WorldWideScience

Sample records for sintered soft magnetic

  1. Sintered soft magnetic materials. Properties and applications

    Science.gov (United States)

    Bas, J. A.; Calero, J. A.; Dougan, M. J.

    2003-01-01

    A comparison is presented of the characteristics and production requirements of a variety of materials used to produce sintered soft magnetic parts. These include pure iron, phosphorous-iron, silicon-iron, nickel-iron, and cobalt-iron, together with new coated materials based on encapsulated iron powders. In these bonded materials an organic and/or inorganic insulator is used to coat the metallic powder particles giving a magnetic composite. The suitability of the different materials for use in both direct and alternating current applications is reviewed, and examples are provided of their application in both the automotive and other sectors. The results of a comparative study of motors using stators and rotors based on both conventional laminated materials and the insulated iron powders are presented, in which the new materials show advantages of reduced hysteresis losses at high frequencies, and isotropy of magnetic properties. Nevertheless, the applications of these materials in electrical motors requires the modification of existing designs.

  2. Synthesis and Spark Plasma Sintering of Soft Magnetic Composite in a Fe₂O₃–Al System by Mechanical Alloying.

    Science.gov (United States)

    Lee, Chung-Hyo

    2017-04-01

    We have applied mechanical alloying (MA) to produce soft magnetic composite material using a mixture of elemental Fe₂O₃–Al powders. An optimal milling and sintering conditions to obtain soft magnetic α-Fe/Al₂O₃ composite with fine microstructure were investigated by X-ray diffraction, differential scanning calorimeter and vibrating sample magnetometer measurements. It is found that the average grain sizes of α-Fe in α-Fe/Al₂O₃ composite ball-milled for 5 hours is estimated to be in the range of 50 nm. The saturation magnetization of ball-milled powders showed a maximum value of 88 emu/g after 30 min. of MA and reaches to 77 emu/g after 5 h of MA. The magnetic hardening due to the reduction of the α-Fe grain size with ball milling was also observed. Densification of the ball-milled powders was performed in the spark plasma sintering (SPS) machine at 1000 °C and 1100 °C. FE-SEM observation shows that the average grain size of α-Fe in α-Fe/Al₂O₃ composite sintered at 1000 °C is in the range of 100 nm, which is nearly same value estimated from the so-called Hall plot. It can be also seen that the coercivity of SPS sample sintered at 1000 °C is still high value of 92 Oe, suggesting that the grain growth of magnetic α-Fe phase during SPS process tends to be suppressed.

  3. Magnetic losses versus sintering treatment in Mn-Zn ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Beatrice, Cinzia, E-mail: c.beatrice@inrim.it [Istituto Nazionale di Ricerca Metrologica, Nanoscience and Materials Division, Torino (Italy); Tsakaloudi, Vasiliki [Laboratory of Inorganic Materials, CERTH, Thermi-Thessaloniki (Greece); Dobák, Samuel [Institute of Physics, P.J. Šafárik University, Košice (Slovakia); Zaspalis, Vassilios [Department of Chemical Engineering Aristotle University of Thessaloniki, Thessaloniki (Greece); Fiorillo, Fausto [Istituto Nazionale di Ricerca Metrologica, Nanoscience and Materials Division, Torino (Italy)

    2017-05-01

    Mn-Zn ferrites prepared by different sintering schedules at 1325 °C, 1340 °C, and 1360 °C, have been characterized from the structural, electrical, and magnetic viewpoint. Magnetic losses and complex permeability have been, in particular, measured and analyzed from quasi-static excitation up to 1 GHz. It is observed that lower sintering temperatures and shorter treatment times lead to more homogeneous grain structure and better soft magnetic response at all frequencies. It is shown, however, that, once the contribution by eddy currents is singled out, the energy losses tend to coincide beyond a few MHz in the differently treated samples. The interpretative approach consists in separating the contributions by the domain wall displacements and the magnetization rotations to complex permeability and losses as a function of frequency. This can be accomplished in a relatively simple way in the low induction region described by the Rayleigh law, where these quantities can be quantitatively related and the linear Landau-Lifshitz-Gilbert equation applies, account being taken of the distribution in amplitude and orientation of the local anisotropy fields. - Highlights: • DC-1 GHz magnetic losses and complex permeability of Mn-Zn ferrites are analyzed. • Contributions by domain wall displacements and rotations are separately obtained. • Energy losses caused by eddy currents and spin damping are separately identified. • Microstructure is shown to chiefly affect the domain wall processes. • Rotational permeability and loss are predicted through Landau-Lifshitz equation.

  4. High performance soft magnetic materials

    CERN Document Server

    2017-01-01

    This book provides comprehensive coverage of the current state-of-the-art in soft magnetic materials and related applications, with particular focus on amorphous and nanocrystalline magnetic wires and ribbons and sensor applications. Expert chapters cover preparation, processing, tuning of magnetic properties, modeling, and applications. Cost-effective soft magnetic materials are required in a range of industrial sectors, such as magnetic sensors and actuators, microelectronics, cell phones, security, automobiles, medicine, health monitoring, aerospace, informatics, and electrical engineering. This book presents both fundamentals and applications to enable academic and industry researchers to pursue further developments of these key materials. This highly interdisciplinary volume represents essential reading for researchers in materials science, magnetism, electrodynamics, and modeling who are interested in working with soft magnets. Covers magnetic microwires, sensor applications, amorphous and nanocrystalli...

  5. Magnetization loss of nanocrystalline soft magnets

    International Nuclear Information System (INIS)

    Flohrer, Sybille; Herzer, Giselher

    2009-01-01

    FeCuNbSiB-ribbons with optimized nanocrystalline microstructure possess a unique combination of near-zero magnetostriction, high saturation induction and low magnetization losses. Due to the absence of distinct intrinsic anisotropies, the magnetization curve can be adjusted by field-annealing to square or flat shape. It is well known that excess losses are an important loss component of soft magnets with square hysteresis loop. Yet, even cores of flat type loop can show significant excess losses. The paper reviews the loss mechanisms for excess losses in nanocrystalline soft magnets on the basis of Kerr-microscopy observation and loss theory and compares it to amorphous materials.

  6. The influence of Ga-substitution of the coercivity of Nd-(Fe,Co)-B-sintered permanent magnets

    International Nuclear Information System (INIS)

    Fidler, J.; Groiss, C.; Tokunaga, M.

    1990-01-01

    In Co-substituted Nd-Fe-B sintered magnets several additional phases such as Nd(Fe,Co) y B ? with y = 2,3 and 4 are found besides the hard magnetic phase and the Nd-rich intergranular phase. The low coercivity of the magnet is attributed to the occurrence of these soft ferromagnetic phases. In Ga-doped Nd-(Fe,Co)-B sintered magnets new intergranular phases, such as Nd(Ga,Fe,Co) and Nd(Ga,Fe,Co) 2 are found instead of the soft ferromagnetic Co-rich phases. From X-ray microanalysis data it is concluded that Ga substitutes the transition metal atoms in the 2:14:1-phase and Ga is not detected in the Nd- rich phase at all. The increase of the coercivity of Ga- doped magnets is correlated to a higher volume fraction of intergranular phases and an increased wetting during sintering due to these phases

  7. Magnetism and metallurgy of soft magnetic materials

    CERN Document Server

    Chen, Chih-Wen

    2011-01-01

    Soft magnetic materials are economically and technologically the most important of all magnetic materials. In particular, the development of new materials and novel applications for the computer and telecommunications industries during the past few decades has immensely broadened the scope and altered the nature of soft magnetic materials. In addition to metallic substances, nonmetallic compounds and amorphous thin films are coming increasingly important. This thorough, well-organized volume - on of the most comprehensive treatments available - offers a coherent, logical presentation of the p

  8. Combined effects of additive elements on the magnetic properties of Fe-Nd-B sintered magnets

    International Nuclear Information System (INIS)

    Leonowicz, M.; Kaszuwara, W.

    1996-01-01

    Combined effects of additional elements on the magnetic properties of sintered Fe-Nd-B magnets were studied for two systems: containing both Al or Co and Al and Mo, respectively. It was found that the magnets containing Al and Co exhibit substantially higher coercivities than those with additions of only Al or Co. The improved coercivity for the alloys containing Al and Co, when compared with the quaternary alloys, we attribute to a reduced proportion of the soft magnetic inclusions in the grain boundary area. The investigation of combined effects of Al and Mo additions on the magnetic properties revealed that although both Al and Mo when added separately enhance the properties, their combined effect brought about deterioration of the coercivity. X-ray microanalysis detected Mo, Fe, Nd and Al rich inclusions, existence of which was considered to be the reason for a poor magnetic decoupling of the hard magnetic grains and drop of the coercivity. The magnetic, properties were discussed in the light of phase constitution and their possible influence on the magnetization reversal. Three dimensional diagrams of the magnetic properties versus composition were composed. (author)

  9. The influence of carbon and oxygen on the magnetic characteristics of press-less sintered NdFeB magnets

    Science.gov (United States)

    Xia, M.; Abrahamsen, A. B.; Bahl, C. R. H.; Veluri, B.; Søegaard, A. I.; Bøjsøe, P.; Millot, S.

    2017-01-01

    The Pressless Process (PLP) was adopted to manufacture NdFeB sintered magnets, where the investigations on carbon and oxygen residues from heptane milling liquid media and graphite crucibles used for sintering were quantified to evaluate the influence on the magnetic characteristics. The carbon and oxygen content in the magnets produced from wet ball milling of strip cast flakes was found to be of the order 104 ppm and 4·104 ppm respectively, which resulted in soft magnetic behavior. However using jet milling the carbon and oxygen concentration were decreased by an order of magnitude resulting in coercivity of up to 829 kA/m. Thus the influence of the carbon from the graphite crucibles is small.

  10. Effects of sintering temperature on the mechanical properties of sintered NdFeB permanent magnets prepared by spark plasma sintering

    International Nuclear Information System (INIS)

    Wang, G.P.; Liu, W.Q.; Huang, Y.L.; Ma, S.C.; Zhong, Z.C.

    2014-01-01

    Sintered NdFeB-based permanent magnets were fabricated by spark plasma sintering (SPS) and a conventional method to investigate the mechanical and magnetic properties. The experimental results showed that sintered NdFeB magnet prepared by the spark plasma sintering (SPS NdFeB) possesses a better mechanical properties compared to the conventionally sintered one, of which the maximum value of bending strength and Vickers hardness was 402.3 MPa and 778.1 MPa, respectively. The effects of sintering temperature on bending strength and Vickers hardness were investigated. It was shown that the bending strength firstly increases to the maximum value and then decreases with the increase of sintering temperature in a certain range. The investigations of microstructures and mechanical properties indicated that the unique sintering mechanism in the SPS process is responsible for the improvement of mechanical properties of SPS NdFeB. Furthermore, the relations between the mechanical properties and relevant microstructure have been analyzed based on the experimental fact. - Highlights: • Studied the sintering temperature effect on strengthening mechanism of NdFeB magnet firstly. • It showed that sintering temperature may effectively affect the mechanical properties. • The maximum bending strength and Vickers hardness was 402.3 MPa and 778.1 MPa, respectively

  11. Effects of sintering temperature on the mechanical properties of sintered NdFeB permanent magnets prepared by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Wang, G.P., E-mail: wgp@jxnu.edu.cn [College of Physics and Communication Electronics, Jiangxi Normal University, Nanchang 330022 (China); Liu, W.Q. [Key Laboratory of Advanced Functional Materials Science and Engineering, Ministry of Education, Beijing University of Technology, Beijing 100022 (China); Huang, Y.L.; Ma, S.C.; Zhong, Z.C. [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China)

    2014-01-15

    Sintered NdFeB-based permanent magnets were fabricated by spark plasma sintering (SPS) and a conventional method to investigate the mechanical and magnetic properties. The experimental results showed that sintered NdFeB magnet prepared by the spark plasma sintering (SPS NdFeB) possesses a better mechanical properties compared to the conventionally sintered one, of which the maximum value of bending strength and Vickers hardness was 402.3 MPa and 778.1 MPa, respectively. The effects of sintering temperature on bending strength and Vickers hardness were investigated. It was shown that the bending strength firstly increases to the maximum value and then decreases with the increase of sintering temperature in a certain range. The investigations of microstructures and mechanical properties indicated that the unique sintering mechanism in the SPS process is responsible for the improvement of mechanical properties of SPS NdFeB. Furthermore, the relations between the mechanical properties and relevant microstructure have been analyzed based on the experimental fact. - Highlights: • Studied the sintering temperature effect on strengthening mechanism of NdFeB magnet firstly. • It showed that sintering temperature may effectively affect the mechanical properties. • The maximum bending strength and Vickers hardness was 402.3 MPa and 778.1 MPa, respectively.

  12. Method of making bonded or sintered permanent magnets

    Science.gov (United States)

    McCallum, R. William; Dennis, Kevin W.; Lograsso, Barbara K.; Anderson, Iver E.

    1993-08-31

    An isotropic permanent magnet is made by mixing a thermally responsive, low viscosity binder and atomized rare earth-transition metal (e.g., iron) alloy powder having a carbon-bearing (e.g., graphite) layer thereon that facilitates wetting and bonding of the powder particles by the binder. Prior to mixing with the binder, the atomized alloy powder may be sized or classified to provide a particular particle size fraction having a grain size within a given relatively narrow range. A selected particle size fraction is mixed with the binder and the mixture is molded to a desired complex magnet shape. A molded isotropic permanent magnet is thereby formed. A sintered isotropic permanent magnet can be formed by removing the binder from the molded mixture and thereafter sintering to full density.

  13. Magnetic properties of sintered high energy sm-co and nd-fe-b magnets

    Directory of Open Access Journals (Sweden)

    Talijan Nadežda M.

    2006-01-01

    Full Text Available Magnetic properties of permanent magnetic materials based on intermetallic compounds of Sm-Co and Nd-Fe-B are in direct dependence on the microstructure. In the first part of this paper, having in mind the importance of the regime of sintering and heat treatment to obtain the optimal magnetic structure, yet another approach in defining the most adequate technological parameters of the sintering process for applied heat treatment conditions was made. The goal of these investigations was to use the correlation that exists between sintering conditions (temperature and time and intensity of the diffraction peak of the (111 plane of the SmCo5 phase to optimize. In the second part a brief overview of high energy magnetic materials based on Nd-Fe-B is presented with special emphasis to the current research and development of high remanent nanocomposite magnetic materials based on Nd-Fe-B alloys with a reduced Nd content. Part of experimental results gained during research of the sintering process of SmCo5 magnetic materials were realized and published earlier. The scientific meeting devoted to the 60th anniversary of Frankel’s theory of sintering was an opportunity to show once more the importance and role of sintering in optimization of the magnetic microstructure of sintered Sm Co5 magnetic materials.

  14. Magnetic microstructure and magnetic properties of spark plasma sintered NdFeB magnets

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Y.L., E-mail: hyl1019_lin@163.com [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Wang, Y.; Hou, Y.H.; Wang, Y.L.; Wu, Y.; Ma, S.C. [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Liu, Z.W.; Zeng, D.C. [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Tian, Y.; Xia, W.X. [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Zhong, Z.C., E-mail: zzhong2014@sina.com [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China)

    2016-02-01

    Nanocrystalline NdFeB magnets were prepared by spark plasma sintering (SPS) technique using melt-spun ribbons as starting materials. A distinct two-zone structure with coarse grain zone and fine grain zone was formed in the SPSed magnets. Multi-domain particle in coarse grain zone and exchange interaction domain for fine grain zone were observed. Intergranular non-magnetic phase was favorable to improve the coercivity due to the enhancement of domain wall pinning effects and increased exchange-decouple. The remanent polarization of 0.83 T, coercivity of 1516 kA/m, and maximum energy product of 118 kJ/m{sup 3} are obtained for an isotropic magnet. - Highlights: • Nanocrystalline NdFeB magnets were prepared by spark plasma sintering technique. • Multi-domain particle and exchange interaction domain were observed. • Magnetic microstructure and their relation to the properties were investigated.

  15. Impulse Magnetization of Nd-Fe-B Sintered Magnets for Sensors

    Directory of Open Access Journals (Sweden)

    Marek Przybylski

    2016-04-01

    Full Text Available Magnetization of large Nd-Fe-B sintered permanent magnets is still challenging. This type of permanent magnet is electrically conductive, so impulse magnetization causes a flow of eddy currents which prevent magnetization of the whole volume of the magnet. The paper deals with the impulse magnetization of sintered Nd-Fe-B permanent magnets and shows a method for the determination of suitable parameters for the supply system. The necessary magnetic field strength for magnetization of the magnet to saturation was determined. The optimal magnetizing fixture supply voltage for magnetization to saturation was determined from simulations in PSpice software, finite element analyses in Maxwell 15 and measurements. Measurements of magnetic induction on the surface of the Nd-Fe-B magnet are also presented to ensure that a magnet with 70 mm diameter and 20 mm in height is fully saturated.

  16. Magnetization behavior of hard/soft-magnetic composite pillar

    International Nuclear Information System (INIS)

    Tanaka, T.; Matsuzaki, J.; Kurisu, H.; Yamamoto, S.

    2008-01-01

    Hard/soft-magnetic composite pillar array medium is proposed for ultra-high-density recording media. Magnetization reversal process for a single hard/soft-magnetic composite pillar in the medium is calculated using the Landau-Lifshitz-Gilbert equation. Magnetization reversal of the soft-magnetic unit helps the magnetization reversal for the hard-magnetic unit, and the effective coercivity for the hard-magnetic unit is greatly reduced. Thereby saturation recording to the high-K u -hard-magnetic material used for perpendicular magnetic recording will be realizable

  17. Multiple recycling of NdFeB-type sintered magnets

    Energy Technology Data Exchange (ETDEWEB)

    Zakotnik, M. [Department of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)], E-mail: miha.zakotnik@gmail.com; Harris, I.R.; Williams, A.J. [Department of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)

    2009-02-05

    Some fully dense, sintered NdFeB-type magnets (employed in VCM disc drives) have been subjected to a recycling process using the hydrogen decrepitation (HD) process. After a brief milling treatment, the powder was aligned, pressed and re-sintered and this procedure was repeated four times with a progressive fall in the density and in the magnetic properties. The chemical analysis indicated that this was due to the progressive oxidation of the Nd-rich material and to some Nd loss by evaporation. The procedure was then repeated but with the addition (blending) of a fine powder of neodymium hydride after the first cycle. It was found that the addition of 1 at.% of neodymium at each stage was sufficient to maintain the density and the magnetic properties of the recycled magnets up to and including the 4th cycle. Inductively coupled plasma (ICP) and metallographic analysis indicated that the neodymium hydride additions compensated for the neodymium loss due to evaporation and to oxidation so that the proportion of Nd-rich material remained approximately constant. The additional amount of Nd{sub 2}O{sub 3} in the blended recycled magnets appeared to inhibit grain growth on the 3rd and 4th cycles when compared to that of the unblended magnets. The next challenge is to see if the process can be scaled-up to an industrial scale.

  18. Hard magnetic property and δM(H) plot for sintered NdFeB magnet

    International Nuclear Information System (INIS)

    Gao, R.W.; Zhang, D.H.; Li, W.; Li, X.M.; Zhang, J.C.

    2000-01-01

    The hard magnetic properties and the interactions between the grains for sintered Nd 16 Fe 73 Co 5 B 6 magnets are investigated by using δM(H) plot technique. The results show that the δM(H) plot of NdFeB sintered magnet can explain the effects of the microstructure (size, shape and orientation of the grains) and the intergrain interactions on the hard magnetic properties of the magnet. However, the value of δM(H) is positive when the applied field is not strong enough, which means that the common δM(H) plot theory is not completely consistent with the sintered NdFeB magnet

  19. The influence of carbon and oxygen on the magnetic characteristics of press-less sintered NdFeB magnets

    Energy Technology Data Exchange (ETDEWEB)

    Xia, M., E-mail: maxi@dtu.dk [Department of Energy Conversion and Storage, DTU Risø Campus, Technical University of Denmark, Roskilde (Denmark); Abrahamsen, A.B. [Department of Wind Energy, DTU Risø campus, Technical University of Denmark, Roskilde (Denmark); Bahl, C.R.H. [Department of Energy Conversion and Storage, DTU Risø Campus, Technical University of Denmark, Roskilde (Denmark); Veluri, B.; Søegaard, A.I. [Grundfos A/S, DK-8850 Bjerringbro (Denmark); Bøjsøe, P. [Holm Magnetics APS, 2800 Kongens Lyngby (Denmark); Millot, S. [FJ Industries A/S, 5863 Ferritslev (Denmark)

    2017-01-15

    The Pressless Process (PLP) was adopted to manufacture NdFeB sintered magnets, where the investigations on carbon and oxygen residues from heptane milling liquid media and graphite crucibles used for sintering were quantified to evaluate the influence on the magnetic characteristics. The carbon and oxygen content in the magnets produced from wet ball milling of strip cast flakes was found to be of the order 10{sup 4} ppm and 4·10{sup 4} ppm respectively, which resulted in soft magnetic behavior. However using jet milling the carbon and oxygen concentration were decreased by an order of magnitude resulting in coercivity of up to 829 kA/m. Thus the influence of the carbon from the graphite crucibles is small. - Highlights: • It is found that the carbon from graphite crucibles will not influence the NdFeB. • The carbon from heptane mixed with NdFeB powder will react with the NdFeB, which breaks the magnetic properties of NdFeB. • Pressless process works well with graphite crucibles, without worrying that carbon has damage on magnets.

  20. The influence of carbon and oxygen on the magnetic characteristics of press-less sintered NdFeB magnets

    International Nuclear Information System (INIS)

    Xia, M.; Abrahamsen, A.B.; Bahl, C.R.H.; Veluri, B.; Søegaard, A.I.; Bøjsøe, P.; Millot, S.

    2017-01-01

    The Pressless Process (PLP) was adopted to manufacture NdFeB sintered magnets, where the investigations on carbon and oxygen residues from heptane milling liquid media and graphite crucibles used for sintering were quantified to evaluate the influence on the magnetic characteristics. The carbon and oxygen content in the magnets produced from wet ball milling of strip cast flakes was found to be of the order 10 4 ppm and 4·10 4 ppm respectively, which resulted in soft magnetic behavior. However using jet milling the carbon and oxygen concentration were decreased by an order of magnitude resulting in coercivity of up to 829 kA/m. Thus the influence of the carbon from the graphite crucibles is small. - Highlights: • It is found that the carbon from graphite crucibles will not influence the NdFeB. • The carbon from heptane mixed with NdFeB powder will react with the NdFeB, which breaks the magnetic properties of NdFeB. • Pressless process works well with graphite crucibles, without worrying that carbon has damage on magnets.

  1. Magnetic viscosity and coercivity mechanisms in sintered and melt spun NdFeB

    International Nuclear Information System (INIS)

    Street, R.; Bingham, D.; Day, R.K.; Dunlop, J.B.

    1988-01-01

    Magnetic viscosity parameters kT/q(=Sv) of sintered and melt spun NdFeB vary with internal field. During initial magnetization of thermally demagnetized specimens signifiant viscosity occurs with melt spun NdFeB but is negligible with sintered NdFeB. Differences in mechanisms of magnetization account for this behaviour

  2. Forces Between a Permanent Magnet and a Soft Magnetic Plate

    DEFF Research Database (Denmark)

    Beleggia, Marco; Vokoun, David; De Graef, Marc

    2012-01-01

    Forces between a hard/permanent magnet of arbitrary shape and an ideally soft magnetic plate in close proximity are derived analytically from the image method applied to magnetostatics. We found that the contact force, defined as the force required to detach the hard magnet from the plate......, coincides with that between two identical touching permanent magnets. Furthermore, if the hard and the soft magnets are displaced by some amount, their attraction equals that between two identical permanent magnets displaced by twice that amount. Experimental results are presented that validate...

  3. Improvement of the microstructure and magnetic properties of sintered NdFeB permant magnets

    International Nuclear Information System (INIS)

    Vial, F.; Rozendaal, E.; Sagawa, M.

    1998-01-01

    A correlation between sintered NdFeB process, microstructure of the products at each step of the process and magnetic properties has been established. To increase (BH) max of sintered NdFeB magnets, the total rare-earth content in the alloy has to be decreased and to keep coercivity as high as possible, the unavoidable oxygen pick-up has to be substantially reduced. The composition improvements tend to create a high sensitivity to form abnormal grain growth which can potentially occur during the sintering operation. Special attention has been given to characterising, understanding the mechanisms and solving this defect which could affect the magnetic properties. In addition, the composition and each step of the process have been optimised to improve magnetic properties, thermal stability and corrosion resistance of the NdFeB permanent magnets. These collaborative studies have resulted in a significant improvement of both remanence and coercivity of the sintered NdFeB permanent magnets, covering a wide coercivity range from 800 to 2500 kA/m (10 to 35 kOe) with respective associated energy products of 400 to 270 kJ/m3 (52 to 35 MGOe). (orig.)

  4. The influence of carbon and oxygen on the magnetic characteristics of press-less sintered NdFeB magnets

    DEFF Research Database (Denmark)

    Xia, Manlong; Abrahamsen, Asger Bech; Bahl, Christian

    2017-01-01

    The Pressless Process (PLP) was adopted to manufacture NdFeB sintered magnets, where the investigations on carbon and oxygen residues from heptane milling liquid media and graphite crucibles used for sintering were quantified to evaluate the influence on the magnetic characteristics. The carbon...

  5. Study of high-coercivity sintered NdFeB magnets

    International Nuclear Information System (INIS)

    Bai, G.; Gao, R.W.; Sun, Y.; Han, G.B.; Wang, B.

    2007-01-01

    Magnetic powders for sintered NdFeB magnets have been prepared by using an advanced processing method including strip casting, hydrogen decrepitation, jet milling and rubber isotropic press. The effects of Dy, Ga and Co addition on the microstructure and magnetic properties of sintered magnets have been investigated. By adopting a suitable component ratio and adjusting proper technological parameters, we have prepared high-coercivity sintered NdFeB magnets with hard magnetic properties of j H c =25.6 kOe, B r =13.2 kG and (BH) max =39.9 MGOe. The temperature coefficient of coercivity of the magnets (between 20 and 150 deg. C) is -0.53% deg. C. The magnetic properties at high temperature satisfy the needs of permanent magnet motors

  6. Study of high-coercivity sintered NdFeB magnets

    Energy Technology Data Exchange (ETDEWEB)

    Bai, G. [School of Physics and Microelectronics, Shandong University, Jinan, 250100 (China); Department of Mathematics and Physics, Xi' an Institute of Technology, Xi' an, 710032 (China); Gao, R.W. [School of Physics and Microelectronics, Shandong University, Jinan, 250100 (China)]. E-mail: gaorwbox@sdu.edu.cn; Sun, Y. [School of Physics and Microelectronics, Shandong University, Jinan, 250100 (China); Han, G.B. [School of Physics and Microelectronics, Shandong University, Jinan, 250100 (China); Wang, B. [School of Physics and Microelectronics, Shandong University, Jinan, 250100 (China); Baotou Rare Earth Research Institute, Batou 014030 (China)

    2007-01-15

    Magnetic powders for sintered NdFeB magnets have been prepared by using an advanced processing method including strip casting, hydrogen decrepitation, jet milling and rubber isotropic press. The effects of Dy, Ga and Co addition on the microstructure and magnetic properties of sintered magnets have been investigated. By adopting a suitable component ratio and adjusting proper technological parameters, we have prepared high-coercivity sintered NdFeB magnets with hard magnetic properties of {sub j} H {sub c}=25.6 kOe, B {sub r}=13.2 kG and (BH){sub max}=39.9 MGOe. The temperature coefficient of coercivity of the magnets (between 20 and 150 deg. C) is -0.53% deg. C. The magnetic properties at high temperature satisfy the needs of permanent magnet motors.

  7. Effect of sintering temperature on magnetization and Mössbauer parameters of cobalt ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, Grish, E-mail: grishphysics@gmail.com [Department of Physics, DSB Campus Kumaun University, Nainital 263002, Uttarakhand (India); Srivastava, R.C. [Department of Physics, GB Pant University of Agriculture and Technology, Pantnagar, Uttarakhand (India); Reddy, V.R. [UGC-DAE CSR, Khandwa Road, DAVV Campus, Indore 452017, Madhya Pradesh (India); Agrawal, H.M. [Department of Physics, GB Pant University of Agriculture and Technology, Pantnagar, Uttarakhand (India)

    2017-04-01

    Nanoparticles of cobalt ferrite of different particle size were prepared using sol-gel method. Powder X-ray diffraction (XRD), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM) and Mössbauer spectroscopy techniques were employed for characterization of nanoparticles for structural and magnetic properties. The particle size and saturation magnetization increase with the increase of sintering temperature. The saturation magnetization increases from 53 to 85 emu/g as the sintering temperature increases from 300 to 900 °C. The remanence increases while the coercivity decreases slightly with the increase of sintering temperature. Mössbauer spectra show the ferrimagnetic nature of all the samples and the cation distribution strictly depends on the sintering temperature. The stoichiometry of the cobalt ferrite formed was estimated to be (Co{sup 2+}{sub x}Fe{sup 3+}{sub 1−x})[Co{sup 2+}{sub 1−x}Fe{sup 3+}{sub 1+x}]O{sub 4}, based on our Mössbauer analysis. The inverse spinel structure gradually transforms towards the normal spinel structure as the sintering temperature increases. - Highlights: • After 500 °C sintering the cobalt ferrite shows complete crystallization. • An inversion sintering temperature between 900 °C and 1200 °C is proposed where the Fe{sup +3} again starts migration from B site to A site. • Sintering temperature is one of the prime factors which effect the magnetization and cation distribution between two sites A and B.

  8. Forces between a permanent magnet and a soft magnetic plate

    Czech Academy of Sciences Publication Activity Database

    Beleggia, M.; Vokoun, David; DeGraef, M.

    2012-01-01

    Roč. 3, č. 5 (2012), 0500204/1-0500204/4 ISSN 1949-307X R&D Projects: GA ČR GPP108/12/P111 Institutional research plan: CEZ:AV0Z10100520 Keywords : electromagnetics * hard magnet ic materials * soft magnet ic materials Subject RIV: BM - Solid Matter Physics ; Magnet ism http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6313974

  9. Magnetic properties of Sm-Fe-N anisotropic magnets produced by magnetic-field-assisted spark plasma sintering

    International Nuclear Information System (INIS)

    Saito, Testuji

    2010-01-01

    Sm-Fe-N magnets were successfully produced at temperatures below 773 K by magnetic-field-assisted spark plasma sintering. The resultant magnets had high densities of 88.7-92.5%. Although partial decomposition of the Sm 2 Fe 17 N 3 phase was observed in the Sm-Fe-N magnets, the decomposition was significantly lowered by the addition of a small amount of Zn powder to the Sm-Fe-N powder. The resultant Sm-Fe-N magnets containing 5 wt.% Zn and 10 wt.% Zn exhibited higher coercivity than the Sm-Fe-N magnets. X-ray diffraction studies and magnetic measurements confirmed that the Sm-Fe-N magnets and those containing 5 wt.% Zn and 10 wt.% Zn were magnetically anisotropic. A high value of 158 kJ/m 3 was achieved for the maximum energy product when Sm-Fe-N powder containing 5 wt.% Zn was sintered at 723 K by magnetic-field-assisted spark plasma sintering.

  10. Magnetic properties and phase evolution of sintered Nd-Fe-B magnets with intergranular addition of Pr–Co alloy

    International Nuclear Information System (INIS)

    Jin, Chaoxiang; Chen, Renjie; Yin, Wenzong; Tang, Xu; Wang, Zexuan; Ju, Jinyun; Lee, Don; Yan, Aru

    2016-01-01

    The magnetic properties, thermal stability and phase evolution of sintered Nd-Fe-B magnets with intergranular addition of Pr–Co were investigated. The thermal stabilities of coercivity and remanence were simultaneously enhanced without heavy rare earth elements, resulting from the partial substitution of Pr for Nd and Co for Fe in matrix phase, respectively. After Pr–Co addition, RE-rich phase reduced and new phases containing Pr and Co, such as (NdPr) (FeCo) 2 (NdPr) 3 (FeCo) and (NdPr) 2 (FeCo) 17 phases, were formed. With the increase of Pr–Co addition amount, intrinsic coercivity firstly decreased sharply which was mainly caused by the formation of soft ferromagnetic (NdPr) (FeCo) 2 phase, and subsequently presented a remarkable recovery induced by the formation of non-magnetic (NdPr) 3 (FeCo) phase and transformation of (NdPr) (FeCo) 2 phase from ferromagnetic to non-magnetic. Due to the reduction of matrix phase proportion, the remanence decreased monotonously after the addition of Pr–Co for more than 10 wt. %. - Highlights: • The improved thermal stabilities of coercivity and remanence were obtained. • An abnormal remarkable recovery of coercivity was found. • The evolution of Co-containing phases was clarified.

  11. Magnetic properties and phase evolution of sintered Nd-Fe-B magnets with intergranular addition of Pr–Co alloy

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Chaoxiang [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Enginnering, Chinese Academy of Sciences, Ningbo 315201 (China); Rare Earth Magnetic Materials Laboratory, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Chen, Renjie, E-mail: chenrj@nimte.ac.cn [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Enginnering, Chinese Academy of Sciences, Ningbo 315201 (China); Rare Earth Magnetic Materials Laboratory, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Yin, Wenzong; Tang, Xu; Wang, Zexuan; Ju, Jinyun [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Enginnering, Chinese Academy of Sciences, Ningbo 315201 (China); Rare Earth Magnetic Materials Laboratory, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Lee, Don [University of Dayton, Dayton OH (United States); Yan, Aru, E-mail: aruyan@nimte.ac.cn [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Enginnering, Chinese Academy of Sciences, Ningbo 315201 (China); Rare Earth Magnetic Materials Laboratory, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2016-06-15

    The magnetic properties, thermal stability and phase evolution of sintered Nd-Fe-B magnets with intergranular addition of Pr–Co were investigated. The thermal stabilities of coercivity and remanence were simultaneously enhanced without heavy rare earth elements, resulting from the partial substitution of Pr for Nd and Co for Fe in matrix phase, respectively. After Pr–Co addition, RE-rich phase reduced and new phases containing Pr and Co, such as (NdPr) (FeCo){sub 2} (NdPr){sub 3}(FeCo) and (NdPr){sub 2}(FeCo){sub 17} phases, were formed. With the increase of Pr–Co addition amount, intrinsic coercivity firstly decreased sharply which was mainly caused by the formation of soft ferromagnetic (NdPr) (FeCo){sub 2} phase, and subsequently presented a remarkable recovery induced by the formation of non-magnetic (NdPr){sub 3}(FeCo) phase and transformation of (NdPr) (FeCo){sub 2} phase from ferromagnetic to non-magnetic. Due to the reduction of matrix phase proportion, the remanence decreased monotonously after the addition of Pr–Co for more than 10 wt. %. - Highlights: • The improved thermal stabilities of coercivity and remanence were obtained. • An abnormal remarkable recovery of coercivity was found. • The evolution of Co-containing phases was clarified.

  12. Large batch recycling of waste Nd–Fe–B magnets to manufacture sintered magnets with improved magnetic properties

    International Nuclear Information System (INIS)

    Li, X.T.; Yue, M.; Liu, W.Q.; Li, X.L.; Yi, X.F.; Huang, X.L.; Zhang, D.T.; Chen, J.W.

    2015-01-01

    The waste Nd–Fe–B sintered magnets up to 500 kg per batch were recycled to manufacture anisotropic sintered magnets by combination of hydrogen decrepitation (HD) and alloying technique. Magnetic properties and thermal stability of both the waste magnets and recycled magnets were investigated. The recycled magnet exhibits magnetic properties with remanence (B r ) of 12.38 kGs, coercivity (H ci ) of 24.89 kOe, and maximum energy product [(BH) max ] of 36.51 MGOe, respectively, which restores 99.20% of B r , 105.65% of H ci , and 98.65% of (BH) max of the waste magnets, respectively. The volume fraction of Nd-rich phase in the recycled magnets is about 10.1 vol.%, which is bigger than that of the waste magnets due to the additive of Nd 3 PrFe 14 B alloy containing more rare earth. The remanence temperature coefficient (α) and coercivity temperature coefficient (β) of the recycled magnets are −0.1155%/K and −0.5099%/K in the range of 288–423 K, respectively, which are comparative to those of the waste magnets. - Highlights: • Large batch recycling of waste Nd–Fe–B sintered magnets were performed. • The recycled magnet restores 99.20% of B r , 105.65% of H ci and 98.65% of (BH) max of the magnet. • The recycled magnets bears bigger volume fraction and better distribution of Nd-rich phase. • The recycled magnets exhibit similar temperature coefficients and maximum working temperature

  13. On the role of the grain size in the magnetic behavior of sintered permanent magnets

    Science.gov (United States)

    Efthimiadis, K. G.; Ntallis, N.

    2018-02-01

    In this work the finite elements method is used to simulate, by micromagnetic modeling, the magnetic behavior of sintered anisotropic magnets. Hysteresis loops were simulated for different grain sizes in an oriented multigrain sample. By keeping out other parameters that contribute to the magnetic microstructure, such as the sample size, the grain morphology and the grain boundaries mismatch, it has been found that the grain size affects the magnetic properties only if the grains are exchange-decoupled. In this case, as the grain size decreases, a decrease in the nucleation field of a reverse magnetic domain is observed and an increase in the coercive field due to the pinning of the magnetic domain walls at the grain boundaries.

  14. Effect of sintering conditions on the magnetic disaccommodation in barium M-type hexaferrites

    International Nuclear Information System (INIS)

    Hernandez-Gomez, Pablo; Torres, Carlos; Francisco, Carlos de; Munoz, Jose Maria; Alejos, Oscar; Iniguez, Jose Ignacio; Raposo, Victor; Montero, Oscar

    2006-01-01

    The relaxation of the initial magnetic permeability has been measured in polycrystalline hexaferrites with nominal composition BaO.6Fe 2 O 3 (i.e. M-type). The samples have been sintered at different temperatures in CO 2 atmosphere and with different manufacturing conditions. In temperature range between 80 and 500 K, the magnetic disaccommodation shows presence of different relaxation processes, depending on both the sintering temperature and sintering time. The analogies and differences between the results obtained are discussed in terms of similar phase formation and different crystallite size

  15. Influences of Laser Spot Welding on Magnetic Property of a Sintered NdFeB Magnet

    Directory of Open Access Journals (Sweden)

    Baohua Chang

    2016-08-01

    Full Text Available Laser welding has been considered as a promising method to join sintered NdFeB permanent magnets thanks to its high precision and productivity. However, the influences of laser welding on the magnetic property of NdFeB are still not clear. In the present paper, the effects of laser power on the remanence (Br were experimentally investigated in laser spot welding of a NdFeB magnet (N48H. Results show that the Br decreased with the increase of laser power. For the same welding parameters, the Br of magnets, that were magnetized before welding, were much lower than that of magnets that were magnetized after welding. The decrease in Br of magnets after laser welding resulted from the changes in microstructures and, in turn, the deterioration of magnetic properties in the nugget and the heat affected zone (HAZ in a laser weld. It is recommended that the dimensions of nuggets and HAZ in laser welds of a NdFeB permanent magnet should be as small as possible, and the magnets should be welded before being magnetized in order to achieve a better magnetic performance in practical engineering applications.

  16. Discussion on the Local Magnetic Force between Reversely Magnetized Micro Metal Particles in the Microwave Sintering Process

    Directory of Open Access Journals (Sweden)

    Yu Xiao

    2017-02-01

    Full Text Available Synchrotron radiation computed tomography was applied to investigate Cu–Fe mixture microwave sintering in situ and to examine the magnetic force between reversely magnetized micro-metal particles in microwave sintering. Results revealed that the growth rate of the sintering necks between Cu–Fe particles and Cu–Cu particles around the iron particles distributed in a vertical direction was faster than that of the sintering necks in the horizontal direction. These phenomena were consistent with the possible influence caused by the magnetic force between metal particles, as shown in our simple particle model. The kinetic curves of sintering neck growth along the vertical and horizontal directions quantitatively revealed the difference in growth rates. The contributing factors of magnetic force in microwave sintering were subsequently discussed. The volume of iron particles was proportional to the influence of magnetic force, and their shape elicited a remarkable influence based on demagnetization effects. This study provided a useful basis for microwave sintering mechanisms and anisotropic material preparation.

  17. Soft magnetization of a semi-hard/soft magnetic bilayer produced by oblique-incidence evaporation

    International Nuclear Information System (INIS)

    Nozawa, Tadao; Morimoto, Fumio; Harazono, Rikio; Nouchi, Norimoto

    2006-01-01

    The possibility of achieving soft magnetization in semi-hard magnetic films such as Fe, Fe 93.5 Si 6.5 , Fe 5 Co 5 and Fe 7 Co 3 is investigated by depositing films on an Fe 2 Ni 8 underlayer by oblique-incidence evaporation. The magnetic anisotropy of the underlayer is strengthened to a depth of several lattice parameters by vapor deposition of the film at an oblique angle to the substrate surface. This method also allows magnetic anisotropy to be induced in strongly isotropic semi-hard magnetic overlayers to a thickness of a few thousands Angstroms. The coercive force of bilayer films measured along the hard-axis is reduced remarkably by this process, and the strength of the anisotropy field is demonstrated to be readily controllable. When magnetic anisotropy exists in both magnetic layers, a significant change is observed in the magnetization processes of the semi-hard magnetic layer and the coercive forces in the hard magnetization direction is dramatically reduced. Soft magnetization of the semi-hard magnetic layer cannot be achieved when magnetic anisotropy exists in only one of the magnetic layers

  18. Magnetic properties of liquid-phase-assisted sintered MnZn ferrites

    Directory of Open Access Journals (Sweden)

    Drofenik Miha

    2002-01-01

    Full Text Available MnZn ferrites were sintered in the presence of a Bi2O3-SiO2 - rich liquid phase. The microstructure of MnZn-ferrite samples that contained various amounts of liquid phase during sintering was investigated. The results revealed that microstructure development and final magnetic permeability depend essentially on the amount of liquid phase present during sintering. The solution-reprecipitation (S-R process in MnZn ferrites starts when a continuous liquid-phase film is formed during grain growth. The status of the microstructure developed during solid-state sintering prior to the formation of the critical liquid-phase film is essential for the final microstructure developed during liquid-phase-assisted sintering.

  19. MFM study of magnetic interaction between recording and soft magnetic layers

    International Nuclear Information System (INIS)

    Honda, Yukio; Tanahashi, Kiwamu; Hirayama, Yoshiyuki; Kikukawa, Atsushi; Futamoto, Masaaki

    2001-01-01

    Magnetic force microscopy was used to study the magnetic interaction between the recording and the soft magnetic layers in double-layer perpendicular media by observing the magnetization structure from the soft magnetic layer side. There was a strong magnetic interaction between the recording and the soft magnetic layers. Introducing a thin nonmagnetic intermediate layer between the two layers greatly reduced the magnetic interaction and drastically reduced the medium noise

  20. Sulfur doping effect on microstructure and magnetic properties of Nd-Fe-B sintered magnets

    Science.gov (United States)

    Yang, Fang; Sui, Yan-li; Chen, Cun-guang; Ye, Si-Yang; Li, Ping; Guo, Zhi-meng; Paley, Vladislay; Volinsky, Alex A.

    2018-01-01

    In this paper, the effects of sulfur (S) doping on microstructure and magnetic properties of Nd-Fe-B sintered magnets were studied. With 0.2 wt% S doping, the melting point of the Nd-rich eutectic phases decreased from 1038 K to 1021 K. Clear and continuous grain boundary phases were also formed with smaller grain size. The average grain size was 7.83 μm, which was approximately 1.3 μm smaller than that of the undoped magnets. The coercivity enhancement was attributed to boundary microstructure modification and grain size optimization. The coercivity of the 0.2 wt% S-doped magnets increased from 15.54 kOe to 16.67 kOe, with slight changes of the remanence and the maximum magnetic energy production. The magnetic properties of the overdoped magnets deteriorated, due to the reduction in density and decrease of the volume fraction of the main phase. Globular S precipitates in the Nd-rich triple junctions were hexagonal Nd2O2S phase and tetragonal NdS2 phase. S addition allows reducing Dy usage in magnets with comparable magnetic properties.

  1. Hysteretic behavior of soft magnetic elastomer composites

    Energy Technology Data Exchange (ETDEWEB)

    Krautz, Maria; Werner, David [Institute for Complex Materials, IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany); Schrödner, Mario [Thuringian Institute of Textile and Plastics Research e.V., Breitscheidstraße 97, D-07407 Rudolstadt (Germany); Funk, Alexander [Institute for Complex Materials, IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany); Jantz, Alexander; Popp, Jana [Thuringian Institute of Textile and Plastics Research e.V., Breitscheidstraße 97, D-07407 Rudolstadt (Germany); Eckert, Jürgen [Institute for Complex Materials, IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany); Erich Schmid Institute of Materials Science, Austrian Academy of Sciences, Jahnstraße 12, A-8700 Leoben (Austria); Department of Materials Physics, Montanuniversität Leoben, Jahnstraße 12, A-8700 Leoben (Austria); Waske, Anja [Institute for Complex Materials, IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany)

    2017-03-15

    Composites of polymer and micron-sized particles of carbonyl-iron were investigated in terms of their magnetization behavior. Thermoplastic elastomers with varying Young's modulus (E{sub Polymer}=0.14–14.6 MPa) were used as matrix material. Field dependent magnetization curves reveal that the hysteretic behavior of the composites strongly depends on both the particle fraction (7, 10, 14, 21, 31 vol%) and on the mechanical properties of the polymer. It is shown that hysteresis only appears above a certain fraction of magnetic particles which can be accounted to the magnetic exchange between the particles. However, hysteresis is suppressed in the composite with largest Young's modulus of the polymer matrix, even at largest particle fraction. - Highlights: • Composites with soft magnetic Iron Particles show hysteretic magnetization behavior. • Origin of the hysteresis is the alignment of particles along field direction. • Hysteresis depends on both, mechanical properties of matrix and particle fraction.

  2. Three-dimensional magnetic properties of soft magnetic composite materials

    International Nuclear Information System (INIS)

    Lin, Z.W.; Zhu, J.G.

    2007-01-01

    A three-dimensional (3-D) magnetic property measurement system, which can control the three components of the magnetic flux density B vector and measure the magnetic field strength H vector in a cubic sample of soft magnetic material, has been developed and calibrated. This paper studies the relationship between the B and H loci in 3-D space, and the power losses features of a soft magnetic composite when the B loci are controlled to be circles with increasing magnitudes and ellipses evolving from a straight line to circle in three orthogonal planes. It is found that the B and H loci lie in the same magnetization plane, but the H loci and power losses strongly depend on the orientation, position, and process of magnetization. On the other hand, the H vector evolves into a unique locus, and the power loss approaches a unique value, respectively, when the B vector evolves into the round locus with the same magnitude from either a series of circles or ellipses

  3. Hydrogen Decrepitation Press-Less Process Recycling of NdFeB sintered magnets

    DEFF Research Database (Denmark)

    Xia, Manlong; Abrahamsen, Asger Bech; Bahl, Christian

    2017-01-01

    A Hydrogen Decrepitation Press-Less Process (HD-PLP) recycling method for recycling of anisotropic NdFeB magnets is demonstrated. The method combines hydrogen decrepitation (HD) disintegration of the initial magnet, powder sieving and the Press-Less Process (PLP), where hydride powder is sintered...

  4. Guiding thermomagnetic avalanches with soft magnetic stripes

    Energy Technology Data Exchange (ETDEWEB)

    Vlasko-Vlasov, V. K.; Colauto, F.; Benseman, T.; Rosenmann, D.; Kwok, W. -K.

    2017-12-01

    We demonstrate the potential for manipulating the ultrafast dynamics of thermomagnetic flux avalanches (TMA) in superconducting films with soft magnetic stripes deposited on the film. By tuning the in-plane magnetization of the stripes, we induce lines of strong magnetic potentials for Abrikosov vortices, resulting in guided slow motion of vortices along the stripe edges and preferential bursts of TMA along the stripes. Furthermore, we show that transversely polarized stripes can reduce the TMA size by diverting magnetic flux away from the major trunk of the TMA into interstripe gaps. Our data indicate that TMAs are launched from locations with enhanced vortex entry barrier, where flux accumulation followed by accelerated vortex discharge significantly reduces the threshold of the applied field ramping speed required for the creation of TMAs. Finally, vortex-antivortex annihilation at the moving front of an expanding TMA can account for the enhanced TMA activity in the receding branches of the sample's magnetization cycle and the preferred propagation of TMAs into maximum trapped flux regions.

  5. The effect of nano-TiC addition on sintered Nd-Fe-B permanent magnets

    International Nuclear Information System (INIS)

    Mural, Zorjana; Kollo, Lauri; Xia, Manlong; Bahl, Christian R.H.; Abrahamsen, Asger Bech; Bez, Henrique Neves; Link, Joosep; Veinthal, Renno

    2017-01-01

    This paper addresses the effect of nano-TiC addition on sintered Nd-Fe-B permanent magnets. TiC nanoparticles were added to sintered Nd-Fe-B magnets with a specific aim to improve the Curie temperature and thermal stability. A standard powder metallurgy route was adopted to prepare the magnets. It was found that introducing nano-TiC prior to jet milling was effective as the nanoparticles dispersed in the final alloy, concentcalcrating in the neodymium-rich phase of the magnets. Magnets with optimal properties were obtained with the addition of 1 wt% TiC nanoparticles. The hysteresis loop for such magnets showed an improved shape and VSM analysis a coercivity value of 1188 kA/m, a remanence value of 0.96 T and a maximum energy product of 132 kJ/m 3 . The maximum working point and the Curie temperature of the developed magnets were 373 K and 623 K respectively. - Highlights: • Improvement of thermal stability of Nd-Fe-B magnets by introducing nano-TiC prior sintering is proposed. • The mechanism relies on nano-TiC particles behaving as grain growth inhibitors between thin RE-rich phase regions. • The concentration of up to 1 wt% of nano-TiC appears to increase coercivity without a significant decrease in remanence. • The maximum working point and the Curie temperature of the developed magnets are 373 K and 623 K respectively.

  6. The effect of nano-TiC addition on sintered Nd-Fe-B permanent magnets

    Energy Technology Data Exchange (ETDEWEB)

    Mural, Zorjana, E-mail: zorjana.mural@ttu.ee [Department of Materials Engineering, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn (Estonia); Kollo, Lauri [Department of Materials Engineering, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn (Estonia); Xia, Manlong; Bahl, Christian R.H. [Department of Energy Conversion and Storage, Technical University of Denmark, Frederiksborgvej 399, 4000 Roskilde (Denmark); Abrahamsen, Asger Bech [Department of Wind Energy, Technical University of Denmark, Frederiksborgvej 399, 4000 Roskilde (Denmark); Bez, Henrique Neves [Department of Energy Conversion and Storage, Technical University of Denmark, Frederiksborgvej 399, 4000 Roskilde (Denmark); Link, Joosep [National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn (Estonia); Veinthal, Renno [Department of Materials Engineering, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn (Estonia)

    2017-05-01

    This paper addresses the effect of nano-TiC addition on sintered Nd-Fe-B permanent magnets. TiC nanoparticles were added to sintered Nd-Fe-B magnets with a specific aim to improve the Curie temperature and thermal stability. A standard powder metallurgy route was adopted to prepare the magnets. It was found that introducing nano-TiC prior to jet milling was effective as the nanoparticles dispersed in the final alloy, concentcalcrating in the neodymium-rich phase of the magnets. Magnets with optimal properties were obtained with the addition of 1 wt% TiC nanoparticles. The hysteresis loop for such magnets showed an improved shape and VSM analysis a coercivity value of 1188 kA/m, a remanence value of 0.96 T and a maximum energy product of 132 kJ/m{sup 3}. The maximum working point and the Curie temperature of the developed magnets were 373 K and 623 K respectively. - Highlights: • Improvement of thermal stability of Nd-Fe-B magnets by introducing nano-TiC prior sintering is proposed. • The mechanism relies on nano-TiC particles behaving as grain growth inhibitors between thin RE-rich phase regions. • The concentration of up to 1 wt% of nano-TiC appears to increase coercivity without a significant decrease in remanence. • The maximum working point and the Curie temperature of the developed magnets are 373 K and 623 K respectively.

  7. The Effect of Nano-TiC Addition on Sintered Nd-Fe-B Permanent Magnets

    DEFF Research Database (Denmark)

    Mural, Zorjana; Kollo, Lauri; Xia, Manlong

    2017-01-01

    This paper addresses the effect of nano-TiC addition on sintered Nd-Fe-B permanent magnets. TiC nanoparticles were added to sintered Nd-Fe-B magnets with a specific aim to improve the Curie temperature and thermal stability. A standard powder metallurgy route was adopted to prepare the magnets. I...... for such magnets showed an improved shape and VSM analysis a coercivity value of 1188 kA/m, a remanence value of 0.96 T and a maximum energy product of 132 kJ/m3. The maximum working point and the Curie temperature of the developed magnets were 373 K and 623 K respectively....

  8. Fabrication and Spark Plasma Sintering of Magnetic alpha-Fe/MgO Nanocomposite by Mechanical Alloying.

    Science.gov (United States)

    Lee, Chung-Hyo

    2016-02-01

    Solid-state reduction has occurred during mechanical alloying of a mixture of Fe2O3 and Mg powders at room temperature. It is found that magnetic nanocomposite in which MgO is dispersed in alpha-Fe matrix with nano-sized grains is obtained by mechanical alloying of Fe2O3 with Mg for 30 min. Consolidation of the ball-milled powders was performed in a spark plasma sintering (SPS) machine up to 800-1000 degrees C. X-ray diffraction result shows that the average grain size of alpha-Fe in a-Fe/MgO nanocomposite sintered at 800 degrees C is in the range of 110 nm. It can be also seen that the coercivity of SPS sample sintered at 800 degrees C is still high value of 88 Oe, suggesting that the grain growth of magnetic alpha-Fe phase during SPS process tends to be suppressed.

  9. Effect of microstructure changes on magnetic properties of spark plasma sintered Nd-Fe-B powders

    Directory of Open Access Journals (Sweden)

    Michalski B.

    2013-01-01

    Full Text Available In this study the SPS method was applied for low RE content (8,5% at. and high RE content (13,5 % at. MQ powders. The powders were sintered in a wide range of temperature, for 5 min., under pressure of 35 MPa. The low RE content grade, densified reluctantly and gained the density close to the theoretical value only for 850 °C. The coercivity decreased gradually with increasing sintering temperature. On the other hand, the densification of the higher RE content grade powder occurred much easier and the coercivity, close to the theoretical value, was achieved already at 650 °C. The coercivity of this material also decreased with increasing sintering temperature. Microstructural studies revealed that the SPS sintering process leads to partial decomposition of the Nd2Fe14B phase. The proportion of the RE-rich and iron phases increases parallel to the increasing sintering temperature. On the basis of the current results one can conclude that fabrication of high density MQ powders based magnets by the SPS method is possible, however the powders having higher RE content should be used for this purpose and the sintering temperature as low as possible, related to density, should be kept.

  10. Magnetic entropy of the mixed and sintered compound of the RAl/sub 2/ system

    International Nuclear Information System (INIS)

    Kuzuhara, T.; Wakabayashi, H.; Matsumoto, K.; Hashimoto, T.; Sahashi, M.; Inomata, K.; Tomokiyo, A.; Yayama, H.

    1986-01-01

    The magnetic refrigerant for the Ericsson type magnetic refrigerator should have a constant magnetic entropy difference ΔS/sub J/ between two constant magnetic field processes. However, the magnetic entropy change of an homogeneous ferromagnet exhibits a sharp peak at the Curie temperature. In the present investigation the authors succeeded to make the layer structural sintered composite composed of several kinds of RAl/sub 2/ compounds having large entropy change near their Curie temperatures and made clear that this composite has the constant πS/sub J/ in the wide temperature range suitable for the Ericsson cycle

  11. Laboratory scale fabrication of Nd-Fe-B sintered magnets

    International Nuclear Information System (INIS)

    Rodrigues, Daniel; Beneduce Neto, Flavio; Landgraf, Fernando Jose Gomes; Neiva, Augusto Camara; Romero, Sergio; Missell, Frank Patrick

    1992-01-01

    Results are presented on magnetic properties of Nd-Fe-B sauntered magnets produced from 1 kg of alloy caste in vacuum induction furnace. The fabrication viability of these magnets, with properties similar to the commercial magnets, and the influence of particle size in the energy product, through the effect on the H k field, is confirmed

  12. Microstructural evaluation and magnetic Ni-Zn ferrite sintered by microwave energy

    International Nuclear Information System (INIS)

    Diniz, Veronica Cristhina S.; Vieira, Debora A.; Costa, Ana Cristina F.M.; Kiminami, R.H.G.A.; Cornejo, Daniel Reinaldo

    2011-01-01

    The present Ni-Zn ferrite magnetic properties sensitive to microstructure and obtain a ferrite with a uniform microstructure is the biggest challenge in the advancement of new technologies. This study proposes to evaluate the microstructure and magnetic properties of Ni-Zn ferrite sintered by microwave energy. The samples were previously synthesized by combustion reaction using urea and glycine, with 1200 deg C/2h sintered at a heating rate of 5 deg C/min, and characterized by density, XRD, SEM and magnetic measurements. The results show that the sample synthesized with glycine showed the formation of ferrite phase and traces of secondary phase hematite, grains with undefined format, and a high porosity and inter intragranular. The sample synthesized with urea gave only the ferrite phase, with hexagonal grains, and low intergranular porosity. The sample synthesized with urea showed better magnetic characteristics when compared with the samples synthesized with glycine. (author)

  13. Pressless process in route of obtaining sintered Nd–Fe–B magnets

    Energy Technology Data Exchange (ETDEWEB)

    Popov, A.G, E-mail: apopov@imp.uran.ru [Institute of Metal Physics, UB of the RAS, 18, S. Kovalevskoy, Street, 620990 Ekaterinburg (Russian Federation); Golovnia, O.A. [Institute of Metal Physics, UB of the RAS, 18, S. Kovalevskoy, Street, 620990 Ekaterinburg (Russian Federation); Bykov, V.A. [Institute of Metallurgy, UB of the RAS, 101, Amundsena, Street, 620016 Ekaterinburg (Russian Federation)

    2015-06-01

    A short review on the pressless process (PLP) involved in the manufacture of sintered Nd–Fe–B magnet is given. Two approaches to increasing the degree of powder alignment with a high filling density ρ{sub f} in PLP-containers are proposed. (1) An increase in the pulse duration of applied magnetic field from 3.6 to 6.5 ms enhances the magnetic alignment of magnets prepared from the powder with ρ{sub f}=2.5 g/cm{sup 3} and ρ{sub f}=3 g/cm{sup 3} by 3% and 11%, respectively. (2) Addition of internal lubricants such as zinc stearate or esters reduces friction forces between the powder particles and, when the concentration of lubricants is bellow a critical concentration C{sub cr}, increases B{sub r} and (BH){sub max} by 5–7%. Simulation of the magnetic alignment of uniaxial particles demonstrates that a decrease in the coefficient of friction between the powder particles from 0.9 to 0.6 caused by the lubricant addition enhances the alignment degree. Contact dilatometry was used to study the anisotropy of densification of PLP-powders upon sintering. It has been shown that the anisotropy of the powder shrinkage is formed at the first stage of sintering at the temperature about 800 °C and is caused by the capillary action in the Nd-rich liquid. - Highlights: • A review of the pressless process for NdFeB magnets in the world and Russia is given. • Enhancement of the alignment degree by application of pulsed magnetic field is studied. • Reduction of the friction forces via addition of internal lubricants is proposed. • The simulation of the magnetic alignment of Nd–Fe–B uniaxial particles is presented. • A reason of anisotropic shrinkage of the powder at sintering is suggested.

  14. Coercivity enhancement of (Nd,Ce-Fe-B sintered magnets by doping Nd-Fe additives

    Directory of Open Access Journals (Sweden)

    K. Chen

    2017-02-01

    Full Text Available The effect of Nd-Fe additives on magnetic properties and microstructure in (Nd,Ce-Fe-B sintered magnet has been investigated. By doping 3wt% Nd-Fe additives, the coercivity of the magnet increases from 10.56kOe to 12.69kOe with slight remanence decrease. Microstructure observation reveals that the volume fraction of the grain boundary phase increases accompanying with the thickening of the thin grain boundary between the adjacent grains. The RE6Fe13Cu phase which has low melting temperature develops at the triple junction position and the out shell of the matrix grains get magnetically hardened with 3wt% Nd-Fe additives. The results of the dynamic magnetic domains between the original magnet and processed magnet elucidate that the formation of reversed magnetic domains are more difficult for the processed magnet which is the direct evidence to clarify the coercivity enhancement.

  15. Steelmaking slag beneficiation by magnetic separator and impacts on sinter quality

    Directory of Open Access Journals (Sweden)

    Bölükbaşı Ö.S.

    2014-01-01

    Full Text Available Basic oxygen furnaces (BOF slag is the main problem at all iron and steel factories. About more than 6 million tons/year of BOF slag has been accumulated from the waste stockyards in Turkey. Dumps slags can be revaluated by a processing technology which makes it possible to obtain products that meet the requirements of sintering and blast furnace production. The slags with particle size of -10 mm were enriched by the magnetic separator resulting and increase in Fe grade from 18% to 33%. The use of BOF slag in sinter blend provided additional Mn, CaO, MgO and introduced a good solution to environmental problems.

  16. Production and corrosion resistance of NdFeBZr magnets with an improved response to thermal variations during sintering

    International Nuclear Information System (INIS)

    Yu, L.Q.; Zhong, X.L.; Zhang, Y.P.; Yan, Y.G.; Zhen, Y.H.; Zakotnik, M.

    2011-01-01

    This study describes an attempt to produce NdFeB magnets that are insensitive to the sintering temperature. It was found that addition of Zr to NdFeB magnets significantly augmented the thermal stability of this magnetic material during sintering at high temperature even at industrial scale. The best sintered magnets were produced by jet-milling the powder (to achieve an average 3.4 μm particle size), and then aligned, pressed and sintered under argon at 1100 o C for 3 h followed by appropriate heat treatment. The magnetic properties of the resulting magnets were: (BH) m =403.8 kJ m -3 (±4.7 kJ m -3 ), B r =1430 mT (±9 mT) and i H c =907 kA m -1 (±12 kA m -1 ). Large grain growth, in excess of 100 μm in the Zr-free magnets, was observed during sintering at 1100 o C. This did not occur in the presence of Zr. These observations imply that the sensitivity of this class of magnets to high sintering temperatures is greatly reduced by Zr addition. Corrosion resistance of NdFeB was therefore significantly improved by the addition of small amounts of Zr. - Research highlights: →This study describes an attempt to produce NdFeB magnets that are insensitive to the sintering temperature. → It was found that addition of Zr to NdFeB magnets significantly augmented the thermal stability of this magnetic material during sintering at high temperature; even at industrial scale. → The magnetic properties of the resulting magnets were: (BH) m =403.8 kJ m -3 (±4.7 kJ m -3 ), B r =1430 mT (±9 mT) and i H c =907 kA m -1 (±12 kA m -1 ).

  17. Grain size dependence of coercivity of sintered Nd-Fe-B permanent magnets

    International Nuclear Information System (INIS)

    Tang Weizhong; Zhou Shouzeng; Hu Bing

    1991-01-01

    The grain size dependence of intrinsic coercivity H c of sintered Nd-Fe-B permanent magnets is investigated. It is confirmed that small grain sizes are connected with high Hc values, and that for magnets with different grain sizes, their coercivity can be expressed by the formula μ 0 H c =N c (kμ 0 H A -N i I s ), where H A and I s denote the magnetic anisotropy field and spontaneous magnetization of the hard magnetic Nd 2 Fe 14 B phase, respectively, and k and N i are thought to be two constants related to the perfectness and the demagnetization field of isolated grains, and N e a parameter inversely changing with the grain size. It is suggested that in analyzing the coercivity mechanism of the Nd-Fe-B magnets, the effect of magnetic interactions between individual magnetic grains should also be considered. (orig.)

  18. Influence of thermal debinding on the final properties of Fe–Si soft magnetic alloys for metal injection molding (MIM)

    Energy Technology Data Exchange (ETDEWEB)

    Páez-Pavón, A.; Jiménez-Morales, A. [Dpto. Ciencia e Ing. de materiales e Ing. Química, Universidad Carlos III de Madrid, 28911 Leganés, Madrid (Spain); Santos, T.G. [UNIDEMI, Departamento de Engenharia Mecânica e Industrial, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Quintino, L. [Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal); Torralba, J.M. [Dpto. Ciencia e Ing. de materiales e Ing. Química, Universidad Carlos III de Madrid, 28911 Leganés, Madrid (Spain)

    2016-10-15

    Metal injection molding (MIM) may be used to produce soft magnetic materials with optimal mechanical and magnetic properties. Unlike other techniques, MIM enables the production of complex and small Fe–Si alloy parts with silicon contents greater than 3% by weight. In MIM process development, it is critical to design a proper debinding cycle not only to ensure complete removal of the binder system but also to obtain improved properties in the final part. This work is a preliminary study on the production of Fe-3.8Si soft magnetic parts by MIM using pre-alloyed powders and a non-industrialized binder. Two different heating rates during thermal debinding were used to study their effect on the final properties of the part. The final properties of the sintered parts are related to thermal debinding. It has been demonstrated that the heating rate during thermal debinding has a strong influence on the final properties of Fe–Si soft magnetic alloys. - Highlights: • The properties of MIM Fe-Si alloy are influenced by the debinding heating rate. • The slow debinding led to a lower porosity, lower oxygen content and grain growth. • The magnetization of the sintered samples improved after a slow thermal debinding.

  19. Soft-lithographic patterning of room termperature-sintering Ag Nanoparticles on foil

    NARCIS (Netherlands)

    Moonen, P.; Bat, E.; Voorthuijzen, W. Pim; Huskens, Jurriaan

    2013-01-01

    Room temperature-sintering, poly(acrylic acid)-capped silver nanoparticles (Ag-PAA NPs) were used in a wide range of nanofabrication methods to form metallic silver microstructures on flexible poly(ethylene terephthalate) (PET) substrates. Silver wires on top of PET foil were patterned by

  20. Preparation and Magnetic Properties of MnBi-based Hard/Soft Composite Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Yilong; Liu, Xubo; Gandha, Kinjal; Vuong, Nguyen V.; Yang, Y. B.; Yang, Jinbo; Poudyal, Narayan; Cui, Jun; Liu, J.Ping

    2014-05-07

    Bulk anisotropic composite magnets based on MnBi/Co(Fe) exhibiting the different morphology of the soft magnetic phase were prepared by powder metallurgy processing. First, single-phase MnBi bulk magnets were produced using a maximum energy product [(BH)m] of 6.3 MGOe at room temperature. The nanoscale soft phase with the different morphology was then added to form a composite magnet. It was observed that addition of magnetic soft-phase nanoparticles and nanoflakes causes a dramatic coercivity reduction. However, the addition of soft magnetic phase nanowires enhanced the composite magnetization without sacrificing the coercivity. Nevertheless, a kink was still observed on the demagnetization curves and the coercivity decreased when the soft-phase content was larger than 10 wt. %, which was caused by the agglomeration of the soft phase nanowires that also led to a decreased degree of texture.

  1. Development of Ferrite-Coated Soft Magnetic Composites: Correlation of Microstructure to Magnetic Properties

    Science.gov (United States)

    Sunday, Katie Jo

    Soft magnetic composites (SMCs) comprised of ferrite-coated ferrous powder permit isotropic magnetic flux capabilities, lower core losses, and complex designs through the use of traditional powder metallurgy techniques. Current coating materials and methods are vastly limited by the nonmagnetic properties of organic and some inorganic coatings and their inability to withstand high heat treatments for proper stress relief of core powder after compaction. Ferrite-based coatings are ferrimagnetic, highly resistive, and boast high melting temperatures, thus providing adequate electrical barriers between metallic particles. These insulating layers are necessary for reducing eddy current losses by increasing resistivity in order to improve the overall magnetic efficiency and subsequent frequency range. The goals of this work are to correlate ferrite-coated Fe powder composites microstructure for the coating and core powder to magnetic properties such as permeability, coercivity, and core loss. We first explore the relevant concepts of SMC materials from their composition to processing steps to pertinent properties. This thesis employs a suite of characterization techniques for powder and composite properties. We use X-ray diffraction, scanning electron microscopy, and transmission electron microscopy to provide a complete understanding of the effect of processing conditions on ferrite-coated Fe-based SMCs. Magnetic, mechanical, and electrical properties are then analyzed to correlate microstructural features and determine their effect on such properties. In the second part of this thesis, we present a proof of concept study on Al2O3- and Al2O3- Fe3O4-coated Fe powder composites, illustrating magnetization is highly dependent on ferromagnetic volume. We then expand on previous work to compare an ideal, crystalline state using Fe3O 4-Fe thin film heterostructures to a highly strained state using bulk powder studies. Fe3O4-coated Fe composites are produced via mechanical

  2. Magnetically Assisted Bilayer Composites for Soft Bending Actuators

    Science.gov (United States)

    Jang, Sung-Hwan; Na, Seon-Hong; Park, Yong-Lae

    2017-01-01

    This article presents a soft pneumatic bending actuator using a magnetically assisted bilayer composite composed of silicone polymer and ferromagnetic particles. Bilayer composites were fabricated by mixing ferromagnetic particles to a prepolymer state of silicone in a mold and asymmetrically distributed them by applying a strong non-uniform magnetic field to one side of the mold during the curing process. The biased magnetic field induces sedimentation of the ferromagnetic particles toward one side of the structure. The nonhomogeneous distribution of the particles induces bending of the structure when inflated, as a result of asymmetric stiffness of the composite. The bilayer composites were then characterized with a scanning electron microscopy and thermogravimetric analysis. The bending performance and the axial expansion of the actuator were discussed for manipulation applications in soft robotics and bioengineering. The magnetically assisted manufacturing process for the soft bending actuator is a promising technique for various applications in soft robotics. PMID:28773007

  3. Magnetically Assisted Bilayer Composites for Soft Bending Actuators

    Directory of Open Access Journals (Sweden)

    Sung-Hwan Jang

    2017-06-01

    Full Text Available This article presents a soft pneumatic bending actuator using a magnetically assisted bilayer composite composed of silicone polymer and ferromagnetic particles. Bilayer composites were fabricated by mixing ferromagnetic particles to a prepolymer state of silicone in a mold and asymmetrically distributed them by applying a strong non-uniform magnetic field to one side of the mold during the curing process. The biased magnetic field induces sedimentation of the ferromagnetic particles toward one side of the structure. The nonhomogeneous distribution of the particles induces bending of the structure when inflated, as a result of asymmetric stiffness of the composite. The bilayer composites were then characterized with a scanning electron microscopy and thermogravimetric analysis. The bending performance and the axial expansion of the actuator were discussed for manipulation applications in soft robotics and bioengineering. The magnetically assisted manufacturing process for the soft bending actuator is a promising technique for various applications in soft robotics.

  4. Cluster-Assembled Soft Magnets for Power Electronics Applications

    National Research Council Canada - National Science Library

    Leslie-Pelecky, Diandra L

    2006-01-01

    This project used inert-gas condensation (IGC) to fabricate model nanostructured systems with the goal of better understanding the mechanisms responsible for decreasing the coercivity in soft magnetic materials...

  5. Soft magnetic properties of MnZn ferrites prepared by powder injection moulding

    Directory of Open Access Journals (Sweden)

    Mitrović N.S.

    2012-01-01

    Full Text Available In this study, properties of soft-magnetic manganese zinc ferrite manufactured by powder injection moulding - PIM technology were presented. A powder consisting of Mn1- xZnxFe2O4 with small addition of hematite □-Fe2O3 was mixed with an organic binder (wax and thermoplastic to form ferrite feedstock. The ferrite feedstock was injected in a mould with a cavity shaped like a small cylinder with a hole on the main axis. Injection moulded samples were then solvent, thermally debinded and sintered in air atmosphere. Structure of sintered sample was characterized using X-ray diffractometry, scanning electron microscopy and thermomagnetic measurements. Magnetic properties were measured by hysteresis graph at different frequencies up to 1 kHz. Sintered sample contains a mixture of two phases Mn0.6Zn0.4Fe2O4 (68 wt. % and α-Fe2O3 (32 wt. %. The Curie temperature is TC ≈ 220°C for the green sample but after the heating up to 470°C, TC increase up to about 300°C. The high increase of normalized magnetic permeability of about 800 % was observed due to melting and burning of binder. The hysteresis loop of sintered MnZn ferrite toroidal cores has an R-shape with saturation of 0.44 T and remanence ratio of 0.49. The low value of coercivity (only 47 A/m was related to the presence of α-Fe2O3 crystalline phase and attained already optimum density (ρ ≈ 4.8 g/cm³ i.e. observed low level of porosity. Attained relative magnetic permeability μr ≈ 2000 as well as power losses Ps ≈ 21 W/kg for sintered sample (at 1 kHz; 0.39 T is in agreement with the MnZn ferrite commercial samples. [Projekat Ministarstva nauke Republike Srbije, br. OI 172057

  6. Magnetic annealing of plated high saturation magnetization soft magnetic FeCo alloy films

    International Nuclear Information System (INIS)

    Sun, N.X.; Mehdizadeh, S.; Bonhote, C.; Xiao, Q.F.; York, B.

    2005-01-01

    Plated high saturation magnetization soft magnetic FeCo films were annealed in magnetic field; their stress, microstructure, and magnetic properties were investigated. The FeCo films consistently showed a reduced tensile stress after magnetic annealing at temperatures above 255 deg. C. The annealing temperature was found to be the primary factor in reducing the tensile stress, while annealing time was secondary. The FeCo films showed improved soft magnetic properties when subjected to an easy axis annealing with reduced coercivities along both the easy axis and hard axis. Hard axis annealing on these FeCo films caused a switched easy and hard axis in these films when the annealing temperature is above 255 deg. C

  7. Magnetic viscosity, susceptibility and fluctuation fields in sintered NdFeB

    International Nuclear Information System (INIS)

    Tomka, G.J.; Bissell, P.R.; O'Grady, K.; Chantrell, R.W.

    1990-01-01

    Magnetic viscosity and irreversible susceptibility of a sample of anisotropic sintered NdFeB have been measured using a vibrating sample magnetometer. The fluctuation field as a function of local field is found to decrease with increasing demagnetizing field with a dip at the coercivity. This behavior is compared with an existing computer model based on a non-interacting system of fine, uniaxial, randomly oriented particles

  8. Improved magnetic properties and thermal stabilities of Pr-Nd-Fe-B sintered magnets by Hf addition

    Science.gov (United States)

    Jiang, Qingzheng; Lei, Weikai; Zeng, Qingwen; Quan, Qichen; Zhang, Lili; Liu, Renhui; Hu, Xianjun; He, Lunke; Qi, Zhiqi; Ju, Zhihua; Zhong, Minglong; Ma, Shengcan; Zhong, Zhenchen

    2018-05-01

    Nd2Fe14B-type permanent magnets have been widely applied in various fields such as wind power, voice coil motors, and medical instruments. The large temperature dependence of coercivity, however, limits their further applications. We have systematically investigated the magnetic properties, thermal stabilities and coercivity mechanisms of the (Pr0.2Nd0.8)13Fe81-xB6Hfx (x=0, 0.5) nanocrystalline magnets fabricated by a spark plasma sintering (SPS) technique. The results indicate that the influence of Hf addition is significant on magnetic properties and thermal stabilities of the (PrNd)2Fe14B-type sintered magnets. It is shown that the sample with x = 0.5 at 300 K has much higher coercivity and remanent magnetization than those counterparts without Hf. The temperature coefficients of remanence (α) and coercivity (β) of the (Pr0.2Nd0.8)13Fe81-xB6Hfx magnets are improved significantly from -0.23 %/K, -0.57 %/K for the sample at x = 0 to -0.17 %/K, -0.49 %/K for the sample at x = 0.5 in the temperature range of 300-400 K. Furthermore, it is found out that the domain wall pinning mechanism is more likely responsible for enhancing the coercivity of the (Pr0.2Nd0.8)13Fe81-xB6Hfx magnets.

  9. Improving soft magnetic properties of Mn-Zn ferrite by rare earth ions doping

    Science.gov (United States)

    Zhong, X. C.; Guo, X. J.; Zou, S. Y.; Yu, H. Y.; Liu, Z. W.; Zhang, Y. F.; Wang, K. X.

    2018-04-01

    Mn-Zn ferrites doped with different Sm2O3, Gd2O3, Ce2O3 or Y2O3 were prepared by traditional ceramic technology using industrial pre-sintered powders. A small amount of Sm2O3, Gd2O3, Ce2O3 or Y2O3 can significantly improve the microstructure and magnetic properties. The single spinel phase structure can be maintained with the doping amount up to 0.07 wt.%. A refined grain structure and uniform grain size distribution can be obtained by doping. For all rare earth oxides, a small amount of doping can significantly increase the permeability and reduce the coercivity and magnetic core loss. The optimized doping amount for Sm2O3 or Gd2O3 is 0.01 wt.%, while for Ce2O3 or Y2O3 is 0.03 wt.%. A further increase of the doping content will lead to reduced soft magnetic properties. The ferrite sample with 0.01 wt.% Sm2O3 exhibits the good magnetic properties with permeability, loss, and coercivity of 2586, 316 W/kg, and 24A/m, respectively, at 200 mT and 100 kHz. The present results indicate that rare earth doping can be suggested to be one of the effective ways to improve the performance of soft ferrites.

  10. Self-Assembly of Magnetic Colloids in Soft Confinement

    NARCIS (Netherlands)

    Liu, P.

    2016-01-01

    The central theme in this thesis is the effect of the soft confinements consisting of molecular microtubes and fluid interfaces, on the self-assembly of colloids. We have specially focused on the synthesis of magnetic colloids and the magnetic responses of self-assembled structures including

  11. Hydrogen Decrepitation Press-Less Process recycling of NdFeB sintered magnets

    Science.gov (United States)

    Xia, Manlong; Abrahamsen, Asger B.; Bahl, Christian R. H.; Veluri, Badrinath; Søegaard, Allan I.; Bøjsøe, Poul

    2017-11-01

    A Hydrogen Decrepitation Press-Less Process (HD-PLP) recycling method for recycling of anisotropic NdFeB magnets is demonstrated. The method combines hydrogen decrepitation (HD) disintegration of the initial magnet, powder sieving and the Press-Less Process (PLP), where hydride powder is sintered in a graphite mold. Coercivities up to 534 kA/m were obtained in porous samples based on powder size d 100 μm. The coercivity reached Hci = 957 kA/m being 86% of the original N48M material without addition of rare earth elements.

  12. Random and uniform anisotropy in soft magnetic nanocrystalline alloys (invited)

    International Nuclear Information System (INIS)

    Flohrer, Sybille; Herzer, Giselher

    2010-01-01

    In amorphous and nanocrystalline transition metal based alloys with low magnetostriction, the soft magnetic properties are mainly determined by magneto-elastic and annealing-induced anisotropies which are uniform on a scale much larger than the exchange correlation length. Though, in the nanocrystalline case, there are situations where the random magneto-crystalline anisotropy of the grains becomes relevant. The present paper surveys the interplay between the random magneto-crystalline and the uniform field-induced anisotropy in nanocrystalline FeCuNbSiB soft magnets. Typical examples where the contribution of the random anisotropy becomes particularly visible in the magnetic domain structure will be reviewed.

  13. On the cooling rate of strip cast ingots for sintered NdFeB magnets

    Energy Technology Data Exchange (ETDEWEB)

    Yu, L.Q. [State Key Lab of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); Yan, M. [State Key Lab of Silicon Materials, Zhejiang University, Hangzhou 310027 (China)]. E-mail: mse_yanmi@dial.zju.edu.cn; Wu, J.M. [State Key Lab of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); Luo, W. [State Key Lab of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); Cui, X.G. [State Key Lab of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); Ying, H.G. [State Key Lab of Silicon Materials, Zhejiang University, Hangzhou 310027 (China)

    2007-04-30

    Effects of the cooling rate of strip cast ingots on magnetic properties of sintered NdFeB magnets were studied. It is found that the magnetic properties greatly depend on wheel speed due to different alloy microstructures, which affect readily the particle size distribution of powders obtained after the subsequent jet milling. At higher cooling rate, interlamellar spacing between Nd-rich platelets of the alloy was small, resulting in a lower saturated magnetization due to increased amounts of small particles after jet milling. With further decreasing cooling rate, the resultant larger interlamellar spacing led to too large particle sizes as well as a more irregular shape; thus deteriorated the magnetic properties of the final magnet. A model was developed to disclose the effects of particle sizes on the magnetic alignment process. In the current investigation, optimum magnetic properties of the final magnets were obtained with a cooling rate of 2.6 m/s for preparing the strip. The magnets made by conventionally cast ingot technique exhibited the lowest magnetic properties because of the slowest cooling rate.

  14. Low Cost Soft Magnets for Giant Magnetoimpedance-based Sensors

    Science.gov (United States)

    Kurniawan, Michael

    Over several decades, soft magnets have been studied for various applications ranging from memory devices, sensing devices, power transformers, inductors, etc. The types of soft magnets studied include amorphous, crystalline, and also nanocomposites. Both metals and oxides (ferrites) are prevalent among soft magnetic materials. Various soft magnets with wide range of properties have been developed using different synthesis techniques such as melt spinning, in-water rotating wheel, and planar flow casting. Progress has also been made on processing and post-synthesis treatments (e.g. field annealing, strain annealing, etc.) to tailor soft magnetic properties for different applications. In particular, the ability to induce significant transverse magnetic anisotropy in ribbons contributes to forcing switching of the magnetization by rotational processes. The elimination of switching by domain wall motion leads to the reduction of anomalous eddy current losses at high frequencies. In Chapter 2, background theories and research motivation relevant to this work are discussed. This chapter explains the synthesis, post-synthesis treatment, and properties of soft magnets. This chapter also details further the Giant Magnetoimpedance (GMI) effect and its applications. Emphasis is placed on GMI-based sensing technologies for oil/gas exploration and other types of deep drilling. Following this, Chapter 3 explicitly states the primary goals of this research work. The next chapter of the thesis discusses about the first theme of this work; GMI effect in soft magnets. GMI-based sensors are attractive due to their high sensitivity and simple operation. Previous work has shown how structures and properties (e.g. permeability, anisotropy, etc) influence the GMI ratio in soft magnets. However, one area that has not been thoroughly explored is the GMI measurement at high temperature and its influence on the performance of high temperature magnetic sensors. This work explores this

  15. The observation of resistivity change on the ultrasonic treated Fe-Cr ODS sinter alloy under magnetic field influence

    Science.gov (United States)

    Silalahi, Marzuki; Purwanto, Setyo; Mujamilah; Dimyati, Arbi

    2018-03-01

    About the observation of resistivity change on the ultrasonic treated Fe-Cr ODS sinter alloy under magnetic field influence. This paper reported about the observation of the resistivity change in the ultrasonic pre-treated Fe-Cr ODS sinter alloy under the influence of magnetic field at the Center for Science and Technology of Advanced Material, Nuclear Energy Agency of Indonesia. Fe-Cr ODS alloy were sinthesized by vacuum sintering of Fe- and Cr-powder dispersed Y2O3. However, before sintering the powder mixture was subjected to the irradiation process by ultrasonic for 50 hours at 20 kHz and then isostatic pressed up to 50.91 MPa to form a coin of 10 mm in diameter. LCR meassurement revealed the decreasing of resistivity about 3 times by increasing of applied magnetic field from 0 to 70 mT. In addition, VSM meassurement was performed on both as powder material and as sintered sample. The results showed increasing the magnetization with increasing magnetic field and the curve exhibits almost exact symmetry S-form with small hysterese indicating fast changing magnetization and demagnetization capability without energy loss. This opens strong speculations about the existence of magnetoresistant property of the material which is important for many application in field of sensors or electro magnetic valves.

  16. Magnetically Assisted Bilayer Composites for Soft Bending Actuators

    OpenAIRE

    Jang, Sung-Hwan; Na, Seon-Hong; Park, Yong-Lae

    2017-01-01

    This article presents a soft pneumatic bending actuator using a magnetically assisted bilayer composite composed of silicone polymer and ferromagnetic particles. Bilayer composites were fabricated by mixing ferromagnetic particles to a prepolymer state of silicone in a mold and asymmetrically distributed them by applying a strong non-uniform magnetic field to one side of the mold during the curing process. The biased magnetic field induces sedimentation of the ferromagnetic particles toward o...

  17. Magnetic properties and sintering characteristics of NiZn(Ag, Cu) ferrite for LTCC applications

    Energy Technology Data Exchange (ETDEWEB)

    Hong, S.H. [Department of Metallurgical and Materials Engineering, Hanyang University, Ansan, Kyunggi-Do 425-791 (Korea, Republic of); Park, J.H. [Department of Metallurgical and Materials Engineering, Hanyang University, Ansan, Kyunggi-Do 425-791 (Korea, Republic of); Institute of Diamond Tools, Shinhan Diamond Industrial Company, Incheon 405-100 (Korea, Republic of); Choa, Y.H. [Department of Chemical Engineering, Hanyang University, Ansan, Kyunggi-Do 425-791 (Korea, Republic of); Kim, J. [Department of Metallurgical and Materials Engineering, Hanyang University, Ansan, Kyunggi-Do 425-791 (Korea, Republic of)]. E-mail: jina@hanyang.ac.kr

    2005-04-15

    For applying low-temperature co-fired ceramics technology to ferrite with Ag electrode, Ni{sub 0.2}Zn{sub 0.5}Cu{sub 0.3} ferrite nanopowders with AgO contents of 0, 0.1 and 1 wt% were synthesized using metal nitrates. Thick films fabricated by a doctor blade method were sintered for 72 h at different temperatures (925, 900, 875, 850 deg. C). As a result, the saturation magnetization, coercivity and permeability of Ni{sub 0.2}Zn{sub 0.5}Cu{sub 0.3} ferrite with AgO contents of 0.1 wt% at a sintering temperature of 875 deg. C were 4.05 kG, 4 Oe and 521, respectively, which were close to those of bulk NiZn ferrite.

  18. Magnetic imaging with polarized soft x-rays

    Science.gov (United States)

    Fischer, Peter

    2017-08-01

    Properties, behavior, and functionalities of magnetic materials are largely determined by microscopic spin textures, particularly their formation into domains, their coupling mechanisms and their dynamic behavior. Advanced characterization tools are prerequisite to fundamentally understand magnetic materials and control spins for novel magnetic applications. Magnetic microscopies allow us to image directly the static and dynamic features of the relevant microscopic magnetization structures in advanced magnetic materials and thus provide detailed and direct insight into underlying physical phenomena. A large variety of magnetic imaging techniques has become available with particular strengths but also certain limitations. Essential features of magnetic microscopies are a high spatial resolution down into the nanometer regime, as this is the fundamental length scale of magnetic exchange interaction and the ultimate length scale in advanced magnetic technologies; magnetic and elemental sensitivity with quantitative capabilities, as the properties of advanced magnetic materials can be tailored by combining various magnetic elements and their magnetic moments; high temporal resolution from the ns to the fs regime to understand the associated spin dynamic processes and the functionality in magnetic devices; tomographic capabilities with nm resolution as new directions in nanoscience and technologies are moving into 3 dim arrangements of spin structures; and interfacial sensitivity as novel ways to control spins harness either the coupling across interfaces in multilayered structures or utilize non-collinear spin arrangements, which often occur from symmetry breaking at surfaces and interfaces. The unique properties of polarized soft x-rays, their abundancy and specific interaction with magnetic materials in form of dichroism effects have triggered the development of various magnetic x-ray imaging techniques. This review will provide an overview of the current state

  19. Magnetic and structural properties of spark plasma sintered nanocrystalline NdFeB-powders

    Energy Technology Data Exchange (ETDEWEB)

    Wuest, H., E-mail: holger.wuest@de.bosch.com [Robert Bosch GmbH, Postfach 10 60 50, 70049 Stuttgart (Germany); Bommer, L., E-mail: lars.bommer@de.bosch.com [Robert Bosch GmbH, Postfach 10 60 50, 70049 Stuttgart (Germany); Weissgaerber, T., E-mail: thomas.weissgaerber@ifam-dd.fraunhofer.de [Fraunhofer Institute for Manufacturing Technology and Advanced Materials (IFAM), Branch Lab Dresden, Winterbergstraße 28, 01277 Dresden (Germany); Kieback, B., E-mail: bernd.kieback@ifam-dd.fraunhofer.de [Fraunhofer Institute for Manufacturing Technology and Advanced Materials (IFAM), Branch Lab Dresden, Winterbergstraße 28, 01277 Dresden (Germany); Technische Universität Dresden, Institute for Materials Science, Helmholtzstraße 7, 01069 Dresden (Germany)

    2015-10-15

    Near-stoichiometric NdFeB melt-spun ribbons have been subjected to spark plasma sintering varying the process temperature T{sub SPS} and pressure p{sub SPS} between 600 and 800 °C and 50–300 MPa, respectively. Produced bulk magnets were analyzed regarding microstructure and magnetic properties. For all samples the intrinsic coercivity H{sub c,J} gradually decreases with increasing sintering temperature and pressure, while residual induction B{sub r} increases simultaneously with sample density. Densities close to the theoretical limit were achieved for p{sub SPS}≥90 MPa and T{sub SPS}≥650 °C. With increasing T{sub SPS} precipitations of Nd-rich and Fe-rich phases have been observed as a result of a decomposition of the hard magnetic Nd{sub 2}Fe{sub 14}B phase. Under optimum sintering conditions of p{sub SPS}=300 MPa and T{sub SPS}=650 °C high-density bulk magnets with H{sub c,J}=652 kA/m, B{sub r}=0.86 T and (BH){sub max}=106 kJ/m{sup 3} have been produced. - Highlights: • Consolidation close to the theoretical density for p{sub SPS}≥90 MPa and T{sub SPS}≥650 °C. • Highest (BH){sub max} of 106 kJ/m{sup 3} for p{sub SPS}=300 MPa and T{sub SPS}=650 °C with 98% theo. • H{sub c,J} gradually decreases with increasing T{sub SPS}, while B{sub r} increases simultaneously with. • With increasing T{sub SPS}, Nd- and Fe-rich precipitations are observed. • Reduction in t{sub SPS} is economic but does not increase (BH){sub max} significantly.

  20. Analysis of the demagnetization process of Nd-Fe-B sintered magnets at elevated temperatures by magnetic domain observation using a Kerr microscope

    Science.gov (United States)

    Takezawa, M.; Ogimoto, H.; Kimura, Y.; Morimoto, Y.

    2014-05-01

    Magnetization reversal and its propagation in sintered Nd-Fe-B magnets were clearly observed at elevated temperatures up to 150 °C using a Kerr microscope, image processing, and photo editing. Simultaneous magnetization reversal in several grains along the easy axis direction occurred at elevated temperature, and the extent of simultaneous magnetization reversal increased with temperature. This indicates that reduction in the coercivity of Nd-Fe-B sintered magnets at elevated temperatures is attributable to decrease in anisotropy and insufficient pinning of domain walls at grain boundaries.

  1. Synthesis, microstructure and magnetic properties of Fe3Si0.7Al0.3@SiO2 core-shell particles and Fe3Si/Al2O3 soft magnetic composite core

    Science.gov (United States)

    Wang, Jian; Fan, Xi'an; Wu, Zhaoyang; Li, Guangqiang

    2015-11-01

    Fe3Si0.7Al0.3@SiO2 core-shell particles and Fe3Si/Al2O3 soft magnetic composite core have been synthesized via a modified stöber method combined with following high temperature sintering process. Most of conductive Fe3Si0.7Al0.3 particles could be uniformly coated by insulating SiO2 using the modified stöber method. The Fe3Si0.7Al0.3@SiO2 core-shell particles exhibited good soft magnetic properties with low coercivity and high saturation magnetization. The reaction 4Al+3SiO2=2α-Al2O3+3Si took place during the sintering process. As a result the new Fe3Si/Al2O3 composite was formed. The Fe3Si/Al2O3 composite core displayed more excellent soft magnetic properties, better frequency stability at high frequencies, much higher electrical resistivity and lower core loss than the pure Fe3Si0.7Al0.3 core. The method of introducing insulating layers surrounding magnetic particles provides a promising route to develop new and high compact soft magnetic materials with good magnetic and electric properties.

  2. Effect of the variation-temperature-sintering on microstructure and superconducting properties of Bi-2223/Ag tapes in high magnetic fields

    International Nuclear Information System (INIS)

    Lu, X.Y.; Watanabe, K.; Yi, D.; Chen, H.; Nagata, A.

    2011-01-01

    The microstructure and superconducting properties of Bi-2223/Ag tapes fabricated in the variation-temperature-sintering process during high magnetic fields were investigated. The flat tapes 0.6 mm in thickness and 3 mm in width set on the an isolite holder were sintered in following conditions for 120 h in 10 T magnetic fields in air: (1) isothermal-temperature-sintering at 835 deg. C, (2) variation-temperature-sintering from 840 to 835 deg. C, (3) variation-temperature-sintering from 845 to 835 deg. C, (4) variation-temperature-sintering from 850 to 835 deg. C, (5) variation-temperature- sintering from 835 to 840 deg. C. The results show that the tapes variation-temperature-sintered from high temperature to low temperature show stronger c-axis alignment of the Bi-2223 phase and higher J c value than that isothermal-temperature-sintered and variation-temperature-sintered from low temperature to high temperature. However, the starting temperature (above 850 deg. C) of the variation-temperature-sintering from high temperature to low temperature is too high, the proportion of Bi-2223 phase decreases largely. The tape variation-temperature-sintered from 845 to 835 deg. C in a 10 T magnetic fields shows a strong c-axis alignment of the Bi-2223 phase, a high proportion of Bi-2223 phase, and the highest J c value.

  3. Influence of sintering temperature on structural, dielectric and magnetic properties of Li substituted CuFe{sub 2}O{sub 4} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Manikandan, V. [Department of Physics, Government College of Technology, Coimbatore, Tamil Nadu-13 (India); Vanitha, A., E-mail: avanitha570@gmail.com [Department of Physics, Government College of Technology, Coimbatore, Tamil Nadu-13 (India); Kumar, E. Ranjith, E-mail: ranjueaswar@gmail.com [Department of Physics, Dr. NGP Institute of Technology, Coimbatore, Tamil Nadu-48 (India); Kavita, S. [Centre for Automotive Energy Materials, International Advanced Research Centre for Powder Metallurgy and New Materials, Chennai, Tamil nadu-113 (India)

    2017-03-15

    Lithium substituted copper ferrite (Li{sub x}Cu{sub (1−x)}Fe{sub 2}O{sub 4}) nanoparticles have been successfully synthesized by chemical co-precipitation method. XRD analysis confirms the formation of Li substituted Cu ferrite with crystallite size in the range of 17–41 nm. The SEM and TEM microstructure of nanoparticle is well characterized and fine nature improves while increasing of Li concentration and also FTIR analysis exhibit the usual behaviour of ferrite materials. The dielectric properties of the material are increased with increase of concentration. The hysteresis loop is increased which is evident from the increase of saturation magnetization which implies that soft magnetic material has altered into hard magnetic material - Highlights: • Nano rod formation has been initiated while increase of Li concentration. • Under the strong influence of sintering temperature, the soft magnetic behaviour has been changed into hard magnetic behaviour. • The average crystallite sizes of the samples are in the range of 17-41 nm.

  4. Production of NdFeB powders by HDDR from sintered magnets

    International Nuclear Information System (INIS)

    Janasi, S.R.; Rodrigues, D.; Landgraf, F.J.G.; Campos, M.F. de

    2010-01-01

    The production of NdFeB powders by the HDDR process from metallic alloys has been widely investigated. Different HD and DR conditions have been used to induce anisotropy and to improve the intrinsic coercivity of the obtained powders. The purpose of this study is to apply the HDDR process in the reprocessing of NdFeB sintered magnet scraps. There were investigated different processing conditions as temperature and time of desorption and recombination (DR). The results of X ray diffraction show the formation of the magnetic phase Nd 2 Fe 14 B in all the investigated conditions. Magnetic measurements by vibrating sample magnetometer indicate that powders with intrinsic coercivity up to 790 kA/m were obtained. (author)

  5. Magnetically assisted bilayer composites for soft bending actuators

    NARCIS (Netherlands)

    Jang, S.H.; Na, Seon Hong; Park, Yong Lae

    2017-01-01

    This article presents a soft pneumatic bending actuator using a magnetically assisted bilayer composite composed of silicone polymer and ferromagnetic particles. Bilayer composites were fabricated by mixing ferromagnetic particles to a prepolymer state of silicone in a mold and asymmetrically

  6. Tuning Ce distribution for high performanced Nd-Ce-Fe-B sintered magnets

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Xiaodong [School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048 (China); Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201 (China); Guo, Shuai; Chen, Kan; Chen, Renjie; Lee, Don [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201 (China); You, Caiyin, E-mail: caiyinyou@xaut.edu.cn [School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048 (China); Yan, Aru, E-mail: aruyan@nimte.ac.cn [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201 (China)

    2016-12-01

    A dual-alloy method was applied to tune the distribution of Ce for enhancing the performance of Nd-Ce-Fe-B sintered magnets with a nominal composition of (Nd{sub 0.75}Ce{sub 0.25}){sub 30.5}Fe{sub bal}Al{sub 0.1}Cu{sub 0.1}B. In comparison to the single alloy of (Nd{sub 0.75}Ce{sub 0.25}){sub 30.5}Fe{sub bal}Al{sub 0.1}Cu{sub 0.1}B, the coercivity was enhanced from 10.3 kOe to 12.1 kOe and the remanence was increased from 13.1 kG to 13.3 kG for the magnets with a dual-alloy method. In addition, the remanence temperature coefficient α and coercivity temperature coefficient β were also slightly improved for the magnet with the dual alloys. The results of microstructure characterizations show the uniform distribution of Ce for the magnet with a single alloy, and the coexistence of the Ce-rich and Ce-lean regions for the magnet with the dual alloys. In combinations with the nucleation of reversal domains and magnetic recoil curves, the property enhancement of magnets with a dual-alloy method was well explained. - Highlights: • Improved magnetic properties were obtained in dual-alloy magnet. • This is due to the tuning of Ce distribution and the change in microstructure. • The magnetic hardening effect can be observed in dual-alloy magnet.

  7. Technique for recovering rare-earth metals from spent sintered Nd-Fe-B magnets without external heating

    Directory of Open Access Journals (Sweden)

    Ryo Sasai

    2016-06-01

    Full Text Available To selectively recover rare-earth metals with higher purity from spent sintered Nd-Fe-B magnets without external heating, we investigated the mechano-chemical treatment of spent sintered Nd-Fe-B magnet powder with a reaction solution of HCl and (COOH2 at room temperature. The results of various experiments showed that the mechano-chemical treatment with HCl and (COOH2 is very effective for recovering the rare-earth metals contained in spent sintered Nd-Fe-B magnet powder; the recovery rate and purity of the rare-earth metals were 95.3 and 95.0 mass%, respectively, under optimal conditions ([HCl] = 0.2 mol/dm3 and [(COOH2] = 0.25 mol/dm3.

  8. Development of P/M Fe–P soft magnetic materials

    Indian Academy of Sciences (India)

    In conventional powder metallurgy, involving compaction and sintering, high phosphorous content (up to. 0·7%) in Fe-based alloys exhibit attractive set of mechanical and magnetic properties. These powder-processed alloys suffer from increasing volumetric shrinkage during sintering as phosphorous is increased beyond ...

  9. Comparative Study of Structural, Electrical, and Magnetic Behaviour of Ni-Cu-Zn Nanoferrites Sintered by Microwave and Conventional Techniques

    Directory of Open Access Journals (Sweden)

    Biju Thangjam

    2017-01-01

    Full Text Available Ni0.8-xCuxZn0.2Fe2O4 spinel type ferrite nanoparticles have been synthesized by citrate precursor method. These nanoparticles were then given heat treatment using microwave and conventional sintering techniques. Various characterizations using X-ray powder diffraction (XRD, scanning electron microscope (SEM, LCR meter, and B-H loop tracer were carried out on the sintered specimens. The XRD spectra of these ferrites confirmed the formation of spinel structure. The average crystallite size calculated using Scherrer’s formula was found to be in the nanometer range, its value varying from 33 nm to 39 nm. Microwave sintered samples exhibited superior electrical and magnetic behaviour over their conventionally sintered counterparts. Feasibility of low temperature synthesis and promising properties will render these ferrites suitable for multilayer chip inductor applications.

  10. The preparation of sintered NdFeB magnet with high-coercivity and high temperature-stability

    Energy Technology Data Exchange (ETDEWEB)

    Yan, G H; Chen, R J; Ding, Y; Guo, S; Lee, Don; Yan, A R, E-mail: yangh@nimte.ac.cn [Zhejiang province Key Laboratory of Magnetic Materials and Application Technology, Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201 (China)

    2011-01-01

    The NdFeB magnets with high intrinsic coercivity have been produced by using the conventional powder metallurgy method (including SC, HD and JM) of sintered NdFeB magnets. The effects of grain boundary phases on the microstructure and magnetic properties of as-sintered and annealed magnets have been tried to investigate. Also the Curie temperature of the magnets was studied. By adopting suitable component ratio of some heavy rare-earth atoms and some micro-quantity additives, we have prepared high-coercivity sintered NdFeB magnets with magnetic properties of {sub j}H{sub c}=36.3kOe, B{sub r}=11.7kGs and (BH){sub max}=34.0MGOe. The temperature coefficient of residual magnetic flux of the magnets (between 20 and 200 deg. C) is -0.113%/deg. C, while the temperature coefficient of intrinsic coercivity -0.355%/deg. C. The Curie temperature of the magnets is about 342 deg. C.

  11. The preparation of sintered NdFeB magnet with high-coercivity and high temperature-stability

    International Nuclear Information System (INIS)

    Yan, G H; Chen, R J; Ding, Y; Guo, S; Lee, Don; Yan, A R

    2011-01-01

    The NdFeB magnets with high intrinsic coercivity have been produced by using the conventional powder metallurgy method (including SC, HD and JM) of sintered NdFeB magnets. The effects of grain boundary phases on the microstructure and magnetic properties of as-sintered and annealed magnets have been tried to investigate. Also the Curie temperature of the magnets was studied. By adopting suitable component ratio of some heavy rare-earth atoms and some micro-quantity additives, we have prepared high-coercivity sintered NdFeB magnets with magnetic properties of j H c =36.3kOe, B r =11.7kGs and (BH) max =34.0MGOe. The temperature coefficient of residual magnetic flux of the magnets (between 20 and 200 deg. C) is -0.113%/deg. C, while the temperature coefficient of intrinsic coercivity -0.355%/deg. C. The Curie temperature of the magnets is about 342 deg. C.

  12. A preliminary electron backscattered diffraction study of sintered NdFeB-type magnets.

    Science.gov (United States)

    Lillywhite, S J; Williams, A J; Davies, B E; Harris, I R

    2002-03-01

    This paper reports, for the first time, the use of electron backscattered diffraction (EBSD) to study orientation in sintered NdFeB type magnets. The magnetic properties of NdFeB magnets are greatly improved if a strong crystallographic texture is firstly achieved, namely, the direction of the c-axis is along the direction of magnetization. A systematic survey of sample preparation techniques showed that samples that were mechanically polished and then etched gave the most reliable EBSD data. Analyses were made using both fully automated EBSD scans and by EBSD measurements taken after manual movement of the beam. The EBSD results are presented as secondary electron SEM micrographs, orientation images and 001 pole figures. For the selection of grains investigated, the deviation of the c-axis was shown to be between 10 degrees and 30 degrees from the ideal [001]//magnetization direction. It is demonstrated that EBSD is a valuable tool for characterizing the microstructure and texture relationships and for assessing the performance of the processing routes of NdFeB magnets.

  13. Compression Molding and Novel Sintering Treatments for Alnico Type-8 Permanent Magnets in Near-Final Shape with Preferred Orientation

    Science.gov (United States)

    Kassen, Aaron G.; White, Emma M. H.; Tang, Wei; Hu, Liangfa; Palasyuk, Andriy; Zhou, Lin; Anderson, Iver E.

    2017-09-01

    Economic uncertainty in the rare earth (RE) permanent magnet marketplace, as well as in an expanding electric drive vehicle market that favors permanent magnet alternating current synchronous drive motors, motivated renewed research in RE-free permanent magnets like "alnico," an Al-Ni-Co-Fe alloy. Thus, high-pressure, gas-atomized isotropic type-8H pre-alloyed alnico powder was compression molded with a clean burn- out binder to near-final shape and sintered to density >99% of cast alnico 8 (full density of 7.3 g/cm3). To produce aligned sintered alnico magnets for improved energy product and magnetic remanence, uniaxial stress was attempted to promote controlled grain growth, avoiding directional solidification that provides alignment in alnico 9. Successful development of solid-state powder processing may enable anisotropically aligned alnico magnets with enhanced energy density to be mass-produced.

  14. Injection-Molded Soft Magnets Prepared from Fe-Based Metallic Glass: Mechanical and Magnetic Properties

    Science.gov (United States)

    Zhong, Tian; Huang, Ran; Huang, Jia; Ouyang, Wei

    2015-10-01

    The injection-molded metallic glass soft magnet is prepared from the powder of melt-spun ribbon of Fe36Co36B20Si4Nb4 glassy alloy and Nylon 6,6 of wt.% from 5 to 20 via the polymer injection molding technology. The product is characterized by the SEM, mechanical, and magnetic test. The results indicate that this type of materials has comparable mechanical properties and morphological feature with the conventional injection-molded NdFeB magnet and exhibits excellent soft magnetic behaviors. The magnetic properties of the injected magnets are compared with the raw metallic glass, solvent-casted resin bonding magnets, and thermal-treated magnets to confirm that the processing temperature of Nylon injection does not affect the magnetism. The injection technology is a practical processing method to be applied on the metallic glass for potential usage.

  15. Nanocrystalline NdFeB magnet prepared by mechanically activated disproportionation and desorption-recombination in-situ sintering

    International Nuclear Information System (INIS)

    Xiaoya, Liu; Yuping, Li; Lianxi, Hu

    2013-01-01

    The process of mechanically activated disproportionation and desorption-recombination in-situ sintering was proposed to synthesize highly densified nanocrystalline NdFeB magnet, and its validity was demonstrated by experimental investigation with the use of a Nd 16 Fe 76 B 8 (atomic ratio) alloy. Firstly, the as-cast alloy was disproportionated by mechanical milling in hydrogen, with the starting micron-sized Nd 2 Fe 14 B phase decomposed into an intimate mixture of nano-structured NdH 2.7 , Fe 2 B and α-Fe phases. The as-disproportionated alloy powders were compacted by cold pressing and then subjected to desorption-recombination in-situ sintering. The microstructure of both the as-disproportionated and the subsequently sintered samples was characterized by X-ray diffraction and electron transmission microscopy, respectively. The magnetic properties of the sintered samples were measured by using vibrating sample magnetometer. The results showed that, by vacuum sintering, not only was the powder compact consolidated, but also the as-disproportionated microstucture transformed into nanocrystalline Nd 2 Fe 14 B phase via the well-known desorption-recombination reaction, thus giving rise to nanocrystalline NdFeB magnet. In the present study, the optimal sintering parameters were found to be 780 °C×30 min. In this case, the coercivity, the remanence, and maximum energy product of the magnet sample achieved 0.8 T, 635.3 kA/m, and 106.3 kJ/m 3 , respectively. - Highlights: ► Nano-structured disproportionated NdFeB alloy powders by mechanical milling in hydrogen. ► Highly densified green magnet compact by cold pressing of as-disproportionated NdFeB alloy powders. ► Nanocrystalline NdFeB magnets by desorption-recombination in-situ sintering under vacuum. ► Magnetic properties significantly improved by relative density enhancement and nanocrystallization of Nd 2 Fe 14 B phase. ► The effects of sintering parameters on magnetic properties and the underlying

  16. Nanocrystalline NdFeB magnet prepared by mechanically activated disproportionation and desorption-recombination in-situ sintering

    Energy Technology Data Exchange (ETDEWEB)

    Xiaoya, Liu; Yuping, Li [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Lianxi, Hu, E-mail: hulx@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2013-03-15

    The process of mechanically activated disproportionation and desorption-recombination in-situ sintering was proposed to synthesize highly densified nanocrystalline NdFeB magnet, and its validity was demonstrated by experimental investigation with the use of a Nd{sub 16}Fe{sub 76}B{sub 8} (atomic ratio) alloy. Firstly, the as-cast alloy was disproportionated by mechanical milling in hydrogen, with the starting micron-sized Nd{sub 2}Fe{sub 14}B phase decomposed into an intimate mixture of nano-structured NdH{sub 2.7}, Fe{sub 2}B and {alpha}-Fe phases. The as-disproportionated alloy powders were compacted by cold pressing and then subjected to desorption-recombination in-situ sintering. The microstructure of both the as-disproportionated and the subsequently sintered samples was characterized by X-ray diffraction and electron transmission microscopy, respectively. The magnetic properties of the sintered samples were measured by using vibrating sample magnetometer. The results showed that, by vacuum sintering, not only was the powder compact consolidated, but also the as-disproportionated microstucture transformed into nanocrystalline Nd{sub 2}Fe{sub 14}B phase via the well-known desorption-recombination reaction, thus giving rise to nanocrystalline NdFeB magnet. In the present study, the optimal sintering parameters were found to be 780 Degree-Sign C Multiplication-Sign 30 min. In this case, the coercivity, the remanence, and maximum energy product of the magnet sample achieved 0.8 T, 635.3 kA/m, and 106.3 kJ/m{sup 3}, respectively. - Highlights: Black-Right-Pointing-Pointer Nano-structured disproportionated NdFeB alloy powders by mechanical milling in hydrogen. Black-Right-Pointing-Pointer Highly densified green magnet compact by cold pressing of as-disproportionated NdFeB alloy powders. Black-Right-Pointing-Pointer Nanocrystalline NdFeB magnets by desorption-recombination in-situ sintering under vacuum. Black-Right-Pointing-Pointer Magnetic properties significantly

  17. Performing quantitative MFM measurements on soft magnetic nanostructures.

    Science.gov (United States)

    Rawlings, Colin; Durkan, Colm

    2012-11-16

    We have extended our previous work (Rawlings et al 2010 Phys. Rev. B 82 085404) on simulating magnetic force microscopy (MFM) images for magnetically soft samples to include an accurate representation of coated MFM tips. We used an array of square 500 nm nanomagnets to evaluate our improved MFM model. A quantitative comparison between model and experiment was performed for lift heights ranging from 20 to 100 nm. No fitting parameters were used in our comparison. For all lift heights the qualitative agreement between model and experiment was significantly improved. At low lift heights, where the magnetic signal was strong, the difference between theory and experiment was less than 30%.

  18. Effects of sintering atmosphere and temperature on structural and magnetic properties of Ni-Cu-Zn ferrite nano-particles: Magnetic enhancement by a reducing atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Gholizadeh, Ahmad, E-mail: gholizadeh@du.ac.ir; Jafari, Elahe, E-mail: ah_gh1359@yahoo.com

    2017-01-15

    In this work, effects of sintering atmosphere and temperature on structural and magnetic properties of Ni{sub 0.3}Cu{sub 0.2}Zn{sub 0.5}Fe{sub 2}O{sub 4} nanoparticles prepared by citrate precursor method have been studied. The structural characterization of the samples by X-ray powder diffraction and FT-IR spectroscopy is evidence for formation of a cubic structure with no presence of impurity phase. Calculated values of crystallite size and unit cell parameter show an increase with sintering temperature under different atmospheres. Variation of saturation magnetization with sintering temperature and atmosphere can be attributed to change of three factors: magnetic core size, inversion parameter and the change of Fe{sup 3+}-ion concentration due to the presence of Fe{sup 4+} and Fe{sup 2+} ions. The saturation magnetization gradually grows with sintering temperature due to increase of magnetic core size and a maximum 63 emu/g was achieved at 600 °C under carbon monoxide-ambient atmosphere. - Highlights: • Different sintering atmosphere and temperature cause substantial differences in Ni{sub 0.3}Cu{sub 0.2}Zn{sub 0.5}Fe{sub 2}O{sub 4} nanoparticles. • The saturation magnetization gradually grows. • A maximum 63 emu/g was achieved at 600 °C under a reducing atmosphere.

  19. Microfluidic magnetic separator using an array of soft magnetic elements

    DEFF Research Database (Denmark)

    Smistrup, Kristian; Lund-Olesen, Torsten; Hansen, Mikkel Fougt

    2006-01-01

    We present the design, fabrication, characterization, and demonstration of a new passive magnetic bead separator. The device operates in an effective state when magnetized by an external magnetic field of only 50 mT, which is available from a tabletop electromagnet. We demonstrate the complete...... capture of 1.0 mu m fluorescent magnetic beads from a 7.5 mu L sample volume traveling at an average linear fluid velocity of 5 mm/s....

  20. Microstructure and magnetic properties of low-temperature sintered CoTi-substituted barium ferrite for LTCC application

    International Nuclear Information System (INIS)

    Chen Daming; Liu Yingli; Li Yuanxun; Zhong Wenguo; Zhang Huaiwu

    2011-01-01

    In this article, the influences of the BaCu(B 2 O 5 ) (BCB) additive on sintering behavior, structure and magnetic properties of iron deficient M-type barium ferrite Ba(CoTi) x Fe 11.8-2x O 19 (BaM) have been investigated. It is found that the maximum sintered densities of BaM change from 86% to 94% as the BCB content varies from 1 to 4 wt%. Single-phase BaM can be detected by the XRD analysis in the sample with 3 wt% BCB sintered at 900 deg. C, and the microstructure is hexagonal platelets with few intragranular pores. This is attributed to the formation of the BCB liquid phase. Meanwhile, the experimental results illuminate that the CoTi ions prefer to occupy the 4f2 and 2b sites and the magnetic properties depend on the amount of CoTi-substitution. In addition, the chemical compatibility between BaM and silver paste is also investigated; it can be seen that BaM is co-fired well with the silver paste and no other second phase is observed. Especially, the 3 wt% BCB-added Ba(CoTi) 0.9 Fe 11 O 19 sintered at 900 deg. C has good properties with the sintered density of 4.9 g/cm 3 , saturation magnetization of 49.7 emu/g and coercivity of 656.6 Oe. These results indicate that it is cost effective in the production of Low Temperature Co-fired Ceramics (LTCC) multilayer devices. - Research highlights: → Systematic investigation on the ion substitution and low-temperature sintering of barium ferrite. → BaCu(B 2 O 5 ) is first successfully used to lower the sintering temperature of barium ferrite. → Densification of BaFe 12 O 19 was speeded up by the BaCu(B 2 O 5 ) liquid phase.

  1. The effect of surface grain reversal on the AC losses of sintered Nd–Fe–B permanent magnets

    International Nuclear Information System (INIS)

    Moore, Martina; Roth, Stefan; Gebert, Annett; Schultz, Ludwig; Gutfleisch, Oliver

    2015-01-01

    Sintered Nd–Fe–B magnets are exposed to AC magnetic fields in many applications, e.g. in permanent magnet electric motors. We have measured the AC losses of sintered Nd–Fe–B magnets in a closed circuit arrangement using AC fields with root mean square-values up to 80 mT (peak amplitude 113 mT) over the frequency range 50 to 1000 Hz. Two magnet grades with different dysprosium content were investigated. Around the remanence point the low grade material (1.7 wt% Dy) showed significant hysteresis losses; whereas the losses in the high grade material (8.9 wt% Dy) were dominated by classical eddy currents. Kerr microscopy images revealed that the hysteresis losses measured for the low grade magnet can be mainly ascribed to grains at the sample surface with multiple domains. This was further confirmed when the high grade material was subsequently exposed to DC and AC magnetic fields. Here a larger number of surface grains with multiple domains are also present once the step in the demagnetization curve attributed to the surface grain reversal is reached and a rise in the measured hysteresis losses is evident. If in the low grade material the operating point is slightly offset from the remanence point, such that zero field is not bypassed, its AC losses can also be fairly well described with classical eddy current theory. - Highlights: • The eddy current losses of sintered Nd–Fe–B magnets were measured. • Field amplitudes up to 113 mT over the frequency range 50 to 1000 Hz were applied. • The Nd–Fe–B magnets showed significant hysteresis losses at low amplitudes (∼100 mT). • The source of such hysteresis losses in sintered Nd–Fe–B magnets was identified. • Two magnet grades with different dysprosium content were investigated

  2. Effect Of DyMn Alloy-Powder Addition On Microstructure And Magnetic Properties Of NdFeB Sintered Magnets

    Directory of Open Access Journals (Sweden)

    Lee M.-W.

    2015-06-01

    Full Text Available Micostructural change and corresponding effect on coercivity of a NdFeB sintered magnet mixed with small amount of DyMn powder was investigated. In the sintered magnet mixed with the DyMn alloy-powder Dy-rich shell was formed at outer layer of the main grains, while Mn was mostly concentrated at Nd-rich triple junction phase (TJP, lowering melting temperature of the Nd-rich phase that eventually improved the microstructural characteristics of the gain boundary phase. The coercivity of a magnet increased more than 3.5 kOe by the mixing of the DyMn alloy-powder.

  3. Anisotropic powder from sintered NdFeB magnets by the HDDR processing route

    Energy Technology Data Exchange (ETDEWEB)

    Sheridan, R.S.; Sillitoe, R.; Zakotnik, M.; Harris, I.R. [School of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Williams, A.J., E-mail: a.j.williams@bham.ac.uk [School of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)

    2012-01-15

    Sintered NdFeB-based scrap magnets were recovered and processed using the HD and HDDR routes. The effects of varying the HDDR processing temperature were investigated (over the range 835-930 deg. C). The disproportion was carried out with a pressure ramp to a maximum of 1000 mbar hydrogen pressure with a 1 h hold time at each step and the optimum recombination conditions were set at 100 mbar with a 20 min hold time. Anisotropic NdFeB powder was produced in all cases with the best magnetic properties achieved at a processing temperature of 880 deg. C, producing powder with a remanence of 1.10({+-}0.02) T and an intrinsic coercivity of 800 ({+-}16) kA m{sup -1} and giving a (BH){sub max} of 129({+-}2.5) kJ m{sup -3}. - Highlights: > Production of anisotropic permanent magnet powder from scrap NdFeB magnets by HDDR. > Reaction pressure increases with increasing processing temperature. > Best magnetic properties achieved by processing at 880 deg. C.

  4. Anisotropic powder from sintered NdFeB magnets by the HDDR processing route

    International Nuclear Information System (INIS)

    Sheridan, R.S.; Sillitoe, R.; Zakotnik, M.; Harris, I.R.; Williams, A.J.

    2012-01-01

    Sintered NdFeB-based scrap magnets were recovered and processed using the HD and HDDR routes. The effects of varying the HDDR processing temperature were investigated (over the range 835-930 deg. C). The disproportion was carried out with a pressure ramp to a maximum of 1000 mbar hydrogen pressure with a 1 h hold time at each step and the optimum recombination conditions were set at 100 mbar with a 20 min hold time. Anisotropic NdFeB powder was produced in all cases with the best magnetic properties achieved at a processing temperature of 880 deg. C, producing powder with a remanence of 1.10(±0.02) T and an intrinsic coercivity of 800 (±16) kA m -1 and giving a (BH) max of 129(±2.5) kJ m -3 . - Highlights: → Production of anisotropic permanent magnet powder from scrap NdFeB magnets by HDDR. → Reaction pressure increases with increasing processing temperature. → Best magnetic properties achieved by processing at 880 deg. C.

  5. Spark plasma sintered Sm(2)Co(17)-FeCo nanocomposite permanent magnets synthesized by high energy ball milling.

    Science.gov (United States)

    Sreenivasulu, G; Gopalan, R; Chandrasekaran, V; Markandeyulu, G; Suresh, K G; Murty, B S

    2008-08-20

    Nanocomposite Sm(2)Co(17)-5 wt% FeCo magnets were synthesized by high energy ball milling followed by consolidation into bulk shape by the spark plasma sintering technique. The evolution of magnetic properties was systematically investigated in milled powders as well as in spark plasma sintered samples. A high energy product of 10.2 MGOe and the other magnetic properties of M(s) = 107 emu g(-1), M(r) = 59 emu g(-1), M(r)/M(s) = 0.55 and H(c) = 6.4 kOe were achieved in a 5 h milled and spark plasma sintered Sm(2)Co(17)-5 wt% FeCo nanocomposite magnet. The spark plasma sintering was carried out at 700 °C for 5 min with a pressure of 70 MPa. The nanocomposite showed a higher Curie temperature of 955 °C for the Sm(2)Co(17) phase in comparison to its bulk Curie temperature for the Sm(2)Co(17) phase (920 °C). This higher Curie temperature can improve the performance of the magnet at higher temperatures.

  6. A theoretical study on critical phenomena of magnetic soft modes

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Xiaoyan [Department of Mathematics, Shanghai University, 99 Shangda Road, 200444 Shanghai (China); Yang, Guohong [Department of Physics, Shanghai University, 99 Shangda Road, 200444 Shanghai (China); Shanghai Key Lab for Astrophysics, 100 Guilin Road, 200234 Shanghai (China); Yan, Ming, E-mail: myan@shu.edu.cn [Department of Physics, Shanghai University, 99 Shangda Road, 200444 Shanghai (China)

    2017-02-01

    Below a threshold magnetic field, domain structures in ferromagnetic samples may start to nucleate from the initially saturated state via either continuous or discontinuous phase transitions. Such processes are usually accompanied by the occurrence of soft spin-wave modes at the critical point. In this paper, we present a theoretical study on the critical phenomena of uniform soft modes in a macrospin model and spatially non-uniform ones in ferromagnetic thin films. The critical exponents of the mode frequency and its polarization are derived. The value is found to be equal to one half, which is directly related to the breaking of a reflection-symmetry in the phase transition. At the critical point, the soft mode becomes linearly polarized, which provides an additional measurable effect of the critical phenomena.

  7. Multi-phase EBSD mapping and local texture analysis in NdFeB sintered magnets

    Energy Technology Data Exchange (ETDEWEB)

    Woodcock, T.G., E-mail: t.woodcock@ifw-dresden.de [IFW Dresden, Institute for Metallic Materials, PO Box 270116, 01171 Dresden (Germany); Gutfleisch, O. [IFW Dresden, Institute for Metallic Materials, PO Box 270116, 01171 Dresden (Germany)

    2011-02-15

    A combination of electron backscatter diffraction and energy-dispersive X-ray spectroscopy has been used to identify the crystal structure and composition of all the phases present in commercially available NdFeB sintered magnets and to map their spatial distribution. The Nd{sub 2}Fe{sub 14}B and NdO grains were shown to have low defect densities. The fcc Nd-rich and Nd{sub 2}O{sub 3} grains had intra-grain misorientation angles of up to 14{sup o}, which was shown to be due to defects. Large numbers ({approx}100) of data points for each phase were used to study texture in the NdO, Nd{sub 2}O{sub 3} and Nd{sub 2}Fe{sub 14}B phases. The Nd{sub 2}Fe{sub 14}B grains exhibited a <0 0 1> fibre texture. The Nd oxide phases showed no strong texture, which implied that no strongly preferred orientation relationships between those phases and Nd{sub 2}Fe{sub 14}B exist. The result was shown to be valid for optimally annealed samples exhibiting high coercivity and as-sintered samples exhibiting low coercivity.

  8. Effects of Dy and Nb on the magnetic properties and corrosion resistance of sintered NdFeB

    International Nuclear Information System (INIS)

    Yu, L.Q.; Wen, Y.H.; Yan, M.

    2004-01-01

    Dy and Nb were added into the sintered NdFeB magnets with the aim of improving their magnetic properties and corrosion resistance. It was found that intrinsic coercivity of magnets is promoted whilst remanence is reduced as a result of Dy addition. Simultaneous addition of Dy and Nb not only gives rise to greatly improved coercivity, but also suppresses the undesirable effect of Dy on the remanence. The optimum magnetic properties were achieved when 1.0% Dy and 1.5% Nb were incorporated. Moreover, corrosion resistance of NdFeB magnets improves with the increase in the content of Dy and Nb

  9. Effect of crystal alignment on the remanence of sintered NdFeB magnets

    International Nuclear Information System (INIS)

    Kawai, T.; Ma, B.M.; Sankar, S.G.; Wallace, W.E.

    1990-01-01

    Nd 15.4 Fe 77.8 B 6.8 magnets of various degrees of crystal alignment have been prepared by the conventional powder metallurgy technique. The alignment of these magnets have been determined by x-ray diffraction and fitting the standard deviation of a Gaussian distribution for the relative intensity versus the angle between the normals of (hkl) and the tetragonal c axis. The standard deviation is a good indicator for crystal alignment. An aligning field of 8 kOe is found to be essential to obtain a well-aligned NdFeB magnet. The remanence of sintered magnets is directly affected by the crystal alignment. Furthermore, the effect of crystal alignment on the remanence follows the theoretical prediction of the Stoner--Wohlfarth model. Below the spin reorientation temperature, the effect of crystal alignment on the shape of hysteresis loop becomes more significant. The remanences extrapolated from first and second quadrant of the hysteresis loops have been found to be consistent with the prediction of Stoner--Wohlfarth model

  10. Surface segregations in amorphous magnetically soft alloy under oxidation

    International Nuclear Information System (INIS)

    Bayankin, V.A.; Vasil'ev, V.Yu.; Volkova, I.B.; Skvortsova, N.G.; Smirnova, O.I.

    1997-01-01

    Using the Auger electron spectroscopy and electron reflecting diffraction the effects of high temperature annealing and electro-chemical treatment on chemical composition and atomic structure of amorphous magnetically soft alloy Co 57 Fe 5 Ni 10 Si 11 B 7 were investigated. It is shown the surface layers on the base of silicon carbide are formed during annealing while during electro-chemical treatment a cobalt borides are formed. Besides, during electro-chemical treatment the amorphous structure with different interatomic space are saved depending on time. At the time, mechanical properties of the alloy are not worse and it may be used for manufacturing of magnetodrives from amorphous magnetically soft materials [ru

  11. Novel iron oxide-silica coreshell powders compacted by using pulsed electric current sintering: optical and magnetic properties

    Czech Academy of Sciences Publication Activity Database

    Mahmed, N.; Heczko, Oleg; Maki, R.; Söderberg, O.; Haimi, E.; Hannula, S.-P.

    2012-01-01

    Roč. 32, č. 11 (2012), s. 2981-2988 ISSN 0955-2219 Institutional research plan: CEZ:AV0Z10100520 Keywords : sintering * SiO 2 * ferrites * grain growth * transparent Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.360, year: 2012 http://www.sciencedirect.com/science/article/pii/S0955221912001240

  12. Magnetic Glass Ceramics by Sintering of Borosilicate Glass and Inorganic Waste

    Directory of Open Access Journals (Sweden)

    Inès M. M. M. Ponsot

    2014-07-01

    Full Text Available Ceramics and glass ceramics based on industrial waste have been widely recognized as competitive products for building applications; however, there is a great potential for such materials with novel functionalities. In this paper, we discuss the development of magnetic sintered glass ceramics based on two iron-rich slags, coming from non-ferrous metallurgy and recycled borosilicate glass. The substantial viscous flow of the glass led to dense products for rapid treatments at relatively low temperatures (900–1000 °C, whereas glass/slag interactions resulted in the formation of magnetite crystals, providing ferrimagnetism. Such behavior could be exploited for applying the obtained glass ceramics as induction heating plates, according to preliminary tests (showing the rapid heating of selected samples, even above 200 °C. The chemical durability and safety of the obtained glass ceramics were assessed by both leaching tests and cytotoxicity tests.

  13. Micromagnetic simulation of the orientation dependence of grain boundary properties on the coercivity of Nd-Fe-B sintered magnets

    Directory of Open Access Journals (Sweden)

    Jun Fujisaki

    2016-05-01

    Full Text Available This paper is focused on the micromagnetic simulation study about the orientation dependence of grain boundary properties on the coercivity of polycrystalline Nd-Fe-B sintered magnets. A multigrain object with a large number of meshes is introduced to analyze such anisotropic grain boundaries and the simulation is performed by combining the finite element method and the parallel computing. When the grain boundary phase parallel to the c-plane is less ferromagnetic the process of the magnetization reversal changes and the coercivity of the multigrain object increases. The simulations with various magnetic properties of the grain boundary phases are executed to search for the way to enhance the coercivity of polycrystalline Nd-Fe-B sintered magnets.

  14. Microstructural and compositional characterization of terbium-doped Nd–Fe–B sintered magnets

    International Nuclear Information System (INIS)

    Samardžija, Zoran; McGuiness, Paul; Soderžnik, Marko; Kobe, Spomenka; Sagawa, Masato

    2012-01-01

    Anisotropic sintered magnets based on the Nd 2 Fe 14 B phase doped with Tb were prepared using a grain-boundary diffusion process (GBDP) in order to enhance their coercivity. A FEGSEM microstructural analysis revealed that these GBDP magnets had a core-shell structure, where thin, Tb-rich, (NdTb) 2 Fe 14 B shells are formed on the original matrix Nd 2 Fe 14 B grains after diffusion of the Tb. This shell thickness varies from a few tens of nanometres in the middle of the magnet up to a few micrometers near the edge. The exact chemical composition of these shells was determined using EDS and WDS electron-probe microanalyses, which were modified and optimized for submicrometer scale analyses. When analyzing the common Nd–Lα, Tb–Lα and Fe–Kα lines a mutual multiple overlap in the EDS spectra is present and, as a result, an accurate quantitative analysis was only feasible when using WDS. Using this technique we were able to achieve a lateral analytical resolution of 0.4 μm. A further improvement in resolution, down to 0.15 μm, was realized with a dedicated set-up using low-voltage EDS, analyzing the “atypical” low-energy Nd–Mα, Tb–Mα and Fe–Lα lines. Quantitative analyses confirmed that the reaction phase (Nd x Tb 1 −x ) 2 Fe 14 B is formed after the diffusion of Tb with the equilibrium concentration of Tb being equal to x ≈ 0.5, i.e., with the atomic ratio of Nd/Tb equal to 1/1. We also found that a relatively sharp Tb concentration gradient from the shell to the core occurs within a length of ≈ 0.5 μm, while the Fe concentration remains unchanged. In terms of magnetic properties, the Tb-doping significantly increased coercivity by ≈ 30% while the remanence remained at the same value as in the undoped Nd–Fe–B. - Highlights: ► Nd–Fe–B sintered magnets were doped with Tb using grain-boundary diffusion process. ► A tiny core-shell reaction phase was formed around the Nd 2 Fe 14 B matrix grains. ► EDS and WDS analyses

  15. Role of hydrogen in Nd–Fe–B sintered magnets with DyH{sub x} addition

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Pan [State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Ma, Tianyu, E-mail: maty@zju.edu.cn [Key Laboratory of Novel Materials for Information Technology of Zhejiang Province, Zhejiang University, Hangzhou 310027 (China); Wang, Xinhua, E-mail: xinhwang@zju.edu.cn [State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Zhang, Yujing [State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Yan, Mi [State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Key Laboratory of Novel Materials for Information Technology of Zhejiang Province, Zhejiang University, Hangzhou 310027 (China)

    2015-04-15

    Highlights: • DyH{sub 2} and DyH{sub 3} fine powder were prepared. • Effect of DyH{sub x} on the magnetic properties of Nd–Fe–B sintered magnets was studied. • The effect mechanism of Dy hydrides was discussed. • The magnetic properties are greatly improved by DyH{sub 2} and DyH{sub 3} addition. - Abstract: In order to improve the coercivity of Nd–Fe–B sintered magnets, DyH{sub 2} and DyH{sub 3} fine powders were prepared and used as additive for preparing Nd–Fe–B sintered magnets. The effects of DyH{sub x} powders addition on the microstructures and the magnetic properties of the magnets have been investigated. It was found that hydrogen will react with oxygen of NdO{sub x} rich intergranular phases to form Nd rich phases by dysprosium hydride addition. The Nd-rich grain boundary phases are more homogenous and continuous because the volume fraction of Nd-rich grain boundary phases increases with respect to the Nd oxide phases. After desorption, fine dysprosium powders become more active and wrap matrix phases well so that the diffusion of dysprosium to the surface layer of matrix phases is convenient, so dysprosium decreases in grain boundary phases and aggregates in surface layer of matrix phases. Then, intrinsic coercivity of NdFeB sintered magnets is improved from 14.96 kOe to 20.5 kOe and 20.31 kOe by 2.0 wt.% DyH{sub 3} and 2.0 wt.% DyH{sub 2} addition, respectively. This study has shown that DyH{sub x} addition can reduce the content of oxygen in grain boundary phases. This can be an effective method for massive production.

  16. Isotropic and anisotropic nanocrystalline NdFeB-based magnets prepared by spark plasma sintering and hot deformation

    International Nuclear Information System (INIS)

    Liu, Z.W.; Huang, Y.L.; Huang, H.Y.; Zhong, X.C.; Yu, Y.H.; Zeng, D.C.

    2011-01-01

    Isotropic and anisotropic NdFeB permanent magnets were prepared by Spark Plasma Sintering (SPS) and SPS followed hot deformation (HD), respectively, using melt spun NdFeB ribbons with various compositions as starting materials. It is found that, based on RE-rich composition, SPSed magnets sintered at low temperatures (<700 C) almost maintained the uniform fine grain structure inherited from rapid quenching. At higher temperatures, a distinct two-zone (coarse grain and fine grain zones) structure was formed in the SPSed magnets. The SPS temperature and pressure have important effects on the grain structure, which led to the variations in the magnetic properties. By employing low SPS temperature and high pressure, high-density magnets with negligible coarse grain zone and an excellent combination of magnetic properties can be obtained. For single phase NdFeB alloy, because of the deficiency of Nd-rich phases, it is relatively difficult to consolidate micro-sized melt spun powders into high density bulk magnet, but generally a larger particle size is beneficial to achieve better magnetic properties. Anisotropic magnets with a maximum energy product of approx. equal to 38 MGOe were produced by the SPS+HD process. HD did not lead to obvious grain growth and the two-zone structure still existed in the hot deformed magnets. The results indicated that nanocrystalline NdFeB magnets without significant grain growth and with excellent properties could be obtained by SPS and HD processes. (author)

  17. The Characterization of the Magnetic Properties of Soft Magnetic Materials

    DEFF Research Database (Denmark)

    Larsen, Raino Michael

    1996-01-01

    The hysteresis curve and magnetic properties such as permeability, saturation induction, residual induction, coercive force and hysteresis losses are presented. The design and construction of equipment making it possible to measure true DC-values as well as AC-properties of toroid rings and cylin......The hysteresis curve and magnetic properties such as permeability, saturation induction, residual induction, coercive force and hysteresis losses are presented. The design and construction of equipment making it possible to measure true DC-values as well as AC-properties of toroid rings...

  18. A preparation method and effects of Al–Cr coating on NdFeB sintered magnets

    International Nuclear Information System (INIS)

    Zheng, Jingwu; Lin, Min; Xia, Qingping

    2012-01-01

    A 50 μm Al–Cr coating on NdFeB sintered magnets was prepared through dipping in solution, shaking dry and heating at 300 °C. The morphology and composition of the Al–Cr coating were investigated with scanning electron microscope, energy dispersive spectrometer and X-ray diffraction. The corrosion resistance of NdFeB sintered magnets with and without the Al–Cr coating was analyzed by normal salt spray, polarization curves and electrochemical impedance spectroscopy. The magnetic properties were measured with a hysteresis loop tracer. The results show that the Al–Cr coating forms an overlapping structure and Al flakes lie nearly parallel to the substrate, which improves the anticorrosion and increases normal salt spray test from 10 to 100 h. The corrosion potential of NdFeB sintered magnets with and without the Al–Cr coating moves positively from −0.67 to −0.48 V, which is in accordance with Nyquist and Bode plots. The Al–Cr coating has little influence on the magnetic properties of the NdFeB sintered magnets. - Highlights: ► The Al–Cr coating can be prepared by dipping in solution, shaking dry and heating. ► The coating morphology shows to be an intense overlapping structure. ► The barrier effect combines with passivation and cathodic protection. ► The anticorrosion abilities improve while magnetic properties change little. ► Compared with other surface treatments, this method is convenient and low cost.

  19. A preparation method and effects of Al-Cr coating on NdFeB sintered magnets

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jingwu [College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310032 (China); Lin, Min, E-mail: linm@nimte.ac.cn [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering Chinese Academy of Science, 519 Road Zhuangshi, District Zhenghai, Ningbo 315201, People' s Republic of China (China); Xia, Qingping [College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310032 (China)

    2012-11-15

    A 50 {mu}m Al-Cr coating on NdFeB sintered magnets was prepared through dipping in solution, shaking dry and heating at 300 Degree-Sign C. The morphology and composition of the Al-Cr coating were investigated with scanning electron microscope, energy dispersive spectrometer and X-ray diffraction. The corrosion resistance of NdFeB sintered magnets with and without the Al-Cr coating was analyzed by normal salt spray, polarization curves and electrochemical impedance spectroscopy. The magnetic properties were measured with a hysteresis loop tracer. The results show that the Al-Cr coating forms an overlapping structure and Al flakes lie nearly parallel to the substrate, which improves the anticorrosion and increases normal salt spray test from 10 to 100 h. The corrosion potential of NdFeB sintered magnets with and without the Al-Cr coating moves positively from -0.67 to -0.48 V, which is in accordance with Nyquist and Bode plots. The Al-Cr coating has little influence on the magnetic properties of the NdFeB sintered magnets. - Highlights: Black-Right-Pointing-Pointer The Al-Cr coating can be prepared by dipping in solution, shaking dry and heating. Black-Right-Pointing-Pointer The coating morphology shows to be an intense overlapping structure. Black-Right-Pointing-Pointer The barrier effect combines with passivation and cathodic protection. Black-Right-Pointing-Pointer The anticorrosion abilities improve while magnetic properties change little. Black-Right-Pointing-Pointer Compared with other surface treatments, this method is convenient and low cost.

  20. Magnetic properties of Pr-Fe-B sintered magnets produced from hydride powder and from partially and totally desorbed hydride power

    International Nuclear Information System (INIS)

    Faria, R.N.; Williams, A.J.; Abell, J.S.; Harris, I.R.

    1996-01-01

    The effect of a post-sintering heat treatment on the magnetic properties of Pr-Fe-B based magnets has been studied. For particular processing conditions, annealing the Pr 16 Fe 76 B 8 magnets at 1000 deg C resulted in an increase in an increase in iHc from 14.9 to around 17.5 kOe. The magnetic properties, before and after annealing, of magnets prepared from this standard HD powder were compared with those of samples prepared from partially and totally desorbed HD powder. Sintered magnets prepared from the hydrided powder exhibit a superior intrinsic coercivity compared to that of magnets prepared from the totally desorbed powder. However, the remanence and energy product of the latter are significantly higher. The squareness factor (0.93) has been improved considerably and good overall magnetic properties (Br∼11.7 kG, (BH) max ∼35.2 MGOe and iHc∼15.2 kOe) have been achieved for the sintered magnet prepared from partially desorbed powder. (author)

  1. Analysis of Magnetization Switching via Vortex Formation in Soft Magnetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    DIMIAN, M.

    2013-02-01

    Full Text Available This paper illustrates quasi-static magnetization switching via vortex formation in soft magnetic nanoparticles of various shapes and sizes. The research is motivated by the rapid development of novel alternatives to the current paradigm of magnetic recording, which approaches its fundamental limits. The study is performed by using NMAG simulation environment which is a finite-element micro-magnetic simulation package based on Python scripts running on a Linux virtual machine. Various shapes and sizes are considered in this analysis of hysteresis phenomena and vortex formations in nanoparticles subject to different orientations of the magnetic field.

  2. A consideration of the phenomenon of delayed magnetization in magnetic soft iron

    Energy Technology Data Exchange (ETDEWEB)

    Kato, T.; Kanazawa, H.; Nagae, H. (Daido Inst. of Tech. (Korea, Republic of)); Mizuno, M. (Daido Steel Co. (Korea, Republic of))

    1993-11-01

    A change in the shape of the hysteresis curve was observed to accompany changes in the measurement speed during automated magnetic measurements of magnetically soft iron ring specimens. A larger specimen thickness, higher annealing temperature and quicker measurement speed each caused an increase in the apparent coercive force. It was shown that the phenomenon is caused by the delayed magnetization response. The general tendency of the measured delayed magnetic flux density agreed well with the result of calculations based on the penetration depth of the magnetization.

  3. Large-scale micromagnetic simulation of Nd-Fe-B sintered magnets with Dy-rich shell structures

    Directory of Open Access Journals (Sweden)

    T. Oikawa

    2016-05-01

    Full Text Available Large-scale micromagnetic simulations have been performed using the energy minimization method on a model with structural features similar to those of Dy grain boundary diffusion (GBD-processed sintered magnets. Coercivity increases as a linear function of the anisotropy field of the Dy-rich shell, which is independent of Dy composition in the core as long as the shell thickness is greater than about 15 nm. This result shows that the Dy contained in the initial sintered magnets prior to the GBD process is not essential for enhancing coercivity. Magnetization reversal patterns indicate that coercivity is strongly influenced by domain wall pinning at the grain boundary. This observation is found to be consistent with the one-dimensional pinning theory.

  4. Influence of the sintering temperature on the magnetic and electric properties of NiFe2O4 ferrites

    Directory of Open Access Journals (Sweden)

    Fabio Luis Zabotto

    2012-06-01

    Full Text Available This study evaluates the structural, microstructural, electric and magnetic properties of nickel ferrite samples prepared through the solid state reaction. It was observed that an increase in the sintering temperature produces a higher cation concentration in the A site when compared to the B site. The assessment of magnetic properties showed that an increase in grain size leads to a decrease in the coercive fields verging on superparamagnetic values, while the saturation magnetization increases up to 46.5 Am².kg-1 for samples sintered at 1200 ºC. The dc electric resistivity behavior of samples was attributed to the increase in the cross-sectional area of grains as well as the different oxidation states and distribution of cations amongst the lattice sites of the spinel structure.

  5. Structural, magnetic and electrical characterization of Cd-substituted Mg ferrites synthesized by double sintering technique

    Energy Technology Data Exchange (ETDEWEB)

    Zahir, R. [Department of Physics, Chittagong University of Engineering and Technology, Chittagong 4349 (Bangladesh); Chowdhury, F.-U.Z, E-mail: faruque@cuet.ac.bd [Department of Physics, Chittagong University of Engineering and Technology, Chittagong 4349 (Bangladesh); Uddin, M.M. [Department of Physics, Chittagong University of Engineering and Technology, Chittagong 4349 (Bangladesh); Hakim, M.A. [Materials Science Division, Atomic Energy Center, Dhaka 1000 (Bangladesh)

    2016-07-15

    Cd-substituted Mg ferrites with compositional formula Mg{sub 1−x}Cd{sub x}Fe{sub 2}O{sub 4} with 0.1≤x≤0.6 in the steps of 0.1 have been synthesized by double sintering ceramic technique. The X-ray diffraction analysis has revealed that the samples crystallize in a single phase cubic spinel structure. The lattice parameter has increased with increasing Cd content in conformity with Vegard's law. The study of scanning electron microscopy has revealed that Cd substitution has increased the particle size of the ferrites increases from ~2.2 to 9.2 µm. Some probable interpretations based on literature have been discussed. The increase in particle size with increasing of Cd content has consequently resulted in the initial permeability. The Curie temperature has decreased linearly with increasing Cd content which pointed out the weakening of A-B exchange interaction. The spectra of quality factor have showed a steady bandwidth of 0.1–8 MHz, this finding makes the ferrite system suitable for broadband pulse transformer. The variation of electrical resistivity (DC and AC) has been explained on the basis of electron hopping between Fe{sup 2+}and Fe{sup 3+}. - Highlights: • Synthesis of Cd-substituted Mg ferrites by double sintering ceramic technique. • Studies of Cd substitution on the structural and magnetic properties of Mg Ferrites. • The Curie temperature decreases linearly with increasing Cd concentration. • Due to the conduction of hopping of charge carriers DC resistivity decreases.

  6. Effect of soft underlayer magnetic anisotropy on perpendicular recording process

    International Nuclear Information System (INIS)

    Lim, C.K.; Kim, E.S.; Yoon, S.Y.; Kong, S.H.; Lee, H.S.; Oh, H.S.; Kim, Y.S.

    2007-01-01

    The presence of the soft magnetic underlayer (SUL) in perpendicular magnetic recording (PMR) media is essential for the application. It is commonly understood that the SUL provides the return flux path and enhances the writing field by enhancing the recording field from the write pole. However, SUL increases the magnetic noise during the read back process due to magnetic domain walls in the SUL. Hence, it is common to grow SUL with large uniaxial or unidirectional magnetic anisotropy field (H k ) to reduce domain wall noise. In this paper, we explore the effect of increasing SUL H k on the recording process. We studied this effect by using the finite element micromagnetic simulation. Our simulation results show that the contribution of SUL to the writing field amplitude is reduced with increasing H k . This reduction in magnetic field from high H k SUL actually improves the recording performance due to the better field gradient at SUL. The simulation results are qualitatively consistent with the actual experimental data obtained from the Guzik measurement

  7. Magnetic Driving Flowerlike Soft Platform: Biomimetic Fabrication and External Regulation.

    Science.gov (United States)

    Gao, Wei; Wang, Lanlan; Wang, Xingzhe; Liu, Hongzhong

    2016-06-08

    Nature-inspired actuators that can be driven by various stimuli are an emerging application in mobile microrobotics and microfluidics. In this study, a soft and multiple-environment-adaptive robotic platform with ferromagnetic particles impregnated in silicon-based polymer is adopted to fabricate microrobots for minimally invasive locomotion and control interaction with their environment. As an intelligent structure of platform, the change of its bending, deformation, and flapping displacement is rapid, reversible, and continuously controllable with sweeping and multicycle magnetic actuation. The bending angle of the soft platform (0.2 mm in thickness and 8.5 mm in length) can be deflected up to almost 90° within 2.7 s. Experiments demonstrated that the flexible platform of human skin-like material in various shapes, that is, flowerlike shapes, can transport a cargo to targeted area in air and a variety of liquids. It indicates excellent magnetic-actuation ability and good controllability. The results may be helpful in developing a magnetic-driven carrying platform, which can be operated like a human finger to manipulate biological objects such as single cells, microbeads, or embryos. Especially, it is likely to be used in harsh chemical and physical circumstances.

  8. Microstructure and magnetic properties of low-temperature sintered CoTi-substituted barium ferrite for LTCC application

    Science.gov (United States)

    Chen, Daming; Liu, Yingli; Li, Yuanxun; Zhong, Wenguo; Zhang, Huaiwu

    2011-11-01

    In this article, the influences of the BaCu(B 2O 5) (BCB) additive on sintering behavior, structure and magnetic properties of iron deficient M-type barium ferrite Ba(CoTi) xFe 11.8-2 xO 19 (BaM) have been investigated. It is found that the maximum sintered densities of BaM change from 86% to 94% as the BCB content varies from 1 to 4 wt%. Single-phase BaM can be detected by the XRD analysis in the sample with 3 wt% BCB sintered at 900 °C, and the microstructure is hexagonal platelets with few intragranular pores. This is attributed to the formation of the BCB liquid phase. Meanwhile, the experimental results illuminate that the CoTi ions prefer to occupy the 4f2 and 2b sites and the magnetic properties depend on the amount of CoTi-substitution. In addition, the chemical compatibility between BaM and silver paste is also investigated; it can be seen that BaM is co-fired well with the silver paste and no other second phase is observed. Especially, the 3 wt% BCB-added Ba(CoTi) 0.9Fe 11O 19 sintered at 900 °C has good properties with the sintered density of 4.9 g/cm 3, saturation magnetization of 49.7 emu/g and coercivity of 656.6 Oe. These results indicate that it is cost effective in the production of Low Temperature Co-fired Ceramics (LTCC) multilayer devices.

  9. Coercivity of Nd-Fe-B hot-deformed magnets produced by the spark plasma sintering method

    Directory of Open Access Journals (Sweden)

    Tetsuji Saito

    2017-05-01

    Full Text Available The effects of Nd-Cu alloy powder addition on the microstructures and magnetic properties of Nd-Fe-B hot-deformed magnets produced by the spark plasma sintering (SPS method were investigated. The addition of a small amount of Nd-Cu alloy powder, up to 2%, significantly increased the coercivity of the Nd-Fe-B hot-deformed magnets without deteriorating the crystallographic alignment of the Nd2Fe14B phase. The Nd-Fe-B hot-deformed magnet with 2% Nd-Cu alloy powder had the same remanence value as the Nd-Fe-B hot-deformed magnet without Nd-Cu alloy powder addition, but the magnet with 2% Nd-Cu alloy powder exhibited higher coercivity and a higher maximum energy product than the magnet without Nd-Cu alloy powder addition.

  10. Magnetic Behavior of Sintered NdFeB Magnets on a Long-Term Timescale

    Directory of Open Access Journals (Sweden)

    Minna Haavisto

    2014-01-01

    Full Text Available Stable polarization of permanent magnets over the lifetime of the application is an important aspect in electrical machine design. Specification of the long-term stability of magnet material is difficult, since knowledge of the phenomenon is incomplete. To be able to optimize magnet material selection, the long-term magnetic behavior of the material must also be understood. This study shows that material with a very square JH curve is stable until a certain critical operating temperature is reached. Major losses are detected as the critical temperature is exceeded. Material with a rounder JH curve does not show a well-defined critical temperature, but increasing losses over a large temperature range. The critical temperature of a material is also dependent on the field conditions. Results differ whether the tests are performed in an open or closed magnetic circuit. In open-circuit tests, the opposing field is not homogeneously distributed throughout the volume of the magnet and thus the long-term behavior is different than that in closed-circuit conditions. Open-circuit tests seem to give bigger losses than closed-circuit tests in cases where the permeance coefficient of the open-circuit sample is considered to be the average permeance coefficient, calculated according to the dimensions of the magnet.

  11. The low magnetic field properties of superconducting bulk yttrium barium copper oxide - Sintered versus partially melted material

    Science.gov (United States)

    Hein, R. A.; Hojaji, H.; Barkatt, A.; Shafii, H.; Michael, K. A.; Thorpe, A. N.; Ware, M. F.; Alterescu, S.

    1989-01-01

    A comparison of the low magnetic field properties of sintered (990 C) and partially melted samples (1050 C) has been performed. Changes in the microstructure produced by recrystallization from the melt result in a significant increase in flux pinning at 77 K. Low-frequency (10-100 Hz), low-ac magnetic-field (0.01-9.0 Oe) ac susceptibility data show that gross changes in the loss component accompany the observed changes in microstructure. The effects of applied dc magnetic fields (10-220 Oe) on the ac responses of these microstructures have also been probed.

  12. Effects of Additives and Sintering Time on the Microstructure of Ni-Zn Ferrite and Its Electrical and Magnetic Properties

    Directory of Open Access Journals (Sweden)

    Abdollah Hajalilou

    2014-01-01

    Full Text Available This work aims to investigate the relationship between the microstructure of Ni-Zn ferrite and its electrical and magnetic properties in the presence and absence of as small amounts as 0.12% of 0.4CaO + 0.8SiO2 over different sintering times. The X-ray diffraction pattern showed a single spinel phase formation in all the samples. The results indicate that grain growth occurred by increasing sintering time from 15 to 270 min in the two types of samples prepared in this study although it was greatly impeded by the additive oxides. Moreover, the oxides increase the resistivity of the ferrite and decrease its zinc loss. Magnetic properties such as induction magnetization (BS and saturation magnetization (MS decreased in the presence of the additives while its coercivity (HC increased. Finally, the density of the samples was observed to increase with increasing sintering time in both types of the samples but with a higher value in the samples with no additives.

  13. Relations microstructure - magnetic properties - squareness factor of PrFeB and NdFeB sintered magnets prepared with hydrogen

    International Nuclear Information System (INIS)

    Perigo, Elio Alberto

    2009-01-01

    In this work, it has firstly been evaluated the preparation of Pr 16 Fe 76 B 8 sintered permanent magnets (% at.) by means of high-energy milling using a planetary ball mill. The influence of both milling speed and time has been verified. The best magnetic properties [J R = (1.02 ± 0.02) T, μ 0J H c = (1.42 ± 0.03) T and (BH) max = (200 ± 4) kJm -3 ] have been found for a permanent magnet prepared with the magnetic alloy milled during 75 minutes using a rotational milling speed of 200 rpm. In order to improve the remanence, the hydrogen decrepitation process time has been reduced from 60 minutes to 2 minutes. In this case, it has been obtained a sintered magnet with J R = (1.14 ± 0.02) T, μ 0J H c = (1.44 ± 0.03) T and (BH) max = (250 ± 5) kJm -3 due to the improvement of crystallographic alignment of the hard magnetic phase. During such investigation, a new methodology to quantify the parameter has been developed. Subsequently, for the first time, a quantitative correlation between the microstructure and the squareness factor in anisotropic sintered RE 16 Fe 76 B 8 (RE = Nd or Pr) magnets has been proposed. The presented expression utilizes the mean size, the mean elongation and the mean roundness of the hard magnetic grains as well as their respective standard deviations. The squareness factor can be improved with a microstructure with rounder grains and with a sharp grain size distribution. The grain size homogeneity is more important to enhance the squareness factor compared to grain shape homogeneity. Furthermore, it has also been verified that the annealing after sintering improves the grain shape homogeneity and the milling enhances the grain size homogeneity. Moreover, the effect of the temperature on the squareness factor of anisotropic sintered magnets has also been evaluated. Such parameter is mainly controlled by the sample's microstructure, in agreement with the proposed expression. Furthermore, a quantitative correlation between the maximum

  14. Microstructure and magnetic properties of low-temperature sintered CoTi-substituted barium ferrite for LTCC application

    Energy Technology Data Exchange (ETDEWEB)

    Chen Daming [State Key Laboratory of Electronic Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Liu Yingli, E-mail: chendaming1986@gmail.com [State Key Laboratory of Electronic Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Li Yuanxun; Zhong Wenguo; Zhang Huaiwu [State Key Laboratory of Electronic Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2011-11-15

    In this article, the influences of the BaCu(B{sub 2}O{sub 5}) (BCB) additive on sintering behavior, structure and magnetic properties of iron deficient M-type barium ferrite Ba(CoTi){sub x}Fe{sub 11.8-2x}O{sub 19} (BaM) have been investigated. It is found that the maximum sintered densities of BaM change from 86% to 94% as the BCB content varies from 1 to 4 wt%. Single-phase BaM can be detected by the XRD analysis in the sample with 3 wt% BCB sintered at 900 deg. C, and the microstructure is hexagonal platelets with few intragranular pores. This is attributed to the formation of the BCB liquid phase. Meanwhile, the experimental results illuminate that the CoTi ions prefer to occupy the 4f2 and 2b sites and the magnetic properties depend on the amount of CoTi-substitution. In addition, the chemical compatibility between BaM and silver paste is also investigated; it can be seen that BaM is co-fired well with the silver paste and no other second phase is observed. Especially, the 3 wt% BCB-added Ba(CoTi){sub 0.9}Fe{sub 11}O{sub 19} sintered at 900 deg. C has good properties with the sintered density of 4.9 g/cm{sup 3}, saturation magnetization of 49.7 emu/g and coercivity of 656.6 Oe. These results indicate that it is cost effective in the production of Low Temperature Co-fired Ceramics (LTCC) multilayer devices. - Research Highlights: > Systematic investigation on the ion substitution and low-temperature sintering of barium ferrite. > BaCu(B{sub 2}O{sub 5}) is first successfully used to lower the sintering temperature of barium ferrite. > Densification of BaFe{sub 12}O{sub 19} was speeded up by the BaCu(B{sub 2}O{sub 5}) liquid phase.

  15. Study of High-Efficiency Motors Using Soft Magnetic Cores

    Science.gov (United States)

    Tokoi, Hirooki; Kawamata, Shoichi; Enomoto, Yuji

    We have been developed a small and highly efficient axial gap motor whose stator core is made of a soft magnetic core. First, the loss sensitivities to various motor design parameters were evaluated using magnetic field analysis. It was found that the pole number and core dimensions had low sensitivity (≤ 2.2dB) in terms of the total loss, which is the sum of the copper loss and the iron losses in the stator core and the rotor yoke respectively. From this, we concluded that to improve the motor efficiency, it is essential to reduce the iron loss in the rotor yoke and minimize other losses. With this in mind, a prototype axial gap motor is manufactured and tested. The motor has four poles and six slots. The motor is 123mm in diameter and the axial length is 47mm. The rotor has parallel magnetized magnets and a rotor yoke with magnetic steel sheets. The maximum measured motor efficiency is 93%. This value roughly agrees with the maximum calculated efficiency of 95%.

  16. Effect of Partial Substitution of Neodymium with Praseodymium on the Magnetic and Process Properties of Sintered Magnets of Type NdFeB

    Science.gov (United States)

    Dormidontov, N. A.; Dormidontov, A. G.; Lileev, A. S.; Kamynin, A. V.; Lukin, A. A.

    2017-01-01

    The effect of substitution of neodymium with praseodymium in sintered magnets of type NdFeB on their magnetic and process properties in the concentration range of [Pr] = 0 - 13 wt.% is studied. The special features of milling of the alloys, sintering processes and heat treatments in the production of magnets containing praseodymium are discussed. Hysteresis characteristics of B r ≥ 1.2 T, H cJ ≥ 1200 kA/m, H cb ≥ 880 kA/m, H k ≥ 960 kA/m, and BH max ≥ 280 kJ/m3 are obtained for magnets with composition (in wt.%) 33 Nd, 10 Pr, 1.5 (Ti + Al + Cu), 1.3 B, the remainder Fe.

  17. Design and fabrication of sintered Nd-Fe-B magnets with a low temperature coefficient of intrinsic coercivity

    Directory of Open Access Journals (Sweden)

    Cui X.G.

    2009-01-01

    Full Text Available To decrease the temperature coefficients of sintered Nd-Fe-B magnets, the influencing factors on temperature coefficients, especially the reversible temperature coefficient β of intrinsic coercivity Hcj, were analyzed. The results showed that the absolute value of β decreased with increasing Hcj and also the ratio of microstructure parameter c to Neff, indicating that the increase of magnetocrystalline anisotropy field HA and c/Neff can effectively decrease the absolute value of β. On the basis of this analysis, a sintered Nd-Fe-B magnet with a low temperature coefficient of Hcj was fabricated through composition design, and the value of β was only -0.385%/ºC in the temperature interval of 20-150ºC.

  18. Discontinuous spring magnet-type magnetostrictive Terfecohan/YFeCo multilayers: A novel nanostructured material principle for excellent magnetic softness

    International Nuclear Information System (INIS)

    Duc, N.H.; Huong Giang, D.T.

    2007-01-01

    Novel physics and reversal mechanisms of the whole system switching (WS) and individual switching (IS) type are reported for hard/soft TbFeCo/YFeCo exchange-spring multilayers. The WS type usually occurs in multilayered systems, in which the magnetic anisotropy of hard TbFeCo layers is neglectable. For such a system, the ferrimagnetically coupled hard/soft multilayered state is recovered after removing applied fields from the magnetized state. At low negative fields, the magnetization switching occurs collectively for all magnetic moments in the whole system. In this case, the low-coercivity mechanism is discussed on the basis of a hard/soft interfacial point contact. This configuration is realized for TbFeCo/YFeCo discontinuous exchange-spring multilayers, in which the magnetic (Fe,Co) nanograins coexist with non-magnetic amorphous phase in the soft layers. In this state, a magnetic coercivity as small as 0.4 mT is achieved. It is considered as an excellent magnetic softness of rare-earth-based systems. Enhancing the magnetic anisotropy in the hard TbFeCo layers, the magnetization switching follows the IS type at low temperatures. Starting to decrease the applied magnetic field from the high-field state, one observes the first reversal of the magnetic moments in the soft high-magnetization YFeCo-layers in positive magnetic fields. This is the reason for the observation of the negative coercivity as well as negative-biasing phenomena

  19. Coercivity enhancements of Nd–Fe–B sintered magnets by diffusing DyHx along different axes

    International Nuclear Information System (INIS)

    Ma, Tianyu; Wang, Xuejiao; Liu, Xiaolian; Wu, Chen; Yan, Mi

    2015-01-01

    Diffusing heavy rare earth elements along the grain boundaries (GBs) for Nd 2 Fe 14 B-type sintered magnets serves as an effective method to enhance coercivity and to minimize remanence loss simultaneously. Considering the texture anisotropy of Nd-rich GB phases, the coercivity incremental difference by diffusing DyH x fine powders along or perpendicular to the  <0 0 1 >  easy axis (c-axis) has been investigated. The coercivity increases more rapidly to 20.61 kOe (5.76 kOe higher than that of the as-sintered state) when diffusing along the c-axis than that diffusing perpendicular to c-axis (18.85 kOe, 4.00 kOe higher than the as-sintered state). Microstructural investigation reveals that Dy diffuses more easily towards the magnet inner part when treating along the c-axis than that for the perpendicular case due to the anisotropic distribution of the Nd-rich phase. This is verified by a higher Dy content at equivalent diffusing depth and a much deeper final diffusion distance. The local Dy-containing fractions with a stronger anisotropy field are richer for the magnet treated along the c-axis, leading to the much rapider coercivity enhancement. This work reveals that diffusion heavy rare earth along the c-axis is more effective to enhance coercivity for aligned Nd–Fe–B sintered magnets. (paper)

  20. Magnetic excitations in soft X-ray RIXS: Recent developments

    International Nuclear Information System (INIS)

    Fatale, S.; Moser, S.; Grioni, M.

    2015-01-01

    Highlights: • We give an overview of recent developments in resonant inelastic X-ray scattering (RIXS) with soft X-rays. • We briefly discuss the RIXS process at the L edges of 3d transition metal compounds. • We review RIXS data on magnetic excitations in insulating and superconducting cuprates. • We briefly discuss RIXS results on 1D oxides, iron-based superconductors and iridates. - Abstract: Resonant inelastic X-ray scattering (RIXS) has rapidly become a mature spectroscopic technique. In particular, taking advantage of an improved energy resolution, a series of experiments performed over the past 5 years have established soft X-ray RIXS as a sensitive, quantitative tool to investigate magnetic excitations in solids, complementary to more traditional probes such as neutron scattering. Most of the work has targeted cuprate systems, and the focus has progressively shifted from the antiferromagnetic insulating parent compounds to the superconducting part of the phase diagram. Here we review the most recent results, and the outstanding questions they raise.

  1. Development of High-frequency Soft Magnetic Materials for Power Electronics

    Directory of Open Access Journals (Sweden)

    LIU Jun-chang

    2017-05-01

    Full Text Available The new requirements of high-frequency magnetic properties are put forward for electronic components with the rapid development of power electronics industry and the use of new electromagnetic materials. The properties of magnetic core, which is the key unit of electronic components, determine the performance of electronic components directly. Therefore, it's necessary to study the high-frequency soft magnetic materials. In this paper, the development history of four types of soft magnetic materials was reviewed. The advantages and disadvantages of each kind of soft magnetic materials and future development trends were pointed out. The emphases were placed on the popular soft magnetic composite materials in recent years. The tendency is to develop high-frequency soft magnetic composite materials with the particle size controllable, uniform coating layer on the core and a mass production method from laboratory to industrialization.

  2. Studies of SmCo5/Fe nanocomposite magnetic bilayers with magnetic soft x-ray transmission microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Shahzad, F.; Siddiqi, S. A.; Im, M.-Y.; Avallone, A.; Fischer, P.; Hussain, Z.; Siddiqi, I.; Hellman, F.; Zhao, J.

    2009-12-04

    A hard/soft SmCo{sub 5}/Fe nanocomposite magnetic bilayer system has been fabricated on X-ray transparent 100-200 nm thin Si{sub 3}N{sub 4} membranes by magnetron sputtering. The microscopic magnetic domain pattern and its behavior during magnetization reversal in the hard and soft magnetic phases have been individually studied by element specific magnetic soft x-ray microscopy at a spatial resolution of better than 25nm. We observe that the domain patterns for soft and hard phases switch coherently throughout the full hysteresis cycle upon applying external magnetic fields. We derived local M(H) curves from the images for Fe and SmCo5 separately and found switching for both hard and soft phases same.

  3. Magnetism in grain-boundary phase of a NdFeB sintered magnet studied by spin-polarized scanning electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kohashi, Teruo, E-mail: teruo.kohashi.fc@hitachi.com; Motai, Kumi [Central Research Laboratory, Hitachi, Ltd., Hatoyama, Saitama 350-0395 (Japan); Nishiuchi, Takeshi; Hirosawa, Satoshi [Magnetic Materials Research Laboratory, Hitachi Metals Ltd., Osaka 618-0013 (Japan)

    2014-06-09

    The magnetism in the grain-boundary phase of a NdFeB sintered magnet was measured by spin-polarized scanning electron microscopy (spin SEM). A sample magnet was fractured in the ultra-high-vacuum chamber to avoid oxidation, and its magnetizations in the exposed grain-boundary phase on the fracture surface were evaluated through the spin polarization of secondary electrons. Spin-SEM images were taken as the fracture surface was milled gradually by argon ions, and the magnetization in the grain-boundary phase was quantitatively obtained separately from that of the Nd{sub 2}Fe{sub 14}B phase. The obtained magnetization shows that the grain-boundary phase of this magnet has substantial magnetization, which was confirmed to be ferromagnetic.

  4. A study of high-energy milling for the production of sintered PrFeB magnets

    Directory of Open Access Journals (Sweden)

    Elio Alberto Périgo

    2007-09-01

    Full Text Available Sintered Pr16Fe76B8 magnets have been produced using the hydrogen decrepitation (HD process and high-energy planetary ball milling. Investigations have been carried out to evaluate the influence of the milling speed and time. The best magnetic properties obtained were Br = (1020 ± 20 mT, µ0iHc = (1420 ± 30 mT and (BHmax/= (200 ± 4 kJm-3, for a magnet prepared with the alloy milled at 200 rpm for 4.5 ks. Magnets prepared from this powder exhibited a superior intrinsic coercivity compared to that of magnets produced using low-energy ball milling. However, the remanence and energy product of the latter were somewhat lower. An important feature was the dramatic reduction in the processing time (about 90%. Microstructural observation have shown that increasing the milling time and keeping constant the rotational mill speed caused an exponential grain size reduction in the sintered magnet. Increasing the milling speed also reduced the grain size and influenced both remanence and intrinsic coercivity.

  5. Hot deformed anisotropic nanocrystalline NdFeB based magnets prepared from spark plasma sintered melt spun powders

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Y.H.; Huang, Y.L. [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China); School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Liu, Z.W., E-mail: zwliu@scut.edu.cn [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Zeng, D.C. [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Ma, S.C.; Zhong, Z.C. [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China)

    2013-09-01

    Highlights: • Microstructure evolution and its influence on the magnetic properties were investigated. • The increase of stray field and weakening of domain-wall pinning effects were the main reasons of the decrease of the coercivity with increasing the compression ratio. • The influences of non-uniform plastic deformation on the microstructure and magnetic properties were investigated. • Magnetic properties and temperature coefficient of coercivity are indeed very promising without heavy rare earth elements. -- Abstract: Anisotropic magnets were prepared by spark plasma sintering (SPS) followed by hot deformation (HD) using melt-spun powders as the starting material. Good magnetic properties with the remanence J{sub r} > 1.32 T and maximum of energy product (BH){sub max} > 303 kJ/m{sup 3} have been obtained. The microstructure evolution during HD and its influence on the magnetic properties were investigated. The fine grain zone and coarse grain zone formed in the SPS showed different deformation behaviors. The microstructure also had an important effect on the temperature coefficients of coercivity. A strong domain-wall pinning model was valid to interpret the coercivity mechanism of the HDed magnets. The increase of stray field and weakening of domain-wall pinning effects were the main reasons of the decrease of the coercivity with increasing the compression ratio. The influences of non-uniform plastic deformation on the microstructure and magnetic properties were investigated. The polarization characteristics of HDed magnets were demonstrated. It was found out that the HDed magnets had better corrosion resistance than the counterpart sintered magnet.

  6. Grain boundary engineering in sintered Nd-Fe-B permanent magnets for efficient utilization of heavy rare earth elements

    Energy Technology Data Exchange (ETDEWEB)

    Loewe, Konrad

    2016-10-18

    The first part of the thesis investigates the diffusion of rare-earth (RE) elements in commercial sintered Nd-Fe-B based permanent magnets. A strong temperature dependence of the diffusion distance and resulting change in magnetic properties were found. A maximum increase in coercivity of ∼+350 kA/m using a Dy diffusion source occurred at the optimum annealing temperature of 900 C. After annealing for 6 h at this temperature, a Dy diffusion distance of about 4 mm has been observed with a scanning Hall probe. Consequently, the maximum thickness of grain boundary diffusion processed magnets with homogeneous properties is also only a few mm. The microstructural changes in the magnets after diffusion were investigated by electron microscopy coupled with electron probe microanalysis. It was found that the diffusion of Dy into sintered Nd-Fe-B permanent magnets occurs along the grain boundary phases, which is in accordance with previous studies. A partial melting of the Nd-Fe-B grains during the annealing process lead to the formation of so - called (Nd,Dy)-Fe-B shells at the outer part of the grains. These shells are μm thick at the immediate surface of the magnet and become thinner with increasing diffusion distance towards the center of the bulk. With scanning transmission electron microscopy coupled with electron probe analysis a Dy content of about 1 at.% was found in a shell located about 1.5 mm away from the surface of the magnet. The evaluation of diffusion speeds of Dy and other RE (Tb, Ce, Gd) in Nd-Fe-B magnets showed that Tb diffuses significantly faster than Dy, and Ce slightly slower than Dy, which is attributed to differences in the respective phase diagrams. The addition of Gd to the grain boundaries has an adverse effect on coercivity. Exemplary of the heavy rare earth element Tb, the nano - scale elemental distribution around the grain boundaries after the diffusion process was visualized with high resolution scanning transmission electron microscopy

  7. Formation of non-ferromagnetic grain boundary phase in a Ga-doped Nd-rich Nd–Fe–B sintered magnet

    International Nuclear Information System (INIS)

    Sasaki, T.T.; Ohkubo, T.; Takada, Y.; Sato, T.; Kato, A.; Kaneko, Y.; Hono, K.

    2016-01-01

    We have characterized the microstructures of as-sintered and optimally post-sinter annealed Nd-rich Ga-doped Nd–Fe–B magnets by scanning electron microscopy (SEM) and aberration-corrected scanning transmission electron microscopy (STEM). While the Nd 2 Fe 14 B grains in the as-sintered sample with a coercivity of 0.99 T are in direct contact with each other, those in the optimally annealed sample with a coercivity of 1.8 T are completely enveloped by typically 10-nm-thick Nd-rich phase that contains little Fe. This strongly suggests that the Nd 2 Fe 14 B grains in the optimally annealed Nd-rich Ga-doped Nd–Fe–B magnets are exchange decoupled in contrast to those in the commercial sintered magnets.

  8. Interplay of domain walls and magnetization rotation on dynamic magnetization process in iron/polymer–matrix soft magnetic composites

    Energy Technology Data Exchange (ETDEWEB)

    Dobák, Samuel, E-mail: samuel.dobak@student.upjs.sk [Institute of Physics, Faculty of Science, Pavol Jozef Šafárik University, Park Angelinum 9, 041 54 Košice (Slovakia); Füzer, Ján; Kollár, Peter [Institute of Physics, Faculty of Science, Pavol Jozef Šafárik University, Park Angelinum 9, 041 54 Košice (Slovakia); Fáberová, Mária; Bureš, Radovan [Institute of Materials Research, Slovak Academy of Sciences, Watsonova 47, 043 53 Košice (Slovakia)

    2017-03-15

    This study sheds light on the dynamic magnetization process in iron/resin soft magnetic composites from the viewpoint of quantitative decomposition of their complex permeability spectra into the viscous domain wall motion and magnetization rotation. We present a comprehensive view on this phenomenon over the broad family of samples with different average particles dimension and dielectric matrix content. The results reveal the pure relaxation nature of magnetization processes without observation of spin resonance. The smaller particles and higher amount of insulating resin result in the prevalence of rotations over domain wall movement. The findings are elucidated in terms of demagnetizing effects rising from the heterogeneity of composite materials. - Highlights: • A first decomposition of complex permeability into domain wall and rotation parts in soft magnetic composites. • A pure relaxation nature of dynamic magnetization processes. • A complete loss separation in soft magnetic composites. • The domain walls activity is considerably suppressed in composites with smaller iron particles and higher matrix content. • The demagnetizing field acts as a significant factor at the dynamic magnetization process.

  9. Design-based modeling of magnetically actuated soft diaphragm materials

    Science.gov (United States)

    Jayaneththi, V. R.; Aw, K. C.; McDaid, A. J.

    2018-04-01

    Magnetic polymer composites (MPC) have shown promise for emerging biomedical applications such as lab-on-a-chip and implantable drug delivery. These soft material actuators are capable of fast response, large deformation and wireless actuation. Existing MPC modeling approaches are computationally expensive and unsuitable for rapid design prototyping and real-time control applications. This paper proposes a macro-scale 1-DOF model capable of predicting force and displacement of an MPC diaphragm actuator. Model validation confirmed both blocked force and displacement can be accurately predicted in a variety of working conditions i.e. different magnetic field strengths, static/dynamic fields, and gap distances. The contribution of this work includes a comprehensive experimental investigation of a macro-scale diaphragm actuator; the derivation and validation of a new phenomenological model to describe MPC actuation; and insights into the proposed model’s design-based functionality i.e. scalability and generalizability in terms of magnetic filler concentration and diaphragm diameter. Due to the lumped element modeling approach, the proposed model can also be adapted to alternative actuator configurations, and thus presents a useful tool for design, control and simulation of novel MPC applications.

  10. Effect of Stabilization Heat Treatment on Time-Dependent Polarization Losses in Sintered Nd-Fe-B Permanent Magnets

    Directory of Open Access Journals (Sweden)

    Tuominen S.

    2013-01-01

    Full Text Available Some companies in the motor and generator industry utilizing sintered NdFeB magnets have adopted pre-ageing heat treatment in order to improve the stability of the magnets. The parameters of this stabilization heat treatment are based mainly on assumptions rather than on any published research results. In this work, the effects of pre-ageing treatment on the time-dependent polarization losses of two different types of commercial sintered NdFeB magnets were studied. The material showing the squarer J(H curve did not benefit from the pre-ageing treatment, since it seems to be stable under a certain critical temperature. In contrast, a stabilizing effect was observed in the material showing rounder J(H curve. After the stabilization heat treatment, the polarization of the magnets was found to be at lower level, but unchanged over a certain period of time. The length of this period depends on the temperature and the duration of the pre-ageing treatment. In addition, our analysis reveals that the stabilization heat treatment performed in an open circuit condition does not stabilize the magnet uniformly.

  11. Effect of annealing conditions on the microstructure and magnetic properties of sintered Nd-Fe-B magnets as seen by magnetic small-angle neutron scattering

    Science.gov (United States)

    Périgo, Élio A.; Titov, Ivan; Weber, Raoul; Mettus, Denis; Peral, Inma; Vallcorba, Oriol; Honecker, Dirk; Feoktystov, Artem; Michels, Andreas

    2018-03-01

    We have investigated the effect of the annealing conditions (heating rate and temperature) on the magnetic microstructure of sintered Nd-Fe-B magnets by means of magnetometry, scanning electron microscopy, high-energy synchrotron x-ray diffraction, and small-angle neutron scattering (SANS). While the temperature treatment has a strong effect on the coercivity (reduction by about 50% on annealing), the associated changes in the microstructure do surprisingly not show up (or at best only very weakly) in the neutron-scattering signal, which probes a mesoscopic real-space length scale ranging between about 1–300 nm. On the other hand, the x-ray data reveal microstructural changes in the Nd-rich phases, presumably due to modifications in grain-boundary regions. Moreover, we observe an unusual diamond-shaped angular anisotropy in the SANS cross section, which strongly points towards the existence of texture in the nuclear microstructure.

  12. Soft magnets from the self-organization of magnetic nanoparticles in twisted liquid crystals.

    Science.gov (United States)

    Matt, Benjamin; Pondman, Kirsten M; Asshoff, Sarah J; Ten Haken, Bennie; Fleury, Benoit; Katsonis, Nathalie

    2014-11-10

    Organizing magnetic nanoparticles into long-range and dynamic assemblies would not only provide new insights into physical phenomena but also open opportunities for a wide spectrum of applications. In particular, a major challenge consists of the development of nanoparticle-based materials for which the remnant magnetization and coercive field can be controlled at room temperature. Our approach consists of promoting the self-organization of magnetic nanoparticles in liquid crystals (LCs). Using liquid crystals as organizing templates allows us to envision the design of tunable self-assemblies of magnetic nanoparticles, because liquid crystals are known to reorganize under a variety of external stimuli. Herein, we show that twisted liquid crystals can be used as efficient anisotropic templates for superparamagnetic nanoparticles and demonstrate the formation of hybrid soft magnets at room temperature. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. The development of microstructure during hydrogenation–disproportionation–desorption–recombination treatment of sintered neodymium-iron-boron-type magnets

    Energy Technology Data Exchange (ETDEWEB)

    Sheridan, R.S.; Harris, I.R.; Walton, A., E-mail: a.walton@bham.ac.uk

    2016-03-01

    The hydrogen absorption and desorption characteristics of the hydrogenation disproportionation desorption and recombination (HDDR) process on scrap sintered neodymium-iron-boron (NdFeB) type magnets have been investigated. At each stage of the process, the microstructural changes have been studied using high resolution scanning electron microscopy. It was found that the disproportionation reaction initiates at grain boundaries and triple points and then propagates towards the centre of the matrix grains. This process was accelerated at particle surfaces and at free surfaces produced by any cracks in the powder particles. However, the recombination reaction appeared to initiate randomly throughout the particles with no apparent preference for particle surfaces or internal cracks. During the hydrogenation of the grain boundaries and triple junctions, the disproportionation reaction was, however, affected by the much higher oxygen content of the sintered NdFeB compared with that of the as-cast NdFeB alloys. Throughout the entire HDDR reaction the oxidised triple junctions (from the sintered structure) remained unreacted and hence, remained in their original form in the fine recombined microstructure. This resulted in a very significant reduction in the proportion of cavitation in the final microstructure and this could lend to improved consolidation in the recycled magnets. - Highlights: • Disproportionation reaction initiates at grain boundaries and triple points. • Disproportionation then propagates towards the centre of the matrix grains. • Disproportionation was affected by the high oxygen content of sintered NdFeB. • Oxidised triple points remain unreacted in original form in final HDDR structure. • Significant reduction in the proportion of cavitation in the final microstructure.

  14. The development of microstructure during hydrogenation–disproportionation–desorption–recombination treatment of sintered neodymium-iron-boron-type magnets

    International Nuclear Information System (INIS)

    Sheridan, R.S.; Harris, I.R.; Walton, A.

    2016-01-01

    The hydrogen absorption and desorption characteristics of the hydrogenation disproportionation desorption and recombination (HDDR) process on scrap sintered neodymium-iron-boron (NdFeB) type magnets have been investigated. At each stage of the process, the microstructural changes have been studied using high resolution scanning electron microscopy. It was found that the disproportionation reaction initiates at grain boundaries and triple points and then propagates towards the centre of the matrix grains. This process was accelerated at particle surfaces and at free surfaces produced by any cracks in the powder particles. However, the recombination reaction appeared to initiate randomly throughout the particles with no apparent preference for particle surfaces or internal cracks. During the hydrogenation of the grain boundaries and triple junctions, the disproportionation reaction was, however, affected by the much higher oxygen content of the sintered NdFeB compared with that of the as-cast NdFeB alloys. Throughout the entire HDDR reaction the oxidised triple junctions (from the sintered structure) remained unreacted and hence, remained in their original form in the fine recombined microstructure. This resulted in a very significant reduction in the proportion of cavitation in the final microstructure and this could lend to improved consolidation in the recycled magnets. - Highlights: • Disproportionation reaction initiates at grain boundaries and triple points. • Disproportionation then propagates towards the centre of the matrix grains. • Disproportionation was affected by the high oxygen content of sintered NdFeB. • Oxidised triple points remain unreacted in original form in final HDDR structure. • Significant reduction in the proportion of cavitation in the final microstructure.

  15. Fabrication of crystal-oriented barium-bismuth titanate ceramics in high magnetic field and subsequent reaction sintering.

    Science.gov (United States)

    Tanaka, Satoshi; Tomita, Yusuke; Furushima, Ryoichi; Shimizu, Hiroyuki; Doshida, Yutaka; Uematsu, Keizo

    2009-02-01

    High magnetic field was applied to fabricate novel lead-free piezoelectric ceramics with a textured structure. A compact of crystallographically oriented grains was prepared by dry forming in a high magnetic field from a mixed slurry of bismuth titanate and barium titanate powders. Bismuth titanate particles with a size of about 1 μ m were used as the host material. In the forming process, the slurry was poured into a mold and set in a magnetic field of 10 T until completely dried. Bismuth titanate particles were highly oriented in the slurry under the magnetic field. The dried powder compact consisted of highly oriented bismuth titanate particles and randomly oriented barium titanate particles. Barium bismuth titanate ceramics with a - and b -axis orientations were successfully produced from the dried compact by sintering at temperatures above 1100 ° C.

  16. Review - Fabrication of crystal-oriented barium-bismuth titanate ceramics in high magnetic field and subsequent reaction sintering

    Directory of Open Access Journals (Sweden)

    Satoshi Tanaka, Yusuke Tomita, Ryoichi Furushima, Hiroyuki Shimizu, Yutaka Doshida and Keizo Uematsu

    2009-01-01

    Full Text Available High magnetic field was applied to fabricate novel lead-free piezoelectric ceramics with a textured structure. A compact of crystallographically oriented grains was prepared by dry forming in a high magnetic field from a mixed slurry of bismuth titanate and barium titanate powders. Bismuth titanate particles with a size of about 1 μ m were used as the host material. In the forming process, the slurry was poured into a mold and set in a magnetic field of 10 T until completely dried. Bismuth titanate particles were highly oriented in the slurry under the magnetic field. The dried powder compact consisted of highly oriented bismuth titanate particles and randomly oriented barium titanate particles. Barium bismuth titanate ceramics with a- and b-axis orientations were successfully produced from the dried compact by sintering at temperatures above 1100 ° C.

  17. Resonant magnetic scattering of polarized soft x rays

    Energy Technology Data Exchange (ETDEWEB)

    Sacchi, M. [Centre Universitaire Paris-Sud, Orsay (France); Hague, C.F. [Universite Pierre et Marie Curie, Paris (France); Gullikson, E.M.; Underwood, J. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    Magnetic effects on X-ray scattering (Bragg diffraction, specular reflectivity or diffuse scattering) are a well known phenomenon, and they also represent a powerful tool for investigating magnetic materials since it was shown that they are strongly enhanced when the photon energy is tuned across an absorption edge (resonant process). The resonant enhancement of the magnetic scattering has mainly been investigated at high photon energies, in order to match the Bragg law for the typical lattice spacings of crystals. In the soft X-ray range, even larger effects are expected, working for instance at the 2p edges of transition metals of the first row or at the 3d edges of rare earths (300-1500 eV), but the corresponding long wavelengths prevent the use of single crystals. Two approaches have been recently adopted in this energy range: (i) the study of the Bragg diffraction from artificial structures of appropriate 2d spacing; (ii) the analysis of the specular reflectivity, which contains analogous information but has no constraints related to the lattice spacing. Both approaches have their own specific advantages: for instance, working under Bragg conditions provides information about the (magnetic) periodicity in ordered structures, while resonant reflectivity can easily be related to electronic properties and absorption spectra. An important aspect common to all the resonant X-ray scattering techniques is the element selectivity inherent to the fact of working at a specific absorption edge: under these conditions, X-ray scattering becomes in fact a spectroscopy. Results are presented for films of iron and cobalt.

  18. Temperature-dependent magnetic properties of a magnetoactive elastomer: Immobilization of the soft-magnetic filler

    Science.gov (United States)

    Bodnaruk, Andrii V.; Brunhuber, Alexander; Kalita, Viktor M.; Kulyk, Mykola M.; Snarskii, Andrei A.; Lozenko, Albert F.; Ryabchenko, Sergey M.; Shamonin, Mikhail

    2018-03-01

    The magnetic properties of a magnetoactive elastomer (MAE) filled with μm-sized soft-magnetic iron particles have been experimentally studied in the temperature range between 150 K and 310 K. By changing the temperature, the elastic modulus of the elastomer matrix was modified, and it was possible to obtain magnetization curves for an invariable arrangement of particles in the sample and in the case when the particles were able to change their position within the MAE under the influence of magnetic forces. At low (less than 220 K) temperatures, when the matrix becomes rigid, the magnetization of the MAE does not show a hysteresis behavior, and it is characterized by a negative value of the Rayleigh constant. At room temperature, when the polymer matrix is compliant, a magnetic hysteresis exists where the dependence of the differential magnetic susceptibility on the magnetic field exhibits local maxima. The appearance of these maxima is explained by the elastic resistance of the matrix to the displacement of particles under the action of magnetic forces.

  19. Static and dynamic magnetic properties of stripe-patterned Fe20Ni80 soft magnetic films

    Science.gov (United States)

    Zhu, Zengtai; Feng, Hongmei; Cheng, Xiaohong; Xie, Hongkang; Liu, Qingfang; Wang, Jianbo

    2018-01-01

    Stripe-patterned soft magnetic Fe20Ni80 films were fabricated on silicon substrate via radio frequency magnetron sputtering technology. The static and dynamic magnetic properties of samples were measured by a vibrating sample magnetometer and vector network analyzer. The vector network analyzer ferromagnetic resonance technique was used to analyze the experimental results, which showed that damping and in-plane uniaxial anisotropy can be tuned significantly for the samples with various stripe widths from 5 to 20 µm. A stripe-shaped anisotropy model was used to analyze the experimental results, which were in accord with the theoretical predictions. Moreover, the variation of damping was investigated in detail.

  20. Angular dependence of coercivity derived from alignment dependence of coercivity in Nd-Fe-B sintered magnets

    Directory of Open Access Journals (Sweden)

    Yutaka Matsuura

    2018-01-01

    Full Text Available Experimental results of the alignment dependence of the coercivity in Nd-Fe-B sintered magnets showed that the angle of magnetization reversal for anisotropically aligned magnets was bigger than that obtained from the theoretical results calculated using the postulation that every grain independently reverses its magnetization direction following the 1/cos θ law. The angles of reversed magnetization (θ1 for Nd13.48Co0.55B5.76Febal. with alignment α=0.95 and for Nd12.75Dy0.84B5.81Co0.55Febal. with α=0.96 were 30° and 36°, respectively, which were very similar to that of an ideal magnet with a Gaussian distribution (σ=31° and 44°, respectively of the grain alignment. In this model, we postulated that every grain independently reversed according to the 1/cos θ law. The calculation results for the angular dependence of the coercivity using the values θ1=ω1(0°=30°, σ=31° and θ1=ω1(0°=36°, σ=44° could qualitatively and convincingly explain the observed angular dependence of the coercivity of Nd14.2B6.2Co1.0Febal. and Nd14.2Dy0.3B6.2Co1.0Febal.. It is speculated that the magnetic domain wall is pinned at grains tilted away from the easy magnetization direction, and when the magnetic domain wall de-pins from the tilted grains, the magnetic domain wall jumps through several grains. We suggest that the coercive force of the aligned magnet behaves like a low-aligned magnet owing to the magnetization reversal of the crust of the grains induced by the pinning and subsequent jumping of the magnetic domain wall.

  1. Angular dependence of coercivity derived from alignment dependence of coercivity in Nd-Fe-B sintered magnets

    Science.gov (United States)

    Matsuura, Yutaka; Nakamura, Tetsuya; Sumitani, Kazushi; Kajiwara, Kentaro; Tamura, Ryuji; Osamura, Kozo

    2018-01-01

    Experimental results of the alignment dependence of the coercivity in Nd-Fe-B sintered magnets showed that the angle of magnetization reversal for anisotropically aligned magnets was bigger than that obtained from the theoretical results calculated using the postulation that every grain independently reverses its magnetization direction following the 1/cos θ law. The angles of reversed magnetization (θ1) for Nd13.48Co0.55B5.76Febal. with alignment α=0.95 and for Nd12.75Dy0.84B5.81Co0.55Febal. with α=0.96 were 30° and 36°, respectively, which were very similar to that of an ideal magnet with a Gaussian distribution (σ=31° and 44°, respectively) of the grain alignment. In this model, we postulated that every grain independently reversed according to the 1/cos θ law. The calculation results for the angular dependence of the coercivity using the values θ1=ω1(0°)=30°, σ=31° and θ1=ω1(0°)=36°, σ=44° could qualitatively and convincingly explain the observed angular dependence of the coercivity of Nd14.2B6.2Co1.0Febal. and Nd14.2Dy0.3B6.2Co1.0Febal.. It is speculated that the magnetic domain wall is pinned at grains tilted away from the easy magnetization direction, and when the magnetic domain wall de-pins from the tilted grains, the magnetic domain wall jumps through several grains. We suggest that the coercive force of the aligned magnet behaves like a low-aligned magnet owing to the magnetization reversal of the crust of the grains induced by the pinning and subsequent jumping of the magnetic domain wall.

  2. Synthesis, structural and magnetic characterization of soft magnetic nanocrystalline ternary FeNiCo particles

    Energy Technology Data Exchange (ETDEWEB)

    Toparli, Cigdem [Department of Metallurgical & Materials Eng., Istanbul Technical University, 34469 Istanbul (Turkey); Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf (Germany); Ebin, Burçak [Department of Metallurgical & Materials Eng., Istanbul Technical University, 34469 Istanbul (Turkey); Nuclear Chemistry and Industrial Material Recycling, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, S-412 96 Gothenburg (Sweden); Gürmen, Sebahattin, E-mail: gurmen@itu.edu.tr [Department of Metallurgical & Materials Eng., Istanbul Technical University, 34469 Istanbul (Turkey)

    2017-02-01

    The present study focuses on the synthesis, microstructural and magnetic properties of ternary FeNiCo nanoparticles. Nanocrystalline ternary FeNiCo particles were synthesized via hydrogen reduction assisted ultrasonic spray pyrolysis method in single step. The effect of precursor concentration on the morphology and the size of particles was investigated. The syntheses were performed at 800 °C. Structure, morphology and magnetic properties of the as-prepared products were characterized through X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM) studies. Scherer calculation revealed that crystallite size of the ternary particles ranged between 36 and 60 nm. SEM and TEM investigations showed that the particle size was strongly influenced by the precursor concentration and Fe, Ni, Co elemental composition of individual particles was homogeneous. Finally, the soft magnetic properties of the particles were observed to be a function of their size. - Highlights: • Ternary FeNiCo alloy nanocrystalline particles were synthesized in a single step. • Cubic crystalline structure and spherical morphology was observed by XRD, SEM and TEM investigations. • The analysis of magnetic properties indicates the soft magnetic features of particles.

  3. Optimizing the field distribution of a Halbach type permanent magnet cylinder using the soft iron and superhard magnet

    Science.gov (United States)

    Xu, Xiaonong; Lu, Dingwei; Xu, Xibin; Yu, Yang; Gu, Min

    2018-01-01

    When a conventional Halbach type Hollow Cylindrical Permanent Magnet Array (HCPMA) is used to generate magnetic induction over the magnitude of coercivity μ0Hc, some detrimental parasitic magnetic phenomena, such as the demagnetization, magnetization reversal, and vortexes of magnetization, can appear in the interior of the magnets. We present a self-consistent quantitative analysis of the magnetization and magnetic induction distributions inside the magnetic array by considering the anisotropic and nonlinear magnetization functions of the materials consisting of the array. These numeric simulations reveal novel magnetization structures resulted from the self-field of array. We demonstrate that both the field uniformity and magnetic flux in the pole gap can be modulated by partially substituting the magnets of high energy products with the soft irons and the superhard magnets. We also show how the optimized substitution parameters can be obtained for a HCPMA achieving the best field uniformity or the maximum magnetic flux.

  4. Magnetic resonance imaging appearance of soft-tissue metastases: our experience at an orthopedic oncology center

    Energy Technology Data Exchange (ETDEWEB)

    Sammon, Jennifer; Jain, Abhishek; Bleakney, Robert; Mohankumar, Rakesh [Mount Sinai Hospital and University of Toronto, Division of Musculoskeletal Imaging, Joint Department of Medical Imaging, Toronto, Ontario (Canada)

    2017-04-15

    To assess the prevalence and magnetic resonance imaging appearance of metastasis presenting as a soft-tissue mass. A retrospective chart review was performed on 51 patients who presented to an orthopedic oncology center with soft-tissue masses, with a histology-proven diagnosis of soft-tissue metastasis, over a 14-year period. Their magnetic resonance imaging, primary origin, and follow-up have been assessed. Soft-tissue metastasis was identified in patients ranging from 18 to 85 years old. Most (80%) of the masses were located deep to the deep fascia. In our cohort of patients, melanoma was the most common primary malignancy contributing to soft-tissue metastasis (21.8%). Among soft-tissue metastasis from solid organs, breast and lung were the most frequent (9.1% each). Five patients had soft-tissue metastases from an unknown primary. Imaging diagnosis of soft-tissue metastases is challenging as it can demonstrate imaging appearances similar to primary soft-tissue sarcoma. The presence of a known malignancy may not be evident in everyone, and even if available, histopathology will be necessary for diagnosis if this is the only site of recurrence/metastasis to differentiate from a primary soft-tissue sarcoma. Moreover, soft-tissue metastasis may be the initial presentation of a malignancy. Primary malignancies with soft-tissue metastasis carry a poor prognosis; hence, prompt diagnosis and management in essential. (orig.)

  5. Structural and magnetic characterization of soft-magnetic FeCo alloy nanoparticles

    International Nuclear Information System (INIS)

    Gao Xingyu; Tan, S.C.; Wee, A.T.S.; Wu Junhua; Kong Lingbing; Yu Xiaojiang; Moser, H.O.

    2006-01-01

    Soft-magnetic FeCo alloy nanoparticles with diameters less than 100 nm are prepared by ball milling. X-ray photoemission spectroscopy (XPS) and X-ray magnetic circular dichroism (XMCD) are used to characterize these particles. While the XPS spectrum from the as-prepared sample clearly shows Co photoemission peaks, no sign of Fe is observed in the same spectrum. However, Fe photoemission peaks appear after 1 h of Ar ion sputtering. A quantitative analysis of the XPS spectra shows an increase of Fe concentration versus sputtering time until the Fe:Co ratio of the bulk alloy is reached. In addition, the narrow scan Fe and Co 2p XPS spectra show that Co is more oxidized than Fe. All these measurements indicate that the nanoparticles have a Co shell and an Fe-rich core. They further demonstrate the usefulness of XPS combined with depth-profiling via sputtering to obtain element- and chemically-sensitive structural information on nanoparticles. XMCD as an element-specific magnetic analysis tool further reveals that Fe and Co are ferromagnetically coupled in these particles. The information obtained is useful for establishing a structure-property relation for the studied material that is expected to have applications as a soft magnetic material at high temperatures

  6. Microstructure and property evolution of isotropic and anisotropic NdFeB magnets fabricated from nanocrystalline ribbons by spark plasma sintering and hot deformation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Z W; Huang, H Y; Yu, H Y; Zhong, X C; Zeng, D C [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Gao, X X; Zhu, J, E-mail: zwliu@scut.edu.cn [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China)

    2011-01-19

    Isotropic and anisotropic NdFeB magnets were synthesized by spark plasma sintering (SPS) and SPS+HD (hot deformation), respectively, using melt-spun ribbons as the starting materials. Spark plasma sintered magnets sintered at low temperatures (<700 {sup 0}C) almost maintained the uniform fine grain structure inherited from rapid quenching. At higher temperatures, due to the local high-temperature field caused by the spark plasma discharge, the grain growth occurred at the initial particle surfaces and the coarse grain zones formed in the vicinity of the particle boundaries. Since the interior of the particles maintained the fine grain structure, a distinct two-zone structure was formed in the spark plasma sintered magnets. The SPS temperature and pressure have important effects on the widths of coarse and fine grain zones, as well as the grain sizes in two zones. The changes in grain structure led to variations in the magnetic properties. By employing low SPS temperature and high pressure, high-density magnets with negligible coarse grain zone and an excellent combination of magnetic properties can be obtained. An anisotropic magnet with a maximum energy product of {approx}30 MG Oe was produced by the SPS+HD process. HD at 750 {sup 0}C did not lead to obvious grain growth and the two-zone structure still existed in the hot deformed magnets. Intergranular exchange coupling was demonstrated in the spark plasma sintered magnets and was enhanced by the HD process, which reduced the coercivity. Good temperature stability was manifested by low temperature coefficients of remanence and coercivity. The results indicated that nanocrystalline NdFeB magnets without significant grain growth and with excellent properties could be obtained by SPS and HD processes.

  7. Steinmetz law in iron–phenolformaldehyde resin soft magnetic composites

    Energy Technology Data Exchange (ETDEWEB)

    Kollár, Peter, E-mail: peter.kollar@upjs.sk [Institute of Physics, Faculty of Science, Pavol Jozef Šafárik University, Park Angelinum 9, 04154 Košice (Slovakia); Vojtek, Vladimír; Birčáková, Zuzana; Füzer, Ján [Institute of Physics, Faculty of Science, Pavol Jozef Šafárik University, Park Angelinum 9, 04154 Košice (Slovakia); Fáberová, Mária; Bureš, Radovan [Institute of Materials Research, Slovak Academy of Sciences, Watsonova 47, 04001 Košice (Slovakia)

    2014-03-15

    The validity of Steinmetz law describing the dc energy losses as a function of maximum induction has been investigated for iron based soft magnetic composites (SMCs) up to 1.4 T with the effort to find a physical meaning of the coefficients in Steinmetz law. In the Rayleigh region the coefficients were expressed mathematically using the Rayleigh law. Further the “range of validity of Steinmetz law” was found to be from 0.3 T to 1.2 T. The typical “straight” shape of hysteresis loops of SMCs at lower maximum induction was approximated by linear functions in order to express the dc losses in form of Steinmetz law. - Highlights: • The exponent x in Steinmetz law in Rayleigh region for Fe-based SMC is equal to 3. • The validity of Steinmetz law is from 0.3 T to 1.2 T with exponent x=1.5. • The straight shape of hysteresis loop is approximated by linear functions. • This approximation provides the relation for dc losses in form of Steinmetz law.

  8. Sintering time effect on crystal structure and magnetic properties of Bi{sub 0.8}La{sub 0.2}FeO{sub 3} multiferroics

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Ompal, E-mail: om19901990@gmail.com; Agarwal, Ashish; Sanghi, Sujata; Singh, Jogender [Department of Applied Physics Guru Jambheshwar University of Science & Technology, Hisar – 125001 (Haryana) (India)

    2016-05-06

    Effect of sintering time over the structure and magnetic properties has been studied in Bi{sub 0.8}La{sub 0.2}FeO{sub 3} multiferroic ceramics prepared by solid state reaction technique. The structure changes with the advent mixed phase rhombohedral and orthorhombic symmetry to immaculate orthorhombic structure with sintering time from 2 to 3 hour, as revealed by means of the simulation of XRD patterns via Rietveld analysis through FullProf software. The M – H plots depict decent enhancement in magnetization with values of remnant magnetization (Mr) from 0.01868emu/g to 0.09357emu/g while the sintering time is varied from 2 to 3 hour. The metamagnetic transition may be attributed to the crumpling of the modulated spin cycloid existing inherently in the pristine compound. The presented study may have considerable impact in commercial as well as advanced electronic applications.

  9. FeSiBP bulk metallic glasses with high magnetization and excellent magnetic softness

    Energy Technology Data Exchange (ETDEWEB)

    Makino, Akihiro [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Sendai 980-8577 (Japan)], E-mail: amakino@imr.tohoku.ac.jp; Kubota, Takeshi; Chang, Chuntao [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Sendai 980-8577 (Japan); Makabe, Masahiro [Makabe R and D Co., Ltd., 3-1-25 Nagatake, Sendai 983-0036 (Japan); Inoue, Akihisa [Tohoku University, 2-1-1 Katahira, Sendai 980-8577 (Japan)

    2008-10-15

    Fe-based amorphous alloy ribbons are one of the major soft magnetic materials, because of their superior magnetic properties such as the relatively high saturation magnetization (J{sub s}) of 1.5-1.6 T and good magnetic softness. However, the preparation of the ordinary amorphous magnetic alloys requires cooling rates higher than 10{sup 4} K/s due to the low glass-forming ability (GFA) and thus restricts the material outer shape. Recently, Fe-metalloid-based bulk metallic glasses (BMGs) containing glass-forming elements such as Al, Ga, Nb, Mo, Y and so forth have been developed. These alloys have high GFA, leading to the formation of BMG rod with diameters of mm-order. However, the glass-forming metal elements in BMGs result in a remarkable decrease in magnetization. Basically, J{sub s} depends on Fe content; hence, high J{sub s} requires high Fe content in the Fe-based amorphous alloys or BMGs. On the other hand, high GFA requires a large amount of glass-forming elements in the alloys, which results in lower Fe content. Therefore, in substances, the coexistence of high J{sub s} and high GFA is difficult. Since this matter should be immensely important from academia to industry in the material field, a great deal of effort has been devoted; however, it has remained unsolved for many years. In this paper, we present a novel Fe-rich FeSiBP BMG with high J{sub s} of 1.51 T comparable to the ordinary Fe-Si-B amorphous alloy now in practical use as well as with high GFA leading to a rod-shaped specimen of 2.5 mm in diameter, obtained by Cu-mold casting in air.

  10. Effect of magnetic soft phase on the magnetic properties of bulk anisotropic Nd2Fe14B/α-Fe nanocomposite permanent magnets

    Science.gov (United States)

    Li, Yuqing; Yue, Ming; Zhao, Guoping; Zhang, Hongguo

    2018-01-01

    The effects of soft phase with different particle sizes and distributions on the Nd2Fe14B/α-Fe nanocomposite magnets have been studied by the micro-magnetism simulation. The calculated results show that smaller and/or scattered distribution of soft phase can benefit to the coercivity (H ci) of the nanocomposite magnets. The magnetization moment evolution during magnetic reversal is systematically analyzed. On the other hand, magnetic properties of anisotropic Nd–Fe–B/α-Fe nanocomposite magnets prepared by hot pressing and hot deformation methods also provide evidences for the calculated results.

  11. Relation between Nd2Fe14B grain alignment and coercive force decrease ratio in NdFeB sintered magnets

    International Nuclear Information System (INIS)

    Matsuura, Yutaka; Hoshijima, Jun; Ishii, Rintaro

    2013-01-01

    It was found that the coercive force of NdFeB sintered magnets decreases as the Nd 2 Fe 14 B grain alignment improves. Because of this phenomenon, studies looked at the relation between this alignment and the coercive force decrease ratio. In experiments, it was expected that the coercive force of perfectly aligned magnet reached 0.7 of coercive force in istotropically aligned magnet. When it is postulated that the coercive force is determined by the Stoner–Wohlfarth model, coercive force increases as the alignment improves and it becomes difficult to explain our experimental data. On the other hand, when the coercive force is determined by magnetic domain wall motion, the coercive force decreases as the alignment improves and the coercive force of the perfectly aligned magnet reaches 1/√(2) of the isotropically aligned magnet. This tendency and value was very close to our data. It strongly suggests that the coercive force of NdFeB sintered magnets is determined by the domain wall motion. - Highlights: ► Coercive force of NdFeB sintered magnets decreases as grains alignment improves. ► Coercive force decrease ratio reaches −30% at the perfect aligned magnet. ►These experimental results are different from the Stoner–Wohlfarth model. ► The magnetic domain wall motion could explain this coercive force decrease ratio

  12. Relation between Nd{sub 2}Fe{sub 14}B grain alignment and coercive force decrease ratio in NdFeB sintered magnets

    Energy Technology Data Exchange (ETDEWEB)

    Matsuura, Yutaka, E-mail: Yutaka_Matsuura@hitachi-metals.co.jp [Hitachi Metals Ltd., NEOMAX Division, 2-15-17 Egawa, Shimamoto-cho, Mishima-gun, Osaka 618-0013 (Japan); Hoshijima, Jun; Ishii, Rintaro [Hitachi Metals Ltd., NEOMAX Division, 2-15-17 Egawa, Shimamoto-cho, Mishima-gun, Osaka 618-0013 (Japan)

    2013-06-15

    It was found that the coercive force of NdFeB sintered magnets decreases as the Nd{sub 2}Fe{sub 14}B grain alignment improves. Because of this phenomenon, studies looked at the relation between this alignment and the coercive force decrease ratio. In experiments, it was expected that the coercive force of perfectly aligned magnet reached 0.7 of coercive force in istotropically aligned magnet. When it is postulated that the coercive force is determined by the Stoner–Wohlfarth model, coercive force increases as the alignment improves and it becomes difficult to explain our experimental data. On the other hand, when the coercive force is determined by magnetic domain wall motion, the coercive force decreases as the alignment improves and the coercive force of the perfectly aligned magnet reaches 1/√(2) of the isotropically aligned magnet. This tendency and value was very close to our data. It strongly suggests that the coercive force of NdFeB sintered magnets is determined by the domain wall motion. - Highlights: ► Coercive force of NdFeB sintered magnets decreases as grains alignment improves. ► Coercive force decrease ratio reaches −30% at the perfect aligned magnet. ►These experimental results are different from the Stoner–Wohlfarth model. ► The magnetic domain wall motion could explain this coercive force decrease ratio.

  13. Magnetic features of Fe-Cr-Co alloys with tailoring chromium content fabricated by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Rastabi, Reza Amini; Ghasemi, Ali, E-mail: ali13912001@yahoo.com; Tavoosi, Majid; Ramazani, Mazaher

    2017-03-15

    Structural and magnetic characterization of Fe-Cr-Co alloys during milling, annealing and consolidation processes was the goal of this study. In this regards, different powder mixtures of Fe{sub 80−x}Cr{sub x}Co{sub 20} (15≤x≤35) were mechanically milled in a planetary ball mill and then were consolidated by spark plasma sintering (SPS). The produced samples were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM). According to achieved results, the structure of as-milled samples in different compositions consists of single α phase solid solution with coercivity and saturation of magnetization in the range of 110–200 Oe and 150–220 emu/g, respectively. The magnetic properties of consolidated samples depend on the kinds of formed precipitates in microstructure and the maximum values of coercive force and saturation of magnetization obtained in Fe{sub 55}Cr{sub 25}Co{sub 20} magnetic (with single α phase) alloy were 107 Oe and Ms 172 emu/g, respectively. In fact, the formation of non-magnetic σ and γ phases has a destructive effect on magnetic properties of consolidated samples with higher Cr content. Since such magnet requires less cobalt, and contains similar magnetic feature with superior ductility compare to the AlNiCo 5, it could be considered as a promising candidate for employing instead of AlNiCo 5. - Highlights: • Milled samples consist of single phase α-solid solution. • Saturation of magnetization of Fe{sub 65}Cr{sub 15}Co{sub 20} reached to 172 emu/g. • Fe{sub 65}Cr{sub 15}Co{sub 20} alloy is the suitable composition fabricated by SPS.

  14. Composite nanoplatelets combining soft-magnetic iron oxide with hard-magnetic barium hexaferrite

    Science.gov (United States)

    Primc, D.; Makovec, D.

    2015-01-01

    By coupling two different magnetic materials inside a single composite nanoparticle, the shape of the magnetic hysteresis can be engineered to meet the requirements of specific applications. Sandwich-like composite nanoparticles composed of a hard-magnetic Ba-hexaferrite (BaFe12O19) platelet core in between two soft-magnetic spinel iron oxide maghemite (γ-Fe2O3) layers were synthesized using a new, simple and inexpensive method based on the co-precipitation of Fe3+/Fe2+ ions in an aqueous suspension of hexaferrite core nanoparticles. The required close control of the supersaturation of the precipitating species was enabled by the controlled release of the Fe3+ ions from the nitrate complex with urea ([Fe((H2N)2C&z.dbd;O)6](NO3)3) and by using Mg(OH)2 as a solid precipitating agent. The platelet Ba-hexaferrite nanoparticles of different sizes were used as the cores. The controlled coating resulted in an exclusively heterogeneous nucleation and the topotactic growth of the spinel layers on both basal surfaces of the larger hexaferrite nanoplatelets. The direct magnetic coupling between the core and the shell resulted in a strong increase of the energy product |BH|max. Ultrafine core nanoparticles reacted with the precipitating species and homogeneous product nanoparticles were formed, which differ in terms of the structure and composition compared to any other compound in the BaO-Fe2O3 system.By coupling two different magnetic materials inside a single composite nanoparticle, the shape of the magnetic hysteresis can be engineered to meet the requirements of specific applications. Sandwich-like composite nanoparticles composed of a hard-magnetic Ba-hexaferrite (BaFe12O19) platelet core in between two soft-magnetic spinel iron oxide maghemite (γ-Fe2O3) layers were synthesized using a new, simple and inexpensive method based on the co-precipitation of Fe3+/Fe2+ ions in an aqueous suspension of hexaferrite core nanoparticles. The required close control of the

  15. Improved HDDR processing route for production of anisotropic powder from sintered NdFeB type magnets

    Energy Technology Data Exchange (ETDEWEB)

    Sheridan, R.S.; Williams, A.J.; Harris, I.R.; Walton, A., E-mail: a.walton@bham.ac.uk

    2014-01-15

    The hydrogenation disproportionation desorption recombination (HDDR) process has been investigated as a possible means of producing bonded magnets from used NdFeB-type sintered magnets with compositions, Nd{sub 13.4}Dy{sub 0.8}Al{sub 0.7}Nb{sub 0.3}Fe{sub 78.5}B{sub 6.3} and Nd{sub 12.5}Dy{sub 1.8}Al{sub 0.9}Nb{sub 0.6}Co{sub 5.0}Fe{sub 72.8}B{sub 6.4} (atomic%). It has been shown that by increasing the processing temperature, an increase in the equilibrium pressure for disproportionation and in the overall reaction time was observed. The magnetic properties of the lower Dy content magnet were affected significantly by the change in processing temperature with a peak in properties observed at 880 °C producing magnetic powder with a remanence of 1.08 (±0.02) T, a coercivity of 840 (±17) kA m{sup −1}, and a maximum energy product of 175 (±2.5) kJ m{sup −3}. Further work on magnets with a significantly higher Dy content has shown that simultaneous processing of sintered magnets with varying compositions can be achieved by increasing the hydrogen pressure, however a range of magnetic properties are produced depending on the initial compositions of the samples in the input feed. - Highlights: • Reduced oxidation during the HDDR processing in this work compared to the previous paper resulted in a powder with a higher coercivity. • Increasing the hydrogen pressure for disproportionation allowed for Dy, Co rich NdFeB compositions to be processed. • Mixed compositions (which will be typical from “real scrap”) can be processed simultaneously in the same equipment. • Mixed feeds produced lower magnetic properties due to overprocessing of the low Dy content compositions.

  16. Imaging nanoscale magnetic structures with polarized soft x-ray photons

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, P.; Im, M.-Y.

    2010-01-18

    Imaging nanoscale magnetic structures and their fast dynamics is scientifically interesting and technologically of highest relevance. The combination of circularly polarized soft X-ray photons which provide a strong X-ray magnetic circular dichroism effect at characteristic X-ray absorption edges, with a high resolution soft X-ray microscope utilizing Fresnel zone plate optics allows to study in a unique way the stochastical behavior in the magnetization reversal process of thin films and the ultrafast dynamics of magnetic vortices and domain walls in confined ferromagnetic structures. Future sources of fsec short and high intense soft X-ray photon pulses hold the promise of magnetic imaging down to fundamental magnetic length and time scales.

  17. Improvement of the magnetic property, thermal stability and corrosion resistance of the sintered Nd-Fe-B magnets with Dy{sub 80}Al{sub 20} addition

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Beibei; Li, Xiangbin; Liang, Xiaolin [School of Physics and Technology, Wuhan University, Wuhan, Hubei (China); Yan, Gaolin, E-mail: gaolinyan@whu.edu.cn [School of Physics and Technology, Wuhan University, Wuhan, Hubei (China); Chen, Kan; Yan, Aru [Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang (China)

    2017-05-01

    To improve the coercivity and thermal stability of the Nd-Fe-B sintered magnets simultaneously, the Dy{sub 80}Al{sub 20} (at%) powders with low melting point were introduced into the Nd-Fe-B magnets. Additionally, the magnetic properties, microstructure and thermal stability of the sintered magnets with different amounts of Dy{sub 80}Al{sub 20} were investigated. By adding a small amount of Dy{sub 80}Al{sub 20}, the coercivity was significantly increased from 12.72 to 21.75 kOe. As indicated by the microstructure analysis, a well-developed core-shell structure was formed in the magnets with the addition of Dy{sub 80}Al{sub 20}. The improvement of magnetic properties could be attributed to the refined and uniform matrix phase, continuous grain boundaries and a (Nd, Dy){sub 2}Fe{sub 14}B hardening shell surrounding the matrix phase grains. With the addition of 0–4 wt% Dy{sub 80}Al{sub 20} powder, the reversible temperature coefficients of remanence (α) and coercivity (β) of the magnets could be improved from −0.117 to −0.108%/°C and −0.74 to −0.66%/°C in the range of 20–100 °C, respectively. Additionally, the irreversible loss of magnetic flux (hirr) decreased sharply as Dy{sub 80}Al{sub 20} powder was added. The results of temperature-dependent magnetic properties suggest that, the thermal stability of the magnets was effectively improved with the intergranular addition of Dy{sub 80}Al{sub 20} alloy. Also, the corrosion resistance was found to be improved through small addition of Dy{sub 80}Al{sub 20} powders This was partly due to the stability enhancement of the (Pr, Nd)-rich intergranular phase by Dy{sub 80}Al{sub 20}. - Highlights: • We successfully introduced the Dy{sub 80}Al{sub 20} alloy into the Nd-Fe-B magnets. • The magnetic properties and thermal stability of the Nd-Fe-B magnets were improved. • The corrosion resistance of the Nd-Fe-B magnets were improved.

  18. Studying Nanoscale Magnetism and its Dynamics with Soft X-ray Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Mccall, Monnikue M; Fischer, Peter

    2008-05-01

    Magnetic soft X-ray microscopy allows for imaging magnetic structures at a spatial resolution down to 15nm and a time resolution in the sub-100ps regime. Inherent elemental specificity can be used to image the magnetic response of individual components such as layers in multilayered systems. This review highlights current achievements and discusses the future potential of magnetic soft X-ray microscopy at fsec X-ray sources where snapshot images of ultrafast spin dynamics with a spatial resolution below 10nm will become feasible.

  19. Study of sintered Nd-Fe-B magnet with high performance of Hcj (kOe + (BHmax (MGOe > 75

    Directory of Open Access Journals (Sweden)

    Bo-Ping Hu

    2013-04-01

    Full Text Available We have developed a Nd-Fe-B sintered magnet of extremely high performance. The intrinsic coercivity Hcj is as high as 35.2 kOe (2803kA/m together with the maximum energy product (BHmax of 40.4 MGOe (321.6kJ/m3. These values result in Hcj (kOe + (BHmax (MGOe > 75. Between 293 K (20ºC and 473 K (200ºC, the temperature coefficients of remanence and intrinsic coercivity are αBr = −0.122 %/°C and αHcj = −0.403%/°C, respectively. A maximum operating temperature of 503 K (230ºC is obtained when permeance coefficient Pc = −B/H = 2. Grain boundary diffusion (GBD technique on magnet surface has been developed to increase Hcj by 3.6 kOe without significantly decrease of Br and (BHmax. The intrinsic coercivity of the GBD treated magnet Hcj(C has a linear relationship with that of the untreated magnet Hcj(B between 200 K and 473 K (in unit of kOe: Hcj(C = 1.03Hcj(B + 2.38. The enhancement of Hcj by GBD treatment has contributions not only from the improvement of microstructure but also from the increase of Ha in the grain surface layer. It is also found that GBD treatment brings no deterioration in corrosion resistance of untreated magnet.

  20. EXPERIMENTATION OF THREE PHASE OUTER ROTATING SWITCHED RELUCTANCE MOTOR WITH SOFT MAGNETIC COMPOSITE MATERIALS

    Directory of Open Access Journals (Sweden)

    N. C. LENIN

    2017-01-01

    Full Text Available This paper presents the application of Soft Magnetic Composite (SMC material in Outer Rotating Switched Reluctance Motor (ORSRM. The presented stator core of the Switched Reluctance Motor was made of two types of material, the classical laminated silicon steel sheet and the soft magnetic composite material. First, the stator core made of laminated steel has been analysed. The next step is to analyse the identical geometry SRM with the soft magnetic composite material, SOMALOY for its stator core. The comparisons of both cores include the calculated torque and torque ripple, magnetic conditions, simplicity of fabrication and cost. The finite element method has been used to analyse the magnetic conditions and the calculated torque. Finally, tested results shows that SMC is a better choice for SRM in terms of torque ripple and power density.

  1. Study of the magnetic microstructure of high-coercivity sintered SmCo5 permanent magnets with the conventional Bitter pattern technique and the colloid-SEM method

    International Nuclear Information System (INIS)

    Szmaja, Witold

    2007-01-01

    The magnetic microstructure of high-coercivity sintered SmCo 5 permanent magnets was studied with the conventional Bitter pattern technique, and also for the first time with the colloid-scanning electron microscopy (colloid-SEM) method. Both techniques were supported by digital image acquisition, enhancement and analysis. Thanks to this, it was possible to obtain high-contrast and clear images of the magnetic microstructure and to analyze them in detail, and consequently also to achieve improvements over earlier results. In the thermally demagnetized state the grains were composed of magnetic domains. On the surface perpendicular to the alignment axis, the main domains forming a maze pattern and surface reverse spikes were observed. Investigations on the surface parallel to the alignment axis, especially by the colloid-SEM technique, provided a detailed insight into the orientation of grains. The alignment of grains was good, but certainly not perfect; there were also strongly misaligned grains, although generally very rare. In most cases the domain structures within grains were independent of their neighbors, but in some cases (not so rare) the domain walls were observed to continue through the grain boundaries, indicating significant magnetostatic interaction between neighboring grains. Studies of the behavior of the magnetic microstructure under the influence of an external magnetic field, performed for the first time on the surface parallel to the alignment axis (with the conventional Bitter pattern method), showed that the domain walls move easily within the grains and that the magnetization reversal mechanism is mainly related to the nucleation and growth of reverse domains, i.e. that sintered SmCo 5 magnets are nucleation-dominated systems. Groupwise magnetization reversal of adjacent magnetically coupled grains was observed, an unfavorable effect for high-coercivity magnets. Images obtained by the colloid-SEM technique and the conventional Bitter pattern

  2. Magnetic and structural properties of iron phosphate-phenolic soft magnetic composites

    Energy Technology Data Exchange (ETDEWEB)

    Taghvaei, A.H. [Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of); Shokrollahi, H. [Materials Science and Engineering Department, Shiraz University of Technology, 71555-313 Shiraz (Iran, Islamic Republic of)], E-mail: shokrollahi@sutech.ac.ir; Janghorban, K. [Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of)

    2009-12-15

    This work focuses on the effect of phosphate modification on the magnetic and surface properties of iron-phenolic soft magnetic composite materials. Fourier transform infrared (FTIR) spectra, EDX analysis, distribution maps, X-ray diffraction pattern and density measurements show that the particles surface layer contains a thin layer of nanocrystalline/amorphous phosphate with high coverage of powders surface. Magnetic measurements show that phosphating treatment decreases the loss factor, imaginary part of permeability, increases the electrical resistivity and operating frequencies by decreasing the effective particle size. The operating frequency increases from 200 kHz for uncoated-powders samples to 1 MHz for phosphated-powders samples at optimum concentration. Phosphated iron powders that are covered by 0.7 wt% of phenolic resin exhibits lower magnetic loss and higher frequency stability. The minimum loss factor and maximum permeability at each frequency can be obtained for 0.01 g/ml orthophosphoric acid concentration in comparison with other concentrations including 0.005 and 0.04 g/ml.

  3. Coercivity enhancement of Dy-free Nd–Fe–B sintered magnets by intergranular adding Ho{sub 63.4}Fe{sub 36.6} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Liping; Ma, Tianyu, E-mail: maty@zju.edu.cn; Wu, Chen; Zhang, Pei; Liu, Xiaolian; Yan, Mi, E-mail: mse_yanmi@zju.edu.cn

    2016-01-01

    High coercivity Nd–Fe–B sintered magnets serving in high-temperature environments always consume expensive and scarce heavy rare-earth Dy, which has simulated considerable interest to reduce Dy usage. In this work, coercivity of Dy-free magnets was investigated through intergranular adding eutectic Ho{sub 63.4}Fe{sub 36.6} powders. The coercivity increases gradually up to 4 wt% Ho{sub 63.4}Fe{sub 36.6} addition, however the remanence starts to deteriorate drastically as the addition is over 2.5 wt%. Coercivity above 18.0 kOe is obtained at the expense of a slight reduction in remanence through optimizing the addition amount and sintering conditions. The coercivity enhancement is explained through microstructural observations and elemental distribution analysis. (i) (Nd, Ho){sub 2}Fe{sub 14}B shell forms in the outer region of 2:14:1 phase grains, strengthening the local magnetic anisotropy filed, (ii) RE-rich grain boundary phase with low Fe content is thickened, weakening the magnetic coupling between adjacent 2:14:1 phase grains, and (iii) 2:14:1 phase grains are refined upon lowering sintering temperature, reducing the microstructural defects and the stray fields aroused from neighboring grains. - Highlights: • Eutectic Ho{sub 63.4}Fe{sub 36.6} powders were intergranular added to NdFeB sintered magnets. • The doped Dy-free magnet possessed coercivity of 18.0 kOe, remanence of 13.15 kGs. • (Nd, Ho){sub 2}Fe{sub 14}B shell formed in the surface of the matrix grains, increasing the H{sub A}. • Thick grain boundaries with low Fe content formed, decoupling the matrix grains. • By sintered at lower temperature, the matrix phase grains were refined.

  4. Microstructure of sintered ND–Fe–Ga–B magnets with Mo and MoS2 addition

    International Nuclear Information System (INIS)

    Li, W.F.; Gabay, A.M.; Marinescu-Jasinski, M.; Liu, J.F.; Ni, C.; Hadjipanayis, G.C.

    2012-01-01

    The effect of Mo and MoS 2 additions on the magnetic and microstructure properties has been investigated in Nd–Fe–Ga–B sintered magnets. Coercivity can be increased by both the additions, but the MoS 2 addition provides the larger increase per Mo atom for up to 0.6 at.% Mo. Microstructure investigation reveals a new amorphous intergranular Ga rich phase. This phase forms a thin layer in the grain boundaries and leads to a wetting behavior of the grain boundary phase, therefore increasing the coercivity. Molybdenum addition in the form of MoS 2 is found to modify the Nd 2 Fe 14 B phase, rather than form new minority phases, and the coercivity enhancement of the magnet is due to the increased anisotropy field of the hard magnetic phase. - Highlights: ► Coercivity of Nd–Fe–Ga–B alloys can be increased by both Mo and MoS 2 addition. ► MoS 2 addition is proved to be more effective to improve the coercivity. ► An amorphous Ga rich layer was found in the grain boundary, which can increase the coercivity.

  5. Characteristics of B2O3 and Fe added into BaFe12O19 permanent magnets prepared at different milling time and sintering temperature

    Science.gov (United States)

    Sebayang, Perdamean; Sari, Ayu Yuswita; Ginting, Delovita; Allan, Yola; Nasruddin M., N.; Sebayang, Kerista

    2016-02-01

    The objective of present work is to investigate the characteristic of BaFe12O19, B2O3-BaFe12O19 and Fe-BaFe12O19 magnets fabricated at different milling time and sintering temperature. The characteristic of perrmanen magnet BaFe12O19 with different content of B2O3 and Fe which was fabricated at different milling time and sintering temperature were investigated. The powder mixtures were prepared by dry and wet milling at various milling time. The powder were mixtured and prepared by dry and wet milling at various milling time. The mixture powder was then compacted by anisotropic with compressive pressure of 50 N/cm2. The green bodies were sinter at 1050, 1100, 1150 and 1200°C and hold for 1 h, separately. The density, magnetic flux density and B-H curve were measured by Archimedes principle, Gauss meter and Permagraph, respectively. The microstructure and phase composition characterization were performed by SEM and XRD. The results of this study are presented in this paper. It shows that addition of Fe (in wet milling) and B2O3 (in dry milling) respectively give a potential benefit to reduce the sintering temperature and improve the magnetic flux density of barium hexaferrite.

  6. Effect of cerium on the corrosion behaviour of sintered (Nd,Ce)FeB magnet

    Science.gov (United States)

    Yang, Lijing; Bi, Mengxue; Jiang, Jianjun; Ding, Xuefeng; Zhu, Minggang; Li, Wei; Lv, Zhongshan; Song, Zhenlun

    2017-06-01

    For the balanced consumption of rare-earth elements, cerium (Ce) was partially used for NdFeB magnets instead of Nd. The corrosion behaviour of the (Nd,Ce)FeB magnet with different Ce contents in 3.5% NaCl solution was investigated by SEM, XRD, EDS and electrochemical tests. After immersion, the weight loss was calculated and the magnetic properties of the samples were measured. Results showed that Ce affected the corrosion of the (Nd,Ce)FeB magnet. Compared with the NdFeB magnet without Ce but of the same grade as the magnetic energy product, (Nd,Ce)FeB magnet showed better corrosion resistance. With increased Ce content, the corrosion resistances and magnetic properties of (Nd,Ce)FeB magnets were investigated.

  7. Soft X-ray magnetic scattering study of rotational magnetisation processes in cobalt/copper multilayers

    International Nuclear Information System (INIS)

    Hase, T.P.A.; Fulthorpe, B.D.; Wilkins, S.B.; Tanner, B.K.; Marrows, C.H.; Hickey, B.J.

    2001-01-01

    We report the observation of magnetic viscosity in the intensity of resonant magnetic soft X-ray scattering during rotational magnetisation processes in antiferromagnetically coupled Co/Cu multilayers. The hysteretic time-dependent component of the signal can be fitted to a single-exponential function that varies as a function of magnetising field

  8. Boundary structure modification and magnetic properties of Nd-Fe-B sintered magnets by co-doping with Dy{sub 2}O{sub 3}/S powders

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Fang [Institute for Advanced Materials& Technology, University of Science and Technology Beijing, Beijing 100083 (China); Guo, Leichen [School of Engineering Technology, Purdue University, West Lafayette, Indiana 47907 (United States); Li, Ping [Institute for Advanced Materials& Technology, University of Science and Technology Beijing, Beijing 100083 (China); Zhao, Xuzhe [School of Engineering Technology, Purdue University, West Lafayette, Indiana 47907 (United States); Sui, Yanli [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Guo, Zhimeng, E-mail: guozhimengustb@163.com [Institute for Advanced Materials& Technology, University of Science and Technology Beijing, Beijing 100083 (China); Gao, Xuexu [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China)

    2017-05-01

    In this paper, the effect of Dy{sub 2}O{sub 3}/S co-doping on the magnetic properties and microstructure was studied in Nd-Fe-B sintered magnets. With S co-doping, the coercivity increased due to grain boundary modification and Dy selective introduction. Continuous grain boundary phases were formed in the co-doped magnets with smaller grain size. The average grain size after a doping of 0.2 wt% S is 7.25 µm, which is approximately 2.37 µm smaller than that of the S-free sintered magnets(9.62 µm). The coercivity of the Dy{sub 2}O{sub 3}/0.2 wt% S co-doped magnets could be increased from 20.9 to 22.8 kOe with changing the remanence and the maximum magnetic energy product slightly. S precipitates in the Nd-rich phases were hexagonal Nd{sub 2}O{sub 2}S phase. Dy avoided the Nd{sub 2}O{sub 2}S phase in the triple junction region, resulting in more available Dy atoms diffusing into the Nd{sub 2}Fe{sub 14}B phase grains to enhance the anisotropy field. Dy-saving was achieved by forming Nd{sub 2}O{sub 2}S phase in the Dy{sub 2}O{sub 3}/S co-doped magnets. - Highlights: • The average grain size of Dy{sub 2}O{sub 3}/S co-doped magnets is 2.37 μm smaller than that of Dy{sub 2}O{sub 3} doped magnets. • The Dy atoms avoid the Nd{sub 2}O{sub 2}S phases and more of them become available to diffuse into the Nd{sub 2}Fe{sub 14}B phases. • The coercivity reaches maximum when S content is 0.2 wt%, 9% higher than the 20.9 kOe coercivity of the S-free magnets.

  9. Effect of cerium on the corrosion behaviour of sintered (Nd,Ce)FeB magnet

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Lijing [CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Bi, Mengxue [CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Nano Science and Technology Institute, University of Science and Technology of China, Hefei 230026 (China); Jiang, Jianjun; Ding, Xuefeng [CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Zhu, Minggang; Li, Wei [Functional Materials Research Institute, Central Iron & Steel Research Institute, Beijing 100081 (China); Lv, Zhongshan [Ningbo Shuo Teng new material Co., Ltd., Cixi 315301 (China); Song, Zhenlun, E-mail: songzhenlun@nimte.ac.cn [CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2017-06-15

    Highlights: • A little Ce could promote the magnets for a better corrosion resistance. • With increased Ce contents, the corrosion resistances of magnets decrease. • As the corrosion developed, the magnetic properties decreased. - Abstract: For the balanced consumption of rare-earth elements, cerium (Ce) was partially used for NdFeB magnets instead of Nd. The corrosion behaviour of the (Nd,Ce)FeB magnet with different Ce contents in 3.5% NaCl solution was investigated by SEM, XRD, EDS and electrochemical tests. After immersion, the weight loss was calculated and the magnetic properties of the samples were measured. Results showed that Ce affected the corrosion of the (Nd,Ce)FeB magnet. Compared with the NdFeB magnet without Ce but of the same grade as the magnetic energy product, (Nd,Ce)FeB magnet showed better corrosion resistance. With increased Ce content, the corrosion resistances and magnetic properties of (Nd,Ce)FeB magnets were investigated.

  10. Soft mode and magnetic phase transition in PrNi

    International Nuclear Information System (INIS)

    Alekseev, P.A.; Lazukov, V.N.; Sadikov, I.P.; Klement'ev, E.S.; Allenspach, P.; Chumlyakov, Yu.I.

    2002-01-01

    The spectrum of the magnetic excitation of the PrNi intermetallic compound monocrystal is studied through the neutrons inelastic scattering. Essential softening of certain collective modes of the magnetic excitation near the temperature of the ferromagnetic ordering T c ∼ 20 K is identified. The above result is analyzed from the viewpoint of the model, describing the magnetic phase transition in the systems with the directed magnetic moment [ru

  11. Coercivity enhancement in (Ce,Nd)-Fe-B sintered magnets prepared by adding NdH{sub x} powders

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Le-le [Key Laboratory of Integrated Exploitation of Bayan Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010 (China); School of Science, Inner Mongolia University of Science and Technology, Baotou 014010 (China); Li, Zhu-bai, E-mail: lzbgj@163.com [Key Laboratory of Integrated Exploitation of Bayan Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010 (China); Ma, Qiang; Li, Yong-feng; Zhao, Qian [Key Laboratory of Integrated Exploitation of Bayan Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010 (China); School of Science, Inner Mongolia University of Science and Technology, Baotou 014010 (China); Zhang, Xue-feng, E-mail: xuefeng056@163.com [Key Laboratory of Integrated Exploitation of Bayan Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010 (China); School of Science, Inner Mongolia University of Science and Technology, Baotou 014010 (China)

    2017-08-01

    (Ce,Nd)-Fe-B sintered magnets were prepared by the addition of NdH{sub x} powders in Ce{sub 9}Nd{sub 4.5}Fe{sub 80}B{sub 6.5} powders. The coercivity is rather low in Ce{sub 9}Nd{sub 4.5}Fe{sub 80}B{sub 6.5} magnets, and Ce element prefers to distribute at the outer-layer of main phase (Ce,Nd){sub 2}Fe{sub 14}B. The investigation of scanning electron microscope shows that the addition of NdH{sub x} powders leads to the increase of Nd content at grain outer-layer of main phase owing to the element diffusion. Magnetization reversal undergoes the nucleation of reversed domain wall at grain outer-later, and the addition of NdH{sub x} powders leads to the increase in the nucleation field of reversed domain, giving rise to the significant improvement of coercivity. The larger amount addition of NdH{sub x} powders leads to the increase in the amount of intergranular phase, resulting in the decreases of the remanence, the squareness of demagnetization curve and the maximum energy product.

  12. Mechanical and magnetic properties of semi-Heusler/light-metal composites consolidated by spark plasma sintering

    Czech Academy of Sciences Publication Activity Database

    Koller, M.; Chráska, Tomáš; Cinert, Jakub; Heczko, Oleg; Kopeček, Jaromír; Landa, Michal; Mušálek, Radek; Rameš, Michal; Seiner, Hanuš; Stráský, J.; Janeček, M.

    2017-01-01

    Roč. 126, July (2017), s. 351-357 ISSN 0264-1275 R&D Projects: GA ČR GB14-36566G Institutional support: RVO:61389021 ; RVO:68378271 ; RVO:61388998 Keywords : Metal–metal composites * Spark plasma sintering * Light metals * Ferromagnetic alloys * Mechanical properties Subject RIV: JI - Composite Materials; JI - Composite Materials (FZU-D); JI - Composite Materials (UT-L) OBOR OECD: Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics; Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics (FZU-D); Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics (UT-L) Impact factor: 4.364, year: 2016 https://www.sciencedirect.com/science/article/pii/S0264127517303842?via%3Dih

  13. Influence of the added oxide power on the magnetic property of the iron-chromium magnetic sintered alloy in alternating field; FeCr kei shoketsu jisei gokin no koryu jiki tokusei ni oyobosu sakabutsu funmatsu tenka no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Kato, T.; Kanazawa, H. [Daido Institute of Technology, Nagoya (Japan); Kawamura, M.; Kono, T.; Kusaka, K. [Daido Steel Co., Nagoya (Japan)

    1994-07-15

    This paper describes effects of addition of mixed oxide powder on the magnetic properties of low carbon Fe-13Cr-0.8Si sintered alloy. The mixed powder composed of SiO2, CaO, and Al2O3 was added. It was found that the magnetic characteristics of specimens in direct magnetic field degraded with addition of oxide powder. However, they were improved with rising the sintering temperature. On the other hand, the amplitude relative permeability of specimens in alternating magnetic field was higher in the case of 0.1 to 0.2% addition of oxide powder than no addition one. The relative permeability showed a change of increase and then decrease with rising the sintering temperature. However, it was found that the proportion of the decrease in relative permeability at the higher sintering temperature was restrained by addition of the oxide powder. These phenomena were discussed in relation to sintered density, porosity, and electrical resistivity. 8 refs., 13 figs., 2 tabs.

  14. Effects of Milling Atmosphere and Increasing Sintering Temperature on the Magnetic Properties of Nanocrystalline Ni0.36Zn0.64Fe2O4

    Directory of Open Access Journals (Sweden)

    Abdollah Hajalilou

    2015-01-01

    Full Text Available Nanocrystalline Ni0.36Zn0.64Fe2O4 was synthesized by milling a powder mixture of Zn, NiO, and Fe2O3 in a high-energy ball mill for 30 h under three different atmospheres of air, argon, and oxygen. After sintering the 30 h milled samples at 500°C, the XRD patterns suggested the formation of a single phase of Ni-Zn ferrite. The XRD results indicated the average crystallite sizes to be 15, 14, and 16 nm, respectively, for the 30 h milled samples in air, argon, and oxygen atmospheres sintered at 500°C. From the FeSEM micrographs, the average grain sizes of the mentioned samples were 83, 75, and 105 nm, respectively, which grew to 284, 243, and 302 nm after sintering to 900°C. A density of all the samples increased while a porosity decreased by elevating sintering temperature. The parallel evolution of changes in magnetic properties, due to microstructural variations with changes in the milling atmosphere and sintering temperature in the rage of 500–900°C with 100°C increments, is also studied in this work.

  15. A Magnetic Resonance Compatible Soft Wearable Robotic Glove for Hand Rehabilitation and Brain Imaging.

    Science.gov (United States)

    Hong Kai Yap; Kamaldin, Nazir; Jeong Hoon Lim; Nasrallah, Fatima A; Goh, James Cho Hong; Chen-Hua Yeow

    2017-06-01

    In this paper, we present the design, fabrication and evaluation of a soft wearable robotic glove, which can be used with functional Magnetic Resonance imaging (fMRI) during the hand rehabilitation and task specific training. The soft wearable robotic glove, called MR-Glove, consists of two major components: a) a set of soft pneumatic actuators and b) a glove. The soft pneumatic actuators, which are made of silicone elastomers, generate bending motion and actuate finger joints upon pressurization. The device is MR-compatible as it contains no ferromagnetic materials and operates pneumatically. Our results show that the device did not cause artifacts to fMRI images during hand rehabilitation and task-specific exercises. This study demonstrated the possibility of using fMRI and MR-compatible soft wearable robotic device to study brain activities and motor performances during hand rehabilitation, and to unravel the functional effects of rehabilitation robotics on brain stimulation.

  16. Recoil curve properties and coercive force decrease ratio in NdFeB sintered magnets

    Energy Technology Data Exchange (ETDEWEB)

    Matsuura, Yutaka, E-mail: Yutaka_Matsuura@hitachi-metals.co.jp; Kitai, Nobuyuki; Ishii, Rintaro; Natsumeda, Toshimitsu; Hoshijima, Jun

    2013-11-15

    It is examined that whether a reverse domain and magnetic domain wall exist in a lower demagnetization area than the coercive force and whether the observed demagnetization ratio curve can be explained using the alignment distribution function or not. From measurements of the recoil curve in the low demagnetization field, it was confirmed that minor demagnetization occurred in every demagnetization field and magnets of every grade of coercive force. The alignment distribution of Nd{sub 2}Fe{sub 14}B grains was also measured by electron back-scattering diffraction (EBSD). The alignments and the coercive force decrease ratios were calculated using these alignment distributions. These data were compared against the results obtained from magnetization measurements. From EBSD data, it was found that the alignment distributions of magnets used in this experiment were close to a Gaussian distribution. It was also found that there was no difference in the alignment distribution between magnets with Dy and without Dy, even though the coercive force decrease ratios were Dy dependent. The calculated alignments using the alignment distribution functions were close to the values of magnetization measurements. However, it was found that the calculated coercive force decrease ratios were different from the results obtained from magnetization measurement. - Highlights: • Reverse magnetic domains already exist lower magnetic field than coercive force. • Demagnetization happens not only from surface but also from inside of magnets. • Calculated alignment agrees well with that of the magnetic properties measurement. • Coercive force decrease ratio could not explain from alignment distribution. • We could not find any difference with and without Dy magnets in alignment distribution.

  17. Microstructure and Magnetic Properties of NdFeB Sintered Magnets Diffusion-Treated with Cu/Al Mixed Dyco Alloy-Powder

    Directory of Open Access Journals (Sweden)

    Lee M.-W.

    2017-06-01

    Full Text Available We investigated the microstructural and magnetic property changes of DyCo, Cu + DyCo, and Al + DyCo diffusion-treated NdFeB sintered magnets. The coercivity of all diffusion treated magnet was increased at 880ºC of 1st post annealing(PA, by 6.1 kOe in Cu and 7.0 kOe in Al mixed DyCo coated magnets, whereas this increment was found to be relatively low (3.9 kOe in the magnet coated with DyCo only. The diffusivity and diffusion depth of Dy were increased in those magnets which were treated with Cu or Al mixed DyCo, mainly due to comparatively easy diffusion path provided by Cu and Al because of their solubility with Ndrich grain boundary phase. The formation of Cu/Al-rich grain boundary phase might have enhanced the diffusivity of Dy-atoms. Moreover, relatively a large number of Dy atoms reached into the magnet and mostly segregated at the interface of Nd2Fe14B and grain boundary phases covering Nd2Fe14B grains so that the core-shell type structures were developed. The formation of highly anisotropic (Nd, Dy2Fe14B phase layer, which acted as the shell in the core-shell type structure so as to prevent the reverse domain movement, was the cause of enhancing the coercivity of diffusion treated NdFeB magnets. Segregation of cobalt in Nd-rich TJP followed by the formation of Co-rich phase was beneficial for the coercivity enhancement, resulting in the stabilization of the metastable c-Nd2O3 phase.

  18. Simulation of motional eddy current phenomena in soft magnetic material

    International Nuclear Information System (INIS)

    Gersem, Herbert de; Hameyer, Kay

    2001-01-01

    The finite element simulation of conductors moving in a magnetic field at elevated speeds, yields oscillatory solutions. To overcome the effect of the huge convection terms, the partial differential equation is stabilised by adding artificial diffusion. Accurate results are obtained by applying adaptive mesh refinement. A rotational magnetic brake with a solid ferromagnetic rotor is simulated

  19. Simulation of motional eddy current phenomena in soft magnetic material

    Science.gov (United States)

    De Gersem, Herbert; Hameyer, Kay

    2001-05-01

    The finite element simulation of conductors moving in a magnetic field at elevated speeds, yields oscillatory solutions. To overcome the effect of the huge convection terms, the partial differential equation is stabilised by adding artificial diffusion. Accurate results are obtained by applying adaptive mesh refinement. A rotational magnetic brake with a solid ferromagnetic rotor is simulated.

  20. Effect of addition of esters of fatty acids on the microstructure and properties of sintered Nd–Fe–B magnets produced by PLP

    Energy Technology Data Exchange (ETDEWEB)

    Popov, A.G., E-mail: apopov@imp.uran.ru [Institute of Metal Physics, Str. S. Kovalevskoy, 18, Ekaterinburg 620990 (Russian Federation); Gaviko, V.S.; Shchegoleva, N.N.; Golovnia, O.A. [Institute of Metal Physics, Str. S. Kovalevskoy, 18, Ekaterinburg 620990 (Russian Federation); Gorbunova, T.I. [Institute of Organic Synthesis of Ural Branch of Russian Academy of Sciences, Str. S. Kovalevskoy 20, Ekaterinburg 620990, Russia (Russian Federation); Hadjipanayis, G.C. [Department of Physics and Astronomy, University of Delaware, 217 Sharp Lab, Newark, DE 19716 (United States)

    2015-07-15

    High filling density of powders for production of sintered Nd–Fe–B magnets by the pressless process (PLP) impedes magnetic alignment. The latter can be enhanced by reduction of friction forces between powder particles. Thus, increase in the remanence and maximum energy product of the magnets by lubrication of powder particles is studied. Esters of fatty acids have been added in toluene or acetone in the course of grinding of Nd–Fe–B alloy in a vibratory mill. Coated by a thin layer of a lubricant powders have been aligned in pulsed magnetic field. It is shown that the remanence of sintered magnets has been increased by 5–7%. Lubricant concentration should not exceed critical values, which for the lubricants used varied between 2.0 wt% (ethyl butyrate) and 0.3 wt% (ethyl laurate). Otherwise, the complicated removal of lubricant residue leads to reaction of the latter with Nd-rich grain-boundary phase in the course of sintering and results in a sharp decrease in magnetic hysteresis properties. Addition of lubricating additives allows one to produce PLP-magnets with density exceeding 7.5 g/cm{sup 3}, B{sub r}≥14 kG, H{sub c}≥9 kOe and (BH){sub max}≥45 MG Oe. - Highlights: • Application of internal lubricants in the PLP-produced magnets is studied. • The alignment degree is enhanced by addition of esters of fatty acids. • Critical concentrations of lubricants are determined. • Exceeding the critical concentration decreases magnetic properties by increasing oxygen content.

  1. The effect of Cu, P, Ga and Gd on microstructure and magnetic properties in the PrFeCoBNb HD sintered magnets

    International Nuclear Information System (INIS)

    Mendes, T.; Silva, S.C.; Perigo, E.A.; Faria, R.N.; Takiishi, H.

    2009-01-01

    An evaluation of the effect of alloying elements on the microstructure and magnetic properties of Pr 15 Fe bal Co 8 B 7 Nb 0.05 Mx (M = Cu, P, Gd and Ga; 0 ≤ x ≤ 0.25) sintered magnets has been carried out. A mixture of alloys and the high-energy milling technique have been used to prepare the magnets. The alloying elements have influenced the remanence, intrinsic coercivity and particularly the squareness factor (SF). Phosphorus addition improved (BH) max (254 kJm -3 ) and SF around 10% (0.89). The same improvement addition on intrinsic coercivity was observed with Gallium (1100mT) compared to the standard composition Pr 15 Fe bal Co 8 B 7 Nb 0.05 (1000mT) magnet. Comparisons between the squareness factors obtained using the Jμ × 0 H curve profile (SF), the estimated (sf) using microstructural parameters and Sf using a (BH) max and B r correlation have also been carried out. (author)

  2. A comparative study of magnetoresistance and magnetic structure in recycled vs. virgin NdFeB-type sintered magnets

    Science.gov (United States)

    Shen, Shida; Tsoi, Maxim; Prosperi, Davide; Tudor, Catalina O.; Dove, Stephen K.; Bevan, Alex I.; Furlan, Gojmir; Zakotnik, Miha

    2017-11-01

    Recycled NdFeB magnets are emerging as a viable alternative to virgin NdFeB, because of lower production costs and environmental impacts. Recycled NdFeB magnets produced via the recently reported magnet-to-magnet (m2 m™) recycling process display unanticipated enhancements of magnetic and physical properties that may arise because of their unique microstructure. In the present study, we compare electrical transport and magnetic properties of these recycled magnets (Grade: N42SH, Br = 1289 mT, Hcj = 1876 kA/m, BHmax = 323.4 kJ/m3, Dy content = 4.0 wt%) with an equivalent grade of commercial NdFeB magnet produced from virgin material by conventional techniques (Grade: N42SH, Br = 1215 mT, Hcj = 1943 kA/m, BHmax = 285.0 kJ/m3, with Dy content = 4.6 wt%). Atomic force microscopy (AFM) and magnetic force microscopy (MFM) analyses revealed very similar surface morphology and magnetic structure for the virgin and recycled samples. However, bulk electrical transport measurements demonstrated a 27% enhancement in the resistivity of the recycled magnets. This suggests that the electrical properties of NdFeB alloys are enhanced during Grain Boundary Engineering™ (GBE™). Moreover, point-contact measurements, used to probe the electrical transport properties on the microscopic scale, found similar results to those of the bulk measurements.

  3. Effects of magnetic pre-alignment of nano-powders on formation of high textured barium hexa-ferrite quasi-single crystals via a magnetic forming and liquid participation sintering route

    International Nuclear Information System (INIS)

    Liu, Junliang; Zeng, Yanwei; Zhang, Xingkai; Zhang, Ming

    2015-01-01

    Highly textured barium hexa-ferrite quasi-single crystal with narrow ferromagnetic resonance line-width is believed to be a potential gyromagnetic material for self-biased microwave devices. To fabricate barium hexa-ferrite quasi-single crystal with a high grain orientation degree, a magnetic forming and liquid participation sintering route has been developed. In this paper, the effects of the pre-alignment of the starting nano-powders on the formation of barium quasi-single crystal structures have been investigated. The results indicated that: the crystallites with large sizes and small specific surfaces were easily aligned for they got higher driving forces and lower resistances during magnetic forming. The average restricting magnetic field was about 4.647 kOe to overcome the average friction barrier between crystallites. The pre-aligned crystallites in magnetic forming acted as the “crystal seeds” for oriented growth of the un-aligned crystallites during liquid participation sintering to achieve a high grain orientation. To effectively promote the grain orientation degrees of the sintered pellets, the grain orientation degrees of the green compacts must be higher than a limited value of 15.0%. Barium hexa-ferrite quasi-single crystal with a high grain orientation degree of 98.6% was successfully fabricated after sintering the green compact with its grain orientation degree of 51.1%. - Highlights: • Aligned particles acted as “crystal seeds” for un-aligned ones' oriented growth. • Magnetic field of 4.647 kOe was needed to overcome crystallites' friction barrier. • GOD dramatically increased after sintering if starting GOD exceeded to 15.0%. • Quasi-single crystal was prepared by sintering green compact with GOD of 51.1%

  4. Effects of magnetic pre-alignment of nano-powders on formation of high textured barium hexa-ferrite quasi-single crystals via a magnetic forming and liquid participation sintering route

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Junliang, E-mail: liujunliang@yzu.edu.cn [Key Laboratory of Environmental Materials and Engineering of Jiangsu Province, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002 (China); Zeng, Yanwei [State Key Laboratory of Materials-Oriented Chemical Engineering, School of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009 (China); Zhang, Xingkai [Key Laboratory of Environmental Materials and Engineering of Jiangsu Province, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002 (China); Zhang, Ming [Key Laboratory of Environmental Materials and Engineering of Jiangsu Province, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002 (China); Testing Center of Yangzhou University, Yangzhou 225002 (China)

    2015-05-15

    Highly textured barium hexa-ferrite quasi-single crystal with narrow ferromagnetic resonance line-width is believed to be a potential gyromagnetic material for self-biased microwave devices. To fabricate barium hexa-ferrite quasi-single crystal with a high grain orientation degree, a magnetic forming and liquid participation sintering route has been developed. In this paper, the effects of the pre-alignment of the starting nano-powders on the formation of barium quasi-single crystal structures have been investigated. The results indicated that: the crystallites with large sizes and small specific surfaces were easily aligned for they got higher driving forces and lower resistances during magnetic forming. The average restricting magnetic field was about 4.647 kOe to overcome the average friction barrier between crystallites. The pre-aligned crystallites in magnetic forming acted as the “crystal seeds” for oriented growth of the un-aligned crystallites during liquid participation sintering to achieve a high grain orientation. To effectively promote the grain orientation degrees of the sintered pellets, the grain orientation degrees of the green compacts must be higher than a limited value of 15.0%. Barium hexa-ferrite quasi-single crystal with a high grain orientation degree of 98.6% was successfully fabricated after sintering the green compact with its grain orientation degree of 51.1%. - Highlights: • Aligned particles acted as “crystal seeds” for un-aligned ones' oriented growth. • Magnetic field of 4.647 kOe was needed to overcome crystallites' friction barrier. • GOD dramatically increased after sintering if starting GOD exceeded to 15.0%. • Quasi-single crystal was prepared by sintering green compact with GOD of 51.1%.

  5. Sinterable powders

    International Nuclear Information System (INIS)

    Zanghi, J.S.; Kasprzyk, M.R.

    1979-01-01

    A description is given of sinterable powders and methods of producing sintered products using such powders. The powders consist of (a) a particulate ceramic material, e.g. SiC, having specified particle size and surface area; (b) a carbon source material, e.g. sugar or a phenol-formaldehyde resin; and (c) a residue from a solution of H 3 BO 3 , B 2 O 3 , or mixtures of these as sintering aid. (U.K.)

  6. Microstructural and electrochemical characterization of Ni/Ti/sub 2/N composite coating for sintered NdFeB permanent magnets

    International Nuclear Information System (INIS)

    Ali, A.; Ahmad, A.; Deen, K.M.; Ahmad, R.

    2009-01-01

    Sintered NdFeB magnets have complex microstructure that makes them susceptible to corrosion in humid or moist environments. The paper presents the anticorrosion characteristics of a novel Ni/Ti/sub 2/N composite coating applied through electrodeposition and cathodic arc physical vapour deposition (CAPVD) to sintered NdFeB permanent magnets. The performance of composite coating was evaluated in simulated marine environment with the help of dc polarization techniques. The rate of coating degradation was also determined by employing ac electrochemical impedance spectroscopy (EIS). The coating morphology and surface chemistry were studied with scanning electron microscope (SEM). X-ray diffraction (XRD) was used for identification of component phases in the coating-substrate system. The results showed that the composite coating provided an adequately improved corrosion protection to the sintered NdFeB magnets in the simulated marine environment compared to the earlier reported ceramic and metallic coatings. The composite coating did not damage the magnetic properties of coating-substrate system that remained at par with the ceramic and nickel coating having copper interlayer. (author)

  7. Frequency characterization of thin soft magnetic material layers used in spiral inductors

    International Nuclear Information System (INIS)

    Kriga, Adoum; Allassem, Désiré; Soultan, Malloum; Chatelon, Jean-Pierre; Siblini, Ali; Allard, Bruno; Rousseau, Jean Jacques

    2012-01-01

    The paper details the characterization of thin magnetic materials layers, particularly soft materials, with respect to their behaviour in frequency (from 10 MHz to 1 GHz). The proposed method is suitable for any soft but insulating magnetic material; Yttrium Iron Garnet (YIG) is used as an example. The principle is based on a comparison between simulations for different values of the permeability and measurement values versus frequency of planar inductor structures; an experimental validation is proposed as well. Thin magnetic material is first deposited on an alumina substrate using RF sputtering technique; a planar spiral winding of copper is then deposited on the magnetic material by the same technique. The effective permeability versus frequency is obtained by comparing two samples of spiral windings with and without magnetic material. Network analyser measurements on samples of various geometrical dimensions and of different thicknesses are necessary to determine the effective magnetic permeability; we have obtained a relative effective permeability of about 30 for seven turns spiral inductor of a 17 μm YIG film. - Highlights: ► A simple and original method is presented for the characterization of soft magnetic layer. ► This is a non-destructive method based on standard equipment. ► The principle is based on a comparison between simulations and measurement. ► An experimental validation is proposed as well.

  8. Magnetization of neutron star matter and implications in physics of soft gamma repeaters

    International Nuclear Information System (INIS)

    Kondratyev, V.N.

    2002-01-01

    The magnetization of neutron star matter is considered within the thermodynamic formalism. The quantization effects are demonstrated to result in sharp abrupt magnetic field dependence of nuclide magnetic moments. Accounting for inter-nuclide magnetic coupling we show that such anomalies give rise to erratic jumps in magnetotransport of neutron star crusts. The properties of such a noise are favorably compared with burst statistics of Soft Gamma Repeaters. PACS: 97.60.Jd, 21.10.Dr, 26.60.+c, 95.30.Ky. (author)

  9. Study of soft magnetic iron cobalt based alloys processed by powder injection molding

    International Nuclear Information System (INIS)

    Silva, Aline; Lozano, Jaime A.; Machado, Ricardo; Escobar, Jairo A.; Wendhausen, Paulo A.P.

    2008-01-01

    As a near net shape process, powder injection molding (PIM) opens new possibilities to process Fe-Co alloys for magnetic applications. Due to the fact that PIM does not involve plastic deformation of the material during processing, we envisioned the possibility of eliminating vanadium (V), which is generally added to Fe-Co alloys to improve the ductility in order to enable its further shaping by conventional processes such as forging and cold rolling. In our investigation we have found out two main futures related to the elimination of V, which lead to a cost-benefit gain in manufacturing small magnetic components where high-saturation induction is needed at low frequencies. Firstly, the elimination of V enables the achievement of much better magnetic properties when alloys are processed by PIM. Secondly, a lower sintering temperature can be used when the alloy is processed starting with elemental Fe and Co powders without the addition of V

  10. Creep deformation of a soft magnetic iron-cobalt alloy

    OpenAIRE

    Fingers, Richard T.; Coate, Jack E.; Dowling, Norman E.

    1999-01-01

    The U.S. Air Force is in the process of developing magnetic bearings, as well as an aircraft integrated power unit and an internal starter/generator for main propulsion engines. These developments are the driving force for the new emphasis on the development of high saturation, low loss magnets capable of maintaining structural integrity in high stress and high temperature environments. It is this combination of desired material characteristics that is the motivation of this effort to measure...

  11. Formation and properties of two-phase bulk metallic glasses by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Xie Guoqiang, E-mail: xiegq@imr.tohoku.ac.jp [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Louzguine-Luzgin, D.V. [WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Inoue, Akihisa [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

    2011-06-15

    Research highlights: > Two-phase bulk metallic glasses with high strength and good soft magnetic properties as well as satisfying large-size requirements were produced by spark plasma sintering. > Effects of sintering temperature on thermal stability, microstructure, mechanical and magnetic properties were investigated. > Densified samples were obtained by the spark plasma sintering at above 773 K. - Abstract: Using a mixture of the gas-atomized Ni{sub 52.5}Nb{sub 10}Zr{sub 15}Ti{sub 15}Pt{sub 7.5} and Fe{sub 73}Si{sub 7}B{sub 17}Nb{sub 3} glassy alloy powders, we produced the two-phase bulk metallic glass (BMG) with high strength and good soft magnetic properties as well as satisfying large-size requirements by the spark plasma sintering (SPS) process. Two kinds of glassy particulates were homogeneously dispersed each other. With an increase in sintering temperature, density of the produced samples increased, and densified samples were obtained by the SPS process at above 773 K. Good bonding state among the Ni- and Fe-based glassy particulates was achieved.

  12. Microstructure characteristic and excellent corrosion protection properties of sealed Zn-TiO{sub 2} composite coating for sintered NdFeB magnet

    Energy Technology Data Exchange (ETDEWEB)

    Yang Xiaokui [School of Materials Science and Engineering, Southwest University, Chongqing 400715 (China); Li Qing, E-mail: liqingd@swu.edu.c [School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Zhang Shiyan; Liu Fang; Wang Shaoyin; Zhang Haixiao [School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China)

    2010-04-09

    In this paper, a protective sealed Zn-TiO{sub 2} composite coating (SCC) was prepared on sintered NdFeB magnet by electrodeposition and sol-gel combined technique. For a comparison, unsealed Zn-TiO{sub 2} composite coating (UCC) was also studied. The surface morphologies of composite coating were studied using scanning electron microscope (SEM). The microstructure of composite coatings and structure of sealing layer were studied by X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectrum, respectively. The anticorrosive properties of composite coatings in neutral 3.5 wt.% NaCl solutions were evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) technique. The results of corrosion tests showed that due to the blocking effect of sealing layer, SCC could suppress the corrosion process by holding back the transfer or diffusion of corrosive medium, and therefore showed the excellent corrosion protection properties for sintered NdFeB magnet.

  13. Soft X-ray magnetic circular dichroism study of UFe2

    International Nuclear Information System (INIS)

    Okane, T.; Takeda, Y.; Fujimori, S.-I.; Terai, K.; Saitoh, Y.; Muramatsu, Y.; Fujimori, A.; Haga, Y.; Yamamoto, E.; Onuki, Y.

    2006-01-01

    Soft X-ray magnetic circular dichroism has been measured at the U N 4,5 and Fe L 2,3 absorption edges of ferromagnetic UFe 2 . The orbital and spin magnetic moments of U 5f and Fe 3d electrons are evaluated by a sum-rule analysis of the XMCD data. It is confirmed that the U 5f orbital moment is parallel to the Fe 3d spin moment

  14. Small angle neutron scattering investigations of spin disorder in nanocomposite soft magnets

    International Nuclear Information System (INIS)

    Vecchini, C.; Moze, O.; Suzuki, K.; Cadogan, J.M.; Pranzas, K.; Michels, A.; Weissmueller, J.

    2006-01-01

    The technique of SANS (small angle neutron scattering) furnishes unique information on the characteristic magnetic length scales and local magnetic anisotropies at the nanoscale in nanocomposite ferromagnets. Such information is not presently available using any other microscopic technique. The basic principles and results of the technique will be presented with regard to a unique and unexpected observation of a dipole field controlled spin disorder in a prototypical soft nanocomposite ferromagnet of the Nanoperm type

  15. Progress of sintered NdFeB permanent magnets by the diffusion of non-rare earth elements and their alloy compounds

    Directory of Open Access Journals (Sweden)

    Lyu Meng

    2017-12-01

    Full Text Available It has been found that the coercivity (HC and corrosivity of sintered NdFeB magnets are closely related to the components and microstructure of their intergranular phase.The traditional smelting NdFeB magnets with adding heavy rare earth elements can modify intergranular phase to improve the HC and corrosion resistance of magnets.However,it makes the additives be homogenously distributed on the main phase,and causes magnetic decrease and cost increase.With the addition of non-rare earth materials into grain boundary,the microstructure of intergranular phase as well as its electrochemical potential and wettability can be optimized.As a result,the amount of heavy rare earth elements and cost of magnets could be reduced whilst the HC and corrosion resistance of magnets can be improved.This paper summarized the research on regulating the components and the microstructure of intergranular phase in sintered NdFeB magnets by non-rare earth metals and compounds,and its influence on coercivity and corrosion resistance.

  16. Abnormal variation of magnetic properties with Ce content in (PrNdCe)2Fe14B sintered magnets prepared by dual alloy method

    Science.gov (United States)

    Xue-Feng, Zhang; Jian-Ting, Lan; Zhu-Bai, Li; Yan-Li, Liu; Le-Le, Zhang; Yong-Feng, Li; Qian, Zhao

    2016-05-01

    Resource-saving (PrNdCe)2Fe14B sintered magnets with nominal composition (PrNd)15-x Ce x Fe77B8 (x = 0-10) were prepared using a dual alloy method by mixing (PrNd)5Ce10Fe77B8 with (PrNd)15Fe77B8 powders. For Ce atomic percent of 1% and 2%, coercivity decreases dramatically. With further increase of Ce atomic percent, the coercivity increases, peaks at 6.38 kOe in (PrNd)11Ce4Fe77B8, and then declines gradually. The abnormal dependence of coercivity is likely related to the inhomogeneity of rare earth chemical composition in the intergranular phase, where PrNd concentration is strongly dependent on the additive amount of (PrNd)5Ce10Fe77B8 powders. In addition, for Ce atomic percent of 8%, 7%, and 6% the coercivity is higher than that of magnets prepared by the conventional method, which shows the advantage of the dual alloy method in preparing high abundant rare earth magnets. Project supported by the National Natural Science Foundation of China (Grant Nos. 51461033, 51571126, 51541105, and 11547032), the Natural Science Foundation of Inner Mongolia, China (Grant No. 2013MS0110), and the Inner Mongolia University of Science and Technology Innovation Fund, China.

  17. Effect of diffusing TbF3 powder on magnetic properties and microstructure transformation of sintered Nd-Fe-Cu-B magnets

    Science.gov (United States)

    Yang, Xiao; Guo, Shuai; Ding, Guangfei; Cao, Xuejing; Zeng, Jiling; Song, Jie; Lee, Don; Yan, Aru

    2017-12-01

    The coercivity of sintered Nd-Fe-Cu-B magnets is markedly enhanced from 12.57 to 21.70 kOe while the remanence decreases from 13.80 to 13.49 kGs by grain boundary diffusion of TbF3 powder for 2 h. Microstructure analysis suggests that, during the diffusion process, F diffuses into the magnets easily and forms a new F-rich phase. The enrichment of F in grain boundary near the surface leads to the Cu movement into the interior and the Cu reduction in the surface of magnets. Diffusion of Tb leads to an increase of local total rare earth elements content. Under the combined effect of Cu reduction and increase of local total rare earth elements content, grain growth area is formed and further diffusion is suppressed. That excessive Tb diffuses into matrix phase leads to a decrease in remanence. When the grain growth area is removed, the deterioration of remanence recovers to 13.80 kGs without any reduction of coercivity.

  18. Single-step gas phase synthesis of stable iron aluminide nanoparticles with soft magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Vernieres, Jerome, E-mail: Jerome.vernieres@oist.jp; Benelmekki, Maria; Kim, Jeong-Hwan; Grammatikopoulos, Panagiotis; Diaz, Rosa E. [Nanoparticles by Design Unit, Okinawa Institute of Science and Technology (OIST) Graduate University, 1919-1 Tancha, Onna Son, Okinawa 904-0495 (Japan); Bobo, Jean-François [Centre d’Elaboration de Materiaux et d’Etudes Structurales (CEMES), 29 rue Jeanne Marvig, 31055 Toulouse Cedex 4 (France); Sowwan, Mukhles, E-mail: Mukhles@oist.jp [Nanoparticles by Design Unit, Okinawa Institute of Science and Technology (OIST) Graduate University, 1919-1 Tancha, Onna Son, Okinawa 904-0495 (Japan); Nanotechnology Research Laboratory, Al-Quds University, P.O. Box 51000, East Jerusalem, Palestine (Country Unknown)

    2014-11-01

    Soft magnetic alloys at the nanoscale level have long generated a vivid interest as candidate materials for technological and biomedical purposes. Consequently, controlling the structure of bimetallic nanoparticles in order to optimize their magnetic properties, such as high magnetization and low coercivity, can significantly boost their potential for related applications. However, traditional synthesis methods stumble upon the long standing challenge of developing true nanoalloys with effective control over morphology and stability against oxidation. Herein, we report on a single-step approach to the gas phase synthesis of soft magnetic bimetallic iron aluminide nanoparticles, using a versatile co-sputter inert gas condensation technique. This method allowed for precise morphological control of the particles; they consisted of an alloy iron aluminide crystalline core (DO{sub 3} phase) and an alumina shell, which reduced inter-particle interactions and also prevented further oxidation and segregation of the bimetallic core. Remarkably, the as-deposited alloy nanoparticles show interesting soft magnetic properties, in that they combine a high saturation magnetization (170 emu/g) and low coercivity (less than 20 Oe) at room temperature. Additional functionality is tenable by modifying the surface of the particles with a polymer, to ensure their good colloidal dispersion in aqueous environments.

  19. Coercivity and thermal stability improvement in sintered Nd–Fe–B permanent magnets by intergranular addition of Dy–Mn alloy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiangbin; Liu, Shuo [School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Cao, Xuejing [School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Zhou, Beibei [School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Chen, Ling; Yan, Aru [Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Yan, Gaolin, E-mail: gaolinyan@whu.edu.cn [School of Physics and Technology, Wuhan University, Wuhan 430072 (China)

    2016-06-01

    To increase coercivity and thermal stability of sintered Nd–Fe–B magnets for high temperature applications, Dy{sub 88}Mn{sub 12} (wt%) alloy powders were intergranular added into (Pr{sub 0.25}Nd{sub 0.75}){sub 30.6}Cu{sub 0.15}Fe{sub bal}B{sub 1} (wt%) starting magnet. The magnetic properties, microstructure and thermal stability of the sintered magnets with different amounts of Dy{sub 88}Mn{sub 12} were investigated. By adding a small amount of Dy{sub 88}Mn{sub 12}, the coercivity was significantly increased from 12.56 kOe to 17.49 kOe. Microstructure analysis showed that a optimized microstructure, i.e. continuous, uniform grain boundary phase was achieved with Dy{sub 88}Mn{sub 12} alloy addition, and Dy was enriched in the outer region of the Nd{sub 2}Fe{sub 14}B matrix grains during the sintering process, which favored to substitute for Nd in matrix grains to form the (Nd,Dy){sub 2}Fe{sub 14}B core–shell phase. The greatly increased magnetocrystalline anisotropy of the core–shell phase and the improved decoupling by the continuous grain boundary phase accounted for the coercivity enhancement. Furthermore, by adding 0–4 wt% Dy{sub 88}Mn{sub 12}, the reversible temperature coefficients of remanence (α) and coercivity (β) of the magnet were improved from −0.115%/ºC to −0.107%/ºC and −0.744%/ºC to −0.696%/ºC in the range of 20–100 °C, respectively. In addition, the irreversible flux loss of magnetic flow (h{sub irr}) decreased sharply as Dy{sub 88}Mn{sub 12} addition. The temperature-dependent magnetic properties results indicated that with intergranular addition of Dy{sub 88}Mn{sub 12} alloy, the thermal stability of the magnets was effectively improved. - Highlights: • Addition of Dy–Mn enhanced coercivity of sintered Nd–Fe–B magnets. • Addition of Dy–Mn optimized grain boundary and formed a (Nd,Dy){sub 2}Fe{sub 14}B shell. • Addition of Dy–Mn improved the thermal stability of the magnets.

  20. Structural Changes in Deformed Soft Magnetic Ni-Based Metallic Glass

    NARCIS (Netherlands)

    Jurikova, A.; Csach, K.; Miskuf, J.; Ocelik, V.

    The effects of intensive plastic deformation of the soft magnetic metallic glass Ni Si 13 on the structural relaxation were examined. The enthalpy changes studied by differential scanning calorimetry revealed that the intensive plastic deformation was associated with the partial structural

  1. Magnetic imaging with full-field soft X-ray microscopies

    International Nuclear Information System (INIS)

    Fischer, Peter; Im, Mi-Young; Baldasseroni, Chloe; Bordel, Catherine; Hellman, Frances; Lee, Jong-Soo; Fadley, Charles S.

    2013-01-01

    Progress toward a fundamental understanding of magnetism continues to be of great scientific interest and high technological relevance. To control magnetization on the nanoscale, external magnetic fields and spin polarized currents are commonly used. In addition, novel concepts based on spin manipulation by electric fields or photons are emerging which benefit from advances in tailoring complex magnetic materials. Although the nanoscale is at the very origin of magnetic behavior, there is a new trend toward investigating mesoscale magnetic phenomena, thus adding complexity and functionality, both of which will become crucial for future magnetic devices. Advanced analytical tools are thus needed for the characterization of magnetic properties spanning the nano- to the meso-scale. Imaging magnetic structures with high spatial and temporal resolution over a large field of view and in three dimensions is therefore a key challenge. A variety of spectromicroscopic techniques address this challenge by taking advantage of variable-polarization soft X-rays, thus enabling X-ray dichroism effects provide magnetic contrast. These techniques are also capable of quantifying in an element-, valence- and site-sensitive way the basic properties of ferro(i)- and antiferro-magnetic systems, such as spin and orbital moments, spin configurations from the nano- to the meso-scale and spin dynamics with sub-ns time resolution. This paper reviews current achievements and outlines future trends with one of these spectromicroscopies, magnetic full field transmission soft X-ray microscopy (MTXM) using a few selected examples of recent research on nano- and meso-scale magnetic phenomena. The complementarity of MTXM to X-ray photoemission electron microscopy (X-PEEM) is also emphasized

  2. Magnetic imaging with full-field soft X-ray microscopies

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Peter, E-mail: PJFischer@lbl.gov [Center for X-ray Optics, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Im, Mi-Young [Center for X-ray Optics, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Baldasseroni, Chloe [Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA 94720 (United States); Bordel, Catherine; Hellman, Frances [Department of Physics, University of California Berkeley, Berkeley, CA 94720 (United States); Material Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94270 (United States); Lee, Jong-Soo [Department of Energy Systems Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 711-873 (Korea, Republic of); Fadley, Charles S. [Department of Physics, University of California Davis, Davis, CA 95616 (United States); Material Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94270 (United States)

    2013-08-15

    Progress toward a fundamental understanding of magnetism continues to be of great scientific interest and high technological relevance. To control magnetization on the nanoscale, external magnetic fields and spin polarized currents are commonly used. In addition, novel concepts based on spin manipulation by electric fields or photons are emerging which benefit from advances in tailoring complex magnetic materials. Although the nanoscale is at the very origin of magnetic behavior, there is a new trend toward investigating mesoscale magnetic phenomena, thus adding complexity and functionality, both of which will become crucial for future magnetic devices. Advanced analytical tools are thus needed for the characterization of magnetic properties spanning the nano- to the meso-scale. Imaging magnetic structures with high spatial and temporal resolution over a large field of view and in three dimensions is therefore a key challenge. A variety of spectromicroscopic techniques address this challenge by taking advantage of variable-polarization soft X-rays, thus enabling X-ray dichroism effects provide magnetic contrast. These techniques are also capable of quantifying in an element-, valence- and site-sensitive way the basic properties of ferro(i)- and antiferro-magnetic systems, such as spin and orbital moments, spin configurations from the nano- to the meso-scale and spin dynamics with sub-ns time resolution. This paper reviews current achievements and outlines future trends with one of these spectromicroscopies, magnetic full field transmission soft X-ray microscopy (MTXM) using a few selected examples of recent research on nano- and meso-scale magnetic phenomena. The complementarity of MTXM to X-ray photoemission electron microscopy (X-PEEM) is also emphasized.

  3. Traceable measurement of soft magnetic materials at high frequencies

    CERN Document Server

    Hall, M J; Henderson, L C A

    2000-01-01

    Whilst written EN standards already exist for traceable magnetic measurements at low and medium frequencies, extending these to frequencies up to 100 kHz and higher requires rigorous investigation of various additional factors. These are considered in this paper and results showing the importance of the winding configuration and the difficulty in defining the temperature of measurement presented.

  4. High performance of low cost soft magnetic materials

    Indian Academy of Sciences (India)

    % of Si, the coercivity was 0.30 A m-1 while the saturation was 1.2 T. These results prove that structural, magnetic and thermal properties of this material are very close to the expensive high purity FINEMET alloy, while a cost reduction of almost ...

  5. Tuning Mie scattering resonances in soft materials with magnetic fields.

    Science.gov (United States)

    Brunet, Thomas; Zimny, Kevin; Mascaro, Benoit; Sandre, Olivier; Poncelet, Olivier; Aristégui, Christophe; Mondain-Monval, Olivier

    2013-12-27

    An original approach is proposed here to reversibly tune Mie scattering resonances occurring in random media by means of external low induction magnetic fields. This approach is valid for both electromagnetic and acoustic waves. The experimental demonstration is supported by ultrasound experiments performed on emulsions made of fluorinated ferrofluid spherical droplets dispersed in a Bingham fluid. We show that the electromagnet-induced change of droplet shape into prolate spheroids, with a moderate aspect ratio of 2.5, drastically affects the effective properties of the disordered medium. Its effective acoustic attenuation coefficient is shown to vary by a factor of 5, by controlling both the flux density and orientation of the applied magnetic field.

  6. Statistical analysis of magnetically soft particles in magnetorheological elastomers

    Science.gov (United States)

    Gundermann, T.; Cremer, P.; Löwen, H.; Menzel, A. M.; Odenbach, S.

    2017-04-01

    The physical properties of magnetorheological elastomers (MRE) are a complex issue and can be influenced and controlled in many ways, e.g. by applying a magnetic field, by external mechanical stimuli, or by an electric potential. In general, the response of MRE materials to these stimuli is crucially dependent on the distribution of the magnetic particles inside the elastomer. Specific knowledge of the interactions between particles or particle clusters is of high relevance for understanding the macroscopic rheological properties and provides an important input for theoretical calculations. In order to gain a better insight into the correlation between the macroscopic effects and microstructure and to generate a database for theoretical analysis, x-ray micro-computed tomography (X-μCT) investigations as a base for a statistical analysis of the particle configurations were carried out. Different MREs with quantities of 2-15 wt% (0.27-2.3 vol%) of iron powder and different allocations of the particles inside the matrix were prepared. The X-μCT results were edited by an image processing software regarding the geometrical properties of the particles with and without the influence of an external magnetic field. Pair correlation functions for the positions of the particles inside the elastomer were calculated to statistically characterize the distributions of the particles in the samples.

  7. Study on soft magnetic properties of Finemet-type nanocrystalline alloys with Mo substituting for Nb

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Dehui; Zhou, Bingwen; Jiang, Boyu; Ya, Bin; Zhang, Xingguo [School of Materials Science and Engineering, Dalian University of Technology, Dalian (China)

    2017-10-15

    The thermal stability, microstructure, and soft magnetic properties as a function of annealing time were studied for Fe{sub 73.5}Si{sub 13.5}B{sub 9}Cu{sub 1}Nb{sub 3-x}Mo{sub x} (x = 0, 1, 2, 3) (atom percent, at.%,) ribbons. It was found that substituting Nb by Mo reduced the thermal stability. After 15 min short time vacuum annealing, Fe{sub 73.5}Si{sub 13.5}B{sub 9}Cu{sub 1}Nb{sub 2}Mo{sub 1} and Fe{sub 73.5}Si{sub 13.5}B{sub 9}Cu{sub 1}Nb{sub 1}Mo{sub 2} samples obtained higher permeability and similar coercivity compared to the original Finemet alloy (Fe{sub 73.5}Si{sub 13.5}B{sub 9}Cu{sub 1}Nb{sub 3}), Mo substituting Nb reduced the optimum annealing time in Finemet-type alloys, and meanwhile marginally increased the saturation magnetization. Substituting all Nb by Mo led to the earlier formation of non-soft magnetic phase, thus deteriorated the soft magnetic properties. XRD and TEM structural analysis showed that in Fe{sub 73.5}Si{sub 13.5}B{sub 9}Cu{sub 1}Nb{sub 2}Mo{sub 1} and Fe{sub 73.5}Si{sub 13.5}B{sub 9}Cu{sub 1}Nb{sub 1}Mo{sub 2} samples (annealed for 15 min), nanocrystals ∝10 nm in size were obtained, and the good soft magnetic properties of these alloys could be attributed to the small grain size. The relationship between annealing time, soft magnetic properties, and microstructure was established. Reducing annealing time and temperature to obtain best soft magnetic properties could cut down the production costs of Finemet-type alloys. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Creep deformation of a soft magnetic iron-cobalt alloy

    Science.gov (United States)

    Fingers, R. T.; Coate, J. E.; Dowling, N. E.

    1999-04-01

    The U.S. Air Force is in the process of developing magnetic bearings, as well as an aircraft integrated power unit and an internal starter/generator for main propulsion engines. These developments are the driving force for the new emphasis on the development of high saturation, low loss magnets capable of maintaining structural integrity in high stress and high temperature environments. It is this combination of desired material characteristics that is the motivation of this effort to measure, model, and predict the creep behavior of such advanced magnetic materials. Hiperco® Alloy 50HS, manufactured by Carpenter Technology Corporation, is one of the leading candidates for these applications. Material specimens were subjected to a battery of mechanical tests in order to study and characterize their behaviors. Tensile tests provided stress versus strain behaviors that clearly indicated: a yield point, a heterogeneous deformation described as Lüders elongation, the Portevin-LeChatelier effect at elevated temperatures, and most often a section of homogeneous deformation that concluded with necking and fracture. Creep testing indicated three distinct types of behavior. Two types resembled a traditional response with primary, secondary, and tertiary stages; while the third type can be characterized by an abrupt increase in strain rate that acts as a transition from one steady-state behavior to another. The relationships between the tensile and creep responses are discussed. Analyses of the mechanical behavior include double linear regression of empirically modeled data, and constant strain rate testing to bridge the tensile and creep test parameters.

  9. Nanostructured exchange coupled hard/soft composites: From the local magnetization profile to an extended 3d simple model

    Energy Technology Data Exchange (ETDEWEB)

    Russier, V., E-mail: russier@glvt-cnrs.fr [ICMPE, UMR 7182 CNRS and University UPEC, 2 rue Henri Dunant, 94320 Thiais (France); Younsi, K.; Bessais, L. [ICMPE, UMR 7182 CNRS and University UPEC, 2 rue Henri Dunant, 94320 Thiais (France)

    2012-03-15

    In nanocomposite magnetic materials the exchange coupling between phases plays a central role in the determination of the extrinsic magnetic properties of the material: coercive field,remanence magnetization. Exchange coupling is therefore of crucial importance in composite systems made of magnetically hard and soft grains or in partially crystallized media including nanosized crystallites in a soft matrix. It has been shown also to be a key point in the control of stratified hard/soft media coercive field in the research for optimized recording media. A signature of the exchange coupling due to the nanostructure is generally obtained on the magnetization curve M(H) with a plateau characteristic of the domain wall compression at the hard/soft interface ending at the depinning of the wall inside the hard phase. This compression/depinning behavior is clearly evidenced through one dimensional description of the interface, which is rigorously possible only in stratified media. Starting from a local description of the hard/soft interface in a model for nanocomposite system we show that one can extend this kind of behavior for system of hard crystallites embedded in a soft matrix. - Highlights: Black-Right-Pointing-Pointer Exchange coupling between hard and soft components of a magnetic nanocomposite. Black-Right-Pointing-Pointer Connection between one dimensional stratified media and three dimensional model. Black-Right-Pointing-Pointer Investigation of the compression behavior of the local magnetization profile at the interface.

  10. Preparation and properties of Cobalt-based soft magnetic material prepared by novel powder metallurgy

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Yogesh, E-mail: 123209001_yogesh@manit.ac.in; Srivastava, Sanjay

    2017-02-01

    The present work deals with the development of nanocrystalline 60Co–26Fe–14Al (wt%) soft magnetic materials via mechanical milling of elemental powders. The evolution of solid solution during milling proceeded with continuous decrease in atomic order and the crystallite size, and an introduction of internal strain and dislocations. The milling-induced lattice defects, crystallite size reduction, and atomic disorder exhibited a decrease in saturation magnetization, remanence magnetization, squareness ratio, and blocking temperature with increasing milling time. It has been demonstrated that, at subzero temperatures, the magnetization decreases with increasing temperature due to the development of an effective anisotropy caused by an evolution of canted spin structure owing to the introduction of lattice defects during milling. - Highlights: • Co-based HA have been fabricated by mechanical alloying. • The effect of milling time was investigated. • The saturation magnetization can be reached up to 140.79 emu/g.

  11. Analysis of soft magnetic materials by electron backscatter diffraction as a powerful tool

    Science.gov (United States)

    Schuller, David; Hohs, Dominic; Loeffler, Ralf; Bernthaler, Timo; Goll, Dagmar; Schneider, Gerhard

    2018-04-01

    The current work demonstrates that electron backscatter diffraction (EBSD) is a powerful and versatile characterization technique for investigating soft magnetic materials. The properties of soft magnets, e.g., magnetic losses strongly depend on the materials chemical composition and microstructure, including grain size and shape, texture, degree of plastic deformation and elastic strain. In electrical sheet stacks for e-motor applications, the quality of the machined edges/surfaces of each individual sheet is of special interest. Using EBSD, the influence of the punching process on the microstructure at the cutting edge is quantitatively assessed by evaluating the crystallographic misorientation distribution of the deformed grains. Using an industrial punching process, the maximum affected deformation depth is determined to be 200 - 300 μm. In the case of laser cutting, the affected deformation depth is determined to be approximately zero. Reliability and detection limits of the developed EBSD approach are evaluated on non-affected sample regions and model samples containing different indentation test bodies. A second application case is the investigation of the recrystallization process during the annealing step of soft magnetic composites (SMC) toroids produced by powder metallurgy as a function of compaction pressure, annealing parameters and powder particle size. With increasing pressure and temperature, the recrystallized area fraction (e.g., grains with crystallographic misorientations size distributions. Here, large particles with coarse internal grain structures show a favorable recrystallization behavior which results in large bulk permeability of up to 600 - 700 and lower amount of residual misorientations (>3°).

  12. Synthesis and sintering Ni-Zn ferrite obtained for combustion reaction in large scale

    International Nuclear Information System (INIS)

    Vieira, D.A.; Diniz, V.C.S.; Costa, A.C.F.M.; Cornejo, D.R.; Kiminami, R.H.G.A.

    2014-01-01

    This research proposes to evaluate the magnetic properties of ferrite Ni-Zn synthesized by combustion reaction on a large scale and sintered at 1250 deg C in resistive furnace. The sample was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and magnetic measurements. The results show that the synthesized product in large scale resulted in soft magnetic material with saturation magnetization of 40 emu·g -1 and coercivity of 0.080 kOe, after sintering it was observed an increase to 68 emu·g -1 in the magnetization and a reduction to 0.016 kOe in coercivity, indicating that the obtained material has promising characteristics for applications in electro-electronic devices. (author)

  13. Soft X-ray resonant magnetic scattering of magnetic nano-structures; Diffusion magnetique resonnante des rayons X mous dans les nanostructures magnetiques

    Energy Technology Data Exchange (ETDEWEB)

    Gerrit, Van der Laana [Daresbury Lab., Warrington WA (United Kingdom)

    2008-06-15

    Soft X-ray resonant magnetic scattering offers a unique element-, site- and valence-specific probe to study magnetic structures on the nano-length scale. This new technique, which combines X-ray scattering with X-ray magnetic circular and linear dichroism, is ideally suited to investigate magnetic superlattices and magnetic domain structures. The theoretical analysis of the polarization dependence to determine the vector magnetization profile is presented. This is illustrated with examples studying the closure domains in self-organizing magnetic domain structures, the magnetic order in patterned samples, and the local configuration of magnetic nano-objects using coherent X-rays. (author)

  14. Changes of microstructure and magnetic properties of Nd-Fe-B sintered magnets by doping Al-Cu

    International Nuclear Information System (INIS)

    Ni Junjie; Ma Tianyu; Yan Mi

    2011-01-01

    The microstructural and magnetic properties of Al 100-x Cu x (15at%≤x≤45 at%) doped Nd-Fe-B magnets were studied. The distribution and alloying effects of Cu or Al on the intergranular microstructure were investigated by thermodynamic analysis, differential scanning calorimetery and microscopy techniques. It was observed that when the Cu content of Al 100x Cu x exceeds to 25 at%, the (Pr, Nd)Cu and CuAl 2 phases form in these magnets. The formation of (Pr, Nd)Cu phase depends on the negative formation enthalpy of (Pr, Nd)Cu and the exclusive distribution of Cu in the intergranular regions. The eutectic reaction between (Pr, Nd)Cu phase and (Pr, Nd) occurs at 480 deg. C, which forms the liquid phase that dissolves the (Pr, Nd) 2 Fe 14 B surface irregularities and thus increases the quantities of (Pr, Nd)-rich phase at the grain boundaries. These changes benefit the grain boundary microstructure, especially the distribution of (Pr, Nd)-rich phase, which effectively improves the intrinsic coercivity i H c due to the decreases of exchange coupling between the (Pr, Nd) 2 Fe 14 B grains. - Highlights: → Cu/Al effects on Nd-Fe-B structure depend on their distribution/alloying behaviors. → Cu exclusively distributes in grain boundaries different from Al and has negative mixing heat with Nd. → (Pr,Nd)Cu phase besides CuAl 2 forms in grain boundaries with Cu content increase. → (Pr,Nd)Cu phases optimize microstructure and increase magnetic properties.

  15. Neutron scattering study of the soft optic mode in SrTiO3 under a high magnetic field

    International Nuclear Information System (INIS)

    Comes, R.; Shapiro, S.M.; Frazer, B.C.; Shirane, G.

    1981-01-01

    According to the vibronic theory of ferroelectric phase transitions, appreciable shifts in T/sub c/, with corresponding shifts in soft-mode frequencies, should be observable under high-magnetic-field conditions. The field effects have been predicted to be much larger in wide-gap than in narrow-gap materials. Neutron scattering measurements on the soft optic zone-center mode in SrTiO 3 were carried out under magnetic field up to 70 kOe over a temperature range of 4.5 to 50 K. No magnetic-field-induced shifts of the soft-mode frequency were observed

  16. Soft x-ray resonant magnetic powder diffraction on PrNiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Staub, U [Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); GarcIa-Fernandez, M [Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Mulders, A M [Department of Applied Physics, Curtin University of Technology, GPO Box U1987, Perth WA 6845 (Australia); Bodenthin, Y [Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); MartInez-Lope, M J [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid (Spain); Alonso, J A [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid (Spain)

    2007-03-07

    We report on the first soft x-ray resonant powder diffraction experiments performed at the Ni L{sub 2,3} edges of PrNiO{sub 3}. The temperature, polarization and energy dependence of the (1/2 0 1/2) reflection indicates a magnetic origin for the signal. This experiment demonstrates that x-ray resonant magnetic powder diffraction can be relatively easily performed in the soft x-ray regime due to the very large enhancement factors at the absorption edges. Such experiments allow us to extract important information on the electronic states of the d shell. Similar results can be anticipated from orbital reflections measured in a powder. (fast track communication)

  17. Formation of soft magnetic high entropy amorphous alloys composites containing in situ solid solution phase

    Science.gov (United States)

    Wei, Ran; Sun, Huan; Chen, Chen; Tao, Juan; Li, Fushan

    2018-03-01

    Fe-Co-Ni-Si-B high entropy amorphous alloys composites (HEAACs), which containing high entropy solid solution phase in amorphous matrix, show good soft magnetic properties and bending ductility even in optimal annealed state, were successfully developed by melt spinning method. The crystallization phase of the HEAACs is solid solution phase with body centered cubic (BCC) structure instead of brittle intermetallic phase. In addition, the BCC phase can transformed into face centered cubic (FCC) phase with temperature rise. Accordingly, Fe-Co-Ni-Si-B high entropy alloys (HEAs) with FCC structure and a small amount of BCC phase was prepared by copper mold casting method. The HEAs exhibit high yield strength (about 1200 MPa) and good plastic strain (about 18%). Meanwhile, soft magnetic characteristics of the HEAs are largely reserved from HEAACs. This work provides a new strategy to overcome the annealing induced brittleness of amorphous alloys and design new advanced materials with excellent comprehensive properties.

  18. Analytical expression for initial magnetization curve of Fe-based soft magnetic composite material

    International Nuclear Information System (INIS)

    Birčáková, Zuzana; Kollár, Peter; Füzer, Ján; Bureš, Radovan; Fáberová, Mária

    2017-01-01

    The analytical expression for the initial magnetization curve for Fe-phenolphormaldehyde resin composite material was derived based on the already proposed ideas of the magnetization vector deviation function and the domain wall annihilation function, characterizing the reversible magnetization processes through the extent of deviation of magnetization vectors from magnetic field direction and the irreversible processes through the effective numbers of movable domain walls, respectively. As for composite materials the specific dependences of these functions were observed, the ideas were extended meeting the composites special features, which are principally the much higher inner demagnetizing fields produced by magnetic poles on ferromagnetic particle surfaces. The proposed analytical expression enables us to find the relative extent of each type of magnetization processes when magnetizing a specimen along the initial curve. - Highlights: • Analytical expression of the initial curve derived for SMC. • Initial curve described by elementary magnetization processes. • Influence of inner demagnetizing fields on magnetization process in SMC.

  19. Analytical expression for initial magnetization curve of Fe-based soft magnetic composite material

    Energy Technology Data Exchange (ETDEWEB)

    Birčáková, Zuzana, E-mail: zuzana.bircakova@upjs.sk [Institute of Physics, Faculty of Science, Pavol Jozef Šafárik University, Park Angelinum 9, 04154 Košice (Slovakia); Kollár, Peter; Füzer, Ján [Institute of Physics, Faculty of Science, Pavol Jozef Šafárik University, Park Angelinum 9, 04154 Košice (Slovakia); Bureš, Radovan; Fáberová, Mária [Institute of Materials Research, Slovak Academy of Sciences, Watsonova 47, 04001 Košice (Slovakia)

    2017-02-01

    The analytical expression for the initial magnetization curve for Fe-phenolphormaldehyde resin composite material was derived based on the already proposed ideas of the magnetization vector deviation function and the domain wall annihilation function, characterizing the reversible magnetization processes through the extent of deviation of magnetization vectors from magnetic field direction and the irreversible processes through the effective numbers of movable domain walls, respectively. As for composite materials the specific dependences of these functions were observed, the ideas were extended meeting the composites special features, which are principally the much higher inner demagnetizing fields produced by magnetic poles on ferromagnetic particle surfaces. The proposed analytical expression enables us to find the relative extent of each type of magnetization processes when magnetizing a specimen along the initial curve. - Highlights: • Analytical expression of the initial curve derived for SMC. • Initial curve described by elementary magnetization processes. • Influence of inner demagnetizing fields on magnetization process in SMC.

  20. Hard and soft supersymmetry breaking for ‘graphinos’ in uniform magnetic fields

    International Nuclear Information System (INIS)

    Hernández-Ortíz, S; Raya, A; Murguía, G

    2012-01-01

    Using irreducible and reducible representations of the Dirac matrices, we study the two- and four-component quantum mechanical supersymmetric (SUSY) theories for ultrarelativistic fermions in (2 + 1) dimensions (‘graphinos’) in a background uniform magnetic field perpendicular to their plane of motion. We then consider ordinary and parity-violating mass terms and identify the former as a soft SUSY breaking term and the latter as the hard SUSY breaking one. (paper)

  1. Fabrication of a solenoid-type inductor with Fe-based soft magnetic core

    International Nuclear Information System (INIS)

    Lei Chong; Zhou Yong; Gao Xiaoyu; Ding Wen; Cao Ying; Choi, Hyung; Won, Jonghwa

    2007-01-01

    A solenoid-type inductor was fabricated by MEMS (Microelectromechanical systems) technique. The fabrication process uses UV-LIGA, dry etching, fine polishing, and electroplating technique to achieve high performance of the solenoid-type inductor. Fe-based soft magnetic thin film was sputtered as the magnetic core, and polyimide was used as the insulation materials. The inductor was in size of 4x4 mm with coil width of 20 μm and space of 35 μm. The inductance is 1.61 μH at a frequency of 5 MHz with the maximum quality factor of 1.42

  2. Amorphous soft-magnetic ribbons studied by ultra-small-angle polarized neutron scattering

    International Nuclear Information System (INIS)

    Badurek, G; Jericha, E; Groessinger, R; Sato-Turtelli, R

    2010-01-01

    When we investigated the magnetic structure of a variety of soft-magnetic amorphous ribbons by means of ultra-small-angle neutron scattering (USANSPOL) we were confronted with one particularly interesting Fe 65.7 Co 18 Si 0.8 B 15.5 ribbon, provided by VAC Hanau. Due to a special thermal treatment during production a field- and stress-induced transverse domain texture was expected. Although the USANSPOL technique encountered its resolution limits during the investigation of this specific sample ribbon, such a texture could indeed be verified.

  3. The effect of compaction parameters and dielectric composition on properties of soft magnetic composites

    International Nuclear Information System (INIS)

    Xiao Ling; Yu Lie; Sun, Y H

    2011-01-01

    This paper investigated the effect of compaction parameters and dielectric composition on mechanical, magnetic and electrical properties of iron-organosilicon epoxy resin soft magnetic composites. In this work, iron powders with high purity were covered by an organic material (organosilicon epoxy resin) and then by coupling agent (KH-550). The coated powders were then cold compacted at 600, 800 and 1000 MPa and cured under vacuum respectively. The results show that the saturation magnetic flux density and electrical resistivity are dependent on compaction pressure and resin content. Increase in the organic phase content leads to decrease of the saturation magnetic flux density, while increase of the electrical resistivity. Furthermore, the samples with 0.9 wt% resins + 0.1 wt% coupling agent at compaction pressure of 800 MPa shows better properties than the others.

  4. Modeling of magnetic hystereses in soft MREs filled with NdFeB particles

    Science.gov (United States)

    Kalina, K. A.; Brummund, J.; Metsch, P.; Kästner, M.; Borin, D. Yu; Linke, J. M.; Odenbach, S.

    2017-10-01

    Herein, we investigate the structure-property relationships of soft magnetorheological elastomers (MREs) filled with remanently magnetizable particles. The study is motivated from experimental results which indicate a large difference between the magnetization loops of soft MREs filled with NdFeB particles and the loops of such particles embedded in a comparatively stiff matrix, e.g. an epoxy resin. We present a microscale model for MREs based on a general continuum formulation of the magnetomechanical boundary value problem which is valid for finite strains. In particular, we develop an energetically consistent constitutive model for the hysteretic magnetization behavior of the magnetically hard particles. The microstructure is discretized and the problem is solved numerically in terms of a coupled nonlinear finite element approach. Since the local magnetic and mechanical fields are resolved explicitly inside the heterogeneous microstructure of the MRE, our model also accounts for interactions of particles close to each other. In order to connect the microscopic fields to effective macroscopic quantities of the MRE, a suitable computational homogenization scheme is used. Based on this modeling approach, it is demonstrated that the observable macroscopic behavior of the considered MREs results from the rotation of the embedded particles. Furthermore, the performed numerical simulations indicate that the reversion of the sample’s magnetization occurs due to a combination of particle rotations and internal domain conversion processes. All of our simulation results obtained for such materials are in a good qualitative agreement with the experiments.

  5. Soft X-ray microscopy to 25 nm with applications to biology and magnetic materials

    CERN Document Server

    Denbeaux, G; Chao, W; Eimueller, T; Johnson, L; Köhler, M; Larabell, C; Legros, M; Fischer, P; Pearson, A; Schuetz, G; Yager, D; Attwood, D

    2001-01-01

    We report both technical advances in soft X-ray microscopy (XRM) and applications furthered by these advances. With new zone plate lenses we record test pattern features with good modulation to 25 nm and smaller. In combination with fast cryofixation, sub-cellular images show very fine detail previously seen only in electron microscopy, but seen here in thick, hydrated, and unstained samples. The magnetic domain structure is studied at high spatial resolution with X-ray magnetic circular dichroism (X-MCD) as a huge element-specific magnetic contrast mechanism, occurring e.g. at the L sub 2 sub , sub 3 edges of transition metals. It can be used to distinguish between in-plane and out-of-plane contributions by tilting the sample. As XRM is a photon based technique, the magnetic images can be obtained in unlimited varying external magnetic fields. The images discussed have been obtained at the XM-1 soft X-ray microscope on beamline 6.1 at the Advanced Light Source in Berkeley.

  6. Impact of different polyimide-based substrates on the soft magnetic properties of NiFe thin films

    Science.gov (United States)

    Rittinger, Johannes; Taptimthong, Piriya; Jogschies, Lisa; Wurz, Marc C.; Rissing, Lutz

    2015-05-01

    We investigated the impact of polymer substrates on the magnetic properties of soft magnetic thin films. Experiments were carried out to evaluate the performance of AMR (anisotropic magnetoresistive) sensors deposited on polymeric substrates and to give indications for the design of future sensors on flexible substrates. Sputtered permalloy (NiFe 81/19) was used as a soft magnetic thin film layer. As substrate materials, liquid polyimide precursors and DuPont Kapton® HN foil were examined. Surface roughness was determined for each substrate material. The dynamic of soft magnetic behavior of the permalloy thin films was observed in a homogenous alternating magnetic field. Resulting R-Hcurves were evaluated in regard to the magnitude of the magnetoresistive effect (ΔR / R0-ratio), as well as the resulting magnetic anisotropy of the tested samples. B-H-curves were obtained by means of a vibrating sample magnetometer (VSM).

  7. Phosphoric acid addition effect on the microstructure and magnetic properties of iron-based soft magnetic composites

    Science.gov (United States)

    Hsiang, Hsing-I.; Fan, Liang-Fang; Hung, Jia-Jing

    2018-02-01

    The phosphoric acid addition effect on phosphate insulation coating microstructure was investigated in this study. The relationships between the phosphate insulation coating microstructure and temperature resistance, corrosion resistance and magnetic properties of iron-based soft magnetic composites (SMCs) were studied by using SEM, TEM/EDS and FTIR. It was observed that an iron phosphate/carbonyl iron core/shell structure is formed with carbonyl iron powder after phosphatizing treatment. The iron phosphate phase was identified as amorphous and its thickness increased from 30 nm to 60 nm as the phosphoric acid concentration was increased from 1 wt% to 2 wt%. When the phosphoric acid concentration was further increased to 5 wt%, the excess iron phosphate precipitates between the soft magnetic composite particles. The temperature and corrosion resistance and resistivity of the iron-based SMCs can be effectively improved using carbonyl iron powders after phosphatizing. The initial permeability of the iron-based SMCs decreased with increasing phosphoric acid concentration due to thicker insulation layer formation. However, the imaginary permeability below the domain wall displacement resonance frequency decreased with increasing phosphoric acid concentration. The DC-bias superposition characteristic can also be improved by increasing the phosphoric acid concentration. Iron-based SMCs with superior temperature and corrosion resistance, initial permeability, magnetic loss and DC-bias superposition characteristics can be obtained by controlling the phosphoric acid concentration during phosphatizing to adjust the iron phosphate precipitate thickness on the iron powder surface.

  8. Structure and Magnetic Properties of Bi5Ti3FeO15 Ceramics Prepared by Sintering, Mechanical Activation and Edamm Process. A Comparative Study

    Directory of Open Access Journals (Sweden)

    Jartych E.

    2016-06-01

    Full Text Available Three different methods were used to obtain Bi5Ti3FeO15 ceramics, i.e. solid-state sintering, mechanical activation (MA with subsequent thermal treatment, and electrical discharge assisted mechanical milling (EDAMM. The structure and magnetic properties of produced Bi5Ti3FeO15 samples were characterized using X-ray diffraction and Mössbauer spectroscopy. The purest Bi5Ti3FeO15 ceramics was obtained by standard solid-state sintering method. Mechanical milling methods are attractive because the Bi5Ti3FeO15 compound may be formed at lower temperature or without subsequent thermal treatment. In the case of EDAMM process also the time of processing is significantly shorter in comparison with solid-state sintering method. As revealed by Mössbauer spectroscopy, at room temperature the Bi5Ti3FeO15 ceramics produced by various methods is in paramagnetic state.

  9. Effects of Gd on the magnetic, electric and structural properties of BiFeO3 nanstructures synthesized by co-precipitation followed by microwave sintering

    Science.gov (United States)

    Mohammadi, S.; Shokrollahi, H.; Basiri, M. H.

    2015-02-01

    The ultrafine of Bi1-xGdxFeO3 with x=0, 0.05, 0.1, 0.15 were synthesized by the co-precipitation method. These powders were defined by the X-ray diffraction analysis, transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM) and vibrating sample magnetometer (VSM). The dielectric constant and dielectric loss were measured by an inductance-capacitance-resistance (LCR) meter. The X-ray diffraction analysis showed that increasing the asymmetry and decreasing the second phases occur by increasing the amount of gadolinium. A phase transformation began from the rhombohedral phase to the orthorhombic one by adding gadolinium in about x=0.15. Gd-doping improved the magnetic properties because the cycloid spins were distorted by adding Gd instead of Bi. Furthermore, the dielectric properties were improved as a result of the reduction in Fe2+ and oxygen vacancies. The microwave sintering method was used to densify the compact pellets for electrical tests. FESEM images showed that microwave sintering leads to the enhancement of ferroelectric properties due to the high densities of the sintered pellets and the prevention of grain growth.

  10. Magnetic hyperthermia efficiency and MRI contrast sensitivity of colloidal soft/hard ferrite nanoclusters.

    Science.gov (United States)

    Vamvakidis, Kosmas; Mourdikoudis, Stefanos; Makridis, Antonis; Paulidou, Eleni; Angelakeris, Mavroeidis; Dendrinou-Samara, Catherine

    2018-02-01

    The use of magnetic nanostructures as theranostic agents is a multiplex task as physiochemical and biochemical properties including excellent magneto-responsive properties, low toxicity, colloidal stability and facile surface engineering capability are all required. Nonetheless, much progress has been made in recent years synthesis of "all-in-one" MNPs remain unambiguously challenging. Towards this direction, in this study is presented a facile incorporation of a soft magnetic phase (MnFe 2 O 4 NPs) with a hard phase (CoFe 2 O 4 NPs) in the presence of the biocompatible polymer sodium dodecyl sulfate (SDS), into spherical and compact bi-magnetic nanoclusters (NCs) with modulated magnetic properties that critically enhance hyperthermic efficiency and MRI contrast effect. Hydrophobic MnFe 2 O 4 and CoFe 2 O 4 NPs coated with oleylamine of the same size (9 nm) were used as primary building units for the formation of the bi-magnetic NCs through a microemulsion approach where a set of experiments were conducted to identify the optimal concentration of SDS (19.5 mM) for the cluster formation. Additionally, homo-magnetic NCs of MnFe 2 O 4 NPs and CoFe 2 O 4 NPs, respectively were synthesized for comparative studies. The presence of distinct magnetic phases within the bi-magnetic NCs resulting in synergistic behavior, where the soft phase offers moderate coercivity H c and the hard one high magnetization M s . Increased specific loss power (SLP) value was obtained for the bi-magnetic system (525 W/g) when compared with the homo-magnetic NCs (104 W/g for MnNCs and 223 W/g for CoNCs) under field conditions of 25 kA/m and 765 kHz. Relaxivities (r 2 ) of the bi-magnetic NCs were also higher (81.8 mM -1  s -1 ) than those of the homo-magnetic NCs (47.4 mM -1  s -1 for MnNCs and 3.1 mM -1  s -1 for CoNCs), while the high r 2 /r 1 value renders the system suitable for T 2 -weighted MRI imaging. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Production of NdFeB powders by HDDR from sintered magnets; Obtencao de pos de NdFeB por HDDR a partir de imas sinterizados

    Energy Technology Data Exchange (ETDEWEB)

    Janasi, S.R.; Rodrigues, D.; Landgraf, F.J.G. [Instituto de Pesquisas Tecnologicas (IPT), Sao Paulo, SP (Brazil). Lab. de Metalurgia e Materiais Ceramicos; Silva, B.F.A. da; Takiishi, H [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Campos, M.F. de [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil)

    2010-07-01

    The production of NdFeB powders by the HDDR process from metallic alloys has been widely investigated. Different HD and DR conditions have been used to induce anisotropy and to improve the intrinsic coercivity of the obtained powders. The purpose of this study is to apply the HDDR process in the reprocessing of NdFeB sintered magnet scraps. There were investigated different processing conditions as temperature and time of desorption and recombination (DR). The results of X ray diffraction show the formation of the magnetic phase Nd{sub 2}Fe{sub 14}B in all the investigated conditions. Magnetic measurements by vibrating sample magnetometer indicate that powders with intrinsic coercivity up to 790 kA/m were obtained. (author)

  12. Corrosion resistance and mechanical properties of pulse electrodeposited Ni-TiO{sub 2} composite coating for sintered NdFeB magnet

    Energy Technology Data Exchange (ETDEWEB)

    Li Qing, E-mail: liqingd@swu.edu.c [School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Yang Xiaokui [School of Materials Science and Engineering, Southwest University, Chongqing 400715 (China); Zhang Liang; Wang Juping; Chen Bo [School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China)

    2009-08-12

    Ni-TiO{sub 2} composite coating which was prepared under pulse current conditions was successfully performed on sintered NdFeB magnet. As a comparison, pure nickel coating was also prepared. The phase structure, the surface morphology, the chemical composition, the anti-corrosion performance of the coatings for magnets, the microhardness and the wearing resistance performance of the coatings were studied using X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), electrochemical technique, Vickers hardness tester and ball-on-disc tribometer, respectively. The results revealed that Ni-TiO{sub 2} composite coating provided excellent anti-corrosion performance for the magnets, and showed higher microhardness and better anti-wear performance.

  13. Magnetic neutron scattering by magnetic vortices in thin submicron-sized soft ferromagnetic cylinders

    Science.gov (United States)

    Metlov, Konstantin L.; Michels, Andreas

    2016-01-01

    Using analytical expressions for the magnetization textures of thin submicron-sized magnetic cylinders in vortex state, we derive closed-form algebraic expressions for the ensuing small-angle neutron scattering (SANS) cross sections. Specifically, for the perpendicular and parallel scattering geometries, we have computed the cross sections for the case of small vortex-center displacements without formation of magnetic charges on the side faces of the cylinder. The results represent a significant qualitative and quantitative step forward in SANS-data analysis on isolated magnetic nanoparticle systems, which are commonly assumed to be homogeneously or stepwise-homogeneously magnetized. We suggest a way to extract the fine details of the magnetic vortex structure during the magnetization process from the SANS measurements in order to help resolving the long-standing question of the magnetic vortex displacement mode. PMID:27112640

  14. Preparation and characterization of amorphous SiO{sub 2} coatings deposited by mirco-arc oxidation on sintered NdFeB permanent magnets

    Energy Technology Data Exchange (ETDEWEB)

    Xu, J.L., E-mail: jlxu@nchu.edu.cn [Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001 (China); School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Xiao, Q.F.; Mei, D.D. [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Zhong, Z.C., E-mail: zzhong2014@sina.com [The Institute for Rare Earth Magnetic Materials and Devices, Jiangxi University of Science and Technology, Ganzhou 341000 (China); Tong, Y.X. [Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001 (China); Zheng, Y.F., E-mail: yfzheng@pku.edu.cn [Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001 (China); Li, L. [Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001 (China)

    2017-03-15

    Amorphous SiO{sub 2} coatings were prepared on sintered NdFeB magnets by micro-arc oxidation (MAO) in silicate solution. The surface and cross-sectional morphologies, element and phase composition, corrosion resistance and magnetic properties of the coatings were investigated by scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), X-ray photoelectron spectroscopy (XPS), potentiodynamic polarization test and physical properties measurements system (PPMS). The results showed that the surface morphologies of the coatings exhibited the “coral reef” like structure, different from the typical MAO porous structure. With increasing the voltages, the thickness of the coatings increased from 12.72 to 19.90 µm, the content of Si element increased, while the contents of Fe, Nd and P elements decreased. The coatings were mainly composed of amorphous SiO{sub 2} and a few amorphous Fe{sub 2}O{sub 3} and Nd{sub 2}O{sub 3}. The amorphous SiO{sub 2} coatings presented excellent thermal shock resistance, while the thermal shock resistance decreased with increasing the voltages. The corrosion resistance of the coatings increased with increasing the voltages, and it could be enhanced by one order of magnitude compared to the uncoated NdFeB magnets. The MAO coatings slightly decreased the magnetic properties of the NdFeB samples in different degrees. - Highlights: • Amorphous SiO{sub 2} coatings were prepared on sintered NdFeB magnets by micro-arc oxidation. • The coatings presented excellent thermal shock resistance. • The corrosion resistance could be enhanced by one order of magnitude. • The MAO coatings slightly decreased the magnetic properties of the NdFeB samples.

  15. Preparation and characterization of amorphous SiO2 coatings deposited by mirco-arc oxidation on sintered NdFeB permanent magnets

    International Nuclear Information System (INIS)

    Xu, J.L.; Xiao, Q.F.; Mei, D.D.; Zhong, Z.C.; Tong, Y.X.; Zheng, Y.F.; Li, L.

    2017-01-01

    Amorphous SiO 2 coatings were prepared on sintered NdFeB magnets by micro-arc oxidation (MAO) in silicate solution. The surface and cross-sectional morphologies, element and phase composition, corrosion resistance and magnetic properties of the coatings were investigated by scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), X-ray photoelectron spectroscopy (XPS), potentiodynamic polarization test and physical properties measurements system (PPMS). The results showed that the surface morphologies of the coatings exhibited the “coral reef” like structure, different from the typical MAO porous structure. With increasing the voltages, the thickness of the coatings increased from 12.72 to 19.90 µm, the content of Si element increased, while the contents of Fe, Nd and P elements decreased. The coatings were mainly composed of amorphous SiO 2 and a few amorphous Fe 2 O 3 and Nd 2 O 3 . The amorphous SiO 2 coatings presented excellent thermal shock resistance, while the thermal shock resistance decreased with increasing the voltages. The corrosion resistance of the coatings increased with increasing the voltages, and it could be enhanced by one order of magnitude compared to the uncoated NdFeB magnets. The MAO coatings slightly decreased the magnetic properties of the NdFeB samples in different degrees. - Highlights: • Amorphous SiO 2 coatings were prepared on sintered NdFeB magnets by micro-arc oxidation. • The coatings presented excellent thermal shock resistance. • The corrosion resistance could be enhanced by one order of magnitude. • The MAO coatings slightly decreased the magnetic properties of the NdFeB samples.

  16. Magnetic properties, microstructure and corrosion behavior of (Pr,nd)12.6Fe81.3B6.1-type sintered magnets doped with (Pr,nd)30Fe62Ga8

    Science.gov (United States)

    Ni, Junjie; Zhang, Zhenyu; Liu, Ying; Jia, Zhengfeng; Huang, Baoxu; Yin, Yibin

    2016-10-01

    NdFeB sintered magnets with (Pr,Nd)30Fe62Ga8 were prepared by a binary powder blending method and their magnetic properties, microstructure and corrosion behavior were investigated. Addition of 3 wt% (Pr,Nd)30Fe62Ga8 was found to be the most effective for improving (BH)max and iHc of the magnets. The increase in both magnetic parameters was related to the alteration in microstructure. However, in other samples the occurrence of micropore and the aggregation of intergranular phases harmed the magnetic properties. Such disadvantageous microstructure features also caused higher corrosion current density, thus decreasing the corrosion resistance of the sample with higher additive content. In addition, the Ga-containing intergranular phases that are more stable than the (Pr,Nd)-rich phase formed in the additive doped magnets, leading to better corrosion resistance of the 3 wt% additives doped sample in comparison with the contrastive sample.

  17. Thickness measurement of soft thin films on periodically patterned magnetic substrates by phase difference magnetic force microscopy.

    Science.gov (United States)

    Passeri, D; Dong, C; Angeloni, L; Pantanella, F; Natalizi, T; Berlutti, F; Marianecci, C; Ciccarello, F; Rossi, M

    2014-01-01

    The need for accurate measurement of the thickness of soft thin films is continuously encouraging the development of techniques suitable for this purpose. We propose a method through which the thickness of the film is deduced from the quantitative measurement of the contrast in the phase images of the sample surface acquired by magnetic force microscopy, provided that the film is deposited on a periodically patterned magnetic substrate. The technique is demonstrated by means of magnetic substrates obtained from standard floppy disks. Colonies of Staphylococcus aureus adherent to such substrates were used to obtain soft layers with limited lateral (a few microns) and vertical (hundreds of nanometers) size. The technique is described and its specific merits, limitations and potentialities in terms of accuracy and measurable thickness range are discussed. These parameters depend on the characteristics of the sensing tip/cantilever as well as of the substrates, the latter in terms of spatial period and homogeneity of the magnetic domains. In particular, with the substrates used in this work we evaluated an uncertainty of about 10%, a limit of detection of 50-100 nm and an upper detection limit (maximum measurable thickness) of 1 μm, all obtained with standard lift height values (50-100 nm). Nonetheless, these parameters can be easily optimized by selecting/realizing substrates with suitable spacing and homogeneity of the magnetic domains. For example, the upper detection limit can be increased up to 25-50 μm while the limit of detection can be reduced to a few tens of nanometers or a few nanometers. © 2013 Elsevier B.V. All rights reserved.

  18. Synthesis, microstructure and magnetic properties of nanocrystalline MgFe2O4 particles: Effect of mixture of fuels and sintering temperature

    Directory of Open Access Journals (Sweden)

    Osereme Ehi-Eromosele Cyril

    2016-01-01

    Full Text Available The present article reports the results of studies related to the synthesis of MgFe2O4 nanocomposite powder by solution combustion process using mixture of fuels containing urea (U and ammonium acetate (AA. The effect of mixture of fuel and sintering temperature on phase formation, structural, morphological and magnetic properties of MgFe2O4 particles were investigated by X-ray diffraction (XRD, thermogravimetric analysis (TGA, Raman spectroscopy, scanning electron microscopy (SEM, energy dispersive absorption x-ray (EDAX and vibrating sample magnetometer (VSM. Thermodynamic modeling of the combustion reaction shows that by using a mixture of urea and ammonium acetate fuels, the adiabatic flame temperature (Tad, exothermicity and amount of gases produced during the combustion process as well as product characteristics could be controlled. The use of mixture of fuels (U and AA in the synthesis of MgFe2O4 was found to produce ferrites with finer agglomerates, higher crystallinity, higher magnetic properties and smaller crystallite sizes than when only urea was used. It was found that only samples prepared with a mixture of fuels (0.5U + 0.5AA and sintered at 900oC for 2 h produced pure ferrite spinel phase while the auto-combusted and powders sintered at 600oC for 2 h had secondary phases. Apart from giving detailed information about the structural order of the samples, Raman spectroscopy also confirmed that MgFe2O4 is a mixed spinel ferrite.

  19. Magnetic properties measurement of soft magnetic composite material (SOMALOY 700) by using 3-D tester

    Science.gov (United States)

    Asari, Ashraf; Guo, Youguang; Zhu, Jianguo

    2017-08-01

    Core losses of rotating electrical machine can be predicted by identifying the magnetic properties of the magnetic material. The magnetic properties should be properly measured since there are some variations of vector flux density in the rotating machine. In this paper, the SOMALOY 700 material has been measured under x, y and z- axes flux density penetration by using the 3-D tester. The calibrated sensing coils are used in detecting the flux densities which have been generated by the Labview software. The measured sensing voltages are used in obtaining the magnetic properties of the sample such as magnetic flux density B, magnetic field strength H, hysteresis loop which can be used to calculate the total core loss of the sample. The results of the measurement are analyzed by using the Mathcad software before being compared to another material.

  20. Electromagnetic shielding mechanisms using soft magnetic stainless steel fiber enabled polyester textiles

    Science.gov (United States)

    Shyr, Tien-Wei; Shie, Jing-Wen

    2012-11-01

    This work studied the effects of conductivity, magnetic loss, and complex permittivity when using blended textiles (SSF/PET) of polyester fibers (PET) with stainless steel fibers (SSF) on electromagnetic wave shielding mechanisms at electromagnetic wave frequencies ranging from 30 MHz to 1500 MHz. The 316L stainless steel fiber used in this study had 38 vol% γ austenite and 62 vol% α' martensite crystalline phases, which was characterized by an x-ray diffractometer. Due to the magnetic and dielectric loss of soft metallic magnetic stainless steel fiber enabled polyester textiles, the relationship between the reflection/absorption/transmission behaviors of the electromagnetic wave and the electrical/magnetic/dielectric properties of the SSF and SSF/PET fabrics was analyzed. Our results showed that the electromagnetic interference shielding of the SSF/PET textiles show an absorption-dominant mechanism, which attributed to the dielectric loss and the magnetic loss at a lower frequency and attributed to the magnetic loss at a higher frequency, respectively.

  1. No inverse magnetic catalysis in the QCD hard and soft wall models

    Science.gov (United States)

    Dudal, David; Granado, Diego R.; Mertens, Thomas G.

    2016-06-01

    In this paper, we study the influence of an external magnetic field in holographic QCD models where the backreaction is modeled via an appropriate choice of the background metric. We add a phenomenological soft wall dilaton to incorporate better IR behavior (confinement). Elaborating on previous studies conducted by [K. A. Mamo, J. High Energy Phys. 05 (2015) 121.], we first discuss the Hawking-Page transition, the dual of the deconfinement transition, as a function of the magnetic field. We confirm that the critical deconfinement temperature can drop with the magnetic field. Secondly, we study the quark condensate holographically as a function of the applied magnetic field and demonstrate that this model does not exhibit inverse magnetic catalysis at the level of the chiral transition. The quest for a holographic QCD model that qualitatively describes the inverse magnetic catalysis at finite temperature is thus still open. Throughout this work, we pay special attention to the different holographic parameters and we attempt to fix them by making the link to genuine QCD as close as possible. This leads to several unanticipated and so far overlooked complications (such as the relevance of an additional length scale ℓc in the confined geometry) that we discuss in detail.

  2. Development of soft magnetic amorphous alloys with distinctly high Fe content

    Science.gov (United States)

    Chen, PingBo; Wang, AnDing; Zhao, ChengLiang; He, AiNa; Wang, Gang; Chang, ChunTao; Wang, XinMin; Liu, Chain-Tsuan

    2017-10-01

    This paper reports on the preparation of Fe82.7-85.7Si2-4.9B9.2-11.2P1.5-2.7C0.8 soft magnetic amorphous alloys with a distinctly high Fe content of 93.5-95.5 wt.% by component design and composition adjustment. All alloys can be readily fabricated into completely amorphous ribbon samples with good surface quality by the single copper roller melt-spinning method. These alloys show good bending ductility and excellent magnetic properties after annealing, i.e., low coercivity ( H c) of 3.3-5.9 A/m, high permeability ( μ e) of 5000-10000 and high flux saturation density ( B s) of 1.63-1.66 T. The mechanism of the good glass forming ability (GFA) and soft-magnetic properties are explored. The amorphous alloys with the high Fe content comparable to that of the desired high Si alloy can be promising candidates for the potential application in electric devices.

  3. The cation inversion and magnetization in nanopowder zinc ferrite obtained by soft mechanochemical processing

    International Nuclear Information System (INIS)

    Milutinović, A.; Lazarević, Z.; Jovalekić, Č.; Kuryliszyn-Kudelska, I.; Romčević, M.; Kostić, S.; Romčević, N.

    2013-01-01

    Graphical abstract: - Highlights: • Nano powder of ZnFe 2 O 4 prepared by a soft mechanochemical route after 18 h milling. • Phase formation controlled by XRD, Raman spectroscopy and magnetic measurements. • Size, strain and cation inversion degree determined by Rietveld refinement. • We were able to estimate the degree of inversion at most 0.348 and 0.4. • Obtained extremely high values of saturation magnetizations at T = 4.5 K. - Abstract: Two zinc ferrite nanoparticle materials were prepared by the same method – soft mechanochemical synthesis, but starting from different powder mixtures: (1) Zn(OH) 2 /α-Fe 2 O 3 and (2) Zn(OH) 2 /Fe(OH) 3 . In both cases a single phase system was obtained after 18 h of milling. The progress of the synthesis was controlled by X-ray diffractometry (XRD), Raman spectroscopy, TEM and magnetic measurements. Analysis of the XRD patterns by Rietveld refinement allowed determination of the cation inversion degree for both obtained single phase ZnFe 2 O 4 samples. The sample obtained from mixture (1) has the cation inversion degree 0.3482 and the sample obtained from mixture (2) 0.400. Magnetization measurements were confirmed that the degrees of the inversion were well estimated. Comparison with published data shows that used method of synthesis gives nano powder samples with extremely high values of saturation magnetizations: sample (1) 78.3 emu g −1 and sample (2) 91.5 emu g −1 at T = 4.5 K

  4. A smart fully integrated micromachined separator with soft magnetic micro-pillar arrays for cell isolation

    Science.gov (United States)

    Dong, Tao; Su, Qianhua; Yang, Zhaochu; Zhang, Yulong; Egeland, Eirik B.; Gu, Dan D.; Calabrese, Paolo; Kapiris, Matteo J.; Karlsen, Frank; Minh, Nhut T.; Wang, K.; Jakobsen, Henrik

    2010-11-01

    A smart fully integrated micromachined separator with soft magnetic micro-pillar arrays has been developed and demonstrated, which can merely employ one independent lab-on-chip to realize cell isolation. The simulation, design, microfabrication and test for the new electromagnetic micro separator were executed. The simulation results of the electromagnetic field in the separator show that special soft magnetic micro-pillar arrays can amplify and redistribute the electromagnetic field generated by the micro-coils. The separator can be equipped with a strong magnetic field to isolate the target cells with a considerably low input current. The micro separator was fabricated by micro-processing technology. An electroplating bath was hired to deposit NiCo/NiFe to fabricate the micro-pillar arrays. An experimental system was set up to verify the function of the micro separator by isolating the lymphocytes, in which the human whole blood mixed with Dynabeads® FlowComp Flexi and monoclonal antibody MHCD2704 was used as the sample. The results show that the electromagnetic micro separator with an extremely low input current can recognize and capture the target lymphocytes with a high efficiency, the separation ratio reaching more than 90% at a lower flow rate. For the electromagnetic micro separator, there is no external magnetizing field required, and there is no extra cooling system because there is less Joule heat generated due to the lower current. The magnetic separator is totally reusable, and it can be used to separate cells or proteins with common antigens.

  5. Interface structures in FePt/Fe3Pt hard-soft exchange-coupled magnetic nanocomposites

    International Nuclear Information System (INIS)

    Li Jing; Wang Zhonglin; Zeng Hao; Sun Shouheng; Ping Liu, J.

    2003-01-01

    Self-assembly of FePt and Fe 3 O 4 nanoparticles of different sizes led to various FePt-Fe 3 O 4 nanocomposites. Annealing the composite under reducing atmosphere at 650 and 700 deg. C induced magnetically hard FePt phase and magnetically soft Fe 3 Pt phase. The FePt and Fe 3 Pt phases were either linked by a common interface or coexisted within one grain as domains with sizes <10 nm. This ensures the effective exchange coupling of magnetically hard and soft phases. High-resolution transmission electron microscopy studies provide detailed structural characterization for the FePt based nanocomposites

  6. Effect of titania particles on the microstructure and properties of the epoxy resin coatings on sintered NdFeB permanent magnets

    International Nuclear Information System (INIS)

    Xu, J.L.; Huang, Z.X.; Luo, J.M.; Zhong, Z.C.

    2014-01-01

    The nanometer titania particles enhanced epoxy resin composite coatings were prepared on the sintered NdFeB permanent magnets by cathodic electrophoretic deposition. The effects of titania particle concentrations on the microstructure and properties of the epoxy coatings were investigated by surface and cross-sectional morphologies observation, surface roughness and microhardness measurement, H 2 SO 4 solution immersion test, neutral salt spray test and magnetic properties measurement. The results showed that the thickness of epoxy coatings with and without the titania particles addition was about 40 μm. The titania particles could be uniformly dispersed and embedded in the epoxy matrix if the titania particles concentration was lower than 40 g/l. With increasing titania particle concentrations, the number of the particles embedded in the epoxy matrix increased and the surface roughness and microhardness of the composite coatings increased. At the same time, the weight loss of the coated samples immersed in H 2 SO 4 solution decreased and the neutral salt spray time of the coated samples prolonged. It could be concluded that the titania particles did not change the thickness of the epoxy coatings and did not deteriorate the magnetic properties of NdFeB substrates, but could greatly improve the microhardness and corrosion resistance of the epoxy coatings. - Highlights: • The titania particles enhanced epoxy resin coatings were prepared on sintered NdFeB by cathodic electrophoretic deposition. • The titania particles could be uniformly dispersed and embedded in the epoxy resin matrix. • With increasing titania concentrations, the surface roughness and the microhardness of composite coatings increased. • The addition of titania particles greatly improved the corrosion resistance of the epoxy coatings. • The composition coatings did not deteriorate the magnetic properties of NdFeB substrates

  7. Effect of titania particles on the microstructure and properties of the epoxy resin coatings on sintered NdFeB permanent magnets

    Energy Technology Data Exchange (ETDEWEB)

    Xu, J.L., E-mail: jlxu@nchu.edu.cn; Huang, Z.X.; Luo, J.M.; Zhong, Z.C., E-mail: zzhong.2006@yahoo.com.cn

    2014-04-15

    The nanometer titania particles enhanced epoxy resin composite coatings were prepared on the sintered NdFeB permanent magnets by cathodic electrophoretic deposition. The effects of titania particle concentrations on the microstructure and properties of the epoxy coatings were investigated by surface and cross-sectional morphologies observation, surface roughness and microhardness measurement, H{sub 2}SO{sub 4} solution immersion test, neutral salt spray test and magnetic properties measurement. The results showed that the thickness of epoxy coatings with and without the titania particles addition was about 40 μm. The titania particles could be uniformly dispersed and embedded in the epoxy matrix if the titania particles concentration was lower than 40 g/l. With increasing titania particle concentrations, the number of the particles embedded in the epoxy matrix increased and the surface roughness and microhardness of the composite coatings increased. At the same time, the weight loss of the coated samples immersed in H{sub 2}SO{sub 4} solution decreased and the neutral salt spray time of the coated samples prolonged. It could be concluded that the titania particles did not change the thickness of the epoxy coatings and did not deteriorate the magnetic properties of NdFeB substrates, but could greatly improve the microhardness and corrosion resistance of the epoxy coatings. - Highlights: • The titania particles enhanced epoxy resin coatings were prepared on sintered NdFeB by cathodic electrophoretic deposition. • The titania particles could be uniformly dispersed and embedded in the epoxy resin matrix. • With increasing titania concentrations, the surface roughness and the microhardness of composite coatings increased. • The addition of titania particles greatly improved the corrosion resistance of the epoxy coatings. • The composition coatings did not deteriorate the magnetic properties of NdFeB substrates.

  8. Glass additive influence on the sintering behavior, microstructure and microwave magnetic properties of Cu-Bi-Zn co-doped Co2Z ferrites

    International Nuclear Information System (INIS)

    Hsiang, Hsing-I; Mei, Li-Then; Hsi, Chi-Shiung; Wu, Wei-Cheng; Cheng, Li-Bao; Yen, Fu-Su

    2011-01-01

    The Bi 2 O 3 -B 2 O 3 -ZnO-SiO 2 (BB35SZ) glass effects on the sintering behavior and microwave magnetic properties of Cu-Bi-Zn co-doped Co 2 Z ferrites were investigated to develop low-temperature-fired ferrites. The glass wetting characteristics on the Co 2 Z ferrite surface, X-ray diffractometer, scanning electron microscopy and a dilatometer were used to examine the BB35SZ glass effect on Co 2 Z ferrite densification and the chemical reaction between the glass and Co 2 Z ferrites. The results indicate that BB35SZ glass can be used as a sintering aid to reduce the densification temperature of Co 2 Z ferrites from 1300 to 900 o C. 3(Ba 0.9 Bi 0.1 O).2(Co 0.8 Cu 0.2 O).12(Fe 1.975 Zn 0.025 O 3 ) ferrite with 2 wt% BB35SZ glass can be densified below 900 o C, exhibiting an initial permeability of 3.4. This process provides a promising candidate for multilayer chip magnetic devices for microwave applications. - Research highlights: → Bi 2 O 3 -B 2 O 3 -ZnO-SiO 2 glass can effectively wet Co 2 Z ferrites and promote Co 2 Z ferrite densification. → The excess substitution of Bi and Zn (x=0.2) and glass addition enhanced Z phase decomposition into U, W and spinel phases, which resulted in magnetic property degradation. → 3(Ba 0.9 Bi 0.1 O).2(Co 0.8 Cu 0.2 O).12(Fe 1.975 Zn 0.025 O 3 ) ferrite with 2 wt% glass can be densified at below 900 o C and exhibits an initial permeability of 3.4, which provides a promising candidate for multilayer chip magnetic devices for microwave applications.

  9. Structural, magnetic, elastic, dielectric and electrical properties of hot-press sintered Co1-xZnxFe2O4 (x = 0.0, 0.5) spinel ferrite nanoparticles

    Science.gov (United States)

    Singh Yadav, Raghvendra; Kuřitka, Ivo; Havlica, Jaromir; Hnatko, Miroslav; Alexander, Cigáň; Masilko, Jiri; Kalina, Lukas; Hajdúchová, Miroslava; Rusnak, Jaroslav; Enev, Vojtěch

    2018-02-01

    In this article, Co1-xZnxFe2O4 (x = 0.0 and 0.5) disc-shaped pellets were formed by hot-press sintering of nanoparticles at temperature 925 °C for 10 min in vacuum atmosphere under 30 MPa mechanical pressure. X-ray diffraction study confirmed the formation of spinel cubic ferrite structure of hot-press sintered spinel ferrite Co1-xZnxFe2O4 (x = 0.0 and 0.5) samples. The scanning electron microscopy image indicated that the growth and densification of smaller ferrite nanoparticles were higher than larger ferrite nanoparticles. Magnetic properties of sintered samples were investigated by the superconducting quantum interface device (SQUID) magnetometer at room temperature. The hot press sintered Co1-xZnxFe2O4 (x = 0.0 and 0.5) pellet samples exhibited magnetic properties dependent on the grain size of spinel ferrite particles. The maximum saturation magnetization 82.47 emu/g was obtained for Co0.5Zn0.5Fe2O4 hot press sintered sample of ball-milled ferrite particles. Further, the impact of grain size and density of sample on hardness, dielectric property and ac conductivity of hot-press sintered samples was investigated. In addition, the longitudinal wave velocity (Vl), transverse wave velocity (Vt), mean elastic wave velocity (Vm), bulk modulus (B), rigidity modulus (G), Young's modulus (E), Poisson ratio (σ) and Debye temperature (θD) were calculated. The elastic moduli of hot press sintered ferrite samples were corrected to zero porosity using Hosselman and Fulrath model.

  10. New Soft Magnetic Composites for electromagnetic applications with improved mechanical properties

    Science.gov (United States)

    Ferraris, Luca; Pošković, Emir; Franchini, Fausto

    2016-05-01

    The chance to move from 2D to 3D approach in the design of the electrical machines is made possible by the availability of Soft Magnetic Composites (SMC), iron based powders, insulated and pressed to realize shapes otherwise impossible with the traditional lamination sheets technology. Some commercial products are available on the market as "ready to press" powders, which presents good magnetic and energetic properties but are sometimes weak under the mechanical point of view; other products aim at improving this aspect but with considerable process complications and relative cost. The experience of the Authors in the realization of bonded magnets with the adoption of selected organic resins has been partly transferred in the research field of the SMC in order to investigate the possibility to obtain good mechanical properties maintaining the magnetic characteristics of the Insulated Iron Powder Compounds (I.I.P.C.) taken as reference. The paper presents the activity that has been carried out in the realization of SMC mixing iron powders and phenolic resin, in different weight percentages and mold pressures. The obtained results are considered satisfactory under the point of view of the compromise between magnetic and mechanical properties, considering also that the required productive process is simpler. The comparison of the obtained results with those related to commercial products encourages to carry on the research, also because of the reduced cost of the proposed SMC at parity (or better) performance.

  11. Tunable exchange bias-like effect in patterned hard-soft two-dimensional lateral composites with perpendicular magnetic anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Hierro-Rodriguez, A., E-mail: ahierro@fc.up.pt; Alvarez-Prado, L. M.; Martín, J. I.; Alameda, J. M. [Departamento de Física, Universidad de Oviedo, C/Calvo Sotelo S/N, 33007 Oviedo (Spain); Centro de Investigación en Nanomateriales y Nanotecnología—CINN (CSIC—Universidad de Oviedo—Principado de Asturias), Parque Tecnológico de Asturias, 33428 Llanera (Spain); Teixeira, J. M. [IN-IFIMUP, Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua Campo Alegre 687, 4169-007 Porto (Portugal); Vélez, M. [Departamento de Física, Universidad de Oviedo, C/Calvo Sotelo S/N, 33007 Oviedo (Spain)

    2014-09-08

    Patterned hard-soft 2D magnetic lateral composites have been fabricated by e-beam lithography plus dry etching techniques on sputter-deposited NdCo{sub 5} thin films with perpendicular magnetic anisotropy. Their magnetic behavior is strongly thickness dependent due to the interplay between out-of-plane anisotropy and magnetostatic energy. Thus, the spatial modulation of thicknesses leads to an exchange coupled system with hard/soft magnetic regions in which rotatable anisotropy of the thicker elements provides an extra tool to design the global magnetic behavior of the patterned lateral composite. Kerr microscopy studies (domain imaging and magneto-optical Kerr effect magnetometry) reveal that the resulting hysteresis loops exhibit a tunable exchange bias-like shift that can be switched on/off by the applied magnetic field.

  12. Soft magnetic nanoparticles of BaFe sub 1 sub 2 O sub 1 sub 9 fabricated under mild conditions

    CERN Document Server

    Che Shan; Chen Qian Wang

    2003-01-01

    Nanoparticles of barium hexaferrite, with an average size of 12 nm, were prepared by a hydrothermal route at relatively low temperatures (140-180 deg C). The effects of reaction temperature and time on the particle size and magnetic properties were discussed. The nanoparticles show a soft magnetic feature with a saturation magnetization of 1.1 emu g sup - sup 1 and coercivity of 221.0 Oe, rather than the hard magnetic characteristic that the corresponding bulk material exhibits. Annealing treatment in air at 800 deg C led to an order-of-magnitude increase of the saturation magnetization (67.3 emu g sup - sup 1) and coercive force (4511 Oe). It is suggested that the oxygen vacancies should be responsible for the soft magnetic characteristic that appeared for the as-prepared barium hexaferrite nanoparticles. (letter to the editor)

  13. Synthesis and magnetic properties of cobalt-iron/cobalt-ferrite soft/hard magnetic core/shell nanowires.

    Science.gov (United States)

    Londoño-Calderón, César Leandro; Moscoso-Londoño, Oscar; Muraca, Diego; Arzuza, Luis; Carvalho, Peterson; Pirota, Kleber Roberto; Knobel, Marcelo; Pampillo, Laura Gabriela; Martínez-García, Ricardo

    2017-06-16

    A straightforward method for the synthesis of CoFe 2.7 /CoFe 2 O 4 core/shell nanowires is described. The proposed method starts with a conventional pulsed electrodeposition procedure on alumina nanoporous template. The obtained CoFe 2.7 nanowires are released from the template and allowed to oxidize at room conditions over several weeks. The effects of partial oxidation on the structural and magnetic properties were studied by x-ray spectrometry, magnetometry, and scanning and transmission electron microscopy. The results indicate that the final nanowires are composed of 5 nm iron-cobalt alloy nanoparticles. Releasing the nanowires at room conditions promoted surface oxidation of the nanoparticles and created a CoFe 2 O 4 shell spinel-like structure. The shell avoids internal oxidation and promotes the formation of bi-magnetic soft/hard magnetic core/shell nanowires. The magnetic properties of both the initial single-phase CoFe 2.7 nanowires and the final core/shell nanowires, reveal that the changes in the properties from the array are due to the oxidation more than effects associated with released processes (disorder and agglomeration).

  14. Design of High Resolution Soft X-Ray Microcalorimeters Using Magnetic Penetration Thermometers

    Science.gov (United States)

    Busch. Sarah; Balvin, Manuel; Bandler, Simon; Denis, Kevin; Finkbeiner, Fred; Porst, Jan-Patrick; Sadlier, Jack; Smith, Stephen; Stevenson, Thomas

    2012-01-01

    We have designed high-resolution soft x-ray microcalorimeters using magnetic penetration thermometers (MPTs) in an array of pixels covering a total of 2 square centimeters to have a resolving power of 300 at energies around 300 eV. This performance is desirable for studying the soft x-ray background from the warm hot intergalactic medium. MPT devices have small sensor heat capacity and high responsivities, which makes them excellent detector technology for attempting to attain sub-eV resolution. We are investigating the feasibility of pixels with absorbers that are 625 x 625 square micrometers, up to 1 x 1 square millimeters in area and 0.35 micrometer thick and thinner. Our tests have shown that suspended gold absorbers 0.35 micrometers thick (RRR = 6.7) are feasible to fabricate. We modeled the thermal diffusion from such thin gold over the size of a 625 x 625 square micrometer absorber, and conclude that the effect of the thermalization on the resolution of a 300 eV photon is an additional approximately 0.2 eV FWHM of broadening. We discuss the thermal effects of small absorber attachment sterns on solid substrate, as well as considerations for multiplexed readout. We will present the progress we have made towards building and testing this soft x-ray detector.

  15. Magnetic and noise properties of as-deposited and annealed soft underlayer

    International Nuclear Information System (INIS)

    Yoon, Seong Yong; Lee, Hoo San; Kong, Sok Hyun; Oh, Hoon Sang

    2007-01-01

    We studied the magnetic and noise properties with various soft underlayer (SUL) types. For an as-deposited SUL, the results of spectrum, oscilloscope waveform and MFM indicated that the SUL types with IrMn pinning layer have more noise level than that of SUL types without IrMn pinning layer. And, after magnetic filed annealing along radial direction of disk, the exchange bias field increased and the noise level of type B (exchange bias type) decreased. These results reveal that incomplete or partial coupling may be generated at the interface between IrMn and ferromagnetic layer in as-deposited SUL. This incomplete coupling may result in complex or multidomain patterns in ferromagnetic layer

  16. Bright circularly polarized soft X-ray high harmonics for X-ray magnetic circular dichroism.

    Science.gov (United States)

    Fan, Tingting; Grychtol, Patrik; Knut, Ronny; Hernández-García, Carlos; Hickstein, Daniel D; Zusin, Dmitriy; Gentry, Christian; Dollar, Franklin J; Mancuso, Christopher A; Hogle, Craig W; Kfir, Ofer; Legut, Dominik; Carva, Karel; Ellis, Jennifer L; Dorney, Kevin M; Chen, Cong; Shpyrko, Oleg G; Fullerton, Eric E; Cohen, Oren; Oppeneer, Peter M; Milošević, Dejan B; Becker, Andreas; Jaroń-Becker, Agnieszka A; Popmintchev, Tenio; Murnane, Margaret M; Kapteyn, Henry C

    2015-11-17

    We demonstrate, to our knowledge, the first bright circularly polarized high-harmonic beams in the soft X-ray region of the electromagnetic spectrum, and use them to implement X-ray magnetic circular dichroism measurements in a tabletop-scale setup. Using counterrotating circularly polarized laser fields at 1.3 and 0.79 µm, we generate circularly polarized harmonics with photon energies exceeding 160 eV. The harmonic spectra emerge as a sequence of closely spaced pairs of left and right circularly polarized peaks, with energies determined by conservation of energy and spin angular momentum. We explain the single-atom and macroscopic physics by identifying the dominant electron quantum trajectories and optimal phase-matching conditions. The first advanced phase-matched propagation simulations for circularly polarized harmonics reveal the influence of the finite phase-matching temporal window on the spectrum, as well as the unique polarization-shaped attosecond pulse train. Finally, we use, to our knowledge, the first tabletop X-ray magnetic circular dichroism measurements at the N4,5 absorption edges of Gd to validate the high degree of circularity, brightness, and stability of this light source. These results demonstrate the feasibility of manipulating the polarization, spectrum, and temporal shape of high harmonics in the soft X-ray region by manipulating the driving laser waveform.

  17. Nonholonomic Closed-loop Velocity Control of a Soft-tethered Magnetic Capsule Endoscope

    Science.gov (United States)

    Taddese, Addisu Z.; Slawinski, Piotr R.; Obstein, Keith L.; Valdastri, Pietro

    2017-01-01

    In this paper, we demonstrate velocity-level closed-loop control of a tethered magnetic capsule endoscope that is actuated via serial manipulator with a permanent magnet at its end-effector. Closed-loop control (2 degrees-of-freedom in position, and 2 in orientation) is made possible with the use of a real-time magnetic localization algorithm that utilizes the actuating magnetic field and thus does not require additional hardware. Velocity control is implemented to create smooth motion that is clinically necessary for colorectal cancer diagnostics. Our control algorithm generates a spline that passes through a set of input points that roughly defines the shape of the desired trajectory. The velocity controller acts in the tangential direction to the path, while a secondary position controller enforces a nonholonomic constraint on capsule motion. A soft nonholonomic constraint is naturally imposed by the lumen while we enforce a strict constraint for both more accurate estimation of tether disturbance and hypothesized intuitiveness for a clinician's teleoperation. An integrating disturbance force estimation control term is introduced to predict the disturbance of the tether. This paper presents the theoretical formulations and experimental validation of our methodology. Results show the system's ability to achieve a repeatable velocity step response with low steady-state error as well as ability of the tethered capsule to maneuver around a bend. PMID:28316873

  18. An ab-initio theoretical investigation of the soft-magnetic properties of permalloys

    Science.gov (United States)

    Ostanin, S.; Staunton, J. B.; Razee, S. S. A.; Ginatempo, B.; Bruno, Ezio

    2005-08-01

    We study Ni80Fe20-based permalloys with the relativistic spin-polarized Korringa-Kohn-Rostoker electronic structure method. Treating the compositional disorder with the coherent potential approximation, we investigate how the magnetocrystalline anisotropy, K, and magnetostriction, λ, of Ni-rich Ni-Fe alloys vary with the addition of small amounts of non-magnetic transition metals, Cu and Mo. From our calculations we follow the trends in K and λ and find the compositions of Ni-Fe-Cu and Ni-Fe-Mo where both are near zero. These high permeability compositions of Ni-Fe-Cu and Ni-Fe-Mo match well with those discovered experimentally. We monitor the connection of the magnetic anisotropy with the number of minority spin electrons N↓. By raising N↓ via artificially increasing the band-filling of Ni80Fe20, we are able to reproduce the key features that underpin the magnetic softening we find in the ternary alloys. The effect of band-filling on the dependence of magnetocrystalline anisotropy on atomic short-range order in Ni80Fe20 is also studied. Our calculations, based on a static concentration wave theory, indicate that the susceptibility of the high permeability of the Ni-Fe-Cu and Ni-Fe-Mo alloys to their annealing conditions is also strongly dependent on the alloys' compositions. An ideal soft magnet appears from these calculations.

  19. Soft magnetic properties and damping parameter of (FeCo-Al alloy thin films

    Directory of Open Access Journals (Sweden)

    Isao Kanada

    2017-05-01

    Full Text Available For high frequency device applications, a systematic study of the soft magnetic properties and magnetization dynamics of (FeCo-Al alloy thin films has been carried out. A low effective damping parameter αeff of 0.002 and a high saturation magnetization of about 1,800 emu/cc are obtained at y=0.2∼0.3 for (Fe1-yCoy98Al2 alloy thin films deposited onto fused silica and MgO(100 at an ambient temperature during deposition. Those films are of the bcc structure with the orientation normal to the film plane. They possess a columnar structure, grown along the film normal. The column width is found to be about 20 nm for y=0.25. It is concluded that the (FeCo-Al thin films with a damping parameter as low as 0.002 and high saturation magnetization of about 1,800 emu/cc have been successfully fabricated, and that they are potential for future high frequency device applications.

  20. Structural and magnetic behaviour of soft magnetic Finemet-type ribbons.

    Science.gov (United States)

    Iturriza, N; Fernández, L; Chizhik, A; Vara, G; Pierna, A R; del Val, J J

    2008-06-01

    Different kinds of magnetic anisotropies have been induced during the nanocrystallization process of Co- and Ni-rich amorphous ferromagnetic (Finemet) ribbons by the application of a constant stress or an axial magnetic field during the annealing process. Magnetization measurements have evidenced the presence od macroscopic anisotropy in the treated samples. The main goal of this work has been, after a careful DSC study, the structural analysis of the treated ribbons using X-ray Diffraction and Atomic Force Microscopy (AFM), detecting substantial differences in the crystallization state and grain size of the samples depending on the thermal treatment that was carried out. Moreover, AFM measurements revealed in all the treated samples a strong nanocrystallisation of the surface without evidences of amorphous matrix, which contrast with XRD measurements that have shown a high content of amorphous phase in the bulk of the ribbons. Magneto-optical Kerr effect measurements have been performed with the aim to elucidate the complex magnetic behaviour that is expected for the surface of the ribbons, measuring surface hysteresis loops that showed much higher coercive field values than that obtained in the bulk material.

  1. Preparation and characterization of amorphous SiO2 coatings deposited by mirco-arc oxidation on sintered NdFeB permanent magnets

    Science.gov (United States)

    Xu, J. L.; Xiao, Q. F.; Mei, D. D.; Zhong, Z. C.; Tong, Y. X.; Zheng, Y. F.; Li, L.

    2017-03-01

    Amorphous SiO2 coatings were prepared on sintered NdFeB magnets by micro-arc oxidation (MAO) in silicate solution. The surface and cross-sectional morphologies, element and phase composition, corrosion resistance and magnetic properties of the coatings were investigated by scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), X-ray photoelectron spectroscopy (XPS), potentiodynamic polarization test and physical properties measurements system (PPMS). The results showed that the surface morphologies of the coatings exhibited the "coral reef" like structure, different from the typical MAO porous structure. With increasing the voltages, the thickness of the coatings increased from 12.72 to 19.90 μm, the content of Si element increased, while the contents of Fe, Nd and P elements decreased. The coatings were mainly composed of amorphous SiO2 and a few amorphous Fe2O3 and Nd2O3. The amorphous SiO2 coatings presented excellent thermal shock resistance, while the thermal shock resistance decreased with increasing the voltages. The corrosion resistance of the coatings increased with increasing the voltages, and it could be enhanced by one order of magnitude compared to the uncoated NdFeB magnets. The MAO coatings slightly decreased the magnetic properties of the NdFeB samples in different degrees.

  2. Tuning Magnetic Properties of Soft Ferromagnetic Thin Films for High Frequency Applications

    Science.gov (United States)

    Rementer, Colin Richard

    This work focuses on the design, synthesis, characterization and integration of soft ferromagnetic multilayer structures for their applications in high frequency applications. Presently, the form factor of current telecommunication devices, i.e., antenna, is fundamentally limited by the wavelength it is designed to transmit or receive. In order to adapt to new technologies, a method for subverting this paradigm has been developed by use of magnetoelectric, strain-coupled multiferroic systems, which requires optimized ferroic materials, especially ferromagnetic thin films. Two approaches were considered to achieve this goal, doping (boron) and multilayer (NiFe) heterostructures, where FeGa was selected as the reference phase for both approaches. Doping magnetic materials with boron has been shown to enhance the magnetic softness while maintaining magnetostriction. Multilayer heterostructures offer the possibility of tuning magnetic responses by taking advantage of materials with complementary magnetic properties. Iron-gallium-boron (FeGaB) was synthesized via co-sputtering of Fe 75Ga25 and boron. The addition of boron to Fe75Ga 25 reduced the magnetocrystalline anisotropy energy, enhancing the high frequency properties. Magnetometry studies showed that the coercivity was reduced by 70% with 15% boron (at. %) while maintaining 90% of the magnetization of FeGa. Fixed frequency FMR studies showed that the addition of boron reduced the linewidth by up to 70% to a value of 210 Oe. Electrically poled hysteresis measurements showed that the film has a saturation magnetostriction of 50 microepsilon. FeGaB's properties were shown to be tunable and can be optimized by controlling the boron concentration within 11-15% but this approach did not yield the desired FMR linewidth. Multilayers of sputtered Fe85Ga15/Ni81Fe 19, or FeGa/NiFe, were examined to tailor their magnetic softness, loss at microwave frequencies, permeability, and magnetoelasticity, leveraging the magnetic

  3. PA20: A new SANS and GISANS project for soft matter, materials and magnetism

    International Nuclear Information System (INIS)

    Chaboussant, Grégory; Désert, Sylvain; Lavie, Pascal; Brûlet, Annie

    2012-01-01

    This article presents the new Small Angle Neutron Scattering (SANS) instrument PA20 which will replace the PAXE instrument at LLB-Orphée. SANS is well-known to be especially well adapted to research in soft matter, materials and nanosciences and SANS is particularly powerful in the studies of complex systems, with isotopic labeling and contrast variation method, but also for large-scale structures (magnetic or not). PA20 is part of the LLB instrumental upgrade program C AP2015 . PA20 will not only maintain LLB's capabilities in SANS, but also considerably extend them in terms of SANS for magnetism with a polarized neutron option and Grazing Incidence SANS (GISANS), with an improved dynamical Q-range. The total length of PA20 will be 40 m, including a 19 m collimation length, a 20 m detector tank containing high-resolution/high-emciency XY detectors, and a casemate containing a monochromator (velocity selector λ = 0.3 − 2 nm), a chopper system for Time-of-Flight (TOF) mode, a polarizer and an RF spin flipper. PA20 will allow faster measurements, with 'single-shot' access to a wider range of scattering vectors, on possibly small samples (few mm in size). In addition, polarized neutrons will enable magnetic studies in both SANS and GISANS configurations. Studies of nanostructured surfaces and interfaces (deposited or embedded nano-objects), magnetic domain formation, multilayered materials or magnetic thin films through specular and off-specular signals will be possible through GISANS setups. The versatility of PA20 should contribute to both enlarge the neutron user community, especially in expanding areas like nanosciences, and offer improved services for users in the years to come.

  4. Magnetic sensor for configurable measurement of tension or elasticity with validation in animal soft tissues.

    Science.gov (United States)

    Singal, Kalpesh; Rajamani, Rajesh; Ahmadi, Mahdi; Serdar Sezen, A; Bechtold, Joan E

    2015-02-01

    This paper presents a novel Hall-effect-based magnetic sensor for handheld measurement of either elasticity or tension in soft tissues. A theoretical model is developed for the mechanical interaction of the sensor with the tissue, and conditions are established under which the separate effects of tension or elasticity can be measured. A model of the magnetic field within the sensor is developed and a technique to estimate the sensor response in the presence of multiple magnets is established. This paper then provides analytical sensor responses and compares them with experimental results obtained on synthetic materials. It is found that the sensor can measure tension values upto 100 N with a resolution of 10 N in handheld operation and elasticity of upto 0.87 MPa with a resolution of 0.02 MPa. Significant experimental characterization and statistical analysis of sensor repeatability is performed. The viability of this sensor to make tension and elasticity measurements with biological tissues is then demonstrated using turkey tendons and fresh swine tissues.

  5. High-frequency electromagnetic properties of soft magnetic metal-polyimide hybrid thin films

    International Nuclear Information System (INIS)

    Kim, Sang Woo; Yoon, Chong S.

    2007-01-01

    Although there are a lot of demands for suppression of unwanted high-frequency electromagnetic noise in highly integrated electronic devices such as mobile phones and notebook computers, electromagnetic thin films that effectively work in the high-frequency range have still been underdeveloped. Soft magnetic metal-polyimide (PI) hybrid films with high electrical resistivity were prepared by thermal imidization and selective oxidation between the metal alloy layer and polyamic acid (PAA) layer. Electromagnetic properties of the hybrid thin films in the radio-frequency range were characterized by using the microstrip line method and were correlated with their material parameters. Although anisotropy field of the CoFe/NiFe hybrid film was two times lower than that of the NiFe hybrid film, the saturation magnetization of the CoFe/NiFe hybrid film was three times higher than that of the NiFe hybrid film. The CoFe/NiFe hybrid film showed higher power loss in the frequency range of 3-6 GHz compared to the NiFe hybrid film. The high power loss of the CoFe/NiFe hybrid film was caused by high relative permeability and high ferromagnetic resonance (FMR) frequency due to high saturation magnetization

  6. Measurements of the elastic stiffness constants of single-crystal SmCo5 and of liquid-phase sintered SmCo5 permanent magnet material

    International Nuclear Information System (INIS)

    Doane, D.A.

    1977-01-01

    The five elastic stiffness constants were determined for both single-crystal SmCo 5 and for the commercially processed liquid-phase sintered (LPS) SmCo 5 permanent magnet material. The LPS material is an aligned polycrystalline aggregate of SmCo 5 crystallites oriented so that their magnetically easy c axes are approximately parallel. The elastic constants were obtained from the velocities of propagation of ultrasound in various directions in samples of known thickness and density. For the single crystal, the room-temperature values of the constants (in units of 10 12 dyn/cm 2 ) are c 11 =1.968 +- 2%, c 12 =1.032 +- 4%, c 13 =1.049 +- 4%, c 33 =2.398 +- 2%, and c 44 =0.483 +- 2%, and for the LPS permanent magnet material, c 11 =1.330 +- 2%, c 12 =0.616 +- 5%, c 13 =0.485 +- 5%, c 33 =1.659 +- 2%, and c 44 =0.419 +- 2%. The decrease in elastic constants in SmCo 5 relative to cobalt can be related qualitatively to a corresponding decrease in the number of nearest-neighbor cobalt bonds in SmCo 5

  7. Structure and some magnetic properties of (BiFeO3x-(BaTiO31−x solid solutions prepared by solid-state sintering

    Directory of Open Access Journals (Sweden)

    Kowal Karol

    2015-03-01

    Full Text Available This paper presents the results of the study on structure and magnetic properties of the perovskite-type (BiFeO3x-(BaTiO31−x solid solutions. The samples differing in the chemical composition (x = 0.9, 0.8, and 0.7 were produced according to the conventional solid-state sintering method from the mixture of powders. Moreover, three different variants of the fabrication process differing in the temperatures and soaking time were applied. The results of X-ray diffraction (XRD, Mössbauer spectroscopy (MS, and vibrating sample magnetometry (VSM were collected and compared for the set of the investigated materials. The structural transformation from rhombohedral to cubic symmetry was observed for the samples with x = 0.7. With increasing of BaTiO3 concentration Mössbauer spectra become broadened reflecting various configurations of atoms around 57Fe probes. Moreover, gradual decreasing of the average hyperfine magnetic field and macroscopic magnetization were observed with x decreasing.

  8. Development of high magnetic field soft X-ray spectroscopy and its application to the study of surface and interface

    International Nuclear Information System (INIS)

    Nakamura, Tetsuya; Narumi, Yasuo

    2014-01-01

    Magnetic materials are generally synthesized and used as alloys and compounds. They are also stacked as a multilayer film for spintronics device such as a reading-head sensor of a hard disk drive. The evaluation of magnetization is the most fundamental characterization in studies of magnetic materials. Especially, in alloys and compounds involving more than two magnetic elements, a partial magnetization with respect to each element, we call as an element specific magnetization, promises to provide the deeper understanding of their magnetic property. X-ray magnetic circular dichroism (XMCD) in absorption spectroscopy provides an element specific magnetization. As XMCD became increasingly popular, high-magnetic-field environment for XMCD measurements also became very important in order to investigate paramagnetic, antiferromagnetic, and meta-magnetic materials. Under the circumstance, a high-magnetic-field XMCD measurement technique of the soft-X-ray regime has been developed using a non-destructive pulse magnet having capability of generating 40 T at the twin helical undulators beamline, BL25SU, of SPring-8. In this review, we first introduce the concept and the technical features of high magnetic field XMCD and then show recent examples of the experiments. (author)

  9. 'Optical' soft x-ray arrays for fluctuation diagnostics in magnetic fusion energy experiments

    International Nuclear Information System (INIS)

    Delgado-Aparicio, L.F.; Stutman, D.; Tritz, K.; Finkenthal, M.; Kaita, R.; Roquemore, L.; Johnson, D.; Majeski, R.

    2004-01-01

    We are developing large pixel count, fast (≥100 kHz) and continuously sampling soft x-ray (SXR) array for the diagnosis of magnetohydrodynamics (MHD) and turbulent fluctuations in magnetic fusion energy plasmas. The arrays are based on efficient scintillators, high thoughput multiclad fiber optics, and multichannel light amplification and integration. Compared to conventional x-ray diode arrays, such systems can provide vastly increased spatial coverage, and access to difficult locations with small neutron noise and damage. An eight-channel array has been built using columnar CsI:Tl as an SXR converter and a multianode photomultiplier tube as photoamplifier. The overall system efficiency is measured using laboratory SXR sources, while the time response and signal-to-noise performance have been evaluated by recording MHD activity from the spherical tori (ST) Current Drive Experiment-Upgrade and National Spherical Torus Experiment, both at Princeton Plasma Physics Laboratory

  10. Losses Approximation for Soft Magnetic Composites Based on a Homogenized Equivalent Conductivity

    Directory of Open Access Journals (Sweden)

    X. Ren

    2016-09-01

    Full Text Available Soft magnetic composites (SMC are a promising alternative to laminated steel in many Electrical Engineering applications. This is largely owing to their low level of eddy current losses. The electromagnetic behavior of SMC in electromagnetic devices cannot be easily predicted using standard numerical techniques such as the finite element method, mostly due to the computational cost required to model the material microstructure. Another difficulty lies in the high property contrast between the matrix and the inclusions. In this paper we propose a homogenization strategy to define the equivalent electromagnetic properties of SMC. For components made of SMC, the equivalent conductivity and permeability can be determined. These equivalent properties can be used to calculate eddy current losses or introduced into structural analysis tools to design electromagnetic devices.

  11. Magnetic hard/soft nanocomposite ferrite aligned hollow microfibers and remanence enhancement.

    Science.gov (United States)

    Song, Fuzhan; Shen, Xiangqian; Liu, Mingquan; Xiang, Jun

    2011-02-01

    The nanocomposite SrFe(12)O(19)/Ni(0.5)Zn(0.5)Fe(2)O(4) ferrite aligned hollow microfibers with the hollow diameter to the fiber diameter estimated about 3/5 have been prepared by the gel precursor transformation process. The nanocomposite binary ferrites with different mass ratios are formed after the precursor calcined at 900°C for 2h, fabricating from SrFe(12)O(19) nanoparticles and Ni(0.5)Zn(0.5)Fe(2)O(4) nanoparticles with a uniform phase distribution. These nanocomposite ferrite microfibers show a combination of magnetic characteristics for the hard (SrFe(12)O(19)) and soft (Ni(0.5)Zn(0.5)Fe(2)O(4)) phase with an enhanced remanence owing to the exchange-coupling interactions. The aligned microfibers exhibit a shape anisotropy. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. Coercivity temperature dependence of Sm2Co17-type sintered magnets with different cell and cell boundary microchemistry

    Science.gov (United States)

    Yu, Nengjun; Zhu, Minggang; Song, Liwei; Fang, Yikun; Song, KuiKui; Wang, Qiang; Li, Wei

    2018-04-01

    High maximum energy product ((BH)max) Sm(CobalFe0.18Cu0.07Zr0.03)7.7 magnet (type-A) and high temperature Sm(CobalFe0.1Cu0.09Zr0.03)7.2 magnet (type-B) were prepared by a traditional powder metallurgical technology. A record (BH)max of 98.7 kJ/m3 with a coercivity (Hcj) of 501.5 kA/m at 773 K was achieved for the type-B magnet, which is much higher than that of type-A magnet (63.7 kJ/m3). The microstructures of the magnets were revealed by high-resolution transmission electron microscope. The average cell size of the type-A and B magnet are 110 nm and 90 nm, respectively. Moreover, the type-B magnet shows a wider cell boundary than the type-A magnet. Additionally, the element distribution of the cell/cell boundary interfaces was measured by energy-dispersive spectroscopy. The cell phase of the type-A magnet contains a higher Fe content as about 17 at%, comparing with that of the type-B magnet (∼8.9 at%). On the other hand, the Cu content of the cell boundary phase is 18 at% almost twice higher than the type-B magnet (8.6 at%). Theoretical Hcj temperature dependence of these two kinds of magnets indicates that the lower Cu content in the cell boundary phase and the appropriate Fe content in the cell phase are the key factors for the high Hcj for the type-B magnet at elevated temperature.

  13. Time of isothermal holding in the course of in-air heat treatment of soft magnetic Fe-based amorphous alloys and their magnetic properties

    Science.gov (United States)

    Skulkina, N. A.; Ivanov, O. A.; Pavlova, I. O.; Minina, O. A.

    2011-12-01

    On the example of soft magnetic Fe81B13Si4C2 and Fe77Ni1Si9B13 amorphous alloys, the relation between the level of magnetic properties and duration of isothermal holding in the course of heat treatment in air has been studied. The optimum temperature-dependent time τ of isothermal holding has been shown to be related to the volume fraction of domains ( V orth) with orthogonal magnetization in the initial (quenched) ribbon by equation V orth = ττ1/3. A temperature dependence of the proportionality coefficient α, which determines the degree of diffusion-process activity, has been determined. The results obtained allow us to substantially simplify the choice of optimum conditions of atmospheric heat treatment of soft magnetic Fe-based amorphous ribbons.

  14. Phosphorus containing sintered alloys (review)

    International Nuclear Information System (INIS)

    Muchnik, S.V.

    1984-01-01

    Phosphorus additives are considered for their effect on the properties of sintered alloys of different applications: structural, antifriction, friction, magnetic, hard, superhard, heavy etc. Data are presented on compositions and properties of phosphorus-containing materials produced by the powder metallurgy method. Phosphorus is shown to be an effective activator of sintering in some cases. When its concentration in the material is optimal it imparts the material such properties as strength, viscosity, hardness, wear resistance. Problems concerning powder metallurgy of amorphous phosphorus-containing alloys are reported

  15. Sintering and densification; new techniques: sinter forging

    International Nuclear Information System (INIS)

    Winnubst, A.J.A.

    1998-01-01

    In this chapter pressure assisted sintering methods will be described. Attention will mainly be paid to sinter forging as a die-wall free uniaxial pressure sintering technique, where large creep strains are possible. Sinter forging is an effective tool to reduce sintering temperature and time and to obtain a nearly theoretically dense ceramic. In this way grain size in tetragonal zirconia ceramics can be reduced down to 100 nm. Another important phenomenon is the reduction of the number density and size of cracks and flaws resulting in higher strength and improved reliability, which is of utmost importance for engineering ceramics. The creep deformation during sinter forging causes a rearrangement of the grains resulting in a reduction of interatomic spaces between grains, while grain boundary (glassy) phases can be removed. The toughness and in some cases the wear resistance is enhanced after sinter forging as a result of the grain-boundary-morphology improvement. (orig.)

  16. Temperature dependence of microwave absorption phenomena in single and biphase soft magnetic microwires

    Energy Technology Data Exchange (ETDEWEB)

    El Kammouni, Rhimou, E-mail: elkammounirhimou@gmail.com [Instituto de Ciencia de Materiales de Madrid, CSIC, 28049 Madrid (Spain); Vázquez, Manuel [Instituto de Ciencia de Materiales de Madrid, CSIC, 28049 Madrid (Spain); Lezama, Luis [Depto. Química Inorgánica, Universidad País Vasco, UPV/EHU, Bilbao (Spain); Kurlyandskaya, Galina [Depto. Electricidad y Electrónica, Universidad País Vasco, UPV/EHU, Bilbao (Spain); Dept. Magnetism and Magnetic Nanomaterials, Ural Federal University, Ekaterinburg (Russian Federation); Kraus, Ludek [Institute of Physics, Academy of Sciences of the Czech Republic, Prague (Czech Republic)

    2014-11-15

    The microwave absorption phenomena of single and biphase magnetic microwires with soft magnetic behavior have been investigated as a function of DC applied magnetic field using two alternative techniques: (i) absorption measurements in the temperature range of 4–300 K using a spectrometer operating at X-band frequency, at 9.5 GHz, and (ii) room-temperature, RT, ferromagnetic resonance measurements in a network analyzer in the frequency range up to 20 GHz. Complementary low-frequency magnetic characterization was performed in a Vibrating Sample Magnetometer. Studies have been performed for 8 μm diameter small-magnetostriction amorphous CoFeSiB single-phase microwire, coated by micrometric Pyrex layer, and after electroplating an external shell, 2 µm or 4 µm thick, of FeNi alloys. For single phase CoFeSiB microwire, a single absorption is observed, whose DC field dependence of resonance frequency at RT fits to a Kittel-law behavior for in-plane magnetized thin film. The temperature dependence behavior shows a monotonic increase in the resonance field, H{sub r}, with temperature. A parallel reduction of the circular anisotropy field, H{sub K}, is deduced from the temperature dependence of hysteresis loops. For biphase, CoFeSiB/FeNi, microwires, the absorption phenomena at RT also follow the Kittel condition. The observed opposite evolution with temperature of resonance field, H{sub r}, in 2 and 4 µm thick FeNi samples is interpreted considering the opposite sign of magnetostriction of the respective FeNi layers. The stress-induced magnetic anisotropy field, H{sub K}, in the FeNi shell is deduced to change sign at around 130 K. - Highlights: • A single absorption phenomenon is observed for single phase CoFeSiB. • The T dependence of the microwave behavior shows a monotonic increase of H{sub r} with T. • The absorption at RT follows the Kittel condition for biphase CoFe/FeNi microwires. • The T dependence of resonant field of CoFe/FeNi is interpreted to be

  17. Fabrication and Properties of Iron-based Soft Magnetic Composites Coated with NiZnFe2O4

    Directory of Open Access Journals (Sweden)

    WU Shen

    2017-07-01

    Full Text Available This paper focuses on iron-based soft magnetic composites which were synthesized by utilizing the sol-gel method prepared Ni-Zn ferrite particles as insulating compound to coat iron powder, and the influence of NiZnFe2O4 content and molding pressure on the magnetic properties was studied. The morphology, magnetic properties and density of Ni-Zn ferrite insulated compacts were investigated. Scanning electron microscope,line-scan EDX analysis and distribution maps show that the iron particle surface is covered with a thin layer of uniform Ni-Zn ferrites. The existing of the insulating layer can effectively improve the electrical resistivity of soft magnetic composites. Magnetic measurements show that the real part of permeability decreases with the increase of the Ni-Zn ferrite content, and the sample with 3%(mass fraction, the same below Ni-Zn ferrite has an acceptable real part and minimum imaginary part of permeability in comparison with other samples. Results show that the addition of NiZnFe2O4 can dramatically decrease the internal magnetic loss, the magnetic loss of coated samples decreases by 83.8% as compared with that of uncoated samples at 100kHz. The density of the Fe-3%NiZnFe2O4 compacts reaches 7.14g/cm3 and the saturation magnetization is 1.47T when the molding pressure is 1000MPa.

  18. Progress in Dual (Piezoelectric-Magnetostrictive Phase Magnetoelectric Sintered Composites

    Directory of Open Access Journals (Sweden)

    Rashed Adnan Islam

    2012-01-01

    Full Text Available The primary aims of this review article are (a to develop the fundamental understanding of ME behavior in perovskite piezoelectric-spinel magnetostrictive composite systems, (b to identify the role of composition, microstructural variables, phase transformations, composite geometry, and postsintering heat treatment on ME coefficient, and (c to synthesize, characterize, and utilize the high ME coefficient composite. The desired range of ME coefficient in the sintered composite is 0.5–1 V/cm⋅Oe. The studies showed that the soft piezoelectric phase quantified by smaller elastic modulus, large grain size of piezoelectric phase (~1 μm, and layered structures yields higher magnitude of ME coefficient. It is also found that postsintering thermal treatment such as annealing and aging alters the magnitude of magnetization providing an increase in the magnitude of ME coefficient. A trilayer composite was synthesized using pressure-assisted sintering with soft phase [0.9 PZT–0.1 PZN] having grain size larger than 1 μm and soft ferromagnetic phase of composition Ni0.8Cu0.2Zn0.2Fe2O4 [NCZF]. The composite showed a high ME coefficient of 412 and 494 mV/cm⋅Oe after sintering and annealing, respectively. Optimized ferrite to PZT thickness ratio was found to be 5.33, providing ME coefficient of 525 mV/cm⋅Oe. The ME coefficient exhibited orientation dependence with respect to applied magnetic field. Multilayering the PZT layer increased the magnitude of ME coefficient to 782 mV/cm⋅Oe. Piezoelectric grain texturing and nanoparticulate assembly techniques were incorporated with the layered geometry. It was found that with moderate texturing, d33 and ME coefficient reached up to 325 pC/N and 878 mV/cm⋅Oe, respectively. Nanoparticulate core shell assembly shows the promise for achieving large ME coefficient in the sintered composites. A systematic relationship between composition, microstructure, geometry, and properties is

  19. Miniature plasma focus as a novel device for synthesis of soft magnetic FeCo thin films

    International Nuclear Information System (INIS)

    Pan, Z.Y.; Rawat, R.S.; Verma, R.; Lin, J.J.; Yan, H.; Ramanujan, R.V.; Lee, P.; Springham, S.V.; Tan, T.L.

    2010-01-01

    The Letter reports the first ever application of low energy miniature plasma focus device as a deposition facility for nanostructured thin films. We demonstrate successful utilization of a 120 J fast miniature plasma focus device as a novel facility for the deposition of magnetically soft FeCo thin films. Different gas types and the substrate materials were used to investigate their effects on magnetic properties of the films. The FeCo films deposited on Si (100) with hydrogen as the filling gas were found to have an average grain size of 10.8±1.2 nm with narrow size distribution and soft magnetic properties with coercivity of about 6.3 Oe. The experimental coercivity value matched reasonably well with the theoretical calculation done using ripple theory.

  20. Transition from reversible to irreversible magnetic exchange-spring processes in antiferromagnetically exchange-coupled hard/soft/hard trilayer structures

    International Nuclear Information System (INIS)

    Wang Xiguang; Guo Guanghua; Zhang Guangfu

    2011-01-01

    The demagnetization processes of antiferromagnetically exchange-coupled hard/soft/hard trilayer structures have been studied based on the discrete one-dimensional atomic chain model and the linear partial domain-wall model. It is found that, when the magnetic anisotropy of soft layer is taken into account, the changes of the soft layer thickness and the interfacial exchange coupling strength may lead a transition of demagnetization process in soft layer from the reversible to the irreversible magnetic exchange-spring process. For the trilayer structures with very thin soft layer, the demagnetization process exhibits typical reversible exchange-spring behavior. However, as the thickness of soft layer is increased, there is a crossover point t c , after which the process becomes irreversible. Similarly, there is also a critical interfacial exchange coupling constant A sh c , above which the exchange-spring process is reversible. When A sh sh c , the irreversible exchange-spring process is achieved. The phase diagram of reversible and irreversible exchange-spring processes is mapped in the plane of the interfacial exchange coupling A sh and soft layer thickness N s . - Research highlights: → A differing magnetic exchange-spring process is found in antiferromagnetically exchange-coupled hard/soft/hard trilayers if the magnetic anisotropy of the soft layers is taken into account. → The change of the soft layer thickness may lead to a transition of demagnetization process in soft layer from the reversible to the irreversible exchange-spring process. → The change of the soft-hard interfacial exchange coupling strength may lead a transition of demagnetization process in soft layer from the reversible to the irreversible exchange-spring process. → The phase diagram of reversible and irreversible exchange-spring processes is mapped in the plane of the interfacial exchange coupling and soft layer thickness.

  1. Spark plasma sintering of hydrothermally synthesized bismuth ferrite

    Directory of Open Access Journals (Sweden)

    Zorica Branković

    2016-12-01

    Full Text Available Bismuth ferrite, BiFeO3 (BFO, powder was synthesized by hydrothermal method from Bi(NO33·5 H2O and Fe(NO33·9 H2O as precursors. The synthesized powder was further sintered using spark plasma sintering (SPS. The sintering conditions were optimized in order to achieve high density, minimal amount of secondary phases and improved ferroelectric and magnetic properties. The optimal structure and properties were achieved after spark plasma sintering at 630 °C for 20 min, under uniaxial pressure of 90 MPa. The composition, microstructure, ferroelectric and magnetic properties of the SPS samples were characterized and compared to those of conventionally sintered ceramics obtained from the same powder. Although the samples sintered using conventional method showed slightly lower amount of secondary phases, the spark plasma sintered samples exhibited favourable microstructure and better ferroelectric properties.

  2. Sensor applications of soft magnetic materials based on magneto-impedance, magneto-elastic resonance and magneto-electricity.

    Science.gov (United States)

    García-Arribas, Alfredo; Gutiérrez, Jon; Kurlyandskaya, Galina V; Barandiarán, José M; Svalov, Andrey; Fernández, Eduardo; Lasheras, Andoni; de Cos, David; Bravo-Imaz, Iñaki

    2014-04-25

    The outstanding properties of selected soft magnetic materials make them successful candidates for building high performance sensors. In this paper we present our recent work regarding different sensing technologies based on the coupling of the magnetic properties of soft magnetic materials with their electric or elastic properties. In first place we report the influence on the magneto-impedance response of the thickness of Permalloy films in multilayer-sandwiched structures. An impedance change of 270% was found in the best conditions upon the application of magnetic field, with a low field sensitivity of 140%/Oe. Second, the magneto-elastic resonance of amorphous ribbons is used to demonstrate the possibility of sensitively measuring the viscosity of fluids, aimed to develop an on-line and real-time sensor capable of assessing the state of degradation of lubricant oils in machinery. A novel analysis method is shown to sensitively reveal the changes of the damping parameter of the magnetoelastic oscillations at the resonance as a function of the oil viscosity. Finally, the properties and performance of magneto-electric laminated composites of amorphous magnetic ribbons and piezoelectric polymer films are investigated, demonstrating magnetic field detection capabilities below 2.7 nT.

  3. Sensor Applications of Soft Magnetic Materials Based on Magneto-Impedance, Magneto-Elastic Resonance and Magneto-Electricity

    Directory of Open Access Journals (Sweden)

    Alfredo García-Arribas

    2014-04-01

    Full Text Available The outstanding properties of selected soft magnetic materials make them successful candidates for building high performance sensors. In this paper we present our recent work regarding different sensing technologies based on the coupling of the magnetic properties of soft magnetic materials with their electric or elastic properties. In first place we report the influence on the magneto-impedance response of the thickness of Permalloy films in multilayer-sandwiched structures. An impedance change of 270% was found in the best conditions upon the application of magnetic field, with a low field sensitivity of 140%/Oe. Second, the magneto-elastic resonance of amorphous ribbons is used to demonstrate the possibility of sensitively measuring the viscosity of fluids, aimed to develop an on-line and real-time sensor capable of assessing the state of degradation of lubricant oils in machinery. A novel analysis method is shown to sensitively reveal the changes of the damping parameter of the magnetoelastic oscillations at the resonance as a function of the oil viscosity. Finally, the properties and performance of magneto-electric laminated composites of amorphous magnetic ribbons and piezoelectric polymer films are investigated, demonstrating magnetic field detection capabilities below 2.7 nT.

  4. Development of P/M Fe–P soft magnetic materials

    Indian Academy of Sciences (India)

    Phosphorous is treated as an impurity in conventional steels owing to segregation of phosphorous and formation of brittle phosphides along the grain boundaries. It is responsible for cold and hot shortness in wrought steels. In conventional powder metallurgy, involving compaction and sintering, high phosphorous content ...

  5. Sintering effect on structural, magnetic and optical properties of Ni0.5Zn0.5Fe2O4 ferrite nano particles

    Science.gov (United States)

    Kannan, Y. B.; Saravanan, R.; Srinivasan, N.; Ismail, I.

    2017-02-01

    Ni0.5Zn0.5Fe2O4 nano ferrite particles have been prepared by mechanical alloying via high energy ball milling and sintered at different temperatures from 700 °C to 1000 °C. Spinel structure is confirmed from the analysis of XRD data. Rietveld refinement method is employed to refine the XRD powder data and the structural parameters are calculated from the refinement. Small amount of hematite phase is found in all samples. The SEM, EDAX and XRF analysis reveals respectively the morphology, stoichiometric composition and purity of the powder samples. Using Maximum Entropy Method (MEM) the values of the bond strength between various sites interactions in ferrites are evaluated and compared with theoretical predictions of strengthening/weakening of various sites interactions from the values of interionic distances and interionic bond angles. Ferromagnetic nature of the samples is confirmed from the vibrating sample magnetometer study. The obtained low saturation magnetization values are attributed to presence of second phase. The optical band gap energy of the samples was determined by using UV-VIS techniques.

  6. Chemical synthesis of Fe/Fe3O4 core-shell composites with enhanced soft magnetic performances

    International Nuclear Information System (INIS)

    Yang, Bai; Li, Xiaopan; Yang, Xueying; Yu, Ronghai

    2017-01-01

    The large-grain Fe/Fe 3 O 4 composite particles with average size of about 1.2 µm have been fabricated by a facile one-step solvothermal method. The formation of high-purity Fe 3 O 4 as the shells (90.14 wt%) and α-Fe as the cores (9.86 wt%) in the Fe/Fe 3 O 4 composites leads to their high saturation magnetization of 119.6 A m 2 Kg -1 . Very low coercivity of 30 Oe is obtained in the composites due to their uniform cubic-shaped morphologies. Compared with Fe-based nanosized particles, these micron-sized magnetic Fe/Fe 3 O 4 composites exhibit high air stability and good compactibility with high compressed density of 5.9 g cm -3 . The fully compacted sample shows good soft magnetic properties including high magnetic induction B 1.2k (H=1200 A/m) of 540 mT and good frequency-dependent magnetic properties with operating frequency up to 50 MHz superior to those of the most traditional soft magnetic ferrites, which promotes their potential applications in high-frequency and high-power magnetic devices. - Highlights: • Micron-sized Fe/Fe 3 O 4 composites are prepared by a one-step solvothermal method. • High saturation magnetization and low coercivity are obtained in the composites. • Good air stability and high bulk density occurs in the composites. • High magnetic induction and good frequency-dependent properties are achieved.

  7. Detent torque from the soft magnetic stator stack of a hybrid stepper motor

    Science.gov (United States)

    Rajagopal, K. R.; Singh, Bhim; Singh, B. P.

    2003-05-01

    The residual magnetism present in the stator stack of a hybrid stepper motor, which will be of the last excited polarity, will develop a detent torque, similar to the static torque of the last excited phase, but with reduced excitation. The predominant component is fundamental. Even though this torque is the result of the stator excitation, it can be considered as a detent torque as it is available when the stator excitation is withdrawn. This detent torque is in addition to the inherent one due to the rotor permanent magnet, and it will be present until the next phase is switched ON. Once the excitation is removed from the second phase, because of the hysteresis the detent torque will be available, similar to the static torque profile for phase 2, but with less excitation. This means because of the hysteresis the detent torque follows the static torque of the phases. The magnitude of this detent torque will depend upon the level to which the phase was excited. Experiments have been carried out on a 0.5° hybrid stepper motor to study the effects of the excitation on the detent torque profiles. Harmonic analyses of the measured detent torque curves had been carried out and it is seen that the fundamental detent torque increases with the excitation and also follows the respective phases. Therefore, the residual flux density and the coercive force of the soft magnetic material used for the stator stack have to be as small as possible to get rid of this effect. Controlling a hybrid stepper motor by a suitable switching scheme for a given application requires the measured static torque profiles of the motor for all the phases at the exact working voltage (or voltages in case of a variable voltage supply) and detent torque profiles both before and after excitation. Harmonic spectrum of the measured static and detent torque profiles have to be accounted for while simulating stepping behavior of the motor, from which an appropriate switching scheme can be arrived at.

  8. Soft chemical control of the crystal and magnetic structure of a layered mixed valent manganite oxide sulfide

    Directory of Open Access Journals (Sweden)

    Jack N. Blandy

    2015-04-01

    Full Text Available Oxidative deintercalation of copper ions from the sulfide layers of the layered mixed-valent manganite oxide sulfide Sr2MnO2Cu1.5S2 results in control of the copper-vacancy modulated superstructure and the ordered arrangement of magnetic moments carried by the manganese ions. This soft chemistry enables control of the structures and properties of these complex materials which complement mixed-valent perovskite and perovskite-related transition metal oxides.

  9. Exchange-coupling of hard and soft magnetic sublattices and magnetic anomalies in mixed spinel NiFe0.75Cr1.25O4 nanoparticles

    Science.gov (United States)

    Lyubutin, I. S.; Starchikov, S. S.; Baskakov, A. O.; Gervits, N. E.; Lin, Chun-Rong; Tseng, Yaw-Teng; Lee, Wen-Jen; Shih, Kun-Yauh

    2018-04-01

    A set of single-crystalline nanoparticles (NPs) of nickel-chromium ferrite NiFe0.75Cr1.25O4 with a cubic spinel structure were synthesized and investigated. The NPs size can be varied from about 5 to 50 nm by the final annealing of the precursor at different temperatures. The distribution of cations over the tetrahedral (A) and the octahedral [B] sites (Fe0.75 Ni0.25) [Ni0.75 Cr1.25] O4 was established from the magnetic and Mössbauer measurements. In large NPs, the magnetic structure at low temperatures is close to the collinear antiferromagnetic (AFM) structure of the Neel type; and the total magnetic moment Mtot of the ferrite coincides with the direction of the B-sublattice moment. Several size-dependent magnetic anomalies were revealed. Three types of magnetic ions present in the A- and B- sublattices cause the competition of AFM and FM exchange interactions resulting in the highly frustrated magnetic ordering and the occurrence of canted magnetic structure in the octahedral B-sublattice. The frustrated structure is very flexible and significantly subjected to temperature and applied field. It results in several magnetic anomalies observed, including the occurrence of magnetic compensation, abnormal behavior of ZFC and FC magnetization curves and hysteresis loops. It was shown that magnetic anomalies can be explained in terms of exchange coupling of "soft" and "hard" magnetic B- and A-sublattices. This effect in the (Fe0.75 Ni0.25) [Ni0.75Cr1.25] O4 NPs can be considered as an atomic-scale analog of a similar effect observed in two-phase exchange-coupled alloys developed for permanent magnets and for the perpendicular recoding media.

  10. The migration behavior of atomic clusters in early nanocrystalline process of soft magnetic Finemet alloy.

    Science.gov (United States)

    Wang, Yuxin; Li, Xiang; Zhang, Yu; Zhao, Guannan; Yan, Biao; Lu, Wei

    2010-11-01

    The Finemet alloys are commonly used as cores in transformers and generators, stress and field sensors in technological application for their excellent soft magnetic characteristics. To clarify the nanocrystallization mechanism of Finemet especially about the atomic migration in early stage is very essential for developing their distinctive characteristics. In this study, we investigate the migration behavior of atoms in order to clarify the mechanism of the early-stage nanocrystallization in amorphous Finemet alloys. The Fe(73.5)Si(13.5)B9Nb3Cu1 amorphous ribbons were prepared by single-roller melt-spinning process in argon atmosphere, and then annealed at 350 degrees C-400 degrees C for 10 minutes in vacuum. The atom force microscope (AFM) and the coincidence Doppler broadening spectra (CDB) were used to characterize the migration behavior of different atoms in Fe(73.5)Si(13.5)B9Nb3Cu1 amorphous alloy during the early-stage nanocrystallization. The X-ray diffraction (XRD) patterns show that all annealed samples are in the amorphous state. But the AFM observation shows clearly that there are many small atomic clusters (nuclei) which distribute in the amorphous matrix of the annealed samples. With increasing annealing temperature, there is a significant increase in the amount of atomic clusters and a dramatic drop in the average size of clusters with very limited Cu contention in the samples, which reflect the structural evolution into more homogeneity. The CDB spectrum indicates that the peaks of positron annihilation spectrum are gradually reduced, which means the number of grain boundary and the defects in samples are gradually increased. It can be concluded that more defects are introduced by the formation of atomic clusters through atomic migration during the early-stage nanocrystallization in Fe(73.5)Si(13.5)B9Nb3Cu1 amorphous alloys.

  11. Magnetic motion control and planning of untethered soft grippers using ultrasound image feedback

    NARCIS (Netherlands)

    Scheggi, Stefano; Chandrasekar, Krishna Kumar T.; Yoon, ChangKyu; Sawaryn, Ben; van de Steeg, G.; Gracias, David H.; Misra, Sarthak

    2017-01-01

    Soft miniaturized untethered grippers can be used to manipulate and transport biological material in unstructured and tortuous environments. Previous studies on control of soft miniaturized grippers employed cameras and optical images as a feedback modality. However, the use of cameras might be

  12. Microwave absorption studies of magnetic sublattices in microwave sintered Cr{sup 3+} doped SrFe{sub 12}O{sub 19}

    Energy Technology Data Exchange (ETDEWEB)

    Praveena, K., E-mail: praveenaou@gmail.com [Department of Physics, National Taiwan Normal University, Taipei 11677, Taiwan (China); Sadhana, K., E-mail: sadhana@osmania.ac.in [Department of Physics, University College of Science, Osmania University, Saifabad, Hyderabad 500 004 (India); Liu, Hsiang-Lin [Department of Physics, National Taiwan Normal University, Taipei 11677, Taiwan (China); Bououdina, M. [Nanotechnology Centre, College of Science, University of Bahrain (Bahrain); Department of Physics, College of Science, University of Bahrain (Bahrain)

    2017-03-15

    The partial substitution of Fe{sup 3+} by Cr{sup 3+} in strontium hexaferrite has shown to be an effective method to tailor anisotropy for many novel microwave applications. Some basic studies have revealed that this substitution leads to unusual interactions among the magnetic sublattices of the hexaferrite. In order to investigate these interactions, Cr{sup 3+} doped SrCr{sub x}Fe{sub 12−x}O{sub 19} (x=0.0, 0.1, 0.3, 0.5, 0.7 and 0.9) (m-type) hexaferrites were prepared by microwave-hydrothermal (m-H) method and subsequently sintered at 950 °C/90 min using microwave furnace. The magnetic hysteresis (m-H) loops revealed the ferromagnetic nature of nanoparticles (NPs). The coercive field was increasing from 3291 Oe to 7335 Oe with increasing chromium content. This resulting compacts exhibited high squareness ratio (M{sub r}/M{sub s}–80%). The intrinsic coercivity (H{sub ci}) above 1,20,000 Oe and high values of magnetocrystalline anisotropy revealed that all samples are magnetically hard materials. A material with high loss as well as high dielectric constant may be desired in applications such as electromagnetic (EM) wave absorbing coatings. The room temperature complex dielectric and magnetic properties (ε′, ε′′, µ′ and µ′′) of Cr{sup 3+} doped SrFe{sub 12}O{sub 19} were measured in X-band region. The frequency dependent dielectric and magnetic losses were increasing to large extent. The reflection coefficient varied from −16 to −33 dB at 10.1 GHz as Cr{sup 3+} concentration increased from x=0.0 to x=0.9. Ferromagnetic resonance spectra (FMR) were measured in the X-band (9.4 GHz), linewidth decreases with chromium concentration from 1368 to 752 Oe from x=0.0 to x=0.9, which is quite low compared to commercial samples. We also have detailed origins of the FMR linewidth broadenings in terms of some important theoretical models. These results show that chromium doped strontium hexaferrites are useful for microwave absorption in the X

  13. Soft errors in 10-nm-scale magnetic tunnel junctions exposed to high-energy heavy-ion radiation

    Science.gov (United States)

    Kobayashi, Daisuke; Hirose, Kazuyuki; Makino, Takahiro; Onoda, Shinobu; Ohshima, Takeshi; Ikeda, Shoji; Sato, Hideo; Inocencio Enobio, Eli Christopher; Endoh, Tetsuo; Ohno, Hideo

    2017-08-01

    The influences of various types of high-energy heavy-ion radiation on 10-nm-scale CoFeB-MgO magnetic tunnel junctions with a perpendicular easy axis have been investigated. In addition to possible latent damage, which has already been pointed out in previous studies, high-energy heavy-ion bombardments demonstrated that the magnetic tunnel junctions may exhibit clear flips between their high- and low-resistance states designed for a digital bit 1 or 0. It was also demonstrated that flipped magnetic tunnel junctions still may provide proper memory functions such as read, write, and hold capabilities. These two findings proved that high-energy heavy ions can produce recoverable bit flips in magnetic tunnel junctions, i.e., soft errors. Data analyses suggested that the resistance flips stem from magnetization reversals of the ferromagnetic layers and that each of them is caused by a single strike of heavy ions. It was concurrently found that an ion strike does not always result in a flip, suggesting a stochastic process behind the flip. Experimental data also showed that the flip phenomenon is dependent on the device and heavy-ion characteristics. Among them, the diameter of the device and the linear energy transfer of the heavy ions were revealed as the key parameters. From their dependences, the physical mechanism behind the flip was discussed. It is likely that a 10-nm-scale ferromagnetic disk loses its magnetization due to a local temperature increase induced by a single strike of heavy ions; this demagnetization is followed by a cooling period associated with a possible stochastic recovery process. On the basis of this hypothesis, a simple analytical model was developed, and it was found that the model accounts for the results reasonably well. This model also predicted that magnetic tunnel junctions provide sufficiently high soft-error reliability for use in space, highlighting their advantage over their counterpart conventional semiconductor memories.

  14. Relations microstructure - magnetic properties - squareness factor of PrFeB and NdFeB sintered magnets prepared with hydrogen; Estudo das correlacoes entre microestrutura, propriedades magneticas e fator de quadratura em imas sinterizados de PrFeB e NdFeB processados com hidrogenio

    Energy Technology Data Exchange (ETDEWEB)

    Perigo, Elio Alberto

    2009-07-01

    In this work, it has firstly been evaluated the preparation of Pr{sub 16}Fe{sub 76}B{sub 8} sintered permanent magnets (% at.) by means of high-energy milling using a planetary ball mill. The influence of both milling speed and time has been verified. The best magnetic properties [J{sub R} = (1.02 {+-} 0.02) T, {mu}{sub 0J}H{sub c} = (1.42 {+-} 0.03) T and (BH){sub max} = (200 {+-} 4) kJm{sup -3}] have been found for a permanent magnet prepared with the magnetic alloy milled during 75 minutes using a rotational milling speed of 200 rpm. In order to improve the remanence, the hydrogen decrepitation process time has been reduced from 60 minutes to 2 minutes. In this case, it has been obtained a sintered magnet with J{sub R} = (1.14 {+-} 0.02) T, {mu}{sub 0J}H{sub c} = (1.44 {+-} 0.03) T and (BH){sub max} = (250 {+-} 5) kJm{sup -3} due to the improvement of crystallographic alignment of the hard magnetic phase. During such investigation, a new methodology to quantify the parameter has been developed. Subsequently, for the first time, a quantitative correlation between the microstructure and the squareness factor in anisotropic sintered RE{sub 16}Fe{sub 76}B{sub 8} (RE = Nd or Pr) magnets has been proposed. The presented expression utilizes the mean size, the mean elongation and the mean roundness of the hard magnetic grains as well as their respective standard deviations. The squareness factor can be improved with a microstructure with rounder grains and with a sharp grain size distribution. The grain size homogeneity is more important to enhance the squareness factor compared to grain shape homogeneity. Furthermore, it has also been verified that the annealing after sintering improves the grain shape homogeneity and the milling enhances the grain size homogeneity. Moreover, the effect of the temperature on the squareness factor of anisotropic sintered magnets has also been evaluated. Such parameter is mainly controlled by the sample

  15. Outstanding efficiency in energy conversion for electric motors constructed by nanocrystalline soft magnetic alloy “NANOMET®” cores

    Directory of Open Access Journals (Sweden)

    N. Nishiyama

    2016-05-01

    Full Text Available Recently updated nanocrystalline soft magnetic Fe-Co-Si-B-P-Cu alloys “NANOMET®” exhibit high saturation magnetic flux density (Bs > 1.8 T, low coercivity (Hc < 10 A/m and low core loss (W1.7/50 ∼ 0.4 W/kg even in a ribbon form with a thickness of up to 40 μm. By utilize excellent magnetic softness, several products such as motors or transformers for electrical appliances are now under developing by industry-academia collaboration. In particular, it is found that a brushless DC motor using NANOMET® core exhibited remarkable improvement in energy consumption. The prototype motor with an outer core diameter of 70 mm and a core thickness of 50 mm was constructed using laminated nano-crystallized NANOMET® ribbons. Core-loss for the constructed motor was improved from 1.4 W to 0.4 W only by replacing the non-oriented Si-steel core with NANOMET® one. The overall motor efficiency is evaluated to be 3% improvement. In this work, the relation between processing and resulting magnetic properties will be presented. In addition, feasibility for commercialization will also be discussed.

  16. Soft x-ray microscopy - a powerful analytical tool to image magnetism down to fundamental length and times scales

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Peter

    2008-08-01

    The magnetic properties of low dimensional solid state matter is of the utmost interest both scientifically as well as technologically. In addition to the charge of the electron which is the base for current electronics, by taking into account the spin degree of freedom in future spintronics applications open a new avenue. Progress towards a better physical understanding of the mechanism and principles involved as well as potential applications of nanomagnetic devices can only be achieved with advanced analytical tools. Soft X-ray microscopy providing a spatial resolution towards 10nm, a time resolution currently in the sub-ns regime and inherent elemental sensitivity is a very promising technique for that. This article reviews the recent achievements of magnetic soft X-ray microscopy by selected examples of spin torque phenomena, stochastical behavior on the nanoscale and spin dynamics in magnetic nanopatterns. The future potential with regard to addressing fundamental magnetic length and time scales, e.g. imaging fsec spin dynamics at upcoming X-ray sources is pointed out.

  17. Synthesis and magnetic study of magnetically hard-soft SrFe12-yAlyO19 - x Wt.% Ni0.5Zn0.5Fe2O4 nanocomposites

    Directory of Open Access Journals (Sweden)

    D. Neupane

    2017-05-01

    Full Text Available Pure phase exchange coupled nanocomposites of magnetically hard-soft oxides, (hard SrFe12-yAlyO19 -(soft x Wt.% Ni0.5Zn0.5Fe2O4 were prepared via one-pot autocombustion method. The hard-phase magnetic anisotropy was systematically varied via Al3+ doping and magnetic properties of the nanocomposites were assessed as a function of magnetic soft-phase content in the nanocomposite. As synthesized, ferrites were assessed for phase composition, crystallinity, and magnetic properties by using XRD and VSM respectively. Exchange coupling behavior was observed in nanocomposites for all soft phase content in the low field region up to 1200 Oe. Also, exchange coupling was observed to weaken with increase in Al3+ content in the hard phase of the composite. As a result of hard-soft exchange coupling, the saturation magnetization, reduced remanence, and Curie temperature were observed to be higher than those of pure SrFe12O19 hexaferrite. The present study is novel in its approach of tuning magnetic parameters of exchange-spring nanocomposites via systematically controlling magnetic parameters of the hard phase and content of the soft phase.

  18. Effect of La-Co substitution on the crystal structure and magnetic properties of hot press sintered Sr1-xLaxFe12-xCoxO19 (x=0-0.5) ferrites for use in LTCC technology

    Science.gov (United States)

    Peng, Long; Li, Lezhong; Wang, Rui; Hu, Yun; Tu, Xiaoqiang

    2015-10-01

    The La3+ and Co2+ substituted Sr1-xLaxFe12-xCoxO19 (x=0-0.5) ferrites with Bi2O3 additive were prepared by hot press sintering method at a low sintering temperature of 870 °C compatible with LTCC (low temperature co-fired ceramics) systems, and their crystal structure and magnetic properties were mainly investigated. The results show that the pure M-type crystal phase is successfully obtained for the ferrites with La-Co substitution amount x not higher than 0.3. When the substitution amount further increases to 0.4 and 0.5, the α-Fe2O3 phase and La2O3 phase are found to coexist with the M-type phase, thus the multiphase structure is formed. Besides, the saturation magnetization Ms, intrinsic coercivity Hci, and Curie temperature TC of the ferrites are strongly correlated with the La-Co substitution amount. Enhanced Ms and Hci are obtained when the substitution amount varies from 0.2 to 0.4, which can exceed 3600 Gs and 4000 Oe, respectively. However, the TC decreases rapidly when the substitution amount exceeds 0.3, and a value under 410 °C is observed. It is suggested that the La3+-Co2+ ions can partially substitute the Sr2+-Fe3+ ions for the hot press sintered ferrites at low sintering temperatures, leading to improved Ms and Hci for use in microwave LTCC ferrite devices.

  19. Effects of Cu substitution for Fe on the glass-forming ability and soft magnetic properties for Fe-based bulk metallic glasses

    International Nuclear Information System (INIS)

    Dou, Lintao; Liu, Haishun; Hou, Long; Xue, Lin; Yang, Weiming; Zhao, Yucheng; Chang, Chuntao

    2014-01-01

    The effects of Cu substitution for Fe on the glass-forming ability (GFA) and soft magnetic properties for Fe 72−x Cu x B 20 Si 4 Nb 4 (x=0.0, 0.2, 0.4, 0.6, 0.8, and 1.0) bulk metallic glasses (BMGs) are investigated. It is found that the investigated BMGs exhibit large GFA as well as excellent soft magnetic properties, and proper substitution of Fe by Cu improves the saturation magnetization, coercive force, and effective permeability without obvious deterioration of the GFA. - Highlights: • Fully glassy rods of Fe 72−x Cu x B 20 Si 4 Nb 4 BMGs were produced above 1 mm in diameter. • Investigated BMGs exhibit large glass-forming ability and excellent soft magnetic properties. • Proper Cu substitution improves magnetic properties without obvious deterioration of glass-forming ability

  20. Effect of annealing treatment on soft magnetic properties of Fe-6.5 wt% Si wide ribbons

    International Nuclear Information System (INIS)

    Roy, R.K.; Panda, A.K.; Ghosh, M.; Mitra, A.; Ghosh, R.N.

    2009-01-01

    The 25 mm wide ribbons of Fe-6.5 wt% Si alloy have been developed by melt spinning technique, showing sufficient ductility and white silver appearance. Two magnetic transitions take place at 676 and 760 deg. C due to the formation of B2 ordered phase and A2 disordered paramagnetic phase, respectively. The saturation magnetization of the ribbon is 17.5 kG under the applied field of 12 kG. The as-cast ribbons consist of disordered A2 structure with a low volume of B2 phases while the annealed microstructure comprises a dispersion of B2 domains in the disordered A2 matrix. The alloy shows the enhancement of the soft magnetic properties with a reduction in coercivity from 150 A/m in the as-cast state to 45 A/m in the annealed condition at 850 deg. C.

  1. Temperature and magnetic field dependence of the soft X-ray magnetic circular dichroism intensity for the Mn-L3 edge of MnFeP0.78Ge0.22

    NARCIS (Netherlands)

    Tsunekawa, M.; Imada, S.; Matsumoto, A.; Yamasaki, A.; Suga, S.; Schmid, B.; Higashimichi, H.; Hattori, Y.; Nakamura, T.; Brück, E.

    2007-01-01

    Soft X-ray magnetic circular dichroism (XMCD) measurements were performed at the L3 edge of manganese for MnFeP0.78Ge0.22 at 290 and 279 K. Temperature and magnetic field dependence of the XMCD intensity was clearly observed, which is consistent with that of the magnetization measurements as

  2. Ultra-soft magnetic Co-Fe-B-Si-Nb amorphous alloys for high frequency power applications

    Science.gov (United States)

    Ackland, Karl; Masood, Ansar; Kulkarni, Santosh; Stamenov, Plamen

    2018-05-01

    With the continuous shrinkage of the footprint of inductors and transformers in modern power supplies, higher flux, while still low-loss metallic replacements of traditional ferrite materials are becoming an intriguing alternative. One candidate replacement strategy is based on amorphous CoFeBSi soft-magnetic alloys, in their metallic glass form. Here the structural and magnetic properties of two different families of CoFeBSi-based soft magnetic alloys, prepared by arc-melting and subsequent melt spinning (rapid quenching) are presented, targeting potential applications at effective frequencies of 100 kHz and beyond. The nominal alloy compositions are Co67Fe4B11Si16Mo2 representing commercial Vitrovac and Co72-xFexB28-y (where B includes non-magnetic elements such as Boron, Silicon etc. x varies between 4 and 5 % and y is varied from 0 to 2 %) denoted Alloy #1 and prepared as a possible higher performance alternative, i.e. lower power loss and lower coercivity, to commercial Vitrovac. Room temperature magnetization measurements of the arc-melted alloys reveal that compared to Vitrovac, Alloy #1 already presents a ten-fold decrease in coercivity, with Hc ˜ 1.4 Am-1 and highest figure of merit of (Ms/Hc > 96). Upon melt-spinning the alloys into thin (< 30 μm) ribbons, the alloys are essentially amorphous when analyzed by XRD. Magnetization measurements of the melt-spun ribbons demonstrate that Alloy #1 possesses a coercivity of just 2 Am-1, which represents a significant improvement compared to melt-spun ribbons of Vitrovac (17 Am-1). A set of prototype transformers of approximately 10 turns of Alloy #1 ribbon exhibits systematically Hc < 10 Am-1 at 100 kHz, without a noticeable decrease in coupled flux and saturation.

  3. Effect of La-CO substitution on the crystal structure and magnetic properties of low temperature sintered Sr1-xLaxFe12-xCoxO19 (x=0-0.5) ferrites

    Science.gov (United States)

    Peng, Long; Li, Lezhong; Wang, Rui; Hu, Yun; Tu, Xiaoqiang; Zhong, Xiaoxi

    2015-11-01

    The La-Co substituted Sr1-xLaxFe12-xCoxO19 (x=0-0.5) ferrites with appropriate Bi2O3 additive were prepared at a low sintering temperature of 890 °C compatible with LTCC (low temperature co-fired ceramics) systems, and the effect of La-Co substitution on their crystal structure and magnetic properties was investigated. The results show that the pure M-type phase is successfully obtained when the La-Co substitution amount x does not exceed 0.3. However, the single M-type phase structure transforms to multiphase structure with further increased x, where the α-Fe2O3 phase and La2O3 phase coexist with the M-type phase. Moreover, the saturation magnetization Ms, magnetic anisotropy field Ha, intrinsic coercivity Hci, and Curie temperature TC of the ferrites depend on the La-Co substitution amount strongly, which are suggested to be determined by the partially substitution of La3+-Co2+ ions for Sr2+-Fe3+ ions with x not higher than 0.3. It is found that the obtained Sr1-xLaxFe12-xCoxO19 (x=0.2 and 0.3) ferrites can provide improved magnetic properties (Ms>62 emu/g, Ha>1400 kA/m, and Hci>320 kA/m) as low temperature sintered M-type hexaferrites for microwave LTCC applications.

  4. Population inversion and gain measurements for soft x-ray-laser development in a magnetically confined plasma column

    International Nuclear Information System (INIS)

    Suckewer, S.; Skinner, C.H.; Voorhees, D.; Milchberg, H.; Keane, C.; Semet, A.

    1983-06-01

    We present population inversion and gain measurements from an experimental investigation of possibilities to obtain high gain and lasing action in the soft x-ray region. Our approach to soft x-ray-laser development is based on rapid plasma cooling after the laser pulse by radiation losses, leading to fast recombination and collisional cascade into upper excited levels of CVI, for example, while the lower excited levels depopulate rapidly by radiative transitions, thus creating population inversions and gain. A approx. = 0.5 kJ CO 2 laser was focused onto a target of solid carbon or teflon; or CO 2 , O 2 , Ne gas, and the resulting plasma confined in a 50 to 90 kG magnetic field. Spectroscopic diagnostics with absolute intensity calibration were used to measure level populations

  5. Investigation of (Fe,Co)NbB-Based Nanocrystalline Soft Magnetic Alloys by Lorentz Microscopy and Off-Axis Electron Holography.

    Science.gov (United States)

    Zheng, Changlin; Kirmse, Holm; Long, Jianguo; Laughlin, David E; McHenry, Michael E; Neumann, Wolfgang

    2015-04-01

    The relationship between microstructure and magnetic properties of a (Fe,Co)NbB-based nanocrystalline soft magnetic alloy was investigated by analytical transmission electron microscopy (TEM). The microstructures of (Fe0.5Co0.5)80Nb4B13Ge2Cu1 nanocrystalline alloys annealed at different temperatures were characterized by TEM and electron diffraction. The magnetic structures were analyzed by Lorentz microscopy and off-axis electron holography, including quantitative measurement of domain wall width, induction, and in situ magnetic domain imaging. The results indicate that the magnetic domain structure and particularly the dynamical magnetization behavior of the alloys strongly depend on the microstructure of the nanocrystalline alloys. Smaller grain size and random orientation of the fine particles decrease the magneto-crystalline anisotropy and suggests better soft magnetic properties which may be explained by the anisotropy model of Herzer.

  6. Synthesis and sintering Ni-Zn ferrite obtained for combustion reaction in large scale; Sintese e sinterizacao de ferrita Ni-Zn obtida por reacao de combustao em larga escala

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, D.A., E-mail: debora.vieira@cear.ufpb.br [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil). Centro de Energias Alternativas e Renovaveis; Diniz, V.C.S.; Costa, A.C.F.M. [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Departamento de Ciencias e Engenharia de Materiais; Cornejo, D.R. [Universidade de Sao Paulo (USP), SP (Brazil). Instituto de Fisica; Kiminami, R.H.G.A. [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil). Departamento de Ciencias e Engenharia de Materiais

    2014-07-01

    This research proposes to evaluate the magnetic properties of ferrite Ni-Zn synthesized by combustion reaction on a large scale and sintered at 1250 deg C in resistive furnace. The sample was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and magnetic measurements. The results show that the synthesized product in large scale resulted in soft magnetic material with saturation magnetization of 40 emu·g{sup -1} and coercivity of 0.080 kOe, after sintering it was observed an increase to 68 emu·g{sup -1} in the magnetization and a reduction to 0.016 kOe in coercivity, indicating that the obtained material has promising characteristics for applications in electro-electronic devices. (author)

  7. A new soft X-ray magnetic circular dichroism facility at the BSRF beamline 4B7B

    Science.gov (United States)

    Guo, Zhi-Ying; Hong, Cai-Hao; Xing, Hai-Ying; Tang, Kun; Zheng, Lei; Xui, Wei; Chen, Dong-Liang; Cui, Ming-Qi; Zhao, Yi-Dong

    2015-04-01

    X-ray magnetic circular dichroism (XMCD) has become an important and powerful tool because it allows the study of material properties in combination with elemental specificity, chemical state specificity, and magnetic specificity. A new soft X-ray magnetic circular dichroism apparatus has been developed at the Beijing Synchrotron Radiation Facility (BSRF). The apparatus combines three experimental conditions: an ultra-high-vacuum environment, moderate magnetic fields and in-situ sample preparation to measure the absorption signal. We designed a C-type dipole electromagnet that provides magnetic fields up to 0.5 T in parallel (or anti-parallel) direction relative to the incoming X-ray beam. The performances of the electromagnet are measured and the results show good agreement with the simulation ones. Following film grown in situ by evaporation methods, XMCD measurements are performed. Combined polarization corrections, the magnetic moments of the Fe and Co films determined by sum rules are consistent with other theoretical predictions and experimental measurements. Supported by National Natural Science Foundation of China (61204008)

  8. Micro magnetic modeling of magnetization reversal in permanent magnets

    International Nuclear Information System (INIS)

    Toussaint, J.C.; Kevorkian, B.; Givord, D.; Rossignol, M.F.

    1996-01-01

    Micro magnetic numerical 3 D calculation is presented in this paper to investigate the effect of a soft magnetic heterogeneity on the magnetization reversal of a single hard magnetic grain. Both equilibrium and transient magnetization configurations are obtained by solving the dynamic Landau-Lifshitz-Gilbert (L.L.G.) equation. A modified forward difference method is used to integrate the time dependent L.L.G. equation without conflicting with the constraint of constant magnetic moment. A continuum view of the material medium is adopted and the spatial finite difference method is used to describe the system as a set of cubic elements. In each element the magnetization is interpolated with quadratic polynomial functions and constrained to follow the Brown condition at the surface. A multigrid approach is developed to calculate the magnetic potential and the resulting stray field associated with a given microstructure. The calculated properties are compared to actual properties of Nd Fe B sintered magnets. Assuming a soft nucleus of 160 angstrom diameter and 80 angstrom depth, the calculated coercive field is about 1.45 T, close to experimental values and the calculated angular dependence of H c resembles experimental behaviours. (author)

  9. Compensation of the Persistent Current Multipoles in the LHC Dipoles by making the Coil Protection Sheet from Soft Magnetic Material

    CERN Document Server

    Völlinger, C

    2000-01-01

    This note presents a scheme for compensating the persistent current multipole errors of the LHC dipoles by making the coil protection sheets from soft magnetic material of 0.5 mm thickness. The material properties assumed in this study are those of iron sheets with a very low content of impurities (99.99% pure Fe). The non-linearities in the upramp cycle on the b3 multipole component can be reduced by the factor of four (while decreasing the b5 variation by the factor of two. Using sheets of slightly different thicknesses offers a tuning possibility for the series magnet coils and can compensate deviations arising from cables of different suppliers. The calculation method is based on a semi-analytical hysteresis model for hard superconductors and an M(B) - iteration using the method of coupled boundary elements - finite elements (BEM - FEM). It is now possible to compute persistent current multipole errors of geometries with arbitrarily shaped iron yokes and thin layers of soft magnetic material such as tunin...

  10. CLINICAL APPLICABILITY OF HUMAN IN-VIVO LOCALIZED P-31 MAGNETIC-RESONANCE SPECTROSCOPY OF BONE AND SOFT-TISSUE TUMORS

    NARCIS (Netherlands)

    HOEKSTRA, HJ; BOEVE, WJ; KAMMAN, RL; MOOYAART, EL

    1994-01-01

    Background: Magnetic resonance imaging (MRI) is of restricted value for the in vivo characterization of tumor types. The applicability of phosphorus-31 (P-31) magnetic resonance spectroscopy (MRS) in the diagnosis of bone and soft tissue tumors is unknown. Methods: A total of 191 consecutive

  11. Fabrication of perpendicular magnetic recording tape media with a data capacity of over-50TB using Si/NiFe/FeCoB soft magnetic underlayers

    Science.gov (United States)

    Gomi, S.; Mashiko, Y.; Hirata, K.; Matsunuma, S.; Inoue, T.; Doi, T.; Watanabe, T.; Nakagawa, S.

    C-axis orientations of Ru intermediate layer (IML) and CoPtCr-SiO2 recording layer (RL) are attained by using crystalline FeCoB soft magnetic underlayer (SUL). Better (110) orientation of FeCo improves not only (001) orientation of Ru IML but also that of CoPtCr RL. This leads better perpendicular magnetic anisotropy in the RL suitable for perpendicular magnetic recording media. In order to control the (110) orientation in FeCoB layer, various seed layers are prepared beneath the FeCoB layers. Ru and Si/NiFe seed layers gives FeCoB layer a large in-plane magnetic anisotropy that is effective to suppress spike noise from SUL. The laminated FeCoB SUL causes more improvement of Ru (001) texure and leads to better perpendicular magnetic anisotropy of RL. Ru/CoPtCr-SiO2 bilayer deposited on laminated FeCoB SUL on Aramid tape substrate has good perpendicular magnetic properties and reduces the noise from SUL. PACS: Type pacs here, separated by semicolons;

  12. Electromagnetic shielding properties of soft magnetic powder-polymer composite films for the application to suppress noise in the radio frequency range

    International Nuclear Information System (INIS)

    Kim, Sang Woo; Yoon, Y.W.; Lee, S.J.; Kim, G.Y.; Kim, Y.B.; Chun, Yun Yeo; Lee, K.S.

    2007-01-01

    Electromagnetic absorption characteristics in the near- and the far-field regime were evaluated from measurements of power loss by the coaxial transmission and reflection method and the microstrip line method, respectively, for high-density soft magnetic Fe-Al-Si alloy-polymer composite films that were highly effective in the radio frequency (RF) range. The electromagnetic absorption in the near- and the far-field regime for the soft magnetic metal-polymer composite films was greatly dependent on the film density. The electromagnetic absorption in the RF range significantly increased with increasing film density, which was caused by the increase of the magnetic permeability and the electrical conductivity. As a result, the high-density soft magnetic film showed excellent electromagnetic absorption for the near- and the far-field electromagnetic shielding and was applicable as an electromagnetic absorber for high-frequency devices operated over 0.1 GHz

  13. Magnetic susceptibility of MnZn and NiZn soft ferrites using Laplace transform and the Routh-Hurwitz criterion

    International Nuclear Information System (INIS)

    Fano, Walter Gustavo; Boggi, Silvina; Razzitte, Adrian Cesar

    2011-01-01

    This paper is devoted to study the Routh-Hurwitz stability criterion from the MnZn and NiZn soft ferrites using a phenomenological model with the gyromagnetic spin contribution and domain wall contribution. The magnetodynamic equation and the harmonic oscillator equation have been used to obtain the domain walls and the spin contribution of the magnetic susceptibility. The ferrite materials have been considered as linear, time invariant, isotropic and homogeneous, and the magnetization vector is proportional to the magnetic field vector. The resulting expression of the magnetization in time domain of both ferrites under study has been obtained by mean of the inverse Laplace transformation applying the residue method. The poles of the magnetic susceptibility have negative real parts, which ensures that the response decays exponentially to zero as the time increase. The degree of the numerator's polynomial of the magnetic susceptibility is less than the degree of denominator's polynomial in the magnetic susceptibility function: and the poles are located in the half left s-plane. Then the system is bounded-input, bounded-output (BIBO), and the results agree with the Routh-Hurwitz stability criterion for the MnZn and NiZn soft ferrites. - Research Highlights: → Laplace transform of the magnetic susceptibility of the MnZn and NiZn soft ferrites. → Routh-Hurwitz stability criterion of magnetic materials. → Bode plot of magnetic susceptibility. → Inverse Laplace transform using residue theorem.

  14. Magnetic flux motion in (PrxY1−xBa2Cu3O7−δ polycrystal samples sintered in Ar and O2 atmospheres

    Directory of Open Access Journals (Sweden)

    S. Favre

    2016-09-01

    Full Text Available We present a comparative study of the magnetic flux motion in ceramic pellets made of (PrxY1−xBa2Cu3O7−δ as a function of their composition and morphology. Samples produced in Ar or O2 atmosphere present noticeable differences in their magnetic response that we explain in terms of their structural parameters. The material’s parameters that most influence the flux dynamics are morphology and oxygen content, that change dramatically with the sintering atmosphere. Moderate changes are also observed as a function of the Pr content. Magnetic pinning efficiency is discussed in terms of intergranular couplings and effective activation energies, estimated from AC-susceptibility and magnetoresistance measurements.

  15. Temperature dependence of microwave absorption phenomena in single and biphase soft magnetic microwires

    Czech Academy of Sciences Publication Activity Database

    El Kammouni, R.; Vázquez, M.; Lezama, L.; Kurlyandskaya, G.; Kraus, Luděk

    2014-01-01

    Roč. 368, Nov (2014), 126-132 ISSN 0304-8853 Institutional support: RVO:68378271 Keywords : magnetic microwire * ferromagnetic resonance * microwave absorption * biphase magnetic system Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.970, year: 2014

  16. Portable magnetic tweezers device enables visualization of the three-dimensional microscale deformation of soft biological materials.

    Science.gov (United States)

    Yang, Yali; Lin, Jun; Meschewski, Ryan; Watson, Erin; Valentine, Megan T

    2011-07-01

    We have designed and built a magnetic tweezers device that enables the application of calibrated stresses to soft materials while simultaneously measuring their microscale deformation using confocal microscopy. Unlike previous magnetic tweezers designs, our device is entirely portable, allowing easy use on microscopes in core imaging facilities or in collaborators' laboratories. The imaging capabilities of the microscope are unimpaired, enabling the 3-D structures of fluorescently labeled materials to be precisely determined under applied load. With this device, we can apply a large range of forces (~1-1200 pN) over micron-scale contact areas to beads that are either embedded within 3-D matrices or attached to the surface of thin slab gels. To demonstrate the usefulness of this instrument, we have studied two important and biologically relevant materials: polyacrylamide-based hydrogel films typical of those used in cell traction force microscopy, and reconstituted networks of microtubules, essential cytoskeletal filaments.

  17. Fe-based soft magnetic composites coated with NiZn ferrite prepared by a co-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Yuandong; Yi, Yi; Li, Liya; Ai, Hengyu; Wang, Xiaoxu [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Chen, Lulu [Jiangsu Eagle-globe Group Co., Ltd., Nantong 226600 (China)

    2017-04-15

    Fe powder was coated with NiZn ferrite by a co-precipitation method using chlorate as the raw material. Soft magnetic composites were manufactured via compaction and heat treatment of the coated powder. The coated powder and heat treated powder were analysed using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and Raman spectroscopy. Their magnetic properties were determined using a Quantum Design-Vibrating Sample Magnetometer (QD-VSM). The composites were analysed with SEM and EDS. The permeability and magnetic loss of the composites were measured with a B-H curve analyzer. The results show that, using the co-precipitation method, the raw precipitate was successfully prepared and coated the pure Fe powder and turned into spinel NiZn ferrite treated at 600 ℃ for 1 h. After heat treatment at 500 ℃ under air, the insulation coating layer of soft magnetic composite (SMC) was not destroyed and containing Fe, Ni, Zn and oxygen. The permeabilities of the SMC are stable at edge of the 2–200 kHz frequency range and the total loss was lower. - Graphical abstract: Scanning electron microscopy (SEM) images of Fe/(NiZn)Fe{sub 2}O{sub 4} composite powder heated at 600 ℃ for 1 h. - Highlights: • Fe particles were coated with (NiZn)Fe{sub 2}O{sub 4} via a co-precipitation and calcined method. • Coating layers were uniform and dense. • The permeabilities of the SMC are stable at edge of the 2–200 kHz frequency range.

  18. Magnetic and electronic properties of RNiO{sub 3} (R = Pr, Nd, Eu, Ho and Y) perovskites studied by resonant soft x-ray magnetic powder diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Bodenthin, Y; Staub, U; Piamonteze, C; Garcia-Fernandez, M [Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Martinez-Lope, M J; Alonso, J A, E-mail: urs.staub@psi.ch [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid (Spain)

    2011-01-26

    Soft x-ray resonant magnetic powder diffraction of the (1/2 0 1/2) reflection at the Ni L{sub 2,3} edges is used to study the magnetic and electronic properties of a series of RNiO{sub 3} materials (with R = Pr, Nd, Eu, Ho and Y) below the metal-insulator transition. The polarization and energy dependence of the reflection gives further support for a non-collinear magnetic structure and charge disproportionation in the whole RNiO{sub 3} series. Only small changes in the spectra of the magnetic (1/2 0 1/2) reflection and in the absorption spectra could be detected. The results are discussed with comparison to charge transfer multiplet calculations. Our results emphasize that the lighter and heavier RNiO{sub 3} compounds are very similar from the point of view of their local electronic and magnetic state despite the strong change of the metal-to-insulator transition temperature.

  19. Sintering of nonstoichiometric UO2

    International Nuclear Information System (INIS)

    Susnik, D.; Holc, J.

    1983-01-01

    Activated sintering of UO 2 pellets at 1100 deg C is described. In CO 2 atmosphere is UO 2 is nonstoichiometric and pellets from active UO 2 powders sinter at 900 deg C to high density. At 1100 deg C the final sintered density is practically achieved at heating on sintering temperature. After reduction and cooling in H 2 atmosphere which is followed sintering in CO 2 the structure is identical to the structured UO 2 pellets sintered at high temperature in H 2 . Density of activated sintered UO 2 pellets is stable, even after additional sintering at 1800 deg C. (author)

  20. Laser Sintered Calcium Phosphate Bone

    National Research Council Canada - National Science Library

    Vail, Neil

    1999-01-01

    ...) technology selective laser sintering (SLS). BME has successfully implemented a pilot facility to fabricate calcium phosphate implants using anatomical data coupled with the selective laser sintering process...

  1. A method for sintering

    DEFF Research Database (Denmark)

    2012-01-01

    The present invention provides a method for sintering, comprising in the following order the steps of: providing a body in the green state or in the pre-sintered state on a support; providing a load on at least one spacer on the support such that the load is located above said body in the green...

  2. A 3D-Printable Polymer-Metal Soft-Magnetic Functional Composite—Development and Characterization

    Directory of Open Access Journals (Sweden)

    Bilal Khatri

    2018-01-01

    Full Text Available In this work, a 3D printed polymer–metal soft-magnetic composite was developed and characterized for its material, structural, and functional properties. The material comprises acrylonitrile butadiene styrene (ABS as the polymer matrix, with up to 40 vol. % stainless steel micropowder as the filler. The composites were rheologically analyzed and 3D printed into tensile and flexural test specimens using a commercial desktop 3D printer. Mechanical characterization revealed a linearly decreasing trend of the ultimate tensile strength (UTS and a sharp decrease in Young’s modulus with increasing filler content. Four-point bending analysis showed a decrease of up to 70% in the flexural strength of the composite and up to a two-factor increase in the secant modulus of elasticity. Magnetic hysteresis characterization revealed retentivities of up to 15.6 mT and coercive forces of up to 4.31 kA/m at an applied magnetic field of 485 kA/m. The composite shows promise as a material for the additive manufacturing of passive magnetic sensors and/or actuators.

  3. Innovative soft magnetic multilayers with enhanced in-plane anisotropy and ferromagnetic resonance frequency for integrated RF passive devices

    Science.gov (United States)

    Falub, Claudiu V.; Bless, Martin; Hida, Rachid; MeduÅa, Mojmír; Ammann, Arnold

    2018-04-01

    We present an innovative, economical method for manufacturing soft magnetic materials that may pave the way for integrated thin film magnetic cores with dramatically improved properties. Soft magnetic multilayered thin films based on the Fe-28%Co20%B (at.%) and Co-4.5%Ta4%Zr (at.%) amorphous alloys are deposited on 8" bare Si and Si/200nm-thermal-SiO2 wafers in an industrial, high-throughput Evatec LLS EVO II magnetron sputtering system. The multilayers consist of stacks of alternating 80-nm-thick ferromagnetic layers and 4-nm-thick Al2O3 dielectric interlayers. Since in our dynamic sputter system the substrate cage rotates continuously, such that the substrates face different targets alternatively, each ferromagnetic sublayer in the multilayer consists of a fine structure comprising alternating CoTaZr and FeCoB nanolayers with very sharp interfaces. We adjust the thickness of these individual nanolayers between 0.5 and 1.5 nm by changing the cage rotation speed and the power of each gun, which is an excellent mode to engineer new, composite ferromagnetic materials. Using X-ray reflectometry (XRR) we reveal that the interfaces between the FeCoB and CoTaZr nanolayers are perfectly smooth with roughness of 0.2-0.3 nm. Kerr magnetometry and B-H looper measurements for the as-deposited samples show that the coercivity of these thin films is very low, 0.2-0.3 Oe, and gradually scales up with the thickness of FeCoB nanolayers, i.e. with the increase of the overall Fe content from 0 % (e.g. CoTaZr-based multilayers) to 52 % (e.g. FeCoB-based multilayers). We explain this trend in the random anisotropy model, based on considerations of grain size growth, as revealed by glancing angle X-ray diffraction (GAXRD), but also because of the increase of magnetostriction with the increase of Fe content as shown by B-H looper measurements performed on strained wafers. The unexpected enhancement of the in-plane anisotropy field from 18.3 Oe and 25.8 Oe for the conventional Co

  4. Thermal, magnetic, and structural properties of soft magnetic FeCrNbCuSiB alloy ribbons

    International Nuclear Information System (INIS)

    Rosales-Rivera, A.; Valencia, V.H.; Quintero, D.L.; Pineda-Gomez, P.; Gomez, M.

    2006-01-01

    The thermal, magnetic and structural properties of amorphous magnetic Fe 73.5-x Cr x Nb 3 Cu 1 Si 13.5 B 9 alloy ribbons, with x=0, 2, 4, 6, 8, and 10, were studied by using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), magneto-impedance measurements and X-ray diffraction (XRD). The ribbons exhibit ultrasoft magnetic behavior, especially giant magneto-impedance effect, GMI. A three-peak behavior was observed in GMI curves. Particular attention has been given to observation of crystallization kinetics via DSC and TGA. The primary crystallization T pcr , and Curie T c , temperatures were determined from DSC and TGA data, respectively. The effect of partial substitution of iron by Cr on the thermal and magnetic properties is discussed

  5. Dynamical properties of magnetic Barkhausen noise in a soft microalloyed steel

    Czech Academy of Sciences Publication Activity Database

    Stupakov, Alexandr; Perevertov, Oleksiy; Zablotskyy, Vitaliy A.

    2015-01-01

    Roč. 51, č. 1 (2015), s. 6100204 ISSN 0018-9464 R&D Projects: GA ČR GA13-18993S Institutional support: RVO:68378271 Keywords : Barkhausen effect * frequency measurement * magnetic field measurement Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.277, year: 2015

  6. The diagnostic value of diffusion-weighted magnetic resonance imaging in soft tissue abscesses

    Energy Technology Data Exchange (ETDEWEB)

    Unal, Ozkan; Koparan, Halil Ibrahim [Yuezuencue Yil University, Department of Radiology, Van (Turkey); Avcu, Serhat, E-mail: serhatavcu@hotmail.com [Yuezuencue Yil University, Department of Radiology, Van (Turkey); Kalender, Ali Murat [Yuezuencue Yil University, Department of Orthopaedics, General Surgery, Van (Turkey); Kisli, Erol [Yuezuencue Yil University, Department of General Surgery, Van (Turkey)

    2011-03-15

    Purpose: To study the diagnostic value of diffusion-weighted imaging (DWI) in soft tissue abscesses. Materials and methods: Fifty patients were included in this study who were thought to have soft tissue abscess or cystic lesion as a result of clinical and radiological examinations. Localisations of the lesions were: 1 periorbital, 3 breast, 14 intraabdominal, and 32 intramuscular lesions. After other radiological examinations, DWI was performed. The signal intensity values of the lesions were evaluated qualitatively according to the hyperintensity on b-1000 DWI, using 1.5 T MR system. All of the lesions were aspirated after DWI, and detection of pus in the aspiration material was accepted as gold standard for the diagnosis of abscess. Results: In 38 of the 50 patients, hyperintensity was obtained on diffusion-weighted images. False-positive results were maintained in 2 of these patients, and true-positive results were maintained in 36 of them. In 11 of the 50 patients, hypointensity was visualised on diffusion-weighted images. False-negative results were maintained in 3 of these patients, and true-negative results were maintained in 8 of them. An abscess which was seen on post-contrast conventional MRI could not be seen on DWI, and this was regarded as false-negative. Conclusion: The sensitivity and specificity of diffusion-weighted images for detecting soft tissue abscesses were found to be 92% and 80%, respectively. DWI has a high diagnostic value in soft tissue abscesses, and is an important imaging modality that may be used for the differentiation of cysts and abscesses.

  7. Effect of Soft Phase on Magnetic Properties of Bulk Sm-Co/alpha-Fe Nanocomposite Magnets (Postprint)

    Science.gov (United States)

    2012-11-01

    addition), which resulted in the lower BH of 8.64 MGOe. The optimal soft phase Fe addition was determined to be 15 wt% which results in remanence of...8.1 kG, coercivity of 10.3 kOe, and BH of 12.3 MGOe. It is noted that the remanence was not enhanced as much as . Fig. 2 shows the increase rate of and...versus Fe addition, which were calculated by and , respectively. The increase rate of remanence is lower than that of magnetiza- tion at 10 kOe and

  8. Effects of Dy{sub 71.5}Fe{sub 28.5} intergranular addition on the microstructure and the corrosion resistance of Nd–Fe–B sintered magnets

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Liping; Ma, Tianyu, E-mail: maty@zju.edu.cn; Zhang, Pei; Yan, Mi, E-mail: mse_yanmi@zju.edu.cn

    2015-06-15

    To satisfy high-temperature applications, heavy rare-earth (RE) Dy is commonly introduced into the Nd–Fe–B sintered magnets to improve the coercivity. In addition to forming (Nd, Dy){sub 2}Fe{sub 14}B, Dy also exists in the intergranular RE-rich phase. Hence, understanding the effect of Dy on the electrochemical characteristics of the RE-rich phase and corrosion resistance of the magnet is of importance. In this work, eutectic alloy Dy{sub 71.5}Fe{sub 28.5} powders were added into the (Pr{sub 0.2}Nd{sub 0.8}){sub 12.3}Fe{sub bal}B{sub 6.1} magnet through binary-alloy approach to investigate the corrosion resistance of the magnet in electrochemical and hot/humid environments. The results demonstrate that Dy is enriched in the intergranular phase, improving its electrode potential and stability due to the higher electrode potential of Dy than Nd or Pr. As a consequence, the electrode potential difference between the 2:14:1 phase and the RE-rich phase is reduced, improving the corrosion resistance. Furthermore, formation of (Pr, Nd, Dy){sub 2}Fe{sub 14}B shell with stronger local anisotropy surrounding the 2:14:1 phase grains improves the coercivity with a slight remanence loss. Therefore, intergranular adding Dy–Fe alloy powders can obtain both high magnetic properties and good corrosion resistance simultaneously. - Highlights: • Eutectic Dy{sub 71.5}Fe{sub 28.5} powders were intergranular added to NdFeB sintered magnets. • The doped magnet showed improved corrosion resistance compared to Dy-free magnet. • Dy enrichment in RE-rich intergranular phase improved its electrode potential. • (Nd, Dy){sub 2}Fe{sub 14}B shell was expected to form in the surface of Nd{sub 2}Fe{sub 14}B grains. • Both corrosion resistance and coercivity were improved in Dy–Fe doped magnet.

  9. Enhancement of soft magnetic properties of La–Zn co-doped nanocrystalline Ni{sub 2}Y hexaferrite

    Energy Technology Data Exchange (ETDEWEB)

    Hosseinkhan Nejad, Ehsan, E-mail: ehsanhkhani66@gmail.com [Department of Material Science and Engineering, Semnan University, Semnan (Iran, Islamic Republic of); Farzin, Yousef Alizad [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 14395-553, Tehran (Iran, Islamic Republic of); Heydari, Mohammad Ali [Department of Material Science and Engineering, Azad University of Saveh, Saveh (Iran, Islamic Republic of)

    2017-02-01

    The La-Zn substituted nanocrystalline Sr{sub 2−x}La{sub x}Ni{sub 2}Fe{sub 12−x}Zn{sub x}O{sub 22} (with x=0.0, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9) hexaferrites were prepared using sol-gel auto-combustion method to investigate the microstructure and magnetic properties. Fourier transform infrared spectroscopy (FT-IR) spectra showed two main absorption bands at 429 and 594 cm{sup −1} corresponding to the stretching and vibration of tetrahedral and octahedral groups in S blocks. The X-ray diffraction pattern confirmed the phase formation of Y-type hexaferrite with R-3 m space group which also provided the lattice constants and crystallite sizes of each product. Furthermore, the crystallite size (D) was found to be in the range of 31.4–43.1 nm. Field emission electron microscopy (FESEM) images confirmed that the grain size was reduced from 600 to 150 nm due to the increase of dopant cations and, subsequently, caused soft magnetic properties to improve. By performing a thorough investigation on the M–H hysteresis loops, it was found that the magnetization first increased up to x=0.7 and then decreased, while coercivity monotonously decreased from 1313 to 569 Oe. This behavior can be attributed to the migration of Fe3+ ions from spin-down to spin-up, local strains, deviation of spin arrangement and strength of superexchange interactions. - Highlights: • A systematic study was done on the effect of La–Zn substitution of Ni{sub 2}Y. • The crystallite size of this ferrites is in the range of 31.4–41.3 nm. • Coercivity of synthesis samples monotonously decreased from 1313 to 569 Oe. • The magnetization and the coercivity strongly depend on La–Zn substitution. • The soft magnetic properties of ferrites improved by increasing of dopant cations.

  10. Sintering of beryllium oxide

    International Nuclear Information System (INIS)

    Caillat, R.; Pointud, R.

    1955-01-01

    This study had for origin to find a process permitting to manufacture bricks of beryllium oxide of pure nuclear grade, with a density as elevated as possible and with standardized shape. The sintering under load was the technique kept for the manufacture of the bricks. Because of the important toxicity of the beryllium oxide, the general features for the preliminary study of the sintering, have been determined while using alumina. The obtained results will be able to act as general indication for ulterior studies with sintering under load. (M.B.) [fr

  11. Discrepancies between soft x-ray emissivity contours and magnetic flux surfaces in Alcator C-Mod

    International Nuclear Information System (INIS)

    Borras, M.C.; Granetz, R.S.

    1996-01-01

    The soft x-ray diagnostic system of Alcator C-Mod, equipped with 152 detectors distributed in four arrays, is used to obtain iso-emissivity surfaces. These surfaces have been characterized by giving their elongation and relative shift from the centre of the tokamak as functions of plasma radius. Flux surfaces, provided by magnetic diagnostics, have also been described with elongation and shift. Results from the comparison of the two sets of geometric parameters obtained from magnetic and x-ray diagnostics are presented. We find that, whereas the shifts obtained from these two diagnostic methods are always in good agreement, the corresponding elongation curves show different patterns. An agreement between elongations better than 2% is only found in a range of about 2 cm in minor radius. On the other hand, the elongations can differ by 10% towards the plasma edge and the plasma centre. Error bars for the x-ray diagnostic are obtained by propagating the effect of ± 1% random errors at the detector signals, and can amount to ± 1-2% of the estimated values near the edge and the centre of the plasma. The estimated uncertainties in the determination of elongation from magnetic flux surfaces are of the order of 4%. A series of tests and simulations performed to verify the accuracy of the X-ray diagnostic system is presented. The discrepancies found could imply the existence of asymmetries in impurity concentration. (Author)

  12. Development of a high gradient rf system using a nanocrystalline soft magnetic alloy

    Directory of Open Access Journals (Sweden)

    Chihiro Ohmori

    2013-11-01

    Full Text Available The future high intensity upgrade project of the J-PARC (Japan Proton Accelerator Research Complex MR (Main Ring includes developments of high gradient rf cavities and magnet power supplies for high repetition rate. The scenario describing the cavity replacements is reported. By the replacement plan, the total acceleration voltage will be almost doubled, while the number of rf stations remains the same. The key issue is the development of a high gradient rf system using high impedance magnetic alloy, FT3L. The FT3L is produced by the transverse magnetic field annealing although the present cavity for the J-PARC adopts the magnetic alloy, FT3M, which is annealed without magnetic field. After the test production using a large spectrometer magnet in 2011, a dedicated production system for the FT3L cores was assembled in 2012. This setup demonstrated that we can produce material with 2 times higher μ_{p}^{′}Qf product compared to the cores used for present cavities. In this summer, the production system was moved to the company from J-PARC and is used for mass production of 280 FT3L cores for the J-PARC MR. The cores produced in the first test production are already used for standard machine operation. The operation experience shows that the power loss in the cores was reduced significantly as expected.

  13. Magnetic resonance imaging of intraoral hard and soft tissues using an intraoral coil and FLASH sequences.

    Science.gov (United States)

    Flügge, Tabea; Hövener, Jan-Bernd; Ludwig, Ute; Eisenbeiss, Anne-Kathrin; Spittau, Björn; Hennig, Jürgen; Schmelzeisen, Rainer; Nelson, Katja

    2016-12-01

    To ascertain the feasibility of MRI as a non-ionizing protocol for routine dentomaxillofacial diagnostic imaging. Wireless coils were used for MRI of intraoral hard and soft tissues. FLASH MRI was applied in vivo with a mandible voxel size of 250 × 250 × 500 μm 3 , FOV of 64 × 64 × 28 mm 3 and acquisition time of 3:57 min and with a maxilla voxel size of 350 μm 3 and FOV of 34 cm 3 in 6:40 min. Ex vivo imaging was performed in 4:38 min, with a resolution of 200 μm 3 and FOV of 36.5 cm 3 . Cone beam (CB) CT of the mandible and subjects were acquired. MRI was compared to CBCT and histological sections. Deviations were calculated with intraclass correlation coefficient (ICC) and coefficient of variation (c v ). A high congruence between CBCT, MRI and specimens was demonstrated. Hard and soft tissues including dental pulp, periodontium, gingiva, cancellous bone and mandibular canal contents were adequately displayed with MRI. Imaging of select intraoral tissues was achieved using custom MRI protocols with an easily applicable intraoral coil in a clinically acceptable acquisition time. Comparison with CBCT and histological sections helped demonstrate dimensional accuracy of the MR images. The course of the mandibular canal was accurately displayed with CBCT and MRI. • MRI is a clinically available diagnostic tool in dentistry • Intraoral hard and soft tissues can be imaged with a high resolution with MRI • The dimensional accuracy of MRI is comparable to cone beam CT.

  14. Magnetic viscosity and Barkhausen noise in NdFeB-type permanent magnets

    International Nuclear Information System (INIS)

    Thompson, P.J.; Street, R.

    1997-01-01

    The Barkhausen noise and magnetic viscosity in sintered and melt-quenched needles of anisotropic NdFeB-type magnets are examined. In the sintered magnet, the time integral of the Barkhausen signal during magnetic viscosity is shown to correlate with the change in the bulk magnetisation as measured using a vibrating sample magnetometer. This is in contrast with similar measurements on soft magnetic materials by Tebble et al., where the magnetisation change, as estimated from the time integral of the Barkhausen noise, was significantly less than that measured by magnetometric techniques. The activation volume in each of the two materials is estimated from measurements of the coefficient of magnetic viscosity, S v , and in the case of the sintered magnet is shown to be up to 13 orders of magnitude smaller that the largest Barkhausen volumes associated with the demagnetisation process. The magnitude of the Barkhausen volumes are indicative of magnetisation processes involving instabilities in the magnetisation of clusters of grains. It was not possible to identify heterogeneities in the microstructural or magnetic topology in these materials which would account for the magnitudes of the observed Barkhausen jumps. (orig.)

  15. Hydrothermal Synthesis of Nanooctahedra MnFe₂O₄ onto the Wood Surface with Soft Magnetism, Fire Resistance and Electromagnetic Wave Absorption.

    Science.gov (United States)

    Wang, Hanwei; Yao, Qiufang; Wang, Chao; Ma, Zhongqing; Sun, Qingfeng; Fan, Bitao; Jin, Chunde; Chen, Yipeng

    2017-05-23

    In this study, nanooctahedra MnFe₂O₄ were successfully deposited on a wood surface via a low hydrothermal treatment by hydrogen bonding interactions. As-prepared MnFe₂O₄/wood composite (MW) had superior performance of soft magnetism, fire resistance and electromagnetic wave absorption. Among them, small hysteresis loops and low coercivity (magnetization-field curve of MW with saturation magnetization of 28.24 emu/g, indicating its excellent soft magnetism. The MW also exhibited a good fire-resistant property due to its initial burning time at 20 s; while only 6 s for the untreated wood (UW) in combustion experiments. Additionally, this composite revealed good electromagnetic wave absorption with a minimum reflection loss of -9.3 dB at 16.48 GHz. Therefore, the MW has great potential in the fields of special decoration and indoor electromagnetic wave absorbers.

  16. Magnetic-Field-Induced Soft-Mode Quantum Phase Transition in the High-Temperature Superconductor La1.855Sr0.145CuO4

    DEFF Research Database (Denmark)

    Chang, J.; Christensen, Niels Bech; Niedermayer, C.

    2009-01-01

    Inelastic neutron-scattering experiments on the high-temperature superconductor La1.855Sr0.145CuO4 reveal a magnetic excitation gap Delta that decreases continuously upon application of a magnetic field perpendicular to the CuO2 planes. The gap vanishes at the critical field required to induce lo......-range incommensurate antiferromagnetic order, providing compelling evidence for a field-induced soft-mode driven quantum phase transition....

  17. Sintered cobalt-rare earth intermetallic product

    International Nuclear Information System (INIS)

    Benz, M.G.

    1975-01-01

    This patent describes a sintered product having substantially stable permanent magnet properties in air at room temperature. It comprises compacted particulate cobalt--rare earth alloy consisting essentially of a Co 5 R intermetallic phase and a CoR intermetallic phase which is richer in rare earth metal content than the Co 5 R phase, where R is a rare earth metal. The Co 5 R intermetallic phase is present in an amount of at least 65 percent by weight of the sintered product and the CoR intermetallic phase which is richer in rare earth metal content than the Co 5 R phase is present in a positive amount having a value ranging up to about 35 percent by weight of the product. The sintered product has a density of at least 87 percent and has pores which are substantially noninterconnecting and wherein the component grains have an average size less than 30 microns

  18. Analysis of Soft Drinks Using Nuclear Magnetic Resonance Spectroscopy: A Mentorship

    Science.gov (United States)

    Wilson, Arkim; Myers, Craig; Crull, George; Curtis, Michael; Pasciak Patterson, Pamela

    1999-10-01

    This mentorship was designed to expose a student to the laboratory routine for a chemist at Bristol Myers Squibb Company (BMS). The student visited BMS, collaborated with BMS scientists, and actually completed a project on site. He was asked to determine the identity of an unknown sample of soft drink retrieved from a fictitious crime scene using NMR spectroscopy. He designed an experiment to test the unknown sample and used samples of purified sugar, purified caffeine, purified citric acid, Coke, Diet Coke, Pepsi, Mountain Dew, Diet 7-Up, and Sam's Diet Cola as controls. The results were analyzed and presented in a final report. The student was able to determine if the unknown contained sugar, caffeine, Nutrasweet, or sodium benzoate. He learned how to compile relevant information, conduct an experiment, collect and analyze data, draw conclusions, and prepare and edit a formal report. In addition to learning the uses of NMR, he also learned some of its limitations. In the final report, he was encouraged to reflect on the difficulties a scientist might encounter when trying to identify NMR peaks without an "ingredient list" like those of the soft drink cans. The experience was rewarding for the student and all scientists involved.

  19. Magnetic resonance imaging of intraoral hard and soft tissues using an intraoral coil and FLASH sequences

    International Nuclear Information System (INIS)

    Fluegge, Tabea; Eisenbeiss, Anne-Kathrin; Schmelzeisen, Rainer; Nelson, Katja; Hoevener, Jan-Bernd; Ludwig, Ute; Hennig, Juergen; Spittau, Bjoern

    2016-01-01

    To ascertain the feasibility of MRI as a non-ionizing protocol for routine dentomaxillofacial diagnostic imaging. Wireless coils were used for MRI of intraoral hard and soft tissues. FLASH MRI was applied in vivo with a mandible voxel size of 250 x 250 x 500 μm 3 , FOV of 64 x 64 x 28 mm 3 and acquisition time of 3:57 min and with a maxilla voxel size of 350 μm 3 and FOV of 34 cm 3 in 6:40 min. Ex vivo imaging was performed in 4:38 min, with a resolution of 200 μm 3 and FOV of 36.5 cm 3 . Cone beam (CB) CT of the mandible and subjects were acquired. MRI was compared to CBCT and histological sections. Deviations were calculated with intraclass correlation coefficient (ICC) and coefficient of variation (c v ). A high congruence between CBCT, MRI and specimens was demonstrated. Hard and soft tissues including dental pulp, periodontium, gingiva, cancellous bone and mandibular canal contents were adequately displayed with MRI. Imaging of select intraoral tissues was achieved using custom MRI protocols with an easily applicable intraoral coil in a clinically acceptable acquisition time. Comparison with CBCT and histological sections helped demonstrate dimensional accuracy of the MR images. The course of the mandibular canal was accurately displayed with CBCT and MRI. (orig.)

  20. Magnetic resonance imaging of intraoral hard and soft tissues using an intraoral coil and FLASH sequences

    Energy Technology Data Exchange (ETDEWEB)

    Fluegge, Tabea; Eisenbeiss, Anne-Kathrin; Schmelzeisen, Rainer; Nelson, Katja [University Medical Center Freiburg, Department of Oral and Maxillofacial Surgery, Freiburg (Germany); Hoevener, Jan-Bernd; Ludwig, Ute; Hennig, Juergen [University Medical Center Freiburg, Medical Physics, Department of Radiology, Freiburg (Germany); Spittau, Bjoern [Albert Ludwig University of Freiburg, Institute of Anatomy and Cell Biology, Freiburg (Germany)

    2016-12-15

    To ascertain the feasibility of MRI as a non-ionizing protocol for routine dentomaxillofacial diagnostic imaging. Wireless coils were used for MRI of intraoral hard and soft tissues. FLASH MRI was applied in vivo with a mandible voxel size of 250 x 250 x 500 μm{sup 3}, FOV of 64 x 64 x 28 mm{sup 3} and acquisition time of 3:57 min and with a maxilla voxel size of 350 μm{sup 3} and FOV of 34 cm{sup 3} in 6:40 min. Ex vivo imaging was performed in 4:38 min, with a resolution of 200 μm{sup 3} and FOV of 36.5 cm{sup 3}. Cone beam (CB) CT of the mandible and subjects were acquired. MRI was compared to CBCT and histological sections. Deviations were calculated with intraclass correlation coefficient (ICC) and coefficient of variation (c{sub v}). A high congruence between CBCT, MRI and specimens was demonstrated. Hard and soft tissues including dental pulp, periodontium, gingiva, cancellous bone and mandibular canal contents were adequately displayed with MRI. Imaging of select intraoral tissues was achieved using custom MRI protocols with an easily applicable intraoral coil in a clinically acceptable acquisition time. Comparison with CBCT and histological sections helped demonstrate dimensional accuracy of the MR images. The course of the mandibular canal was accurately displayed with CBCT and MRI. (orig.)

  1. Mechanical alloying of 80Ni-14.7Fe-4.4Mo-0.5Mn-0.3Si soft magnetic material of Permalloy type

    Czech Academy of Sciences Publication Activity Database

    Hadraba, Hynek; Strečková, M.; Husák, Roman; Roupcová, Pavla

    2014-01-01

    Roč. 14, č. 4 (2014), s. 208-214 ISSN 1335-8987 R&D Projects: GA ČR(CZ) GA14-25246S Institutional support: RVO:68081723 Keywords : soft magnetic materials * Permalloy * mechanical alloying Subject RIV: JG - Metallurgy

  2. Nanocomposites Based on Technical Polymers and Sterically Functionalized Soft Magnetic Magnetite Nanoparticles: Synthesis, Processing, and Characterization

    Directory of Open Access Journals (Sweden)

    S. Kirchberg

    2012-01-01

    The distribution of the nanoparticles is characterized by microscopy. Besides a minor number of agglomerates and aggregates the nanoparticles are distributed homogeneously in the PVB composites. Furthermore, the injection molded specimens are characterized with regard to their thermal degradation, polymer structure, and their mechanical and magnetic properties. The presence of nanoparticles capped with ricinoleic acid shows significant decrease in degradation temperature and in glass transition temperature of PVB. The degradation temperature of PMMA is increased by adding nanoparticles capped with oleic acid. Dynamic-mechanical properties as well as the magnetic permeability of PVB and PMMA are improved significantly by adding nanoparticles.

  3. Iron losses evaluation in soft magnetic materials with a sinusoidal voltage supply

    DEFF Research Database (Denmark)

    Nedelcu, Steluţa; Ritchie, Ewen; Leban, Krisztina Monika

    2013-01-01

    (between 0.35 mm and 0.65 mm) and alloy compositions. Hysteresis and eddy currents loss coefficients have been considered as dependent on the frequency. For curve fitting of these coefficients third and fourth polynomials were employed, with good result for all the frequencies and magnetic flux density...

  4. Effect of heat treatment on the microstructure and properties of Ni based soft magnetic alloy.

    Science.gov (United States)

    Li, Chunhong; Ruan, Hui; Chen, Dengming; Li, Kejian; Guo, Donglin; Shao, Bin

    2018-04-20

    A Ni-based alloy was heat treated by changing the temperature and ambient atmosphere of the heat treatment. Morphology, crystal structure, and physical performance of the Ni-based alloy were characterized via SEM, XRD, TEM, and PPMS. Results show that due to the heat treatment process, the grain growth of the Ni-based alloy and the removal of impurities and defects are promoted. Both the orientation and stress caused by rolling are reduced. The permeability and saturation magnetization of the alloy are improved. The hysteresis loss and coercivity are decreased. Higher heat treatment temperature leads to increased improvement of permeability and saturation magnetization. Heat treatment in hydrogen is more conducive to the removal of impurities. At the same temperature, the magnetic performance of the heat-treated alloy in hydrogen is better than that of an alloy with heat treatment in vacuum. The Ni-based alloy shows an excellent magnetic performance on 1,373 K heat treatment in hydrogen atmosphere. In this process, the µ m , B s , P u , and H c of the obtained alloy are 427 mHm -1 , 509 mT, 0.866 Jm -3 , and 0.514 Am -1 , respectively. At the same time, the resistivity of alloy decreases and its thermal conductivity increases in response to heat treatment. © 2018 Wiley Periodicals, Inc.

  5. Magnetic resonance tomography in skeletal and soft tissue traumas; Magnetisk resonanstomografi ved skjelett- og bloetdelstraumer

    Energy Technology Data Exchange (ETDEWEB)

    Stiris, Morten G

    2000-07-01

    MRI has revolutionised the diagnostic yield in musculo-skeletal trauma. Studies have documented that MRI can be an accurate, cost-effective means of assessing injuries in the knee, the foot and the ankle and it may also be cost-effective in other anatomic locations. MRTI may have a significant impact on decision-making in relation to these patients and on the follow-up. The patient does not need to be moved for evaluation in all the anatomical planes. Each study can also be post-processes if necessary. MRI may be used in patients with fractures for evaluation of complications. The fracture lines as well as accompanying soft tissue damage are well documented.

  6. Coercivity enhancement of NdFeB sintered magnets by low melting point Dy{sub 32.5}Fe{sub 62}Cu{sub 5.5} alloy modification

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Liping; Ma, Tianyu, E-mail: maty@zju.edu.cn; Zhang, Pei; Jin, Jiaying; Yan, Mi, E-mail: mse_yanmi@zju.edu.cn

    2014-04-15

    To improve coercivity without sacrificing other magnetic performance of NdFeB sintered magnets, a low melting point Dy{sub 32.5}Fe{sub 62}Cu{sub 5.5} alloy was introduced as an intergranular additive. Magnetic properties and microstructure of the magnets with different Dy{sub 32.5}Fe{sub 62}Cu{sub 5.5} contents were studied. At the optimum addition of 3 wt%, coercivity H{sub cj} was enhanced from 12.7 to 15.2 kOe, the maximum magnetic energy product (BH){sub max} was simultaneously increased from 46.6 to 47.8 MG Oe, accompanied by a slight reduction in remanence B{sub r}. Further investigation on microstructure and grain boundary composition indicated that the enhanced H{sub cj} and (BH){sub max} could be attributed to the refined and uniform 2:14:1 phase grains, continuous grain boundaries and a (Nd,Dy){sub 2}Fe{sub 14}B hardening shell surrounding the 2:14:1 phase grains. - Highlights: • Low melting-point Dy{sub 32.5}Fe{sub 62}Cu{sub 5.5} alloy was introduced to NdFeB magnets. • The doped magnet exhibits enhanced coercivity and maximum energy product. • (Nd,Dy){sub 2}Fe{sub 14}B shell was expected to form in the surface of Nd{sub 2}Fe{sub 14}B grains. • The continuous grain boundary layer formed between neighboring Nd{sub 2}Fe{sub 14}B grains.

  7. Hysteresis Loss Analysis of Soft Magnetic Materials Under Direct Current Bias Conditions (Preprint)

    Science.gov (United States)

    2015-09-01

    activation energies may not contribute to the magnetization process and higher energy walls may be mobilized, which would not be activated otherwise...measured hysteresis losses for the same Metglas core at a fixed Bmax of 0.1 Tesla . The origin of the observed behavior is easily understood by comparing...constant at 0.1 Tesla by changing the value of the applied field for each bias field, are given in Figure 5 for the Metglas material. Comparison of Figures

  8. Magnetic field effects on the soft mode in a singlet ground-state dimer system: a neutron scattering study of Cs3Cr2Br9

    DEFF Research Database (Denmark)

    Leuenberger, Bruno; Gudel, Hans U.; Feile, Rudolf

    1985-01-01

    Neutron scattering experiments in a magnetic field have been performed on the singlet ground-state dimer system Cs3Cr2Br9. At low fields the Zeeman splitting of the soft mode evolves in agreement with the isotropic random-phase approximation (RPA) model, with the notable absence of a quasielastic...... peak. At a temperature of 1.7K the expected long-range magnetic order is not found at the predicted field of 2.8 T, indicating the shortcomings of the isotropic RPA model in the critical region. Magnetic intensity on the weak nuclear Bragg peak (1¯1¯4) indicates a probable ordering with a ferromagnetic...

  9. Characterisation of soft magnetic materials by measurement: Evaluation of uncertainties up to 1.8 T and 9 kHz

    Science.gov (United States)

    Elfgen, S.; Franck, D.; Hameyer, K.

    2018-04-01

    Magnetic measurements are indispensable for the characterization of soft magnetic material used e.g. in electrical machines. Characteristic values are used as quality control during production and for the parametrization of material models. Uncertainties and errors in the measurements are reflected directly in the parameters of the material models. This can result in over-dimensioning and inaccuracies in simulations for the design of electrical machines. Therefore, existing influencing factors in the characterization of soft magnetic materials are named and their resulting uncertainties contributions studied. The analysis of the resulting uncertainty contributions can serve the operator as additional selection criteria for different measuring sensors. The investigation is performed for measurements within and outside the currently prescribed standard, using a Single sheet tester and its impact on the identification of iron loss parameter is studied.

  10. Detailed study of ultra-soft magnetic properties of Fe74Cu0.8Nb2.7Si15.5B7

    Science.gov (United States)

    Manjura Hoque, S.; Hakim, M. A.; Dhar, Umasree; Saha, D. K.; Nordblad, Per; Paul, D. P.

    2011-06-01

    The magnetic properties of nanocrystalline Fe74Cu0.8Nb2.7Si15.5B7 alloy, which were rapidly solidified and then annealed at various temperatures between 475 and 650°C for different holding time, have been studied. Grain size, silicon content and the lattice parameter of α-Fe(Si) nanograins at the annealing temperatures were determined. Curie temperature of the amorphous phase was determined from the temperature dependence of permeability. For higher annealing temperatures and times, some Si diffused out of the α-Fe(Si) phase and formed an ordered DO3 phase of Fe3Si. This changed the overall magnetostriction and average anisotropy of the matrix, which deteriorated the magnetic softness of the material at higher annealing temperatures. Ultra-soft magnetic properties were achieved by averaging the random anisotropy via exchange interaction. Hysteresis loops for samples in as-cast and annealed conditions have also been studied.

  11. Localized Induced Current Stimulation to Neuronal Culture Using Soft Magnetic Material

    Science.gov (United States)

    Saito, Atsushi; Saito, Aki; Moriguchi, Hiroyuki; Kotani, Kiyoshi; Jimbo, Yasuhiko

    To establish precisely focused magnetic stimulation, we developed a Mu-meal based low-frequency localized induced current (LIC) stimulation system with micro-fabricated dual cell-culture chamber. The dual cell-culture chamber was arranged in a concentric circle manner. Between the inner and outer chambers, 4 or 8 connecting micro-channels were fabricated using polydimethylsiloxane (PDMS). Rat cortical neurons were separately cultured in outer and inner chambers. Through the micro-channels, functional synaptic connections were formed. Mu-metal that has very high magnetic permeability was aligned along the outer circle, which allowed us of LIC stimulation to the cells in the outer chamber. Applying low-frequency magnetic fields to the Mu-metal, induced currents were generated and the electrical activity of the cells in the outer chamber was modified depending on the stimulation intensity. Following the modified activity in the outer circles, the cells in the inner chamber also showed slightly depressed activity patterns. These results suggested that our system would be promising for localized stimulation of neuronal networks and highly regulation of network activities.

  12. Improved magnetic properties of barium hexaferrite by CoFe2O4 nanoparticles prepared by ultrasonic irradiation

    Science.gov (United States)

    Nastiti, G.; Manaf, A.

    2017-07-01

    Magnetic properties of composite magnets made of nanoparticles of Barium Hexaferrite (BHF) and CoFe2O4 were reported in this paper. The two types of magnetic particles have a high total magnetization value which was required for permanent magnet applications. Both CoFe2O4 and BHF were synthesized through mechanical alloying coupled with high-frequency ultrasonic irradiation. In this respect, mechanically milled BHF precursors was sintered at a temperature of 1250 °C for 2 hours leading to single-phase powders. A similar method was also employed in the preparation of CoFe2O4 materials, but this required a relatively longer sintering time up to 12 hours at a sintering temperature of 900 °C. Composite magnets were obtained after sintering the mechanically mixed the two types of nanoparticles as constituted components of the composite. The hysteresis loop of CoFe2O4 materials as evaluated by Vibrating Sample Magnetometer (VSM) showing soft magnetic phase with a total magnetization value of 0.47 T and a coercivity of 47.37 kA/m. It is shown that the magnetic properties of composite magnets are a composition dependent in which the remanent was enhanced above the value of an isotropic single phase BHF magnet. The enhancement in remanent magnetization raised the effect of grain exchange interaction between hard and soft magnetic phases. The microstructure studied by X-Ray diffraction (XRD), Particle Size Analyzer (PSA) and their respective enhancement in magnetic properties are discussed in detail in term of grain exchange interactions.

  13. Soft-tissue perineurioma of the retroperitoneum in a 63-year-old man, computed tomography and magnetic resonance imaging findings: a case report

    Directory of Open Access Journals (Sweden)

    Yasumoto Mayumi

    2010-08-01

    Full Text Available Abstract Introduction Soft-tissue perineuriomas are rare benign peripheral nerve sheath tumors in the subcutis of the extremities and the trunks of young patients. To our knowledge, this the first presentation of the computed tomography and magnetic resonance imaging of a soft-tissue perineurioma in the retroperitoneum with pathologic correlation. Case presentation A 63-year-old Japanese man was referred for assessment of high blood pressure. Abdominal computed tomography and magnetic resonance imaging showed a well-defined, gradually enhancing tumor without focal degeneration or hemorrhage adjacent to the pancreatic body. Tumor excision with distal pancreatectomy and splenectomy was performed, as a malignant tumor of pancreatic origin could not be ruled out. No recurrence has been noted in the 16 months since the operation. Pathologic examination of the tumor revealed a soft-tissue perineurioma of the retroperitoneum. Conclusion Although the definitive diagnosis of soft-tissue perineurioma requires biopsy and immunohistochemical reactivity evaluation, the computed tomography and magnetic resonance imaging findings described in this report suggest inclusion of this rare tumor in the differential diagnosis when such findings occur in the retroperitoneum.

  14. Morphological analysis and modelling of sintering and of sintered materials

    International Nuclear Information System (INIS)

    Jernot, Jean-Paul

    1982-01-01

    This research thesis addresses the study of solid phase sintering of metallic powders, and aims at describing as precisely as possible the different involved matter transport mechanisms, first by using a thermodynamic approach to sintering. Sintering diagrams are also used to determine prevailing mechanisms. The microstructure of sintered materials has been studied by using image quantitative analysis, thus by using a morphological approach to sintering. Morphological parameters allow, on the one hand, the evolution of powders during sintering to be followed, and, on the other hand, sintered products to be correctly characterised. Moreover, the author reports the study of the evolution of some physical properties of sintered materials with respect to their microstructure parameters. This leads to the development of a modelling of the behaviour of these materials [fr

  15. Influence of demagnetizing field on the permeability of soft magnetic composites

    International Nuclear Information System (INIS)

    Lin, G.Q.; Li, Z.W.; Chen, Linfeng; Wu, Y.P.; Ong, C.K.

    2006-01-01

    The influence of demagnetizing field on the effective permeability of magnetic composites has been investigated. A theoretical expression of the effective permeability has been obtained and discussed according to four typical composites with spheres, needles, flakes, and aligned prolate ellipsoidal particles. The results indicate that the demagnetizing field within the particles can reduce the effective permeability significantly. In order to increase the effective permeability, it is necessary to decrease the demagnetizing field within the particles. A linear relationship between effective permeability and volume fraction is also observed for composites filled with spherical particles at low volume fraction

  16. Microstructural and magnetic behavior of nanostructured soft alloys prepared by mechanical grinding and gas atomization

    International Nuclear Information System (INIS)

    Marin, P.; Lopez, M.; Garcia-Escorial, A.; Lieblich, M.

    2007-01-01

    Nanocrystalline powder of Fe-Si-B-Cu-Nb has been obtained by means of mechanical milling of the corresponding nanocrystalline ribbons. Gas atomization technique has been used to minimize the magnetic hardening due to stress effects observed in ball-milled samples. Fe-Si-B-Cu-Nb and Fe-Si nanocrystalline samples have been prepared by gas atomization. The aim of our work is to analyse the particle size dependence of coercivity in this nanostructured alloys and to show the analogies and differences between ball-milled and gas atomized samples

  17. Soft tissue pseudotumor following intramuscular injection of 'DPT': A pitfall in magnetic resonance imaging

    International Nuclear Information System (INIS)

    Huber, D.J.; Sumers, E.; Klein, M.; State Univ. of New York, Stony Brook

    1987-01-01

    We report the time-dependent magnetic resonance imaging (MRI) changes that resulted from an intramuscular injection of a commonly-used pediatric sedation regiment ('DPT'). These changes at the site of injection consist of a focal abnormality characterized by a slight increase in signal intensity on T1 weighted images and markedly increased signal intensity on T2 weighted images. Alterations in signal are detectable almost immediately after the injection and progress over the first 31 hours. This abnormality, which could be mistaken for real disease, persists up to 36 days following injection. (orig.)

  18. Laboratory scale fabrication of Nd-Fe-B sintered magnets; Fabricacao de imas sinterizados de Nd-Fe-B em escala piloto

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Daniel; Beneduce Neto, Flavio; Landgraf, Fernando Jose Gomes; Neiva, Augusto Camara; Romero, Sergio; Missell, Frank Patrick

    1992-12-31

    Results are presented on magnetic properties of Nd-Fe-B sauntered magnets produced from 1 kg of alloy caste in vacuum induction furnace. The fabrication viability of these magnets, with properties similar to the commercial magnets, and the influence of particle size in the energy product, through the effect on the H{sub k} field, is confirmed 12 refs., 7 figs., 1 tab.

  19. Sintering of Synroc D

    International Nuclear Information System (INIS)

    Robinson, G.

    1982-01-01

    Sintering has been investigated as a method for the mineralization and densification of high-level nuclear defense waste powder. Studies have been conducted on Synroc D composite powder LS04. Optimal densification has been found to be highly dependent on the characteristics of the starting material. Powder subjected to milling, which was believed to reduce the level of agglomeration and possibly particle size, was found to densify better than powder not subjected to this milling. Densities of greater than 95% of theoretical could be achieved for samples sintered at 1150 to 1200 0 C. Mineralogy was found to be as expected for Synroc D for samples sintered in a CO 2 /CO atmosphere where the Fe +2 /Fe +3 ratio was maintained at 1.0 to 5.75. In a more oxidizing, pure CO 2 atmosphere a new phase, not previously identified in Synroc D, was found

  20. Dynamic magnetization models for soft ferromagnetic materials with coarse and fine domain structures

    Energy Technology Data Exchange (ETDEWEB)

    Zirka, S.E., E-mail: zirka@email.dp.ua [Department of Physics and Technology, Dnepropetrovsk National University, Gagarin 72, 49050 Dnepropetrovsk (Ukraine); Moroz, Y.I. [Department of Physics and Technology, Dnepropetrovsk National University, Gagarin 72, 49050 Dnepropetrovsk (Ukraine); Steentjes, S.; Hameyer, K. [Institute of Electrical Machines, RWTH Aachen University, Schinkelstr. 4, 52056 Aachen (Germany); Chwastek, K. [Faculty of Electrical Engineering, Czestochowa University of Technology, al. AK 17, 42-201 Czestochowa (Poland); Zurek, S. [Megger Instruments Ltd., Archcliffe Road, Dover, Kent, CT17 9EN (United Kingdom); Harrison, R.G. [Department of Electronics, Carleton University, Ottawa, Canada K1S 5B6 (Canada)

    2015-11-15

    We consider dynamic models, both numerical and analytical, that reproduce the magnetization field H(B) and the energy loss in ferromagnetic sheet materials with different domain structures. Conventional non-oriented (NO) and grain-oriented (GO) electrical steels are chosen as typical representatives of fine-domain and coarse-domain materials. The commonly-accepted loss separation procedures in these materials are critically analyzed. The use of a well-known simplified (“classical”) expression for the eddy-current loss is identified as the primary source of mistaken evaluations of excess loss in NO steel, in which the loss components can only be evaluated using the Maxwell (penetration) equation. The situation is quite different in GO steel, in which the loss separation is uncertain, but the total dynamic loss is several times higher than that explained by any version (numerical or analytical) of the classical approach. To illustrate the uncertainty of the loss separation in GO steel, we show that the magnetization field, and thus the total loss, in this material can be represented with equal accuracy using either the existing three-component approach or our proposed two-component technique, which makes no distinction between classical eddy-current and excess fields and losses. - Highlights: • Critical analysis of a ferromagnetic-material loss-separation principle. • This is to warn materials-science engineers about the inaccuracies resulting from this principle. • A transient model having a single dynamic component is proposed.

  1. Improvement on the magnetic and dielectric behavior of hard/soft ferrite nanocomposites

    Science.gov (United States)

    Mansour, S. F.; Hemeda, O. M.; Abdo, M. A.; Nada, W. A.

    2018-01-01

    Nanocomposites from M-type hexaferrite BaFe11.7Al0.15Zn0.15O19 and spinel ferrite Mn0.8Mg0.2Fe2O4 nanoparticles according to the formula [(x)(Ba Fe11.7Al0.15 Zn0.15O19) + (1 - x)(Mn0.8 Mg0.2Fe2O4); x = 0.3, 0.4 and 0.5] have been manufactured by the citrate combustion method. The structure and morphology of the nanocomposites were appointed by X-ray diffraction (XRD) analysis and field emission scanning electron microscopy (FESEM). The remanent magnetization and coercivity of the nanocomposites became 2 and 2.5 times higher, respectively by adding BaFe11.7Al0.15 Zn0.15O19 phase. The Cole-Cole plots of the nanocomposite x = 0.4 at the selected temperatures shows two successive semicircles at all the selected temperatures. The first low frequencies semicircle elucidates the contribution of the grain boundary and the second one, at high frequencies, gives the contribution of grain to conduction process. Multilateral applications for exchange spring magnets can be manufactured using those nanocomposites.

  2. Low temperature spark plasma sintering of YIG powders

    International Nuclear Information System (INIS)

    Fernandez-Garcia, L.; Suarez, M.; Menendez, J.L.

    2010-01-01

    A transition from a low to a high spin state in the magnetization saturation between 1000 and 1100 o C calcination temperature is observed in YIG powders prepared by oxides mixture. Spark plasma sintering of these powders between 900 and 950 o C leads to dense samples with minimal formation of YFeO 3 , opening the way to co-sintering of YIG with metals or metallic alloys. The optical properties depend on the sintering stage: low (high) density samples show poor (bulk) optical absorption.

  3. Low temperature spark plasma sintering of YIG powders

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Garcia, L. [Department of Nanostructured Materials, Centro de Investigacion en Nanomateriales y Nanotecnologia (CINN). Principado de Asturias - Consejo superior de Investigaciones Cientificas (CSIC) - Universidad de Oviedo - UO, Parque Tecnologico de Asturias, 33428 Llanera, Asturias (Spain); Suarez, M., E-mail: m.suarez@cinn.e [Department of Nanostructured Materials, Centro de Investigacion en Nanomateriales y Nanotecnologia (CINN). Principado de Asturias - Consejo superior de Investigaciones Cientificas (CSIC) - Universidad de Oviedo - UO, Parque Tecnologico de Asturias, 33428 Llanera, Asturias (Spain); Fundacion ITMA, Parque Tecnologico de Asturias, 33428, Llanera (Spain); Menendez, J.L. [Department of Nanostructured Materials, Centro de Investigacion en Nanomateriales y Nanotecnologia (CINN). Principado de Asturias - Consejo superior de Investigaciones Cientificas (CSIC) - Universidad de Oviedo - UO, Parque Tecnologico de Asturias, 33428 Llanera, Asturias (Spain)

    2010-07-16

    A transition from a low to a high spin state in the magnetization saturation between 1000 and 1100 {sup o}C calcination temperature is observed in YIG powders prepared by oxides mixture. Spark plasma sintering of these powders between 900 and 950 {sup o}C leads to dense samples with minimal formation of YFeO{sub 3}, opening the way to co-sintering of YIG with metals or metallic alloys. The optical properties depend on the sintering stage: low (high) density samples show poor (bulk) optical absorption.

  4. SinterHab

    Science.gov (United States)

    Rousek, Tomáš; Eriksson, Katarina; Doule, Ondřej

    2012-05-01

    This project describes a design study for a core module on a Lunar South Pole outpost, constructed by 3D printing technology with the use of in-situ resources and equipped with a bio-regenerative life support system. The module would be a hybrid of deployable (CLASS II) and in-situ built (CLASS III) structures. It would combine deployable membrane structures and pre-integrated rigid elements with a sintered regolith shell for enhanced radiation and micrometeorite shielding. The closed loop ecological system would support a sustainable presence on the Moon with particular focus on research activities. The core module accommodates from four to eight people, and provides laboratories as a test bed for development of new lunar technologies directly in the environment where they will be used. SinterHab also includes an experimental garden for development of new bio-regenerative life support system elements. The project explores these various concepts from an architectural point-of-view particularly, as they constitute the building, construction and interior elements. The construction method for SinterHab is based on 3D printing by sintering of the lunar regolith. Sinterator robotics 3D printing technology proposed by NASA JPL enables construction of future generations of large lunar settlements with little imported material and the use of solar energy. The regolith is processed, placed and sintered by the Sinterator robotics system which combines the NASA ATHLETE and the Chariot remotely controlled rovers. Microwave sintering creates a rigid structure in the form of walls, vaults and other architectural elements. The interior is coated with a layer of inflatable membranes inspired by the TransHab project. The life-support system is mainly bio-regenerative and several parts of the system are intrinsically multifunctional and serve more than one purpose. The plants for food production are also an efficient part of atmosphere revitalization and water treatment. Moreover

  5. Probing buried solid-solid interfaces in magnetic multilayer structures and other nanostructures using spectroscopy excited by soft x-ray standing waves

    International Nuclear Information System (INIS)

    Yang, S.-H.; Mun, B.S.; Mannella, N.; Sell, B.; Ritchey, S.B.; Fadley, C.S.; Pham, L.; Nambu, A.; Watanabe, M.

    2004-01-01

    Full text: Buried solid-solid interfaces are becoming increasingly more important in all aspects of nanoscience, and we here dis- cuss the st applications of a new method for selectively studying them with the vuv/soft x-ray spectroscopies. As specific examples, magnetic multilayer structures represent key elements of current developments in spintronics, including giant magnetoresistance, exchange bias, and magnetic tunnel resistance. The buried interfaces in such structures are of key importance to their performance, but have up to now been difficult to study selectively with these spectroscopies. This novel method involves excitation of photoelectrons or fluorescent x-rays with soft x-ray standing waves created by Bragg reflection from a multilayer mirror substrate on which the sample is grown. We will discuss core and valence photoemission, as well soft x-ray emission, results from applying this method to multilayer structures relevant to both giant magnetoresistance (Fe/Cr-[2]) and magnetic tunnel junctions (Al 2 O 3 /FeCo) , including magnetic dichroism measurements. Work supported by the Director, Of e of Science, Of e of Basic Energy Sciences, Materials Science and Engineering Division, U.S. Department of Energy, Contract No. DE-AC03-76SF000

  6. Two growth mechanisms in one-step fabrication of the oxide matrix for FeSiAl soft magnetic composites

    Science.gov (United States)

    Wu, Chen; Gao, Xinwei; Zhao, Guoliang; Jiang, Yinzhu; Yan, Mi

    2018-04-01

    Hydrolysis precipitation as a new method was used in the preparation of oxide insulation matrix for FeSiAl soft magnetic composites (SMCs). The growth and composition of the matrix can be tuned by the concentration of the Al(NO3)3 solution, reaction temperature and pH value during the hydrolysis. With optimized Al(NO3)3 concentration of 0.6 mol/L and hydrolysis temperature of 75 °C, two mechanisms have been revealed in the formation of the insulation coating depending on the pH of the Al(NO3)3 solution. When pH = 3, the coating layer contains a mixture of Al2O3 and Fe2O3, while Al2O3 and SiO2 form as the coating for pH = 8. Despite that the Al2O3 dominates for both conditions, it grows via different routes. The Al(OH)3 as the precursor forms through Al3+ hydrolysis and heterogeneous nucleation for pH = 3. With increased pH to 8, the Al3+ directly reacts with OH- to form Al(OH)3 colloidal particles which adsorb onto the surface of FeSiAl powders via electrostatic attraction. Both mechanisms give rise to satisfactory magnetic performance with high effective permeability (μe = 103.5 and 113.4) and low core loss (Pcv = 278.4 mW·cm-3 and 237.8 mW·cm-3) for pH = 3 and 8 measured at 100 mT, 50 kHz.

  7. A study of magnetic properties of hard and soft magnetic materials by Lorentz transmission electron microscopy and magnetic x-ray circular dichroism

    CERN Document Server

    Pickford, R A

    2001-01-01

    iron spin and orbital magnetic moments were found to decrease with increasing iron content. In collaboration with CEA Saclay, Paris, a set of cobalt elements were patterned by electron beam lithography. The elements were designed to isolate domain walls and to monitor their movement in an applied field. The shape anisotropy of the element was found to be too large for the insitu magnetic field to flip the magnetisation. The domain walls found in the as received magnetic state were associated with defects in the structure of the element. The magnetisation process was compared to micromagnetic simulations, A further study of magnetic elements was made to study the competition of anisotropy in patterned cobalt dots. The shape anisotropy was calculated and the crystalline anisotropy of the cobalt film was measured. The dots (rectangles) were patterned so that the shape anisotropy was comparable to the crystalline anisotropy of the cobalt. The dots were patterned at 45 degrees to the crystalline anisotropy. This t...

  8. Soft magnetic characteristics of an ultrathin CoFeNi free layer in spin-valve films

    International Nuclear Information System (INIS)

    Fukuzawa, Hideaki; Iwasaki, Hitoshi; Koi, Katsuhiko; Sahashi, Masashi

    2006-01-01

    We have investigated the soft magnetic characteristics of an ultrathin Co-rich CoFeNi free layer in spin-valve films. By addition of Ni to a Co-rich CoFe free layer, magnetostriction (λ) of the films increased positively with Ni concentration, in contrast to which a Co 90 Fe 10 free layer showed a negatively large λ. However, Ni addition also caused an increase in coercivity of the easy axis direction (H c e.a. ). To avoid this problem, a slight decrease in the Co contents of a CoFeNi free layer was found to be effective for decreasing H c e.a. . In order to satisfy both the small λ and H c e.a. , a free layer of (Co 86 Fe 14 ) 88-94 Ni 12-6 proved to be an optimum composition in spin-valve films. Moreover, the zero λ composition of the CoFeNi free layer was changed by a high-conductance Cu layer deposited on the free layer, which was considered to come from the lattice strain of a free layer

  9. Chemical synthesis of Fe/Fe{sub 3}O{sub 4} core-shell composites with enhanced soft magnetic performances

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Bai, E-mail: byang@buaa.edu.cn [Key Laboratory of Aerospace Advanced Materials and Performance, Ministry of Education, School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Li, Xiaopan [Key Laboratory of Aerospace Advanced Materials and Performance, Ministry of Education, School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Yang, Xueying [Hi-tech Industry Standardization Institute, Hubei Standardization and Quality Institution, Wuhan 430061 (China); Yu, Ronghai [Key Laboratory of Aerospace Advanced Materials and Performance, Ministry of Education, School of Materials Science and Engineering, Beihang University, Beijing 100191 (China)

    2017-04-15

    The large-grain Fe/Fe{sub 3}O{sub 4} composite particles with average size of about 1.2 µm have been fabricated by a facile one-step solvothermal method. The formation of high-purity Fe{sub 3}O{sub 4} as the shells (90.14 wt%) and α-Fe as the cores (9.86 wt%) in the Fe/Fe{sub 3}O{sub 4} composites leads to their high saturation magnetization of 119.6 A m{sup 2} Kg{sup -1}. Very low coercivity of 30 Oe is obtained in the composites due to their uniform cubic-shaped morphologies. Compared with Fe-based nanosized particles, these micron-sized magnetic Fe/Fe{sub 3}O{sub 4} composites exhibit high air stability and good compactibility with high compressed density of 5.9 g cm{sup -3}. The fully compacted sample shows good soft magnetic properties including high magnetic induction B{sub 1.2k} {sub (H=1200} {sub A/m)} of 540 mT and good frequency-dependent magnetic properties with operating frequency up to 50 MHz superior to those of the most traditional soft magnetic ferrites, which promotes their potential applications in high-frequency and high-power magnetic devices. - Highlights: • Micron-sized Fe/Fe{sub 3}O{sub 4} composites are prepared by a one-step solvothermal method. • High saturation magnetization and low coercivity are obtained in the composites. • Good air stability and high bulk density occurs in the composites. • High magnetic induction and good frequency-dependent properties are achieved.

  10. The design and validation of a magnetic resonance imaging-compatible device for obtaining mechanical properties of plantar soft tissue via gated acquisition.

    Science.gov (United States)

    Williams, Evan D; Stebbins, Michael J; Cavanagh, Peter R; Haynor, David R; Chu, Baocheng; Fassbind, Michael J; Isvilanonda, Vara; Ledoux, William R

    2015-10-01

    Changes in the mechanical properties of the plantar soft tissue in people with diabetes may contribute to the formation of plantar ulcers. Such ulcers have been shown to be in the causal pathway for lower extremity amputation. The hydraulic plantar soft tissue reducer (HyPSTER) was designed to measure in vivo, rate-dependent plantar soft tissue compressive force and three-dimensional deformations to help understand, predict, and prevent ulcer formation. These patient-specific values can then be used in an inverse finite element analysis to determine tissue moduli, and subsequently used in a foot model to show regions of high stress under a wide variety of loading conditions. The HyPSTER uses an actuator to drive a magnetic resonance imaging-compatible hydraulic loading platform. Pressure and actuator position were synchronized with gated magnetic resonance imaging acquisition. Achievable loading rates were slower than those found in normal walking because of a water-hammer effect (pressure wave ringing) in the hydraulic system when the actuator direction was changed rapidly. The subsequent verification tests were, therefore, performed at 0.2 Hz. The unloaded displacement accuracy of the system was within 0.31%. Compliance, presumably in the system's plastic components, caused a displacement loss of 5.7 mm during a 20-mm actuator test at 1354 N. This was accounted for with a target to actual calibration curve. The positional accuracy of the HyPSTER during loaded displacement verification tests from 3 to 9 mm against a silicone backstop was 95.9% with a precision of 98.7%. The HyPSTER generated minimal artifact in the magnetic resonance imaging scanner. Careful analysis of the synchronization of the HyPSTER and the magnetic resonance imaging scanner was performed. With some limitations, the HyPSTER provided key functionality in measuring dynamic, patient-specific plantar soft tissue mechanical properties. © IMechE 2015.

  11. RETRACTED: Magnetic properties of iron-based soft magnetic composites with MgO coating obtained by sol-gel method

    Science.gov (United States)

    Taghvaei, A. H.; Ebrahimi, A.; Ghaffari, M.; Janghorban, K.

    2010-04-01

    This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. The authors have plagiarized part of a paper that had already appeared in "Properties of Soft magnetic composite with Evaporated MgO Insulation Coating for low Iron Loss" authored by G. Uozumi et al., published in Mater. Sci. Forum, 534-536 (2007) 1361-1364, http://dx.doi.org/10.4028/www.scientific.net/MSF.534-536.1361. One of the conditions of submission of a paper for publication is that authors declare explicitly that their work is original and has not appeared in a publication elsewhere. Re-use of any data should be appropriately cited. As such this article represents a severe abuse of the scientific publishing system. The scientific community takes a very strong view on this matter and apologies are offered to readers of the journal that this was not detected during the submission process.

  12. Interface influence on the properties of Co{sub 90}Fe{sub 10} films on soft magnetic underlayers – Magnetostrictive and Mössbauer spectrometry studies

    Energy Technology Data Exchange (ETDEWEB)

    Szumiata, Tadeusz, E-mail: t.szumiata@uthrad.pl [Department of Physics, Faculty of Mechanical Engineering, University of Technology and Humanities in Radom, 54 Krasickiego Street, 26-600 Radom (Poland); Gzik-Szumiata, Małgorzata; Brzózka, Katarzyna; Górka, Bogumił; Gawroński, Michał [Department of Physics, Faculty of Mechanical Engineering, University of Technology and Humanities in Radom, 54 Krasickiego Street, 26-600 Radom (Poland); Caruana Finkel, Anastasia; Reeves-McLaren, Nik; Morley, Nicola A. [Department of Materials Science and Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom)

    2016-03-01

    The main aim of the work was to show the correlation between magnetostrictive properties and microstructure of 25 nm thick Co{sub 90}Fe{sub 10} films deposited on soft magnetic underlayers. A special attention was paid to the role of the interface region. In the case of Co{sub 90}Fe{sub 10} on 25 nm and 35 nm thick METGLAS underlayers one can resolve in conversion electron Mössbauer spectra two hyperfine field distributions (high-field and medium-field ones) corresponding to both constituents of bilayers. Analogical distributions describe the spectra of Co{sub 90}Fe{sub 10} on 25 nm and 35 nm thick Ni{sub 81}Fe{sub 19} underlayers, however an additional low-field, smeared component has been observed. It has been attributed to the interface layer (of partially disordered structure) between magnetostrictive layer and soft magnetic layer. Such interpretation is backed up by the obtained strong correlation between mean hyperfine field value and magnetostriction constant of the films. The investigated bilayers are good candidates for MRAM devices. - Highlights: • We investigate Co–Fe thin films on the soft magnetic underlayers. • We measured magnetostriction and collected conversion electron Mössbauer spectra. • In the case of Permalloy underlayer a rapid drop of magnetostriction was observed. • Strong correlation between magnetostriction and hyperfine fields was shown. • Our results point to the essential role of the Co–Fe/underlayer interface.

  13. A soft magnetic underlayer with negative uniaxial magnetocrystalline anisotropy for suppression of spike noise and wide adjacent track erasure in perpendicular recording media

    Science.gov (United States)

    Hashimoto, Atsushi; Saito, Shin; Takahashi, Migaku

    2006-04-01

    The suppression of spike noise and wide adjacent track erasure (WATE) are important technical issues in the development of a perpendicular recording medium (PRM). As a solution to both of these problems, this paper presents a type of soft magnetic underlayer (SUL) with negative uniaxial perpendicular magnetic anisotropy. The magnetic anisotropy is achieved by employing a material with negative uniaxial magnetocrystalline anisotropy (Kugrain). WATE is suppressed in the SUL by realizing wide distribution of magnetic flux below the edge of the return yoke, while spike noise is eliminated by ensuring the formation of a Néel wall instead of a Bloch wall in SUL domains. CoIr with the disordered hcp structure is selected as a negative Kugrain material, and c-plane-oriented CoIr films with various Ir contents are prepared for experimental evaluation. Among the films tested, the CoIr film with 22 at. % Ir is found to provide the minimum Kugrain value of -6×106 ergs/cm3. Under a field applied parallel to the film plane, this film exhibits soft magnetic properties, attributable to the high crystallographic symmetry of the c-plane sheet texture. A PRM fabricated using the CoIr SUL is confirmed to display substantially lower spike noise and WATE compared to conventional structures.

  14. Alloying Behavior and Properties of FeSiBAlNiCo x High Entropy Alloys Fabricated by Mechanical Alloying and Spark Plasma Sintering

    Science.gov (United States)

    Wang, Wen; Li, Boyu; Zhai, Sicheng; Xu, Juan; Niu, Zuozhe; Xu, Jing; Wang, Yan

    2018-02-01

    In this paper, FeSiBAlNiCo x (x = 0.2, 0.8) high-entropy alloy (HEA) powders were fabricated by mechanical alloying process, and the powders milled for 140 h were sintered by spark plasma sintering (SPS) technique. The microstructures and properties of as-milled powders and as-sintered samples were investigated. The results reveal that the final milling products (140 h) of both sample powders present the fully amorphous structure. The increased Co contents obviously enhance the glass forming ability and thermal stability of amorphous HEA powders, which are reflected by the shorter formation time of fully amorphous phase and the higher onset crystallization temperature, respectively. According to coercivity, the as-milled FeSiBAlNiCo x (x = 0.2, 0.8) powders (140 h) are the semi-hard magnetic materials. FeSiBAlNiCo0.8 HEA powders possess the highest saturation magnetization and largest remanence ratio. The SPS-ed products of both bulk HEAs are composed of body-centered cubic solid solution, and FeSi and FeB intermetallic phases. They possess the high relative density above 97% and excellent microhardness exceeding 1150 HV. The as-sintered bulks undergo the remarkable increase in saturation magnetization compared with the as-milled state. The SPS-ed FeSiBAlNiCo0.8 HEA exhibits the soft magnetic properties. The electrochemical corrosion test is carried out in 3.5% NaCl solution. The SPS-ed FeSiBAlNiCo0.2 HEA reveals the better passivity with low passive current density, and the higher pitting resistance with wide passive region.

  15. Developing bulk exchange spring magnets

    Science.gov (United States)

    Mccall, Scott K.; Kuntz, Joshua D.

    2017-06-27

    A method of making a bulk exchange spring magnet by providing a magnetically soft material, providing a hard magnetic material, and producing a composite of said magnetically soft material and said hard magnetic material to make the bulk exchange spring magnet. The step of producing a composite of magnetically soft material and hard magnetic material is accomplished by electrophoretic deposition of the magnetically soft material and the hard magnetic material to make the bulk exchange spring magnet.

  16. Microstructural and magnetic study of ferrites Ni{sub 0,5}Zn{sub 0,5}Fe{sub 2}O{sub 4} sintered by microwave energy; Estudo microestrutral e magnetico de ferritas Ni{sub 0,5}Zn{sub 0,5}Fe{sub 2}O{sub 4} sinterizadas por energia de micro-ondas

    Energy Technology Data Exchange (ETDEWEB)

    Diniz, V.C.S.; Costa, A.C.F.M., E-mail: veronicacristhina@hotmail.com [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Programa de Pos-Graduacao em Ciencias e Engenharia de Materiais; Kiminami, R.H.G.A. [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil). Departamento de Engenharia de Materiais; Cornejo, D.R. [Universidade de Sao Paulo (USP), SP (Brazil). Instituto de Fisica

    2014-07-01

    The study of the processing of Ni-Zn ferrite is of extreme importance to improve its magnetic properties, as they are directly influenced by the final microstructure of the material. This study evaluated the influence of exposure time in the sintering of Ni-Zn ferrite phase by microwave energy, and its subsequent microstructural characterization, and magnetic. The samples of Ni-Zn ferrite were sintered using microwave energy at a temperature of 1200 °C and an exposure time of 10, 20 and 30 minutes, respectively. Then were characterized by X-ray diffraction spectroscopy, scanning electron microscopy and magnetic measurements. With the results, it was observed that all samples obtained from the formation Ni{sub 0,5}Zn{sub 0,5}Fe{sub 2}O{sub 4} phase with all high intensity peaks. It was possible to obtain a nanostructure with maximum saturation magnetization of 71 emu / g for the sample sintered in longer exposure time. (author)

  17. Magnetic and Mössbauer studies of pure and Ti-doped YFeO {sub 3} nanocrystalline particles prepared by mechanical milling and subsequent sintering

    Energy Technology Data Exchange (ETDEWEB)

    Khalifa, N. O. [University of Khartoum, Physics Department, Faculty of Science (Sudan); Widatallah, H. M., E-mail: hishammw@squ.edu.om; Gismelseed, A. M.; Al-Mabsali, F. N.; Sofin, R. G. S. [Sultan Qaboos University, Physics Department, College of Science (Oman); Pekala, M. [University of Warsaw, Chemistry Department (Poland)

    2016-12-15

    Single-phased nanocrystalline particles of pure and 10 % Ti {sup 4+}-doped perovskite-related YFeO {sub 3}were prepared via mechanosynthesis at 450{sup ∘}C. This temperature is ∼150–350 {sup ∘}C lower than those at which the materials, in bulk form, are normally prepared. Rietveld refinements of the X-ray diffraction patterns reveal that the dopant Ti {sup 4+} ions prefer interstitial octahedral sites in the orthorhombic crystal lattice rather than those originally occupied by the expelled Fe {sup 3+} ions. Magnetic measurements show canted antiferromagnetism in both types of nanoparticles. Doping with Ti {sup 4+} lowers the Néel temperature of the YFeO {sub 3} nanoparticles from ∼ 586 K to ∼ 521 K. The Ti {sup 4+}-doped YFeO {sub 3} nanoparticles exhibit enhanced magnetization and coercivity but less magnetic hyperfine fields relative to the un-doped nanoparticles. The {sup 57}Fe Mössbauer spectra show ∼ 15 % of the YFeO {sub 3} nanoparticles and ∼22 of Ti {sup 4+}-doped YFeO {sub 3} ones to be superparamagnetic with blocking temperatures < 78 K. The broadened magnetic components in the {sup 57}Fe Mössbauer spectra suggest size-dependent hyperfine magnetic fields at the {sup 57}Fe nuclear sites and were associated with collective magnetic excitations. The {sup 57}Fe Mössbauer spectra show the local environments of the Fe {sup 3+} ions in the superparamagnetic nanoparticles to be more sensitive to the presence of the Ti {sup 4+} ions relative to those in the larger magnetic nanoparticles.

  18. Soft magnetic properties of hybrid ferromagnetic films with CoFe, NiFe, and NiFeCuMo layers

    International Nuclear Information System (INIS)

    Choi, Jong-Gu; Hwang, Do-Guwn; Rhee, Jang-Roh; Lee, Sang-Suk

    2011-01-01

    Two-layered ferromagnetic alloy films (NiFe and CoFe) with intermediate NiFeCuMo soft magnetic layers of different thicknesses were investigated to understand the relationship between coercivity and magnetization process by taking into account the strength of hard-axis saturation field. The thickness dependence of H EC (easy-axis coercivity), H HS (hard-axis saturation field), and χ (susceptibility) of the NiFeCuMo thin films in glass/Ta(5 nm)/[CoFe or NiFe(5 nm-t/2)]/NiFeCuMo(t = 0, 4, 6, 8, 10 nm)/[CoFe or NiFe(5 nm-t/2)]/Ta(5 nm) films prepared using the ion beam deposition method was determined. The magnetic properties (H EC , H HS , and χ) of the ferromagnetic CoFe, NiFe three-layers with an intermediate NiFeCuMo super-soft magnetic layer were strongly dependent on the thickness of the NiFeCuMo layer.

  19. Sintering of B4C by pressureless liquid phase sintering

    International Nuclear Information System (INIS)

    Rocha, Rosa Maria da; Melo, Francisco Cristovao Lourenco de

    2009-01-01

    The effect of three different sintering additive systems on densification of boron carbide powder was investigated. The sintering additives were Al 2 O 3 :Y 2 O 3 , AlN:Y 2 O 3 and BN:Y 2 O 3 compositions. Powder mixtures were prepared with 10 vol% of sintering aids following conventional powder technology processes. Samples were sintered by pressureless sintering at 2050 deg C/30min in argon atmosphere. Sintered samples were compared to a sintered B 4 C without sintering additive. Samples were characterized by XRD to analyze the crystalline phases after sintering and SEM to observe the microstructure and the second phase distribution. YB 4 and YB 2 C 2 were identified in all samples, indicating a reaction between Y 2 O 3 , B 4 C and B 2 O 3 present at the B 4 C particle surface. The best densification result was achieved with Al 2 O 3 :Y 2 O 3 additive system, showing 92.0 % of theoretical density, low porosity and 15.2 % of linear shrinkage. But this sample showed the highest weight loss. (author)

  20. Hard permanent magnet development trends and their application to A.C. machines

    Science.gov (United States)

    Mildrum, H. F.

    1981-01-01

    The physical and magnetic properties of Mn-Al-C, Fe-Cr-Co, and RE-TM (rare earth-transition metal intermetallics) in polymer and soft metal bonded or sintered form are considered for ac circuit machine usage. The manufacturing processes for the magnetic materials are reviewed, and the mechanical and electrical properties of the magnetic materials are compared, with consideration given to the reference Alnico magnet. The Mn-Al-C magnets have the same magnetic properties and costs as Alnico units, operate well at low temperatures, but have poor high temperature performance. Fe-Cr-Co magnets also have comparable cost to Alnico magnets, and operate at high or low temperature, but are brittle, expensive, and contain Co. RE-Co magnets possess a high energy density, operate well in a wide temperature range, and are expensive. Recommendation for exploring the rare-earth alternatives are offered.

  1. Effect of size and site preference of trivalent non-magnetic metal ions (Al3+, Ga3+, In3+) substituted for Fe3+ on the magnetostrictive properties of sintered CoFe2O4

    Science.gov (United States)

    Anantharamaiah, P. N.; Joy, P. A.

    2017-11-01

    The influence of size and crystallographic site preference of three non-magnetic isovalent metal ions of larger (In3+), comparable (Ga3+) and smaller (Al3+) sizes, substituted for Fe3+ in the spinel lattice of CoFe2O4 on its magnetostrictive properties is compared. For the different compositions in CoFe2-x M x O4 (M  =  In3+, Ga3+, Al3+ and 0  ⩽  x  ⩽  0.3), significant changes in the structural and magnetic parameters are observed with the degree of substitution, due to the size and site preferences. Magnetic and Raman spectral studies revealed that Al3+ is substituted for Fe3+ at both octahedral and tetrahedral sites for all compositions, whereas In3+ and Ga3+ are substituted for Fe3+ at the tetrahedral site only for x  ⩽  0.2 and partly at the octahedral site for x  >  0.2. Regardless of the differences in the ionic size, site preference and the magnetic properties, compositions in all three series with x  =  0.1 showed almost equal magnitude of maximum magnetostriction (λ max  =  ~230 ppm), marginally higher than that of x  =  0 (217 ppm). However, at higher substituted compositions, λ max is decreased with x, but the decrease is much faster for the Al-substituted compositions. The maximum strain sensitivity, [dλ/dH]max, is also found to be comparable for all three compositions. The comparable magnetostriction characteristics and high strain at low magnetic fields for different substituted compositions at low levels of substitution are attributed to the local structural distortions associated with the inhomogeneous distribution of the substituted ions in the spinel ferrite lattice. The studies suggest ways to optimise the magnetostriction properties of properly substituted sintered cobalt ferrite for applications in sensors and actuators.

  2. Consolidation of metallic hollow spheres by electric sintering

    Science.gov (United States)

    Mironov, V.; Tatarinov, A.; Lapkovsky, V.

    2017-07-01

    This paper considers peculiarities of the technology of production of structures from metallic hollow spheres (MHS) using magnetic fields and electric sintering. In these studies, the raw material was MHS obtained by burning of polystyrene balls coated by carbon steel. MHS had an outer diameter of 3-5 mm and a steel wall thickness of 70-120 microns. Pulsed current generators were used for electric sintering of MHS to obtain different spatial structures. Since MHS have small strength, the compressive pressure during sintering should be minimal. To improve the adhesion strength and reduce the required energy for sintering, hollow spheres were coated with copper by ion-plasma sputtering in vacuum. The coating thickness was 10-15 microns. The ferromagnetic properties of MHS allowed using of magnet fields for orientation of the spheres in the structures, as well as using of perforated tapes acting as orienting magnetic cores. Ultrasonic testing of MHS structures has been tried using through propagation of ultrasound in low kilohertz frequency range. Sensitivity of the propagation parameters to water filling of inter-spheres space and sintering temperature was demonstrated.

  3. Effect of La–Co substitution on the crystal structure and magnetic properties of hot press sintered Sr{sub 1−x}La{sub x}Fe{sub 12−x}Co{sub x}O{sub 19} (x=0−0.5) ferrites for use in LTCC technology

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Long, E-mail: penglong@cuit.edu.cn; Li, Lezhong; Wang, Rui; Hu, Yun; Tu, Xiaoqiang

    2015-10-01

    The La{sup 3+} and Co{sup 2+} substituted Sr{sub 1−x}La{sub x}Fe{sub 12−x}Co{sub x}O{sub 19} (x=0−0.5) ferrites with Bi{sub 2}O{sub 3} additive were prepared by hot press sintering method at a low sintering temperature of 870 °C compatible with LTCC (low temperature co-fired ceramics) systems, and their crystal structure and magnetic properties were mainly investigated. The results show that the pure M-type crystal phase is successfully obtained for the ferrites with La–Co substitution amount x not higher than 0.3. When the substitution amount further increases to 0.4 and 0.5, the α-Fe{sub 2}O{sub 3} phase and La{sub 2}O{sub 3} phase are found to coexist with the M-type phase, thus the multiphase structure is formed. Besides, the saturation magnetization M{sub s}, intrinsic coercivity H{sub ci}, and Curie temperature T{sub C} of the ferrites are strongly correlated with the La–Co substitution amount. Enhanced M{sub s} and H{sub ci} are obtained when the substitution amount varies from 0.2 to 0.4, which can exceed 3600 Gs and 4000 Oe, respectively. However, the T{sub C} decreases rapidly when the substitution amount exceeds 0.3, and a value under 410 °C is observed. It is suggested that the La{sup 3+}–Co{sup 2+} ions can partially substitute the Sr{sup 2+}–Fe{sup 3+} ions for the hot press sintered ferrites at low sintering temperatures, leading to improved M{sub s} and H{sub ci} for use in microwave LTCC ferrite devices. - Highlights: • La{sup 3+}–Co{sup 2+} ions partially substitute the Sr{sup 2+}–Fe{sup 3+} ions at low sintering temperatures. • Low temperature sintering properties are improved by La–Co substitution. • Substituted ferrite sintered at 870 °C provides M{sub s} of 65.9 emu/g and H{sub ci} of 4066.7 Oe.

  4. Kiln furniture for sintering electronic ceramics. Ceramics shosei jigu (doguzai) ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Fushimi, T.; Shibata, S. (Toshiba Ceramics Co. Ltd., Tokyo (Japan))

    1994-05-01

    This paper summarizes refractory jigs used in manufacturing electronic ceramics. Jigs used vary with types of sintering kilns. Sintering kilns include pusher kiln, trolley kiln, roller hearth kiln, batch kiln, and HIP. The paper describes jigs by electronic ceramics materials. Ferrites are sintered in a pusher kiln, where such jigs are used as a base plate, stanchions, shelf plates, saggers, and a setter. Jigs that contact with ferrite are demanded not to give such adverse effects to materials to be sintered as crystal growth. Soft ferrites of Mn/Zn and Ni/Zn systems use jigs of pure alumina and zirconia nature, while large-size soft ferrites use setters with rough surface. A barium titanate system as a ceramic dielectric uses a zirconia jig, and materials containing Pb and Bi such as for varistors use magnesia and spinel jigs. Alumina porcelain substrates use mullite or high-alumina pusher kilns and alumina jigs. 4 refs., 1 fig., 4 tabs.

  5. Effects of intermediate layers on magnetic properties and read/write performance in CoCrPt perpendicular recording media with an FeHfN soft magnetic underlayer

    International Nuclear Information System (INIS)

    Hong, D.H.; Shin, J.N.; Lee, T.D.; Hong, S.Y.; Lee, H.J.

    2003-01-01

    In this study, the effects of CoCrPtTa and CoCrPtB magnetic intermediate layers (ILs) on the magnetic properties and read/write performance of CoCrPt/soft magnetic layer perpendicular recording media were investigated. Even though the perpendicular coercivity of the media with these ILs was reduced by 500 Oe, these media still showed a low exchange slope of 1.4 and a large negative nucleation field of about -1000 Oe. Additionally, the reduced grain size of the media with these IL was observed by transmission electron microscopy. From the read/write test, these media with ILs showed improved performance of 3-5 dB higher signal-to-noise ratio and overwrite ratio (OW) compared to the media without ILs. These enhancements could be attributed to the reduction of grain size of the magnetic layer and weakening of the intergranular interaction between grains by insertion of the IL

  6. Boric oxide or boric acid sintering aid for sintering ceramics

    International Nuclear Information System (INIS)

    Lawler, H.A.

    1979-01-01

    The invention described relates to the use of liquid sintering aid in processes involving sintering of ceramic materials to produce dense, hard articles having industrial uses. Although the invention is specifically discussed in regard to compositions containing silicon carbide as the ceramic material, other sinterable carbides, for example, titanium carbide, may be utilized as the ceramic material. A liquid sintering aid for densifying ceramic material is selected from solutions of H 3 BO 3 , B 2 O 3 and mixtures of these solutions. In sintering ceramic articles, e.g. silicon carbide, a shaped green body is formed from a particulate ceramic material and a resin binder, and the green body is baked at a temperature of 500 to 1000 0 C to form a porous body. The liquid sintering aid of B 2 O 3 and/or H 3 BO 3 is then dispersed through the porous body and the treated body is sintered at a temperature of 1900 to 2200 0 C to produce the sintered ceramic article. (U.K.)

  7. Sintering of magnesia: effect of additives

    Indian Academy of Sciences (India)

    % was studied on the sinter- ing and microstructural developments of the chemically pure magnesia using the pressureless sintering technique between 1500 and 1600◦C. Sintering was evaluated by per cent densification and microstructural ...

  8. Analysis of the dynamic changes in the soft palate and uvula in obstructive sleep apnea-hypopnea using ultrafast magnetic resonance imaging.

    Science.gov (United States)

    Wang, Y L; Mcdonald, J P; Liu, Y H; Pan, K F; Zhang, X H; Hu, R D

    2014-01-24

    Apnea and the respiratory cycle are dynamic processes in obstructive sleep apnea-hypopnea (OSAH), which occur only during sleep. Our study aimed to observe the dynamic changes in the soft palate and the uvula during wakefulness and sleep using ultrafast magnetic resonance imaging (UMRI) to provide reference data for the pathogenesis and treatment of OSAH. The dynamic changes in the soft palate and uvular tip of 15 male patients (average age: 50.43 ± 9.82 years) with OSAH were evaluated using UMRI of the upper airway while asleep and awake after 1 night of sleep deprivation. A series of midline sagittal images of the upper airway were obtained. The distance from the center of the soft palate to the x-axis (an extended line from the anterior nasal spine to the posterior nasal spine), from the uvular tip to the x-axis, from the center of the soft palate to the y-axis (a perpendicular line from the center of the pituitary to the x-axis), and from the uvular tip to the y-axis (designated as PX, UX, PY, and UY, respectively) were measured during sleep and wakefulness. The minimum PX, PY, UX, and UY were shorter during sleep than during wakefulness, whereas the maxima were longer during sleep (P UX, and UY were larger during sleep (P < 0.01). The upward, downward, forward, and backward ranges of movement of the soft palate and the uvular tip were larger during sleep in OSAH patients. This increased compliance may trigger each airway obstructive event.

  9. An investigation on the role of texture evolution and ordered phase transition in soft magnetic properties of Fe–6.5 wt%Si electrical steel

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Guojun; Li, Changsheng, E-mail: lics@ral.neu.edu.cn; Cai, Ban; Wang, Qiwen

    2017-05-15

    Fe–6.5 wt%Si electrical steel characterized with excellent soft magnetic properties such as almost zero magnetostriction, low eddy current and hysteresis losses characteristics has been widely applied in high frequency fields. In this work, the role of texture evolution and ordered phase transition in soft magnetic properties of annealed sheets was explored using EBSD, XRD and TEM. The results demonstrate that accompanied with the increase of annealing temperatures, an increase on the B8 is attributable to a contribution combining the sizes of recrystallization grains with APBs of ordered phases as pinning the migration of magnetic domain wall. Whereas B50 declines to a minimum value (1.479 T) and then increases to a certain value (1.695 T) due to different types and intensities of textures affecting on the magnetocrystalline anisotropy energy. Meanwhile, the dislocation density gradually decreases and corresponding to a gradual decline in the internal stress, which makes the coercive force (H{sub c}) decrease monotonically. - Highlights: • Role of texture and ordered phase in Fe–6.5 wt%Si were studied. • With increasing annealing temperatures, H{sub c} decreases monotonically. • Combining grain sizes with APBs in B8 measurements. • Increasing annealing temperatures, B50 declines and then increases due to texture.

  10. Background Information: Magnetars, Soft Gamma-Ray Repeaters and the Most Powerful Magnetic Fields in the Universe

    Science.gov (United States)

    1998-08-01

    Near the end of its life, a star more massive than our Sun finds itself no longer able to support its own weight from the crush of gravity and so it collapses, producing an expanding shock wave that sweeps through the surrounding gas, creating what is called a supernova remnant. All that remains of the original star is a dense, compact object known as a neutron star. Magnetars are the latest addition to the "zoo" of neutron stars and they are truly exotic beasts with magnetic fields hundreds of millions of times stronger than have ever been seen on Earth. The story which led to the prediction of magnetars and then to their discovery is given elsewhere. Here we will focus on the other part of the story, the supernova remnants born at the same time as magnetars and the diffuse emission produced by the energetic outpourings of the magnetars. All four of the soft gamma-ray repeaters that we currently know are located in or near a supernova remnant. It was this discovery that led astronomers to determine that soft gamma-ray repeaters were in our Galaxy and the nearby galaxy known as the Large Magellanic Cloud. Through the study of these supernova remnants, astronomers were able to infer that soft gamma-ray repeaters were solitary young neutron stars speeding away from their birthplace at 3 million miles per hour. Theories predict that the same process which can produce the fantastic bursts of hard X-ray emission that give soft gamma-ray repeaters their name, can also accelerate particles (electrons, protons, etc) to speeds approaching the speed of light. As the saying goes, "where there's smoke there's fire" and this case is no exception. Most of the energy released by the burst event is carried away by these high energy particles and not the gamma-ray burst itself. As the particles spiral in the surrounding magnetic field, they too emit radiation, creating extended nebulae called "plerions". Provided there is some way to confine the outflow, these plerions act as "wind

  11. Soft- and hard-agglomerate aerosols made at high temperatures.

    Science.gov (United States)

    Tsantilis, Stavros; Pratsinis, Sotiris E

    2004-07-06

    Criteria for aerosol synthesis of soft-agglomerate, hard-agglomerate, or even nonagglomerate particles are developed on the basis of particle sintering and coalescence. Agglomerate (or aggregate) particles are held together by weak, physical van der Waals forces (soft agglomerates) or by stronger chemical or sintering bonds (hard agglomerates). Accounting for simultaneous gas phase chemical reaction, coagulation, and sintering during the formation and growth of silica (SiO2) nanoparticles by silicon tetrachloride (SiCl4) oxidation and neglecting the spread of particle size distribution, the onset of hard-agglomerate formation is identified at the end of full coalescence, while the onset of soft-agglomerate formation is identified at the end of sintering. Process conditions such as the precursor initial volume fraction, maximum temperature, residence time, and cooling rate are explored, identifying regions for the synthesis of particles with a controlled degree of agglomeration (ratio of collision to primary particle diameters).

  12. Measuring surface-area-to-volume ratios in soft porous materials using laser-polarized xenon interphase exchange nuclear magnetic resonance

    Science.gov (United States)

    Butler, J. P.; Mair, R. W.; Hoffmann, D.; Hrovat, M. I.; Rogers, R. A.; Topulos, G. P.; Walsworth, R. L.; Patz, S.

    2002-01-01

    We demonstrate a minimally invasive nuclear magnetic resonance (NMR) technique that enables determination of the surface-area-to-volume ratio (S/V) of soft porous materials from measurements of the diffusive exchange of laser-polarized 129Xe between gas in the pore space and 129Xe dissolved in the solid phase. We apply this NMR technique to porous polymer samples and find approximate agreement with destructive stereological measurements of S/V obtained with optical confocal microscopy. Potential applications of laser-polarized xenon interphase exchange NMR include measurements of in vivo lung function in humans and characterization of gas chromatography columns.

  13. Laser sintering of copper nanoparticles

    International Nuclear Information System (INIS)

    Zenou, Michael; Saar, Amir; Ermak, Oleg; Kotler, Zvi

    2014-01-01

    Copper nanoparticle (NP) inks serve as an attractive potential replacement to silver NP inks in functional printing applications. However their tendency to rapidly oxidize has so far limited their wider use. In this work we have studied the conditions for laser sintering of Cu-NP inks in ambient conditions while avoiding oxidation. We have determined the regime for stable, low-resistivity copper (< ×3 bulk resistivity value) generation in terms of laser irradiance and exposure duration and have indicated the limits on fast processing. The role of pre-drying conditions on sintering outcome has also been studied. A method, based on spectral reflectivity measurements, was used for non-contact monitoring of the sintering process evolution. It also indicates preferred spectral regions for sintering. Finally, we illustrated how selective laser sintering can generate high-quality, fine line (<5 µm wide) and dense copper circuits. (paper)

  14. Observation of m/n=2/1 magnetic island on the foot point of electron internal transport barrier using soft x-ray CCD camera in the Large Helical Device

    Energy Technology Data Exchange (ETDEWEB)

    Kobuchi, T [Department of Quantum Science and Energy Engineering, Tohoku University, Sendai, Miyagi, 980-8679 (Japan); Liang, Y [Institut fuer Plasmaphysik, Forschungszentrum Juelich, D-52425 (Germany); Ida, K; Yoshinuma, M; Watanabe, K Y [National Institute for Fusion Science, Toki, Gifu, 509-5292 (Japan)], E-mail: takashi.kobuchi@qse.tohoku.ac.jp

    2008-07-15

    The existence of m/n=2/1 magnetic islands in the plasma with an electron internal transport barrier (ITB) is identified in tangential soft x-ray emission images measured with a soft x-ray CCD camera using the Fourier-Bessel expansion reconstruction technique in the Large Helical Device. A clear m/n=2/1 magnetic island is observed in the discharge with ECRH and NBI in the direction antiparallel to the equivalent plasma current (counter-NBI), where the magnetic shear is expected to become small enough to cause the formation of a magnetic island. On the other hand, no magnetic island is observed in the ECRH and NBI in the direction parallel to the equivalent plasma current (co-NBI), where the magnetic shear is expected to be sufficiently high.

  15. Soft x-ray resonant diffraction study of magnetic and orbital correlations in a manganite near half doping

    NARCIS (Netherlands)

    Thomas, KJ; Grenier, S; Kim, YJ; Abbamonte, P; Rusydi, A; Tomioka, Y; Tokura, Y; McMorrow, DF; Sawatzky, G; van Veenendaal, M; Hill, J.P.; Venema, L.C.

    2004-01-01

    We have utilized resonant x-ray diffraction at the Mn L(II,III) edges in order to directly compare magnetic and orbital correlations in Pr(0.6)Ca(0.4)MnO(3). Comparing the widths of the magnetic and orbital diffraction peaks, we find that the magnetic correlation length exceeds that of the orbital

  16. Effect of P addition on glass forming ability and soft magnetic properties of melt-spun FeSiBCuC alloy ribbons

    Energy Technology Data Exchange (ETDEWEB)

    Xu, J.; Yang, Y.Z., E-mail: yangyzgdut@163.com; Li, W.; Chen, X.C.; Xie, Z.W.

    2016-11-01

    The dependency of phosphorous content on the glass forming ability, thermal stability and soft magnetic properties of Fe{sub 83.4}Si{sub 2}B{sub 14−x}P{sub x}Cu{sub 0.5}C{sub 0.1} (x=0,1,2,3,4) alloys was investigated. The experimental results showed that the substitution of B by P increased the glass forming ability in this alloy system. The Fe{sub 83.4}Si{sub 2}B{sub 10}P{sub 4}Cu{sub 0.5}C{sub 0.1} alloy shows a fully amorphous character. Thermal stability of melt-spun ribbons increases and temperature interval between the first and second crystallization peaks enlarges with the increase of P content. And the saturation magnetic flux density (Bs) shows a slight increase with the increase of P content. The Fe{sub 83.4}Si{sub 2}B{sub 11}P{sub 3}Cu{sub 0.5}C{sub 0.1} nanocrystalline alloy exhibits a high Bs about 200.6 emu/g. The Bs of fully amorphous alloy Fe{sub 83.4}Si{sub 2}B{sub 10}P{sub 4}Cu{sub 0.5}C{sub 0.1} drops dramatically to 172.1 emu/g, which is lower than that of other nanocrystallines. Low material cost and excellent soft magnetic properties make the FeSiBPCuC alloys promise soft magnetic materials for industrial applications. - Highlights: • Partial substituting B by P helps to improve the glass forming ability of the alloy. • The addition of P content reduces the thermal stability and improves heat treatment temperature region for these alloys. • The Fe{sub 83.4}Si{sub 2}B{sub 11}P{sub 3}Cu{sub 0.5}C{sub 0.1} nanocrystalline alloy exhibits a high saturation magnetic density of 200.6 emu/g.

  17. Interface influence on the properties of Co90Fe10 films on soft magnetic underlayers - Magnetostrictive and Mössbauer spectrometry studies

    Science.gov (United States)

    Szumiata, Tadeusz; Gzik-Szumiata, Małgorzata; Brzózka, Katarzyna; Górka, Bogumił; Gawroński, Michał; Caruana Finkel, Anastasia; Reeves-McLaren, Nik; Morley, Nicola A.

    2016-03-01

    The main aim of the work was to show the correlation between magnetostrictive properties and microstructure of 25 nm thick Co90Fe10 films deposited on soft magnetic underlayers. A special attention was paid to the role of the interface region. In the case of Co90Fe10 on 25 nm and 35 nm thick METGLAS underlayers one can resolve in conversion electron Mössbauer spectra two hyperfine field distributions (high-field and medium-field ones) corresponding to both constituents of bilayers. Analogical distributions describe the spectra of Co90Fe10 on 25 nm and 35 nm thick Ni81Fe19 underlayers, however an additional low-field, smeared component has been observed. It has been attributed to the interface layer (of partially disordered structure) between magnetostrictive layer and soft magnetic layer. Such interpretation is backed up by the obtained strong correlation between mean hyperfine field value and magnetostriction constant of the films. The investigated bilayers are good candidates for MRAM devices.

  18. Evolution of Nanograins and Soft Magnetic Properties of Fe74Cu0.8Nb2.7Si15.5B7 by Isothermal Annealing

    Science.gov (United States)

    Hoque, Sheikh Manjura; Dhar, Umasree; Hakim, M. A.; Saha, D. K.; Das, Hari Narayan

    Fe-based alloy of the composition, Fe74Cu0.8 Nb2.7Si15.5B7 has been studied thoroughly in order to research the evolution of nanograins and soft magnetic properties. The composition has been significantly deviated from FINEMET type composition given by Fe73.5Cu1 Nb3Si13.5B9. It is hard to optimize composition to obtain equally good soft magnetic properties as FINEMET significantly deviating from conventional type alloy. Fe-based alloy of the composition, Fe74Cu0.8Nb2.7Si15.5B7 has been prepared by single roller melt spinning machine. X-ray diffraction studies confirmed that the ribbon is in the amorphous state. Evolution of α-Fe(Si) nanograins from amorphous matrix were carried out by isothermal annealing in the temperature range from 550°C to 650°C for 1, 3, 5, 10, 20, 30, 40, 50 and 60 minutes. Frequency spectrum of real and imaginary part of complex initial permeability has been measured for the samples at different annealing conditions. Short time annealing has been proved to be more efficient than long time annealing for the samples of this composition for most of the annealing temperatures.

  19. Models of current sintering

    Science.gov (United States)

    Angst, Sebastian; Engelke, Lukas; Winterer, Markus; Wolf, Dietrich E.

    2017-06-01

    Densification of (semi-)conducting particle agglomerates with the help of an electrical current is much faster and more energy efficient than traditional thermal sintering or powder compression. Therefore, this method becomes more and more common among experimentalists, engineers, and in industry. The mechanisms at work at the particle scale are highly complex because of the mutual feedback between current and pore structure. This paper extends previous modelling approaches in order to study mixtures of particles of two different materials. In addition to the delivery of Joule heat throughout the sample, especially in current bottlenecks, thermoelectric effects must be taken into account. They lead to segregation or spatial correlations in the particle arrangement. Various model extensions are possible and will be discussed.

  20. Sintering effect on structural, magnetic and optical properties of Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} ferrite nano particles

    Energy Technology Data Exchange (ETDEWEB)

    Kannan, Y.B., E-mail: ybkans@gmail.com [Department of Physics, Arumugam Pillai Seethai Ammal College, Tiruppattur 630211 (India); Saravanan, R. [PG & Research Department of Physics, The Madura College, Madurai 625011 (India); Srinivasan, N. [PG & Research Department of Physics, Thiagarajar College, Madurai 625009 (India); Ismail, I. [Advanced Materials and Nanotechnology Laboratory, Institute of Advanced Technology, University Putra Malaysia, 43400 Serdang, Selangor (Malaysia)

    2017-02-01

    Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} nano ferrite particles have been prepared by mechanical alloying via high energy ball milling and sintered at different temperatures from 700 °C to 1000 °C. Spinel structure is confirmed from the analysis of XRD data. Rietveld refinement method is employed to refine the XRD powder data and the structural parameters are calculated from the refinement. Small amount of hematite phase is found in all samples. The SEM, EDAX and XRF analysis reveals respectively the morphology, stoichiometric composition and purity of the powder samples. Using Maximum Entropy Method (MEM) the values of the bond strength between various sites interactions in ferrites are evaluated and compared with theoretical predictions of strengthening/weakening of various sites interactions from the values of interionic distances and interionic bond angles. Ferromagnetic nature of the samples is confirmed from the vibrating sample magnetometer study. The obtained low saturation magnetization values are attributed to presence of second phase. The optical band gap energy of the samples was determined by using UV–VIS techniques. - Highlights: • Raw XRD data were refined using Rietveld refinement method using JANA 2006 software. • Fraction of zinc ions occupies at B site. • Bond strength between the atoms at A-site and B-site is studied by employing maximum entropy method (MEM). • From the MEM result, numerical values of the bond strength between various interactions (A–B, A–A, B–B) have been evaluated. • Various sites interactions results are compared with that of hitherto existing theoretical predictions.

  1. Production of pure sintered alumina

    International Nuclear Information System (INIS)

    Rocha, J.C. da; Huebner, H.W.

    1982-01-01

    With the aim of optimizing the sintering parameters, the strength of a large number of alumina samples was determined which were produced under widely varying sintering conditions and with different amounts of MgO content. The strength as a function of sintering time or temperature was found to go through a maximum. With increasing time, this maximum is shifted to lower temperatures, and with decreasing temperature to longer times. Data pairs of sintering times and temperatures which yeld the strength maximum were determined. The value of the strength at the maximum remains unchanged. The strength is high (= 400 MN/m 2 , at a grain size of 3 um and a porosity of 2 per cent) and comparable to foreign aluminas produced for commercial purposes, or even higher. The increase in the sintering time from 1 h to 16 h permits a reduction of the sintering temperature from 1600 to 1450 0 C without losing strength. The practical importance of this fact for a production of sintered alumina on a large scale is emphasized. (Author) [pt

  2. Effect of Y addition on crystallization behavior and soft-magnetic properties of Fe{sub 78}Si{sub 9}B{sub 13} ribbons

    Energy Technology Data Exchange (ETDEWEB)

    Zhanwei, Liu; Dunbo, Yu, E-mail: yudb2008@126.com; Kuoshe, Li; Yang, Luo; Chao, Yuan; Zilong, Wang; Liang, Sun; Kuo, Men

    2017-08-15

    Highlights: • Thermal stability of Fe-Si-B amorphous alloy is enhanced by Y addition. • Y addition can improve soft magnetic properties of Fe-Si-B amorphous alloy. • Decomposition of metastable Fe{sub 3}B phase is related to Y content in Fe-Si-B matrix. - Abstract: A series of amorphous Fe-Si-B ribbons with various Y addition were prepared by melt-spinning. The effect of Y addition on crystallization behavior, thermal and magnetic properties was systematically investigated. With the increase of Y content, the initial crystallization temperature shifted to a higher temperature, indicating that the thermal stability of amorphous state in Fe-Si-B-Y ribbon is enhanced compared to that of Fe-Si-B alloy. Meanwhile, compared to the two exothermic peaks in the samples with lower Y content, a new exothermic peak was found in the ribbons with Y content higher than 1 at%, which corresponded to the decomposition of metastable Fe{sub 3}B phase. Among all the alloys, Fe{sub 76.5}Si{sub 9}B{sub 13}Y{sub 1.5} alloy exhibits optimized magnetic properties, with high saturation magnetization M{sub s} of 187 emu/g and low coercivity H{sub cJ} of 7.6 A/m.

  3. Biological cell as a soft magnetoelectric material: Elucidating the physical mechanisms underpinning the detection of magnetic fields by animals

    Science.gov (United States)

    Krichen, S.; Liu, L.; Sharma, P.

    2017-10-01

    Sharks, birds, bats, turtles, and many other animals can detect magnetic fields. Aside from using this remarkable ability to exploit the terrestrial magnetic field map to sense direction, a subset is also able to implement a version of the so-called geophysical positioning system. How do these animals detect magnetic fields? The answer to this rather deceptively simple question has proven to be quite elusive. The currently prevalent theories, while providing interesting insights, fall short of explaining several aspects of magnetoreception. For example, minute magnetic particles have been detected in magnetically sensitive animals. However, how is the detected magnetic field converted into electrical signals given any lack of experimental evidence for relevant electroreceptors? In principle, a magnetoelectric material is capable of converting magnetic signals into electricity (and vice versa). This property, however, is rare and restricted to a rather small set of exotic hard crystalline materials. Indeed, such elements have never been detected in the animals studied so far. In this work we quantitatively outline the conditions under which a biological cell may detect a magnetic field and convert it into electrical signals detectable by biological cells. Specifically, we prove the existence of an overlooked strain-mediated mechanism and show that most biological cells can act as nontrivial magnetoelectric materials provided that the magnetic permeability constant is only slightly more than that of a vacuum. The enhanced magnetic permeability is easily achieved by small amounts of magnetic particles that have been experimentally detected in magnetosensitive animals. Our proposed mechanism appears to explain most of the experimental observations related to the physical basis of magnetoreception.

  4. The sintering of nitrogen ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Hampshire, S.

    1986-01-01

    The mechanism of densification with oxide additives and the role of the ..cap alpha..-BETA phase transformation is investigated in a detailed kinetic study. Selected compositions in the Si-Al-O-N system are detailed, with and without additives. Although the work is mainly concerned with the identification of the mechanisms of sintering, some property measurements on a sintered BETA-sialon are reported and the feasibility of preparing pure ..cap alpha..-sialon phases is explored.

  5. Method of sintering ceramic materials

    Science.gov (United States)

    Holcombe, Cressie E.; Dykes, Norman L.

    1992-01-01

    A method for sintering ceramic materials is described. A ceramic article is coated with layers of protective coatings such as boron nitride, graphite foil, and niobium. The coated ceramic article is embedded in a container containing refractory metal oxide granules and placed within a microwave oven. The ceramic article is heated by microwave energy to a temperature sufficient to sinter the ceramic article to form a densified ceramic article having a density equal to or greater than 90% of theoretical density.

  6. Spin waves in the soft layer of exchange-coupled soft/hard bilayers

    Directory of Open Access Journals (Sweden)

    Zheng-min Xiong

    2016-05-01

    Full Text Available The magnetic dynamical properties of the soft layer in exchange-coupled soft/hard bilayers have been investigated numerically using a one-dimensional atomic chain model. The frequencies and spatial profiles of spin wave eigenmodes are calculated during the magnetization reversal process of the soft layer. The spin wave modes exhibit a spatially modulated amplitude, which is especially evident for high-order modes. A dynamic pinning effect of surface magnetic moment is observed. The spin wave eigenfrequency decreases linearly with the increase of the magnetic field in the uniformly magnetized state and increases nonlinearly with field when spiral magnetization configuration is formed in the soft layer.

  7. Spin waves in the soft layer of exchange-coupled soft/hard bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Zheng-min; Ge, Su-qin; Wang, Xi-guang; Li, Zhi-xiong; Xia, Qing-lin; Wang, Dao-wei; Nie, Yao-zhuang; Guo, Guang-hua, E-mail: guogh@mail.csu.edu.cn [School of Physics and Electronics, Central South University, Changsha 410083 (China); Tang, Wei [School of Physics and Electronics, Central South University, Changsha 410083 (China); Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123 (China); Zeng, Zhong-ming [Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123 (China)

    2016-05-15

    The magnetic dynamical properties of the soft layer in exchange-coupled soft/hard bilayers have been investigated numerically using a one-dimensional atomic chain model. The frequencies and spatial profiles of spin wave eigenmodes are calculated during the magnetization reversal process of the soft layer. The spin wave modes exhibit a spatially modulated amplitude, which is especially evident for high-order modes. A dynamic pinning effect of surface magnetic moment is observed. The spin wave eigenfrequency decreases linearly with the increase of the magnetic field in the uniformly magnetized state and increases nonlinearly with field when spiral magnetization configuration is formed in the soft layer.

  8. Magnetic resonance tomography in the diagnosis of intraarticular tibial plateau fractures: value for fracture classification and spectrum of fracture-associated soft tissue injuries

    International Nuclear Information System (INIS)

    Fischbach, R.; Maintz, D.; Zaehringer, M.; Landwehr, P.; Prokop, A.

    2000-01-01

    Purpose: To compare magnetic resonance imaging (MRI) and X-ray tomography in assessing the type of fracture, degree of comminution and amount of articular surface depression in acute tibial condylar fractures and to describe the associated soft tissue injuries diagnosed with MRI. Method: 27 patients with acute tibial plateau fractures were investigated usig linear X-ray tomography and MRI employing T 1 -weighted and proton density turbo spin echo, STIR, and T 2 -weighted gradient echo images. Fractures were classified according to the AO classification system. The degrees of depression and comminution were measured and soft tissue injuries were recorded. Results: Fractures were classified as type B1 in 7, as B2 in 6, and as B3 in 6 cases by MRI. More complex C-type fractures were diagnosed in 8 cases. MR and X-ray grading were consistent with the exception of two B3 fractures, which were graded as B1 by X-ray tomography. X-ray tomography under-estimated the degree of comminution. 63% of the patients had either meniscal tears or complete ruptures of their cruciate or collateral ligaments. Ten meniscal tears were diagnosed in 9 of 27 patients. Complete tears of the anterior cruciate ligament were seen in 4, and avulsions of the posterior cruciate ligament in 2 patients. Conclusion: MRI allows a detailed assessment of acute tibial plateau fractures and can replace conventional X-ray tomography. The high rate of fracture-associated soft tissue lesions makes MRI an especially valuable tool. (orig.) [de

  9. Corrections for hysteresis curves for rare earth magnet materials measured by open magnetic circuit methods

    International Nuclear Information System (INIS)

    Nakagawa, Yasuaki

    1996-01-01

    The methods for testing permanent magnets stipulated in the usual industrial standards are so-called closed magnetic circuit methods which employ a loop tracer using an iron-core electromagnet. If the coercivity exceeds the highest magnetic field generated by the electromagnet, full hysteresis curves cannot be obtained. In the present work, magnetic fields up to 15 T were generated by a high-power water-cooled magnet, and the magnetization was measured by an induction method with an open magnetic circuit, in which the effect of a demagnetizing field should be taken into account. Various rare earth magnets materials such as sintered or bonded Sm-Co and Nd-Fe-B were provided by a number of manufacturers. Hysteresis curves for cylindrical samples with 10 nm in diameter and 2 mm, 3.5 mm, 5 mm, 14 mm or 28 mm in length were measured. Correction for the demagnetizing field is rather difficult because of its non-uniformity. Roughly speaking, a mean demagnetizing factor for soft magnetic materials can be used for the correction, although the application of this factor to hard magnetic material is hardly justified. Thus the dimensions of the sample should be specified when the data obtained by the open magnetic circuit method are used as industrial standards. (author)

  10. Magnetic-field-induced soft-mode quantum phase transition in the high-temperature superconductor La1.855Sr0.145CuO4: an inelastic neutron-scattering study.

    Science.gov (United States)

    Chang, J; Christensen, N B; Niedermayer, Ch; Lefmann, K; Rønnow, H M; McMorrow, D F; Schneidewind, A; Link, P; Hiess, A; Boehm, M; Mottl, R; Pailhés, S; Momono, N; Oda, M; Ido, M; Mesot, J

    2009-05-01

    Inelastic neutron-scattering experiments on the high-temperature superconductor La1.855Sr0.145CuO4 reveal a magnetic excitation gap Delta that decreases continuously upon application of a magnetic field perpendicular to the CuO2 planes. The gap vanishes at the critical field required to induce long-range incommensurate antiferromagnetic order, providing compelling evidence for a field-induced soft-mode driven quantum phase transition.

  11. Magnetic-Field-Induced Soft-Mode Quantum Phase Transition in the High-Temperature Superconductor La1.855Sr0.145CuO4:An Inelastic Neutron-Scattering Study

    OpenAIRE

    Chang, J.; Christensen, Niels Bech; Niedermayer, C.; Lefmann, Kim; Rønnow, H.M.; McMorrow, D.F.; Schneidewind, A.; Link, P.; Hiess, A.; Boehm, M.; Mottl, R.; Pailhes, S.; Momono, N.; Oda, M.; Ido, M.

    2009-01-01

    Inelastic neutron-scattering experiments on the high-temperature superconductor La$_{1.855}$Sr$_{0.145}$CuO$_{4}$ reveal a magnetic excitation gap $\\Delta$ that decreases continuously upon application of a magnetic field perpendicular to the CuO$_2$ planes. The gap vanishes at the critical field required to induce long-range incommensurate antiferromagnetic order, providing compelling evidence for a field-induced soft-mode driven quantum phase transition.

  12. Cast iron (CI) based soft magnetic BMG Ci{sub 88.3}Al{sub 2}Ga{sub 1}P{sub 4.35}B{sub 4.35}

    Energy Technology Data Exchange (ETDEWEB)

    Kane, S N; Lee, H J; Jeong, Y H [Department of Physics, Pohang University of Science and Technology (POSTECH), 790-784 Pohang (Korea, Republic of); Varga, L K, E-mail: varga@szfki.h [RISSPO, Hungarian Academy of Sciences, PO Box 49, 1525 Budapest (Hungary)

    2009-01-01

    Thermal stability, structure, and magnetic properties of bulk type Ci{sub 88.3}Al{sub 2}Ga{sub 1}P{sub 4.35}B{sub 4.35} alloy in ribbon form have been studied using differential thermal analysis, x-ray diffraction and magnetic measurements. Results reveal that crystallization peak temperature (T{sub x}) and Curie temperature (T{sub c}) of the as-cast alloy are respectively 513 and 370 deg. C. Crystallization of the specimen starts after annealing at 460 deg. C and alpha-Fe is precipitated out. Annealing at temperatures higher than 515 deg. C, produces apart from alpha-Fe, hard magnetic precipitants (Fe{sub 2}B, Fe{sub 3}B), which deteriorate the soft magnetic properties. Lowest coercive field - 9.8 A/m, highest saturation of induction - 1.55 Tesla and best losses - 0.42 W/kg (at 50 Hz and 0.4 kA/m) were obtained for as-cast specimen. Observed good soft magnetic properties of these low cost cast-iron based alloys suggest perspective applications of these soft magnetic alloys as an alternative to the conventional Fe-Si electrical steel and Mn-Zn ferrites.

  13. Structure and distribution of cross-links in boron-modified phenol-formaldehyde resins designed for soft magnetic composites: a multiple-quantum 11B-11B MAS NMR correlation spectroscopy study

    Czech Academy of Sciences Publication Activity Database

    Kobera, Libor; Czernek, Jiří; Strečková, M.; Urbanová, Martina; Abbrent, Sabina; Brus, Jiří

    2015-01-01

    Roč. 48, č. 14 (2015), s. 4874-4881 ISSN 0024-9297 R&D Projects: GA MŠk(CZ) LD14010 Grant - others:European Commission(XE) COST Action MP1202 HINT Institutional support: RVO:61389013 Keywords : phenol-formaldehyde polymers * boron crosslinks * soft magnetic composites Subject RIV: CD - Macromolecular Chemistry Impact factor: 5.554, year: 2015

  14. A comprehensive study of soft magnetic materials based on FeSi spheres and polymeric resin modified by silica nanorods

    Czech Academy of Sciences Publication Activity Database

    Strečková, M.; Füzer, J.; Kobera, Libor; Brus, Jiří; Fáberová, M.; Bureš, R.; Kollár, P.; Lauda, M.; Medvecký, L.; Girman, V.; Hadraba, Hynek; Baťková, M.; Baťko, I.

    2014-01-01

    Roč. 147, č. 3 (2014), s. 649-660 ISSN 0254-0584 Institutional support: RVO:61389013 ; RVO:68081723 Keywords : composite materials * magnetic materials * chemical synthesis Subject RIV: CD - Macromolecular Chemistry; JH - Ceramics, Fire-Resistant Materials and Glass (UFM-A) Impact factor: 2.259, year: 2014

  15. Sintering of micro-trusses created by extrusion-3D-printing of lunar regolith inks

    Science.gov (United States)

    Taylor, Shannon L.; Jakus, Adam E.; Koube, Katie D.; Ibeh, Amaka J.; Geisendorfer, Nicholas R.; Shah, Ramille N.; Dunand, David C.

    2018-02-01

    The development of in situ fabrication methods for the infrastructure required to support human life on the Moon is necessary due to the prohibitive cost of transporting large quantities of materials from the Earth. Cellular structures, consisting of a regular network (truss) of micro-struts with ∼500 μm diameters, suitable for bricks, blocks, panels, and other load-bearing structural elements for habitats and other infrastructure are created by direct-extrusion 3D-printing of liquid inks containing JSC-1A lunar regolith simulant powders, followed by sintering. The effects of sintering time, temperature, and atmosphere (air or hydrogen) on the microstructures, mechanical properties, and magnetic properties of the sintered lunar regolith micro-trusses are investigated. The air-sintered micro-trusses have higher relative densities, linear shrinkages, and peak compressive strengths, due to the improved sintering of the struts within the micro-trusses achieved by a liquid or glassy phase. Whereas the hydrogen-sintered micro-trusses show no liquid-phase sintering or glassy phase, they contain metallic iron 0.1-2 μm particles from the reduction of ilmenite, which allows them to be lifted with magnets.

  16. Microwave processed NiMg ferrite: Studies on structural and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Chandra Babu Naidu, K.; Madhuri, W., E-mail: madhuriw12@gmail.com

    2016-12-15

    Ferrites are magnetic semiconductors realizing an important role in electrical and electronic circuits where electrical and magnetic property coupling is required. Though ferrite materials are known for a long time, there is a large scope in the improvement of their properties (vice sintering and frequency dependence of electrical and magnetic properties) with the current technological trends. Forth coming technology is aimed at miniaturization and smart gadgets, electrical components like inductors and transformers cannot be included in integrated circuits. These components are incorporated into the circuit as surface mount devices whose fabrication involves low temperature co-firing of ceramics and microwave monolithic integrated circuits technologies. These technologies demand low temperature sinter-ability of ferrites. This article presents low temperature microwave sintered Ni–Mg ferrites of general chemical formula Ni{sub 1−x}Mg{sub x}Fe{sub 2}O{sub 4} (x=0, 0.2, 0.4, 0.5, 0.6, 0.8, 1) for potential applications as transformer core materials. The series of ferrites are characterized using X-ray diffractometer, scanning electron microscopy, Fourier transform infrared and vibrating sample magnetometer for investigating structural, morphological and magnetic properties respectively. The initial permeability is studied with magnesium content, temperature and frequency in the temperature range of 308 K–873 K and 42 Hz–5 MHz. - Highlights: • First article on microwave processed NiMgFe{sub 2}O{sub 4} giving. • The article gives systematic magnetic studies. • Cation distribution is discussed based on magnetic moments from VSM. • Promising candidates for transformer core and soft magnet manufacturing.

  17. Sintering diagrams of UO2

    International Nuclear Information System (INIS)

    Mohan, A.; Soni, N.C.; Moorthy, V.K.

    1979-01-01

    Ashby's method (see Acta Met., vol. 22, p. 275, 1974) of constructing sintering diagrams has been modified to obtain contribution diagrams directly from the computer. The interplay of sintering variables and mechanisms are studied and the factors that affect the participation of mechanisms in UO 2 are determined. By studying the physical properties, it emerges that the order of inaccuracies is small in most cases and do not affect the diagrams. On the other hand, even a 10% error in activation energies, which is quite plausible, would make a significant difference to the diagram. The main criticism of Ashby's approach is that the numerous properties and equations used, communicate their inaccuracies to the diagrams and make them unreliable. The present study has considerably reduced the number of factors that need to be refined to make the sintering diagrams more meaningful. (Auth.)

  18. Recycling of mill scale in sintering process

    Directory of Open Access Journals (Sweden)

    El-Hussiny N.A.

    2011-01-01

    Full Text Available This investigation deals with the effect of replacing some amount of Baharia high barite iron ore concentrate by mill scale waste which was characterized by high iron oxide content on the parameters of the sintering process., and investigation the effect of different amount of coke breeze added on sintering process parameters when using 5% mill scale waste with 95% iron ore concentrate. The results of this work show that, replacement of iron ore concentrate with mill scale increases the amount of ready made sinter, sinter strength and productivity of the sinter machine and productivity at blast furnace yard. Also, the increase of coke breeze leads to an increase the ready made sinter and productivity of the sintering machine at blast furnace yard. The productivity of the sintering machine after 5% decreased slightly due to the decrease of vertical velocity.

  19. Soft Connected Spaces and Soft Paracompact Spaces

    OpenAIRE

    Fucai Lin

    2013-01-01

    Soft topological spaces are considered as mathematical tools for dealing with uncertainties, and a fuzzy topological space is a special case of the soft topological space. The purpose of this paper is to study soft topological spaces. We introduce some new concepts in soft topological spaces such as soft closed mapping, soft open mappings, soft connected spaces and soft paracompact spaces. We also redefine the concept of soft points such that it is reasonable in soft topological spaces. Mo...

  20. Soft tissue tumors - imaging methods

    International Nuclear Information System (INIS)

    Arlart, I.P.

    1985-01-01

    Soft Tissue Tumors - Imaging Methods: Imaging methods play an important diagnostic role in soft tissue tumors concerning a preoperative evaluation of localization, size, topographic relationship, dignity, and metastatic disease. The present paper gives an overview about diagnostic methods available today such as ultrasound, thermography, roentgenographic plain films and xeroradiography, radionuclide methods, computed tomography, lymphography, angiography, and magnetic resonance imaging. Besides sonography particularly computed tomography has the most important diagnostic value in soft tissue tumors. The application of a recently developed method, the magnetic resonance imaging, cannot yet be assessed in its significance. (orig.) [de

  1. Sintering of ultra high molecular weight polyethylene

    Indian Academy of Sciences (India)

    ... involves compaction of polymeric powder under pressure and sintering of the preforms at temperature above its melting point. In this study, we report our results on compaction and sintering behaviour of two grades of UHMWPE with reference to the powder morphology, sintering temperatures and strength development.

  2. Soft leptogenesis

    International Nuclear Information System (INIS)

    D'Ambrosio, Giancarlo; Giudice, Gian F.; Raidal, Martti

    2003-01-01

    We study 'soft leptogenesis', a new mechanism of leptogenesis which does not require flavour mixing among the right-handed neutrinos. Supersymmetry soft-breaking terms give a small mass splitting between the CP-even and CP-odd right-handed sneutrino states of a single generation and provide a CP-violating phase sufficient to generate a lepton asymmetry. The mechanism is successful if the lepton-violating soft bilinear coupling is unconventionally (but not unnaturally) small. The values of the right-handed neutrino masses predicted by soft leptogenesis can be low enough to evade the cosmological gravitino problem

  3. Master Sintering Surface: A practical approach to its construction and utilization for Spark Plasma Sintering prediction

    Directory of Open Access Journals (Sweden)

    Pouchly V.

    2012-01-01

    Full Text Available The sintering is a complex thermally activated process, thus any prediction of sintering behaviour is very welcome not only for industrial purposes. Presented paper shows the possibility of densification prediction based on concept of Master Sintering Surface (MSS for pressure assisted Spark Plasma Sintering (SPS. User friendly software for evaluation of the MSS is presented. The concept was used for densification prediction of alumina ceramics sintered by SPS.

  4. Sintering additives for zirconia ceramics

    International Nuclear Information System (INIS)

    Wu, S.

    1986-01-01

    This book is an overview of sintering science and its application to zirconia materials including CaO, MgO, and Y/sub 2/O/sub 3/-CeO/sub 2/ doped materials. This book is a reference for first-time exposure to zirconia materials technology, particularly densification

  5. Sintering additives for zirconia ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Wu, S.

    1986-01-01

    This book is an overview of sintering science and its application to zirconia materials including CaO, MgO, and Y/sub 2/O/sub 3/-CeO/sub 2/ doped materials. This book is a reference for first-time exposure to zirconia materials technology, particularly densification.

  6. Strain-enhanced sintering of iron powders

    Energy Technology Data Exchange (ETDEWEB)

    Amador, D.R.; Torralba, J.M. [Universidad Carlos III de Madrid, Departamento de Ciencias de Materiales e Ingenieria Metalurgica, Leganes, Madrid (Spain); Monge, M.A.; Pareja, R. [Universidad Carlos III de Madrid, Departamento de Fisica, Madrid (Spain)

    2005-02-01

    Sintering of ball-milled and un-milled Fe powders has been investigated using dilatometry, X-ray, density, and positron annihilation techniques. A considerable sintering enhancement is found in milled powders showing apparent activation energies that range between 0.44 and 0.80 eV/at. The positron annihilation results, combined with the evolution of the shrinkage rate with sintering temperature, indicate generation of lattice defects during the sintering process of milled and un-milled powders. The sintering enhancement is attributed to pipe diffusion along the core of moving dislocations in the presence of the vacancy excess produced by plastic deformation. Positron annihilation results do not reveal the presence of sintering-induced defects in un-milled powders sintered above 1200 K, the apparent activation energy being in good agreement with that for grain-boundary diffusion in {gamma}-Fe. (orig.)

  7. Physical and electrical properties of melt-spun Fe-Si (3–8 wt.%) soft magnetic ribbons

    Energy Technology Data Exchange (ETDEWEB)

    Overman, Nicole R.; Jiang, Xiujuan; Kukkadapu, Ravi K.; Clark, Trevor; Roosendaal, Timothy J.; Coffey, Gregory; Shield, Jeffrey E.; Mathaudhu, Suveen N.

    2018-02-01

    Fe-Si alloys ranging from 3 to 8 wt% Si were rapidly solidified using melt spinning. Wheel speeds of 30 m/s and 40 m/s were employed to vary cooling rates. Mössbauer spectroscopic studies indicated the Si content significantly influenced the number of Fe sites, relative abundance of various Fe species, and internal magnetic fields/structural environments. Wheel speed altered Fe speciation only in the 3 wt% sample. Scanning electron microscopy confirmed that increasing the wheel speed refined both the ribbon thickness and grain size. Electron backscatter diffraction results suggest tailoring melt spinning process parameters and alloy chemistry may offer the ability to manipulate {001} texture development. Electrical resistivity measurements were observed to increase in response to elevated Si content. Increased hardness was correlated to elevated Si content and wheel speed.

  8. Ultra-high resistive and anisotropic CoPd–CaF{sub 2} nanogranular soft magnetic films prepared by tandem-sputtering deposition

    Energy Technology Data Exchange (ETDEWEB)

    Naoe, Masayuki, E-mail: naoe@denjiken.ne.jp [Research Institute for Electromagnetic Materials, 2-1-1 Yagiyama-Minami, Taihaku-ku, Sendai 982-0807 (Japan); Kobayashi, Nobukiyo [Research Institute for Electromagnetic Materials, 2-1-1 Yagiyama-Minami, Taihaku-ku, Sendai 982-0807 (Japan); Ohnuma, Shigehiro [Research Institute for Electromagnetic Materials, 2-1-1 Yagiyama-Minami, Taihaku-ku, Sendai 982-0807 (Japan); Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki-aza-Aoba, Aoba-ku, Sendai 980-8578 (Japan); Iwasa, Tadayoshi; Arai, Ken-Ichi [Research Institute for Electromagnetic Materials, 2-1-1 Yagiyama-Minami, Taihaku-ku, Sendai 982-0807 (Japan); Masumoto, Hiroshi [Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki-aza-Aoba, Aoba-ku, Sendai 980-8578 (Japan)

    2015-10-01

    Ultra-high resistive and anisotropic soft magnetic films for gigahertz applications are desirable to demonstrate the really practical films. Here we present a study of novel nanogranular films fabricated by tandem-sputtering deposition. Their electromagnetic properties and nanostructure have also been discussed. These films consisted of nanocrystallized CoPd alloy-granules and CaF{sub 2} matrix, and a specimen having a composition of (Co{sub 0.69}Pd{sub 0.31}){sub 52}–(Ca{sub 0.31}F{sub 0.69}){sub 48} exhibited distinct in-plane uniaxial anisotropy after uniaxial field annealing with granule growth. Its complex permeability spectra have a ferromagnetic resonance frequency extending to the Super-High-Frequency band due to its higher anisotropy field, and its frequency response was quite well reproduced by a numerical calculation based on the Landau–Lifshitz–Gilbert equation. Furthermore, it was clarified that the CaF{sub 2}-based nanogranular film exhibits a hundredfold higher electrical resistivity than conventional oxide or nitride-based films. Higher resistivity enables the film thickness to achieve a margin exceeding threefold against eddy current loss. The greater resistivity of nanogranular films is attributed to the wide energy bandgap and superior crystallinity of CaF{sub 2} matrix. - Highlights: • We fabricated high-resistive and anisotropic granular films by tandem-sputtering. • CaF{sub 2}-based films exhibit a hundredfold higher resistivity than conventional films. • Uniaxial field annealing improved the magnetic properties dramatically. • High uniaxial anisotropy extended ferromagnetic resonance frequency to 4 GHz. • Annealed samples can be regarded as a ferromagnetic homogenized material.

  9. Local structure evolution of FexNi77-xCu(1-)Nb2P14B6 soft magnetic materials by mechanical alloying.

    Science.gov (United States)

    Yin, S; Wei, S; Bian, Q; Li, Z

    2001-03-01

    Mechanically alloyed Fe(x)Ni77-xCu1Nb2P14B6 soft magnetic materials have been prepared with different atomic compositions. The alloy structures are investigated by X-ray absorption fine structure (XAFS). The results show that mechanical alloying (MA) can drive the Fe(x)Ni77-xCu1Nb2P14B6 powder mixture to produce amorphous alloy while the atomic concentration of Fe element is about and over 40%. On the contrary, the MA Fe(x)Ni77 xCu1Nb2P14B6 is a solid solution with a fcc-like structure in the region of lower Fe atomic concentration (<22%), preserving a medium-range order around Ni and Fe atoms. Moreover, we have found that the local structure geometry of Fe atom is similar to that of Ni atom for all the MA Fe(x)Ni77-xCu1NbP14B6 samples. It indicates that the local structures of Fe and Ni atoms in a Fe(x)Ni77-xCu1Nb2P14B6 sample only depend on the x value of element Ni after ball milling.

  10. Soft-error tolerance and energy consumption evaluation of embedded computer with magnetic random access memory in practical systems using computer simulations

    Science.gov (United States)

    Nebashi, Ryusuke; Sakimura, Noboru; Sugibayashi, Tadahiko

    2017-08-01

    We evaluated the soft-error tolerance and energy consumption of an embedded computer with magnetic random access memory (MRAM) using two computer simulators. One is a central processing unit (CPU) simulator of a typical embedded computer system. We simulated the radiation-induced single-event-upset (SEU) probability in a spin-transfer-torque MRAM cell and also the failure rate of a typical embedded computer due to its main memory SEU error. The other is a delay tolerant network (DTN) system simulator. It simulates the power dissipation of wireless sensor network nodes of the system using a revised CPU simulator and a network simulator. We demonstrated that the SEU effect on the embedded computer with 1 Gbit MRAM-based working memory is less than 1 failure in time (FIT). We also demonstrated that the energy consumption of the DTN sensor node with MRAM-based working memory can be reduced to 1/11. These results indicate that MRAM-based working memory enhances the disaster tolerance of embedded computers.

  11. Fractures of the distal phalanx and associated soft tissue and osseous abnormalities in 22 horses with ossified sclerotic ungual cartilages diagnosed with magnetic resonance imaging.

    Science.gov (United States)

    Selberg, Kurt; Werpy, Natasha

    2011-01-01

    Ungual cartilage ossification in the forelimb is a common finding in horses. Subtle abnormalities associated with the ungual cartilages can be difficult to identify on radiographs. Magnetic resonance (MR) imaging findings of 22 horses (23 forelimbs) with a fracture of the distal phalanx and ossified ungual cartilage were characterized and graded. All horses had a forelimb fracture. Eleven involved a left forelimb (seven medial; four lateral), and 12 involved a right forelimb (five medial; seven lateral). All fractures were nonarticular, simple in configuration, and nondisplaced. The fractures were oriented in an axial proximal to abaxial distal and palmar to dorsal direction, and extended from the base of the ossified ungual cartilage into the distal phalanx. The fracture involved the fossa of the collateral ligament on the distal phalanx in 17 of 23 limbs. The palmar process and ossified ungual cartilage was abnormally mineralized in all horses. Ligaments and soft tissues adjacent to the ossified ungual cartilages were affected in all horses. The routine site of fracture in this study at the base of the ossified ungual cartilage extending into the distal phalanx suggests a biomechanical cause or focal stress point from cycling. The ligamentous structures associated with the ungual cartilages were often affected, showed altered signal intensity as well as enlargement and were thought to be contributing to the lameness. In conclusion, ossified ungual cartilages may lead to fracture of the palmar process of the distal phalanx and injury of the ungual cartilage ligaments. © 2011 Veterinary Radiology & Ultrasound.

  12. A study of Pr-Fe-B magnets produced by a low-cost powder method and the hydrogen decrepitation process

    Directory of Open Access Journals (Sweden)

    Edson Pereira Soares

    2005-06-01

    Full Text Available Sintered Pr-based magnets were produced using a new laboratory technique for powder handling. Unlike the conventional procedure for preparing sintered permanent magnets in the laboratory, the powder technique used in this investigation does not require a glove box. The effects of processing parameters on the magnetic properties of Pr-based sintered magnets prepared using the hydrogen decrepitation process have been studied. Specifically, the effects of sintering temperature and milling time for processing Pr16Fe76B8 magnets have been investigated. Pr16Fe76B8 magnets with the best magnetic properties were sintered between 1015 °C to 1075 °C.

  13. Sintered wire cesium dispenser photocathode

    Science.gov (United States)

    Montgomery, Eric J; Ives, R. Lawrence; Falce, Louis R

    2014-03-04

    A photoelectric cathode has a work function lowering material such as cesium placed into an enclosure which couples a thermal energy from a heater to the work function lowering material. The enclosure directs the work function lowering material in vapor form through a low diffusion layer, through a free space layer, and through a uniform porosity layer, one side of which also forms a photoelectric cathode surface. The low diffusion layer may be formed from sintered powdered metal, such as tungsten, and the uniform porosity layer may be formed from wires which are sintered together to form pores between the wires which are continuous from the a back surface to a front surface which is also the photoelectric surface.

  14. Experimental performance evaluation of sintered Gd spheres packed beds

    DEFF Research Database (Denmark)

    Tura, A.; Nielsen, Klaus K.; Van Nong, Ngo

    2016-01-01

    Research in magnetic refrigeration heavily relies on the use of packed spheres in regenerators, however little investigation to verify that such non-monolithic arrangements guarantee a sufficiently constrained structure has yet been performed. This work presents a preliminary comparison of the pe......Research in magnetic refrigeration heavily relies on the use of packed spheres in regenerators, however little investigation to verify that such non-monolithic arrangements guarantee a sufficiently constrained structure has yet been performed. This work presents a preliminary comparison...... of the performance of AMRs consisting of Gd spheres with diameters ranging from 450-550 microns partially sintered by Spark Plasma Sintering (SPS) to similar spheres, sorted in the same size range and from the same batch, but merely packed. Pressure drop is compared at uniform temperature and at a range of heat...... rejection temperatures and temperature spans. Performance is compared in terms of temperature span at a range of heat rejection temperatures (295-308 K) and 0 and 10 W cooling loads. Results show a moderate increase of pressure drop with the sintered spheres, while temperature spans were consistently 2...

  15. Nuclear tracks in sinterized gemstones

    International Nuclear Information System (INIS)

    Espinosa, G.; Rodriguez, L.V.; Golzarri, J.I.; Castano, V.M.

    1993-01-01

    The responses of sinterized gemstones to alpha particles attempt analyzed with the objective of finding new materials for SSNTD, and also to understand their interaction with radiation and the formation of tracks. In this work we present the results of the characterization of these materials as SSNTD. The micro structural changes observed by electron microscopy. The preparation, etching solution concentration, etching time and effects of temperature are discussed. (Author)

  16. Magnetic resonance imaging features of soft tissue and vascular injuries after high-voltage electrical burns and their clinical application.

    Science.gov (United States)

    Ligen, Li; Hongming, Yang; Feng, Li; Huinan, Yin; Quan, Hu; Guang, Feng

    2012-09-01

    To study the clinical application of MRI (magnetic resonance imaging) and MRA (MR angiography) technologies for examining the imaging characteristics of muscular and vascular injuries following high-voltage electrical burns. MRI and MRA examinations were conducted on 18 upper limbs and 8 lower limbs of 18 patients with high-voltage electric burns. Exploratory operations were performed on the necrotic muscle and injured vessels that had abnormal MRI and MRA signals. The necrotic muscle and embolised vessels were removed, and the muscle viability was tested. Meanwhile, histological examinations of the necrotic muscle and injured vessels were performed. Abnormal signals from the MRI were observed from the 18 upper limbs and 8 lower limbs of these patients. Two kinds of T1-weighted image signals were observed in the necrotic muscle. One form of signal enhancement indicated that the muscular tissue was necrotic, whereby a distinct demarcation was observed between necrotic and normal tissues. The other result was characterised by no signal enhancement in the area of the vessel where blood flow was entirely occluded and the muscle was entirely necrotic. The signal of the T2-weighted image was significantly enhanced in edematous and necrotic muscles and was higher than that of the T1-weighted image. However, the enhancement of the T2-weighted signal exhibited an uneven floccus appearance and had no distinct boundary. MRA of the 18 upper limbs and 8 lower limbs were abnormal and the main pathological manifestations included circuitous arteries and thromboses. The necrotic muscle and injured vessels that were found by MRI and MRA were removed upon exploratory surgery. Specific MRI and MRA imaging characteristics can be observed in muscular and vascular injures following high-voltage electrical burns. MRI and MRA were very useful for assessing the scope and degree of injury following high-voltage electrical burns, which was helpful to guide the explorative surgery. Copyright

  17. Viscoelastic properties of soft gels: comparison of magnetic resonance elastography and dynamic shear testing in the shear wave regime

    Science.gov (United States)

    Okamoto, R. J.; Clayton, E. H.; Bayly, P. V.

    2011-10-01

    Magnetic resonance elastography (MRE) is used to quantify the viscoelastic shear modulus, G*, of human and animal tissues. Previously, values of G* determined by MRE have been compared to values from mechanical tests performed at lower frequencies. In this study, a novel dynamic shear test (DST) was used to measure G* of a tissue-mimicking material at higher frequencies for direct comparison to MRE. A closed-form solution, including inertial effects, was used to extract G* values from DST data obtained between 20 and 200 Hz. MRE was performed using cylindrical 'phantoms' of the same material in an overlapping frequency range of 100-400 Hz. Axial vibrations of a central rod caused radially propagating shear waves in the phantom. Displacement fields were fit to a viscoelastic form of Navier's equation using a total least-squares approach to obtain local estimates of G*. DST estimates of the storage G' (Re[G*]) and loss modulus G'' (Im[G*]) for the tissue-mimicking material increased with frequency from 0.86 to 0.97 kPa (20-200 Hz, n = 16), while MRE estimates of G' increased from 1.06 to 1.15 kPa (100-400 Hz, n = 6). The loss factor (Im[G*]/Re[G*]) also increased with frequency for both test methods: 0.06-0.14 (20-200 Hz, DST) and 0.11-0.23 (100-400 Hz, MRE). Close agreement between MRE and DST results at overlapping frequencies indicates that G* can be locally estimated with MRE over a wide frequency range. Low signal-to-noise ratio, long shear wavelengths and boundary effects were found to increase residual fitting error, reinforcing the use of an error metric to assess confidence in local parameter estimates obtained by MRE.

  18. Accuracy of real time noninvasive temperature measurements using magnetic resonance thermal imaging in patients treated for high grade extremity soft tissue sarcomas

    Science.gov (United States)

    Craciunescu, Oana I.; Stauffer, Paul R.; Soher, Brian J.; Wyatt, Cory R.; Arabe, Omar; Maccarini, Paolo; Das, Shiva K.; Cheng, Kung-Shan; Wong, Terence Z.; Jones, Ellen L.; Dewhirst, Mark W.; Vujaskovic, Zeljko; MacFall, James R.

    2009-01-01

    Purpose: To establish accuracy of real time noninvasive temperature measurements using magnetic resonance thermal imaging in patients treated for high grade extremity soft tissue sarcomas. Methods: Protocol patients with advanced extremity sarcomas were treated with external beam radiation therapy and hyperthermia. Invasive temperature measures were compared to noninvasive magnetic resonance thermal imaging (MRTI) at 1.5 T performed during hyperthermia. Volumetric temperature rise images were obtained using the proton resonance frequency shift (PRFS) technique during heating in a 140 MHz miniannular phased array applicator. MRTI temperature changes were compared to invasive measurements of temperature with a multisensor fiber optic probe inside a #15 g catheter in the tumor. Since the PRFS technique is sensitive to drifts in the primary imaging magnetic field, temperature change distributions were corrected automatically during treatment using temperature-stable reference materials to characterize field changes in 3D. The authors analyzed MRT images and compared, in evaluable treatments, MR-derived temperatures to invasive temperatures measured in extremity sarcomas. Small regions of interest (ROIs) were specified near each invasive sensor identified on MR images. Temperature changes in the interstitial sensors were compared to the corresponding ROI PRFS-based temperature changes over the entire treatment and over the steady-state period. Nonevaluable treatments (motion∕imaging artifacts, noncorrectable drifts) were not included in the analysis. Results: The mean difference between MRTI and interstitial probe measurements was 0.91 °C for the entire heating time and 0.85 °C for the time at steady state. These values were obtained from both tumor and normal tissue ROIs. When the analysis is done on just the tumor ROIs, the mean difference for the whole power on time was 0.74 °C and during the period of steady state was 0.62 °C. Conclusions: The data show that

  19. Microwave sintering of ceramic materials

    Science.gov (United States)

    Karayannis, V. G.

    2016-11-01

    In the present study, the potential of microwave irradiation as an innovative energy- efficient alternative to conventional heating technologies in ceramic manufacturing is reviewed, addressing the advantages/disadvantages, while also commenting on future applications of possible commercial interest. Ceramic materials have been extensively studied and used due to several advantages they exhibit. Sintering ceramics using microwave radiation, a novel technology widely employed in various fields, can be an efficient, economic and environmentally-friendlier approach, to improve the consolidation efficiency and reduce the processing cycle-time, in order to attain substantial energy and cost savings. Microwave sintering provides efficient internal heating, as energy is supplied directly and penetrates the material. Since energy transfer occurs at a molecular level, heat is generated throughout the material, thus avoiding significant temperature gradients between the surface and the interior, which are frequently encountered at high heating rates upon conventional sintering. Thus, rapid, volumetric and uniform heating of various raw materials and secondary resources for ceramic production is possible, with limited grain coarsening, leading to accelerated densification, and uniform and fine-grained microstructures, with enhanced mechanical performance. This is particularly important for manufacturing large-size ceramic products of quality, and also for specialty ceramic materials such as bioceramics and electroceramics. Critical parameters for the process optimization, including the electromagnetic field distribution, microwave-material interaction, heat transfer mechanisms and material transformations, should be taken into consideration.

  20. Soft Robotics.

    Science.gov (United States)

    Whitesides, George M

    2018-04-09

    This description of "soft robotics" is not intended to be a conventional review, in the sense of a comprehensive technical summary of a developing field. Rather, its objective is to describe soft robotics as a new field-one that offers opportunities to chemists and materials scientists who like to make "things" and to work with macroscopic objects that move and exert force. It will give one (personal) view of what soft actuators and robots are, and how this class of soft devices fits into the more highly developed field of conventional "hard" robotics. It will also suggest how and why soft robotics is more than simply a minor technical "tweak" on hard robotics and propose a unique role for chemistry, and materials science, in this field. Soft robotics is, at its core, intellectually and technologically different from hard robotics, both because it has different objectives and uses and because it relies on the properties of materials to assume many of the roles played by sensors, actuators, and controllers in hard robotics. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Titanium Powder Sintering in a Graphite Furnace and Mechanical Properties of Sintered Parts

    OpenAIRE

    Changzhou Yu; Peng Cao; Mark Ian Jones

    2017-01-01

    Recent accreditation of titanium powder products for commercial aircraft applications marks a milestone in titanium powder metallurgy. Currently, powder metallurgical titanium production primarily relies on vacuum sintering. This work reported on the feasibility of powder sintering in a non-vacuum furnace and the tensile properties of the as-sintered Ti. Specifically, we investigated atmospheric sintering of commercially pure (C.P.) titanium in a graphite furnace backfilled with argon and stu...

  2. Production of sintered alumina from powder; optimization of the sinterized parameters for the maximum mechanical resistence

    International Nuclear Information System (INIS)

    Rocha, J.C. da.

    1981-02-01

    Pure, sinterized alumina and the optimization of the parameters of sinterization in order to obtain the highest mechanical resistence are discussed. Test materials are sinterized from a fine powder of pure alumina (Al 2 O 3 ), α phase, at different temperatures and times, in air. The microstructures are analysed concerning porosity and grain size. Depending on the temperature or the time of sinterization, there is a maximum for the mechanical resistence. (A.R.H.) [pt

  3. Magnetic properties of ultrafine-grained cobalt samples obtained from consolidated nanopowders

    Energy Technology Data Exchange (ETDEWEB)

    Fellah, F.; Cherif, S.M.; Schoenstein, F.; Jouini, N.; Dirras, G. [LSPM (CNRS-UPR 3407), Universite Paris 13, 99 av. J.B. Clement, 93430 Villetaneuse (France); Bouziane, K. [Department of Physics, College of Science, Sultan Qaboos University, P.O. Box 36, Al-Khodh 123 (Oman)

    2011-08-15

    Co powders having nominal average particle size of 50 and 240 nm were synthesized using a polyol method and then consolidated by hot isostatic pressing (HIP) or the emerging spark plasma sintering (SPS) compaction processes. Bulk polycrystalline aggregates were obtained, having average grain sizes of about 200 and 300 nm, respectively. It is found that both nanoparticles and consolidated samples exhibit a soft ferromagnetic behavior. The magnetization reversal likely occurs by nucleation/propagation process. However, a curling process can be involved in the magnetization reversal for the smaller particles. The dynamic measurements provide for the consolidated samples magnetic parameters corresponding to bulk cobalt with vanishing anisotropy. The contribution of the intergranular region is found to be negligible. We can infer that the used consolidation routes insure a good magnetic interfacial contact between the particles. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Alternative sintering methods compared to conventional thermal sintering for inkjet printed silver nanoparticle ink

    NARCIS (Netherlands)

    Niittynen, J.; Abbel, R.; Mäntysalo, M.; Perelaer, J.; Schubert, U.S.; Lupo, D.

    2014-01-01

    In this contribution several alternative sintering methods are compared to traditional thermal sintering as high temperature and long process time of thermal sintering are increasing the costs of inkjet-printing and preventing the use of this technology in large scale manufacturing. Alternative

  5. Protocol for Ultralow-Temperature Ceramic Sintering: An Integration of Nanotechnology and the Cold Sintering Process.

    Science.gov (United States)

    Guo, Hanzheng; Baker, Amanda; Guo, Jing; Randall, Clive A

    2016-11-22

    The sintering process is an essential step in taking particulate materials into dense ceramic materials. Although a number of sintering techniques have emerged over the past few years, the sintering process is still performed at high temperatures. Here we establish a protocol to achieve dense ceramic solids at extremely low temperatures (sustainable manufacturing practices.

  6. Soft Clouding

    DEFF Research Database (Denmark)

    Søndergaard, Morten; Markussen, Thomas; Wetton, Barnabas

    2012-01-01

    Soft Clouding is a blended concept, which describes the aim of a collaborative and transdisciplinary project. The concept is a metaphor implying a blend of cognitive, embodied interaction and semantic web. Furthermore, it is a metaphor describing our attempt of curating a new semantics of sound...... archiving. The Soft Clouding Project is part of LARM - a major infrastructure combining research in and access to sound and radio archives in Denmark. In 2012 the LARM infrastructure will consist of more than 1 million hours of radio, combined with metadata who describes the content. The idea is to analyse...... the concept of ‘infrastructure’ and ‘interface’ on a creative play with the fundamentals of LARM (and any sound archive situation combining many kinds and layers of data and sources). This paper will present and discuss the Soft clouding project from the perspective of the three practices and competencies...

  7. Measurement and model on thermal properties of sintered diamond composites

    International Nuclear Information System (INIS)

    Moussa, Tala; Garnier, Bertrand; Peerhossaini, Hassan

    2013-01-01

    Highlights: ► Thermal properties of sintered diamond used for grinding is studied. ► Flash method with infrared temperature measurement is used to investigate. ► Thermal conductivity increases with the amount of diamond. ► It is very sensitive to binder conductivity. ► Results agree with models assuming imperfect contact between matrix and particles. - Abstract: A prelude to the thermal management of grinding processes is measurement of the thermal properties of working materials. Indeed, tool materials must be chosen not only for their mechanical properties (abrasion performance, lifetime…) but also for thermal concerns (thermal conductivity) for efficient cooling that avoids excessive temperatures in the tool and workpiece. Sintered diamond is currently used for grinding tools since it yields higher performances and longer lifetimes than conventional materials (mineral or silicon carbide abrasives), but its thermal properties are not yet well known. Here the thermal conductivity, heat capacity and density of sintered diamond are measured as functions of the diamond content in composites and for two types of metallic binders: hard tungsten-based and soft cobalt-based binders. The measurement technique for thermal conductivity is derived from the flash method. After pulse heating, the temperature of the rear of the sample is measured with a noncontact method (infrared camera). A parameter estimation method associated with a three-layer nonstationary thermal model is used to obtain sample thermal conductivity, heat transfer coefficient and absorbed energy. With the hard metallic binder, the thermal conductivity of sintered diamond increased by up to 64% for a diamond content increasing from 0 to 25%. The increase is much less for the soft binder: 35% for diamond volumes up to 25%. In addition, experimental data were found that were far below the value predicted by conventional analytical models for effective thermal conductivity. A possible explanation

  8. Properties enhancement and recoil loop characteristics for hot deformed nanocrystalline NdFeB permanent magnets

    International Nuclear Information System (INIS)

    Liu, Z. W.; Huang, Y. L.; Hu, S. L.; Zhong, X. C.; Yu, H. Y.; Gao, X. X.

    2013-01-01

    Nanocrystalline NdFeB magnets were prepared by spark plasma sintering (SPS) and SPS followed by HD using melt spun ribbons as the starting materials. The microstructure of SPSed and HDed magnets were analyzed. The effects of process including temperature and compression ratio on the microstructure and properties were investigated. High magnetic properties were obtained in anisotropic HDed magnets. The combination of Zn and Dy additions was successfully employed to improve the coercivity and thermal stability of the SPSed magnets. Open recoil loops were found in these magnets with Nd-rich composition and without soft magnetic phase for the first time. The relationship between the recoil loops and microstructure for SPS and HD NdFeB magnets were investigated. The investigations showed that the magnetic properties of SPS+HDed magnets are related to the extent of the aggregation of Nd-rich phase, which was formed during HD due to existence of porosity in SPSed precursor. Large local demagnetization fields induced by the Nd-rich phase aggregation leads to the open loops and significantly reduced the coercivity. By reducing the recoil loop openness, the magnetic properties of HDed NdFeB magnets were successfully improved. (author)

  9. Soft Neutrosophic Ring and Soft Neutrosophic Field

    Directory of Open Access Journals (Sweden)

    Mumtaz Ali

    2014-04-01

    Full Text Available In this paper we extend the theory of neutrosophic rings and neutrosophic fields to soft sets and construct soft neutrosophic rings and soft neutrosophic fields. We also extend neutrosophic ideal theory to form soft neutrosophic ideal over a neutrosophic ring and soft neutrosophic ideal of a soft neutrosophic ring. We have given many examples to illustrate the theory of soft neutrosophic rings and soft neutrosophic fields and display many properties of these. At the end of this paper we gave soft neutrosophic ring homomorphism.

  10. Microwave sintering of Ag-nanoparticle thin films on a polyimide substrate

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, S., E-mail: fujii.s.ap@m.titech.ac.jp [Department of Applied Chemistry, Tokyo Institute of Technology, Tokyo 152-8522 (Japan); Department of Information and Communication System Engineering, National Institute of Technology, Okinawa College, Nago, Okinawa 905-2192 (Japan); Kawamura, S.; Maitani, M. M.; Suzuki, E.; Wada, Y. [Department of Applied Chemistry, Tokyo Institute of Technology, Tokyo 152-8522 (Japan); Mochizuki, D. [Interdisciplinary Cluster for Cutting Edge Research, Center for Energy and Environmental Science, Shinshu University, Ueda, Nagano 386-8567 (Japan)

    2015-12-15

    Ag-nanoparticle thin films on a polyimide substrate were subjected to microwave sintering by use of a single-mode waveguide applicator. A two-step sintering process was employed. First, at low conductivities of the film, the film sample was placed at the site of the maximum electric field and subjected to microwave irradiation. Second, when the conductivity of the film increased, the film sample was placed at the site of the maximum magnetic field and again subjected to microwave irradiation. The microwave sintering process was completed within 1.5 min, which is significantly lower than the time required for the oven heating process. The resulting conductivity of the film, albeit only 30% of that of the bulk material, was seven times that of a film annealed at the same temperature in a furnace. Scanning electron microscopy images revealed that the nanoparticles underwent both grain necking and grain growth during microwave sintering. In addition, this sintering process was equivalent to the oven heating process performed at a 50 °C higher annealing temperature. An electromagnetic wave simulation and a heat transfer simulation of the microwave sintering process were performed to gain a thorough understanding of the process.

  11. Microwave sintering of Ag-nanoparticle thin films on a polyimide substrate

    Directory of Open Access Journals (Sweden)

    S. Fujii

    2015-12-01

    Full Text Available Ag-nanoparticle thin films on a polyimide substrate were subjected to microwave sintering by use of a single-mode waveguide applicator. A two-step sintering process was employed. First, at low conductivities of the film, the film sample was placed at the site of the maximum electric field and subjected to microwave irradiation. Second, when the conductivity of the film increased, the film sample was placed at the site of the maximum magnetic field and again subjected to microwave irradiation. The microwave sintering process was completed within 1.5 min, which is significantly lower than the time required for the oven heating process. The resulting conductivity of the film, albeit only 30% of that of the bulk material, was seven times that of a film annealed at the same temperature in a furnace. Scanning electron microscopy images revealed that the nanoparticles underwent both grain necking and grain growth during microwave sintering. In addition, this sintering process was equivalent to the oven heating process performed at a 50 °C higher annealing temperature. An electromagnetic wave simulation and a heat transfer simulation of the microwave sintering process were performed to gain a thorough understanding of the process.

  12. New experimental perspectives for soft x-ray absorption spectroscopies at ultra-low temperatures below 50 mK and in high magnetic fields up to 7 T

    Science.gov (United States)

    Beeck, T.; Baev, I.; Gieschen, S.; Meyer, H.; Meyer, S.; Palutke, S.; Feulner, P.; Uhlig, K.; Martins, M.; Wurth, W.

    2016-04-01

    A new ultra-low temperature experiment including a superconducting vector magnet has been developed for soft x-ray absorption spectroscopy experiments at third generation synchrotron light sources. The sample is cooled below 50 mK by a cryogen free 3He-4He dilution refrigerator. At the same time, magnetic fields of up to ±7 T in the horizontal direction and ±0.5 T in the vertical direction can be applied by a superconducting vector magnet. The setup allows to study ex situ and in situ prepared samples, offered by an attached UHV preparation chamber with load lock. The transfer of the prepared samples between the preparation section and the dilution refrigerator is carried out under cryogenic temperatures. First commissioning studies have been carried out at the Variable Polarization XUV Beamline P04 at PETRA III and the influence of the incident photon beam to the sample temperature has been studied.

  13. Master sintering curves of two different alumina powder compacts

    Directory of Open Access Journals (Sweden)

    Vaclav Pouchly

    2009-12-01

    Full Text Available Concept of Master Sintering Curve is a strong tool for optimizing sintering schedule. The sintering behaviour can be predicted, and sintering activation energy can be calculated with the help of few dilatometric measurements. In this paper an automatic procedure was used to calculate Master Sintering Curves of two different alumina compacts. The sintering activation energies were determined as 640 kJ/mol for alumina with particle size of 240 nm, respective 770 kJ/mol for alumina with particle size of 110 nm. The possibility to predict sintering behaviour with the help of Master Sintering Curve was verified.

  14. Sintering characteristics of nano-ceramic coatings

    NARCIS (Netherlands)

    de Hosson, J.T.M.; Popma, R.

    2003-01-01

    This paper concentrates on sintering characteristics of nano-sized ceramic SiO2 particles. The sintering process is studied as a function of temperature using a conventional furnace and using a laser beam. The underlying idea is to combine the nanoceramic sol-gel concept with inkjet technology and

  15. Mechanical characteristics of microwave sintered silicon carbide

    Indian Academy of Sciences (India)

    In firing of products by conventionally sintered process, SiC grain gets oxidized producing SiO2 (∼ 32 wt%) and deteriorates the quality of the product substantially. Partially sintered silicon carbide by such a method is a useful material for a varieties of applications ranging from kiln furniture to membrane material.

  16. Kinetic analysis of boron carbide sintering

    International Nuclear Information System (INIS)

    Borchert, W.; Kerler, A.R.

    1975-01-01

    The kinetics of the sintering of boron carbide were investigated by shrinkage measurements with a high-temperature dilatometer under argon atmosphere in dependence on temperature, grain size, and pressure. The activation energies and the reaction mechanisms of the different stages of sintering were determined. (orig.) [de

  17. Electro sinter forging of titanium disks

    DEFF Research Database (Denmark)

    Cannella, Emanuele; Nielsen, Chris Valentin; Bay, Niels Oluf

    Electro sinter forging (ESF) is a new sintering process based on the principle of electrical Joule heating. In the present work, middle frequency direct current (MFDC) was flowing through the powder compact, which was under mechanical pressure. The main parameters are the high electrical current,...

  18. Sintering of ultra high molecular weight polyethylene

    Indian Academy of Sciences (India)

    Abstract. Ultra high molecular weight polyethylene (UHMWPE) is a high performance polymer having low coefficient of friction, good abrasion resistance, good chemical ... In this study, we report our results on compaction and sintering behaviour of two grades of UHMWPE with reference to the powder morphology, sintering ...

  19. Sintered-to-size FBR fuel

    International Nuclear Information System (INIS)

    Rasmussen, D.E.; Schaus, P.S.

    1984-04-01

    Fabrication of sintered-to-size PuO 2 -UO 2 fuel pellets was completed for testing of proposed FBR product specifications. Approximately 6000 pellets were fabricated to two nominal diameters and two densities by cold pressing and sintering to size. Process control and correlation between test and production batches are discussed

  20. Sintering of zirconia in high-pressure

    International Nuclear Information System (INIS)

    Kunrath, A.O.; Strohaecker, T.R.; Pereira, A.S.; Jornada, J.A.H. da; Piermarini, G.J.

    1989-01-01

    A systematic study about the sintering of zirconia hyperfines powders in high-pressure is presented. The differents conditions effect of sintering in microstructure and in hardness and tenacity properties of zirconia samples with a very fine grain is also studied. (C.G.C.) [pt

  1. Modeling the microstructural evolution during constrained sintering

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Frandsen, Henrik Lund; Tikare, V.

    A numerical model able to simulate solid state constrained sintering of a powder compact is presented. The model couples an existing kinetic Monte Carlo (kMC) model for free sintering with a finite element (FE) method for calculating stresses on a microstructural level. The microstructural respon...

  2. Modeling the Microstructural Evolution During Constrained Sintering

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Frandsen, Henrik Lund; Pryds, Nini

    2015-01-01

    A numerical model able to simulate solid-state constrained sintering is presented. The model couples an existing kinetic Monte Carlo model for free sintering with a finite element model (FEM) for calculating stresses on a microstructural level. The microstructural response to the local stress as ...

  3. Mechanical characteristics of microwave sintered silicon carbide

    Indian Academy of Sciences (India)

    Unknown

    Central Glass and Ceramic Research Institute, Kolkata 700 032, India. Abstract. The present work deals with the sintering of ... recently become an attractive area of research and deve- lopment. The major advantages of ... without the usage of sintering aids (Lee and Case 1999;. Goldstein et al 1999). Several studies have ...

  4. THE POLARIZING EFFECTS IN SINTERED KAOLIN

    African Journals Online (AJOL)

    compacted and sintered density of the ceramic have been studied, and a density — pressure relationship for before- and after-sintering conditions obtained. INTRODUCTION. Ceramics have been known to mankind for thousands of years, and have been used in construction materials. In many applications, ceramics have.

  5. Soft Clouding

    DEFF Research Database (Denmark)

    Søndergaard, Morten; Markussen, Thomas; Wetton, Barnabas

    2012-01-01

    Soft Clouding is a blended concept, which describes the aim of a collaborative and transdisciplinary project. The concept is a metaphor implying a blend of cognitive, embodied interaction and semantic web. Furthermore, it is a metaphor describing our attempt of curating a new semantics of sound a...

  6. The Influence of Sintering Temperature of Reactive Sintered (Ti, MoC-Ni Cermets

    Directory of Open Access Journals (Sweden)

    Marek Jõeleht

    2015-09-01

    Full Text Available Titanium-molybdenum carbide nickel cermets ((Ti, MoC-Ni were produced using high energy milling and reactive sintering process. Compared to conventional TiC-NiMo cermet sintering the parameters for reactive sintered cermets vary since additional processes are present such as carbide synthesis. Therefore, it is essential to acquire information about the suitable sintering regime for reactive sintered cermets. One of the key parameters is the final sintering temperature when the liquid binder Ni forms the final matrix and vacancies inside the material are removed. The influence of the final sintering temperature is analyzed by scanning electron microscopy. Mechanical properties of the material are characterized by transverse rupture strength, hardness and fracture toughness.DOI: http://dx.doi.org/10.5755/j01.ms.21.3.7179

  7. Sintered ceramics having controlled density and porosity

    International Nuclear Information System (INIS)

    Brassfield, H.C.; DeHollander, W.R.; Nivas, Y.

    1980-01-01

    A new method was developed for sintering ceramic uranium dioxide powders, in which ammonium oxalate is admixed with the powder prior to being pressed into a cylindrical green body, so that the end-point density of the final nuclear-reactor fuel product can be controlled. When the green body is heated, the ammonium oxalate decomposes and leaves discrete porosity in the sintered body, which corresponds to the ammonium oxalate regions in the green body. Thus the end-point density of the sintered body is a function of the amount of ammonium oxalate added. The final density of the sintered product is about 90-97% of the theoretical. The addition of ammonium oxalate also allows control of the pore size and distribution throughout the fuel. The process leaves substantially no impurities in the sintered strucuture. (DN)

  8. Magnets

    International Nuclear Information System (INIS)

    Young, I.R.

    1984-01-01

    A magnet pole piece for an NMR imaging magnet is made of a plurality of magnetic wires with one end of each wire held in a non-magnetic spacer, the other ends of the wires being brought to a pinch, and connected to a magnetic core. The wires may be embedded in a synthetic resin and the magnetisation and uniformity thereof can be varied by adjusting the density of the wires at the spacer which forms the pole piece. (author)

  9. The harmful effects of sintering aids in Pr:LuAG optical ceramic scintillator

    Czech Academy of Sciences Publication Activity Database

    Shen, Y.; Shi, Y.; Feng, X.; Pan, Y.; Li, J.; Zeng, J.-Y.; Nikl, Martin; Krasnikov, A.; Vedda, A.; Moretti, F.

    2012-01-01

    Roč. 95, č. 7 (2012), s. 2130-2132 ISSN 0002-7820 R&D Projects: GA MŠk LH12185 Institutional research plan: CEZ:AV0Z10100521 Keywords : scintillator * optical ceramics * sintering aids * luminescence Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.107, year: 2012

  10. Low temperature sintering of MgCuZn ferrite and its electrical and ...

    Indian Academy of Sciences (India)

    cm was obtained for the ferrite with 12 mol% Cu at relatively low sintering temperature (910°C). The magnetic properties of the ferrites also improved by the Cu substitution. The chip inductors made of the ferrite fired at 910 C with 12 mol% Cu ...

  11. Microwave applications of soft ferrites

    CERN Document Server

    Pardavi-Horvath, M P

    2000-01-01

    Signal processing requires broadband, low-loss, low-cost microwave devices (circulators, isolators, phase shifters, absorbers). Soft ferrites (garnets, spinels, hexaferrites), applied in planar microwave devices, are reviewed from the point of view of device requirements. Magnetic properties, specific to operation in high-frequency electromagnetic fields, are discussed. Recent developments in thick film ferrite technology and device design are reviewed. Magnetic losses related to planar shape and inhomogeneous internal fields are analyzed.

  12. Titanium Powder Sintering in a Graphite Furnace and Mechanical Properties of Sintered Parts

    Directory of Open Access Journals (Sweden)

    Changzhou Yu

    2017-02-01

    Full Text Available Recent accreditation of titanium powder products for commercial aircraft applications marks a milestone in titanium powder metallurgy. Currently, powder metallurgical titanium production primarily relies on vacuum sintering. This work reported on the feasibility of powder sintering in a non-vacuum furnace and the tensile properties of the as-sintered Ti. Specifically, we investigated atmospheric sintering of commercially pure (C.P. titanium in a graphite furnace backfilled with argon and studied the effects of common contaminants (C, O, N on sintering densification of titanium. It is found that on the surface of the as-sintered titanium, a severely contaminated porous scale was formed and identified as titanium oxycarbonitride. Despite the porous surface, the sintered density in the sample interiors increased with increasing sintering temperature and holding time. Tensile specimens cut from different positions within a large sintered cylinder reveal different tensile properties, strongly dependent on the impurity level mainly carbon and oxygen. Depending on where the specimen is taken from the sintered compact, ultimate tensile strength varied from 300 to 580 MPa. An average tensile elongation of 5% to 7% was observed. Largely depending on the interstitial contents, the fracture modes from typical brittle intergranular fracture to typical ductile fracture.

  13. Relation between pO2, 31P magnetic resonance spectroscopy parameters and treatment outcome in patients with high-grade soft tissue sarcomas treated with thermoradiotherapy

    International Nuclear Information System (INIS)

    Dewhirst, Mark W.; Poulson, Jean M.; Yu Daohai; Sanders, Linda; Lora-Michiels, Michael; Vujaskovic, Zeljko; Jones, Ellen L.; Samulski, Thaddeus V.; Powers, Barbara E.; Brizel, David M.; Prosnitz, Leonard R.; Charles, H. Cecil

    2005-01-01

    Purpose: In a prior study, the combination of 31 P magnetic resonance spectroscopy (MRS)-based intracellular pH (pHi) and T2 relaxation time was highly predictive of the pathologic complete response (pCR) rate in a small series of patients with soft tissue sarcomas (STSs) treated with thermoradiotherapy. Changes in the magnetic resonance metabolite ratios and pO 2 were related to the pCR rate. Hypoxia also correlated with a greater likelihood for the development of metastases. Because of the limited number of patients in the prior series, we initiated this study to determine whether the prior observations were repeatable and whether 31 P MRS lipid-related resonances were related to a propensity for metastasis. Methods and materials: Patients with high-grade STSs were enrolled in an institutional review board-approved Phase II thermoradiotherapy trial. All tumors received daily external beam radiotherapy (1.8-2.0 Gy, five times weekly) to a total dose of 30-50 Gy. Hyperthermia followed radiotherapy by 31 P metabolite ratios, pHi, and T2 relaxation time. The median pO 2 and hypoxic fraction were determined using pO 2 histography. Comparisons between experimental endpoints and the pCR rate and metastasis-free and overall survival were made. Results: Of 35 patients, 21 and 28 had reportable pretreatment MRS/MRI and pO 2 data, respectively. The cutpoints for a previously tested receiver operating curve for a pCR were T2 = 100 and pHi = 7.3. In the current series, few tumors fell below the cutpoints so validation was not possible. The phosphodiester (PDE)/inorganic phosphate (Pi) ratio and hypoxic fraction correlated inversely with the pCR rate in the current series (Spearman correlation coefficient -0.51, p = 0.017; odds ratio of percentage of necrosis ≥95% = 0.01 for a 1% increase in the hypoxic fraction; Wald p = 0.036). The pretreatment phosphomonoester (PME)/Pi ratio also correlated inversely with the pCR rate (odds ratio of percentage of necrosis ≥95% = 0

  14. Thermodynamics and mechanisms of sintering

    International Nuclear Information System (INIS)

    Pask, J.A.

    1978-10-01

    A phenomenological overview and exploration of the thermodynamic and geometric factors play a role in the process of densification of model compact systems consisting of crystalline spheres of uniform size in regular and irregular packing that form grain boundaries at every contact point. A further assumption is the presence of isotropic surface and grain boundary energies. Although such systems are unrealistic in comparison with normal powder compacts, their potential sintering behavior can be analyzed and provided with a limiting set of behavior conditions which can be looked upon as one boundary condition. This approach is logically realistic since it is easier to understand and provide a basis for understanding the more complex real powder systems

  15. Melting and Sintering of Ashes

    DEFF Research Database (Denmark)

    Hansen, Lone Aslaug

    1997-01-01

    , the biggest deviations being found for salt rich (i.e. straw derived) ashes.A simple model assuming proportionality between fly ash fusion and deposit formation was found to be capable of ranking deposition rates for the different straw derived fly ashes, whereas for the fly ashes from coal/straw co......-firing, the model only had a qualitative agreement with the measured ash deposit formation rates.Sintering measurements were carried out by means of compression strength testing of ash pellets. This method showed to not be applicable for the salt rich fly ash derived from straw combustion. For the fly ashes...... have been employed in a simple model for prediction of ash deposit formation, the results of which have been compared to ash deposition formation rates measured at the respective boilers.The ash fusion results were found to directly reflect the ash compositional data:a) Fly ashes and deposits from...

  16. Science of sintering and its future

    International Nuclear Information System (INIS)

    Ristic, M.M.

    1975-01-01

    Some new books published by M.Yu. Baljshin, V.A. Ivensen, V.V. Skorohod and others are characterized by the wish to give a complete approach to the problems of sintering theory. Bearing just this in mind while writing the book ''An Essay on the Generalization of Sintering Theory'' (G.V.Samsonov, M.M. Ristic with the collaborators) an idea was born: to ask the most eminent scientists in this field to present their own opinions on the theme ''The Science of Sintering and Modern Views on its Future''. There were formed 18 questions, given in the appendix to be answered. The received answers were presented in 10 chapters of this book. The fourth part of the book consists of papers of eminent scientists engaged in the field of sintering science (some of which were published here for the first time). This material is published in the book with the consent of the authors and these original contributions provide a more profound knowledge of sintering. The initial idea, that the book should have a monograph character and in which the answers would serve as some data on the latest notions of the science of sintering, was somewhat changed since the original opinions of individual scientists are given in the book and these, are sometimes very contradictory. This, in fact, gives the book a special charm because the unsolved problems in the science of sintering are most evidently stressed in this way