WorldWideScience

Sample records for sintering processes phase

  1. Liquid phase sintered SiC. Processing and transformation controlled microstructure tailoring

    Directory of Open Access Journals (Sweden)

    V.A. Izhevskyi

    2000-10-01

    Full Text Available Microstructure development and phase formation processes during sintering of silicon carbide based materials with AlN-Y2O3, AlN-Yb2O3, and AlN-La2O3 sintering additives were investigated. Densification of the materials occurred by liquid-phase sintering mechanism. Proportion of alpha- and beta-SiC powders in the initial mixtures was a variable parameter, while the molar ratio of AlN/RE2O3, and the total amount of additives (10 vol. % were kept constant. Shrinkage behavior during sintering in interrelation with the starting composition of the material and the sintering atmosphere was investigated by high temperature dilatometry. Kinetics of b-SiC to a-SiC phase transformation during post-sintering heat treatment at temperatures 1900-1950 °C was studied, the degree of phase transformation being determined by quantitative x-ray analysis using internal standard technique. Evolution of microstructure resulting from beta-SiC to alpha-SiC transformation was followed up by scanning electron microscopy on polished and chemically etched samples. Transformation-controlled grain growth mechanism similar to the one observed for silicon nitride based ceramics was established. Possibility of in-situ platelet reinforced dense SiC-based ceramics fabrication with improved mechanical properties by means of sintering was shown.

  2. Sintering of B4C by pressureless liquid phase sintering

    International Nuclear Information System (INIS)

    Rocha, Rosa Maria da; Melo, Francisco Cristovao Lourenco de

    2009-01-01

    The effect of three different sintering additive systems on densification of boron carbide powder was investigated. The sintering additives were Al 2 O 3 :Y 2 O 3 , AlN:Y 2 O 3 and BN:Y 2 O 3 compositions. Powder mixtures were prepared with 10 vol% of sintering aids following conventional powder technology processes. Samples were sintered by pressureless sintering at 2050 deg C/30min in argon atmosphere. Sintered samples were compared to a sintered B 4 C without sintering additive. Samples were characterized by XRD to analyze the crystalline phases after sintering and SEM to observe the microstructure and the second phase distribution. YB 4 and YB 2 C 2 were identified in all samples, indicating a reaction between Y 2 O 3 , B 4 C and B 2 O 3 present at the B 4 C particle surface. The best densification result was achieved with Al 2 O 3 :Y 2 O 3 additive system, showing 92.0 % of theoretical density, low porosity and 15.2 % of linear shrinkage. But this sample showed the highest weight loss. (author)

  3. Mineral Phases and Release Behaviors of As in the Process of Sintering Residues Containing As at High Temperature

    Directory of Open Access Journals (Sweden)

    Xingrun Wang

    2014-01-01

    Full Text Available To investigate the effect of sintering temperature and sintering time on arsenic volatility and arsenic leaching in the sinter, we carried out experimental works and studied the structural changes of mineral phases and microstructure observation of the sinter at different sintering temperatures. Raw materials were shaped under the pressure of 10 MPa and sintered at 1000~1350°C for 45 min with air flow rate of 2000 mL/min. The results showed that different sintering temperatures and different sintering times had little impact on the volatilization of arsenic, and the arsenic fixed rate remained above 90%; however, both factors greatly influenced the leaching concentration of arsenic. Considering the product’s environmental safety, the best sintering temperature was 1200°C and the best sintering time was 45 min. When sintering temperature was lower than 1000°C, FeAsS was oxidized into calcium, aluminum, and iron arsenide, mainly Ca3(AsO42 and AlAsO4, and the arsenic leaching was high. When it increased to 1200°C, arsenic was surrounded by a glass matrix and became chemically bonded inside the matrix, which lead to significantly lower arsenic leaching.

  4. Phase transformation of NiTi alloys during vacuum sintering

    Science.gov (United States)

    Wang, Jun; Hu, Kuang

    2017-05-01

    The aim of this study is to ascertain the Phase transformation of NiTi alloys during vacuum sintering. NiTi shape memory alloys (SMA) of atomic ratio 1:1 were prepared through press forming and vacuum sintering with the mixture of Ni and Ti powders. Different samples were prepared by changing the sintering time and the sintering temperature. Phase and porosity of the samples were investigated by X-ray diffraction (XRD) and scanning electron microscope (SEM). The results show that in the process of sintering NiTi2 and Ni3Ti phases are formed firstly and then transform into NiTi phase. The quantity of NiTi2 and Ni3Ti phases gradually decreased but not eliminate completely with increase of sintering time. The porosity of specimen sintering at 900°C decreases slightly with increase of sintering time. With increase of sintering time the porosity of specimen sintering at 1050°C decreased firstly and then increased because of generation rich titanium liquid in the process of sintering.

  5. Processing and Characterization of Liquid-Phase Sintered NiTi Woven Structures

    Science.gov (United States)

    Erdeniz, Dinc; Weidinger, Ryan P.; Sharp, Keith W.; Dunand, David C.

    2018-03-01

    Porous NiTi is of interest for bone implants because of its unique combination of biocompatibility (encouraging osseointegration), high strength (to prevent fracture), low stiffness (to reduce stress shielding), and shape memory or superelasticity (to deploy an implant). A promising method for creating NiTi structures with regular open channels is via 3D weaving of NiTi wires. This paper presents a processing method to bond woven NiTi wire structures at contact points between wires to achieve structural integrity: (i) a slurry consisting of a blend of NiTi and Nb powders is deposited on the surface of the NiTi wires after the weaving operation; (ii) the powders are melted to create a eutectic liquid phase which collects at contact points; and (iii) the liquid is solidified and binds the NiTi woven structures. The bonded NiTi wire structures exhibited lower transformation temperatures compared to the as-woven NiTi wires because of Nb diffusion into the NiTi wires. A bonded woven sample was deformed in bending and showed near-complete recovery up to 6% strain and recovered nearly half of the deformation up to 19% strain.

  6. Recycling of mill scale in sintering process

    Directory of Open Access Journals (Sweden)

    El-Hussiny N.A.

    2011-01-01

    Full Text Available This investigation deals with the effect of replacing some amount of Baharia high barite iron ore concentrate by mill scale waste which was characterized by high iron oxide content on the parameters of the sintering process., and investigation the effect of different amount of coke breeze added on sintering process parameters when using 5% mill scale waste with 95% iron ore concentrate. The results of this work show that, replacement of iron ore concentrate with mill scale increases the amount of ready made sinter, sinter strength and productivity of the sinter machine and productivity at blast furnace yard. Also, the increase of coke breeze leads to an increase the ready made sinter and productivity of the sintering machine at blast furnace yard. The productivity of the sintering machine after 5% decreased slightly due to the decrease of vertical velocity.

  7. Basic characteristics of Australian iron ore concentrate and its effects on sinter properties during the high-limonite sintering process

    Science.gov (United States)

    Liu, Dong-hui; Liu, Hao; Zhang, Jian-liang; Liu, Zheng-jian; Xue, Xun; Wang, Guang-wei; Kang, Qing-feng

    2017-09-01

    The basic characteristics of Australian iron ore concentrate (Ore-A) and its effects on sinter properties during a high-limonite sintering process were studied using micro-sinter and sinter pot methods. The results show that the Ore-A exhibits good granulation properties, strong liquid flow capability, high bonding phase strength and crystal strength, but poor assimilability. With increasing Ore-A ratio, the tumbler index and the reduction index (RI) of the sinter first increase and then decrease, whereas the softening interval (Δ T) and the softening start temperature ( T 10%) of the sinter exhibit the opposite behavior; the reduction degradation index (RDI+3.15) of the sinter increases linearly, but the sinter yield exhibits no obvious effects. With increasing Ore-A ratio, the distribution and crystallization of the minerals are improved, the main bonding phase first changes from silico-ferrite of calcium and aluminum (SFCA) to kirschsteinite, silicate, and SFCA and then transforms to 2CaO·SiO2 and SFCA. Given the utilization of Ore-A and the improvement of the sinter properties, the Ore-A ratio in the high-limonite sintering process is suggested to be controlled at approximately 6wt%.

  8. Phase-field simulation of liquid phase migration in the WC-Co system during liquid phase sintering

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Kaiming; Zhang, Lijun; Du, Yong [Central South Univ., Changsha (China). State Key Lab. of Powder Metallurgy; Schwarze, Christian; Steinbach, Ingo [Bochum Univ. (Germany). Interdisciplinary Centre for Advanced Materials Simulation

    2016-04-15

    Liquid phase sintering is a process for forming high performance, multiple-phase components from powders. The process includes very complex interactions between various mass transportation phenomena, among which the liquid phase migration represents an important one in the aspect of forming a gradient structure in cemented carbide. In the present work, phase-field simulation of the liquid phase migration phenomenon during liquid phase sintering is performed in the WC-Co based cemented carbide. The simulation results are analyzed and compared with the experimentally determined key factors of microstructural evolution, such as contiguity and liquid phase migration rate. The diffusion-controlled solution-precipitation mechanism of the liquid phase migration process in the cemented carbide system is confirmed from the current simulation result, which provides deeper understanding of the microstructural evolution during the liquid phase migration process. These simulations can offer guidance in preventing the liquid phase migration process during liquid phase sintering of cellular cemented carbide.

  9. Effect Of Compaction Pressure And Sintering Temperature On The Liquid Phase Sintering Behavior Of Al-Cu-Zn Alloy

    Directory of Open Access Journals (Sweden)

    Lee S.H.

    2015-06-01

    Full Text Available The liquid phase sintering characteristics of Al-Cu-Zn alloy were investigated with respect to various powder metallurgy processing conditions. Powders of each alloying elements were blended to form Al-6Cu-5Zn composition and compacted with pressures of 200, 400, and 600 MPa. The sintering process was performed at various temperatures of 410, 560, and 615°C in N2 gas atmosphere. Density and micro-Vickers hardness measurements were conducted at different processing stages, and transverse rupture strength of sintered materials was examined for each condition, respectively. The microstructure was characterized using optical microscope and scanning electron microscopy. The effect of Zn addition on the liquid phase sintering behavior during P/M process of the Al-Cu-Zn alloy was also discussed in detail.

  10. Stabilize ash using Clemson's sintering process (Part 1 - Phase 1 results): Mixed waste fly ash stabilization. Innovative technology summary report

    International Nuclear Information System (INIS)

    1998-12-01

    Incineration of applicable Department of Energy (DOE) mixed wastes has produced a secondary waste stream of radioactive and Resource Conservation and Recovery Act (RCRA) hazardous fly ash that also requires treatment before land disposal. Unlike bottom ash, fly ash usually contains constituents making efficient stabilization difficult. For example, fly ash from the DOE Waste Experimental Reduction Facility (WERF) incinerator at the Idaho National Engineering and Environmental Laboratory (INEEL) contains volatile metals, metal salts, high concentrations of zinc, and unburned organic residues. All of these constituents can effect the stabilization process. The Department of Energy, and in particular the Mixed Waste Focus Area (MWFA) of EM-50, has stated the need for improved stabilization methods would accept a higher ash waste loading while meeting waste form disposal criteria. These alternative stabilization technologies should include delivery systems to minimize worker exposure and minimize secondary waste generation, while maximizing operational flexibility and radionuclide containment. Currently, the standard practice for stabilizing ash is mixing with Portland cement at room temperature. This standard practice produces a significant increase of waste material volume or has difficulty in adequately stabilizing the components in the fly ash to ensure regulatory requirements are consistently satisfied. To address these fly ash stabilization shortcomings, the MWFA, a DOE/EM-50 program, invested in the development of several fly ash stabilization alternatives, including the Clemson University sintering method

  11. Magnetic properties of liquid-phase-assisted sintered MnZn ferrites

    Directory of Open Access Journals (Sweden)

    Drofenik Miha

    2002-01-01

    Full Text Available MnZn ferrites were sintered in the presence of a Bi2O3-SiO2 - rich liquid phase. The microstructure of MnZn-ferrite samples that contained various amounts of liquid phase during sintering was investigated. The results revealed that microstructure development and final magnetic permeability depend essentially on the amount of liquid phase present during sintering. The solution-reprecipitation (S-R process in MnZn ferrites starts when a continuous liquid-phase film is formed during grain growth. The status of the microstructure developed during solid-state sintering prior to the formation of the critical liquid-phase film is essential for the final microstructure developed during liquid-phase-assisted sintering.

  12. Protocol for Ultralow-Temperature Ceramic Sintering: An Integration of Nanotechnology and the Cold Sintering Process.

    Science.gov (United States)

    Guo, Hanzheng; Baker, Amanda; Guo, Jing; Randall, Clive A

    2016-11-22

    The sintering process is an essential step in taking particulate materials into dense ceramic materials. Although a number of sintering techniques have emerged over the past few years, the sintering process is still performed at high temperatures. Here we establish a protocol to achieve dense ceramic solids at extremely low temperatures (sustainable manufacturing practices.

  13. Preliminary investigation of liquid phase sintering in ferrous systems

    International Nuclear Information System (INIS)

    Klein, J.

    1975-04-01

    Liquid phase sintering was utilized to achieve, by a simple compaction and sintering procedure involving short times and moderate temperatures, a virtually full dense high carbon Fe:C alloy and high boron Fe:B alloy. Parameters such as powder characteristics and mixing, compacting pressure, heating program and the liquid phase fraction were found to influence the sintered density. The response of the Fe:C alloy to a heat treatment is reported along with preliminary experiments in the iron base ternary system Fe:W:C. Residual porosities observed in microstructures of certain liquid phase sintered compacts were accounted for by a proposed capillary flow of the liquid phase and a local densification competing against an overall densification. Some general recommendations are made for liquid phase sintering of powder aggregates. 15 fig., 7 tables

  14. Sintering, microstructural and dilatometric studies of combustion synthesized Synroc phases

    International Nuclear Information System (INIS)

    Muthuraman, M.; Patil, K.C.; Senbagaraman, S.; Umarji, A.M.

    1996-01-01

    Sintering, microstructure, and linear thermal expansion properties of Synroc-B and constituent phases, viz. perovskite CaTiO 3 , zirconolite ZrTi 2 O 7 , hollandite (ideal formula BaAl2Ti 6 O 16 ) have been investigated. Synroc-B powder when pelletized and sintered at 1250 C for 2 h achieved >95% theoretical density. Sintered Synroc-B has a linear thermal expansion coefficient α of 8.72 x 10 -6 K -1 and Vicker's microhardness 9.88 GPa. The linear thermal expansion curves did not show any hysteresis indicating the absence of microcracking in the sintered bodies

  15. Fabrication mechanism of FeSe superconductors with high-energy ball milling aided sintering process

    International Nuclear Information System (INIS)

    Zhang, Shengnan; Liu, Jixing; Feng, Jianqing; Wang, Yao; Ma, Xiaobo; Li, Chengshan; Zhang, Pingxiang

    2015-01-01

    FeSe Superconducting bulks with high content of superconducting PbO-type β-FeSe phase were prepared with high-energy ball milling (HEBM) aided sintering process. During this process, precursor powders with certain Fe/Se ratio were ball milled first then sintered. The influences of HEBM process as well as initial Fe/Se ratio on the phase evolution process were systematically discussed. With HEBM process and proper initial Fe/Se ratio, the formation of non-superconducting hexagonal δ-FeSe phase were effectively avoided. FeSe bulk with the critical temperature of 9.0 K was obtained through a simple one-step sintering process with lower sintering temperature. Meanwhile, the phase evolution mechanism of the HEBM precursor powders during sintering was deduced based on both the thermodynamic analysis and step-by-step sintering results. The key function of the HEBM process was to provide a high uniformity of chemical composition distribution, thus to successfully avoide the formation of intermediate product during sintering, including FeSe 2 and Fe 7 Se 8 . Therefore, the fundamental principal for the synthesis of FeSe superconductors were concluded as: HEBM aided sintering process, with the sintering temperature of >635 °C and a slow cooling process. - Highlights: • A novel synthesis technique was developed for FeSe based superconductors. • FeSe bulks with high Tc and high β-FeSe phase content has been obtained. • Phase evolution process for the HEBM aided sintering process was proposed

  16. Powder metallurgy: Solid and liquid phase sintering of copper

    Science.gov (United States)

    Sheldon, Rex; Weiser, Martin W.

    1993-01-01

    Basic powder metallurgy (P/M) principles and techniques are presented in this laboratory experiment. A copper based system is used since it is relatively easy to work with and is commercially important. In addition to standard solid state sintering, small quantities of low melting metals such as tin, zinc, lead, and aluminum can be added to demonstrate liquid phase sintering and alloy formation. The Taguchi Method of experimental design was used to study the effect of particle size, pressing force, sintering temperature, and sintering time. These parameters can be easily changed to incorporate liquid phase sintering effects and some guidelines for such substitutions are presented. The experiment is typically carried out over a period of three weeks.

  17. The role of the binder phase in the WC-Co sintering

    Directory of Open Access Journals (Sweden)

    Silva A.G.P. da

    2001-01-01

    Full Text Available The sintering of hardmetal in the solid state is studied. The influence of the WC particle size on the sintering kinetics, the role of the binder phase in the densification process and how sintering depends on the heating conditions are investigated. It is observed that alloys with different WC particle size show quite different structural evolution during sintering, although the densification mechanisms are the same. This is explained by the formation of agglomerates of WC and Co. Hardmetal alloys can sinter very rapidly when high heating rates are used, since rapid heating accelerates the binder spreading and the formation of WC-Co agglomerates. The binder phase (Co spreads on the WC particles initially as a thin layer. Subsequently, more Co spreads on this layer and WC-Co agglomerates are formed.

  18. A Transient Liquid Phase Sintering Bonding Process Using Nickel-Tin Mixed Powder for the New Generation of High-Temperature Power Devices

    Science.gov (United States)

    Feng, Hongliang; Huang, Jihua; Yang, Jian; Zhou, Shaokun; Zhang, Rong; Chen, Shuhai

    2017-07-01

    A transient liquid phase sintering (TLPS) bonding process, Ni-Sn TLPS bonding was developed for the new generation of power semiconductor packaging. A model Ni/Ni-Sn/Ni sandwiched structure was assembled by using 30Ni-70Sn mixed powder as the reactive system. The results show that the bonding layer is composed of Ni3Sn4 and residual fine Ni particles with a small amount of Ni3Sn2 at 340°C for 240 min, which has a heat-resistant temperature higher than 790°C. The microstructural evolution and thermal characteristic of the bonding layer for various times at 300°C and 340°C were also studied, respectively. This reveals that, after isothermally holding for 240 min at 300°C and for 180 min at 340°C, Sn has been completely transformed into Ni-Sn intermetallic compounds (IMCs) and the bonding layer is mainly composed of Ni3Sn4 and residual Ni particles. The analysis result for the mechanical properties of the joint shows that the hardness of the bonding layer at 340°C for 240 min is uniform and that the average value reaches 3.66 GPa, which is close to that of the Ni3Sn4 block material. The shear test shows that, as the holding time increases from 60 min to 180 min at 340°C, because of the existence of Sn, the disparity of shear strength between room temperature and 350°C is large. But when the holding time is 180 min or longer, Sn has been completely transformed into Ni-Sn IMCs. Their performances are very similar whether at room temperature or 350°C.

  19. Liquid Phase Sintering of (Ti,Zr)C with WC-Co.

    Science.gov (United States)

    Ma, Taoran; Borrajo-Pelaez, Rafael; Hedström, Peter; Blomqvist, Andreas; Borgh, Ida; Norgren, Susanne; Odqvist, Joakim

    2017-01-11

    (Ti,Zr)C powder was sintered with WC-Co following an industrial process, including an isotherm at 1410 °C. A series of interrupted sintering trials was performed with the aim of studying the sintering behavior and the microstructural evolution during both solid-state and liquid-state sintering. Reference samples, using the same elemental compositions but with the starting components TiC and ZrC instead of (Ti,Zr)C, were also sintered. The microstructure was investigated using scanning electron microscopy and energy dispersive X-ray spectroscopy. It is found that the (Ti,Zr)C phase decomposes into Ti-rich and Zr-rich nano-scale lamellae before the liquid-state of the sintering initiates. The final microstructure consists of the binder and WC as well as two different γ phases, rich in either Ti (γ₁) or Zr (γ₂). The γ₂ phase grains have a core-shell structure with a (Ti,Zr)C core following the full sintering cycle. The major differences observed in (Ti,Zr)C with respect to the reference samples after the full sintering cycle were the referred core-shell structure and the carbide grain sizes; additionally, the microstructural evolution during sintering differs. The grain size of carbides (WC, γ₁, and γ₂) is about 10% smaller in WC-(Ti,Zr)C-Co than WC-TiC-ZrC-Co. The shrinkage behavior and hardness of both composites are reported and discussed.

  20. Liquid Phase Sintering of (Ti,ZrC with WC-Co

    Directory of Open Access Journals (Sweden)

    Taoran Ma

    2017-01-01

    Full Text Available (Ti,ZrC powder was sintered with WC-Co following an industrial process, including an isotherm at 1410 °C. A series of interrupted sintering trials was performed with the aim of studying the sintering behavior and the microstructural evolution during both solid-state and liquid-state sintering. Reference samples, using the same elemental compositions but with the starting components TiC and ZrC instead of (Ti,ZrC, were also sintered. The microstructure was investigated using scanning electron microscopy and energy dispersive X-ray spectroscopy. It is found that the (Ti,ZrC phase decomposes into Ti-rich and Zr-rich nano-scale lamellae before the liquid-state of the sintering initiates. The final microstructure consists of the binder and WC as well as two different γ phases, rich in either Ti (γ1 or Zr (γ2. The γ2 phase grains have a core-shell structure with a (Ti,ZrC core following the full sintering cycle. The major differences observed in (Ti,ZrC with respect to the reference samples after the full sintering cycle were the referred core-shell structure and the carbide grain sizes; additionally, the microstructural evolution during sintering differs. The grain size of carbides (WC, γ1, and γ2 is about 10% smaller in WC-(Ti,ZrC-Co than WC-TiC-ZrC-Co. The shrinkage behavior and hardness of both composites are reported and discussed.

  1. Pressureless Reaction Sintering of AlON using Aluminum Orthophosphate as a Transient Liquid Phase

    Energy Technology Data Exchange (ETDEWEB)

    Michael Bakas; Henry Chu

    2009-01-01

    Use of aluminum oxynitride (AlON) in transparent armor systems has been difficult due to the expense and limitations of the processing methods currently necessary to achieve transparency. Development of a pressureless processing method based on direct reaction sintering of alumina and aluminum nitride powders would reduce costs and provide a more flexible and practical manufacturing method. It may be possible to develop such a processing method using liquid phase sintering; as long as the liquid phase does not remain in the final sample. AlPO4 forms a liquid phase with Al2O3 and AlN at the temperatures required to sinter AlON, and slowly decomposes into P2O5 and alumina. Therefore, it was investigated as a possible transient liquid phase for reaction-sintered AlON. Small compacts of alumina and aluminum nitride with up to of 15wt% AlPO4 additive were pressed and sintered. It was found that AlPO4 formed the requisite transient liquid phase, and it was possible to adjust the process to produce AlON samples with good transmission and densities of 3.66-3.67 g/cc. XRD confirmed the samples formed were AlON, with no trace of any remaining phosphate phases or excess alumina or aluminum nitride. Based on the results, it was concluded that AlPO4 could be utilized as a transient liquid phase to improve the density and transmission of AlON produced by pressureless reaction sintering.

  2. Material Evaluation and Process Optimization of CNT-Coated Polymer Powders for Selective Laser Sintering

    Directory of Open Access Journals (Sweden)

    Shangqin Yuan

    2016-10-01

    Full Text Available Multi-walled carbon nanotubes (CNTs as nano-reinforcements were introduced to facilitate the laser sintering process and enhance the thermal and mechanical properties of polymeric composites. A dual experimental-theoretical method was proposed to evaluate the processability and predict the process parameters of newly developed CNT-coated polyamide 12 (CNTs/PA12 powders. The thermal conductivity, melt viscosity, phase transition and temperature-dependent density and heat capacity of PA12 and CNTs/PA12 powders were characterized for material evaluation. The composite powders exhibited improved heat conduction and heat absorption compared with virgin polymer powders, and the stable sintering range of composite powders was extended and found to be favourable for the sintering process. The microstructures of sintered composites revealed that the CNTs remained at the powder boundaries and formed network architectures, which instantaneously induced the significant enhancements in tensile strength, elongation at break and toughness without sacrificing tensile modulus.

  3. Liquid Phase Sintering of Highly Alloyed Stainless Steel

    DEFF Research Database (Denmark)

    Mathiesen, Troels

    1996-01-01

    of boride to AISI 316L type steels have previously been studied, but were found to be sensitive to intergranular corrosion due to formation of intermetallic phases rich in chromium and molybdenum. In order to improve this system further, new investigations have focused on the use of higher alloyed stainless......Liquid phase sintering of stainless steel is usually applied to improve corrosion resistance by obtaining a material without an open pore system. The dense structure normally also give a higher strength when compared to conventional sintered steel. Liquid phase sintrering based on addition...... calculations, made by use of the computer programme Thermo-Calc, were also correlated with the observed microstructure. Corrosion measurements by electrochemical techniques show no signs of intergranular corrosion in contrast to the case of AISI 316L based steel. Furthermore most of the material showed...

  4. Process for microwave sintering boron carbide

    Science.gov (United States)

    Holcombe, C.E.; Morrow, M.S.

    1993-10-12

    A method of microwave sintering boron carbide comprises leaching boron carbide powder with an aqueous solution of nitric acid to form a leached boron carbide powder. The leached boron carbide powder is coated with a glassy carbon precursor to form a coated boron carbide powder. The coated boron carbide powder is consolidated in an enclosure of boron nitride particles coated with a layer of glassy carbon within a container for microwave heating to form an enclosed coated boron carbide powder. The enclosed coated boron carbide powder is sintered within the container for microwave heating with microwave energy.

  5. Formation and properties of two-phase bulk metallic glasses by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Xie Guoqiang, E-mail: xiegq@imr.tohoku.ac.jp [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Louzguine-Luzgin, D.V. [WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Inoue, Akihisa [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

    2011-06-15

    Research highlights: > Two-phase bulk metallic glasses with high strength and good soft magnetic properties as well as satisfying large-size requirements were produced by spark plasma sintering. > Effects of sintering temperature on thermal stability, microstructure, mechanical and magnetic properties were investigated. > Densified samples were obtained by the spark plasma sintering at above 773 K. - Abstract: Using a mixture of the gas-atomized Ni{sub 52.5}Nb{sub 10}Zr{sub 15}Ti{sub 15}Pt{sub 7.5} and Fe{sub 73}Si{sub 7}B{sub 17}Nb{sub 3} glassy alloy powders, we produced the two-phase bulk metallic glass (BMG) with high strength and good soft magnetic properties as well as satisfying large-size requirements by the spark plasma sintering (SPS) process. Two kinds of glassy particulates were homogeneously dispersed each other. With an increase in sintering temperature, density of the produced samples increased, and densified samples were obtained by the SPS process at above 773 K. Good bonding state among the Ni- and Fe-based glassy particulates was achieved.

  6. Preparation and sintering of Zr(C,N,O) phases

    International Nuclear Information System (INIS)

    Tamborenea, S.; Mazzoni, A.D.; Aglietti, E.F.

    2003-01-01

    The Zr(C,O,N) compounds form a great mono-phase zone belonging to the pseudoternary ZrO-ZrN-ZrC system.Theses phases have cubic crystalline structure with a o parameter depending on the C, O 2 and N 2 content.These phases have many potential applications in the manufacture of ceramic pieces utilizable as electronic conductors.The Zr (C,O,N) phases can be obtained from ZrO 2 by carbonitriding reactions: that is carbothermal reduction and simultaneous nitriding.In this work a series of experiences of carbonitriding of zirconia under different conditions (temperatures between 1400 and 1600degC, times of 120 min, carbon content between 20 and 40%) in order to obtain suitable powders to be sintered.The XRD analysis shows the Zr(C,O,N) as the main products and β -ZrON as the only secondary product in proportions depending on the obtaining conditions.The variables employed were the C content and the reaction temperature.The Zr(C,O,N) content varies between 40 and 90% and tends to increase with the temperature and the carbon content whereas the β -ZrON phase varies between the 40 and 10 % decreasing its proportion with temperature and the carbon content.The oxidation resistance of these phases was studied by DTA-TG tests in air.Results show complete oxidation reaction at ∼500degC in air.The sintering of these materials was made on disks obtained by pressing of powders of Zr(C,N,O) contents higher than 90%.Sintering was performed in nitrogen atmosphere and temperatures between 1450 and 1620degC.Disks were characterized by pycnometry and Hg volumeter.The densities obtained were between 5 and 6,6g/cm 3 with a tendency to increase with the Zr(C,N,O) phase content, the temperature and the sintering time.Sintered disks were characterized by dilatometry in N 2

  7. Silica phases in sinters and residues from geothermal fields of New Zealand

    Science.gov (United States)

    Rodgers, K. A.; Browne, P. R. L.; Buddle, T. F.; Cook, K. L.; Greatrex, R. A.; Hampton, W. A.; Herdianita, N. R.; Holland, G. R.; Lynne, B. Y.; Martin, R.; Newton, Z.; Pastars, D.; Sannazarro, K. L.; Teece, C. I. A.

    2004-06-01

    happens among residues, or by the presence of phases such as carbonate that enhance inorganic alkalinity, whereas it can be inhibited by clays and organic debris. Three-dimensional short- and long-range order (crystallinity) becomes possible with the elimination of virtually all silanol water when the density increases to >2.6 g/cm 3. This density increase is accompanied by a reduction in volume, such that additional silica must be introduced to avoid shrinkage. More silica is required to account for reductions in porosity on sinter aging. The mobilisation, transport, and deposition of the required silica are driven by the differing solubilities and relative metastabilities of the successive phases; at each stage of maturation, a less-mature phase is dissolved, transported via diffusion as monomeric silica and precipitated as a more mature phase. The process is sustained by pore fluid through a network of silica sources and sinks within the sinter/residue mass, but it does not operate uniformly at either macroscopic or microscopic scales. Silica phase heterogeneity of outcrop is the norm until thermodynamic equilibrium is achieved, and two or more phases commonly coexist. Sinter maturation can be modelled in terms of changes in phase physical properties with time. However, differences in transformation rates at different sites preclude such models being used to unravel outcrop chronologies.

  8. Multi-Scale Modeling of Liquid Phase Sintering Affected by Gravity: Preliminary Analysis

    Science.gov (United States)

    Olevsky, Eugene; German, Randall M.

    2012-01-01

    A multi-scale simulation concept taking into account impact of gravity on liquid phase sintering is described. The gravity influence can be included at both the micro- and macro-scales. At the micro-scale, the diffusion mass-transport is directionally modified in the framework of kinetic Monte-Carlo simulations to include the impact of gravity. The micro-scale simulations can provide the values of the constitutive parameters for macroscopic sintering simulations. At the macro-scale, we are attempting to embed a continuum model of sintering into a finite-element framework that includes the gravity forces and substrate friction. If successful, the finite elements analysis will enable predictions relevant to space-based processing, including size and shape and property predictions. Model experiments are underway to support the models via extraction of viscosity moduli versus composition, particle size, heating rate, temperature and time.

  9. Progress in Dual (Piezoelectric-Magnetostrictive Phase Magnetoelectric Sintered Composites

    Directory of Open Access Journals (Sweden)

    Rashed Adnan Islam

    2012-01-01

    Full Text Available The primary aims of this review article are (a to develop the fundamental understanding of ME behavior in perovskite piezoelectric-spinel magnetostrictive composite systems, (b to identify the role of composition, microstructural variables, phase transformations, composite geometry, and postsintering heat treatment on ME coefficient, and (c to synthesize, characterize, and utilize the high ME coefficient composite. The desired range of ME coefficient in the sintered composite is 0.5–1 V/cm⋅Oe. The studies showed that the soft piezoelectric phase quantified by smaller elastic modulus, large grain size of piezoelectric phase (~1 μm, and layered structures yields higher magnitude of ME coefficient. It is also found that postsintering thermal treatment such as annealing and aging alters the magnitude of magnetization providing an increase in the magnitude of ME coefficient. A trilayer composite was synthesized using pressure-assisted sintering with soft phase [0.9 PZT–0.1 PZN] having grain size larger than 1 μm and soft ferromagnetic phase of composition Ni0.8Cu0.2Zn0.2Fe2O4 [NCZF]. The composite showed a high ME coefficient of 412 and 494 mV/cm⋅Oe after sintering and annealing, respectively. Optimized ferrite to PZT thickness ratio was found to be 5.33, providing ME coefficient of 525 mV/cm⋅Oe. The ME coefficient exhibited orientation dependence with respect to applied magnetic field. Multilayering the PZT layer increased the magnitude of ME coefficient to 782 mV/cm⋅Oe. Piezoelectric grain texturing and nanoparticulate assembly techniques were incorporated with the layered geometry. It was found that with moderate texturing, d33 and ME coefficient reached up to 325 pC/N and 878 mV/cm⋅Oe, respectively. Nanoparticulate core shell assembly shows the promise for achieving large ME coefficient in the sintered composites. A systematic relationship between composition, microstructure, geometry, and properties is

  10. Phase transitions and transient liquid-phase sintering in calcium-substituted lanthanum chromite

    Energy Technology Data Exchange (ETDEWEB)

    Chick, L.A.; Liu, J.; Stevenson, J.W.; Armstrong, T.R.; McCready, D.E.; Maupin, G.D.; Coffey, G.W.; Coyle, C.A. [Pacific Northwest National Lab., Richland, WA (United States). Materials and Chemical Sciences Dept.

    1997-08-01

    This paper investigates sintering and phase transitions of La{sub 0.7}Ca{sub x}CrO{sub 3} (0.25 {le} x {le} 0.35), a material useful as electrical interconnections in solid oxide fuel cells. Heating of the quenched, metastable single-phase chromite resulted in exsolution of CaCrO{sub 4} due to Ca solubility limitations below 1,200 C. A transient liquid phase formed between 850 and 1,000 C as the CaCrO{sub 4} melted, causing partial densification in materials having 0.25 < x < 0.30. A slight increase in Ca content induced an additional liquid-phase sintering event, likely due to melting of Ca{sub 3}(CrO{sub 4}){sub 2}, which facilitated near-complete densification by 1,250 C. After enhancing sintering, the secondary phases redissolved into the chromite.

  11. Computerized simulation of sintering process through single geometric arrangements utilization

    International Nuclear Information System (INIS)

    Vasconcelos, Vanderley de; Lameiras, Fernando Soares; Vasconcelos, Wander L.

    1995-01-01

    In materials science and engineering, microstructure is of crucial importance in determining the properties and therefore the performance of the designed products. However, the parameters and processes which control microstructural evolution in multi-phase polycrystalline systems have not been systematically examined yet. This is specially true in the case of powder processing of ceramics, where the final microstructure is related not only to the densification process, but also to the characteristics of the green compact, such as particle size distribution and packing density. One way to carry out the study of this problem with the of a computer is to consider the green compact as a periodic arrangement of mono-sized hard spheres, e.g., the simple cubic, the body-centered cubic (b.c.) and the face-centered cubic (f.c.c.) arrays. That simplification allows to foresee the resultant morphology when the array is sintered to full density through a simulation algorithm that allows the spheres to penetrate one another and conserve their mass. Typical powder compacts have a random, rather than regular, structures. An element of randomness is introduced and various parameters for this case (e.g. density, coordination number, morphology) are compared with the simple ones. Thermodynamic features of the simulated microstructures which may reveal which one resembles a more realistic equilibrium configuration are also included. (author). 8 refs., 2 figs

  12. Sintering behavior of porous wall tile bodies during fast single-firing process

    Directory of Open Access Journals (Sweden)

    Sidnei José Gomes Sousa

    2005-06-01

    Full Text Available In ceramic wall tile processing, fast single-firing cycles have been widely used. In this investigation a fast single-firing porous wall tile mixture was prepared using raw materials from the North Fluminense region.Specimens were obtained by uniaxial pressing and sintered in air at various temperatures (1080 - 1200 °C using a fast-firing cycle (60 minutes. Evolution of the microstructure was followed by XRD and SEM. The results revealed that the main phases formed during the sintering step are anorthite, gehlenite and hematite. It appears that the sintering process is characterized by the presence of a small amount of a liquid phase below 1140 °C. As a result, the microstructure of the ceramic bodies showed a network of small dense zones interconnected with a porous phase. In addition, the strength of the material below 1140 °C appeared to be related to the type and quantity of crystalline phases in the sintered bodies.

  13. Phase characterisation in spark plasma sintered TiPt alloy

    CSIR Research Space (South Africa)

    Chikosha, S

    2011-12-01

    Full Text Available The conclusions drawn from this presentation are that Spark Plasma Sintering (SPS) of equiatomic BE TiPt powder produces fully sintered specimens, with incomplete homogenisation. There is a need for improved furnace atmosphere control so...

  14. Microstructure Evolution and Mechanical Properties Improvement in Liquid-Phase-Sintered Hydroxyapatite by Laser Sintering

    Directory of Open Access Journals (Sweden)

    Songlin Duan

    2015-03-01

    Full Text Available CaO-Al2O3-SiO2 (CAS as a liquid phase was introduced into hydroxyapatite (HAp to prepare bone scaffolds. The effects of the CAS content (1, 2, 3, 4 and 5 wt% on microstructure and mechanical properties of HAp ceramics were investigated. The optimal compression strength, fracture toughness and Vickers hardness reached 22.22 MPa, 1.68 MPa·m1/2 and 4.47 GPa when 3 wt% CAS was added, which were increased by 105%, 63% and 11% compared with those of HAp ceramics without CAS, respectively. The improvement of the mechanical properties was attributed to the improved densification, which was caused by the solid particle to rearrange during liquid phase sintering. Moreover, simulated body fluid (SBF study indicated the HAp ceramics could maintain the mechanical properties and form a bone-like apatite layer when they were immersed in SBF. Cell culture was used to evaluate biocompatibility of the HAp ceramics. The results demonstrated MG-63 cells adhered and spread well.

  15. Sintering Reaction of Pseudoleucite Syenite: Thermodynamic Analysis and Process Evaluation

    Science.gov (United States)

    TAN, Danjun; MA, Hongwen; LI, Ge; LIU, Hao; ZOU, Dan

    On the basis of comprehensive analysis of the modal composition of a pseudoleucite syenite ore sample, collected from the Zijin Hill of Lin County, Shanxi Province, thermodynamic analysis of the pseudoleucite syenite sintering process with sodium carbonate as the additive was carried out. It indicated that when the pseudoleucite syenite was sintered at 760-880°C for 1.0-1.5 h, with sodium carbonate as the additive. The decomposition rate of minerals in the pseudoleucite syenite could reach 97.1%. The thermodynamic calculation shows that it needs to consume Na 2CO 3, i.e., 0.65 t treating per ton pseudoleucite syenite ore and approximately 95% of Na 2CO 3 could be recycled. This process consumes heat energy (2.29-2.48)×10 -6 kJ, corresponding to standard coal 190.97-206.82 kg as the thermal efficiency was 40% and CO 2 emission was 0.77-0.81 t. Compared with the Russian limestone-sintering technique, the natural mineral resources and energy consumptions and greenhouse gas emissions of the soda-sintering technique were reduced by 65%, 63%, and 65%, respectively. It is, therefore, feasible that the procedure suggested in this article could be industrialized providing both economic benefit and environmental conservation.

  16. Sintering process optimization for multi-layer CGO membranes by in situ techniques

    DEFF Research Database (Denmark)

    Kaiser, Andreas; Prasad, A.S.; Foghmoes, Søren Preben Vagn

    2013-01-01

    changing in a narrow temperature range of less than 100 degrees C. Below 1030 degrees C, a higher densification rate in the dense membrane layer than in the porous support leads to concave shape, whereas the densification rate of the support is dominant above 1030 degrees C, leading to convex shape. A fiat...... bi-layer could be prepared at 1030 degrees C, when shrinkage rates were similar. In situ van der Pauw measurements on tape cast layers during sintering allowed following the conductivity during sintering. A strong increase in conductivity and in activation energy E-a for conduction was observed...... between 900 and 1030 degrees C indicating an activation of the reactive sintering process and phase transformation of cobalt oxide. (C) 2012 Elsevier Ltd. All rights reserved....

  17. Processing and properties of mechanically alloyed sintered steels with hard inclusions

    International Nuclear Information System (INIS)

    Gutsfeld, C.

    1991-10-01

    The aim of this work was the development of mechanically alloyed sintered steels with inert hard inclusions and their characterisation concerning the mechanical properties and the sliding wear behaviour. For this material concept the hard materials NbC, TiC, TiN and Al 2 O 3 were chosen with volume contents upto 20%. Mechanical alloying of the raw powders is a necessary prerequisit for an extreme fine and homogeneous microstructure and good mechanical and wear properties. Through a connecting powder annealing a conventional powder metallurgical processing with cold pressing and sintering is possible. For the consolidation pressureless liquid phase sintering initiated through phosphorus contents of 0,6% is suitable. Because of the strong hampering of grain growth through the included hard particles sintering densities upto 99% TD are possible with extreme fine microstructures. The mechanical properties can be varied in wide ranges. So tensile strengths of 1150 MPa, elongations at fracture of 17%, hardness of over 800 HV and fatigue strengths of 370 MPa have been reached. Throughout HIP or sinter forging the mechanical properties can be improved furthermore. (orig.) [de

  18. Phase-Pure of BiFeO3 Ceramic Based on Citric Acid - Assisted Gel by Sintering Time Variation

    Science.gov (United States)

    Suastiyanti, Dwita; Ismojo

    2017-07-01

    Bismuth ferrite powder (BiFeO3/BFO) with high purity was synthesized by sol-gel process. It was used Bi5O(OH)9(NO3)4 and Fe(NO3)3.9H2O as main compound sources. Citric acid (C6H8O7) was used as fuell. As multiferroic material, BFO promises important technological applications in several devices like data strorage, spinotronics, sensor, actuator devices etc. This research would know the optimum process condition of sol-gel process to produce BFO powder by varying of sintering time. The novelty of this research is how to produce BFO in single phase by simple method. It was used calcination condition at 160°C for 4 hours and sintering condition at 600°C with varying of sintering time of 4, 6 and 8 hours. Thermogravimetric Analysis/Differential Thermal Analysis (TGA/DTA), X Ray Diffraction (XRD) and Scanning Electron Microscope (SEM) were used to characterize the powder. Loss of mass and heat flow were seen at TGA/DTA test at 160°C approximately (used as reference of calcination temperature). BFO powder sintered at for 8 hours has no secondary phase, meanwhile for another sintering time (4 and 6 hours) it has Bi2O3 as secondary phase. It is also show at SEM observation result that powder with sintering time of 8 hours has finer grain than of 4 and 6 hours sintering at the same temperature. The grains of BFO powder has heterogenous in size, shape and still agglomerated.

  19. Improvement of mechanical strength of sintered Mo alloyed steel by optimization of sintering and cold-forging processes with densification

    Science.gov (United States)

    Kamakoshi, Y.; Shohji, I.; Inoue, Y.; Fukuda, S.

    2017-10-01

    Powder metallurgy (P/M) materials have been expected to be spread in automotive industry. Generally, since sintered materials using P/M ones contain many pores and voids, mechanical properties of them are inferior to those of conventional wrought materials. To improve mechanical properties of the sintered materials, densification is effective. The aim of this study is to improve mechanical strength of sintered Mo-alloyed steel by optimizing conditions in sintering and cold-forging processes. Mo-alloyed steel powder was compacted. Then, pre-sintering (PS) using a vacuum sintering furnace was conducted. Subsequently, coldforging (CF) by a backward extrusion method was conducted to the pre-sintered specimen. Moreover, the cold-forged specimen was heat treated by carburizing, tempering and quenching (CQT). Afterwards, mechanical properties were investigated. As a result, it was found that the density of the PS specimen is required to be more than 7.4 Mg/m3 to strengthen the specimen by heat treatment after CF. Furthermore, density and the microstructure of the PS specimen are most important factors to make the high density and strength material by CF. At the CF load of 1200 kN, the maximum density ratio reached approximately 99% by the use of the PS specimen with proper density and microstructure. At the CF load of 900 kN, although density ratio was high like more than 97.8%, transverse rupture strength decreased sharply. Since densification caused high shear stress and stress concentration in the surface layer, microcracks occurred by the damages of inter-particle sintered connection of the surface layer. On the contrary, in case of the CF load of 1200 kN, ultra-densification of the surface layer occurred by a sufficient plastic flow. Such sufficient compressed specimens regenerated the sintered connections by high temperature heat treatment and thus the high strength densified material was obtained. These processes can be applicable to near net shape manufacturing

  20. Application of fine-grained coke breeze fractions in the process of iron ore sintering

    Directory of Open Access Journals (Sweden)

    M. Niesler

    2014-01-01

    Full Text Available The testing cycle, described in the paper, included fine-grained coke breeze granulation tests and iron concentrate sintering tests with the use of selected granulate samples. The use of granulated coke breeze in the sintering process results in a higher process efficiency, shorter sintering duration and fuel saving.

  1. Granulation of coke breeze fine for using in the sintering process

    Directory of Open Access Journals (Sweden)

    Mohamed F.M.

    2010-01-01

    Full Text Available Coke breeze is the main fuel used in the sintering process. The value of -3+1 mm. represents the most favorable particle size for coke breeze in the sintering process. About 20% of total coke fines (-0.5 mm are produced during different steps of preparation. Introducing these fines during the sintering process proves to be very harmful for different operating parameters. Thus ,this study aims at investigating the production of granules resulting from these fines using molasses as organic binder and its application in sintering of an iron ore. The results showed that the granules having the highest mechanical properties were obtained with 14.5 wt % molasses addition. The sintering experiments were performed by using coke breeze in different shapes (-3+1 mm in size, coke breeze without sieving and coke breeze granules -3+1 mm. The reduction experiments, microscopic structure and X-ray analysis for the produced sinter were carried out. The results revealed that, all sinter properties (such as shatter test, productivity of sinter machine and blast furnace, reduction time and chemical composition for produced sinter by using coke breeze with size -3+1 mm and coke breeze granules were almost the same. The iron ore sinter which was produced by using coke breeze without sieving yielded low productivity for both sinter machine and blast furnace. Furthermore, using coke breeze without sieving in sintering of an iron ore decreases the vertical velocity of sinter machine and increases the reduction time.

  2. Morphology and phase identification of micron to nanosized manganese oxide (MnO) with variations in sintering time

    Science.gov (United States)

    Sasongko, Muhammad Ilman Nur; Puspitasari, Poppy; Yazirin, Cepi; Tsamroh, Dewi Izzatus; Risdanareni, Puput

    2017-09-01

    Manganese oxide (MnO) occurs in many rock types and may take the form of minerals. MnO has its drawbacks, namely highly reactive oxidizing species classified as dangerous and explosive at temperatures above 55 °C. Despite this,MnO has excellent magnetic, electrochemical, and conductivity properties, which should be reduced to nano-size to maximize their use and improve the properties of MnO. Phase and morphology characterization of powder this research aims to reduce the grain size of the MnO from micro to nano using the sol-gel method with various sintering times. Sol-gel is a simple synthesis method that has been proven capable of synthesizing a wide variety of micro-sized oxide materials into nano. Sintering time is a technique performed in the synthesis process to dry the material to a temperature above the normal temperature. The temperature used for sintering starting from 600 °C to 1000 °C. Characterizations were done using XRD, SEM, EDX, and FTIR machines. The sintering processes in this study used a temperature of 600 °C with different sintering periods of 30, 60 and 90 minutes. The XRD characterization with a 30-minute sintering time resulted in the smallest MnO in the form crystalline powder of 47.3 nm. The highest intensity (degree of crystallinity) found in MnO sintered for 90 minutes. The results of the morphological characterization of SEM showed a morphological change in MnO from micro-sized triangular to nano-sized spherical shape. The EDX characterization results indicated that the 30-minute sintering caused the lowest change in Mn and the highest change in O. The results of FTIR characterization showed a shift in C-H and Mn-O followed by an increase in the group of N-H, C=O and Mn-O.

  3. Characterization and Sintering of Armstrong Process Titanium Powder

    Science.gov (United States)

    Xu, Xiaoyan; Nash, Philip; Mangabhai, Damien

    2017-04-01

    Titanium and titanium alloys have a high strength to weight ratio and good corrosion resistance but also need longer time and have a higher cost on machining. Powder metallurgy offers a viable approach to produce near net-shape complex components with little or no machining. The Armstrong titanium powders are produced by direct reduction of TiCl4 vapor with liquid sodium, a process which has a relatively low cost. This paper presents a systematic research on powder characterization, mechanical properties, and sintering behavior and of Armstrong process powder metallurgy, and also discusses the sodium issue, and the advantages and disadvantages of Armstrong process powders.

  4. Determination of optimum thermal debinding and sintering process parameters using Taguchi Method

    CSIR Research Space (South Africa)

    Seerane, M

    2015-07-01

    Full Text Available on the basis of obtaining a defect-free part after sintering and also determining a sintering time that gives high sintering density. Thermal debinding was conducted after solvent debinding. The feedstock used to produce green compacts composed of Ti6Al4V... International Light Metals Technology Conference (LMT 2015), Port Elizabeth, South Africa, July 27-29 Determination of Optimum Process for Thermal Debinding and Sintering using Taguchi Method SEERANE Mandya,*, CHIKWANDA Hildab, MACHAKA Ronaldc CSIR...

  5. A constitutive model and numerical simulation of sintering processes at macroscopic level

    Science.gov (United States)

    Wawrzyk, Krzysztof; Kowalczyk, Piotr; Nosewicz, Szymon; Rojek, Jerzy

    2018-01-01

    This paper presents modelling of both single and double-phase powder sintering processes at the macroscopic level. In particular, its constitutive formulation, numerical implementation and numerical tests are described. The macroscopic constitutive model is based on the assumption that the sintered material is a continuous medium. The parameters of the constitutive model for material under sintering are determined by simulation of sintering at the microscopic level using a micro-scale model. Numerical tests were carried out for a cylindrical specimen under hydrostatic and uniaxial pressure. Results of macroscopic analysis are compared against the microscopic model results. Moreover, numerical simulations are validated by comparison with experimental results. The simulations and preparation of the model are carried out by Abaqus FEA - a software for finite element analysis and computer-aided engineering. A mechanical model is defined by the user procedure "Vumat" which is developed by the first author in Fortran programming language. Modelling presented in the paper can be used to optimize and to better understand the process.

  6. Recovery of Al and Na Values from Red Mud by BaO-Na2CO3 Sinter Process

    Directory of Open Access Journals (Sweden)

    S.N. Meher

    2011-01-01

    Full Text Available The red mud BaO-Na2CO3 sinter process can be used in combination with the Bayer process to recover sodium and aluminium from the red mud waste and direct it back to the process stream. This is facilitated by the high temperature reaction of BaO-Na2CO3 and De-silication product (Sodalite (DSP in the red mud to produce an insoluble di-barium silicate, barium titanate, barium ferrite and a soluble sodium aluminate. A variation of the red mud BaO-Na2CO3 sintering process using half the barium oxide of existing methods has been investigated. The barium to silicon ratio was reduced from 2 to 1 producing a sodium barium silicate (Na2BaSiO4 rather than the di-barium silicate (Ba2SiO4 insoluble phase produced in the existing BaO-Na2CO3 sinter method. Synthetic BaO-Na2CO3 sinter products were investigated to understand the phases produced during sintering at varying temperatures and the chemistry of extraction. The target phases and morphological behaviors of sinter products were seen in XRD and SEM and the highest extractions were produced from a sinter temperature of 1000 °C for 4 h. A two-stage (105 °C / 60 min, 105 °C / 240 min water or caustic leaching process was found to be most effective for extraction. Sodium and aluminium extractions were 99% and 99.5% respectively. The experimental method devised was then used to treat red mud and the target phases were produced. An extraction of sodium and aluminium of 94% and 87% respectively was achieved. Silicon extractions were below 2%. Production benefits include sodium hydroxide savings, liquor burning, increased aluminium extraction and reduced cost of waste handling.

  7. Mechanical properties of molybdenum alloyed liquid phase-sintered tungsten-based composites

    International Nuclear Information System (INIS)

    Kemp, P.B.; German, R.M.

    1995-01-01

    Tungsten-based composites are fabricated from mixed elemental powders using liquid phase sintering, usually with a nickel-iron matrix. During sintering, the tungsten undergoes grain growth, leading to microstructure coarsening that lowers strength but increases ductility. Often the desire is to increase strength at the sacrifice of ductility, and historically, this has been performed by postsintering deformation. There has been considerable research on alloying to adjust the as-sintered mechanical properties to match those of swaged alloys. Prior reports cover many additions, seemingly including much of the periodic table. Unfortunately, many of the modified alloys proved disappointing, largely due to degraded strength at the tungsten-matrix interface. Of these modified alloys, the molybdenum-containing systems exhibit a promising combination of properties, cost, and processing ease. For example, the 82W-8Mo-7Ni-3Fe alloy gives a yield strength that is 34% higher than the equivalent 90W-7Ni-3Fe alloy (from 535 to 715 MPa) but with a 33% decrease in fracture elongation (from 30 to 20% elongation). This article reports on experiments geared to promoting improved properties in the W-Mo-Ni-Fe alloys. However, unlike the prior research which maintained a constant Ni + Fe content and varied the W:Mo ratio, this study considers the Mo:(Ni + Fe) ratio effect for 82, 90, and 93 wt pct W

  8. Surprising synthesis of nanodiamond from single-walled carbon nanotubes by the spark plasma sintering process

    Science.gov (United States)

    Mirzaei, Ali; Ham, Heon; Na, Han Gil; Kwon, Yong Jung; Kang, Sung Yong; Choi, Myung Sik; Bang, Jae Hoon; Park, No-Hyung; Kang, Inpil; Kim, Hyoun Woo

    2016-10-01

    Nanodiamond (ND) was successfully synthesized using single-walled carbon nanotubes (SWCNTs) as a pure solid carbon source by means of a spark plasma sintering process. Raman spectra and X-ray diffraction patterns revealed the generation of the cubic diamond phase by means of the SPS process. Lattice-resolved TEM images confirmed that diamond nanoparticles with a diameter of about ˜10 nm existed in the products. The NDs were generated mainly through the gas-phase nucleation of carbon atoms evaporated from the SWCNTs. [Figure not available: see fulltext.

  9. Study of nano-metric silicon carbide powder sintering. Application to fibers processing

    International Nuclear Information System (INIS)

    Malinge, A.

    2011-01-01

    Silicon carbide ceramic matrix composites (SiCf/SiCm) are of interest for high temperature applications in aerospace or nuclear components for their relatively high thermal conductivity and low activation under neutron irradiation. While most of silicon carbide fibers are obtained through the pyrolysis of a poly-carbo-silane precursor, sintering of silicon carbide nano-powders seems to be a promising route to explore. For this reason, pressureless sintering of SiC has been studied. Following the identification of appropriate sintering aids for the densification, optimization of the microstructure has been achieved through (i) the analysis of the influence of operating parameters and (ii) the control of the SiC β a SiC α phase transition. Green fibers have been obtained by two different processes involving the extrusion of SiC powder dispersion in polymer solution or the coagulation of a water-soluble polymer containing ceramic particles. Sintering of these green fibers led to fibers of around fifty microns in diameter. (author) [fr

  10. Process for the production of metal nitride sintered bodies and resultant silicon nitride and aluminum nitride sintered bodies

    Science.gov (United States)

    Yajima, S.; Omori, M.; Hayashi, J.; Kayano, H.; Hamano, M.

    1983-01-01

    A process for the manufacture of metal nitride sintered bodies, in particular, a process in which a mixture of metal nitrite powders is shaped and heated together with a binding agent is described. Of the metal nitrides Si3N4 and AIN were used especially frequently because of their excellent properties at high temperatures. The goal is to produce a process for metal nitride sintered bodies with high strength, high corrosion resistance, thermal shock resistance, thermal shock resistance, and avoidance of previously known faults.

  11. Effect of sintering process parameters on the properties of 3Y-PSZ ceramics

    International Nuclear Information System (INIS)

    Chu, H L; Chen, R S; Wang, C L; Hwang, W S; Lee, H E; Sie, Y Y; Wang, M C

    2013-01-01

    The effect of sintering process parameters on the properties of 3 mol% yttria partially stability zirconia (3Y-PSZ) ceramics has been investigated. The relative density of the sintered pellet rapidly increases from 70.5 to 93.6% with rose temperature from 1473 to 1573 K. In addition, the relative density only slightly increases from 94.9 to 96.6 %, when rose sintered temperature from 1573 to 1773 K. This result shows that no significant influence on the densification behavior when sintering at 1573 to 1773 K for 2 h. The Vickers hardness and toughness also increase with the sintered temperature

  12. Process for obtaining sintered conglomerates with a high density of rare earth oxides and actinides

    International Nuclear Information System (INIS)

    Pasto, A.E.

    1974-01-01

    The invention concerns a method to produce agglomerates of actinide and rare earth oxides possessing a cubic-monoclinic transformation in order to obtain high densities close to the theoretical density, and the articles produced by the method. The process is based on the use of a rare earth or actinide oxide, in particular Eu 2 O 3 , with a cubic-monoclinic phase transformation, the oxide being sintered by hot compression at a temperature 50 deg C to 100 deg C above the transformation temperature. The sintered agglomerates obtained can have a purity of at least 99.9% and a density of practically 100%. These agglomerates are suitable in particular for the formation of nuclear reactor control rods [fr

  13. Two-step flash light sintering process for crack-free inkjet-printed Ag films

    International Nuclear Information System (INIS)

    Park, Sung-Hyeon; Kim, Hak-Sung; Jang, Shin; Lee, Dong-Jun; Oh, Jehoon

    2013-01-01

    In this paper, a two-step flash light sintering process for inkjet-printed Ag films is investigated with the aim of improving the quality of sintered Ag films. The flash light sintering process is divided into two steps: a preheating step and a main sintering step. The preheating step is used to remove the organic binder without abrupt vaporization. The main sintering step is used to complete the necking connections among the silver nanoparticles and achieve high electrical conductivity. The process minimizes the damage on the polymer substrate and the interface between the sintered Ag film and polymer substrate. The electrical conductivity is calculated by measuring the resistance and cross-sectional area with an LCR meter and 3D optical profiler, respectively. It is found that the resistivity of the optimal flash light-sintered Ag films (36.32 nΩ m), which is 228.86% of that of bulk silver, is lower than that of thermally sintered ones (40.84 nΩ m). Additionally, the polyimide film used as the substrate is preserved with the inkjet-printed pattern shape during the flash light sintering process without delamination or defects. (paper)

  14. Thermal Mechanical Processing Effects on Microstructure Evolution and Mechanical Properties of the Sintered Ti-22Al-25Nb Alloy.

    Science.gov (United States)

    Wang, Yuanxin; Lu, Zhen; Zhang, Kaifeng; Zhang, Dalin

    2016-03-11

    This work illustrates the effect of thermal mechanical processing parameters on the microstructure and mechanical properties of the Ti-22Al-25Nb alloy prepared by reactive sintering with element powders, consisting of O, B2 and Ti₃Al phases. Tensile and plane strain fracture toughness tests were carried out at room temperature to understand the mechanical behavior of the alloys and its correlation with the microstructural features characterized by scanning and transmission electron microscopy. The results show that the increased tensile strength (from 340 to 500 MPa) and elongation (from 3.6% to 4.2%) is due to the presence of lamellar O/B2 colony and needle-like O phase in B2 matrix in the as-processed Ti-22Al-25Nb alloys, as compared to the coarse lath O adjacent to B2 in the sintered alloys. Changes in morphologies of O phase improve the fracture toughness ( K IC ) of the sintered alloys from 7 to 15 MPa·m -1/2 . Additionally, the fracture mechanism shifts from cleavage fracture in the as-sintered alloys to quasi-cleavage fracture in the as-processed alloys.

  15. Characteristics of products generated by selective sintering and stereolithography rapid prototyping processes

    Science.gov (United States)

    Cariapa, Vikram

    1993-01-01

    The trend in the modern global economy towards free market policies has motivated companies to use rapid prototyping technologies to not only reduce product development cycle time but also to maintain their competitive edge. A rapid prototyping technology is one which combines computer aided design with computer controlled tracking of focussed high energy source (eg. lasers, heat) on modern ceramic powders, metallic powders, plastics or photosensitive liquid resins in order to produce prototypes or models. At present, except for the process of shape melting, most rapid prototyping processes generate products that are only dimensionally similar to those of the desired end product. There is an urgent need, therefore, to enhance the understanding of the characteristics of these processes in order to realize their potential for production. Currently, the commercial market is dominated by four rapid prototyping processes, namely selective laser sintering, stereolithography, fused deposition modelling and laminated object manufacturing. This phase of the research has focussed on the selective laser sintering and stereolithography rapid prototyping processes. A theoretical model for these processes is under development. Different rapid prototyping sites supplied test specimens (based on ASTM 638-84, Type I) that have been measured and tested to provide a data base on surface finish, dimensional variation and ultimate tensile strength. Further plans call for developing and verifying the theoretical models by carefully designed experiments. This will be a joint effort between NASA and other prototyping centers to generate a larger database, thus encouraging more widespread usage by product designers.

  16. Phase and microstructural characterization of Mo–Si–B multiphase intermetallic alloys produced by pressureless sintering

    International Nuclear Information System (INIS)

    Taleghani, P.R.; Bakhshi, S.R.; Borhani, G.H.; Erfanmanesh, M.

    2014-01-01

    Highlights: • Active and ultra-fine Mo–Si–B powders were produced by mechanical alloying. • The phases of MoSi 2 and MoB were obtained by sintering Mo–57Si–10B at 1400 °C for 2 h. • Composite based on MoB/MoSi 2 was obtained by sintering Mo–47Si–23B at 1300 °C for 3 h. • High content of MoB in the composite based on MoB/MoSi 2 increased density. • High hardness of the composite based on MoB/MoSi 2 is related to MoB matrix. -- Abstract: In this study Mo–47Si–23B and Mo–57Si–10B powders (at.%) was milled for 20 h in attritor ball mill with a rotational speed of 365 rpm and the ball/powder mass ratio 20/1. After degassing of As-mechanically alloyed powders at 450 °C, the powders were pressed into cylindrical samples with 25 mm diameter under 600 MPa pressure. The samples were sintered by using of a tube resistance furnace under Ar atmosphere. Phase and microstructure characteristic of mechanically alloyed powders and sintered samples, were investigated by scanning electron microscopy, X-ray diffraction and energy dispersive spectroscopy. Also hardness test was performed. Homogeneous distribution of active and ultra-fine powders were obtained after milling for 20 h. Mo–57Si–10B alloy with MoB and MoSi 2 dominant phases was produced by sintering at 1400 °C for 2 h. Dominant phases similar to Mo–57Si–10B alloy sintered at 1400 °C for 2 h could be synthesized in Mo–47Si–23B alloy after sintering at 1300 °C for 3 h, but volume fraction of MoB phase was different. The Mo–47Si–23B alloy contained a higher phase fraction of MoB compound as compared to Mo–57Si–10B alloy. Very high density in Mo–47Si–23B alloys was obtained, due to the presence of high volume fraction of MoB phase. Formation heat of MoB acted as a positive potential to increase driving force of sintering and consequently bulk density. Finally, a uniform and fine distribution of MoSi 2 particles in MoB continuous matrix in the microstructure of Mo-47Si

  17. Influence of sintering temperature on the phases and photoelectric characteristics of BiOCl/ZnO composite powders

    Science.gov (United States)

    Chen, Song; Zhu, De-gui

    2017-12-01

    Zinc oxide is a typical functional oxide that has been widely researched for various industry applications due to its peculiar physical characteristics. However, to achieve its potential in promising applications, much work has been diligently performed to improve the physical properties of ZnO. In this work, an aqueous suspension route was used to prepare BiOCl/ZnO composite powders, and sintering processes were applied to investigate the influence of sintering temperature on the phase evolutions, microstructures, and photoelectric characteristics of BiOCl/ZnO composite powders. The results indicated that the photoelectric properties mainly depend on the relevant content of BiOCl in the composite powders and the sintering temperature. The photoelectric measurements in K2SO4 solutions show that the photoelectric properties of the samples with the appropriate BiOCl content (0.3mol% and 2.0mol%) are better than those of ZnO and commercial TiO2 (P25) powders, but the photoelectric measurements in NaOH solutions indicate that the photoelectric characteristics of the as-sintered samples are only better than those of P25.

  18. Process for preparing sintered uranium dioxide nuclear fuel

    International Nuclear Information System (INIS)

    Carter, R.E.

    1975-01-01

    Uranium dioxide is prepared for use as fuel in nuclear reactors by sintering it to the desired density at a temperature less than 1300 0 C in a chemically controlled gas atmosphere comprised of at least two gases which in equilibrium provide an oxygen partial pressure sufficient to maintain the uranium dioxide composition at an oxygen/uranium ratio of at least 2.005 at the sintering temperature. 7 Claims, No Drawings

  19. Processing and Properties of Distaloy Sa Sintered Alloys with Boron and Carbon

    Directory of Open Access Journals (Sweden)

    Karwan-Baczewska J.

    2015-04-01

    Full Text Available Prealloyed iron-based powders, manufactured in Höganäs Company, are used in the automotive parts industry. The properties and life time of such sintered parts depend, first of all, on their chemical composition, the production method of the prealloyed powder as well as on the technology of their consolidation and sintering. One of simpler and conventional methods aimed at increasing the density in sintered products is the process of activated sintering, performed, for example, by adding boron as elementary boron powder. Under this research project obtained were novel sintered materials, based on prealloyed and diffusion bonded powder, type: Distaloy SA, with the following chemical composition: Fe-1.75% Ni-1.5%Cu- 0.5%Mo with carbon (0.55%; 0.75% and boron (0.2%, 0.4% and 0.6%. Distaloy SA samples alloyed with carbon and boron were manufactured by mixing powders in a Turbula mixer, then compressed using a hydraulic press under a pressure of 600 MPa and sintered in a tube furnace at 1473 K, for a 60 minute time, in the hydrogen atmosphere. After the sintering process, there were performed density and porosity measurements as well as hardness tests and mechanical properties were carried out, too. Eventually, analyzed was the effect of boron upon density, hardness and mechanical properties of novel sintered construction parts made from Distaloy SA powder.

  20. Fe-Zn intermetallic phases prepared by diffusion annealing and spark-plasma sintering

    Czech Academy of Sciences Publication Activity Database

    Pokorný, P.; Cinert, Jakub; Pala, Zdeněk

    2016-01-01

    Roč. 50, č. 2 (2016), s. 253-256 ISSN 1580-2949 R&D Projects: GA ČR GB14-36566G Institutional support: RVO:61389021 Keywords : Fe-Zn intermetallics * spark-plasma sintering * diffusion annealing * phase composition * hardness Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 0.436, year: 2016

  1. Sintering and electrical properties of PZT/Pt dual-phase composites

    NARCIS (Netherlands)

    Duan, N.; ten Elshof, Johan E.; Verweij, H.

    2001-01-01

    Lead zirconate titanate–platinum dual phase composites, which have been shown to exhibit a very interesting electric field dependence of the dielectric constant, were prepared. The sintering properties and microstructure were analyzed. No chemical reaction between PZT and Pt was found in the

  2. Quantitative evaluation of normal and abnormal grain growth of cemented carbides during liquid phase sintering

    Science.gov (United States)

    Chabretou, V.; Lavergne, O.; Missiaen, J.-M.; Allibert, C. H.

    1999-04-01

    The liquid-phase sintering (LPS) of cemented carbides prepared from submicronic powders induces a micro-structural evolution generally ascribed to normal and abnormal grain growth. Such phenomena can be prevented by small additions of inhibitors (Cr, V). Presently, the mechanisms controlling either the grain growth or its inhibition are not strictly identified. In the present work, the effects of major parameters on grain growth (initial WC grain size, liquid composition, liquid fraction) are studied by image analysis of specimens sintered at 1450°C up to 8h.The evolution of the mean intercept and intercept distribution of WC grains is analysed in terms of the possible mechanisms involved.

  3. The influence of green microstructure and sintering parameters on precipitation process during copper-nickel-zinc ferrites sintering

    Directory of Open Access Journals (Sweden)

    Barba, Antonio

    2014-04-01

    Full Text Available Microstructural changes that occur during heat treatment of copper-nickel-zinc ferrites have been studied. The process of precipitation of the two types of crystals that occur during the sintering process has been analyzed. It is found that this process depends on dry relative density of the press specimens and on the following sintering parameters: sintering temperature, sintering time and cooling rate of the thermal cycle. Crystal precipitates characterization have been done by scanning electron microscopy (SEM, energy-dispersive X-ray (EDX analysis, X-ray diffraction (XRD, and X-ray photoelectron spectroscopy (XPS. These techniques have allowed to determine the nature of these crystals, which in this case correspond to zinc and copper oxides. It has been used two chemical reactions to explain the bulk precipitation and subsequent re-dissolution of these crystal precipitates during sintering.En este trabajo se han estudiado los cambios microestructurales que se producen durante el tratamiento térmico de las ferritas de cobre-níquel-cinc y se ha analizado el proceso de precipitación de los dos tipos de cristales que aparecen durante el proceso de sinterización. Se ha encontrado que este proceso depende de la densidad relativa en seco de las muestras compactadas y de las siguientes variables de la etapa de sinterización: temperatura y tiempo de sinterización y velocidad de enfriamiento. La caracterización de los cristales precipitados se ha realizado por microscopía electrónica de barrido (MEB, microanálisis por dispersión de energía de rayos X (EDX, difracción de rayos X (DRX, y espectroscopía de fotoelectrones de rayos X (XPS. Estas técnicas han permitido determinar la naturaleza de estos cristales, que en este caso corresponden a los óxidos de cinc y de cobre. Se han propuesto dos reacciones químicas que permiten explicar el proceso de precipitación y la posterior re-disolución de estos cristales precipitados durante la

  4. Shape distortion and dimensional precision in tungsten heavy alloy liquid phase sintering

    International Nuclear Information System (INIS)

    Wuwen Yi; German, R.M.; Lu, P.K.

    2001-01-01

    Microstructure effects on densification and shape distortion in liquid phase sintering of tungsten heavy alloy were investigated. Microstructure parameters such as the solid volume fraction, dihedral angle, initial porosity, and pore size were varied to measure densification and distortion behavior during LPS using W-Ni-Cu alloys. Green compacts were formed using ethylene-bis-stearamide as a pore-forming agent with the amount of polymer controlling the initial porosity. Different initial pore sizes were generated by varying the polymer particle size. Dihedral angle was varied by changing the Ni:Cu ratio in the alloys. Finally, the solid volume fraction was adjusted via the tungsten content. Distortion was quantified using profiles determined with a coordinate measuring machine to calculate a distortion parameter. Sintering results showed that solid volume fraction and dihedral angle are the dominant factors on densification and distortion during liquid phase sintering. Distortion decreases with increasing solid volume fraction and dihedral angle, while initial porosity and pore size have no observable effect on distortion at nearly full densification. Various strategies emerge to improve distortion control in liquid phase sintering. (author)

  5. Enhanced Densification of PM Steels by Liquid Phase Sintering with Boron-Containing Master Alloy

    Science.gov (United States)

    Vattur Sundaram, Maheswaran; Surreddi, Kumar Babu; Hryha, Eduard; Veiga, Angela; Berg, Sigurd; Castro, Fransisco; Nyborg, Lars

    2018-01-01

    Reaching high density in PM steels is important for high-performance applications. In this study, liquid phase sintering of PM steels by adding gas-atomized Ni-Mn-B master alloy was investigated for enhancing the density levels of Fe- and Mo- prealloyed steel powder compacts. The results indicated that liquid formation occurs in two stages, beginning with the master alloy melting (LP-1) below and eutectic phase formation (LP-2) above 1373 K (1100 °C). Mo and C addition revealed a significant influence on the LP-2 temperatures and hence on the final densification behavior and mechanical properties. Microstructural embrittlement occurs with the formation of continuous boride networks along the grain boundaries, and its severity increases with carbon addition, especially for 2.5 wt pct of master alloy content. Sintering behavior, along with liquid generation, microstructural characteristics, and mechanical testing revealed that the reduced master alloy content from 2.5 to 1.5 wt pct (reaching overall boron content from 0.2 to 0.12 wt pct) was necessary for obtaining good ductility with better mechanical properties. Sintering with Ni-Mn-B master alloy enables the sintering activation by liquid phase formation in two stages to attain high density in PM steels suitable for high-performance applications.

  6. The mechanism of hard metal TiC-TiNi composite liquid-phase sintering

    International Nuclear Information System (INIS)

    Akimov, V.V.

    2006-01-01

    The sintering conditions are investigated for hard alloys on their production from powders of titanium nickelide with particle size of 10-25 μ and titanium carbide with particles of 5-10 μ at temperatures of 1280-1350 deg C under pressure of 0.1 MPa with holding at heat for 180-900 s. The analysis of experimental data shows that optimum sintering conditions are determined by the quantity of a binding phase TiNi. In the systems with a binding phase content no more than 40 % a heterogeneous structure with nonuniform aggregates of TiC and TiNi phases is observed. With increasing a binding phase amount up to 50-70 % and a temperature up to 1350 deg C, titanium nickelide melts and spreads uniformly among carbide grains. This results in a low porosity of the composite material and in an increase of thermodynamic stability of the system [ru

  7. Development of AUC-based process at BARC for production of free-flowing and sinterable UO2 powder

    International Nuclear Information System (INIS)

    Keni, V.S.; Ghosh, S.K.; Ganguly, C.; Majumdar, S.

    1994-01-01

    Ammonium uranium carbonate (AUC) process has been developed and industrially used in Germany for preparation of free-flowing and sinterable UO 2 powder for fabrication of UO 2 fuel pellets for light water reactors (LWR). Efforts are underway at Bhabha Atomic Research Centre (BARC) for developing AUC-based process which would yield free-flowing UO 2 powder suitable for direct pelletisation and sintering to very high density (> 96% T.D.) UO 2 fuel pellets for pressurised heavy water reactors (PHWRs) in India. The first phase of this work has been completed jointly by Chemical Engineering Division (ChED) and Radiometallurgy Division (RMD) in batches of 1.5 kg. It was possible to fabricate UO 2 pellets of density 93-95% T.D. on a reproducible basis. At ChED, process parameters have been optimised for fabrication of AUC with suitable physical properties in batches of 1.5 kg (U), starting with nuclear pure uranyl nitrate solution. At RMD calcination parameters of AUC was optimised in batches of 500 g for obtaining free-flowing UO 2 powder, suitable for direct pelletisation and sintering. The pelletisation and sintering have been carried out at Radiometallurgy Division in batches of 1-1.5 kg. The maximum achievable density of UO 2 pellets has been in the range of 95.5-96% T.D. (author). 11 refs

  8. Formation of solid solution during mutual diffusion of tungsten and molybdenum in the process of sintering

    International Nuclear Information System (INIS)

    Timofeeva, A.A.; Bulat, I.B.; Voronin, Yu.V.; Fedoseev, G.K.; Karasev, V.M.

    1984-01-01

    A process of a solid solution homogenization during sintering of W-15Mo and W-5Mo alloys is studied by the methods of density measurements, analysis of the X-ray lines physical broadening and determination of crystalline lattice constant. Study of the process of solid solution formation under conditions of powder composite sintering is shown to be conducted with account of peculiarities of tungsten and molybdenum mutual diffusion in the investigated temperature range of concentrations

  9. Effect of the sintering temperature and time on phase assemblage and electrical conductivity of zirconia-scandia-ceria

    International Nuclear Information System (INIS)

    Grosso, R.L.; Muccillo, E.N.S.

    2012-01-01

    ZrO 2 -based solid electrolytes have been extensively studied over the last decades for application in solid oxide fuel cells (SOFCs). Zirconia containing scandia and ceria solid electrolyte is a potential candidate in SOFCs operating at intermediate temperatures (600 - 800 deg C). In this work, commercial ZrO 2 containing 10 mol% Sc 2 O 3 and 1 mol% CeO 2 was sintered by the conventional and two-step methods. Several sintering conditions were evaluated by varying the temperature as well as the residence time. High values of sintered density (> 98%) were obtained. A careful selection of the sintering conditions is necessary in order to obtain a single cubic phase, as revealed by X-ray diffraction results. The grain growth can be controlled in specimens sintered by the two-step method. The electrical conductivity show similar behavior for the grain component independent on the sintering method. (author)

  10. Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering

    International Nuclear Information System (INIS)

    Wang, Y.P.; Zhou, L.; Zhang, M.F.; Chen, X.Y.; Liu, J.-M.; Liu, Z.G.

    2004-01-01

    Single-phased ferroelectromagnet BiFeO 3 ceramics with high resistivity were synthesized by a rapid liquid phase sintering technique. Saturated ferroelectric hysteresis loops were observed at room temperature in the ceramics sintered at 880 deg. C for 450 s. The spontaneous polarization, remnant polarization, and the coercive field are 8.9 μC/cm 2 , 4.0 μC/cm 2 , and 39 kV/cm, respectively, under an applied field of 100 kV/cm. It is proposed that the formation of Fe 2+ and an oxygen deficiency leading to the higher leakage can be greatly suppressed by the very high heating rate, short sintering period, and liquid phase sintering technique. The latter was also found effective in increasing the density of the ceramics. The sintering technique developed in this work is expected to be useful in synthesizing other ceramics from multivalent or volatile starting materials

  11. The Promotion of Liquid Phase Sintering of Boron-Containing Powder Metallurgy Steels by Adding Nickel

    Directory of Open Access Journals (Sweden)

    Wu Ming-Wei

    2015-01-01

    Full Text Available Boron is a feasible alloying element for liquid phase sintering (LPS of powder metallurgy (PM steels. This study investigated the effect of nickel (Ni, which is widely used in PM steels, on the liquid phase sintering of boron-containing PM steels. The results showed that the addition of 1.8wt% Ni does not apparently modify the LPS mechanism of boron-containing PM steels. However, adding 1.8wt% Ni slightly improves the LPS densification from 0.60 g/cm3 to 0.65 g/cm3, though the green density is reduced. Thermodynamic simulation demonstrated that the presence of Ni lowers the temperature region of liquid formation, resulting in enhanced LPS densification. Moreover, original graphite powders remains in the steels sintered at 1200 ºC. These graphite powders mostly dissolve into the base iron powder when the sintering temperature is increased from 1200 ºC to 1250 ºC.

  12. Origins of discontinuous grain growth during liquid phase sintering of WC-Co cemented carbides

    Energy Technology Data Exchange (ETDEWEB)

    Schreiner, M.; Schmitt, T.; Lux, B.; Lassner, E.

    1984-07-01

    The origins of discontinuous grain growth of fine grained WC powders (about 1 ..mu..m average grain size) with Co binder occurring during liquid phase sintering were studied. The results indicate that small amounts of coarse grained WC powder added to fine grained WC-Co mixtures, which otherwise do not show local grain coarsening during liquid phase sintering, produce enhanced local grain growth of the WC crystals. Effects of milling conditions and sintering temperature on microstructure and mechanical properties, such as transverse rupture strength and hardness, were determined. As already observed in previous studies trace elements in blue oxide can have an important effect on the average grain size and grain size distribution of the WC-powder. Also the considerable influence on the sintering behaviour of such powders described here can be traced back to such impurities. It is shown that phosphorus decreases the melting temperature of the WC-Co system and a heterogeneous distribution of it promotes discontinuous grain growth. Contrary to this, carbon heterogeneities in fine grained WC powders did not cause any discontinuous grain growth at all.

  13. Pressing-sintering process of UO2 pellet of controllable microstructure

    International Nuclear Information System (INIS)

    Wu Zhiming; Peng Qingshan

    1999-11-01

    The authors present the pressability and sinterability of two different matrix UO 2 powders from Ammonium Diuranate (ADU) process and the improvements by adding different quantities of additives. A focal point is made in the effect of the additives on the density, thermal stability and microstructure of UO 2 pellet. It is indicated by the results that a UO 2 pellet being of proper density, good thermal stability and better microstructure can be produced using of high sinterable UO 2 powder ex ADU, adding a certain quantity of pore former through calculation under conditions of high green density and high sintering temperature

  14. Phase transformations during sintering of mechanically alloyed TiPt

    CSIR Research Space (South Africa)

    Nxumalo, S

    2010-10-01

    Full Text Available first and high temperature melting phases form last12. This behaviour is what is observed in this work with the four phases with low melting points being formed which are Ti(Pt), Ti3Pt, TiPt and Ti3Pt5. It is therefore, probable that phase formation.... 1.0 Introduction TiPt is a potential alloy for use as a high temperature shape memory alloy (SMA). Shape memory alloys are alloys that will revert to the shape they had before deformation if the deformed alloy is annealed at a certain temperature...

  15. Development of a sintering process for recycling oil shale fly ash and municipal solid waste incineration bottom ash into glass ceramic composite.

    Science.gov (United States)

    Zhang, Zhikun; Zhang, Lei; Li, Aimin

    2015-04-01

    Oil shale fly ash and municipal solid waste incineration bottom ash are industrial and municipal by-products that require further treatment before disposal to avoid polluting the environment. In the study, they were mixed and vitrified into the slag by the melt-quench process. The obtained vitrified slag was then mixed with various percentages of oil shale fly ash and converted into glass ceramic composites by the subsequent sintering process. Differential thermal analysis was used to study the thermal characteristics and determine the sintering temperatures. X-ray diffraction analysis was used to analyze the crystalline phase compositions. Sintering shrinkage, weight loss on ignition, density and compressive strength were tested to determine the optimum preparation condition and study the co-sintering mechanism of vitrified amorphous slag and oil shale fly ash. The results showed the product performances increased with the increase of sintering temperatures and the proportion of vitrified slag to oil shale fly ash. Glass ceramic composite (vitrified slag content of 80%, oil shale fly ash content of 20%, sintering temperature of 1000 °C and sintering time of 2h) showed the properties of density of 1.92 ± 0.05 g/cm(3), weight loss on ignition of 6.14 ± 0.18%, sintering shrinkage of 22.06 ± 0.6% and compressive strength of 67 ± 14 MPa. The results indicated that it was a comparable waste-based material compared to previous researches. In particular, the energy consumption in the production process was reduced compared to conventional vitrification and sintering method. Chemical resistance and heavy metals leaching results of glass ceramic composites further confirmed the possibility of its engineering applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Review on Sintering Process of WC-Co Cemented Carbide in Metal Injection Molding Technology

    Science.gov (United States)

    Prathabrao, M.; Amin, Sri Yulis M.; Ibrahim, M. H. I.

    2017-01-01

    The objective of this paper is to give an overview on sintering process of WC-Co cemented carbides in metal injection molding technology. Metal injection molding is an advanced and promising technology in producing cemented nanostructured carbides. Cemented tungsten carbide (WC-Co) hard metal is known for its high hardness and wear resistance in various applications. Moreover, areas include fine grained materials, alternative binders, and alternative sintering techniques has been discussed in this paper.

  17. Near-Net-Shape Processing of Sintered Fibrous Ceramics Achieved

    Science.gov (United States)

    Angel, Paul W.

    2000-01-01

    A variety of sintered fibrous ceramic (SFC) materials have been developed over the last 50 years as thermal barrier materials for reentry applications. SFC materials typically exhibit very low thermal conductivities combined with low densities and good thermal stability up to 2500 F. These materials have flown successfully on the space shuttle orbiters since the 1960's. More recently, the McDonnell Douglas Corporation successfully used SFC tiles as a heat shield on the underside of its DC X test vehicle. For both of these applications, tiles are machined from blocks of a specific type of SFC called an alumina-enhanced thermal barrier (AETB). The sizes of these blocks have been limited by the manufacturing process. In addition, as much as 80 to 90 percent of the material can be lost during the machining of tiles with significant amounts of curvature. To address these problems, the NASA Glenn Research Center at Lewis Field entered a cooperative contract with the Boeing Company to develop a vacuum-assisted forming process that can produce large (approximately 4 square feet), severely contoured panels of AETB while saving costs in comparison to the conventional cast-and-machine billet process. For shuttle use, AETB is slurry cast, drained, and fired to form square billets conforming to the shape of the filtration box. The billets are then cut into tiles of the appropriate size for thermally protecting the space shuttle. Processing techniques have limited the maximum size of AETB billets to 21.5 square inches by 6.5-in. thick, but the space shuttles use discrete heat shield tiles no more than 8 to 12 square inches. However, in other applications, large, complex shapes are needed, and the tiling approach is undesirable. For such applications, vacuum-assisted forming can produce large parts with complex shapes while reducing machining waste and eliminating cemented joints between bonded billets. Because it allows contoured shapes to be formed, material utilization is

  18. Sintering Behavior and Microstructure Formation of Titanium Aluminide Alloys Processed by Metal Injection Molding

    Science.gov (United States)

    Soyama, Juliano; Oehring, Michael; Ebel, Thomas; Kainer, Karl Ulrich; Pyczak, Florian

    2017-04-01

    The sintering behavior of metal injection molded titanium aluminide alloys, their microstructure formation and resulting mechanical properties were investigated. As reference material, the alloy Ti-45Al-5Nb-0.2B-0.2C at.% (TNB-V5) was selected. Additionally, two other variations with Mo and Mo + Si additions were prepared: Ti-45Al-3Nb-1Mo-0.2B-0.2C at.% and Ti-45Al-3Nb-1Mo-1Si-0.2B-0.2C at.%. The results indicate that the optimum sintering temperature was slightly above the solidus line. With proper sintering parameters, very low porosities (<0.5%) and fine microstructures with a colony size <85 µm could be achieved. Considering the sintering temperatures applied, the phase transformations upon cooling could be described as L + β → β → α + β → α → α + γ → α2 + γ, which was in agreement with the microstructures observed. The effects of Mo and Si were opposite regarding the sintering behavior. Mo addition led to an increase in the optimum sintering temperature, whereas Si caused a significant decrease.

  19. Study of the sintering process and the formation of a (Th, U) O2 solid solution

    International Nuclear Information System (INIS)

    Tomasi, Roberto

    1979-01-01

    The effect of some variables in the (Th, U) O 2 sintering process and solid solution formation was studied. ThO 2 , U 3 O 8 and UO 2 powder were prepared. The ThO 2 powders were obtained by calcination of thorium at 500 and 750 deg C; the U 3 O 8 powders were derived from the calcination of ADU at 660 and 750 deg C; the UO 2 powder were prepared from ADU and from ATCU. The different characteristics of these materials were determined by measurements of surface area, by scanning electron microscopy, tap density tests, X-ray diffractometry and by measurements of the O/U ratios. The oxide mixtures were chosen in order to produce a final composition with 10 w/o of UO 2 . A mixture of thorium oxalate and ADU was also prepared by calcining these salts in air at 700 deg C, in order to obtain certain amount of solid solution prior to sintering. The sintering operations were developed in an argon atmosphere at temperatures between 1400 and 1700 deg C, during interval varying from 1 to 4 hours. The effect of the mixture characteristics on the sintering process and solid solution formation were studied considering the results of densification, microstructure development and X-ray diffractometry. The ThO 2 powder characteristics have a main effect on the mixtures compactability and sinterability, the higher calcining temperatures increasing the green density, but decreasing the final density of the sintered pellets. In the sintering of mixtures containing U 3 O 3 , this oxide is reduced to UO 2 and it is possible to obtain pellets with density and microstructures similar to those produced from mixtures containing UO 2 . But if oxygen in excess is present during sintering, the process is affected, occurring exaggerated grain growth. The densification results were related to the Coble's kinetics equation for second stage of sintering, valid for bulk diffusion, grain boundary acting as vacancy sinks. The sintering activation energy is independent from the powder starting

  20. Low-temperature sintering and phase changes in chromite interconnect materials

    Energy Technology Data Exchange (ETDEWEB)

    Chick, L.A.; Armstrong, T.R.; McCready, D.E.; Coffey, G.W.; Maupin, G.D.; Bates, J.L.

    1993-05-01

    Sintering shrinkage curves and phase changes were compared for calcium-substituted lanthanum chromates with either slight Asite enrichment or depletion. Of the former type, La{sub 0.7}Ca{sub 0.31},CrO{sub 3} that was synthesized by the glycine-nitrate method sintered to high density in air at 1250C, exhibiting two rapid-shrinkage events. Weight loss measurements corroborated XRD data showing that, prior to densiflcation, over half the Ca resided in non-perovskite phases, including CaCrO{sub 4}. In the La{sub 0.7}Ca{sub 0.31}CrO{sub 3}, densification was closely associated with re-dissolution of the Ca into the perovskite.

  1. Low-temperature sintering and phase changes in chromite interconnect materials

    Energy Technology Data Exchange (ETDEWEB)

    Chick, L.A.; Armstrong, T.R.; McCready, D.E.; Coffey, G.W.; Maupin, G.D.; Bates, J.L.

    1993-05-01

    Sintering shrinkage curves and phase changes were compared for calcium-substituted lanthanum chromates with either slight Asite enrichment or depletion. Of the former type, La[sub 0.7]Ca[sub 0.31],CrO[sub 3] that was synthesized by the glycine-nitrate method sintered to high density in air at 1250C, exhibiting two rapid-shrinkage events. Weight loss measurements corroborated XRD data showing that, prior to densiflcation, over half the Ca resided in non-perovskite phases, including CaCrO[sub 4]. In the La[sub 0.7]Ca[sub 0.31]CrO[sub 3], densification was closely associated with re-dissolution of the Ca into the perovskite.

  2. Consolidation & Factors Influencing Sintering Process in Polymer Powder Based Additive Manufacturing

    Science.gov (United States)

    Sagar, M. B.; Elangovan, K.

    2017-08-01

    Additive Manufacturing (AM) is two decade old technology; where parts are build layer manufacturing method directly from a CAD template. Over the years, AM techniques changes the future way of part fabrication with enhanced intricacy and custom-made features are aimed. Commercially polymers, metals, ceramic and metal-polymer composites are in practice where polymers enhanced the expectations in AM and are considered as a kind of next industrial revolution. Growing trend in polymer application motivated to study their feasibility and properties. Laser sintering, Heat sintering and Inhibition sintering are the most successful AM techniques for polymers but having least application. The presentation gives up selective sintering of powder polymers and listed commercially available polymer materials. Important significant factors for effective processing and analytical approaches to access them are discussed.

  3. Microstructure and phase analysis of Zirconia-ODS (Oxide Dispersion Strengthen) alloy sintered by APS with milling time variation

    Science.gov (United States)

    Sugeng, Bambang; Bandriyana, B.; Sugeng, Bambang; Salam, Rohmad; Sumariyo; Sujatno, Agus; Dimyati, Arbi

    2018-03-01

    Investigation on the relationship between the process conditions of milling time and the microstructure on the synthesis of the zirconia-ODS steel alloy has been performed. The elemental composition of the alloy was determined on 20 wt% Cr and zirconia dispersoid of 0.50 wt%. The synthesis was carried out by powder metallurgy method with milling time of 3, 5 and 7 hours, static compression of 20 Ton and sintering process for 4 minutes using the APS (Arc Plasma Sintering) equipment. SEM-EDX and XRD test was carried out to characterize the phase and morphology of the alloy and the effect to the mechanical properties was evaluated by the Vickers Hardness testing. The synthesis produced sample of ODS steel with good dense and very little porous with the Fe-Cr phase that clearly observed in the XRD peak pattern. In addition milling time increased the homogeneously of Fe-Cr phase formulation, enhanced the grain refinement of the structure and increase the hardness of the alloy.

  4. Design of Low-Melting Point Compositions Suitable for Transient Liquid Phase Sintering of PM Steels Based on a Thermodynamic and Kinetic Study

    Science.gov (United States)

    Bernardo, Elena; de Oro, Raquel; Campos, Mónica; Torralba, José Manuel

    2014-04-01

    The possibility of tailoring the characteristics of a liquid metal is an important asset in a wide number of processing techniques. For most of these processes, the nature and degree of the interaction between liquid and solid phases are usually a focus of interest since they determine liquid properties such as wettability and infiltration capacity. Particularly, within the powder metallurgy (PM) technology, it is considered one of the key aspects to obtain high performance steels through liquid phase sintering. In this work, it is proved how thermodynamic and kinetics software is a powerful tool to study the liquid/solid interactions. The assessment of different liquid phase promoters for transient liquid phase sintering is addressed through the use of ThermoCalc and DICTRA calculations. Besides melting temperatures, particular attention is given to the solubility phenomena between the phases and the kinetics of these processes. Experimental validation of thermodynamic results is carried out by wetting and infiltration experiments at high temperatures. Compositions presenting different liquid/solid solubility are evaluated and directly correlated to the behavior of the liquid during a real sintering process. Therefore, this work opens the possibility to optimize liquid phase compositions and predict the liquid behavior from the design step, which is considered of high technological value for the PM industry.

  5. Preparation of Cu2Sn3S7 Thin-Film Using a Three-Step Bake-Sulfurization-Sintering Process and Film Characterization

    Directory of Open Access Journals (Sweden)

    Tai-Hsiang Lui

    2015-01-01

    Full Text Available Cu2Sn3S7 (CTS can be used as the light absorbing layer for thin-film solar cells due to its good optical properties. In this research, the powder, baking, sulfur, and sintering (PBSS process was used instead of vacuum sputtering or electrochemical preparation to form CTS. During sintering, Cu and Sn powders mixed in stoichiometric ratio were coated to form the thin-film precursor. It was sulfurized in a sulfur atmosphere to form CTS. The CTS film metallurgy mechanism was investigated. After sintering at 500°C, the thin film formed the Cu2Sn3S7 phase and no impurity phase, improving its energy band gap. The interface of CTS film is continuous and the formation of intermetallic compound layer can increase the carrier concentration and mobility. Therefore, PBSS process prepared CTS can potentially be used as a solar cell absorption layer.

  6. Al2O3-TiC Composite Prepared by Spark Plasma Sintering Process: Evaluation of Mechanical and Tribological Properties

    Science.gov (United States)

    Kumar, Rohit; Chaubey, A. K.; Bathula, Sivaiah; Prashanth, K. G.; Dhar, Ajay

    2018-03-01

    Al2O3-10TiC composites were synthesized by spark plasma sintering (SPS) process. Microstructural and mechanical properties of the composite reveal homogeneous distribution of the fine TiC particles in the matrix. The samples were produced with different sintering temperature, and it shows that the hardness and density gradually increases with increasing sintering temperature. Abrasion wear test result reveals that the composite sintered at 1500 °C shows high abrasion resistance (wt. loss 0.016 g) and the lowest abrasion resistance was observed for the composite sample sintered at 1100 °C (wt. loss 1.459 g). The profilometry surface roughness study shows that sample sintered at 1100 °C shows maximum roughness ( R a = 6.53 µm) compared to the sample sintered at 1500 °C ( R a = 0.66 µm) corroborating the abrasion wear test results.

  7. Al2O3-TiC Composite Prepared by Spark Plasma Sintering Process: Evaluation of Mechanical and Tribological Properties

    Science.gov (United States)

    Kumar, Rohit; Chaubey, A. K.; Bathula, Sivaiah; Prashanth, K. G.; Dhar, Ajay

    2018-01-01

    Al2O3-10TiC composites were synthesized by spark plasma sintering (SPS) process. Microstructural and mechanical properties of the composite reveal homogeneous distribution of the fine TiC particles in the matrix. The samples were produced with different sintering temperature, and it shows that the hardness and density gradually increases with increasing sintering temperature. Abrasion wear test result reveals that the composite sintered at 1500 °C shows high abrasion resistance (wt. loss 0.016 g) and the lowest abrasion resistance was observed for the composite sample sintered at 1100 °C (wt. loss 1.459 g). The profilometry surface roughness study shows that sample sintered at 1100 °C shows maximum roughness (R a = 6.53 µm) compared to the sample sintered at 1500 °C (R a = 0.66 µm) corroborating the abrasion wear test results.

  8. Self-Growth of Centimeter-Scale Single Crystals by Normal Sintering Process in Modified Potassium Sodium Niobate Ceramics

    Science.gov (United States)

    Ahn, Cheol-Woo; Lee, Ho-Yong; Han, Guifang; Zhang, Shujun; Choi, Si-Young; Choi, Jong-Jin; Kim, Jong-Woo; Yoon, Woon-Ha; Choi, Joon-Hwan; Park, Dong-Soo; Hahn, Byung-Dong; Ryu, Jungho

    2015-01-01

    In this manuscript, an interesting phenomenon is reported. That is the self-growth of single crystals in Pb-free piezoelectric ceramics. These crystals are several centimeters in size. They are grown without any seed addition through a normal sintering process in modified potassium sodium niobate ceramics. It has been achieved by the composition designed to compensate the Na+ loss which occurs during the liquid phase sintering. The composition of the crystals is (K0.4925Na0.4925−xBa0.015+x/2)Nb0.995+xO3 [x is determined by the Na+ loss, due to Na2O volatilization]. These crystals have high piezoelectric voltage coefficients (g33, 131 10−3Vm/N), indicating that they are good candidates for piezoelectric sensors and energy harvesting devices. We hope that this report can offer the opportunity for many researchers to have an interest in these crystals. PMID:26631973

  9. In-situ anatase phase stabilization of titania photocatalyst by sintering in presence of Zr4+ organic salts

    Science.gov (United States)

    Strini, Alberto; Sanson, Alessandra; Mercadelli, Elisa; Bendoni, Riccardo; Marelli, Marcello; Dal Santo, Vladimiro; Schiavi, Luca

    2015-08-01

    The direct in-situ stabilization of an anatase-based nanocrystalline photocatalyst (Degussa P25) was obtained by sintering the catalyst powder in presence of Zr4+ organic salts. This approach allows the doping of an already-formed nanocrystalline photocatalyst instead of introducing the dopant in the crystal lattice during the catalyst synthesis. The procedure was demonstrated by the production of thick ceramic layers using the screen printing technique. This new method allows to easily stabilize the anatase phase 200 °C higher than the undoped P25 maintaining the same photocatalytic activity. The process was studied using specifically formulated screen-printing inks added with Zr4+ organic salt at 1% and 2% Zr/Ti molar ratio. The anatase phase stability was investigated in the 500-900 °C temperature range analysing the resulting catalysts with XRD, TEM and (S)TEM-EDS. The catalytic activity of the screen-printed layers was assessed by measuring the degradation of toluene in air at ambient concentration (500 nmol m-3) and low UV-A irradiance (180 μW cm-2). The described in-situ stabilization method could be potentially applied to any deposition process involving already formed anatase photocatalyst, allowing higher sintering temperature and then an improved mechanical stability of the active layers without photocatalytic activity degradation.

  10. Multi-phase EBSD mapping and local texture analysis in NdFeB sintered magnets

    Energy Technology Data Exchange (ETDEWEB)

    Woodcock, T.G., E-mail: t.woodcock@ifw-dresden.de [IFW Dresden, Institute for Metallic Materials, PO Box 270116, 01171 Dresden (Germany); Gutfleisch, O. [IFW Dresden, Institute for Metallic Materials, PO Box 270116, 01171 Dresden (Germany)

    2011-02-15

    A combination of electron backscatter diffraction and energy-dispersive X-ray spectroscopy has been used to identify the crystal structure and composition of all the phases present in commercially available NdFeB sintered magnets and to map their spatial distribution. The Nd{sub 2}Fe{sub 14}B and NdO grains were shown to have low defect densities. The fcc Nd-rich and Nd{sub 2}O{sub 3} grains had intra-grain misorientation angles of up to 14{sup o}, which was shown to be due to defects. Large numbers ({approx}100) of data points for each phase were used to study texture in the NdO, Nd{sub 2}O{sub 3} and Nd{sub 2}Fe{sub 14}B phases. The Nd{sub 2}Fe{sub 14}B grains exhibited a <0 0 1> fibre texture. The Nd oxide phases showed no strong texture, which implied that no strongly preferred orientation relationships between those phases and Nd{sub 2}Fe{sub 14}B exist. The result was shown to be valid for optimally annealed samples exhibiting high coercivity and as-sintered samples exhibiting low coercivity.

  11. New materials through a variety of sintering methods

    Science.gov (United States)

    Jaworska, L.; Cyboroń, J.; Cygan, S.; Laszkiewicz-Łukasik, J.; Podsiadło, M.; Novak, P.; Holovenko, Y.

    2018-03-01

    New sintering techniques make it possible to obtain materials with special properties that are impossible to obtain by conventional sintering techniques. This issue is especially important for ceramic materials for application under extreme conditions. Following the tendency to limit critical materials in manufacturing processes, the use of W, Si, B, Co, Cr should be limited, also. One of the cheapest and widely available materials is aluminum oxide, which shows differences in phase composition, grain size, hardness, strain and fracture toughness of the same type of powder, sintered via various methods. In this paper the alumina was sintered using the conventional free sintering process, microwave sintering, Spark Plasma Sintering (SPS), high pressure-high temperature method (HP-HT) and High Pressure Spark Plasma Sintering (HP SPS). Phase composition analysis, by X-ray diffraction of the alumina materials sintered using various methods, was carried out. For the conventional sintering method, compacts are composed of α-Al2O3 and θ-Al2O3. For compacts sintered using SPS, microwave and HP-HT methods, χ-Al2O3 and γ-Al2O3 phases were additionally present. Mechanical and physical properties of the obtained materials were compared between the methods of sintering. On the basis of images from scanning electron microscope quantitative analysis was performed to determine the degree of grain growth of alumina after sintering.

  12. Study of effect of sintering time on the 2223 phase growth Bi-Pb-Sr-Ca-Cu-O superconductor by Rietveld method

    International Nuclear Information System (INIS)

    Parikin; Prasuad, W; Gunawan

    1996-01-01

    It has been reported that the sintering time is as important for the preparation of superconductor as the sintering temperature and method. This paper reports on the finding of the optimum sintering time in the preparation of the 2223 phase bismuth (Bi) superconductor. The samples were synthesized with nominal composition 1.84 : 0.34 : 1.91 : 2.03 : 3.06 from raw materials by solid state reaction and sintered at 860 o C for five days. The resintering were done three times, i.e. 24, 48 and 96 hours. The Rietveld analysis shows that the 2223 phase grows continuously as a function of the sintering time. The highest percentage of the 2223 phase (80.64%) were obtained at 96 hours sintering time. The result suggests that the 2223 phase can be obtained effectively by sintering with sufficiently long time

  13. Fabrication of Nanostructured Medical-Grade Stainless Steel by Mechanical Alloying and Subsequent Liquid-Phase Sintering

    Science.gov (United States)

    Salahinejad, Erfan; Hadianfard, Mohammad J.; Ghaffari, Mohammad; Mashhadi, Shirazeh Bagheri; Okyay, Ali K.

    2012-08-01

    This article focuses on the microstructure of medical-grade P558 (ASTM F2581) stainless steel produced by mechanical alloying and liquid-phase sintering. Rietveld X-ray diffraction and transmission electron microscopy reflect that the mechanically alloyed stainless steel powder is a nanocrystal dispersed amorphous matrix composite. Mn-11.5 wt pct Si eutectic alloy as additive improves densification of the synthesized P558 alloy via liquid-phase sintering mechanism. X-ray mapping shows that after sintering at 1323 K (1050 °C) for 1 hour, a uniform distribution of dissolved Mn and Si is achieved. Moreover, the development of a nanostructured, fully austenitic stainless steel after sintering at the same temperature is realized by X-ray diffraction and transmission electron microscopy.

  14. Hydrogen Decrepitation Press-Less Process Recycling of NdFeB sintered magnets

    DEFF Research Database (Denmark)

    Xia, Manlong; Abrahamsen, Asger Bech; Bahl, Christian

    2017-01-01

    A Hydrogen Decrepitation Press-Less Process (HD-PLP) recycling method for recycling of anisotropic NdFeB magnets is demonstrated. The method combines hydrogen decrepitation (HD) disintegration of the initial magnet, powder sieving and the Press-Less Process (PLP), where hydride powder is sintered...

  15. Investigation of microstructural evolution and electrical properties for Ni-Sn transient liquid-phase sintering bonding

    Science.gov (United States)

    Feng, Hong-Liang; Huang, Ji-Hua; Yang, Jian; Zhou, Shao-Kun; Zhang, Rong; Wang, Yue; Chen, Shu-Hai

    2017-11-01

    Ni/Ni-Sn/Ni sandwiched simulated package structures were successfully bonded under low temperature and low pressure by Ni-Sn transient liquid-phase sintering bonding. The results show that, after isothermally holding for 240 min at 300 °C and 180 min at 340 °C, Sn was completely transformed into Ni3Sn4 intermetallic compounds. When the Ni3Sn4 phases around Ni particles were pressed together, the porosity of the bonding layer increased, which obviously differed from the normal sintering densification process. With further analysis of this phenomenon, it was found that large volume shrinkage (14.94% at 340 °C) occurred when Ni reacted with Sn to form Ni3Sn4, which caused void formation. A mechanistic model of the microstructural evolution in the bonding layer was proposed. Meanwhile, the resistivity of the bonding layer was measured and analyzed by using the four-probe method; the microstructural evolution was well reflected by the resistivity of the bonding layer. The relationship between the resistivity and microstructure was also discussed in detail.[Figure not available: see fulltext.

  16. Effect of liquid-phase sintering as a means of quality enhancement of pseudoalloys based on copper

    Science.gov (United States)

    Gordeev, Yu I.; Abkaryan, A. K.; Zeer, G. M.; Lepeshev, A. A.; Zelenkova, E. G.

    2017-01-01

    The effects of the liquid phase of a metal binder on the microstructure and properties of self-diffusion gradient composite (Cu - Al - ZnO) were investigated. For the compositions considered, it was revealed that at the temperature of about 550 °C, a liquid phase binder forms from nanoparticles Cu - Al. Applying a proper amount of a (Cu - Al) binder appeared to be beneficial for fabricating gradient composites with the desired self-diffusion process. It is also favorable for mass transfer of additives nanoparticles into the volume of a matrix during sintering and for the desired fine microstructure and mechanical properties. For the experimental conditions considered in this study, the best mechanical properties can be obtained when 6 mass % (Cu - Al) of ligature were used, which gave hardness HB at 120, electroerosion wear - 0.092 • 10-6 g / cycle, resistivity - 0.025 mcOm.

  17. Development of a sintering process for recycling oil shale fly ash and municipal solid waste incineration bottom ash into glass ceramic composite

    International Nuclear Information System (INIS)

    Zhang, Zhikun; Zhang, Lei; Li, Aimin

    2015-01-01

    Highlights: • Glass ceramic composite is prepared from oil shale fly ash and MSWI bottom ash. • A novel method for the production of glass ceramic composite is presented. • It provides simple route and lower energy consumption in terms of recycling waste. • The vitrified slag can promote the sintering densification process of glass ceramic. • The performances of products decrease with the increase of oil shale fly ash content. - Abstract: Oil shale fly ash and municipal solid waste incineration bottom ash are industrial and municipal by-products that require further treatment before disposal to avoid polluting the environment. In the study, they were mixed and vitrified into the slag by the melt-quench process. The obtained vitrified slag was then mixed with various percentages of oil shale fly ash and converted into glass ceramic composites by the subsequent sintering process. Differential thermal analysis was used to study the thermal characteristics and determine the sintering temperatures. X-ray diffraction analysis was used to analyze the crystalline phase compositions. Sintering shrinkage, weight loss on ignition, density and compressive strength were tested to determine the optimum preparation condition and study the co-sintering mechanism of vitrified amorphous slag and oil shale fly ash. The results showed the product performances increased with the increase of sintering temperatures and the proportion of vitrified slag to oil shale fly ash. Glass ceramic composite (vitrified slag content of 80%, oil shale fly ash content of 20%, sintering temperature of 1000 °C and sintering time of 2 h) showed the properties of density of 1.92 ± 0.05 g/cm 3 , weight loss on ignition of 6.14 ± 0.18%, sintering shrinkage of 22.06 ± 0.6% and compressive strength of 67 ± 14 MPa. The results indicated that it was a comparable waste-based material compared to previous researches. In particular, the energy consumption in the production process was reduced

  18. Computer simulation of low-temperature composites sintering processes for additive technologies

    Science.gov (United States)

    Tovpinets, A. O.; Leytsin, V. N.; Dmitrieva, M. A.

    2017-12-01

    This is impact research of mixture raw components characteristics on the low-temperature composites structure formation during the sintering process. The obtained results showed that the structure determination of initial compacts obtained after thermal destruction of the polymer binder lets quantify the concentrations of main components and the refractory crystalline product of thermal destruction. Accounting for the distribution of thermal destruction refractory product allows us to refine the forecast of thermal stresses in the matrix of sintered composite. The presented results can be considered as a basis for optimization of initial compositions of multilayer low-temperature composites obtained by additive technologies.

  19. Reaction sintering process of tyranno SA/SiC composites and their characterization

    International Nuclear Information System (INIS)

    Lee, S.P.; Yoon, H.K.; Park, J.S.; Katoh, Y.; Kohyama, A.; Kim, D.H.; Lee, J.K.

    2002-01-01

    This paper deals with the efficiency of fiber preform preparation route for the fabrication of reaction sintering (RS) SiC f /SiC composites and their characterization, including density, microstructure and mechanical property. The applicability of carbon interfacial layer has been investigated in the RS process. The fiber preform was prepared by the consecutive slurry infiltration process, which associated with the combination of constant gas impregnation pressure and different magnitudes of cold pressure. The consecutive slurry infiltration process used for the preparation of fiber preform can be regarded as a promising technique for high density RS-SiC f /SiC composites, even if their mechanical properties depend on the magnitudes of cold pressure used. RS-SiC f /SiC composites entirely showed the morphology of near stoichiometric SiC phase in the intra-fiber bundle matrix, compared to that in the inter-fiber bundle matrix. The carbon interfacial layer was insufficient for the pseudo-ductile failure of RS-SiC f /SiC composites, even if some amount of fiber pull-out and interfacial delamination was observed in the tensile surface of bending test sample

  20. Densification and volumetric change during supersolidus liquid phase sintering of prealloyed brass Cu28Zn powder: Modeling and optimization

    Directory of Open Access Journals (Sweden)

    Mohammadzadeh A.

    2014-01-01

    Full Text Available An investigation has been made to use response surface methodology and central composite rotatable design for modeling and optimizing the effect of sintering variables on densification of prealloyed Cu28Zn brass powder during supersolidus liquid phase sintering. The mathematical equations were derived to predict sintered density, densification parameter, porosity percentage and volumetric change of samples using second order regression analysis. As well as the adequacy of models was evaluated by analysis of variance technique at 95% confidence level. Finally, the influence and interaction of sintering variables, on achieving any desired properties was demonstrated graphically in contour and three dimensional plots. In order to better analyze the samples, microstructure evaluation was carried out. It was concluded that response surface methodology based on central composite rotatable design, is an economical way to obtain arbitrary information with performing the fewest number of experiments in a short period of time.

  1. Reaction behavior of SO2 in the sintering process with flue gas recirculation.

    Science.gov (United States)

    Yu, Zhi-Yuan; Fan, Xiao-Hui; Gan, Min; Chen, Xu-Ling; Chen, Qiang; Huang, Yun-Song

    2016-07-01

    The primary goal of this paper is to reveal the reaction behavior of SO2 in the sinter zone, combustion zone, drying-preheating zone, and over-wet zone during flue gas recirculation (FGR) technique. The results showed that SO2 retention in the sinter zone was associated with free-CaO in the form of CaSO3/CaSO4, and the SO2 adsorption reached a maximum under 900ºC. SO2 in the flue gas came almost from the combustion zone. One reaction behavior was the oxidation of sulfur in the sintering mix when the temperature was between 800 and 1000ºC; the other behavior was the decomposition of sulfite/sulfate when the temperature was over 1000ºC. However, the SO2 adsorption in the sintering bed mainly occurred in the drying-preheating zone, adsorbed by CaCO3, Ca(OH)2, and CaO. When the SO2 adsorption reaction in the drying-preheating zone reached equilibrium, the excess SO2 gas continued to migrate to the over-wet zone and was then absorbed by Ca(OH)2 and H2O. The emission rising point of SO2 moved forward in combustion zone, and the concentration of SO2 emissions significantly increased in the case of flue gas recirculation (FGR) technique. Aiming for the reuse of the sensible heat and a reduction in exhaust gas emission, the FGR technique is proposed in the iron ore sintering process. When using the FGR technique, SO2 emission in exhaust gas gets changed. In practice, the application of the FGR technique in a sinter plant should be cooperative with the flue gas desulfurization (FGD) technique. Thus, it is necessary to study the influence of the FGR technique on SO2 emissions because it will directly influence the demand and design of the FGD system.

  2. PLZT (9/65/35) sintering and characterization through the Pechini and partial oxalate processes

    International Nuclear Information System (INIS)

    Cerqueira, Marinalva; Nasar, Ricardo Silveira; Leite, Edson Roberto; Longo, Elson; Varela, Jode Arana

    1996-01-01

    Zr Ti O 4 obtained by the Pechini method was used as precursor for obtaining PLZT. An aqueous solution of oxalic acid was prepared with ZT, Pb (NO 3 ) 2 and La 2 O 3 particles. After the Pb C 2 O 4 and La 2 O 3 precipitation on ZT, the material was calcined and x-ray diffraction (XRD) showed the cubic phase of PLZT. This material was sintered in two steps and density about 8.0 g/cm 3 were obtained. After second sintering XRD showed the occurrence of tetragonal and rhombohedral phases. This was caused by an estequiometric deviation, however the material showed a high optical transparency. (author)

  3. Role of sintering time, crystalline phases and symmetry in the piezoelectric properties of lead-free KNN-modified ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Rubio-Marcos, F., E-mail: frmarcos@icv.csic.es [Electroceramic Department, Instituto de Ceramica y Vidrio, CSIC, Kelsen 5, 28049 Madrid (Spain); Marchet, P.; Merle-Mejean, T. [SPCTS, UMR 6638 CNRS, Universite de Limoges, 123, Av. A. Thomas, 87060 Limoges (France); Fernandez, J.F. [Electroceramic Department, Instituto de Ceramica y Vidrio, CSIC, Kelsen 5, 28049 Madrid (Spain)

    2010-09-01

    Lead-free KNN-modified piezoceramics of the system (Li,Na,K)(Nb,Ta,Sb)O{sub 3} were prepared by conventional solid-state sintering. The X-ray diffraction patterns revealed a perovskite phase, together with some minor secondary phase, which was assigned to K{sub 3}LiNb{sub 6}O{sub 17}, tetragonal tungsten-bronze (TTB). A structural evolution toward a pure tetragonal structure with the increasing sintering time was observed, associated with the decrease of TTB phase. A correlation between higher tetragonality and higher piezoelectric response was clearly evidenced. Contrary to the case of the LiTaO{sub 3} modified KNN, very large abnormal grains with TTB structure were not detected. As a consequence, the simultaneous modification by tantalum and antimony seems to induce during sintering a different behaviour from the one of LiTaO{sub 3} modified KNN.

  4. Application of ultrasonic pulse velocity technique and image analysis in monitoring of the sintering process

    Directory of Open Access Journals (Sweden)

    Terzić A.

    2011-01-01

    Full Text Available Concrete which undergoes a thermal treatment before and during its life-service can be applied in plants operating at high temperature and as thermal insulation. Sintering occurs within a concrete structure in such conditions. Progression of sintering process can be monitored by the change of the porosity parameters determined with a nondestructive test method - ultrasonic pulse velocity and computer program for image analysis. The experiment has been performed on the samples of corundum and bauxite concrete composites. The apparent porosity of the samples thermally treated at 110, 800, 1000, 1300 and 1500ºC was primary investigated with a standard laboratory procedure. Sintering parameters were calculated from the creep testing. The loss of strength and material degradation occurred in concrete when it was subjected to the increased temperature and a compressive load. Mechanical properties indicate and monitor changes within microstructure. The level of surface deterioration after the thermal treatment was determined using Image Pro Plus program. Mechanical strength was estimated using ultrasonic pulse velocity testing. Nondestructive ultrasonic measurement was used as a qualitative description of the porosity change in specimens which is the result of the sintering process. The ultrasonic pulse velocity technique and image analysis proved to be reliable methods for monitoring of microstructural change during the thermal treatment and service life of refractory concrete.

  5. Development of novel tricalcium silicate-based endodontic cements with sintered radiopacifier phase.

    Science.gov (United States)

    Xuereb, M; Sorrentino, F; Damidot, D; Camilleri, Josette

    2016-06-01

    All implants, bone and endodontic cements need to be sufficiently radiopaque to be able to be distinguished from neighbouring anatomical structures post-operatively. For this purpose, radiopacifying materials are added to the cements to render them sufficiently radiopaque. Bismuth oxide has been quite a popular choice of radiopacifier in endodontic materials. It has been shown to cause dental discoloration. The aim of this study was to develop, characterize and assess the properties of tricalcium silicate cement with alternative radiopacifiers, which are either inter-ground or sintered to the tricalcium silicate cement. Custom-made endodontic cements based on tricalcium silicate and 20 % barium, calcium or strontium zirconate, which were either inter-ground or sintered at high temperatures, were produced. The set materials stored for 28 days in Hank's balanced salt solution were characterized by scanning electron microscopy and X-ray diffraction analysis. Assessment of pH, leaching, interaction with physiological solution, radiopacity, setting time, compressive strength and material porosity were investigated. Mineral trioxide aggregate (MTA) Angelus was used as control. Addition of radiopacifying materials improved the radiopacity of the material. The sintered cements exhibited the formation of calcium zirconate together with the respective radiopacifier phase. All materials produced calcium hydroxide on hydration, which interacted with tissue fluids forming hydroxyapatite on the material surface. The physical properties of the tricalcium silicate-based cements were comparable to MTA Angelus. A novel method of producing radiopaque tricalcium silicate-based cements was demonstrated. The novel materials exhibited properties, which were either comparable or else improved over the control. The novel materials can be used to replace MTA for root-end filling, perforation repair and other clinical applications where MTA is indicated.

  6. Development of a Sinter/HIP process for the superalloy Udimet 700 with investigations of the influence of the sinteratmosphere

    International Nuclear Information System (INIS)

    Wenning, L.

    1991-03-01

    The oxidation free treatment of reactive metalpowders like the nickel base alloy Udimet 700 demands sufficient oxygen free sinteratmospheres in nowadays sinter-HIP plants are not reachable. The reported work deals with the development of a sinter-HIP process which enables a sufficient low partial pressure of oxygen by scavenging the Udimet 700 powder packings with argon during vacuum sintering. By this the sinter hindering oxidation is avoided. Intensive investigations of the sinteratmosphere with a mass spectrometer and a zirconium oxide probe verify the reduction of the oxygen content of the residual gas atmosphere reached with different processes. In a second part the applicability of the scavenging gas process during the capsule free sinter-HIP treatment of metall injection moulded (MIM) samples is shown. (orig.) [de

  7. End Uses Mechanical Properties Settled By The Modified Sintering Conditions Of The Metal Injection Molding Process

    International Nuclear Information System (INIS)

    Marray, Tarek; Jaccquet, Philippe; Moinard-Checot, Delphine; Fabre, Agnes; Barrallier, Laurent

    2011-01-01

    Most common mechanical applications require parts with specific properties as hard faced features. It is well known that treating parts under suitable atmospheres may improve hardness and strength yield of steels. Heat treatment process and more particularly thermo-chemical diffusion processes (such as carburizing or its variation: carbonitriding) can be performed to reach the industrial hardness profile requirements. In this work, a low-alloyed steel feedstock based on water soluble binder system is submitted to the MIM process steps (including injection molding, debinding and sintering). As-sintered parts are then treated under a low pressure carbonitriding treatment. This contribution focuses on preliminary results such as microstructural analyses and mechanical properties which are established at each stage of the process to determine and monitor changes.

  8. Gasification Reaction Characteristics between Biochar and CO2 as well as the Influence on Sintering Process

    Directory of Open Access Journals (Sweden)

    Min Gan

    2017-01-01

    Full Text Available For achieving green production of iron ore sintering, it is significant to substitute biochar, which is a clean and renewable energy, for fossil fuels. In this paper, the gasification reaction between CO2 and biochar was investigated. The results showed the initial temperature and the final temperature of the gasification reaction between biochar and CO2 were lower, while the maximum weight loss rate and the biggest heat absorption value were much higher than those of coke breeze, which indicated gasification reaction between the biochar and CO2 occurred rapidly at lower temperature. The gasification activation energy of biochar was 131.10 kJ/mol, which was lower than that of the coke breeze by 56.26 kJ/mol. Therefore, biochar had a higher reactivity and easily reacted with CO2 to generate CO. As a result, when biochar replaced coke powder at equal heat condition in sintering process, the combustion efficiency of fuel decreased and was disadvantage to the mineralization of iron ores at high temperature. With the increase of substitute proportion, the sinter yield, tumble strength, and productivity were decreased. The proportion of biochar replacing coke breeze should not be higher than 40%. By reducing the heat replacement ratio of biochar, the yield and quality of sinter got improved.

  9. In-situ anatase phase stabilization of titania photocatalyst by sintering in presence of Zr{sup 4+} organic salts

    Energy Technology Data Exchange (ETDEWEB)

    Strini, Alberto, E-mail: alberto.strini@itc.cnr.it [Istituto per le Tecnologie della Costruzione (ITC-CNR), via Lombardia, 49, I-20098 San Giuliano Milanese (MI) (Italy); Sanson, Alessandra; Mercadelli, Elisa [Istituto di Scienza e Tecnologia dei Materiali Ceramici (ISTEC-CNR), via Granarolo, 64, I-48018 Faenza (RA) (Italy); Bendoni, Riccardo [Istituto di Scienza e Tecnologia dei Materiali Ceramici (ISTEC-CNR), via Granarolo, 64, I-48018 Faenza (RA) (Italy); Dipartimento di Scienze e Tecnologie Chimiche e Centro NAST - Università di Roma Tor Vergata, via della Ricerca Scientifica, I-00133 Roma (Italy); Marelli, Marcello; Dal Santo, Vladimiro [CNR–Istituto di Scienze e Tecnologie Molecolari, via Golgi, 19, I-20133 Milano (Italy); Schiavi, Luca [Istituto per le Tecnologie della Costruzione (ITC-CNR), via Lombardia, 49, I-20098 San Giuliano Milanese (MI) (Italy)

    2015-08-30

    Graphical abstract: - Highlights: • Existing commercial (P25) anatase was stabilized in-situ with Zr(IV) doping. • Highly active catalytic layers were obtained by screen-printing. • Increased thermal stability was demonstrated up to 200 °C without activity loss. • Enhanced activity was obtained because of the Zr(IV) doping. • Zirconium diffusion was assessed by STEM-EDS analysis. - Abstract: The direct in-situ stabilization of an anatase-based nanocrystalline photocatalyst (Degussa P25) was obtained by sintering the catalyst powder in presence of Zr{sup 4+} organic salts. This approach allows the doping of an already-formed nanocrystalline photocatalyst instead of introducing the dopant in the crystal lattice during the catalyst synthesis. The procedure was demonstrated by the production of thick ceramic layers using the screen printing technique. This new method allows to easily stabilize the anatase phase 200 °C higher than the undoped P25 maintaining the same photocatalytic activity. The process was studied using specifically formulated screen-printing inks added with Zr{sup 4+} organic salt at 1% and 2% Zr/Ti molar ratio. The anatase phase stability was investigated in the 500–900 °C temperature range analysing the resulting catalysts with XRD, TEM and (S)TEM-EDS. The catalytic activity of the screen-printed layers was assessed by measuring the degradation of toluene in air at ambient concentration (500 nmol m{sup −3}) and low UV-A irradiance (180 μW cm{sup −2}). The described in-situ stabilization method could be potentially applied to any deposition process involving already formed anatase photocatalyst, allowing higher sintering temperature and then an improved mechanical stability of the active layers without photocatalytic activity degradation.

  10. In-situ anatase phase stabilization of titania photocatalyst by sintering in presence of Zr4+ organic salts

    International Nuclear Information System (INIS)

    Strini, Alberto; Sanson, Alessandra; Mercadelli, Elisa; Bendoni, Riccardo; Marelli, Marcello; Dal Santo, Vladimiro; Schiavi, Luca

    2015-01-01

    Graphical abstract: - Highlights: • Existing commercial (P25) anatase was stabilized in-situ with Zr(IV) doping. • Highly active catalytic layers were obtained by screen-printing. • Increased thermal stability was demonstrated up to 200 °C without activity loss. • Enhanced activity was obtained because of the Zr(IV) doping. • Zirconium diffusion was assessed by STEM-EDS analysis. - Abstract: The direct in-situ stabilization of an anatase-based nanocrystalline photocatalyst (Degussa P25) was obtained by sintering the catalyst powder in presence of Zr 4+ organic salts. This approach allows the doping of an already-formed nanocrystalline photocatalyst instead of introducing the dopant in the crystal lattice during the catalyst synthesis. The procedure was demonstrated by the production of thick ceramic layers using the screen printing technique. This new method allows to easily stabilize the anatase phase 200 °C higher than the undoped P25 maintaining the same photocatalytic activity. The process was studied using specifically formulated screen-printing inks added with Zr 4+ organic salt at 1% and 2% Zr/Ti molar ratio. The anatase phase stability was investigated in the 500–900 °C temperature range analysing the resulting catalysts with XRD, TEM and (S)TEM-EDS. The catalytic activity of the screen-printed layers was assessed by measuring the degradation of toluene in air at ambient concentration (500 nmol m −3 ) and low UV-A irradiance (180 μW cm −2 ). The described in-situ stabilization method could be potentially applied to any deposition process involving already formed anatase photocatalyst, allowing higher sintering temperature and then an improved mechanical stability of the active layers without photocatalytic activity degradation

  11. Laser Sintered Calcium Phosphate Bone

    National Research Council Canada - National Science Library

    Vail, Neil

    1999-01-01

    ...) technology selective laser sintering (SLS). BME has successfully implemented a pilot facility to fabricate calcium phosphate implants using anatomical data coupled with the selective laser sintering process...

  12. Sintering and densification; new techniques: sinter forging

    International Nuclear Information System (INIS)

    Winnubst, A.J.A.

    1998-01-01

    In this chapter pressure assisted sintering methods will be described. Attention will mainly be paid to sinter forging as a die-wall free uniaxial pressure sintering technique, where large creep strains are possible. Sinter forging is an effective tool to reduce sintering temperature and time and to obtain a nearly theoretically dense ceramic. In this way grain size in tetragonal zirconia ceramics can be reduced down to 100 nm. Another important phenomenon is the reduction of the number density and size of cracks and flaws resulting in higher strength and improved reliability, which is of utmost importance for engineering ceramics. The creep deformation during sinter forging causes a rearrangement of the grains resulting in a reduction of interatomic spaces between grains, while grain boundary (glassy) phases can be removed. The toughness and in some cases the wear resistance is enhanced after sinter forging as a result of the grain-boundary-morphology improvement. (orig.)

  13. Topography, microhardness, and precision of fit on ready-made zirconia abutment before/after sintering process.

    Science.gov (United States)

    Kanno, Taro; Milleding, Percy; Wennerberg, Ann

    2007-09-01

    Sintering porcelain on a ceramic abutment may change the microstructure and result in aging processes that influence the mechanical properties, internal strain, and the three-dimensional form of the abutment, thus causing a possible misfit between the abutment and the fixture. The aim was to investigate topography, microhardness, and precision of fit on yttrium-stabilized zirconia (Y-TZP) abutments before/after the sintering process. Ten Y-TZP abutment samples were ground to a shape used in the clinical situation and divided at random into two groups: before/after sintering. After the surface roughness was measured on all abutments, the abutments were connected to fixture replicas, embedded in resin, and cut in the longitudinal axis. Both sides of the cut samples were measured with respect to microhardness and minimum distance between fixture and abutment surface. t-Test, one-way analysis of variance, and Bonferroni multiple comparisons were used to investigate statistical significant differences. The surface roughness (S(a) and S(dr)) after sintering was significantly higher than before sintering. The total average values of microhardness after sintering were statistically lower than before sintering with a difference of 2%. The total distance between abutment/fixture before/after sintering demonstrated no statistically significant difference. Contact between abutment/fixture was most common at the top area of the fixture. A slight decrease of microhardness and contamination of porcelain particles immediately below the veneered part were found on the Y-TZP abutment after sintering. The sintering process did not affect the precision of fit.

  14. Theory-based design of sintered granular composites triples three-phase boundary in fuel cells

    Science.gov (United States)

    Amitai, Shahar; Bertei, Antonio; Blumenfeld, Raphael

    2017-11-01

    Solid-oxide fuel cells produce electric current from energy released by a spontaneous electrochemical reaction. The efficiency of these devices depends crucially on the microstructure of their electrodes and in particular on the three-phase boundary (TPB) length, along which the energy-producing reaction occurs. We present a systematic maximization of the TPB length as a function of four readily controllable microstructural parameters, for any given mean hydraulic radius, which is a conventional measure of the permeability to gas flow. We identify the maximizing parameters and show that the TPB length can be increased by a factor of over 300% compared to current common practices. We support this result by calculating the TPB of several numerically simulated structures. We also compare four models for a single intergranular contact in the sintered electrode and show that the model commonly used in the literature is oversimplified and unphysical. We then propose two alternatives.

  15. Synthesis of (Mg0.476Mn0.448Zn0.007)(Fe1.997Ti0.002)O4 powder and sintered ferrites by high energy ball-milling process

    International Nuclear Information System (INIS)

    Shi, X.L.; Yang, H.; Shao, G.Q.; Duan, X.L.; Xiong, Z.; Sun, P.; Wang, T.G.

    2007-01-01

    (Mg 0.476 Mn 0.448 Zn 0.007 )(Fe 1.997 Ti 0.002 )O 4 nanocrystalline powder prepared by high energy ball-milling process were consolidated by microwave and conventional sintering processes. Phases, microstructure and magnetic properties of the ferrites prepared by different processes were investigated. The (Mg 0.476 Mn 0.448 Zn 0.007 )(Fe 1.997 Ti 0.002 )O 4 nanocrystalline powder could be prepared by high energy ball-milling process of raw Fe 3 O 4 , MnO 2 , ZnO, TiO 2 and MgO powders. Prefired and microwave sintered ferrites could achieve the maximum density (4.86 g/cm -3 ), the average grain size (15 μm) was larger than that (10 μm) prepared by prefired and conventionally sintered ferrites with pure ferrite phase, and the saturation magnetization (66.77 emu/g) was lower than that of prefired and conventionally sintered ferrites (88.25 emu/g), the remanent magnetization (0.7367 emu/g) was higher than that of prefired and conventionally sintered ferrites (0.0731 emu/g). Although the microwave sintering process could increase the density of ferrites, the saturation magnetization of ferrites was decreased and the remanent magnetization of ferrites was also increased

  16. Microstructure and mechanical properties of NiCoCrAlYTa alloy processed by press and sintering route

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, J.C., E-mail: jpereira@uc.edu.ve [Instituto de Tecnología de Materiales, Universidad Politécnica de Valencia, Camino de vera s/n, Valencia, España (Spain); Centro de Investigaciones en Mecánica, Facultad de Ingeniería, Universidad de Carabobo (Venezuela, Bolivarian Republic of); Zambrano, J.C. [Centro de Investigaciones en Mecánica, Facultad de Ingeniería, Universidad de Carabobo (Venezuela, Bolivarian Republic of); Afonso, C.R.M. [Departamento de Engenharia de Materiais, Universidade Federal de São Carlos (UFSCar), São Carlos, SP (Brazil); Amigó, V. [Instituto de Tecnología de Materiales, Universidad Politécnica de Valencia, Camino de vera s/n, Valencia, España (Spain)

    2015-03-15

    Nickel-based superalloys such as NiCoCrAlY are widely used in high-temperature applications, such as gas turbine components in the energy and aerospace industries, due to their strength, high elastic modulus, and high-temperature oxidation resistance. However, the processing of these alloys is complex and costly, and the alloys are currently used as a bond coat in thermal barrier coatings. In this work, the effect of cold press and sintering processing parameters on the microstructure and mechanical properties of NiCoCrAlY alloy were studied using the powder metallurgy route as a new way to obtain NiCoCrAlYTa samples from a gas atomized prealloyed powder feedstock. High mechanical strength and adequate densification up to 98% were achieved. The most suitable compaction pressure and sintering temperature were determined for NiCoCrAlYTa alloy through microstructure characterization. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and energy dispersive spectroscopy microanalysis (EDS) were performed to confirm the expected γ-Ni matrix and β-NiAl phase distribution. Additionally, the results demonstrated the unexpected presence of carbides and Ni–Y-rich zones in the microstructure due to the powder metallurgy processing parameters used. Thus, microhardness, nanoindentation and uniaxial compression tests were conducted to correlate the microstructure of the alloy samples with their mechanical properties under the different studied conditions. The results show that the compaction pressure did not significantly affect the mechanical properties of the alloy samples. In this work, the compaction pressures of 400, 700 and 1000 MPa were used. The sintering temperature of 1200 °C for NiCoCrAlYTa alloy was preferred; above this temperature, the improvement in mechanical properties is not significant due to grain coarsening, whereas a lower temperature produces a decrease in mechanical properties due to high porosity and

  17. An In Situ Study of Sintering Behavior and Phase Transformation Kinetics in NiTi Using Neutron Diffraction

    Science.gov (United States)

    Chen, Gang; Liss, Klaus-Dieter; Cao, Peng

    2015-12-01

    The powder sintering behavior of NiTi from an elemental powder mixture of Ni/Ti has been investigated, using an in situ neutron diffraction technique. In the sintered alloys, the overall porosity ranges from 9.2 to 15.6 pct, while the open-to-overall porosity ratio is between 8.3 and 63.7 pct and largely depends on the sintering temperature. In comparison to powder compacts sintered at 1223 K and 1373 K (950 °C and 1100 °C), the powder compact sintered at 1153 K (880 °C) shows a much smaller pore size, a higher open-to-overall porosity ratio but smaller shrinkage and a lower density. Direct evidence of eutectoid transformation in the binary Ni-Ti system during furnace cooling to ca. 890 K (617 °C) is provided by in situ neutron diffraction. The intensities of the B2-NiTi reflections decrease during the holding stage at 1373 K (1100 °C), which has been elaborated as an extinction effect according to the dynamical theory of neutron diffraction, when distorted crystallites gradually recover to perfect crystals. The analysis on the first five reflections clarifies the non-existence of any order-disorder transition in the NiTi phase from B2-to-BCC structure.

  18. Thermal Conductivity and Microstructure of Copper Coated Graphite Composite by Spark Plasma Sintering Process

    Directory of Open Access Journals (Sweden)

    Park S.H.

    2017-06-01

    Full Text Available This study focuses on the fabrication of thermal management material for power electronics applications using graphite flake reinforced copper composites. The manufacturing route involved electroless plating of copper in the graphite flake and sintering process are optimized. The microstructures, interface, thermal properties, and relative density of graphite/Cu composites are investigated. The relative density of the composites shows 99.5% after sintering. Thermal conductivities and coefficients of thermal expansion of this composites were 400-480 Wm−1K−1 and 8 to 5 ppm k−1, respectively. Obtained graphite nanoplatelets-reinforced composites exhibit excellent thermo-physical properties to meet the heat dispersion and matching requirements of power electronic devices to the packaging materials.

  19. Effect of low-melting point phases on the microstructure and properties of spark plasma sintered and hot deformed Nd-Fe-B alloys

    Science.gov (United States)

    Zhang, Li; Wang, Meiyu; Yan, Xueliang; Lin, Ye; Shield, Jeffrey

    2018-04-01

    The effect of adding a low melting point Pr-Cu-Al alloy during spark plasma sintering of melt-spun Nd-Fe-B ribbons is investigated. Regions of coarse grains were reduced and overall grain refinement was observed after the addition of Pr68Cu25Al7, leading to an enhancement of coercivity from 12.7 kOe to 20.4 kOe. Hot deformation of the samples in the spark plasma sintering system resulted in the formation of platelet-like grains, producing crystallographic alignment and magnetic anisotropy. The hot deformation process improved the remanence and energy product but reduced the coercivity. The decrease of coercivity resulted from grain growth and aggregation of Pr and Nd elements at triple-junction phases.

  20. Pressless process in route of obtaining sintered Nd–Fe–B magnets

    Energy Technology Data Exchange (ETDEWEB)

    Popov, A.G, E-mail: apopov@imp.uran.ru [Institute of Metal Physics, UB of the RAS, 18, S. Kovalevskoy, Street, 620990 Ekaterinburg (Russian Federation); Golovnia, O.A. [Institute of Metal Physics, UB of the RAS, 18, S. Kovalevskoy, Street, 620990 Ekaterinburg (Russian Federation); Bykov, V.A. [Institute of Metallurgy, UB of the RAS, 101, Amundsena, Street, 620016 Ekaterinburg (Russian Federation)

    2015-06-01

    A short review on the pressless process (PLP) involved in the manufacture of sintered Nd–Fe–B magnet is given. Two approaches to increasing the degree of powder alignment with a high filling density ρ{sub f} in PLP-containers are proposed. (1) An increase in the pulse duration of applied magnetic field from 3.6 to 6.5 ms enhances the magnetic alignment of magnets prepared from the powder with ρ{sub f}=2.5 g/cm{sup 3} and ρ{sub f}=3 g/cm{sup 3} by 3% and 11%, respectively. (2) Addition of internal lubricants such as zinc stearate or esters reduces friction forces between the powder particles and, when the concentration of lubricants is bellow a critical concentration C{sub cr}, increases B{sub r} and (BH){sub max} by 5–7%. Simulation of the magnetic alignment of uniaxial particles demonstrates that a decrease in the coefficient of friction between the powder particles from 0.9 to 0.6 caused by the lubricant addition enhances the alignment degree. Contact dilatometry was used to study the anisotropy of densification of PLP-powders upon sintering. It has been shown that the anisotropy of the powder shrinkage is formed at the first stage of sintering at the temperature about 800 °C and is caused by the capillary action in the Nd-rich liquid. - Highlights: • A review of the pressless process for NdFeB magnets in the world and Russia is given. • Enhancement of the alignment degree by application of pulsed magnetic field is studied. • Reduction of the friction forces via addition of internal lubricants is proposed. • The simulation of the magnetic alignment of Nd–Fe–B uniaxial particles is presented. • A reason of anisotropic shrinkage of the powder at sintering is suggested.

  1. Cu-Nb3Sn superconducting wires prepared by ''Copper Liquid Phase Sintering method'' using the Nb-H

    International Nuclear Information System (INIS)

    Resende, A.T. de.

    1985-01-01

    Cu-30% Nb in weighting were prepared by the method of Copper sintering liquid phase the method was improved by substitution of Nb power by Nb-H powder, obtaining a high density material with good mechanical properties, which was reduced to fine. Wire, Without heat treatment. The Cu-Nb 3 Sn wires were obtained by external diffusion process depositing tin in the Cu-30%Nb wires, and by internal diffusion process using the Sn-8.5% Cu in weighting, which was reduced to rods of 3.5 mm. These Cu-30%Nb rods were enclosed in copper tubes and deformed mechanically by rotary swaging and drawing. During the drawing step some wires were fractured, that were analysed and correlated with the microstructure of the Sn-8.5 Wt% Cu alloy. External and internal diffusion samples; after a fast thermal treatment for Sn diffusion, were submited to the temperature of 700 0 C to provide the reaction between Sn and Nb, leading to the Nb 3 Sn phase. Samples with several reaction times, and its influence on T c and J c critical parameters and normal resistivity were prepared and analysed. (author) [pt

  2. Sintering Bonding Process with Ag Nanoparticle Paste and Joint Properties in High Temperature Environment

    Directory of Open Access Journals (Sweden)

    Jianfeng Yan

    2016-01-01

    Full Text Available Ag nanoparticle paste is prepared based on the polyol method and subsequent concentration by centrifuging. The sintering bonding process using Ag nanoparticle paste at different bonding pressures is studied. The joint strengths are increased as the bonding pressure increases from 0 MPa to 7.5 MPa. This is due to the fact that the higher assistant bonding pressure is beneficial to the growth of neck size between the adjacent particles and forms denser sintered Ag layers. The joint strength bonded under 10 MPa is lower than that bonded under 7.5 MPa, which may be due to the residue of organic component in the sintered Ag layer. The joint properties bonded with Ag nanoparticle paste in high temperature environment are evaluated by heat treatments at temperatures ranges of 200–350°C for 50 hours. The results show that the mechanical properties of joint with Ag nanoparticle paste are better than the joint with Pb95Sn5 solder after storage at high temperatures.

  3. Development of ceramics based fuel, Phase I, Kinetics of UO2 sintering by vibration compacting of UO2 powder (Introductory report)

    International Nuclear Information System (INIS)

    Ristic, M.M.

    1962-10-01

    After completing the Phase I of the task related to development of ceramics nuclear fuel the following reports are presented: Kinetics of UO 2 sintering; Vibrational compacting and sintering of UO 2 ; Characterisation of of UO 2 powder by DDK and TGA methods; Separation of UO 2 powder

  4. An experimental study of factors affecting the selective inhibition of sintering process

    Science.gov (United States)

    Asiabanpour, Bahram

    Selective Inhibition of Sintering (SIS) is a new rapid prototyping method that builds parts in a layer-by-layer fabrication basis. SIS works by joining powder particles through sintering in the part's body, and by sintering inhibition of some selected powder areas. The objective of this research has been to improve the new SIS process, which has been invented at USC. The process improvement is based on statistical design of experiments. To conduct the needed experiments a working machine and related path generator software were needed. The machine and its control software were made available prior to this research. The path generator algorithms and software had to be created. This program should obtain model geometry data from a CAD file and generate an appropriate path file for the printer nozzle. Also, the program should generate a simulation file for path file inspection using virtual prototyping. The activities related to path generator constitute the first part of this research, which has resulted in an efficient path generator. In addition, to reach an acceptable level of accuracy, strength, and surface quality in the fabricated parts, all effective factors in the SIS process should be identified and controlled. Simultaneous analytical and experimental studies were conducted to recognize effective factors and to control the SIS process. Also, it was known that polystyrene was the most appropriate polymer powder and saturated potassium iodide was the most effective inhibitor among the available candidate materials. In addition, statistical tools were applied to improve the desirable properties of the parts fabricated by the SIS process. An investigation of part strength was conducted using the Response Surface Methodology (RSM) and a region of acceptable operating conditions for the part strength was found. Then, through analysis of the experimental results, the impact of the factors on the final part surface quality and dimensional accuracy was modeled. After

  5. Thermal properties and thermal shock resistance of liquid phase sintered ZrC-Mo cermets

    International Nuclear Information System (INIS)

    Landwehr, Sean E.; Hilmas, Gregory E.; Fahrenholtz, William G.; Talmy, Inna G.; Wang Hsin

    2009-01-01

    The linear thermal expansion coefficient (CTE), heat capacity, and thermal conductivity, were investigated as a function of temperature for hot pressed ZrC and liquid phase sintered ZrC-Mo cermets. The ZrC and the ZrC-Mo cermets had the same CTE at 50 deg. C (∼5.1-5.5 ppm deg. C -1 ), but the CTE of ZrC increased to ∼12.2 ppm deg. C -1 at 1000 deg. C compared to ∼7.2-8.5 ppm deg. C -1 for the ZrC-Mo cermets. Heat capacity was calculated using a rule of mixtures and previously reported thermodynamic data. Thermal diffusivity was measured with a laser flash method and was, in turn, used to calculate thermal conductivity. Thermal conductivity increased linearly with increasing temperature for all compositions and was affected by solid solution formation and carbon deficiency of the carbide phases. Hot pressed ZrC had the highest thermal conductivity (∼30-37 W m -1 K -1 ). The nominally 20 and 30 vol% Mo compositions of the ZrC-Mo cermets had a lower thermal conductivity, but the thermal conductivity generally increased with increasing Mo content. Water quench thermal shock testing showed that ZrC-30 vol% Mo had a critical temperature difference of 350 deg. C, which was ∼120 deg. C higher than ZrC. This increase was due to the increased toughness of the cermet compared to ZrC.

  6. Hydrogen Decrepitation Press-Less Process recycling of NdFeB sintered magnets

    Science.gov (United States)

    Xia, Manlong; Abrahamsen, Asger B.; Bahl, Christian R. H.; Veluri, Badrinath; Søegaard, Allan I.; Bøjsøe, Poul

    2017-11-01

    A Hydrogen Decrepitation Press-Less Process (HD-PLP) recycling method for recycling of anisotropic NdFeB magnets is demonstrated. The method combines hydrogen decrepitation (HD) disintegration of the initial magnet, powder sieving and the Press-Less Process (PLP), where hydride powder is sintered in a graphite mold. Coercivities up to 534 kA/m were obtained in porous samples based on powder size d 100 μm. The coercivity reached Hci = 957 kA/m being 86% of the original N48M material without addition of rare earth elements.

  7. Chemical and mechanical analysis of boron-rich boron carbide processed via spark plasma sintering

    Science.gov (United States)

    Munhollon, Tyler Lee

    Boron carbide is a material of choice for many industrial and specialty applications due to the exceptional properties it exhibits such as high hardness, chemical inertness, low specific gravity, high neutron cross section and more. The combination of high hardness and low specific gravity makes it especially attractive for high pressure/high strain rate applications. However, boron carbide exhibits anomalous behavior when high pressures are applied. Impact pressures over the Hugoniot elastic limit result in catastrophic failure of the material. This failure has been linked to amorphization in cleavage planes and loss of shear strength. Atomistic modeling has suggested boron-rich boron carbide (B13C2) may be a better performing material than the commonly used B4C due to the elimination of amorphization and an increase in shear strength. Therefore, a clear experimental understanding of the factors that lead to the degradation of mechanical properties as well as the effects of chemistry changes in boron carbide is needed. For this reason, the goal of this thesis was to produce high purity boron carbide with varying stoichiometries for chemical and mechanical property characterization. Utilizing rapid carbothermal reduction and pressure assisted sintering, dense boron carbides with varying stoichiometries were produced. Microstructural characteristics such as impurity inclusions, porosity and grain size were controlled. The chemistry and common static mechanical properties that are of importance to superhard materials including elastic moduli, hardness and fracture toughness of the resulting boron-rich boron carbides were characterized. A series of six boron carbide samples were processed with varying amounts of amorphous boron (up to 45 wt. % amorphous boron). Samples with greater than 40 wt.% boron additions were shown to exhibit abnormal sintering behavior, making it difficult to characterize these samples. Near theoretical densities were achieved in samples with

  8. Phase evolution and dielectric properties of MgTi2O5 ceramic sintered with lithium borosilicate glass

    International Nuclear Information System (INIS)

    Shin, Hyunho; Shin, Hee-Kyun; Jung, Hyun Suk; Cho, Seo-Yong; Hong, Kug Sun

    2005-01-01

    Phase evolution, densification, and dielectric properties of MgTi 2 O 5 dielectric ceramic, sintered with lithium borosilicate (LBS) glass, were studied. Reaction between LBS glass and MgTi 2 O 5 was significant in forming secondary phases such as TiO 2 and (Mg,Ti) 2 (BO 3 )O. The glass addition was not necessarily deleterious to the dielectric properties due to the formation of TiO 2 : permittivity increased and temperature coefficient of resonance frequency could be tuned to zero with the addition of LBS glass, although the inevitable glass-induced decrease of quality factor was not retarded by the formation of TiO 2 . The sintered specimen with 10 wt% LBS fired at 950 deg. C for 2 h showed permittivity of 19.3, quality factor of 6800 GHz, and τ f of -16 ppm/ deg. C

  9. Pre-sintered Y-TZP sandblasting: effect on surface roughness, phase transformation, and Y-TZP/veneer bond strength

    Directory of Open Access Journals (Sweden)

    Carla Müller Ramos-Tonello

    Full Text Available Abstract Sandblasting is a common method to try to improve the Y-TZP/veneer bond strength of dental prostheses, however, it may put stress on zirconia surfaces and could accelerate the t→m phase transformation. Y-TZP sandblasting before sintering could be an alternative to improve surface roughness and bonding strength of veneering ceramic. Objectives. The aim of this study was to analyze the effect of Y-TZP pre-sintering sandblasting on surface roughness, phase transformation, and the Y-TZP/veneer shear bond strength. Material and Methods. The Y-TZP specimen surface underwent sandblasting with aluminum oxide (50 μm pre-sintering (Z-PRE and post-sintering (Z-POS. Z-CTR was not subjected to surface treatment. After ceramic veneer application, the specimens were subjected to shear bond testing. Surface roughness was analyzed by confocal microscopy. Y-TZP monoclinic and tetragonal phases were evaluated by micro-Raman spectroscopy. Shear bond strength and surface roughness data were analyzed by One-way ANOVA and Tukey tests (α=0.05. Differences in the wave numbers and the broadening bands of the Raman spectra were compared among groups. Results. Z-POS (9.73±5.36 MPa and Z-PRE (7.94±2.52 MPa showed the highest bond strength, significantly higher than that of Z-CTR (5.54±2.14 MPa. The Ra of Z-PRE (1.59±0.23 µm was much greater and significantly different from that of Z-CTR (0.29±0.05 µm and Z-POS (0.77±0.13 µm. All groups showed bands typical of the tetragonal (T and monoclinic (M phases. Y-TZP sandblasting before sintering resulted in rougher surfaces but did not increase the shear bond strength compared to post-sintering and increased surface defects. Conclusions. Surface treatment with Al3O2, regardless of the moment and application, improves the results of Y-TZP/veneer bonding and is not a specific cause of t→m transformation.

  10. SINTERING, A PROCESS OF METAL FORMING AS AN ECONOMIC ALTERNATIVE WITH A LOW ENVIRONMENTAL IMPACT

    Directory of Open Access Journals (Sweden)

    Ángel Silvio Machado Rodríguez

    2017-07-01

    Full Text Available Sintering is a process of metal forming using metal powders, and it has a wide range of applications including for example, the manufacturing of parts for automotive components, home appliances, cutting tools, power tools, for the manufacturing of dental devices, among others. The process is characterized by the production of large-scale low cost parts and has a low environmental impact compared to other existing technologies, it requires less energy for processing and enables high utilization of raw materials. Also, it has the characteristic of obtaining, in most cases, the parts with final tolerances necessary for direct use by the customer, which ultimately reduces considerably the cost of production. The process is characterized by minimizing the loss of raw materials; facilitating precise control of the desired chemical composition; eliminating or reducing machining operations; providing a good surface finish; being an easy production process of automation; obtaining high purity; and ensuring exactly resistance characteristics required for each project.

  11. Adaptive Laser Sintering System for In-space Printed Electronics, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this project is to enhance the Optomec Aerosol Jet(R) technology for additive manufacturing by introduction of an Adaptive Laser Sintering System (ALSS)...

  12. Processing of Syndiotactic Polystyrene to Microspheres for Part Manufacturing through Selective Laser Sintering

    Directory of Open Access Journals (Sweden)

    Nicolas Mys

    2016-10-01

    Full Text Available Syndiotactic polystyrene pellets were processed into powder form using mechanical (ball milling, rotor milling and physicochemical (spray drying techniques with the intention of using it as feed material for selective laser sintering. New materials are an important component in broadening the application window for selective laser sintering but must meet strict requirements to be used. Particles obtained were characterized in size and shape using SEM imaging, analyzed by software, and compared to the product obtained by conventional ball milling. Rotor milling and spray drying proved capable of making spherical powders, yet only rotor milling achieved particles with a mean diameter within the desired range of 45–97 µm. Subsequently, the obtained powders were examined for the effect each processing technique imparts on the intrinsic properties of the material. Differential scanning calorimetry analysis revealed amorphization for all methods and a reduction in crystallinity after processing, however, the reduction in crystallinity was acceptably low for the spray-dried and rotor-milled powders. Ball milling displayed an exceptional reduction in crystallinity, suggesting severe degradation. As a final test, the rotor-milled powder was subjected to single-layer test and displayed good coalescence and smooth morphology, albeit with a large amount of warpage.

  13. Effect of sintering temperature on physical properties & hardness of CoCrMo alloys fabricated by metal injection moulding process

    Science.gov (United States)

    Ridhwan Abdullah, Ahmad; Aidah Nabihah Dandang, Nur; Zalikha Khalil, Nur; Harun, Wan Sharuzi Wan

    2017-10-01

    Metal Injection Moulding (MIM) process is one of the Powder Metallurgy manufacturing techniques utilised to produce Cobalt Chromium Molybdenum (CoCrMo) compacts. The objective of this study is to determine physical properties and hardness of CoCrMo alloy compact sintered at three different sintering temperature at the similar soaking time. At the beginning, sample were fabricated by using Injection Moulding machine. Cobalt Chrome Molybdenum (CoCrMo) metal powder was selected for this study. A morphological study was conducted using optical microscope (OM) and micro-Vickers hardness testing. From the result obtained, it shows upward trend either on the hardness or physical properties of the samples. CoCrMo sintered compact become harder and volume of pores on surface become less due to the increase on sintering temperature. However, effect of increasing sintering temperature shows significant shrinkage of the sample, beginning losses in dimensional accuracy. It is discovered that a little change in sintering temperature gives significant impact on the microstructure, physical, mechanical of the alloy.

  14. Sintering and Microstructures of SUS 316L Powder Produced by 3D Printing Process

    Directory of Open Access Journals (Sweden)

    Kim W.J.

    2017-06-01

    Full Text Available Selective laser sintering (SLS is a type of laminating sintering technique, using CO2 laser with (metal, polymer, and ceramic powders. In this result, the flake SUS 316L was used to achieve a high porous product, and compare to spherical type. After SLS, the porosity of flake-type sample with 34% was quite higher than that of the spherical-type one that had only 11%. The surface roughness of the flake SLS sample were also investigated in both inner and surface parts. The results show that the deviation of the roughness of the surface part is about 64.40μm, while that of the internal one was about 117.65μm, which presents the containing of high porosity in the uneven surfaces. With the process using spherical powder, the sample was quite dense, however, some initial particles still remained as a result of less energy received at the beneath of the processing layer.

  15. Spark Plasma Sintering (SPS)-Assisted Synthesis and Thermoelectric Characterization of Magnéli Phase V6O11

    KAUST Repository

    Joos, Markus

    2018-01-11

    The Magnéli phase V6O11 was synthesized in gram amounts from a powder mixture of V6O11/V7O13 and vanadium metal, using the spark plasma sintering (SPS) technique. Its structure was determined with synchrotron X-ray powder diffraction data from a phase-pure sample synthesized by conventional solid-state synthesis. A special feature of Magnéli-type oxides is a combination of crystallographic shear and intrinsic disorder that leads to relatively low lattice thermal conductivities. SPS prepared V6O11 has a relatively low thermal conductivity of κ = 2.72 ± 0.06 W (m K)-1 while being a n-type conductor with an electrical conductivity of σ = 0.039 ± 0.005 (μΩ m)-1, a Seebeck coefficient of α = -(35 ± 2) μV K-1, which leads to a power factor of PF = 4.9 ± 0.8 × 10-5W (m K2)-1 at ∼600 K. Advances in the application of Magnéli phases are mostly hindered by synthetic and processing challenges, especially when metastable and nanostructured materials such as V6O11 are involved. This study gives insight into the complications of SPS-assisted synthesis of complex oxide materials, provides new information about the thermal and electrical properties of vanadium oxides at high temperatures, and supports the concept of reducing the thermal conductivity of materials with structural building blocks such as crystallographic shear (CS) planes.

  16. Effect of Sintering Process on Properties and Microstructure of WC-1.0TiC-3.1TaC-4.5Co Cemented Carbides

    Directory of Open Access Journals (Sweden)

    LI Zhong-dian

    2016-12-01

    Full Text Available A series of WC-1.0TiC-3.1TaC-4.5Co cemented carbides were prepared by vacuum sintering and Sintering-HIP through traditional powder metallurgy method. Optical microscopy(OM,scanning electron microscopy (SEM and energy dispersive X-ray spectroscopy (EDS were used to characterize the microstructures. The results show that pores and cobalt-lake can be reduced in cemented carbides by increasing sintering temperature or using Sintering-HIP. The mean size of WC cemented carbide prepared by vacuum sintering process is larger than that prepared by Sintering-HIP. Furthermore, the phenomenon of WC abnormal growth was found in the cemented carbides prepared by Sintering-HIP.

  17. Challenges in Laser Sintering of Melt-Processable Thermoset Imide Resin

    Science.gov (United States)

    Chuang, Kathy C.; Gornet, Timothy; Koerner, Hilmar

    2016-01-01

    Polymer Laser Sintering (LS) is an additive manufacturing technique that builds 3D models layer by layer using a laser to selectively melt cross sections in powdered polymeric materials, following sequential slices of the CAD model. LS generally uses thermoplastic polymeric powders, such as polyamides (i.e. Nylon), and the resultant 3D objects are often weaker in their strength compared to traditionally processed materials, due to the lack of polymer inter-chain connection in the z-direction. The objective of this project is to investigate the possibility of printing a melt-processable RTM370 imide resin powder terminated with reactive phenylethynyl groups by LS, followed by a postcure in order to promote additional crosslinking to achieve higher temperature (250-300 C) capability. A preliminary study to build tensile specimens by LS and the corresponding DSC and rheology study of RTM370 during LS process is presented.

  18. Spark Plasma Sintered Si3N4/TiN Nanocomposites Obtained by a Colloidal Processing Route

    Directory of Open Access Journals (Sweden)

    L. A. Díaz

    2016-01-01

    Full Text Available Ceramic Si3N4/TiN (22 vol% nanocomposites have been obtained by Spark Plasma Sintering (SPS. Our colloidal processing route allows obtaining dispersed nanoparticles of TiN smaller than 50 nm avoiding the presence of agglomerates. The nanostructured starting powders were obtained by using a colloidal method where commercial Si3N4 submicrometer particles were coated with anatase TiO2 nanocrystals. A later nitridation process led to the formation of TiN nanoparticles on the surface of Si3N4. A second set of powders was prepared by doping the above defined powders with yttrium and aluminium precursors using also a colloidal method as sources of alumina and yttria. After thermal nitridation and SPS treatment, it has been found that the addition of oxides dopants improves the mechanical performance (KIC, σf but increases the electrical resistivity and significantly reduces the hardness. This is due to the formation of a continuous insulating glassy phase that totally envelops the conductive TiN nanoparticles, avoiding the percolative contact between them. The combination of colloidal processing route and SPS allows the designing of tailor-made free glassy phase Si3N4/TiN nanocomposites with controlled microstructure. The microstructural features and the thermoelectrical and mechanical properties of both kinds of dense SPSed compacts are discussed in this work.

  19. Experiments for practical education in process parameter optimization for selective laser sintering to increase workpiece quality

    Science.gov (United States)

    Reutterer, Bernd; Traxler, Lukas; Bayer, Natascha; Drauschke, Andreas

    2016-04-01

    Selective Laser Sintering (SLS) is considered as one of the most important additive manufacturing processes due to component stability and its broad range of usable materials. However the influence of the different process parameters on mechanical workpiece properties is still poorly studied, leading to the fact that further optimization is necessary to increase workpiece quality. In order to investigate the impact of various process parameters, laboratory experiments are implemented to improve the understanding of the SLS limitations and advantages on an educational level. Experiments are based on two different workstations, used to teach students the fundamentals of SLS. First of all a 50 W CO2 laser workstation is used to investigate the interaction of the laser beam with the used material in accordance with varied process parameters to analyze a single-layered test piece. Second of all the FORMIGA P110 laser sintering system from EOS is used to print different 3D test pieces in dependence on various process parameters. Finally quality attributes are tested including warpage, dimension accuracy or tensile strength. For dimension measurements and evaluation of the surface structure a telecentric lens in combination with a camera is used. A tensile test machine allows testing of the tensile strength and the interpreting of stress-strain curves. The developed laboratory experiments are suitable to teach students the influence of processing parameters. In this context they will be able to optimize the input parameters depending on the component which has to be manufactured and to increase the overall quality of the final workpiece.

  20. Phase Composition and Microstructure of Hot-Pressing Sintered Ti2AlN Metal-Ceramic Bulk Material

    Directory of Open Access Journals (Sweden)

    LIANG Suying

    2017-06-01

    Full Text Available Ti2AlN metal-ceramic bulk material was fabricated by hot-pressing sintering (HPS using TiN, Ti and Al powder in a stoichiometric ratio of 1:1:1.03 after mechanical mixing. XRD, SEM and TEM were employed to investigate the phase composition and microstructures of the products. The results show that the high purity Ti2AlN can be obtained by HPS at 1300 ℃ for 2.5 h. The sintered Ti2AlN presented a hexagonal system layered structure with an anisotropy. Twins are found in the Ti2AlN. There were a few nano-scale TiN particles in the products.

  1. A new method to fabricate Fe-TiC composite using conventional sintering and steam hammer

    OpenAIRE

    LAHOUEL, Ali; BOUDEBANE, Saïd; IOST, Alain; MONTAGNE, Alex

    2017-01-01

    International audience; The aim of this research paper is to fabricate a Fe-TiC composite by a novel and simple manufacturing method. The latter is based on two cumulative processes; a conventional sintering (transient liquid phase sintering) and a hot forging with steam hammer respectively. The blinder phase of the studied simples is varied from carbon steel to high alloy steel using alloying additive powders. The obtained outcomes showed that after the sintering process, the relative densit...

  2. Investigation of the Sintering Process Using Non-Contact Electromagnetic Acoustic Transducers

    Energy Technology Data Exchange (ETDEWEB)

    James C. Foley; David K. Rehbein; Daniel J. Barnard

    2001-05-30

    In-situ characterizations of green state part density and sintering state have long been desired in the powder metal community. Recent advances in non-contact electromagnetic acoustic transducer (EMAT) technology have enabled in-situ monitoring of acoustic amplitude and velocity as sintering proceeds. Samples were made from elemental powders of Al (99.99%), Al (99.7%), Ag, (99.99%), Cu (99.99%) and Fe (99.9%). The powders were pressed in a uniaxial die and examined with acoustic waves for changes in velocity and amplitude during sintering for the samples containing Al, Ag, and Cu. The changes in acoustic properties were correlated with sample microstructures and mechanical properties. Evolution of a series of reverberating echoes during sintering is shown to provide information on the state of sintering, and changes in sintering kinetics as well as having the potential for detection of interior flaws.

  3. The Study of Microwave and Electric Hybrid Sintering Process of AZO Target

    Directory of Open Access Journals (Sweden)

    Ling-yun Han

    2016-01-01

    Full Text Available We simulated the microwave sintering of ZnO by 3D modelling. A large-size Al-doped ZnO (AZO green ceramic compact was prepared by slurry casting. Through studying the microwave and electric hybrid sintering of the green compact, a relative density of up to 98.1% could be obtained by starting microwave heating at 1200°C and increasing the power 20 min later to 4 kW for an AZO ceramic target measuring 120 × 240 × 12 mm. The resistivity of AZO targets sintered with microwave assistance was investigated. The energy consumption of sintering could be greatly reduced by this heating method. Until now, few studies have been reported on the microwave and electric hybrid sintering of large-size AZO ceramic targets. This research can aid in developing sintering technology for large-size high-quality oxide ceramic targets.

  4. An experimental study on effect of coke ratio on SO2 and NOx emissions in sintering process

    Science.gov (United States)

    Wang, Hui; Zhang, Pu; Yang, Jingling

    2018-02-01

    By using the sinter cup experiment, the effects of different coke ratios of 0%, 25%, 50%, 75%, and 100% on the formation and total emissions of SO2 and NOx in the sintering process were studied with the Testo350 flue gas analyzer. The experimental results show that the emissions of SO2 and NOx are closely related to sintering process. With the increase of the coke proportion, the sintering temperature changes and the maximum peak time appears earlier. SO2 concentration has a bimodal distribution and NOx concentration has a triple peak. Besides, the both maximum peaks appear at the end of sintering. In addition, due to the increasing of the S and N contents in the fuel with the coke ratios from 0% to 100%, the amounts of SO2 and NOx emissions are raised respectively at 10.82 mg, 11.42 mg, 13.84 mg, 13.69 mg, 20.36 mg and 3.11 mg, 3.39 mg, 4.44 mg, 4.31 mg, 6.16 mg.

  5. Effect of characteristics of fine iron ores on the granulation behavior of concentrate in sintering granulation process

    Science.gov (United States)

    Wu, Shengli; Que, Zhigang; Zhai, Xiaobo; Li, Kailang

    2017-12-01

    Concentrates have advantages of high ferrous grade, less harmful impurities and lower price. However, the small size and poor granulation behavior of concentrates could deteriorate the permeability of the sinter bed and reduce sinter productivity, thus making it difficult to use concentrates effectively. Therefore, in order to strengthen the granulation behavior of concentrates, granulation experiments were carried out and experiment samples made with one kind of concentrates and five kinds of fine iron ores were produced in this paper. Then, the effects of water absorbility and wettability of fine iron ores on granulation behavior of concentrates were investigated. Furthermore, optimized ore blending recipes were proposed to strengthen the granulation behavior of concentrates by sinter pot tests. Results show that the granulation behavior of concentrates was improved for the samples exhibiting high maximum capillary water and small contact angle in fine iron ores. Compared with the scheme of blending ores containing 15 mass% concentrate, the growth index of quasi-particles increased by 20.62% in the case of iron ore BR-2 replacing half of iron ore BR-1, the vertical sintering speed went up from 26.32 to 29.26 mm min-1, the productivity increased from 1.95 to 2.20 t m-2 h-1. The growth index of the quasi-particles increased by 30% when using iron ore AR-2 to replace half of iron ore AR-1. The vertical sintering speed and the productivity of sinter improved to 29.82 mm min-1 and 2.24 t m-2 h-1, respectively. The results help to improve the granulation behavior of concentrates by optimizing the blending ore recipes, based on the characteristics of fine iron ores, and thus use these concentrates more efficiently in the sintering process.

  6. Interconnect-integrated solid oxide fuel cell with high temperature sinter-joining process

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Seung-Wook [KAIST Institute (KI) for Eco-Energy, Korea Advanced Institute of Science and Technology (KAIST), 373-1 Guseong-Dong, Yuseong-Gu, Daejeon 305-701 (Korea); Jeong, Jihoon; Bae, Joongmyeon [Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 373-1 Guseong-Dong, Yuseong-Gu, Daejeon 305-701 (Korea); Kim, Jung Hyun [School of Chemistry, University of St. Andrews, Fife KY16 9ST (United Kingdom); Lee, Changbo [SAMSUNG Electro-Mechanics Co., 314 Maetan-3-Dong, Yeongtong-Gu, Suwon (Korea)

    2010-11-15

    In this study, a recently developed interconnect-integrated solid oxide fuel cell (SOFC) is characterized in terms of cell components, cell area enlargement, potential cathode material and mechanical/electrochemical properties. First, a high temperature sinter-joining process is used to fabricate an interconnect-integrated SOFC. This manuscript describes the interconnect material and the slurry composition design for bonding the interconnect and ceramic cell. The oxidation and thermal expansion characteristics of the starting materials of the interconnect-integrated cell, including the interconnect, metal powder of the bonding layer and metal powder/8YSZ/NiO compositions, are investigated to enhance both cell joining performance and cell stability during operation. Cell area enlargements of 50 mm x 50 mm and 100 mm x 100 mm are successfully realized using the optimized cell processing conditions. The cathode of the interconnect-integrated cell cannot be sintered in an air atmosphere due to the oxidation of the interconnect. Accordingly, a Sm{sub 1.0}Ba{sub 0.5}Sr{sub 0.5}Co{sub 2.0}O{sub 5-d}/Gd{sub 0.1}Ce{sub 0.9}O{sub 1.9} (50:50 wt%) (SBSCO50) composite cathode is selected and used as the potential in situ cathode for the interconnect-integrated SOFC. The in situ sintering properties of a conventional LSM82/8YSZ(6:4) composite cathode is also studied as the reference material. The mechanical and electrochemical performance of the resulting interconnect-integrated cell is tested. The mechanical strengths of the anode-supported cell and the interconnect-integrated cell are compared, and the electrochemical properties of the interconnect-integrated button cell and the large area (50 mm x 50 mm) interconnect-integrated cell are investigated. The button cell of a SBSCO50 composite cathode exhibits a maximum power density of 0.57 W cm{sup -2} at 800 C. The large area single repeat unit with an area of 50 mm x 50 mm with a SBSCO50 in situ cathode exhibits a maximum

  7. Investigation of the sintering mechanisms for (U,Am)O{sub 2} pellets obtained by CRMP process

    Energy Technology Data Exchange (ETDEWEB)

    Caisso, M. [CEA, Centre de Marcoule, DEN, DTEC/SECA/LFC, F-30207 Bagnols-sur-Ceze (France); CEA, Centre de Marcole, DEN, DRCP/SERA/LCAR, F-30207 Bagnols-sur-Ceze (France); Institut Europeen des Membranes, UMR 5635 CNRS-ENSCM-UM, CC047, Campus Triolet, Universite de Montpellier, F-34095 Montpellier Cedex 5 (France); Boulesteix, R.; Maitre, A. [SPCTS, UMR 7315 CNRS-Universite de Limoges-ENSCI, Centre Europeen de la Ceramique, 12 Rue Atlantis, F-87068 Limoges (France); Picart, S.; Delahaye, T. [CEA, Centre de Marcole, DEN, DRCP/SERA/LCAR, F-30207 Bagnols-sur-Ceze Cedex (France); Ayral, A. [Institut Europeen des Membranes, UMR 5635 CNRS-ENSCM-UM, CC047, Campus Triolet Universite de Montpellier, F-34095 Montpellier Cedex 5 (France)

    2016-07-01

    The use of CRMP (Calcined Resin Microsphere Pelletization) process for AmBB (Americium Bearing Blankets) fabrication is today a key research axis in americium transmutation domain, where its very high activity requires minimization of powder dissemination. In this aim, the use of oxide microspheres as compaction precursors is a promising clean alternative to powder metallurgy. Understanding the different steps of densification during CRMP pellet sintering thus appears as fundamental to obtain final materials with the specific features required for AmBB. The densification curve recorded in dynamic conditions shows different sintering steps. A first decrease of shrinkage rate happens at low temperature, around 1100 K. This phenomenon is not normally observed in the sintering of conventional powders. Chemical and microstructural studies were performed on (U,Am)O{sub 2} and also on (Ce,Gd)O{sub 2} surrogate compound to highlight the causes of this low-temperature sintering step. Multi-scale reorganization finally appears as the sole explanation, through the sintering of nano-metric aggregate present in the green pellet and related to the morphology of the starting microspheres employed as pelletization precursors. (authors)

  8. PHOTOEMISSION METHOD OF TEMPERATURE MEASURING IN THE PROCESS OF SPARK PLASMA SINTERING POWDERS OF REFRACTORY METALS

    Directory of Open Access Journals (Sweden)

    D. V. Minko

    2012-01-01

    Full Text Available Construction and algorithm of the photoemission pyrometer based on a photomultiplier are outlined; the calibration procedure is set out. The application of the photoemission method in a rapidly changing temperature is showed. It is proved that during spark plasma sintering the maximal temperature is 5500– 7500 °C, while the speed of temperature increase to its maximum ~108–109 °C/s, and the rate of decrease to 2000–4000 °C may be 106–107 °C/sec. It is recommended to use photoemission method when developing technological conditions, adjustment and control of technological processes using modern high-energy equipment (plasma, laser, cathode-ray tube to produce new materials, coatings and products for mechanical engineering, electronic industry and medicine.

  9. One step sintering of homogenized bauxite raw material and kinetic study

    Science.gov (United States)

    Gao, Chang-he; Jiang, Peng; Li, Yong; Sun, Jia-lin; Zhang, Jun-jie; Yang, Huan-ying

    2016-10-01

    A one-step sintering process of bauxite raw material from direct mining was completed, and the kinetics of this process was analyzed thoroughly. The results show that the sintering kinetics of bauxite raw material exhibits the liquid-phase sintering behavior. A small portion of impurities existed in the raw material act as a liquid phase. After X-ray diffraction analyses, scanning electron microscopy observations, and kinetics calculations, sintering temperature and heating duration were determined as the two major factors contributing to the sintering process and densification of bauxite ore. An elevated heating temperature and longer duration favor the densification process. The major obstacle for the densification of bauxite material is attributed to the formation of the enclosed blowhole during liquid-phase sintering.

  10. Effect of extrusion processing on the microstructure, mechanical properties, biocorrosion properties and antibacterial properties of Ti-Cu sintered alloys.

    Science.gov (United States)

    Zhang, Erlin; Li, Shengyi; Ren, Jing; Zhang, Lan; Han, Yong

    2016-12-01

    Ti-Cu sintered alloys, Ti-Cu(S) alloy, have exhibited good anticorrosion resistance and strong antibacterial properties, but low ductility in previous study. In this paper, Ti-Cu(S) alloys were subjected to extrusion processing in order to improve the comprehensive property. The phase constitute, microstructure, mechanical property, biocorrosion property and antibacterial activity of the extruded alloys, Ti-Cu(E), were investigated in comparison with Ti-Cu(S) by X-ray diffraction (XRD), optical microscopy (OM), scanning electronic microscopy (SEM) with energy disperse spectroscopy (EDS), mechanical testing, electrochemical testing and plate-count method in order to reveal the effect of the extrusion process. XRD, OM and SEM results showed that the extrusion process did not change the phase constitute but refined the grain size and Ti2Cu particle significantly. Ti-Cu(E) alloys exhibited higher hardness and compressive yield strength than Ti-Cu(S) alloys due to the fine grain and Ti2Cu particles. With the consideration of the total compressive strain, it was suggested that the extrusion process could improve the ductility of Ti-Cu alloy(S) alloys. Electrochemical results have indicated that the extrusion process improved the corrosion resistance of Ti-Cu(S) alloys. Plate-count method displayed that both Ti-Cu(S) and Ti-Cu(E) exhibited strong antibacterial activity (>99%) against S. aureus. All these results demonstrated that hot forming processing, such as the extrusion in this study, refined the microstructure and densified the alloy, in turn improved the ductility and strength as well as anticorrosion properties without reduction in antibacterial properties. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Synthesis and characterization of alumina-coated aluminum sponges manufactured by sintering and dissolution process as possible structured reactors

    Energy Technology Data Exchange (ETDEWEB)

    Méndez, Franklin J., E-mail: fmendez@ivic.gob.ve [Centro de Química, Instituto Venezolano de Investigaciones Científicas, Apartado Postal 21827, Caracas 1020-A (Venezuela, Bolivarian Republic of); Rivero-Prince, Sayidh [Centro de Química, Instituto Venezolano de Investigaciones Científicas, Apartado Postal 21827, Caracas 1020-A (Venezuela, Bolivarian Republic of); Facultad de Ingeniería, Universidad Central de Venezuela, Caracas (Venezuela, Bolivarian Republic of); Escalante, Yelisbeth; Villasana, Yanet [Centro de Química, Instituto Venezolano de Investigaciones Científicas, Apartado Postal 21827, Caracas 1020-A (Venezuela, Bolivarian Republic of); Brito, Joaquín L., E-mail: joabrito@ivic.gob.ve [Centro de Química, Instituto Venezolano de Investigaciones Científicas, Apartado Postal 21827, Caracas 1020-A (Venezuela, Bolivarian Republic of)

    2016-03-01

    Al{sub 2}O{sub 3}–Al sponges were manufactured by sintering and dissolution process with the aim of using these materials as structured catalytic reactors. For this purpose, several synthesis conditions were examined for the design of the cellular material, such as: particle size of NaCl, weight fraction of Al, compaction pressure, and sintering temperature or time. An alumina layers was grown on top of the aluminum surfaces during both: sintering and thermal treatment. The obtained results showed that the synthesized materials could be promising as structured reactors for endothermic or exothermic reactions. - Highlights: • An efficient method for manufactured of aluminum sponges is reported. • Methods for productions of superficial Al{sub 2}O{sub 3} are studied. • Al{sub 2}O{sub 3}–Al sponges could be used as structured reactors.

  12. Effect of process parameters on hardness, temperature profile and solidification of different layers processed by direct metal laser sintering (DMLS)

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Sazzad Hossain; Mian, Ahsan, E-mail: ahsan.mian@wright.edu; Srinivasan, Raghavan [Department of Mechanical and Materials Engineering, Wright State University, Dayton, Ohio 45435 (United States)

    2016-07-12

    In DMLS process objects are fabricated layer by layer from powdered material by melting induced by a controlled laser beam. Metallic powder melts and solidifies to form a single layer. Solidification map during layer formation is an important route to characterize micro-structure and grain morphology of sintered layer. Generally, solidification leads to columnar, equiaxed or mixture of these two types grain morphology depending on solidification rate and thermal gradient. Eutectic or dendritic structure can be formed in fully equiaxed zone. This dendritic growth has a large effect on material properties. Smaller dendrites generally increase ductility of the layer. Thus, materials can be designed by creating desired grain morphology in certain regions using DMLS process. To accomplish this, hardness, temperature distribution, thermal gradient and solidification cooling rate in processed layers will be studied under change of process variables by using finite element analysis, with specific application to Ti-6Al-4V.

  13. Sintering process of Eu doped luminescent glass prepared from porous glass

    International Nuclear Information System (INIS)

    Akai, T; Murakami, M; Yamashita, M; Okajima, T; Umesaki, N

    2011-01-01

    Eu doped high silica glass prepared by sintering porous glass exhibits blue luminescence with high quantum efficiency. In this work, we studied effects of sintering temperature on valance state of europium ion. To investigate a change of valance state of Eu, X-ray absorption near edge structure (XANES) spectroscopy measurements were carried out. Intensity of blue emission at around 430nm drastically increases when the sintering temperature is above 1000 deg. C. From XANES spectra, it is found that almost all the Eu exist as Eu 3+ in a samples sintered below 900 deg. C, while more than 70% of Eu exist as Eu 2+ in the sample sintered at 1050 deg. C and 1100 deg. C. The drastic change of oxidation state of europium ion between 900 and 1050 deg. C is discussed in relation to the structural change probed by infrared (IR) spectroscopy.

  14. Magnetic properties and phase evolution of sintered Nd-Fe-B magnets with intergranular addition of Pr–Co alloy

    International Nuclear Information System (INIS)

    Jin, Chaoxiang; Chen, Renjie; Yin, Wenzong; Tang, Xu; Wang, Zexuan; Ju, Jinyun; Lee, Don; Yan, Aru

    2016-01-01

    The magnetic properties, thermal stability and phase evolution of sintered Nd-Fe-B magnets with intergranular addition of Pr–Co were investigated. The thermal stabilities of coercivity and remanence were simultaneously enhanced without heavy rare earth elements, resulting from the partial substitution of Pr for Nd and Co for Fe in matrix phase, respectively. After Pr–Co addition, RE-rich phase reduced and new phases containing Pr and Co, such as (NdPr) (FeCo) 2 (NdPr) 3 (FeCo) and (NdPr) 2 (FeCo) 17 phases, were formed. With the increase of Pr–Co addition amount, intrinsic coercivity firstly decreased sharply which was mainly caused by the formation of soft ferromagnetic (NdPr) (FeCo) 2 phase, and subsequently presented a remarkable recovery induced by the formation of non-magnetic (NdPr) 3 (FeCo) phase and transformation of (NdPr) (FeCo) 2 phase from ferromagnetic to non-magnetic. Due to the reduction of matrix phase proportion, the remanence decreased monotonously after the addition of Pr–Co for more than 10 wt. %. - Highlights: • The improved thermal stabilities of coercivity and remanence were obtained. • An abnormal remarkable recovery of coercivity was found. • The evolution of Co-containing phases was clarified.

  15. Magnetic properties and phase evolution of sintered Nd-Fe-B magnets with intergranular addition of Pr–Co alloy

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Chaoxiang [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Enginnering, Chinese Academy of Sciences, Ningbo 315201 (China); Rare Earth Magnetic Materials Laboratory, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Chen, Renjie, E-mail: chenrj@nimte.ac.cn [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Enginnering, Chinese Academy of Sciences, Ningbo 315201 (China); Rare Earth Magnetic Materials Laboratory, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Yin, Wenzong; Tang, Xu; Wang, Zexuan; Ju, Jinyun [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Enginnering, Chinese Academy of Sciences, Ningbo 315201 (China); Rare Earth Magnetic Materials Laboratory, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Lee, Don [University of Dayton, Dayton OH (United States); Yan, Aru, E-mail: aruyan@nimte.ac.cn [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Enginnering, Chinese Academy of Sciences, Ningbo 315201 (China); Rare Earth Magnetic Materials Laboratory, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2016-06-15

    The magnetic properties, thermal stability and phase evolution of sintered Nd-Fe-B magnets with intergranular addition of Pr–Co were investigated. The thermal stabilities of coercivity and remanence were simultaneously enhanced without heavy rare earth elements, resulting from the partial substitution of Pr for Nd and Co for Fe in matrix phase, respectively. After Pr–Co addition, RE-rich phase reduced and new phases containing Pr and Co, such as (NdPr) (FeCo){sub 2} (NdPr){sub 3}(FeCo) and (NdPr){sub 2}(FeCo){sub 17} phases, were formed. With the increase of Pr–Co addition amount, intrinsic coercivity firstly decreased sharply which was mainly caused by the formation of soft ferromagnetic (NdPr) (FeCo){sub 2} phase, and subsequently presented a remarkable recovery induced by the formation of non-magnetic (NdPr){sub 3}(FeCo) phase and transformation of (NdPr) (FeCo){sub 2} phase from ferromagnetic to non-magnetic. Due to the reduction of matrix phase proportion, the remanence decreased monotonously after the addition of Pr–Co for more than 10 wt. %. - Highlights: • The improved thermal stabilities of coercivity and remanence were obtained. • An abnormal remarkable recovery of coercivity was found. • The evolution of Co-containing phases was clarified.

  16. Anisotropic powder from sintered NdFeB magnets by the HDDR processing route

    Energy Technology Data Exchange (ETDEWEB)

    Sheridan, R.S.; Sillitoe, R.; Zakotnik, M.; Harris, I.R. [School of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Williams, A.J., E-mail: a.j.williams@bham.ac.uk [School of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)

    2012-01-15

    Sintered NdFeB-based scrap magnets were recovered and processed using the HD and HDDR routes. The effects of varying the HDDR processing temperature were investigated (over the range 835-930 deg. C). The disproportion was carried out with a pressure ramp to a maximum of 1000 mbar hydrogen pressure with a 1 h hold time at each step and the optimum recombination conditions were set at 100 mbar with a 20 min hold time. Anisotropic NdFeB powder was produced in all cases with the best magnetic properties achieved at a processing temperature of 880 deg. C, producing powder with a remanence of 1.10({+-}0.02) T and an intrinsic coercivity of 800 ({+-}16) kA m{sup -1} and giving a (BH){sub max} of 129({+-}2.5) kJ m{sup -3}. - Highlights: > Production of anisotropic permanent magnet powder from scrap NdFeB magnets by HDDR. > Reaction pressure increases with increasing processing temperature. > Best magnetic properties achieved by processing at 880 deg. C.

  17. Anisotropic powder from sintered NdFeB magnets by the HDDR processing route

    International Nuclear Information System (INIS)

    Sheridan, R.S.; Sillitoe, R.; Zakotnik, M.; Harris, I.R.; Williams, A.J.

    2012-01-01

    Sintered NdFeB-based scrap magnets were recovered and processed using the HD and HDDR routes. The effects of varying the HDDR processing temperature were investigated (over the range 835-930 deg. C). The disproportion was carried out with a pressure ramp to a maximum of 1000 mbar hydrogen pressure with a 1 h hold time at each step and the optimum recombination conditions were set at 100 mbar with a 20 min hold time. Anisotropic NdFeB powder was produced in all cases with the best magnetic properties achieved at a processing temperature of 880 deg. C, producing powder with a remanence of 1.10(±0.02) T and an intrinsic coercivity of 800 (±16) kA m -1 and giving a (BH) max of 129(±2.5) kJ m -3 . - Highlights: → Production of anisotropic permanent magnet powder from scrap NdFeB magnets by HDDR. → Reaction pressure increases with increasing processing temperature. → Best magnetic properties achieved by processing at 880 deg. C.

  18. Morphological analysis and modelling of sintering and of sintered materials

    International Nuclear Information System (INIS)

    Jernot, Jean-Paul

    1982-01-01

    This research thesis addresses the study of solid phase sintering of metallic powders, and aims at describing as precisely as possible the different involved matter transport mechanisms, first by using a thermodynamic approach to sintering. Sintering diagrams are also used to determine prevailing mechanisms. The microstructure of sintered materials has been studied by using image quantitative analysis, thus by using a morphological approach to sintering. Morphological parameters allow, on the one hand, the evolution of powders during sintering to be followed, and, on the other hand, sintered products to be correctly characterised. Moreover, the author reports the study of the evolution of some physical properties of sintered materials with respect to their microstructure parameters. This leads to the development of a modelling of the behaviour of these materials [fr

  19. Formation of non-ferromagnetic grain boundary phase in a Ga-doped Nd-rich Nd–Fe–B sintered magnet

    International Nuclear Information System (INIS)

    Sasaki, T.T.; Ohkubo, T.; Takada, Y.; Sato, T.; Kato, A.; Kaneko, Y.; Hono, K.

    2016-01-01

    We have characterized the microstructures of as-sintered and optimally post-sinter annealed Nd-rich Ga-doped Nd–Fe–B magnets by scanning electron microscopy (SEM) and aberration-corrected scanning transmission electron microscopy (STEM). While the Nd 2 Fe 14 B grains in the as-sintered sample with a coercivity of 0.99 T are in direct contact with each other, those in the optimally annealed sample with a coercivity of 1.8 T are completely enveloped by typically 10-nm-thick Nd-rich phase that contains little Fe. This strongly suggests that the Nd 2 Fe 14 B grains in the optimally annealed Nd-rich Ga-doped Nd–Fe–B magnets are exchange decoupled in contrast to those in the commercial sintered magnets.

  20. Phase and Microstructural Correlation of Spark Plasma Sintered HfB2-ZrB2 Based Ultra-High Temperature Ceramic Composites

    Directory of Open Access Journals (Sweden)

    Ambreen Nisar

    2017-07-01

    Full Text Available The refractory diborides (HfB2 and ZrB2 are considered as promising ultra-high temperature ceramic (UHTCs where low damage tolerance limits their application for the thermal protection system in re-entry vehicles. In this regard, SiC and CNT have been synergistically added as the sintering aids and toughening agents in the spark plasma sintered (SPS HfB2-ZrB2 system. Herein, a novel equimolar composition of HfB2 and ZrB2 has shown to form a solid-solution which then allows compositional tailoring of mechanical properties (such as hardness, elastic modulus, and fracture toughness. The hardness of the processed composite is higher than the individual phase hardness up to 1.5 times, insinuating the synergy of SiC and CNT reinforcement in HfB2-ZrB2 composites. The enhanced fracture toughness of CNT reinforced composite (up to a 196% increment surpassing that of the parent materials (ZrB2/HfB2-SiC is attributed to the synergy of solid solution formation and enhanced densification (~99.5%. In addition, the reduction in the analytically quantified interfacial residual tensile stress with SiC and CNT reinforcements contribute to the enhancement in the fracture toughness of HfB2-ZrB2-SiC-CNT composites, mandatory for aerospace applications.

  1. Design of microreactor by integration of reverse engineering and direct metal laser sintering process

    Energy Technology Data Exchange (ETDEWEB)

    Bineli, Aulus Roberto Romao; Gimenez Perez, Ana Paula; Bernardes, Luiz Fernando; Munhoz, Andre Luiz Jardini; Maciel Filho, Rubens [Universidade de Campinas (LOPCA/UNICAMP), SP (Brazil). School of Chemical Engineering. Laboratory of Optimization, Design and Advanced Process Control], Email: aulus@feq.unicamp.br

    2010-07-01

    The propose of this work is to present high precision microfabrication facilities using computer aided technologies as Reverse Engineering (RE) and Rapid Manufacturing (RM) to analyze, design and construct micro reactors to produce high content hydrogen gas. Micro reactors are very compact, have a high surface to volume ratio, exhibit enhanced heat and mass transfer rates, denotes extremely low pressure drop and allow improved thermal integration in the processes involved. The main goals of micro reactors are the optimization of conventional chemical plants and low footprint, opening different ways to research new process technologies and synthesis of new products. In this work, a microchannels plate and housing structure of these plates were fabricated using DMLS method (Direct Metal Laser Sintering). The plates were analyzed to verify the minimum thickness wall that machine can produce, and the housing structure were digitalized, using a 3D scanning, to perform a 3D inspection and to verify the deflection of the constructed part in comparison with original CAD design models. It was observed that DMLS systems are able to produce micro reactors and microchannels plates with high precision at different metallic materials. However, it is important to choose appropriate conditions to avoid residual stresses and consequently warping parts. (author)

  2. A Review of Metal Injection Molding- Process, Optimization, Defects and Microwave Sintering on WC-Co Cemented Carbide

    Science.gov (United States)

    Shahbudin, S. N. A.; Othman, M. H.; Amin, Sri Yulis M.; Ibrahim, M. H. I.

    2017-08-01

    This article is about a review of optimization of metal injection molding and microwave sintering process on tungsten cemented carbide produce by metal injection molding process. In this study, the process parameters for the metal injection molding were optimized using Taguchi method. Taguchi methods have been used widely in engineering analysis to optimize the performance characteristics through the setting of design parameters. Microwave sintering is a process generally being used in powder metallurgy over the conventional method. It has typical characteristics such as accelerated heating rate, shortened processing cycle, high energy efficiency, fine and homogeneous microstructure, and enhanced mechanical performance, which is beneficial to prepare nanostructured cemented carbides in metal injection molding. Besides that, with an advanced and promising technology, metal injection molding has proven that can produce cemented carbides. Cemented tungsten carbide hard metal has been used widely in various applications due to its desirable combination of mechanical, physical, and chemical properties. Moreover, areas of study include common defects in metal injection molding and application of microwave sintering itself has been discussed in this paper.

  3. Processing of pure titanium containing titanium-based reinforcing ceramics additives using spark plasma sintering

    Directory of Open Access Journals (Sweden)

    Mondiu Olayinka DUROWOJU

    2017-06-01

    Full Text Available The densification behaviour, microstructural changes and hardness characteristics during spark plasma sintering of CP-Ti reinforced with TiC, TiN, TiCN and TiB2 were investigated. Commercially pure Ti powders were dry mixed with varied amounts (2.5 and 5 wt. % of the ceramic additives using a T2F Turbula mixer for 5 h and at a speed of 49 rpm. The blended composite powders were then sintered using spark plasma sintering system (model HHPD-25 from FCT Germany at a heating rate of 100oC min-1, dwell time of 5 min and sintering temperature of 950ºC. The sintering of CP-Ti was used as a base study to select the proper spark plasma sintering temperature for full density. Densification was monitored through analysis of the recorded punch displacement and the measured density of the sintered samples using Archimedes method. High densities ranging from 97.8% for 5% TiB2 addition to 99.6% for 5% TiCN addition were achieved at a relatively low temperature of 950°C. Microstructural analyses show a uniform distribution of the additives and finer structure showing their inhibitive effect on grain growth. An improved hardness was observed in all the cases with highest values obtained with TiCN as a result of the combined effect of TiC and TiN. A change in the fracture mode from trans granular to intergranular was also observed.

  4. Densification of silicon and zirconium carbides by a new process: spark plasma sintering; Densification des carbures de silicium et de zirconium par un procede innovant: le spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Guillard, F

    2006-12-15

    Materials research for suitable utilization in 4. generation nuclear plants needs new ways to densify testing components. Two carbides, silicon and zirconium carbide seems to be the most suitable choice due to their mechanical, thermal and neutron-transparency properties against next nuclear plant specifications. Nevertheless one main difficulty remains, which is densifying them even at high temperature. Spark Plasma Sintering a new metal-, ceramic- and composite-sintering process has been used to densify both SiC and ZrC. Understanding bases of mass transport mechanisms in SPS have been studied. Composites and interfaces have been processed and analyzed. This manuscript reports original results on SiC and ZrC ceramics sintered with commercial powder started, without additives. (author)

  5. Sinterable powders

    International Nuclear Information System (INIS)

    Zanghi, J.S.; Kasprzyk, M.R.

    1979-01-01

    A description is given of sinterable powders and methods of producing sintered products using such powders. The powders consist of (a) a particulate ceramic material, e.g. SiC, having specified particle size and surface area; (b) a carbon source material, e.g. sugar or a phenol-formaldehyde resin; and (c) a residue from a solution of H 3 BO 3 , B 2 O 3 , or mixtures of these as sintering aid. (U.K.)

  6. TiO2 doped UO2 fuels sintered by spark plasma sintering

    Science.gov (United States)

    Yao, Tiankai; Scott, Spencer M.; Xin, Guoqing; Lian, Jie

    2016-02-01

    UO2 fuels doped with oxide additives Cr2O3 and TiO2 display larger grain size, improving fission product retention capability and thus accident tolerance. Spark plasma sintering (SPS) was applied to consolidate TiO2-doped UO2 fuel pellets with 0.5 wt % dopant concentration, above its solubility, in order to induce eutectic phase formation and promote sintering kinetics. The grain size can reach 80 μm by sintering at 1700 °C for 20 min, and liquid U-Ti-O eutectic phase occurs at the triple junction of grain boundaries and significantly improves grain growth during sintering. The oxide additive also impedes the reduction of the initial hyperstoichiometric fuel powders to more stoichiometric fuel pellets upon SPS process. Thermal-mechanical properties of the sintered doped fuel pellets including thermal conductivity and hardness are measured and compared with undoped fuel pellets. The enlarged grain size (80 μm) and densification within short sintering duration highlight the immense possibility of SPS in fabricating large grained UO2 fuel pellets to improve fuel performance.

  7. Chemical reactions during sintering of Fe-Cr-Mn-Si-Ni-Mo-C-steels with special reference to processing in semi-closed containers

    Directory of Open Access Journals (Sweden)

    Cias A.

    2015-01-01

    Full Text Available Sintering of Cr, Mn and Si bearing steels has recently attracted both experimental and theoretical attention and processing in semiclosed containers has been reproposed. This paper brings together relevant thermodynamic data and considers the kinetics of some relevant chemical reactions. These involve iron and carbon, water vapour, carbon monoxide and dioxide, hydrogen and nitrogen of the sintering atmospheres and the alloying elements Cr, Mn, Mo and Si. The paper concludes by presenting mechanical properties data for three steels sintered in local microatmosphere with nitrogen, hydrogen, nitrogen-5% hydrogen and air as the furnace gas.

  8. Sintering of beryllium oxide

    International Nuclear Information System (INIS)

    Caillat, R.; Pointud, R.

    1955-01-01

    This study had for origin to find a process permitting to manufacture bricks of beryllium oxide of pure nuclear grade, with a density as elevated as possible and with standardized shape. The sintering under load was the technique kept for the manufacture of the bricks. Because of the important toxicity of the beryllium oxide, the general features for the preliminary study of the sintering, have been determined while using alumina. The obtained results will be able to act as general indication for ulterior studies with sintering under load. (M.B.) [fr

  9. Evaluation of microstructure and phase relations in a powder processed Ti-44Al-12Nb alloy

    International Nuclear Information System (INIS)

    Kumar, S.G.; Reddy, R.G.; Wu, J.; Holthus, J.

    1995-01-01

    Titanium aluminides based on the ordered face-centered tetragonal γTiAl phase possess attractive properties, such as low density, high melting point, good elevated temperature strength, modulus retention, and oxidation resistance, making these alloys potential high-temperature structural materials. These alloys can be processed by both ingot metallurgy and powder metallurgy routes. In the present study, three variations of the powder metallurgy route were studied to process a Ti-44Al-12Nb (at.%) alloy: (a) cold pressing followed by reaction sintering (CP process); (b) cold pressing, vacuum hot pressing, and then sintering (HP process); and (c) arc melting, hydride-dehydride process to make the alloy powder, cold isostatic pressing, and then sintering (AM process). Microstructural and phase relations were studied by x-ray diffraction (XRD) analysis, optical microscopy, scanning electron microscopy with an energy-dispersive spectrometer (SEM-EDS), and electron probe microanalysis (EPMA). The phases identified were Ti 3 Al and TiAl; an additional Nb 2 Al phase was observed in the HP sample. The microstructures of CP and HP processed samples are porous and chemically inhomogeneous whereas the AM processed sample revealed fine equiaxed microstructure. This refinement of the microstructure is attributed to the fine, homogeneous powder produced by the hydride-dehydride process and the high compaction pressures

  10. Effect of the variation-temperature-sintering on microstructure and superconducting properties of Bi-2223/Ag tapes in high magnetic fields

    International Nuclear Information System (INIS)

    Lu, X.Y.; Watanabe, K.; Yi, D.; Chen, H.; Nagata, A.

    2011-01-01

    The microstructure and superconducting properties of Bi-2223/Ag tapes fabricated in the variation-temperature-sintering process during high magnetic fields were investigated. The flat tapes 0.6 mm in thickness and 3 mm in width set on the an isolite holder were sintered in following conditions for 120 h in 10 T magnetic fields in air: (1) isothermal-temperature-sintering at 835 deg. C, (2) variation-temperature-sintering from 840 to 835 deg. C, (3) variation-temperature-sintering from 845 to 835 deg. C, (4) variation-temperature-sintering from 850 to 835 deg. C, (5) variation-temperature- sintering from 835 to 840 deg. C. The results show that the tapes variation-temperature-sintered from high temperature to low temperature show stronger c-axis alignment of the Bi-2223 phase and higher J c value than that isothermal-temperature-sintered and variation-temperature-sintered from low temperature to high temperature. However, the starting temperature (above 850 deg. C) of the variation-temperature-sintering from high temperature to low temperature is too high, the proportion of Bi-2223 phase decreases largely. The tape variation-temperature-sintered from 845 to 835 deg. C in a 10 T magnetic fields shows a strong c-axis alignment of the Bi-2223 phase, a high proportion of Bi-2223 phase, and the highest J c value.

  11. Structural and superconducting properties of PIT processed sintered MgB{sub 2}/Fe wires

    Energy Technology Data Exchange (ETDEWEB)

    Balamurugan, S.; Nakamura, T.; Osamura, K.; Muta, I.; Hoshino, T

    2004-10-01

    In this paper, we report the structural and superconducting properties of MgB{sub 2}/Fe wires that are produced by different sintering conditions. Good quality MgB{sub 2}/Fe wires are fabricated by the powder-in-tube (PIT) method using commercially available MgB{sub 2} powder at ambient pressure. In order to check the annealing effect, the different pieces of the as-rolled wires are sintered at 1323 K for 0.30-1.20 ks. XRD data confirms that they are hexagonal MgB{sub 2} structure. All the sintered samples show higher T{sub c} values in the range of 38.2-38.4 K with high J{sub c} than the as-rolled sample. No significant change in T{sub c} is seen among the annealed samples. On the other hand, the annealed samples show significant change in the J{sub c} values as well as in micro-structural features due to variable sintering time. On annealing at 1323 K for 0.60 ks, we obtain the best quality sample with a J{sub c} of 372 A/mm{sup 2} at 33.1 K in self-field with a maximum T{sub c} of 38.4 K. Among the annealed samples, 1.20 ks sample shows lower J{sub c}. Longer annealing time reduced J{sub c}, indicating a possible interfacial reaction between the Fe sheath and the MgB{sub 2} core.

  12. Lithium and rubidium extraction from zinnwaldite by alkali digestion process: Sintering mechanism and leaching kinetics

    Czech Academy of Sciences Publication Activity Database

    Vu, H.; Bernardi, J.; Jandová, J.; Vaculíková, Lenka; Goliáš, V.

    2013-01-01

    Roč. 123, č. 1 (2013), s. 9-17 ISSN 0301-7516 R&D Projects: GA MŠk ED2.1.00/03.0082 Institutional support: RVO:68145535 Keywords : zinnwaldite * lithium * rubidium * sintering mechanism * leaching kinetics Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 1.461, year: 2013 http://www.sciencedirect.com/science/article/pii/S0301751613001087

  13. Embrittling Components in Sintered Steels: Comparison of Phosphorus and Boron

    Science.gov (United States)

    Danninger, Herbert; Vassileva, Vassilka; Gierl-Mayer, Christian

    2017-12-01

    In ferrous powder metallurgy, both boron and phosphorus have been known to be sintering activators for a long time. However, the use has been widely different: while P is a standard additive to sintered iron and steels, boron has been frequently studied, but its use in practice is very limited. Both additives are also known to be potentially embrittling, though in a different way. In the present study the differences between the effects of both elements are shown: while P activates sintering up to a certain threshold, in part by stabilizing ferrite, in part by forming a transient liquid phase, boron is the classical additive enhancing persistent liquid phase, being virtually insoluble in the iron matrix. The consequence is that sintered steels can tolerate quite a proportion of phosphorus, depending on composition and sintering process; boron however is strongly embrittling in particular in combination with carbon, which requires establishing a precisely defined content that enhances sintering but is not yet embrittling. The fracture mode of embrittled materials is also different: while with Fe-P the classical intergranular fracture is observed, with boron a much more rugged fracture surface appears, indicating some failure through the eutectic interparticle network but mostly transgranular cleavage. If carbon is added, in both cases transgranular cleavage dominates even in the severely embrittled specimens, indicating that no more the grain boundaries and sintering necks are the weakest links in the systems.

  14. Microwave-assisted sintering of non-stoichiometric strontium bismuth niobate ceramic: Structural and dielectric properties

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Rajveer [Department of Physics and Astrophysics, University of Delhi, New Delhi 110007 (India); Department of Physics, Atmaram Sanatan Dharma College, University of Delhi, Dhaula Kuan, New Delhi 110021 (India); Luthra, Vandna [Department of Physics, Gargi College, University of Delhi, Siri Fort Road, New Delhi 110049 (India); Tandon, R.P., E-mail: ram_tandon@hotmail.com [Department of Physics and Astrophysics, University of Delhi, New Delhi 110007 (India)

    2016-11-01

    In recent years the microwave sintering has been utilized for the synthesis of materials in enhancement of the properties. In this paper strontium bismuth niobate (Sr{sub 0.8}Bi{sub 2.2}Nb{sub 2}O{sub 9}:SBN) bulk ceramic has been synthesized by microwave reactive sintering and conventional heating techniques. A relative density of 99.6% has been achieved for microwave sintered SBN, which is higher than that of (98.81%) conventionally sintered SBN. The phase formation of SBN synthesized by both processes has been confirmed by X-ray diffraction (XRD). The surface morphology of SBN was observed by scanning electron microscopy (SEM). The microstructure was found to be more uniform in case of SBN sintered by microwave sintering. The dielectric properties of SBN were studied as a function of frequency in the temperature range of 30–500 °C. Both the samples synthesized by two different processes were found to follow Curie–Weiss law above the transition temperature. The Curie temperature was found to be higher for microwave sintered SBN. The dielectric constant and the transition temperature were observed to be higher for SBN ceramic synthesized by microwave sintering technique. The ac and dc activation energy values were also found to be higher for microwave sintered SBN as compared to conventional sintering technique.

  15. Two-step flash light sintering of copper nanoparticle ink to remove substrate warping

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Chung-Hyeon; Joo, Sung-Jun [Department of Mechanical Convergence Engineering, Hanyang University, Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Kim, Hak-Sung, E-mail: kima@hanyang.ac.kr [Department of Mechanical Convergence Engineering, Hanyang University, Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Institute of Nano Science and Technology, Hanyang University, Seoul, 133-791 (Korea, Republic of)

    2016-10-30

    Highlights: • We performed the two-step flash light sintering for copper nanoparticle ink to remove substrate warping. • 12 J/cm{sup 2} of preheating and 7 J/cm{sup 2} of main sintering energies were determined as optimum conditions to sinter the copper nanoparticle ink. • The resistivity of two-step sintered copper nanoparticle ink was 3.81 μΩ cm with 5B adhesion level, 2.3 times greater than that of bulk copper. • The two-step sintered case showed a high conductivity without any substrate warping. - Abstract: A two-step flash light sintering process was devised to reduce the warping of polymer substrates during the sintering of copper nanoparticle ink. To determine the optimum sintering conditions of the copper nanoparticle ink, the flash light irradiation conditions (pulse power, pulse number, on-time, and off-time) were varied and optimized. In order to monitor the flash light sintering process, in situ resistance and temperature monitoring of copper nanoink were conducted during the flash light sintering process. Also, a transient heat transfer analysis was performed by using the finite-element program ABAQUS to predict the temperature changes of copper nanoink and polymer substrate. The microstructures of the sintered copper nanoink films were analyzed by scanning electron microscopy. Additionally, an X-ray diffraction and Fourier transform infrared spectroscopy were used to characterize the crystal phase change of the sintered copper nanoparticles. The resulting two-step flash light sintered copper nanoink films exhibited a low resistivity (3.81 μΩ cm, 2.3 times of that of bulk copper) and 5B level of adhesion strength without warping of the polymer substrate.

  16. Salt-soda sinter process for recovering aluminum from fly ash

    Science.gov (United States)

    McDowell, W.J.; Seeley, F.G.

    A method for recovering aluminum values from fly ash comprises sintering the fly ash with a mixture of NaCl and Na/sub 2/CO/sub 3/ to a temperature in the range 700/sup 0/ to 900/sup 0/C for a period of time sufficient to convert greater than 90% of the aluminum content of the fly ash into an acidsoluble fraction and then contacting the thus-treated fraction with an aqueous solution of nitric or sulfuric acid to effect dissolution of aluminum and other metal values in said solution.

  17. Evaluation of liquid-phase sintering SiC using as additive the system Al2O3/DyO3

    International Nuclear Information System (INIS)

    Oliveira, M.R.; Atilio, I.; Garcia, G.C.R.; Ribeiro, S.

    2012-01-01

    The objective of this work was to study the liquid-phase sintering SiC with additives that has not been studied yet, Al 2 O 3 /Dy 2 O 3 , with 10% in volume. The powders were mixed, dried, and pressed in uniaxial and isostatic pressing. It was studied the melting temperature of the additives and bars were sintered at temperatures of 1900, 1950 e 2000 deg C, with averaged linear shrinkage of 17%, phase transformations of β-SiC into α-SiC and formation of Dy 3 Al 5 O 12 at all temperatures. The results showed that for further densification, the temperature of 1950 deg C is enough for a higher densification, with a low wetting angle, transformations of SiC and formation of Dy 3 Al 5 O 12 . (author)

  18. Atmospheric Processing of Perovskite Solar Cells Using Intense Pulsed Light Sintering

    Science.gov (United States)

    Ankireddy, Krishnamraju; Lavery, Brandon W.; Druffel, Thad

    2018-02-01

    Atmospheric processing of metal-organic halide perovskite materials is highly desirable for large-scale manufacturing of solar cells. Atmospheric deposition and thermal processing of perovskite thin films for photovoltaic applications facilitated via rapid intense pulsed light (IPL) processing have been carried out. The interplay between the deposition chemistry, process, and IPL parameters to produce a functional photoactive thin film is discussed. Further addition of polyvinylpyrrolidone (PVP) as functional surfactant is explored to influence grain growth during the IPL process. Structural analysis by x-ray diffraction revealed formation of mixed-phase perovskite crystals from methylammonium chloride and lead iodide precursors. Ultraviolet-visible (UV-Vis) spectroscopy indicated that the light absorption by the perovskite films lay within a narrow band of the visible spectrum with bandgap of 2.9 eV. Scanning electron microscopy characterization of the surface morphology of the perovskite films revealed that addition of PVP to the ink chemistry assisted the IPL process in forming a fully covered surface with clearly defined grains. Functional devices with perovskite thin film processed by IPL under fully atmospheric conditions were demonstrated.

  19. Spray Drying as a Processing Technique for Syndiotactic Polystyrene to Powder Form for Part Manufacturing Through Selective Laser Sintering

    Science.gov (United States)

    Mys, N.; Verberckmoes, A.; Cardon, L.

    2017-03-01

    Selective laser sintering (SLS) is a rapidly expanding field of the three-dimensional printing concept. One stumbling block in the evolution of the technique is the limited range of materials available for processing with SLS making the application window small. This article aims at identifying syndiotactic polystyrene (sPS) as a promising material. sPS pellets were processed into powder form with a lab-scale spray dryer with vibrating nozzle. This technique is the focus of this scope as it almost eliminates the agglomeration phenomenon often encountered with the use of solution-based processing techniques. Microspheres obtained were characterized in shape and size by scanning electron microscopy and evaluation of the particle size distribution. The effect the processing technique imparts on the intrinsic properties of the material was examined by differential scanning calorimetry analysis.

  20. Mechanical properties of fine-grained sintered molybdenum alloy processed by mechanical alloying

    International Nuclear Information System (INIS)

    Takida, T.; Kurishita, H.; Mabuchi, M.; Igarashi, T.; Doi, Y.; Nagae, T.

    2001-01-01

    In order to improve the low-temperature toughness and room- and high-temperature strengths of molybdenum (Mo), sintered Mo alloys with fine grains and fine, dispersed particles were fabricated by hot isostatic pressing of spark plasma sintering with mechanically alloyed powder of Mo and 0.8 mol % ZrC or TaC (designated ZRC08 and TAC08). The fabricated Mo alloys showed no significant grain growth even after annealing at 2470 K for 3.6 ks due to the pinning effect of the particles against grain boundary migration. For the Mo alloys the impact three-point bending test was performed at 270 to 470 K and at 5 m s -1 and the static tensile test at 300 to 1970 K and at 4.2 x 10 - % to 8.3 x 10-2 s -1 . The fabricated alloys exhibited lower ductile-to brittle transition temperatures and higher tensile strengths up to 1770 K than fully recrystallized pure Mo. In particular, TAC08 was superior in low-temperature toughness and ZRC08 was superior in room- and high-temperature strengths. Furthermore, ZRC08 showed a large elongation of 551 % at 1770 K. These excellent mechanical properties of the fabricated Mo alloys are attributable to the fine-grained microstructure and grain-boundary strengthening by the fine particles. (author)

  1. The influence of sintering conditions on the phase purity of bulk EuTiO.sub.3./sub. and Eu.sub.0.5./sub.Ba.sub.0.5./sub.TiO.sub.3./sub. ceramics

    Czech Academy of Sciences Publication Activity Database

    Maca, K.; Kachlik, M.; Vaněk, Přemysl; Gautam, D.; Winterer, M.

    2013-01-01

    Roč. 86, č. 7 (2013), s. 737-747 ISSN 0141-1594 Institutional support: RVO:68378271 Keywords : europium titanate * sintering * phase purity * thermodynamics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.044, year: 2013

  2. Master Sintering Surface: A practical approach to its construction and utilization for Spark Plasma Sintering prediction

    Directory of Open Access Journals (Sweden)

    Pouchly V.

    2012-01-01

    Full Text Available The sintering is a complex thermally activated process, thus any prediction of sintering behaviour is very welcome not only for industrial purposes. Presented paper shows the possibility of densification prediction based on concept of Master Sintering Surface (MSS for pressure assisted Spark Plasma Sintering (SPS. User friendly software for evaluation of the MSS is presented. The concept was used for densification prediction of alumina ceramics sintered by SPS.

  3. Caracterização de cerâmicas sinterizadas por fluxo viscoso Phase formation of viscous flow sintered ceramics

    Directory of Open Access Journals (Sweden)

    C. Gibertoni

    2005-12-01

    Full Text Available Este trabalho visou o estudo de cerâmicas sinterizadas por fluxo viscoso com ênfase na formação de fases e desenvolvimento microestrutural. Foram estudadas composições de grês porcelanato, preparadas a partir de mistura de argila plástica, caulim, feldspato, quartzo e talco: i uma composição baseada em formulação encontrada em literatura, e ii composições preparadas com a finalidade de se observar o efeito da adição de um formador de fase vítrea obtido em laboratório, em substituição ao feldspato. A formação de uma grande quantidade de fase líquida viscosa, durante o processo de queima do grês porcelanato a elevadas temperaturas, favoreceu a eliminação da maioria dos poros e, como conseqüência, a densificação do corpo. A adição da fase vítrea resultou em amostras com boas propriedades físicas e necessidade de menores temperaturas de queima. Portanto, é possível substituir a matéria-prima de maior custo - o feldspato - por uma fase vítrea inerte, sem comprometimento do processamento, propriedades físicas e estéticas do produto final.This work describes an investigation carried out for ceramics sintered by viscous flow with emphasis on phase formation and microstructural development. In this work, compositions prepared by mixing ball clay, kaolin, feldspar, quartz and talc were studied They consisted of a composition based on the formulation of stoneware tileand reported in the literature and compositions intentionally prepared to observe the effect of the addition of a vitreous phase former, replacing feldspar on the phase formation and final characteristics. The formation of a great amount of liquid viscous phase during the firing process of the stoneware tiles at high temperatures provided the elimination of the majority of the pores and, consequently, the densification of the body. The addition of vitreous phase former resulted in samples with good physical properties fired at relatively low temperatures

  4. Sintering of Synroc D

    International Nuclear Information System (INIS)

    Robinson, G.

    1982-01-01

    Sintering has been investigated as a method for the mineralization and densification of high-level nuclear defense waste powder. Studies have been conducted on Synroc D composite powder LS04. Optimal densification has been found to be highly dependent on the characteristics of the starting material. Powder subjected to milling, which was believed to reduce the level of agglomeration and possibly particle size, was found to densify better than powder not subjected to this milling. Densities of greater than 95% of theoretical could be achieved for samples sintered at 1150 to 1200 0 C. Mineralogy was found to be as expected for Synroc D for samples sintered in a CO 2 /CO atmosphere where the Fe +2 /Fe +3 ratio was maintained at 1.0 to 5.75. In a more oxidizing, pure CO 2 atmosphere a new phase, not previously identified in Synroc D, was found

  5. Measurements of the elastic stiffness constants of single-crystal SmCo5 and of liquid-phase sintered SmCo5 permanent magnet material

    International Nuclear Information System (INIS)

    Doane, D.A.

    1977-01-01

    The five elastic stiffness constants were determined for both single-crystal SmCo 5 and for the commercially processed liquid-phase sintered (LPS) SmCo 5 permanent magnet material. The LPS material is an aligned polycrystalline aggregate of SmCo 5 crystallites oriented so that their magnetically easy c axes are approximately parallel. The elastic constants were obtained from the velocities of propagation of ultrasound in various directions in samples of known thickness and density. For the single crystal, the room-temperature values of the constants (in units of 10 12 dyn/cm 2 ) are c 11 =1.968 +- 2%, c 12 =1.032 +- 4%, c 13 =1.049 +- 4%, c 33 =2.398 +- 2%, and c 44 =0.483 +- 2%, and for the LPS permanent magnet material, c 11 =1.330 +- 2%, c 12 =0.616 +- 5%, c 13 =0.485 +- 5%, c 33 =1.659 +- 2%, and c 44 =0.419 +- 2%. The decrease in elastic constants in SmCo 5 relative to cobalt can be related qualitatively to a corresponding decrease in the number of nearest-neighbor cobalt bonds in SmCo 5

  6. Fabrication of Mg2Si thermoelectric materials by mechanical alloying and spark-plasma sintering process.

    Science.gov (United States)

    Lee, Chung-Hyo; Lee, Seong-Hee; Chun, Sung-Yong; Lee, Sang-Jin

    2006-11-01

    A mixture of pure Mg and Si powders with an atomic ratio 2:1 has been subjected to mechanical alloying (MA) at room temperature to prepare the Mg2Si thermoelectric material. Mg2Si intermetallic compound with a grain size of 50 nm can be obtained by MA of Mg66.7Si33.3 powders for 60 hours and subsequently annealed at 620 degrees C. Consolidation of the MA powders was performed in a spark plasma sintering (SPS) machine using graphite dies up to 800-900 degrees C under 50 MPa. The shrinkage of consolidated samples during SPS was significant at about 250 degrees and 620 degrees C. X-ray diffraction data shows that the SPS compact from 60 h MA powders consolidated up to 800 degrees C consists of only nanocrystalline Mg2Si compound with a grain size of 100 nm.

  7. The sintering of nitrogen ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Hampshire, S.

    1986-01-01

    The mechanism of densification with oxide additives and the role of the ..cap alpha..-BETA phase transformation is investigated in a detailed kinetic study. Selected compositions in the Si-Al-O-N system are detailed, with and without additives. Although the work is mainly concerned with the identification of the mechanisms of sintering, some property measurements on a sintered BETA-sialon are reported and the feasibility of preparing pure ..cap alpha..-sialon phases is explored.

  8. Study on Formation Mechanism of Fayalite (Fe2SiO4) by Solid State Reaction in Sintering Process

    Science.gov (United States)

    Wang, Zhongbing; Peng, Bing; Zhang, Lifeng; Zhao, Zongwen; Liu, Degang; Peng, Ning; Wang, Dawei; He, Yinghe; Liang, Yanjie; Liu, Hui

    2017-12-01

    The sintering behaviors among SiO2, FeS and Fe3O4 were detected to reveal the formation mechanism of Fe2SiO4. The results indicated that the formation mechanism is divided into five steps: (1) migration of O2- induced by S2- under a reducing atmosphere; (2) formation of Fe3O4-β ; (3) migration of Fe(II) into a ferrite cluster structure to gain oxygen and form Fe3-x O4; (4) Fe(II) invaded the silicon atomic position and released Si(IV); and (5) formation of the stable structure of Fe2SiO4 through chemical diffusion between cations of Fe(II) and Si(IV). These findings can provide theoretical support for controlling the process of the recovery of valuable metals in copper slag through the combined roasting modification-magnetic separation process.

  9. Study on Formation Mechanism of Fayalite (Fe2SiO4) by Solid State Reaction in Sintering Process

    Science.gov (United States)

    Wang, Zhongbing; Peng, Bing; Zhang, Lifeng; Zhao, Zongwen; Liu, Degang; Peng, Ning; Wang, Dawei; He, Yinghe; Liang, Yanjie; Liu, Hui

    2018-04-01

    The sintering behaviors among SiO2, FeS and Fe3O4 were detected to reveal the formation mechanism of Fe2SiO4. The results indicated that the formation mechanism is divided into five steps: (1) migration of O2- induced by S2- under a reducing atmosphere; (2) formation of Fe3O4- β ; (3) migration of Fe(II) into a ferrite cluster structure to gain oxygen and form Fe3- x O4; (4) Fe(II) invaded the silicon atomic position and released Si(IV); and (5) formation of the stable structure of Fe2SiO4 through chemical diffusion between cations of Fe(II) and Si(IV). These findings can provide theoretical support for controlling the process of the recovery of valuable metals in copper slag through the combined roasting modification-magnetic separation process.

  10. Preparation of silicon carbide/carbon fiber composites through high-temperature spark plasma sintering

    Directory of Open Access Journals (Sweden)

    Ehsan Ghasali

    2017-12-01

    Full Text Available This study discusses the potentials of spark plasma sintering (SPS integrated with high temperature process that can enable sintering of SiC/Cf composites without any sintering aids. The random distribution of carbon fibers was obtained through mixing composite components in ethanol by using a shaker mill for 10 min. The corresponding sintering process was carried out at 1900 and 2200 °C with 50 MPa pressure applied at maximum temperature. The results showed that 89 ± 0.9 and 97 ± 0.8% of the theoretical density can be obtained for sintering temperatures of 1900 and 2200 °C, respectively. The densification curves were plotted to monitor sintering behavior with punch displacement changes. The appropriate bonding between SiC particles and carbon fibers was detected using FE-SEM for sample which was sintered at 2200 °C. The clear maximum in hardness (2992 ± 33 Vickers, bending strength (427 ± 26 MPa and fracture toughness (4.2 ± 0.3 MPa m1/2 were identified for sample sintered at 2200 °C. XRD investigations supposed that SiC and carbon were the only crystalline phases in both sintered samples.

  11. Particle rearrangement during liquid phase sintering of several carbide-metal combinations

    International Nuclear Information System (INIS)

    Huppmann, W.J.; Petzow, G.

    1977-01-01

    An investigation was conducted to study the influence of mutual solubility of the components on total rearrangement shrinkage. The explanation for large differences in rearrangement shrinkage of the carbide compacts investigated in this work may be as follows: In systems with negligible intersolubility and hence pronounced surface roughness the mechanical activation energy necessary for massive regrouping cannot be supplied and therefore only very small rearrangement shrinkage is observed. On the other hand those systems with large intersolubility and hence rapid particle smoothening undergo severe rearrangement because the mechanical activation energy for this process can be easily supplied by the energy gained during densification

  12. The influence of green microstructure and sintering parameters on precipitation process during copper-nickel-zinc ferrites sintering; Influencia de la microestructura en verde y de las variables de sinterizacion en el proceso de precipitacion producido durante la sinterizacion de ferritas de cobre-niquel-cinc

    Energy Technology Data Exchange (ETDEWEB)

    Barba, A.; Clausell, C.; Jarque, J. C.; Monzo, M.

    2014-04-01

    Microstructural changes that occur during heat treatment of copper-nickel-zinc ferrites have been studied. The process of precipitation of the two types of crystals that occur during the sintering process has been analyzed. It is found that this process depends on dry relative density of the press specimens and on the following sintering parameters: sintering temperature, sintering time and cooling rate of the thermal cycle. Crystal precipitates characterization have been done by scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) analysis, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). These techniques have allowed to determine the nature of these crystals, which in this case correspond to zinc and copper oxides. It has been used two chemical reactions to explain the bulk precipitation and subsequent re-dissolution of these crystal precipitates during sintering. (Author)

  13. Examination of the sintering process dependent micro- and nanostructure of TiO2 on textile substrates

    Science.gov (United States)

    Herrmann, Andreas; Fiedler, Johannes; Ehrmann, Andrea; Grethe, Thomas; Schwarz-Pfeiffer, Anne; Blachowicz, Tomasz

    2016-04-01

    Eco-friendly and sustainable power generation is one of the important aims of our time. Harvesting renewable energy can, e.g., be done by solar cells. For the integration in textiles, developing solar cells with typical textile haptics and pliability would be ideal. Additionally, textile solar cells should be created from low-purity materials in low-cost processes to be compatible with the textile industry. Thus, dye sensitized solar cells are ideal candidates for the integration of solar cell technology into textiles. In a recent project, we systematically test different material systems applied on textiles in which all functional layers are varied. One of the most crucial points is the sintering process of TiO2 which is only possible on a few textile materials. Additionally, the TiO2 coating itself contains the risk of being not completely isolating, allowing for dye and electrolyte or textile fibers penetrating through this layer and reaching the front electrode. This can result in short circuits or undesired counteracting voltages and currents. The article shows how different coating and sintering technologies of TiO2 on glass and textile fabrics influence the structures of the respective layers on different scales. It illustrates the differences between glass and textile fabrics in terms of the coating process and the resulting layer properties. Time-dependent measurements of open-circuit voltages and efficiencies show the physical implications of variations of the TiO2 layer structure and the resulting inner surfaces. In this way, we depict the different effects arising from undesired modifications of the TiO2 layer structure.

  14. Magnetism in grain-boundary phase of a NdFeB sintered magnet studied by spin-polarized scanning electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kohashi, Teruo, E-mail: teruo.kohashi.fc@hitachi.com; Motai, Kumi [Central Research Laboratory, Hitachi, Ltd., Hatoyama, Saitama 350-0395 (Japan); Nishiuchi, Takeshi; Hirosawa, Satoshi [Magnetic Materials Research Laboratory, Hitachi Metals Ltd., Osaka 618-0013 (Japan)

    2014-06-09

    The magnetism in the grain-boundary phase of a NdFeB sintered magnet was measured by spin-polarized scanning electron microscopy (spin SEM). A sample magnet was fractured in the ultra-high-vacuum chamber to avoid oxidation, and its magnetizations in the exposed grain-boundary phase on the fracture surface were evaluated through the spin polarization of secondary electrons. Spin-SEM images were taken as the fracture surface was milled gradually by argon ions, and the magnetization in the grain-boundary phase was quantitatively obtained separately from that of the Nd{sub 2}Fe{sub 14}B phase. The obtained magnetization shows that the grain-boundary phase of this magnet has substantial magnetization, which was confirmed to be ferromagnetic.

  15. Laser sintering of copper nanoparticles

    International Nuclear Information System (INIS)

    Zenou, Michael; Saar, Amir; Ermak, Oleg; Kotler, Zvi

    2014-01-01

    Copper nanoparticle (NP) inks serve as an attractive potential replacement to silver NP inks in functional printing applications. However their tendency to rapidly oxidize has so far limited their wider use. In this work we have studied the conditions for laser sintering of Cu-NP inks in ambient conditions while avoiding oxidation. We have determined the regime for stable, low-resistivity copper (< ×3 bulk resistivity value) generation in terms of laser irradiance and exposure duration and have indicated the limits on fast processing. The role of pre-drying conditions on sintering outcome has also been studied. A method, based on spectral reflectivity measurements, was used for non-contact monitoring of the sintering process evolution. It also indicates preferred spectral regions for sintering. Finally, we illustrated how selective laser sintering can generate high-quality, fine line (<5 µm wide) and dense copper circuits. (paper)

  16. Analysis of the demagnetization process of Nd-Fe-B sintered magnets at elevated temperatures by magnetic domain observation using a Kerr microscope

    Science.gov (United States)

    Takezawa, M.; Ogimoto, H.; Kimura, Y.; Morimoto, Y.

    2014-05-01

    Magnetization reversal and its propagation in sintered Nd-Fe-B magnets were clearly observed at elevated temperatures up to 150 °C using a Kerr microscope, image processing, and photo editing. Simultaneous magnetization reversal in several grains along the easy axis direction occurred at elevated temperature, and the extent of simultaneous magnetization reversal increased with temperature. This indicates that reduction in the coercivity of Nd-Fe-B sintered magnets at elevated temperatures is attributable to decrease in anisotropy and insufficient pinning of domain walls at grain boundaries.

  17. Production of sintered alumina from powder; optimization of the sinterized parameters for the maximum mechanical resistence

    International Nuclear Information System (INIS)

    Rocha, J.C. da.

    1981-02-01

    Pure, sinterized alumina and the optimization of the parameters of sinterization in order to obtain the highest mechanical resistence are discussed. Test materials are sinterized from a fine powder of pure alumina (Al 2 O 3 ), α phase, at different temperatures and times, in air. The microstructures are analysed concerning porosity and grain size. Depending on the temperature or the time of sinterization, there is a maximum for the mechanical resistence. (A.R.H.) [pt

  18. Processing of Polysulfone to Free Flowing Powder by Mechanical Milling and Spray Drying Techniques for Use in Selective Laser Sintering

    Directory of Open Access Journals (Sweden)

    Nicolas Mys

    2016-04-01

    Full Text Available Polysulfone (PSU has been processed into powder form by ball milling, rotor milling, and spray drying technique in an attempt to produce new materials for Selective Laser Sintering purposes. Both rotor milling and spray drying were adept to make spherical particles that can be used for this aim. Processing PSU pellets by rotor milling in a three-step process resulted in particles of 51.8 μm mean diameter, whereas spray drying could only manage a mean diameter of 26.1 μm. The resulting powders were characterized using Differential Scanning Calorimetry (DSC, Gel Permeation Chromatography (GPC and X-ray Diffraction measurements (XRD. DSC measurements revealed an influence of all processing techniques on the thermal behavior of the material. Glass transitions remained unaffected by spray drying and rotor milling, yet a clear shift was observed for ball milling, along with a large endothermic peak in the high temperature region. This was ascribed to the imparting of an orientation into the polymer chains due to the processing method and was confirmed by XRD measurements. Of all processed powder samples, the ball milled sample was unable to dissolve for GPC measurements, suggesting degradation by chain scission and subsequent crosslinking. Spray drying and rotor milling did not cause significant degradation.

  19. Boric oxide or boric acid sintering aid for sintering ceramics

    International Nuclear Information System (INIS)

    Lawler, H.A.

    1979-01-01

    The invention described relates to the use of liquid sintering aid in processes involving sintering of ceramic materials to produce dense, hard articles having industrial uses. Although the invention is specifically discussed in regard to compositions containing silicon carbide as the ceramic material, other sinterable carbides, for example, titanium carbide, may be utilized as the ceramic material. A liquid sintering aid for densifying ceramic material is selected from solutions of H 3 BO 3 , B 2 O 3 and mixtures of these solutions. In sintering ceramic articles, e.g. silicon carbide, a shaped green body is formed from a particulate ceramic material and a resin binder, and the green body is baked at a temperature of 500 to 1000 0 C to form a porous body. The liquid sintering aid of B 2 O 3 and/or H 3 BO 3 is then dispersed through the porous body and the treated body is sintered at a temperature of 1900 to 2200 0 C to produce the sintered ceramic article. (U.K.)

  20. Improved HDDR processing route for production of anisotropic powder from sintered NdFeB type magnets

    Energy Technology Data Exchange (ETDEWEB)

    Sheridan, R.S.; Williams, A.J.; Harris, I.R.; Walton, A., E-mail: a.walton@bham.ac.uk

    2014-01-15

    The hydrogenation disproportionation desorption recombination (HDDR) process has been investigated as a possible means of producing bonded magnets from used NdFeB-type sintered magnets with compositions, Nd{sub 13.4}Dy{sub 0.8}Al{sub 0.7}Nb{sub 0.3}Fe{sub 78.5}B{sub 6.3} and Nd{sub 12.5}Dy{sub 1.8}Al{sub 0.9}Nb{sub 0.6}Co{sub 5.0}Fe{sub 72.8}B{sub 6.4} (atomic%). It has been shown that by increasing the processing temperature, an increase in the equilibrium pressure for disproportionation and in the overall reaction time was observed. The magnetic properties of the lower Dy content magnet were affected significantly by the change in processing temperature with a peak in properties observed at 880 °C producing magnetic powder with a remanence of 1.08 (±0.02) T, a coercivity of 840 (±17) kA m{sup −1}, and a maximum energy product of 175 (±2.5) kJ m{sup −3}. Further work on magnets with a significantly higher Dy content has shown that simultaneous processing of sintered magnets with varying compositions can be achieved by increasing the hydrogen pressure, however a range of magnetic properties are produced depending on the initial compositions of the samples in the input feed. - Highlights: • Reduced oxidation during the HDDR processing in this work compared to the previous paper resulted in a powder with a higher coercivity. • Increasing the hydrogen pressure for disproportionation allowed for Dy, Co rich NdFeB compositions to be processed. • Mixed compositions (which will be typical from “real scrap”) can be processed simultaneously in the same equipment. • Mixed feeds produced lower magnetic properties due to overprocessing of the low Dy content compositions.

  1. Effects of surrounding powder in sintering process on the properties of Sb and Mn- doped barium-strontium titanate PTCR ceramics

    Directory of Open Access Journals (Sweden)

    Pornsuda Bomlai

    2006-05-01

    Full Text Available In this research, the effects of surrounding powder used during sintering of Sb and Mn doped bariumstrontium titanate (BST ceramics were studied. The ceramic samples were prepared by a conventional mixed-oxide method and placed on different powders during sintering. Phase formation, microstructure and PTCR behavior of the samples were then observed. Microstructures and PTCR behavior varied with the type of surrounding powder, whereas the crystal structure did not change. The surrounding powder has more effects on the shape of the grain than on the size. The grain size of samples was in the range of 5-20 μm. The most uniform grain size and the highest increase of the ratio of ρmax/ρRT were found to be about 106 for samples which had been sintered on Sb-doped BST powder. This value was an order of magnitude greater than for samples sintered on a powder of the equivalent composition to that of the sample pellet.

  2. Determination of the apparent porosity level of refractory concrete during a sintering process using an ultrasonic pulse velocity technique and image analysis

    Directory of Open Access Journals (Sweden)

    LJUBICA M. PAVLOVIĆ

    2010-03-01

    Full Text Available Concrete which undergoes a thermal treatment before (pre-casted concrete blocks and during (concrete embedded in-situ its life-service can be applied in plants operating at high temperature and as thermal insulation. Sintering is a process which occurs within a concrete structure in such conditions. Progression of sintering process can be monitored by the change of the porosity parameters determined with a nondestructive test method - ultrasonic pulse velocity and computer program for image analysis. The experiment has been performed on the samples of corundum and bauxite concrete composites. The apparent porosity of the samples thermally treated at 110, 800, 1000, 1300 and 1500 C was primary investigated with a standard laboratory procedure. Sintering parameters were calculated from the creep testing. The loss of strength and material degradation occurred in concrete when it was subjected to the increased temperature and a compressive load. Mechanical properties indicate and monitor changes within microstructure. The level of surface deterioration after the thermal treatment was determined using Image Pro Plus program. Mechanical strength was estimated using ultrasonic pulse velocity testing. Nondestructive ultrasonic mea¬surement was used as a qualitative description of the porosity change in specimens which is the result of the sintering process. The ultrasonic pulse velocity technique and image analysis proved to be reliable methods for monitoring of micro-structural change during the thermal treatment and service life of refractory concrete.

  3. Discussion on the Local Magnetic Force between Reversely Magnetized Micro Metal Particles in the Microwave Sintering Process

    Directory of Open Access Journals (Sweden)

    Yu Xiao

    2017-02-01

    Full Text Available Synchrotron radiation computed tomography was applied to investigate Cu–Fe mixture microwave sintering in situ and to examine the magnetic force between reversely magnetized micro-metal particles in microwave sintering. Results revealed that the growth rate of the sintering necks between Cu–Fe particles and Cu–Cu particles around the iron particles distributed in a vertical direction was faster than that of the sintering necks in the horizontal direction. These phenomena were consistent with the possible influence caused by the magnetic force between metal particles, as shown in our simple particle model. The kinetic curves of sintering neck growth along the vertical and horizontal directions quantitatively revealed the difference in growth rates. The contributing factors of magnetic force in microwave sintering were subsequently discussed. The volume of iron particles was proportional to the influence of magnetic force, and their shape elicited a remarkable influence based on demagnetization effects. This study provided a useful basis for microwave sintering mechanisms and anisotropic material preparation.

  4. Nickel-graphite composites of variable architecture by graphitization-accompanied spark plasma sintering and hot pressing and their response to phase separation

    Directory of Open Access Journals (Sweden)

    Dudina D.V.

    2015-01-01

    Full Text Available We report the formation and phase separation response of nickel-graphite composites with variable-architecture phases by graphitization-accompanied consolidation via Spark Plasma Sintering and hot pressing. It was shown that the application of pressure during consolidation is crucial for the occurrence of graphitization and formation of 3D graphite structures. We evaluated the suitability of the synthesized composites as precursors for making porous structures. Nickel behaved as a space holder with the particle size and spatial distribution changing during consolidation with the temperature and determining the structure of porous graphite formed by phase separation by dissolution in HCl. The response of the consolidated Ni-Cgr to separation of carbon by its burnout in air was studied. The result of the carbon removal was either the formation of a dense and continuous NiO film on the surface of the compacts or oxidation through the compact thickness. The choice between these two options depended on the density of the compacts and on the presence of carbon dissolved in nickel. It was found that during the burnout of graphite from Ni-Cgr composites, sintering, rather than formation of pores, dominated.

  5. [Study on friction and wear properties of dental zirconia ceramics processed by microwave and conventional sintering methods].

    Science.gov (United States)

    Guoxin, Hu; Ying, Yang; Yuemei, Jiang; Wenjing, Xia

    2017-04-01

    This study evaluated the wear of an antagonist and friction and wear properties of dental zirconia ceramic that was subjected to microwave and conventional sintering methods. Ten specimens were fabricated from Lava brand zirconia and randomly assigned to microwave and conventional sintering groups. A profile tester for surface roughness was used to measure roughness of the specimens. Wear test was performed, and steatite ceramic was used as antagonist. Friction coefficient curves were recorded, and wear volume were calculated. Finally, optical microscope was used to observe the surface morphology of zirconia and steatite ceramics. Field emission scanning electron microscopy was used to observe the microstructure of zirconia. Wear volumes of microwave and conventionally sintered zirconia were (6.940±1.382)×10⁻², (7.952±1.815) ×10⁻² mm³, respectively. Moreover, wear volumes of antagonist after sintering by the considered methods were (14.189±4.745)×10⁻², (15.813±3.481)×10⁻² mm³, correspondingly. Statistically significant difference was not observed in the wear resistance of zirconia and wear volume of steatite ceramic upon exposure to two kinds of sintering methods. Optical microscopy showed that ploughed surfaces were apparent in zirconia. The wear surface of steatite ceramic against had craze, accompanied by plough. Scanning electron microscopy showed that zirconia was sintered compactly when subjected to both conventional sintering and microwave methods, whereas grains of zirconia sintered by microwave alone were smaller and more uniform. Two kinds of sintering methods are successfully used to produce dental zirconia ceramics with similar friction and wear properties.
.

  6. SinterHab

    Science.gov (United States)

    Rousek, Tomáš; Eriksson, Katarina; Doule, Ondřej

    2012-05-01

    This project describes a design study for a core module on a Lunar South Pole outpost, constructed by 3D printing technology with the use of in-situ resources and equipped with a bio-regenerative life support system. The module would be a hybrid of deployable (CLASS II) and in-situ built (CLASS III) structures. It would combine deployable membrane structures and pre-integrated rigid elements with a sintered regolith shell for enhanced radiation and micrometeorite shielding. The closed loop ecological system would support a sustainable presence on the Moon with particular focus on research activities. The core module accommodates from four to eight people, and provides laboratories as a test bed for development of new lunar technologies directly in the environment where they will be used. SinterHab also includes an experimental garden for development of new bio-regenerative life support system elements. The project explores these various concepts from an architectural point-of-view particularly, as they constitute the building, construction and interior elements. The construction method for SinterHab is based on 3D printing by sintering of the lunar regolith. Sinterator robotics 3D printing technology proposed by NASA JPL enables construction of future generations of large lunar settlements with little imported material and the use of solar energy. The regolith is processed, placed and sintered by the Sinterator robotics system which combines the NASA ATHLETE and the Chariot remotely controlled rovers. Microwave sintering creates a rigid structure in the form of walls, vaults and other architectural elements. The interior is coated with a layer of inflatable membranes inspired by the TransHab project. The life-support system is mainly bio-regenerative and several parts of the system are intrinsically multifunctional and serve more than one purpose. The plants for food production are also an efficient part of atmosphere revitalization and water treatment. Moreover

  7. Effects of sintering process on wear and mechanical behavior properties of titanium carbide/hexagonal boron nitrid/steel 316L base nanocomposites

    Science.gov (United States)

    Sadooghi, Ali; Payganeh, Gholamhassan

    2018-02-01

    Powder metallurgy process is one of the approaches to manufacture nanocomposite samples, in which the product quality depends upon the pressure, temperature, and sintering time. In this manuscript, steel is selected as the base material together with 2% carbon-based reinforcing TiC particles, and 2% hBN particles as the self-lubricant material. The powders were mixed for 5 h in high ball milling, and compacted with two pressures of 350 and 450 MPa, sintered in the furnace for 2 and 4 h, and sintering temperatures of 1350 and 1450 °C were utilized. SEM, XRD, and EDX tests are performed to identify the nanocomposite structure, and DTA tests are carried out to specify the temperature graph of the material. Finally, hardness, wear, and bending tests are done to find the corresponding mechanical properties of the samples. As a result, the optimum process parameters, including pressure, temperature and sintering duration is achieved. Results show that adding the reinforcing particles into a steel matrix increase the hardness, as well as flexural strength of the nanocomposite product. Also, coefficient of friction shows a decreases.

  8. Processing and characterization of a carbon black-filled electrically conductive Nylon-12 nanocomposite produced by selective laser sintering

    International Nuclear Information System (INIS)

    Athreya, Siddharth Ram; Kalaitzidou, Kyriaki; Das, Suman

    2010-01-01

    Selective laser sintering (SLS), a layered manufacturing technique was explored to process an electrically conductive polymer nanocomposite made of Nylon-12 reinforced with 4 wt% of carbon black. SLS process parameters were optimized in order to maximize the flexural modulus. The porosity and morphology were studied using optical microscopy and scanning electron microscopy (SEM). The crystalline state was characterized using differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The electrical conductivity was determined using the four probe technique. Results indicate that carbon black-filled Nylon-12 nanocomposites can be successfully made by SLS. Maximum flexural modulus values of 1750 MPa and 1450 MPa were achieved for the neat polymer and the nanocomposite, respectively. A reduction in the flexural modulus of the nanocomposite is likely due to the formation of a segregated structure in the nanocomposite and a weak polymer-filler interface. The optimized neat polymer and the nanocomposites had average densities of around 97% and 96% relative to full density, respectively. The electrical conductivity of the nanocomposite was approximately 1 x 10 -4 S/cm, which is five orders of magnitude higher than that of the neat polymer processed by SLS, and indicates that the onset of percolation behavior occurs below the 4 wt% loading of carbon black.

  9. Two steps sintering alumina doped with niobia; Sinterizacao em duas etapas de alumina aditivada com niobia

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, L.B.; Hatzfeld, J.; Heck, M.; Pokorny, A.; Bergmann, C.P., E-mail: lucas.gomes@ufrgs.br [Universidade Federal do Rio Grande do Sul (LACER/UFRGS) Porto Alegre, RS (Brazil). Laboratorio de Materiais Ceramicos

    2014-07-01

    In this work, high surface area commercial alumina was doped with niobia and sintered in two steps in order to obtain dense materials with lower processing temperatures. The powders were milled and uniaxially pressed (200 MPa). The first step of sintering took place at 1100°C for 3, 6, 9 and 12 hours, followed by the second step at 1350°C for 3 hours. The relative density, porosity and water absorption of the samples were determined by the Archimedes method. The crystalline phases were analyzed by X-ray Diffraction (XRD) and the morphology of the samples after sintering, evaluated by Scanning Electron Microscopy (SEM). The results indicate that the use of niobia combined with the two steps sintering promotes an increase in the density of the material, even at lower sintering temperatures. (author)

  10. Effect of sintering temperature and heating mode on consolidation of ...

    Indian Academy of Sciences (India)

    Microwave sintering was performed in 2.45 GHz multimode microwave furnace at temperatures ranging from 570–630 °C. Microwave sintering at a heating rate of as high as 22°C/min resulted in ∼55% reduction of processing time as compared to conventional sintering. A lower sintered density observed in the case of ...

  11. Sintering of nano crystalline o silicon carbide doping with

    Indian Academy of Sciences (India)

    Sinterable silicon carbide powders were prepared by attrition milling and chemical processing of an acheson type -SiC. Pressureless sintering of these powders was achieved by addition of aluminium nitride together with carbon. Nearly 99% sintered density was obtained. The mechanism of sintering was studied by ...

  12. A study on improvement of UO2 powder production process for high sintered density

    International Nuclear Information System (INIS)

    Park, Jin Hoh; Hwang, Sung Tae; Jun, Kwan Sik; Choi, Yoon Dong; Choi, Jong Hyun; Lee, Kyoo Il; Kim, Tae Joon; Jung, Kyung Chae; Kim, Kwang Lak; Kwon, Sang Woon; Kim, Byung Hoh; Hong, Soon Bok

    1995-01-01

    Various conversion processes were reviewed from the viewpoint of manufacturing cost, product quality and liquid waste. The MDD process was selected a suitable target process for the good quality of UO 2 powder and the recycling availability of nitric acid. The MDD process consists of two steps, double salt preparation [(NH 4 ) 2 UO 2 (NO 3 ) 4 ] from uranyl nitrate solution and thermal decomposition/reduction to UO 2 powder. The reaction mechanism and properties for the intermediates were analyzed to define the proposed operational conditions of the process. The conceptual process was proposed and experimental facility was designed and installed. 12 figs, 7 tabs, 7 refs. (Author)

  13. Crystal phase evolution, sintering, and strength of anorthite-based LTCC materials by substitution of M2+ (M=Mg, Sr, Ba) for Ca2+

    Science.gov (United States)

    Gu, Sin Il; Shin, Hyo Soon; Yeo, Dong Hun; Nahn, Sahn

    2013-05-01

    LTCC, composed of Ca-Al-Si-O, is well-known for its high strength and phase stability. However research on the correlation of LTCC substrate composition and phase change to strength characteristics has rarely been reported. In this study, an anorthite glass component, group 2 elements, Mg, Sr, and Ba were substituted for Ca, and the resulting changes in the physical properties of the glass were observed. Then, the effect of varying glass composition on the characteristics of LTCCs was investigated. An increase in the Mg content caused an increase in the T g of glass, sintering temperature of the glass/Al2O3 composite material and synthesis temperature of anorthite. The content of Sr and Ba had almost no correlation with T g . Synthesis of BaAlO4 and increased LTCC sintering temperature were observed with the addition of Ba, and high strength of over 320 MPa was demonstrated when glass, Al2O3 and a small amount of anorthite were formed.

  14. Alternative sintering methods compared to conventional thermal sintering for inkjet printed silver nanoparticle ink

    NARCIS (Netherlands)

    Niittynen, J.; Abbel, R.; Mäntysalo, M.; Perelaer, J.; Schubert, U.S.; Lupo, D.

    2014-01-01

    In this contribution several alternative sintering methods are compared to traditional thermal sintering as high temperature and long process time of thermal sintering are increasing the costs of inkjet-printing and preventing the use of this technology in large scale manufacturing. Alternative

  15. A study on improvement of UO{sub 2} powder production process for high sintered density

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Hoh; Hwang, Sung Tae; Jun, Kwan Sik; Choi, Yoon Dong; Choi, Jong Hyun; Lee, Kyoo Il; Kim, Tae Joon; Jung, Kyung Chae; Kim, Kwang Lak; Kwon, Sang Woon; Kim, Byung Hoh; Hong, Soon Bok [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-01-01

    Various conversion processes were reviewed from the viewpoint of manufacturing cost, product quality and liquid waste. The MDD process was selected a suitable target process for the good quality of UO{sub 2} powder and the recycling availability of nitric acid. The MDD process consists of two steps, double salt preparation [(NH{sub 4}){sub 2}UO{sub 2}(NO{sub 3}){sub 4}] from uranyl nitrate solution and thermal decomposition/reduction to UO{sub 2} powder. The reaction mechanism and properties for the intermediates were analyzed to define the proposed operational conditions of the process. The conceptual process was proposed and experimental facility was designed and installed. 12 figs, 7 tabs, 7 refs. (Author).

  16. Processing, Mechanical and Optical Properties of Additive-Free ZrC Ceramics Prepared by Spark Plasma Sintering

    Directory of Open Access Journals (Sweden)

    Clara Musa

    2016-06-01

    Full Text Available In the present study, nearly fully dense monolithic ZrC samples are produced and broadly characterized from microstructural, mechanical and optical points of view. Specifically, 98% dense products are obtained by Spark Plasma Sintering (SPS after 20 min dwell time at 1850 °C starting from powders preliminarily prepared by Self-propagating High-temperature Synthesis (SHS followed by 20 min ball milling. A prolonged mechanical treatment up to 2 h of SHS powders does not lead to appreciable benefits. Vickers hardness of the resulting samples (17.5 ± 0.4 GPa is reasonably good for monolithic ceramics, but the mechanical strength (about 250 MPa up to 1000 °C could be further improved by suitable optimization of the starting powder characteristics. The very smoothly polished ZrC specimen subjected to optical measurements displays high absorption in the visible-near infrared region and low thermal emittance at longer wavelengths. Moreover, the sample exhibits goodspectral selectivity (2.1–2.4 in the 1000–1400 K temperature range. These preliminary results suggest that ZrC ceramics produced through the two-step SHS/SPS processing route can be considered as attractive reference materials for the development of innovative solar energy absorbers.

  17. Features of phase and structure formation on liquid-phase sintering of TiC0.5N0.5-TiNi-Nb and TiC0.5N0.5-TiNi-Ti-Nb alloys

    International Nuclear Information System (INIS)

    Askarova, L.Kh.; Grigorov, I.G.; Zajnulin, Yu.G.

    2000-01-01

    Using methods of X-ray diffraction analysis, electron microscopy and X-ray spectrum microanalysis the features of phase- and structure formation in the presence of liquid phase are investigated for TiC 0.5 N 0.5 -TiNi-Nb and TiC 0.5 N 0.5 -TiNi-Ti-Nb alloys. It is shown that in the process of liquid-phase sintering base and a binding constituent takes place with the formation of a three-phase alloy of Ti 1-n Nb n C 0.5 N 0.5 -TiNi-Nb z Ni. The composition and the structure of a refractory grain are determined by niobium concentration in the alloy and by annealing conditions [ru

  18. Influences of chemical packing and the chemical composition in porcelain sintering: from theory to practice

    International Nuclear Information System (INIS)

    Conceicao, E.S.; Gouvea, D.; Romano, R.C.O.; Pileggi, R.G.

    2011-01-01

    Studies have been conducted using the size distribution particles as a tool to obtain maximum packing in porcelain bodies. However, little attention has been given for the maximum size of particles and its effect in the sintering. While some particles are relatively large (63 μ m) for some oxides in the porcelain composition, they could compromise the sintering if a liquid phase is formed during heat processing. In this work, a comparative analysis showed that compositions with a maximum green packing density does not always lead to a maximum final densification in sintering if there is no control of the maximum size of the particles. (author)

  19. The influence of sintering on the dispersion of carbon nanotubes in ceramic matrix composites

    Science.gov (United States)

    Tapasztó, Orsolya; Lemmel, Hartmut; Markó, Márton; Balázsi, Katalin; Balázsi, Csaba; Tapasztó, Levente

    2014-10-01

    Optimizing the dispersion of carbon nanostructures in ceramic matrix composites is a fundamental technological challenge. So far most efforts have been focused on improving the dispersion of nanostructures during the powder phase processing, due to the limited information and control on their possible redistribution during the sintering. Here, we address this issue by comparing multi-walled carbon nanotubes reinforced Si3N4 composites prepared from the same starting powder dispersion but sintered using two different techniques. We employ ultra-small angle neutron scattering measurements to gain reliable information on the dispersion of nanostructures allowing a direct comparison of their redistribution during the sintering.

  20. Effect of sintering conditions on the magnetic disaccommodation in barium M-type hexaferrites

    International Nuclear Information System (INIS)

    Hernandez-Gomez, Pablo; Torres, Carlos; Francisco, Carlos de; Munoz, Jose Maria; Alejos, Oscar; Iniguez, Jose Ignacio; Raposo, Victor; Montero, Oscar

    2006-01-01

    The relaxation of the initial magnetic permeability has been measured in polycrystalline hexaferrites with nominal composition BaO.6Fe 2 O 3 (i.e. M-type). The samples have been sintered at different temperatures in CO 2 atmosphere and with different manufacturing conditions. In temperature range between 80 and 500 K, the magnetic disaccommodation shows presence of different relaxation processes, depending on both the sintering temperature and sintering time. The analogies and differences between the results obtained are discussed in terms of similar phase formation and different crystallite size

  1. Strain-enhanced sintering of iron powders

    Energy Technology Data Exchange (ETDEWEB)

    Amador, D.R.; Torralba, J.M. [Universidad Carlos III de Madrid, Departamento de Ciencias de Materiales e Ingenieria Metalurgica, Leganes, Madrid (Spain); Monge, M.A.; Pareja, R. [Universidad Carlos III de Madrid, Departamento de Fisica, Madrid (Spain)

    2005-02-01

    Sintering of ball-milled and un-milled Fe powders has been investigated using dilatometry, X-ray, density, and positron annihilation techniques. A considerable sintering enhancement is found in milled powders showing apparent activation energies that range between 0.44 and 0.80 eV/at. The positron annihilation results, combined with the evolution of the shrinkage rate with sintering temperature, indicate generation of lattice defects during the sintering process of milled and un-milled powders. The sintering enhancement is attributed to pipe diffusion along the core of moving dislocations in the presence of the vacancy excess produced by plastic deformation. Positron annihilation results do not reveal the presence of sintering-induced defects in un-milled powders sintered above 1200 K, the apparent activation energy being in good agreement with that for grain-boundary diffusion in {gamma}-Fe. (orig.)

  2. The role of the bimodal distribution of ultra-fine silicon phase and nano-scale V-phase (AlSi2Sc2) on spark plasma sintered hypereutectic Al–Si–Sc alloys

    International Nuclear Information System (INIS)

    Raghukiran, Nadimpalli; Kumar, Ravi

    2016-01-01

    Hypereutectic Al–Si and Al–Si–Sc alloys were spark plasma sintered from corresponding gas-atomized powders. The microstructures of the Al–Si and Al–Si–Sc alloys possessed remarkably refined silicon particles in the size range of 0.38–3.5 µm and 0.35–1.16 µm respectively in contrast to the silicon particles of size greater than 100 µm typically found in conventionally cast alloys. All the sintered alloys exhibited significant ductility of as high as 85% compressive strain without failure even with the presence of relatively higher weight fraction of the brittle silicon phase. Moreover, the Al–Si–Sc alloys have shown appreciable improvement in the compressive strength over their binary counterparts due to the presence of intermetallic compound AlSi 2 Sc 2 of size 10–20 nm distributed uniformly in the matrix of those alloys. The dry sliding pin-on-disc wear tests showed improvement in the wear performance of the sintered alloys with increase in silicon content in the alloys. Further, the Al–Si–Sc ternary alloys with relatively lesser silicon content exhibited appreciable improvement in the wear resistance over their binary counterparts. The Al–Si–Sc alloys with bimodal distribution of the strengthening phases consisting of ultra-fine (sub-micron size) silicon particles and the nano-scale AlSi 2 Sc 2 improved the strength and wear properties of the alloys while retaining significant amount of ductility.

  3. Growth of superconducting Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} films by sedimentation deposition and liquid phase sintering and annealing technique

    Energy Technology Data Exchange (ETDEWEB)

    Manahan, R.L.C. [Condensed Matter Physics Laboratory, National Institute of Physics, University of the Philippines, Llamas Science Hall, Rm. 3122, E. Quirino Street, Diliman, Quezon City 1101 (Philippines)]. E-mail: rcmanahan@nip.upd.edu.ph; Sarmago, R.V. [Condensed Matter Physics Laboratory, National Institute of Physics, University of the Philippines, Llamas Science Hall, Rm. 3122, E. Quirino Street, Diliman, Quezon City 1101 (Philippines)

    2006-10-01

    We report on a technique of growing highly c-axis oriented Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} (Bi-2212) thick films on MgO substrate using a combined sedimentation-deposition and liquid phase sintering and annealing process. The temperature profiles employed partial melting followed by rapid cooling to temperature below the melting point. Scanning electron micrographs show that the films have a smooth surface. No evidence of grain boundaries on the film's surface can be seen. The critical temperatures of the samples range from {approx}67 K to {approx}81 K. This method presents a quick and easy preparation for high quality epitaxial Bi-2212 films.

  4. Effect of Partial Substitution of Neodymium with Praseodymium on the Magnetic and Process Properties of Sintered Magnets of Type NdFeB

    Science.gov (United States)

    Dormidontov, N. A.; Dormidontov, A. G.; Lileev, A. S.; Kamynin, A. V.; Lukin, A. A.

    2017-01-01

    The effect of substitution of neodymium with praseodymium in sintered magnets of type NdFeB on their magnetic and process properties in the concentration range of [Pr] = 0 - 13 wt.% is studied. The special features of milling of the alloys, sintering processes and heat treatments in the production of magnets containing praseodymium are discussed. Hysteresis characteristics of B r ≥ 1.2 T, H cJ ≥ 1200 kA/m, H cb ≥ 880 kA/m, H k ≥ 960 kA/m, and BH max ≥ 280 kJ/m3 are obtained for magnets with composition (in wt.%) 33 Nd, 10 Pr, 1.5 (Ti + Al + Cu), 1.3 B, the remainder Fe.

  5. Control systems of sintering processes in rotary tubular kilns with using of thermovisors scanning

    Directory of Open Access Journals (Sweden)

    Ю. В. Шариков

    2016-11-01

    Full Text Available The article considers the role of the lining in the tubular rotary kilns used for heat treatment processes of  raw material in the metallurgical, chemical and other fields of industries. The method of selecting a new design thermal insulation elements, ensuring reduction of heat loss to the environment and  more  accurately to provide  the required thermal  processing mode through simulation can be used with  ANSYS FLUENT software package. A system of monitoring the state of the lining with a thermal imager and control system that provides consistency lining without stopping the  operating kiln  has  been  developed.

  6. Phases definition in marketing export process

    Directory of Open Access Journals (Sweden)

    Rajković Dragan

    2004-01-01

    Full Text Available The result of export marketing process depends on its five phases. The first phase-revision of export capacities, inner view on advantages and defects of company concerning export possibilities. The second phase-identification of export strategy market penetration. The forth phase-preparing for the marketing campaign (action. The fifth phase-carrying out the above mentioned activities. This study shows the structure and contents of the mentioned phases. At the end, export marketing analyzed DPV is given as the example.

  7. Sintered glass ceramic composites from vitrified municipal solid waste bottom ashes

    International Nuclear Information System (INIS)

    Aloisi, Mirko; Karamanov, Alexander; Taglieri, Giuliana; Ferrante, Fabiola; Pelino, Mario

    2006-01-01

    A glass ceramic composite was obtained by sinter-crystallisation of vitrified municipal solid waste bottom ashes with the addition of various percentages of alumina waste. The sintering was investigated by differential dilatometry and the crystallisation of the glass particles by differential thermal analysis. The crystalline phases produced by the thermal treatment were identified by X-ray diffraction analysis. The sintering process was found to be affected by the alumina addition and inhibited by the beginning of the crystal-phase precipitation. Scanning electron microscopy was performed on the fractured sintered samples to observe the effect of the sintering. Young's modulus and the mechanical strength of the sintered glass ceramic and composites were determined at different heating rates. The application of high heating rate and the addition of alumina powder improved the mechanical properties. Compared to the sintered glass ceramic without additives, the bending strength and the Young's modulus obtained at 20 deg. C/min, increased by about 20% and 30%, respectively

  8. Dehydrogenation and Sintering of TiH2: An In Situ Study

    Science.gov (United States)

    Chen, Gang; Liss, Klaus D.; Auchterlonie, Graeme; Tang, Huiping; Cao, Peng

    2017-06-01

    This first-ever study investigated dehydrogenation and microstructural evolution of TiH2 during sintering under vacuum using in situ neutron diffraction, in situ transmission electron microscopy, and ex situ neutron tomography. The densification behavior, microstructure, hydrogen concentration, and in situ phase transformation were reported. The shrinkage, weight loss percentage, and densification of the TiH2 powder compact monotonically increase with sintering temperature, while the open porosity behaves differently; porosity first increases at the initial sintering stage and then decreases during further sintering. The in situ phase transformation observations reveal that dehydrogenation starts from the outer area of either a particle or a powder compact and progressively carries forward into the interior of the particle or the compact. A shrinking core model was proposed to elucidate the dehydrogenation process for a single particle and a powder compact.

  9. Extraterrestrial Metals Processing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The Extraterrestrial Metals Processing (EMP) system produces ferrosilicon, silicon monoxide, a glassy mixed oxide slag, and smaller amounts of alkali earth...

  10. Effect of material, process parameters, and simulated body fluids on mechanical properties of 13-93 bioactive glass porous constructs made by selective laser sintering.

    Science.gov (United States)

    Kolan, Krishna C R; Leu, Ming C; Hilmas, Gregory E; Velez, Mariano

    2012-09-01

    The effect of particle size distribution, binder content, processing parameters, and sintering schedule on the microstructure and mechanical properties of porous constructs was investigated. The porous constructs were produced by indirect selective laser sintering (SLS) of 13-93 bioactive glass using stearic acid as a polymeric binder. The binder content and d(50) particle size in the feedstock powders were simultaneously reduced from 22 to 12 wt% and from 20 to 11 μm, respectively, to identify the minimum binder content required for the SLS fabrication. An average particle size of ∼16 μm with a binder content of 15 wt% significantly reduced post-processing time and improved mechanical properties. Increasing the laser power and scan speed at the energy density of 1 cal/cm² maintained the feature sharpness of the parts during the fabrication of green parts and could almost double the mechanical properties of the sintered parts. Changes in the heating rates, ranging from 0.1 to 2 °C/min, during the post-processing of the fabricated "green" scaffolds showed that the heating rate significantly affects the densification and mechanical properties of the sintered scaffolds. The compressive strength of the scaffolds manufactured with the optimized parameters varied from 41 MPa, for a scaffold with a porosity of ∼50%, to 157 MPa, for a dense part. The bioactive scaffolds soaked in simulated body fluids for durations up to 6 weeks were used to evaluate the change in mechanical properties in vitro. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Drastic decrease of Ba(Zn1/3Ta2/3O3 sintering temperature by lithium salts and glass phase addition

    Directory of Open Access Journals (Sweden)

    Marinel, S.

    2011-04-01

    Full Text Available The complex perovskite oxide Ba(Zn1/3Ta2/3O3 (BZT has been studied for its attractive dielectric properties which make this material interesting for applications such as multilayer ceramics capacitors or hyperfrequency resonators. Nevertheless, BZT ceramic requires high temperature to be correctly sintered (≅1450°C, that is too high to envisage a silver co-sintering (Tf(Ag = 961°C. For this reason, the lowering of the sintering temperature of BZT by glass phase’s additions has been investigated. This material is sinterable at low temperature with combined glass phase –lithium salt additions, and exhibits, at 1MHz very low dielectric losses combined with relatively high dielectric constant and a good stability of this later versus temperature. The 5 wt% of ZnO-SiO2-B2O3 glass phase and 1 wt% of LiF added BZT sample sintered at 900°C exhibits a relative density higher than 95% and attractive dielectric properties: a dielectric constant εr of 32, low dielectrics losses (tan (δ-3 and a temperature coefficient of permittivity τε of -10ppm/°C. Their good dielectric properties and their compatibility with silver electrodes, make these ceramics suitable for L.T.C.C applications.Se ha estudiado el óxido complejo con estructura tipo perovskita Ba (Zn1/3Ta2/3 O3 (BZT. Sus atractivas propiedades dieléctricas le hacen muy interesante para aplicaciones como condensadores cerámicos multicapa o resonadores de microondas. No obstante, los cerámicos de BZT requieren temperaturas de sinterización superiores a 1450 ° C, que es muy alta para abordar un proceso de co-sinterización con electrodos de plata (Tf (Ag = 961 ° C. Para ello, se ha estudiado la bajada de la temperatura de sinterización del BZT mediante la adición de una fase vítrea. La suma combinada de la fase vítrea y la sal de litio lleva la sinterización de este material a temperaturas bajas. Las propiedades dieléctricas presentan pérdidas muy bajas, constante diel

  12. Constrained Sintering in Fabrication of Solid Oxide Fuel Cells.

    Science.gov (United States)

    Lee, Hae-Weon; Park, Mansoo; Hong, Jongsup; Kim, Hyoungchul; Yoon, Kyung Joong; Son, Ji-Won; Lee, Jong-Ho; Kim, Byung-Kook

    2016-08-09

    Solid oxide fuel cells (SOFCs) are inevitably affected by the tensile stress field imposed by the rigid substrate during constrained sintering, which strongly affects microstructural evolution and flaw generation in the fabrication process and subsequent operation. In the case of sintering a composite cathode, one component acts as a continuous matrix phase while the other acts as a dispersed phase depending upon the initial composition and packing structure. The clustering of dispersed particles in the matrix has significant effects on the final microstructure, and strong rigidity of the clusters covering the entire cathode volume is desirable to obtain stable pore structure. The local constraints developed around the dispersed particles and their clusters effectively suppress generation of major process flaws, and microstructural features such as triple phase boundary and porosity could be readily controlled by adjusting the content and size of the dispersed particles. However, in the fabrication of the dense electrolyte layer via the chemical solution deposition route using slow-sintering nanoparticles dispersed in a sol matrix, the rigidity of the cluster should be minimized for the fine matrix to continuously densify, and special care should be taken in selecting the size of the dispersed particles to optimize the thermodynamic stability criteria of the grain size and film thickness. The principles of constrained sintering presented in this paper could be used as basic guidelines for realizing the ideal microstructure of SOFCs.

  13. Structure and Magnetic Properties of Bi5Ti3FeO15 Ceramics Prepared by Sintering, Mechanical Activation and Edamm Process. A Comparative Study

    Directory of Open Access Journals (Sweden)

    Jartych E.

    2016-06-01

    Full Text Available Three different methods were used to obtain Bi5Ti3FeO15 ceramics, i.e. solid-state sintering, mechanical activation (MA with subsequent thermal treatment, and electrical discharge assisted mechanical milling (EDAMM. The structure and magnetic properties of produced Bi5Ti3FeO15 samples were characterized using X-ray diffraction and Mössbauer spectroscopy. The purest Bi5Ti3FeO15 ceramics was obtained by standard solid-state sintering method. Mechanical milling methods are attractive because the Bi5Ti3FeO15 compound may be formed at lower temperature or without subsequent thermal treatment. In the case of EDAMM process also the time of processing is significantly shorter in comparison with solid-state sintering method. As revealed by Mössbauer spectroscopy, at room temperature the Bi5Ti3FeO15 ceramics produced by various methods is in paramagnetic state.

  14. Extraterrestrial Metals Processing, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Extraterrestrial Metals Processing (EMP) system produces iron, silicon, and light metals from Mars, Moon, or asteroid resources in support of advanced human...

  15. Surface quality and microstructure of low-vacuum sintered orthodontic bracket 17-4 PH stainless steel fabricated by MIM process

    Science.gov (United States)

    Suharno, Bambang; Suharno, Lingga Pradinda; Saputro, Hantoro Restucondro; Irawan, Bambang; Prasetyadi, Tjokro; Ferdian, Deni; Supriyadi, Sugeng

    2018-02-01

    Surface roughness and microstructure play important role on orthodontic bracket quality. Therefore, orthodontic brackets need to have smooth surface roughness to reduce the friction and bacterial adhesion. Microstructure of orthodontic brackets also determine the mechanical properties and corrosion resistance. There are two methods to produce orthodontic bracket, investment casting and metal injection molding. The purpose of this study is to observe the surface roughness and microstructure of orthodontic bracket which were made from two different fabrication methods. To produce orthodontic bracket with metal injection molding method, 17-4 PH stainless steel feedstock was injected to the orthodontic bracket mold using injection molding machine. After injection, the binder was eliminated with solvent and thermal debinding. Solvent debinding process was conducted with hexane at 50 °C on magnetic stirrer for 1.5 hours. Thermal debinding process was conducted at 510 °C with 0.5 °C/min heat rate and 120 min holding time. Hereafter, sintering process were performed with vacuum tube furnace at 1360 °C with heat rate 5 °C/min and 90 min holding time in low vacuum atmosphere. To produce orthodontic bracket with investment casting method, the wax was injected into the mold then the wax pattern was arranged into the tree form. The tree form was then dipped into ceramic slurry and allowed to harden, the ceramic slurry has a thickness in the region of 10 mm. The ceramic mold was then heated at a temperature of over than 1100°C to strengthen the ceramic mold and to remove the remaining wax. After that, the molten 17-4 PH stainless steel was poured into the ceramic mold at a temperature of over 1600°C. The natural cooling process was carried out at temperature of 25°C, after which the ceramic mold was broken away. Then, the orthodontic bracket was cut from the tree form. The results show that the orthodontic bracket which were made with investment casting fabrication

  16. Up-cycling waste glass to minimal water adsorption/absorption lightweight aggregate by rapid low temperature sintering: optimization by dual process-mixture response surface methodology.

    Science.gov (United States)

    Velis, Costas A; Franco-Salinas, Claudia; O'Sullivan, Catherine; Najorka, Jens; Boccaccini, Aldo R; Cheeseman, Christopher R

    2014-07-01

    Mixed color waste glass extracted from municipal solid waste is either not recycled, in which case it is an environmental and financial liability, or it is used in relatively low value applications such as normal weight aggregate. Here, we report on converting it into a novel glass-ceramic lightweight aggregate (LWA), potentially suitable for high added value applications in structural concrete (upcycling). The artificial LWA particles were formed by rapidly sintering (waste glass powder with clay mixes using sodium silicate as binder and borate salt as flux. Composition and processing were optimized using response surface methodology (RSM) modeling, and specifically (i) a combined process-mixture dual RSM, and (ii) multiobjective optimization functions. The optimization considered raw materials and energy costs. Mineralogical and physical transformations occur during sintering and a cellular vesicular glass-ceramic composite microstructure is formed, with strong correlations existing between bloating/shrinkage during sintering, density and water adsorption/absorption. The diametrical expansion could be effectively modeled via the RSM and controlled to meet a wide range of specifications; here we optimized for LWA structural concrete. The optimally designed LWA is sintered in comparatively low temperatures (825-835 °C), thus potentially saving costs and lowering emissions; it had exceptionally low water adsorption/absorption (6.1-7.2% w/wd; optimization target: 1.5-7.5% w/wd); while remaining substantially lightweight (density: 1.24-1.28 g.cm(-3); target: 0.9-1.3 g.cm(-3)). This is a considerable advancement for designing effective environmentally friendly lightweight concrete constructions, and boosting resource efficiency of waste glass flows.

  17. The Influence of Sintering Temperature of Reactive Sintered (Ti, MoC-Ni Cermets

    Directory of Open Access Journals (Sweden)

    Marek Jõeleht

    2015-09-01

    Full Text Available Titanium-molybdenum carbide nickel cermets ((Ti, MoC-Ni were produced using high energy milling and reactive sintering process. Compared to conventional TiC-NiMo cermet sintering the parameters for reactive sintered cermets vary since additional processes are present such as carbide synthesis. Therefore, it is essential to acquire information about the suitable sintering regime for reactive sintered cermets. One of the key parameters is the final sintering temperature when the liquid binder Ni forms the final matrix and vacancies inside the material are removed. The influence of the final sintering temperature is analyzed by scanning electron microscopy. Mechanical properties of the material are characterized by transverse rupture strength, hardness and fracture toughness.DOI: http://dx.doi.org/10.5755/j01.ms.21.3.7179

  18. Implications on the sintering process by using zinc stearate as an additive in uranium dioxide green pellets

    International Nuclear Information System (INIS)

    Georgeoni, P.; Deju, R.; Gordes, P.; Turcanu, C.; Dobos, I.

    1980-01-01

    The mode of decomposition and removing of zinc stearate from uranium dioxide matrix into hydrogen atmosphere, as well as zinc stearate quantity and green density influence on residual carbon removing are described. The work emphasizes the influence that inhomogeneous atmosphere from a sintering furnace may have, sometimes, on the removal kinetics of residual carbon. (author)

  19. Reactive sintering and microstructure development of tungsten carbide-AISI 304 stainless steel cemented carbides

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, C.M. [Department of Materials and Ceramics Engineering, CICECO, University of Aveiro, 3810-193 Aveiro (Portugal); CEMUC-Mechanical Engineering Department, University of Coimbra, Rua Luís Reis Santos, Pinhal de Marrocos, 3030-788 Coimbra (Portugal); Oliveira, F.J. [Department of Materials and Ceramics Engineering, CICECO, University of Aveiro, 3810-193 Aveiro (Portugal); Senos, A.M.R., E-mail: anamor@ua.pt [Department of Materials and Ceramics Engineering, CICECO, University of Aveiro, 3810-193 Aveiro (Portugal)

    2017-06-01

    Sintering of WC-stainless steel (SS) composites within a typical binder range from 6 up to 15 wt% SS was investigated through constant heating rate dilatometry, in vacuum conditions, complemented by differential thermal analysis and by the study of the high temperature wetting behavior of SS on WC. The densification starts ∼900 °C with a typical densification curve for all compositions, where three distinct regions are discernible: the first one with a slow densification rate, followed by a second region where a sharp increase in the densification rate up to a maximum value dependent on the binder amount is observed and, finally, a third one with a slowdown of the densification rate until the end of the thermal cycle. The attained final density at 1450 °C is dependent on the binder amount, increasing proportionally to its initial content. The final microstructure presents a normal grain size distribution and appreciable amounts of eta-phase, besides the major WC phase and residual iron rich phase. The reactive densification behavior and the role of the liquid phase are interpreted accordingly with structural and kinetic data. - Highlights: • Sintering of WC-AISI304 composites starts ∼900 °C and involves three stages. • Densification is largely dominated by a reactive liquid phase sintering process. • Eta-phase constitutes a transient liquid phase during sintering. • Sintering cycles are dependent on the initial binder content.

  20. Magnetic properties of sintered high energy sm-co and nd-fe-b magnets

    Directory of Open Access Journals (Sweden)

    Talijan Nadežda M.

    2006-01-01

    Full Text Available Magnetic properties of permanent magnetic materials based on intermetallic compounds of Sm-Co and Nd-Fe-B are in direct dependence on the microstructure. In the first part of this paper, having in mind the importance of the regime of sintering and heat treatment to obtain the optimal magnetic structure, yet another approach in defining the most adequate technological parameters of the sintering process for applied heat treatment conditions was made. The goal of these investigations was to use the correlation that exists between sintering conditions (temperature and time and intensity of the diffraction peak of the (111 plane of the SmCo5 phase to optimize. In the second part a brief overview of high energy magnetic materials based on Nd-Fe-B is presented with special emphasis to the current research and development of high remanent nanocomposite magnetic materials based on Nd-Fe-B alloys with a reduced Nd content. Part of experimental results gained during research of the sintering process of SmCo5 magnetic materials were realized and published earlier. The scientific meeting devoted to the 60th anniversary of Frankel’s theory of sintering was an opportunity to show once more the importance and role of sintering in optimization of the magnetic microstructure of sintered Sm Co5 magnetic materials.

  1. LOWERING THE SINTERING TEMPERATURE OF BARIUM STRONTIUM TITANATE BULK CERAMICS BY BARIUM STRONTIUM TITANATE-GEL AND BaCu(B₂O₅

    Directory of Open Access Journals (Sweden)

    Uwe Gleissner

    2016-03-01

    Full Text Available In this paper the influence of barium strontium titanate (BST xerogel as a sinter additive and BaCu(B₂O₅(BCB as a liquid phase sintering aid on the sintering behavior of BST bulk ceramics is investigated. BST as well as BCB powders were synthesized via a mixed oxide route and BST gel via a sol-gel process. Compared to pure BST bulk ceramics, BST gel reduces the sintering start (onset temperature by up to 174°C and increases the density for a sintering temperature of 1200°C. By adding BCB to the BST powder the sintering was completed much faster and the onset temperatures were reduced by 281°C and 312°C for 1 mol% and 2.5 mol%, respectively. With 2.5 mol% BCB, the highest density of 96 % (5.41 g/cm³ was achieved at 950°C.

  2. Transient liquid phase bonding of magnesium alloys AZ31 using nickel coatings and high frequency induction heat sintering

    Directory of Open Access Journals (Sweden)

    A.N. AlHazaa

    2016-04-01

    Full Text Available Transient liquid phase (TLP bonding process was applied to join magnesium alloy AZ31 samples with minimum microstructural changes. The magnesium samples were coated by 5 μm nickel prior to the TLP bonding. Bonding conditions of 8 MPa uniaxial pressure and 520 °C bonding temperature were applied for all bonds at various bonding times. The microstructure across the joint regions was examined as a function of bonding time (5–60 min. Investigating the change in Ni contents was examined by EDS line scan. It was noticed that Ni coating could not be observed by SEM for bonds made at 30 and 60 min due to complete dissolution of the Ni coating. Second phase particles containing Mg2Ni intermetallics were observed by X-ray Photoelectron Spectroscopy (XPS near the joint region. The shear strength of the bonds initially increases with the increase in bonding time till 20 min. On the other hand, with bonding times over 20 min the shear strength decreases. Therefore the optimum bonding time at the conditions applied was concluded to be 20 min.

  3. Rate processes in gas phase

    International Nuclear Information System (INIS)

    Hansen, C.F.

    1983-05-01

    Reaction-rate theory and experiment are given a critical review from the engineers' point of view. Rates of heavy-particle, collision-induced reaction in gas phase are formulated in terms of the cross sections and activation energies of the reaction. The effect of cross section function shape and of excited state contributions to the reaction both cause the slope of Arrhenius plots to differ from the true activation energy, except at low temperature. The master equations for chemically reacting gases are introduced, and dissociation and ionization reactions are shown to proceed primarily from excited states about kT from the dissociation or ionization limit. Collision-induced vibration, vibration-rotation, and pure rotation transitions are treated, including three-dimensional effects and conservation of energy, which have usually been ignored. The quantum theory of transitions at potential surface crossing is derived, and results are found to be in fair agreement with experiment in spite of some questionable approximations involved

  4. Tensile Properties and Fracture Characteristics of Nanostructured Copper and Cu-SiC Nanocomposite Produced by Mechanical Milling and Spark Plasma Sintering Process

    Science.gov (United States)

    Akbarpour, M. R.

    2018-03-01

    The presence of large grains within nanometric and ultrafine grain matrix is an effective method in order to enhance strength while keeping the high ductility of metals. For this purpose, in this research, spark plasma sintering (SPS) was used to consolidate milled Cu and Cu-SiC powders. In SPS process, local sparks with high temperature between particles take place and locally lead to intense grain growth, and therefore, this method has the ability to produce bimodal grain structures in copper and copper-based composites. Microstructural and mechanical studies showed ≈ 185 and ≈ 437 nm matrix grain sizes, high tensile yield strength values of ≈ 188.4 and ≈ 296.9 MPa, and fracture strain values of 15.1 and 6.7% for sintered Cu and Cu-4 vol.% SiC nanocomposite materials, respectively. The presence of nanoparticles promoted the occurrence of static recrystallization and decreased the fraction of coarse grains in microstructure. The high tensile properties of the produced materials are attributed to fine grain size, homogenous dispersion of nanoparticles and retarded grain boundary migration during sintering.

  5. Study on the mechanical properties, microstructure and corrosion behaviors of nano-WC–Co–Ni–Fe hard materials through HIP and hot-press sintering processes

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Shih-Hsien, E-mail: changsh@ntut.edu.tw; Chang, Po-Yu

    2014-11-17

    This study aims to explore a series of Hot Isostatic Pressing (HIP) and hot-press sintering processes in order to examine the effects on the mechanical properties, microstructures and corrosion behaviors of micro- and nano-WC materials. The experimental results showed that the transverse rupture strength (TRS) values of micro- and nano-WC increased to 1627.3 and 1842.7 MPa after 1250 °C, 125 MPa, 100 min HIP treatments, respectively. Meanwhile, the porosity decreased slightly. The corrosion test results also showed that HIP-treated micro- and nano-WC effectively improved corrosion resistance in a 3.5 wt% NaCl solution. In addition, the lowest porosity (0.21%), highest hardness (91.7 HRA) and highest K{sub IC} (14.7 MPa√m) values appeared in nano-WC after 1250 °C, 15 MPa, 1 h hot-press sintering. Moreover, the hot-press sintering procedure significantly inhibited the grain growth of the tungsten carbide materials.

  6. Sintering and deformation of nanocrystalline ceramics

    International Nuclear Information System (INIS)

    Hahn, H.; Averback, R.S.; Hofler, H.J.; Logas, J.

    1991-01-01

    Nanocrystalline ceramics have been produced by the method of inert gas condensation of ultra-small particles and in situ consolidation. Sintering characteristics and microstructural parameter such as grain size, porosity and pore size distributions have been investigated by a variety of techniques, including: X-ray diffraction, gravimetry, nitrogen adsorption, scanning electron microscopy and small angle neutron scattering. In pure TiO 2 , the sintering temperatures are drastically lowered compared to conventional ceramics, however, extensive grain growth occurs before full densification is achieved. High density, nanocrystalline ceramics can be prepared by pressure assisted sintering, doping and additions of second phases. High temperature microhardness and creep deformation in compression were measured and it was found that creep processes occur at lower temperatures than in ceramics with larger grain sizes. Nanocrystalline TiO 2 with densities >99% can be deformed plastically without fracture at temperatures below half the melting point. The total strains exceed 0.6 at strain rates as high as 10 -3 s -l . The stress exponent of the strain rate, n, is approximately 3 and the grain size dependence is G -q with q in the range of 1-1.5. In this paper it is concluded that the creep deformation occurs by an interface reaction controlled mechanism

  7. Oscillating systems with cointegrated phase processes

    DEFF Research Database (Denmark)

    Østergaard, Jacob; Rahbek, Anders; Ditlevsen, Susanne

    2017-01-01

    We present cointegration analysis as a method to infer the network structure of a linearly phase coupled oscillating system. By defining a class of oscillating systems with interacting phases, we derive a data generating process where we can specify the coupling structure of a network that resemb...

  8. Nd:YAG transparent ceramics fabricated by direct cold isostatic pressing and vacuum sintering

    Science.gov (United States)

    Ge, Lin; Li, Jiang; Zhou, Zhiwei; Liu, Binglong; Xie, Tengfei; Liu, Jing; Kou, Huamin; Shi, Yun; Pan, Yubai; Guo, Jingkun

    2015-12-01

    The sintering behavior of neodymium doped yttrium aluminum garnet (Nd:YAG) ceramics was investigated on the basis of densification trajectory, microstructure evolution and transmittance. Nd:YAG ceramics with in-line transmittance of 83.9% at 1064 nm and 82.5% at 400 nm were obtained by direct cold isostatic pressing (CIP) at 250 MPa and solid-state reactive sintering at 1790 °C for 30 h under vacuum. Compared with the porosity and the average pore diameter of the sample from uniaxial dry-pressing followed by CIP, those from direct CIP are much smaller. The samples pressed at 250 MPa were sintered from 1500 °C to 1750 °C for 0.5-20 h to study their sintering behavior. At the temperature higher than 1500 °C, pure YAG phase is formed, followed by the densification and grain growth process. The relative density and the grain size increase with the increase of sintering time and temperature, and the sintering behavior is more sensitive to temperature than holding time. The mechanism controlling densification and grain growth at sintering temperature of 1550 °C is grain boundary diffusion.

  9. Improvement of Bondability by Depressing the Inhomogeneous Distribution of Nanoparticles in a Sintering Bonding Process with Silver Nanoparticles

    Science.gov (United States)

    Yan, Jianfeng; Zou, Guisheng; Wu, Aiping; Ren, Jialie; Hu, Anming; Zhou, Y. Norman

    2012-07-01

    Low-temperature bonding by sintering of Ag nanoparticles (NPs) is a promising lead-free bonding technique used in the electronic packaging industry. In this work, we prepare Ag nanoparticle (NP) paste using both an aqueous method and a polyol method. Sintering bonding trials were then conducted using different forms of Ag NPs. The results showed that use of the aqueous-based Ag NP paste led to inhomogeneous distribution of NPs, known as the "coffee-ring effect." This led to low strength of fabricated joints. We investigated the influence of the coffee-ring effect and ways to depress it by changing the bonding material composition. Our results show that, when using polyol-based Ag NP paste as the bonding material, the coffee-ring effect was successfully depressed due to increased Marangoni flow. The corresponding shear strength of joints was increased significantly to 50 MPa at bonding temperature of 250°C.

  10. Sintering of dioxide pellets in an oxidizing atmosphere (CO2)

    International Nuclear Information System (INIS)

    Santos, G.R.T.

    1992-01-01

    This work consists in the study of the sintering process of U O 2 pellets in an oxidizing atmosphere. Sintering tests were performed in an CO 2 atmosphere and the influence of temperature and time on the pellets density and microstructure were verified. The results obtained were compared to those from the conventional sintering process and its efficiency was confirmed. (author)

  11. The effect of Cu addition and milling contaminations on the microstructure evolution of ball milled Al-Pb alloy during sintering

    International Nuclear Information System (INIS)

    Zhu, M.; Ouyang, L.Z.; Wu, Z.F.; Zeng, M.Q.; Li, Y.Y.; Zou, J.

    2006-01-01

    Al-10 wt.%Pb and Al-10 wt.%Pb-x wt.%Cu (x = 0-7.0) bulk alloys were prepared by sintering the mechanically alloyed powders at various temperatures. The microstructure changes of the as consolidated powders in the course of sintering were analyzed by differential scanning calorimetry, scanning electron microscopy, X-ray diffraction analysis and transmission electron microscopy. It has been found that, with respect to the Al-10 wt.%Pb-x wt.%Cu alloy, CuAl 2 and Cu 9 Al 4 phases formed in the milling process, and the amount of CuAl 2 phase increased while the Cu 9 Al 4 phase disappeared gradually in the sintering process. In both Al-10 wt.%Pb and Al-10 wt.%Pb-x wt.%Cu alloys, the sintering process results in the coarsening of Pb phase and the growth rate of Pb phase fulfills the Lifshitz-Slyozov-Wagner equation even though the size of the Pb phase was in nanometer range. The Pb particle exhibits cuboctahedral morphology and has a cubic to cubic orientation relationship with the Al matrix. The addition of Cu strongly depressed the growth rate of Pb. Contamination induced by milling has apparent influence on the microstructure of the sintered alloys. Al 7 Cu 2 Fe and aluminium oxide phases were identified in the sintered alloys. The cuboctahedral morphology of Pb particles was broken up by the presence of the oxide phase

  12. Master sintering curve: A practical approach to its construction

    Directory of Open Access Journals (Sweden)

    Pouchly V.

    2010-01-01

    Full Text Available The concept of a Master Sintering Curve (MSC is a strong tool for optimizing the sintering process. However, constructing the MSC from sintering data involves complicated and time-consuming calculations. A practical method for the construction of a MSC is presented in the paper. With the help of a few dilatometric sintering experiments the newly developed software calculates the MSC and finds the optimal activation energy of a given material. The software, which also enables sintering prediction, was verified by sintering tetragonal and cubic zirconia, and alumina of two different particle sizes.

  13. Possible actions for the minimization of the environmental impact of the iron ore sintering fumes

    International Nuclear Information System (INIS)

    Garcia-Carcedo, F.; Ayala, N.; Isidro, A.; Moro, A.; Cornejo, N.; Ferreira, S.; Hernandez, A.; Cobo, A.; Alaiz, E.; Garcia, J. R.

    2004-01-01

    In sintering plants, gaseous emissions are generated which must comply with increasingly demanding environmental regulations. In the sintering process, about 40 kg of coke and 1,700 Nm''3 of air are used per ton of useful sinter. Sintering fumes have a gaseous phase formed mainly of N 2 , O 2 , CO 2 , H 2 O and CO and the minor components SO . SO 3 , NO and NO 2 . Other minor components include unburned organic products and CLH, and minimal proportions of other high impact compounds such as dioxins and furans are also present. Chlorides and heavy metals are present in the solid fraction. This paper reviews the situation of each emission in relation with the applicable regulations, and the possible means of reducing these emissions. (Author) 12 refs

  14. Determinants of the quality of sintered steel for the automotive industry

    Directory of Open Access Journals (Sweden)

    Barbara Lisiecka

    2016-03-01

    Full Text Available The increasing demand on components obtained using powder metallurgy is driven by economic changes that have turned product quality into the most basic criterion which affects the interest in a component and its successful use. The improvement in quality should be expected in the beginning of the planning of the technological process and selection of adequate raw materials. High requirements concerning product quality management and production improvement stimulates the development of the current automotive industry where sintered steels represent the highest percentage of products. The multiphase sinters investigated in the study were prepared from two types of water–atomized steel powders: 316L and 409L. Optical microscopy, X–ray phase analysis and examinations of microhardness were performed in order to determine the microstructure and basic properties of sintered steels. The main assumption for this study was to analyse the microstructure and mechanical properties of sintered steels used for manufacturing of various car parts.

  15. Comparative studies on mechanical properties of WC-Co composites sintered by SPS and conventional techniques

    Directory of Open Access Journals (Sweden)

    Pristinskiy Yuri

    2017-01-01

    Full Text Available Spark plasma sintering (SPS is an extremely fast solidification technique for compounds that are difficult to sinter within the material group metals, ceramics, or composites thereof, SPS uses a uniaxial pressure and a very rapid heating cycle to consolidate these materials. With SPS the main benefit is the ability to control the WC grain size due to the short sintering times at high temperature. Additionally, its allows to avoid negative reactions between WC and cobalt and to minimize the formation of undesirable phases in sintered composites. The WC-6wt.% Co cermet prepared by SPS processing achieves the enhanced mechanical properties with the hardness of 18.3 GPa and the fracture toughness of 15.5 MPa·m1/2 in comparison to standard reference tungsten carbide/cobalt material.

  16. Effect of LiF as Sintering Agent on the Densification and Phase Formation in Al2O3-4 Wt Pct Nb2O5 Ceramic Compound

    Science.gov (United States)

    Santos, J. L.; Marçal, R. L. S. B.; Jesus, P. R. R.; Gomes, A. V.; Lima, E. P.; Monteiro, S. N.; de Campos, J. B.; Louro, L. H. L.

    2017-10-01

    Different amounts of LiF were added to an Al2O3-4 pct Nb2O5 basic ceramic, as sintering agent. Improved new ceramics were obtained with LiF concentrations varying from 0.25 to 1.50 wt pct and three sintering temperatures of 1573 K, 1623 K, and 1673 K (1300 °C, 1350 °C, and 1400 °C). The addition of 0.5 wt pct LiF yielded the highest densification, 94 pct of the theoretical density, in association with a sintering temperature of 1673 K (1400 °C). Based on X-ray diffraction (XRD), this improvement was due not only to the presence of transformed phases, more precisely Nb3O7F, but also to the absence of LiAl5O8. The preferential interaction of LiF with Nb2O5, instead of Al2O3, contributed to increase the alumina sintering ability by liquid phase formation. Scanning electron microscopy (SEM) results revealed well-connected grains and isolated pores, whereas the chemical composition analysis by energy dispersive energy (EDX) indicated a preferential interaction of fluorine with niobium, in agreement with the results of XRD. It was also observed from thermal analysis that the polyethylene glycol binder burnout temperature increased for all LiF concentrations. This may be related to the formation of hydrogen bridge bonds.

  17. Precipitation and solidification of calzirtite in liquid phase sintered ZrO[sub 2] (10. 8 mol. %CaO) with TiO[sub 2] additions

    Energy Technology Data Exchange (ETDEWEB)

    Shen Pouyan; Hon Yungshon (Inst. of Materials Science and Engineering, National Sun Yat-Sen Univ., Kaohsiung (Taiwan))

    1992-12-30

    Microstructure of calzirtite (Ca[sub 2]Zr[sub 5]Ti[sub 2]O[sub 16]) in CaO-ZrO[sub 2]-TiO[sub 2] ceramics was studied by transmission electron microscopy. The ceramics were prepared by liquid phase sintering (1600degC, 6h) powders of calcia-partially stabilized zirconia (PSZ of composition ZrO[sub 2]-10.8mol.%CaO and phase assemblages of tetragonal (t) ZrO[sub 2] in the cubic (c) ZrO[sub 2] matrix) and adding to them 2 mol.%, 4 mol.% and 8 mol.% TiO[sub 2] (designated specimens 2T, 4T and 8T respectively). Calzirtite was not formed in specimen 2T, but formed in the grain-boundary liquid of specimens 4T and 8T by epitaxial nucleation from ZrO[sub 2] followed cellular of spherulitic growth to form plate-like variants with [l brace]200[r brace] habit plane which elongated predominantly along the crystallographic c axis. For specimens 8T, calzirtite was formed in the shell region of the PSZ grains and appeared more or less equiaxed by domain nucleation within the c-ZrO[sub 2] matrix. In addition to the effect of interfacial energy, structural similarity was crucial for nucleating calzirtite epitaxially from ZrO[sub 2]. (orig.).

  18. Sintering characteristics of nano-ceramic coatings

    NARCIS (Netherlands)

    de Hosson, J.T.M.; Popma, R.

    2003-01-01

    This paper concentrates on sintering characteristics of nano-sized ceramic SiO2 particles. The sintering process is studied as a function of temperature using a conventional furnace and using a laser beam. The underlying idea is to combine the nanoceramic sol-gel concept with inkjet technology and

  19. Mechanical characteristics of microwave sintered silicon carbide

    Indian Academy of Sciences (India)

    In firing of products by conventionally sintered process, SiC grain gets oxidized producing SiO2 (∼ 32 wt%) and deteriorates the quality of the product substantially. Partially sintered silicon carbide by such a method is a useful material for a varieties of applications ranging from kiln furniture to membrane material.

  20. Electro sinter forging of titanium disks

    DEFF Research Database (Denmark)

    Cannella, Emanuele; Nielsen, Chris Valentin; Bay, Niels Oluf

    Electro sinter forging (ESF) is a new sintering process based on the principle of electrical Joule heating. In the present work, middle frequency direct current (MFDC) was flowing through the powder compact, which was under mechanical pressure. The main parameters are the high electrical current,...

  1. Sintered-to-size FBR fuel

    International Nuclear Information System (INIS)

    Rasmussen, D.E.; Schaus, P.S.

    1984-04-01

    Fabrication of sintered-to-size PuO 2 -UO 2 fuel pellets was completed for testing of proposed FBR product specifications. Approximately 6000 pellets were fabricated to two nominal diameters and two densities by cold pressing and sintering to size. Process control and correlation between test and production batches are discussed

  2. Effect of microstructure changes on magnetic properties of spark plasma sintered Nd-Fe-B powders

    Directory of Open Access Journals (Sweden)

    Michalski B.

    2013-01-01

    Full Text Available In this study the SPS method was applied for low RE content (8,5% at. and high RE content (13,5 % at. MQ powders. The powders were sintered in a wide range of temperature, for 5 min., under pressure of 35 MPa. The low RE content grade, densified reluctantly and gained the density close to the theoretical value only for 850 °C. The coercivity decreased gradually with increasing sintering temperature. On the other hand, the densification of the higher RE content grade powder occurred much easier and the coercivity, close to the theoretical value, was achieved already at 650 °C. The coercivity of this material also decreased with increasing sintering temperature. Microstructural studies revealed that the SPS sintering process leads to partial decomposition of the Nd2Fe14B phase. The proportion of the RE-rich and iron phases increases parallel to the increasing sintering temperature. On the basis of the current results one can conclude that fabrication of high density MQ powders based magnets by the SPS method is possible, however the powders having higher RE content should be used for this purpose and the sintering temperature as low as possible, related to density, should be kept.

  3. Sol-gel synthesis of lithium metatitanate as tritium breeding material under different sintering conditions

    Science.gov (United States)

    Lu, Wei; Wang, Jing; Pu, Wenjing; Li, Kaiping; Ma, Shubing; Wang, Weihua

    2018-04-01

    Lithium metatitanate (Li2TiO3) is a promising tritium breeding material candidate for solid blanket of D-T fusion reactors, due to its high mechanical strength, chemical stability, and tritium release rate. In this paper, Li2TiO3 powder with homogeneous crystal structure is synthesized by sol-gel method. The chemical reactions in gel thermal cracking and sintering process are studied by thermo gravimetric/differential scanning calorimetry (TG-DSC). The relationship between the sintering condition and the particle/grain size is characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Results show that below 673 K the gel precursor is completely decomposed and Li2TiO3 phase initially forms. The LiTiO2 by-product formed under the reductive atmosphere in muffle furnace, could be oxidized continually to Li2TiO3 at higher sintering temperature (≥1273 K) for longer sintering time (≥10 h). Both grain and particle sizes rely on a linear growth with the increase of sintering time at 1273 K. Over 1473 K, significant agglomerations exist among particles. The optimal sintering condition is selected as 1273 K for 10 h, for the purer Li2TiO3 phase (>99%), smaller grain and particle size.

  4. Microstructure and Properties of Spark Plasma Sintered Aluminum Containing 1 wt.% SiC Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ismaila Kayode Aliyu

    2015-01-01

    Full Text Available The low hardness and strength of aluminum, which limits its use in many industrial applications, could be increased through the addition of nanoparticles. However, the appropriate processing method and parameters should be carefully selected in order to achieve the desired improvement in properties. In this work, aluminum was reinforced with low weight fraction (1 wt.% of SiC nanoparticles and consolidated through spark plasma sintering. The effect of processing parameters on the densification, microstructure, and properties of the processed material was investigated. Field Emission Scanning Electron Microscope (FE-SEM equipped with Energy Dispersive X-ray Spectroscopy (EDS facility was used to characterize the microstructure and analyze the reinforcement’s distribution in sintered samples. Phases present were characterized through X-ray diffraction (XRD. A densimeter and a digital microhardness tester were used to measure the density and hardness, respectively. Compressive tests were performed using universal testing machine. A fully dense Al-1 wt.% SiC sample was obtained. Analysis of density and hardness values showed that the influence of applied pressure was more pronounced than heating rate while the influence of sintering temperature was more significant than sintering time. Within the range of parameters used, the highest values of the characterized properties were obtained at a sintering temperature of 600 °C, sintering time of 10 min, pressure of 50 MPa, and heating rate of 200 °C/min.

  5. Aqueous phase processing of secondary organic aerosols

    Science.gov (United States)

    Liu, Yao; Tritscher, T.; Praplan, A. P.; Decarlo, P. F.; Temime-Roussel, B.; Quivet, E.; Marchand, N.; Dommen, J.; Baltensperger, U.; Monod, A.

    2011-07-01

    The aging of secondary organic aerosol (SOA) by photooxidation in the aqueous phase was experimentally investigated. To simulate multiphase processes, the following experiments were sequentially performed in a smog chamber and in an aqueous phase photoreactor: (1) Gas-phase photooxidation of three different volatile organic compounds (VOC): isoprene, α-pinene, and 1,3,5-trimethylbenzene (TMB) in the presence of NOx, leading to the formation of SOA which was subjected to on-line physical and chemical analysis; (2) particle-to-liquid transfer of water soluble species of SOA using filter sampling and aqueous extraction; (3) aqueous-phase photooxidation of the obtained water extracts; and (4) nebulization of the solutions for a repetition of the on-line characterization. SOA concentrations in the chamber measured with a scanning mobility particle sizer (SMPS) were higher than 200 μg m-3, as the experiments were conducted under high initial concentrations of volatile organic compounds (VOC) and NOx. The aging of SOA through aqueous phase processing was investigated by measuring the physical and chemical properties of the particles online before and after processing using a high resolution time-of-flight aerosol mass spectrometer (AMS) and a hygroscopicity tandem differential mobility analyzer (H-TDMA). It was shown that, after aqueous phase processing, the particles were significantly more hygroscopic, and contained more fragmentation ions at m/z = 44 and less ions at m/z = 43, thus showing a significant impact on SOA aging for the three different precursors. Additionally, the particles were analyzed with a thermal desorption atmospheric pressure ionization aerosol mass spectrometer (TD-API-AMS). Comparing the smog chamber SOA composition and non processed nebulized aqueous extracts with this technique revealed that sampling, extraction and/or nebulization did not significantly impact the chemical composition of SOA formed from isoprene and α-pinene, whereas it

  6. Spark plasma sintering of hydrothermally synthesized bismuth ferrite

    Directory of Open Access Journals (Sweden)

    Zorica Branković

    2016-12-01

    Full Text Available Bismuth ferrite, BiFeO3 (BFO, powder was synthesized by hydrothermal method from Bi(NO33·5 H2O and Fe(NO33·9 H2O as precursors. The synthesized powder was further sintered using spark plasma sintering (SPS. The sintering conditions were optimized in order to achieve high density, minimal amount of secondary phases and improved ferroelectric and magnetic properties. The optimal structure and properties were achieved after spark plasma sintering at 630 °C for 20 min, under uniaxial pressure of 90 MPa. The composition, microstructure, ferroelectric and magnetic properties of the SPS samples were characterized and compared to those of conventionally sintered ceramics obtained from the same powder. Although the samples sintered using conventional method showed slightly lower amount of secondary phases, the spark plasma sintered samples exhibited favourable microstructure and better ferroelectric properties.

  7. Comparative optical investigations of sintered and monocrystalline black and green silicon carbide (SiC)

    International Nuclear Information System (INIS)

    Werheit, H.; Schwetz, K.A.

    2004-01-01

    Crystalline SiC appears in many different polytypes of cubic, hexagonal, and rhombohedral structures. These polytypes are colorless transparent or exhibit various colors evoked by doping with different elements. Dense sintered S-SiC (solid-state sintered) and LPS-SiC (liquid-phase sintered) were known in black color only, but recently a new liquid-phase sintering process was developed to achieve green LPS-SiC as well. Whereas in S-SiC the polycrystalline grains are homogeneously doped with 0.2 wt% boron, in the LPS-types the SiC grains contain up to 1.2 wt% Al, 0.3 wt% N and 0.1% O having a structure comprising a SiC(Al,N,O) mixed crystal shell and a pure SiC core. The difference in color of polycrystalline SiC bodies seems to result from small amounts of carbon in the sintered specimens (0.2-0.5 wt% C). Green sintered LPS-SiC is obtained, after free carbon has largely been removed by a suitable oxidation process prior to sintering. To get information on the various types of sintered SiC, the optical extinction and absorption spectra of black and green sintered SiC and green Acheson-SiC single crystals were quantitatively measured in the spectral range between about 1.4 and 4.1 eV. While the absorption coefficients of the single crystals vary between about 50 and 200 cm -1 , the extinction coefficients of the sintered materials are between 2000 and 7000 cm -1 . Nevertheless the absorption bands in the more or less transparent region of the green and black materials can easily be attributed to one another. Hence, the reason for these absorption processes must be assumed to be the same. In the same way, position and slope of the absorption edges are correlated amongst green or black SiC, irrespective of, whether the material is single crystal or sintered

  8. Effects of ball milling and sintering on alumina and alumina-boron compounds

    Science.gov (United States)

    Cross, Thomas

    Alumina has a wide variety of applications, but the processing of alumina based materials can be costly. Mechanically milling alumina has been shown to enhance the sintering properties while decreasing the sintering temperature. Additions of boron have also proven to increase sintering properties of alumina. These two processes, mechanical milling and boron additions, will be combined to test the sintering properties and determine if they are improved upon even further compared to the individual processes. Multiple samples of pure alumina, 0.2 weight percent boron, and 1.0 weight percent boron are batched and processed in a ball mill for different time intervals. These samples are then characterized to observe the structure and properties of the samples after milling but before sintering. Pellets are dry pressed from the milled powders, sintered at 1200°C for one to 10 hours, and characterized to determine the impact of processing. X-ray diffractometry (XRD) was used on each sample to determine crystallite size and lattice parameters at different stages throughout the experiment. XRD was also used to identify any samples with an aluminum borate phase. Scanning electron microscopy (SEM) was used to observe the powder and pellet morphology and to measure bulk chemical composition. Samples were sputter coated with an Au-Pd coating observed in the SEM to characterize the topography as a function of variables such as milling time, boron composition, and sintering time. Additionally, porosity and change in diameter were measured to track the sintering process. Milling sample for longer periods of time would be unnecessary due to the crystallite size leveling off between 10 and 12 hours of milling time. Samples of alumina with 0.2 weight percent boron prove to have very little effect on the sintering properties. At 1.0 weight percent boron, there are changes in diffraction patterns and topography after being sintered for one hour. The porosities of all of the sintered

  9. Physical chemistry and modelling of the sintering of actinide oxides

    International Nuclear Information System (INIS)

    Lechelle, Jacques

    2013-01-01

    This report gives a synthesis of the work I have carried out or to which I have numerically contributed to from 1996 up to 2012 in the Department of Plutonium Uranium and minor Actinides in Cadarache CEA Center. Their main goal is the study and the modeling of the sintering process of nuclear fuels which is the unifying thread of this document. Both in order to take into account the physical and chemical features of the actinide bearing oxide material and in order to combine the different transport phenomena leading to sintering, a sub-granular scale model is under development. Extension to a varying chemical composition as well as exchanges with the gaseous phase are foreseen. A simulation on a larger scale (pellet scale) is ongoing in the framework of a PhD thesis. Validation means have been tested with (U,Pu)O 2 material on the scale of the pellet (Small Angle Neutron Diffusion), on the scale of powder granules (X-Ray High Resolution Micro-Tomography) and with CeO 2 at the 'Institut de Chimie Separative' in Marcoule on a single crystal scale (Environmental Scanning Electron Microscope). The required microstructure homogeneity for nuclear fuels has led to a campaign of experimental studies about the role of Cr 2 O 3 as a sintering aid. Whole of these studies improve our understanding of fuel sintering and hence leads to an improved mastering of this process. (author) [fr

  10. Plutonium Immobilization Project Binder Burnout and Sintering Studies (Milestone 6.6a)

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, G.

    1999-10-28

    The Plutonium Immobilization Team has developed an integrated test program to understand and optimize the controlling variables for the sintering step of the plutonium immobilization process. Sintering is the key process step that controls the product minerology. It is expected that the sintering will be the limiting process step that controls the throughput of the production line. The goal of the current sintering test program is to better understand factors that affect the sintering process.

  11. Plutonium Immobilization Project Binder Burnout and Sintering Studies (Milestone 6.6a)

    International Nuclear Information System (INIS)

    Chandler, G.

    1999-01-01

    The Plutonium Immobilization Team has developed an integrated test program to understand and optimize the controlling variables for the sintering step of the plutonium immobilization process. Sintering is the key process step that controls the product mineralogy. It is expected that the sintering will be the limiting process step that controls the throughput of the production line. The goal of the current sintering test program is to better understand factors that affect the sintering process

  12. Sintering techniques for microstructure control in ceramics

    Science.gov (United States)

    Rosenberger, Andrew T.

    Sintering techniques can be manipulated to enhance densification in difficult to sinter materials and to produce property enhancing microstructures. However, the interplay between materials, sintering techniques, and end properties is not fully understood in many material systems, and some fundamental aspects of sintering such as the nature of the effects of electric fields remains unknown. The processing property relationships were examined in two classes of materials; zirconium diboride ultra high temperature ceramic composites, and all solid lithium-ion battery phosphate materials. Investigation of zirconium diboride ceramics focused on the effects of zirconium carbide as a secondary or tertiary phase in ZrB2 and ZrB2 -- SiC. Addition of zirconium carbide was observed to increase flexural strength of composites up to 590MPa at 50wt% ZrC, significantly higher than the flexural strength of 380MPa observed in similarly prepared ZrB2 -- SiC. This difference was attributed to the absence of CTE mismatch induced residual stresses in the ZrB2 -- ZrC composites. A high temperature reaction between ZrB2 and TiC producing Zr1-xTixB2 -- ZrC composites was discovered and found to enhance densification while reducing the average grain size to as small as 1.4mum, lower than the starting powder size of 1.8mum. While a high flexural strength of 670MPa was observed, a strength dependence on the ZrC grain size indicative of CTE mismatch residual stresses was also seen. Finally, the oxidation and ablation resistance of ZrB2 -- ZrC -- SiC composites as a function of ZrC fraction and ZrC:SiC ratio was investigated. Above 5vol% ZrC, the oxidation and ablation resistance of the composites was significantly reduced due to ZrC oxidation, regardless of SiC content. While ZrC can significantly enhance the mechanical properties of the composite, the volume fraction must be kept low to avoid an undesirable reduction in the oxidation resistance. The influence of applied electrical fields

  13. Phase Superposition Processing for Ultrasonic Imaging

    Science.gov (United States)

    Tao, L.; Ma, X. R.; Tian, H.; Guo, Z. X.

    1996-06-01

    In order to improve the resolution of defect reconstruction for non-destructive evaluation, a new phase superposition processing (PSP) method has been developed on the basis of a synthetic aperture focusing technique (SAFT). The proposed method synthesizes the magnitudes of phase-superposed delayed signal groups. A satisfactory image can be obtained by a simple algorithm processing time domain radio frequency signals directly. In this paper, the theory of PSP is introduced and some simulation and experimental results illustrating the advantage of PSP are given.

  14. Fabrication of TiNi powder by mechanical alloying and shape memory characteristics of the sintered alloy

    International Nuclear Information System (INIS)

    Terayama, Akira; Kyogoku, Hideki; Komatsu, Shinichiro; Sakamura, Masaru

    2006-01-01

    This paper presents the fabrication condition of TiNi alloy powder by mechanical alloying and shape memory characteristics of the sintered alloy. The effect of mechanical alloying condition on the characteristics of mechanically alloyed powder (MA powder) was investigated. Also, the difference in sintering behavior between the MA powder and the elementally mixed powders by V-blender and the shape memory characteristics of the sintered alloys were also examined. The MA powder was fabricated by milling using a planetary ball mill in a rotational speed between 200 and 500 min -1 for various milling times in an atmosphere of Ar gas. These two of powders prepared in different processes were sintered using a pulse-current pressure sintering equipment at various sintering temperatures. The powder agglomerated and its particle size became larger with an increase in milling time. The mixture of Ti and Ni powders changed into an amorphous state by processing for 3.6 ks over 300 min -1 . The sintered alloy of the MA powder showed more uniform phase of TiNi than that of the elementally mixed powders sintered in a same manner, however, the former showed a lower density than the latter due to a larger particle size of the MA powder of before-sintering. It was found from the measurement of the transformation temperature of the sintered alloy of the MA powder using DSC that the alloy has shape memory characteristics, and the transformation temperatures of the alloy are higher than those of the alloy of the elementally mixed powders due to waste of Ni powder. (author)

  15. Sintered cobalt-rare earth intermetallic product

    International Nuclear Information System (INIS)

    Benz, M.G.

    1975-01-01

    This patent describes a sintered product having substantially stable permanent magnet properties in air at room temperature. It comprises compacted particulate cobalt--rare earth alloy consisting essentially of a Co 5 R intermetallic phase and a CoR intermetallic phase which is richer in rare earth metal content than the Co 5 R phase, where R is a rare earth metal. The Co 5 R intermetallic phase is present in an amount of at least 65 percent by weight of the sintered product and the CoR intermetallic phase which is richer in rare earth metal content than the Co 5 R phase is present in a positive amount having a value ranging up to about 35 percent by weight of the product. The sintered product has a density of at least 87 percent and has pores which are substantially noninterconnecting and wherein the component grains have an average size less than 30 microns

  16. The evaluation of microstructure and mechanical properties of sintered sub-micron WC-Co powders

    International Nuclear Information System (INIS)

    Nor Izan Izura; Mohd Asri Selamat; Noraizham Mohamad Diah; Talib Ria Jaafar

    2007-01-01

    A cemented tungsten carbide (WC-Co) is widely used for a variety of machining, cutting, drilling and other applications. The properties of this tungsten heavy alloy are sensitive to processing and degraded by residual porosity. The sequence of high end powder metallurgy process include mixing, compacting and followed by multi-atmosphere sintering of green compact were analyzed. The sub micron (<1.0 μm) and less than 10.0 μm of WC powders are sintered with a metal binder 6% Co to provide pore-free part. The powder compacts were sintered at temperatures cycle in the range of 1200 degree Celsius-1550 degree Celsius in nitrogen-based sintering atmosphere. To date, however there have been few reported studies in the literature that the best sintering was carried out via liquid phase sintering in vacuum at approximately 1500 degree Celsius. from this study we found that in order to attain high mechanical properties, a fine grain size of powder is necessary. Therefore, the attention of this work is to develop and produce wear resistant component with better properties or comparable to the commercial ones. (author)

  17. Early Phase Process Evaluation: Industrial Practices

    Directory of Open Access Journals (Sweden)

    Zulfan Adi Putra

    2016-09-01

    Full Text Available Process route evaluation is a part of research and development (R&D works in an industrial chemical project life cycle. In this early phase, good process evaluation, including process synthesis and designs, provide guidance’s on the R&D project. The paper aimed to collect practical methods used in this early phase process route evaluation from author’s 10 years of industrial experiences.  The collected methods range from forward-backward process synthesis, functional process design, use of cost estimation, and applications of Monte Carlo simulation. Led by a good project management (e.g. via a stage-gate approach use of these methods have shown beneficial results. Some important results are strong arguments on whether or not the project will continue, as well as relevant technical and economic issues identified during this early phase process synthesis and design. Later on, these issues become guidance’s to the follow-up project, if it is continued.

  18. LHC Experiments Phase II - TDRs Approval Process

    CERN Document Server

    Forti, F

    2017-01-01

    The overall review process and steps of Phase II were described in CERN-LHCC-2015-077. As experiments submit detailed technical design reports (TDRs), the LHCC and UCG work in close connection to ensure a timely review of the scientific and technical feasibility as well as of the budget and schedule of the upgrade programme.

  19. Sintered ceramics having controlled density and porosity

    International Nuclear Information System (INIS)

    Brassfield, H.C.; DeHollander, W.R.; Nivas, Y.

    1980-01-01

    A new method was developed for sintering ceramic uranium dioxide powders, in which ammonium oxalate is admixed with the powder prior to being pressed into a cylindrical green body, so that the end-point density of the final nuclear-reactor fuel product can be controlled. When the green body is heated, the ammonium oxalate decomposes and leaves discrete porosity in the sintered body, which corresponds to the ammonium oxalate regions in the green body. Thus the end-point density of the sintered body is a function of the amount of ammonium oxalate added. The final density of the sintered product is about 90-97% of the theoretical. The addition of ammonium oxalate also allows control of the pore size and distribution throughout the fuel. The process leaves substantially no impurities in the sintered strucuture. (DN)

  20. Rapid formation of the 110 K phase in Bi-Pb-Sr-Ca-Cu-O through freeze-drying powder processing

    International Nuclear Information System (INIS)

    Song, K.H.; Liu, H.K.; Dou, S.X.; Sorrell, C.C.

    1990-01-01

    This paper reports three techniques for processing Bi-Pb-Sr-Ca-Cu-O (BPSCCO) powders investigated: dry-mixing, sol-gel formation, and freeze-drying. It was found that sintering for 120 h at 850 degrees C is required to form nearly single-phase (Bi,Pb) 2 Sr 2 Ca 2 Cu 3 O 10-y by dry-mixing, whereas sintering for 30 h at 840 degrees C was sufficient to form the 110 K (2223) phase when freeze-drying was used. The sol-gel route was found to be intermediate in efficiency between these two techniques. Freeze-drying provided highly reactive, intimately mixed, and carbon-free precursors. The presence of carbonates in the uncalcined powders was the major cause of phase segregation and sluggishness of the 110 K phase formation

  1. Effect of Y{sub 2}O{sub 3} addition on the crystal growth and sintering behavior of YSZ nanopowders prepared by a sol-gel process

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, C.-W.; Shen, Y.-H. [Department of Resources Engineering, National Chen Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Hung, I-M. [Yuan Ze Fuel Cell Center, Department of Chemical Engineering and Materials Science, Yuan Ze University, 135 Yuan-Tung Road, Chung-Li, Taoyuan 320, Taiwan (China)], E-mail: imhung@saturn.yzu.edu.tw; Wen, S.-B. [General Education Center, Meiho Institute of Technology, 23 Pingguang Road, Neipu, Pingtung 91202, Taiwan (China); Lee, H.-E. [Faculty of Dentistry, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 807, Taiwan (China); Wang, M.-C. [Faculty of Fragrance and Cosmetics, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 807, Taiwan (China)], E-mail: mcwang@kmu.edu.tw

    2009-03-20

    The effect of Y{sub 2}O{sub 3} (8 mol% {<=} Y{sub 2}O{sub 3} {<=} 10 mol%) addition on the crystal growth and sintering behavior of yttria-stabilized zirconia (YSZ) nanocrystallites prepared by a sol-gel process with various mixtures of ZrOCl{sub 2}.8H{sub 2}O and Y(NO{sub 3}){sub 3}.6H{sub 2}O ethanol-water solutions at low temperatures has been studied. X-ray diffraction (XRD), Brunauer-Emmett-Teller specific surface area analyses (BET), scanning electron microscopy (SEM), transmission electron microscopy (TEM), electron diffraction (ED) and dilatometric analysis (DA) have been utilized to characterize the YSZ nanocrystallites. Characterization reveals that the YSZ nanopowders are weakly agglomerated. When calcined at various temperatures for 2 h, the crystallite size increases and the surface area of the YSZ powders decreases when the calcination temperature increased from 673 to 1273 K. A nanocrystallite size distribution between 10 and 15 nm is obtained in the TEM examination, which is consistent with the XRD investigation. The activation energy for crystal growth were determined as 5.75 {+-} 0.68, 4.22 {+-} 0.51, and 5.24 {+-} 0.20 kJ/mol for 8, 9 and 10 YSZ precipitates, respectively. The morphology of the YSZ sintered at high temperature indicates the abnormal growth is due to the low activation energy for crystallite growth.

  2. Effect of Y2O3 addition on the crystal growth and sintering behavior of YSZ nanopowders prepared by a sol-gel process

    International Nuclear Information System (INIS)

    Kuo, C.-W.; Shen, Y.-H.; Hung, I-M.; Wen, S.-B.; Lee, H.-E.; Wang, M.-C.

    2009-01-01

    The effect of Y 2 O 3 (8 mol% ≤ Y 2 O 3 ≤ 10 mol%) addition on the crystal growth and sintering behavior of yttria-stabilized zirconia (YSZ) nanocrystallites prepared by a sol-gel process with various mixtures of ZrOCl 2 .8H 2 O and Y(NO 3 ) 3 .6H 2 O ethanol-water solutions at low temperatures has been studied. X-ray diffraction (XRD), Brunauer-Emmett-Teller specific surface area analyses (BET), scanning electron microscopy (SEM), transmission electron microscopy (TEM), electron diffraction (ED) and dilatometric analysis (DA) have been utilized to characterize the YSZ nanocrystallites. Characterization reveals that the YSZ nanopowders are weakly agglomerated. When calcined at various temperatures for 2 h, the crystallite size increases and the surface area of the YSZ powders decreases when the calcination temperature increased from 673 to 1273 K. A nanocrystallite size distribution between 10 and 15 nm is obtained in the TEM examination, which is consistent with the XRD investigation. The activation energy for crystal growth were determined as 5.75 ± 0.68, 4.22 ± 0.51, and 5.24 ± 0.20 kJ/mol for 8, 9 and 10 YSZ precipitates, respectively. The morphology of the YSZ sintered at high temperature indicates the abnormal growth is due to the low activation energy for crystallite growth

  3. On the Mechanism of Microwave Flash Sintering of Ceramics

    Directory of Open Access Journals (Sweden)

    Yury V. Bykov

    2016-08-01

    Full Text Available The results of a study of ultra-rapid (flash sintering of oxide ceramic materials under microwave heating with high absorbed power per unit volume of material (10–500 W/cm3 are presented. Ceramic samples of various compositions—Al2O3; Y2O3; MgAl2O4; and Yb(LaO2O3—were sintered using a 24 GHz gyrotron system to a density above 0.98–0.99 of the theoretical value in 0.5–5 min without isothermal hold. An analysis of the experimental data (microwave power; heating and cooling rates along with microstructure characterization provided an insight into the mechanism of flash sintering. Flash sintering occurs when the processing conditions—including the temperature of the sample; the properties of thermal insulation; and the intensity of microwave radiation—facilitate the development of thermal runaway due to an Arrhenius-type dependency of the material’s effective conductivity on temperature. The proper control over the thermal runaway effect is provided by fast regulation of the microwave power. The elevated concentration of defects and impurities in the boundary regions of the grains leads to localized preferential absorption of microwave radiation and results in grain boundary softening/pre-melting. The rapid densification of the granular medium with a reduced viscosity of the grain boundary phase occurs via rotation and sliding of the grains which accommodate their shape due to fast diffusion mass transport through the (quasi-liquid phase. The same mechanism based on a thermal runaway under volumetric heating can be relevant for the effect of flash sintering of various oxide ceramics under a dc/ac voltage applied to the sample.

  4. Processing and Characterization of Fe-Mn-Cu-Sn-C Alloys Prepared by Ball Milling and Spark Plasma Sintering

    Science.gov (United States)

    Bączek, Elżbieta; Konstanty, Janusz; Romański, Andrzej; Podsiadło, Marcin; Cyboroń, Jolanta

    2018-03-01

    In this work, Fe-Mn-Cu-Sn-C alloys were prepared by means of powder metallurgy (PM). Powder mixtures were ball-milled for 8, 30 and 120 h and densified to abrasive wear was evaluated in both three-body abrasion and two-body abrasion tests. The SEM observations revealed an evident dependence of grain size and microstructural homogeneity on milling time. The XRD analysis showed a marked increase in austenite content in the as-sintered specimens with milling time. Although the proportion of deformation-induced martensite was small, the strengthening effect of abrasion on the subsurface layer of the investigated alloys was clearly indicated by Knoop hardness measurements.

  5. XRD analysis and microstructure of milled and sintered V, W, C, and Co powders

    CSIR Research Space (South Africa)

    Bolokang, AS

    2011-01-01

    Full Text Available )C solid solution, a rhombohedral V2O3 and new t-type (Cr23C6) carbide were formed after sintering. The possible formation mechanisms behind detected phases are discussed. It is evident that complete MA process depends strongly on the starting compositions...

  6. Melt Absorbability of Iron Ore Nuclei and Its Influence on Suitable Liquid Content of Sintered Body

    Science.gov (United States)

    Wu, Sheng-Li; Su, Bo; Qi, Yuan-Hong; Kou, Ming-Yin; Li, Yuan; Zhang, Wei-Li

    2017-10-01

    Sinter quasi-particles consist of nuclei particles and adhering fines. Therefore, reaction properties of the nuclei ore will ultimately affect the bonding strength of the sintered body. In this study, micro-sintering tests were conducted to explore the melt absorbability of nuclei ore and its effect on the suitable liquid content of the sintered body. The results showed that the melt absorbability is negatively correlated with the lowest assimilation temperature, and the most important mineralogy factor influencing melt absorbability is iron mineral type. The reaction behaviors of melts containing SiO2 or Al2O3 substrates are different, and the reaction process of the melt containing SiO2 is more complicated. In addition, the bonding strength of the sintered body is collectively determined by the liquid phase fluidity of adhering fines and the assimilability of nuclei ore. The high melt absorbability has an adverse effect on bonding strength, and it requires adhering fines to provide more primary melts to meet the requirements for sintered body bonding strength. In the condition with the same liquid content, for nuclei ore with stronger melt absorbability, an appropriate increase in the adhering fines ratio and reduction in segregation basicity are more conducive to improving the bonding strength.

  7. Profile of yttrium segregation in BaCe0,9Y0,1O3-δ as function of sintering temperature

    International Nuclear Information System (INIS)

    Hosken, C.M.; Souza, D.P.F. de

    2010-01-01

    Researches on solid oxide fuel cells indicate barium cerate perovskite as a very attractive material for using as electrolyte due to its high protonic conductivity. The objective of this work is investigate the yttrium segregation during sintering of BaCe 0,9 Y 0,1 O 3-δ doped with Zn O as a sintering aid. The powders were prepared by citrate process. Powders were isostatic pressed into pellets and sintered in air at 1200, 1275, 1325 and 1400 deg C. The samples were characterized by scanning electron microscopy, X-ray diffraction and impedance spectroscopy. Secondary phase containing Yttrium and Cerium was detected as sintering temperature increased. Increase of the lattice parameter and activation energy for electrical conductivity were also detected on samples sintered at 1400 deg C. (author)

  8. Agglomeration behaviour of steel plants solid waste and its effect on sintering performance

    Directory of Open Access Journals (Sweden)

    Prince Kumar Singh

    2017-07-01

    Full Text Available Recycling has been the fascinating topic among the researchers for all times. The present study shows the recycling of steel plant's solid wastes as blast furnace flue dust and sludge towards agglomeration and their use in the production of sinter. These wastes consist of metal oxides and coke fines as a valuable material with some alkali oxides. Using these wastes as it is in the form of fines exacerbate the further processing. Pellets of these wastes are prepared with three types of binders as molasses, dextrin and bentonite. The result reveals that properties as compressive strength, shatter strength, are better in the case of bentonite binder having the productivity of the disc pelletizer machine as 75. After that, these macro pellets used for sintering with iron ore and other ingredients in pot type, down draft laboratory grade sintering machine, which shows very high productivity and good mechanical properties of the sinter as well. The microstructural analysis reveals the presence of re-oxidized hematite and a little bit of a magnetite phase with some slag phases, which confirmed later by XRD analysis. Results also show the decrease in coke rate, i.e. coke consumption to produce sinter and at the same time, this process is highly eco-friendly.

  9. Phase transitions in multiplicative competitive processes

    International Nuclear Information System (INIS)

    Shimazaki, Hideaki; Niebur, Ernst

    2005-01-01

    We introduce a discrete multiplicative process as a generic model of competition. Players with different abilities successively join the game and compete for finite resources. Emergence of dominant players and evolutionary development occur as a phase transition. The competitive dynamics underlying this transition is understood from a formal analogy to statistical mechanics. The theory is applicable to bacterial competition, predicting novel population dynamics near criticality

  10. Phases of the wound healing process.

    Science.gov (United States)

    Brown, Annemarie

    This is the first in a six-part series on wound management. It describes the stages of the wound healing process and explains how they relate to nursing practice. Nurses need to know how to recognise and understand the different phases so they can identify whether wounds are healing normally and apply the appropriate treatments to remove the barriers to healing. Part 2 (page 14) focuses on wound assessment.

  11. Sintering equation: determination of its coefficients by experiments - using multiple regression

    International Nuclear Information System (INIS)

    Windelberg, D.

    1999-01-01

    Sintering is a method for volume-compression (or volume-contraction) of powdered or grained material applying high temperature (less than the melting point of the material). Maekipirtti tried to find an equation which describes the process of sintering by its main parameters sintering time, sintering temperature and volume contracting. Such equation is called a sintering equation. It also contains some coefficients which characterise the behaviour of the material during the process of sintering. These coefficients have to be determined by experiments. Here we show that some linear regressions will produce wrong coefficients, but multiple regression results in an useful sintering equation. (orig.)

  12. Enhanced Sintering of TiNi Shape Memory Foams under Mg Vapor Atmosphere

    Science.gov (United States)

    Aydoğmuş, Tarik; Bor, Şakir

    2012-12-01

    TiNi alloy foams are promising candidates for biomaterials to be used as artificial orthopedic implant materials for bone replacement applications in biomedical sector. However, certain problems exist in their processing routes, such as formation of unwanted secondary intermetallic phases leading to brittleness and deterioration of shape memory and superelasticity characteristics; and the contamination during processing resulting in oxides and carbonitrides which affect mechanical properties negatively. Moreover, the eutectic reaction present in Ti-Ni binary system at 1391 K (1118 °C) prevents employment of higher sintering temperatures (and higher mechanical properties) even when equiatomic prealloyed powders are used because of Ni enrichment of TiNi matrix as a result of oxidation. It is essential to prevent oxidation of TiNi powders during processing for high-temperature (>1391 K i.e., 1118 °C) sintering practices. In the current study, magnesium powders were used as space holder material to produce TiNi foams with the porosities in the range of 40 to 65 pct. It has been found that magnesium prevents secondary phase formation and contamination. It also prevents liquid phase formation while enabling employment of higher sintering temperatures by two-step sintering processing: holding the sample at 1373 K (1100 °C) for 30 minutes, and subsequently sintering at temperatures higher than the eutectic temperature, 1391 K (1118 °C). By this procedure, magnesium may allow sintering up to temperatures close to the melting point of TiNi. TiNi foams produced with porosities in the range of 40 to 55 pct were found to be acceptable as implant materials in the light of their favorable mechanical properties.

  13. Comparative sinterability of combustion synthesized and commercial titanium carbides

    International Nuclear Information System (INIS)

    Manley, B.W.

    1984-11-01

    The influence of various parameters on the sinterability of combustion synthesized titanium carbide was investigaged. Titanium carbide powders, prepared by the combustion synthesis process, were sintered in the temperature range 1150 to 1600 0 C. Incomplete combustion and high oxygen contents were found to be the cause of reduced shrinkage during sintering of the combustion syntheized powders when compared to the shrinkage of commercial TiC. Free carbon was shown to inhibit shrinkage. The activation energy for sintering was found to depend on stoichiometry (C/Ti). With decreasing C/Ti, the rate of sintering increased. 29 references, 16 figures, 13 tables

  14. Studies on the Sintering Behaviour of UO2-Gd2O3 Nuclear Fuel

    International Nuclear Information System (INIS)

    Durazzo, Michelangelo; Gracher Riella, Humberto

    2008-01-01

    The incorporation of gadolinium directly into nuclear power reactor fuel is important from the point of reactivity compensation and adjustment of power distribution enabling thus longer fuel cycles and optimized fuel utilization. The incorporation of Gd 2 O 3 powder directly into the UO 2 powder by dry mechanical blending is the most attractive process because of its simplicity. Nevertheless, processing by this method leads to difficulties while obtaining sintered pellets with the minimum required density. This is due to blockages during the sintering process. There is little information in published literature about the possible mechanism for this blockage and this is restricted to the hypothesis based on formation of a low diffusivity Gd rich (U,Gd)O 2 phase. Experimental evidences indicated the existence of phases in the (U,Gd)O 2 system with structure different from the fluorite type structure of UO 2 . The apparition of these new phases coincides with the lowering of the density after sintering and with the lowering of the interdiffusion coefficient. However, it has been shown experimentally that the sintering blockage phenomena cannot be explained on the basis of the formation of low diffusivity Gd rich (U,Gd)O 2 phases. The work was continued to investigate other possible blocking mechanism. (authors)

  15. Yttrium oxide transparent ceramics by low-temperature microwave sintering

    International Nuclear Information System (INIS)

    Luo, Junming; Zhong, Zhenchen; Xu, Jilin

    2012-01-01

    Graphical abstract: The figure shows the SEM photos of the surfaces of the Y 2 O 3 transparent ceramic samples obtained by microwave sintering and vacuum sintering. It is clearly demonstrated that the grain distribution of the vacuum sintering sample is not uniform with the smallest and the largest particle size at about 2 μm and 15 μm respectively, while the grain distribution of microwave sintering sample is uniform with the average diameter at about 2–4 μm (the smallest reported so far) and with no abnormal growth-up or coarsening phenomenon. We have further found out that the smaller the grain size, the higher the mechanical and optical properties. Display Omitted Highlights: ► The microwave sintering temperature of the sample is lower compared with vacuum. ► The microwave sintering time of the sample is shorter compared with vacuum. ► The mechanical properties of the microwave sintering sample is improved greatly. ► The Y 2 O 3 grain of microwave sintering sample is the smallest reported so far. -- Abstract: Yttrium oxide (Y 2 O 3 ) transparent ceramics samples have been successfully fabricated by microwave sintering processing at relatively low temperatures. In comparison with the vacuum sintering processing, Y 2 O 3 transparent ceramics can be obtained by microwave sintering at lower sintering temperature and shorter sintering time, and they possess higher transmittances and mechanical properties. The technologies of low-temperature microwave sintering and the relationships of the microstructures and properties of the specified samples have been investigated in detail. We have found out that the low-temperature microwave sintering technique has its obvious advantages over the conventional methods in manufacturing yttrium oxide transparent ceramics.

  16. Thermal barrier coating resistant to sintering

    Science.gov (United States)

    Subramanian, Ramesh; Seth, Brij B.

    2004-06-29

    A device (10) is made, having a ceramic thermal barrier coating layer (16) characterized by a microstructure having gaps (18) with a sintering inhibiting material (22) disposed on the columns (20) within the gaps (18). The sintering resistant material (22) is stable over the range of operating temperatures of the device (10), is not soluble with the underlying ceramic layer (16) and is applied by a process that is not an electron beam physical vapor deposition process.

  17. Sintering of Lead-Free Piezoelectric Sodium Potassium Niobate Ceramics

    Directory of Open Access Journals (Sweden)

    Barbara Malič

    2015-12-01

    Full Text Available The potassium sodium niobate, K0.5Na0.5NbO3, solid solution (KNN is considered as one of the most promising, environment-friendly, lead-free candidates to replace highly efficient, lead-based piezoelectrics. Since the first reports of KNN, it has been recognized that obtaining phase-pure materials with a high density and a uniform, fine-grained microstructure is a major challenge. For this reason the present paper reviews the different methods for consolidating KNN ceramics. The difficulties involved in the solid-state synthesis of KNN powder, i.e., obtaining phase purity, the stoichiometry of the perovskite phase, and the chemical homogeneity, are discussed. The solid-state sintering of stoichiometric KNN is characterized by poor densification and an extremely narrow sintering-temperature range, which is close to the solidus temperature. A study of the initial sintering stage revealed that coarsening of the microstructure without densification contributes to a reduction of the driving force for sintering. The influences of the (K + Na/Nb molar ratio, the presence of a liquid phase, chemical modifications (doping, complex solid solutions and different atmospheres (i.e., defect chemistry on the sintering are discussed. Special sintering techniques, such as pressure-assisted sintering and spark-plasma sintering, can be effective methods for enhancing the density of KNN ceramics. The sintering behavior of KNN is compared to that of a representative piezoelectric lead zirconate titanate (PZT.

  18. Sintering of Lead-Free Piezoelectric Sodium Potassium Niobate Ceramics

    Science.gov (United States)

    Malič, Barbara; Koruza, Jurij; Hreščak, Jitka; Bernard, Janez; Wang, Ke; Fisher, John G.; Benčan, Andreja

    2015-01-01

    The potassium sodium niobate, K0.5Na0.5NbO3, solid solution (KNN) is considered as one of the most promising, environment-friendly, lead-free candidates to replace highly efficient, lead-based piezoelectrics. Since the first reports of KNN, it has been recognized that obtaining phase-pure materials with a high density and a uniform, fine-grained microstructure is a major challenge. For this reason the present paper reviews the different methods for consolidating KNN ceramics. The difficulties involved in the solid-state synthesis of KNN powder, i.e., obtaining phase purity, the stoichiometry of the perovskite phase, and the chemical homogeneity, are discussed. The solid-state sintering of stoichiometric KNN is characterized by poor densification and an extremely narrow sintering-temperature range, which is close to the solidus temperature. A study of the initial sintering stage revealed that coarsening of the microstructure without densification contributes to a reduction of the driving force for sintering. The influences of the (K + Na)/Nb molar ratio, the presence of a liquid phase, chemical modifications (doping, complex solid solutions) and different atmospheres (i.e., defect chemistry) on the sintering are discussed. Special sintering techniques, such as pressure-assisted sintering and spark-plasma sintering, can be effective methods for enhancing the density of KNN ceramics. The sintering behavior of KNN is compared to that of a representative piezoelectric lead zirconate titanate (PZT). PMID:28793702

  19. Crack and wear behavior of SiC particulate reinforced aluminium based metal matrix composite fabricated by direct metal laser sintering process

    International Nuclear Information System (INIS)

    Ghosh, Subrata Kumar; Saha, Partha

    2011-01-01

    In this investigation, crack density and wear performance of SiC particulate (SiCp) reinforced Al-based metal matrix composite (Al-MMC) fabricated by direct metal laser sintering (DMLS) process have been studied. Mainly, size and volume fraction of SiCp have been varied to analyze the crack and wear behavior of the composite. The study has suggested that crack density increases significantly after 15 volume percentage (vol.%) of SiCp. The paper has also suggested that when size (mesh) of reinforcement increases, wear resistance of the composite drops. Three hundred mesh of SiCp offers better wear resistance; above 300 mesh the specific wear rate increases significantly. Similarly, there has been no improvement of wear resistance after 20 vol.% of reinforcement. The scanning electron micrographs of the worn surfaces have revealed that during the wear test SiCp fragments into small pieces which act as abrasives to result in abrasive wear in the specimen.

  20. Preliminary study of sintering of metallic niobium processed for mechanical milling; Estudo preliminar da sinterizacao de niobio metalico processado por moagem de alta energia

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, H.M.; Vurobi Junior, S.; Cintho, O.M., E-mail: lenatamura@interponta.com.b [Universidade Estadual de Ponta Grossa (UEPG), PR (Brazil); Sandim, H.R.Z.; Leite, G.S. [Universidade de Sao Paulo (EEL/USP), Lorena, SP (Brazil). Escola de Engenharia

    2010-07-01

    In present study was preliminary study of mechanical milling influence on preparing of metallic niobium powder for sintering. Sample of metallic niobium in powder passing in sieve no. 635 mesh was processed by mechanical milling in SPEX mill for 8 hours using power grinding of 7:1 and a nitrogen atmosphere. The powder was annealed at different temperatures, 900 deg C, 1000 deg C, 1100 deg C and 1200 deg C for 1 hour in an atmosphere of hydrogen and argon to study their crystallization, which then were formed into blank for analysis of the curves compressibility. These samples were also subjected to x-ray diffraction in that their data were compared between the annealing temperatures. We also evaluate the compressibility curves of niobium samples with and without grinding these samples were subjected to x-ray diffraction and fluorescence. (author)

  1. Titanium carbide-carbon porous nanocomposite materials for radioactive ion beam production: processing, sintering and isotope release properties

    CERN Document Server

    AUTHOR|(CDS)2081922; Stora, Thierry

    2017-01-26

    The Isotope Separator OnLine (ISOL) technique is used at the ISOLDE - Isotope Separator OnLine DEvice facility at CERN, to produce radioactive ion beams for physics research. At CERN protons are accelerated to 1.4 GeV and made to collide with one of two targets located at ISOLDE facility. When the protons collide with the target material, nuclear reactions produce isotopes which are thermalized in the bulk of the target material grains. During irradiation the target is kept at high temperatures (up to 2300 °C) to promote diffusion and effusion of the produced isotopes into an ion source, to produce a radioactive ion beam. Ti-foils targets are currently used at ISOLDE to deliver beams of K, Ca and Sc, however they are operated at temperatures close to their melting point which brings target degradation, through sintering and/or melting which reduces the beam intensities over time. For the past 10 years, nanostructured target materials have been developed and have shown improved release rates of the produced i...

  2. Effect of repressing of briquettes at high hydrostatic pressures on fine structure of carbide fraction in compacts and sintered BK10 alloy

    International Nuclear Information System (INIS)

    Chernyj, Yu.F.; Mikhajlenko, G.P.; Labinskaya, N.G.; Vangengeim, S.D.; Fal'kovskij, V.A.; Lavrukhina, L.I.

    1977-01-01

    The effect was studied of the repressing at high hydrostatic pressures of preforms of hard alloy powder mixture with different degree of fineness on changes in fine structure of the carbide phase of compacts and the VK10 sintered alloy. X-ray diffraction method was used. Sufficient widening of diffraction lines of the WC phase in compacts and in a sintered alloy with the increase in hydrostatic pressure testifies to the fact of the production of more inperfect carbide substructure mainly due to fragmentation subgrains. The effect of processing pressure manifests itself to a greater extent in compacts of the coarse-ground mixture; in the sintered alloy the repressing pressure effect ''is being smoothed'' to some extent. The density of dislocation in the compacts and the sintered alloy were evaluated quantatively depending on the hydrostatic pressure values during processing of preforms

  3. Immobilization of Uranium Silicides in Sintered Glass

    International Nuclear Information System (INIS)

    Mateos, P.; Russo, D.O.; Heredia, A.D.; Sanfilippo, M.

    2003-01-01

    High activity nuclear spent fuels vitrification by fusion is a well known technology which has industrial scale in France, England, Japan, EEUU. Borosilicates glasses are used in this process.Sintered glasses are an alternative to the immobilization task in which there is also a wide experience around the world.The available technics are: cold pressing and sintering , hot-pressing and hot isostatic pressing.This work compares Borosilicates and Iron silicates sintered glasses behaviour when different ammounts of nuclear simulated waste is added

  4. Synthesis and Optimization of the Sintering Kinetics of Actinide Nitrides

    International Nuclear Information System (INIS)

    Butt, Drryl P.; Jaques, Brian

    2009-01-01

    Research conducted for this NERI project has advanced the understanding and feasibility of nitride nuclear fuel processing. In order to perform this research, necessary laboratory infrastructure was developed; including basic facilities and experimental equipment. Notable accomplishments from this project include: the synthesis of uranium, dysprosium, and cerium nitrides using a novel, low-cost mechanical method at room temperature; the synthesis of phase pure UN, DyN, and CeN using thermal methods; and the sintering of UN and (U x , Dy 1-x )N (0.7 (le) X (le) 1) pellets from phase pure powder that was synthesized in the Advanced Materials Laboratory at Boise State University.

  5. Synthesis and Optimization of the Sintering Kinetics of Actinide Nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Drryl P. Butt; Brian Jaques

    2009-03-31

    Research conducted for this NERI project has advanced the understanding and feasibility of nitride nuclear fuel processing. In order to perform this research, necessary laboratory infrastructure was developed; including basic facilities and experimental equipment. Notable accomplishments from this project include: the synthesis of uranium, dysprosium, and cerium nitrides using a novel, low-cost mechanical method at room temperature; the synthesis of phase pure UN, DyN, and CeN using thermal methods; and the sintering of UN and (Ux, Dy1-x)N (0.7 ≤ X ≤ 1) pellets from phase pure powder that was synthesized in the Advanced Materials Laboratory at Boise State University.

  6. Sintering of nonstoichiometric UO2

    International Nuclear Information System (INIS)

    Susnik, D.; Holc, J.

    1983-01-01

    Activated sintering of UO 2 pellets at 1100 deg C is described. In CO 2 atmosphere is UO 2 is nonstoichiometric and pellets from active UO 2 powders sinter at 900 deg C to high density. At 1100 deg C the final sintered density is practically achieved at heating on sintering temperature. After reduction and cooling in H 2 atmosphere which is followed sintering in CO 2 the structure is identical to the structured UO 2 pellets sintered at high temperature in H 2 . Density of activated sintered UO 2 pellets is stable, even after additional sintering at 1800 deg C. (author)

  7. Field assisted sintering of refractory carbide ceramics and fiber reinforced ceramic matrix composites

    Science.gov (United States)

    Gephart, Sean

    The sintering behaviors of silicon carbide (SiC) and boron carbide (B4C) based materials were investigated using an emerging sintering technology known as field assisted sintering technology (FAST), also known as spark plasma sintering (SPS) and pulse electric current sintering (PECS). Sintering by FAST utilizes high density electric current, uniaxial pressure, and relatively high heating rate compared to conventional sintering techniques. This effort investigated issues of scaling from laboratory FAST system (25 ton capacity) to industrial FAST system (250 ton capacity), as well as exploring the difference in sintering behavior of single phase B4C and SiC using FAST and conventional sintering techniques including hot-pressing (HP) and pressure-less sintering (PL). Materials were analyzed for mechanical and bulk properties, including characterization of density, hardness, fracture toughness, fracture (bend) strength, elastic modulus and microstructure. A parallel investigation was conducted in the development of ceramic matrix composites (CMC) using SiC powder impregnation of fiber compacts followed by FAST sintering. The FAST technique was used to sinter several B4C and SiC materials to near theoretical density. Preliminary efforts established optimized sintering temperatures using the smaller 25 ton laboratory unit, targeting a sample size of 40 mm diameter and 8 mm thickness. Then the same B4C and SiC materials were sintered by the larger 250 ton industrial FAST system, a HP system, and PL sintering system with a targeted dense material geometry of 4 x 4 x 0.315 inches3 (101.6 x 101.6 x 8 mm3). The resulting samples were studied to determine if the sintering dynamics and/or the resulting material properties were influenced by the sintering technique employed. This study determined that FAST sintered ceramic materials resulted in consistently higher averaged values for mechanical properties as well as smaller grain size when compared to conventionally sintered

  8. A method for sintering

    DEFF Research Database (Denmark)

    2012-01-01

    The present invention provides a method for sintering, comprising in the following order the steps of: providing a body in the green state or in the pre-sintered state on a support; providing a load on at least one spacer on the support such that the load is located above said body in the green...

  9. ENVISAT Land Surface Processes. Phase 2

    Science.gov (United States)

    vandenHurk, B. J. J. M.; Su, Z.; Verhoef, W.; Menenti, M.; Li, Z.-L.; Wan, Z.; Moene, A. F.; Roerink, G.; Jia, I.

    2002-01-01

    This is a progress report of the 2nd phase of the project ENVISAT- Land Surface Processes, which has a 3-year scope. In this project, preparative research is carried out aiming at the retrieval of land surface characteristics from the ENVISAT sensors MERIS and AATSR, for assimilation into a system for Numerical Weather Prediction (NWP). Where in the 1st phase a number of first shot experiments were carried out (aiming at gaining experience with the retrievals and data assimilation procedures), the current 2nd phase has put more emphasis on the assessment and improvement of the quality of the retrieved products. The forthcoming phase will be devoted mainly to the data assimilation experiments and the assessment of the added value of the future ENVISAT products for NWP forecast skill. Referring to the retrieval of albedo, leaf area index and atmospheric corrections, preliminary radiative transfer calculations have been carried out that should enable the retrieval of these parameters once AATSR and MERIS data become available. However, much of this work is still to be carried out. An essential part of work in this area is the design and implementation of software that enables an efficient use of MODTRAN(sub 4) radiative transfer code, and during the current project phase familiarization with these new components has been achieved. Significant progress has been made with the retrieval of component temperatures from directional ATSR-images, and the calculation of surface turbulent heat fluxes from these data. The impact of vegetation cover on the retrieved component temperatures appears manageable, and preliminary comparison of foliage temperature to air temperatures were encouraging. The calculation of surface fluxes using the SEBI concept,which includes a detailed model of the surface roughness ratio, appeared to give results that were in reasonable agreement with local measurements with scintillometer devices. The specification of the atmospheric boundary conditions

  10. The influence of Si on the microstructure and sintering behavior of ultrafine WC

    Science.gov (United States)

    Nanda Kumar, A. K.; Watabe, Masaaki; Kurokawa, Kazuya

    2012-11-01

    The microstructure of sintered nanoscale tungsten carbide powders with 1 wt % Si addition was found to be populated by an abnormally large number of elongated grains. Interrupted sintering experiments were conducted to clarify the origins of the excessive abnormal grain growth seen in the microstructure. It was observed that rapid coarsening occurred at high temperatures owing to the formation of a liquid phase. However, the grain shape evolution during this coarsening period was found to be a consequence of excessive stacking faults and micro twins on the basal planes probably generated by reaction of WC with Si. Analyses of the microstructures and the isothermal and non isothermal coarsening behaviors suggested that the platelet morphology evolved by defect-assisted nucleation and growth on faceted grains. Based on experimental evidence from samples interrupted at low temperatures and crystal growth theories, we discuss the possible mechanisms that eventually led to the rampant platelet-type morphology. Further, the influence of such rapid grain growth on the shrinkage rate during sintering is also discussed. In comparison with the cyclic coarsening-densification process of sintering in pure nanoscale WC, the addition of Si leads to only two distinct sintering stages: either densification dominated or coarsening dominated. Concurrent densification and coarsening cannot be sustained particularly in the presence of a liquid phase that significantly enhances coarsening.

  11. Laser-Induced Reductive Sintering of Nickel Oxide Nanoparticles under Ambient Conditions

    KAUST Repository

    Paeng, Dongwoo

    2015-03-19

    © 2015 American Chemical Society. This work is concerned with the kinetics of laser-induced reductive sintering of nonstoichiometric crystalline nickel oxide (NiO) nanoparticles (NPs) under ambient conditions. The mechanism of photophysical reductive sintering upon irradiation using a 514.5 nm continuous-wave (CW) laser on NiO NP thin films has been studied through modulating the laser power density and illumination time. Protons produced due to high-temperature decomposition of the solvent present in the NiO NP ink, oxygen vacancies in the NiO NPs, and electronic excitation in the NiO NPs by laser irradiation all affect the early stage of the reductive sintering process. Once NiO NPs are reduced by laser irradiation to Ni, they begin to coalesce, forming a conducting material. In situ optical and electrical measurements during the reductive sintering process take advantage of the distinct differences between the oxide and the metallic phases to monitor the transient evolution of the process. We observe four regimes: oxidation, reduction, sintering, and reoxidation. A characteristic time scale is assigned to each regime.

  12. Study of the suitability of a commercial hydroxyapatite powder to obtain sintered compacts for medical applications

    Science.gov (United States)

    Palacio, C.; Jaramillo, D.; Correa, S.; Arroyave, M.

    2017-06-01

    Hydroxyapatite (HA) is a material widely used by the medical community due to its Ca/P ratio is comparable to the Ca/P ratio of bones and teeth, which promotes osteoinduction and osteoconduction processes when in contact with bone tissue, either as volume piece or coating. This work focuses on studying the quality of the commercial HA powder MKnano-#MKN-HXAP-S12 µm, after processing, to obtain sintered compact discs with suitable physical and chemical characteristics for implants applications. The HA powder was processed through calcination, grinding, pressing and sintering to evaluate the effect of such as procedures in the compacts dics quality. The raw powder was characterized by laser diffraction, SEM, XRF, XRD, TGA and DSC while the characteristics of the obtained compact discs were determined by dilatometry and XRD to identify the sintering temperature range, constituent phases, the amorphous content and the crystallinity degree, parameters that allow determining their suitability for implants applications. Although, it was not possible to obtain sintered compacts with the suitable chemical composition and without fractures, this work allowed to identify the parameters that determine the suitability of a HA powder to obtain sintered compacts for medical applications, as well as the characterization protocol that allows the evaluation of such parameters.

  13. Electric field-assisted sintering of nanocrystalline hydroxyapatite for biomedical applications

    Science.gov (United States)

    Tran, Tien Bich

    As the main inorganic component of bone, hydroxyapatite (HA, Ca 10(PO4)6(OH)2) should be an ideal candidate in biomaterials selection. When grain sizes are in the nanometric regime, protein adsorption and cell adhesion are enhanced, while strength, hardness, and wear resistance are improved. Unfortunately, low phase stability, poor sinterability, and a tendency towards exaggerated grain coarsening challenge full densification of nanocrystalline hydroxyapatite by conventional sintering methods. The field-assisted sintering technique (FAST) has successfully consolidated a variety of nanocrystalline metals and ceramics in dramatically reduced times. The sintering enhancements observed during FAST can be attributed to thermal and athermal effects. The rapid heating rates (up to ˜1000ºC/min) afforded by FAST contribute a significant thermal effect. Since fast heating rates reduce powder exposure to sub-sintering temperatures, non-densifying surface diffusion is limited. The athermal effects of FAST are less well understood and can include plasma generation, dielectric breakdown, particle surface cleaning, grain boundary pinning, and space charge effects. Applying the field-assisted sintering technique to nanocrystalline hydroxyapatite yielded surprising results. Deviations from conventional densification behavior were observed, with dehydroxylation identified as the most deleterious process to densification as well as mechanical and biological performance. Since hydroxyapatite is not a stable phase at high temperatures and low water partial pressure atmospheres, desintering due to dehydroxylation-related pore formation became apparent during Stage III sintering. In fact, the degree of desintering and pore formation increased with the extent of Stage III sintering and grain growth. The atomic rearrangements taking place during grain boundary migration are believed to favor the formation of more-stable oxyapatite through hydroxyapatite dehydroxylation. This behavior was

  14. Processing temperature tuned interfacial microstructure and protonic and oxide ionic conductivities of well-sintered Sm0.2Ce0.8O1.9- Na2CO3 nanocomposite electrolytes for intermediate temperature solid oxide fuel cells

    Science.gov (United States)

    Li, Chuanming; Zeng, Yanwei; Wang, Zhentao; Ye, Zhupeng; Zhang, Yuan

    2017-08-01

    Well-sintered SDC-NC (Sm0.2Ce0.8O1.9-Na2CO3) nanocomposites have been prepared through a rare-earth/sodium complex carbonate precipitation, powder prefirings at the temperatures 400, 500 and 600 °C and sintering at 800 °C. Their sintering performances, phase components and microstructures have been characterized by Archimedean method, XRD and FESEM techniques. In particular, the influence of the interfacial interactions between the phases of SDC and NC on the microstructures and electrical conductivities of SDC-NC nanocomposites have been investigated by AC impedance and Raman spectroscopies. It has been found that on the basis of the fitting analysis of AC impedance data, the oxide ionic and protonic conductivities of interfacial and non-interfacial phases in the SDC-NC nanocomposites are found to be strongly dependent upon their prefiring temperatures with the sample of SN-600 showing the highest values of 73.2/33.7 and 51.1/105.4 μS/cm at 300 °C, respectively. The single cell based on the electrolyte of SN-600 presents an OCV of 0.992 V and peak power density of 421 mW/cm2 at 550 °C. The interfacial interactions between the phases of SDC and NC inside SDC-NC nanocomposites are considered responsible for their differences in microstructure and electrical conductivity.

  15. Effects of sintering temperature on the mechanical properties of sintered NdFeB permanent magnets prepared by spark plasma sintering

    International Nuclear Information System (INIS)

    Wang, G.P.; Liu, W.Q.; Huang, Y.L.; Ma, S.C.; Zhong, Z.C.

    2014-01-01

    Sintered NdFeB-based permanent magnets were fabricated by spark plasma sintering (SPS) and a conventional method to investigate the mechanical and magnetic properties. The experimental results showed that sintered NdFeB magnet prepared by the spark plasma sintering (SPS NdFeB) possesses a better mechanical properties compared to the conventionally sintered one, of which the maximum value of bending strength and Vickers hardness was 402.3 MPa and 778.1 MPa, respectively. The effects of sintering temperature on bending strength and Vickers hardness were investigated. It was shown that the bending strength firstly increases to the maximum value and then decreases with the increase of sintering temperature in a certain range. The investigations of microstructures and mechanical properties indicated that the unique sintering mechanism in the SPS process is responsible for the improvement of mechanical properties of SPS NdFeB. Furthermore, the relations between the mechanical properties and relevant microstructure have been analyzed based on the experimental fact. - Highlights: • Studied the sintering temperature effect on strengthening mechanism of NdFeB magnet firstly. • It showed that sintering temperature may effectively affect the mechanical properties. • The maximum bending strength and Vickers hardness was 402.3 MPa and 778.1 MPa, respectively

  16. Effects of sintering temperature on the mechanical properties of sintered NdFeB permanent magnets prepared by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Wang, G.P., E-mail: wgp@jxnu.edu.cn [College of Physics and Communication Electronics, Jiangxi Normal University, Nanchang 330022 (China); Liu, W.Q. [Key Laboratory of Advanced Functional Materials Science and Engineering, Ministry of Education, Beijing University of Technology, Beijing 100022 (China); Huang, Y.L.; Ma, S.C.; Zhong, Z.C. [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China)

    2014-01-15

    Sintered NdFeB-based permanent magnets were fabricated by spark plasma sintering (SPS) and a conventional method to investigate the mechanical and magnetic properties. The experimental results showed that sintered NdFeB magnet prepared by the spark plasma sintering (SPS NdFeB) possesses a better mechanical properties compared to the conventionally sintered one, of which the maximum value of bending strength and Vickers hardness was 402.3 MPa and 778.1 MPa, respectively. The effects of sintering temperature on bending strength and Vickers hardness were investigated. It was shown that the bending strength firstly increases to the maximum value and then decreases with the increase of sintering temperature in a certain range. The investigations of microstructures and mechanical properties indicated that the unique sintering mechanism in the SPS process is responsible for the improvement of mechanical properties of SPS NdFeB. Furthermore, the relations between the mechanical properties and relevant microstructure have been analyzed based on the experimental fact. - Highlights: • Studied the sintering temperature effect on strengthening mechanism of NdFeB magnet firstly. • It showed that sintering temperature may effectively affect the mechanical properties. • The maximum bending strength and Vickers hardness was 402.3 MPa and 778.1 MPa, respectively.

  17. Microstructural optimization of solid-state sintered silicon carbide

    Science.gov (United States)

    Vargas-Gonzalez, Lionel R.

    Silicon carbide armor, manufactured through solid-state sintering, liquid-phase sintering, and hot-pressing, is being used by the United States Armed Forces for personal and vehicle protection. There is a lack of consensus, however, on which process results in the best-performing ballistic armor. Previous studies have shown that hot-pressed ceramics processed with secondary oxide and/or rare earth oxides, which exhibit high fracture toughness, perform well in handling and under ballistic impact. This high toughness is due to the intergranular nature of the fracture, creating a tortuous path for cracks and facilitating crack deflection and bridging. However, it has also been shown that higher-hardness sintered SiC materials might perform similarly or better to hot-pressed armor, in spite of the large fracture toughness deficit, if the microstructure (density, grain size, purity) of these materials are improved. In this work, the development of theoretically-dense, clean grain boundary, high hardness solid-state sintered silicon carbide (SiC) armor was pursued. Boron carbide and graphite (added as phenolic resin to ensure the carbon is finely dispersed throughout the microstructure) were used as the sintering aids. SiC batches between 0.25--4.00 wt.% carbon were mixed and spray dried. Cylindrical pellets were pressed at 13.7 MPa, cold-isostatically pressed (CIP) at 344 MPa, sintered under varying sintering soaking temperatures and heating rates, and varying post hot-isostatic pressing (HIP) parameters. Carbon additive amounts between 2.0--2.5 wt.% (based on the resin source), a 0.36 wt.% B4C addition, and a 2050°C sintering soak yielded parts with high sintering densities (˜95.5--96.5%) and a fine, equiaxed microstructure (d50 = 2.525 mum). A slow ramp rate (10°C/min) prevented any occurrence of abnormal grain growth. Post-HIPing at 1900°C removed the remaining closed porosity to yield a theoretically-dense part (3.175 g/cm3, according to rule of mixtures). These

  18. Dimensional accuracy of internal cooling channel made by selective laser melting (SLM And direct metal laser sintering (DMLS processes in fabrication of internally cooled cutting tools

    Directory of Open Access Journals (Sweden)

    Ghani S. A. C.

    2017-01-01

    Full Text Available Selective laser melting(SLM and direct metal laser sintering(DMLS are preferred additive manufacturing processes in producing complex physical products directly from CAD computer data, nowadays. The advancement of additive manufacturing promotes the design of internally cooled cutting tool for effectively used in removing generated heat in metal machining. Despite the utilisation of SLM and DMLS in a fabrication of internally cooled cutting tool, the level of accuracy of the parts produced remains uncertain. This paper aims at comparing the dimensional accuracy of SLM and DMLS in machining internally cooled cutting tool with a special focus on geometrical dimensions such as hole diameter. The surface roughness produced by the two processes are measured with contact perthometer. To achieve the objectives, geometrical dimensions of identical tool holders for internally cooled cutting tools fabricated by SLM and DMLS have been determined by using digital vernier calliper and various magnification of a portable microscope. In the current study, comparing internally cooled cutting tools made of SLM and DMLS showed that generally the higher degree of accuracy could be obtained with DMLS process. However, the observed differences in surface roughness between SLM and DMLS in this study were not significant. The most obvious finding to emerge from this study is that the additive manufacturing processes selected for fabricating the tool holders for internally cooled cutting tool in this research are capable of producing the desired internal channel shape of internally cooled cutting tool.

  19. Solution-Phase Processes of Macromolecular Crystallization

    Science.gov (United States)

    Pusey, Marc L.; Minamitani, Elizabeth Forsythe

    2004-01-01

    We have proposed, for the tetragonal form of chicken egg lysozyme, that solution phase assembly processes are needed to form the growth units for crystal nucleation and growth. The starting point for the self-association process is the monomeric protein, and the final crystallographic symmetry is defined by the initial dimerization interactions of the monomers and subsequent n-mers formed, which in turn are a function of the crystallization conditions. It has been suggested that multimeric proteins generally incorporate the underlying multimers symmetry into the final crystallographic symmetry. We posed the question of what happens to a protein that is known to grow as an n-mer when it is placed in solution conditions where it is monomeric. The trypsin-treated, or cut, form of the protein canavalin (CCAN) has been shown to nucleate and grow crystals as a trimer from neutral to slightly acidic solutions. Under these conditions the solution is composed almost wholly of trimers. The insoluble protein can be readily dissolved by weakly basic solution, which results in a solution that is monomeric. There are three possible outcomes to an attempt at crystallization of the protein under monomeric (high pH) conditions: 1) we will obtain the same crystals as under trimer conditions, but at different protein concentrations governed by the self association equilibria; 2) we will obtain crystals having a different symmetry, based upon a monomeric growth unit; 3) we will not obtain crystals. Obtaining the first result would be indicative that the solution-phase self-association process is critical to the crystal nucleation and growth process. The second result would be less clear, as it may also reflect a pH-dependent shift in the trimer-trimer molecular interactions. The third result, particularly for experiments in the transition pH's between trimeric and monomeric CCAN, would indicate that the monomer does not crystallize, and that solution phase self association is not part

  20. Impact of iron powder pressing temperature on high-temperature corrosion of the obtained sinters

    Directory of Open Access Journals (Sweden)

    A. Jaroń

    2010-07-01

    Full Text Available The work presents the results of kinetic studies of the high-temperature oxidation process of metallic iron sinters obtained by a hotpressing method in an anaerobic atmosphere. The conducted studies for a model arrangement (iron allow to determine the effect of conditions for obtaining metallic pressed materials on the course of a high-temperature corrosion process. What is more, iron oxide sinters characterized by an expanded surface disclosed by a morphological analysis of the resulting scales may be used as catalyst carriers or as input material for obtaining porous iron by reduction. Sinters intended for research were obtained in a device for one-axial hot-pressing of samples at a pressure of 8 MPa within the temperature range 600 – 900oC in vacuum. The research into the kinetics of metallic sinters oxidation was carried out in the standard apparatus for high-temperature thermogravimetric studies using a continuous method with automatic recording of measurement within the temperature range 500 – 700oC in synthetic air atmosphere. The dependence of oxidation kinetics of metallic sinters on a pressing temperature was determined. Morphology as well as the chemical and phase composition of the tested samples were described using the SEM/EDX and XRD methods.

  1. Concentrated solar energy used for sintering magnesium titanates for electronic applications

    Science.gov (United States)

    Apostol, Irina; Rodríguez, Jose; Cañadas, Inmaculada; Galindo, Jose; Mendez, Senen Lanceros; de Abreu Martins, Pedro Libȃnio; Cunha, Luis; Saravanan, Kandasamy Venkata

    2018-04-01

    Solar energy is an important renewable source of energy with many advantages: it is unlimited, clean and free. The main objective of this work was to sinter magnesium titanate ceramics in a solar furnace using concentrated solar energy, which is a novel and original process. The direct conversion of solar power into high temperature makes this process simple, feasible and ecologically viable/environmentally sustainable. We performed the solar sintering experiments at Plataforma Solar de Almeria-CIEMAT, Spain. This process takes place in a vertical axis solar furnace (SF5-5 kW) hosting a mobile flat mirror heliostat, a fixed parabolic mirror concentrator, an attenuator and a test table the concentrator focus. We sintered (MgO)0.63(TiO2)0.37, (MgO)0.49(TiO2)0.51, (MgO)0.50(TiO2)0.50 ceramics samples in air at about 1100 °C for a duration of 16 min, 1 h, 2 h and 3 h in the solar furnace. The MgO/TiO2 ratio and the dwell time was varied in order to obtain phase pure MgTiO3 ceramic. We obtained a pure MgTiO3 geikielite phase by solar sintering of (MgO)0.63(TiO2)0.37 samples at 1100 °C (16 min-3 h). Samples of (MgO)0.63(TiO2)0.37, solar sintered at 1100 °C for 3 h, resulted in well-sintered, non-porous samples with good density (3.46 g/cm3). The sintered samples were analyzed by XRD for phase determination. The grain and surface morphology was observed using SEM. Electrical measurements were carried out on solar sintered samples. The effect of processing parameters on microstructure and dielectric properties were investigated and is presented.

  2. An evaluation of the processing conditions, structure, and properties (biaxial flexural strength and antibacterial efficacy) of sintered strontium-zinc-silicate glass ceramics.

    Science.gov (United States)

    Looney, Mark; Shea, Helen O'; Gunn, Lynda; Crowley, Dolores; Boyd, Daniel

    2013-05-01

    The use of artificial bone grafts has increased in order to satisfy a growing demand for bone replacement materials. Initial mechanical stability of synthetic bone grafts is very advantageous for certain clinical applications. Coupled with the advantage of mechanical strength, a material with inherent antibacterial properties would be very beneficial. A series of strontium-doped zinc silicate (Ca-Sr-Na-Zn-Si) glass ceramics have been characterized in terms of their crystalline structure, biaxial flexural strength and antibacterial efficacy based on the identification of optimum sintering conditions. All three glass ceramics, namely, BT110, BT111, and BT112 were found to be fully crystalline, with BT111 and BT112 comprising of biocompatible crystalline phases. The biaxial flexural strengths of the three glass ceramics ranged from 70 to 149 MPa and were shown to be superior to those of clinically established ceramics in dry conditions and following incubation in simulated physiological conditions. The bacteriostatic effect for each glass ceramic was also established, where BT112 showed an inhibitory effect against three of the most common bacteria found at implantation sites, namely, Enterococcus faecalis, methicillin-resistant Staphylococcus aureus (MRSA), and Pseudomonas aeruginosa. The results of the evaluation suggest that the materials studied offer advantages over current clinical materials and indicate the potential suitability of the glass ceramics as therapeutic bone grafts.

  3. Microstructure and properties of sintered mullite developed from ...

    Indian Academy of Sciences (India)

    Dense mullite aggregates with 72% Al2O3 have been synthesized by reaction sintering of two varieties of Indian bauxite and silica sol. The bauxites used are of inferior grade with different levels of accessory impurities such as Fe2O3, TiO2, CaO. The phase and microstructure development of sintered samples were ...

  4. U3O8 microspheres sintering kinetics

    International Nuclear Information System (INIS)

    Godoy, A.L.E.

    1986-01-01

    U 3 O 8 microspheres sintering kinetics was determined using a hot-stage optical microscopy apparatus, able to reach temperature up to 1350 0 C in controlled atmospheres. The sintered material had its microstructure analysed by optical and electron microscopy. The microspheres were characterized initialy utilizing X-ray diffractometry and thermogravimetry. The equation which describes the microspheres shrinkage in function of the time was obtained using finite difference analysis X-ray diffractometry indicated hexagonal structure for the microspheres main starting material, ammonium diuranate thermogravimetric analysis showed reduction of this material to U 3 O 8 at 600 0 C. Ceramography results showed 5 hours sintered microspheres grain sizes G vary with the temperature. Sintered U 3 O 8 micrographs compared with published results for UO 2 , indicate similar homogeneity microstructural characteristics and suggest the processed micorspheres to be potentially useful as nuclear fuels. (Author) [pt

  5. The performance of a biological aerated filter loaded with a novel non-sintered fly-ash ceramsite as pretreatment for dual membrane processes.

    Science.gov (United States)

    Li, Lihua; Hu, Chaowu; Dai, Xiulan; Jin, Wenjie; Hu, Cheng; Ma, Fang

    2015-01-01

    This work focused on wastewater reclamation of secondary treated ethylene chemical plant effluent, which contained high conductivity and high organic concentration. To reduce the cost and improve operation stability, a biological aerated filter-ultrafiltration-reverse osmosis (BAF-UF-RO) process was proposed. The feasibility and effectiveness of BAF loaded with a novel non-sintered fly-ash ceramsite (NSFC) as a pretreatment method of a dual membrane system were investigated in detail. The results showed that the CODCr, turbidity, NH3-N and the silt density index (SDI) in the effluent from the BAF were reduced to 24.2 mg/L, 12.17 NTU, 0.42 mg/L and 7.52, respectively, and most of the organic compounds were biodegraded. The BAF-UF-RO process was stable with a recovery rate of 75%, and the desalination rate was up to about 97.5%. Compared with the UF-RO process, the operating pressure and backwash frequency decreased from 1.12-1.26 Mpa and 3 times/d to 0.94-0.98 Mpa and 2 times/d, respectively. After continuous operation for four months, there appeared to be no need for chemical cleaning of the RO membrane. Moreover, the analysis results of X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy proved that there was only slight membrane fouling, which was mainly colloidal blocking caused by refractory organic compound.

  6. Evaluation of press-and-sinter parameters for tantalum pentoxide by the diametral compression test

    International Nuclear Information System (INIS)

    Livne, Z.; Fields, R.J.; Agulyansky, A.

    1997-01-01

    Submicron Ta 2 O 5 powder was consolidated by cold pressing using pressures between 24 MPa and 240 MPa followed by sintering at temperatures in the range 1300 degrees C to 1500 degrees C. The resulting disks were fractured in diametral compression tests (DCT) to determine the tensile strength. The strength, mode of fracture, and fracture surface were subsequently used to identify potential processing routes for high density, fine grained Ta 2 O 5 for the use as sputtering targets. Besides the conventional single or triple cleft fracture, two other modes of failure were observed in the diametrical compression test: delamination due to stratification flaws introduced by high pressure pre-pressing before sintering, and fragmentation caused by slow microcrack growth in the presence of phase transformation stresses arising in samples sintered above the transformation temperature of 1360 degrees C

  7. Fabrication and Spark Plasma Sintering of Magnetic alpha-Fe/MgO Nanocomposite by Mechanical Alloying.

    Science.gov (United States)

    Lee, Chung-Hyo

    2016-02-01

    Solid-state reduction has occurred during mechanical alloying of a mixture of Fe2O3 and Mg powders at room temperature. It is found that magnetic nanocomposite in which MgO is dispersed in alpha-Fe matrix with nano-sized grains is obtained by mechanical alloying of Fe2O3 with Mg for 30 min. Consolidation of the ball-milled powders was performed in a spark plasma sintering (SPS) machine up to 800-1000 degrees C. X-ray diffraction result shows that the average grain size of alpha-Fe in a-Fe/MgO nanocomposite sintered at 800 degrees C is in the range of 110 nm. It can be also seen that the coercivity of SPS sample sintered at 800 degrees C is still high value of 88 Oe, suggesting that the grain growth of magnetic alpha-Fe phase during SPS process tends to be suppressed.

  8. Comparison of properties in silicon nitrides sintered with oxide and organometallic additives

    International Nuclear Information System (INIS)

    Luxem, W.; Saruhan, B.

    1994-01-01

    An homogeneous introduction of sintering additives to silicon nitride powder compacts is of great importance in the fabrication of high strength silicon nitride ceramics. Inhomogenities and impurities brought into the compacts with addition of sintering additives may influence the microstructure and phase development and subsequently degrade the mechanical properties and reliability of silicon nitride ceramics. Sintering additives in the system of Sm 2 O 3 + Al 2 O 3 as metaloxides and nitrates are introduced to two different kinds of α-silicon nitride powder. Thereby, a more homogeneous distribution of additives through an intimate mixing is aimed. Advantages of this type of processing of silicon nitride powders against conventional method are discussed. The contribution of powder characteristics in determination of these factors are displayed. (orig.)

  9. Interpretation of Frenkel’s theory of sintering considering evolution of activated pores: III. Determination of equilibrium sintering time

    Directory of Open Access Journals (Sweden)

    Yu C.L.

    2015-01-01

    Full Text Available In this article, the Frenkel’s theory of liquid-phase sintering was interpreted regarding pores as the activated volume. The mathematical model established by Nikolić et al. was used to infer the equilibrium sintering time at varied sintering temperatures during the isothermal sintering of codierite glass by Giess et al. Through the calculation, the equilibrium time at 800ºC, 820ºC, 840ºC and 860ºC is inferred to be 7014.42mins, 1569.65mins, 368.92mins and 114.61mins, respectively. The equilibrium time decreases as the temperature increases. And the theoretical value is in good accordance with the experimental results. Thus, the model established by Nikolić et al. can be applied successfully to predict the equilibrium sintering time of the cordierite glass at varied temperatures during isothermal sintering.

  10. Microwave sintering of ceramic materials

    Science.gov (United States)

    Karayannis, V. G.

    2016-11-01

    In the present study, the potential of microwave irradiation as an innovative energy- efficient alternative to conventional heating technologies in ceramic manufacturing is reviewed, addressing the advantages/disadvantages, while also commenting on future applications of possible commercial interest. Ceramic materials have been extensively studied and used due to several advantages they exhibit. Sintering ceramics using microwave radiation, a novel technology widely employed in various fields, can be an efficient, economic and environmentally-friendlier approach, to improve the consolidation efficiency and reduce the processing cycle-time, in order to attain substantial energy and cost savings. Microwave sintering provides efficient internal heating, as energy is supplied directly and penetrates the material. Since energy transfer occurs at a molecular level, heat is generated throughout the material, thus avoiding significant temperature gradients between the surface and the interior, which are frequently encountered at high heating rates upon conventional sintering. Thus, rapid, volumetric and uniform heating of various raw materials and secondary resources for ceramic production is possible, with limited grain coarsening, leading to accelerated densification, and uniform and fine-grained microstructures, with enhanced mechanical performance. This is particularly important for manufacturing large-size ceramic products of quality, and also for specialty ceramic materials such as bioceramics and electroceramics. Critical parameters for the process optimization, including the electromagnetic field distribution, microwave-material interaction, heat transfer mechanisms and material transformations, should be taken into consideration.

  11. Characterization of Uranium Oxide and Ln-bearing Uranium Oxide during Sintering

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, J.B. [Netzsch Instruments, Inc., Estes Park, CO (United States); Byler, D.D.; Stanek, C.R.; Dunwoody, J.T.; Luther, E.P.; Volz, H.M.; Vogel, S.C.; McClellan, K.J. [Los Alamos National Laboratory, Los Alamos, NM (United States)

    2009-06-15

    In support of the transmutation fuel development as part of the effort to close the fuel cycle, research has been carried out to gain an in-depth understanding of the evolution of material properties during sintering as well as the properties of post-sintered oxide fuels. Of course the effects of material and test parameters such as starting powder O/M, green density, particle size distribution, heating rate and atmosphere on the densification of oxide and mixed oxide fuels have been widely studied, sometimes with conflicting results. However, the evolution of thermophysical properties such as specific heat and thermal conductivity during densification is not well known. Further, the effects of lanthanides on densification as well as on other thermodynamic and transport properties during sintering have not been widely studied. The purpose of this work was to characterize the effects of key material and test parameters on the thermophysical properties during sintering (both surface and volume transport) and on post-sintered UO{sub 2+x} and UO{sub 2+x} + lanthanide samples. Mixtures of UO{sub 2+x} and lanthanide component powder as well as pre-synthesized solid solutions have been studied. In addition to the standard bulk characterization methods such as dilatometry (thermal expansion / densification), laser flash (thermal diffusivity / thermal conductivity), differential scanning calorimetry (specific heat and transformation energetics) and thermogravimetric analysis (mass change), we have employed ancillary techniques such as neutron scattering, laboratory X-ray diffraction and scanning electron microscopy to help evaluate phases, lattice parameters and microstructure during sintering. The experimental data from the methods mentioned above have been cross-correlated to help explain the physics which govern the sintering process as well as those which govern the development of the thermophysical properties of these materials. The results of this work will be

  12. Two-step flash light sintering process for enhanced adhesion between copper complex ion/silane ink and a flexible substrate

    International Nuclear Information System (INIS)

    Jeon, Eun-Beom; Joo, Sung-Jun; Ahn, Heejoon; Kim, Hak-Sung

    2016-01-01

    A copper complex ion ink (including copper nanoparticles, a copper precursor and a silane coupling agent) was synthesized to enhance the adhesion between the copper pattern and a polyimide (PI) substrate. Oxygen plasma treatment was performed on the polyimide substrate to initiate a chemical reaction between the complex ion ink and the polyimide. Then, a two-step flash light sintering method (consisting of preheating and main sintering) was used to sinter the copper complex ion ink. The copper complex ion patterns were characterized as a function of the weight fraction of silane coupling agent using scanning electron microscopy (SEM), a four-point probe method and adhesion testing. In addition, a bending fatigue test was performed to evaluate the reliability of the conductive copper pattern under cyclic bending. The copper pattern fabricated with copper complex ion ink containing 3 wt% silane coupling agent exhibited the highest adhesion level (5B), the lowest resistivity (7.6 μΩ·cm) and a low resistance change (18%) after the bending fatigue test. The two-step sintering method used to enhance the adhesion between the copper complex ion ink and polyimide substrate was also studied using X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). - Highlights: • The copper complex ion ink with copper nanoparticles and copper precursor was fabricated. • The copper complex ion ink was sintered by two-step flash light sintering method. • The sintered copper pattern exhibited the highest adhesion level (5B). • The resistivity of sintered copper pattern was 7.6 μΩ·cm.

  13. Single phase melt processed powellite (Ba,Ca)MoO4 for the immobilization of Mo-rich nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, Kyle [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fox, Kevin [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Marra, James [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Reppert, Jason [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Crum, Jarrod [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tang, Ming [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2013-02-01

    Cs is one of the more problematic fission product radionuclides to immobilize due to its high volatility at elevated temperatures, ability to form water soluble compounds, and its mobility in many host materials. The hollandite structure is a promising crystalline host for Cs immobilization and has been traditionally fabricated by solid state sintering methods. This study presents the structure and performance of Ba{sub 1.0}Cs{sub 0.3}A{sub 2.3}Ti{sub 5.7}O{sub 16}; A = Cr, Fe, Al hollandite fabricated by melt processing. Melt processing is considered advantageous given that melters are currently in use for High Level Waste (HLW) vitrification in several countries. This work details the impact of Cr additions that were demonstrated to i) promote the formation of a Cs containing hollandite phase and ii) maintain the stability of the hollandite phase in reducing conditions anticipated for multiphase waste form processing.

  14. Air-sintering mechanisms of chromites

    Energy Technology Data Exchange (ETDEWEB)

    Chick, L.A.; Bates, J.L.; Maupin, G.D.

    1991-07-01

    The sintering behaviors of La{sub 1-x}Sr{sub x}CrO{sub 3} and Y{sub 1-x}Ca{sub x}CrO{sub 3} in air at 1550{degrees}C are described as functions of alkaline earth concentration and chromium enrichment or depletion. Vapor-, liquid-, and solid-phase mass transport mechanisms appear to be operative in both systems. Liquid-phase sintering appears dominant an Y{sub 1-x}Ca{sub x}CrO{sub 3} with x = 0.15 to 0.40, especially with Cr enrichment. Either vapor- or solid-phase transport may dominate in the La{sub 1-x}Sr{sub x}CrO{sub 3} system. Slight depletion or enrichment of Cr in both systems has dramatic effects on air-sintered density and microstructure, probably due to modulation of vapor-phase transport and liquid-phase formation. Substantial Cr depletion enhances sintering. 10 refs., 9 figs.

  15. Designing a Tool System for Lowering Friction during the Ejection of In-Die Sintered Micro Gears

    DEFF Research Database (Denmark)

    Cannella, Emanuele; Nielsen, Emil Krabbe; Stolfi, Alessandro

    2017-01-01

    is affected by the influence of friction during the ejection phase, caused by radial expansion of the compacted and sintered powder. This paper presents the development of a pre-stressed tool system for the manufacture of micro gears made of aluminum. By using the hot isostatic pressing (HIP) sintering......The continuous improvements in micro-forging technologies generally involve process, material, and tool design. The field assisted sintering technique (FAST) is a process that makes possible the manufacture of near-net-shape components in a closed-die setup. However, the final part quality...... process and different combinations of process parameters, the designed tool system was compared to a similar tool system designed without a pre-stressing strategy. The comparison between the two tool systems was based on the ejection force and part fidelity. The ejection force was measured during...

  16. Effects of forming temperature and sintering rate to the final properties of FeCuAl powder compacts formed through uniaxial die compaction process

    Science.gov (United States)

    Rahman, M. M.; Ismail, M. A.; Sopyan, I.; Rahman, H. Y.

    2018-01-01

    This paper presents the outcomes of an experimental investigation on the effects of forming temperature and sintering schedule to the final characteristics of FeCuAl powder mass formed at different temperature and sintered at different schedule. A lab-scale uni-axial die compaction rig was designed and fabricated which enabled the compaction of powder mass at room temperature as well as elevated temperature. Iron (Fe) powder ASC 100.29 was mechanically mixed with other elemental powders, namely copper (Cu), and aluminum (Al) for 60 minutes and compacted at three different temperature, i.e., 30°C, 150°C, and 200°C by applying 425 MPa of simultaneous downward and upward axial loading to generate green compacts. The as-pressed samples were inspected visually and the defect-free green compacts were subsequently sintered in an argon gas fired furnace at 800°C for 60 min at three different heating/cooling rates, i.e., 5, 10, and 15°C/min, respectively. The sintered samples were then characterised for their physical, electrical, and mechanical properties. The microstructures of the sintered samples were also analysed. The results revealed that a forming temperature of 150°C and a sintering rate of 10°C/min could produce a product with better characteristics.

  17. A pilot study for determining the optimal operation condition for simultaneously controlling the emissions of PCDD/Fs and PAHs from the iron ore sintering process.

    Science.gov (United States)

    Chen, Yu-Cheng; Tsai, Perng-Jy; Mou, Jin-Luh; Kuo, Yu-Chieh; Wang, Shih-Min; Young, Li-Hao; Wang, Ya-Fen

    2012-09-01

    In this study, the cost-benefit analysis technique was developed and incorporated into the Taguchi experimental design to determine the optimal operation combination for the purpose of providing a technique solution for controlling both emissions of PCDD/Fs and PAHs, and increasing both the sinter productivity (SP) and sinter strength (SS) simultaneously. Four operating parameters, including the water content, suction pressure, bed height, and type of hearth layer, were selected and all experimental campaigns were conducted on a pilot-scale sinter pot to simulate various sintering operating conditions of a real-scale sinter plant. The resultant optimal combination could reduce the total carcinogenic emissions arising from both emissions of PCDD/Fs and PAHs by 49.8%, and increase the sinter benefit associated with the increase in both SP and SS by 10.1%, as in comparison with the operation condition currently used in the real plant. The ANOVA results indicate that the suction pressure was the most dominant parameter in determining the optimal operation combination. The above result was theoretically plausible since the higher suction pressure provided more oxygen contents leading to the decrease in both PCDD/F and PAH emissions. But it should be noted that the results obtained from the present study were based on pilot scale experiments, conducting confirmation tests in a real scale plant are still necessary in the future. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Consolidation of W–Ta composites: Hot isostatic pressing and spark and pulse plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Dias, M., E-mail: marta.dias@itn.pt [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Guerreiro, F. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Correia, J.B. [LNEG, Laboratório Nacional de Energia e Geologia, Estrada do Paço do Lumiar, 1649-038 Lisboa (Portugal); Galatanu, A. [National Institute of Materials Physics, Atomistilor 105 bis Bucharest-Magurele, 077125 Ilfov (Romania); Rosiński, M. [Warsaw University of Technology, Faculty of Materials Science and Engineering, Warsaw (Poland); Monge, M.A.; Munoz, A. [Departamento de Física, Univerdidad Carlos III de Madrid, Avd. de la Universidad 30, 28911 Madrid (Spain); Alves, E. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Carvalho, P.A. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); CeFEMA, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)

    2015-10-15

    Highlights: • Consolidation of W–Ta composites using three techniques: HIP, SPS and PPS. • Comparison of consolidation methods in terms of W–Ta interdiffusion and densification. • Microstructure analysis in terms of oxides formation. - Abstract: Composites consisting of tantalum fiber/powder dispersed in a nanostructured W matrix have been consolidated by spark and pulse plasma sintering as well as by hot isostatic pressing. The microstructural observations revealed that the tungsten–tantalum fiber composites consolidated by hot isostatic pressing and pulse plasma sintering presented a continuous layer of Ta{sub 2}O{sub 5} phase at the W/Ta interfaces, while the samples consolidated by spark plasma sintering evidenced a Ta + Ta{sub 2}O{sub 5} eutectic mixture due to the higher temperature of this consolidation process. Similar results have been obtained for the tungsten–tantalum powder composites. A (W, Ta) solid solution was detected around the prior nanostructured W particles in tungsten–tantalum powder composites consolidated by spark and pulse plasma sintering. Higher densifications were obtained for composites consolidated by hot isostatic pressing and pulse plasma sintering.

  19. Laser sintering of ceramics of Y2O3 pure e doped

    International Nuclear Information System (INIS)

    Oliveira, T.C. de; Goncalves, R.S.; Silva, R.S. da

    2012-01-01

    The Yttria (Y 2 O 3 ) is one of the most promising materials for refractory and optical applications due mainly to its high corrosion resistance, wide range of optical transmission and high melting point. However, due to its high melting point, ceramic bodies to obtain high density Y 2 O 3 high temperatures and require special sintering. Recently it has been proposed in the literature a new method of sintering in which a CO 2 laser, in continuous mode, is employed as the primary source of heat during sintering. Irradiation with laser light produces heating surface at elevated temperatures in a time interval of a few seconds, allowing to obtain dense ceramic bodies at elevated temperatures and with different properties from those sintered by conventional methods. In this paper, Y 2 O 3 powders of pure and doped with Mn, Ca and Zn were synthesized by the polymeric precursors and after calcination at 600 ° C/4h showed single phase. For the production and characterization of the samples used techniques DTA / TG, XRD Dilatometry, SEM and Radioluminescence. The sintered ceramics had a high relative density and strong dependence on the dopant used, which accelerate the densification process. Measures Radioluminescence showed characteristic peaks of Y 2 O 3 and dependence on the dopant used. (author)

  20. Pressureless spark plasma–sintered Bioglass®45S5 with enhanced mechanical properties and stress–induced new phase formation

    Czech Academy of Sciences Publication Activity Database

    Bertolla, Luca; Dlouhý, Ivo; Tatarko, P.; Viani, A.; Mahajan, A.; Chlup, Zdeněk; Reece, M.J.; Boccaccini, A. R.

    2017-01-01

    Roč. 37, č. 7 (2017), s. 2727-2736 ISSN 0955-2219 R&D Projects: GA MŠk LM2015069; GA ČR GA14-11234S; GA MŠk(CZ) LQ1601 Institutional support: RVO:68081723 Keywords : Biomaterials * Bioglass * Spark plasma sintering * Mechanical propertiesa Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass OBOR OECD: Ceramics Impact factor: 3.411, year: 2016

  1. Thermoelectric transport properties of polycrystalline titanium diselenide co-intercalated with nickel and titanium using spark plasma sintering

    DEFF Research Database (Denmark)

    Holgate, Tim; Zhu, S.; Zhou, M.

    2013-01-01

    Polycrystalline samples of nickel intercalated (0–5%) TiSe2 were attempted via solid-state reaction in evacuated quartz tubes followed by densification using a spark plasma sintering process. X-ray diffraction data indicated that mixed NiSe2 and TiSe2 phases were present after initial synthesis b...

  2. Tool design and materials for electro sinter forging (ESF)

    DEFF Research Database (Denmark)

    Cannella, Emanuele; Nielsen, Chris Valentin

    A near net-shape forming process represents a suitable solution to obtain the final product by avoiding secondary machining processes. In this field, electro sinter forging is capable of accomplishing the advantages of sintering in a reduced amount of time. Classified as a high field mode (HFM...

  3. Sintering of Multilayered Porous Structures: Part I-Constitutive Models

    DEFF Research Database (Denmark)

    Olevsky, Eugene; Tadesse Molla, Tesfaye; Frandsen, Henrik Lund

    2013-01-01

    Theoretical analyses of shrinkage and distortion kinetics during sintering of bilayered porous structures are carried out. The developed modeling framework is based on the continuum theory of sintering; it enables the direct assessment of the cofiring process outcomes and of the impact of process...

  4. Study of ceramics sintering under high pressures

    International Nuclear Information System (INIS)

    Kunrath Neto, A.O.

    1990-01-01

    A systematic study was made on high pressure sintering of ceramics in order to obtain materials with controlled microstructure, which are not accessible by conventional methods. Some aspects with particular interest were: to achieve very low porosity, with fine grains; to produce dispersed metastable and denser phases which can act as toughening agents; the study of new possibilities for toughening enhancement. (author)

  5. Calcium Hex aluminate reaction sintering by Spark Plasma Sintering; Sinterizacion reactiva de Hexaluminato de Calcio mediante Spark Plasma Sintering

    Energy Technology Data Exchange (ETDEWEB)

    Iglesia, P. G. de la; Garcia-Moreno, O.; Torrecillas, R.; Menendez, J. L.

    2012-11-01

    Calcium hex aluminate (CaAl{sub 1}2O{sub 1}9) is the most alumina-rich intermediate compound of the CaO-Al{sub 2}O{sub 3} system. The formation of this aluminate is produced by the reaction between calcium oxide and alumina with the consequent formation of intermediates compounds with lower alumina content with increasing temperature (CaAl{sub 2}O{sub 4}, CaAl4O{sub 7}). In this study we studied the variation of sintering parameters for obtaining dense and pure calcium hex aluminate by reaction sintering by Spark Plasma Sintering (SPS). A mixing of Al{sub 2}O{sub 3} and CaCO{sub 3} were used as reactive. Final densities close to the theoretical and phase transformation over 93% were achieved by this method. (Author) 22 refs.

  6. Fabrication of 200 mm Diameter Sintering Body of Skutterudite Thermoelectric Material by Spark Plasma Sintering

    Science.gov (United States)

    Tomida, T.; Sumiyoshi, A.; Nie, G.; Ochi, T.; Suzuki, S.; Kikuchi, M.; Mukaiyama, K.; Guo, J. Q.

    2017-05-01

    Filled skutterudite is a promising material for thermoelectric power generation because its ZT value is relatively high. However, mass production of high-performance thermoelectric materials remains a challenge. This study focused on the sintering process of thermoelectric materials. Large-diameter n-type (Yb or La, Ca, Al, Ga, In)0.8(Co, Fe)4Sb12 skutterudite sintering bodies with a small thickness were successfully produced by the spark plasma sintering (SPS) method. When direct current flows through the thermoelectric sintering body during the SPS pulse, the Peltier effect causes a temperature difference within the sintering body. To eliminate the Peltier effect, an electrical insulating material was inserted between the punch (electrode) and the sintering body. In this way, an n-type La-filled skutterudite sample with a diameter of 200 mm, thickness of 21 mm, and weight of 5 kg was successfully produced. The thermoelectric properties and microstructures of the sample were almost the same throughout the whole sintering body, and the dimensionless figure of merit reached 1.0 at 773 K.

  7. Co-Sintering behaviour of zirconia-ferritic steel composites

    Directory of Open Access Journals (Sweden)

    Alexander Michaelis

    2016-08-01

    Full Text Available The combination of metallic and ceramic materials allows the combination of positive properties of both and can be applied in various industrial fields. At the moment, the deployment of these composites faces difficult and complex manufacturing. One attempt, which offers a short process route and a high degree of flexibility regarding design is a combined shaping (co-shaping with a combined sintering (co-sintering. The article will show co-sintering results of different metal-ceramic symmetric and asymmetric multi-layered tapes, consisting of yttria stabilized zirconia combined with a ferritic iron chromium steel. Focus is on the densification and co-sintering behaviour of ceramic layers depending on the sintering behaviour of metallic layers. Co-sintered composites were characterized by field emission scanning electron microscopy, x-ray diffraction measurements and in terms of adhesive tensile strength.

  8. The electric conductivity of some forms of sintered synthetic zeolites

    International Nuclear Information System (INIS)

    Susic, M.; Petrovic, V.; Ristic, M.; Petranovic, N.

    1978-01-01

    Some forms of synthetic zeolites were sintered and their electric conductivity was measured. The conductivity was observed in correlation with the conductivity of non-sintered pressed samples. Also the change in microstructural constituents in the course of the process of sintering was observed with an optical microscope. It has been found that there is a considerable change in conductivity due to sintering as well as a change in the activation energy for conduction. Also the porosity is noticeably changed. A marked affect of the nature of counter ions on the electric conductivity is shown

  9. Rapid laser sintering of metal nano-particles inks.

    Science.gov (United States)

    Ermak, Oleg; Zenou, Michael; Toker, Gil Bernstein; Ankri, Jonathan; Shacham-Diamand, Yosi; Kotler, Zvi

    2016-09-23

    Fast sintering is of importance in additive metallization processes and especially on sensitive substrates. This work explores the mechanisms which set limits to the laser sintering rate of metal nano-particle inks. A comparison of sintering behavior of three different ink compositions with laser exposure times from micro-seconds to seconds reveals the dominant factor to be the organic content (OC) in the ink. With a low OC silver ink, of 2% only, sintering time falls below 100 μs with resistivity <×4 bulk silver. Still shorter exposure times result in line delamination and deformation with a similar outcome when the OC is increased.

  10. The sintering blocking mechanism on the UO2-GD2O3 system. Part 1: the hypothesis of diffusion barrier

    International Nuclear Information System (INIS)

    Durazzo, M.; Frajndlich, E.U.C.; Riella, H.G.; Leal Neto, R.M.

    2004-01-01

    The direct incorporation of gadolinium into nuclear power reactor fuel is important to the reactivity compensation and adjustment of power distribution thus enabling longer fuel cycles and optimized fuel utilization. Dry mechanical blending of Gd 2 O 3 and UO 2 powders is commercially the most attractive process route due to its simplicity. Nevertheless, processing by this route leads to difficulties in getting sintered pellets with the minimum required density due to a sintering blocking mechanism. Regarding this, there s little published information and the explanations are focused on the formation of a low diffusivity Gd-rich (U, Gd)O 2 phase during sintering process which decreases pellets density. An attempt to understand the mechanism for this effect was done in this work. Experimental evidences indicated the existence of phases in the (U, Gd)O 2 system with structure different from the fluorite-type UO 2 structure. These new phases were found for Gd molar fractions higher than 0,5, which coincide with the lowering of both the sintered density and the interdiffusion coefficient. However, it has been also shown that these new phases cannot be itself the cause for the density decrease observed. (author)

  11. Characterization of In-Situ Cu–TiH2–C and Cu–Ti–C Nanocomposites Produced by Mechanical Milling and Spark Plasma Sintering

    Directory of Open Access Journals (Sweden)

    Nguyen Thi Hoang Oanh

    2017-03-01

    Full Text Available This study focuses on the fabrication and microstructural investigation of Cu–TiH2–C and Cu–Ti–C nanocomposites with different volume fractions (10% and 20% of TiC. Two mixtures of powders were ball milled for 10 h, consequently consolidated by spark plasma sintering (SPS at 900 and 1000 °C producing bulk materials with relative densities of 95–97%. The evolution process of TiC formation during sintering process was studied by using X-ray diffraction (XRD, scanning electron microscopy (SEM, and high resolution transmission electron microscopy (HRTEM. XRD patterns of composites present only Cu and TiC phases, no residual Ti phase can be detected. TEM images of composites with (10 vol % TiC sintered at 900 °C show TiC nanoparticles about 10–30 nm precipitated in copper matrix, most of Ti and C dissolved in the composite matrix. At the higher sintering temperature of 1000 °C, more TiC precipitates from Cu–TiH2–C than those of Cu–Ti–C composite, particle size ranges from 10 to 20 nm. The hardness of both nanocomposites also increased with increasing sintering temperature. The highest hardness values of Cu–TiH2–C and Cu–Ti–C nanocomposites sintered at 1000 °C are 314 and 306 HV, respectively.

  12. Monitoring Sintering Burn-Through Point Using Infrared Thermography

    Directory of Open Access Journals (Sweden)

    Francisco G. Bulnes

    2013-08-01

    Full Text Available Sintering is a complex industrial process that applies heat to fine particles of iron ore and other materials to produce sinter, a solidified porous material used in blast furnaces. The sintering process needs to be carefully adjusted, so that the combustion zone reaches the bottom of the material just before the discharge end. This is known as the burnthrough point. Many different parameters need to be finely tuned, including the speed and the quantities of the materials mixed. However, in order to achieve good results, sintering control requires precise feedback to adjust these parameters. This work presents a sensor to monitor the sintering burn-through point based on infrared thermography. The proposed procedure is based on the acquisition of infrared images at the end of the sintering process. At this position, infrared images contain the cross-section temperatures of the mixture. The objective of this work is to process this information to extract relevant features about the sintering process. The proposed procedure is based on four steps: key frame detection, region of interest detection, segmentation and feature extraction. The results indicate that the proposed procedure is very robust and reliable, providing features that can be used effectively to control the sintering process.

  13. Monitoring sintering burn-through point using infrared thermography.

    Science.gov (United States)

    Usamentiaga, Rubén; Molleda, Julio; Garcia, Daniel F; Bulnes, Francisco G

    2013-08-09

    Sintering is a complex industrial process that applies heat to fine particles of iron ore and other materials to produce sinter, a solidified porous material used in blast furnaces. The sintering process needs to be carefully adjusted, so that the combustion zone reaches the bottom of the material just before the discharge end. This is known as the burn-through point. Many different parameters need to be finely tuned, including the speed and the quantities of the materials mixed. However, in order to achieve good results, sintering control requires precise feedback to adjust these parameters. This work presents a sensor to monitor the sintering burn-through point based on infrared thermography. The proposed procedure is based on the acquisition of infrared images at the end of the sintering process. At this position, infrared images contain the cross-section temperatures of the mixture. The objective of this work is to process this information to extract relevant features about the sintering process. The proposed procedure is based on four steps: key frame detection, region of interest detection, segmentation and feature extraction. The results indicate that the proposed procedure is very robust and reliable, providing features that can be used effectively to control the sintering process.

  14. Monitoring Sintering Burn-Through Point Using Infrared Thermography

    Science.gov (United States)

    Usamentiaga, Rubén; Molleda, Julio; Garcia, Daniel F.; Bulnes, Francisco G.

    2013-01-01

    Sintering is a complex industrial process that applies heat to fine particles of iron ore and other materials to produce sinter, a solidified porous material used in blast furnaces. The sintering process needs to be carefully adjusted, so that the combustion zone reaches the bottom of the material just before the discharge end. This is known as the burn-through point. Many different parameters need to be finely tuned, including the speed and the quantities of the materials mixed. However, in order to achieve good results, sintering control requires precise feedback to adjust these parameters. This work presents a sensor to monitor the sintering burn-through point based on infrared thermography. The proposed procedure is based on the acquisition of infrared images at the end of the sintering process. At this position, infrared images contain the cross-section temperatures of the mixture. The objective of this work is to process this information to extract relevant features about the sintering process. The proposed procedure is based on four steps: key frame detection, region of interest detection, segmentation and feature extraction. The results indicate that the proposed procedure is very robust and reliable, providing features that can be used effectively to control the sintering process. PMID:23939585

  15. Influence of various manufacturing parameters on some characteristics of UO2 powders and their sintering behaviour

    International Nuclear Information System (INIS)

    Mintz, M.H.; Vaknin, Sh.; Kremener, A.; Hadari, Z.

    1977-02-01

    Various parameters in the process of manufacturing uranium dioxide are examined and their influence on the characteristics and sintering behaviour of the powders obtained established. In addition some correlations between the powder aggregates microstructure and their adhesion properties and sintering behaviour are indicated. Shrinkage during the sintering process is also discussed

  16. Sintering of uranium dioxide pellets (UO2) in an oxidizing atmosphere (C O2)

    International Nuclear Information System (INIS)

    Santos, G.R.T.

    1992-01-01

    This work consists in the study of the sintering process of U O 2 pellets in an oxidizing atmosphere. Sintering tests were performed in an CO 2 atmosphere and the influence of temperature and time on the pellets density and microstructure were verified. The results obtained were compared to those from the conventional sintering process and its efficiency was confirmed. (author)

  17. PRODUCTION OF WELDMENTS FROM SINTERED TITANIUM ALLOYS

    Directory of Open Access Journals (Sweden)

    A. YE. Kapustyan

    2014-04-01

    Full Text Available Purpose. Limited application of details from powder titanium alloys is connected with the difficulties in obtaining of long-length blanks, details of complex shape and large size. We can solve these problems by applying the welding production technology. For this it is necessary to conduct a research of the structure and mechanical properties of welded joints of sintered titanium alloys produced by flash welding. Methodology. Titanium industrial powders, type PT5-1 were used as original substance. Forming of blanks, whose chemical composition corresponded to BT1-0 alloy, was carried out using the powder metallurgy method. Compounds were obtained by flash welding without preheating. Microstructural investigations and mechanical tests were carried out. To compare the results investigations of BT1-0 cast alloy were conducted. Findings. Samples of welded joints of sintered titanium blanks from VT1-0 alloy using the flash butt welding method were obtained. During welding the microstructure of basic metal consisting of grains of an a-phase, with sizes 40...70 mkm, is transformed for the seam weld and HAZ into the lamellar structure of an a-phase. The remaining pores in seam weld were practically absent; in the HAZ their size was up to 2 mkm, with 30 mkm in the basic metal. Attainable level of mechanical properties of the welded joint in sintered titanium alloys is comparable to the basic metal. Originality. Structure qualitative changes and attainable property complex of compounds of sintered titanium alloys, formed as a result of flash butt welding were found out. Practical value. The principal possibility of high-quality compounds obtaining of sintered titanium alloys by flash welding is shown. This gives a basis for wider application of sintered titanium alloys due to long-length blanks production that are correspond to deformable strand semi finished product.

  18. Enhanced sintering ability of biphasic calcium phosphate by polymers used for bone scaffold fabrication.

    Science.gov (United States)

    Gao, Chengde; Yang, Bo; Hu, Huanlong; Liu, Jinglin; Shuai, Cijun; Peng, Shuping

    2013-10-01

    Biphasic calcium phosphate (BCP), which is composed of hydroxyapatite [HAP, Ca10(PO4)6(OH)2] and β-tricalcium phosphate [β-TCP, β-Ca3(PO4)2], is usually difficult to densify into a solid state with selective laser sintering (SLS) due to the short sintering time. In this study, the sintering ability of BCP ceramics was significantly improved by adding a small amount of polymers, by which a liquid phase was introduced during the sintering process. The effects of the polymer content, laser power and HAP/β-TCP ratios on the microstructure, chemical composition and mechanical properties of the BCP scaffolds were investigated. The results showed that the BCP scaffolds became increasingly more compact with the increase of the poly(l-lactic acid) (PLLA) content (0-1 wt.%) and laser power (6-10 W). The fracture toughness and micro-hardness of the sintered scaffolds were also improved. Moreover, PLLA could be gradually decomposed in the late sintering stages and eliminated from the final BCP scaffolds if the PLLA content was below a certain value (approximately 1 wt.% in this case). The added PLLA could not be completely eliminated when its content was further increased to 1.5 wt.% or higher because an unexpected carbon phase was detected in the sintered scaffolds. Furthermore, many pores were observed due to the removal of PLLA. Micro-cracks and micro-pores occurred when the laser power was too high (12 W). These defects resulted in a deterioration of the mechanical properties. The hardness and fracture toughness reached maximum values of 490.3±10 HV and 1.72±0.10 MPa m(1/2), respectively, with a PLLA content of approximately 1 wt.% and laser power of approximately 10 W. Poly(l-lactic-co-glycolic acid) (PLGA) showed similar effects on the sintering process of BCP ceramics. Rectangular, porous BCP scaffolds were fabricated based on the optimum values of the polymer content and laser power. This work may provide an experimental basis for improving the mechanical

  19. All-photonic drying and sintering process via flash white light combined with deep-UV and near-infrared irradiation for highly conductive copper nano-ink

    Science.gov (United States)

    Hwang, Hyun-Jun; Oh, Kyung-Hwan; Kim, Hak-Sung

    2016-01-01

    We developed an ultra-high speed photonic sintering method involving flash white light (FWL) combined with near infrared (NIR) and deep UV light irradiation to produce highly conductive copper nano-ink film. Flash white light irradiation energy and the power of NIR/deep UV were optimized to obtain high conductivity Cu films. Several microscopic and spectroscopic characterization techniques such as scanning electron microscopy (SEM), a x-ray diffraction (XRD), and Fourier-transform infrared (FT-IR) spectroscopy were employed to characterize the Cu nano-films. Optimally sintered Cu nano-ink films produced using a deep UV-assisted flash white light sintering technique had the lowest resistivity (7.62 μΩ·cm), which was only 4.5-fold higher than that of bulk Cu film (1.68 μΩ•cm). PMID:26806215

  20. Low Temperature Constrained Sintering of Cerium Gadolinium OxideFilms for Solid Oxide Fuel Cell Applications

    Energy Technology Data Exchange (ETDEWEB)

    Nicholas, Jason Dale [Univ. of California, Berkeley, CA (United States)

    2007-01-01

    Cerium gadolinium oxide (CGO) has been identified as an acceptable solid oxide fuel cell (SOFC) electrolyte at temperatures (500-700 C) where cheap, rigid, stainless steel interconnect substrates can be used. Unfortunately, both the high sintering temperature of pure CGO, >1200 C, and the fact that constraint during sintering often results in cracked, low density ceramic films, have complicated development of metal supported CGO SOFCs. The aim of this work was to find new sintering aids for Ce0.9Gd0.1O1.95, and to evaluate whether they could be used to produce dense, constrained Ce0.9Gd0.1O1.95 films at temperatures below 1000 C. To find the optimal sintering aid, Ce0.9Gd0.1O1.95 was doped with a variety of elements, of which lithium was found to be the most effective. Dilatometric studies indicated that by doping CGO with 3mol% lithium nitrate, it was possible to sinter pellets to a relative density of 98.5% at 800 C--a full one hundred degrees below the previous low temperature sintering record for CGO. Further, it was also found that a sintering aid's effectiveness could be explained in terms of its size, charge and high temperature mobility. A closer examination of lithium doped Ce0.9Gd0.1O1.95 indicated that lithium affects sintering by producing a Li2O-Gd2O3-CeO2 liquid at the CGO grain boundaries. Due to this liquid phase sintering, it was possible to produce dense, crack-free constrained films of CGO at the record low temperature of 950 C using cheap, colloidal spray deposition processes. This is the first time dense constrained CGO films have been produced below 1000 C and could help commercialize metal supported ceria based solid oxide fuel cells.

  1. Integrated analysis of oxide nuclear fuel sintering

    International Nuclear Information System (INIS)

    Baranov, V.; Kuzmin, R.; Tenishev, A.; Timoshin, I.; Khlunov, A.; Ivanov, A.; Petrov, I.

    2011-01-01

    Dilatometric and thermal-gravimetric investigations have been carried out for the sintering process of oxide nuclear fuel in gaseous Ar - 8% H 2 atmosphere at temperatures up to 1600 0 C. The pressed compacts were fabricated under real production conditions of the OAO MSZ with application of two different technologies, so called 'dry' and 'wet' technologies. Effects of the grain size growth after the heating to different temperatures were observed. In order to investigate the effects produced by rate of heating on properties of sintered fuel pellets, the heating rates were varied from 1 to 8 0 C per minute. Time of isothermal overexposure at maximal temperature (1600 0 C) was about 8 hours. Real production conditions were imitated. The results showed that the sintering process of the fuel pellets produced by two technologies differs. The samples sintered under different heating rates were studied with application of scanning electronic microscopy analysis for determination of mean grain size. A simulation of heating profile for industrial furnaces was performed to reduce the beam cycles and estimate the effects of variation of the isothermal overexposure temperatures. Based on this data, an optimization of the sintering conditions was performed in operations terms of OAO MSZ. (authors)

  2. An in situ Study of NiTi Powder Sintering Using Neutron Diffraction

    OpenAIRE

    Chen, Gang; Liss, Klaus-Dieter; Cao, Peng

    2015-01-01

    This study investigates phase transformation and mechanical properties of porous NiTi alloys using two different powder compacts (i.e., Ni/Ti and Ni/TiH2) by a conventional press-and-sinter means. The compacted powder mixtures were sintered in vacuum at a final temperature of 1373 K. The phase evolution was performed by in situ neutron diffraction upon sintering and cooling. The predominant phase identified in all the produced porous NiTi alloys after being sintered at 1373 K is B2 NiTi phase...

  3. Mechanical characterization of microwave sintered zinc oxide

    Indian Academy of Sciences (India)

    Unknown

    Keywords. Zinc oxide; microwave sintering; microhardness. 1. Introduction. The application of microwave energy for the processing of ceramics has become an attractive area of research and innovation recently. The major advantages of the micro- wave processing of ceramic materials are accelerated densification rate as a ...

  4. An 8-year evaluation of sintered ceramic and glass ceramic inlays processed by the Cerec CAD/CAM system

    DEFF Research Database (Denmark)

    Pallesen, U.; Dijken van, J.W.V.

    2000-01-01

    sensitivity was reported by one patient for 8 months. Of the 32 inlays evaluated during the 8 yr, 3 failed due to fracture of the material. No secondary caries was found adjacent to the inlays. No significant differences in the clinical performance were found between inlays made of the two ceramics. It can......The purpose of this study was to evaluate Cerec CAD/CAM inlays processed of two industrially made machinable ceramics during an 8-yr follow-up period. Each of 16 patients received two similar ceramic inlays. Half the number of the inlays were made of a feldspathic (Vita Mark II) and the other...... of a glass ceramic (Dicor MGC) block. The inlays were luted with a dual resin composite and evaluated clinically using modified USPHS criteria at baseline, 8 months, 2, 3, 5, 6 and 8 yr, and indirectly using models. At baseline, 84% of the inlays were estimated as optimal and 16% as acceptable. Postoperative...

  5. An 8-year evaluation of sintered ceramic and glass ceramic inlays processed by the Cerec CAD/CAM system

    DEFF Research Database (Denmark)

    Pallesen, U.; Dijken van, J.W.V.

    2000-01-01

    of a glass ceramic (Dicor MGC) block. The inlays were luted with a dual resin composite and evaluated clinically using modified USPHS criteria at baseline, 8 months, 2, 3, 5, 6 and 8 yr, and indirectly using models. At baseline, 84% of the inlays were estimated as optimal and 16% as acceptable. Postoperative......The purpose of this study was to evaluate Cerec CAD/CAM inlays processed of two industrially made machinable ceramics during an 8-yr follow-up period. Each of 16 patients received two similar ceramic inlays. Half the number of the inlays were made of a feldspathic (Vita Mark II) and the other...... sensitivity was reported by one patient for 8 months. Of the 32 inlays evaluated during the 8 yr, 3 failed due to fracture of the material. No secondary caries was found adjacent to the inlays. No significant differences in the clinical performance were found between inlays made of the two ceramics. It can...

  6. Influences of chemical packing and the chemical composition in porcelain sintering: from theory to practice; Influencias do empacotamento de particulas e da composicao quimica na sinterizacao de porcelanicos: da teoria a pratica

    Energy Technology Data Exchange (ETDEWEB)

    Conceicao, E.S.; Gouvea, D., E-mail: dgouvea@usp.br [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Departamento de Engenharia Metalurgica e de Materiais. Laboratorio de Processos Ceramicos; Romano, R.C.O.; Pileggi, R.G. [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Escola Politecnica. Departamento de Engenharia de Construcao Civil

    2011-07-01

    Studies have been conducted using the size distribution particles as a tool to obtain maximum packing in porcelain bodies. However, little attention has been given for the maximum size of particles and its effect in the sintering. While some particles are relatively large (63 μ m) for some oxides in the porcelain composition, they could compromise the sintering if a liquid phase is formed during heat processing. In this work, a comparative analysis showed that compositions with a maximum green packing density does not always lead to a maximum final densification in sintering if there is no control of the maximum size of the particles. (author)

  7. In situ monitoring of flash-light sintering of copper nanoparticle ink for printed electronics.

    Science.gov (United States)

    Hwang, Hyun-Jun; Chung, Wan-Ho; Kim, Hak-Sung

    2012-12-07

    In this work, a flash-light sintering process for Cu nanoinks was studied. In order to precisely monitor the milliseconds flash-light sintering process, a real-time Wheatstone bridge electrical circuit and a high-rate data acquisition system were used. The effects of several flash-light irradiation conditions (irradiation energy, pulse number, on-time, and off-time) and the effects of the amount of poly(N-vinylpyrrolidone) in the Cu nanoink on the flash-light sintering process were investigated. The microstructures of the sintered Cu films were analyzed by scanning electron microscopy. To investigate the oxidation or reduction of the oxide-covered copper nanoparticles, a crystal phase analysis using x-ray diffraction was performed. In addition, the sheet resistance of Cu film was measured using a four-point probe method. From this study, it was found that the flash-light sintered Cu nanoink films have a conductivity of 72 Ωm/sq without any damage to the polyimide substrate. Similar nanoinks are expected to be widely used in printed and flexible electronics products in the near future.

  8. Preparation and properties of porous Ti–10Mo alloy by selective laser sintering

    International Nuclear Information System (INIS)

    Xie, Fangxia; He, Xinbo; Lu, Xin; Cao, Shunli; Qu, Xuanhui

    2013-01-01

    In this study, porous Ti–10Mo alloy was prepared from a mixture of titanium, molybdenum and epoxy resin powders by selective laser sintering preforming, debinding and sintering at 1200 °C under a pure argon atmosphere. The influence of sintering process on the porous, microstructural and mechanical properties of the porous alloy was discussed. The results indicate that the pore characteristic parameters and mechanical properties mainly depend on the holding time at 1200 °C, except that the maximum strain keeps at about 45%. The matrix microstructure is dominated by α phase with a small quantity of β phase at room temperature. As the holding time lengthens from 2 to 6 h, the average pore size and the porosity decrease from 180 to 50 μm and from 70 to 40%, respectively. Meanwhile, the Young's modulus and the compressive yield strength increase in the ranges of 10–20 GPa and 180–260 MPa, respectively. Both the porous structure and the mechanical properties of the porous Ti–10Mo alloy can be adjusted to match with those of natural bone. - Highlights: ► Porous Ti–10Mo alloy was fabricated by selective laser sintering technology. ► The pore size and porosity can be controlled by different holding time at 1200 °C. ► The matrix microstructure consists of major α and minor β at room temperature. ► The mechanical properties can be regulated by adjusting porosity (or density)

  9. Sintering of nickel steam reforming catalysts

    DEFF Research Database (Denmark)

    Sehested, Jens; Larsen, Niels Wessel; Falsig, Hanne

    2014-01-01

    The lifetimes of heterogeneous catalysts in many widely used industrial processes are determined by the loss of active surface area. In this context, the underlying physical sintering mechanism and quantitative information about the rate of sintering at industrial conditions are relevant....... In this paper, particle migration and coalescence in nickel steam reforming catalysts is studied. Density functional theory calculations indicate that Ni-OH dominate nickel transport at nickel surfaces in the presence of steam and hydrogen as Ni-OH has the lowest combined energies of formation and diffusion...... compared to other potential nickel transport species. The relation between experimental catalyst sintering data and the effective mass diffusion constant for Ni-OH is established by numerical modelling of the particle migration and coalescence process. Using this relation, the effective mass diffusion...

  10. Ultra-fast microwave sintering of PZT/FCO particulate composites prepared by ultrasonic mixing; Sinterizacao ultrarrapida por micro-ondas de compositos particulados PZT/FCO preparados por mistura em ultrassom

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, C.P.; Zabotto, F.L.; Garcia, D.; Kiminami, R.H.G.A. [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil)

    2017-07-15

    Pb(Zr{sub 0.53}Ti{sub 0.47})O{sub 3} (PZT) and Fe{sub 2}CoO{sub 4} (FCO) powders were synthesized separately by the Pechini method and then ultrasonically mixed in molar proportions of 80/20 and 50/50 of PZT/FCO. The resulting composites were pressed and subjected to conventional and ultrafast microwave-assisted sintering. The structure and microstructure of the sintered samples were analyzed, respectively, by X-ray diffraction and scanning electron microscopy. The dielectric constant as a function of temperature, electrical resistivity and magnetoelectric coupling coefficient were measured. The results indicated that the ultrasonic mixing method applied to PZT and FCO was fast and efficient, and that sintering resulted in globally connected (0-3) particulate composites and uniform distribution of the ferromagnetic phase (FCO) grains in the ferroelectric matrix (PZT). The structural analysis indicated that microwave sintering changed the arrangement (1-3) of the material's local connectivity, which was attributed to the intensification of diffusion processes that occur in this type of sintering, particularly in nanometric systems. The high values of resistivity indicated that although both sintering methods preserved the integrity of the two phases, microwave sintering was more efficient, ensuring the magnetoelectric behavior of all the composites under study. The values of H{sub max} field were dependent on the ferrite phase concentration and sintering; 80/20 1.4 and 1.9 kOe, and 50/50 3.5 and 3.0 kOe in the samples sintered by microwave and conventionally, consistent with the literature, which confirmed the integrity of the constituent phases PZT and FCO. (author)

  11. Direct metal laser sintering: a digitised metal casting technology.

    Science.gov (United States)

    Venkatesh, K Vijay; Nandini, V Vidyashree

    2013-12-01

    Dental technology is undergoing advancements at a fast pace and technology is being imported from various other fields. One such imported technology is direct metal laser sintering technology for casting metal crowns. This article will discuss the process of laser sintering for making metal crowns and fixed partial dentures with a understanding of their pros and cons.

  12. Sintering, camber development of layer composites and a new ...

    Indian Academy of Sciences (India)

    NiZnCu hexagonal ferrite (abbreviated as ZT/NZC) composite samples were prepared successfully by using restricted shrinkage sintering process (RSS) (Liu et al 2009a, b). But the electromagnetic performance degra- dation of co-sintered layer ...

  13. Successive self-propagating sintering process using carbonaceous materials: A novel low-cost remediation approach for dioxin-contaminated solids

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Long, E-mail: zhaolong@craes.org.cn [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Dayangfang 8, Beijing 100012 (China); Hou, Hong, E-mail: houhong@craes.org.cn [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Dayangfang 8, Beijing 100012 (China); Zhu, Tengfei; Li, Fasheng [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Dayangfang 8, Beijing 100012 (China); Terada, Akihiko; Hosomi, Masaaki [Department of Chemical Engineering, Faculty of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588 (Japan)

    2015-12-15

    Highlights: • A SSPSP using carbonaceous materials for removing dioxin pollutants was developed. • Removal and degradation efficiencies of DL-PCBs were higher than those of PCDD/Fs. • Compositions of PCDD/Fs were dependent on the available precursors in raw materials. • Dechlorination of O{sub 8}CDD and formation pathways of PCDFs were deduced. • Dioxin levels in the effluent gas complied with the International emission limit. - Abstract: The disposal of dioxin-contaminated solids was studied using a novel successive self-propagating sintering process (SSPSP) incorporating a carbonaceous material. Among the five types of carbonaceous materials investigated, Charcoal B displayed optimum adsorbent properties and was selected as the best thermal source in the current remediation approach based on economical efficiency aspects. The feasibility of this proposed approach, removal efficiencies, and congener compositions of dioxins were examined using two types of dioxin-contaminated solids (Fugan sediment and Toyo soil) that displayed different characteristics including the initial concentrations of dioxins. The removal efficiencies of DL-PCBs (“dioxin-like” polychlorinated biphenyls) were higher than those of PCDD/Fs (polychlorinated dibenzo-p-dioxins/dibenzofurans), achieving 99.9 and 92% removal in the Fugan sediment and Toyo soil, respectively. In contrast, the degradation efficiencies of DL-PCBs were lower (i.e., 89.3 and 88.8%, respectively). The initial concentrations of dioxins, available precursors, and properties of the solids strongly influenced the congener compositions and removal efficiencies of dioxins. Furthermore, the dechlorination reaction pathways of high-chlorinated PCDDs and potential regeneration pathways of PCDFs from PCBs were deduced using isotope labeling. The proposed novel low-cost remediation approach for the removal of dioxins from solids is a highly efficient and environmentally sound treatment technology.

  14. Engineered Alloy Structures by Friction Stir Reaction Processing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I effort examines the feasibility of an innovative surface modification technology incorporating friction stir reaction processing for producing...

  15. Synthesis and ceramic processing of alumina and zirconia based composites infiltrated with glass phase for dental applications

    International Nuclear Information System (INIS)

    Duarte, Daniel Gomes

    2009-01-01

    The interest for the use of ceramic materials for dental applications started due to the good aesthetic appearance promoted by the similarity to natural teeth. However, the fragility of traditional ceramics was a limitation for their use in stress conditions. The development of alumina and zirconia based materials, that associate aesthetic results, biocompatibility and good mechanical behaviour, makes possible the employment of ceramics for fabrication of dental restorations. The incorporation of vitreous phase in these ceramics is an alternative to minimize the ceramic retraction and to improve the adhesion to resin-based cements, necessary for the union of ceramic frameworks to the remaining dental structure. In the dentistry field, alumina and zirconia ceramic infiltrated with glassy phase are represented commercially by the In-Ceram systems. Considering that the improvement of powder's synthesis routes and of techniques of ceramic processing contributes for good performance of these materials, the goal of the present work is the study of processing conditions of alumina and/or 3 mol% yttria-stabilized zirconia ceramics infiltrated with aluminum borosilicate lanthanum glass. The powders, synthesized by hydroxide coprecipitation route, were pressed by uniaxial compaction and pre-sintered at temperature range between 950 and 1650 degree C in order to obtain porous ceramics bodies. Vitreous phase incorporation was performed by impregnation of aluminum borosilicate lanthanum powder, also prepared in this work, followed by heat treatment between 1200 and 1400 degree C .Ceramic powders were characterized by thermogravimetry, X-ray diffraction, scanning and transmission electron microscopy, gaseous adsorption (BET) and laser diffraction. Sinterability of alumina and /or stabilized zirconia green pellets was evaluated by dilatometry. Pre-sintered ceramics were characterized by apparent density measurements (Archimedes method), X-ray diffraction and scanning electron

  16. Sintering Behavior, Microstructure, and Mechanical Properties: A Comparison among Pressureless Sintered Ultra-Refractory Carbides

    Directory of Open Access Journals (Sweden)

    Laura Silvestroni

    2010-01-01

    Full Text Available Nearly fully dense carbides of zirconium, hafnium, and tantalum were obtained by pressureless sintering at 1950°C with the addition of 5–20 vol% of MoSi2. Increasing the amount of sintering aid, the final density increased too, thanks to the formation of small amounts of liquid phase constituted by M-Mo-Si-O-C, where M is either Zr, Hf, or Ta. The matrices of the composites obtained with the standard procedure showed faceted squared grains; when an ultrasonication step was introduced in the powder treatment, the grains were more rounded and no exaggerated grains growth occurred. Other secondary phases observed in the microstructure were SiC and mixed silicides of the transition metals. Among the three carbides prepared by pressurless sintering, TaC-based composites had the highest mechanical properties at room temperature (strength 590 MPa, Young's modulus 480 GPa, toughness 3.8 MPa·m1/2. HfC-based materials showed the highest sinterability (in terms of final density versus amount of sintering aid and the highest high-temperature strength (300 MPa at 1500  °C.

  17. Applications of Phase-Based Motion Processing

    Science.gov (United States)

    Branch, Nicholas A.; Stewart, Eric C.

    2018-01-01

    Image pyramids provide useful information in determining structural response at low cost using commercially available cameras. The current effort applies previous work on the complex steerable pyramid to analyze and identify imperceptible linear motions in video. Instead of implicitly computing motion spectra through phase analysis of the complex steerable pyramid and magnifying the associated motions, instead present a visual technique and the necessary software to display the phase changes of high frequency signals within video. The present technique quickly identifies regions of largest motion within a video with a single phase visualization and without the artifacts of motion magnification, but requires use of the computationally intensive Fourier transform. While Riesz pyramids present an alternative to the computationally intensive complex steerable pyramid for motion magnification, the Riesz formulation contains significant noise, and motion magnification still presents large amounts of data that cannot be quickly assessed by the human eye. Thus, user-friendly software is presented for quickly identifying structural response through optical flow and phase visualization in both Python and MATLAB.

  18. [Influence on microstructure of dental zirconia ceramics prepared by two-step sintering].

    Science.gov (United States)

    Jian, Chao; Li, Ning; Wu, Zhikai; Teng, Jing; Yan, Jiazhen

    2013-10-01

    To investigate the microstructure of dental zirconia ceramics prepared by two-step sintering. Nanostructured zirconia powder was dry compacted, cold isostatic pressed, and pre-sintered. The pre-sintered discs were cut processed into samples. Conventional sintering, single-step sintering, and two-step sintering were carried out, and density and grain size of the samples were measured. Afterward, T1 and/or T2 of two-step sintering ranges were measured. Effects on microstructure of different routes, which consisted of two-step sintering and conventional sintering were discussed. The influence of T1 and/or T2 on density and grain size were analyzed as well. The range of T1 was between 1450 degrees C and 1550 degrees C, and the range of T2 was between 1250 degrees C and 1350 degrees C. Compared with conventional sintering, finer microstructure of higher density and smaller grain could be obtained by two-step sintering. Grain growth was dependent on T1, whereas density was not much related with T1. However, density was dependent on T2, and grain size was minimally influenced. Two-step sintering could ensure a sintering body with high density and small grain, which is good for optimizing the microstructure of dental zirconia ceramics.

  19. Comparison of two-phase and three-phase methanol synthesis processes

    NARCIS (Netherlands)

    van de Graaf, G.H; Beenackers, A.A C M

    1996-01-01

    A comparison is made between the ICI (two-phase) methanol synthesis process and a three-phase slurry process based on a multi-stage agitated reactor. The process calculations are based on a complete reactor system consisting of the reactor itself, a recycling system and a gas-liquid separator. The

  20. Synthesis and characterization of cBN/WCCo composites obtained by the pulse plasma sintering (PPS) method

    Energy Technology Data Exchange (ETDEWEB)

    Michalski, A; Rosinski, M; Plocinska, M; Szawlowski, J, E-mail: mihalski@inmat.pw.edu.pl [Warsaw University of Technology, Faculty of Materials Science and Engineering, Warsaw (Poland)

    2011-10-29

    The cBN/cemented carbide containing 30vol% of cBN particles was produced using a mixture of a 6wt% Co added-WC powder, with a WC grain size of 0.4 {mu}m and a cBN powder with a grain size ranging from 4 to 40 {mu}m. The mixture was sintered to produce a plate, 20 mm in diameter, 3 mm thick. The sintering processes were conducted at temperature of 1100 deg. C under a load of 100 MPa. The phase composition, density, hardness and micro structure of the sintered parts thus obtained were examined. The fractures through the WCCo/cBN composite showed the cBN particles torn out from the cemented carbide matrix were only few, whereas most of them have cleaved along the fracture plane. This gives evidence that the bond at the WCCo/cBN interface is mechanically strong.

  1. Predicting sintering deformation of ceramic film constrained by rigid substrate using anisotropic constitutive law

    International Nuclear Information System (INIS)

    Li Fan; Pan Jingzhe; Guillon, Olivier; Cocks, Alan

    2010-01-01

    Sintering of ceramic films on a solid substrate is an important technology for fabricating a range of products, including solid oxide fuel cells, micro-electronic PZT films and protective coatings. There is clear evidence that the constrained sintering process is anisotropic in nature. This paper presents a study of the constrained sintering deformation using an anisotropic constitutive law. The state of the material is described using the sintering strains rather than the relative density. In the limiting case of free sintering, the constitutive law reduces to a conventional isotropic constitutive law. The anisotropic constitutive law is used to calculate sintering deformation of a constrained film bonded to a rigid substrate and the compressive stress required in a sinter-forging experiment to achieve zero lateral shrinkage. The results are compared with experimental data in the literature. It is shown that the anisotropic constitutive law can capture the behaviour of the materials observed in the sintering experiments.

  2. Effects of various additives on sintering of aluminum nitride

    Science.gov (United States)

    Komeya, K.; Inoue, H.; Tsuge, A.

    1982-01-01

    Effects of thirty additives on sintering A/N were investigated. The addition of alkali earth oxides and rare earth oxides gave fully densified aluminum nitride. This is due to the formation of nitrogen-containing aluminate liquid in the system aluminum nitride-alkali earth oxides or rare earth oxides. Microstructural studies of the sintered specimens with the above two types of additives suggested that the densification was due to the liquid phase sintering. Additions of silicon compounds resulted in poor densification by the formation of highly refractory compounds such as A/N polytypes.

  3. Reaction sintering of a zirconia-containing barium feldspar ceramic

    International Nuclear Information System (INIS)

    Nordmann, A.; Cheng, Y-B.; Muddle, B. C.

    1996-01-01

    Zircon (ZrSiO 4 ) is a natural mineral resource known to react with certain oxides to produce a dispersion of zirconia particles within ceramic or glass-ceramic matrices. Barium aluminosilicates, particularly the celsian polymorphs of BaO- Al 2 O 3 2SiO 2 display oxidation resistance and refractory characteristics commensurate with the properties required of high temperature materials. Such properties, coupled with the high melting point of ZrO 2 (2680 deg C), suggest that barium aluminosilicates and zirconia are an ideal combination from which to fabricate high temperature materials. A recent study has indicated that a barium aluminosilicate containing up to 40mol% ZrO 2 can be prepared via a sol-gel process. However, the desire to utilise a natural resource in the form of zircon in the present work has led to the choice of reaction sintering as an alternative processing route. The current work was undertaken to investigate the possibility of forming a zirconia-containing barium feldspar composite material using the reaction sintering of zircon and assuming the following stoichiometric reaction: 2ZrSiO 4 + BaCO 3 + Al 2 O 3 → 2ZrO 2 + BaO-Al 2 O 3 -2SiO 2 + CO 2 ↑. The reaction sintering of zircon with alumina and barium carbonate produces a composite material comprising distributed ZrO 2 in a continous barium feldspar matrix. Yttria added during processing allows a significant fraction of the ZrO 2 to be retained as tetragonal phase to room temperature and thus the potential for a measure of transformation toughening

  4. Alumina-zirconium ceramics synthesis by selective laser sintering/melting

    International Nuclear Information System (INIS)

    Shishkovsky, I.; Yadroitsev, I.; Bertrand, Ph.; Smurov, I.

    2007-01-01

    In the present paper, porous refractory ceramics synthesized by selective laser sintering/melting from a mixture of zirconium dioxide, aluminum and/or alumina powders are subjected to optical metallography and X-ray analysis to study their microstructure and phase composition depending on the laser processing parameters. It is shown that high-speed laser sintering in air yields ceramics with dense structure and a uniform distribution of the stabilizing phases. The obtained ceramic-matrix composites may be used as thermal and electrical insulators and wear resistant coating in solid oxide fuel cells, crucibles, heating elements, medical tools. The possibility to reinforce refractory ceramics by laser synthesis is shown on the example of tetragonal dioxide of zirconium with hardened micro-inclusion of Al 2 O 3 . By applying finely dispersed Y 2 O 3 powder inclusions, the type of the ceramic structure is significantly changed

  5. Sintering of bulk high- Tc superconductors: Y-Ba-Cu-O

    Energy Technology Data Exchange (ETDEWEB)

    Goretta, K.C.; Chen, N.; Lanagan, M.T.; Wu, W.; Singh, J.P.; Olson, R.A.; Routbort, J.L.; Poeppel, R.B.

    1992-05-01

    Sintering of bulk YBa{sub 2}Cu{sub 3}O{sub x} (123) samples has been conducted from 850 to 1010{degrees}C in oxygen partial pressures (P{sub O2}) of 2.5 {times} 10{sup 2} to 10{sup 5} Pa. The final grain sizes of the samples were controlled by selective use of (1) liquid phases and (2) partial decomposition of the 123 phase by sintering in a P{sub O2} that was lower than the minimum needed for 123 stability. In nearly fully dense samples, it was found that the grain size could range from about 1 to 500 {mu}m, depending on the processing conditions.

  6. Sintering of bulk high-{Tc} superconductors: Y-Ba-Cu-O

    Energy Technology Data Exchange (ETDEWEB)

    Goretta, K.C.; Chen, N.; Lanagan, M.T.; Wu, W.; Singh, J.P.; Olson, R.A.; Routbort, J.L.; Poeppel, R.B.

    1992-05-01

    Sintering of bulk YBa{sub 2}Cu{sub 3}O{sub x} (123) samples has been conducted from 850 to 1010{degrees}C in oxygen partial pressures (P{sub O2}) of 2.5 {times} 10{sup 2} to 10{sup 5} Pa. The final grain sizes of the samples were controlled by selective use of (1) liquid phases and (2) partial decomposition of the 123 phase by sintering in a P{sub O2} that was lower than the minimum needed for 123 stability. In nearly fully dense samples, it was found that the grain size could range from about 1 to 500 {mu}m, depending on the processing conditions.

  7. Mars Aqueous Processing System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Mars Aqueous Processing System (MAPS) is an innovative method to produce useful building materials from Martian regolith. Acids and bases produced from the regolith...

  8. Mars Aqueous Processing System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Mars Aqueous Processing System (MAPS) is a novel technology for recovering oxygen, iron, and other constituents from lunar and Mars soils. The closed-loop...

  9. Non-pressurized sintered silicon carbide with titanium carbide reinforcement

    International Nuclear Information System (INIS)

    Adler, J.

    1992-01-01

    A non-pressurized compression of SiC-TiC composite materials can be achieved via liquid phase sintering by the application of oxidic additives. Materials with TiC proportions up to 40% by volume of TiC and densities of 97 to 98% TD were produced at sintering temperatures around 1875 C. With SiC sintered in the liquid phase an increase of toughness at fracture of 80% compared with conventionally non-pressurized sintered SiC was achieved with B/C additive. No further increase could be achieved by the addition of TiC particles. However, the oxidation resistance at 1200 C was worsened. (orig.) [de

  10. Effects of lower cobalt binder concentrations in sintering of tungsten carbide

    International Nuclear Information System (INIS)

    Li Tao; Li Qingfa; Fuh, J.Y.H.; Yu, P.C.; Wu, C.C.

    2006-01-01

    Cemented tungsten carbides have received much attention because of their superior characteristics. Traditional cemented tungsten carbides usually contain 3-30 wt% binder phase. In this paper, WC with low Co concentration less than 3 wt% is studied using traditional powder metallurgy. The binder phase has tremendous effect on sinterability of WC. High sinterability and high hardness can be achieved for the WC (0.7 μm) with 0.5 wt% Co. Abnormal grain growth (AGG) is often observed in sintering WC with small amount of Co. It seems that AGG is affected by the concentration of Co and a range of Co concentrations may exist for the large amount of AGG. To control the grain size, VC is added to inhibit the grain growth of WC. It is observed that the hardness is affected by the amount of addition of VC. Controlling the ratio of C/W less than unity at low Co concentrations will result in the production of W 2 C phase. The hardness of WC-Co is affected by the amount of W 2 C phase in the sample and W 2 C is stable during the normal cooling process

  11. The Emergence of Quantitative Sintering Theory from 1945 to 1955

    Science.gov (United States)

    German, Randall M.

    2017-04-01

    Particles flow and pack under stress, allowing shaping of the particles into target engineering geometries. Subsequently, in a process termed sintering, the particles are heated to induce bonding that results in a strong solid. Although first practiced 26,000 years ago, sintering was largely unexplained until recent times. Sintering science moved from an empirical and largely qualitative notion into a quantitative theory over a relatively short time period following World War II. That conceptual transition took place just as commercial applications for sintered materials underwent significant growth. This article highlights the key changes in sintering concepts that occurred in the 1945-1955 time period. This time span starts with the first quantitative neck growth model from Frenkel and ends with the quantitative shrinkage model from Kingery and Berg that includes several transport mechanisms.

  12. Sintering with a chemical reaction as applied to uranium monocarbide

    International Nuclear Information System (INIS)

    Accary, A.; Caillat, R.

    1960-01-01

    The present paper provides a survey of different investigations whose aim was the preparation and fabrication of uranium monocarbide for nuclear use. If a chemical reaction takes place in the sample during the sintering operation, it may be expected that the atom rearrangements involved in this reaction should favour the sintering process and thereby lower the temperature needed to yield a body of a given density. With this hypothesis in mind, the following methods have been studied: - Sintering of U-C mixtures; - Sintering of UO 2 -C mixtures; - Hot pressing of U-C mixtures; - Extrusion of U-C mixtures. To generalize our result, it could be said that a chemical reaction does not lead to high densification, if one depends on a simple contact between discrete particles. On the contrary, a chemical reaction can help sintering if, as our hot pressing experiments shows, the densification can be achieved prior to the reaction. (author) [fr

  13. Study on selective laser sintering of glass fiber reinforced polystyrene

    Science.gov (United States)

    Yang, Laixia; Wang, Bo; Zhou, Wenming

    2017-12-01

    In order to improve the bending strength of Polystyrene (PS) sintered parts by selective laser sintering, Polystyrene/glass fiber (PS/GF) composite powders were prepared by mechanical mixing method. The size distribution of PS/GF composite powders was characterized by laser particle size analyzer. The optimum ratio of GF was determined by proportioning sintering experiments. The influence of process parameters on the bending strength of PS and PS/GF sintered parts was studied by orthogonal test. The result indicates that the particle size of PS/GF composite powder is mainly distributed in 24.88 μm~139.8 μm. When the content of GF is 10%, it has better strengthen effect. Finally, the article used the optimum parameter of the two materials to sinter prototype, it is found that the PS/GF prototype has the advantages of good accuracy and high strength.

  14. Phase Sensitive Amplification using Parametric Processes in Optical Fibers

    DEFF Research Database (Denmark)

    Kang, Ning

    Phase sensitive amplification using the parametric processes in fiber has the potential of delivering high gain and broadband operation with ultralow noise. It is able to regenerate both amplitude and phase modulated signals, simultaneously, with the appropriate design. This thesis concerns......, in specific, the design and optimization of such phase sensitive amplifiers (PSAs). For phase sensitive amplification in highly nonlinear fibers, optima points of operation have been identified for both the standard and the novel high stimulated Brillouin scattering (SBS) threshold highly nonlinear fiber...... types. The regeneration capability of PSAs on phase encoded signal in an optical link has been optimized. Flat-top phase sensitive profile has been synthesized. It is able to provide simultaneous amplitude and phase noise squeezing, with enhanced phase noise margin compared to conventional designs...

  15. CAD/CAM machining Vs pre-sintering in-lab fabrication techniques of Y-TZP ceramic specimens: Effects on their mechanical fatigue behavior.

    Science.gov (United States)

    Zucuni, C P; Guilardi, L F; Fraga, S; May, L G; Pereira, G K R; Valandro, L F

    2017-07-01

    This study evaluated the effects of different pre-sintering fabrication processing techniques of Y-TZP ceramic (CAD/CAM Vs. in-lab), considering surface characteristics and mechanical performance outcomes. Pre-sintered discs of Y-TZP ceramic (IPS e.max ZirCAD, Ivoclar Vivadent) were produced using different pre-sintering fabrication processing techniques: Machined- milling with a CAD/CAM system; Polished- fabrication using a cutting device followed by polishing (600 and 1200 SiC papers); Xfine- fabrication using a cutting machine followed by grinding with extra-fine diamond bur (grit size 30 μm); Fine- fabrication using a cutting machine followed by grinding with fine diamond bur (grit size 46 μm); SiC- fabrication using a cutting machine followed by grinding with 220 SiC paper. Afterwards, the discs were sintered and submitted to roughness (n=35), surface topography (n=2), phase transformation (n=2), biaxial flexural strength (n=20), and biaxial flexural fatigue strength (fatigue limit) (n=15) analyses. No monoclinic-phase content was observed in all processing techniques. It can be observed that obtaining a surface with similar characteristics to CAD/CAM milling is essential for the observation of similar mechanical performance. On this sense, grinding with fine diamond bur before sintering (Fine group) was the best mimic protocol in comparison to the CAD/CAM milling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Microwave combustion and sintering without isostatic pressure

    International Nuclear Information System (INIS)

    Ebadian, M.A.

    1998-01-01

    In recent years interest has grown rapidly in the application of microwave energy to the processing of ceramics, composites, polymers, and other materials. Advances in the understanding of microwave/materials interactions will facilitate the production of new ceramic materials with superior mechanical properties. One application of particular interest is the use of microwave energy for the mobilization of uranium for subsequent redeposition. Phase III (FY98) will focus on the microwave assisted chemical vapor infiltration tests for mobilization and redeposition of radioactive species in the mixed sludge waste. Uranium hexachloride and uranium (IV) borohydride are volatile compounds for which the chemical vapor infiltration procedure might be developed for the separation of uranium. Microwave heating characterized by an inverse temperature profile within a preformed ceramic matrix will be utilized for CVI using a carrier gas. Matrix deposition is expected to commence from the inside of the sample where the highest temperature is present. The preform matrix materials, which include aluminosilicate based ceramics and silicon carbide based ceramics, are all amenable to extreme volume reduction, densification, and vitrification. Important parameters of microwave sintering such as frequency, power requirement, soaking temperature, and holding time will be investigated to optimize process conditions for the volatilization of uranyl species using a reactive carrier gas in a microwave chamber

  17. Addition of niobia in alumina and its effects at its sintered microstructure

    International Nuclear Information System (INIS)

    Gomes, L.B.; Lima, M.M.O.; Pereira, A.S.; Bergmann, C.P.

    2016-01-01

    In this work, niobia was used as sintering additive of alumina in concentrations of 0.15, 0.5, 2 and 4 wt%. Homogenized powders was uniaxially pressed (200MPa) forming ceramic pellets with 10 mm diameter. The green bodies were sintered at 1400, 1500 and 1600°C for 60 minutes using a heating rate of 2,5°C.min -1 . After sintering, the specimens were polished using diamond paste with different particle sizes. The specimen's microstructure was analyzed by Scanning Electron Microscopy (SEM) and crystalline phases were determined by X-ray Diffraction (XRD). Results indicate that when niobia and alumina react they form AlNbO4 by liquid phase sintering. This phase is located among alumina grain. It was also verified that niobia addition promotes grain growth, acting as sintering agent, and this effect grows as niobia content and sintering temperature increase. (author)

  18. Liquid phase sintered SiC ceramics from starting materials of different grade Cerâmicas à base de SiC sinterizadas via fase líquida a partir de matérias-primas de diferentes purezas

    Directory of Open Access Journals (Sweden)

    V. A. Izhevskyi

    2004-09-01

    Full Text Available Possibility of high performance ceramics manufactured from commercial SiC powder of technical grade has been shown. Sintering behavior and microstructure formation under conditions of liquid phase sintering (LPS with oxynitride sintering aids (AlN-Y2O3 of three SiC-based compositions have been investigated. Two of the compositions were based on Alcoa 1000 SiC powder of technical grade, and the third one, which was used as a reference, was based on H.C. Starck UF-15 fine grade commercial powder. Milling process used for Alcoa 1000 SiC powder granulometry improvement has been investigated in detail, while chemical treatment of milled SiC powders has been used for pick-up impurities removal. Dilatometric experiments showed that SiC powder of technical grade after appropriate treatment exhibits sinterability comparable with the fine grade SiC. Microstructural investigations performed on sintered samples showed that the final microstructure of the Alcoa 1000 SiC based materials was practically identical with the H.C. Starck SiC based reference ones. Preliminary investigations of hardness and fracture toughness were carried out revealing excellent results for the materials produced from cheaper, nationally produced starting powder.Neste trabalho é apresentada a possibilidade de obtenção de cerâmicas de SiC de alto desempenho a partir de matéria-prima comercial de grau técnico. Foi realizado o estudo de sinterização via fase líquida e desenvolvimento microestrutural de três composições à base de SiC tendo como aditivos de sinterização AlN e Y2O3 . Duas destas composições são à base de SiC-1000 da Alcoa, grau técnico, e a terceira, utilizada como referência, à base do UF-15 da H.C. Starck - Alemanha, pó comercial de granulometria fina. O processo de moagem do pó SiC-1000 da Alcoa foi acompanhado por medidas de distribuição granulométrica e posterior ataque químico, para remoção de impurezas. Os pós de grau técnico, ap

  19. Development of microstructure during sintering and aluminium exposure of titanium diboride ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Pettersen, Gunnar

    1997-12-31

    In the production of aluminium, much less energy need be consumed if an inert, wetted cathode is present in the electrolysis cell. Titanium diboride, TiB{sub 2}, is easily wetted and does not readily dissolve in liquid aluminium, but it degrades, probably because aluminium penetrates into it during electrolysis. This degradation is linked to impurities present in the TiB{sub 2} after sintering. This thesis studies the sintering process and how aluminium penetrates into the material. High-purity, high-density TiB{sub 2} compacts were made by hot pressing at 50 MPa in an argon atmosphere at 1790-1960 {sup o}C. Samples were made with different impurity additions. These samples were exposed to liquid aluminium at 980 {sup o}C for 24 hours. All samples were penetrated, but the amount and appearance depended on the sintering aid used. Unlike the other samples, pure TiB{sub 2} was easily penetrated by metallic aluminium because of the open porosity and microcracks of this material. Grain boundary penetration was common among the samples. Differences in penetration behaviour between grain boundaries are probably due to differences in grain boundary energy. But no relation to segregants or boundary misorientation was found. The orientation of grain boundary planes and de-wetting of thin films upon cooling may explain the observed microstructure development. The samples sintered with Ti addition suffered extensive penetration despite their high densities. The grain boundaries of these samples became faceted and contained thicker films of metallic aluminium, presumably because of increased solubility due to iron segregations. All secondary phases present in the grain junctions after sintering, except from the B{sub 4}C phase, reacted with the penetrated aluminium. This did not cause swelling and cracking, as has been suggested by other authors. 101 refs., 48 figs., 7 tabs.

  20. Sintering of fly ash based composites with zeolite and bentonite addition for application in construction materials

    Directory of Open Access Journals (Sweden)

    Terzić Anja

    2017-01-01

    Full Text Available Due to pozzolanic characteristics, fly ash is commonly used as a cement replacement in construction composites. Addition of natural clays with sorption ability (i.e. zeolite and bentonite in to the fly ash based construction materials is of both scientific and industrial interest. Namely, due to the application of sorptive clay minerals, it is possible to immobilize toxic heavy metals from the composite structure. The thermal compatibility of fly ash and zeolite, as well as fly ash and bentonite, within the composite was observed during sintering procedure. The starting components were used in 1:1 ratio and they were applied without additional mechanical treatment. The used compaction pressure for the tablets was 2 t•cm-2. The sintering process was conducted at 1000ºC and 1200ºC for two hours in the air atmosphere. The mineralogical phase composition of the non-treated and sintered samples was analyzed using X-ray diffraction method. Scanning electron microscopy was applied in the analysis of the microstructure of starting and sintered samples. The thermal behavior was observed via DTA method. The influence of temperature on the properties of fly ash-zeolite and fly ash-bentonite composites was investigated. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. III 45008 and OI 172057

  1. Influence of Bi2O3 on sintering and crystallization of cordierite ceramics

    Directory of Open Access Journals (Sweden)

    Đorđević N.

    2005-01-01

    Full Text Available The influence of Bi2O3 on the process of cordierite ceramics preparation, 2MgO-2Al2O3-5SiO2 (MAS was investigated. The following binary systems were used for the presented research: MgO/Bi2O3 (sintered at 820ºC and 1100ºC, Al2O3/Bi2O3 and SiO2/Bi2O3 (sintered at 1100ºC. The composition of these systems consisted of 80% of oxide and 20% Bi2O3. The effects of sintering, composition and morphology were investigated by X-ray diffraction, scanning electron microscopy and EDS analysis. It has been found that Bi2O3, besides a liquid phase, forms intermediary unstable compounds with MgO and Al2O3. MAS ceramics were sintered with 10% Bi2O3 at 1000ºC, 1100ºC and 1200ºC. .

  2. Synthesis of Cu-CNTs nanocomposites via double pressing double sintering method

    Directory of Open Access Journals (Sweden)

    Marjan Darabi

    2018-01-01

    Full Text Available In this research, copper (Cu-carbon nanotubes (CNTs nanocomposites were synthesized with different weight percentages of CNTs by double pressing double sintering (DPDS method as well as conventional sintering method. A planetary ball mill was used to disperse CNTs in Cu matrix. The milled powders were first cold pressed to 450 MPa in a uniaxial stainless-steel die with cylindrical compacts (diameter: 12 mm and height: 5 mm. The effect of CNTs content and the DPDS method on the properties of the nanocomposites were investigated. The microstructure and phase analysis of Cu-CNTs nanocomposite samples were studied by FESEM and X-Ray Diffraction. The electrical conductivity of nanocomposites was measured and compared to both sintering methods. Mechanical properties of Cu-CNTs nanocomposites were characterized using bending strength and micro-hardness measurements. Enhancements of about 32% in bending strength, 31.6% in hardness and 19.5% in electrical conductivity of Cu-1 wt.% CNTs nanocomposite synthesized by DPDS method were observed as compared to Cu-1 wt.% CNTs nanocomposites fabricated under the similar condition by a conventional sintering process.

  3. DECAB: process development of a phase change absorption process

    NARCIS (Netherlands)

    Sanchez Fernandez, E.; Goetheer, E.L.V.

    2011-01-01

    This work describes the conceptual design of a novel separation process for CO2 removal from flue gas based on precipitating solvents. The process here described (DECAB) is an enhanced CO2 absorption based on the Le Chatelier's principle, which states that reaction equilibrium can be shifted by

  4. The effects of surface finish and grain size on the strength of sintered silicon carbide

    Science.gov (United States)

    You, Y. H.; Kim, Y. W.; Lee, J. G.; Kim, C. H.

    1985-01-01

    The effects of surface treatment and microstructure, especially abnormal grain growth, on the strength of sintered SiC were studied. The surfaces of sintered SiC were treated with 400, 800 and 1200 grit diamond wheels. Grain growth was induced by increasing the sintering times at 2050 C. The beta to alpha transformation occurred during the sintering of beta-phase starting materials and was often accompanied by abnormal grain growth. The overall strength distributions were established using Weibull statistics. The strength of the sintered SiC is limited by extrinsic surface flaws in normal-sintered specimens. The finer the surface finish and grain size, the higher the strength. But the strength of abnormal sintering specimens is limited by the abnormally grown large tabular grains. The Weibull modulus increases with decreasing grain size and decreasing grit size for grinding.

  5. Evaluation of Sintering Behavior of Premix Al-Zn-Mg-Cu Alloy Powder

    Directory of Open Access Journals (Sweden)

    Haris Rudianto

    2015-01-01

    Full Text Available Sintering of light aluminium alloys powder has been investigated as a way to substitute steels in automotive and aerospace industries. Premix Al-5.5Zn-2.5Mg-0.5Cu composite powder called Alumix 431D was analyzed in this research. Sintering was carried out under ultra high purity nitrogen gas and before reaching sintering temperature, green samples were delubricated at 400°C for 30 min. The powder possesses high sinterability by reaching 96% relative density at 580°C sintering temperature. Formation of liquid phase seems to support achieving high sintering density. Optimum mechanical properties also were obtained under those conditions. T6 heat treatment was done to improve the mechanical properties by formation of precipitation strengthening, and MgZn2 appears to be dominant strengthening precipitate. X-ray diffraction, optical microscopy, and SEM-EDS were used to characterize powder, and sintered and heat treated samples.

  6. Nanocrystalline NdFeB magnet prepared by mechanically activated disproportionation and desorption-recombination in-situ sintering

    International Nuclear Information System (INIS)

    Xiaoya, Liu; Yuping, Li; Lianxi, Hu

    2013-01-01

    The process of mechanically activated disproportionation and desorption-recombination in-situ sintering was proposed to synthesize highly densified nanocrystalline NdFeB magnet, and its validity was demonstrated by experimental investigation with the use of a Nd 16 Fe 76 B 8 (atomic ratio) alloy. Firstly, the as-cast alloy was disproportionated by mechanical milling in hydrogen, with the starting micron-sized Nd 2 Fe 14 B phase decomposed into an intimate mixture of nano-structured NdH 2.7 , Fe 2 B and α-Fe phases. The as-disproportionated alloy powders were compacted by cold pressing and then subjected to desorption-recombination in-situ sintering. The microstructure of both the as-disproportionated and the subsequently sintered samples was characterized by X-ray diffraction and electron transmission microscopy, respectively. The magnetic properties of the sintered samples were measured by using vibrating sample magnetometer. The results showed that, by vacuum sintering, not only was the powder compact consolidated, but also the as-disproportionated microstucture transformed into nanocrystalline Nd 2 Fe 14 B phase via the well-known desorption-recombination reaction, thus giving rise to nanocrystalline NdFeB magnet. In the present study, the optimal sintering parameters were found to be 780 °C×30 min. In this case, the coercivity, the remanence, and maximum energy product of the magnet sample achieved 0.8 T, 635.3 kA/m, and 106.3 kJ/m 3 , respectively. - Highlights: ► Nano-structured disproportionated NdFeB alloy powders by mechanical milling in hydrogen. ► Highly densified green magnet compact by cold pressing of as-disproportionated NdFeB alloy powders. ► Nanocrystalline NdFeB magnets by desorption-recombination in-situ sintering under vacuum. ► Magnetic properties significantly improved by relative density enhancement and nanocrystallization of Nd 2 Fe 14 B phase. ► The effects of sintering parameters on magnetic properties and the underlying

  7. Nanocrystalline NdFeB magnet prepared by mechanically activated disproportionation and desorption-recombination in-situ sintering

    Energy Technology Data Exchange (ETDEWEB)

    Xiaoya, Liu; Yuping, Li [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Lianxi, Hu, E-mail: hulx@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2013-03-15

    The process of mechanically activated disproportionation and desorption-recombination in-situ sintering was proposed to synthesize highly densified nanocrystalline NdFeB magnet, and its validity was demonstrated by experimental investigation with the use of a Nd{sub 16}Fe{sub 76}B{sub 8} (atomic ratio) alloy. Firstly, the as-cast alloy was disproportionated by mechanical milling in hydrogen, with the starting micron-sized Nd{sub 2}Fe{sub 14}B phase decomposed into an intimate mixture of nano-structured NdH{sub 2.7}, Fe{sub 2}B and {alpha}-Fe phases. The as-disproportionated alloy powders were compacted by cold pressing and then subjected to desorption-recombination in-situ sintering. The microstructure of both the as-disproportionated and the subsequently sintered samples was characterized by X-ray diffraction and electron transmission microscopy, respectively. The magnetic properties of the sintered samples were measured by using vibrating sample magnetometer. The results showed that, by vacuum sintering, not only was the powder compact consolidated, but also the as-disproportionated microstucture transformed into nanocrystalline Nd{sub 2}Fe{sub 14}B phase via the well-known desorption-recombination reaction, thus giving rise to nanocrystalline NdFeB magnet. In the present study, the optimal sintering parameters were found to be 780 Degree-Sign C Multiplication-Sign 30 min. In this case, the coercivity, the remanence, and maximum energy product of the magnet sample achieved 0.8 T, 635.3 kA/m, and 106.3 kJ/m{sup 3}, respectively. - Highlights: Black-Right-Pointing-Pointer Nano-structured disproportionated NdFeB alloy powders by mechanical milling in hydrogen. Black-Right-Pointing-Pointer Highly densified green magnet compact by cold pressing of as-disproportionated NdFeB alloy powders. Black-Right-Pointing-Pointer Nanocrystalline NdFeB magnets by desorption-recombination in-situ sintering under vacuum. Black-Right-Pointing-Pointer Magnetic properties significantly

  8. Sintering behaviour and mechanical properties of Cr3C2–NiCr ...

    Indian Academy of Sciences (India)

    the densification were remarkably promoted by the liquid phase formation at 1350. ◦. C. The densities as high as 97% of the theoretical density have been achieved by liquid phase sintering through the solution–reprecipitation and grain. Figure 1. XRD pattern of powder mixture and cermet samples sintered at four.

  9. DC resistivity of alumina and zirconia sintered with TiC

    Indian Academy of Sciences (India)

    Pure alumina and zirconia powders were sintered separately with increasing amount of TiC up to ∼ 65 vol.%, as a conducting second phase with an aim to prepare conducting structural ceramics which can be precisely machined by EDM technique. TiC did not help in sintering the parent phase but it decreased the d.c. ...

  10. DC resistivity of alumina and zirconia sintered with TiC

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Pure alumina and zirconia powders were sintered separately with increasing amount of TiC up to. ~ 65 vol.%, as a conducting second phase with an aim to prepare conducting structural ceramics which can be precisely machined by EDM technique. TiC did not help in sintering the parent phase but it decreased the ...

  11. Sintering uranium oxide using a preheating step

    International Nuclear Information System (INIS)

    Jensen, N.J.; Nivas, Y.; Packard, D.R.

    1977-01-01

    Compacted pellets of uranium oxide or uranium oxide with one or more additives are heated in a kiln in a process having a preheating step, a sintering step, a reduction step, and a cooling step in a controlled atmosphere. The process is practiced to give a range of temperature and atmosphere conditions for obtaining optimum fluoride removal from the compacted pellets along with optimum sintering in a single process. The preheating step of this process is conducted in a temperature range of about 600 0 to about 900 0 C and the pellets are held for at least twenty min, and preferably about 60 min, in an atmosphere having a composition in the range of about 10 to about 75 vol % hydrogen with the balance being carbon dioxide. The sintering step is conducted at a temperature in the range of about 900 0 C to 1500 0 C in the presence of an atmosphere having a composition in the range of about 0.5 to about 90 vol % hydrogen with the balance being carbon dioxide. The reduction step reduces the oxygen to metal ratio of the pellets to a range of about 1.98 to 2.10:1 and this is accomplished by gradually cooling the pellets for about 30 to about 120 min from the temperature of the sintering step to about 1100 0 C in an atmosphere of about 10 to 90 vol % hydrogen with the balance being carbon dioxide. Thereafter the pellets are cooled to about 100 0 C under a protective atmosphere, and in one preferred practice the same atmosphere used in the reduction step is used in the cooling step. The preheating, sintering and reduction steps may also be conducted with their respective atmospheres having an initial additional component of water vapor and the water vapor can comprise up to about 20 vol %

  12. Profile of yttrium segregation in BaCe{sub 0,9}Y{sub 0,1}O{sub 3-{delta}} as function of sintering temperature; Perfil da segregacao do itrio em BaCe{sub 0,9}Y{sub 0,1}O{sub 3-{delta}} em funcao da temperatura de sinterizacao

    Energy Technology Data Exchange (ETDEWEB)

    Hosken, C.M.; Souza, D.P.F. de, E-mail: camila.hosken@gmail.co [Universidade Federal de Sao Carlos (LAPCEC/UFSCar), SP (Brazil). Programa de Pos-Graduacao em Ciencia e Engenharia de Materiais. Lab. de Preparacao e Caracterizacao Eletrica em Ceramicas

    2010-07-01

    Researches on solid oxide fuel cells indicate barium cerate perovskite as a very attractive material for using as electrolyte due to its high protonic conductivity. The objective of this work is investigate the yttrium segregation during sintering of BaCe{sub 0,9}Y{sub 0,1}O{sub 3-{delta}} doped with Zn O as a sintering aid. The powders were prepared by citrate process. Powders were isostatic pressed into pellets and sintered in air at 1200, 1275, 1325 and 1400 deg C. The samples were characterized by scanning electron microscopy, X-ray diffraction and impedance spectroscopy. Secondary phase containing Yttrium and Cerium was detected as sintering temperature increased. Increase of the lattice parameter and activation energy for electrical conductivity were also detected on samples sintered at 1400 deg C. (author)

  13. Study of phase formation in metal injection moulding through real time neutron diffraction

    International Nuclear Information System (INIS)

    Whitfield, R E; Goossens, D J; Studer, A J

    2010-01-01

    The sintering of metal injection moulded stainless steel was investigated using in situ neutron diffraction with different sintering temperatures, from 1270 deg. C up to 1390 deg. C, with sintering profiles that were based on those used in industry. The production of an unwanted high temperature phase, δ-ferrite, was observed during sintering and is seen to be retained in the final product after sintering. Ferrite production during sintering acts to speed up the sintering process by forming in the grain pores but is unwanted in the final product as it is a soft and malleable phase. The ferrite that was formed at high temperature was observed to not completely disappear during cooling as a result of the coexistence of dual high temperature phases delta-ferrite and gamma-austenite during the high temperature soak. This suggests the segregation of the alloying elements between the two phase which changes the composition of the phase grains and allows the ferrite to exist during cooling, resulting in the unwanted phase in the final product.

  14. The Physics of Weldpool Formation: Phase Transition Process In ...

    African Journals Online (AJOL)

    ... phase transition took place but did not significantly alter the microstructure of the weldment. This study also supports the claims made by different investigators about the different heat treatments given to metals to determine a particular hardenability level. This heat treatment process is an indicator of phase change.

  15. Effect of sintering parameters using the central composite design method, electronic structure and physical properties of yttria-partially stabilized ZrO2 commercial ceramics

    Directory of Open Access Journals (Sweden)

    Mendes A.M.

    2017-02-01

    Full Text Available In this work, the effect of sintering parameters on electronic structure and physical properties of yttria-partially stabilized ZrO2 (YPSZ commercial ceramics has been studied using the central composite design (CCD method. The CCD method allows using empirical modelling with better fitting, by considering the interaction between both factors. Different temperature ranges and sintering times for processing of YPSZ ceramics have been used in order to evaluate the grain growth, hardness and volumetric shrinkage by the CCD method. X-ray diffraction patterns and Rietveld refinement data indicate that non-sintered YPSZ ceramics exhibits two phases related to tetragonal and monoclinic structures, while the sintered YPSZ ceramics exhibits a single phase related to a tetragonal structure. Moreover, the monoclinic structure presents zirconium (Zr atoms coordinated to seven oxygen (O atoms, while in the tetragonal structure Zr atoms are coordinated to eight O atoms. Field emission scanning electron microscopy images were employed to monitor the sintering and growth process. In addition, the response surfaces obtained from calculations presented the effect of thermal and kinetic variables on the physical properties such as average grain size, volumetric shrinkage and hardness of YPSZ ceramics.

  16. Three-dimensional simulation of viscous-flow agglomerate sintering.

    Science.gov (United States)

    Kirchhof, M J; Schmid, H -J; Peukert, W

    2009-08-01

    The viscous-flow sintering of different agglomerate particle morphologies is studied by three-dimensional computer simulations based on the concept of fractional volume of fluid. For a fundamental understanding of particle sintering characteristics, the neck growth kinetics in agglomerate chains and in doublets consisting of differently sized primary particles is investigated. Results show that different sintering contacts in agglomerates even during the first stages are not completely independent from each other, even though differences are small. The neck growth kinetics of differently sized primary particles is determined by the smaller one up to a size difference by a factor of approximately 2, whereas for larger size differences, the kinetics becomes faster. In particular, the agglomerate sintering kinetics is investigated for particle chains of different lengths and for different particle morphologies each having ten primary particles and nine initial sintering contacts. For agglomerate chains, the kinetics approximately can be normalized by using the radius of the fully coalesced sphere. In general, different agglomerate morphologies show equal kinetics during the first sintering stages, whereas during advanced stages, compact morphologies show significantly faster sintering progress than more open morphologies. Hence, the overall kinetics cannot be described by simply using constant morphology correction factors such as fractal dimension or mean coordination number which are used in common sintering models. However, for the first stages of viscous-flow agglomerate sintering, which are the most important for many particle processes, a sintering equation is presented. Although we use agglomerates consisting of spherical primary particles, our methodology can be applied to other aggregate geometries as well.

  17. Verification of the Skorohod-Olevsky Viscous Sintering (SOVS) Model

    Energy Technology Data Exchange (ETDEWEB)

    Lester, Brian T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-11-16

    Sintering refers to a manufacturing process through which mechanically pressed bodies of ceramic (and sometimes metal) powders are heated to drive densification thereby removing the inherit porosity of green bodies. As the body densifies through the sintering process, the ensuing material flow leads to macroscopic deformations of the specimen and as such the final configuration differs form the initial. Therefore, as with any manufacturing step, there is substantial interest in understanding and being able to model the sintering process to predict deformation and residual stress. Efforts in this regard have been pursued for face seals, gear wheels, and consumer products like wash-basins. To understand the sintering process, a variety of modeling approaches have been pursued at different scales.

  18. Friction Stir Processing of Cast Superalloys, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I effort examines the feasibility of an innovative fabrication technology incorporating sand casting and friction stir processing (FSP) for producing...

  19. Torrefaction Processing for Human Solid Waste Management, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA SBIR Phase I project addressed the technical feasibility of an innovative torrefaction (mild pyrolysis) processing system that can be used to sterilize...

  20. Glass reactive sintering as an alternative route for the synthesis of NZP glass-ceramics

    International Nuclear Information System (INIS)

    Chenu, Sebastien; Lebullenger, Ronan; Benard-Rocherulle, Patricia; Calvez, Guillaume; Guillou, Olivier; Rocherulle, Jean; Kidari, Abdessamad; Pomeroy, Mickael J.; Hampshire, Stuart

    2012-01-01

    The NZP-type crystal structure allows a large number of ionic substitutions which leads to ceramics with adjustable thermal expansion properties or interesting ionic conductivity. However, NZP is difficult to fabricate into monoliths because it requires both high temperatures and long sintering times. An alternative low temperature route to obtain a tungsten (IV) and tin (IV) containing NZP crystalline phase uses a process of glass reactive sintering of a phosphate glass. Using a microwave oven, a glass with the appropriate composition in the NaPO 3 -Sn(II)O-W(VI)O 3 ternary diagram is prepared by a conventional melting and casting technique. After crushing, the glass powder is pressed at room temperature. The green pellet is cured during various times at temperatures where glass reactive sintering takes place. From XRD and DTA experiments, we have shown that different parameters influence the achievement of NZP phase. Consequently, specific conditions, such as (i) initial glass composition, (ii) equimolar quantities of SnO and WO 3 , (iii) glass particle size lower than 100 μ m, and (iv) curing conducted under air, are required to obtain a glass-ceramic with a single crystalline phase with the NZP-type crystal structure. (authors)

  1. O2 plasma sintering study of TiO2 photoelectrodes in dye solar cells

    Science.gov (United States)

    Moraes, R. S.; Gonçalves, A. D.; Stegemann, C.; da Silva Sobrinho, A. S.; Miyakawa, W.; Massi, M.

    2017-08-01

    The development of more efficient photoelectrochemical solar cells has been, over the years, the subject of many scientific researches. In this paper a methodology was established to carry out the sintering process of nanoporous TiO2 layer by using plasma, which was compared with sintered layers made by the conventional sintering process in a furnace. The TiO2 commercial paste was spread by doctor-blading technique and subjected to different sintering processes. Porous layer samples were subjected to structural and morphological analyses. Then photoelectrodes dye-loading was measured by optical spectrophotometry. The quality of the layers under plasma sintering process in terms of weight loss and removal of organic compounds was evaluated by thermogravimetric analysis, mass spectrometry and FT-IR. The results showed that the plasma sintering process favors the adsorption of dye on the layer surface due to the creation of active states caused by O2 reactive plasma. Furthermore the O2 plasma process provides enough energy for removing organic compounds arising from the TiO2 paste and for providing nanoparticle sintering. Solar cells assembled with the plasma-sintered layers had a power conversion efficiency 20.1% higher than the obtained in solar cells sintered in a conventional furnace, proving the efficiency of the plasma sintering process.

  2. A multi-phase flow model for electrospinning process

    Directory of Open Access Journals (Sweden)

    Xu Lan

    2013-01-01

    Full Text Available An electrospinning process is a multi-phase and multi-physicical process with flow, electric and magnetic fields coupled together. This paper deals with establishing a multi-phase model for numerical study and explains how to prepare for nanofibers and nanoporous materials. The model provides with a powerful tool to controlling over electrospinning parameters such as voltage, flow rate, and others.

  3. Digital image processing for two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Young; Lim, Jae Yun [Cheju National University, Cheju (Korea, Republic of); No, Hee Cheon [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1992-07-01

    A photographic method to measure the key parameters of two-phase flow is realized by using a digital image processing technique. The 8 bit gray level and 256 x 256 pixels are used to generates the image data which is treated to get the parameters of two-phase flow. It is observed that the key parameters could be identified by treating data obtained by the digital image processing technique.

  4. Sintering of magnesia: effect of additives

    Indian Academy of Sciences (India)

    % was studied on the sinter- ing and microstructural developments of the chemically pure magnesia using the pressureless sintering technique between 1500 and 1600◦C. Sintering was evaluated by per cent densification and microstructural ...

  5. Sintering behavior of LZSA glass-ceramics

    Directory of Open Access Journals (Sweden)

    Oscar Rubem Klegues Montedo

    2009-06-01

    Full Text Available The LZSA glass-ceramic system (Li2O-ZrO2-SiO2-Al2O 3 shows interesting properties, such as good chemical resistance, low thermal expansion, high abrasion resistance, and a low dielectric constant. However, in order to obtain a high performance material for specific applications, the sintering behavior must be better understood so that the porosity may be reduced and other properties improved. In this context, a sintering investigation for a specific LZSA glass-ceramic system composition was carried out. A 18.8Li2O-8.3ZrO2-64.2SiO2-8.7Al 2O3 glass was prepared by melting the solids, quenching the melt in water, and grinding the resulting solid in order to obtain a powder (3.68 μm average particle diameter. Subsequently, the glass powder was characterized (chemical analysis and determination of thermal properties and the sintering behavior was investigated using optical non-contact dilatometry measurements. The results showed that the crystallization process strongly reduced the sintering in the temperature interval from 785 to 940 °C, and a maximum thermal shrinkage of 15.4% was obtained with operating conditions of 1020 °C and 180 minutes.

  6. Laser Sintering Technology and Balling Phenomenon.

    Science.gov (United States)

    Oyar, Perihan

    2018-02-01

    The aim of this review was to evaluate the balling phenomenon which occurs typically in Selective Laser Sintering (SLS). The balling phenomenon is a typical SLS defect, and observed in laser sintered powder, significantly reduces the quality of SLS, and hinders the further development of SLS Technology. Electronic database searches were performed using Google Scholar. The keywords "laser sintering, selective laser sintering, direct metal laser melting, and balling phenomenon" were searched in title/abstract of publications, limited to December 31, 2016. The inclusion criteria were SLS, balling phenomenon, some alloys (such as Cr-Co, iron, stainless steel, and Cu-based alloys) mechanical properties, microstructure and bond strength between metal-ceramic crown, laboratory studies, full text, and in English language. A total of 100 articles were found the initial search and yielded a total of 50 studies, 30 of which did not fulfill the inclusion criteria and were therefore excluded. In addition, 20 studies were found by screening the reference list of all included publications. Finally, 40 studies were selected for this review. The method in question is regulated by powder material characteristics and the conditions of laser processing. The procedure of formation, affecting factors, and the mechanism of the balling effect are very complex.

  7. Sintering and electrical properties of strontium-doped lanthanum manganite

    Energy Technology Data Exchange (ETDEWEB)

    Tarrago, Diego Pereira; Sousa, Vania Caldas de [Universidade Federal do Rio Grande do Sul (LABIOMAT/PPGEM/UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia de Minas, Metalurgica e de Materiais. Lab. de Biomateriais], Email: dptarrago@gmail.com; Moreno Buriel, Berta; Chinarro Martini, Eva; Jurado Egea, Jose Ramon [Consejo Superior de Investigaciones Cientificas (ICV/CSIC), Madrid (Spain). Inst. de Ceramica y Vidrio; Malfatti, Celia de Fraga [Universidade Federal do Rio Grande do Sul (LAPEC/PPGEM/UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia de Minas, Metalurgica e de Materiais. Lab. de Pesquisa em Corrosao

    2010-07-01

    Lanthanum strontium manganites (LSM) are potential materials for cathode applications in solid oxide fuel cells (SOFC) due to their good catalytic activity, chemical stability and compatibility with electrolyte materials in high temperatures. The sinterability of single phase La{sub 1-x}Sr{sub x}Mn{sub O3} (x=0.18) perovskite powders and the electrical properties of the resulting samples are analyzed in this study. Using a heating microscope, the powders were pressed and sintered at different pressures and temperatures, resulting in an open porosity of 33.36% when compacted at 125 MPa and sintered at 1200 degree C. Top and cross-section s canning electron microscopy (SEM) micrographs revealed interconnected pores in the sintered body and, hence, a suitable microstructure for the application. The activation energy for conductance was 0.04 eV and the tested LSM bulk started to exhibit adequate electrical properties at about 500 degree C. (author)

  8. Thermodynamics and mechanisms of sintering

    International Nuclear Information System (INIS)

    Pask, J.A.

    1978-10-01

    A phenomenological overview and exploration of the thermodynamic and geometric factors play a role in the process of densification of model compact systems consisting of crystalline spheres of uniform size in regular and irregular packing that form grain boundaries at every contact point. A further assumption is the presence of isotropic surface and grain boundary energies. Although such systems are unrealistic in comparison with normal powder compacts, their potential sintering behavior can be analyzed and provided with a limiting set of behavior conditions which can be looked upon as one boundary condition. This approach is logically realistic since it is easier to understand and provide a basis for understanding the more complex real powder systems

  9. Enhanced Sintering of Boron Carbide-Silicon Composites by Silicon

    Science.gov (United States)

    Zeng, Xiaojun; Liu, Weiliang

    2016-11-01

    Boron carbide (B4C)-silicon (Si) composites have been prepared by aqueous tape casting, laminating, and spark plasma sintering (SPS). The influences of silicon (Si) content on the phases, microstructure, sintering properties, and mechanical properties of the obtained B4C-Si composites are studied. The results indicate that the addition of Si powder can act as a sintering aid and contribute to the sintering densification. The addition of Si powder can also act as a second phase and contribute to the toughening for composites. The relative density of B4C-Si composites samples with adding 10 wt.% Si powder prepared by SPS at 1600 °C and 50 MPa for 8 min is up to 98.3%. The bending strength, fracture toughness, and Vickers hardness of the sintered samples are 518.5 MPa, 5.87 MPa m1/2, and 38.9 GPa, respectively. The testing temperature-dependent high-temperature bending strength and fracture toughness can reach a maximum value at 1350 °C. The B4C-Si composites prepared at 1600, 1650, and 1700 °C have good high-temperature mechanical properties. This paper provides a facile low-temperature sintering route for B4C ceramics with improved properties.

  10. Development of a Master Sintering Curve for Al-Mg Alloy

    Directory of Open Access Journals (Sweden)

    Yong-Shin Lee

    2016-01-01

    Full Text Available A new master sintering curve (MSC is proposed for Al-Mg alloy in order to effectively design the pressure-assisted sintering process. In this work, hot pressing experiments of Al-Mg alloy powders are performed. The changes of relative density during hot pressing are measured for the various heating rates of 5°C/min, 10°C/min, and 20°C/min at the fixed pressure of 50 MPa. A work of sintering, designated as Θ, is introduced and defined as Θ(t,T=∫0t1/Texp-Q/RTdt. A work of sintering, Θ, could be interpreted as a measure for the amount of sintering work. The MSC in this work defines the relation between the apparent density and a work of sintering, Θ. Since the measurement of an apparent activation energy, Q, is very difficult, the correct value of Q is obtained numerically using a mean residual square method. Then, the master sintering curves for sintering of Al-Mg alloy powders are proposed for the sintering temperatures of 400°C and 500°C through scaling procedures. It is expected that the master sintering curves proposed in this work could help an engineer to design pressure-assisted sintering process for Al-Mg alloy.

  11. Preparation and mechanism of the sintered bricks produced from Yellow River silt and red mud

    Energy Technology Data Exchange (ETDEWEB)

    He, Hongtao [Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Yue, Qinyan, E-mail: qyyue@sdu.edu.cn [Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Su, Yuan; Gao, Baoyu; Gao, Yue; Wang, Jingzhou; Yu, Hui [Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer The best condition was red mud content of 40% and sintering at 1050 Degree-Sign C for 2 h. Black-Right-Pointing-Pointer Bricks' weight loss was caused by the removal of absorbed water and crystal water. Black-Right-Pointing-Pointer Bricks' sintering shrinkage depended on the sodium and iron compounds of red mud. Black-Right-Pointing-Pointer Sintering can strengthen bricks and decrease leaching concentration of toxic metal. - Abstract: The preparation, characteristics and mechanisms of sintered bricks manufactured by Yellow River silt and red mud were studied. The sintering shrinkage, weight loss on ignition, water absorption and compressive strength were tested to determine the optimum preparation condition. Sintering mechanisms were discussed through linear regression analysis. Crystalline components of raw materials and bricks were analyzed by X-ray diffraction. Leaching toxicity of raw materials and bricks were measured according to sulphuric acid and nitric acid method. Radiation safety of the sintered bricks was characterized by calculating internal exposure index and external exposure index. The results showed that at the chosen best parameters (red mud content of 40%, sintering temperature of 1050 Degree-Sign C and sintering time of 2 h), the best characteristics of sintered bricks could be obtained. The weight loss on ignition of sintered bricks was principally caused by the removal of absorbed water and crystal water. The sintering shrinkage of sintered bricks mainly depended on sodium compounds and iron compounds of red mud. The sintering process made some components of raw materials transform into other crystals having better thermostability. Besides, the leaching toxicity and radioactivity index of sintered bricks produced under the optimum condition were all below standards.

  12. Reactive sintering of TiAl–Ti5Si3 in situ composites

    Energy Technology Data Exchange (ETDEWEB)

    Alman, David E.

    2005-06-01

    TiAl with between 0 and 20 vol%Ti5Si3 was produced by reactive sintering (700 °C for 15 min in vacuum) of cold pressed compacts of elemental Ti, Al and Si powder. The results show that adding Si to Ti and Al reduces the swelling associated with reactive sintering of TiAl, as composites containing more than 5 vol%Ti5Si3 densified during reactive sintering. However, composites containing more than 10 vol%Ti5Si3 did not retain their shape and the TiAl+20 vol%Ti5Si3 composite completely melted during the sintering process. A thermodynamic analysis indicated that the simultaneous formation of TiAl and Ti5Si3 increases the adiabatic flame temperature during the reaction between the powders. In fact, the analysis predicted that the maximum temperature of the reaction associated with the formation TiAl+20 vol%Ti5Si3 should exceed the melting point of TiAl, and this was observed experimentally. Differential thermal analysis (DTA) revealed that an Al–Si eutectic reaction occurred in mixtures of Ti, Al and Si powders prior to the formation of the TiAl and Ti5Si3 phases. There was no such pre-reaction formation of a eutectic liquid in Ti and Al powder mixtures. The formation of the pre-reaction liquid and the increase in adiabatic flame temperature resulted in the melting that occurred and the enhanced densification (minimization of swelling) during reactive sintering of the in situ composites.

  13. Production and processing of spinel semi-porous sintered blocks to CAD-CAM with lanthanum-glass infiltration for dental applications

    International Nuclear Information System (INIS)

    Lourenco, A.A.C.; Ogasawara, T.; Costa Neto, C.A.; Santos, F.V.C.

    2009-01-01

    The objective of this research was to obtain direct synthesis and sintering spinel by using powder mixing method for CAD-CAM ceramics manufacturing. Powders of alumina and magnesia (71.8 wt% Al2O3 and 28.2 wt% MgO) were mixed with 5 wt% of PVA and PEG binders and homogenized using ball mill (12h), then deagglomerated and submitted to uniaxial pressing into discs and plates (54 to 221.96 MPa), followed by isostatic pressing (186.03 MPa) and sintering at 1500 deg C(GrI) , 1600 C(GrII) and 1700 deg C(GrIII). Characterizations: XRD, density and four-point flexural strength and (for GrIII) elasticity modulus and Vickers microhardness. Lanthanum-glass was infiltrated into samples from all three Groups. Conclusions: (1) Plenty success for the pediatrician method; (2) Maximum density achieved for GrIII, best mechanical strength for GrII (compared to that of commercial product ), this last one being the most indicated for In-Ceram manufacturing via CAD-CAM route; (3) The flexural strength of GrI might be improved a lot after Lanthanum-glass infiltration. (author)

  14. The sintering of dioxide pellets (UO2) in an oxidizing atmosphere (CO2)

    International Nuclear Information System (INIS)

    Santos, G.R.T.; Riella, H.G.

    1993-06-01

    In this study the process of sintering of U O 2 pellets in oxidative atmosphere has been evaluated. Temperature and time of study have been varied in order to determine the influence of these parameters on final density and microstructure of the material. The NIKUSI process, allows to work in a temperature range below to those that have been employed in the conventional process, lowering in up to 50% the sintering cycle because it is possible to decrease the time of sintering. (author)

  15. Numerical simulation of electric field assisted sintering

    Science.gov (United States)

    McWilliams, Brandon A.

    A fully coupled thermal-electric-sintering finite element model was developed and implemented to explore electric field assisted sintering techniques (FAST). FAST is a single step processing operation for producing bulk materials from powders, in which the powder is heated by the application of electric current under pressure. This process differs from other powder processing techniques such as hot isostatic pressing (HIP) and traditional press and sinter operations where the powder or compact is heated externally, in that the powder is heated directly as a result of internal Joule heating (for conductive powders) and/or by direct conduction from the die and punches. The overall result is much more efficient heating which allows heating rates of >1000°C/min to be achieved which is desirable for sintering bulk nanocrystalline and other novel high performance materials. Previous modeling efforts on FAST have only considered the thermal-electric aspect of the problem and have neglected densification. In addition to the introduction of a sintering model, a detailed thermal-electric study of process parameters was carried out in order to identify key system variables and quantify their effect on the overall system response and subsequent thermal history of a consolidated sample. This analysis was compared to empirical data from a parallel experimental study and shown to satisfactorily predict the observed trends. This model was then integrated with a phenomenologically based sintering model to capture the densification of the sample. This fully coupled model was used to predict densification kinetics under FAST like conditions and examine the evolution of material properties as the sample transitions from a loose powder to a fully dense compact and the resulting effect on the electrical and thermal fields within the compact. This model was also used to explore the effect of non-uniform thermal, electrical, stress and density fields on the final geometry and local

  16. Effect of sintering temperature on physical, structural and optical properties of wollastonite based glass-ceramic derived from waste soda lime silica glasses

    Directory of Open Access Journals (Sweden)

    Karima Amer Almasri

    Full Text Available The impact of different sintering temperatures on physical, optical and structural properties of wollastonite (CaSiO3 based glass-ceramics were investigated for its potential application as a building material. Wollastonite based glass-ceramics was provided by a conventional melt-quenching method and followed by a controlled sintering process. In this work, soda lime silica glass waste was utilized as a source of silicon. The chemical composition and physical properties of glass were characterized by using Energy Dispersive X-ray Fluorescence (EDXRF and Archimedes principle. The Archimedes measurement results show that the density increased with the increasing of sintering temperature. The generation of CaSiO3, morphology, size and crystal phase with increasing the heat-treatment temperature were examined by field emission scanning electron microscopy (FESEM, Fourier transforms infrared reflection spectroscopy (FTIR, and X-ray diffraction (XRD. The average calculated crystal size gained from XRD was found to be in the range 60 nm. The FESEM results show a uniform distribution of particles and the morphology of the wollastonite crystal is in relict shapes. The appearance of CaO, SiO2, and Ca-O-Si bands disclosed from FTIR which showed the formation of CaSiO3 crystal phase. In addition to the calculation of the energy band gap which found to be increased with increasing sintering temperature. Keywords: Soda lime silica glass, Wollastonite, Sintering, Structural properties, Optical properties

  17. Preparation and piezoelectric properties of (K0.5Na0.5)NbO3 lead-free piezoelectric ceramics with pressure-less sintering

    International Nuclear Information System (INIS)

    Du Hongliang; Li Zhimin; Tang Fusheng; Qu Shaobo; Pei Zhibin; Zhou Wancheng

    2006-01-01

    Lead-free piezoelectric ceramics (K 0.5 Na 0.5 )NbO 3 (abbreviated as KNN) with the relative density of 97.6% have been synthesized by press-less sintering owing to the careful control of processing conditions. The phase structure of KNN ceramics with different sintering temperature and heating rate was analyzed. Results show that the pure perovskite phase with orthorhombic symmetry is in all ceramics specimens. The effect of heating rate and sintering temperature on microstructure and piezoelectric properties of KNN ceramics was investigated. The densification behavior and piezoelectric properties of KNN ceramics were enhanced by improving heating rate and sintering temperature. Pure KNN ceramics sintered at 1120 deg. C with heating rate of 5 deg. C/min showed optimized densification and piezoelectric properties (ρ = 4.4 g/cm 3 , d 33 = 120 pC/N -1 , k p = 0.40 and T c = 400 deg. C). The results show that KNN is a promising candidate for lead-free piezoelectric ceramics

  18. Low density, variation in sintered density and high nitrogen in uranium dioxide

    International Nuclear Information System (INIS)

    Balakrishna, Palanki; Murty, B.N.; Anuradha, M.; Nageshwara Rao, P.; Jayaraj, R.N.; Ganguly, C.

    2000-01-01

    Low sintered density and density variation in sintered UO 2 were found to have been caused by non uniformity in the granule feed characteristics to the compacting press. The nitrogen impurity content of sintered UO 2 was found to be sintering furnace related and associated with low sintered density pellets. The problems of low density, variation in sintered density and high nitrogen could be solved by the replacement of the prevailing four punch precompaction by a single punch process; by the introduction of a vibro-sieve for the separation of fine particles from the press feed granules; by innovation in the powder feed shoe design for simultaneous and uniform dispensing of powder in all the die holes; by increasing the final compaction pressure and by modifying the gas flows and preheat temperature in the sintering furnace. (author)

  19. Development of Expanded Thermoplastic Polyurethane Bead Foams and Their Sintering Mechanism

    Science.gov (United States)

    Hossieny, Nemat

    Polymer bead foaming technology represents a breakthrough in the production of low density plastic foamed components that have a complex geometrical structure and has helped to expand the market for plastic foams by broadening their applications. In this research, the unique microstructure of thermoplastic polyurethane (TPU) consisting of phase-separated hard segment (HS) domains dispersed in the soft segment (SS) matrix has been utilized to develop expanded TPU (E-TPU) bead foam with microcellular morphologies and also to create inter-bead sintering into three dimensional products using steam-chest molding machine. The phase-separation and crystallization behavior of the HS chains in the TPU microstructure was systematically studied in the presence of dissolved gases and also by changing the microstructure of TPU by melt-processing and addition of nano-/micro-sized additives. It was observed that the presence of gas improved the phase separation (i.e. crystallization) of HSs and increased the overall crystallinity of the TPU. It was also shown that by utilizing the HS crystalline domains, the overall foaming behavior of TPU (i.e. cell nucleation and expansion ratio) can be significantly improved. Moreover, the HS crystalline domains can be effective for both sintering of the beads as well strengthening the individual beads to improve the property of the moulded part. It was also observed that unlike other polymer bead foaming technologies, the E-TPU bead foaming sintering does not require formation of double melting-peak. The original broad melting peak existing in the TPU microstructure due to the wide size distribution of HS crystallites can be effectively utilized for the purpose of sintering as well as maintenance of the overall dimensional stability of the moulded part.

  20. Commercial development of a new process of uraniferous ore sintering by pelletizing before dump leaching (wet process) application to a very clayey ore of Nord-Aquitaine

    International Nuclear Information System (INIS)

    Videau, G.; Roche, M.

    1990-01-01

    Much of the French uranium ore contains clay of sedimentary origin or derived from the alteration of rocks of the granite type. During a dump leaching operation by a wet process, these clays reduce the percolation rates and sometimes the percolation rates are so low that the very essence of the dump leaching operation can be called in question. This problem arises particularly for the treatment of the ore of Nord-Aquitaine. The results of tests, carried out at the SEPA in Bessines, have shown that after pelletizing clayey ores with sodium silicate in the presence of sulphuric acid for the polymerization of the silicate, the percolation rates were much increased. This new method was successfully applied, from a laboratory column to a pilot dump of 500 tonnes for the very clayey ore of Nord-Aquitaine. This ore of low grade (approx. 1000 ppm of U) seems to be difficult to upgrade by any other method of treatment in the present economic context [fr

  1. SAR processing with stepped chirps and phased array antennas.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter

    2006-09-01

    Wideband radar signals are problematic for phased array antennas. Wideband radar signals can be generated from series or groups of narrow-band signals centered at different frequencies. An equivalent wideband LFM chirp can be assembled from lesser-bandwidth chirp segments in the data processing. The chirp segments can be transmitted as separate narrow-band pulses, each with their own steering phase operation. This overcomes the problematic dilemma of steering wideband chirps with phase shifters alone, that is, without true time-delay elements.

  2. Foaming Glass Using High Pressure Sintering

    DEFF Research Database (Denmark)

    Østergaard, Martin Bonderup; Petersen, Rasmus Rosenlund; König, Jakob

    Foam glass is a high added value product which contributes to waste recycling and energy efficiency through heat insulation. The foaming can be initiated by a chemical or physical process. Chemical foaming with aid of a foaming agent is the dominant industrial process. Physical foaming has two...... variations. One way is by saturation of glass melts with gas. The other involves sintering of powdered glass under a high gas pressure resulting in glass pellets with high pressure bubbles entrapped. Reheating the glass pellets above the glass transition temperature under ambient pressure allows the bubbles...... to expand. After heat-treatment foam glass can be obtained with porosities of 80–90 %. In this study we conduct physical foaming of cathode ray tube (CRT) panel glass by sintering under high pressure (5-25 MPa) using helium, nitrogen, or argon at 640 °C (~108 Pa s). Reheating a sample in a heating...

  3. The Effect of Barium Non-Stoichiometry on the Phase Structure, Sintering and Electrical Conductivity of BaZr0.7Pr0.1Y0.2O3

    KAUST Repository

    Mohamed Shibly, Kaamil

    2015-05-05

    This thesis attempts to test the effects of barium non stoichiometry and varying calcination temperatures on the microstructure and electrical conductivity of BaxZr0.7Pr0.1Y0.2O3- δ (x = 0.9, 1.0, 1.1). BZPY powders were fabricated using a combustion method, with the quantity of barium carefully controlled to create powders with a 10% molar excess or deficiency of barium. Then, portions of the precursor were calcined at 900 ºC, 1000 ºC, 1100 ºC, 1200 ºC and 1300 ºC for 5 h. The resulting calcined powders were pressed into pellets and sintered at 1600 ºC for 10 h, in a powder bath of the same chemical composition. In all, three chemically different powders were synthesized, and each composition was subjected to five different calcination temperatures, resulting in fifteen different samples to characterise. The precursor from the combustion method was characterised by using an STA to perform both TG and DSC simultaneously. The chemical composition of the precursor and calcined samples was analysed using ICP-OES. XRD was used to characterise the phases of both the powders and the sintered pellets. Lattice parameter indexing using Topaz and Scherrer\\'s equation were used to extract the lattice parameters and crystallite sizes respectively. The microstructure of the pellets was examined using an SEM, the grain size measured using a linear intercept method and pore size using ImageJ. Finally, EIS was used to measure the conductivity of the pellets in dry and wet Argon atmospheres, with silver electrodes. Unfortunately, neither changes to barium stoichiometry nor partial calcination could improve the performance of BZPY. Partially calcined samples did not give rise to dense pellets, barium deficient samples showed inferior conductivity and barium excess samples, while showing higher conductivity than the barium deficient pellets at high temperature, were fragile and had to be handled carefully. Ultimately, the attempt to improve the performance of BZPY did not

  4. Models of current sintering

    Science.gov (United States)

    Angst, Sebastian; Engelke, Lukas; Winterer, Markus; Wolf, Dietrich E.

    2017-06-01

    Densification of (semi-)conducting particle agglomerates with the help of an electrical current is much faster and more energy efficient than traditional thermal sintering or powder compression. Therefore, this method becomes more and more common among experimentalists, engineers, and in industry. The mechanisms at work at the particle scale are highly complex because of the mutual feedback between current and pore structure. This paper extends previous modelling approaches in order to study mixtures of particles of two different materials. In addition to the delivery of Joule heat throughout the sample, especially in current bottlenecks, thermoelectric effects must be taken into account. They lead to segregation or spatial correlations in the particle arrangement. Various model extensions are possible and will be discussed.

  5. Study and fabrication of solid oxide fuel cells through tape casting and co-sintering

    International Nuclear Information System (INIS)

    Grosjean, A.

    2004-11-01

    This work is dedicated to the devising of a low-cost fabrication process of solid oxide fuel cells (SOFC). Technical requirements impose the shaping method: stripe casting as well as the materials used: Yttria-stabilized zirconia (YSZ), nickel and lanthanum manganite doped with strontium (LSM). In order to comply with environmental requirements the developed process uses an aqueous barbotine solvent. We get electrodes and the electrolyte separately, the use of an absorbent drying process has enabled us to join 3 layers to form an elementary cell with great interfacial homogeneity. The resistance of the cell to sintering has been improved through the symmetrization of the deformations of the cell. In order to interpret the low electrical properties of the cell and its quick damaging, transmission microscopy studies have been performed. These studies have shown 2 facts. First, 2 isolating phases appear at the cathode (at the LSM/YSZ interface) because of a too high sintering temperature and secondly, a quick clustering of nickel grains appears during cell operation that leads to a local loss of the nickel grid percolation. This problem has been solved by increasing the size of nickel oxide grains from 0.5 μm to 3 μm) to stabilize the microstructure. The issue of the reactivity at the LSM/YSZ interfaces was tackled in 2 different ways, we have tried to lower the sintering temperature by using a zirconia nano-powder first and then by replacing zirconia in the electrolyte by gadolinium-doped ceria. The use of zirconia nano-powder has failed to decrease sintering temperature while preserving the electrolyte density and the use of ceria has triggered instabilities that have not yet been solved. Despite all these drawbacks, this process allows the fabrication of an excellent anode/electrolyte interface. (A.C.)

  6. Development of a dielectric ceramic based on diatomite-titania. Part one: powder preparation and sintering study

    Directory of Open Access Journals (Sweden)

    Tavares Elcio Correia de Souza

    1997-01-01

    Full Text Available This work presents powder preparation and sintering experiments of a mixture diatomite-titania. X-ray diffraction, DTA, TGA as well as chemical and microstructural analyses were made. The sintering process was investigated as a function of sintering temperature and time, mass variation, linear shrinkage and activation energy. The results show that sintering of diatomite-titania could be described by a viscous flow mechanism.

  7. Production of pure sintered alumina

    International Nuclear Information System (INIS)

    Rocha, J.C. da; Huebner, H.W.

    1982-01-01

    With the aim of optimizing the sintering parameters, the strength of a large number of alumina samples was determined which were produced under widely varying sintering conditions and with different amounts of MgO content. The strength as a function of sintering time or temperature was found to go through a maximum. With increasing time, this maximum is shifted to lower temperatures, and with decreasing temperature to longer times. Data pairs of sintering times and temperatures which yeld the strength maximum were determined. The value of the strength at the maximum remains unchanged. The strength is high (= 400 MN/m 2 , at a grain size of 3 um and a porosity of 2 per cent) and comparable to foreign aluminas produced for commercial purposes, or even higher. The increase in the sintering time from 1 h to 16 h permits a reduction of the sintering temperature from 1600 to 1450 0 C without losing strength. The practical importance of this fact for a production of sintered alumina on a large scale is emphasized. (Author) [pt

  8. Ash chemistry and sintering, verification of the mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Hupa, M.; Skrifvars, B.J. [Aabo Akademi, Turku (Finland)

    1996-12-01

    In this project four sintering mechanisms have been studied, i.e., partial melting with a viscous liquid, partial melting with a non-viscous liquid, chemical reaction sintering and solid state sintering. The work has aimed at improving the understanding of ash sintering mechanisms and quantifying their role in combustion and gasification. The work has been oriented in particular on the understanding of biomass ash behavior. The work has not directly focused on any specific technical application. However, results can also be applied on other fuels such as brown coal, petroleum coke, black liquor and different types of wastes (PDF, RDF, MSW). In one part of study the melting behavior was calculated for ten biomass ashes and compared with lab measurements of sintering tendencies. The comparison showed that the T{sub 15} temperatures, i.e. those temperatures at which the ashes contained 15 % molten phase, correlated fairly well with the temperature at which the sintering measurements detected sintering. This suggests that partial melting can be predicted fairly accurate for some ashes already with the today existing thermodynamic calculation routines. In some cases, however the melting calculations did not correlate with the detected sintering temperatures. In a second part detailed measurements on ash behavior was conducted both in a semi full scale CFB and a lab scale FBC. Ashes and deposits were collected and analyzed in several different ways. These analyses show that the ash chemistry shifts radically when the fuel is shifted. Fuels with silicate based ashes behaved totally different than those with an oxide or salt based ash. The chemistry was also affected by fuel blending. The ultimate goal has been to be able to predict the ash thermal behavior during biomass thermal conversion, using the fuel and ash elemental analyses and a few operational key parameters as the only input data. This goal has not yet today been achieved. (author)

  9. Characterization and sintering of niobium-ATR alumina

    International Nuclear Information System (INIS)

    Sibuya, N.H.; Iwasaki, H.; Suzuki, C.K.; Pinatti, D.G.

    1987-01-01

    In the niobium aluminothermy a slag is produced, composed mostly of alumina and other compounds such as niobium oxide and silica. The phase composition of this ATR alumina was characterized by X-ray powder diffractometry, and afterwards this alumina was subjected to leaching processes. It was noticed that the original content of 70% α-alumina in slag rose to 95% after the calcination. ATR alumina (leached and calcined, and without any treatment) was used to make pressed bodies which were fired in air at 1200 to 1400 0 C for 1 to 10,5 hours; and in vacuum at 1550 to 1800$0C for 2 hours. Characterization was done by density measurements, X-ray diffractometry and ultrasonic analysis. Ultrasonic analysis of some vacuum fired bodies showed londitudinal velocities close to the value found in literature. Correlation of several techniques measurements disclosed the niobium oxide interference in sintering. (Author) [pt

  10. Characterization and sintering of ATR aluminia from niobium

    International Nuclear Information System (INIS)

    Shibuya, N.H.

    1987-01-01

    The characterization of resultante slag from Aluminothermic Reduction (ATR) process to obtain metallic niobium is presented. The slag was characterized for concentration and phases of aluminia by X-ray diffractometry. The results show that 70% of the slag is constituted by α aluminia. The lixiviation and calcination of the slag increased the α aluminia concentration to 95%, the slag was used for producing samples to be burning in three furnaces: electrical resistance furnace in the air, and two furnaces in the vacuum. The burned samples were characterized by microscopy, ultrasonic analysis, density measurements and X-ray diffractometry. The sintering in the vacuum is possible because the samples burned in vacuum presented major density. The formation of NbO 2 and mullite was observed, by X-ray diffractometry. The data from optical microscopy, density measurements and X-ray diffractometry show high porosity. (M.C.K.) [pt

  11. Sintering of titanium alloy by powder metallurgy

    Energy Technology Data Exchange (ETDEWEB)

    Cosme, C.R.M. [Universidade de Brasilia (UnB), DF (Brazil); Henriques, V.A.R.; Cairo, C.A.A.; Taddei, E.B. [Centro Tecnico Aeroespacial (CTA), Sao Jose dos Campos, SP (Brazil)

    2009-07-01

    Full text: Titanium alloys are suitable for biomaterial applications, considering its biocompatibility and low elastic modulus compared to steel. Bone resorption in this case can be reduced by load sharing between the implant and natural bone.Starting powders were obtained by hydride method, carried out under positive hydrogen pressure at 500 deg C for titanium and 800 deg C for Nb, Zr and Ta powders. After reaching the nominal temperature, the material was held for 3h, with subsequent cooling to room temperature and milling of the friable hydride. Samples were produce by mixing of initial metallic powders followed by and cold isostatic pressing. Subsequent densification by sintering was performed at temperature range between 900 and 1700 deg C. Characterization was carried out with scanning electron microscopy, X-ray diffractometry and microhardness measurements. Microstructural examinations revealed higher amount of &⧣946;-phase for higher sintering temperature and dissolution of Ta and NB particles. In vitro tests revealed low cytotoxicity of sintered samples. (author)

  12. The start up as a phase of architectural design process.

    Science.gov (United States)

    Castro, Iara Sousa; Lima, Francisco de Paula Antunes; Duarte, Francisco José de Castro Moura

    2012-01-01

    Alterations made in the architectural design can be considered as a continuous process, from its conception to the moment a built environment is already in use. This article focuses on the "moving phase", which is the initial moment of the environment occupation and the start-up of services. It aims to show that the continuity of ergonomics interventions during the "moving phase" or start up may reveal the built environment inadequacies; clearly showing needs not met by the design and allowing making instant decisions to solve non-foreseen problems. The results have revealed some lessons experienced by users during a critical stage not usually included in the design process.

  13. Mechanism behind phase transitions in airplane boarding process

    Science.gov (United States)

    Qiang, Shengjie; Jia, Bin; Huang, Qingxia; Gao, Ziyou

    2016-02-01

    A simple airplane boarding model is built much like an asymmetric exclusion process (ASEP). The dynamics of the model is constrained by local interference between passengers and global seat assignments for individuals. We perform extensive Monte Carlo simulations by using a parallel update rule to determine quantities like boarding time and sequence correlation. Our results clarify the scaling behavior in boarding process and identify a critical value of arrival time interval for boarding time threshold. Three different phases (steady, intermediate and linear) with respect to the boarding time are distinguished and the mechanism behind phase transition is further discussed.

  14. Effect of boric acid sintering aid on densification of barium ferrite

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Boric acid has been added in 0⋅1–0⋅6% range for studying the densification characteristics of solid state sintered barium hexaferrite. Sintering studies have been carried out at three different temperatures. Physical properties like density and porosity have been studied for all compositions. The phase identification.

  15. Effect of boric acid sintering aid on densification of barium ferrite

    Indian Academy of Sciences (India)

    Sintering studies have been carried out at three different temperatures. Physical properties like density and porosity have been studied for all compositions. The phase identification and microstructural investigation on the fractured surface have been carried out to understand the effect of sintering aid on the densification ...

  16. Effect of boric acid sintering aid on densification of barium ferrite

    Indian Academy of Sciences (India)

    Unknown

    Physical properties like density and porosity have been studied for all compositions. The phase identification and microstructural investigation on the fractured surface have been carried out to understand the effect of sintering aid on the densification characteristics. Keywords. Barium ferrite; sintering aid; densification. 1.

  17. Zone refining of sintered, microwave-derived YBCO superconductors

    International Nuclear Information System (INIS)

    Warrier, K.G.K.; Varma, H.K.; Mani, T.V.; Damodaran, A.D.; Balachandran, U.

    1993-07-01

    Post-sintering treatments such as zone melting under thermal gradient has been conducted on sintered YBCO tape cast films. YBCO precursor powder was derived through decomposition of a mixture of nitrates of cations in a microwave oven for ∼4 min. The resulting powder was characterized and made into thin sheets by tape casting and then sintered at 945 C for 5 h. The sintered tapes were subjected to repeated zone refining operations at relatively high speeds of ∼30 mm/h. A microstructure having uniformly oriented grains in the a-b plane throughout the bulk of the sample was obtained by three repeated zone refining operations. Details of precursor preparation, microwave processing and its advantages, zone refining conditions, and microstructural features are presented in this paper

  18. Quartz crystal reinforced quartz glass by spark plasma sintering

    International Nuclear Information System (INIS)

    Torikai, D.; Barazani, B.; Ono, E.; Santos, M.F.M.; Suzuki, C.K.

    2011-01-01

    The Spark Plasma Sintering presents fast processing time when compared to conventional sintering techniques. This allows to control the grain growth during sintering as well as the diffusion rate of a multi-material compounds, and make possible obtainment of functionally graded materials and nanostructured compounds. Powders of high purity silica glass and crystalline silica were sintered in a SPS equipment at temperatures around 1350° C, i.e., above the softening temperature of silica glass and below the melting temperature of quartz crystal. As a result, glass ceramics with pure silica glass matrix reinforced with crystalline alpha-quartz grains were fabricated at almost any desired range of composition, as well as controlled size of the crystalline reinforcement. X-ray diffraction and density measurements showed the possibility to manufacture a well controlled density and crystallinity glass-ceramic materials. (author)

  19. Modeling constrained sintering of bi-layered tubular structures

    DEFF Research Database (Denmark)

    Tadesse Molla, Tesfaye; Kothanda Ramachandran, Dhavanesan; Ni, De Wei

    2015-01-01

    Constrained sintering of tubular bi-layered structures is being used in the development of various technologies. Densification mismatch between the layers making the tubular bi-layer can generate stresses, which may create processing defects. An analytical model is presented to describe...... the densification and stress developments during sintering of tubular bi-layered samples. The correspondence between linear elastic and linear viscous theories is used as a basis for derivation of the model. The developed model is first verified by finite element simulation for sintering of tubular bi-layer system....... Furthermore, the model is validated using densification results from sintering of bi-layered tubular ceramic oxygen membrane based on porous MgO and Ce0.9Gd0.1O1.95-d layers. Model input parameters, such as the shrinkage kinetics and viscous parameters are obtained experimentally using optical dilatometry...

  20. Powder densification maps in Selective Laser Sintering

    International Nuclear Information System (INIS)

    Bourell, D.; Wohlert, M.; Harlan, N.; Beaman, J.; Das, S.

    2002-01-01

    Selective Laser Sintering (SLS) is a manufacturing process in which a part is produced without the need for part-specific tooling. It competes effectively with other manufacturing processes when part geometry is complex and the production run is not large. Traditionally, this was limited to prototype production, although tooling applications are now appearing. This paper describes several applications of powder densification maps to advance solutions in direct SLS of metallic and ceramic powders. Time-dependent plasticity issues arise in pre-processing of powder to make it suitable for SLS and in post-processing of SLS parts to obtain desired density. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  1. Characterization of Sintered and Sintered/Plasma-Nitrided Fe-1.5% Mo Alloy by SEM, X-Ray Diffraction and Electrochemical Techniques

    Directory of Open Access Journals (Sweden)

    Alves Neto José de Pinho

    2002-01-01

    Full Text Available Electrochemical experiments together with SEM and X-Ray techniques were carried out in order to evaluate the corrosion resistance, to analyze the surface condition and to characterize the nitride layer of the sintered and sintered/plasma-nitrided Fe-1.5% Mo alloy in Mg(NO32 0.5mol.L-1 solution (pH 7.0. The sintered/plasma-nitrided samples presented a higher corrosion resistance, indicating that the surface treatment improved the electrochemical properties of the sintered material. In addition, the nitride layer formed at 500 °C showed better corrosion resistance that the layers formed at higher temperatures. This difference can be ascribed to the nitrogen content in the nitride layer, which at 500°C is higher due to the formation of a phase rich in nitrogen (epsilon phase while at higher temperatures a phase poor in nitrogen (gamma' phase is formed.

  2. Processing And Properties Of MAX Phases – Based Materials Using SHS Technique

    Directory of Open Access Journals (Sweden)

    Chlubny L.

    2015-06-01

    Full Text Available Authors present results of works on the interesting new group of advanced ceramics called MAX phases – Ti-based ternary carbides and nitrides. They have an original layered structure involved highly anisotropic properties laying between ceramics and metals, with high elastic modulus, low hardness, very high fracture toughness and high electrical and heat conductivity. Using Self-Propagating High-Temperature Synthesis (SHS in the combustion regime it is possible to prepare MAX phases-rich powders that can be used as the precursors for preparation of dense MAX polycrystals by presureless sintering or hot-pressing. Different novel Ti-based phases with layered structures, namely: Ti3AlC2 and Ti2AlC have been synthesized in a combustion regime. The possibility of controlling of combustion phenomena for obtaining near single-phase products is discussed in details as well as some of properties of the materials tested as structure and functional ceramics.

  3. Properties of Bulk Sintered Silver As a Function of Porosity

    Energy Technology Data Exchange (ETDEWEB)

    Wereszczak, Andrew A [ORNL; Vuono, Daniel J [ORNL; Wang, Hsin [ORNL; Ferber, Mattison K [ORNL; Liang, Zhenxian [ORNL

    2012-06-01

    This report summarizes a study where various properties of bulk-sintered silver were investigated over a range of porosity. This work was conducted within the National Transportation Research Center's Power Device Packaging project that is part of the DOE Vehicle Technologies Advanced Power Electronics and Electric Motors Program. Sintered silver, as an interconnect material in power electronics, inherently has porosity in its produced structure because of the way it is made. Therefore, interest existed in this study to examine if that porosity affected electrical properties, thermal properties, and mechanical properties because any dependencies could affect the intended function (e.g., thermal transfer, mechanical stress relief, etc.) or reliability of that interconnect layer and alter how its performance is modeled. Disks of bulk-sintered silver were fabricated using different starting silver pastes and different sintering conditions to promote different amounts of porosity. Test coupons were harvested out of the disks to measure electrical resistivity and electrical conductivity, thermal conductivity, coefficient of thermal expansion, elastic modulus, Poisson's ratio, and yield stress. The authors fully recognize that the microstructure of processed bulk silver coupons may indeed not be identical to the microstructure produced in thin (20-50 microns) layers of sintered silver. However, measuring these same properties with such a thin actual structure is very difficult, requires very specialized specimen preparation and unique testing instrumentation, is expensive, and has experimental shortfalls of its own, so the authors concluded that the herein measured responses using processed bulk sintered silver coupons would be sufficient to determine acceptable values of those properties. Almost all the investigated properties of bulk sintered silver changed with porosity content within a range of 3-38% porosity. Electrical resistivity, electrical conductivity

  4. Micromagnetic simulation of the orientation dependence of grain boundary properties on the coercivity of Nd-Fe-B sintered magnets

    Directory of Open Access Journals (Sweden)

    Jun Fujisaki

    2016-05-01

    Full Text Available This paper is focused on the micromagnetic simulation study about the orientation dependence of grain boundary properties on the coercivity of polycrystalline Nd-Fe-B sintered magnets. A multigrain object with a large number of meshes is introduced to analyze such anisotropic grain boundaries and the simulation is performed by combining the finite element method and the parallel computing. When the grain boundary phase parallel to the c-plane is less ferromagnetic the process of the magnetization reversal changes and the coercivity of the multigrain object increases. The simulations with various magnetic properties of the grain boundary phases are executed to search for the way to enhance the coercivity of polycrystalline Nd-Fe-B sintered magnets.

  5. Impact of impurity content on the sintering resistance and phase stability of dysprosia- and yttria-stabilized zirconia thermal barrier coatings

    Czech Academy of Sciences Publication Activity Database

    Curry, N.; Janikowski, W.; Pala, Zdeněk; Vilémová, Monika; Markocsan, N.

    2014-01-01

    Roč. 23, 1-2 (2014), s. 160-169 ISSN 1059-9630. [International Thermal Spray Conference (ITSC2013). Busan, 13.05.2013-15.05.2013] Institutional support: RVO:61389021 Keywords : atmospheric plasma spray ( APS ) * thermal and phase stability of coatings * thermal barrier coatings (TBCs) * thermal conductivity * zirconia Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 1.344, year: 2014 http://link.springer.com/article/10.1007%2Fs11666-013-0014-9/fulltext.html

  6. Fast phase processing in off-axis holography by CUDA including parallel phase unwrapping.

    Science.gov (United States)

    Backoach, Ohad; Kariv, Saar; Girshovitz, Pinhas; Shaked, Natan T

    2016-02-22

    We present parallel processing implementation for rapid extraction of the quantitative phase maps from off-axis holograms on the Graphics Processing Unit (GPU) of the computer using computer unified device architecture (CUDA) programming. To obtain efficient implementation, we parallelized both the wrapped phase map extraction algorithm and the two-dimensional phase unwrapping algorithm. In contrast to previous implementations, we utilized unweighted least squares phase unwrapping algorithm that better suits parallelism. We compared the proposed algorithm run times on the CPU and the GPU of the computer for various sizes of off-axis holograms. Using the GPU implementation, we extracted the unwrapped phase maps from the recorded off-axis holograms at 35 frames per second (fps) for 4 mega pixel holograms, and at 129 fps for 1 mega pixel holograms, which presents the fastest processing framerates obtained so far, to the best of our knowledge. We then used common-path off-axis interferometric imaging to quantitatively capture the phase maps of a micro-organism with rapid flagellum movements.

  7. Heterojunction p-Cu2O/ZnO-n solar cell fabricated by spark plasma sintering

    Directory of Open Access Journals (Sweden)

    Christophe Tenailleau

    2017-09-01

    Full Text Available Abstract Cuprous oxide and zinc oxide nanoparticles were prepared at room temperature by inorganic polycondensation. X-ray diffraction (XRD analyses show that the oxide phases formed are pure and well crystallized. The spark plasma sintering (SPS technique was successfully used to prepare dense nanoceramics with superimposed layers of Cu2O and ZnO nanopowders. Sintering conditions were optimized to densify the ceramics without phase transformation or diffusion. These ceramics were also characterized by XRD and scanning electron microscopy (SEM, as well as X-ray computed tomography (XCT. SEM and XCT showed that nanograins are preserved after SPS throughout both oxide materials, while a smaller layer (~20 µm of pure oxide phase with larger grains is formed in between Cu2O and ZnO during the sintering process. The SPS technique results in high material density, with the absence of porosity and cracks, homogenous distribution, and a good phase separation. This is the first time that such as-prepared dense oxide-based heterojunction exhibits a photovoltaic effect under illumination opening a new route for preparing solar cells.

  8. Effect of temperature on porosity of iron ore sinter with biochar derived from EFB

    Science.gov (United States)

    Purwanto, H.; Rozhan, A. N.; Zakiyuddin, A.; Mohamad, A. S.

    2018-01-01

    In this research, the replacement of fossil fuel energy (coke) with oil palm empty fruit bunch as a potential energy in sintering of iron ore was investigated. Carbon derived biomass has been produced by using oil palm empty fruit bunch by heat treatment process. In the present investigation, sintering process was carried out by heating the mixed iron ore and biochar at various temperatures. The apparent density and porosity for iron sinter show a significant increase and gradual decrement as the temperature increase, respectively. The porosity of iron sinter shows a gradual decrement from 950 °C to 1050 °C but up to 1150 °C it shows a significant decrement about 44%. Inferring to the micrograph, the agglomeration and assimilation of sinter at high temperature is better compared with low sintering temperature.

  9. Method of sintering ceramic materials

    Science.gov (United States)

    Holcombe, Cressie E.; Dykes, Norman L.

    1992-01-01

    A method for sintering ceramic materials is described. A ceramic article is coated with layers of protective coatings such as boron nitride, graphite foil, and niobium. The coated ceramic article is embedded in a container containing refractory metal oxide granules and placed within a microwave oven. The ceramic article is heated by microwave energy to a temperature sufficient to sinter the ceramic article to form a densified ceramic article having a density equal to or greater than 90% of theoretical density.

  10. Phase Evolution During the Carbothermic Reduction Process of Ilmenite Concentrate

    Science.gov (United States)

    Gou, Hai-Peng; Zhang, Guo-Hua; Chou, Kuo-Chih

    2015-02-01

    The phase evolution during the carbothermic reduction process of Panzhihua ilmenite concentrate was investigated under argon atmosphere. The Panzhihua ilmenite concentrate briquette with graphite powder was reduced at 1473 K, 1573 K, 1673 K, and 1773 K (1200 °C, 1300 °C, 1400 °C, and 1500 °C) respectively, with the molar ratios of C to FeTiO3 being 4:1 and 5:1. The phase transformation of the briquette reduced at different temperatures was investigated by X-ray diffraction and scanning electron microscope. During the carbothermic reduction process from 1473 K to 1773 K (1200 °C to 1500 °C), it was found that main phases were Fe, Ti3O5, Ti2O3, and TiC x O y . The lowest temperature for the generation of TiC x O y was 1573 K (1300 °C) for both kinds of briquettes with different C contents. The rate controlling step for the carbothermic reduction above 1573 K (1300 °C) obeyed the diffusion model. The reduction degree of the ilmenite was increased by increasing the temperature. With the increase of reaction temperature and reaction time, TiC x O y phase would be reduced to TiC phase.

  11. Sintering and Electrical Characterization of La and Nb Co‐doped SrTiO3 Electrode Materials for Solid Oxide Cell Applications

    DEFF Research Database (Denmark)

    Sudireddy, Bhaskar Reddy; Agersted, Karsten

    2014-01-01

    Single‐phase lanthanum and niobium co‐doped strontium titanate (Sr1–3x/2LaxTi0.9Nb0.1O3; x = 0–0.02) ceramics were prepared. Dilatometry in reducing atmosphere showed an increase in the sintering rate and sintered density with an increase in La amount. Microscopy of fractured surfaces of sintered...

  12. Phase diagram of the ABC model with nonconserving processes

    International Nuclear Information System (INIS)

    Lederhendler, A; Cohen, O; Mukamel, D

    2010-01-01

    The three species ABC model of driven particles on a ring is generalized to include vacancies and particle-nonconserving processes. The model exhibits phase separation at high densities. For equal average densities of the three species, it is shown that although the dynamics is local, it obeys detailed balance with respect to a Hamiltonian with long-range interactions, yielding a nonadditive free energy. The phase diagrams of the conserving and nonconserving models, corresponding to the canonical and grand-canonical ensembles, respectively, are calculated in the thermodynamic limit. Both models exhibit a transition from a homogeneous to a phase-separated state, although the phase diagrams are shown to differ from each other. This conforms with the expected inequivalence of ensembles in equilibrium systems with long-range interactions. These results are based on a stability analysis of the homogeneous phase and exact solution of the continuum equations of the models. They are supported by Monte Carlo simulations. This study may serve as a useful starting point for analyzing the phase diagram for unequal densities, where detailed balance is not satisfied and thus a Hamiltonian cannot be defined

  13. Removing Background Noise with Phased Array Signal Processing

    Science.gov (United States)

    Podboy, Gary; Stephens, David

    2015-01-01

    Preliminary results are presented from a test conducted to determine how well microphone phased array processing software could pull an acoustic signal out of background noise. The array consisted of 24 microphones in an aerodynamic fairing designed to be mounted in-flow. The processing was conducted using Functional Beam forming software developed by Optinav combined with cross spectral matrix subtraction. The test was conducted in the free-jet of the Nozzle Acoustic Test Rig at NASA GRC. The background noise was produced by the interaction of the free-jet flow with the solid surfaces in the flow. The acoustic signals were produced by acoustic drivers. The results show that the phased array processing was able to pull the acoustic signal out of the background noise provided the signal was no more than 20 dB below the background noise level measured using a conventional single microphone equipped with an aerodynamic forebody.

  14. Formation of porous wollastonite-based ceramics after sintering with yeast as the pore-forming agent

    Directory of Open Access Journals (Sweden)

    Obradović Nina

    2017-01-01

    Full Text Available In this paper, synthesis of porous wollastonite-based ceramics was reported. Ceramic precursor, methylhydrocyclosiloxane, together with micro-sized CaCO3, was used as starting material. After 20 min of ultrasound treatment, and calcination at 250 oC for 30 min, yeast as a pore-forming agent was added to the as-obtained powders. Sintering regime was set up based on the results obtained by differential thermal analysis. Prepared mixture was pressed into pallets and sintered at 900 oC for 1 h. After the sintering regime, porous wollastonite-based ceramics was obtained. The phase composition of the sintered samples as well as microstructures was analyzed by X-ray diffraction method and SEM. In a batch test, the influence of pH, contact time and initial ion concentration on adsorption efficiency of As+5, Cr+6, and phosphate ions on synthesized wollastonite-based ceramics were studied. Time-dependent adsorption was best described by pseudo-second-order kinetic model and Weber-Morris model that predicted intra-particle diffusion as a rate-controlling step of overall process. High adsorption capacities 39.97, 21.87, and 15.29 mgg-1 were obtained for As+5, Cr+6, and phosphate ions, respectively.

  15. Phase Stability Diagrams for High Temperature Corrosion Processes

    Directory of Open Access Journals (Sweden)

    J. J. Ramos-Hernandez

    2013-01-01

    Full Text Available Corrosion phenomena of metals by fused salts depend on chemical composition of the melt and environmental conditions of the system. Detail knowledge of chemistry and thermodynamic of aggressive species formed during the corrosion process is essential for a better understanding of materials degradation exposed to high temperature. When there is a lack of kinetic data for the corrosion processes, an alternative to understand the thermodynamic behavior of chemical species is to utilize phase stability diagrams. Nowadays, there are several specialized software programs to calculate phase stability diagrams. These programs are based on thermodynamics of chemical reactions. Using a thermodynamic data base allows the calculation of different types of phase diagrams. However, sometimes it is difficult to have access to such data bases. In this work, an alternative way to calculate phase stability diagrams is presented. The work is exemplified in the Na-V-S-O and Al-Na-V-S-O systems. This system was chosen because vanadium salts is one of the more aggressive system for all engineering alloys, especially in those processes where fossil fuels are used.

  16. Application of optical processing to adaptive phased array radar

    Science.gov (United States)

    Carroll, C. W.; Vijaya Kumar, B. V. K.

    1988-01-01

    The results of the investigation of the applicability of optical processing to Adaptive Phased Array Radar (APAR) data processing will be summarized. Subjects that are covered include: (1) new iterative Fourier transform based technique to determine the array antenna weight vector such that the resulting antenna pattern has nulls at desired locations; (2) obtaining the solution of the optimal Wiener weight vector by both iterative and direct methods on two laboratory Optical Linear Algebra Processing (OLAP) systems; and (3) an investigation of the effects of errors present in OLAP systems on the solution vectors.

  17. Processing of a novel nano-structured ferritic steel via spark plasma sintering and investigation of its mechanical and microstructural characteristics

    International Nuclear Information System (INIS)

    Pasebani, Somayeh; Charit, Indrajit; Wu, Yaqiao; Burns, Jatuporn; Allahar, Kerry N.; Butt, Darryl P.; Cole, James I.

    2015-01-01

    Nano-structured ferritic steels (NFSs) with 12-14 wt% Cr have attracted widespread interest for potential high temperature structural and fuel cladding applications in advanced nuclear reactors. They have excellent high temperature mechanical properties and high resistance to radiation-induced damage. The properties of the NFSs depend on the composition that mainly consists of Cr, Ti, W or Mo, and Y 2 O 3 as alloying constituents. In this study, a novel nano-structured ferritic steel (Fe-14Cr-1Ti-0.3Mo-0.5La 2 O 3 , wt%) termed as 14LMT was developed via high energy ball milling and spark plasma sintering. Vickers microhardness values were measured. Microstructural studies of the developed NFSs were performed by EBSD and TEM, which revealed a bimodal grain size distribution. A significant number density of nano-precipitates was observed in the microstructure. The diameter of the precipitates varied between 2-70 nm and the morphology from the spherical to faceted shape. The Cr-La-Ti-O-enriched nano-clusters were identified by APT studies. (authors)

  18. Bending Behavior of Porous Sintered Stainless Steel Fiber Honeycombs

    Science.gov (United States)

    Zou, Shuiping; Wan, Zhenping; Lu, Longsheng; Tang, Yong

    2017-02-01

    A novel porous honeycomb-type substrate has been developed using solid-state sintering stainless steel fibers. The porous sintered stainless steel fiber honeycombs (PSSSFH) are composed of a skeleton of sintered stainless steel fibers, three-dimensionally interconnected porous structures and multiple parallel microchannels. The bending behavior of the PSSSFH is investigated using three-point bending tests. Four stages, including an elastic stage, a yielding stage with a plateau, a hardening stage and a failure stage, are observed during the bending process of the PSSSFH. In the initial yielding stage, the bending forces increase slowly with displacement increasing, and then a yielding plateau follows, which is unique compared with other porous materials. Moreover, the structure parameters of the PSSSFH are varied to investigate the influence on the bending strength. It is determined that the multiple parallel microchannels can enhance the bending strength of porous stainless steel fiber sintered substrates (PSSFSS) and do not influence the variation trend of bending strength of PSSFSS with porosity increasing. The open ratio is conducive to increasing the bending strength, and the microchannel diameters ranging from 0.5 mm to 1.5 mm have little influence on the bending strength. In addition, both the increasing of sintering temperature and sintering time can strengthen the PSSSFH.

  19. Fabrication of Sintered Annular Fuel Pellet

    International Nuclear Information System (INIS)

    Rhee, Young Woo; Kim, Dong Joo; Kim, Jong Hun; Yang, Jae Ho; Kim, Keon Sik; Kang, Ki Won; Song, Kun Woo

    2010-01-01

    A dual cooled annular fuel has been seriously considered as a favorable option for uprating the power density of a Pressurized Water Reactor fuel assembly. An annular fuel has a geometrically inherent advantage such as an increased heat transfer area and a thin pellet thickness. It results in a lot of advantages from the point of a fuel safety and its economy. In order to actualize the dual cooled fuel, an essential element is the annular pellet with precisely controlled diametric tolerance. However, the unique shape of annular fuel pellet causes challenging difficulties to satisfy a diametric tolerance specification. Because of an inhomogeneous green density distribution along the compact height, an hour-glassing usually occurred in a sintered cylindrical PWR fuel pellet fabricated by a conventional doubleacting press. Thus, a sintered pellet usually undergoes a centerless grinding process in order to secure a pellet's specifications. In the case of an annular pellet fabrication using a conventional double-acting press, the same hour-glass shape would probably occur. The outer diameter tolerance of an annular pellet can be controlled easily similar to that of a conventional cylindrical PWR pellet through a centerless grinding. However, it appears not to be simple in the case of an inner surface grinding. It would be the best way to satisfy the specifications for the inner diameter in an as-fabricated pellet. In the present study, we are trying to find a way to minimize the diametric tolerance of the sintered annular pellet without inner surface grinding. This paper deals with a new approach that we have tried to reduce the diametric tolerance of the sintered annular pellet

  20. Effect of sintering temperature and heating mode on consolidation of ...

    Indian Academy of Sciences (India)

    sintering of various Al-based composites. Microwave heat- ing of metallic powders (Al–Cu–Fe) to single phase was first reported by Vauchera et al (2008). To the best of our know- ... insulation also consisted of graphite coated SiC rods. Tem- perature ... Figure 3 compares thermal profile for 7775 aluminum alloy compacts ...

  1. Microstructure and properties of sintered mullite developed from ...

    Indian Academy of Sciences (India)

    purpose are clay minerals such as kaolinite, pyrophyllite, si- llimanite group ... racterized in terms of bulk density, apparent porosity, phase .... density at 1650. ◦. C. Gradual removal of open pores with an increase in sintering temperature is the reason for higher den- sification. Formation of higher amount of low density glass.

  2. Study on the sintered characteristics and properties of nanostructured WC–15 wt% (Fe–Ni–Co) and WC–15 wt% Co hard metal alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Shih-Hsien, E-mail: changsh@ntut.edu.tw [Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 10608, Taiwan (China); Chang, Ming-Hung [Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 10608, Taiwan (China); Huang, Kuo-Tsung [Department of Auto-Mechanics, National Kangshan Agricultural Industrial Senior High School, Kaohsiung 82049, Taiwan (China)

    2015-11-15

    In this work, four different vacuum sintering temperatures (1250 °C, 1300 °C, 1350 °C and 1400 °C) were studied to determine the optimal process parameters of nano WC–15 wt% (Fe–Ni–Co) and WC–15 wt% Co sintered hard metal alloys. Experimental results showed that the optimal sintering temperatures for nano WC–(Fe–Ni–Co) and WC–Co alloys were 1300 °C and 1350 °C for 1 h, respectively. The sintered nano WC–(Fe–Ni–Co) and WC–Co hard metal alloys showed a good contiguity of 0.44 and 0.42; hardness was enhanced to HRA 90.83 and 90.92; the transverse rupture strength (TRS) increased to 2567.97 and 2860.08 MPa; and K{sub IC} was 16.23 and 12.33 MPa√m, respectively. Although the nano WC–(Fe–Ni–Co) alloys possessed a slightly lower TRS value, they exhibited superior fracture toughness (K{sub IC}) and hardness similar to that of the nano WC–Co material. Significantly, nano WC–(Fe–Ni–Co) alloys could be sintered at a lower temperature and still retained their excellent mechanical properties. - Graphical abstract: The following figure shows the fracture morphology of the WC–(Fe–Ni–Co) and WC–Co specimens by means of high-magnification SEM after the K{sub IC} tests. Fig. a shows that numerous binder phases (Fe–Ni–Co) existed in the crack areas, which resisted the penetration and extension of the cracks. Due to the bridging effect of the binder phase, the stress concentration of the crack tip will be resolved through plastic deformation; thus, the cracks did not continue to extend. Once the deformation reaches a critical value, the crack propagation occurs. Meanwhile, the binder phase can link together the two crack faces through the bridging process. Although parts of the cracked areas also showed the bridging effect in the WC–Co specimens, as shown by the arrows (Fig. b), the crack propagation path was not obviously affected. This result corresponds to the tortuosity phenomenon. Consequently, the bridging process

  3. Laboratory sol-gel preparation of fine fraction of sintered uranium dioxide spheres

    International Nuclear Information System (INIS)

    Landspersky, H.; Tympl, M.

    1984-01-01

    The results are summed up of the laboratory investigation of preparing the fine fraction of sintered uranium dioxide particles from uranyl gel using the method of the mixed reactor and the method of the dual-liquid nozzle, processed by leaching, drying, calcination and sintering. None of the two methods provides monodispersion particles under the given conditions but better control of the throughflow of the liquid media may improve results. Leaching of the fine fraction is very quick and the leaching of most components takes no longer than 5 minutes. In view of the fact that leaching of all components does not proceed at the same rate it is recommended that leaching time be doubled, or that leaching take place in two stages. Azeotropic distillation with chlorinated hydrocarbons is a favourable procedure for obtaining quality material; it is, however, necessary to prevent dried particles from comino. into contact with the water phase condensing on the walls of the distillation vessel and running down onto the surface of the distilling mixture. Calcination at a temperature of 500 degC in a thin layer and sintering at temperatures between 1350 and 1550 degC at an adequate rate of inflow of gaseous media and adequate rate of outflow of reaction wastes results in the production of high quality material whose density exceeds 97 to 98% theoretical density. (author)

  4. Fracture toughness of yttria-stabilized zirconia sintered in conventional and microwave ovens.

    Science.gov (United States)

    Marinis, Aristotelis; Aquilino, Steven A; Lund, Peter S; Gratton, David G; Stanford, Clark M; Diaz-Arnold, Ana M; Qian, Fang

    2013-03-01

    The fabrication of zirconium dioxide (ZrO2) dental prosthetic substructures requires an extended sintering process (8 to 10 hours) in a conventional oven. Microwave sintering is a shorter process (2 hours) than conventional sintering. The purpose of this study was to compare the fracture toughness of 3 mol % Y2O3-stabilized ZrO2 sintered in a conventional or microwave oven. Partially sintered ZrO2 specimens from 3 manufacturers, KaVo, Lava 3M, and Crystal HS were milled (KaVo Everest engine) and randomly divided into 2 groups: conventional sintering and microwave sintering (n=16 per group). The specimens were sintered according to the manufacturers' recommendations and stored in artificial saliva for 10 days. Fracture toughness was determined by using a 4-point bend test, and load to fracture was recorded. Mean fracture toughness for each material was calculated. A 2-way ANOVA followed by the Tukey HDS post hoc test was used to assess the significance of sintering and material effects on fracture toughness, including an interaction between the 2 factors (α=.05). The 2-way ANOVA suggested a significant main effect for ZrO2 manufacturer (P.05). The main effect of the sintering process (Conventional [5.30 MPa·m(1/2) ±1.00] or Microwave [5.36 MPa·m(1/2) ±0.92]) was not significant (P=.76), and there was no interaction between sintering and ZrO2 manufacturer (P=.91). Based on the results of this study, no statistically significant difference was observed in the fracture toughness of ZrO2 sintered in microwave or conventional ovens. Copyright © 2013 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  5. Analysis of Laser Sintering Technology

    Directory of Open Access Journals (Sweden)

    Vladislav Markovič

    2014-02-01

    Full Text Available The new, high-tech development and customization is one ofthe most important factors in promoting the country‘s economicgrowth indicators. The economic downturn in the industryrequires technology and equipment using a minimumof raw materials and providing maximum performance. Thisstatement perfectly describes the innovative, forward-looking,cost-effective laser powder sintering (SLS technology. Here,thanks to the latest engineering achievements, product surfacesare modified and improved, they gain new characteristics. SLSis viable in automobile, engineering, construction, aerospace,aircraft, printing, medical and other areas.In order to create a product which meets the standards andtechnical documentation it is necessary to use and ensure highquality of raw materials, high-end equipment, qualified personnel,the working environment with proper climatic conditions, ergonomics,etc. But all of these, the quality of the product becomesthe decisive indicators meaningless if know how to properly selectthe laser processing operation. Scanning speed, beam power,pulse frequency, protective gases, powder layer thickness – allof them are the physical and mechanical characteristics of thechange in a small range changes the quality of the product of thefuture, the field of application and performance characteristics.

  6. Phase holograms formed by silver halide (sensitized) gelatin processing.

    Science.gov (United States)

    Graver, W R; Gladden, J W; Eastes, J W

    1980-05-01

    A novel recording process for the formation of phase volume holograms at up to 1500 cycles/mm is described. The term silver halide (sensitized) gelatin or SHG denotes an all-gelatin phase material, which records the initial image information through photon absorption by the silver halide. Our process uses a reversal bleach that dissolves the developed silver image and cross-links the gelatin molecules in the vicinity of the developed image. Experiments have determined the stored image as refractive-index differences within the remaining gelatin. The major attributes of SHG holograms are (1) panchromatic response, (2) 100:1 greater light sensitivity than dichromate (sensitized) gelatin, and (3) elimination of darkening (printout) effects.

  7. Computer Modeling of Direct Metal Laser Sintering

    Science.gov (United States)

    Cross, Matthew

    2014-01-01

    A computational approach to modeling direct metal laser sintering (DMLS) additive manufacturing process is presented. The primary application of the model is for determining the temperature history of parts fabricated using DMLS to evaluate residual stresses found in finished pieces and to assess manufacturing process strategies to reduce part slumping. The model utilizes MSC SINDA as a heat transfer solver with imbedded FORTRAN computer code to direct laser motion, apply laser heating as a boundary condition, and simulate the addition of metal powder layers during part fabrication. Model results are compared to available data collected during in situ DMLS part manufacture.

  8. Mercury Phase II Study - Mercury Behavior in Salt Processing Flowsheet

    Energy Technology Data Exchange (ETDEWEB)

    Jain, V. [Savannah River Remediation, LLC., Aiken, SC (United States); Shah, H. [Savannah River Remediation, LLC., Aiken, SC (United States). Sludge and Salt Planning; Bannochie, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Wilmarth, W. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-07-25

    Mercury (Hg) in the Savannah River Site Liquid Waste System (LWS) originated from decades of canyon processing where it was used as a catalyst for dissolving the aluminum cladding of reactor fuel. Approximately 60 metric tons of mercury is currently present throughout the LWS. Mercury has long been a consideration in the LWS, from both hazard and processing perspectives. In February 2015, a Mercury Program Team was established at the request of the Department of Energy to develop a comprehensive action plan for long-term management and removal of mercury. Evaluation was focused in two Phases. Phase I activities assessed the Liquid Waste inventory and chemical processing behavior using a system-by-system review methodology, and determined the speciation of the different mercury forms (Hg+, Hg++, elemental Hg, organomercury, and soluble versus insoluble mercury) within the LWS. Phase II activities are building on the Phase I activities, and results of the LWS flowsheet evaluations will be summarized in three reports: Mercury Behavior in the Salt Processing Flowsheet (i.e. this report); Mercury Behavior in the Defense Waste Processing Facility (DWPF) Flowsheet; and Mercury behavior in the Tank Farm Flowsheet (Evaporator Operations). The evaluation of the mercury behavior in the salt processing flowsheet indicates, inter alia, the following: (1) In the assembled Salt Batches 7, 8 and 9 in Tank 21, the total mercury is mostly soluble with methylmercury (MHg) contributing over 50% of the total mercury. Based on the analyses of samples from 2H Evaporator feed and drop tanks (Tanks 38/43), the source of MHg in Salt Batches 7, 8 and 9 can be attributed to the 2H evaporator concentrate used in assembling the salt batches. The 2H Evaporator is used to evaporate DWPF recycle water. (2) Comparison of data between Tank 21/49, Salt Solution Feed Tank (SSFT), Decontaminated Salt Solution Hold Tank (DSSHT), and Tank 50 samples suggests that the total mercury as well as speciated

  9. Mercury Phase II Study - Mercury Behavior in Salt Processing Flowsheet

    International Nuclear Information System (INIS)

    Jain, V.; Shah, H.; Wilmarth, W. R.

    2016-01-01

    Mercury (Hg) in the Savannah River Site Liquid Waste System (LWS) originated from decades of canyon processing where it was used as a catalyst for dissolving the aluminum cladding of reactor fuel. Approximately 60 metric tons of mercury is currently present throughout the LWS. Mercury has long been a consideration in the LWS, from both hazard and processing perspectives. In February 2015, a Mercury Program Team was established at the request of the Department of Energy to develop a comprehensive action plan for long-term management and removal of mercury. Evaluation was focused in two Phases. Phase I activities assessed the Liquid Waste inventory and chemical processing behavior using a system-by-system review methodology, and determined the speciation of the different mercury forms (Hg+, Hg++, elemental Hg, organomercury, and soluble versus insoluble mercury) within the LWS. Phase II activities are building on the Phase I activities, and results of the LWS flowsheet evaluations will be summarized in three reports: Mercury Behavior in the Salt Processing Flowsheet (i.e. this report); Mercury Behavior in the Defense Waste Processing Facility (DWPF) Flowsheet; and Mercury behavior in the Tank Farm Flowsheet (Evaporator Operations). The evaluation of the mercury behavior in the salt processing flowsheet indicates, inter alia, the following: (1) In the assembled Salt Batches 7, 8 and 9 in Tank 21, the total mercury is mostly soluble with methylmercury (MHg) contributing over 50% of the total mercury. Based on the analyses of samples from 2H Evaporator feed and drop tanks (Tanks 38/43), the source of MHg in Salt Batches 7, 8 and 9 can be attributed to the 2H evaporator concentrate used in assembling the salt batches. The 2H Evaporator is used to evaporate DWPF recycle water. (2) Comparison of data between Tank 21/49, Salt Solution Feed Tank (SSFT), Decontaminated Salt Solution Hold Tank (DSSHT), and Tank 50 samples suggests that the total mercury as well as speciated

  10. Phase separation coupled with damage processes analysis of phase field models in elastic media

    CERN Document Server

    Heinemann, Christian

    2014-01-01

    The authors explore a unifying model which couples phase separation and damage processes in a system of partial differential equations. The model has technological applications to solder materials where interactions of both phenomena have been observed and cannot be neglected for a realistic description. The equations are derived in a thermodynamically consistent framework and suitable weak formulations for various types of this coupled system are presented. In the main part, existence of weak solutions is proven and degenerate limits are investigated. Contents Modeling of Phase Separation and Damage Processes Notion of Weak Solutions Existence of Weak Solutions Degenerate Limit Target Groups Researchers, academics and scholars in the field of (applied) mathematics Material scientists in the field of modeling damaging processes The Authors Christian Heinemann earned his doctoral degree at the Humboldt-Universität zu Berlin under the supervision of Prof. Dr. Jürgen Sprekels and Dr. Christiane Kraus. He is a ...

  11. Nano or micro grained alumina powder? A choose before sintering

    Directory of Open Access Journals (Sweden)

    Román, R.

    2008-12-01

    Full Text Available Two different wet routes have been used to synthesize alumina powders in order to compare the characteristics of the final product and its behaviour during sintering. The Homogeneous Precipitation (HP gives rise to nanoparticulated powders of about 2 nm. However, such particles quickly aggregate and grow with calcination temperature. The Polymerized Organic-Inorganic Synthesis (POI produces homogeneous particle size powders (about 1 micron after resin charring. The characterization of the powder surface is the basis of an efficient process control. Particle characterization parameters (morphology, crystallinity and degree of aggregation are characterized by different techniques, such as DTA/TG, IR, XRD, SEM and TEM, and compared between these synthesis methods. The results show the evolution from the amorphous to the corundum alumina phase for both processes and their ability for sintering, as well discuses the beneficial of nanoparticles obtained by HP during sintering.

    Se han utilizado dos diferentes síntesis por vía húmeda para la preparación de polvos de alúmina con el fin de comparar las características de los productos finales y su comportamiento durante la sinterización. La Precipitación Homogénea (HP da lugar a polvos nanoparticulados de unos 2nm. Se observa sin embargo, como estas partículas se agregan rápidamente y crecen con la temperatura de calcinación. La Síntesis por Polimerización Orgánica-Inorgánica (POI produce polvos de tamaño de partícula homogéneo (en torno a 1 micra después de la descomposión de la resina. La caracterización de la superficie de los polvos es la base de un control eficiente del proceso. Los parámetros de caracterización de las partículas obtenidas (morfología, cristalinidad y grado de agregación se obtienen por diferentes técnicas como DTA/TG, IR, XRD, SEM y TEM, y se comparan entre estos métodos de síntesis. Los resultados muestran la evolución desde el amorfo a la fase

  12. Sintering of MSW fly ash for reuse as a concrete aggregate.

    Science.gov (United States)

    Mangialardi, T

    2001-10-12

    The sintering process of municipal solid waste (MSW) fly ash was investigated in order to manufacture sintered products for reuse as concrete aggregates. Four types of fly ash resulting from different Italian MSW incineration plants were tested in this study. A modification of the chemical composition of MSW fly ash--through a preliminary four-stage washing treatment of this material with water--was attempted to improve the chemical and mechanical characteristics of sintered products.The sintering treatment of untreated or washed fly ash was performed on cylindrical compact specimens (15 mm in diameter and 20mm in height) at different compact pressures, sintering temperatures and times.The sintering process of untreated MSW fly ashes proved to be ineffective for manufacturing sintered products for reuse as a construction material, because of the adverse chemical characteristics of these fly ashes in terms of sulfate, chloride, and vitrifying oxide contents.A preliminary washing treatment of MSW fly ash with water greatly improved the chemical and mechanical characteristics of sintered products and, for all the types of fly ash tested, the sintered products satisfied the Italian requirements for normal weight aggregates for use in concretes having a specified strength not greater than 12 and 15N/mm(2), when measured on cylindrical and cubic specimens, respectively.A compact pressure of 28 N/mm(2), a sintering temperature of 1140 degrees C, and a sintering time of 60 min were the best operating conditions for manufacturing sintered products of washed MSW fly ash.

  13. Leaching of metals from fresh and sintered red mud.

    Science.gov (United States)

    Ghosh, Indrani; Guha, Saumyen; Balasubramaniam, R; Kumar, A V Ramesh

    2011-01-30

    The disposal of red mud, a solid waste generated during the extraction of alumina from bauxite, is one of the major problems faced by the aluminum industry. Proper disposal followed by its utilization, for example as bricks, can provide a satisfactory solution to this problem. Pollution potential of red mud and its finished product, due to metals leaching out from them under certain environmental conditions, need to be studied. Sintering of red mud was performed in a resistance type vertical tube furnace to simulate the brick-making conditions in lab-scale. Leachability of metals in red mud and the sintered product was evaluated by performing sequential extraction experiments on both. The metals studied were the 'macro metals' iron and aluminum and the 'trace metals' copper and chromium. The total extractabilities of all the metals estimated by the microwave digestion of red mud samples decreased due to sintering. The leachability in sequential extraction of the macro metals iron and aluminum, on the other hand, increased due to sintering in all phases of sequential extraction. However, the effect of sintering on the leachability of the trace metals by sequential extraction was different for copper and chromium in different fractions of sequential extraction. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. CIM5 Phase III base process development results

    International Nuclear Information System (INIS)

    Witt, D.C.

    2000-01-01

    Integrated Demonstration Runs for the Am/Cm vitrification process were initiated in the Coupled 5-inch Cylindrical Induction Melter (CIM5) on 11/30/98 and completed on 12/9/98. Four successful runs at 60 wt% lanthanide loading were completed which met or exceeded all established criteria. The operating parameters used in these runs established the base conditions for the 5-inch Cylindrical Induction Melter (CIM5) process and were summarized in the 5-inch CIM design basis, SRT-AMC-99-OO01. (1) In subsequent tests, a total of fourteen CIM5 runs were performed using various power inputs, ramp rates and target temperatures to define the preferred processing conditions (2) Process stability and process flexibility were the key criteria used in assessing the results for each run. A preferred set of operating parameters was defined for the CIM5 batch process and these conditions were used to generate a pre-programmed, automatic processing cycle that was used for the last six CIM.5 runs (3) These operational tests were successfully completed in the January-February time frame and were summarized in SRT-AMC-99-00584. The recommended set of operating conditions defined in Runs No.1 through No.14 was used as the starting point for further pilot system runs to determine the robustness of the process, evaluate a bubbler, and investigate off-normal conditions. CIM5 Phase III Runs No.15 through No.60 were conducted utilizing the pre-programmed, automatic processing cycle to investigate system performance. This report summarizes the results of these tests and provides a recommendation for the base process as well as a processing modification for minimizing volume expansions if americium and/or curium are subject to a thermal reduction reaction like cerium. This document summarizes the results of the base process development tests conducted in the Am/Cm Pilot Facility located in Building 672-T

  15. Mathematical modeling of phase interaction taking place in materials processing

    International Nuclear Information System (INIS)

    Zinigrad, M.

    2002-01-01

    The quality of metallic products depends on their composition and structure. The composition and the structure are determined by various physico-chemical and technological factors. One of the most important and complicated problems in the modern industry is to obtain materials with required composition, structure and properties. For example, deep refining is a difficult task by itself, but the problem of obtaining the material with the required specific level of refining is much more complicated. It will take a lot of time and will require a lot of expanses to solve this problem empirically and the result will be far from the optimal solution. The most effective way to solve such problems is to carry out research in two parallel direction. Comprehensive analysis of thermodynamics, kinetics and mechanisms of the processes taking place at solid-liquid-gaseous phase interface and building of the clear well-based physico-chemical model of the above processes taking into account their interaction. Development of mathematical models of the specific technologies which would allow to optimize technological processes and to ensure obtaining of the required properties of the products by choosing the optimal composition of the raw materials. We apply the above unique methods. We developed unique methods of mathematical modeling of phase interaction at high temperatures. These methods allows us to build models taking into account: thermodynamic characteristics of the processes, influence of the initial composition and temperature on the equilibrium state of the reactions, kinetics of homogeneous and heterogeneous processes, influence of the temperature, composition, speed of the gas flows, hydrodynamic and thermal factors on the velocity of the chemical and diffusion processes. The models can be implemented in optimization of various metallurgical processes in manufacturing of steels and non-ferrous alloys as well as in materials refining, alloying with special additives

  16. Sintering diagrams of UO2

    International Nuclear Information System (INIS)

    Mohan, A.; Soni, N.C.; Moorthy, V.K.

    1979-01-01

    Ashby's method (see Acta Met., vol. 22, p. 275, 1974) of constructing sintering diagrams has been modified to obtain contribution diagrams directly from the computer. The interplay of sintering variables and mechanisms are studied and the factors that affect the participation of mechanisms in UO 2 are determined. By studying the physical properties, it emerges that the order of inaccuracies is small in most cases and do not affect the diagrams. On the other hand, even a 10% error in activation energies, which is quite plausible, would make a significant difference to the diagram. The main criticism of Ashby's approach is that the numerous properties and equations used, communicate their inaccuracies to the diagrams and make them unreliable. The present study has considerably reduced the number of factors that need to be refined to make the sintering diagrams more meaningful. (Auth.)

  17. Effect of Sintering Time and Diameter on Bi-Pb-Sr-Ca-Cu-O Superconducting Wire Formation with TiO2 Dopant by Silver (Ag Tube

    Directory of Open Access Journals (Sweden)

    Cindy Al Kindi

    2018-01-01

    Full Text Available Pengaruh waktu sintering dan diameter terhadap pembentukan kawat superkonduktor Bi-Pb-Sr-Ca-Cu-O dengan dopan TiO2 menggunakan tabung perak (Ag menjadi penting untuk dibahas karena hal ini berpengaruh terhadap adanya suhu kritis yang merupakan syarat penting superkonduktor. Pada penelitian ini ada beberapa tahap yang dilakukan yaitu preparasi bahan, proses permesinan, penarikan kawat dan proses perlakuan panas. Serbuk BPSCCO dengan dopan TiO2 dimasukkan ke dalam tabung perak (Ag dan dikalsinasi pada temperatur 820oC selama 20 jam, lalu proses penarikan (Rolling sampai diameter 6 mm dan 2,6 mm serta sintering dilakukan pada temperatur 850oC selama 9 jam dan 30 jam untuk masing-masing ukuran diameter dengan dua kali proses sintering. Hasil penelitian menunjukkan bahwa kawat superkonduktor memiliki suhu kritis yaitu Tc onset = 99 K dan Tc zero = 70 K. Waktu yang sangat berpengaruh pada pembentukan fasa superkonduktor yaitu sintering selama 9 jam sedangkan untuk ukuran diameter kawat yang memiliki suhu kritis yaitu 6 mm, sedangkan waktu sintering selama 30 jam dapat merubah fasa BPSCCO sehingga tidak terbentuk superkonduktor melainkan konduktor dan semikonduktor. Pada diameter 2,6 mm belum menjadi ukuran yang tepat pada pembentukan kawat superkonduktor.   The influence of sintering time and diameter on the formation of Bi-Pb-Sr-Ca-Cu-O superconducting wire with doped TiO2 by silver (Ag tube becomes important to be discussed because of the presence of critical temperature which is an essential condition in superconductors. In this research there are several steps must be done that is: material preparation, machine process, wire drawing and heat process. BPSCCO powder with dopant TiO2 filled into silver (Ag tube with calcination temperature at 820oC for 20 h, then rolling process to diameter 6 mm and 2,6 mm with sintering temperature at 850oC for 9 h and 30 h for each size of diameter by twice sintering process. The results showed that

  18. Contribution to the densification study of silicon and zirconium carbides by an innovating process: the Spark Plasma Sintering; Contribution a l'etude de la densification des carbures de silicium et de zirconium par un procede innovant: le spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Allemand, A. [CEA Saclay, Dept. des Materiaux pour le Nucleaire (DEN/DMN/SRMA/LTMEx), 91 - Gif-sur-Yvette (France); Guillard, F.; Galy, J. [Centre d' Elaboration de Materiaux et d' Etudes Structurales (CEMES-CNRS), 31 - Toulouse (France)

    2007-07-01

    In the framework of the CPR ISMIR, the works presented here take up the results of the thesis of F. Guillard defended on december 2006. This thesis has dealt with the Spark Plasma Sintering (SPS) technique and more particularly have been studied: 1)the {beta}SiC and ZrC sintering 2)the modelling of ZrC sintering by the SPS technique and 3)the studies of the carbides/oxides interfaces carried out by SPS. Concerning the {beta}SiC and ZrC sintering: the two carbides have been sintered between 1450 and 1950 C with times periods of 10 minutes and pressures between 50 and 150 MPa. These experiments have shown that the way to apply the pressure is of major importance. Moreover, 92% of densification can be reached after 5 minutes in 1850 C for SiC. For ZrC, 95% of densification is reached as soon as 5 minutes in 1750 C. Different correlations between grains size, density and the way to apply pressure are presented. For the SPS modelling of ZrC, two existing models, taking into account the diffusion laws, are used to try to model the SPS. The results are presented and discussed. At last, the SPS allows to make interfaces starting from powders or materials previously sintered. The SiC/ZrC and ZrO{sub 2}/SiC interfaces have been studied. A microstructural study is presented as well as a technique which allows the assembling with no cracks of SiC and ZrC. (O.M.)

  19. Phosphorus containing sintered alloys (review)

    International Nuclear Information System (INIS)

    Muchnik, S.V.

    1984-01-01

    Phosphorus additives are considered for their effect on the properties of sintered alloys of different applications: structural, antifriction, friction, magnetic, hard, superhard, heavy etc. Data are presented on compositions and properties of phosphorus-containing materials produced by the powder metallurgy method. Phosphorus is shown to be an effective activator of sintering in some cases. When its concentration in the material is optimal it imparts the material such properties as strength, viscosity, hardness, wear resistance. Problems concerning powder metallurgy of amorphous phosphorus-containing alloys are reported

  20. Binding Mechanisms in Selective Laser Sintering and Selective Laser Melting

    NARCIS (Netherlands)

    Kruth, J.P.; Mercelis, P.; Van Vaerenbergh, J.; van Vaerenbergh, J.; Froyen, L.; Rombouts, M.

    2005-01-01

    Purpose – This paper provides an overview of the different binding mechanisms in selective laser sintering (SLS) and selective laser melting (SLM), thus improving the understanding of these processes. Design/methodology/approach – A classification of SLS/SLM processes was developed, based on the