electronically excited molecules. The limited knowledge to date on electron-excited molecule interactions clearly shows that the cross sections for certain electron-molecule collision processes can be very different from those involving ground state molecules. For example, optically enhanced electron attachment studies have shown that electron attachment to electronically excited molecules can occur with cross sections 10 6 to 10 7 times larger compared to ground state molecules. The study of electron-excited molecule interactions offers many experimental and theoretical challenges and opportunities and is both of fundamental and technological significance. 54 refs., 15 figs

  2. Search for dibaryonic de-excitations in relativistic nuclear reactions

    International Nuclear Information System (INIS)

    Besliu, C.; Popa, V.; Popa, L.; Topor Pop, V.

    1993-08-01

    Some odd characteristics are observed in the single particle distributions obtained from He + Li interactions at 4.5AGeV/c momenta which are explained as the manifestation of a new mechanism of strangeness production via dibaryonic de-excitations. A signature of the formation of hadronic and baryonic clusters is also reported. The di- pionic signals of the dibaryonic orbital de- excitations are analyzed in the frame of the MIT -bag Model and a Monte Carlo simulation. The role played by the dibaryonic resonances in relativistic nuclear collisions could be a significant one. (author). 29 refs, 7 figs

  3. A field cancellation signal extraction method for magnetic particle imaging

    NARCIS (Netherlands)

    Schulz, V.; Straub, M.; Mahlke, M.; Hubertus, S.; Lammers, Twan Gerardus Gertudis Maria; Kiessling, F.

    2015-01-01

    Nowadays, magnetic particle imaging (MPI) signal detection and excitation happens at the same time. This concept, however, leads to a strong coupling of the drive (excitation) field (DF) with the receive chain. As the induced DF signal is several orders of magnitude higher, special measures have to

  4. Study of Heat Transfer with Nonlinear Thermal Radiation on Sinusoidal Motion of Magnetic Solid Particles in a Dusty Fluid

    Science.gov (United States)

    Bhatti, M. M.; Zeeshan, A.; Ellahi, R.

    2016-09-01

    In this article, heat transfer with nonlinear thermal radiation on sinusoidal motion of magnetic solid particles in a dust Jeffrey fluid has been studied. The effects of Magnetohydrodynamic (MHD) and hall current are also taken under consideration. The governing equation of motion and energy equation are modelled with help of Ohms law for fluid and dust phases. The solutions of the resulting ordinary coupled partial differential equations are solved analytically. The impact of all the physical parameters of interest such as Hartmann number, slip parameter, Hall parameter, radiation parameter, Prandtl number, Eckert number and particle volume fraction are demonstrated mathematically and graphically. Trapping mechanism is also discussed in detail by drawing contour lines. The present analysis affirms many interesting behaviours, which permit further study on solid particles motion with heat and mass transfer.

  5. "Pre-emptive strike"-the case for early treatment of hepatic sinusoidal obstruction syndrome with defibrotide.

    Science.gov (United States)

    Rajagopal, Revathi; Phillips, Marianne; Gottardo, Nicholas G

    2018-03-14

    The initial signs of hepatic sinusoidal obstruction syndrome (HSOS) can be challenging to recognize in children, especially outside the hematopoietic stem cell transplantation setting. To assist clinicians to promptly identify HSOS, the European Society for Blood and Marrow Transplantation has proposed pediatric HSOS diagnostic criteria which emphasize unexplained consumptive and transfusion-refractory thrombocytopenia. To highlight the importance of these "bellwether" early signs of HSOS and the efficacy of pre-emptive treatment with defibrotide, we describe the case of a child with a right 11th rib primitive neuroectodermal tumor who developed HSOS following focal radiotherapy and actinomycin-D treatment. © 2018 The Authors. Pediatric Blood & Cancer Published by Wiley Periodicals, Inc.

  6. Manifestations and management of veno-occlusive disease/sinusoidal obstruction syndrome in the era of contemporary therapies.

    Science.gov (United States)

    Tewari, Priti; Wallis, Whitney; Kebriaei, Partow

    2017-02-01

    The concept of veno-occlusive disease (VOD), along with our understanding of it, has historically been and remains an evolving phenomenon. This review presents a broad view of VOD, also known as sinusoidal obstruction syndrome (SOS), including (1) traditional hematopoietic stem cell transplant-associated VOD/SOS, (2) late-onset VOD/SOS, (3) pulmonary VOD, and (4) VOD/SOS associated with chemotherapy only. Several VOD/SOS management modalities exist that include modes for both prophylaxis and treatment. An extensive review of the literature on monoclonal antibodies, both approved and pending approval by the US Food and Drug Administration, reveals that only a few have been associated with an increased risk for VOD/SOS. In fact, bevacizumab appears to have a protective effect against the development of VOD/SOS. As the landscape of cancer treatment changes, careful attention needs to be focused on how new therapies affect the incidence of VOD/SOS.

  7. Adaptive backstepping control, synchronization and circuit simulation of a 3-D novel jerk chaotic system with two hyperbolic sinusoidal nonlinearities

    Directory of Open Access Journals (Sweden)

    Vaidyanathan Sundarapandian

    2014-09-01

    Full Text Available In this research work, a six-term 3-D novel jerk chaotic system with two hyperbolic sinusoidal nonlinearities has been proposed, and its qualitative properties have been detailed. The Lyapunov exponents of the novel jerk system are obtained as L1 = 0.07765,L2 = 0, and L3 = −0.87912. The Kaplan-Yorke dimension of the novel jerk system is obtained as DKY = 2.08833. Next, an adaptive backstepping controller is designed to stabilize the novel jerk chaotic system with two unknown parameters. Moreover, an adaptive backstepping controller is designed to achieve complete chaos synchronization of the identical novel jerk chaotic systems with two unknown parameters. Finally, an electronic circuit realization of the novel jerk chaotic system using Spice is presented in detail to confirm the feasibility of the theoretical model

  8. 3D palmprint and hand imaging system based on full-field composite color sinusoidal fringe projection technique.

    Science.gov (United States)

    Zhang, Zonghua; Huang, Shujun; Xu, Yongjia; Chen, Chao; Zhao, Yan; Gao, Nan; Xiao, Yanjun

    2013-09-01

    Palmprint and hand shape, as two kinds of important biometric characteristics, have been widely studied and applied to human identity recognition. The existing research is based mainly on 2D images, which lose the third-dimensional information. The biological features extracted from 2D images are distorted by pressure and rolling, so the subsequent feature matching and recognition are inaccurate. This paper presents a method to acquire accurate 3D shapes of palmprint and hand by projecting full-field composite color sinusoidal fringe patterns and the corresponding color texture information. A 3D imaging system is designed to capture and process the full-field composite color fringe patterns on hand surface. Composite color fringe patterns having the optimum three fringe numbers are generated by software and projected onto the surface of human hand by a digital light processing projector. From another viewpoint, a color CCD camera captures the deformed fringe patterns and saves them for postprocessing. After compensating for the cross talk and chromatic aberration between color channels, three fringe patterns are extracted from three color channels of a captured composite color image. Wrapped phase information can be calculated from the sinusoidal fringe patterns with high precision. At the same time, the absolute phase of each pixel is determined by the optimum three-fringe selection method. After building up the relationship between absolute phase map and 3D shape data, the 3D palmprint and hand are obtained. Color texture information can be directly captured or demodulated from the captured composite fringe pattern images. Experimental results show that the proposed method and system can yield accurate 3D shape and color texture information of the palmprint and hand shape.

  9. Electron attachment to excited molecules

    International Nuclear Information System (INIS)

    Christophorou, L.G.; Pinnaduwage, L.A.; Datskos, P.G.

    1993-01-01

    Studies on electron attachment to molecules rotationally/vibrationally excited thermally or via infrared-laser excitation showed that the effect of internal energy of a molecule on its electron attachment properties depends on the mode--dissociative or nondissociative--of electron attachment. They quantified the effect of the internal energy of the molecule on the rate of destruction (by autodissociation or by autodetachment) of its parent transient anion. Generally, increases in ro-vibrational molecular energy increase the cross section for dissociative electron attachment and decrease the effective cross section for parent anion formation due mainly to increased autodetachment. These findings and their understanding are discussed. A discussion is given, also, of recent investigations of electron attachment to electronically excited molecules, especially photoenhanced dissociative electron attachment to long- and short-lived excited electronic states of molecules produced directly or indirectly by laser irradiation. These studies showed that the cross sections for dissociative electron attachment to electronically excited molecules usually are many orders of magnitude larger than those for the ground-state molecules. The new techniques that have been developed for such studies are briefly described also

  10. Electromagnetic wave propagation in a medium with a progressive sinusoidal fluctuation

    International Nuclear Information System (INIS)

    Ito, Hiroshi; Ito, Akinari

    1984-01-01

    Study was made on the rigorous solutions for electromagnetic waves transmitted and reflected by a medium of finite length with time-space periodic fluctuation, loaded in a rectangular waveguide. When an electromagnetic wave is incident upon the medium modulated in a travelling wave fashion by a pump wave, the reflected and transmitted waves are shifted in frequency by +nω 1 (where n is an integer, ω 1 is the angular frequency of fluctuation). The harmonic level of the reflected waves is much increased as the frequency of the incident wave approaches the cutoff-frequency of TE 10 mode of the rectangular waveguide. Measurement of the spectrum of the reflected waves can be utilized as a diagnosis of even a very slightly fluctuating medium. The theoretical results have been verified on examining experimentally the harmonic level of the microwave reflected by a plasma, weakly modulated (about 10 -4 ) by RF signal and loaded in the WRJ-10 waveguide. (author)

  11. Analysis of orbitally excited B-mesons

    CERN Document Server

    Albrecht, Zoltan; Quast, Gunter

    2003-01-01

    This thesis reports on the study of orbitally excited B** mesons in DELPHI b-events taken in the years 1994 to 2000 with the DELPHI detector at the LEP collider. The analyses presented represent the result of applying much improved and extended techniques of spectroscopy since the first DELPHI publication in 1995. A major improvement has occurred in the area of particle identification, where a neural network approach has been implemented in the DELPHI software package. Developments in the area of neural networks have led to much improved enrichment of the excited B states. The Bˆ{**} neural networks identify, on a track-by-track basis, the decay pion/kaon originating from the Bˆ{**} decay, suppressing background and keeping signal events in an efficient way. To improve detector resolution, a further application of neural networks has been applied to reconstruct the underlying Q-value. The corresponding network gives a correction on existing measurements of the Q-value in the form of a probability density fu...

  12. Embedded chemicals detection using multiple frequencies excitation

    Science.gov (United States)

    Gao, Yaohui; Chen, Meng-Ku; Yang, Chia-En; Chang, Yun-Ching; Yao, Jimmy; Cheng, Jiping; Yin, Stuart (Shizhuo)

    2010-08-01

    In this paper, recent works of buried chemical detection system by stimulating and enhancing spectroscopic signatures with multi-frequency excitations are discussed. In this detection system, those multiple excitations, including DC electric field, microwave, CO2 laser illumination and infrared radiation, are utilized and each of them plays a unique role. The Microwave could effectively increase the buried chemicals' evaporation rate from the source. The gradient DC electric field, generated by a Van De Graaff generator, not only serves as a vapor accelerator for efficiently expediting the transportation process of the vapor release from the buried chemicals, but also acts as a vapor concentrator for increasing the chemical concentrations in the detection area, which enables the trace level chemical detection. Similarly, CO2 laser illumination, which behaves as another type vapor accelerator, could also help to release the vapors adsorbed on the soil surface to the air rapidly. Finally, the stimulated and enhanced vapors released into the air are detected by the infrared (IR) spectroscopic fingerprints. Our theoretical and experimental results demonstrate that more than 20-fold increase of detection signal can be achieved by using those proposed technology.

  13. Dual excitation acoustic paramagnetic logging tool

    Energy Technology Data Exchange (ETDEWEB)

    Vail, III, William B. (Bothell, WA)

    1989-01-01

    New methods and apparatus are disclosed which allow measurement of the presence of oil and water in gelogical formations using a new physical effect called the Acoustic Paramagnetic Logging Effect (APLE). The presence of petroleum in formation causes a slight increase in the earth's magnetic field in the vicinity of the reservoir. This is the phenomena of paramagnetism. Application of an acoustic source to a geological formation at the Larmor frequency of the nucleous present causes the paramagnetism of the formation to disappear. This results in a decrease in the earth's magnetic field in the vicinity of the oil bearing formation. Repetitively frequency sweeping the acoustic source through the Larmor frequency of the nucleons present (approx. 2 kHz) causes an amplitude modulation of the earth's magnetic field which is a consequence of the APLE. The amplitude modulation of the earth's magnetic field is measured with an induction coil gradiometer and provides a direct measure of the amount of oil and water in the excitation zone of the formation. The phase of the signal is used to infer the longitudinal relaxation times of the fluids present, which results in the ability in general to separate oil and water and to measure the viscosity of the oil present. Such measurements may be preformed in open boreholes and in cased well bores. The Dual Excitation Acoustic Paramagnetic Logging Tool employing two acoustic sources is also described.

  14. Excited Dark Matter versus PAMELA/Fermi

    CERN Document Server

    Cline, James M

    2010-01-01

    Excitation of multicomponent dark matter in the galactic center has been proposed as the source of low-energy positrons that produce the excess 511 keV gamma rays that have been observed by INTEGRAL. Such models have also been promoted to explain excess high-energy electrons/positrons observed by the PAMELA, Fermi/LAT and H.E.S.S. experiments. We investigate whether one model can simultaneously fit all three anomalies, in addition to further constraints from inverse Compton scattering by the high-energy leptons. We find models that fit both the 511 keV and PAMELA excesses at dark matter masses M < 400 GeV, but not the Fermi lepton excess. The conflict arises because a more cuspy DM halo profile is needed to match the observed 511 keV signal than is compatible with inverse Compton constraints at larger DM masses.

  15. Multi-modal vibration amplitudes of taut inclined cables due to direct and/or parametric excitation

    Science.gov (United States)

    Macdonald, J. H. G.

    2016-02-01

    Cables are often prone to potentially damaging large amplitude vibrations. The dynamic excitation may be from external loading or motion of the cable ends, the latter including direct excitation, normally from components of end motion transverse to the cable, and parametric excitation induced by axial components of end motion causing dynamic tension variations. Geometric nonlinearity can be important, causing stiffening behaviour and nonlinear modal coupling. Previous analyses of the vibrations, often neglecting sag, have generally dealt with direct and parametric excitation separately or have reverted to numerical solutions of the responses. Here a nonlinear cable model is adopted, applicable to taut cables such as on cable-stayed bridges, that allows for cable inclination, small sag (such that the vibration modes are similar to those of a taut string), multiple modes in both planes and end motion and/or external forcing close to any natural frequency. Based on the method of scaling and averaging it is found that, for sinusoidal inputs and positive damping, non-zero steady state responses can only occur in the modes in each plane with natural frequencies close to the excitation frequency and those with natural frequencies close to half this frequency. Analytical solutions, in the form of non-dimensional polynomial equations, are derived for the steady state vibration amplitudes in up to three modes simultaneously: the directly excited mode, the corresponding nonlinearly coupled mode in the orthogonal plane and a parametrically excited mode with half the natural frequency. The stability of the solutions is also identified. The outputs of the equations are consistent with previous results, where available. Example results from the analytical solutions are presented for a typical inclined bridge cable subject to vertical excitation of the lower end, and they are validated by numerical integration of the equations of motion and against some previous experimental

  16. Self-Excited MHD Generators

    International Nuclear Information System (INIS)

    Mattsson, A.C.J.; Brogan, T.R.

    1966-01-01

    This paper presents design considerations and results obtained for a self-excited Faraday-type M H D generator having multi- or single-circuit net power outputs. A large combustion driven self-excited M H D generator (the Mark V) designed for multi-circuit net output of 29 MW was designed and built. The design of this generator is discussed and includes consideration of working fluid and its electrical properties, mass flow, channel configuration, and the strength of the magnetic field, together with a description of the analysis of the M H D generator flow and the manner in which that analysis is coupled with the magnet design so as to provide self-excitation. The design of the major generator components is also reviewed. The generator has been tested over a wide range of operating conditions, and has provided a maximum net power output of 23.6 MW with a gross power output of 32 MW . The initial testing of the generator was aimed at the achievement of self-excitation. Significant results from tests in the self-excitation study are presented along with data for net power output performance of the generator. Various problems encountered during the testing programme are discussed. Since the effective use of a generator having multiple output circuits is limited, the generator has been modified to give single circuit output of 20 M W at an output voltage of 1000 V. Single circuit output implies shorted Hall potential throughout the entire generator; therefore, the single circuit design consists of finding a suitable efficient Hall field shorted configuration which provides a good impedance match with the magnet and rapid excitation. These and other important design considerations for single circuit operation are presented in this paper. (author)

  17. Asymmetric excitation of surface plasmons by dark mode coupling

    KAUST Repository

    Zhang, X.

    2016-02-19

    Control over surface plasmons (SPs) is essential in a variety of cutting-edge applications, such as highly integrated photonic signal processing systems, deep-subwavelength lasing, high-resolution imaging, and ultrasensitive biomedical detection. Recently, asymmetric excitation of SPs has attracted enormous interest. In free space, the analog of electromagnetically induced transparency (EIT) in metamaterials has been widely investigated to uniquely manipulate the electromagnetic waves. In the near field, we show that the dark mode coupling mechanism of the classical EIT effect enables an exotic and straightforward excitation of SPs in a metasurface system. This leads to not only resonant excitation of asymmetric SPs but also controllable exotic SP focusing by the use of the Huygens-Fresnel principle. Our experimental findings manifest the potential of developing plasmonic metadevices with unique functionalities.

  18. Mixed frequency excitation of an electrostatically actuated resonator

    KAUST Repository

    Ramini, Abdallah

    2015-04-24

    We investigate experimentally and theoretically the dynamics of a capacitive resonator under mixed frequency excitation of two AC harmonic signals. The resonator is composed of a proof mass suspended by two cantilever beams. Experimental measurements are conducted using a laser Doppler vibrometer to reveal the interesting dynamics of the system when subjected to two-source excitation. A nonlinear single-degree-of-freedom model is used for the theoretical investigation. The results reveal combination resonances of additive and subtractive type, which are shown to be promising to increase the bandwidth of the resonator near primary resonance frequency. Our results also demonstrate the ability to shift the combination resonances to much lower or much higher frequency ranges. We also demonstrate the dynamic pull-in instability under mixed frequency excitation. © 2015 Springer-Verlag Berlin Heidelberg

  19. Laser excitation spectroscopy of uranium

    International Nuclear Information System (INIS)

    Solarz, R.W.

    1976-01-01

    Laser excitation spectroscopy, recently applied to uranium enrichment research at LLL, has produced a wealth of new and vitally needed information about the uranium atom and its excited states. Among the data amassed were a large number of cross sections, almost a hundred radiative lifetimes, and many level assignments. Rydberg states, never before observed in uranium or any of the actinides, have been measured and cataloged. This work puts a firm experimental base under laser isotope separation, and permits a choice of the laser frequencies most appropriate for practical uranium enrichment

  20. Nuclear excitation in muonic gold

    CERN Document Server

    Robert Tissot, B; Debrunner, P; Engfer, R; Link, R; Schellenberg, L; Schneuwly, H; Walter, H K

    1973-01-01

    Energies and intensities of muonic X-rays in gold were measured at the CERN muon channel with an experimental set-up as described by Backe et al. (1972). The 2p-1s and 3d-2p transitions could only be analysed taking into account beside the static quadrupole interaction a dynamical hyperfine interaction of the 2p states, which leads to an excitation of the first four nuclear levels. The dynamical hyperfine interaction was calculated using the core excitation model (de Shalit, (1961)). (0 refs).

  1. Coulomb excitation of 189Os

    International Nuclear Information System (INIS)

    Brandao, S.B.

    1987-01-01

    The level structure of 189 Os has been studied by Coulomb excitation using 35 Cl, 28 Si, 16 O beams. GOSIA, a code written to analyze multiple Coulomb excitation, was used to obtain the reduced probabilities of transition B(E2). The results for interband and intraband turned out possible the classification of the states following Nilsson levels. Gamma-rays originating from deexcitation of 216.7 and 219.4 keV have been separated and the reduced probability of transition has been measured. (A.C.A.S.) [pt

  2. [The influence of sinusoidal modulated currents on the fatty acid composition of plasma and blood erythrocytes in the patients presenting with chronic cholecystitis].

    Science.gov (United States)

    Knyshova, V V; Denisenko, Yu K; Novgorodtseva, T P; Yurenko, A V; Gvozdenko, T A; Zhukova, N V

    The objective of the present study was to evaluate the effectiveness of the treatment with sinusoidal modulated currents on lipid metabolism in the patients presenting with chronic cholecystitis in the state of remission. The study included 25 patients with chronic non-calculosis cholecystitis in phase of remission and 20 healthy subjects (controls). We studied the serum lipid spectrum as well as the fatty acid composition of plasma and blood erythrocytes before and after therapy with sinusoidal modulated currents applied to the right-sided hypochondrium region. The treatment of the patients with chronic cholecystitis in remission with the use of sinusoidal modulated currents produced moderate lipid-modulatory and membranotropic effects mediated through the activation of the processes of lipid metabolism that may result in the depletion of the pool of essential polyunsaturated fatty acids. The results of this study give evidence that it is advisable to treat the patients presenting with chronic cholecystitis by sinusoidal modulated currents in the combination with the oral intake of exogenous polyunsaturated fatty acids.

  3. Optogalvanic monitoring of collisional transfer of laser excitation energy in a neon RF plasma

    International Nuclear Information System (INIS)

    Armstrong, T.D.

    1994-01-01

    The optogalvanic signals produced by pulsed laser excitation of 1s5--2p8 and 1s5-2p9 (Paschen notation) transition by a ∼29 MHz radiofrequency (rf) discharge at ∼5 torr have been investigated. The optogalvanic signal produced by 1s5-2p9 excitations indicates that there is transfer of energy from the 2p9 state to some other state. The state to which this energy is transferred is believed to be mainly the 2p8 state because of the very small energy gap between the 2p9 and 2p8 states. To verify this transfer, the 1s5-2p8 transition was investigated. The similarity of the temporal profiles of the optogalvanic signals in both excitations confirms the collisional transfer of laser excitation energy from 2p9 to 2p8

  4. Calibrated Noncontact Exciters for Optical Modal Analysis

    Directory of Open Access Journals (Sweden)

    Henrik O. Saldner

    1996-01-01

    Full Text Available Two types of exciters were investigated experimentally One of the exciters uses a small permanent magnet fastened on the object. The force is introduced by the change in the electromagnetic field from a coil via an air gap. The second exciter is an eddy-current electromagnet one. The amplitude of the forces from these exciters are calibrated by using dynamic reciprocity in conjunction with electronic holography. These forces strongly depend upon the distance between the exciter and the object.

  5. Retrograde signaling

    DEFF Research Database (Denmark)

    Kleine, Tatjana; Leister, Dario Michael

    2016-01-01

    The term retrograde signaling refers to the fact that chloroplasts and mitochondria utilize specific signaling molecules to convey information on their developmental and physiological states to the nucleus and modulate the expression of nuclear genes accordingly. Signals emanating from plastids...... of retrograde signaling has since been extended and revised. Elements of several 'operational' signaling circuits have come to light, including metabolites, signaling cascades in the cytosol and transcription factors. Here, we review recent advances in the identification and characterization of retrograde...

  6. Orientation-dependent imaging of electronically excited quantum dots

    Science.gov (United States)

    Nguyen, Duc; Goings, Joshua J.; Nguyen, Huy A.; Lyding, Joseph; Li, Xiaosong; Gruebele, Martin

    2018-02-01

    We previously demonstrated that we can image electronic excitations of quantum dots by single-molecule absorption scanning tunneling microscopy (SMA-STM). With this technique, a modulated laser beam periodically saturates an electronic transition of a single nanoparticle, and the resulting tunneling current modulation ΔI(x0, y0) maps out the SMA-STM image. In this paper, we first derive the basic theory to calculate ΔI(x0, y0) in the one-electron approximation. For near-resonant tunneling through an empty orbital "i" of the nanostructure, the SMA-STM signal is approximately proportional to the electron density |φi) (x0,y0)|imaged. We then show experimentally that we can nudge quantum dots on the surface and roll them, thus imaging excited state electronic structure of a single quantum dot at different orientations. We use density functional theory to model ODMs at various orientations, for qualitative comparison with the SMA-STM experiment. The model demonstrates that our experimentally observed signal monitors excited states, localized by defects near the surface of an individual quantum dot. The sub-nanometer super-resolution imaging technique demonstrated here could become useful for mapping out the three-dimensional structure of excited states localized by defects within nanomaterials.

  7. Spectroscopic identification of individual fluorophores using photoluminescence excitation spectra.

    Science.gov (United States)

    Czerski, J; Colomb, W; Cannataro, F; Sarkar, S K

    2018-01-25

    The identity of a fluorophore can be ambiguous if other fluorophores or nonspecific fluorescent impurities have overlapping emission spectra. The presence of overlapping spectra makes it difficult to differentiate fluorescent species using discrete detection channels and unmixing of spectra. The unique absorption and emission signatures of fluorophores provide an opportunity for spectroscopic identification. However, absorption spectroscopy may be affected by scattering, whereas fluorescence emission spectroscopy suffers from signal loss by gratings or other dispersive optics. Photoluminescence excitation spectra, where excitation is varied and emission is detected at a fixed wavelength, allows hyperspectral imaging with a single emission filter for high signal-to-background ratio without any moving optics on the emission side. We report a high throughput method for measuring the photoluminescence excitation spectra of individual fluorophores using a tunable supercontinuum laser and prism-type total internal reflection fluorescence microscope. We used the system to measure and sort the photoluminescence excitation spectra of individual Alexa dyes, fluorescent nanodiamonds (FNDs), and fluorescent polystyrene beads. We used a Gaussian mixture model with maximum likelihood estimation to objectively separate the spectra. Finally, we spectroscopically identified different species of fluorescent nanodiamonds with overlapping spectra and characterized the heterogeneity of fluorescent nanodiamonds of varying size. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.

  8. High excitation ISM and gas

    NARCIS (Netherlands)

    Peeters, E; Martinez-Hernandez, NL; Rodriguez-Fernandez, NJ; Tielens, [No Value

    An overview is given of ISO results on regions of high excitation ISM and gas, i.e. H II regions, the Galactic Centre and Supernova Remnants. IR emission due to fine-structure lines, molecular hydrogen, silicates, polycyclic aromatic hydrocarbons and dust are summarised, their diagnostic

  9. High Excitation Gas and ISM

    Science.gov (United States)

    Peeters, E.; Martin-Hernandez, N. L.; Rodriguez-Fernandez, N. J.; Tielens, A. G. G. M.

    2004-01-01

    An overview is given of ISO results on regions of high excitation ISM and gas, i.e. HII regions, the Galactic Centre and Supernovae Remnants. IR emission due to fine-structure lines, molecular hydrogen, silicates, polycyclic aromatic hydrocarbons and dust are summarized, their diagnostic capabilities illustrated and their implications highlighted.

  10. Predictions for Excited Strange Baryons

    Energy Technology Data Exchange (ETDEWEB)

    Fernando, Ishara P.; Goity, Jose L. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-04-01

    An assessment is made of predictions for excited hyperon masses which follow from flavor symmetry and consistency with a 1/N c expansion of QCD. Such predictions are based on presently established baryonic resonances. Low lying hyperon resonances which do not seem to fit into the proposed scheme are discussed.

  11. PAMELA, DAMA, INTEGRAL and signatures of metastable excited WIMPs

    Energy Technology Data Exchange (ETDEWEB)

    Finkbeiner, Douglas P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Slatyer, Tracy R. [Physics Department, Harvard University, Cambridge, MA 02138 (United States); Weiner, Neal [Center for Cosmology and Particle Physics, Department of Physics, New York University, New York, NY 10003 (United States); Yavin, Itay, E-mail: dfinkbeiner@cfa.harvard.edu, E-mail: tslatyer@fas.harvard.edu, E-mail: neal.weiner@nyu.edu, E-mail: iyavin@princeton.edu [Department of Physics, Princeton University, Princeton, NJ 08544 (United States)

    2009-09-01

    Models of dark matter with ∼ GeV scale force mediators provide attractive explanations of many high energy anomalies, including PAMELA, ATIC, and the WMAP haze. At the same time, by exploiting the ∼ MeV scale excited states that are automatically present in such theories, these models naturally explain the DAMA/LIBRA and INTEGRAL signals through the inelastic dark matter (iDM) and exciting dark matter (XDM) scenarios, respectively. Interestingly, with only weak kinetic mixing to hypercharge to mediate decays, the lifetime of excited states with δ < 2m{sub electron} is longer than the age of the universe. The fractional relic abundance of these excited states depends on the temperature of kinetic decoupling, but can be appreciable. There could easily be other mechanisms for rapid decay, but the consequences of such long-lived states are intriguing. We find that CDMS constrains the fractional relic population of ∼ 100 keV states to be ∼< 10{sup −2}, for a 1 TeV WIMP with σ{sub n} = 10{sup −40} cm{sup 2}. Upcoming searches at CDMS, as well as xenon, silicon, and argon targets, can push this limit significantly lower. We also consider the possibility that the DAMA excitation occurs from a metastable state into the XDM state, which decays via e{sup +}e{sup −} emission, which allows lighter states to explain the INTEGRAL signal due to the small kinetic energies required. Such models yield dramatic signals from down-scattering, with spectra peaking at high energies, sometimes as high as ∼ 1 MeV, well outside the usual search windows. Such signals would be visible at future Ar and Si experiments, and may be visible at Ge and Xe experiments, although γ-rays associated with nuclear excitations would complicate the signal for these heavier targets. We also consider other XDM models involving ∼ 500 keV metastable states, and find they can allow lighter WIMPs to explain INTEGRAL as well.

  12. Automatic real-time adjustment of pulse signal of incremental photoelectric encoder

    Science.gov (United States)

    Zhao, Changhai; Wan, Qiuhua; Lu, Xinran; Du, Yingcai

    2017-12-01

    An automatic real-time pulse signal adjustment method for the incremental photoelectric encoder was designed in this study in an effort to ensure highly precise output speed pulse signals. The original moire fringe signal of the photoelectric sensor encoder output is first converted into a voltage signal through the digital potentiometer, then the voltage signal is converted into two orthogonal sinusoidal signals through the amplifier circuit, and finally the sinusoidal signal is subdivided into 10 segments via the subdividing chip and converted into a square wave pulse signal output. The numerical size of the digital potentiometer can be adjusted according to the collected sine signal amplitude value and square wave pulse signal error, which restrains the output error within a reasonable range. Experimental results showed that in high temperature conditions, the system can reduce the peak error of the encoder output square wave signal from 3.12″ to 0.52″; in low temperature conditions, the peak error can be reduced from 4.16″ to 0.56″.

  13. Higher Order Parametric Excitation Modes for Spaceborne Quadrupole Mass Spectrometers

    Science.gov (United States)

    Gershman, D. J.; Block, B. P.; Rubin, M.; Benna, M.; Mahaffy, P. R.; Zurbuchen, T. H.

    2011-01-01

    This paper describes a technique to significantly improve upon the mass peak shape and mass resolution of spaceborne quadrupole mass spectrometers (QMSs) through higher order auxiliary excitation of the quadrupole field. Using a novel multiresonant tank circuit, additional frequency components can be used to drive modulating voltages on the quadrupole rods in a practical manner, suitable for both improved commercial applications and spaceflight instruments. Auxiliary excitation at frequencies near twice that of the fundamental quadrupole RF frequency provides the advantages of previously studied parametric excitation techniques, but with the added benefit of increased sensed excitation amplitude dynamic range and the ability to operate voltage scan lines through the center of upper stability islands. Using a field programmable gate array, the amplitudes and frequencies of all QMS signals are digitally generated and managed, providing a robust and stable voltage control system. These techniques are experimentally verified through an interface with a commercial Pfeiffer QMG422 quadrupole rod system.When operating through the center of a stability island formed from higher order auxiliary excitation, approximately 50% and 400% improvements in 1% mass resolution and peak stability were measured, respectively, when compared with traditional QMS operation. Although tested with a circular rod system, the presented techniques have the potential to improve the performance of both circular and hyperbolic rod geometry QMS sensors.

  14. Proposition for sensorless self-excitation by a piezoelectric device

    Science.gov (United States)

    Tanaka, Y.; Kokubun, Y.; Yabuno, H.

    2018-04-01

    In this paper, we propose a method to realize self-excitation in an oscillator actuated by a piezoelectric device without a sensor. In general, the positive feedback associated with the oscillator velocity causes the self-excitation. Instead of measuring the velocity with a sensor, we utilize the electro-mechanical coupling effect in the oscillator and piezoelectric device. We drive the piezoelectric device with a current proportional to the linear combination of the voltage across the terminals of the piezoelectric device and its differential voltage signal. Then, the oscillator with the piezoelectric device behaves like a third-order system, which has three eigenvalues. The self-excitation can be realized because appropriate feedback gains can set two of the eigenvalues to be conjugate complex roots with a positive real part and the other eigenvalue to be a negative real root. To confirm the validity of the proposed method, we experimentally demonstrated the sensorless self-excitation and, as an application example, carried out mass sensing in a sensorless self-excited macrocantilever.

  15. Visualizing rotational wave functions of electronically excited nitric oxide molecules by using an ion imaging technique.

    Science.gov (United States)

    Mizuse, Kenta; Chizuwa, Nao; Ikeda, Dai; Imajo, Takashi; Ohshima, Yasuhiro

    2018-01-31

    Here we report the dissociative ionization imaging of electronically excited nitric oxide (NO) molecules to visualize rotational wave functions in the electronic excited state (A 2 Σ + ). The NO molecules were excited to a single rotational energy eigenstate in the first electronic excited state by a resonant nanosecond ultraviolet pulse. The molecules were then irradiated by a strong, circularly polarized femtosecond imaging pulse. Spatial distribution of the ejected N + and O + fragment ions from the dissociative NO 2+ was recorded as a direct measure of the molecular axis distribution using a high-resolution slice ion imaging apparatus. The circularly polarized probe pulse realizes the isotropic ionization and thus undistorted shapes of the functions can be visualized. Due to the higher ionization efficiency of the excited molecules relative to the ground state ones, signals from the excited NO were enhanced. We can, therefore, extract shapes of the square of rotational wave functions in the electronic excited state although the unexcited ground state molecules are the majority in an ensemble. The observed images show s-function-like and p-function-like shapes depending on the excitation wavelengths. These shapes well reflect the rotational (angular momentum) character of the prepared states. The present approach directly leads to the evaluation method of the molecular axis alignment in photo-excited ensembles, and it could also lead to a visualization method for excited state molecular dynamics.

  16. Mathematical pattern, smoothing and digital filtering of a speech signal

    International Nuclear Information System (INIS)

    Razzam, Mohamed Habib

    1979-01-01

    After presentation of speech synthesis methods, characterized by a treatment of pre-recorded natural signals, or by an analog simulation of vocal tract, we present a new synthesis method especially based on a mathematical pattern of the signal, as a development of M. RODET's method. For their physiological origin, these signals are partially or totally voiced, or aleatory. For the phoneme voiced parts, we compute the formant curves, the sum of which constitute the wave, directly in time-domain by applying a specific envelope (operating as a time-window analysis) to a sinusoidal wave, The sinusoidal wave computation is made at the beginning of each signal's pseudo-period. The transition from successive periods is assured by a polynomial smoothing followed by a digital filtering. For the aleatory parts, we present an aleatory computation method of formant curves. Each signal is subjected to a melodic diagrams computed in accordance with the nature of the phoneme (vowel or consonant) and its context (isolated or not). (author) [fr

  17. Excitation of solar and stellar oscillations

    International Nuclear Information System (INIS)

    Baudin, Frederic

    2009-01-01

    In this report for an Accreditation to Supervise Research (HDR), and after an introduction which outlines the potential of helio-seismology, the author addresses the problem of excitation and amplitude of stellar oscillations with respect to their most important aspects, i.e. the theoretical framework of the present understanding of excitation mechanisms, and instrumental influences on measurements which are used to assess excitation rates, the difficulty to perform these measurements, and their analysis in some various cases. Thus, the author addresses excitation mechanisms of stellar oscillation (stochastic excitation, opacity- related excitation, and other excitation mechanisms), the excitation of solar modes (observation and theoretical predictions, influence of magnetic phenomena, solar g modes), and the excitation of modes in other stars (solar-type pulsators, red giants, and not so conventional pulsators such as HD180642 and Be stars like HD49330)

  18. Large-signal characterizations of DDR IMPATT devices based on group III-V semiconductors at millimeter-wave and terahertz frequencies

    Science.gov (United States)

    Acharyya, Aritra; Mallik, Aliva; Banerjee, Debopriya; Ganguli, Suman; Das, Arindam; Dasgupta, Sudeepto; Banerjee, J. P.

    2014-08-01

    Large-signal (L-S) characterizations of double-drift region (DDR) impact avalanche transit time (IMPATT) devices based on group III-V semiconductors such as wurtzite (Wz) GaN, GaAs and InP have been carried out at both millimeter-wave (mm-wave) and terahertz (THz) frequency bands. A L-S simulation technique based on a non-sinusoidal voltage excitation (NSVE) model developed by the authors has been used to obtain the high frequency properties of the above mentioned devices. The effect of band-to-band tunneling on the L-S properties of the device at different mm-wave and THz frequencies are also investigated. Similar studies are also carried out for DDR IMPATTs based on the most popular semiconductor material, i.e. Si, for the sake of comparison. A comparative study of the devices based on conventional semiconductor materials (i.e. GaAs, InP and Si) with those based on Wz-GaN shows significantly better performance capabilities of the latter at both mm-wave and THz frequencies.

  19. Excitations

    International Nuclear Information System (INIS)

    Dorner, B.

    1996-01-01

    A short introduction to instrumental resolution is followed by a discussion of visibilities of phonon modes due to their eigenvectors. High precision phonon dispersion curves in GaAs are presented together with 'ab initio' calculations. Al 2 O 3 is taken as an example of selected visibility due to group theory. By careful determination of phonon intensities eigenvectors can be determined, such as in Silicon and Diamond. The investigation of magnon modes is shown for the garnet Fe 2 Ca 3 (GeO 4 ) 3 , where also a quantum gap due to zero point spin fluctuations was observed. The study of the splitting of excitons in CsFeCl 3 in an applied magnetic field demonstrates the possibilities of neutron polarisation analysis, which made it possible to observe a mode crossing. An outlook to inelastic X-ray scattering with very high energy resolution of synchrotron radiation is given with the examples of phonons in Beryllium and in water. (author) 19 figs., 36 refs

  20. Excitations

    Energy Technology Data Exchange (ETDEWEB)

    Dorner, B. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1996-12-31

    A short introduction to instrumental resolution is followed by a discussion of visibilities of phonon modes due to their eigenvectors. High precision phonon dispersion curves in GaAs are presented together with `ab initio` calculations. Al{sub 2}O{sub 3} is taken as an example of selected visibility due to group theory. By careful determination of phonon intensities eigenvectors can be determined, such as in Silicon and Diamond. The investigation of magnon modes is shown for the garnet Fe{sub 2}Ca{sub 3}(GeO{sub 4}){sub 3}, where also a quantum gap due to zero point spin fluctuations was observed. The study of the splitting of excitons in CsFeCl{sub 3} in an applied magnetic field demonstrates the possibilities of neutron polarisation analysis, which made it possible to observe a mode crossing. An outlook to inelastic X-ray scattering with very high energy resolution of synchrotron radiation is given with the examples of phonons in Beryllium and in water. (author) 19 figs., 36 refs.

  1. Helmholtz resonance cells for pulsed dye laser-excited high resolution optoacoustic spectroscopy

    International Nuclear Information System (INIS)

    Shaw, R.W.

    1979-01-01

    The signal waveform observed in optoacoustic measurements is complex and highly dependent on sample for open-cavity cells and pulsed optical excitation. A Helmholtz resonator (HR) cell has been employed to reduce this dependence on sample and thus simplify signal processing. The cell background signal is likewise reduced with the HR cell. An optoacoustic (OA) spectrum of holmium oxide powder is presented to demonstrate the utility of this cell with pulsed dye laser excitation for acquistion of high resolution OA spectra of solids

  2. Mean excitation energies for molecular ions

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Phillip W.K.; Sauer, Stephan P.A. [Department of Chemistry, University of Copenhagen, Copenhagen (Denmark); Oddershede, Jens [Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Odense (Denmark); Quantum Theory Project, Departments of Physics and Chemistry, University of Florida, Gainesville, FL (United States); Sabin, John R., E-mail: sabin@qtp.ufl.edu [Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Odense (Denmark); Quantum Theory Project, Departments of Physics and Chemistry, University of Florida, Gainesville, FL (United States)

    2017-03-01

    The essential material constant that determines the bulk of the stopping power of high energy projectiles, the mean excitation energy, is calculated for a range of smaller molecular ions using the RPA method. It is demonstrated that the mean excitation energy of both molecules and atoms increase with ionic charge. However, while the mean excitation energies of atoms also increase with atomic number, the opposite is the case for mean excitation energies for molecules and molecular ions. The origin of these effects is explained by considering the spectral representation of the excited state contributing to the mean excitation energy.

  3. Effects of lead on ultrastructural charactristics of sinusoidal endothelial cell of fetal rat's spleen

    Directory of Open Access Journals (Sweden)

    Heydari Z

    1997-08-01

    Full Text Available Amount of environmental lead pollution is increased with progression of industry. This pollution is able to damage the living beings in many ways. Blood and Immune systems are more sensitive to toxic effects of lead. 30 female and 6 male rats from Sprague dawley race are chosen by simple random sampling. After copulation and vaginal plug observation, expectant rats are calssified in test and control groups. Since the first day of pregnancy, test group is given a drink containing lead acetate 0.13% in distilled water and control group is given distilled water. After delivery, for ultrastrectural studies, spleen specimens of newborn rats are fixed in glutaraldehyde solution 2% and after processing are studied by T.E.M. Sinusoidal endothelial cell show: morphological changes in mitochondria, appearance of primary & secondary lysosomes and multivesicular bodies and swelling in ER. It seems that these changes are caused by interaction of lead with enzymathic functions or lead accumulation in these cellular organels.

  4. Nonpulsed sinusoidal electromagnetic fields as a noninvasive strategy in bone repair: the effect on human mesenchymal stem cell osteogenic differentiation.

    Science.gov (United States)

    Ledda, Mario; D'Emilia, Enrico; Giuliani, Livio; Marchese, Rodolfo; Foletti, Alberto; Grimaldi, Settimio; Lisi, Antonella

    2015-02-01

    In vivo control of osteoblast differentiation is an important process needed to maintain the continuous supply of mature osteoblast cells for growth, repair, and remodeling of bones. The regulation of this process has also an important and significant impact on the clinical strategies and future applications of cell therapy. In this article, we studied the effect of nonpulsed sinusoidal electromagnetic field radiation tuned at calcium-ion cyclotron frequency of 50 Hz exposure treatment for bone differentiation of human mesenchymal stem cells (hMSCs) alone or in synergy with dexamethasone, their canonical chemical differentiation agent. Five days of continuous exposure to calcium-ion cyclotron resonance affect hMSC proliferation, morphology, and cytoskeletal actin reorganization. By quantitative real-time polymerase chain reaction, we also observed an increase of osteoblast differentiation marker expression such as Runx2, alkaline phosphatase (ALP), osteocalcin (OC), and osteopontin (OPN) together with the osteoprotegerin mRNA modulation. Moreover, in these cells, the increase of the protein expression of OPN and ALP was also demonstrated. These results demonstrate bone commitment of hMSCs through a noninvasive and biocompatible differentiating physical agent treatment and highlight possible applications in new regenerative medicine protocols.

  5. Estimation of sinusoidal flow heterogeneity in normal and diseased rat livers from tracer dilution data using a fractal model.

    Science.gov (United States)

    Weiss, Michael; Li, Peng; Roberts, Michael S

    2012-11-01

    Up to now, vascular indicator-dilution curves have been analyzed by numerical integration or by fitting empirical functions to the data. Here, we apply a recently developed mechanistic model with the goal to quantitatively describe flow distribution in the sinusoidal network of normal rat livers and those with high-fat emulsion-induced NASH. Single-pass outflow concentration data of sucrose were obtained from in situ perfused rat livers after impulse injection. The model fitted to the data consists of a continuous mixture of inverse Gaussian densities assuming a normal distribution of regional flow. It accounts for the fractal flow heterogeneity in the organ and has three adjustable parameters with a clear physiological interpretation. The model fitted the data well and revealed that the intrahepatic flow dispersion of 49.6 % in the control group increased significantly to 87.2 % in the NASH group (p < 0.01). In contrast to previously used empirical functions, the present model exhibits a power-law tail (~t(-2.4)), which is a signature of fractal microvascular networks. The approach offers the possibility to determine hepatic blood flow heterogeneity in perfused livers and to evaluate the functional implications. © 2012 John Wiley & Sons Ltd.

  6. Mesenchymal stem cell-conditioned medium prevents radiation-induced liver injury by inhibiting inflammation and protecting sinusoidal endothelial cells

    International Nuclear Information System (INIS)

    Chen Yixing; Zeng Zhaochong; Sun Jing; Huang Yan; Zhang Zhenyu; Zeng Haiying

    2015-01-01

    Current management of radiation-induced liver injury is limited. Sinusoidal endothelial cell (SEC) apoptosis and inflammation are considered to be initiating events in hepatic damage. We hypothesized that mesenchymal stem cells (MSCs) possess anti-apoptotic and anti-inflammatory actions during hepatic irradiation, acting via paracrine mechanisms. This study aims to examine whether MSC-derived bioactive components are protective against radiation-induced liver injury in rats. MSC-conditioned medium (MSC-CM) was generated from rat bone marrow–derived MSCs. The effect of MSC-CM on the viability of irradiated SECs was examined by flow cytometric analysis. Activation of the Akt and ERK pathways was analyzed by western blot. MSC-CM was also delivered to Sprague–Dawley rats immediately before receiving liver irradiation, followed by testing for pathological features, changes in serum hyaluronic acid, ALT, and inflammatory cytokine levels, and liver cell apoptosis. MSC-CM enhanced the viability of irradiated SECs in vitro and induced Akt and ERK phosphorylation in these cells. Infusion of MSC-CM immediately before liver irradiation provided a significant anti-apoptotic effect on SECs and improved the histopathological features of injury in the irradiated liver. MSC-CM also reduced the secretion and expression of inflammatory cytokines and increased the expression of anti-inflammatory cytokines. MSC-derived bioactive components could be a novel therapeutic approach for treating radiation-induced liver injury. (author)

  7. Approach for discrimination and quantification of electroactive species: kinetics difference revealed by higher harmonics of Fourier transformed sinusoidal voltammetry.

    Science.gov (United States)

    Fang, Yishan; Huang, Xinjian; Wang, Lishi

    2015-01-06

    Discrimination and quantification of electroactive species are traditionally realized by a potential difference which is mainly determined by thermodynamics. However, the resolution of this approach is limited to tens of millivolts. In this paper, we described an application of Fourier transformed sinusoidal voltammetry (FT-SV) that provides a new approach for discrimination and quantitative evaluation of electroactive species, especially thermodynamic similar ones. Numerical simulation indicates that electron transfer kinetics difference between electroactive species can be revealed by the phase angle of higher order harmonics of FT-SV, and the difference can be amplified order by order. Thus, even a very subtle kinetics difference can be amplified to be distinguishable at a certain order of harmonics. This method was verified with structurally similar ferrocene derivatives which were chosen as the model systems. Although these molecules have very close redox potential (harmonics. The results demonstrated the feasibility and reliability of the method. It was also implied that the combination of the traditional thermodynamic method and this kinetics method can form a two-dimension resolved detection method, and it has the potential to extend the resolution of voltammetric techniques to a new level.

  8. Generation of equivalent forms of operational trans-conductance amplifier-RC sinusoidal oscillators: the nullor approach

    Directory of Open Access Journals (Sweden)

    Raj Senani

    2014-06-01

    Full Text Available It has been shown in two earlier papers published from this study that corresponding to a given single-operational trans-conductance amplifier (single-OTA-RC and dual-OTA-RC sinusoidal oscillators, there are three other structurally distinct equivalent forms having the same characteristic equation, one of which employs both grounded capacitors (GC. In this study, an earlier nullor-based theory of generating equivalent op-amp oscillator circuits, proposed by the first author, is extended to derive equivalent OTA-RC circuits which discloses the existence of an additional number of equivalent forms for the same given OTA-RC oscillators than those predicted by the quoted earlier works, and thereby considerably enlarging the set of equivalents of a given OTA-RC oscillator. Furthermore, the presented nullor-based theory of generating equivalent OTA-RC oscillators results in three additional interesting outcomes: (i the revelation that corresponding to any given OTA-RC oscillator there are two ‘both-GC’ oscillators (and not merely one, as derived in the quoted earlier works; (ii the availability of explicit current outputs in several of the derived equivalents and (iii the realisability explicit-current-output ‘quadrature oscillators’ in some of the generated equivalent oscillators. The workability of the generated equivalent OTA-RC oscillators has been verified by SPICE simulations, based on CMOS OTAs using 0.18 µm CMOS technology process parameters, and some sample results are given.

  9. Uniform magnetic excitations in nanoparticles

    DEFF Research Database (Denmark)

    Mørup, Steen; Hansen, Britt Rosendahl

    2005-01-01

    materials, quantum effects give rise to a small deviation from the linear temperature dependence of the (sublattice) magnetization at very low temperatures. The complex nature of the excited precession states of nanoparticles of antiferromagnetic materials, with deviations from antiparallel orientation......We have used a spin-wave model to calculate the temperature dependence of the (sublattice) magnetization of magnetic nanoparticles. The uniform precession mode, corresponding to a spin wave with wave vector q=0, is predominant in nanoparticles and gives rise to an approximately linear temperature...... dependence of the (sublattice) magnetization well below the superparamagnetic blocking temperature for both ferro-, ferri-, and antiferromagnetic particles. This is in accordance with the results of a classical model for collective magnetic excitations in nanoparticles. In nanoparticles of antiferromagnetic...

  10. Laser amplification in excited dielectrics

    Science.gov (United States)

    Winkler, Thomas; Haahr-Lillevang, Lasse; Sarpe, Cristian; Zielinski, Bastian; Götte, Nadine; Senftleben, Arne; Balling, Peter; Baumert, Thomas

    2018-01-01

    Wide-bandgap dielectrics such as glasses or water are transparent at visible and infrared wavelengths. This changes when they are exposed to ultrashort and highly intense laser pulses. Different interaction mechanisms lead to the appearance of various transient nonlinear optical phenomena. Using these, the optical properties of dielectrics can be controlled from the transparent to the metal-like state. Here we expand this range by a yet unexplored mechanism in excited dielectrics: amplification. In a two-colour pump-probe experiment, we show that a 400 nm femtosecond laser pulse is coherently amplified inside an excited sapphire sample on a scale of a few micrometres. Simulations strongly support the proposed two-photon stimulated emission process, which is temporally and spatially controllable. Consequently, we expect applications in all fields that demand strongly localized amplification.

  11. Laser amplification in excited dielectrics

    DEFF Research Database (Denmark)

    Winkler, Thomas; Haahr-Lillevang, Lasse; Sarpe, Cristian

    2018-01-01

    Wide-bandgap dielectrics such as glasses or water are transparent at visible and infrared wavelengths. This changes when they are exposed to ultrashort and highly intense laser pulses. Different interaction mechanisms lead to the appearance of various transient nonlinear optical phenomena. Using...... these, the optical properties of dielectrics can be controlled from the transparent to the metal-like state. Here we expand this range by a yet unexplored mechanism in excited dielectrics: amplification. In a two-colour pump-probe experiment, we show that a 400nm femtosecond laser pulse is coherently...... amplified inside an excited sapphire sample on a scale of a few micrometres. Simulations strongly support the proposed two-photon stimulated emission process, which is temporally and spatially controllable. Consequently, we expect applications in all fields that demand strongly localized amplification....

  12. International Meeting: Excited QCD 2014

    CERN Document Server

    Giacosa, Francesco; Malek, Magdalena; Marinkovic, Marina; Parganlija, Denis

    2014-01-01

    Excited QCD 2014 will take place on the beautiful Bjelasnica mountain located in the vicinity of the Bosnian capital Sarajevo. Bjelasnica was a venue of the XIV Winter Olympic Games and it is situated only 30 kilometers from Sarajevo International Airport. The workshop program will start on February 2 and finish on February 8, 2014, with scientific lectures taking place from February 3 to 7. Workshop participants will be accomodated in Hotel Marsal, only couple of minutes by foot from the Olympic ski slopes. ABOUT THE WORKSHOP This edition is the sixth in a series of workshops that were previously organised in Poland, Slovakia, France and Portugal. Following the succesful meeting in 2013, the Workshop is returning to Sarajevo Olympic mountains in 2014, exactly thirty years after the Games. The workshop covers diverse aspects of QCD: (i) QCD at low energies: excited hadrons, glueballs, multiquarks. (ii) QCD at high temperatures and large densities: heavy-ion collisions, jets, diffraction, hadronisation, quark-...

  13. Assessment of excitation mechanisms and structural flexibility influence in excitation propagation in multi-megawatt wind turbine gearboxes: Experiments and flexible multibody model optimization

    Science.gov (United States)

    Helsen, Jan; Marrant, Ben; Vanhollebeke, Frederik; De Coninck, Filip; Berckmans, Dries; Vandepitte, Dirk; Desmet, Wim

    2013-10-01

    Reliable gearbox design calculations require sufficient insight in gearbox dynamics, which is determined by the interaction between the different excitation mechanisms and the gearbox modal behavior. Both external gearbox excitation originating from the wind turbine drive train and internal gearbox excitation are important. Moreover with regard to the modal behavior the different gearbox structural components: planet carrier, shafts and housing are of influence. The main objective of this article is the experimental investigation of the interaction between the different excitation mechanisms and the gearbox modal behavior. The insights gathered are used to prove the need for accurate gear mesh representation and structural flexibility within the corresponding flexible multibody gearbox simulation model. Experiments are conducted on a dynamic 13.2 MW test facility on which two multi-megawatt wind turbine gearboxes are placed back to back and subjected to a speed run-up. Measurement sensors consist of bearing displacement sensors, torque sensors, encoders and accelerometers distributed over the gearbox. Excitation order amplitudes on different locations in the gearbox are determined by means of a Time Varying Discrete Fourier Transform (TVDFT) order tracking on the measured sensor signals. Moreover the propagation of this excitation throughout the gearbox is assessed. Relating the orders to the corresponding excitation source allows the definition of order influence regions within the gearbox. The interaction between the gear mesh order excitation and structural flexibility is shown.

  14. Hydrological excitation of polar motion by different variables from the GLDAS models

    Science.gov (United States)

    Winska, Malgorzata; Nastula, Jolanta; Salstein, David

    2017-12-01

    Continental hydrological loading by land water, snow and ice is a process that is important for the full understanding of the excitation of polar motion. In this study, we compute different estimations of hydrological excitation functions of polar motion (as hydrological angular momentum, HAM) using various variables from the Global Land Data Assimilation System (GLDAS) models of the land-based hydrosphere. The main aim of this study is to show the influence of variables from different hydrological processes including evapotranspiration, runoff, snowmelt and soil moisture, on polar motion excitations at annual and short-term timescales. Hydrological excitation functions of polar motion are determined using selected variables of these GLDAS realizations. Furthermore, we use time-variable gravity field solutions from the Gravity Recovery and Climate Experiment (GRACE) to determine the hydrological mass effects on polar motion excitation. We first conduct an intercomparison of the maps of variations of regional hydrological excitation functions, timing and phase diagrams of different regional and global HAMs. Next, we estimate the hydrological signal in geodetically observed polar motion excitation as a residual by subtracting the contributions of atmospheric angular momentum and oceanic angular momentum. Finally, the hydrological excitations are compared with those hydrological signals determined from residuals of the observed polar motion excitation series. The results will help us understand the relative importance of polar motion excitation within the individual hydrological processes, based on hydrological modeling. This method will allow us to estimate how well the polar motion excitation budget in the seasonal and inter-annual spectral ranges can be closed.

  15. Channelopathies of skeletal muscle excitability.

    Science.gov (United States)

    Cannon, Stephen C

    2015-04-01

    Familial disorders of skeletal muscle excitability were initially described early in the last century and are now known to be caused by mutations of voltage-gated ion channels. The clinical manifestations are often striking, with an inability to relax after voluntary contraction (myotonia) or transient attacks of severe weakness (periodic paralysis). An essential feature of these disorders is fluctuation of symptoms that are strongly impacted by environmental triggers such as exercise, temperature, or serum K(+) levels. These phenomena have intrigued physiologists for decades, and in the past 25 years the molecular lesions underlying these disorders have been identified and mechanistic studies are providing insights for therapeutic strategies of disease modification. These familial disorders of muscle fiber excitability are "channelopathies" caused by mutations of a chloride channel (ClC-1), sodium channel (NaV1.4), calcium channel (CaV1.1), and several potassium channels (Kir2.1, Kir2.6, and Kir3.4). This review provides a synthesis of the mechanistic connections between functional defects of mutant ion channels, their impact on muscle excitability, how these changes cause clinical phenotypes, and approaches toward therapeutics. © 2015 American Physiological Society.

  16. Wedding ring shaped excitation coil

    Science.gov (United States)

    MacLennan, Donald A.; Tsai, Peter

    2001-01-01

    A high frequency inductively coupled electrodeless lamp includes an excitation coil with an effective electrical length which is less than one half wavelength of a driving frequency applied thereto, preferably much less. The driving frequency may be greater than 100 MHz and is preferably as high as 915 MHz. Preferably, the excitation coil is configured as a non-helical, semi-cylindrical conductive surface having less than one turn, in the general shape of a wedding ring. At high frequencies, the current in the coil forms two loops which are spaced apart and parallel to each other. Configured appropriately, the coil approximates a Helmholtz configuration. The lamp preferably utilizes an bulb encased in a reflective ceramic cup with a pre-formed aperture defined therethrough. The ceramic cup may include structural features to aid in alignment and/or a flanged face to aid in thermal management. The lamp head is preferably an integrated lamp head comprising a metal matrix composite surrounding an insulating ceramic with the excitation integrally formed on the ceramic. A novel solid-state oscillator preferably provides RF power to the lamp. The oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency.

  17. Isotope separation using vibrationally excited molecules

    International Nuclear Information System (INIS)

    1979-01-01

    This invention relates to isotope separation employing isotopically selective vibrational excitation and vibration-translation reactions of the excited particles. Uranium enrichment, using uranium hexafluoride, is a particular embodiment. (U.K.)

  18. Spurious Excitations in Semiclassical Scattering Theory.

    Science.gov (United States)

    Gross, D. H. E.; And Others

    1980-01-01

    Shows how through proper handling of the nonuniform motion of semiclassical coordinates spurious excitation terms are eliminated. An application to the problem of nuclear Coulomb excitation is presented as an example. (HM)

  19. Excitation system testing in HPP 'Uvac'

    Directory of Open Access Journals (Sweden)

    Milojčić Nemanja

    2011-01-01

    Full Text Available The excitation system of hydro unit in HPP 'Uvac' and results of testings of excitation system performed for achieving of unit's mathematical model are presented in this paper. Description of excitation system equipment, parameters of regulators and results obtained after testings are presented. The presented results showed that the regulators are properly adjusted and that the excitation system is completely functional and reliable.

  20. Comparison of Linear Prediction Models for Audio Signals

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available While linear prediction (LP has become immensely popular in speech modeling, it does not seem to provide a good approach for modeling audio signals. This is somewhat surprising, since a tonal signal consisting of a number of sinusoids can be perfectly predicted based on an (all-pole LP model with a model order that is twice the number of sinusoids. We provide an explanation why this result cannot simply be extrapolated to LP of audio signals. If noise is taken into account in the tonal signal model, a low-order all-pole model appears to be only appropriate when the tonal components are uniformly distributed in the Nyquist interval. Based on this observation, different alternatives to the conventional LP model can be suggested. Either the model should be changed to a pole-zero, a high-order all-pole, or a pitch prediction model, or the conventional LP model should be preceded by an appropriate frequency transform, such as a frequency warping or downsampling. By comparing these alternative LP models to the conventional LP model in terms of frequency estimation accuracy, residual spectral flatness, and perceptual frequency resolution, we obtain several new and promising approaches to LP-based audio modeling.

  1. Mean excitation energies for molecular ions

    DEFF Research Database (Denmark)

    Jensen, Phillip W. K.; Sauer, Stephan P. A.; Oddershede, Jens

    2017-01-01

    with ionic charge. However, while the mean excitation energies of atoms also increase with atomic number, the opposite is the case for mean excitation energies for molecules and molecular ions. The origin of these effects is explained by considering the spectral representation of the excited state...

  2. Group velocity dispersion measurement method using sinusoidally phase-modulated continuous wave light based on cyclic nature of optical waveform change by group velocity dispersion.

    Science.gov (United States)

    Yamamoto, Takashi; Mori, Takayoshi; Sakamoto, Taiji; Kurokawa, Kenji; Tomita, Shigeru; Tsubokawa, Makoto

    2010-09-20

    We show that any optical pulse train recovers its original waveform after passing through a group velocity dispersion (GVD) device when the total GVD value of the device is equal to an integral multiple of 1/(2πf(rep)(2)), where f(rep) is the repetition rate of the optical pulse train. In addition, we detail our proposed GVD measurement method, or optical phase-modulation (PM) method, which utilizes a sinusoidally PM continuous wave (CW) light as a probe light. The total GVD B(2) of a device under test (DUT) is derived by using a very simple equation, |B(2)|=1/(2πf(null)(2)), where f(null) is the smallest modulation frequency at which the sinusoidally PM light becomes CW light again after passing through the DUT.

  3. Revised diagnosis and severity criteria for sinusoidal obstruction syndrome/veno-occlusive disease in adult patients: a new classification from the European Society for Blood and Marrow Transplantation

    OpenAIRE

    Mohty, M; Malard, F; Abecassis, M; Aerts, E; Alaskar, A S; Aljurf, M; Arat, M; Bader, P; Baron, F; Bazarbachi, A; Blaise, D; Ciceri, F; Corbacioglu, S; Dalle, J-H; Dignan, F

    2016-01-01

    Sinusoidal obstruction syndrome, also known as veno-occlusive disease (SOS/VOD), is a potentially life threatening complication that can develop after hematopoietic cell transplantation. Although SOS/VOD progressively resolves within a few weeks in most patients, the most severe forms result in multi-organ dysfunction and are associated with a high mortality rate ( > 80%). Therefore, careful attention must be paid to allow an early detection of SOS/VOD, particularly as drugs have now prove...

  4. Cytotoxicity of pyrrolizidine alkaloid in human hepatic parenchymal and sinusoidal endothelial cells: Firm evidence for the reactive metabolites mediated pyrrolizidine alkaloid-induced hepatotoxicity.

    Science.gov (United States)

    Yang, Mengbi; Ruan, Jianqing; Fu, Peter P; Lin, Ge

    2016-01-05

    Pyrrolizidine alkaloids (PAs) widely distribute in plants and can cause hepatic sinusoidal obstruction syndrome (HSOS), which typically presents as a primary sinusoidal endothelial cell damage. It is well-recognized that after ingestion, PAs undergo hepatic cytochromes P450 (CYPs)-mediated metabolic activation to generate dehydropyrrolizidine alkaloids (DHPAs), which are hydrolyzed to dehydroretronecine (DHR). DHPAs and DHR are reactive metabolites having same core pyrrole moiety, and can bind proteins to form pyrrole-protein adducts, which are believed as the primary cause for PA-induced HSOS. However, to date, the direct evidences supporting the toxicity of DHPAs and DHR in the liver, in particular in the sinusoidal endothelial cells, are lacking. Using human hepatic sinusoidal endothelial cells (HSEC) and HepG2 (representing hepatic parenchymal cells), cells that lack CYPs activity, this study determined the direct cytotoxicity of dehydromonocrotaline, a representative DHPA, and DHR, but no cytotoxicity of the intact PA (monocrotaline) in both cell lines, confirming that reactive metabolites mediate PA intoxication. Comparing with HepG2, HSEC had significantly lower basal glutathione (GSH) level, and was significantly more susceptible to the reactive metabolites with severer GSH depletion and pyrrole-protein adducts formation. The toxic potency of two reactive metabolites was also compared. DHPA was more reactive than DHR, leading to severer toxicity. In conclusion, our results unambiguously provided the first direct evidence for the critical role of DHPA and DHR in the reactive metabolites-mediated PA-induced hepatotoxicity, which occurs predominantly in HSEC due to severe GSH depletion and the significant formation of pyrrole-protein adducts in HSEC. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Multi-excitation Raman difference spectroscopy based on modified multi-energy constrained iterative deconvolution algorithm

    Science.gov (United States)

    Zou, Wenlong; Cai, Zhijian; Zhou, Hongwu; Wu, Jianhong

    2013-12-01

    Raman spectroscopy is fast and nondestructive, and it is widely used in chemistry, biomedicine, food safety and other areas. However, Raman spectroscopy is often hampered by strong fluorescence background, especially in food additives detection and biomedicine researching. In this paper, one efficient technique was the multi-excitation Raman difference spectroscopy (MERDS) which incorporated a series of small wavelength-shift wavelengths as excitation sources. A modified multi-energy constrained iterative deconvolution (MMECID) algorithm was proposed to reconstruct the Raman Spectroscopy. Computer simulation and experiments both demonstrated that the Raman spectrum can be well reconstructed from large fluorescence background. The more excitation sources used, the better signal to noise ratio got. However, many excitation sources were equipped on the Raman spectrometer, which increased the complexity of the experimental system. Thus, a trade-off should be made between the number of excitation frequencies and experimental complexity.

  6. Sweep excitation with order tracking: A new tactic for beam crack analysis

    Science.gov (United States)

    Wei, Dongdong; Wang, KeSheng; Zhang, Mian; Zuo, Ming J.

    2018-04-01

    Crack detection in beams and beam-like structures is an important issue in industry and has attracted numerous investigations. A local crack leads to global system dynamics changes and produce non-linear vibration responses. Many researchers have studied these non-linearities for beam crack diagnosis. However, most reported methods are based on impact excitation and constant frequency excitation. Few studies have focused on crack detection through external sweep excitation which unleashes abundant dynamic characteristics of the system. Together with a signal resampling technique inspired by Computed Order Tracking, this paper utilize vibration responses under sweep excitations to diagnose crack status of beams. A data driven method for crack depth evaluation is proposed and window based harmonics extracting approaches are studied. The effectiveness of sweep excitation and the proposed method is experimentally validated.

  7. Lattice Boltzmann method for MHD natural convection of CuO/water nanofluid in a wavy-walled cavity with sinusoidal temperature distribution

    Directory of Open Access Journals (Sweden)

    Alireza Shahriari

    2017-07-01

    Full Text Available In this paper, natural convection heat transfer of CuO-water Nanofluid within a wavy-walled cavity and subjected to a uniform magnetic field is examined by adopting the lattice Boltzmann model. The left wavy wall is heated sinusoidal, while the right flat wall is maintained at the constant temperature of Tc. The top and the bottom horizontal walls are smooth and insulated against heat and mass. The influence of pertinent parameters such as solid volume fraction of nanoparticles (φ, Rayleigh number (Ra, Hartmann number (Ha and phase deviation of sinusoidal boundary condition (Φ are investigated on flow and heat transfer fields. Results show that the heat transfer decreases with the increase of the Hartmann number, but it increases by the increment of Rayleigh number and nanoparticle volume fraction. The magnetic field augments the effect produced by the presence of nanoparticles at Ra = 104 and 105 in contrast with Ra = 103. Moreover, the greatest effects of nanoparticles are observed for different values of the phase deviation with an increase in Rayleigh number. This study can, provide useful insight for enhancing the MHD natural convection heat transfer performance within wavy-walled cavity and sinusoidal temperature distribution.

  8. Variations in DNA synthesis and mitotic indices in hepatocytes and sinusoid litoral cells of adult intact male mouse along a circadian time span.

    Science.gov (United States)

    Surur, J M; Moreno, F R; Badrán, A F; Llanos, J M

    1985-01-01

    Variations of DNA synthesis (DNAS) and mitotic indices along a circadian time span are described in the hepatocyte and sinusoid litoral cell populations of adult intact male mouse liver. Standardized (light from 0600 to 1800) mice were killed in groups of six to nine animals, every 2-4 hr along a circadian time span. Hepatocytes show significant peaks in the synthesis of DNA and the mitotic activity at 0200 and 1400, respectively. These results correspond to those previously described by us in young immature liver, regenerating liver and hepatomas. The phase differences between these peaks and the differences between their absolute values are discussed. Also considered are the practical consequences of our findings for experimental design. The curve of DNA synthesis of sinusoid litoral cells show a peak at 0200. The mitotic index show a bimodal waveform with peaks at 0800 and 2000. The existence of four different cell populations composing the so called sinusoid litoral cells and also the migration into and out of the liver of some macrophages considered as litoral (Kupffer) cells in our counts, makes interpretation of the curves somewhat complicated and deserves further analysis.

  9. Production of factor VIII by human liver sinusoidal endothelial cells transplanted in immunodeficient uPA mice.

    Directory of Open Access Journals (Sweden)

    Marina E Fomin

    Full Text Available Liver sinusoidal endothelial cells (LSECs form a semi-permeable barrier between parenchymal hepatocytes and the blood. LSECs participate in liver metabolism, clearance of pathological agents, immunological responses, architectural maintenance of the liver and synthesis of growth factors and cytokines. LSECs also play an important role in coagulation through the synthesis of Factor VIII (FVIII. Herein, we phenotypically define human LSECs isolated from fetal liver using flow cytometry and immunofluorescence microscopy. Isolated LSECs were cultured and shown to express endothelial markers and markers specific for the LSEC lineage. LSECs were also shown to engraft the liver when human fetal liver cells were transplanted into immunodeficient mice with liver specific expression of the urokinase-type plasminogen activator (uPA transgene (uPA-NOG mice. Engrafted cells expressed human Factor VIII at levels approaching those found in human plasma. We also demonstrate engraftment of adult LSECs, as well as hepatocytes, transplanted into uPA-NOG mice. We propose that overexpression of uPA provides beneficial conditions for LSEC engraftment due to elevated expression of the angiogenic cytokine, vascular endothelial growth factor. This work provides a detailed characterization of human midgestation LSECs, thereby providing the means for their purification and culture based on their expression of CD14 and CD32 as well as a lack of CD45 expression. The uPA-NOG mouse is shown to be a permissive host for human LSECs and adult hepatocytes, but not fetal hepatoblasts. Thus, these mice provide a useful model system to study these cell types in vivo. Demonstration of human FVIII production by transplanted LSECs encourages further pursuit of LSEC transplantation as a cellular therapy for the treatment of hemophilia A.

  10. New ways of looking at very small holes - using optical nanoscopy to visualize liver sinusoidal endothelial cell fenestrations

    Science.gov (United States)

    Øie, Cristina I.; Mönkemöller, Viola; Hübner, Wolfgang; Schüttpelz, Mark; Mao, Hong; Ahluwalia, Balpreet S.; Huser, Thomas R.; McCourt, Peter

    2018-02-01

    Super-resolution fluorescence microscopy, also known as nanoscopy, has provided us with a glimpse of future impacts on cell biology. Far-field optical nanoscopy allows, for the first time, the study of sub-cellular nanoscale biological structures in living cells, which in the past was limited to electron microscopy (EM) (in fixed/dehydrated) cells or tissues. Nanoscopy has particular utility in the study of "fenestrations" - phospholipid transmembrane nanopores of 50-150 nm in diameter through liver sinusoidal endothelial cells (LSECs) that facilitate the passage of plasma, but (usually) not blood cells, to and from the surrounding hepatocytes. Previously, these fenestrations were only discernible with EM, but now they can be visualized in fixed and living cells using structured illumination microscopy (SIM) and in fixed cells using single molecule localization microscopy (SMLM) techniques such as direct stochastic optical reconstruction microscopy. Importantly, both methods use wet samples, avoiding dehydration artifacts. The use of nanoscopy can be extended to the in vitro study of fenestration dynamics, to address questions such as the following: are they actually dynamic structures, and how do they respond to endogenous and exogenous agents? A logical further extension of these methodologies to liver research (including the liver endothelium) will be their application to liver tissue sections from animal models with different pathological manifestations and ultimately to patient biopsies. This review will cover the current state of the art of the use of nanoscopy in the study of liver endothelium and the liver in general. Potential future applications in cell biology and the clinical implications will be discussed.

  11. Changes in auditory nerve responses across the duration of sinusoidally amplitude-modulated electric pulse-train stimuli.

    Science.gov (United States)

    Hu, Ning; Miller, Charles A; Abbas, Paul J; Robinson, Barbara K; Woo, Jihwan

    2010-12-01

    Response rates of auditory nerve fibers (ANFs) to electric pulse trains change over time, reflecting substantial spike-rate adaptation that depends on stimulus parameters. We hypothesize that adaptation affects the representation of amplitude-modulated pulse trains used by cochlear prostheses to transmit speech information to the auditory system. We recorded cat ANF responses to sinusoidally amplitude-modulated (SAM) trains with 5,000 pulse/s carriers. Stimuli delivered by a monopolar intracochlear electrode had fixed modulation frequency (100 Hz) and depth (10%). ANF responses were assessed by spike-rate measures, while representation of modulation was evaluated by vector strength (VS) and the fundamental component of the fast Fourier transform (F(0) amplitude). These measures were assessed across the 400 ms duration of pulse-train stimuli, a duration relevant to speech stimuli. Different stimulus levels were explored and responses were categorized into four spike-rate groups to assess level effects across ANFs. The temporal pattern of rate adaptation to modulated trains was similar to that of unmodulated trains, but with less rate adaptation. VS to the modulator increased over time and tended to saturate at lower spike rates, while F(0) amplitude typically decreased over time for low driven rates and increased for higher driven rates. VS at moderate and high spike rates and degree of F(0) amplitude temporal changes at low and moderate spike rates were positively correlated with the degree of rate adaptation. Thus, high-rate carriers will modify the ANF representation of the modulator over time. As the VS and F(0) measures were sensitive to adaptation-related changes over different spike-rate ranges, there is value in assessing both measures.

  12. Predictions of psychophysical measurements for sinusoidal amplitude modulated (SAM) pulse-train stimuli from a stochastic model.

    Science.gov (United States)

    Xu, Yifang; Collins, Leslie M

    2007-08-01

    Two approaches have been proposed to reduce the synchrony of the neural response to electrical stimuli in cochlear implants. One approach involves adding noise to the pulse-train stimulus, and the other is based on using a high-rate pulse-train carrier. Hypotheses regarding the efficacy of the two approaches can be tested using computational models of neural responsiveness prior to time-intensive psychophysical studies. In our previous work, we have used such models to examine the effects of noise on several psychophysical measures important to speech recognition. However, to date there has been no parallel analytic solution investigating the neural response to the high-rate pulse-train stimuli and their effect on psychophysical measures. This work investigates the properties of the neural response to high-rate pulse-train stimuli with amplitude modulated envelopes using a stochastic auditory nerve model. The statistics governing the neural response to each pulse are derived using a recursive method. The agreement between the theoretical predictions and model simulations is demonstrated for sinusoidal amplitude modulated (SAM) high rate pulse-train stimuli. With our approach, predicting the neural response in modern implant devices becomes tractable. Psychophysical measurements are also predicted using the stochastic auditory nerve model for SAM high-rate pulse-train stimuli. Changes in dynamic range (DR) and intensity discrimination are compared with that observed for noise-modulated pulse-train stimuli. Modulation frequency discrimination is also studied as a function of stimulus level and pulse rate. Results suggest that high rate carriers may positively impact such psychophysical measures.

  13. Liver sinusoidal endothelial cells contribute to CD8 T cell tolerance toward circulating carcinoembryonic antigen in mice.

    Science.gov (United States)

    Höchst, Bastian; Schildberg, Frank A; Böttcher, Jan; Metzger, Christina; Huss, Sebastian; Türler, Andreas; Overhaus, Markus; Knoblich, Andreas; Schneider, Berthold; Pantelis, Dimitrios; Kurts, Christian; Kalff, Jörg C; Knolle, Percy; Diehl, Linda

    2012-11-01

    Immunity against cancer is impeded by local mechanisms promoting development of tumor-specific T cell tolerance, such as regulatory T cells, myeloid-derived suppressor cells, or immunosuppressive factors in the tumor microenvironment. The release of soluble antigens, such as carcinoembryonic antigen (CEA) from colorectal carcinoma (CRC) cells, has been investigated for diagnostic purposes, but not for its immunological consequences. Here, we address the question of whether soluble CEA influences tumor-specific immunity. Mice were injected with soluble CEA protein, and CEA-specific CD8 T cells were analyzed for their phenotype and functionality by means of restimulation ex vivo or antitumor efficacy in vivo. We furthermore characterized the CD8 T cell population in peripheral blood mononuclear cell (PBMCs) from healthy donors and colorectal carcinoma patients. In mice, circulating CEA was preferentially taken up in a mannose receptor-dependent manner and cross-presented by liver sinusoidal endothelial cells, but not dendritic cells, to CD8 T cells. Such systemically circulating CEA promoted tolerization of CEA-specific CD8 T cells in the endogenous T cell repertoire through the coinhibitory molecule B7H1. These CD8 T cells were not deleted but were rendered nonresponsive to antigen-specific stimulation and failed to control growth of CEA-expressing tumor cells. These nonresponsive CD8 T cells were phenotypically similar to central memory T cells being CD44(high) CD62L(high) CD25(neg) . We found T cells with a similar phenotype in PBMCs of healthy donors and at increased frequency also in patients with colorectal carcinoma. Our results provide evidence for the existence of an unrecognized tumor immune escape involving cross-presentation of systemically circulating tumor antigens that may influence immunotherapy of cancer. Copyright © 2012 American Association for the Study of Liver Diseases.

  14. Improvements in Regression-Based Air Temperature Estimation Incorporating Nighttime Light Data, Principal Component Analysis and Composite Sinusoidal Coefficients

    Science.gov (United States)

    Quan, J.

    2016-12-01

    Near surface air temperature (Ta) is one of the most critical variables in climatology, hydrology, epidemiology and environmental health. In-situ measurements are not efficient for characterizing spatially heterogeneous Ta, while remote sensing is a powerful tool to break this limitation. This study proposes a mapping framework for daily mean Ta using an enhanced empirical regression method based on remote sensing data. It differs from previous studies in three aspects. First, nighttime light data is introduced as a predictor (besides seven most Ta-relevant variables, i.e., land surface temperature, normalized difference vegetation index, impervious surface area, black sky albedo, normalized difference water index, elevation, and duration of daylight) considering the urbanization-induced Ta increase over a large area. Second, independent components are extracted using principal component analysis considering the correlations among the above predictors. Third, a composite sinusoidal coefficient regression is developed considering the dynamic Ta-predictor relationship. The derived coefficients are then applied back to the spatially collocated predictors to reconstruct spatio-temporal Ta. This method is performed with 333 weather stations in China during the 2001-2012 period. Evaluation shows overall mean error of -0.01 K, root mean square error (RMSE) of 2.53 K, correlation coefficient (R2) of 0.96, and average uncertainty of 0.21 K. Model inter-comparison shows that this method outperforms six additional empirical regressions that have not incorporated nighttime light data or considered multi-predictor correlations or coefficient dynamics (by 0.18-2.60 K in RMSE and 0.00-0.15 in R2).

  15. Further characterization of cadmium uptake by rat liver sinusoidal plasma membrane vesicles as a carrier mediated process

    International Nuclear Information System (INIS)

    Eastman, H.B.; Frazier, J.M.

    1990-01-01

    Previously we have reported that cadmium (Cd) transport by rat hepatic sinusoidal plasma membrane vesicles (SPMV's) occurs by both carrier mediated process and simple diffusion. This study was undertaken in order to further characterize the carrier mediated component of Cd transport as a carrier mediated process. Efflux of Cd from SPMV's was measured by first loading the vesicles with 1 μM Cd, containing 109 Cd (Amersham, 0.25 mCi/ml, carrier free) as a tracer, and then diluting the vesicles 1 to 5 into efflux buffer containing 0.25 M sucrose, 150 mM NaCl and 50 mM Tris/HCl (pH 7.4). Under standard conditions, no efflux of Cd from the vesicles was observed. However, the presence of 4mM CdCl 2 or 4.0% BSA in the efflux buffer was able to release 109 Cd from the vesicles. When the vesicles were lysed with 0.1% Triton X-100, approximately 75% of the internalized Cd could be released from the vesicles. Efflux of Cd from the vesicles was also determined to be a temperature dependent process. At 0 C the efflux of Cd from the vesicles, in the presence of a 4 mM CdCl 2 or 4.0% BSA chase, was blocked. The specificity of the carrier mediated component of Cd transport for Cd was investigated by determining whether other metals could compete for Cd uptake. Zinc was a competitive inhibitor of the carrier mediated component of Cd uptake while calcium had no effect on Cd uptake. Using this system, we have demonstrated that one component of Cd transport exhibits the basic characteristics of a carrier mediated process: saturation, reversibility, specificity and temperature dependence

  16. Quasiparticle excitations in frustrated antiferromagnets

    Energy Technology Data Exchange (ETDEWEB)

    Trumper, Adolfo E. [Instituto de Fisica Rosario (CONICET) Universidad Nacional de Rosario, Boulevard 27 de Febrero 210 bis, 2000 Rosario (Argentina)]. E-mail: trumper@ifir.edu.ar; Gazza, Claudio J. [Instituto de Fisica Rosario (CONICET) Universidad Nacional de Rosario, Boulevard 27 de Febrero 210 bis, 2000 Rosario (Argentina); Manuel, Luis O. [Instituto de Fisica Rosario (CONICET) Universidad Nacional de Rosario, Boulevard 27 de Febrero 210 bis, 2000 Rosario (Argentina)]. E-mail: manuel@ifir.edu.ar

    2004-12-31

    We have computed the quasiparticle wave function corresponding to a hole injected in a triangular antiferromagnet. We have taken into account multi-magnon contributions within the self-consistent Born approximation. We have found qualitative differences, under sign reversal of the integral transfer t, regarding the multi-magnon components and the own existence of the quasiparticle excitations. Such differences are due to the subtle interplay between magnon-assisted and free hopping mechanisms. We conclude that the conventional quasiparticle picture can be broken by geometrical frustration without invoking spin liquid phases.

  17. Quasiparticle excitations in frustrated antiferromagnets

    Science.gov (United States)

    Trumper, Adolfo E.; Gazza, Claudio J.; Manuel, Luis O.

    2004-12-01

    We have computed the quasiparticle wave function corresponding to a hole injected in a triangular antiferromagnet. We have taken into account multi-magnon contributions within the self-consistent Born approximation. We have found qualitative differences, under sign reversal of the integral transfer t, regarding the multi-magnon components and the own existence of the quasiparticle excitations. Such differences are due to the subtle interplay between magnon-assisted and free hopping mechanisms. We conclude that the conventional quasiparticle picture can be broken by geometrical frustration without invoking spin liquid phases.

  18. Quasiparticle excitations in frustrated antiferromagnets

    International Nuclear Information System (INIS)

    Trumper, Adolfo E.; Gazza, Claudio J.; Manuel, Luis O.

    2004-01-01

    We have computed the quasiparticle wave function corresponding to a hole injected in a triangular antiferromagnet. We have taken into account multi-magnon contributions within the self-consistent Born approximation. We have found qualitative differences, under sign reversal of the integral transfer t, regarding the multi-magnon components and the own existence of the quasiparticle excitations. Such differences are due to the subtle interplay between magnon-assisted and free hopping mechanisms. We conclude that the conventional quasiparticle picture can be broken by geometrical frustration without invoking spin liquid phases

  19. Excited State Structural Dynamics of Carotenoids and Charge Transfer Systems

    International Nuclear Information System (INIS)

    Van Tassle, Aaron Justin

    2006-01-01

    This dissertation describes the development and implementation of a visible/near infrared pump/mid-infrared probe apparatus. Chapter 1 describes the background and motivation of investigating optically induced structural dynamics, paying specific attention to solvation and the excitation selection rules of highly symmetric molecules such as carotenoids. Chapter 2 describes the development and construction of the experimental apparatus used throughout the remainder of this dissertation. Chapter 3 will discuss the investigation of DCM, a laser dye with a fluorescence signal resulting from a charge transfer state. By studying the dynamics of DCM and of its methyl deuterated isotopomer (an otherwise identical molecule), we are able to investigate the origins of the charge transfer state and provide evidence that it is of the controversial twisted intramolecular (TICT) type. Chapter 4 introduces the use of two-photon excitation to the S1 state, combined with one-photon excitation to the S2 state of the carotenoid beta-apo-8'-carotenal. These 2 investigations show evidence for the formation of solitons, previously unobserved in molecular systems and found only in conducting polymers Chapter 5 presents an investigation of the excited state dynamics of peridinin, the carotenoid responsible for the light harvesting of dinoflagellates. This investigation allows for a more detailed understanding of the importance of structural dynamics of carotenoids in light harvesting

  20. Active mass damper system for high-rise buildings using neural oscillator and position controller: sinusoidally varying desired displacement of auxiliary mass intended for reduction of maximum control force

    Science.gov (United States)

    Iba, D.; Hongu, J.; Sasaki, T.; Shima, S.; Nakamura, M.; Moriwaki, I.

    2017-04-01

    Reducing vibration of high-rise structures under earthquake load has been the subject of considerable efforts in Japan. Relevant researches about vibration energy dissipation devices for buildings have been undertaken. An active mass damper is one of the well-known vibration control devices. Despite the accumulation of much knowledge of control design methods for the system, application of the devices to high-rise structures under earthquake load is challenging, because the active mass dampers have one serious disadvantage about stroke limitation of the auxiliary mass. In this study, we have proposed a new control system, which had a neural oscillator and position controller, to solve this problem. The objective of this paper is to improve the vibration control performance of the proposed active mass damper system. The previous method generated rectangular waves as the desired displacement, whose amplitude is varied in accordance with the vibration responses of a structure excited by earthquakes. Furthermore, the gains of the position controller, which derives the auxiliary mass to the desired displacement, have been designed in consideration of response reduction of the structure. However, the generated rectangular desired displacement was not adequate to reduce the maximum acceleration responses of the structure, because the driving force for the auxiliary mass generates excessive amounts of acceleration as the direction of the desired displacement is switched. Thus, this paper proposes a new method, which generates sinusoidal varying desired displacement for the auxiliary mass of the active mass damper system to reduce the acceleration response of structures. The results of numerical simulation showed that the proposed method in this work was effective for improving the control performance.

  1. Energy Cascade from Internal Modes in Non-uniformly Stratified Fluid through Excitation of Superharmonic Disturbances

    Science.gov (United States)

    Sutherland, B. R.

    2016-02-01

    It is well established that two-dimensional internal plane waves and modes in uniformly stratified fluid efficiently transfer energy to smaller scale waves and ultimately turbulent mixing through parametric subharmonic instability (PSI). The numerical simulations of MacKinnon & Winters (GRL 2005) predicted PSI should act efficiently to disrupt the internal tide. However, while in situ observations showed the presence of PSI, it was not found to be appreciable. One reason for the discrepancy between simulations and observations is that the former examined an internal mode in uniformly stratified fluid whereas, in reality, the internal tide exists in non-uniform stratification and is manifest as sinusoidal oscillations of the thermocline. Through theory supported by numerical simulations, it is shown that internal modes in non-uniform stratification immediately excite superharmonics, not subharmonic disturbances. These have double the horizontal wavenumber and double the frequency of the parent mode and hence move with the same horizontal phase speed of the parent mode. As the disturbances grow in amplitude, however, they interact with the parent mode generating small-scale vertically propagating internal waves within the strongly stratified layer. The occurrence of PSI over very long times can occur, as in the simulations of Hazewinkel and Winters (JPO 2011). However, a comprehensive understanding of the energy cascade from the internal tide to small scales must consider the evolution of excited superharmonic disturbances.

  2. A phase-equalized digital multirate filter for 50 Hz signal processing

    Energy Technology Data Exchange (ETDEWEB)

    Vainio, O. [Tampere University of Technology, Signal Processing Laboratory, Tampere (Finland)

    1997-12-31

    A new multistage digital filter is proposed for 50 Hz line frequency signal processing in zero-crossing detectors and synchronous power systems. The purpose of the filter is to extract the fundamental sinusoidal signal from noise and impulsive disturbances so that the output is accurately in phase with the primary input signal. This is accomplished with a cascade of a median filter, a linear-phase FIR filter, and a phase corrector. A 10 kHz output timing resolution is achieved by up-sampling with a customized interpolation filter. (orig.) 15 refs.

  3. Raman optical activity spectroscopy by visible-excited coherent anti-Stokes Raman scattering.

    Science.gov (United States)

    Hiramatsu, Kotaro; Leproux, Philippe; Couderc, Vincent; Nagata, Takashi; Kano, Hideaki

    2015-09-01

    We developed a Raman optical activity (ROA) spectroscopic system with visible-excited coherent anti-Stokes Raman scattering (CARS). A supercontinuum within the visible region was generated with a photonic crystal fiber pumped with both 532 and 1064 nm excitation, generating a multiplexed CARS-ROA spectrum covering the whole fingerprint region. In visible excitation, the CARS-ROA spectrum of (-)-β-pinene shows a higher contrast ratio of the chirality-induced signal to the achiral background than that of the previously reported near-infrared CARS-ROA spectrum.

  4. Coulomb excitation of 73Ga

    CERN Document Server

    Diriken, J; Balabanski, D; Blasi, N; Blazhev, A; Bree, N; Cederkäll, J; Cocolios, T E; Davinson, T; Eberth, J; Ekström, A; Fedorov, D V; Fedosseev, V N; Fraille, L M; Franchoo, S; Georgiev, G; Gladnishki, K; Huyse, M; Ivanov, O V; Ivanov, V S; Iwanicki, V; Jolie, J; Konstantinopoulos, T; Kröll, Th; Krücken, R; Köster, U; Lagoyannis, A; Bianco, G Lo; Maierbeck, P; March, B A; Napiarkowski, P; Patronis, N; Pauwels, D; Reiter, P; Seliverstov, M; Sletten, G; Van de Walle, J; Van Duppen, P; Voulot, D; Walters, W B; Warr, N; Wenander, F; Wrzosek, K

    2010-01-01

    The B(E2; Ii ! If ) values for transitions in 71Ga and 73Ga were deduced from a Coulomb excitation experiment at the safe energy of 2.95 MeV/nucleon using post-accelerated beams of 71,73Ga at the REX-ISOLDE on-line isotope mass separator facility. The emitted gamma rays were detected by the MINIBALL-detector array and B(E2; Ii->If ) values were obtained from the yields normalized to the known strength of the 2+ -> 0+ transition in the 120Sn target. The comparison of these new results with the data of less neutron-rich gallium isotopes shows a shift of the E2 collectivity towards lower excitation energy when adding neutrons beyond N = 40. This supports conclusions from previous studies of the gallium isotopes which indicated a structural change in this isotopical chain between N = 40 and N = 42. Combined with recent measurements from collinear laser spectroscopy showing a 1/2- spin and parity for the ground state, the extracted results revealed evidence for a 1/2-; 3/2- doublet near the ground state in 73 31Ga...

  5. Neutrino-induced nuclear excitations

    Energy Technology Data Exchange (ETDEWEB)

    Belusevic, R. [National Laboratory for High Energy Physics (KEK), Oho 1-1, Tsukuba-shi, Ibaraki-ken, 305 (Japan)

    1995-04-01

    We present an improved, compared to that of Belusevic and Rein, theoretical value of the cross section for the neutrino-induced nuclear excitation of iron. This result is based on a measurement of the photoabsorption cross section on the same nucleus, which can be related to the transverse part of the neutrino cross section via the conserved vector current hypothesis. The longitudinal part is related to the pion absorption cross section through the partial conservation of the axial-vector current, and thus reflects the spontaneous breaking of chiral symmetry. A general formula for the excitation cross section is derived, which is valid for both low and high incident neutrino energies. When caused by a weak neutral current, this process may play an important role in core-collapse supernovae. It can also be detected using low-temperature techniques with the purpose of cosmological and weak-interaction studies. A new estimate of the cross sections for neutrino-induced nonscaling processes described by Belusevic and Rein is discussed in the context of two experiments using iron targets, but at very different beam energies.

  6. Thermodynamical description of excited nuclei

    International Nuclear Information System (INIS)

    Bonche, P.

    1989-01-01

    In heavy ion collisions it has been possible to obtain composite systems at rather high excitation energies corresponding to temperatures of several MeV. The theoretical studies of these systems are based on concepts borrowed from thermodynamics or statistical physics, such as the temperature. In these lectures, we present the concepts of statistical physics which are involved in the physics of heavy ion as they are produced nowadays in the laboratory and also during the final stage of a supernova collapse. We do not attempt to describe the reaction mechanisms which yield such nuclear systems nor their decay by evaporation or fragmentation. We shall only study their static properties. The content of these lectures is organized in four main sections. The first one gives the basic features of statistical physics and thermodynamics necessary to understand quantum mechanics at finite temperature. In the second one, we present a study of the liquid-gas phase transition in nuclear physics. A phenomenological approach of the stability of hot nuclei follows. The microscopic point of view is proposed in the third part. Starting from the basic concepts derived in the first part, it provides a description of excited or hot nuclei which confirms the qualitative results of the second part. Furthermore it gives a full description of most properties of these nuclei as a function of temperature. Finally in the last part, a microscopic derivation of the equation of state of nuclear matter is proposed to study the collapse of a supernova core

  7. Modeling the Excitation of Seismic Waves by the Joplin Tornado

    Science.gov (United States)

    Valovcin, Anne; Tanimoto, Toshiro

    2017-10-01

    Tornadoes generate seismic signals when they contact the ground. Here we examine the signals excited by the Joplin tornado, which passed within 2 km of a station in the Earthscope Transportable Array. We model the tornado-generated vertical seismic signal at low frequencies (0.01-0.03 Hz) and solve for the strength of the seismic source. The resulting source amplitude is largest when the tornado was reported to be strongest (EF 4-5), and the amplitude is smallest when the tornado was weak (EF 0-2). A further understanding of the relationship between source amplitude and tornado intensity could open up new ways to study tornadoes from the ground.

  8. Modeling, estimation and optimal filtration in signal processing

    CERN Document Server

    Najim, Mohamed

    2010-01-01

    The purpose of this book is to provide graduate students and practitioners with traditional methods and more recent results for model-based approaches in signal processing.Firstly, discrete-time linear models such as AR, MA and ARMA models, their properties and their limitations are introduced. In addition, sinusoidal models are addressed.Secondly, estimation approaches based on least squares methods and instrumental variable techniques are presented.Finally, the book deals with optimal filters, i.e. Wiener and Kalman filtering, and adaptive filters such as the RLS, the LMS and the

  9. Reactions and relaxation of vibrationally excited hydrogen

    Science.gov (United States)

    Kasper, J. V. V.

    1980-06-01

    One of the goals of this research was the measurement of H2(v equal 1) and H2(v equal 2) formed by the reaction of H with HI. The technique used is quantitative absorption spectroscopy on various absorption bands of H2 near 1100 angstroms in the vacuum ultraviolet. Preliminary calculations indicated that features due to HI in this region would be sufficiently weak under the desired operating conditions that quantitative spectroscopy of the transitions from the vibrationally excited H2 could be performed. This proved not to be the case. Pressures on the order of 10 to 100 millitorr of HI obscured the bands in this region. The signal/noise ratio of the original apparatus which employed sodium salicylate to down convert the vacuum ultraviolet photons to near uv-visible ones was inadequate to the task of unraveling the spectrum. Subsequent equipment improvements have reduced the source noise. The spectrometer and pressure gauge have been modified and interfaced to a digital computer. The analysis software determines the equivalent widths of the spectral features and converts these to pressures of H2 in specific (v, J) states. The flow system and reaction cell for the photolytic experiments proposed was constructed and awaits mating with the now operational laser.

  10. Optimal stimulus shapes for neuronal excitation.

    Directory of Open Access Journals (Sweden)

    Daniel B Forger

    2011-07-01

    Full Text Available An important problem in neuronal computation is to discern how features of stimuli control the timing of action potentials. One aspect of this problem is to determine how an action potential, or spike, can be elicited with the least energy cost, e.g., a minimal amount of applied current. Here we show in the Hodgkin & Huxley model of the action potential and in experiments on squid giant axons that: 1 spike generation in a neuron can be highly discriminatory for stimulus shape and 2 the optimal stimulus shape is dependent upon inputs to the neuron. We show how polarity and time course of post-synaptic currents determine which of these optimal stimulus shapes best excites the neuron. These results are obtained mathematically using the calculus of variations and experimentally using a stochastic search methodology. Our findings reveal a surprising complexity of computation at the single cell level that may be relevant for understanding optimization of signaling in neurons and neuronal networks.

  11. Astrocytes Control Neuronal Excitability in the Nucleus Accumbens

    Directory of Open Access Journals (Sweden)

    Tommaso Fellin

    2007-01-01

    Full Text Available Though accumulating evidence shows that the metabotropic glutamate receptor 5 (mGluR5 mediates some of the actions of extracellular glutamate after cocaine use, the cellular events underlying this action are poorly understood. In this review, we will discuss recent results showing that mGluR5 receptors are key regulators of astrocyte activity. Synaptic release of glutamate activates mGluR5 expressed in perisynaptic astrocytes and generates intense Ca2+ signaling in these cells. Ca2+ oscillations, in turn, trigger the release from astrocytes of the gliotransmitter glutamate, which modulates neuronal excitability by activating NMDA receptors. By integrating these results with the most recent evidence demonstrating the importance of astrocytes in the regulation of neuronal excitability, we propose that astrocytes are involved in mediating some of the mGluR5-dependent drug-induced behaviors.

  12. Excitation of coherent propagating spin waves by pure spin currents.

    Science.gov (United States)

    Demidov, Vladislav E; Urazhdin, Sergei; Liu, Ronghua; Divinskiy, Boris; Telegin, Andrey; Demokritov, Sergej O

    2016-01-28

    Utilization of pure spin currents not accompanied by the flow of electrical charge provides unprecedented opportunities for the emerging technologies based on the electron's spin degree of freedom, such as spintronics and magnonics. It was recently shown that pure spin currents can be used to excite coherent magnetization dynamics in magnetic nanostructures. However, because of the intrinsic nonlinear self-localization effects, magnetic auto-oscillations in the demonstrated devices were spatially confined, preventing their applications as sources of propagating spin waves in magnonic circuits using these waves as signal carriers. Here, we experimentally demonstrate efficient excitation and directional propagation of coherent spin waves generated by pure spin current. We show that this can be achieved by using the nonlocal spin injection mechanism, which enables flexible design of magnetic nanosystems and allows one to efficiently control their dynamic characteristics.

  13. Scanless multitarget-matching multiphoton excitation fluorescence microscopy

    Directory of Open Access Journals (Sweden)

    Junpeng Qiu

    2018-03-01

    Full Text Available Using the combination of a reflective blazed grating and a reflective phase-only diffractive spatial light modulator (SLM, scanless multitarget-matching multiphoton excitation fluorescence microscopy (SMTM-MPM was achieved. The SLM shaped an incoming mode-locked, near-infrared Ti:sapphire laser beam into an excitation pattern with addressable shapes and sizes that matched the samples of interest in the field of view. Temporal and spatial focusing were simultaneously realized by combining an objective lens and a blazed grating. The fluorescence signal from illuminated areas was recorded by a two-dimensional sCMOS camera. Compared with a conventional temporal focusing multiphoton microscope, our microscope achieved effective use of the laser power and decreased photodamage with higher axial resolution.

  14. Signal transduction by growth factor receptors: signaling in an instant

    DEFF Research Database (Denmark)

    Dengjel, Joern; Akimov, Vyacheslav; Blagoev, Blagoy

    2007-01-01

    -out by mass spectrometry-based proteomics has allowed exciting views on the very early events in signal transduction. Activation profiles of regulated phosphorylation sites on epidermal growth factor receptor and downstream signal transducers showed different kinetics within the first ten seconds......Phosphorylation-based signaling events happening within the first minute of receptor stimulation have so far only been analyzed by classical cell biological approaches like live-cell microscopy. The development of a quench flow system with a time resolution of one second coupled to a read...... of stimulation. This new technique opens the perspectives for accurate analysis of rapid cellular processes and will help to establish models describing signal initiation at the plasma membrane....

  15. Multiphoton excitation fluorescence imaging applied to the study of embryo development

    Science.gov (United States)

    Wokosin, David L.; White, John G.

    1998-07-01

    The use of fluorescent probes is a powerful technique for the study of living specimens. Unfortunately, living tissues are vulnerable to photodamage from the excitation illumination and they make poor optical specimens due to their light-scattering nature. Multiphoton (two or more photon) excitation imaging offers significant advantages compared to laser-scanning confocal fluorescence microscopy for fluorescence microscopy of live specimens: considerable reduction in total sample fluorophore excitation and hence less photodamage, increased depth penetration due to increased tolerance for scattering, and increased detection sensitivity as more signal photons can be used for imaging. These advantages become more significant if 3D or 4D (multifocal plane, time-lapse) imaging is undertaken. In addition, multiphoton excitation imaging allows UV excited probes such as DAPI or INDO I or endogenous fluorophores such as NAD(P)H and serotonin to be imaged without UV excitation. We, and others, have been evaluating the potential of multi-photon excitation imaging for biological microscopy and have found all of the aforementioned advantages particularly significant for laser-scanning fluorescence imaging of developing embryos; a summary of currently pursued developmental biology applications will be presented. The current status of all-solid-state ultrafast lasers as excitation sources will also be reviewed since these lasers offer tremendous potential for affordable, reliable, 'turnkey' multiphoton imaging systems. The combination of demonstrated applications, simple ultrafast laser sources, and affordable commercial systems may promote a revolution in the study of embryogenesis with the light microscope.

  16. Theoretical Design of a Depolarized Interferometric Fiber-Optic Gyroscope (IFOG on SMF-28 Single-Mode Standard Optical Fiber Based on Closed-Loop Sinusoidal Phase Modulation with Serrodyne Feedback Phase Modulation Using Simulation Tools for Tactical and Industrial Grade Applications

    Directory of Open Access Journals (Sweden)

    Ramón José Pérez

    2016-04-01

    Full Text Available This article presents, by means of computational simulation tools, a full analysis and design of an Interferometric Fiber-Optic Gyroscope (IFOG prototype based on a closed-loop configuration with sinusoidal bias phase- modulation. The complete design of the different blocks, optical and electronic, is presented, including some novelties as the sinusoidal bias phase-modulation and the use of an integrator to generate the serrodyne phase-modulation signal. The paper includes detailed calculation of most parameter values, and the plots of the resulting signals obtained from simulation tools. The design is focused in the use of a standard single-mode optical fiber, allowing a cost competitive implementation compared to commercial IFOG, at the expense of reduced sensitivity. The design contains an IFOG model that accomplishes tactical and industrial grade applications (sensitivity ≤ 0.055 °/h. This design presents two important properties: (1 an optical subsystem with advanced conception: depolarization of the optical wave by means of Lyot depolarizers, which allows to use a sensing coil made by standard optical fiber, instead by polarization maintaining fiber, which supposes consequent cost savings and (2 a novel and simple electronic design that incorporates a linear analog integrator with reset in feedback chain, this integrator generating a serrodyne voltage-wave to apply to Phase-Modulator (PM, so that it will be obtained the interferometric phase cancellation. This particular feedback design with sawtooth-wave generated signal for a closed-loop configuration with sinusoidal bias phase modulation has not been reported till now in the scientific literature and supposes a considerable simplification with regard to previous designs based on similar configurations. The sensing coil consists of an 8 cm average diameter spool that contains 300 m of standard single-mode optical-fiber (SMF-28 type realized by quadrupolar winding. The working

  17. Theoretical Design of a Depolarized Interferometric Fiber-Optic Gyroscope (IFOG) on SMF-28 Single-Mode Standard Optical Fiber Based on Closed-Loop Sinusoidal Phase Modulation with Serrodyne Feedback Phase Modulation Using Simulation Tools for Tactical and Industrial Grade Applications.

    Science.gov (United States)

    Pérez, Ramón José; Álvarez, Ignacio; Enguita, José María

    2016-04-27

    This article presents, by means of computational simulation tools, a full analysis and design of an Interferometric Fiber-Optic Gyroscope (IFOG) prototype based on a closed-loop configuration with sinusoidal bias phase- modulation. The complete design of the different blocks, optical and electronic, is presented, including some novelties as the sinusoidal bias phase-modulation and the use of an integrator to generate the serrodyne phase-modulation signal. The paper includes detailed calculation of most parameter values, and the plots of the resulting signals obtained from simulation tools. The design is focused in the use of a standard single-mode optical fiber, allowing a cost competitive implementation compared to commercial IFOG, at the expense of reduced sensitivity. The design contains an IFOG model that accomplishes tactical and industrial grade applications (sensitivity ≤ 0.055 °/h). This design presents two important properties: (1) an optical subsystem with advanced conception: depolarization of the optical wave by means of Lyot depolarizers, which allows to use a sensing coil made by standard optical fiber, instead by polarization maintaining fiber, which supposes consequent cost savings and (2) a novel and simple electronic design that incorporates a linear analog integrator with reset in feedback chain, this integrator generating a serrodyne voltage-wave to apply to Phase-Modulator (PM), so that it will be obtained the interferometric phase cancellation. This particular feedback design with sawtooth-wave generated signal for a closed-loop configuration with sinusoidal bias phase modulation has not been reported till now in the scientific literature and supposes a considerable simplification with regard to previous designs based on similar configurations. The sensing coil consists of an 8 cm average diameter spool that contains 300 m of standard single-mode optical-fiber (SMF-28 type) realized by quadrupolar winding. The working wavelength will be

  18. Exon silencing by UAGG motifs in response to neuronal excitation.

    Directory of Open Access Journals (Sweden)

    Ping An

    2007-02-01

    Full Text Available Alternative pre-mRNA splicing plays fundamental roles in neurons by generating functional diversity in proteins associated with the communication and connectivity of the synapse. The CI cassette of the NMDA R1 receptor is one of a variety of exons that show an increase in exon skipping in response to cell excitation, but the molecular nature of this splicing responsiveness is not yet understood. Here we investigate the molecular basis for the induced changes in splicing of the CI cassette exon in primary rat cortical cultures in response to KCl-induced depolarization using an expression assay with a tight neuron-specific readout. In this system, exon silencing in response to neuronal excitation was mediated by multiple UAGG-type silencing motifs, and transfer of the motifs to a constitutive exon conferred a similar responsiveness by gain of function. Biochemical analysis of protein binding to UAGG motifs in extracts prepared from treated and mock-treated cortical cultures showed an increase in nuclear hnRNP A1-RNA binding activity in parallel with excitation. Evidence for the role of the NMDA receptor and calcium signaling in the induced splicing response was shown by the use of specific antagonists, as well as cell-permeable inhibitors of signaling pathways. Finally, a wider role for exon-skipping responsiveness is shown to involve additional exons with UAGG-related silencing motifs, and transcripts involved in synaptic functions. These results suggest that, at the post-transcriptional level, excitable exons such as the CI cassette may be involved in strategies by which neurons mount adaptive responses to hyperstimulation.

  19. Hepatic sinusoid is not well-stirred: estimation of the degree of axial mixing by analysis of lobular concentration gradients formed during uptake of thyroxine by the perfused rat liver

    International Nuclear Information System (INIS)

    Weisiger, R.A.; Mendel, C.M.; Cavalieri, R.R.

    1986-01-01

    Two general models have been proposed for predicting the effects of metabolism, protein binding, and plasma flow on the removal of drugs by the liver. These models differ in the degree of plasma mixing assumed to exist within each hepatic sinusoid. The venous equilibrium model treats the sinusoid as a single well-stirred compartment, whereas the sinusoidal model effectively breaks up the sinusoid into a large number of sequentially perfused compartments which do not exchange their contents except through plasma flow. As a consequence, the sinusoidal model, but not the venous equilibrium model, predicts that the concentration of highly extracted drugs will decline as the plasma flows through the hepatic lobule. To determine which of these alternative models best describes the hepatic uptake process, we looked for evidence that concentration gradients are formed during the uptake of [ 125 I]thyroxine by the perfused rat liver. Autoradiography of tissue slices after perfusion of the portal vein at physiologic flow rates with protein-free buffer containing [ 125 I]thyroxine demonstrated a rapid exponential fall in grain density with distance from the portal venule, declining by half for each 8% of the mean length of the sinusoid. Reversing the direction of perfusate flow reversed the direction of the autoradiographic gradients, indicating that they primarily reflect differences in the concentration of thyroxine within the hepatic sinusoids rather than differences in the uptake capacity of portal and central hepatocytes. Analysis of the data using models in which each sinusoid was represented by different numbers of sequentially perfused compartments (1-20) indicated that at least eight compartments were necessary to account for the magnitude of the gradients seen

  20. Digital self-excited loop for a superconducting linac

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Gopal, E-mail: gjos@barc.gov.in [BARC, Mumbai 400085 (India); Singh, Pitamber [BARC, Mumbai 400085 (India); Agarwal, Vivek; Kumar, Girish [IITB, Mumbai 400076 (India)

    2014-10-21

    A self-excited loop based RF control with signal processing carried out primarily in the digital domain, has been developed for the amplitude and phase stabilization of RF fields in the superconducting resonators of BARC-TIFR linac, having a resonant frequency of 150 MHz. The system employs direct sampling and the subsequent signal processing has been carried out in a Field Programmable Gate Array. The signal processing has all been carried out in the baseband using the in-phase and the quadrature components only. Limiter, one of the key elements of the signal processing, has been implemented as a feedback loop, which keeps the magnitude of its output constant without affecting the phase. Using a first order low pass filter with gain as the controller, good steady state and adequate dynamic characteristics have been obtained for the limiter. The paper describes the signal processing modules with emphasis on the analysis of the limiter. The test results with the BARC-TIFR linac are presented. The results are encouraging and establish the suitability of the signal processing scheme for this and similar systems.

  1. Microwave Excitation In ECRIS plasmas

    International Nuclear Information System (INIS)

    Ciavola, G.; Celona, L.; Consoli, F.; Gammino, S.; Maimone, F.; Barbarino, S.; Catalano, R. S.; Mascali, D.; Tumino, L.

    2007-01-01

    A number of phenomena related to the electron cyclotron resonance ion sources (ECRIS) has been better understood recently by means of the improvement of comprehension of the coupling mechanism between microwave generators and ECR plasma. In particular, the two frequency heating and the frequency tuning effect, that permit a remarkable increase of the current for the highest charge states ions, can be explained in terms of modes excitation in the cylindrical cavity of the plasma chamber. Calculations based on this theoretical approach have been performed, and the major results will be presented. It will be shown that the electric field pattern completely changes for a few MHz frequency variations and the changes in ECRIS performances can be correlated to the efficiency of the power transfer between electromagnetic field and plasma

  2. Excited levels of Pa-233

    International Nuclear Information System (INIS)

    Vara Cuadrado, J. M.

    1969-01-01

    A study of Pa-233 excited levels from the alpha decay of Np-237 and from beta decay of Th-233 has been performed. The alpha decay spectrum was measured with a semiconductor spectrometer of 18 keV effective resolution (FWHM). Over 13 new lines were identified. The gamma ray spectra of Np-237 and Th-233 were obtained with a Ge-Li detector low and medium range energy lines, and with Si-Li detector for the low energy region. A continuous purification method of Np-237 from its comparatively short-lived daughter Pa-233 was applied. A high number of new lines were identified in both spectra. The gamma-gamma coincidence spectra were obtained with INa(T 1 ) detectors. (Author) 54 refs

  3. Acoustic evaluation of concrete delaminations using ball-chain impact excitation.

    Science.gov (United States)

    Sun, Hongbin; Zhu, Jinying; Ham, Suyun

    2017-05-01

    This letter presents an automated acoustic sensing device for rapid detection of delamination in concrete. The device consists of ball-chains for continual impact excitation and multi-channel microphones for acoustic sensing. A ball-chain is formed by multiple metal balls connected by flexible ropes and is dragged on concrete surface to excite vibration of delaminations. Compared to the conventional chain drag test, the ball-chain generates acoustic signals with higher signal-to-noise ratio (S/N) because the balls give isolated but continual impacts on concrete surface during dragging. The proposed method was validated on a concrete specimen with artificial delaminations.

  4. Blood pyrrole-protein adducts as a diagnostic and prognostic index in pyrrolizidine alkaloid-hepatic sinusoidal obstruction syndrome.

    Science.gov (United States)

    Gao, Hong; Ruan, Jianqing Q; Chen, Jie; Li, Na; Ke, Changqiang Q; Ye, Yang; Lin, Ge; Wang, Jiyao Y

    2015-01-01

    The diagnosis of hepatic sinusoidal obstruction syndrome (HSOS) induced by pyrrolizidine alkaloids is mainly based on clinical investigation. There is currently no prognostic index. This study evaluated the quantitative measurement of blood pyrrole-protein adducts (PPAs) as a diagnostic and prognostic index for pyrrolizidine alkaloid-induced HSOS. Suspected drug-induced liver injury patients were prospectively recruited. Blood PPAs were quantitatively measured using ultra-performance liquid chromatography-tandem mass spectrometry. Patients' age, sex, biochemistry test results, and a detailed drug history were recorded. The patients were divided into two groups, ie, those with HSOS induced by pyrrolizidine alkaloid-containing drugs and those with liver injury induced by drugs without pyrrolizidine alkaloids. The relationship between herb administration, clinical outcomes, blood sampling time, and blood PPA concentration in pyrrolizidine alkaloid-associated HSOS patients was analyzed using multiple linear regression analysis. Forty patients met the entry criteria, among whom 23 had pyrrolizidine alkaloid-associated HSOS and 17 had liver injury caused by drugs without pyrrolizidine alkaloids. Among the 23 patients with pyrrolizidine alkaloid-associated HSOS, ten recovered, four developed chronic disease, eight died, and one underwent liver transplantation within 6 months after onset. Blood PPAs were detectable in 24 of 40 patients with concentrations from 0.05 to 74.4 nM. Sensitivity and specificity of the test for diagnosis of pyrrolizidine alkaloid-associated HSOS were 100% (23/23) and 94.1% (23/24), respectively. The positive predictive value was 95.8% and the negative predictive value was 100%, whereas the positive likelihood ratio was 23.81. The level of blood PPAs in the severe group (died or received liver transplantation) was significantly higher than that in the recovery/chronicity group (P=0.004). Blood PPAs measured by ultra-performance liquid

  5. SENSORS OFMAGNETIC HEADINGOF THE AIRCRAFT AND THE LOCAL MAGNETIC FIELDS ON THE BASIS OF FERROPROBES WITH PULSE EXCITATION SCHEME

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available The flux gate for measurement of size and direction of magnetic field of the Earth and for measurement of local magnetic fields, applying the unidirectional pulse scheme in an excitement chain are examined. The article treats the bene- fits of ferroprobes with pulse excitement in comparison with the similar sensors with sinusoidal excitement. According to the original circuit proposed by the authors of the article flux gate sensor for measurement of a local magnetic field with two ferroprobes for the purpose of compensation of the Earth’s magnetic field is designed. The experiment with flux gate sensors which contain various quantities of rounds in an output winding and a permanent magnet is carried out. The factors that influence the output voltage of the sensor are examined during the experiment. The regression equation for the ferro- probe by the experimental data is obtained. The regression is important for development of similar measuring systems. First of all, the results of the research are important for the analysis of technical characteristics of magneto-modulation sensors, and for ferroprobes design in aircraft industry.

  6. Dynamic interactions of an integrated vehicle-electromagnetic energy harvester-tire system subject to uneven road excitations

    Science.gov (United States)

    Xing, Jing Tang; Sun, Zhe; Zhou, Sulian; Tan, Mingyi

    2017-04-01

    An investigation is undertaken of an integrated mechanical-electromagnetic coupling system consisting of a rigid vehicle with heave, roll, and pitch motions, four electromagnetic energy harvesters and four tires subject to uneven road excitations in order to improve the passengers' riding comfort and harvest the lost engine energy due to uneven roads. Following the derived mathematical formulations and the proposed solution approaches, the numerical simulations of this interaction system subject to a continuous sinusoidal road excitation and a single ramp impact are completed. The simulation results are presented as the dynamic response curves in the forms of the frequency spectrum and the time history, which reveals the complex interaction characteristics of the system for vibration reductions and energy harvesting performance. It has addressed the coupling effects on the dynamic characteristics of the integrated system caused by: (1) the natural modes and frequencies of the vehicle; (2) the vehicle rolling and pitching motions; (3) different road excitations on four wheels; (4) the time delay of a road ramp to impact both the front and rear wheels, etc., which cannot be tackled by an often used quarter vehicle model. The guidelines for engineering applications are given. The developed coupling model and the revealed concept provide a means with analysis idea to investigate the details of four energy harvester motions for electromagnetic suspension designs in order to replace the current passive vehicle isolators and to harvest the lost engine energy. Potential further research directions are suggested for readers to consider in the future.

  7. Heavy ion beam excitation of rare gases

    International Nuclear Information System (INIS)

    Ribitzki, G.; Ulrich, A.; Busch, B.; Kroetz, W.; Miller, R.; Wieser, J.

    1991-01-01

    The emission of light from rare gas targets at pressures of more than 100 Pa excited by a pulsed heavy ion beam has been studied. The absolute intensity of several spectral lines has been measured as a function of time at different target gas pressures. Population densities, excitation cross sections, and rate constants for collisional quenching were determined from the line intensities and the lifetimes of the excited states. (orig.)

  8. Multiple electromagnetic excitations of relativistic projectiles

    International Nuclear Information System (INIS)

    Llope, W.J.; Braun-Munzinger, P.

    1992-01-01

    Conditions optimum for the first experimental verification of the multiplication electromagnetic excitations of nuclei in relativistic nucleus-nucleus collisions are described. The relative magnitudes of three important physical processes that might interfere with such a measurement are compared to the predicted strengths for the single and multiple electromagnetic excitations for various choices of the projectile mass and beam energy. Strategies are presented for making inferences concerning the presence of multiple excitation strength in experimental data

  9. A neuronal acetylcholine receptor regulates the balance of muscle excitation and inhibition in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Maelle Jospin

    2009-12-01

    Full Text Available In the nematode Caenorhabditis elegans, cholinergic motor neurons stimulate muscle contraction as well as activate GABAergic motor neurons that inhibit contraction of the contralateral muscles. Here, we describe the composition of an ionotropic acetylcholine receptor that is required to maintain excitation of the cholinergic motor neurons. We identified a gain-of-function mutation that leads to spontaneous muscle convulsions. The mutation is in the pore domain of the ACR-2 acetylcholine receptor subunit and is identical to a hyperactivating mutation in the muscle receptor of patients with myasthenia gravis. Screens for suppressors of the convulsion phenotype led to the identification of other receptor subunits. Cell-specific rescue experiments indicate that these subunits function in the cholinergic motor neurons. Expression of these subunits in Xenopus oocytes demonstrates that the functional receptor is comprised of three alpha-subunits, UNC-38, UNC-63 and ACR-12, and two non-alpha-subunits, ACR-2 and ACR-3. Although this receptor exhibits a partially overlapping subunit composition with the C. elegans muscle acetylcholine receptor, it shows distinct pharmacology. Recordings from intact animals demonstrate that loss-of-function mutations in acr-2 reduce the excitability of the cholinergic motor neurons. By contrast, the acr-2(gf mutation leads to a hyperactivation of cholinergic motor neurons and an inactivation of downstream GABAergic motor neurons in a calcium dependent manner. Presumably, this imbalance between excitatory and inhibitory input into muscles leads to convulsions. These data indicate that the ACR-2 receptor is important for the coordinated excitation and inhibition of body muscles underlying sinusoidal movement.

  10. The mechanisms of Excited states in enzymes

    DEFF Research Database (Denmark)

    Petersen, Frederic Nicolas Rønne; Bohr, Henrik

    2010-01-01

    Enzyme catalysis is studied on the basis of excited state processes, which are of electronic, vibrational and thermal nature. The ways of achieving the excited state, such as photo-absorption and ligand binding, are discussed and exemplified by various cases of enzymes.......Enzyme catalysis is studied on the basis of excited state processes, which are of electronic, vibrational and thermal nature. The ways of achieving the excited state, such as photo-absorption and ligand binding, are discussed and exemplified by various cases of enzymes....

  11. A large electrically excited synchronous generator

    DEFF Research Database (Denmark)

    2014-01-01

    This invention relates to a large electrically excited synchronous generator (100), comprising a stator (101), and a rotor or rotor coreback (102) comprising an excitation coil (103) generating a magnetic field during use, wherein the rotor or rotor coreback (102) further comprises a plurality...... adjacent neighbouring poles. In this way, a large electrically excited synchronous generator (EESG) is provided that readily enables a relatively large number of poles, compared to a traditional EESG, since the excitation coil in this design provides MMF for all the poles, whereas in a traditional EESG...

  12. Percolation of triplet excitation in restricted geometries

    Science.gov (United States)

    Saha, D. C.; Misra, T. N.; Talukdar, D.

    1996-04-01

    Migration of benzophenone triplet excitations in polymethylmethacrylate and methylmethacrylate-styrene copolymer has been studied under steady state excitation by using 1-chloronapthalene as a trap. The excitation energy capture efficiency by a trap has been obtained as a function of the donor concentration at various trap concentrations. Percolation model has been successfully applied to evaluate the critical exponents. The evaluated critical exponents are in very good agreement with three dimensional triplet excitation migration topology in polymethylmethacrylate and two dimensional one in the copolymer.

  13. Radial excitations of the decuplet baryons

    Energy Technology Data Exchange (ETDEWEB)

    Aliev, T.M. [Middle East Technical University, Physics Department, Ankara (Turkey); Azizi, K. [Dogus University, Physics Department, Istanbul (Turkey); Sundu, H. [Kocaeli University, Physics Department, Izmit (Turkey)

    2017-04-15

    The ground and first excited states of the decuplet baryons are studied using the two-point QCD sum rule approach. The mass and residue of these states are computed and compared with the existing experimental data and other theoretical predictions. The results for the masses of the ground state particles as well as the excited Δ and Σ* states are in good consistency with experimental data. Our results on the excited Ξ* and Ω{sup -} states reveal that the experimentally poorly known Ξ(1950) and Ω{sup -}(2250) can be assigned to the first excited states in Ξ* and Ω{sup -} channels, respectively. (orig.)

  14. Signal detection

    International Nuclear Information System (INIS)

    Tholomier, M.

    1985-01-01

    In a scanning electron microscope, whatever is the measured signal, the same set is found: incident beam, sample, signal detection, signal amplification. The resulting signal is used to control the spot luminosity with the observer cathodoscope. This is synchronized with the beam scanning on the sample; on the cathodoscope, the image in secondary electrons, backscattered electrons,... of the sample surface is reconstituted. The best compromise must be found between a register time low enough to remove eventual variations (under the incident beam) of the nature of the observed phenomenon, and a good spatial resolution of the image and a signal-to-noise ratio high enough. The noise is one of the basic limitations of the scanning electron microscope performance. The whose measurement line must be optimized to reduce it [fr

  15. HP Memristor mathematical model for periodic signals and DC

    KAUST Repository

    Radwan, Ahmed G.

    2012-07-28

    In this paper mathematical models of the HP Memristor for DC and periodic signal inputs are provided. The need for a rigid model for the Memristor using conventional current and voltage quantities is essential for the development of many promising Memristors\\' applications. Unlike the previous works, which focuses on the sinusoidal input waveform, we derived rules for any periodic signals in general in terms of voltage and current. Square and triangle waveforms are studied explicitly, extending the formulas for any general square wave. The limiting conditions for saturation are also provided in case of either DC or periodic signals. The derived equations are compared to the SPICE model of the Memristor showing a perfect match.

  16. Is chiral symmetry restored in the excited meson spectrum?

    Science.gov (United States)

    Segovia, J.; Entem, D. R.; Fernández, F.

    2008-04-01

    The large degeneracy observed in the excited meson spectrum by the Cristal Barrel Collaboration in the experimental data on proton-antiproton annihilation in flight into mesons in the range 1.9-2.4 GeV has been interpreted as a signal of chiral symmetry restoration. In this work we suggest that such degeneracy may be an indication of the confinement potential modification by color screening. The experimental data can be fairly well reproduced in a constituent quark model with a screened linear confinement potential without changing the dynamical quark mass. Observables that could discriminate our model from those which explicitly restore the chiral symmetry are proposed.

  17. First evidence for a charm radial excitation, $D^{*}'$

    CERN Document Server

    Abreu, P; Adye, T; Adzic, P; Ajinenko, I; Alekseev, G D; Alemany, R; Allport, P P; Almehed, S; Amaldi, Ugo; Amato, S; Andersson, P; Andreazza, A; Antilogus, P; Apel, W D; Arnoud, Y; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Bambade, P; Barão, F; Barbiellini, Guido; Barbier, R; Bardin, Dimitri Yuri; Barker, G; Baroncelli, A; Bärring, O; Battaglia, Marco; Baubillier, M; Becks, K H; Begalli, M; Beillière, P; Belokopytov, Yu A; Benvenuti, Alberto C; Bérat, C; Berggren, M; Bertini, D; Bertrand, D; Besançon, M; Bianchi, F; Bigi, M; Bilenky, S M; Bizouard, M A; Bloch, D; Bonesini, M; Bonivento, W; Boonekamp, M; Booth, P S L; Borgland, A W; Borisov, G; Bosio, C; Botner, O; Boudinov, E; Bouquet, B; Bourdarios, C; Bowcock, T J V; Boyko, I; Bozovic, I; Bozzo, M; Branchini, P; Brand, K D; Brenke, T; Brenner, R A; Brown, R; Brückman, P; Brunet, J M; Bugge, L; Buran, T; Burgsmüller, T; Buschmann, P; Cabrera, S; Caccia, M; Calvi, M; Camacho-Rozas, A J; Camporesi, T; Canale, V; Canepa, M; Carena, F; Carroll, L; Caso, Carlo; Castillo-Gimenez, M V; Cattai, A; Cavallo, F R; Cerruti, C; Chabaud, V; Charpentier, P; Chaussard, L; Checchia, P; Chelkov, G A; Chen, M; Chierici, R; Chliapnikov, P V; Chochula, P; Chorowicz, V; Chudoba, J; Collins, P; Colomer, M; Contri, R; Cortina, E; Cosme, G; Cossutti, F; Cowell, J H; Crawley, H B; Crennell, D J; Crosetti, G; Cuevas-Maestro, J; Czellar, S; D'Almagne, B; Damgaard, G; Davenport, Martyn; Da Silva, W; Deghorain, A; Della Ricca, G; Delpierre, P A; Demaria, N; De Angelis, A; de Boer, Wim; De Brabandere, S; De Clercq, C; De Lotto, B; De Min, A; De Paula, L S; Dijkstra, H; Di Ciaccio, Lucia; Di Diodato, A; Djannati, A; Dolbeau, J; Doroba, K; Dracos, M; Drees, J; Drees, K A; Dris, M; Duperrin, A; Durand, J D; Ehret, R; Eigen, G; Ekelöf, T J C; Ekspong, Gösta; Ellert, M; Elsing, M; Engel, J P; Erzen, B; Espirito-Santo, M C; Falk, E; Fanourakis, G K; Fassouliotis, D; Fayot, J; Feindt, Michael; Fenyuk, A; Ferrari, P; Ferrer, A; Fichet, S; Firestone, A; Fischer, P A; Flagmeyer, U; Föth, H; Fokitis, E; Fontanelli, F; Franek, B J; Frodesen, A G; Frühwirth, R; Fulda-Quenzer, F; Fuster, J A; Galloni, A; Gamba, D; Gandelman, M; García, C; García, J; Gaspar, C; Gaspar, M; Gasparini, U; Gavillet, P; Gazis, E N; Gelé, D; Gerber, J P; Gerdyukov, L N; Ghodbane, N; Gil, I; Glege, F; Gokieli, R; Golob, B; Gonçalves, P; González-Caballero, I; Gopal, Gian P; Gorn, L; Górski, M; Guz, Yu; Gracco, Valerio; Grahl, J; Graziani, E; Green, C; Grefrath, A; Gris, P; Grosdidier, G; Grzelak, K; Günther, M; Guy, J; Hahn, F; Hahn, S; Haider, S; Hallgren, A; Hamacher, K; Harris, F J; Hedberg, V; Heising, S; Henriques, R P; Hernández, J J; Herquet, P; Herr, H; Hessing, T L; Heuser, J M; Higón, E; Holmgren, S O; Holt, P J; Holthuizen, D J; Hoorelbeke, S; Houlden, M A; Hrubec, Josef; Huet, K; Hultqvist, K; Jackson, J N; Jacobsson, R; Jalocha, P; Janik, R; Jarlskog, C; Jarlskog, G; Jarry, P; Jean-Marie, B; Johansson, E K; Jönsson, L B; Jönsson, P E; Joram, C; Juillot, P; Kapusta, F; Karafasoulis, K; Katsanevas, S; Katsoufis, E C; Keränen, R; Khomenko, B A; Khovanskii, N N; King, B J; Kjaer, N J; Klapp, O; Klein, H; Kluit, P M; Knoblauch, D; Kokkinias, P; Koratzinos, M; Kostyukhin, V; Kourkoumelis, C; Kuznetsov, O; Krammer, Manfred; Kreuter, C; Kronkvist, I J; Krstic, J; Krumshtein, Z; Kubinec, P; Kucewicz, W; Kurvinen, K L; Lacasta, C; Lamsa, J; Lanceri, L; Lane, D W; Langefeld, P; Lapin, V; Laugier, J P; Lauhakangas, R; Leder, Gerhard; Ledroit, F; Lefébure, V; Leinonen, L; Leisos, A; Leitner, R; Lemonne, J; Lenzen, Georg; Lepeltier, V; Lesiak, T; Lethuillier, M; Libby, J; Liko, D; Lipniacka, A; Lippi, I; Lörstad, B; Loken, J G; Lopes, J H; López, J M; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J N; Mahon, J R; Maio, A; Malek, A; Malmgren, T G M; Malychev, V; Mandl, F; Marco, J; Marco, R P; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Martínez-Vidal, F; Martí i García, S; Matorras, F; Matteuzzi, C; Matthiae, Giorgio; Mazzucato, F; Mazzucato, M; McCubbin, M L; McKay, R; McNulty, R; McPherson, G; Medbo, J; Meroni, C; Myagkov, A; Michelotto, M; Migliore, E; Mirabito, L; Mitaroff, Winfried A; Mjörnmark, U; Moa, T; Møller, R; Mönig, K; Monge, M R; Moreau, X; Morettini, P; Morton, G A; Münich, K; Mulders, M; Mundim, L M; Murray, W J; Muryn, B; Myatt, Gerald; Myklebust, T; Naraghi, F; Navarria, Francesco Luigi; Navas, S; Nawrocki, K; Negri, P; Némécek, S; Neufeld, N; Neumann, W; Neumeister, N; Nicolaidou, R; Nielsen, B S; Nieuwenhuizen, M; Nikolaenko, V; Nikolenko, M; Nomerotski, A; Normand, Ainsley; Nygren, A; Oberschulte-Beckmann, W; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Orazi, G; Österberg, K; Ouraou, A; Paganini, P; Paganoni, M; Paiano, S; Pain, R

    1998-01-01

    Using D$^{*+}$ mesons exclusively reconstructed in the DELPHI detector at LEP, an excess of $66\\pm14(\\mbox{stat.})$ events is observed in the D$^{*+}\\pi^+\\pi^-$ final state with a mass of $2637\\pm2(\\mbox{stat.})\\pm6(\\mbox{syst.})$~MeV/$c^2$ and a full width smaller than 15~MeV/$c^2$ (95\\% C.L.). This signal is compatible with the expected decay of a radially excited D$^{*'}$ ($J^P=1^-$) meson.

  18. Photothermal self-excitation of the micromachined resonators

    Science.gov (United States)

    Churenkov, Alexander V.; Kozel, Stanislav M.; Listvin, Vladimir N.

    1990-07-01

    Recently interest has grown to the physical quantities fibre-optic sensors in which a micromachined resonator acts as a sensitive element. This resonator can change the resonant frequency when acted upon by an outside force. Energy supply necessary for the resonator excitation and transfer of information about the outer action are accomplished by optical fibres, that can be present in the zone of a higher aggressiveness, strong electromagnetic interferences atc. The frequency output of such sensors is easily processed by digital systems and is insensitive to signal level.

  19. Advanced noise filtering of EC signals through wavelet transformations

    International Nuclear Information System (INIS)

    Gorecan, I.

    2004-01-01

    In this paper, various filtering methods are considered for the purpose of reducing the level of noise in the EC signals, and comparisons are made. The most widely used method for digital signal analysis is Fourier analysis. Unfortunately, this method is best put to use on stationary signals where the loss of time information isn't critical. EC signal's characteristics vary significantly over time in the stochastic sense. Important events (indications) are represented as transient, highly localized changes in the signal and therefore the information is not easily extractable from the spectral domain. Wavelet analysis offers a distinct approach to signal analysis because low frequency information can be analyzed on larger scales while short intervals are used for high frequency content. In this way, time information is not lost in the transformed domain. While Fourier analysis is used to decompose the signal into sinusoids with varying frequencies, wavelet transformation decomposes the signal into shifted and scaled copies of the base (mother) wavelet function. Wavelet families like Haar and Daubechies wavelets are compared. Methods for determining the optimal decomposition tree as well as several post-decomposition thresholding techniques are discussed, including automatic threshold selection. Application of wavelet de-noising algorithms implemented in the INETEC Eddy One EC Data Analysis software is presented on real-world signals collected from WWER steam generator tubes.(author)

  20. Phosphoinositide signaling.

    Science.gov (United States)

    Boss, Wendy F; Im, Yang Ju

    2012-01-01

    "All things flow and change…even in the stillest matter there is unseen flux and movement." Attributed to Heraclitus (530-470 BC), from The Story of Philosophy by Will Durant. Heraclitus, a Greek philosopher, was thinking on a much larger scale than molecular signaling; however, his visionary comments are an important reminder for those studying signaling today. Even in unstimulated cells, signaling pathways are in constant metabolic flux and provide basal signals that travel throughout the organism. In addition, negatively charged phospholipids, such as the polyphosphorylated inositol phospholipids, provide a circuit board of on/off switches for attracting or repelling proteins that define the membranes of the cell. This template of charged phospholipids is sensitive to discrete changes and metabolic fluxes-e.g., in pH and cations-which contribute to the oscillating signals in the cell. The inherent complexities of a constantly fluctuating system make understanding how plants integrate and process signals challenging. In this review we discuss one aspect of lipid signaling: the inositol family of negatively charged phospholipids and their functions as molecular sensors and regulators of metabolic flux in plants.

  1. [Effects of 1.8 mT sinusoidal alternating electromagnetic fields of different frequencies on bone biomechanics of young rats].

    Science.gov (United States)

    Zhou, Yanfeng; Gao, Yuhai; Zhen, Ping; Chen, Keming

    2016-11-25

    Objective: To study the effects of 1.8 mT sinusoidal electromagnetic fields of different frequencies on bone mineral density (BMD) and biomechanical properties in young rats. Methods: A total of 32 female SD rats (6-week-old) were randomly divided into 4 groups (8 in each):control group, 10 Hz group, 25 Hz group and 40 Hz group. The experimental groups were given 1.8 mT sinusoidal electromagnetic field intervention 90 min per day. The whole body BMD of rats was detected with dual-energy X-ray absorptiometry after 4 and 8 weeks of intervention. After 8 weeks of intervention, all rats were sacrificed, and the BMD of femur and lumbar vertebra, the length and diameter of femur, the width between medial and lateral malleolus were measured. Electronic universal material testing machine was used to obtain biomechanical properties of femur and lumbar vertebra, and micro CT scan was performed to observe micro structures of tibial cancellous bone. Results: Compared with the control group, rats in 10 Hz and 40 Hz groups had higher whole body BMD, BMD of femur, maximum load and yield strength of femur, as well as maximum load and elastic modulus of lumbar vertebra (all P 0.05). Micro CT scan showed that the trabecular number and separation degree, bone volume percentage were significantly increased in 10 Hz and 40 Hz groups (all P 0.05). Conclusion: 10 and 40 Hz of 1.8 mT sinusoidal electromagnetic field can significantly improve the bone density, microstructure and biomechanical properties in young rats.

  2. 1.5 GHz single-photon detection at telecommunication wavelengths using sinusoidally gated InGaAs/InP avalanche photodiode.

    Science.gov (United States)

    Namekata, Naoto; Adachi, Shunsuke; Inoue, Shuichiro

    2009-04-13

    We report a telecom-band single-photon detector for gigahertz clocked quantum key distribution systems. The single-photon detector is based on a sinusoidally gated InGaAs/InP avalanche photodiode. The gate repetition frequency of the single-photon detector reached 1.5 GHz. A quantum efficiency of 10.8 % at 1550 nm was obtained with a dark count probability per gate of 6.3 x 10(-7) and an afterpulsing probability of 2.8 %. Moreover, the maximum detection rate of the detector is 20 MHz.

  3. Water-selective excitation of short T2 species with binomial pulses.

    Science.gov (United States)

    Deligianni, Xeni; Bär, Peter; Scheffler, Klaus; Trattnig, Siegfried; Bieri, Oliver

    2014-09-01

    For imaging of fibrous musculoskeletal components, ultra-short echo time methods are often combined with fat suppression. Due to the increased chemical shift, spectral excitation of water might become a favorable option at ultra-high fields. Thus, this study aims to compare and explore short binomial excitation schemes for spectrally selective imaging of fibrous tissue components with short transverse relaxation time (T2 ). Water selective 1-1-binomial excitation is compared with nonselective imaging using a sub-millisecond spoiled gradient echo technique for in vivo imaging of fibrous tissue at 3T and 7T. Simulations indicate a maximum signal loss from binomial excitation of approximately 30% in the limit of very short T2 (0.1 ms), as compared to nonselective imaging; decreasing rapidly with increasing field strength and increasing T2 , e.g., to 19% at 3T and 10% at 7T for T2 of 1 ms. In agreement with simulations, a binomial phase close to 90° yielded minimum signal loss: approximately 6% at 3T and close to 0% at 7T for menisci, and for ligaments 9% and 13%, respectively. Overall, for imaging of short-lived T2 components, short 1-1 binomial excitation schemes prove to offer marginal signal loss especially at ultra-high fields with overall improved scanning efficiency. Copyright © 2013 Wiley Periodicals, Inc.

  4. Broadband discrete-level excitations for improved extraction of information in bioimpedance measurements.

    Science.gov (United States)

    Min, Mart; Paavle, Toivo

    2014-06-01

    The implementation of bioimpedance-based methods in implantable and wearable medical devices requires simple, cheap and low energy consuming measurement settings for enabling impedance spectroscopy at a wide range of frequencies. In the present paper, such a wideband bioimpedance measurement method is discussed, which embodies two-channel impedance measurement for monitoring of the frequency-dependent phase shift between the channels (phase spectrum). In addition, the improved resolution is achieved by employing comparative measurements by introducing the predetermined reference impedance into one of the measurement channels. The proposed and analyzed measurement system uses a binary excitation signal that simplifies signal generation and processing hardware and does not need sophisticated software--low-complexity devices can be designed this way. It is shown that in particular the binary chirp excitation has some essential advantages compared with its counterparts--the maximum length sequence and binary multifrequency excitations. The spectra of chirps of the binary chirp excitation, including their discrete-level modifications, are continuous and flat at the same time. Due to the independent scalability in time and frequency domains and very high chirping rate, the chirps are especially suitable as excitation signals for wideband spectroscopy of dynamic objects with changing impedances in devices such as implantable heart monitors, pacemakers and high-throughput microfluidic lab-on-chip-type devices for performing bioimpedance-based monitoring of cells and droplets.

  5. Multi-photon excitation microscopy

    Directory of Open Access Journals (Sweden)

    Faretta Mario

    2006-06-01

    Full Text Available Abstract Multi-photon excitation (MPE microscopy plays a growing role among microscopical techniques utilized for studying biological matter. In conjunction with confocal microscopy it can be considered the imaging workhorse of life science laboratories. Its roots can be found in a fundamental work written by Maria Goeppert Mayer more than 70 years ago. Nowadays, 2PE and MPE microscopes are expected to increase their impact in areas such biotechnology, neurobiology, embryology, tissue engineering, materials science where imaging can be coupled to the possibility of using the microscopes in an active way, too. As well, 2PE implementations in noninvasive optical bioscopy or laser-based treatments point out to the relevance in clinical applications. Here we report about some basic aspects related to the phenomenon, implications in three-dimensional imaging microscopy, practical aspects related to design and realization of MPE microscopes, and we only give a list of potential applications and variations on the theme in order to offer a starting point for advancing new applications and developments.

  6. Excitation of Mytilus smooth muscle.

    Science.gov (United States)

    Twarog, B M

    1967-10-01

    1. Membrane potentials and tension were recorded during nerve stimulation and direct stimulation of smooth muscle cells of the anterior byssus retractor muscle of Mytilus edulis L.2. The resting potential averaged 65 mV (range 55-72 mV).3. Junction potentials reached 25 mV and decayed to one half maximum amplitude in 500 msec. Spatial summation and facilitation of junction potentials were observed.4. Action potentials, 50 msec in duration and up to 50 mV in amplitude were fired at a membrane potential of 35-40 mV. No overshoot was observed.5. Contraction in response to neural stimulation was associated with spike discharge. Measurement of tension and depolarization in muscle bundles at high K(+) indicated that tension is only produced at membrane potentials similar to those achieved by spike discharge.6. Blocking of junction potentials, spike discharge and contraction by methantheline, an acetylcholine antagonist, supports the hypothesis that the muscle is excited by cholinergic nerves. However, evidence of a presynaptic action of methantheline complicates this argument.

  7. LS1: exciting times ahead

    CERN Multimedia

    Caroline Duc

    2013-01-01

    As the first and last proton-lead run of 2013 draws to a close, the extensive upgrade and maintenance programme of the LHC's first long shutdown (LS1) is about to get under way.   The LHC has provided physicists with a huge quantity of data to analyse since the first physics run in 2009. Now it's time for the machine, along with CERN's other accelerators, to get a facelift. LS1 will start on 13 February 2013, but this doesn’t mean that life at the Laboratory will be any less rich and exciting. Although there will be no collisions for a period of almost two years, the whole CERN site will be a hive of activity, with large-scale work under way to modernise the infrastructure and prepare the LHC for operation at higher energy. "A whole series of renovation work will be carried out around the LHC during LS1,” explains Simon Baird, deputy head of the EN Department. "The key driver is of course the consolidation of the 10,170 high-curren...

  8. Nuclear excitations and reaction mechanisms

    International Nuclear Information System (INIS)

    Fallieros, S.; Levin, F.S.

    1990-01-01

    The main theme of this report is the study and interpretation of the sequence of events that occur during the collisions of nuclear particles. Some of the processes discussed in parts A and B involve short range interactions; others involve interactions of long range. In most of part A one of the particles in the initial or in the final state (or in both) is a photon, which serves as a probe of the second particle, which may be a nucleus, a proton, a pion or any other hadron. The complexity of the processes taking place during the collisions makes it necessary to simplify some aspects of the physical problem. This leads to the introduction of modals which are used to describe a limited number of features in as much detail as possible. The main interest is the understanding of the hadronic excitations which result from the absorption of a photon and the determination of the fundamental structure constants of the target particle. In part B, all the particles are hadrons. The purpose here is to develop and apply optimal quantal methods appropriate for describing the interacting systems. Of particular interest are three-particle collision systems in which the final state consists of three free particles. Part B also considers the process of nuclear fusion as catalyzed by bound muons

  9. MicroRNA-128 governs neuronal excitability and motor behavior in mice

    DEFF Research Database (Denmark)

    Tan, Chan Lek; Plotkin, Joshua L.; Venø, Morten Trillingsgaard

    2013-01-01

    The control of motor behavior in animals and humans requires constant adaptation of neuronal networks to signals of various types and strengths. We found that microRNA-128 (miR-128), which is expressed in adult neurons, regulates motor behavior by modulating neuronal signaling networks...... and excitability. miR-128 governs motor activity by suppressing the expression of various ion channels and signaling components of the extracellular signal-regulated kinase ERK2 network that regulate neuronal excitability. In mice, a reduction of miR-128 expression in postnatal neurons causes increased motor...... activity and fatal epilepsy. Overexpression of miR-128 attenuates neuronal responsiveness, suppresses motor activity, and alleviates motor abnormalities associated with Parkinson's-like disease and seizures in mice. These data suggest a therapeutic potential for miR-128 in the treatment of epilepsy...

  10. Blood pyrrole-protein adducts as a diagnostic and prognostic index in pyrrolizidine alkaloid-hepatic sinusoidal obstruction syndrome

    Directory of Open Access Journals (Sweden)

    Gao H

    2015-08-01

    Full Text Available Hong Gao,1,* Jianqing Q Ruan,2,* Jie Chen,1 Na Li,2 Changqiang Q Ke,3 Yang Ye,3–5 Ge Lin,2,4,5 Jiyao Y Wang1,61Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China; 2School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong; 3Shanghai Institute of Materia Medica, Shanghai, People’s Republic of China; 4Joint Research Laboratory for Promoting Globalization of Traditional Chinese Medicines, Shanghai Institute of Materia Medica, 5Chinese University of Hong Kong, Hong Kong; 6Center of Evidence-Based Medicine Fudan University, Shanghai, People’s Republic of China*These authors contributed equally to this work and share first authorship Background: The diagnosis of hepatic sinusoidal obstruction syndrome (HSOS induced by pyrrolizidine alkaloids is mainly based on clinical investigation. There is currently no prognostic index. This study evaluated the quantitative measurement of blood pyrrole-protein adducts (PPAs as a diagnostic and prognostic index for pyrrolizidine alkaloid-induced HSOS.Methods: Suspected drug-induced liver injury patients were prospectively recruited. Blood PPAs were quantitatively measured using ultra-performance liquid chromatography-tandem mass spectrometry. Patients’ age, sex, biochemistry test results, and a detailed drug history were recorded. The patients were divided into two groups, ie, those with HSOS induced by pyrrolizidine alkaloid-containing drugs and those with liver injury induced by drugs without pyrrolizidine alkaloids. The relationship between herb administration, clinical outcomes, blood sampling time, and blood PPA concentration in pyrrolizidine alkaloid-associated HSOS patients was analyzed using multiple linear regression analysis.Results: Forty patients met the entry criteria, among whom 23 had pyrrolizidine alkaloid-associated HSOS and 17 had liver injury caused by drugs without pyrrolizidine alkaloids. Among the 23

  11. Isotope separation using vibrationally excited molecules

    International Nuclear Information System (INIS)

    Woodroffe, J.A.; Keck, J.C.

    1979-01-01

    Vibrational excitation of molecules having components of a selected isotope type is used to produce a conversion from vibrational to translational excitation of the molecules by collision with the molecules of a heavy carrier gas. The resulting difference in translaton between the molecules of the selected isotope type and all other molecules of the same compound permits their separate collection. When applied to uranium enrichment, a subsonic cryogenic flow of molecules of uranium hexafluoride in combination with an argon carrier gas is directed through a cooled chamber that is illuminated by laser radiaton tuned to vibrationally excite the uranium hexafluoride molecules of a specific uranium isotope. The excited molecules collide with carrier gas molecules, causing a conversion of the excitation energy into a translation of the excited molecule, which results in a higher thermal energy or diffusivity than that of the other uranium hexafluoride molecules. The flowing molecules including the excited molecules directly enter a set of cryogenically cooled channels. The higher thermal velocity of the excited molecules increases the probability of their striking a collector surface. The molecules which strike this surface immediately condense. After a predetermined thickness of molecules is collected on the surface, the flow of uranium hexafluoride is interrupted and the chamber heated to the point of vaporization of the collected hexafluoride, permitting its removal. (LL)

  12. What Gets a Cell Excited? Kinky Curves

    Science.gov (United States)

    Kay, Alan R.

    2014-01-01

    Hodgkin and Huxley's (5) revealing the origins of cellular excitability is one of the great triumphs of physiology. In an extraordinarily deft series of papers, they were able to measure the essential electrical characteristics of neurons and synthesize them into a quantitative model that accounts for the excitability of neurons and other…

  13. Production of Excited Neutrinos at the LHC

    CERN Document Server

    Belyaev, A; Mehdiyev, R

    2005-01-01

    We study the potential of the CERN LHC in the search for the single production of excited neutrino through gauge interactions. Subsequent decays of excited neutrino via gauge interactions are examined. The mass range accessible with the ATLAS detector is obtained.

  14. Dynamic Testing: Toward a Multiple Exciter Test

    Science.gov (United States)

    2015-04-01

    high force in a much smaller footprint. While they lack the bandwidth potential of an electrodynamic exciter, development of dual-stage valves made it...DOF motion. Modern exciter systems and control-system combinations can address a wide range of environmental conditions beyond the classical

  15. Excitations in Topological Superfluids and Superconductors

    Science.gov (United States)

    Wu, Hao

    In this thesis I present the theoretical work on Fermionic surface states, and %the bulk Bosonic collective excitations in topological superfluids and superconductors. Broken symmetries %Bulk-edge correspondence in topological condensed matter systems have implications for the spectrum of Fermionic excitations confined on surfaces or topological defects. (Abstract shortened by ProQuest.).

  16. Total cross section of highly excited strings

    International Nuclear Information System (INIS)

    Lizzi, F.; Senda, I.

    1990-01-01

    The unpolarized total cross section for the joining of two highly excited strings is calculated. The calculation is performed by taking the average overall states in the given excitation levels of the initial strings. We find that the total cross section grows with the energy and momentum of the initial states. (author). 8 refs, 1 fig

  17. Infrared emission from electronically excited biacetyl molecules

    NARCIS (Netherlands)

    Drent, E.; Kommandeur, J.

    1971-01-01

    The infrared emission of electronically excited biacetyl molecules in the gas phase at low pressure was observed. Some experimental details are given, and it is shown that the emission derives from biacetyl molecules in their triplet state. The emission is dependent on the wavelength of excitation.

  18. Mutual Excitation in Eurozone Sovereign CDS

    NARCIS (Netherlands)

    Aït-Sahalia, Y.; Laeven, R.J.A.; Pelizzon, L.

    2013-01-01

    We study self- and cross-excitation of shocks in the sovereign CDS market, on the basis of a large database of Eurozone sovereign CDS spreads. We adopt a multivariate setting with credit default intensities driven by mutually exciting jump processes, to capture the salient features observed in the

  19. Selective Coherent Excitation of Charged Density Waves

    NARCIS (Netherlands)

    Tsvetkov, A.A.; Sagar, D.M.; Loosdrecht, P.H.M. van; Marel, D. van der

    2003-01-01

    Real time femtosecond pump-probe spectroscopy is used to study collective and single particle excitations in the charge density wave state of the quasi-1D metal, blue bronze. Along with the previously observed collective amplitudon excitation, the spectra show several additional coherent features.

  20. Nuclear structure at high excitation energies

    Indian Academy of Sciences (India)

    Study of the structure of nuclei in extreme conditions of angular momentum, excitation energy (temperature) and isospin has recently become a very interesting and active area of research in nuclear physics. Experimentally compound nuclei can be formed at high excitation energies and in high angular momentum states ...